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Abstract

Image registration is the process of estimating the optimal transformation that aligns

different imaging data into spatial correspondences. Multi-modal image registration

is to register images which are captured by different types of imaging devices.

This thesis aims to develop robust and effective techniques for multi-modal image

registration. The challenge lies in the fact that the visual appearance may differ a lot

between corresponding parts of multi-modal images. We have been exploring ways

by investigating local image features. Two main contributions have been made in this

thesis.

First, we have improved existing mono-modal and multi-modal image registration

techniques by better utilizing gradient information. For a feature-based image

registration technique, its effectiveness to a large extent relies on the discrimination

power of local descriptors. In the existing techniques, gradient information is utilized

in a number of ways for building local descriptors. We have analyzed the limitations

of these techniques, and have proposed a technique for better utilizing gradient

information. As a result, the discrimination power of local descriptors has been

enhanced, leading to a better registration performance.

Second, we have developed a new multi-modal image registration technique,

which has the following innovations:

1. We have proposed a technique to detect the intrinsic structural similarity in

multi-modal microscopic images. This is achieved by exploiting the characteristics

in intensity relationships between the Red-Green-Blue color channels.

2. To increase robustness to content differences, contour-based corners are used,

instead of intensity-based keypoints in a state-of-the-art multi-modal image

registration technique.

3. We have proposed a new local descriptor to better represent corners.
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4. We have proposed a new way of scale estimation by making use of geometric

relationships between corner triplets in two images.

The proposed multi-modal image registration technique achieves greater robustness

in terms of both content differences and scale differences as compared to the

state-of-the-art multi-modal image registration technique.
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Chapter 1

Introduction

1.1 Background

Image registration is an important process in computer vision and image processing

applications, especially in medical imaging analysis. It is the process of finding the

correct spatial alignment between images of the same scene that have been acquired

in different imaging conditions [13, 76, 99, 118]. The difference in imaging conditions

may be due to differences in time, viewpoint, illumination, capturing device, noise,

cluttering and occlusion [118]. For example, Figure 1.1 shows two images which vary

in scale, rotation and translation. In the domain of image registration, one image is

usually referred to as the reference image, while the other is referred to as the target

image, as shown in Figure 1.1 (a) and (b) respectively.

(a) Reference Image (b) Target Image

Figure 1.1: An Example of Transformations between Images

As pointed out in [13], a new image registration technique is developed by aiming

1
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to address different combinations of problems in the following four areas:

1. feature space, involving the attributes of image data that are to be utilized for

matching,

2. search space, associated with transformations between images to be registered,

3. search strategy, defining the approach of going through the transformations for

the one that suits best, and

4. similarity metric, used to evaluate the merit of any possible solution.

Based on this analysis, the registration of two images Ir and It can be formulated as

T̂ = arg max
T∈T

S(Ir, It(T )), (1.1)

where Ir and It are the reference and target images, T and S denote the space of

transformations and the similarity measure respectively. As Equation 1.1 states, image

registration is a process of finding such a transformation that maximizes the similarity

between the reference and target images.

Multi-modal image registration is to register images which are captured by

different types of devices and has applications in remote sensing, robot navigation,

security surveillance and medical image analysis, etc. Particularly in medical imaging,

it is very common that images are captured by different types of scanners such as CT

(computed tomography), MRI (magnetic resonance imaging), PET (positron emission

tomography), SPECT (single-photon emission computed tomography), just to name a

few [60]. In a pair of multi-modal images, intensity variations between corresponding

parts might be very substantial [32, 106]. Thus, it is a challenging task to effectively

register multi-modal images.

Multi-modal image registration can be viewed as the task of integrating

information from different types of sources [46] and is especially important in medical

imaging. An accurate registration is helpful to image-guided therapy, diagnoses of

various diseases, patient monitoring, planning and assessing the quality of treatment,

etc [8].
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1.2 Motivation

(a) Color (b) Confocal

Figure 1.2: An Example of Multimodal Microscopic Images

The focus of the research in this thesis is on developing a robust technique for

registering multi-modal images. Among the different types of multi-modal images

we have tested, microscopic images are the most challenging. A sample pair of such

images is given in Figure 1.2. The two images in Figure 1.2(a) and (b) are called

color image and confocal image respectively in this thesis. Clearly, visual differences

between color and confocal images are very large, which is caused by different

staining and capturing techniques. From the perspective of image registration, we

are motivated by a few potential problems as follows.

i. In the two types of microscopic images, many image structures in the color image
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do not appear at the corresponding parts of the confocal image. Thus, the intrinsic

structural similarity needs to be detected.

ii. Even at corresponding parts where image structures are clear in both of the two

types of images, their contents are largely different. It would be challenging to

deal with the large content differences from the perspective of image registration.

iii. It might be more and more challenging to effectively register color and confocal

images as their scale difference increases.

1.3 Research Objectives

Overall, this research aims to propose multi-modal image registration techniques. As

our objectives, a proposed technique should

i. be able to effectively register multi-modal microscopic images;

ii. be invariant to different types of imaging modalities;

iii. be robust to differences in image contents;

iv. be robust to differences in scale.

1.4 Contributions of the Thesis

A summary of contributions of the thesis is given as follows.

i. The SIFT (Scale Invariant Feature Transform) descriptor [56] is improved by

better utilizing gradient information in building and matching descriptors. By

pointing out the limitations of only using either Gradient Magnitudes (GM) or

Gradient Occurrences (GO) in building descriptors, we observe that both GM

and GO are important gradient information in building image descriptors. Thus,

we will propose to utilize both of the two types of gradient information. The

proposed technique improves the registration performance in both mono-modal

and multi-modal cases as compared to only using either GM or GO. More
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generally, the proposed technique can be applied or extended to SIFT-like

descriptors to improve the registration performance. (See Chapter 3)

ii. We will propose a multi-modal image registration technique based on corners,

which has the following four components.

a. In multi-modal microscopic images, the intrinsic structural similarity is

detected. Due to the low structural similarity in these images, it is very

challenging to achieve an effective registration. The structural similarity is

detected by utilizing intensity relationships between the Red-Green-Blue color

channels. (See Chapter 4)

b. Rather than using intensity-based keypoints in existing multi-modal image

registration techniques, contour-based corners are used. In order to achieve

robustness to content differences, curvatures are used to represent corners.

(See Chapter 5)

c. To increase the discrimination in representing corners, we will propose a novel

corner descriptor called Distribution of Edge Pixels Along Contour (DEPAC).

Due to the fact that the number of edges between corresponding parts of

multi-modal images may differ a lot, a DEPAC descriptor only represents the

edges along the contour where a corner is located. (See Chapter 5)

d. We will propose a new way of estimating the scale difference in an image pair.

This is achieved by making use of geometric relationships between corner

triplets in two images. The estimated scale difference is very close to the

ground-truth scale difference. (See Chapter 5)

Compared with the latest multi-modal image registration technique in [49], the

proposed technique achieves greater robustness to both content differences and

scale differences.

1.5 Structure of the Thesis

The rest of the thesis is structured as follows. In Chapter 2, a review of existing

image registration techniques is given and a few promising registration techniques
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are highlighted. In Chapter 3, a study is made on gradient utilizations for building

and matching SIFT-like descriptors, and a new way of utilizing gradients is proposed.

Chapter 4 addresses the low structural similarity in multi-modal microscopic images

and elaborates our proposed detector of structural similarity. In Chapter 5, we will

analyze the problem in multi-modal microscopic images after applying the proposed

technique in Chapter 4, and propose a multi-modal image registration technique

based on corners. Chapter 6 concludes the thesis and points out directions for our

future work.



Chapter 2

Literature Review

In this chapter we will review the existing image registration techniques. The

entire chapter is organized as follows. In Section 2.1, geometric transformations

in image registration are categorized and introduced, where it is pointed out

which transformations we focus on. Next, we describe the general approach of

intensity-based and feature-based registration techniques in Section 2.2, where it

is highlighted that research in this thesis is based on feature-based registration

techniques. From Section 2.3 to Section 2.7, we will review the existing feature-based

registration techniques. In Section 2.3, techniques for detecting local features will be

reviewed. Sections 2.4 and 2.5 summarize popular mono-modal and multi-modal

image registration techniques. Techniques for feature matching and refining matches

are discussed in Sections 2.6 and 2.7 respectively. Finally, Section 2.8 summarizes the

chapter.

2.1 Models of Geometric Transformations

As mentioned in Chapter 1, image registration aims to estimate the optimal

transformation which is used to align two images. Geometric transformations for

image registration can be divided into four categories: rigid, affine, projective and

curved [60, 77, 110]. The four categories of transformations are summarized as

follows. Let (x1,y1) and (x2,y2) denote two points from the two images that are being

registered. Under a particular geometric transformation, (x1,y1) is transformed to

(x2,y2).

7
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2.1.1 Rigid Transformation

A rigid transformation only involves changes in rotation and translation [20, 110] as

x2

y2

=

cosθ −sinθ

sinθ cosθ

x1

y1

+
tx

ty

 , (2.1)

where θ is the rotation angle, tx and ty are translations in the x and y directions

respectively. Rigid transformation is also known as rigid-body transformation [20,34]

as this type of transformation preserves the distance between any two points in the

reference image.

2.1.2 Affine Transformation

In addition to rotation and translation changes, transformations allow for a global

change of scale and/or shear [108] are referred to as affine transformations [34]. Under

an affine transformation, (x1,y1) is transformed to (x2,y2) [49, 98, 110] by

x2

y2

=

a11 a12

a21 a22

x1

y1

+
a13

a23

 . (2.2)

It is also common for Equation 2.2 to be re-formulated as

x2

y2

=

a11 a12 a13

a21 a22 a23




x1

y1

1

 , (2.3)

where

a11 a12 a13

a21 a22 a23

 is known as the transformation matrix for an affine

transformation.

An affine transformation has three properties as follows [98]. First, the collinearity

relation between points is preserved, meaning that all points lying on the same line are

still collinear after an affine transformation. Second, the distance ratio between line

segments remains unchanged. For different collinear points p1, p2 and p3, the distance
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ratio between |−−→p1 p2| and |−−→p2 p3| does not change after an affine transformation. Third,

parallel lines continue to be parallel after the transformation.

2.1.3 Projective Transformation

Projective transformation is also known as homography as this transformation is

operated on homogeneous coordinates [101]. Under a projective transformation,

(x1,y1) is transformed to (x′2,y
′
2) on homogeneous coordinates and is then normalized

onto Cartesian coordinates to obtain (x2,y2) as
h11 h12 h13

h21 h22 h23

h31 h32 h33




x1

y1

1

= H


x1

y1

1

=


x′2

y′2

ω

=


ωx2

ωy2

ω

 , (2.4)

where H is known as the homography matrix, and ω is a coefficient for the

normalization between homogeneous coordinates and Cartesian coordinates. From

Equation 2.4, (x2,y2) can be computed by

x2 =
h11x1 +h12y1 +h13

h31x1 +h32y1 +h33
(2.5)

and

y2 =
h21x1 +h22y1 +h23

h31x1 +h32y1 +h33
. (2.6)

In contrast to the properties of affine transformation stated in Section 2.1.2, the first

and second properties apply to projective transformation, but the third property does

not. Only straight lines are preserved after a projective transformation.

2.1.4 Curved Transformation

Curved transformation ia also known as elastic or deformable transformation [60,77].

Under a curved transformation, straight lines may be mapped to curves [34], which

is more challenging than rigid, affine and projective transformations to achieve an

effective registration. There are many different deformation models [34, 99]. In
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general, deformation models can be divided into two categories: physical models and

function representations [34]. A detailed introduction can be found in [99].

Note that curved transformations are not involved in our multi-modal microscopic

images and other tested multi-modal images. Thus, dealing with curved

transformations is outside the focus of this thesis. The tested multi-modal images

involve affine or projective transformations.

2.2 Intensity-based vs Feature-based Techniques for Image

Registration

Image registration techniques can be categorized into intensity-based and

feature-based techniques. In this section, we will summarize the general approach

for each of the two categories.

2.2.1 Intensity-based Techniques

Figure 2.1: General Approach of Intensity-based Image Registration Techniques

In general, an intensity-based image registration technique estimates a

transformation between the reference and target images by directly comparing their

intensity patterns [99]. In recent years, popular intensity-based image registration

techniques include [45, 71–73, 78, 100]. Figure 2.1 illustrates the general approach of
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intensity-based image registration techniques. This approach can be summarized as

follows. The reference image Ir and the target image It are the two images to be

registered. A geometrical transformation Tk is applied to transform the target image,

where k represents the kth iteration of the optimization process. The transformed

target image is denoted as Ik
t . The transformed target image and the reference

images are overlapped. The overlapped area is measured by a similarity metric

f (Ir, Ik
t ). The optimization process adaptively adjusts geometrical transformations

until the similarity between the reference image and the transformed target image

is maximized. With an estimated transformation that leads to the optimal similarity,

the reference and target images are aligned.

2.2.2 Feature-based Techniques

A feature-based image registration technique establishes correspondences between

interest points in the reference and target images [66]. With correspondences, a

geometrical transformation is estimated and then used to align two images [66]. This

category of image registration techniques generally includes the following four steps.

a. Detecting feature points in the reference and target images

Generally, image points which differ from their neighborhood in a specific way are

detected. In Section 2.3, two categories of feature points, keypoints and corners,

will be discussed.

b. Representing feature points

A feature point is represented using image information within its neighborhood,

so the representation is commonly called a local descriptor. In Sections 2.4 and 2.5,

a number of popular techniques will be introduced.

c. Matching feature points

With local descriptors for any two feature points, the distance between them can be

computed. In accordance with a specific matching criterion, all the feature points

are matched. In Section 2.6, techniques for feature matching will be summarized.
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d. Refining matches and estimating an image transformation

To estimate an image transformation, the refinement of matches or outlier removal

is necessary. The refined matches are used to estimate an image transformation,

thereby aligning the reference and target images. Refining matches and estimating

a transformation will be elaborated in Section 2.7.

(a) Reference (b) Target

(c) Alignment Using Intensity-based
Technique [45]

(d) Alignment Using Feature-based
Technique [49]

Figure 2.2: Comparing Alignment from Intensity-based and Feature-based Image Registration
Techniques (First Example)

Here, we preliminarily compare intensity-based and feature-based registration

techniques. As a benchmark intensity-based image registration technique, elastix [45]

is used for performance comparison. For the feature-based registration technique, we

use the latest one which was proposed in [49]. Please note that the feature-based tech-
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(a) Reference (b) Target

(c) Alignment Using
Intensity-based Technique [45]

(d) Alignment Using Feature-based
Technique [49]

Figure 2.3: Comparing Alignment from Intensity-based and Feature-based Image Registration
Techniques (Second Example)
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nique [49] will be elaborated in Section 2.5.3. In Figure 2.2 and Figure 2.3, two

examples are shown to compare the alignment results between elastix [45] and the

feature-based registration technique [49]. In the first example shown in Figure 2.2,

both [45] and [49] perform well in registering the two images shown in Figure 2.2 (a)

and (b) as the reference and target images are correctly aligned. In the second

example shown in Figure 2.3, elastix [45] fails to align the two images shown in

Figure 2.3 (a) and (b), as shown in Figure 2.3 (c). In contrast, the alignment error

in Figure 2.3 (d) is much smaller, which is achieved by the feature-based registration

technique in [49]. In the two examples, elastix is more sensitive to differences in image

characteristics as compared to [49]. Compared with the two images in Figure 2.2 (a)

and (b), the two images in Figure 2.3 (a) and (b) present larger content differences,

which increases the difficulty in achieving effective registration. The larger content

differences present in Figure 2.3 (a) and (b) lie in two aspects. First, the pixels in the

reference image are spatially close one another, whereas many pixels in the target

image are unconnected. Second, the target image presents more intensity variations

as compared to the reference image. Note that, a detailed performance comparison

between elastix [45] and our proposed feature-based technique will be presented in

Section 5.6 of Chapter 5.

Compared with feature-based registration techniques, the limitations of

intensity-based registration techniques are as follows. First, intensity-based

registration techniques are likely to fail in registering images with large content

differences such as Figure 2.3 (a) and (b). Second, many intensity-based image

registration techniques are sensitive to local minima of mutual information, and

this creates problems in registering image pairs that have low-overlapping [111].

Third, an intensity-based registration technique requires an optimization process of

searching for an optimal transformation, as stated in Section 2.2.1. If an initialized

transformation is far from the ground-truth one, the computational cost caused by

the optimization process can be huge [37]. Thus in this thesis we will focus on

feature-based image registration techniques for registering multi-modal images where

contents differ a lot. In Sections 2.3 to 2.7, we will review techniques of the four main

steps in feature-based image registration.
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2.3 Detection of Local Features

In this section, we first review local feature detectors which have been popular in

recent years. Second, two typical detectors are elaborated as these two detectors will

be used in our proposed techniques in Chapters 3, 4 and 5.

2.3.1 A Review of Local Feature Detectors

Here, we review local feature detectors in three categories: corner detectors, blob

detectors and region detectors, similar to the categorization in [105].

i. Corner Detectors

Corner detectors can be classified into three categories: intensity-based,

contour-based and model-based detectors [6, 25, 92, 105]. In general, an

intensity-based corner detector uses a measure based on intensities or gradients

in a neighborhood of an image point to decide whether it is regarded as a

corner; a contour-based corner detector extracts contours after detecting edges

using an edge detector such as [16] and then searches for curvature maxima;

and a model-based corner detector determines corners by comparing image

information with a pre-defined model.

Among intensity-based corner detectors, the Harris corner [28] is a well-known

one. A Harris corner is an image point where there are significant changes in

all directions. In [24], image pixels are classified into three categories: region,

contour and interest point by using an auto-correlation matrix. The detector

proposed in [95] is based on a tracking algorithm in order to handle changes of

interest points over time. Thus, this detector is commonly used in the domain

of object tracking. The Harris corner detector [28] was improved to achieve scale

invariance in [64]. Another popular corner detector is the Susan detector [97].

The main idea of the Susan corner detector is as follows. For each pixel in an

image, a circular neighborhood with a fixed radius is partitioned into similar and

dissimilar categories. A similar or dissimilar category is dependent on whether

a neighboring pixel has similar intensity values with the centered pixel of the
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circular neighborhood. Corners are detected at the locations where the number of

pixels having similar intensity values with the centered pixel in a neighborhood

reaches a local minimum and is below a pre-defined threshold. The FAST corner

detector [88, 89] is built on the Susan detector, aiming at improving efficiency.

Compared to the Susan detector, FAST only compares pixels within a circle of

fixed radius around a point. A second difference is that FAST classifies the

compared pixels into dark, similar and brighter subsets, instead of the similar and

dissimilar categories in the Susan detector. With regard to efficiency, FAST is up to

30 times faster than the DoG detector which will be detailed in Section 2.3.2.

With regard to contour-based corner detectors, performance comparisons were

carried out in [5]. In [5], 11 contour-based corner detectors are compared,

including RJ [87], CSS [67], He & Yung [30], MSCP [116], ARCSS [3], AD

[83], Eigenvalue [102], Zhang [114], GCM [115], CPDA [4] and Fast-CPDA [6].

Conclusions made in [5] are summarized as follows. First, Zhang [114], CPDA [4]

and Fast-CPDA [6] corner detectors perform better than the others in terms of

both accuracy and robustness. Second, in terms of efficiency, the Fast-CPDA

corner detector [6] is the fastest of all the corner detectors compared. This detector

will be elaborated in Section 2.3.3. As the Fast-CPDA corner detector [6] performs

relatively better in accuracy, robustness and efficiency, we will use this detector to

detect corners for our proposed technique in Chapter 5.

A model-based corner detector such as [75, 96] fits a region around an image

point to a pre-defined model, thereby deciding whether this point is a corner.

In [75], the proposed model is based on a function that defines a straight-line

edge. A corner is determined if two straight-line edges merge into a single point

that creates two homogeneous gray regions with different intensities. A junction

model is used in [96]. Note that an L junction in [96] is regarded as a corner.

ii. Blob Detectors

In [51], blobs are defined as bright regions on dark backgrounds, or vice versa.

In other words, a blob is an image region in which all points are in a sense

similar to each other. There are five popular blob detectors: Hessian [91],

Hessian-Laplace/Affine [65], Salient Regions [41], DoG (Difference-of-Gaussians)
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[56] and SURF [9, 10].

The main ideas in each of the five blob detectors [9, 41, 51, 56, 65] are briefly

summarized as follows. The Hessian detector [91] detects blob-like structures

based on the determinant of the Hessian matrix:

H =

Ixx(x,y,σ) Ixy(x,y,σ)

Ixy(x,y,σ) Iyy(x,y,σ)

 , (2.7)

where Ixx, Ixy and Iyy are second-order Gaussian-smoothed image derivatives,

and σ is a factor for Gaussian smoothing. Hessian-Laplace and Hessian-Affine

[65] aim to achieve scale and affine invariance respectively. Rather than using

image derivatives, the Salient Regions detector [41] is motivated by information

theory. In the Salient Regions detector, blobs are detected in terms of saliency

that is measured using the entropy of PDF (Probability Distribution Function) of

intensity values within a local region. To achieve scale invariance, an additional

criterion called self-dissimilarity is proposed, which is defined as the derivative

of probability distribution with regard to scale. The entropy of probability

distribution function and the self-dissimilarity function are then multiplied as

the saliency measurement of an image region. The three blob detectors [41,

51, 65] discussed above are computationally expensive due to computations of

derivatives or entropy at each image location. DoG [56] and SURF [9, 10] have

been developed mainly for improving efficiency. DoG [56] approximates the

Laplacian and SURF [9, 10] approximates the Hessian matrix by using integral

images. More details for DoG and SURF can be found in Sections 2.3.2 and 2.4.1.1

respectively.

iii. Region Detectors

Compared to blob detectors, region detectors determine feature windows based

on their boundary, and are therefore related to image segmentation techniques

[21]. There exist three popular region detectors: Maximally Stable Extremal

Region (MSER) [62], Intensity-Based Regions (IBR) [103, 104] and superpixels

[69, 86]. MSER was proposed in [62] to establish correspondences between a pair

of images taken from different viewpoints. A MSER is a connected component of
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a thresholded image. The Extremal in MSER means that all the pixels inside the

MSER have either higher or lower intensity than those pixels outside the MSER.

The Maximally Stable in MSER refers to the optimization in the process of selecting

an appropriate threshold. The MSER detector has been widely used in object

recognition. One limitation of MSER is, as pointed out in [63], that MSER is very

sensitive to changes in blur, which is because the segmentation process is less

accurate as region boundaries become smooth.

IBR [103, 104] detects image regions as follows. First, local extrema of image

intensities are detected over multiple scales. Second, given a local extremum in

intensity, an intensity function is defined to evaluate intensity changes along rays

radially emanating from the extremum. A maximum of the intensity function

is reached at positions where image intensity suddenly increases or decreases.

Accordingly, a maximum is determined along each ray. All points corresponding

to maxima of the intensity function are linked to enclose an irregularly-shaped

region. Third, the irregularly-shaped region is fitted to an elliptical region.

Superpixels [103, 104] is a segmentation-based technique for detecting regions.

Superpixels are produced by applying Normalized Cuts [94] which is a classical

image segmentation technique. The segmented regions are uniform or very

similar in intensities. Superpixels has been used successfully for modeling and

exploiting mid-level visual cues [105]. However, superpixels are not suited for the

purpose of image registration as the uniform regions are far from discriminative.

2.3.2 DoG Keypoints

To detect image locations that are invariant to scale changes, stable local features are

searched across various scales using a continuous function of scale which is known as

scale space. The scale space of an image is defined using the Laplacian of Gaussian

(LoG) as

L(x,y,σ) = G(x,y,σ)∗ I(x,y), (2.8)
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(a) DoG Pyramid (b) DoG Extrema

Figure 2.4: Difference-of-Gaussian (DoG) Pyramid and Extrema Selection

where I denotes the original image, ∗ is the convolution operation, and σ is variance

of the Gaussian function which is defined as

G(x,y,σ) =
1√

2πσ2
e−(x

2+y2)/2σ2
. (2.9)

To efficiently detect stable features in scale space, the Difference-of-Gaussian

(DoG) function is used [55, 56]. The DoG function is derived by subtracting two LoG

functions with nearby scales

D(x,y,σ) =L(x,y,kσ)−L(x,y,σ)

=(G(x,y,kσ)−G(x,y,σ))∗ I(x,y),
(2.10)

where k is a constant factor for separating two adjacent scales. With a series of scale

pre-defined, DoG images are generated as illustrated in Figure 2.4 (a).

In order to detect the extrema, each pixel is compared to its 26 neighbors in

3×3 regions at the current and adjacent scales [56]. If the pixel is the maximum

or minimum among the neighboring pixels, it is a keypoint candidate, as shown in

Figure 2.4 (b). Each keypoint detected has its own location and scale.
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2.3.3 A Contour-based Corner Detector (Fast-CPDA)

As discussed in Section 2.3.1, the Fast-CPDA corner detector [6] outperforms the

other contour-based corner detectors. This corner detector is an improved version of

the CPDA detector [4] which is based on the Chord-to-Point Distance Accumulation

(CPDA) technique [27]. The corner detector [6] is called Fast-CPDA as efficiency is

improved over [4].

Figure 2.5: Illustrating How CPDA Works

As a contour-based corner detector, the Fast-CPDA corner detector firstly extracts

contours from the edge image detected by the Canny edge detector [16]. Each contour

is smoothed and the CPDA technique [27] is used to estimate curvatures of contour

points. The contour points which correspond to the maxima of curvatures are treated

as candidate corners. Herein, we summarize major steps in the Fast-CPDA corner

detector [6] and the improvement over its original version [4] in terms of efficiency, as

follows.

i. Extracting and Selecting Contours

Given a gray-scale image, the Canny edge detector [16] is used to detect edges.

With the assumption that a very short contour might not contain strong corners,

the length of a contour, n, should satisfy the condition

n > (w+h)/α, (2.11)

where w and h are the width and height of the image, and α is a parameter for

controlling the length of contours.
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ii. Smoothing Contours

To reduce the effects of noises on contours, all selected contours are smoothed

using Gaussian convolution. A contour, Γ(t) = (x(t),y(t)), is smoothed by

Γ(t,σ) = Γ(t)∗G(t,σ) = (x(t)∗G(t,σ),y(t)∗G(t,σ)), (2.12)

where Γ(t,σ) is the contour after being Gaussian-smoothed, ∗ is the convolution

operation, and G(t,σ) is the Gaussian function which is defined as

G(t,σ) =
1√

2πσ2
e
−t2

2σ2 , (2.13)

where σ is a scaling factor for smoothing.

iii. Estimating Curvatures

Figure 2.5 illustrates how the CPDA curvature estimation technique [27] works,

which is as follows. As a chord moves along a contour, the perpendicular

distances from point Pt to the chord are accumulated to represent the curvature at

point Pt . With a chord of length L, the curvature for point Pt is estimated by

KL(t) =
t−1

∑
j=t−L+1

dt, j, (2.14)

where j is the index of the first intersected point between the moving chord and

the contour, and dt, j denotes the distance between Pt and the moving chord.

In the CPDA detector [4], curvatures are estimated using chords of three different

lengths and are then normalized as

K
′
j(t) =

K j(t)
max(

∣∣K j
∣∣) , (2.15)

where 1 ≤ t ≤ n and 1 ≤ j ≤ 3. Finally, the three normalized curvatures are

multiplied to determine a single curvature value by

K(t) = K
′
1(t)K

′
2(t)K

′
3(t),1≤ t ≤ n. (2.16)
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iv. Refining Candidate Corners

By finding the local maxima of curvatures computed in Equation 2.16, candidate

corners are decided. Candidate corners include strong, weak (also known as

round [4, 30, 67]) and false corners. The weak and false corners are filtered out

by applying curvature and angle thresholds [4].

v. Determining Final Corners

Apart from the corners that have been determined in Step iv, there may be a

corner at the two ends of a closed contour. Such a corner is detected by estimating

the angle at the end of a closed contour. Finally, all the corners are detected.

The computational cost of the CPDA detector [4] is high due to the following two

reasons. First, the CPDA curvature estimation [27] is an expensive operation. Second,

the CPDA detector [4] estimates a curvature value at each point of a given contour.

Thus, the Fast-CPDA corner detector [6] aims to improve the efficiency of the original

CPDA detector [4].

To reduce the time complexity of the original CPDA detector, a subset of all

contour points are selected before the CPDA curvature estimation in [6]. The

guideline in selecting contour points is that a contour segment with significant

direction changes is more affected in the process of being Gaussian-smoothed as

compared to a relatively straightforward contour segment. In other words, the

distance from a point on the original contour to its location on the smoothed contour is

relatively large, if this point is a corner or spatially close to a corner. In the Fast-CPDA

corner detector [6], a distance function was established for the point-to-point distances

between the original contour and its smoothed one. The maxima of the distance

function is regarded as the candidate points before the CPDA curvature estimation

in [6].

2.4 Mono-modal Image Registration Techniques

In this section, popular mono-modal image registration techniques are briefly

reviewed. These techniques are summarized in two categories according to image

features, i. e., gradient or binary features.
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2.4.1 Techniques based on Gradient Features

2.4.1.1 SIFT and its Variants

SIFT (Scale Invariant Feature Transform) is one of the most popular techniques for

detecting and describing local features in the past decade, which has been widely used

in the community of computer vision. Here, SIFT and its variants are summarized.

i. SIFT [56]

The major stages of SIFT include:

a. Keypoint detection

With an initial image, a pyramid of Difference-of-Gaussian (DoG) images is

generated. These DoG images represent images of various scales. In these DoG

images, local maxima or minima are detected by comparing each point with

its neighbors in the current DoG image and the two adjacent DoG images. An

image point detected from DoG images is called a keypoint. For each keypoint,

a main orientation is assigned. The main orientation is computed from a

gradient histogram which is built in a local region centered at the keypoint.

The frame of a keypoint includes its location, scale and orientation.

b. Assigning the main orientation for each keypoint

By assigning the main orientation for each keypoint, the keypoint descriptor

can be represented relative to this orientation, thereby achieving invariance to

image rotation. Firstly, the Gaussian smoothed image, L(σ), is selected with

the closest scale of the keypoint so that all computations are performed in a

scale-invariant way. Then, a local region around the keypoint is determined

by a Gaussian-weighted circular window that is derived based on the scale of

the keypoint. The gradient magnitude, Gm, and orientation, Gθ, for each pixel,

L(x,y), within this region are calculated [56]:

Gm =

√
dx

2 +dy
2,

Gθ = tan−1(dy/dx),
(2.17)
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where

dx = L(x+1,y)−L(x−1,y),

dy = L(x,y+1)−L(x,y−1).
(2.18)

Then, an orientation histogram consisting of 36 bins (covering 360◦ with an

interval of 10◦) is built based on the gradient orientations of all the pixels

within the local region. The value in each orientation bin is incremented based

on the gradient magnitude (weighted by the Gaussian window) of each pixel

with a corresponding orientation in the neighboring region. The orientation

bin with the highest value denotes the main orientation.

c. keypoint description

As illustrated in Figure 2.6, a SIFT descriptor is built as follows.

i. The gradient magnitude and orientation for each pixel located in this

region are calculated.

ii. The gradient orientations are rotated relative to the main orientation of the

keypoint to attain rotation invariance.

iii. All the gradients are weighted by a Gaussian window (indicated by a

circle in Figure 2.6), giving less emphasis to gradients that are further from

the center of the region.

iv. The local region is divided into 4×4 spatial bins and an orientation

histogram is built in each spatial bin, with eight orientation bins evenly

covering 360◦(quantized with an interval of 45◦).

v. The descriptor is normalized to reduce the effects of illumination changes.

d. keypoint matching

Firstly, a Euclidean distance is used to measure the similarity between two

descriptors from the reference and target images. Relative to a descriptor from

the reference image, all the descriptors from the target image are ranked by the

descriptor distances. To ensure the distinctiveness of matches, a distance ratio

is set between the closest neighbor and the second closest neighbor. A match

that satisfies this constraint is decided as a SIFT match. As a result, a set of

keypoint matches is generated.
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Figure 2.6: Building the SIFT Descriptor

e. Transformation estimation and alignment

Keypoint matches are refined by a technique for estimating and removing

outliers such as RANSAC [23]. RANSAC will be described in Section 2.7.

The pairs of keypoints in the refined keypoint matches are used to infer a

transformation. Finally, the transformation is used to align the reference and

target images.

ii. PCA-SIFT [43]

Different from SIFT, PCA-SIFT (PCA: Principal Component Analysis) encodes

salient parts of image gradients within the local region centered at a keypoint.

Firstly, the PCA-SIFT descriptor is a vector of image gradients in the horizontal

and vertical (x and y axis) directions within this local region. Secondly, this

vector is sampled at 39 × 39 locations. Thus, the vector consists of 3042(=39

× 39 × 2) elements. The dimension of this vector is then significantly reduced

using PCA, leading to a much more compact feature representation. Based

on the experiments in [43], the best registration performance is achieved when

the dimension equates to 36. Moreover, PCA-SIFT is more discriminative as

compared to the standard SIFT, which is primarily due to discarding the lower

components in PCA. However, a major limitation of PCA-SIFT is that PCA is

sensitive to noise. More specifically, principle subspaces in PCA may significantly

change due to noise [117]. Thus, the discrimination of PCA-SIFT is likely to
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decrease significantly in registering image pairs with a large amount of noise.

iii. SIFT+GC [70]

SIFT performs well in the scenarios where local regions surrounding keypoints

are quite unique from the rest of local regions in images. However, SIFT cannot

work well in scenarios where there exist multiple similar regions across an image.

To address this issue, a SIFT descriptor with global context (called SIFT+GC)

was proposed. SIFT+GC appropriately incorporates the SIFT descriptor with

curvilinear shape information from a much larger local region, thereby reducing

mismatches caused by multiple similar SIFT descriptors. Firstly, centered at a

keypoint, a large circled region is defined by setting its diameter equivalent to

the image diagonal. This region is then divided in a 5 × 12 log-polar coordinate

system. Within this region a shape context descriptor is built by concatenating

curvature values of all the pixels in each spatial bin. Note that, the curvature

value of a given pixel is the absolute eigenvalue of the Hessian matrix. Finally,

the shape context descriptor and its corresponding SIFT descriptor are weighted

(the weighting factor is tentatively used and 0.5 is generally optimal) to form the

SIFT+GC descriptor, which is 128+5 × 12=188 dimensional.

iv. GLOH [66]

GLOH (Gradient Location-Orientation Histogram), as an extension of SIFT, was

designed to increase SIFT’s robustness and distinctiveness. The GLOH descriptor

is built in a log-polar grid with 17 location (spatial) bins. In each location bin,

an orientation histogram consisting of 16 orientation bins is built. Then, a 272

(=17×16) dimensional descriptor is formed. The dimensionality is reduced to

128 using PCA (Principal Component Analysis). Experiments in [66] show that

GLOH outperforms SIFT in most cases while registering mono-modal image pairs

from the commonly-used Affine Covariant Regions Datasets.

v. SURF [9, 10]

Speeded Up Robust Features (SURF) was proposed in the context of the high

dimensionality of the SIFT descriptor, in order to reduce the time complexity

for feature description and matching. In the stage of feature detection, various
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sizes of Haar wavelet filters are convolved with the integral images instead of

the original image convolved with a variable-scale Gaussian in SIFT. In the stage

of feature description, a local region surrounding an interest point is divided

into 4 × 4 sub-regions as in SIFT. In each sub-region, a descriptor is built, with

four components: the sum of wavelet responses in the horizontal and vertical

directions as well as the sum of absolute values of wavelet responses in the

two directions. Hence, the SURF descriptor is 64 (=4 × 4 × 4) dimensional.

Experiments in [9, 10] show that SURF outperforms SIFT [56], PCA-SIFT [43] and

GLOH [66] in the application of object recognition.

vi. ASIFT [68, 112]

The assumption in ASIFT is that SIFT is fully invariant to changes in scale,

rotation and translation, which covers four parameters out of six in affine

transformations. Thus, ASIFT is focused on the other two transformation

parameters that are associated with the angles defining the camera axis

orientation. Firstly, all possible views are simulated with two variables: the

horizontal angle and the vertical angle. Secondly, SIFT is used to detect and

describe features from these simulations. As a result, the robustness to viewpoint

changes is significantly improved as compared to SIFT. Thus, this method is called

Affine-SIFT (ASIFT) as it claims to be fully affine invariant.

vii. SIFT Flow [52]

Inspired by optical flow [35, 57], SIFT Flow was proposed to align an image to

its nearest neighbors in a large image database which contains a wide variety of

scenes. In SIFT Flow, a SIFT descriptor is built at each pixel to capture local image

structures and contextual information. In [52], the SIFT Flow algorithm was

tested in applications such as motion field prediction from a single image, motion

synthesis via object transfer, satellite image registration and face recognition. In

registering satellite images, SIFT Flow outperforms the original SIFT.

viii. Edge-SIFT [113]

Edge-SIFT [113] aims to enhance the efficiency and discriminative power of the

SIFT descriptor in mobile image search. The proposed Edge-SIFT descriptor
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is formed as follows. First, keypoints are detected as in SIFT. A scale and

main orientation are assigned to each keypoint. Second, this image patch is

normalized to achieve rotation and scale invariance. The image patch is rotated to

a fixed orientation from its main orientation, and is then resized into a fixed size

(D×D). Next, edges are extracted in the normalized image patch and sub-edge

maps are achieved according to the quantized edge orientations. Finally, each

sub-edge map is regarded as a binary local descriptor and a D×D×O dimensional

descriptor is constructed for this keypoint. Compared to SIFT, Edge-SIFT is more

discriminative and efficient in the application of partial-duplicate mobile search.

2.4.1.2 GDB-ICP

In [111], an image registration framework called Generalized Dual-Bootstrap Iterative

Closest Point (GDB-ICP) was proposed. The framework includes three primary

components: the initialization algorithm, the estimation technique and the decision

criteria. The three components are briefly summarized as follows.

The initialization algorithm is based on SIFT [56]. Keypoints are detected and

matched as in SIFT. All the matches are sorted by the distance ratio between the closest

and second closest matches, where top matches are selected. Each match is used to

generate an initial bootstrap region which is centered at the keypoint from each of the

two registered images. For each match, a similarity transformation is initialized.

The estimation technique is an iterative process for estimating a transformation

between two images. The estimation works on the initial bootstrap regions and

associated transformations. At each iteration, a new transformation is estimated and

the bootstrap region is expanded till the region covers the entire overlap between two

images.

The decision criteria determines whether an estimated transformation is accepted

as correct or not. The decision is made based on three measurements including

alignment accuracy, stability in the estimated transformation and consistency in

geometric constraints.

One assumption in GDB-ICP is that there is at least one true match after matching

SIFT descriptors. However, this assumption is not true in some difficult cases, as
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pointed out in [17]. A second limitation is the poor applicability of GDB-ICP to

registering multi-modal images, as pointed out in [37].

2.4.1.3 WLD: Weber Local Descriptor

WLD was proposed in [18] in accordance with the fact that human perception of a

pattern depends not only on the change of a stimulus such as sound or lighting,

but also on the original intensity of the stimulus. The stimulus refers to image

intensities in building a WLD descriptor. Two components of a WLD descriptor are

differential excitation and orientation. The differential excitation is a function of the

ratio between two terms: one is the relative intensity differences of a current pixel

against its neighbors, and the other is the intensity of the current pixel. The orientation

is the gradient orientation of the current pixel. Experiments in [18] show that WLD

outperforms SIFT and LBP [74] in face detection. LBP will be introduced in Section

2.4.2.1.

2.4.2 Techniques based on Binary Features

2.4.2.1 LBP and its Variants

In [74], a local image descriptor called Local Binary Pattern was proposed. LBP is one

of the simplest texture descriptors. The LBP operator compares intensities of pixels in

a circular neighborhood of radius R with the intensity of the central pixel. An array of

binary codes is generated by following

s(x) =

1, x≥ 0

0, x < 0
, (2.19)

where x is the difference between the intensity of a neighboring pixel and the intensity

of the central pixel. The LBP value is then calculated by

LBPP,R =
P−1

∑
p=0

s(gp−gc)2p, (2.20)
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where P and R are the number of neighboring pixels and radius from the central pixel

respectively, and gc and gp are the intensity of the central pixel and the intensity

of a neighboring pixel respectively. According to Equation 2.20, the LBP operator

determines 2P different patterns.

In [31], a modification was made on LBP and the proposed texture descriptor

is called Center-Symmetric Local Binary Pattern (CS-LBP). Instead of comparing

neighboring pixels with the central pixel in terms of intensity values, CS-LBP

compares center-symmetric pairs of pixels in a neighborhood. CS-LBP halves the

number of comparisons in LBP. Moreover, CS-LBP combines the strengths of SIFT and

LBP by using a SIFT-like grid and replacing SIFT′s gradient features with LBP-based

features. Experiments in [31] show that CS-LBP outperforms SIFT in registering

mono-modal images from the data sets [80].

A second variant of LBP is Local Relational String (LRS), which was proposed

in [26] for image retrieval. As pointed out in [37], there are two differences between

LRS and LBP. First, the number of neighboring pixels is kept to four regardless of the

radius from the central pixel. Second, LRS differentiates three cases >, = and < in

comparing a neighboring pixel and the central pixel in terms of intensity, which is

different from the two cases in LBP as shown in Equation 2.19. The discrimination of

LRS is insufficiently high as the LRS operator determines 34(= 81) different patterns.

Local Triplet Pattern (LTP) was proposed in [29], which was also motivated by LBP.

Like LRS, LTP also differentiates three cases >, = and < in comparing a neighboring

pixel and the central pixel in terms of intensity. According to the three cases >, =

and <, triplet codes 2, 1, 0 are accordingly generated. But, a 3× 3 neighborhood is

used in LTP, which is different from the four neighboring pixels in LRS. Thus, the LTP

operator determines 38(= 6561) different patterns. Consequently, efficiency becomes

a problem. To improve efficiency, a neighboring parameter was introduced to limit

the neighborhood size base on the LTP value. Experiments in [29] show that LTP is

promising for image classification and retrieval.



§2.4 Mono-modal Image Registration Techniques 31

2.4.2.2 BRIEF and its Variants

In [15], a local feature descriptor called Binary Robust Independent Elementary

Features (BRIEF) was proposed. The rationale behind the BRIEF descriptor is that

image patches can be classified or differentiated on the basis of a relatively small

number of pairwise intensity comparisons. With this rationale, intensity comparisons

are carried out between sampled test points in a smoothed image patch, and binary

codes are accordingly generated. It is concluded in [15] that BRIEF achieves similar or

better recognition performance and is much faster as compared to SURF [9,10]. In [90],

an improvement was made over BRIEF and a binary descriptor called ORB (Oriented

FAST and Rotated BRIEF) was proposed. The ORB descriptor is built on the FAST [89]

detector and BRIEF descriptor. The novelties of ORB lie in two aspects. First, ORB

adds a fast and accurate orientation component to the FAST detector. Second, rotation

invariance is achieved. Experiments in [90] show that ORB is much faster and achieves

similar performance in image matching as compared to SIFT. However, ORB cannot

achieve scale invariance.

2.4.2.3 BRISK

Binary Robust Invariant Scalable Keypoints (BRISK) was proposed in [47] for keypoint

detection, description and matching. Compared to BRIEF [15] and ORB [90], there

are two main differences as follows. First, to achieve scale invariance, BRISK detects

FAST keypoints [89] in a scale-space pyramid. Second, sample points for intensity

comparisons are equally located on concentric circles, which is different from a

random sampling pattern used in BRIEF [15] and ORB [90]. Experiments in [47] show

that BRISK achieves a comparable performance in registering mono-modal images

from the data sets [80], as compared to SIFT and SURF.

2.4.2.4 FREAK

Inspired by the retina, Fast Retina Keypoint (FREAK) was proposed in [2] as a binary

descriptor. The key difference from BRIEF [15] and ORB [90] and BRISK [47] lies in

the sampling pattern for intensity comparisons. BRIEF [15] and ORB [90] use random
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point pairs. BRISK [47] uses a circular pattern where sampled points are equally

located on concentric circles. FREAK uses the retinal sampling pattern which is also

circular but has more points near the center of a neighborhood. Experiments in [47]

show that FREAK outperforms SIFT, SURF and BRISK [47] in registering mono-modal

images from the data sets [80].

2.5 Multi-modal Image Registration Techniques

Images captured by different types of imaging modalities or capturing devices are

known as multi-modal images. Registering multi-modal images is more challenging

than registering mono-modal images due to the fact that the content differences

between corresponding parts in two images can be substantial.

2.5.1 Gradient based Techniques

2.5.1.1 Multi-modal Variants of SIFT

i. SIFT-GM and SIFT-GMEP [44]

In [44], substantial and non-linear intensity variations across multi-modal images

are investigated. Two characteristics of multi-modal images are taken into

account. The first characteristic is Gradient Mirroring, that is, reversed image

contrasts might appear at corresponding locations of multi-modal images. The

second characteristic is called Edge Precursors, based on the assumption that the

image information preserved across different modalities and strong illumination

changes is primarily along the boundaries. With the two characteristics,

modifications are made on the original SIFT. For the first characteristic, gradient

orientations are restricted to [0, π) instead of [0, 2π) used in the original SIFT.

For the second characteristic, only edge pixels around a keypoint are used to

compute a local descriptor rather than using all the pixels as in the original

SIFT. In modifying SIFT, SIFT-GM only considers the first characteristic, while

SIFT-GMEP takes both characteristics into account. Experiments in [44] show

that both SIFT-GM and SIFT-GMEP outperform SIFT in registering multi-modal

images.
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ii. SSIFT [19]

As pointed out in SSIFT (Symmetric SIFT) [19], gradient orientations of

corresponding points across multi-modal images may point to opposite

directions. This problem is also discussed in [37,38] and is called gradient reversal.

For the referencing purpose, we use the same term in this thesis. To address

gradient reversal, SSIFT is different from SIFT in two steps: assigning the main

orientation for each keypoint and building descriptors. Note that a keypoint is

associated with a local region and its size is determined by a scaling factor σ,

which is carried out in the feature detection stage as in SIFT.

i. Assigning the main orientation for each keypoint

Different from SIFT, SSIFT introduced a new strategy of assigning main

orientation for each keypoint, called Gaussian-weighted average square

gradients. An assigned orientation is continuous, as compared to quantized

or discrete orientations in SIFT.

Given a keypoint (x,y), its main orientation is assigned as follows. First, for

each image pixel in a local region, the squared gradient is computed as

Gsx(x,y)

Gsy(x,y)

=

G2
x(x,y)−G2

y(x,y)

2Gx(x,y)Gy(x,y)

 , (2.21)

where
[
Gx(x,y) Gy(x,y)

]T
is the image gradients at x and y directions as

Gx(x,y)

Gy(x,y)

= sgn(∂L(x,y)/∂y)

∂L(x,y)/∂x

∂L(x,y)/∂y

 , (2.22)

where L(x,y) denotes image intensity at (x,y) in the Gaussian-smoothed or

Laplacian-of-Gaussian (LoG) image which has been stated in Section 2.3.2.

Next, the Gaussian-weighted average square gradients can be computed by

Gsx

Gsy

=

Gsx ∗hσ′

Gsy ∗hσ′

 , (2.23)

where hσ′ is the Gaussian-weighted kernel. Note that, σ′ is 1.5 times the scale
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of the keypoint σ, which determines the window size for Gaussian weighting.

Lastly, the main orientation of the keypoint, ϕ(x,y), is assigned by

ϕ(x,y) =


tan−1(Gsy/Gsx)+π, i f Gsx ≥ 0;

tan−1(Gsy/Gsx)+2π, i f Gsx < 0∩Gsy > 0;

tan−1(Gsy/Gsx), i f Gsx < 0∩Gsy ≤ 0.

(2.24)

ii. Building the SSIFT descriptor

Figure 2.7: Building the SSIFT Descriptor. (a) The local region around a keypoint with gradient
magnitudes and orientations; (b) All the gradient orientations in (a) are restricted in [0,π); (c)
The orientation histogram corresponding to (b); (d-f) The corresponding operations with (a-c)
by rotating 180◦ on the original region; (g) The final orientation histogram by combining the
two histograms (c) and (f).

As illustrated in Figure 2.7, the process of building a SSIFT descriptor is

summarized as follows. Note that, there are 4×4 = 16 spatial bins in a local

region of a keypoint. Using 2× 2 = 4 spatial bins in in Figure 2.7 is only

for the purpose of illustration. First, the gradient magnitude and orientation

are calculated for each pixel in a local region surrounding a given keypoint.

Second, all the gradient orientations are restricted between 0 and π. Third, the

operations in the first step are implemented in a local region that is rotated by

180◦ on the original local region. Next, orientation histograms are built for the

original region and the rotated region separately. Finally, the two orientation
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histograms are combined as

C(i, j,k) =

c1 |A(i, j,k)+B(i, j,k)| , i = 1,2;

c2 |A(i, j,k)−B(i, j,k)| , i = 3,4;
(2.25)

where i and j are the horizontal and vertical indexes of spatial bins of a

descriptor respectively, and k is the index of orientation bins of a descriptor

(1 ≤ i, j ≤ 4 and 1 ≤ k ≤ 8), so A(i, j,k) and B(i, j,k) denote the gradient

magnitudes at the kth orientation bin of the (i, j) spatial bin for the original

region and the rotated region respectively, c1 and c2 are constant factors to

tune gradient magnitudes. With Equation 2.25, the descriptor is invariant to

gradient reversal.

iii. MI-SIFT [58]

As a variant of SIFT, MI-SIFT (MI: Mirror and Inversion invariant) was proposed

to achieve invariance to image mirroring and gray-scale inversion. Given a

keypoint, SIFT descriptors built in the original, mirrored, grayscale-inverted and

mirror&grayscale-inverted images are denoted as f , f
′
, f

′′
and f

′′′
, respectively.

In order to achieve invariance of image mirroring and/or gray-scale inversion, a

merging function is defined as

fmi =

Atl Btr

Cbl Dbr

 , (2.26)

where the subscript tl, tr, bl and br denote the top-left, top-right, bottom-left and

bottom-right quarters of an MI-SIFT descriptor respectively, and A , B , C and D

are defined as

A = f + f
′
+ f

′′
+ f

′′′

B =

√
f 2 + f ′2 + f ′′2 + f ′′′2

C =
3
√

f 3 + f ′3 + f ′′3 + f ′′′3

D =
4
√

f 4 + f ′4 + f ′′4 + f ′′′4.

(2.27)
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iv. GO-SSIFT [39]

Figure 2.8: Illustrating the Difference between GM and GO for Building Descriptors

Different from SSIFT in building descriptors, Gradient Occurrences (GO) are used

to increment the value at each orientation bin of gradient histograms instead of

using Gradient Magnitudes (GM). GO is defined as the number of pixels where

an image gradient occurs. The difference between GM and GO can be clearly

seen through an example shown in Figure 2.8. Suppose the five horizontal bars

in Figure 2.8 represent GM of five pixels relative to a particular orientation bin

in building a SSIFT descriptor. GM and GO can be very different in calculating

the value of the orientation bin. Using GM, the five GM values are summed up,

whereas in GO the number of bars or image pixels is counted. As a result, the

values of the orientation bin will be
5
∑

i=1
Mi and 5, respectively, using GM and GO.

Experiments in [39] show that GO-SSIFT improves matching accuracy as

compared to SSIFT [19]. However, with our analysis, we have found that both

GM and GO are important gradient information in building SIFT-like descriptors.

Regarding GM and GO, a thorough analysis will be made in Chapter 3, and

subsequently a better way of utilizing GM and GO will be presented.

v. IS-SIFT

It is pointed out in IS-SIFT that the procedure of combining the descriptors of

two reversed regions, stated in Equation 2.25, in SSIFT might cause ambiguities.

It means that A(i, j,k) and B(i, j,k) in Equation 2.25 might represent two local

regions which are unlikely to be a true match [37, 38].

Based on the analysis above, the guideline for IS-SIFT is to avoid the descriptor

combining procedure used in SSIFT. The major steps of IS-SIFT are summarized

as follows.
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a. A set of keypoint matches are determined using SSIFT.

b. A rotation difference between the reference and target images is estimated

by averaging the rotation differences in all the keypoint matches. The

rotation difference in a keypoint match is equivalent to the difference in main

orientations between the two keypoints in this match. The estimated rotation

difference is denoted as α.

c. Descriptors are built for the reference and target images. With the estimated

rotation difference, the procedure of combining descriptors of two reversed

regions is no longer necessary. Thus, only steps (a) to (c) in Figure 2.7 are

relevant for building a descriptor.

It should be noted that GO proposed in GO-SSIFT can be incorporated with SIFT

and IS-SIFT, due to the fact that GO is simply a way of weighting orientation bins in

building SIFT-like descriptors. The two formed techniques are called GO-SIFT and

GO-IS-SIFT respectively, and will be referred to in Chapter 3.

2.5.1.2 PIIFD

PIIFD (Partial Intensity Invariant Feature Descriptor) was proposed in [17] for

registering multi-modal retinal images. We summarize how it works as follows.

i. Harris corners [28] are detected in the reference and target images.

ii. The main orientation is assigned for each corner.

The orientation histogram used in PIIFD is different from the one used in the

original SIFT [56]. Average squared gradients are used in determining the main

orientation for a corner. This is because main orientations determined in SIFT

might point to unrelated directions in multi-modal images.

iii. A PIIFD descriptor is built using a fixed region surrounding each corner.

The local region is divided into 4×4 sub-regions. In each sub-region, an

orientation histogram with eight orientation bins is built. The eight orientations

are equally distributed between 0 and π. In each orientation bin, normalized
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gradient magnitudes are accumulated. Specifically, all gradient magnitudes in

the sub-region are ranked and categorized into different levels. Each level of

gradient magnitudes is normalized to a particular value. Till now, a descriptor

for the corner can be built and we call it an intermediate PIIFD descriptor. An

unexpected problem is that the main orientations of a corner and the rotated

version of the corner’s local region by 180◦ may point to opposite directions. This

problem is also discussed in [37, 38] and called region reversal. For the referencing

purpose, we use the same term in this thesis. To address region reversal, a linear

combination is performed on two intermediate PIIFD descriptors that are built

for a corner’s local region and its rotated version by 180◦. Finally, the PIIFD

descriptor is built.

iv. The PIIFD descriptors in the reference and target images are matched using the

bilateral best-bin-first (BBF) algorithm. The bilateral BBF improves the original

BBF [11] by excluding cases where two or more descriptors in one image are

matched to the same descriptor in another image.

v. False matches are removed using the main orientations of corners and the

distance ratio between two matches.

vi. Locations of matches are refined.

Assume that a corner Ct in the target image is matched to Cr in the reference

image. This match is denoted as Cr 7→Ct . An image pixel that is spatially close to

Ct might better match Cr. Thus, in a small neighborhood surrounding Ct , PIIFD

descriptors are built for each image pixel. If there is an image pixel, C′t , that is

closer to Cr than Ct , then the match Cr 7→Ct is updated to Cr 7→C′t .

vii. A transformation is estimated from the matches determined above in order to

align two images.

Based on our analysis, the limitations of PIIFD include:

a. The descriptor is not scale-invariant. The size of a local region for building a PIIFD

descriptor is fixed at 40×40 pixels because the scale difference is usually up to 1.5

times in multi-modal retinal image registration PIIFD was designed for. However,
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larger scale differences are common in many other multi-modal image registration

applications, such as multi-modal microscopic image registration.

b. PIIFD keypoints are sensitive to intensity variations. In terms of robustness to

content differences, it is by no means the best choice to use Harris corners as

keypoints for building descriptors. This is because Harris corners are detected in a

very small neighborhood according to intensity variations.

c. The descriptor is only partially invariant to intensity variations. However, it is

common that intensity variations are very substantial in our tested multi-modal

microscopic images.

2.5.2 Self-Similarity based Techniques

The self-similarity concept was firstly introduced in [14], although the term

self-similarity was not used. In [14], self-similarity is used for image denoising. In

specific, the estimated value for a pixel is computed by comparing a small patch

centered at the pixel and all the other patches of the same size in the entire image. In

the following, we will summarize popular multi-modal image registration techniques

based on self-similarity.

2.5.2.1 Local Self-Similarity Descriptor

In [93], the Local Self-Similarity (LSS) descriptor was proposed by investigating

internal layouts of local self-similarities. To the best of our knowledge, this is the

first local descriptor based on self-similarity. To build an LSS descriptor at a pixel

q, the surrounding image patch (the patch size is 5× 5) is compared with a larger

surrounding region center at pixel q (the region size is 41× 41), using the sum of

square differences (SSD) in terms of pixel intensities. The distance surface SSDq(x,y)

is normalized and transformed into a ’correlation surface’:

Sq(x,y) = exp(−
SSDq(x,y)

max(varnoise,varauto(q))
), (2.28)

where varnoise is a constant which corresponds to acceptable photometric variations in

color, illumination or noise, and varauto(q) takes into account the patch contrast and its
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pattern structure, such that sharp edges are more tolerable to pattern variations than

smooth patches. The correlation surface Sq(x,y) is then transformed into log-polar

coordinates centered at pixel q, and partitioned into 80 bins (4 bins at each of 20

angles). Within the 80 bins, maximal correlation values are selected to achieve

insensitivity to small translations, and a vector of selected correlation values is

formed. Finally, the vector is normalized to the final descriptor. As concluded in [93],

the LSS descriptor outperforms SIFT and GLOH in object detection.

In [53], [93] was improved in two aspects. First, the LSS descriptor is represented

in Cartesian coordinates and efficiency is also improved. Second, rather than

selecting maximal correlation values to achieve small translation invariance in the

LSS descriptor, a histogram representation is used as in the SIFT descriptor, leading

to more robust translation invariance. As shown in [53], the improved LSS descriptor

achieves favorably comparable performance in registering mono-modal images from

the data sets [80].

2.5.2.2 NLSD

Figure 2.9: Illustration of Building an NLSD Descriptor

A descriptor called Non-Local Shape Descriptor (NLSD) was proposed in [32].

The process of building an NLSD descriptor is briefly summarized as follows. First,

given a pixel xi, a non-local search region N is defined and divided into a number of

small patches with a pre-determined size of radius. As illustrated in Figure 2.9, N is

delimited by dashed white lines, while a red square Pi and a green square P j indicate
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the central patch centered at xi and an exemplary patch respectively. Second, each

exemplary patch P j is compared with the central patch Pi. The similarity between

P j and Pi is calculated based on normalized cross correlation (NCC) [48]. A weight

is assigned to each location around the point in the region through an exponentially

decaying distance function based on the Euclidean distance, indicating the similarity

between an exemplary patch and the central patch. Finally, the NLSD descriptor is

built around pixel xi.

The NLSD descriptor was modified in [33]. The descriptor proposed in [33] is

called Modality Independent Neighborhood Descriptor (MIND). In MIND, the main

modification over NLSD is that the distance between an exemplary patch P j and the

central patch Pi is Gaussian-weighted, so that a relatively higher response is obtained

for similar patches. As claimed in [33], MIND is more robust to changes in local

noise and contrast. However, a limitation of NLSD and MIND is that neither scale

invariance nor rotation invariance is achieved.

2.5.2.3 Structural Representations of Images

Figure 2.10: Three Patches with Two Different Structural Patterns. Different colors indicate
different pixel intensities.

In [106], two approaches for representing local structural patterns were proposed,

i.e., entropy and Laplacian images. The basic assumption is that there exist the same

or similar structural patterns at corresponding locations in different modalities. Here,

we summarize the process of converting a gray-scale image to an entropy image as

follows. First, an image patch with a fixed size is defined around a pixel xi in the

gray-scale image. Second, the Probability Density Function (PDF) of pixel intensities
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in the patch is computed. Note that a spatial weighting function is used for the PDF

computation. Next, the entropy of the PDF of pixel intensities is computed for the

patch and stored at pixel xi. As illustrated in Figure 2.10, patches 1 and 2 have same

structural pattern, while the structural pattern of patch 3 is different. As a result, the

entropy values are derived for patches 1 and 2, while the entropy value for patch 3 is

different. Finally, an entropy image of the gray-scale image is generated by computing

entropy for each pixel. The entropy images of two original images which are being

registered can be treated as input images of an image registration technique. As

pointed out in [33], a limitation of the structural representation using entropy images

is that a changing level of noise within and across images would influence the entropy

computation.

2.5.3 Mappings of Keypoint Triplets

In [49], a registration framework was proposed to improve the initial pairwise

matching of local descriptors by using spatial and geometrical relationships of triplets

of descriptors. In [49], although the authors used SIFT [56] and PIIFD [17] to

demonstrate the performance of their framework, the framework should work with

any other types of local descriptors. For the purpose of describing the framework,

we will use PIIFD. First of all, let Pi
r, i = 1,2, . . . ,Nr denote keypoints in the reference

image, and P j
t , j = 1,2, . . . ,Nt denote keypoints in the target image. Likewise, let Di

r, i =

1,2, . . . ,Nr denote PIIFD descriptors in the reference image, and D j
t , j = 1,2, . . . ,Nt

denote PIIFD descriptors in the target image.

i. Relative to a keypoint, Pi
r, in the reference image, all the PIIFD descriptors in

the target image are ranked in terms of the distance to Pi
r. As a result, an initial

mapping for each reference keypoint is obtained:

Pi
r 7→ {P1

t ,P
2
t , . . . PNc

t }, (2.29)

where Nc denotes the number of candidate matches.

ii. Keypoint triplets are generated in the reference and target images.
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The rationale behind using keypoint triplets is that at least three keypoint

mappings are required to determine an affine transformation. In the reference

image,
(Nr

3

)
keypoint triplets are generated. Accordingly, there are N3

c keypoint

triplets generated in the target image relative to a keypoint triplet in the reference

image.

iii. For each reference keypoint, Pi
r, the best match is determined as follows.

• In the reference image, all the keypoint triplets associated with Pi
r are

selected.

• Each associated keypoint triplet in the reference image is compared with its

candidate keypoint triplets in the target image. For the purpose of reducing

time complexity, certain geometric constraints are imposed. If two keypoint

triplets that are compared satisfy these constraints, an affine transformation

is computed from the three pairs of keypoints.

• With an affine transformation, the reference image can be transformed onto

the target image. Two edge images are derived from the transformed

reference image and the target image. The two edge images are then

overlapped and the Number of Overlapped Pixels (NOP) is computed.

• Assuming that the transformation estimated from Pi
r,P

j
r ,Pk

r 7→ Pi
t ,P

j
t ,Pk

t

achieves the maximum NOP, then keypoint Pi
t is the best match to Pi

r. This

NOP value is attached to the match from Pi
r to Pi

t .

iv. All the keypoint matches are ranked by their NOP values. A threshold is set to

select keypoint matches that hold highest NOP values.

v. RANSAC [23] is used to refine keypoint matches. We will introduce RANSAC in

Section 2.7.

vi. A transformation is estimated from the refined keypoint matches and is used for

aligning the reference and target images.

In [49], the registration framework of using spatial and geometrical relationships

of keypoint triplets is called Global Information (GI). For the referencing purpose, the
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aforementioned method is called GI-PIIFD in this thesis. Likewise, GI-SIFT can be

derived if SIFT as the local descriptor is used for the registration framework in [49].

Experiments in [49] have shown that GI-PIIFD outperforms GI-SIFT in registering

multi-modal images. Also, GI-PIIFD will be used as a benchmark technique for

performance comparisons in Chapter 5. The main reason for doing this is that

GI-PIIFD takes into account both local representations and spatial relationships

between keypoints.

2.6 Techniques for Feature Matching

In Sections 2.4 and 2.5, we have reviewed various techniques for describing feature

points. With a particular feature description technique, descriptors are built for all

feature points. The next step is to match descriptors in the reference and target images

so that a set of matches can be determined. Here, we summarize three strategies

for matching descriptors: threshold-based matching, nearest neighbor (NN) matching

and matching based on the nearest neighbor distance ratio (NNDR) [66].

First of all, we use DA to denote a descriptor in the reference image, D1 and D2

as the nearest neighbor and the second nearest neighbor to DA, respectively, in the

target image. And Di represents an arbitrary descriptor in the target image. The three

strategies for matching descriptors work as follows.

i. Threshold-based Matching

DA and Di are matched if the distance between the two descriptors is below a

threshold dt . An explicit disadvantage of this matching strategy is that multiple

matches are potentially generated relative to one descriptor in the reference

image.

ii. NN Matching

DA and D1 are matched if the distance between the two descriptors is below a

threshold dt . In the case of NN matching, the nearest neighbor might be very

close to the second nearest neighbor in terms of descriptor distance, so that the

discrimination of a match cannot be gauranteed.
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iii. NNDR Matching

If the distance ratio between the nearest neighbor and the second nearest neighbor

is below a threshold t, i.e.,
||DA−D1||
||DA−D2||

< t, (2.30)

where ||DA−D1|| and ||DA−D2|| are Euclidean distances of D1 to DA and D2 to DA

respectively.

Comparing the three strategies for matching descriptors stated above, the NNDR

matching is the most favorable choice for the reason that it decides a match by

considering both the actual descriptor distance and the discrimination from all the

other descriptors. The NNDR matching is used for keypoint matching in SIFT, where

the threshold of distance ratio t = 0.80. By rejecting those matches in which the

distance ratio is over t, 90% of false matches are eliminated while less than 5% of

true matches are discarded, according to the experiments in SIFT [56]. Thus, we use

NNDR matching in our experiments.

2.7 Techniques for Refining Matches and Estimating

Transformation

In a feature-based image registration technique, a set of matches are determined

after feature matching. The next step is to refine these matches and estimate a

transformation. In this section, we will review three relevant techniques.

2.7.1 Least Squares

Least Squares is an old, commonly-used data fitting technique which was proposed

in [12]. Below is the basic idea of Least Squares. Suppose there is a set of data points

(x1,y1),(x2,y2), . . . (xn,yn), where x is the independent variable and y is the dependent

variable. The fitting function f (x) has a deviation from each data point, i.e., di = yi−

f (xi), where 1≤ i≤ n. Such a deviation di is called a residual. The best fitting function
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minimizes the sum of squared residuals, i.e.,

n

∑
i=1

d2
i = minimum. (2.31)

Least Squares is used to refine matches as follows. A set of keypoint matches

is given, and suppose that (xi,yi) is matched to (x′i,y
′
i). First, a transformation H is

estimated by a random subset of keypoint matches, so the transformed coordinate

of (xi,yi) is H(xi,yi). Second, the Euclidean distance between (x′i,y
′
i) and H(xi,yi) is

computed as

di = ||(x′i,y′i)−H(xi,yi)||. (2.32)

Next,
n
∑

i=1
d2

i is minimized, where n is the number of keypoint matches. The final

transformation which achieves the minimum of
n
∑

i=1
d2

i is denoted as H f . The keypoint

matches which drive H f are preserved, and accordingly the other matches are

removed. For the purpose of refining matches, Least Squares is simple and efficient.

However, the major limitation of this technique is its low tolerance to outliers.

2.7.2 Hough Transform

Hough transform was first introduced in [40], which was later generalized in [22].

In image processing, the purpose of Hough transform is to find imperfect instances

within a number of shapes by a voting scheme. The shapes include straight lines,

circles and ellipse, etc. Let us take detecting straight lines as an example to illustrate

how Hough transform works as follows.

i. A straight line in image space is described as y = mx+b, where m is the line slope

and b is the intercept at y axis.

ii. The straight line y = mx+ b is associated with a point (r,θ) of a polar coordinate

in Hough parameter space. r represents the algebraic distance between the line

and the pre-defined origin, while θ is the angle of the vector which is orthogonal

to the line and points towards the upper half plane.

iii. The Hough parameter space is discretized into a number of bins. For each point

in the format of (r,θ), a vote is put into the corresponding bin.
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iv. The bin or (bins) holding the most votes is selected. Accordingly, straight lines

corresponding to selected bins are detected.

More broadly, Hough transform has been successfully used in various applications

such as detecting arbitrary shapes [7], object detection [61] and object recognition [56].

To refine keypoint matches, Hough transform is used to identify clusters of keypoint

matches which share similar transformations [56]. Scale, rotation and translations at

x and y axis make up a four-dimensional Hough space. Each match contributes a

vote to the Hough space. Ideally, all true matches contribute to the same bin in the

Hough space. The bin with the most votes accumulates those matches which are

true with a high confidence. The matches which do not fall into the bin are removed

from the original keypoint matches, so that the original keypoint matches are refined.

However, Hough transform has two limitations as follows. First, it is difficult to

decide the dimension of Hough parameter space. Second, the complexity is too high

if the required dimension of Hough parameter space is high [37].

2.7.3 RANSAC

RANdom SAmple Consensus (RANSAC) was proposed in [23] as a parameter

estimation technique. How RANSAC works is summarized in the following steps.

a. Given a set of data points, the minimum number of points required to determine a

model is randomly selected.

b. With randomly selected points, an initial model is determined.

c. The initial set of data points is enlarged by searching those points which fit the

initial model with a pre-defined tolerance ε. The enlarged set is called a consensus

set, where the included data points are treated as inliers.

d. If the fraction of inliers within the whole set of data points, Fi, is above a

pre-defined threshold τ, a new model is estimated using the consensus set and

the algorithm is completed.

e. If Fi is below τ, steps a to d are repeated for a pre-defined number of times.
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RANSAC is used to refine keypoint matches as follows. A transformation is

calculated using four keypoint matches randomly selected. The transformation is

iteratively calculated many times (normally between 500 and 1000). In testing an

estimated transformation, if a match is true with a pre-defined, acceptable error, the

match is regarded as an inlier. The iteration in which the number of inliers is largest

is recorded, and accordingly the outliers are removed from the original keypoint

matches.

RANSAC has been widely used for robust estimation problems in computer

vision, primarily due to its high accuracy of estimation even when there are a

significant number of outliers in the input data [84]. Admittedly, if the percentage of

inliers is too low, RANSAC cannot estimate an optimal model. One limitation is that

RANSAC only estimates one model for a particular set of data points. However, only

one model (a transformation) is to be estimated in registering our tested image pairs as

the transformation is uniform across the entire image. Note that Least Squares is used

to estimate an image transformation after keypoint matches are refined by RANSAC

in our experiments.

2.8 Summary

In this chapter, we have given a systematic and thorough review on exiting

image registration techniques. We have identified the most promising registration

techniques which will be the basis of our work in Chapters 3, 4 and 5, as follows.

i. SIFT-like descriptors have shown their effectiveness in the domain of image

registration. In reviewing SIFT-like descriptors, we have mentioned two types

of gradient information, i.e., GM (Gradient Magnitudes) and GO (Gradient

Occurrences). However, both GM and GO have limitations in building and

matching descriptors, which will be detailed in Chapter 3. A better way of

gradient utilization must exist. Improvements will be made in both mono-modal

and multi-modal cases. In mono-modal cases, improvements will be made on the

basis of SIFT and GO-SIFT, while IS-SIFT and GO-IS-SIFT are the foundation for

making improvements in multi-modal cases.
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ii. The PIIFD descriptor [17] was designed for registering multi-modal images.

PIIFD achieves invariance to image rotation, gradient reversal, region reversal and

partial invariance to intensities. However, there are two problems in PIIFD.

First, it is not scale-invariant. Second, using Harris corners as keypoints for

building descriptors is by no means the best choice, due to the fact that these

corners are sensitive to intensity variations in a small neighborhood. Third, the

robustness to content differences is not guaranteed because the PIIFD descriptor

is only partially invariant to intensity changes. PIIFD will be used in Chapter

4 for performance comparisons and the aforementioned two problems will be

addressed in Chapter 5.

iii. In [49], a multi-modal image registration framework of using spatial and

geometrical relationships of keypoint triplets was proposed, as described in

Section 2.5.3. By incorporating the PIIFD descriptor into the registration

framework, GI-PIIFD is formed as a multi-modal image registration technique.

The multi-modal image registration framework will be used in our proposed

registration technique and GI-PIIFD will be used as a benchmark technique for

performance comparisons in Chapter 5.



Chapter 3

Improving SIFT by Better
Utilization of Image Gradients

3.1 Overview of Gradient Utilization in SIFT-based

Registration Techniques

SIFT [56] is a very popular technique for detecting and describing local features

in images and it has been widely used in the field of image registration such as

[19, 38, 39, 66, 68, 70]. In a SIFT-based image registration technique, describing a

keypoint is equivalent to describing image information in a local region around this

keypoint, as elaborated in Section 2.4.1.1 of Chapter 2. Thus, how image information

is described in a local region directly affects the discrimination power of the formed

local descriptor.

A SIFT-like descriptor is built based on a local region around a given keypoint.

This local region is divided into a number of sub-regions, e.g. 4× 4 sub-regions in

the original SIFT. In each sub-region, a histogram of gradient orientations is built. At

each orientation bin of the histogram, Gradient Magnitude (GM) of each pixel, whose

quantized gradient orientation corresponds to the orientation bin, is accumulated.

Instead of utilizing GM, Gradient Occurrence (GO) was proposed in [39] for building

histograms of gradient orientations. GO is defined as the number of occurrences of

image gradients whose quantized orientations correspond to a particular orientation

bin. GM and GO are two categories of gradient information which are used for

building SIFT-like local descriptors.

The purpose of this chapter is to explore a better way of utilizing gradient

information, thereby improving the discrimination power of SIFT-like descriptors in

50
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image registration. The rest of the chapter is structured as follows. Section 3.2 gives

a detailed analysis of the utilization of either GM or GO in building and matching

SIFT-like descriptors. In Section 3.3, we will propose a technique to better utilize GM

and GO. Our experimental results are shown and discussed in Section 3.4. Finally, the

chapter is summarized in Section 3.5.

3.2 Analysis of the Utilization of either GM or GO

In this section, we will make a theoretical analysis of the utilization of either GM or

GO (Sections 3.2.1 and 3.2.2). Also, the limitations of utilizing only GM or GO will be

clearly illustrated through examples (Sections 3.2.3 and 3.2.4).

3.2.1 Utilizing Only GM

As stated in [19, 56], in SIFT-like registration techniques which use GM for building

descriptors, GM values are incremented for each orientation bin of a gradient

histogram. Assume that there are n pixels whose quantized gradient orientations

correspond to the oth orientation bin of the (x,y) spatial bin in a histogram of gradient

orientations. For brevity, we can call the bin the (x,y,o) orientation bin. The GM value

for the (x,y,o) orientation bin is calculated by

DGM(x,y,o) =
n

∑
i=1

Mi, (3.1)

where Mi is the GM of the ith pixel.

Now let us examine three scenarios for the (x,y,o) orientation bin. The three

scenarios have the same sum of GM values, but there are n, two and three pixels whose

quantized gradient orientations correspond to this orientation bin. Without loss of

generality, there can be many scenarios which have the same sum of GM values but

are different in the number of pixels. These scenarios are likely to represent different

image contents, but cannot be distinguished by the utilization of GM.
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3.2.2 Utilizing Only GO

According to the definition of GO stated in Section 3.1, we define a function fGO as

fGO({M1,M2, . . . ,Mn}) = n, (3.2)

where {M1,M2, . . . ,Mn} represent GM values of n pixels corresponding to a particular

orientation bin. Regardless of the GM value of each pixel, when utilizing GO for

building descriptors, the value for this orientation bin is n. However, GM value of

each of the n pixels can be arbitrary, indicating many different scenarios in image

contents. These different scenarios cannot be distinguished by the utilization of GO.

3.2.3 An Artificial Example

In [39], utilizing GO was proposed for building descriptors, rather than utilizing GM

in the original SIFT. In the following we will point out the limitations of only utilizing

either GM or GO through an example.

In [39], GO was proposed on Symmetric SIFT (called SSIFT for the referencing

purpose) [19], so we call [39] GO-SSIFT. In SSIFT, orientation histograms are used

for building a SSIFT descriptor. The value in each orientation bin is incremented by

the GM of each pixel with the corresponding orientation. However, utilizing GM

for incrementing the values in the orientation bins will result in descriptors which

would potentially cause an ambiguity. Figure 3.1 gives one example illustrating the

limitation of utilizing GM for building descriptors.

In Figure 3.1, each sub-figure denotes a spatial bin in a local region, as stated

in Section 2.4.1.1, for building a descriptor, and each cell corresponds to a pixel.

Each arrow indicates an occurrence of image gradient. The length and orientation

of each arrow denote the gradient magnitude and orientation of a particular pixel

respectively. A blank cell means that the gradient magnitude of this pixel is zero.

Without loss of generality, assume that the orientations of all the arrows in the four

spatial bins are 45◦. Based on the process of building a SSIFT descriptor in Section

2.5.1.1 of Chapter 2, the sum of gradient magnitudes at the 45◦ orientation bin for the

four spatial bins is 4 and the values in all the other seven orientation bins are zero.
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(a) (b)

(c) (d)

Figure 3.1: Ambiguity of incrementing the values in the orientation bins based on GM: the
four visually different spatial bins have the same orientation histogram. Note that, there are
many other combinations with different pixel locations, which also applies to Figure 3.2.

Consequently, the same orientation histogram will be built for the four spatial bins.

But the contents represented by the four spatial bins are completely different. Thus,

an ambiguity has arisen. However, utilizing GO [39], the value in the 45◦ orientation

bin for the four spatial bins will be 1, 4, 2 and 3 respectively in Figure 3.1.

Utilizing GO for incrementing the values in the orientation bins can successfully

distinguish those regions similar to the ones depicted in Figure 3.1. However, we

have found that utilizing GO for building descriptors might cause a similar ambiguity

to utilizing GM. A typical example is shown in Figure 3.2. All the assumptions

in Figure 3.2 are consistent with those in Figure 3.1. Let us build the orientation

histograms for the four regions in Figure 3.2 utilizing GO to increment the value

in each orientation bin. The value in the 45◦ orientation bin would be consistently
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(a) (b)

(c) (d)

Figure 3.2: Ambiguity of incrementing the values in the orientation bins based on GO: the
four visually different regions have the same orientation histogram.

equivalent to 2 for the four spatial bins. Thus, the same orientation histogram will

be built for them. However, the four spatial bins are likely to represent different

image contents. If orientation bins are incremented utilizing GM, the value in the 45◦

orientation bin would be 8, 2, 3 and 4 respectively, leading to four different orientation

histograms.

In conclusion, neither GM nor GO is able to distinguish local image regions with

different visual contents in all circumstances, such as the two examples illustrated in

Figure 3.1 and Figure 3.2. Since GM and GO are both important visual properties

in images, utilizing both types of gradient information in the feature description and

matching will potentially improve the registration performance.
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3.2.4 A Real Example

(a) DoG Pyramid (b) DoG Extrema

Figure 3.3: A Pair of Multi-modal MRI Images

In Section 3.2.3, the limitations of only utilizing either GM or GO are pointed out using

an artificial example. Now we give a real example of registering two images using

IS-SIFT and GO-IS-SIFT which uses GM and GO for building descriptors respectively.

Details for IS-SIFT and GO-IS-SIFT can be found in Section 2.5.1.1. The two images

are shown in Figure 3.3, which are a pair of multi-modal MRI (Magnetic Resonance

Imaging) [36] images. In the example, we will analyze false matches determined by

IS-SIFT and GO-IS-SIFT respectively. More specifically, we are interested in seeing

how GO-IS-SIFT deals with the false matches which are determined by IS-SIFT, and

vice versa.

In registering the two images shown in Figure 3.3, 13 false matches are determined

by IS-SIFT. We analyze the matching status of these 13 false matches when IS-SIFT

and GO-IS-SIFT are respectively used. First of all, the two images in Figure 3.3 are

denoted as Ir and It , so we use a keypoint mapping Pi
r 7→ P j

t to refer to a false match

from Ir to It . For a false match Pi
r 7→ P j

t determined by IS-SIFT, the matching status

using GO-IS-SIFT can be divided into three cases as follows.

A. Keypoint Pi
r is not the closest neighbor to keypoint P j

t .
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Table 3.1: Matching Status of False Matches Determined by IS-SIFT

ID Distance Ratioa

by IS-SIFT
If Closest

Neighbor by
GO-IS-SIFT?

Distance Ratio
by GO-IS-SIFT

Case

1 0.729 Yes 0.823 B
2 0.779 Yes 0.660 C
3 0.798 No N/A A
4 0.780 Yes 0.909 B
5 0.793 Yes 0.961 B
6 0.661 Yes 0.994 B
7 0.726 Yes 0.826 B
8 0.791 No N/A A
9 0.728 Yes 0.918 B
10 0.729 Yes 0.822 B
11 0.779 Yes 0.899 B
12 0.616 Yes 0.572 C
13 0.766 Yes 0.876 B

a The threshold of distance ratio is set to 0.800 as in the original SIFT.

Table 3.2: Matching Status of False Matches Determined by GO-IS-SIFT

ID Distance Ratio
by GO-IS-SIFT

If Closest
Neighbor by

IS-SIFT?

Distance Ratio
by IS-SIFT

Case

1 0.660 Yes 0.779 C
2 0.783 Yes 0.995 B
3 0.758 No N/A A
4 0.797 Yes 0.809 B
5 0.768 Yes 0.852 B
6 0.572 Yes 0.616 C
7 0.749 Yes 0.943 B

B. Keypoint Pi
r is the closest neighbor to keypoint P j

t , but the distance ratio between

the closest neighbor and the second closest neighbor is above the pre-defined

threshold. Note that, a keypoint mapping is determined as a match if this

distance ratio is below the threshold, indicating the closest neighbor is sufficiently

distinctive from all the rest keypoints.

C. Keypoint Pi
r is the closest neighbor to keypoint P j

t , and the distance ratio between

the closest neighbor and the second closest neighbor is below the threshold.

In Cases A and B, a false match Pi
r 7→ P j

t determined by IS-SIFT is not regarded as a

match by GO-IS-SIFT. In Case C, GO-IS-SIFT also determines Pi
r 7→ P j

t as a false match,
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which means neither IS-SIFT nor GO-IS-SIFT can successfully distinguish Keypoint

Pi
r from P j

t . Table 3.1 lists which case each false match belongs to. It can be seen

that 11 out of 13 false matches fall into either Case A or Case B, which is 84.62%. In

other words, the majority of false matches determined by IS-SIFT are not matches

at all when using GO-IS-SIFT. Therefore, GO-IS-SIFT has advantages over IS-SIFT in

dealing with these matches. Likewise, Table 3.2 shows the matching status of false

matches that are determined by GO-IS-SIFT. In the seven false matches determined

by GO-IS-SIFT, five matches belong to Case A or B when using IS-SIFT. Thus, IS-SIFT

has advantages over GO-IS-SIFT in dealing with these matches.

This aforementioned real example suggests that GM suits some circumstances

better than GO, and vice versa. Thus, only utilizing either GM or GO is by no means

the optimal choice for building and matching SIFT-like descriptors.

3.3 A New Way of Utilizing Gradients

In this section, we will introduce our proposed way of utilizing gradient information

in building and matching SIFT-like descriptors. The proposed technique is called

MOG (Magnitudes and Occurrences of Gradients) for the referencing purpose. First,

we will describe the rationale and steps of MOG. Second, the characteristics of MOG

matches will be analyzed.

3.3.1 Rationale and Steps of MOG

The analysis in Section 3.2 has inspired us to find a new way of utilizing gradients

for feature description and matching. Both GM and GO have limitations in building

and matching SIFT-like descriptors, as analyzed in Section 3.2. The examples shown

in Sections 3.2.3 and 3.2.4 convey the message that GM and GO are complementary

gradient information. Therefore, a keypoint match that satisfies the matching criteria

of both GM-based and GO-based descriptors is more likely to be a true match as

compared to a match only satisfying either of the two. This assumption will be clearly

illustrated in Section 3.3.2.
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It is noted that the proposed MOG can be incorporated with SIFT and IS-SIFT

for registering mono-modal and multi-modal images respectively. Accordingly, the

incorporated techniques are called MOG-SIFT and MOG-IS-SIFT. Here, we illustrate

the steps of MOG-IS-SIFT as follows.

i. IS-SIFT is performed to determine a set of keypoint matches

MGM = {M1
GM,M2

GM, . . . MN1
GM}. (3.3)

ii. GO-IS-SIFT is performed to determine a set of keypoint matches

MGO = {M1
GO,M

2
GO, . . . MN2

GO}. (3.4)

iii. The common matches of the two sets of keypoint matches, MGM and MGO,

constitute a new set of keypoint matches

MMOG = MGM
⋂

MGO. (3.5)

The relationships between MGM, MGO and MMOG are illustrated in Figure 3.4.

Figure 3.4: Illustrating MOG Matches. Each dot in the figure indicates a keypoint match.

3.3.2 Characteristics of MOG Matches

The matches that are included in MMOG satisfy the matching criteria by both IS-SIFT

descriptors and GO-IS-SIFT descriptors. By imposing the matching criteria of both
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GM-based and GO-based descriptors, a MOG match is expected to have stronger

discrimination power, as compared to those matches that fall into either MGM or MGO,

but not included in MMOG. Thus, a MOG match is more likely to be a true match as

compared to a match determined by IS-SIFT or GO-IS-SIFT.

3.4 Performance Study

We evaluate the proposed MOG on both mono-modal and multi-modal data sets.

In mono-modal cases, SIFT, GO-SIFT and MOG-SIFT are compared, whereas in

multi-modal cases, IS-SIFT, GO-IS-SIFT and MOG-IS-SIFT are compared.

3.4.1 Test Data

3.4.1.1 Mono-modal Data Sets

In the test data, there are two mono-modal data sets: Affine Covariant Regions Data

Set [80] and Mono-modal Microscopic Data Set. In the Affine Covariant Regions

Data Set, there are five different changes in imaging conditions: scale and rotation,

viewpoint, blur, illumination and JPEG compression. The scale and blur changes

are obtained by varying the camera zoom and focus, respectively. The scale and

rotation changes are up to four times and approximately 180◦ respectively. With

regard to viewpoint changes, the camera varies from a fronto-parallel view to one with

significant foreshortening at approximately 50◦ to 60◦ [66]. The illumination changes

are introduced by varying the camera aperture [66]. The JPEG compression changes

are generated using a standard xv image browser with the image quality parameter

varying from 40% to 2%. There are eight original images and five image pairs are

generated for each original image. The eight images are shown in Figure 3.5 and

the corresponding imaging transformations are listed in Table 3.4 (See Section 3.4.3).

Thus, the Affine Covariant Regions Data Set includes 40 image pairs.

In the Mono-modal Microscopic Data Set, changes in imaging condition are in

scale and rotation. The scale and rotation changes are up to four times and 90◦ respec-
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(a) bark (b) boat

(c) graffiti (d) wall

(e) bikes (f) trees

(g) leuven (h) ubc

Figure 3.5: Eight Original Images from Affine Covariant Regions Data Set
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tively. There are eight original image pairs. Two out of the eight pairs are shown

in Figure 3.6. In each image pair, the reference image remains unchanged and the

target image is rotated up to 90◦ with an increment of 15◦. With rotation changes, the

Mono-modal Microscopic Data Set includes 56 image pairs.

(a) (b)

(c) (d)

Figure 3.6: Two Pairs of Mono-modal Microscopic Images. The scale difference between (a)
and (b) is 2X. The scale difference between (c) and (d) is 4X.

3.4.1.2 Multi-modal Data Sets

There are four multi-modal data sets in our test data. Data Set 1 includes two artificial

pairs in which image contrast is reversed between the reference and target images.

Data Set 2 includes 18 NIR (Near Infra-Red) vs EO (Electro-Optical) image pairs. Data

Set 3 includes four image pairs used in [111]. The four image pairs include three MRI
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Examples of Image Pairs from Multi-modal Data Sets. (a) and (b): Artificial; (c)
and (d): NIR vs EO; (e) and (f): MRI (T1 vs T2).

Table 3.3: Pair IDs and Imaging Category

Data Set ID Category
1 1-2 Artificial
2 3-20 NIR vs EO
3 21-24 MRI, EO vs IR
4 25-40 Multi-modal Microscopic
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(a) Color Image 2 (b) Confocal Image 2

(c) Color Image 6 (d) Confocal Image 6

(e) Color Image 7 (f) Confocal Image 7

Figure 3.8: Sample Multi-modal Microscopic Image Pairs (Part 1)
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pairs and one EO vs IR (Infra-Red) pair. The three MRI pairs are of different weighting

patterns [36]: T1 vs T2, T1 vs PD (Proton Density), and T2 vs PD, for each. Data Set 4

includes 16 multi-modal microscopic image pairs. For each data set, the IDs of image

pairs and their corresponding imaging category are listed in Table 3.3. Figure 3.7

shows three image pairs for the categories Artificial, NIR vs EO and MRI, respectively.

(a) Color Image 11 (b) Confocal Image 11

(c) Color Image 12 (d) Confocal Image 12

(e) Color Image 15 (f) Confocal Image 15

Figure 3.9: Sample Multi-modal Microscopic Image Pairs (Part 2)
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Samples of multi-modal microscopic image pairs are shown in Figure 3.8 and

Figure 3.9, where the six image pairs represent six different specimens.

3.4.2 Evaluation Criterion

The accuracy of an image registration technique, to a high degree, depends on the

matching accuracy. The higher the percentage of true matches, the more accurate the

final registration will be. Therefore, we evaluate our proposed technique using the

matching accuracy where

accuracy =
Number o f true matches
Number o f total matches

×100%. (3.6)

In the tested data sets, the ground truth for non-microscopic image pairs is known

or provided [80, 111]. A maximum error of four pixels, which is consistent with the

setting in [111], is used when determining a true match. However, microscopic image

pairs, in both mono-modal and multi-modal cases, show a higher complexity from the

perspective of image registration, as compared to other tested image pairs. Thus, the

maximum error for determining a true match is set to five in registering microscopic

image pairs, which is reasonably acceptable.

3.4.3 Experiments on Mono-modal Images

For the Affine Covariant Regions Data Set, Table 3.4 lists the number of true matches,

the number of false matches and matching accuracy. Note that the values in the

Accuracy column are averaged matching accuracy for registering five image pairs

relative to each original image. As shown in the Accuracy column in the italicized

bold font, MOG-SIFT consistently achieves the highest matching accuracy. With

regard to the number of true matches, it is expected that the value for MOG-SIFT

is smaller than that for SIFT and that for GO-SIFT. For all the image pairs in this

data set, the average accuracies for SIFT, GO-SIFT and MOG-SIFT are 77.00%, 81.88%

and 87.79%, respectively. There is an improvement of 5.91% in matching accuracy

from GO-SIFT to MOG-SIFT. In addition, Figure 3.10 shows the changes of matching

accuracy within five pairs for each original image. We can conclude two trends from
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Table 3.4: Matching Accuracies for Affine Covariant Regions Data Set [80]

Image Ta Technique #Trueb #Falseb Accuracy(%)
SIFT 3774 307 92.48

bark scale + rotation GO-SIFT 3678 224 94.26
MOG-SIFT 3555 39 98.91

SIFT 7003 996 87.55
boat scale + rotation GO-SIFT 6746 460 93.62

MOG-SIFT 6421 140 97.87
SIFT 2268 1057 68.21

graffiti viewpoint GO-SIFT 2211 556 79.91
MOG-SIFT 2085 288 87.86

SIFT 16817 466 97.30
wall viewpoint GO-SIFT 16211 341 97.94

MOG-SIFT 15671 211 98.67
SIFT 4410 1197 78.65

bikes blur GO-SIFT 4264 638 86.98
MOG-SIFT 4124 181 95.80

SIFT 5808 893 86.67
trees blur GO-SIFT 5399 704 88.46

MOG-SIFT 4978 377 92.79
SIFT 6634 563 92.18

leuven illumination GO-SIFT 6810 317 95.55
MOG-SIFT 6472 131 98.02

SIFT 9865 695 93.42
ubc JPEG GO-SIFT 9216 317 96.67

MOG-SIFT 8954 161 98.23
a Column T denotes transformations between image pairs.
b Column #True and column #False indicate the number of true matches and false

matches separately.
c The highest accuracy in the Accuracy column is shown in the italicized bold font.

Figure 3.10. First, among the three techniques compared (SIFT, GO-SIFT, MOG-SIFT),

MOG-SIFT achieves the highest matching accuracy in the overwhelming majority

of cases. Second, in most cases for each original image the matching accuracy

decreases from image pair 1 to 5. To further illustrate the improvement MOG-SIFT has

achieved, matching results for GO-SIFT and MOG-SIFT are compared in Figure 3.11

and Figure 3.12. Due to the original number of matches is quite large as shown in

Figure 3.11, keypoint matches are down-sampled by 10 times in Figure 3.12 so that

it is easier for readers to visually evaluate the correctness of the correspondences

identified.
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(a) bark (scale+rotation) (b) boat (scale+rotation)

(c) graffiti (viewpoint) (d) wall (viewpoint)

(e) bikes (blur) (f) trees (blur)

(g) leuven (illumination) (h) ubc (JPEG)

Figure 3.10: Matching Accuracy for Each Base Pair of Affine Covariant Regions Data Set
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(a) Reference Image (b) Target Image

(c) GO-SIFT (matching accuracy: 118/268=44.03%)

(d) MOG-SIFT (matching accuracy: 102/166=61.45%)

Figure 3.11: A Matching Example for comparing GO-SIFT with MOG-SIFT. Green and red
lines indicate true and false matches respectively.
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(a) GO-SIFT (matching accuracy: 8/27=29.63%)

(b) MOG-SIFT (matching accuracy: 9/17=52.94%)

Figure 3.12: Down-sampled Matches for boat 1 to 6. The matches of both GO-SIFT and
MOG-SIFT are down-sampled by 10:1.

Table 3.5 presents the number of true matches, the number of false matches and

matching accuracy for the Mono-modal Microscopic Data Set. The results of seven

image pairs for each original image are averaged in Table 3.5. On average, the

matching accuracy for all the pairs in this data set has improved from 62.94% (SIFT)

to 75.71% using GO-SIFT, then to 90.81% using MOG-SIFT. Figure 3.13 shows the

changes to matching accuracy as the rotation difference increases for each original

image. It can be seen from Figure 3.13 that rotation changes hardly affect the matching

performance.
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Table 3.5: Matching Accuracies for Mono-modal Microscopic Images

Specimena ∆b
σ Technique #True #False Accuracy(%)

SIFT 160 230 41.03
A 2x GO-SIFT 117 82 58.79

MOG-SIFT 110 15 88.00
SIFT 3442 1015 77.23

Bc 2x GO-SIFT 3351 529 86.37
MOG-SIFT 3245 144 95.75

SIFT 1324 1121 54.15
C 2x GO-SIFT 1277 515 71.26

MOG-SIFT 1230 133 90.24
SIFT 4996 1518 76.70

D 2x GO-SIFT 4798 764 86.26
MOG-SIFT 4713 411 91.98

SIFT 1034 239 81.23
E 2x GO-SIFT 929 93 90.90

MOG-SIFT 860 36 95.98
SIFT 898 274 76.62

F 2x GO-SIFT 777 162 82.75
MOG-SIFT 742 82 90.05

SIFT 258 184 58.37
A 4x GO-SIFT 173 72 70.61

MOG-SIFT 172 13 92.97
SIFT 877 1467 37.41

Dd 4x GO-SIFT 841 626 57.33
MOG-SIFT 804 192 80.72

a The first column denotes labels of the original images.
b The second column gives the scale difference between image pairs.
c The specimen corresponds to the two images in Figure 3.6 (a) and (b).
d The specimen corresponds to the two images in Figure 3.6 (c) and (d).

3.4.4 Experiments on Multi-modal Images

There are four data sets for multi-modal images, as listed in Table 3.3. Three

registration techniques IS-SIFT, GO-IS-SIFT and MOG-IS-SIFT have been compared.

We firstly look into the comparisons in terms of matching accuracy between the

three techniques on Data Sets 1-3, as shown in Figure 3.14. In registering two

artificial image pairs from Data Set 1, on average, the matching accuracies achieved

by IS-SIFT, GO-IS-SIFT and MOG-IS-SIFT are 93.79%, 94.76% and 96.04% respectively.

It is not difficult to effectively register the two image pairs as the content difference

at corresponding parts only lies in contrast reversal. For Data Set 2, the average
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(a) A (2x) (b) B (2x)

(c) C (2x) (d) D (2x)

(e) E (2x) (f) F (2x)

(g) A (4x) (h) D (4x)

Figure 3.13: Rotation Changes vs Matching Accuracy for Mono-modal Microscopic Images
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Figure 3.14: Matching Accuracy for Multi-modal Image Pairs (Non-microscopic)

matching accuracy improves from 87.20% (IS-SIFT) to 92.93% using GO-IS-SIFT,

then to 94.50% using MOG-IS-SIFT. Considering Data Sets 1 and 2 collectively, the

improvements of MOG-IS-SIFT over IS-SIFT and GO-IS-SIFT are small. However, for

17 out of 20 image pairs in Data Sets 1 and 2, the matching accuracies are over 90.00%

when using GO-IS-SIFT, which can be further improved using a technique for refining

keypoint matches such as RANSAC [23] discussed in Section 2.7 of Chapter 2. As a

result, an estimated transformation in each image pair should be sufficiently accurate

in these cases. As shown in Figure 3.14, matching accuracies for pairs 10, 14 and 17

are below 90.00%. For pairs 10 and 14, matching accuracy is improved by 9.33% and

5.19% respectively, when using MOG-IS-SIFT. Only for pair 17, MOG-IS-SIFT does not

make any improvement over IS-SIFT and GO-IS-SIFT.

(a) EO (b) IR

Figure 3.15: Image Pair 24. The highlighted regions are corresponding.
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(a) IS-SIFT (19/32=59.38%)

(b) GO-IS-SIFT (12/19=63.16%)

(c) MOG-IS-SIFT (6/8=75.00%)

Figure 3.16: Keypoint Matches Achieved by IS-SIFT, GO-IS-SIFT and MOG-IS-SIFT on Pair 21
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For Data Set 3, i.e. pairs 21 to 24 as shown in Figure 3.14, we firstly discuss pair 24

in which the matching accuracy achieved by each of the three registration techniques

is all 0.00%. It can be seen in Figure 3.15 that the objects in the two images are very

unclear and that the content differences are very large even at corresponding regions

as highlighted. In registering image pair 24, IS-SIFT determines only one match and

it is a false match, whereas there is no match when using GO-IS-SIFT. In this case,

MOG-IS-SIFT can do nothing to improve the situation as MOG-IS-SIFT is designed to

find common matches which are determined by both IS-SIFT and GO-IS-SIFT. With

regard to the three MRI image pairs in Data Set 3, the average matching accuracies

obtained by IS-SIFT, GO-IS-SIFT and MOG-IS-SIFT are 60.67%, 69.82% and 78.01%

respectively. The keypoint matches achieved by the three registration techniques for

pair 21 are shown in Figure 3.16.

Figure 3.17: Matching Accuracy for Multi-modal Image Pairs (Microscopic)

For Data Set 4, the matching results for the 16 multi-modal microscopic image

pairs are presented in Table 3.6. The Specimen column specifies which specimen

each image pair belongs to. Overall, all the three registration techniques, IS-SIFT,

GO-IS-SIFT and MOG-IS-SIFT, perform a lot worse in registering the 16 image pairs

as compared to registering image pairs in Data Sets 1-3. The poor performance simply

verifies the fact that the image characteristics in multi-modal microscopic images are



§3.4 Performance Study 75

Table 3.6: Matching Accuracies for Multi-modal Microscopic Images

Pair ID Specimen Technique #True #False Accuracy (%)
IS-SIFT 5 57 8.06

25 A GO-IS-SIFT 4 7 36.36
MOG-IS-SIFT 2 1 66.67

IS-SIFT 5 49 9.26
26 A GO-IS-SIFT 3 17 15.00

MOG-IS-SIFT 1 4 20.00
IS-SIFT 4 98 3.92

27 A GO-IS-SIFT 2 25 7.41
MOG-IS-SIFT 0 7 0.00

IS-SIFT 1 98 1.01
28 A GO-IS-SIFT 0 29 0.00

MOG-IS-SIFT 0 5 0.00
IS-SIFT 0 77 0.00

29 A GO-IS-SIFT 0 29 0.00
MOG-IS-SIFT 0 5 0.00

IS-SIFT 2 36 5.26
30 A GO-IS-SIFT 2 9 18.18

MOG-IS-SIFT 2 0 100.00
IS-SIFT 1 118 0.84

31 A GO-IS-SIFT 0 23 0.00
MOG-IS-SIFT 0 6 0.00

IS-SIFT 2 43 4.44
32 B GO-IS-SIFT 2 12 14.29

MOG-IS-SIFT 2 3 40.00
IS-SIFT 6 111 5.13

33 C GO-IS-SIFT 4 63 5.97
MOG-IS-SIFT 4 6 40.00

IS-SIFT 0 82 0.00
34 C GO-IS-SIFT 0 50 0.00

MOG-IS-SIFT 0 10 0.00
IS-SIFT 1 40 2.44

35 D GO-IS-SIFT 0 11 0.00
MOG-IS-SIFT 0 1 0.00

IS-SIFT 0 1 0.00
36 E GO-IS-SIFT 1 1 50.00

MOG-IS-SIFT 0 1 0.00
IS-SIFT 1 13 7.14

37 E GO-IS-SIFT 0 10 0.00
MOG-IS-SIFT 0 0 0.00

IS-SIFT 0 80 0.00
38 E GO-IS-SIFT 0 38 0.00

MOG-IS-SIFT 0 6 0.00
IS-SIFT 0 0 0.00

39 F GO-IS-SIFT 0 0 0.00
MOG-IS-SIFT 0 0 0.00

IS-SIFT 0 15 0.00
40 F GO-IS-SIFT 0 9 0.00

MOG-IS-SIFT 0 1 0.00
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(a) GO-IS-SIFT (3/20=15.00%)

(b) MOG-IS-SIFT (1/5=20.00%)

Figure 3.18: Keypoint Matches Achieved by GO-IS-SIFT and MOG-IS-SIFT on Pair 26
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much more complex than pairs in Data Sets 1-3 for the registration purpose. First

of all, it should be emphasized that at least three matches are needed to estimate

a transformation between two images to do the final alignment. In the 16 image

pairs, the number of matches is no smaller than three in registering 10 pairs. The

matching accuracies achieved by the three registration techniques for these 10 pairs

are compared in Figure 3.17. Note that in Figure 3.17, if the number of matches is

smaller than three, an image registration cannot be achieved and × marks the six

image pairs where this is the case. The following discusses the 10 pairs where the

number of matches is no smaller than three: pairs 25, 26, 27, 28, 29, 31, 32, 33, 34 and

38. As Table 3.6 suggests, on average, the matching accuracy for IS-SIFT, GO-IS-SIFT

and MOG-IS-SIFT increases from 3.27% to 7.90%, and to 16.67%. More specifically, the

10 pairs are divided into two categories according to whether there is any true match

for MOG-IS-SIFT. The first category includes pairs 25, 26, 32 and 33, where there is at

least one true match, whereas pairs 27, 28, 29, 31, 34 and 38 without any true match

are included in the second category. For the four pairs in the first category, the average

matching accuracies for IS-SIFT, GO-IS-SIFT and MOG-IS-SIFT are 6.72%, 17.90% and

41.67%. It is clear that MOG-IS-SIFT has made large improvements over both IS-SIFT

and GO-IS-SIFT in matching accuracy, by 34.95% and 23.77% respectively. Since

MOG-IS-SIFT is proposed for seeking the common matches which are determined

by both IS-SIFT and GO-IS-SIFT, it is possible that the number of true matches is

zero for MOG-IS-SIFT in the cases where the number of true matches for IS-SIFT and

GO-IS-SIFT are very small. With this analysis in mind, the matching results for the

six pairs in the second category make sense, as shown in Table 3.6. In fact, 7.41% is

the highest matching accuracy for the six pairs in the second category using IS-SIFT

or GO-IS-SIFT, which is too low to achieve an effective registration. Also, we have

shown keypoint matches achieved by GO-IS-SIFT and MOG-IS-SIFT in Figure 3.18

for registering image pair 26. To summarize, MOG-IS-SIFT has shown improvements

over IS-SIFT and GO-IS-SIFT as long as three matches are determined by the three

registration techniques.
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Figure 3.19: Illustrating Characteristics of MOG Matches. The Distance Ratio at y axis refers
to the distance ratio between the closest neighbor and the second closest neighbor. The
horizontal line denotes the threshold of distance ratio pre-defined. GM-based and GO-based
correspond to IS-SIFT and GO-IS-SIFT respectively.

3.4.5 An Example Illustrating Distance Ratios of MOG Matches

As stated in Section 3.3.2, MOG matches satisfy the matching criteria by both IS-SIFT

descriptors and GO-IS-SIFT descriptors. Here, we illustrate characteristics of MOG

matches using an example of registering a particular multi-modal image pair. The

keypoint matches determined by IS-SIFT, GO-IS-SIFT and MOG-IS-SIFT can be found

in Figure 3.16. Figure 3.19 clearly shows that, the distance ratio between the closest

neighbor and the second closest neighbor is below the threshold pre-defined for

each MOG match. Thus, a MOG match is a true one with a higher possibility, as

compared to those matches which are determined by IS-SIFT or GO-IS-SIFT, but not

determined by MOG-IS-SIFT. As Figure 3.16 shows, MOG-IS-SIFT improves IS-SIFT

and GO-IS-SIFT by 15.62% and 11.84%, respectively, in matching accuracy.

3.5 Summary

We have proposed a technique called MOG to utilize both Gradient Magnitudes (GM)

and Gradient Occurrences (GO) for feature description and matching in SIFT-based
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registration techniques. The proposed MOG can be incorporated with both SIFT and

IS-SIFT for registering mono-modal and multi-modal images respectively. We believe

that the idea of utilizing both GM and GO in feature description and matching can be

broadly applied to SIFT-like descriptors.

It is noted that MOG-SIFT has been proposed on the basis of SIFT for mono-modal

image registration. We believe that MOG can be applied to some variants of SIFT,

such as PCA-SIFT [43] and GLOH [66]. It is likely that the registration performance

can be improved accordingly.

In general, our experiments have shown that MOG improves SIFT-like descriptors

in both mono-modal and multi-modal cases. However, SIFT-like descriptors may not

be suitable for registering multi-modal microscopic images as contents in these images

vary greatly. Based on our analysis, this is caused by a low structural similarity and

substantial content differences in these images. Thus, we will explore other techniques

in Chapters 4 and 5, in order that multi-modal microscopic images can be effectively

registered.



Chapter 4

Detection of Structural Similarity
for Multi-modal Microscopic Image
Registration

4.1 Introduction

From the experimental study on multi-modal data sets in Section 3.4.4 of Chapter

3, it is clear that achieving an effective registration for multi-modal microscopic

image pairs is more challenging as compared to the other pairs in the test data.

By looking into visual characteristics, we have found that there exists much lower

structural similarity in multi-modal microscopic image pairs than other tested

image pairs. Based on our analysis, we will conclude that a low structural

similarity has a huge impact on the registration process and significantly decreases

the registration performance. Unfortunately, many existing multi-modal image

registration techniques such as [17, 19, 32, 33, 38, 39, 56, 66, 68, 70, 106] assume that the

same or similar structures exist at corresponding parts between two images. With this

assumption, these existing multi-modal image registration techniques cannot achieve

a satisfactory performance in registering multi-modal microscopic images.

Due to the great significance of structural similarity to the registration process, we

will propose a technique to detect intrinsic structural similarity between color and

confocal microscopic images. The proposed technique is called Detector of Structural

Similarity (DSS in short). DSS increases the structural similarity between the color and

confocal images by exploiting the characteristics in intensity relationships between the

RGB color channels and detecting structures of interest. Compared to the original

80
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multi-modal microscopic images, the structural similarity is a lot higher in the

microscopic images after being processed by the proposed DSS technique.

The rest of the chapter is outlined as follows. In Section 4.2, structures of interest

in color and confocal images are identified. Section 4.3 discusses the low structural

similarity between color and confocal images; it also points out the reasons for this

and analyzes its significance to image registration. In Section 4.4, we will describe our

proposed DSS. Section 4.5 illustrates the significance of a critical parameter in DSS,

while Section 4.6 proposes a way of adaptively selecting the parameter. In Section

4.7, we will demonstrate and discuss our experimental results. Finally, the chapter is

summarized in Section 4.8.

4.2 Structures of Interest in Multi-modal Microscopic Images

In this section, we will identify structures of interest in multi-modal microscopic

images. Due to different characteristics, structures of interest in color and confocal

images are analyzed in different ways. Given a color or confocal image, there are

structures of interest and structures of no interest. For the referencing purpose,

structures of interest and structures of no interest are called SOI and non-SOI

respectively.

4.2.1 Structures of Interest in Color Images

Figure 4.1 shows a pair of color and confocal images. Each of the two images is

part of a tissue section. Brown and blue structures in the color image as well as

green structures in the confocal image represent cells in the tissue [81]. In the color

image shown in Figure 4.1(a), Brown Structures should be appropriately detected

as SOIs, whereas the blue structures and background pixels should be eliminated.

By doing so, the detected structures in the color image will correspond to SOIs

in the confocal image shown in Figure 4.1(b). Observing the color image shown

in Figure 4.1(a) closely, another group of image structures exist to correspond to

structures in the confocal image. We call these structures Brown/Blue Overlapped

Structures, as illustrated in Figure 4.1(a). Specifically, Brown/Blue Overlapped Structures
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(a) SOIs in Color Image (b) Confocal Image

Figure 4.1: Structures of Interest in a Color Image

refer to those pixels where their intensities at the blue channel are slightly higher than

their intensities at the red channel. These structures are generally enclosed by brown

structures and their counterparts in the confocal image are SOIs. Thus, our aim is to

detect both Brown Structures and Brown/Blue Overlapped Structures in the color image.

4.2.2 Structures of Interest in Confocal Images

In the confocal image shown in Figure 4.1(b), image contents are a lot simpler

as compared to the corresponding color image. The only issue is to eliminate

background pixels as we believe these pixels are not useful in feature description

and matching for registration purposes. In addition to confocal images such as

Figure 4.1(b), the test data includes confocal images with different characteristics

such as the one shown in Figure 4.2(b). Figure 4.1(b) and Figure 4.2(b) represent two
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(a) Color (b) Confocal

Figure 4.2: An Example of Multi-modal Microscopic Images

categories of confocal images, where image information only lies at the green channel

and red channel respectively.

4.3 Low Structural Similarity in Multi-modal Microscopic

Images

This section describes the low structural similarity in multi-modal microscopic

images. First, low structural similarity is illustrated through an example of

multi-modal microscopic images. Next, the root of low structural similarities is

pointed out. Thirdly, we will analyze how a low structural similarity affects the

registration process.

4.3.1 Low Structural Similarity

A pair of multi-modal microscopic images is shown in Figure 4.3(a) and (b). Visually,

the structural similarity is very low between the two images. Due to different staining

and capturing techniques in the two images [42,85], it is known that brown structures

in the color image should correspond to green structures in the confocal image.

Moreover, the color image contains some blue structures, but these structures do not

appear in the confocal image.
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(a) Color (b) Confocal

(c) Color (d) Confocal

Figure 4.3: Illustrating Low Structural Similarity in Multi-modal Microscopic Images
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In Figure 4.3(a) and (b), the low structural similarity is illustrated by highlighting

a few corresponding regions in the color and confocal images. The three regions

1, 2 and 3 in the color image correspond to regions a, b and c in the confocal

image, respectively. It can be clearly seen that each of the three regions in the color

image contains a large amount of image information. In contrast, there is much less

information in each of corresponding regions in the confocal image. Figure 4.3(c)

and (d) show the keypoints within the highlighted regions, where the keypoints are

detected using [19]. In the color image, the number of keypoints within regions a, b

and c are 200, 171 and 300, respectively. In striking contrast, the number of keypoints

within regions 1, 2 and 3 in the confocal image are 0, 12 and 24. The comparison

between the number of keypoints at corresponding regions also illustrates a low

structural similarity between the two images.

4.3.2 What Causes Low Structural Similarity?

The two images shown in Figure 4.3(a) and (b) are captured by a light microscope

and a confocal microscope respectively. For the referencing purpose, images captured

using a light microscope and a confocal microscope are called color and confocal

images respectively. The terms, color and confocal, are used for microscopic image

pairs in the entire thesis. The low structural similarity appearing in the images such

as Figure 4.3(a) and (b) is caused by different staining techniques which are used in

two types of microscopes.

The low structural similarity in a pair of color and confocal images is caused

by differences in light filtering and staining which are used for the two types of

microscopes. In a light microscope, an entire specimen is exposed to visible light,

while in a confocal microscope only a single point is illuminated at a time to exclude

unwanted scattering of light [81, 82]. Consequently, different types of signals are

mixed in a color image, while these signals are discriminated in a confocal image.

Staining is a technique used to enable better visualization of cells in the acquisition

of microscopic images [107]. Specifically, a staining pattern in our application is

generated by binding antibodies to molecules of different colors that are present

on certain cells. To generate two images like the ones shown in Figure 4.3(a) and
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(b), one tissue is used and stained with two different antibodies. The antibodies

in Figure 4.3 (a) are visible under the range within the visible color spectrum. By

comparison, in Figure 4.3 (b) the antibodies are only visible under the wavelength

range within the laser spectrum. Moreover, another reason leading to partially similar

structures is that different types of antibodies present different sensitivities of the

binding to molecules. Therefore, blue portions in Figure 4.3 (a) are clear but their

corresponding portions in Figure 4.3 (b) are not, leading to partially similar structures

between the two images.

4.3.3 Significance of Low Structural Similarity to Image Registration

Intuitively, the lower the structural similarity between two images is, the more

challenging the registration process will be. We will analyze the significance of the

low structural similarity to image registration from the following two aspects: the

negative impact of non-SOIs on feature matching and descriptor distances between

corresponding keypoints.

First, we look into how non-SOIs in a color image have a negative impact on the

stage of feature matching. As shown in Figure 4.3(a) and (b), the color image contains

a great deal of non-SOIs which do not appear in the corresponding confocal image.

Let us first denote the keypoints in the confocal image as

Pr = {P1
r ,P

2
r , . . . PNr

r }. (4.1)

In the color image, structures are divided into two categories: SOIs and non-SOIs,

according to whether or not there are corresponding structures in the confocal image.

In the color image, the keypoints which fall into SOIs and non-SOIs are denoted as

Pt1 = {P1
t1,P

2
t1, . . . PNt1

t1 } (4.2)

and

Pt2 = {P1
t2,P

2
t2, . . . PNt2

t2 } (4.3)

respectively. For a keypoint Pi
r in the confocal image, its true match in the color image

should come from Pt1 as Pt1 represents the set of keypoints which are detected in SOIs.



§4.3 Low Structural Similarity in Multi-modal Microscopic Images 87

The true match of Pi
r is denoted as P j

t1. However, the true match Pi
r 7→ P j

t1 might be

hindered due to keypoints from Pt2 in two different scenarios as follows. First, there

may exist a keypoint, P j
t2, which is the closest neighbor to Pi

r, but P j
t2 is detected from

non-SOIs. Second, P j
t1 is the closest neighbor to Pi

r, but a keypoint, Pk
t2, from non-SOIs

is visually similar to P j
t1. Consequently, P j

t1 is not sufficiently distinctive so that P j
t1 is

not matched to Pi
r.

(a) (b) (c)

Figure 4.4: An Example of Non-overlapping

(a) Color (b) Confocal

Figure 4.5: An Example of Low Structural Similarity at Corresponding Keypoints

It is noticeable that the aforementioned non-SOIs should be differentiated from

the non-overlapping issue in image registration. In registering a pair of color and

confocal images, there exist non-SOIs even if two entire images are overlapping, such
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as the two images shown in Figure 4.1. Figure 4.4 illustrates a different scenario from

non-SOIs existing in color and confocal images. In Figure 4.4, image (b) is the right

half of image (c). The image pair (a) and (c) in Figure 4.4 are overlapping, however

there is no non-SOI between the two images.

Second, descriptor distances of corresponding keypoints can be affected by a low

structural similarity between the color and confocal images. Figure 4.5 illustrates an

example of low structural similarity between two corresponding keypoints. Let DA

and DB denote the descriptors built in the two regions which are marked in Figure 4.5.

Note that the sizes of the two regions marked in Figure 4.5 are proportional to the

actual scale difference between the two images in order to eliminate the impact of the

accuracy of scale estimation. Given corresponding keypoints with a low structural

similarity, different amounts of image contents exist, as clearly shown in Figure 4.5.

From the perspective of image registration, the image contents in the two regions

that are not visually corresponding are regarded as noises. Hence, the corresponding

descriptors built within the two regions will not be close no matter how discriminative

the local descriptor itself is. A large descriptor distance between DA and DB increases

the likelihood of rejecting a true match in the following two possibilities: 1) DB is not

the closest neighbor to DA; 2) DB is the closest neighbor to DA, but DB is insufficiently

discriminative from all the other descriptors. Consequently, the accuracy of keypoint

matches is unlikely to be high, leading to a poor registration performance.

4.4 Detector of Structural Similarity (DSS)

Following the discussion on SOIs in Section 4.2, we will describe the proposed

DSS technique for increasing the structural similarity between color and confocal

microscopic images. In color images, characteristics in intensity relationships between

RGB color channels are utilized to detect Brown Structures and Brown/Blue Overlapped

Structures which have been identified in Section 4.2.1. In confocal images, a particular

color channel is extracted as SOIs which correspond to the ones in color images. An

additional operation for confocal images is to eliminate the pixels with very weak

intensities. Finally, background noise is eliminated in both color images and confocal

images.
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4.4.1 DSS in Color Images

To detect the two categories of structures in color images, i. e. Brown Structures and

Brown/Blue Overlapped Structures as illustrated in Figure 4.1(a), we exploit the intensity

relationships between the RGB channels. By analyzing the image characteristics of

the Brown Structures, we found that the intensity at the red channel is highest of the

three channels and we call this characteristic Intensity Relationship. To accurately detect

the structures as required, we have also taken into account the Intensity Separation

between the three channels. The Intensity Separation refers to how separate two color

channels are in intensity values. The image pixels which have very similar intensity

values in all three color channels should not be extracted as such pixels appear to be

gray in the color images. With the two characteristics identified, the Brown Structures

are formulated as

(IG ≤ k× IR
⋂

IB < IR)
⋃

(IB ≤ k× IR
⋂

IG < IR), (4.4)

where IR, IG and IB denote the intensity values at the red, green and blue channels

respectively, k is a parameter for imposing constraints on the Intensity Separation

between the RGB channels.

As for the Brown/Blue Overlapped Structures, the characteristic Intensity Relationship

is that intensities at blue channel are slightly higher than intensities at red channel.

Furthermore, the characteristic Intensity Separation used for the Brown Structures is also

applicable to the Brown/Blue Overlapped Structures. Likewise, this group of structures

is formulated as

IG ≤ k× IR
⋂

IR ≤ IB. (4.5)

By observing Equations 4.4 and 4.5, the two equations can be merged into

IG ≤ k× IR
⋃

(IB ≤ k× IR
⋂

IG < IR). (4.6)

Thus, Equation 4.6 is the criterion which is used to judge whether a pixel belongs to

the Brown Structures or the Brown/Blue Overlapped Structures in color images. Note

that k in Equation 4.6 is of great importance in detecting SOIs of color images. The
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significance of k and how to select an appropriate k value will be elaborated in Sections

4.5 and 4.6.

4.4.2 DSS in Confocal Images

Unlike the complex visual characteristics in color images, SOIs in a confocal image

are only at one color channel, green or red, as stated in Section 4.2.2. Given a confocal

image such as the ones shown in Figure 4.1 (b) and Figure 4.2 (b), there exists a number

of pixels whose intensities are very weak. For the purpose of image registration, those

pixels with relatively strong intensities will correspond to SOIs in the corresponding

color image. The pixels with strong intensities are regarded as the foreground and

those with weak intensities as the background. The objective is to segment foreground

and background by automatically determining an intensity threshold. To achieve this,

we use Otsu’s thresholding [79].

4.4.3 Eliminating Background Noise

After performing the operations stated in Sections 4.4.1 and 4.4.2, we found in

the transformed images that there exists some background noise, as shown in

Figure 4.6 (a) and (c), primarily in the color image. For the purpose of image

registration, it is unlikely that the background noise contains sufficient and useful

information for building a local descriptor. Thus, we believe that eliminating

background noise can further increase the structural similarity between color and

confocal images. This is done by morphologically opening the corresponding binary

images [1]. In our implementation image regions containing fewer than 16 pixels are

eliminated. The images transformed after eliminating background noise are shown in

Figure 4.6 (b) and (d).

4.5 Significance of k in DSS

We will analyze the significance of k in DSS from the following two aspects. First,

different k values can make a big difference in the final registration performance.

Second, color images with different characteristics can have different optimal k values.
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(a) Color (b) Color

(c) Confocal (d) Confocal

Figure 4.6: Color and Confocal Images Transformed by DSS. (a) and (c): before eliminating
background noise, (b) and (d): after eliminating background noise.
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4.5.1 Impact of k on Registration Performance

In Section 4.4.1, k is used as a parameter for imposing constraints on the Intensity

Separation between the RGB channels. The parameter k is critical in Equation 4.6 for

detecting SOIs in color images, thereby determining the structural similarity in a pair

of color and confocal images. Let us use kopt to denote the optimal k value which

can detect the most appropriate amount of SOIs in a color image. If a tuned k is

far from kopt , much higher or lower, the structural similarity between the color and

confocal images is not optimally detected. On the one hand, a k value that is too high

preserves many gray pixels in the background which belong to non-SOIs (Scenario

1). Compared with the confocal image, the color image contains redundant image

structures. On the other hand, a k value that is too low eliminates image structures

which belong to SOIs (Scenario 2). Unexpectedly, the confocal image contains more

structures than the color image. In both of the two scenarios, the structural similarity

is low. As analyzed in Section 4.3.3, the low structural similarity undermines the

registration performance.

Table 4.1: Matching Accuracies Using MOG-IS-SIFT with Different k Values
k Total True Accuracy (%)

0.89 7 4 57.14
0.99 3 0 0.00
0.80 3 1 33.33

We now give an example to illustrate the impact of different k values on the

registration performance. Figure 4.7 shows color images in which SOIs have

been detected using three different k values: 0.99, 0.89 and 0.80. By comparison,

Figure 4.7 (b) shows much higher structural similarity with the corresponding

confocal image in Figure 4.6 (d) as compared to Figure 4.7 (a)and (c). Table 4.1

compares the matching accuracies of MOG-IS-SIFT when using the three different

k values. This example clearly illustrates to what extent different k values can impact

the registration performance.
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(a) k=0.99 (b) k=0.89 (c) k=0.80

Figure 4.7: Color Images Processed by Different k Values

(a) (b)

Figure 4.8: Two Color Microscopic Images with Different Characteristics
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4.5.2 Color Images with Different Characteristics can have Different

Optimal k

The parameter k is used in Equation 4.6 for imposing constraints on Intensity Separation

between the RGB channels, which is clearly associated with image characteristics.

This can be illustrated through an example shown in Figure 4.8. The two color

images in Figure 4.8 present different image characteristics as the color intensities are

different. Consequently, the Intensity Separation between the RGB channels defined

in Equation 4.6 between Figure 4.8(a) and Figure 4.8(b) will be different, leading to

different optimal k values. The optimal k values for the two images in Figure 4.8 are

0.89 and 0.74 respectively, when using MOG-IS-SIFT as the registration technique.

Details about optimal k values for different color images can be found in Section 4.7.

Thus, the selection of k must be dependent on image characteristics which might vary

across different color images in our test data.

4.6 Adaptively Selecting k in DSS

As stated in Section 4.5, the parameter k is of great importance in DSS for detecting

SOIs in color images. This section aims to select an appropriate k for detecting

SOIs in a color image, leading to a high structural similarity between the color and

confocal images. First, we will illustrate the transformations of a color image when

k is equivalent to 1. Second, we will analyze how SOIs and non-SOIs are affected by

tuning k, and therefore derive the criteria for adaptively selecting k.

4.6.1 Transformations of Color Images When k=1 in DSS

We now review Equation 4.6 that is for detecting SOIs in color images. If k is

equivalent to 1, Equation 4.6 can be expressed as

IG ≤ IR
⋃

(IB ≤ IR
⋂

IG < IR). (4.7)

By doing this, only the first image characteristic of the two described in Section 4.4.1,

Intensity Relationship, is applied. Consequently, Equation 4.7 removes the blue
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(a) Original Image (b) Intermediate Image

Figure 4.9: Original and Intermediate Images

structures and preserves the brown structures as well as gray pixels. As shown in

Figure 4.9 (b), this image is called Intermediate Image.

4.6.2 Tuning k and Deriving Criteria for Selecting k

Once an Intermediate Image is identified as described in Section 4.6.1, we can start to

look into image transformations while tuning k using Equation 4.6. As k is decreased

from the value 1 with a fixed interval (0.01 is used in our implementation), a certain

amount of background pixels will be eliminated from the Intermediate Image and these
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(a) Preservation Image (RGB) (b) Elimination Image (RGB)

(c) Preservation Image (grayscale) (d) Elimination Image (grayscale)

Figure 4.10: Preservation and Elimination Images
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pixels make up a new image, called Elimination Image as shown in Figure 4.10 (b).

Accordingly, all the pixels preserved comprise Figure 4.10 (a), called Preservation

Image. Apparently, the Preservation Image and the Elimination Image constitute an

Intermediate Image which is shown in Figure 4.9 (b). Ideally, our objective is to find

the optimal k, kopt , so that the Preservation Image contains the biggest amount of SOIs

and the Elimination Image contains the biggest amount of non-SOIs.

Figure 4.11: Histograms of Preservation Image and Elimination Image

In order to find an appropriate k, we investigate the relationship between the

Preservation Image and Elimination Image. Based on Figure 4.10 (a) and (b), their

grayscale images are obtained, as shown in Figure 4.10 (c) and (d). While tuning k, we

track the changes that occur in the histograms derived from the grayscale Preservation

Image and Elimination Image. Figure 4.11 shows an example of histograms of the

grayscale Preservation Image and Elimination Image, where a tested k is used. Peaks

1 and 2 have been highlighted in Figure 4.11 for the Preservation Image and Elimination

Image respectively.

Based on our analysis, if a tuned k is around kopt , the Preservation Image contains

dominant SOIs while the Elimination Image contains dominant non-SOIs. We are

interested in seeing how SOIs and non-SOIs are affected when k is tuned. In particular,

if k is tuned slightly around kopt , this will change the pixels around the edges of SOIs
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to non-SOIs, or non-SOIs to SOIs. One important consideration is that dominant SOIs

and dominant non-SOIs should remain stable. Accordingly, the histogram peaks of

Preservation Image and Elimination Image, Peaks 1 and 2, are stable. Based on this

consideration, we derive the following two criteria for adaptively selecting k.

i. Criterion 1: Stability of Histogram Peaks in Intensity

Around kopt , there must exist a stage range between Peaks 1 and 2 where their

intensity separation remains unchanged. Specifically, if the absolute difference

between the intensities of the two peaks remains constant for at least two adjacent

k values, i.e.

∃|Ip1(k)− Ip2(k)|= |Ip1(k−δ)− Ip2(k−δ)| (4.8)

where Ip1(k) and Ip2(k) denote the intensity of Peaks 1 and 2 respectively for a

particular tuned k, and δ is the fixed interval while tuning k.

ii. Criterion 2: Stability of Histogram Peaks in Number of Pixels

The stability between Peaks 1 and 2 can also be reflected by their corresponding

number of pixels. For two adjacent k values, from k to k−δ, the ratio between the

numbers of pixels at the two peaks should remain stable. Unlike the intensity of

the two peaks discussed in Criterion 1, a slight change in the number of pixels for

Peaks 1 and 2 can be allowed. Thus, from k to k−δ, the ratio difference between

the numbers of pixels at the two peaks is approaching to zero, i.e.

RD(k,k−δ) =
Pp1(k)
Pp2(k)

−
Pp1(k−δ)

Pp2(k−δ)
≈ 0 (4.9)

where Pp1(k) and Pp2(k) indicate the number of pixels at the two peaks for a

particular tuned k. The closer to zero the absolute value derived from the left

of ≈ in Equation 4.9 is, the better the tuned k is.

Another consideration is that our focus is on SOIs. However, we have found

that a large amount of non-SOIs may be preserved in Preservation Image when k is

above and far away from kopt . To avoid this kind of scenarios, the intensity range for

the color brown, between rosy brown and dark brown, is used to narrow down the
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range of tuned k values. This criterion is called Appropriate Intensity Range for SOIs

(Criterion 3).

In Criterion 1, a stable range of intensity separation between the two peaks is

discussed. But we have found that there may exist multiple such stable ranges. Based

on our analysis, there are two possible reasons which account for this phenomenon.

One reason is that Peak 1 represents non-SOI pixels when many non-SOIs are

preserved in the Preservation Image in a certain range of tuned k values. The second

reason is the potential existence of two categories of SOIs, i. e. Brown Structures and

Brown/Blue Overlapped Structures in color images, as described in Section 4.2.1.

After deriving the three criteria, various combinations can be applied in DSS for

adaptively selecting the parameter k. In our experiments, we have tested the following

four combinations:

• DSS1

Only Criterion 2 is used. As formulated in Equation 4.9, a set of RD(k,k− δ)

values are derived as k is tuned. As k is decreased from the value 1, we

select the first k value which causes a dramatic change in RD(k,k− δ) values.

More specifically, k-means [59] is used to automatically determine where such a

dramatic change is located.

• DSS2

Criteria 1 and 2 are used. In this case, the stability between the two histogram

peaks is assured by both the intensity and number of pixels. Specifically, after

identifying a k value determined by DSS1, k is further tuned until the first stable

range of intensity separation occurs between the two peaks. The first tuned k

value in this stable range is selected.

• DSS3

All three criteria are used. First, Criterion 3 is used to narrow down the range of

tuned k values Second, k is further tuned until the first stable range of intensity

separation occurs between the two peaks (Criterion 1). Third, we select the k

value which leads to the smallest absolute value of ratio difference between the

number of pixels at the two peaks.
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• DSS4

Similar to DSS3, all the three criteria are used. The difference from DSS3 is that

the potential multiple ranges of intensity separation between the two peaks are

taken into consideration.

4.7 Performance Study

We evaluate the proposed DSS using two multi-modal image registration techniques:

MOG-IS-SIFT which we have proposed in Chapter 3 and PIIFD [17]. The two

registration techniques, MOG-IS-SIFT and PIIFD, are applied to register both original

multi-modal microscopic images and these images after DSS is performed. Each of the

four combinations of k-selection criteria stated in Section 4.6.2 can be used together

with MOG-IS-SIFT and PIIFD. Thus, performance comparisons will be carried out

between MOG-IS-SIFT and DSSi-MOG-IS-SIFT, and between PIIFD and DSSi-PIIFD,

where 1≤ i≤ 4. With regard to evaluation criterion, we use matching accuracy which

has been defined in Section 3.4.

4.7.1 DSS with MOG-IS-SIFT

Table 4.2 presents matching accuracies and corresponding k values when

five registration techniques, MOG-IS-SIFT, DSS1-MOG-IS-SIFT, DSS2-MOG-IS-SIFT,

DSS3-MOG-IS-SIFT and DSS4-MOG-IS-SIFT, are used to register the 16 multi-modal

microscopic image pairs. In some cases, very few matches have been determined,

such as two, one or even zero. As pointed out in Section 3.4.4 of Chapter 3, at least

three matches are needed for estimating a transformation between two images. Thus,

a matching accuracy in cases where the number of matches is smaller than three is

meaningless for the registration purpose. An example of this is registering pair 6

using MOG-IS-SIFT, where all of the two matches are true, leading to a 100% matching

accuracy.

To better illustrate the matching results shown in Table 4.2, we use× in Figure 4.12

to represent the matching accuracies for cases in which the number of matches



§4.7 Performance Study 101

is smaller than three. Accordingly, matching accuracies for the 16 multi-modal

microscopic image pairs are presented in Figure 4.12. For pairs 2-5, the proposed

techniques DSSi-MOG-IS-SIFT (1 ≤ i ≤ 4) consistently outperform MOG-IS-SIFT. For

pairs 8-10, DSS3-MOG-IS-SIFT

Table 4.2: MOG-IS-SIFT vs DSSi-MOG-IS-SIFT in Matching Accuracy

ID MOG-IS-SIFT
DSS1-MOG- DSS2-MOG- DSS3-MOG- DSS4-MOG-

IS-SIFT IS-SIFT IS-SIFT IS-SIFT

1 2/3=66.67%
4/17=23.53% 3/10=30.00% 3/10=30.00% 3/10=30.00%

(0.97) (0.96) (0.96) (0.96,0.93,0.88)

2 1/5=20.00%
1/4=25.00% 4/7=57.14% 4/7=57.14% 4/7=57.14%

(0.96) (0.89) (0.89) (0.89)

3 0/7=0.00%
35/57=61.40% 6/13=46.15% 3/9=33.33% 3/9=33.33%

(0.97) (0.92) (0.91) (0.91,0.85,0.79,0.71)

4 0/5=0.00%
1/12=8.33% 4/17=23.53% 2/10=20.00% 2/10=20.00%

(0.97) (0.93) (0.89) (0.89)

5 0/5=0.00%
19/78=24.36% 26/75=34.67% 27/65=41.54% 27/65=41.54%

(0.97) (0.93) (0.92) (0.92,0.87,0.78)

6 2/2=100.00%
0/0=0.00% 0/0=0.00% 0/0=0.00% 0/0=0.00%

(0.96) (0.92) (0.92) (0.92,0.89,0.88,0.80)

7 0/6=0.00%
0/0=0.00% 1/1=100.00% 0/1=0.00% 0/1=0.00%

(0.96) (0.93) (0.92) (0.92,0.88)

8 2/5=40.00%
7/23=30.43% 7/23=30.43% 23/42=54.76% 14/24=58.33%

(0.93) (0.93) (0.88) (0.88,0.87,0.74)

9 4/10=40.00%
7/21=33.33% 11/20=55.00% 2/4=50.00% 2/4=50.00%

(0.93) (0.91) (0.75) (0.75,0.72)

10 0/10=0.00%
0/7=0.00% 0/13=0.00% 0/16=0.00% 2/16=12.50%

(0.92) (0.88) (0.87) (0.87,0.86,0.78,0.73)

11 0/1=0.00%
0/1=0.00% 0/3=0.00% 0/3=0.00% 0/3=0.00%

(0.89) (0.83) (0.83) (0.83,0.76)

12 0/1=0.00%
0/1=0.00% 0/1=0.00% 0/1=0.00% 0/1=0.00%

(0.96) (0.96) (0.88) (0.88)

13 0/0=0.00%
0/4=0.00% 0/4=0.00% 0/1=0.00% 0/1=0.00%

(0.96) (0.96) (0.89) (0.89)

14 0/6=0.00%
0/8=0.00% 0/8=0.00% 0/14=0.00% 0/14=0.00%

(0.97) (0.97) (0.91) (0.91)

15 0/0=0.00%
1/1=100.00% 1/1=100.00% 1/1=100.00% 1/1=100.00%

(0.91) (0.91) (0.91) (0.91)

16 0/1=0.00%
0/3=0.00% 0/6=0.00% 0/4=0.00% 0/5=0.00%

(0.97) (0.91) (0.90) (0.85)
a For i in DSSi-MOG-IS-SIFT, 1≤ i≤ 4.
b A matching accuracy in the DSS4-MOG-IS-SIFT column is obtained using the

underlined k value.
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Figure 4.12: Comparisons in Matching Accuracy between MOG-IS-SIFT and
DSSi-MOG-IS-SIFT. In DSSi-MOG-IS-SIFT, 1 ≤ i ≤ 4. A case where there is no bar emerging
indicates that the matching accuracy is 0.00%.

or DSS4-MOG-IS-SIFT achieves higher matching accuracies than MOG-IS-SIFT. In

registering pairs 6, 7 and 11-16, the number of matches is smaller than three or

the matching accuracy is 0.00% for all the five registration techniques. It is only in

registering pair 1 that MOG-IS-SIFT is able to achieve a higher matching accuracy

than the other four proposed techniques. On average, the matching accuracies of

MOG-IS-SIFT and DSSi-MOG-IS-SIFT for all the 16 pairs are 10.42%, 12.90%, 17.31%,

17.92% and 18.93%, respectively. Note that, in averaging matching accuracies, 0.00%

is used for the matching accuracy of a case where the number of matches is smaller

than three due to its meaninglessness for registration.

Also, a matching example is given in Figure 4.13 for registering microscopic pair 2.

The matching shown in Figure 4.13 applies to DSS2-MOG-IS-SIFT, DSS3-MOG-IS-SIFT

and DSS4-MOG-IS-SIFT as the selected k values for the three registration techniques

are equivalent. In registering this image pair, an improvement of 37.14% in matching

accuracy is achieved from MOG-IS-SIFT to DSS j-MOG-IS-SIFT, where 2≤ j ≤ 4.
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(a) MOG-IS-SIFT (1/5=20.00%)

(b) DSS j-MOG-IS-SIFT (4/7=57.14%, 2≤ j ≤ 4)

Figure 4.13: A Matching Example of Evaluating DSS by MOG-IS-SIFT
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4.7.2 DSS with PIIFD

Table 4.3: PIIFD vs DSSi-PIIFD in Matching Accuracy

ID PIIFD
DSS1- DSS2- DSS3- DSS4-
PIIFD PIIFD PIIFD PIIFD

1 1/1=100.00%
2/9=22.22% 2/11=18.18% 2/11=18.18% 7/16=43.75%

(0.97) (0.96) (0.96) (0.96,0.93,0.88)

2 0/1=0.00%
7/21=33.33% 10/24=41.67% 10/24=41.67% 10/24=41.67%

(0.96) (0.89) (0.89) (0.89)

3 0/0=0.00%
17/44=38.64% 11/33=33.33% 7/32=21.88% 3/9=33.33%

(0.97) (0.92) (0.91) (0.91,0.85,0.79,0.71)

4 0/0=0.00%
2/19=10.53% 2/19=10.53% 5/19=26.32% 5/19=26.32%

(0.97) (0.93) (0.89) (0.89)

5 0/0=0.00%
38/61=62.30% 41/68=60.29% 42/68=61.76% 42/68=61.76%

(0.97) (0.93) (0.92) (0.92,0.87,0.78)

6 0/7=0.00%
5/14=35.71% 6/14=42.86% 6/14=42.86% 6/14=42.86%

(0.96) (0.92) (0.92) (0.92,0.89,0.88,0.80)

7 0/8=0.00%
0/11=0.00% 0/7=0.00% 0/9=0.00% 0/9=0.00%

(0.96) (0.93) (0.92) (0.92,0.88)

8 0/0=0.00%
13/26=50.00% 13/26=50.00% 20/30=66.67% 16/22=72.73%

(0.93) (0.93) (0.88) (0.88,0.87,0.74)

9 0/0=0.00%
0/9=0.00% 1/11=9.09% 3/14=21.43% 3/14=21.43%

(0.93) (0.91) (0.75) (0.75,0.72)

10 0/5=0.00%
6/13=46.15% 10/21=47.62% 12/21=57.14% 14/22=63.64%

(0.92) (0.88) (0.87) (0.87,0.86,0.78,0.73)

11 0/12=0.00%
1/16=6.50% 2/13=15.38% 2/13=15.38% 3/10=30.00%

(0.89) (0.83) (0.83) (0.83,0.76)

12 0/0=0.00%
0/7=0.00% 0/7=0.00% 0/10=0.00% 0/10=0.00%

(0.96) (0.96) (0.88) (0.88)

13 0/1=0.00%
0/8=0.00% 0/8=0.00% 0/6=0.00% 0/6=0.00%

(0.96) (0.96) (0.89) (0.89)

14 0/6=0.00%
0/16=0.00% 0/16=0.00% 0/18=0.00% 0/18=0.00%

(0.97) (0.97) (0.91) (0.91)

15 0/0=0.00%
0/4=0.00% 0/4=0.00% 0/4=0.00% 0/4=0.00%

(0.91) (0.91) (0.91) (0.91)

16 0/0=0.00%
1/10=10.00% 0/14=0.00% 0/13=0.00% 0/13=0.00%

(0.97) (0.91) (0.90) (0.85)
a For i in DSSi-PIIFD, 1≤ i≤ 4.
b A matching accuracy in the DSS4-PIIFD column is obtained using the underlined k

value.

Similar to showing results based on MOG-IS-SIFT in Section 4.7.1, Table 4.3 and

Figure 4.14 present the matching results when using PIIFD, DSS1-PIIFD, DSS2-PIIFD,

DSS3-PIIFD and DSS4-PIIFD to register the 16 multi-modal microscopic image pairs.
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It can be seen in Table 4.3 that PIIFD performs very poorly in registering these

image pairs. With the analysis of the minimum number of matches in Section

4.7.1, 1/1=100.00% for pair 1 is meaningless for the registration purpose. To be

specific, all the four registration techniques, DSS1-PIIFD, DSS2-PIIFD, DSS3-PIIFD

and DSS4-PIIFD, substantially improve PIIFD in matching accuracy in registering

pairs 1-6, 8, 10 and 11. For pair 9, there is also a big improvement from PIIFD to

DSS2-PIIFD, DSS3-PIIFD and DSS4-PIIFD, whereas DSS1-PIIFD has achieved a 10.00%

improvement over PIIFD for pair 16. In registering pairs 7 and 12-15, none of the

five registration techniques can determine a true match. On average, DSS1-PIIFD,

DSS2-PIIFD, DSS3-PIIFD and DSS4-PIIFD improve PIIFD in matching accuracy by

19.70%, 20.56%, 23.33% and 27.34%, respectively. Figure 4.15 shows the keypoint

matches using PIIFD and DSS j-PIIFD (2 ≤ j ≤ 4) to register pair 2. It is clear that

the proposed DSS has made a significant improvement based on PIIFD.

Figure 4.14: Comparisons in Matching Accuracy between PIIFD and DSSi-PIIFD. In
DSSi-PIIFD, 1≤ i≤ 4.
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(a) PIIFD (0/1=0.00%)

(b) DSS j-PIIFD (10/24=41.67%, 2≤ j ≤ 4)

Figure 4.15: A Matching Example of Evaluating DSS by PIIFD
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4.7.3 Discussions

(a) Color (b) Confocal

Figure 4.16: Color and Confocal Images after DSS is Performed. k = 0.89, which is identical
for DSS2, DSS3 and DSS4.

In Sections 4.7.1 and 4.7.2, we have evaluated the performance of DSS using

MOG-IS-SIFT and PIIFD respectively. Overall, the matching accuracy has been

significantly improved after applying DSS on the original multi-modal microscopic

images. However, we need to highlight two issues from the results shown in

Sections 4.7.1 and 4.7.2, as follows. First, even after applying DSS, there are eight

pairs for MOG-IS-SIFT and five pairs for PIIFD where no true match has been
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obtained. Second, the overall matching accuracy is still low. On average, the matching

accuracies achieved by DSS4-MOG-IS-SIFT and DSS4-PIIFD are 18.93% and 27.34%

respectively, which are too low to effectively align the color and confocal images.

However, the structural similarity for each pair of color and confocal images has

been significantly increased as compared to the original image pairs. For instance,

Figure 4.16 shows the color and confocal images after DSS is performed, which can

be compared with the original image pair shown in Figure 4.3. With the detected

structural similarity, we will further explore ways in Chapter 5 to improve the

registration performance on these images.

4.8 Summary

In registering multi-modal microscopic images, a big issue is that the structural

similarity is low between a color image and the corresponding confocal image. In this

chapter we have analyzed the significance of structural similarity in registering these

images. In order to improve the registration performance, we have proposed the DSS

technique to detect the structural similarity between color and confocal microscopic

images. After performing DSS in the original color and confocal microscopic images,

the structural similarities in these images have been significantly increased, thereby

improving the registration performance. Although we have focused on increasing the

structural similarities between color and confocal images, the proposed methodology

in this chapter can be used to increase structural similarity in other types of medical

images. But we have found that there still exist large content differences between

color and confocal microscopic images which have been processed by DSS and that

the overall registration performance is far from satisfactory. In Chapter 5, we will

continue working on these color and confocal microscopic images to further improve

registration accuracy.



Chapter 5

A Novel Multi-modal Image
Registration Technique based on
Corners

5.1 Introduction

In Chapter 4, we have proposed a Detector of Structural Similarity (DSS) technique

to increase the structural similarity between color and confocal images. Figure 5.1

shows an example of the images before and after applying DSS. It is clear that,

Figure 5.1 (c) and (d) display a much higher structural similarity as compared to

Figure 5.1 (a) and (b). However in many cases, even after processing the color and

confocal images with DSS, the processed images might remain too challenging for

existing image registration techniques or our technique proposed in Chapter 3 to

achieve a satisfactory performance. This has been shown in the experimental results in

Section 4.7. Thus in this chapter we continue developing a more robust multi-modal

image registration technique which can more accurately register such images with

such difference in their contents.

By closely looking into color and confocal images such as Figure 5.1 (c) and (d), we

have found that content differences between corresponding parts are still large. Due

to the large content differences, it would be very challenging to effectively register

these images using registration techniques which are sensitive to intensity or gradient

changes. Moreover, if the scale difference between the color and confocal images is

large, registering these images would be more difficult.

In this chapter, we will propose a multi-modal image registration technique based

on corners, in order to achieve greater robustness to content and scale differences than

109
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(a) Color (b) Confocal

(c) Color (d) Confocal

Figure 5.1: An Example of Original and DSS Color and Confocal Images. (a) and (b): original
images; (c) and (d): images after applying DSS.
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existing techniques such as [17, 45, 49]. In the proposed technique, we will use the

Fast-CPDA corner detector [6] which is based on contours. Fast-CPDA corners are

independent of intensity or gradient changes, leading to greater robustness to content

differences. In addition, it is a big challenge to deal with large scale differences. We

will propose estimating scale difference by making use of geometric relationships

between corner triplets from the reference and target images. It is noted that a corner

triplet is formed by three non-collinear corners. With the estimated scale difference,

the original reference and target images are resized to have similar scales. Thus,

the proposed technique is more robust to scale differences. Our main contributions

include the following. First, the curvature similarity between corners is for the first

time explored for the purpose of multi-modal image registration. Second, a new way

of estimating scale difference in an image pair is proposed. Moreover, a novel corner

descriptor is proposed to represent edges in the neighborhood of corners.

The rest of this chapter is structured as follows. In Section 5.2, we will illustrate

content differences in image pairs. Section 5.3 discusses the significance of scale

invariance to image registration and how the PIIFD descriptor is scale invariant. The

robustness of the Fast-CPDA corner detector to content differences is demonstrated in

Section 5.4. In Section 5.5, the proposed registration technique is elaborated, followed

by a performance study in Section 5.6. Finally this chapter is summarized in Section

5.7.

5.2 Content Differences between Images

In the color and confocal images which have been processed by DSS such as

Figure 5.1 (c) and (d), there are still large content differences between corresponding

parts. In this section, we will first analyze an example of corresponding parts

in the color and confocal images. Next, the content differences will be evaluated

by descriptor distances between corresponding keypoints which are detected using

PIIFD [17]. Note that PIIFD uses Harris corners [28] as keypoints for feature

description and matching. For the referencing purpose, the feature points in PIIFD

are called keypoints in this thesis.
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5.2.1 An Example Illustrating Content Differences

Large content differences are illustrated in Figure 5.2, where Figure 5.2 (a) and (b) are

corresponding parts manually extracted from Figure 5.1 (c) and (d).

(a) Color (b) Confocal

Figure 5.2: Illustrating Large Content Differences. A red dot represents a keypoint detected
by PIIFD [17]. A PIIFD descriptor is built in a local region as enclosed by a green square.

Comparing the two images in Figure 5.2 (a) and (b), content differences are

displayed in two aspects. First, the pixels in the confocal image are all spatially close

each other, whereas many pixels in the color image are unconnected. Second, the color

image in Figure 5.2 (a) presents more intensity variations as compared to the confocal

image in Figure 5.2 (b).

5.2.2 A Measure for Evaluating Content Differences

Like the two regions shown in Figure 5.2 (a) and (b), color and confocal images are

visually different. In order to quantitatively observe content differences between

corresponding regions, we tentatively use the distance between descriptors as a

measure and the PIIFD descriptor [17] is used. In describing the local region around

a PIIFD keypoint, 4× 4 = 16 orientation histograms are built. In an orientation

histogram, normalized gradient magnitudes are incremented to be the value of each

orientation bin. Details about building PIIFD descriptors can be found in Section

2.5.1.2 of Chapter 2. Thus, if image contents between two regions are very similar, the

descriptor distance is very small; otherwise, the distance is relatively large. Firstly, a
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PIIFD descriptor in the reference image is denoted as

Di
r = {Di1

r ,D
i2
r , . . . Din

r }, (5.1)

where n is the dimensionality of the descriptor. Likewise, a PIIFD descriptor in the

target image is represented as

Di
t = {Di1

t ,D
i2
t , . . . Din

t }. (5.2)

Then, the Euclidean distance between two PIIFD descriptors, Di
r and Di

t , is calculated

by

d(Di
r,D

i
t) =

√
n

∑
k=1

(Dik
r −Dik

t )2. (5.3)

The smaller d(Di
r,D

i
t) is, the closer the two descriptors are. In other words, a relatively

large d(Di
r,D

i
t) indicates the content differences between corresponding regions are

relatively large. Thus, Equation 5.3 is used to measure the content differences between

the regions of corresponding descriptors. With the distance between two descriptors

defined in Equation 5.3, the average distance between corresponding descriptors in

the reference and target images can be calculated by

d =
1
N

N

∑
i=1

d(Di
r,D

i
t), (5.4)

where N is the number of corresponding descriptors in two images. Thus, the

average distance between corresponding descriptors, d, is used to measure the content

differences between two images.

5.2.3 Statistics on Content Differences

With Equation 5.3, the distance between each pair of corresponding descriptors can

be calculated for an image pair. Figure 5.3 plots the distances of all corresponding

descriptors for the color and confocal images shown in Figure 5.1 (c) and (d). For 33

corresponding descriptors, the average distance between corresponding descriptors,

d, is equal to 0.62. According to the Euclidean distance between two PIIFD descriptors

in Equation 5.3, the average distance is relatively large.
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Figure 5.3: Descriptor Distances between Correspondences for the Color and Confocal Images
Shown in Figure 5.1 (c) and (d)

Figure 5.4: Average Descriptor Distance of Correspondences. The three vertical lines separate
image pairs from the tested four data sets.

In order to compare the content differences between different image pairs, the

average distance between corresponding descriptors, d, is calculated for each of the 40

tested image pairs using Equation 5.4, as shown in Figure 5.4. Regarding which data
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set and imaging category an image pair belongs to, details can be found in Section

3.4.1.2 of Chapter 3. For Data Set 1 (pairs 1-2), d is very small, indicating that the

content differences in the two image pairs are quite small. For Data Set 2 (pairs 3-20),

the d values for 15 pairs out of 18 are below 0.60 and for 10 pairs the values are smaller

than 0.50. For Data Set 3 (pairs 21-24), none of the four image pairs hold a d value

which is below 0.60. For Data Set 4 (pairs 25-40), the d values for all 16 pairs are

larger than 0.50 and only four pairs have d values below 0.60. Overall, the d values

are generally large for image pairs in Data Sets 3 and 4, which indicates the content

difference are relatively large.

5.3 Discussing Scale Invariance

Scale invariance will be discussed in this section. First, we will analyze the

significance of scale invariance to image registration. Next, we will illustrate how

invariant the PIIFD descriptor is to scale differences and its impact on GI-PIIFD.

5.3.1 Significance of Scale Invariance to Image Registration

It is important to achieve scale invariance in registering images as the reference and

target images may contain structures at different scales [54]. For a feature-based

image registration technique such as [19, 56], a scale is estimated and assigned to

each keypoint in a scale-space representation [50]. The scale of a keypoint determines

the size of the local region in which a descriptor is built. Thus, whether the scale

estimation is accurate directly affects the feature description and matching stages.

If the estimated scale is inaccurate, the distance between a pair of corresponding

keypoints is likely to be larger than it should be. Consequently, there will be a high

possibility that this potentially true match is rejected in the matching stage. Due

to an inaccurate scale estimation, the final registration performance is likely to be

undermined.



§5.3 Discussing Scale Invariance 116

(a) (b) (c)

Figure 5.5: Regions for Building PIIFD Descriptors at Different Scales. A red dot in each
sub-figure represents a PIIFD keypoint. Images in (a) and (b) are at similar scales. The scale
difference between (c) and (b) is three times. In (c), the local region in the blue square is used
in building the PIIFD descriptor, and the region within the green square corresponds to the
regions in (a) and (b).

5.3.2 Scale Variance of PIIFD Descriptor

The PIIFD descriptor was proposed in [17] for registering multi-modal retinal images.

The size of a local region for building PIIFD descriptor is fixed at 40 × 40 pixels

because there is a minor scale difference between retinal images tested in [17]. Using

the same setting as [17] for the size of local regions, we have illustrated corresponding

keypoints which are manually extracted from color and confocal images, as shown

in Figure 5.5. Figure 5.5 (c) is three times Figure 5.5 (a) and (b) with respect to

scale difference. The local regions in Figure 5.5 (a) and (c) only partially correspond.

Accordingly, the image structures which are represented in building PIIFD descriptors

are not equivalent.

We now explain how GI-PIIFD [49] is affected by the scale variance of the PIIFD

descriptor as GI-PIIFD is the benchmark multi-modal image registration technique in

our work. As elaborated in Section 2.5.3 of Chapter 2, GI-PIIFD determines initial

mappings of keypoints by selecting a set of closest descriptors, followed by matching
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(a) Color (1X) (b) Confocal (1X)

(c) Color (1X) (d) Confocal (3X)

Figure 5.6: An Example of Correspondences in Initial Mappings of Keypoints Using GI-PIIFD.
(a) and (b) are at similar scales; the scale of (d) is three times that of (c).
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triplets of keypoints. Due to the scale variance of the PIIFD descriptor, the number

of correspondences appearing in initial mappings is likely to decrease as the scale

difference between the reference and target images increases. Figure 5.6 gives two

examples of correspondences in initial mappings of GI-PIIFD in registering images

with similar scales and with a scale difference of three times respectively. There are 33

correspondences of 58 in registering Figure 5.6 (a) and (b), whereas there are only

two correspondences of 21 in registering Figure 5.6 (c) and (d). Obviously, there

is no chance of matching a triplet pair where all the three pairs of keypoints are

corresponding, in registering Figure 5.6 (c) and (d). Consequently, it is impossible

to effectively register the two images.

5.4 Robustness of Curvatures of Fast-CPDA Corners to

Content Differences

As illustrated in Sections 5.2 and 5.3, PIIFD descriptors have limitations with regard

to robustness to content differences. In this section, we will illustrate how curvatures

of Fast-CPDA corners [6] are robust to content differences. Details for the Fast-CPDA

corner detector can be found in Section 2.3.3 of Chapter 2.

(a) Color (b) Confocal

Figure 5.7: Illustrating Curvature Similarity between Corresponding Corners. A red dot
represents a corner detected by the Fast-CPDA corner detector [6]. The dashed square is used
to highlight corresponding regions shown in Figure 5.2.

In PIIFD, keypoints are detected using the Harris corner detector which relies on

intensity variations in a small neighborhood [28]. The PIIFD descriptor is built based
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on a local region around each keypoint, where normalized gradient magnitudes are

used to build orientation histograms. Due to the use of gradient information, the

PIIFD descriptor is sensitive to content differences within the local region.

Let us now look into how curvatures of Fast-CPDA corners are robust to

content differences. As elaborated in Section 2.3.3 of Chapter 2, the Fast-CPDA

corner detector [4, 6] estimates curvatures of contour points using the chord-to-point

distance accumulation technique [27] and treats maxima contour points with regard

to curvature values as candidate corners. Thus, the curvature of a Fast-CPDA corner

is independent of intensity or gradient changes in the neighborhood of the corner.

Figure 5.7 shows a pair of corresponding corners which are detected by the

Fast-CPDA corner detector. Note that, the local regions highlighted in Figures 5.7

and 5.2 are equivalent. Based on the curvature estimation in the Fast-CPDA corner

detector, the curvatures for the two corners in Figure 5.7 (a) and (b) are very similar.

As stated in Section 5.2.1, there are large content differences between the two regions

shown in Figure 5.7. Hence, curvatures of Fast-CPDA corners are more robust to

content differences as compared to PIIFD descriptors.

5.5 COREG: A Multi-modal Image Registration Technique

based on Corners

In this section, we will propose a COrner based REGistration technique which is called

COREG for the referencing purpose. An overview of COREG is first given, followed

by a few key issues in detail.

5.5.1 Overview of COREG

The proposed COREG is designed based on the registration framework in [49].

GI-PIIFD [49] has two mains limitations. First, GI-PIIFD can only deal with small

changes in affine transformation, and is therefore not scale-invariant. Second,

the PIIFD descriptor is only partially invariant to intensity variations, so that the

robustness to content differences cannot be ensured in registering multi-modal
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images. Overall, our aim is to achieve greater robustness to large differences in image

contents and scale as compared to GI-PIIFD [49]. To achieve greater robustness to

large content differences, we will explore curvature similarity between corners and

propose a novel corner descriptor, which will be elaborated in Sections 5.5.2 and

5.5.4. To deal with scale differences, geometric relationships between corner triplets

are taken into account, as stated in Section 5.5.3.

The steps in COREG are as follows.

i. Detecting corners

Corners are detected in the reference and target images using the Fast-CPDA

corner detector [6].

ii. Determining initial mappings of corners using curvature similarities

Relative to each reference corner, curvature similarities of all the corners in the

target image are ranked. By selecting highly-ranked corners, candidate matches

of each reference corner are determined. Curvature similarity will be described

in Section 5.5.2.

iii. The first round of matching of corner triplets

With initial mappings of corners determined in Step ii, all the possible mappings

of corner triplets are generated. Each pair of corner triplets in the reference and

target images are compared and accordingly a transformation is computed. The

transformation is used to transform the target image onto the reference image.

The corresponding edge images are overlapped and therefore the Number of

Overlapped Pixels (NOP) is computed. By comparing NOP values, the pair of

corner triplets with the maximum NOP is selected. The triplet pair selected is

denoted as T P1. Note that details about NOP can be found in Section 2.5.3 of

Chapter 2.

iv. Estimating a scale difference between the reference and target images

The scale difference between the reference and target images is estimated from the

pair of corner triplet T P1. The estimated scale difference is obtained by averaging

the length ratios between corresponding line segments in the two corner triplets.

This will be illustrated in Section 5.5.3.
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v. The second round of matching of corner triplets

First, the reference and target images are resized using the scale difference

estimated in Step iv. Second, a novel local descriptor called Distribution of Edge

Pixels Along Contour (DEPAC) is built for each corner. The proposed DEPAC

descriptor will be stated in Section 5.5.4. Similar to Step ii, the initial mappings

of corners can be determined by ranking the DEPAC descriptor distances. Next,

matching of corner triplets is carried out based on curvature similarity and the

DEPAC descriptor respectively. Accordingly, two pairs of corner triplets are

obtained. The pair of corner triplets which correspond to a higher NOP is denoted

as T P2.

Table 5.1: Comparing Steps in COREG and GI-PIIFD

No. COREG GI-PIIFD
i Detecting corners Detecting PIIFD keypoints
ii Determining initial mappings of

corners using curvature similarities
Determining initial mappings of

keypoints using PIIFD descriptors
iii The first round of matching of

corner triplets
Matching of keypoint triplets

iv Estimating a scale difference N/A
v The second round matching of

corner triplets
N/A

vi Determining a triplet pair Determining a triplet pair
vii Refining localization of the

selected pair of corner triplet
N/A

viii Estimating a transformation and
aligning images

Estimating a transformation and
aligning images

vi. Determining a triplet pair

The two triplet pairs, T P1 and T P2, are compared in terms of NOP. A decision is

made to select the triplet pair with the higher NOP. The selected triplet pair is

denoted as T Ps.

vii. Refining localizations of the selected pair of corner triplets T Ps

With the triplet pair determined, the localizations of corner pairs in the triplet pair

are refined in a small neighborhood. If a higher NOP can be achieved, then the

triplet pair is updated with the refined corner localizations.
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viii. Estimating a transformation and aligning images

A transformation is estimated from the selected pair of corner triplet T Ps. The

estimated transformation is finally used for aligning the reference and target

images.

Table 5.1 compares the steps in COREG and GI-PIIFD [49], which clearly indicates

the differences between the two techniques. Compared with GI-PIIFD, the novelties

of COREG lie in Steps ii, iv, v and vii. For Steps ii and v, we will describe curvature

similarity between corners in Section 5.5.2 and the DEPAC descriptor in Section 5.5.4.

Steps iv and vii will be elaborated in Sections 5.5.3 and 5.5.5 respectively.

5.5.2 Curvature Similarity between Corners

Let us firstly define corners in the reference and target images as

Cr = {C1
r ,C

2
r , . . .CNr

r } (5.5)

and

Ct = {C1
t ,C

2
t , . . .CNt

t }, (5.6)

where Nr and Nt denote the number of corners in the reference and target images.

Likewise, the curvatures of corners are defined as

Kr = {K1
r ,K

2
r , . . . KNr

r } (5.7)

and

Kt = {K1
t ,K

2
t , . . . KNt

t }. (5.8)

Given two corners from the reference and target images, their curvature similarity

is defined as

si j =
|Ki

r−K j
t |

Ki
r

, (5.9)

where 1 ≤ i ≤ Nr and 1 ≤ j ≤ Nt . Explicitly, the smaller a si j value is, the higher the

curvature similarity between two corners is.
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With the curvature similarity defined in Equation 5.9, all the corners in the target

image are ranked by their curvature similarities relative to each reference corner.

The highly-ranked corners comprise candidate matches. Thus, a reference corner is

mapped to these candidate matches as

Ci
r 7→ {C1

t ,C
2
t , . . .CNc

t }, (5.10)

where Nc represents the number of candidate matches. Given three corners Ci
r,C

j
r

and Ck
r in the reference image, a corner triplet is generated. With candidate matches

relative to each reference corner as Equation 5.10 describes for Ci
r, all the possible

corner triplets are generated in the target image.

(a) Color (b) Confocal

Figure 5.8: An Example of a Triplet Pair for Estimating a Scale Difference. Note that the image
size in the figure does not reflect the actual scale difference between the two images.
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5.5.3 Scale Estimation

As stated in Step iii of COREG in Section 5.5.1, a pair of corner triplets, T P1, is

selected after the first round matching of corner triplets. Our way of estimating a

scale difference is based on the triplet pair T P1. Figure 5.8 shows T P1 in registering a

pair of color and confocal images. The three corners Ci
t , C j

t and Ck
t in the color image

correspond to the three corners Ci
r, C j

r and Ck
r in the confocal image. With the three

corner pairs, the scale difference between the two images is estimated by averaging

the length ratios between corresponding line segments in the two corner triplets, i.e.,

σ =
1
3
× (
|
−−→
Ci

rC
j
r |

|
−−→
Ci

tC
j
t |
+
|
−−→
C j

rCk
r |

|
−−→
C j

t Ck
t |
+
|
−−→
Ck

rCi
r|

|
−−→
Ck

t Ci
t |
). (5.11)

In the example shown in Figure 5.8, the ground-truth scale difference between the

color and confocal images is 1:2.73, whereas the estimated scale difference is 1:2.82.

We can see the estimated scale difference is quite close to the ground-truth one. The

accuracy of scale estimation for all the tested image pairs will be illustrated in Section

5.6.2.

5.5.4 DEPAC: A Proposed Corner Descriptor

Curvature [3, 4, 6, 30] is an important representation of corners. The curvature of a

corner describes how the edge pixels move along the contour of the corner in a small

neighborhood. In order to better represent corners, we will propose a novel corner

descriptor. Firstly, an example is given to illustrate the limitations of representing

corners only using their curvatures. Figure 5.9 (a) and (b) show two corners and

their contours that are extracted from a reference image and its target image in our

tested image pairs. The two corners are not corresponding in terms of ground-truth

locations. The curvatures of the two corners are very close as the edges in a small

neighborhood are structurally very similar. However, the edge structures in a larger

neighborhood are significantly more different. Based on this analysis, a novel corner

descriptor is proposed in order to capture more edge information surrounding a

corner as compared to its curvature. Note that only the edge pixels along the contour
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(a) Corner (Reference) (b) Corner (Target)

(c) DEPAC of Corner (Reference) (d) DEPAC of Corner (Target)

Figure 5.9: Building the DEPAC Descriptor

where the corner is located are represented in the proposed corner descriptor, due

to the fact that the number of edges may largely differ in the corresponding parts of

multi-modal images. Thus, the proposed corner descriptor is called Distribution of

Edge Pixels Along Contour (DEPAC).

Let Ci
r, C j

t , Γ(Ci
r) and Γ(C j

t ) denote the two corners and their contours shown in

Figure 5.9 (a) and (b). We illustrate how a DEPAC corner descriptor is built using Ci
r

and Γ(Ci
r) as follows.

i. Concentric circles are plotted by taking the corner as the center, as shown

in Figure 5.9 (c). Let R denote the radius of the internal circle. The radius

of a concentric circle is incremented by R, from inside to outside. In our

implementations, R is set to five pixels.

ii. The main orientation of the corner, Om, is defined by averaging the orientations
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of two tangents [30]. In Figure 5.9 (c), the middle blue line denotes the main

orientation.

iii. Orientation bins are defined at the two sides of the main orientation. As plotted

by blue lines in Figure 5.9 (c), the four quantized orientations are O1 = Om− 90◦,

O2 = Om− 45◦, O3 = Om and O4 = Om + 45◦ in an anticlockwise order. With four

concentric circles and four quantized orientations, 16 sub-regions are defined in

the neighborhood of the corner and each sub-region is denoted as (c,o), where

1≤ c≤ 4 and 1≤ o≤ 4.

iv. In the sub-region (c,o), the number of edge pixels along the contour is

incremented by one if an edge pixel, Pe, satisfies

(c−1)×R < d(Pe,Ci
r)≤ c×R (5.12)

and

Oo ≤
−−→
PeCi

r < Oo+1, (5.13)

where d(Pe,Ci
r) is the Euclidean distance between Pe and Ci

r, 1≤ c≤ 4 and 1≤ o≤

4. The number of edge pixels computed for the sub-region (c,o) is denoted as

NEPc,o. For the corner Ci
r shown in Figure 5.9 (c), the number of edge pixels in

each sub-region is listed in Table 5.2.

v. The number of edge pixels in each sub-region, NEPc,o, is normalized into [0,1] by

NEPc,o =
NEPc,o

max{NEPc,o}
. (5.14)

Finally, the DEPAC descriptor is generated.

Table 5.2: Number of Edge Pixels in Each Sub-region for Corner Ci
r

XXXXXXXXXXXcircle
orientation

1 2 3 4

1 5 2 1 0
2 0 5 5 0
3 0 6 6 0
4 0 1 10 0
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Table 5.3: Number of Edge Pixels in Each Sub-region for Corner C j
t

XXXXXXXXXXXcircle
orientation

1 2 3 4

1 4 1 1 2
2 0 5 6 0
3 8 4 5 0
4 8 0 6 0

To compare the DEPAC descriptors built for the two corners, Ci
r and C j

t , the number

of edge pixels in each sub-region for C j
t is listed in Table 5.3. We can clearly see that

the two DEPAC descriptors are very different. Thus, our proposed DEPAC descriptor

captures important edge information in the neighborhood of a corner.

It should be noted that scale invariance must be ensured in building DEPAC

descriptors for corners in the reference and target images. Ideally, the size of

concentric circles for building DEPAC descriptors should be in line with the actual

scale difference between the reference and target images. To achieve scale invariance,

the estimated scale difference σ, which has been discussed in Section 5.5.3, is used as

Rr = σ×Rt , (5.15)

where Rr and Rt denote the radius values of the internal circle for building DEPAC

descriptors in the reference and target images, respectively.

5.5.5 Refining Localizations

As stated in Section 5.5.1, a triplet pair, T Ps, is selected from T P1 and T P2 by selecting

the one with a higher NOP value. Let Ci
r,C

j
r ,Ck

r 7→ Ci
t ,C

j
t ,Ck

t denotes T Ps. Based

on our analysis, two corners of a match in this triplet pair might not be accurately

corresponding. As shown in Figure 5.10, there is possibly an image pixel, Cx
t , in a

small neighborhood of the corner Ci
t that leads to a more accurate match. This is very

likely to occur in multi-modal images as there may be a localization error in detecting

corners due to different amounts of noises at corresponding parts in the reference and

target images.

The refinement of localizations is carried out by searching image pixels in an r× r

window, where r is the width of the searching window. Note that the searching
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Figure 5.10: Refining Localizations

process is only performed in the target image while the corner localizations of the

triplet pair in the reference image remain unchanged. As the searching window is

set for each corner of the triplet in the target image, (r× r)3 = r6 triplet pairs are

additionally generated. If any triplet pair out of these r6 pairs achieves a higher NOP,

the triplet pair Ci
r,C

j
r ,Ck

r 7→ Ci
t ,C

j
t ,Ck

t is accordingly updated. In our experiments, r is

equivalent to five.

5.5.6 A Special Consideration

In COREG, spatial relationships between corners are used by representing and

matching corner triplets. Where the number of corners is smaller than three, it

is impossible to generate a corner triplet. Where this is the case, the registration

process will be terminated. Thus, special consideration must be taken to ensure

there are sufficient corners for generating corner triplets. In the Fast-CPDA corner

detector [6], edges are detected using the Canny edge detector [16]. In the Canny edge

detector [16], a high threshold and a low threshold are used to define strong and weak

edge pixels respectively. In COREG, the high threshold for the Canny edge detector

is empirically lowered to preserve more edges so that more corners are potentially

detected, in the cases where the number of corners is smaller than three using the

default threshold.
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5.6 Performance Study

We will evaluate the proposed COREG from the following three aspects. First, we

will measure the accuracy of the proposed way of estimating scale difference. In

registering each image pair, the estimated scale difference will be compared with

the ground-truth scale difference. Second, the registration performance of COREG

will be evaluated against GI-PIIFD at various scale differences. Third, COREG is also

compared with MOG-IS-SIFT and elastix [45]. MOG-IS-SIFT is a multi-modal image

registration technique we have proposed in Chapter 3, while elastix is regarded as a

benchmark in the category of intensity-based image registration techniques. Due to

the overall poor performance of elastix and MOG-IS-SIFT in registering multi-modal

microscopic images, the comparisons between elastix, MOG-IS-SIFT and COREG are

only carried out at the 1X vs 1X scale difference.

The tested data sets are the same as those used in Chapter 3. Details about the data

sets can be found in Section 3.4.1.2 of Chapter 3. The four data sets include 40 image

pairs which have similar scales and we call them the base image pairs. With these

base image pairs, we have manually generated corresponding image pairs which have

scale differences of 1.5, 2, 3 and 4 times, respectively. Thus, five patterns of scale

differences are tested. For the referencing purpose, the five patterns are called 1X vs

1X, 1X vs 1.5X, 1X vs 2X, 1X vs 3X and 1X vs 4X, respectively. Here, X is equivalent to

times with regard to a scale difference.

With regard to registering multi-modal microscopic image pairs, whether DSS (the

technique we have proposed in Chapter 4) is used should be taken into consideration.

When DSS is used together with GI-PIIFD, COREG, elastix and MOG-IS-SIFT, the four

techniques are called DSS-GI-PIIFD, DSS-COREG, DSS-elastix and DSS-MOG-IS-SIFT

respectively.

5.6.1 Evaluation Metric

To carry out quantitative performance comparisons, average registration error [109] is

used to measure the overlap error after aligning the reference and target images with
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the estimated transformation. Average registration error is defined as

ε =
1

H×W

W

∑
x=1

H

∑
y=1
‖Te(x,y)−Tg(x,y)‖, (5.16)

where H and W are the height and width of the reference image, Tg is the ground-truth

transformation and Te is the estimated transformation. The smaller the ε value is,

the better the registration performance will be. For the referencing purpose, average

registration error is called ARE in short.

5.6.2 Accuracy of Scale Estimation

Figure 5.11: Comparing Estimated and Ground-truth Scale Differences

As discussed in Section 5.3, achieving scale invariance is of great importance in the

process of image registration. In our proposed COREG, the reference and target

images are resized using the estimated scale difference. If the estimated scale

difference is close to the ground-truth scale difference, the reference and target images

will have similar scales after being resized. Here, the accuracy of scale estimation is

measured by an error which deviates from the ground-truth scale difference. Let σe

and σg denote the estimated scale difference and the ground-truth scale difference
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respectively. The error of estimating a scale difference is defined as

εs =
|σe−σg|

σg
%. (5.17)

Figure 5.11 compares the estimated and ground-truth scale differences for 40

image pairs at five patterns of scale differences. Note that DSS which has been

proposed in Chapter 4 is performed on the 16 microscopic image pairs. It can be

seen in Figure 5.11 that the estimated scale difference is in many cases close to the

ground-truth scale difference. With the measure defined in Equation 5.17 for accuracy

of scale estimation, a threshold is set to 5%. For these 40 pairs, with five patterns of

scale differences from 1X vs 1X to 1X vs 4X, εs is below 5% in 33, 36, 35, 34 and 36

pairs, respectively.

Moreover, the advantage of using our proposed scale estimation can be seen in

terms of initial mapping of feature points. In Figure 5.6 (c) and (d), we have presented

the correspondences in initial mappings of PIIFD keypoints where there are only two

correspondences. By comparison, Figure 5.12 shows correspondences which appear

in initial mappings of corners before and after using scale estimation, when registering

a pair of color and confocal images at the 1X vs 3X scale difference. Note that only

curvature similarity is used to determine initial mappings of corners in obtaining the

results in Figure 5.12. As shown in Figure 5.12 (a) and (b), only two correspondences

out of eight appear in the initial mappings before using scale estimation. Therefore,

there is no chance to compare and match a pair of corner triplets where all three corner

pairs are truly matched. In contrast, there exist seven correspondences out of 19 in

initial mappings of corners after using scale estimation, as shown in Figure 5.12 (c)

and (d). The correspondences in initial mapping of corners shown in Figure 5.12 (c)

and (d) provide a good basis for the following matching of corner triplets, thereby

leading to an effective registration.
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(a) Color (1X) (b) Confocal (3X)

(c) Color (1X) (d) Confocal (3X)

Figure 5.12: Number of Correspondences in Initial Mappings before and after Scale
Estimation. (a) and (b): before using scale estimation; (c) and (d): after using scale estimation
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5.6.3 Performance Comparisons

5.6.3.1 GI-PIIFD vs COREG on Non-Microscopic Images

(a) 1X vs 1X

(b) 1X vs 1.5X

Figure 5.13: ARE Comparisons between COREG and GI-PIIFD for Non-microscopic Image
Pairs (Part 1)
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(a) 1X vs 2X

(b) 1X vs 3X

Figure 5.14: ARE Comparisons between COREG and GI-PIIFD for Non-microscopic Image
Pairs (Part 2). The legend is the same as that in Figure 5.13.

GI-PIIFD and COREG are compared in terms of ARE across five patterns of scale

differences, i.e. 1X vs 1X, 1X vs 1.5X, 1X vs 2X, 1X vs 3X and 1X vs 4X, as shown

in Figures 5.13, 5.14 and 5.15. At the 1X vs 1X scale difference, ARE is generally



§5.6 Performance Study 135

small using either GI-PIIFD or COREG except in registering pair 24, as shown in

Figure 5.13 (a). Regarding pair 24, we have shown the image pair in Section 3.4.4

of Chapter 3. In pair 24, the objects are very unclear and content differences are

very large. Still, COREG significantly improves the registration performance over

GI-PIIFD in registering pair 24 across various scale differences. On average, the ARE

for GI-PIIFD is 2.18, whereas COREG achieves an ARE of 0.64, in registering the 24

image pairs at the 1X vs 1X scale difference.

Figure 5.15: ARE Comparisons between COREG and GI-PIIFD for Non-microscopic Image
Pairs (Part 3). The legend is the same as that in Figure 5.13. The scale difference is 1X vs 4X.

For the other four patterns of scale differences, GI-PIIFD and COREG are

compared as shown in Figures 5.13 (b), 5.14 and 5.15. Please note that we have used 35

as the upper limit on the y axis in Figures 5.13 and 5.14. In Figure 5.15, the upper limit

on the y axis is much higher. For a better comparison across all the five patterns of

scale differences in Figures 5.13, 5.14 and 5.15, a horizontal line (35 at y axis) is plotted

in Figure 5.15. As the scale difference increases, GI-PIIFD performs increasingly poor,

whereas COREG is much more robust. In other words, the advantage of COREG

over GI-PIIFD is more significant as the scale difference increases. Table 5.4 compares

average ARE values between GI-PIIFD and COREG for the five patterns of scale

differences. Note that the special consideration described in Section 5.5.6 is taken for
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registering image pair 11 across the five patterns of scale differences. In registering

image pair 11, the high threshold for the Canny edge detector is lowered from 0.35 to

0.25.

Table 5.4: Average ARE of Each Pattern of Scale
Difference for Non-microscopic Images

Scale Difference GI-PIIFD COREG
1X vs 1X 2.18 0.64

1X vs 1.5X 3.85 1.32
1X vs 2X 5.48 1.23
1X vs 3X 12.83 1.46
1X vs 4X 25.36 1.45

5.6.3.2 GI-PIIFD vs COREG on Microscopic Images

In registering multi-modal microscopic images, comparisons will be made between

four techniques, i.e. GI-PIIFD, COREG, DSS-GI-PIIFD and DSS-COREG, at five

patterns of scale differences as shown in Figures 5.16, 5.17 and 5.18. Note that there

are a few failures when using GI-PIIFD or COREG for registration, and these failures

are marked with an ×. There are two different scenarios for these failures as follows.

First, there is no corresponding corners which have been detected in a pair of color

and confocal images. Second, there are a number of corresponding corners, however

there is no correspondence in initial mappings of corners. For both scenarios, NOP

values are all zero, indicating that there is no overlapped edge between edges of color

and confocal images.

The ARE comparisons shown in Figures 5.16, 5.17 and 5.18 can be analyzed from

different perspectives with the following conclusions.

i. Across the five patterns of scale differences, COREG outperforms GI-PIIFD in

96.77% of cases, and DSS-COREG outperforms DSS-GI-PIIFD in all cases.

ii. DSS-COREG performs better than COREG in most cases. This simply verifies the

significance of DSS which has been proposed in Chapter 4.

iii. As the scale difference increases, COREG shows increasing advantages over

GI-PIIFD, and DSS-COREG shows increasing advantages over DSS-GI-PIIFD.
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Therefore, the proposed COREG significantly improves the robustness to scale

differences.

Overall, DSS-COREG achieves the best performance out of the four techniques.

(a) 1X vs 1X

(b) 1X vs 1.5X

Figure 5.16: ARE Comparisons between COREG and GI-PIIFD for Microscopic Image Pairs
(Part 1)
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(a) 1X vs 2X

(b) 1X vs 3X

Figure 5.17: ARE Comparisons between COREG and GI-PIIFD for Microscopic Image Pairs
(Part 2). The legend for the four techniques is the same as that in Figure 5.16.

Although DSS-COREG achieves the best performance among the compared four

techniques, we have found that DSS-COREG has difficulties in registering very

challenging image pairs. Considering all the five patterns of scale differences, the ARE

values achieved by DSS-COREG for pairs 35 and 38 are relatively high as compared
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Figure 5.18: ARE Comparisons between COREG and GI-PIIFD for Microscopic Image Pairs
(Part 3). The legend for the four techniques is the same as that in Figure 5.16. The scale
difference in a pair of color and confocal images is 1X vs 4X.

to the other microscopic image pairs. For instance, DSS-COREG achieves an ARE of

14.25 in registering pair 38 at the 1X vs 1X scale difference, as shown in Figure 5.16(a).

Figure 5.19 shows the pair of corner triplets for pair 38 which leads to the maximum

NOP value. In the pair of corner triplets shown in Figure 5.19, corners 1, 2 and 3

in the color image correspond to corners A, B and C respectively. Corner pairs 2 7→B

and 3 7→C are relatively accurate as compared to corner pair 17→A. We have found that

there is a corner in the color image, as marked with 1′ in Figure 5.19(a), which better

match corner A in the confocal image. According to how COREG works, the pair of

corner triplet (1, 2, 3)7→(A, B, C) leads to a higher NOP value as compared to (1′, 2,

3)7→(A, B, C). Based on our analysis, it is possible that the best pair of corner triplets is

suppressed in registering an image pair where content differences are very large and

edge structures are complex and chaotic.

Also, Table 5.5 clearly compares average ARE values for the four techniques at

each of the five patterns of scale differences. We can see that DSS-COREG achieves an

average ARE which is below 9.00 even at the 1X vs 4X scale difference. By comparing

ARE values achieved by COREG and DSS-COREG, we can clearly conclude that both

DSS and COREG contribute to the final registration performance.
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(a) Corner Triplet (Color)

(b) Corner Triplet (Confocal)

Figure 5.19: Triplet Pair Determined by DSS-COREG in Registering Image Pair 38

Table 5.5: Average ARE of Each Pattern of Scale Difference for Microscopic Images

Scale Difference GI-PIIFD COREG DSS-GI-PIIFD DSS-COREG
1X vs 1X 29.84 15.50 14.02 4.70

1X vs 1.5X 52.93 18.38 21.87 7.57
1X vs 2X 72.45 30.38 30.73 7.49
1X vs 3X 88.25 16.22 44.90 7.78
1X vs 4X 114.49 28.94 74.28 8.91
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5.6.3.3 Other Comparisons

Figure 5.20: ARE Comparisons between MOG-IS-SIFT, elastix and COREG in Registering
Non-microscopic Pairs

In our experiments, we have also compared the proposed COREG with

MOG-IS-SIFT and elastix [45], where MOG-IS-SIFT has been proposed in Chapter 3

and elastix is a popular registration technique based on mutual information. The three

techniques, i. e. MOG-IS-SIFT, elastix and COREG, are compared in terms of ARE in

Figure 5.20 and Table 5.6 which are for non-microscopic and microscopic image pairs

respectively. As shown in Figure 5.20 and Table 5.6, there are a few failures when

MOG-IS-SIFT is used for registration. A failure in using MOG-IS-SIFT indicates that

there is no keypoint match or that the number of keypoint matches is smaller than

three which is insufficient for estimating a transformation in an image pair.

Figure 5.20 compares the three techniques in registering non-microscopic image

pairs. The average ARE values for MOG-IS-SIFT, elastix and COREG are 6.51, 0.79

and 0.34 respectively. Table 5.6 presents the ARE values for the three techniques in

registering microscopic image pairs. Note that, we have used microscopic images

which have been processed by DSS for the three techniques MOG-IS-SIFT, elastix

and COREG. As shown in Table 5.6, the techniques compared are accordingly called

DSS-MOG-IS-SIFT, DSS-elastix and DSS-COREG. It is clear that DSS-MOG-IS-SIFT
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performs very poorly and cannot achieve any effective registration. DSS-COREG

outperforms DSS-elastix in registering 15 microscopic pairs out of all 16 ones. On

average, ARE values are 19.76 and 4.70 for DSS-elastix and DSS-COREG respectively.

Overall, DSS-COREG achieves a lot better performance than DSS-MOG-IS-SIFT and

DSS-elastix. Note that we have only compared the three techniques at the 1X vs

1X scale difference, and the advantage of DSS-COREG over DSS-MOG-IS-SIFT and

DSS-elastix is already very clear.

Table 5.6: ARE Comparisons between DSS-MOG-IS-SIFT, DSS-elastix and
DSS-COREG for Microscopic Images

Pair ID DSS-MOG-IS-SIFT DSS-elastix DSS-COREG
25 54.39 8.14 1.04
26 387.81 16.85 0.46
27 118.99 31.52 1.54
28 185.64 25.36 4.88
29 11.58 11.14 2.38
30 X 9.28 2.93
31 X 23.76 1.62
32 67.84 23.61 4.89
33 719.13 6.49 2.40
34 111.27 11.80 2.18
35 339.08 35.98 9.89
36 X 6.24 9.38
37 X 21.74 3.59
38 547.55 59.61 14.25
39 X 8.36 7.55
40 403.57 16.21 6.26

a X indicates a registration failure.
b The scale difference is 1X vs 1X in a pair of color and confocal images.

Overall, as Figure 5.20 and Table 5.6 indicate, MOG-IS-SIFT and elastix perform

much more poorly than COREG, which can be explained as follows.

• MOG-IS-SIFT builds gradient-based descriptors. In registering multi-modal

images with large content differences, MOG-IS-SIFT descriptors are not

sufficiently discriminative, resulting in a poor registration performance.

• As an intensity-based image registration technique, elastix is sensitive to

intensity variations across multi-modal images. More specifically, the similarity

metric between the reference and target images is based on mutual information.
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(a) Color Image (b) Confocal Image

(c) Alignment (DSS-GI-PIIFD) (d) Alignment (DSS-COREG)

(e) Part of Color Image (f) Part of Confocal Image

(g) Part of Alignment (DSS-GI-PIIFD) (h) Part of Alignment (DSS-COREG)

Figure 5.21: Alignment Images Using Checkerboard. (a) and (b) are the color and confocal
images which have been processed by DSS.



§5.6 Performance Study 144

The larger the content differences between images are, the less accurate the

similarity metric is. Thus, the registration accuracy of DSS-elastix is low in

registering multi-modal microscopic images.

5.6.3.4 An Alignment Example

In addition to evaluating the proposed COREG in terms of ARE, an alignment

example is also given for a visual comparison, as shown in Figure 5.21. In

this example, the alignments achieved by DSS-GI-PIIFD and DSS-COREG are

compared using checkerboard images. To generate an aligned image, an estimated

transformation is used to transform a color image onto its corresponding confocal

image. The transformed color image and confocal image are displayed in an alternate

way using the checkerboard format. To better identify alignments of image structures,

the foregrounds of the color and confocal images are displayed using red and green

colors respectively in the checkerboard image. In the example shown in Figure 5.21,

the actual scale difference between the color and confocal images is 1:3.76. The ARE

values achieved by DSS-GI-PIIFD and DSS-COREG are 121.61 and 4.87 respectively.

To easily compare alignments achieved by DSS-GI-PIIFD and DSS-COREG, a small

area of corresponding parts is extracted from the color and confocal images, as

shown in Figure 5.21 (e) and (f). Clearly, Figure 5.21 (h) shows a much better

alignment as compared to Figure 5.21 (g). Thus, DSS-COREG significantly improves

the registration performance over DSS-GI-PIIFD.

5.6.4 Efficiency Comparison between GI-PIIFD and COREG

Although our focus is on improving the registration accuracy, we now give a rough

efficiency comparison between GI-PIIFD and COREG as follows.

i. In registering image pairs with the same or similar scales, GI-PIIFD is a little faster

than COREG.

There are two main reasons why COREG is less efficient than GI-PIIFD. First, two

rounds of matching corner triplets are needed in GOREG, while there is only one

round in GI-PIIFD. Second, compared with GI-PIIFD, additional time is needed
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in COREG for refining localization which has been discussed in Section 5.5.5.

However, COREG is more efficient in building local descriptors than GI-PIIFD.

The local descriptor in GI-PIIFD is 128-dimensional, whereas only the curvature

and 16-dimensional DEPAC descriptor are used for describing corners in COREG.

ii. As the scale difference in an image pair increases, COREG achieves comparable

or even higher efficiency than GI-PIIFD.

When the scale difference increases, the space of geometric transformations is

larger and larger. Accordingly, more and more time is needed in comparing

corner triplets. In COREG, the reference and target images have similar scales

after applying the estimated scale difference. Thus, the second round of

comparing corner triplets in COREG is much faster than the first round.

5.7 Summary

Following the work in Chapter 4 with regard to structural similarity in multi-modal

microscopic images, this chapter has focused on content and scale differences in

these images. In order to effectively register these images, we have presented

COREG which is an image registration technique based on corners. Without the

loss of generality, COREG is suited for registering all kinds of multi-modal images.

To address content differences, we have explored curvatures of corners and have

proposed a novel corner descriptor for feature representations. In addition, we have

proposed a new way of estimating the scale difference between the reference and

target images. The scale estimation is achieved with the assistance of a pair of

corner triplets which leads to optimal transformation between the reference and target

images. Experimental results have shown that our proposed COREG achieves greater

robustness in both content difference and scale differences as compared to the latest

existing technique [49].



Chapter 6

Conclusions and Future Work

Multi-modal image registration is of great importance in various applications,

especially in medical image analysis. Due to substantial visual differences between

corresponding parts across multi-modal images, it is challenging to achieve effective

registration. Motivated by achieving effective registration of multi-modal microscopic

images, the thesis has been dedicated to multi-modal image registration. The main

contributions of the thesis are as follows.

i. We have analyzed the utilization of two types of gradient information, i.e.

gradient magnitudes (GM) and gradient occurrences (GO), in building and

matching SIFT-like descriptors. After identifying the limitations of only utilizing

either of the two types of gradient information, we have proposed a technique

called MOG (Magnitudes and Occurrences of Gradient) to take into consideration

both GM and GO. MOG increases the discrimination of SIFT-like descriptors,

thereby achieving more effective registration.

ii. The structural similarity in multi-modal microscopic images is very low,

which hinders existing registration techniques from achieving a satisfactory

performance. To detect the intrinsic structural similarity in these images, DSS

(Detector of Structural Similarity) has been proposed. After performing DSS

on these images, the structural similarity has been significantly increased. To

evaluate DSS, we have used existing multi-modal image registration techniques

on original microscopic images and the images after applying DSS. Experimental

results show that DSS has substantially increased the registration performance.

iii. After applying DSS on multi-modal microscopic images, there are still large

content differences. The latest multi-modal image registration technique called

146
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GI-PIIFD cannot effectively register these images, and performs increasingly

worse as the scale difference in an image pair increases. To achieve greater

robustness to both content differences and scale differences, we have proposed

COREG (COrner based REGistration). Without loss of generality, COREG is

applicable to registering various kinds of multi-modal images. Experimental

results show that COREG is more robust than GI-PIIFD in both content

differences and scale differences.

Based on the research in the thesis, we suggest potential future work as follows.

i. The proposed MOG can be further improved by ranking the distance ratio

between the nearest neighbor and the second nearest neighbor in matching

descriptors. A lower distance ratio in a keypoint match indicates that the match

is more discriminative. The highly-ranked keypoint matches in terms of the

distance ratio are likely to improve the final registration accuracy.

ii. MOG can be generalized and applied to various applications in which SIFT or

one of its variants is used. MOG has been proposed based on the original SIFT

in registering mono-modal images. Nonetheless, we believe that if MOG is built

on a variant of SIFT, such as PCA-SIFT [43] and GLOH [66], the effectiveness of

descriptors will be most likely to be increased.

iii. The self-similarity concept [32, 33, 93] can be incorporated into our proposed

COREG. Specifically, we will take into account the relationship or similarity

between corner descriptors in representing corner triplets. By doing so, both

geometric relationship and descriptor relationship between corners are used,

thereby enhancing the possibility of finding truly-matched corner triplets. Based

on COREG, the registration performance would potentially be further increased.

iv. We will explore the possibility of making COREG robust to deformable

transformations [34, 99].
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