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Abstract 

This thesis proposes and implements methods for the autonomous identification and 

classification of disturbances that have negative effects on a robot’s performance 

(self-diagnosis), and the autonomous selection of suitable compensatory actions 

(self-compensation). 

 

The proposed methods have been implemented in a walking hexapod robot provided 

with a number of sensors. Both, the robot’s sensorial information and a quantitative 

measure of the robot’s performance are obtained. This information is used for 

detecting, identifying and classifying obstructive conditions that have a strong impact 

on the robot’s performance. Once the cause of a lack of progress in the robot’s 

mission has been identified, suitable compensatory actions are found, executed and 

recorded. Then, when previously experienced detrimental situations arise, the 

associated compensatory measures are immediately taken without involving a 

searching process. As a result, the recovery from abnormal conditions is accelerated 

and the robot can promptly continue with its mission. In order to evaluate the 

performance of the proposed methods, different sets of experiments addressing the 

robot’s hardware faults, abnormal situations generated in the robot’s environment 

and a combination of both, were conducted. Results were evaluated by means of two 

indicators: the number of attempts before a correct identification of the robot’s 

hardware fault was achieved, and a discrepancy measure. The latter indicates the 

Euclidean distance between the centroid of an abnormal situation experienced by the 

robot and the centroid of abnormal situations incorporated into the robot’s database 

of anomalies. Results showed a good identification rate inside the repertoire of 

considered abnormal situations. 



 

viii 
 

Among the compensatory measures addressed in this thesis, an adaptable gait 

generation algorithm which allows legged robots to walk in a stable fashion after 

they have shed a variable number of legs, and a compact leg release mechanism that 

provides legged robots with a method for the autonomous physical ejection of 

damaged legs without requiring extra motors, are proposed. 

 

Two self-compensating methods (Autonomous Generated Compensatory Measures 

and Learned Compensating Measures) not implemented into the experimental robot 

are proposed in this thesis. In theory, these methods will allow robots to 

autonomously generate compensatory measures and learn from previously 

encountered abnormal situations.  

 

The methods developed in this research are fundamental for the autonomous 

detection of a robot’s failures and adaptability to unforeseen features of the robot’s 

environment. By using these techniques, it is expected to increase resilience to 

damage, extend lifespan and improve autonomy in robotic missions where human 

intervention is difficult or impossible, such as in extra-terrestrial exploration or other 

remote hostile environments.  
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Chapter 1  

Introduction 

 This chapter presents the underlying motivation and objectives of this 

investigation. Identification of the original contribution of this work and an overview 

of the thesis structure are also provided. 

1.1. Motivation and Objective 

The research work presented in this thesis has been strongly inspired by behavioural 

patterns of biological creatures when dealing with unstructured environments. 

According to Konrad Lorenz [1] biological behavioural patterns consist of innate and 

learned or experienced components. John W. Kimball [2] introduced taxes, instincts 

and reflexes as three examples of innate behaviour. These are described as follows. 

 

 Taxes: are responses where organisms automatically move directly toward, away 

from, or at some defined angle to a stimulus. An example of this behaviour is 

phototaxis, which is commonly displayed by photosynthetic microorganisms. A 

positive phototaxis is displayed by microorganisms moving towards a light 

source, whereas a negative phototaxis is displayed by microorganisms moving 

away from a light. 

 

 Instincts: according to Charles Darwin “An action, which we ourselves should 

require experience to enable us to perform, when performed by an animal, more 

especially by a very young one, without any experience, and when performed by 
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many individuals in the same way, without their knowing for what purpose it is 

performed, is usually said to be instinctive” [3]. Examples of instinctive behaviour 

are foraging, mating, homing and safety related actions. 

 

 Reflexes: are behavioural patterns that, like instincts, are inborn, rather inflexible 

and valuable for allowing an animal to respond quickly to its environment. They 

differ from instincts in complexity. Instincts are more complex, they may involve 

the whole body and an elaborate set of actions. On the other hand, reflexes are 

simpler and faster involuntary responses to a stimulus. Most reflexes are not 

mediated by the brain but involve a very simple nervous pathway called a reflex 

arc [4]. Examples of reflex behaviour are the withdrawal behaviour (i.e. occurs 

when a part of the body makes contact with a hot object and is quickly moved 

away from it) and autonomic reflexes (which regulate body functions such as 

digestion or blood pressure). 

 

In [3], Darwin claimed that inborn behaviour and current physical features of species 

have been adjusted by biological evolution and natural selection. Therefore, complex 

instinctive behaviour and physical capabilities are the result of slow and gradual 

accumulation of numerous, slight, yet beneficial, variations. One physical capability 

that has motivated this thesis is autotomy, which is described in [5] as “an extreme 

response to predators, whereby an organism voluntarily sheds a limb or appendage to 

aid escape”. 

 

The second type of biological behavioural pattern introduced by Lorenz, learned 

behaviour, is produced as the result of an experience affecting an individual. This 

kind of behaviour has been classified into habituation, sensitization, imprinting, 

conditioned response and instrumental conditioning. Of all of these categories, 

instrumental conditioning is most related to this research. This learned behaviour is 

also known as trial-and-error learning, because in this scenario biological creatures 

are free to try various responses before finding the one that is rewarded. 
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Biological creatures are able to identify and compensate a range of detrimental 

abnormal situations by using innate behaviour provided by evolution. In addition, 

learning capabilities furnish a living organism with a certain degree of adaptation to 

changing conditions of their body and environment. Autonomous robots could 

benefit from such behavioural patterns, both innate and learned, when performing 

their missions in unstructured environments. 

 

This thesis presents an investigation of techniques for generation of both types of 

artificial behavioural patterns in robotic systems. These patterns are used for the 

identification and compensation of detrimental disturbances originating in the robots 

or their environment. The research considers how robot designers can simulate 

biological evolution as the provider of innate behaviour and how empirical tests of 

compensatory measures can substitute for natural selection. Furthermore, this 

investigation addresses how robots can be provided with learning capabilities in 

order to benefit from experience and generate suitable learned behaviour for the 

compensation of a broader range of anomalies.  

 

The overall aim of this work is to propose and implement methods for the 

autonomous identification and classification of disturbances that have negative 

effects on a robot’s performance (self-diagnosis), and the autonomous selection of 

suitable compensatory actions (self-compensation). Applications of this work would 

help to increase the autonomy of robotic systems. For environments such as 

planetary exploration where human intervention is difficult or impossible, the 

capability for robots to diagnose and accommodate malfunctions would increase the 

probability of completing a mission successfully. 

1.2. Contributions 

Firstly, this investigation has proposed self-diagnosis and self-compensation methods 

that use both, innate and learned behavioural patterns.  
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This thesis provides a series of novel contributions to the areas of self-diagnosis, 

self-compensation and mechatronics in robotics. 

 

In the area of self-diagnosis this research provides new methods and algorithms 

whose purpose is:  

 Detection and identification of abnormal situations that negatively affect a robot’s 

performance. 

 Labelling and classification of anomalies generated internally within a robot or 

through interaction with the environment. 

 Use of research actions and information about a robot’s anatomy as tools for the 

rejection or corroboration of a robot’s theories about sources of detrimental 

disturbances. 

 

In the area of self-compensation this investigation presents novel techniques and 

algorithms whose aim is:  

 Association of detrimental disturbances with corresponding compensatory 

measures. 

 Adaptable gait generation that allows legged robots to walk in a stable fashion 

after they have shed a variable number of legs. 

 Learning from experience and compensation of detrimental disturbances not 

included as part of the robot’s innate behavioural patterns. 

 

In the area of mechatronics this research has lead to the development of the 

following robotic sensor and mechanism. 

 A 3D printed plastic optomechanical robot leg tip force sensor that generates a 

voltage derived from an opto-interrupter, which is related to the pressure or 

traction applied to the leg’s tip. 

 A compact leg release mechanism that provides legged robots with a method for 

the autonomous physical ejection of damaged legs without requiring extra motors. 
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Although contributions have been classified into different areas of knowledge, they 

can also be organised into primary and secondary contributions. 

 

Primary contributions of this thesis are: 

 New algorithms for detection and identification of abnormal situations that 

negatively affect a robot’s performance. 

 Novel methods for labelling and classification of anomalies generated internally 

within a robot or through interaction with the environment. 

 Techniques that facilitate the association of detrimental disturbances with 

corresponding compensatory measures. 

 Methods for Learning from experience and compensation of detrimental 

disturbances not included as part of the robot’s innate behavioural patterns. 

 

Secondary contributions of this thesis are: 

 Techniques that use research actions and information about a robot’s anatomy as 

tools for the rejection or corroboration of a robot’s theories about sources of 

detrimental disturbances. 

 An adaptable gait generation that allows legged robots to walk in a stable fashion 

after they have shed a variable number of legs. 

 Development of a novel 3D printed plastic optomechanical robot leg tip force 

sensor that produces a voltage derived from an opto-interrupter, which is related 

to the pressure or traction applied to the leg’s tip. 

 Development of a compact leg release mechanism that provides legged robots 

with a method for the autonomous physical ejection of damaged legs without 

requiring extra motors. 
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1.3. Thesis Structure 

This thesis is organised as follows: 

 

Chapter 1 (this chapter) outlines the motivation, aims, contribution and structure of 

this work.  

 

Chapter 2 provides a review of literature mainly dealing with biologically inspired 

walking robots, gait optimisation and adaptability, detection of robots anomalies and 

fault tolerant robots able to identify and compensate failures. 

 

Chapter 3 presents the experimental hexapod robot designed, built and used during 

this investigation. This chapter is subdivided into the robot’s design, control, sensors 

and robot’s leg release mechanism. 

 

Chapter 4 describes methods for the detection of abnormal situations that negatively 

affect a robot’s performance. Techniques for the identification of the sources and the 

classification of these detrimental disturbances are also provided.  

 

Chapter 5 provides techniques that allow the matching of detrimental disturbances 

with their corresponding compensatory measures included as patterns of the robot’s 

innate behaviour. The chapter continues by presenting examples of compensatory 

measures used in the experimental robot. In addition, methods for the generation of 

compensatory measures not included in the robot’s innate behaviour are provided. 

The chapter finally describes how learned compensatory measures are included into 

the robot’s set of compensatory measures. Interactions among the algorithms that 

will be introduced in chapters 4 and 5 are shown in Fig. 1.1. 

 

Chapter 6 concludes the thesis and recommends avenues for future research.   
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Figure 1.1. Flow Chart of Detrimental Condition Detection and Compensation Described in Chapters 
4 and 5.
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Chapter 2  

Literature Review 

This chapter provides background information for this research by introducing a 

selection of relevant publications. The review begins with a number of approaches to 

anomaly detection in walking robots. Then, the report is focused on works dealing 

with self-healing and fault tolerance, and in robots able to identify and compensate 

failures. Here, particular attention is given to biological inspired methods such as 

autotomy, force detection and reflex actions in robots. The report continues with 

different approaches for the use of sensorial information, provided by adaptable 

walking robots, in gait optimisation and adaptability to changing conditions 

associated with both robots and their environment. As more complex data sets are 

available, the study is extended to algorithms employed in robotics for the analysis of 

this information. This is followed by the presentation of studies dealing with the best 

ways of mechanical locomotion over rough terrain. Finally, biological approaches to 

gait generation in walking robots are reviewed. 

2.1. Anomaly Detection in Walking Robots 

A number of publications deal with adaptability for changes in the robot itself. They 

intend to detect faults or anomalies that affect a robot’s performance. For instance, a 

sensor could be sending wrong information, a motor could be broken or part of the 

mechanical structure of the robot could have changed. The detection of the anomaly 

is a first step before a compensatory measure can be executed. 
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A few related works have been published. For instance, the paper in [6] presents a 

method for classifying sensing failures in autonomous mobile robots. Here, the error 

classification is performed by a variation of the Generate and Test method [7]. This 

technique basically generates all of the possible causes of an error based on the 

symptoms, orders a list of associated tests and executes tests to confirm any of these 

causes. The classification is terminated when all tests have been performed or an 

environmental change has been confirmed. Subsequent papers of the authors [8] [9] 

also describe works following this line. However, the presented methods seem to fail 

when they face different kinds of unexpected situations. The methods in [6], [8], and 

[9] present some similarities with the self-diagnosis techniques proposed in this 

thesis. Basically, both approaches generate theories about the source of an anomaly 

and then execute tests to validate or reject these theories. Nevertheless, the way that 

these theories are generated is different. In the considered publications, the 

generation of theories about the source of an anomaly is based on the Generate and 

Test method, presented as a part of the DENDRAL Project. In comparison, the 

algorithms that will be proposed in this thesis are simpler, which facilitate their 

implementation in small robots. In addition, the authors in [6], [8], and [9] identify 

anomalies by using 4 symptoms: missing data, highly uncertain data, and highly 

conflicting observations and below minimum certainty in the percept. This does not 

allow the robot to identify gradual changes in the sensor readings generated by a 

fault (e.g. a servo motor gradually increasing its temperature until it is overheated). 

In addition, tests are executed when a symptom is detected even if this is not 

preventing the robot from making progress in its mission, which in some cases could 

be inefficient. As will be discussed in Chapter 4, these issues are addressed in this 

thesis by continuously monitoring the performance of the robot and incorporating 

pain into the robot. As a result, the self-diagnosis methods only interrupt the normal 

operation of the robot when it is necessary. Therefore, in this thesis an anomaly is 

understood as extreme sensor values or a lack of progress in the robot’s mission. 
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A biologically inspired fault detection method referred to as an Artificial Immune 

System and based on immune theory is reported in [10], [11] and [12]. There are a 

number of techniques associated with the Artificial Immune System. For instance, 

Negative Selection, a mechanism based on the ability of the immune system to learn 

to distinguish between non-self- cells and self-cells is employed in [10]. On the other 

hand, the authors in [11], [12] and [13] prefer to use Clonal Selection. As stated in 

[12], the Clonal Selection method is based on a mechanism employed by antibody 

cells, which upon discovery of an antigen; start to proliferate by cloning themselves. 

They also memorise the antigenic attack (immune memory) so they have higher 

responsiveness to the particular antigenic attack over time. Researchers in [11], [12] 

and [13] combined the Clonal Selection principle and Fuzzy Logic with weight 

factors for detecting robot anomalies.  

 

A different approach is adopted in [14] where the robot EduBot is presented. This 

walking machine is able to identify disturbances by means of finite state machines. 

The proposed technique is employed for the identification of two abnormal states, 

corresponding to missing ground contact (interpreted as a leg fault) or unexpected 

contact (interpreted as contact with a wall). EduBot is provided with two reactive 

behaviours, each one targeting one of the two considered disturbances. Finite state 

machines for detecting malfunctions evidenced by a drastic difference between the 

expected and the actual value of a sensor reading are also reported in [15] and [16]. 

Here, those faults that manifest themselves through a combination of abnormal 

sensor readings are classified by means of neural networks. The investigation 

presented in [17], [18] and [19] use a back-propagation neural network for 

identifying simulated hardware faults. Here, the network is trained to identify 

changes in the relation between sensor readings and the control program behaviour, 

which arise when the faults are introduced. A disadvantage of methods based on 

neural networks is that they require large amounts of training data before they can 

provide a good rate of correct classification. This intrinsic training requirement 

seems unnatural when we consider living creatures that successfully compensate 
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anomalies without the need of training or a learning process. Indeed, it is widely 

accepted that a combination of innate behaviour provided by evolution and learning 

capabilities is what has allowed living creatures to adapt to the changing conditions 

of their environment. The self-diagnosis and self-compensation methods to be 

proposed later on in this thesis utilise innate information given to robots about 

possible anomalies they may find. In addition, these methods also provide robots 

with the ability to learn ways to compensate anomalies not originally considered.  

 

Abnormality detection has also been applied in multi-agents systems. For example, 

in [20] a cross-regulation model is utilised for detecting an agent having an abnormal 

behaviour inside a group of 19 agents having normal swarm behaviour. 

 

In [21] a situation analysis technique is proposed. This method uses the sensorial 

information and context data provided by a target robot to describe the current 

situation. Then, this information is matched with a set of pre-defined situations by 

means of matching algorithms such as Bayesian networks. 

 

An example of fault detection and identification in the wheeled robot Pioneer I is 

reported in [22]. This work considers two abnormal conditions, a flat tire and an 

object stuck to a tire, which are identified by utilising Kalman filters. Another 

approach is adopted in [23], where the robot LAURON IVc is presented. This robot 

is able to detect seven different types of faults, ranging from mechanical coupling 

problems to the total loss of leg controller units. The walking machine status is a 

combination of many different internal states representing the hardware and software 

components of the robot. Each internal state has a maximum of three levels. 

Depending on one or more sensor values representing the condition of its hardware 

or software component, the internal states are classified into one of these levels. The 

range of each level is determined by using thresholds. According to the authors, these 

thresholds have evolved from many experiments over several years and from expert 

knowledge. A similar approach will be proposed in section 4.2.3 for the classification 
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of abnormality levels of sensor readings. The difference here is that thresholds are 

used for determining differences between obtained and expected sensor values and 

not only for dividing the range of the sensor into a certain number of levels. 

 

Refer to [24] for a structured and comprehensive overview of existing research on 

anomaly detection. 

2.2. Self-Healing and Fault-Tolerant Robots. 

As stated by [25] and [26] a self-healing system is one that is able to recover from 

the abnormal (or “unhealthy”) state and return to the normal (“healthy”) state, and 

function as it was prior to disruption. A few robots with self-healing capabilities are 

reported in the literature. For instance, the authors in [27] present a ROS (Robot 

Operative System) based robot that is able to restart its hardware modules after a 

fault has been detected. In this case, it is assumed that the abnormal state is generated 

by a software error. Therefore, the module will probably return to its normal state 

after being restarted. However, there are many situations where, although robots are 

not able to completely recover after a failure, they can compensate it and minimise 

its effects. This sort of robot can be more accurately referred as fault-tolerant 

systems, where faults are compensated in such a way that they do not lead to system 

failures [28]. As proposed by [29], the interactions among different components of 

fault-tolerant robots are depicted in Fig. 2.1. 

 

A number of fault-tolerant robots can be found in the literature. For instance, the 

research in [30] considers the case where one of the 18 joints of a hexapod robot is 

locked. In this case, if the angle of the locked joint is known, then the new leg 

workspace is determined. Therefore, a stable gait is generated after calculating the 

appropriate coordinates for the new leg’s condition. Another example, reported by 

[31], is a four-legged robot that is able to automatically synthesise a predictive model 

of its own topology (where and how its body parts are connected) through interaction 

with its environment. This model is used to synthesise successful new locomotive 
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behaviour before and after damage. The same self-modelling approach is used in 

[32]. The algorithm proposed here does not identify the damaged parts but it 

implicitly searches for efficient behaviours that do not use them. This technique was 

evaluated on a hexapod robot that must compensate for leg removal, broken legs and 

motor failures.  

 

Another example of self-modelling oriented to self-compensation is reported in [33]. 

Here, the authors propose a self-modelling algorithm which is used for the generation 

of forward locomotion in a four-legged robot. When a part of one of the robot’s legs 

is removed, the robot adapts its self-models in order to generate alternative gaits. 

 

Although self-modelling is not a subject of this thesis, methods for the autonomous 

generation of compensatory measures are proposed. These methods are similar in the 

sense that both generate patterns of robot movement or behaviour until some goal is 

achieved. A difference with the work found in the literature is that in the self-

compensation methods proposed in this thesis, abnormal sensorial information is 

utilised for guiding or constraining the range of movements of the robot. Therefore, 

the time necessary for achieving the compensatory behaviour is potentially reduced. 

Figure 2.1. Algorithm Interaction in Fault Tolerant Robotics. 
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In this thesis, the generation of random behavioural patterns is only utilised as a last 

resort. 

 

A different fault-tolerant system is presented in [34]. In the method proposed here, a 

correct configuration of the system (which leads to correct behaviour) is defined by 

constraining the system. When a failure arises, one or more of the constraints are 

violated. As a result, the system calculates a new configuration, such that the 

constraints hold again. 

 

Researchers in [35] used a model-based failure detection and isolation (FDI) method 

for fault detection in robotic manipulators. As stated in [36], the FDI problem is 

addressed firstly by processing input/output data sets in order to detect the presence 

of various faults and to isolate them. Then, the system control is reconfigured in 

order to compensate for the negative effects of the fault and restore performance. The 

authors in [35] proposed a FDI filter based on a smooth velocity observer. This kind 

of observer-based methods aim at generating some residual signals such that each 

residual is sensitive to a group of faults. Then, logical combination of residuals can 

ultimately lead to localisation of faults. 

 

A bond graph model used to represent a quadruped robot’s locomotion is presented 

in [37]. This model of the system is used to generate the analytical redundancy 

relations, which are then evaluated with actual measurements to generate residuals. 

These residuals are used to perform structural fault isolation. Once the fault list is 

updated in the equipment availability database, an automaton selects the best option 

to reconfigure the system such that the given control objectives are achieved. The 

fault-tolerance here is obtained by redundancy. This means that the robot is provided 

with spare modules that are not used during normal operation. When a fault is 

detected, the system is reconfigured such that faulty modules are replaced by their 

corresponding spare modules. This redundancy approach of fault-tolerant system is 

commonly found in modular and self-configurable robots [38]. 
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The methods that will be proposed in this thesis also consider the isolation of faulty 

components of the target robot. For instance, once a faulty sensor has been identified, 

its readings are no longer considered. In Chapter 5, a labelling system that identifies 

faulty components of the target robot will be proposed. Although the proposed self-

compensation methods were not tested in a robot with hardware redundancy, no 

difficulty for this kind of implementation is anticipated. Because no redundancy was 

considered, the experimental robot loses part of its functionality once a fault is 

generated in one or more of its components. However, the methods to be proposed in 

this thesis consider function redundancy for the compensation of abnormal situations. 

These functions can indicate to the robot the course of action to be taken when 

failures anticipated by the robot’s designer are faced. This is similar to information 

provided by evolution to living creatures, which can immediately compensate 

dramatic events (e.g. the loss of a leg) without requiring a learning process. As a 

result, the target robot adapts its behaviour instead of replacing the faulty hardware 

module; and continues with its mission although its functionality and, in most cases, 

its performance has been degraded. 

2.2.1. Autotomy in Robots 

There are many examples in nature of organisms that shed parts of their body in 

order to escape from a predator or a fouled moulting event. This process is called 

autotomy [39] and [40]. Once an organism performs autotomy it is able to 

immediately adapt its behaviour to the new configuration of its body [41]. For 

instance, an arthropod which has autotomised a leg can immediately adapt its gait 

(without a learning process) in order to maintain stability when it is walking. The 

literature contains a few examples of fault-tolerant robots, which emulate this 

capability.  

 

In [42], an eight-legged robot SCORPION suffering leg loss is presented. Its fault 

tolerance was tested by removing different combinations of leg pairs. Then, an 

arachnid gait and three different insect gaits were utilised to evaluate, in terms of 
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speed and accuracy, the performance of the robot walking in a straight line. The 

results showed the importance of stability for the accuracy and even the mobility of 

the robot. On average, when the four gaits previously mentioned were utilised, only 

15 of the 28 possible combinations of removed leg pairs were stable. These 

combinations allowed SCORPION to walk with some deviation from a straight line. 

As a result, the most stable gaits were obtained when the middle leg pairs were 

removed. By using this configuration, the best performance was exhibited by the 

tripod gait. However, the remaining tested gaits showed the best performance when 

different legs pairs were removed. Hence, the authors stated that more 

experimentation is necessary in order to determine the best gait for their robot.  

 

Inagaki [43] has considered the case of a hexapod with one leg disabled and the 

generation of a gait for the five remaining legs. This work proposed an asymmetrical 

gait, composed of two combinations of leg phases, with a high stability margin and a 

duty factor in the range 0.6 to 1. A problem with this gait is that it has a fixed leg 

configuration and leg phase. Therefore, it is not adaptable to unexpected situations 

that can arise when walking in rough terrain. An analogous publication [44] 

considers a hexapod robot from which a leg has failed and been removed. The 

authors here propose a sliding system for removing the damaged leg and rearrange 

the remaining legs in order to improve the static stability of the robot. Then, an 

alternative gait suitable for the new robot’s configuration is presented. Unfortunately, 

this approach was not tested in a real robot and only the general idea of the sliding 

system was presented. Following this publication, in [45] the authors present a 

survey of usable alternative gaits for hexapod and octopod robots with one or more 

severed legs. Another model of a hexapod robot suffering a leg loss and an octopod 

robot undergoing two leg losses is reported in [46]. In this work, gait parameters 

such as speed and pitch angles are heuristically modified until a stable gait is 

achieved. As occurred in [44] and [45], only simulation results are provided.  
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The work most closely related to the aims of this research has been developed by the 

Institute of Computer Engineering at the University of Luebeck, Germany. This 

group has presented its robot OSCAR (Organic Self-Configuring and Adapting 

Robot) [47], a six-legged robot that is able to adapt its gait after one or two legs are 

manually deactivated by the operator (simulating leg amputation). OSCAR detects 

the amputation thanks to missing feedback, such as ground contact or servo 

feedback. The robot’s gait is generated moving the legs between their Anterior 

Extreme Position (AEP) and Posterior Extreme Position (PEP) during the stance 

phase. Once the legs reach their PEP, the swing phase begins; the legs are lifted and 

moved to their AEP. Then they are lowered and the stance phase starts again. The leg 

coordination is controlled by only one rule: a leg is only allowed to swing, when its 

neighbouring legs perceive ground contact. In the case of amputation, if the 

neighbouring leg is amputated and sends no ground contact signal the next leg will 

compensate for the missing one. After using this scheme, the walking robot exhibited 

instability even when only one leg was deactivated. In the case where two legs were 

lost, the robot was only able to walk with greatly reduced efficiency when two 

opposite legs were deactivated. When the relative position of these legs was not 

opposite each other, the robot was not able to walk at all.  

 

After the first version of the robot OSCAR, a number of publications show the 

progress in this project. In [48] the authors included turning and curved walking. The 

turning movement is a rotation on the spot. It is accomplished setting the AEP and 

PEP of each leg to the same value and moving all the legs in the same direction 

(clockwise or counterclockwise). On the other hand, the curving walking is achieved 

by shortening the stance trajectories of the legs at the inner side of the curve and 

enlarging the stance trajectories of the legs at the outer side. This is accomplished by 

changing the respective AEP and PEP values. In the case of leg amputation, the AEP 

and PEP are altered in order to fill the gap left by the missing leg. This approach 

effectively reduced the time required by the robot for reaching a goal position. 

Unfortunately, the analysis of the results in [48] only considers the deactivation of 
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one leg at the time. It is not clear how the stability of the robot is affected during the 

turning movement when one or more legs are amputated. In [49], a series of rules is 

presented for a uniform distribution of legs once one or up to three legs have been 

removed. The paper in [11] describes the anomaly detection system of the robot 

OSCAR. This is based on fuzzy logic and clonal selection [13]. The system adapts 

the weights of its fuzzy rules, which provides a kind of short-term memory. It would 

allow the robot to perform better when facing previously learnt situations. However, 

this learning process has not been implemented yet and the authors in [11] only 

present a comparison between fuzzy rules with static and dynamic weights in their 

experimental results. A summary of the current state of this project is reported in 

[50]. 

 

In this thesis, an adaptable gait generation method will be proposed. This technique 

will be utilised by the experimental robot for compensating the loss of one or more 

legs. The approach to be proposed selects and calculates the final coordinates of a 

robot’s stance and swing legs by maximising the stable mobility of the robot in the 

direction of locomotion. More details about this technique will be presented in 

Appendix B. In comparison, the gait generation method that will be proposed in this 

thesis seems to be more complex than the one incorporated into the robot OSCAR. 

While the former deals with combinations of shapes created by the robot legs’ tip 

and geometrical intersections generated as the legs move, the latter uses simple rules 

that modify the AEP and PEP of the legs and generate a new gait after a leg loss. 

Nevertheless, the gait generation method that will be proposed in this thesis shows 

better results than the one achieved by OSCAR in terms of stability. In cases were 

OSCAR is unable to maintain stability (e.g. in some cases where only one leg or 

when two non-opposite-legs are lost), the proposed adaptable gait generation 

algorithm shows no stability issues. 

 

The Robot Leg Amputation Mechanism (R-LEGAM) is presented in [51] and [52]. 

This mechanism is used when the robot experiences problems in some of its legs and 
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there is no other solution but to amputate a leg. Depending on the circumstances of 

the amputation, this action could give the robot an extra chance of reaching its goals 

or simply extend its functional life. As well as in the biological counterpart [53], the 

disadvantages are that the walking speed is reduced and the energy requirements are 

larger in comparison with the intact robot. R-LEGAM is integrated with springs in 

each amputation mechanism, which are used for ejecting the amputated legs from the 

robot’s body. Each compressed spring is released by a small mechanical latch that is 

controlled by a small additional servo motor.  

 

In section 3.4, a novel leg release mechanism will be presented. The proposed system 

is more compact and lighter than R-LEGAM because no extra servos are necessary 

for detaching a leg. On the other hand, the leg ejection process is slower in the 

proposed system, which might be a disadvantage in some applications.  

2.2.2. Force Detection and Reflex Reaction 

The control of walking and posture in insects is affected by the integration of 

information about external forces applied to the insect’s legs. These forces are 

detected by receptors called campaniform sensilla, which also adjust the motor 

output to changes in load. Since terrain features are perceived by the locomotor 

system as a pattern of load distribution among the insect’s legs, this information is 

essential for the adaptability of a walking insect to rough terrain.  A deeper analysis 

of how far load detection is related to flexibility in adaptation of posture and 

locomotion can be found in [54].  

 

Load detection is another capability emulated by biologically inspired robots. El 

Sayed Auf, et al. [55], as a part of the OSCAR project, introduced a decentralised 

controller approach. This involves the measuring of external forces affecting each of 

a robot´s joints and combines active compliance with a step-performing reflex. The 

external force is calculated using the existing correlation between the force applied to 

the servo and its electrical current consumption. When an external force is perceived 



 
Chapter 2. Literature Review 

20 
 

by the servo, its actual and goal positions start to differ. If this difference is larger 

than a determined threshold, then the active compliance moves the servo in the 

direction of the applied force. This principle is used in the proposed step reflex. Here, 

if a robot’s leg is pushed backwards or forwards, to the limit of its working space, 

then the robot steps in the direction of the applied force. Therefore, the movement of 

the pushed leg relative to the robot is in the opposite direction to the applied force. 

The reflex behaviour has been proposed in previous papers as well. For instance, in 

[56] Espenschied et al. proposed an elevator and a searching reflex. The elevator 

reflex acts when a swinging leg encounters an obstacle, reversing the motion of the 

leg and lifting it higher before continuing to swing forward. In this case, the external 

force is the reaction force opposite to the force with which the leg pushes the 

obstacle. The searching reflex is applied when the terrain support is missing (e.g. if 

there is a hole) or lost (e.g. if part of the terrain slides away from under a leg). It 

consists in a circular foot movement that progressively increments its radius a fixed 

number of times or until the foot finds an acceptable foothold. 

 

In this thesis, reflex actions are understood as responses to pain (or extreme sensorial 

values). This is discussed in subsection 4.1.2, where an experiment with extreme 

values of a servo motor force sensor is presented. In particular, the elevator and the 

searching reflexes presented in [56] were not implemented into the experimental 

robot. However, similar tasks are utilised as research actions for validating or 

rejecting the robot’s theories about the source of an anomaly.   

2.3. Sensorial Information in Walking Robots 

2.3.1. Gait Adapatability 

A number of walking machines intended for rough terrain have been equipped with 

sensors in their legs. This information provides feedback that has improved the gait 

stability of these robots. For instance, the authors in [57] have embedded joint angle 

and joint torque sensors in the legs of the hexapod walking robot DLR Crawler. This 
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information is used by a 3D odometry algorithm that allows the estimation of pitch 

and roll angles. Similarly, the robot HITCR-II, presented in [58], is equipped with 

joint torque sensors. An extra feature of this robot is the omni-directional force 

sensors located in the robot’s feet. In addition, a force-position controller is 

employed in the balance stabilisation method presented in [59]. This technique 

considers the impact dynamics of walking robots. As a result, external perturbations 

are compensated by estimating impulsive forces in real‐time.  

 

Some authors have considered problems that robots face when walking on rough 

terrain. For instance, the authors in [60] equipped their hexapod robot ASTERIX 

with touch sensors on the tip of its legs. The robot utilises these sensors to ensure that 

all of its stance legs are in contact with the irregular terrain. Then, the elevation of 

the robot’s swing legs is calculated by considering that the plane formed by the tip of 

these legs must be parallel to the stance legs’ plane. In addition, problems related to 

foothold selection for reducing slippage and improving static stability when walking 

on rough terrain are addressed in [61]. Furthermore, an adaptable gait has been 

reported in [62]. This gait allows robots to maintain stability when walking over 25-

degree slopes or when an external force of up to 58% the robot weight is applied. 

 

The authors in [63] use the software architecture ORCA (Organic Robot Control 

Architecture) and Learning Classifier Systems (LCS) as methods for the autonomous 

tuning of an algorithms’ parameter. The LCS analyse the output of a module and 

apply changes to algorithm parameters or exchange parts of the algorithm. In 

operation, the LCS further employ unsupervised machine learning to determine, 

which actions have most improved the algorithm performance. When this approach 

is utilised in gait generation algorithms, the resulting gait is able to adapt to changes 

in the robot’s environment.  

 

Similarly to the works presented in [57] , [58], [59] and [60], the experimental robot 

utilised in this thesis has been provided with a number of sensors. These sensors 
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supply information about torque and position of the robot’s servo motors, and force 

applied on the tip of the robot’s legs. In particular, data provided by the leg tip force 

sensors is utilised for calculating the position of the robot’s centre of mass. This is a 

parameter of the gait generation algorithm that will be proposed in this thesis and 

presented in Appendix B. The calculation of the robot’s centre of mass allows the 

gait generation algorithm to improve gait stability when the robot’s centre of mass is 

shifted (e.g. because an object has been deposited on top of the robot). A larger 

degree of adaptability is provided by the ability of the gait generation algorithm for 

to generate a stable gait in robots after a series of leg losses. This feature 

differentiates the gait generation algorithm that will be proposed in this thesis, from 

other adaptable gait generation algorithms found in the literature. 

2.3.2. Gait Optimisation 

Researchers have also considered the optimisation of energy consumption in walking 

robots. An example of this can be found in [64], where the hexapod robot SILO6 is 

used for comparing the energy consumption of insect and mammal leg 

configurations. Another hexapod robot is utilised in [65] for evaluating the energy 

required by a set of wave-gaits with different duty cycles. This work is extended in 

[66], where the energy requirements during turning are analysed. In addition, Jin et 

al. [67] propose a torque distribution algorithm to minimise the energy consumption 

of hexapod robots. Furthermore, a report about the use of power efficiency 

degradation of robots for health monitoring and fault detection purposes can be 

found in [68]. 

 

In this thesis, two conclusions commonly found in the literature regarding gait 

efficiency have been corroborated. The gait generation algorithm that will be 

proposed in this thesis was designed to maximise stability and distance travelled. As 

a result, a tripod gait was generated for hexapod robots, which is commonly 

considered as the fastest gait in the literature. In addition, a wave gait was generated 

for quadruped robots, which is considered as the most stable gait in literature. Both 
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gaits have been favoured by natural evolution and are found in many species of 

living creatures. The second corroborated conclusion is that the speed of locomotion 

is drastically reduced in hexapod living creatures after a leg loss. This speed 

reduction was also experienced by the experimental robot. Results in Table B.20 

show a reduction of 56% in the average distance per gate cycle covered by the 

experimental robot after a leg loss.  

2.4. Clustering 

Robots are commonly provided with sensors that have different resolutions and 

ranges; they also measure different physical phenomena. As a result, the sensorial 

information provided by robots typically generates a dynamic multivariate space. 

Some authors have classified these complex data by using classical clustering 

methods. For instance, [69] use the fuzzy c-means clustering algorithm [70] in the 

classification of sensors readings provided by a robot team. The authors in [71] 

report the use of classical Bayesian clustering as a part of their method for online 

classification of robot sensor data. In the two previous examples, the authors have 

used techniques for reducing the data dimension.  

 

A difficulty commonly found when using the original fuzzy c-means or later 

optimised versions [72] is that these algorithms require initial values that are often 

unknown. This problem has been addressed by a group of researchers [73] who have 

modified the original algorithm in order to automatically calculate some of these 

values. As a result, better classification is obtained, but sacrificing simplicity and 

speed.  

 

Several researchers have preferred to develop their own clustering methods. For 

instance, [74] have proposed a clustering algorithm that exploits the time-

dependency between sensor readings samples. In [75], robotic sensorial information 

has been clustered by using non-parametric statistics.  
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A disadvantage of classic clustering methods commonly found in the literature is the 

large number of calculations they require. This number is often incremented as the 

robot’s sensors collect more data points. In comparison, the self-diagnosis methods 

that will be proposed in Chapter 4 utilises a simple and fast approach for data 

classification. New sets of data are associated with an existing group after 

establishing that the Euclidean distance between their centroids is less than with 

other groups. In addition, a new group is only created after a correct diagnosis is not 

possible with the existing groups. The classification methods that will be proposed in 

this thesis only store the centroid of each group and the number of data points. This 

drastically reduces the memory requirements of the system and, because the system 

deals with less data during the classification process, processing time is also reduced. 

2.5. Robot Locomotion over Rough Terrain 

The performance of robots in the real world is currently compromised by their 

limited degree of adaptability when dealing with a complex and uncontrolled 

environment. In the locomotion area, how robots can travel autonomously over rough 

terrain is an unsolved issue that has focused the attention of an increasing number of 

researchers. Since an early stage, different methods of robot locomotion, such as 

wheels, tracks, legs, etc., have been employed. Wheels and tracks are easy to control 

and they are also inexpensive solutions. However, it has been estimated that vehicles 

with this kind of locomotion cannot access about half the earth’s land surface [76]. 

On the other hand, walking machines offer the following advantages: 

- Adaptive to uneven terrain. 

- Use isolated footholds. 

- Provide active suspension. 

- Environmental effects of legged vehicles are less than wheeled or tracked vehicles. 

The disadvantages of legged locomotion are the complex control and mechanical 

design that makes legs slower and more prone to failure than tracks or wheels [77]. 

However, walking machines have a wider range of movements. This is necessary to 
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overcome different terrain irregularities that they could find in their path. For 

instance, legged robots can step over, climb or jump obstacles comparable with their 

own size ( [78], [79] and [80]). They are also able to place carefully each leg on the 

ground and to decide whether to back up or advance when walking on intermittent 

terrain [81]. All of these features make legs more suitable for locomotion over rough 

terrain.  

 

A number of publications analyse the different types of robot locomotion. For 

instance, [77] assesses the locomotion performance of all-terrain rovers whereas [82] 

compares wheels and tracks from the traction perspective. Another analysis [83], 

including biological creatures and robots, compares the specific power (the vehicle 

power normalised by a product of the gross weight and the speed), with locomotion 

speed. Furthermore, a survey including tracked, wheeled and legged locomotion can 

be found in [84].  Two additional surveys, one including walking machines with two, 

four and six-legged propulsion; and the other involving compliant legged robots are 

presented in [85] and [86], respectively. In addition, an amphibious robot able to 

walk and swim is introduced in [87]. Examples of other modes of robot locomotion, 

such as jumping, rolling and crawling are reported in [88]. 

2.6. Biologically Inspired Walking Robots 

Observing the many examples of successful legged locomotion through rough terrain 

found in nature, robotics engineers have included some biological principles in the 

mechanics and control of their designs. However, due to the high complexity of 

biological walking organisms and the impracticality of emulating nature’s actuators 

and sensors, only some of the ideas have been currently implemented in the control 

architecture of real robots [89]. A number of biologically inspired approaches to 

robot locomotion are found in the literature, for instance, Quinn et al. ( [90] and [91]) 

have developed a series of four robots (named Robot I, II, III and IV) each 

progressively more exact copies of cockroaches. Robot I, has demonstrated insect-

like gait generation walking over flat surfaces using a neural network gait controller. 
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Robot II has a distributed control system which includes a central posture controller, 

leg reflexes and a gait generator based on biological studies on leg coordination 

mechanisms in the stick insect [92] [93]. This robot is capable of walking, turning 

and walking sideways over uneven terrain. Robot III is self-contained and utilises air 

cylinders as actuator, which have a larger force to weight ratio than electric motors. 

It is capable of walking, running, turning and climbing over small obstacles with an 

agility that resembles a real cockroach. Finally, Robot IV employs braided pneumatic 

actuators which optimise the energy consumption while adding passive compliance 

to the robot’s legs. 

 

Another series of robots, Lauron (Legged Autonomous Robot, Neural Controlled) I, 

II and III have been developed using the stick insect configuration and 18 dc motors. 

Lauron I [94] uses a hierarchical neural control architecture, which selects a gait 

from a discrete set. It utilises an insect model that provides training samples for a 

supervised leg control learning algorithm. Lauron II [95] includes a stereo vision 

system and additional sensors for obstacle detection. The third robot, Lauron III [96], 

incorporates leg reflexes like collision reaction and searching for ground contact. It 

also controls its body height and considers gravity influence in the robot’s gait. 

Lauron III has a hierarchical control; a central unit controls the leg coordination 

whilst individual controllers on the legs manage the leg reflex behaviour. This robot 

is capable of walking in real world environments such as forests and mountains. 

 

Gregor I [79] is another biologically inspired robot. It attempts to emulate some 

cockroach attributes such as self-stabilising posture and specialised functions of the 

legs. Its gait is generated using neural networks based on the theory of Central 

Pattern Generators (CPG). These are neural circuits found in both invertebrate and 

vertebrate animals that can produce rhythmic patterns of neural activity without 

receiving rhythmic inputs [97]. Refer to [97], [98], [99], [100], [101], [102], [103], 

[104] and [105] for a deeper explanation and additional examples of CPGs applied to 

locomotion control of legged robots. Thanks to its sprawled posture and piston-like 
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actuation for rear legs, Gregor I is able to walk at 0.1 body length per second and 

climb obstacles up to 170% of the height of its mass centre. The third version of this 

robot, Gregor III [106], is controlled using an extension of Walknet ( [107] and 

[108]), a decentralized network based on studies of the stick insect which by means 

of local reflexes produces the control signals utilized to generate the gait in hexapod 

robots. The performance of Gregor III was tested in simulation and using the actual 

robot. In the simulated environment, the robot generates a gait that maintains its 

stability at low speed. When the locomotion speed reaches its maximum value, the 

robot adopts a tripod gait. In the real robot, differences between the expected and the 

real joint angles arose. Those were attributed to the effect of friction on the robot’s 

low torque motors. A more recent example of gait generation using Walknet is the 

robot HECTOR introduced in [109].  

 

Dante II [110] is a robot designed for exploring inside volcanic craters. Its gait was 

programmed with 24 asynchronous processes or behaviours, which allow the robot to 

stand, step, walk and also control its posture. The behaviours are inhibited or 

activated according to the leg position, leg phase and additional information supplied 

by the sensors.  Dante II descended into the crater of Mount Spurr and was able to 

perform exploration being tele-operated during the whole process. However, during 

the exploration it tipped over and had to be rescued. 

 

Porta et al. [111] have proposed an adaptable gait for hexapod robots. Gait 

generation uses a simple rule: “Never have two neighbouring legs raised from the 

ground at the same time”. By using this rule and considering the relative position of 

the legs with respect to their posterior extreme position, the robot central controller 

calculates the order in which the legs must be raised, generating the gait. The 

experimental results showed that the robot adapts its gait according to the terrain 

over which it is walking, generating a tripod gait when it is traversing flat surfaces. 
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Gait pattern self-synchronisation for walking robots is presented in [112]. This self-

synchronisation allows the robot to adapt its gait in certain situations, for instance, 

when a leg must modify the length of its stance/swing phase in order to overcome an 

obstacle. The method uses two rules. First, when one leg shortens or lengthens its 

own gait, its neighbouring legs imitate this change, adapting their gait as well. The 

second rule establishes that the prolongation occurs only during the stance phase 

whereas the shortening takes place only during the swing phase. As a result, the gait 

of all the robot´s legs adapts to the changes of their neighbouring legs generating a 

synchronized robot gait pattern without using global coordination. The 

synchronisation time depends on the final gait length to which the legs synchronise 

their swing and stance phases. Gait stability during the synchronisation process 

depends on how often such synchronisation is initiated by external influences during 

a short period of time.  

 

A more complex model of a biologically inspired walking robot with 22 degrees of 

freedom is presented in [113]. Here, the gait is generated by means of a hierarchical 

recurrent neural network. Whilst the simulation results proved to be satisfactory, the 

model was not applied to a real robot. Another example where hierarchical neural 

networks are involved can be found in [114]. In this work, the gait generation of the 

walking hexapod robot AMOS II is achieved by means of a CPG and an adaptive 

neural control. Furthermore, the authors in [115] propose to improve the long-term 

stability of the CPG by introducing a new type of neuron called a single unit pattern 

generator. 

 

Additional approaches for both gait generation and optimisation are genetic 

algorithms ( [116], [117] and [118]) and reinforcement learning ( [119], [120] and 

[121]). These methods intend to mimic the biological processes of evolution and 

learning, respectively. In many cases, a combination of methods is utilised. For 

instance, [122] uses a CPG for the gait generation and a mixture of genetic 

algorithms and reinforcement learning for optimisation of the gait. The works 
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presented in [123] and [124] utilise evolutionary algorithms to autonomously 

determine and optimise gait parameters in a Sony entertainment four-legged robot 

AIBO. Researchers in both publications report that the resulting evolved dynamic 

gaits are faster than those obtained by hand-tuning the gait parameters. 

 

A literature review considering genetic algorithms for gait optimisation can be found 

in [125]. 

 

A five-legged robot, inspired by the sea star, has been reported in [126]. Here a set of 

fuzzy Q-learning modules is utilised to generate different actions. The resulting 

behaviour is employed for obstacle avoidance in a cluttered environment. 

 

In some publications, fuzzy logic has been involved in the gait generation. For 

instance, in [127] it is reported that different hexapod wave gaits have been 

generated by means of appropriate fuzzy rules. Similarly, in [128] the swing legs of a 

hexapod robot are selected by using this technique.  

 

Similarly to other gait generation algorithms previously presented in this section, the 

one that will be proposed in Appendix B of this thesis is able to generate a gait that 

resembles gaits commonly found in living creatures. In cases where 6 legs are 

available, the proposed algorithm generates a tripod gait. This gait can be observed in 

hexapod creatures such as stick insects, flies, etc. Furthermore, in cases where 4 legs 

are available, the proposed algorithm generates a wave gait. This gait can be 

observed in a large number of quadrupeds (e.g. elephants). As in other approaches 

(e.g. [92] [93]), the proposed gait generation method is able to produce turning 

movement, rotation on the spot and allow the robot to walk sideways. An important 

difference between the proposed gait generation method and the ones presented in 

this section is that the latter fail to produce a stable gait after one or more leg losses. 
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2.7. Summary 

This chapter has presented a selection of relevant publications addressing areas 

related to the investigation reported in this thesis. 

 

First, a number of approaches to anomaly detection in walking robots have been 

presented in section 2.1. In some cases, these approaches failed to identify gradual 

changes in the sensor readings generated by a fault. In other works, fault detection 

was over-sensitive, diverting the robot from performing its mission in order to 

corroborate the existence of anomalies not originally affecting the robot’s 

performance. 

 

 In Section 2.2, a number of approaches to self-healing and fault-tolerance have been 

introduced. Robots using these methods have been able to increase resilience to 

damage, increase lifespan and improve autonomy. Here, particular attention has been 

given to self-healing and fault-tolerant walking robots. In particular, works that 

provide walking robots with autotomy capabilities and reflex reactions have been 

described and briefly compared with the research reported in this thesis. 

Furthermore, the robot OSCAR has been presented in detail as the research most 

closely related with the one reported in thesis. Researchers working on this project 

are the only group (in the reviewed literature) that have developed a mechanical 

system able to physically release a robot’s leg. A succinct comparison with the leg 

release mechanism to be presented in Chapter 3 has been presented here.  

 

Publications dealing with gait adaptability and gait optimisation have been presented 

in section 2.3. A number of similarities and differences with the gait generation 

algorithm that will be proposed in Appendix B have been indicated. This is followed 

by section 2.4 where a selection of works addressing the subject of clustering has 

been discussed. The interest here has been focused on applications for the 

classification of robot sensor information that leads to the identification of 

anomalies. In addition, disadvantages of such methods regarding their high 
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requirements of memory and processing time for large quantities of data have been 

pointed out and concisely compared with the classification methods to be proposed 

in this thesis. Next, studies dealing with the best ways of mechanical locomotion 

over rough terrain have been presented in section 2.5. Finally, biological approaches 

to gait generation in walking robots have been reviewed in section 2.6. These 

publications have addressed ways to adapt a robot’s gait to different terrain features. 

In most of the cases, obtained gaits are similar to the ones found in living creatures. 

This coincides with the gait produced by the gait generation algorithm to be proposed 

in Appendix B. However, most of these publications did not considered the 

adaptability of the generated gait to extreme disturbances in the robot itself, such as 

the loss of one or more legs. 

 

The next chapter will introduce the experimental robot where the self-diagnosis 

methods proposed in chapter 4 and self-compensating methods presented in sections 

5.1 and 5.2 have been implemented. 



 
 

 
 

Chapter 3  

Experimental Equipment 

This chapter introduces the experimental hexapod robot where the algorithms and 

techniques developed during this investigation have been implemented and tested. 

Firstly, aspects related to the design and physical construction of the experimental 

robot are addressed in section 3.1. Then, the distributed control of the robot is 

discussed in section 3.2. Next, the robot’s sensors and their operating principles are 

presented in section 3.3. This is followed by section 3.4, where a number of gait 

parameters of the experimental robot are empirically determined. In section 3.5, a 

leg release mechanism, that emulates the autotomy capability of living creatures, is 

described. Finally, a summary of the chapter is available in section 3.6. 

3.1. Experimental Robot Design 

The methods and algorithms introduced in this thesis have been applied to the 

hexapod robot depicted in Fig. 3.1. This has generated the experimental results 

necessary for the validation of the proposed theory and techniques developed during 

this research. The experimental robot has been especially designed and built for this 

research at Monash University. The hexapod’s body has been mainly built of ABS 

(Acrylonitrile Butadiene Styrene) plastic by means of a 3-D printer. This method 

facilitates the construction of more complex parts necessary for the development of 

some sensors and mechanisms of the experimental robot. At the same time, it 

accelerates the prototyping process in comparison with other tools such as milling 

machines. However, a few parts, those under intense stresses, have been made of 

brass or aluminium. In total, the robot is composed by more than 100 printed parts, 
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32 parts made of brass and 6 made of aluminium. These parts comprising the 

experimental robot are better represented by the exploded view of the robot’s CAD 

(Computer-Aided Design) model shown in Fig. 3.2. 

 

Figure 3.1. Experimental Hexapod Robot. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Exploded View of the Experimental Robot. 
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The robot’s legs are attached to the robot core (i.e. the central part of the robot’s 

body) at 6 points distributed in a circular fashion around the core. In this way, there 

is an equal separation of 60 degrees between any adjacent pair of legs. As each leg 

has 3 degrees-of-freedom, the hexapod has 18 degrees-of-freedom in total.  

3.2. Robot Control 

Control of the experimental robot is distributed among the robot’s legs, the robot’s 

core and an external computer. Both, the tasks performed by each control component 

and the interactions among them are explained in the following subsections. 

3.2.1. Leg Control 

The robot’s legs are equipped with sensors that provide information about the force 

applied to the tip of the leg and also the position and force applied by the leg’s servo 

motors. In addition, each leg controls its own servo motors, the release mechanism 

associated with that leg and communication with the robot’s core. Legs are also 

responsible for local reflexes such as temporary disconnection of motors when 

potentially harmful stress or temperature levels are detected. The control of each leg 

is performed by means of an Arduino Pro Mini microcontroller, which is connected 

to an associated PCB (printed circuit board) specially designed for the project. A 

detailed front and rear view of the robot leg PCB is shown in Fig. 3.3. Refer to 

Appendix C for an electronic schematic of these boards. Basically, each leg PCB 

integrates the operation of the leg’s microcontroller, the leg’s sensors and 

communication with the robot’s core control. As is shown in Fig. 3.4, the outputs of 

each leg microcontroller are the PWM (Pulse Width Modulation) control signals of 

the leg’s servo motors, on/off signals for 3 multi-purpose LEDs and a signal that 

activates the leg release system (which will be introduced in section 3.4). These 

microcontrollers also interchange information with the robot’s core microprocessor 

utilising an I2C (Inter-Integrated Circuit) communication bus. 
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Figure 3.3. Leg Printed Circuit Board. 

Figure 3.4. Block Diagram of Robot's Leg Control Signals. 

A: Leg Microcontroller. B: Force Sensors Inputs. C: Servos and Alloy Heating System Power Input.  
D: Position Sensor Inputs. E: I2C Communication. F: Leg Tip Force Sensor Input.  

 G: Alloy Heating Output. H: Additional Inputs. I: Servos Output.  
J: FET (Activates the Alloy Heating System). K: PCB Power Input. 

 L: LEDs. M: Opto-isolators. 
K: P.C.B. Power Input. L: L.E.D.s. M: Opto-Isolators. 
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3.2.2. Core Control 

The robot core control is performed by an Arduino Mega microcontroller (located on 

top of the robot in Fig. 3.1). This microprocessor manages communication with the 

robot’s legs and an external computer. As was mentioned in the previous subsection, 

communication with the leg’s microcontrollers is achieved by using an I2C bus. In 

addition, the robot wirelessly communicates with the external computer by means of 

a pair of XBee modules. These devices use the IEEE 802.15.4 standard for 

communicating with each other and the RS-232 standard for the communication with 

the external computer and the core microcontroller. As a result, a WLAN (Wireless 

Local Area Network) is established in a transparent way between the computer and 

the robot. Therefore, both machines are able to establish a wireless link using simple 

serial communication.  

 

The core control receives commands from the external PC (Personal Computer) and 

coordinates their transmission to the leg microcontrollers. In addition, it receives the 

sensorial information provided by the robot’s legs. This data is grouped with 

information provided by the robot core sensors and sent back to the external 

computer. A diagram representing signals connected to the robot core processor is 

depicted in Fig. 3.5. As can be seen, the robot core sensors consist of an 

Figure 3.5. Block Diagram of Robot Core Control Signals. 
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accelerometer, 6 light sensors, 3 battery level meters and a pair of whiskers. There is 

also a simple control panel, which has proved to be useful for interacting with the 

robot during experiments. 

3.2.3. External Computer 

Due to the limited amount of flash memory available in the robot’s microcontrollers, 

most of the algorithms developed during this research are executed in an external 

computer. Communication between the PC and the robot’s core control is 

represented by Fig. 3.6. Here, it can be seen that the external computer is connected 

to one of the XBee modules and communication with the robot is established as 

explained in the previous subsection. The external computer is responsible for 

sending orders to the robot based on information provided by the core control. 

Among the tasks executed by the external computer are the robot’s gait generation, 

evaluation of the robot’s progress towards the completion of its task, detection of 

abnormal situations and selection of measures able to compensate for these 

situations. 

3.3. Robot Sensors 

This section describes the leg and core sensors, which provide information about the 

robot’s status and environment. 

3.3.1. Leg Sensors 

As was mentioned in section 3.2.1, each leg of the experimental hexapod robot is 

equipped with 3 types of sensors that provide information about applied force and leg 

Figure 3.6. Block Diagram of External Computer Control Signals. 
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positions. The operating principles of these sensors are explained as follows. 

 

 Force sensor: measures the pulse width of the PWM voltage signal applied to 

each of the leg’s servo motors. The pulse width is directly proportional to 

error between the current and target servo positions. Therefore, if an external 

force prevents a servo from reaching its target position, then the pulse width 

associated with the resulting error can be used to calculate the external force 

magnitude. The microcontroller processing the force sensor output has been 

electrically isolated from this signal by means of an opto-isolator (‘M’ in Fig. 

3.3).  

 

 Position sensor: measures the voltage from the servo’s internal potentiometer, 

which is directly proportional to the servo position. This is the most accurate 

feedback provided by the sensing system about the servo’s actual position. 

When this information is used together with the kinematic model of the robot 

(provided in Appendix A), it is possible to determine the xyz coordinates of 

the leg tip. 

 

 Leg tip force sensor: measures a voltage derived from an opto-interrupter, 

which is non-linearly proportional to the pressure, and inversely proportional 

to the traction, applied to the leg’s tip. A CAD model of the opto-interrupter 

employed in this sensor and its infrared light beam is shown in Fig. 3.7. The 

 

 

 

 

 

 

 

 

Figure 3.7. Opto-Interrupter CAD Model. 



 
 

Chapter 3. Experimental Equipment 

39 
 

entire leg tip force sensor shown in Fig. 3.8 is 3D printed fully assembled as a 

single item. The voltage from the opto-interrupter reaches its maximum value 

when the whole light beam is sensed by the opto-interrupter’s phototransistor. 

This voltage decreases when part of the light beam is obstructed. In the 

design of the leg tip force sensor this property has been exploited. Initially, a 

pin blocks around half the beam of the opto-interrupter. Movement of this pin 

in one direction (pointing upwards in Fig. 3.8) allows a larger part of the 

infrared beam to be sensed, while the movement in the opposite direction 

(pointing downwards in Fig. 3.8) blocks a larger part of the infrared beam. 

The relation between the force applied and the distance the pin is displaced 

depends on the amount of elastic deformation the force produces in six 

supporting beams connecting the internal and external cylinders depicted in 

Fig. 3.8. The elastic deformation can be calculated by means of Hooke’s law 

expressed in Eq. 3.1. 

 


 


  (3.1)     

Where, 

 σ is the applied stress. 

 E is the Young’s modulus, a material constant (2.3 GPa for ABS 

plastics). 

 ε is the resulting strain. 

 

 

 

 

 

 

 

 

Figure 3.8. Leg Tip Force Sensor. 
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However, Eq. 3.1 is a linear approximation that is valid for a certain range of 

applied forces. The relation between the force applied to one of the robot’s 

legs and the output voltage of the associated leg tip force sensor is shown in 

Fig. 3.9. Here it can be seen that this relation is non-linear and it can be better 

approximated by a second-order curve. 

 

The leg tip force sensor shown in Fig. 3.8 joins the upper and lower parts of 

the robot’s leg. This is more clearly represented by Fig. 3.10, where the 

exploded view of one of the robot’s legs shows the position of the leg tip 

force sensor inside the leg together with the parts involved in the leg 

construction.  

  

Whilst the lower part of the leg is fixed to the external cylinder, the upper part 

is allowed to move in the direction of the cylinder axis. The distance the 

upper part can be moved in relation to the lower part is limited by the major 

axis of elliptical slots in the upper part of the external cylinder. Because the 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Non-linear Relation between Input Force and Output Voltage of the Leg Tip Force Sensor. 
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internal cylinder is bolted to the upper part of the leg, its relative position 

with respect to the external cylinder changes when a force is applied. As a 

result, the relative position of the pin (attached to the internal cylinder as 

shown in Fig. 3.11) with respect to the position of the opto-interrupter 

(attached to the cylinder as shown in Fig. 3.11) also changes, which alters the 

amount of light sensed by the opto-interrupter’s receptor.  

Figure 3.10. Exploded View of the Robot's Leg. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Cross-Section and Close-Up Views of the Leg Tip Force Sensor. 
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The external and internal cylinders are connected by means of 6 rectangular 

cross-section beams depicted in Fig. 3.12. These are elastically deformed 

when a force is applied in the direction of the common axis of the cylinders. 

Once the force is no longer applied, the beams return to their original shape. 

As a result, the cylinders together with the attached pin and opto-interrupter, 

return to their original position. Refer to Appendix C for an electronic 

schematic of the leg tip force sensor. 

3.3.2. Core Sensors 

The robot’s core sensors are described as follows. 

 

 Light sensors: These sensors are used by the experimental robot for finding a 

single light source. This simple task is the mission the robot has been 

assigned to perform and motivates the robot’s locomotion. The light sensor 

output is the voltage on a potential divider consisting of a normal resistor and 

a photo-resistor (refer to Appendix C for the circuit schematics). This voltage 

is proportional to the amount of light received by the photo-resistor. There are 

6 light sensors mounted on top of the robot. They are distributed in a circular 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Cross-Section View of the Robot Leg and Leg Tip Force Sensor. 
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fashion with a separation of 60 degrees between any pair of adjacent sensors. 

As a result, the robot is able to detect the magnitude and direction of a single 

light source.  

 

The light sensor distribution, which matches the leg distribution, can be seen 

in Fig. 3.13. In addition, Fig. 3.14 shows a close-up view of a single light 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Robot Core Top View. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Light Sensor. 
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sensor. Here it can be observed how the photo-resistor is located at the end of 

a short tube, whose function is to partially collimate light falling on the 

phototransistor and thus reduce coupling effects between adjacent light 

sensors. 

 Accelerometer: in the steady state this measures acceleration due to gravity. 

The robot’s two-axis accelerometer shown in Fig. 3.13 is used to measure 

robot tilt and terrain inclination. 

 Battery Level Indicators: these sensors measure the voltage on each of the 

robot’s batteries. The robot is powered by three batteries. Firstly, a 6 volt 

battery is used for powering the leg’s microcontroller and associated PCB. 

Then, another 6 volt battery powers the servo motors and the leg release 

mechanism that will be introduced in section 3.4. Finally, a 9 volt battery 

energises the electronics in the robot’s core. 

 Whiskers: these contact sensors (shown in Fig. 3.15) are used for detecting 

obstacles in front of the robot. Each whisker acts like a switch that makes 

contact whenever the whisker encounters an obstacle. Therefore, the whiskers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Robot Top View. 
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output is a two bits binary signal indicating the status (‘on’ or ‘off’) of each 

whisker. In order to reduce the probability of collision with the legs, the 

whiskers have been extended from the robot’s body. This solution was 

inspired by observing certain species of beetles such as the Trachelophorus 

Giraffa and the Colliuris Pensylvanica. These insects have a long neck that 

(among other possible functions) avoids collisions between their legs and 

antennae.  

3.4. Empirical Determination of Gait Parameters 

In order to determine gait parameters such as rotation speed and turning speed, the 

time required by the robot for performing a preset rotation has been measure while 

the robot walked on a wooden surface. After 10 experiments where the robot 

exclusively performed one type of rotation, values shown in Table 3.1 were obtained. 

 

Table 3.1. Rotation on the Spot Speed and Turning Movement Speed for Experimental Robot. 
Type of Movement Speed 

Rotation on the Spot 7.8º / sec 
Turning 2.8º / sec 

 

In all of the experiments, results were consistent with the ones shown in Table 3.1. 

Videos showing the experimental robot performing a rotation on the spot and turning 

movement, which involves simultaneous translation and rotation, can be found by 

following links D01 and D02 in Appendix D, respectively.  

 

Additional experiments were conducted in order to measure the robot’s walking 

speed on different kinds of terrain. In all of these experiments, the robot walks with 

its 6 legs and the slope of the terrain is negligible. Results are shown in Table 3.2. 
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Table 3.2. Robot Walking Speed for Different Types of Terrain. 
Terrain Average Speed [mm/sec] 

Black Rubber Tiles 70.3 

Carpet Tiles 70.3 

Ceramic Tiles 69.9 

Concrete 70.0 

Grass 63.1 

Gravel 69.1 

Wooden Boards 70.0 

 

Average speeds present little variation when the robot walked on black rubber tiles, 

carpet tiles, ceramic tiles, concrete or wooden boards. These surfaces in conjunction 

with the robot’s rubber leg tip provided good traction for walking. When the robot 

walked on gravel, there was a little slip due to the terrain’s instability. As a result, 

walking speed was slightly reduced. In order to allow the robot to walk on grass, the 

lifting height of the swing legs was increased. As a consequence, the time required 

by each gait cycle was also incremented, which in turn reduced the average walking 

speed of the experimental robot. 

 

Another set of experiments was conducted in order to determine how the robot’s 

walking speed is affected by the loss of one or more legs. This set of experiments 

was conducted while the experimental robot walked or dragged itself on carpet tiles. 

Results are shown in Table 3.3. 

 

Table 3.3. Average Walking Speed as a Function of the Robot’s Number of Legs. 
Number of Legs Average Speed [mm/sec] 

1 18.8 

2 20.3 

3 20.9 

4 33.4 

5 30.9 

6 70.3 

 

As expected, the fastest gait of the series turned out to be the tripod gait. This 

coincides with what is commonly accepted by researchers interested in walking 

robots or insects. When 5 legs were available, the robot generated an asymmetrical 
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gait which was slower than the ones generated for 6 or even 4 legs. In the latter case, 

a wave gait was generated. When 3 legs were available, the robot generated an 

alternated tripod gait. Here, all of the robot’s legs were in the same stance/swing 

phase during half of the gait cycle. Because the robot’s core body had to be lowered 

to the ground during the swing phase and lifted during the stance phase, more time 

(and energy) was required during each gait cycle. As a result, walking speed was 

much less than half (and third) the walking speed of the normal tripod gait. In the 

final two cases, the robot dragged its body during locomotion. In comparison with 

the alternated tripod, a significant speed reduction was observed here.  

 

In general, the time during each gait cycle is attributed to the following 4 factors:  

 

 Servo Movement Time: is the time the servo motors actually move and is 

determined by the distance between starting and target servo motor angles. 

 

 Servo Delay: A delay of 8ms per each 1º of servo rotation has been 

introduced in order to generate a smoother and more natural leg movement.  

 

 Processing Time: is the time the system requires for collecting all of the 

robot’s sensorial information, evaluating the robot’s performance, calculating 

the light source orientation and determining the leg coordinates for the next 

gait cycle. 

 

 Communication Time: is the time required for data communication among 

the robot’s microcontrollers and between the robot and the external computer. 

 

Figure 3.16 shows an example of time expenditure during a tripod gait cycle of the 

experimental robot. Here it can be observed that the processing time of the self-

diagnosis methods to be presented in the next chapter are normally less than a quarter 

of the gait cycle period. There is a direct proportion between the number of sensors 
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in the robot and the processing time required by the system. In fact, most of the 

processing time is spent in collecting sensor data.  

 

The walking speed of the experimental robot can be increased by altering one or 

more of the 4 factors previously discussed. For instance, the robot walking speed 

could be increased by: 

 

 Providing the robot with faster servo motors in order to reduce servo 

movement time. 

 

 Reducing the servo delay. 

 

 Reducing the robot’s number of sensors in order to decrease the processing 

time. 

 

A reduction of the number of legs in the robot would reduce communication time (as 

there would be fewer microcontrollers communicating with each other). However, 

the speed increment due to the communication time reduction would be cancelled by 

the larger speed decrement associated with the leg loss. 

Figure 3.16. Example of Time expenditure During Gait Cycle. 
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3.5. Leg Release Mechanism 

The leg release mechanism allows the robot to automatically detach any of its legs as 

an extreme compensatory measure. For instance, it may be necessary to shed a 

malfunctioning leg when it interferes with the robot’s gait preventing it from 

walking. This mechanism emulates the autotomy capability found in a number of 

living creatures, where it is used as a self-defence mechanism designed to elude a 

predator's grasp.  

 

The authors in [52] have presented the R-LEGAM leg release mechanism. In this 

system, each autotomy capable leg has an extra servo motor exclusively utilised for 

leg detachment. The leg release mechanism proposed in this thesis is more compact 

and lighter than R-LEGAM because this extra servo is not required. 

 

Each leg of the experimental robot utilised in this research is joined to the robot’s 

core by means of the attachment module depicted in Figs. 3.17 and 3.18. The core 

section of each attachment module is bolted to the robot’s core whilst the leg section 

is bolted to the robot’s leg. Both sections are held together by means of a hook and 

slotted pin. In order to prevent any undesirable rotation of the leg around the pin, the 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Leg Attachment Module.  
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attachment modules were designed with three fixing cones (in the core section) and 

their respective conical holes (in the leg section). In addition, both sections 

incorporate cylindrical cavities for three compression springs that storage the energy 

necessary for leg ejection. The electrical connections between the robot’s leg and 

core are established by means matching pins and headers located in the designated 

slots shown in Fig. 3.17.  

 

The leg release system utilises a low melting point alloy that fills the empty space 

left by the pivot tube in the alloy chamber. When the leg is attached to the robot’s 

core, the alloy is cold and solid. This prevents the pivot tube and the hook from 

rotating. When the robot determines that it is necessary to shed a leg, it applies power 

to an SMD resistor physically connected (but electrically isolated) to the alloy 

chamber. Then, the resistor generates heat that is transferred to the low melting point 

alloy. As this is heated, it loses strength until it is unable to resist the energy stored in 

the tension spring attached to the hook. As a result, the pivot tube and hook rotate 

liberating the slotted pin. When this occurs, the three compressed springs between 

the two sections of the attachment modules eject the leg, which is then electrically 

and mechanically disconnected from the robot’s core. 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Exploded View of the Leg Release Mechanism.  

Locating Cone 

Spring 

Hook 

Alloy 
Chamber 

SMD 
Resistor 

Pivot 
Chamber 

Slotted 
Pin 

Pivot 
Tube 

Attachment 
Module 

(Leg Section) 

Attachment 
Module 

(Core Section) 

Cylindrical Space 

Spring 



 
 

Chapter 3. Experimental Equipment 

51 
 

Table 3.4 shows the results of 10 experiments that were conducted for evaluating the 

performance of the leg release mechanism. Before each experiment, the alloy inside 

the leg release mechanism was at room temperature (~20 ºC).  Then, the leg release 

mechanism was activated and the time required for melting the alloy and ejecting the 

leg was measured. In addition, the electric charge consumed during each experiment 

was calculated. 

 

Table 3.4. Execution Time and Electric Charge Consumption of Leg Release Mechanism. 
Experiment Execution Time [secs] Electric Charge Consumption [mAh] 

1 164 10.1 

2 174 10.7 

3 169 10.4 

4 208 12.8 

5 199 12.3 

6 190 11.7 

7 200 12.3 

8 207 12.8 

9 208 12.8 

10 195 12.0 

 

Results in Table 3.4 show an average execution time of 191 seconds and an 

associated average electric charge consumption of 11.8 mAh for the 10 conducted 

experiments. A video showing the leg release mechanism in action can be found by 

following link D03 in Appendix D. 

3.6. Summary 

This chapter has introduced the experimental hexapod robot on which the algorithms 

and techniques presented in the following chapters have been implemented and 

tested. A number of topics related to the robot design and construction have been 

discussed in section 3.1. Then, section 3.2 has presented an outline of the distributed 

robot control. There are two reasons behind the distributed nature of the robot 

control. Firstly, the memory constraints of the robot’s core microcontroller 

necessitated using an external computer where most of the developed algorithms are 

executed. Secondly, in order to reduce the number of electrical connections between 
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the robot’s core and legs, the leg’s microcontrollers were introduced. Therefore, the 

information provided by the leg’s sensors is processed by these microcontrollers and 

then transmitted to the core control. Because only power and communication 

connections are required between any leg and the robot’s core, the leg release 

mechanism is simplified. 

 

The robot’s sensors and some of their operation principles have been presented in 

section 3.3. In particular, a leg tip force sensor developed during this research is 

introduced. The set of sensors available in the experimental robot has proved to be 

sufficient for testing the methods and techniques proposed in this thesis. However, 

these methods are not constrained to these specific types and number of sensors. It is 

expected that these methods can be applied to most robot and sensor topologies.  

 

In Section 3.4, a number of the robot’s gait parameters related to walking speed have 

been empirically determined. Here, it was discussed how walking speed of the 

experimental robot was affected by factors such as type of terrain, leg losses, number 

of sensors, etc. 

 

Finally, section 3.5 has introduced a leg release mechanism that emulates the 

autotomy capability of some living creatures. Experiments showed the time and 

energy required by this mechanism for ejecting a leg. Due to the detrimental effects 

that shedding a leg has on the robot’s walking speed and energy consumption, this 

system will be only used as a last resort.  

 

A number of compensatory measures will be considered in chapter 5. However, this 

will be preceded by the next chapter, which addresses the identification of abnormal 

situations in robots and their environment.  



 
 

 
 

Chapter 4  

Autonomous Identification of 

Detrimental Disturbance Sources 

This chapter introduces techniques for the detection, identification and classification 

of situations that degrade robots’ performance or prevent them from accomplishing 

their missions. The identification and classification of abnormal conditions 

developed in this research is fundamental for the autonomous detection of a robot’s 

failures and adaptability to unforeseen features of the robot’s environment. By using 

these techniques, it is expected to increase resilience to damage, extend lifespan and 

improve autonomy in robotic missions where human intervention is difficult or 

impossible, such as in extra-terrestrial exploration or other remote hostile 

environments.  

 

Chapter 4 is structured as follows. The first section addresses the detection of 

detrimental disturbances. An abnormal situation classification algorithm and 

techniques for the identification of detrimental disturbance sources are presented in 

the next two sections. Then, the methods previously introduced in this chapter are 

applied and the experimental results are discussed. Lastly, a summary of the chapter 

is provided. 

4.1. Detrimental Disturbance Detection 

Detrimental disturbances are generated by abnormal situations that negatively impact 

the robot’s performance. From a robot’s perspective a detrimental disturbance could 
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be perceived as one or more sensor readings which are out of the expected range. 

Alternatively, detrimental disturbances can be evidenced by normal sensor values 

whose combined information is unexpected or generates contradictions. Both cases 

are generated under two general scenarios. In the first one, there could be a 

malfunction in the robot’s hardware. For instance, a robot could develop defective 

sensors, communication problems among its different control modules, faulty 

controllers or damaged parts of its body. On the other hand, unexpected sensor 

readings could be generated by certain features of a robot’s environment that have 

not been previously experienced by the robot. Consequently, detrimental 

disturbances produced by a robot’s malfunction and those generated by the robot’s 

environment will be referred to as internal and external disturbances, respectively. 

Both kinds of disturbances can be detected by the negative impact they have on a 

robot’s performance or by extreme values in the robot’s sensor readings. 

4.1.1. Performance Assessment 

A way of detecting detrimental disturbances is by evaluating the progress the robot is 

making towards the completion of its mission. Then, a detrimental disturbance arises 

when the robot is not making progress after a certain amount of time. In this case, a 

quantitative measure of the robot’s progress is necessary. Depending on the nature of 

the robot’s mission, this calculation could involve different levels of complexity. 

Because this is closely related to the kind of task each particular robot is undertaking, 

a general solution to this problem will not be addressed. However, the method 

employed in this work for quantitatively measuring the progress of the experimental 

robot will be presented as an example. 

 

In this research, the experimental robot has been assigned a simple task, from which 

quantitative measurements of the robot’s progress are easy to acquire. This task 

consists in finding a light source, whose direction is determined by the array of light 

sensors introduced in the previous chapter. In the experimental environment it is 

assumed that there is a single light source. Under normal conditions, despite the non-
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linear relation between light intensity detected by the photo-resistors and the 

corresponding light sensor readings, an approximate calculation of the light source 

direction  r  can be determined by means of Eq. 4.1. 
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Where  

 
kL  is the reading of the k-th light sensor. These sensors are enumerated in 

counterclockwise order starting at the one located on the positive x-axis as 

depicted in Fig. 4.1. 

 N  is the number of functional light sensors (6 under normal conditions). 

 

Because 
r  is measured from the positive x-axis, a heading of / 2  rad indicates 

that the robot is walking towards the light source. Therefore, when different values of 

r  are obtained, the robot is rotated / 2r   rad. This assures that the maximum 

light intensity is detected by one of the two front light sensors  2 3 or L L . Then, a 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Experimental Robot X-Y Coordinate System. 
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more exact light direction angle    is calculated as follows. The diagram in Fig. 4.2 

illustrates a light source located between light sensors 2 and 3. After applying the law 

of cosines to the red triangle in Fig. 4.2, Eq. 4.2 is obtained. 

 

  2 2 2
3 2 23 2 232 cosL L Ld d d d d      (4.2) 

 

Where 

 2Ld  is the distance between light sensor 2 and the light source. 

 3Ld  is the distance between light sensor 3 and the light source. 

 23d  is the distance between light sensors 2 and 3 (75 mm in the 

experimental robot). 

   is the angle between the 23d  and the 2Ld  lines. 

 

The magnitude of 2Ld  and 3Ld  can be calculated from the readings of light sensors 2 

and 3, respectively. In this case, the light source intensity and the relation between 

light sensor readings and distance from the light source must be known. If this 

information is not available, the readings from light sensors 2 and 3 can be used as 

alternative values of 2Ld  and 3Ld , respectively. However, in this case the distance 

between the robot and the light source cannot be calculated with this method. 

Figure 4.2. Parameters Used in the Calculation of the Light Source Location. 
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The   angle obtained from Eq. 4.2 is calculated using expression 4.3. 

 

 
2 2 2

2 23 3

2 23

arccos
2

L L

L

d d d

d d


  
  

 
  (4.3) 

Then, the   angle is used for calculating the  ,L Lx y  coordinates of the light source 

by means of Eq. 4.4.  

 

       2 2, cos , sinL L L Lx y x y        (4.4) 

Where  2 2,L Lx y  are the  ,x y  coordinates of light sensor 2 ((38,65) mm in the 

experimental robot). 

 

Finally, the distance and the angle between the light source and the origin of the 

experimental robot coordinate system can be determined by means of Eqs. 4.5 and 

4.6, respectively. 

 

 2 2
L L Ld x y    (4.5) 

  arctan2 ,L Lx y    (4.6) 

 

It must be noted that erroneous results will be obtained from Eq. 4.5 if the correct 

2Ld  and 3Ld  values are not provided. On the other hand, Eq. 4.6 utilises the relation 

between the angle of the light source in relation to the experimental robot and the 

difference between readings of light sensors 2 and 3. Therefore, if these readings are 

used as 2Ld  and 3Ld  values, it is still feasible to obtain correct results from Eq. 4.6.  

  

A quantitative measure of the experimental robot’s progress is given by the light 

sensors’ maximum value   , which is determined by Eq. 4.7. 

 
  1 2max , ,..., NL L L   (4.7) 
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It is taken that when 1000 , the robot has found the light source and its mission 

has been accomplished. 

 

After each step, the walking robot transmits its current sensorial information to the 

external computer. Among this information, the light sensors readings are utilised for 

the calculation of the  value associated with that step. If 
s
 represents the  value 

associated with the s-th step, the progress or lack of progress between two 

consecutive steps in the robot’s mission can be represented by 2  in Eq. 4.8. 

 

 2 1  s s
  (4.8) 

Where 

 2 0    Progress 

 2 0    Lack of Progress 

 

The lack of progress between two consecutive steps by itself does not show an 

abnormal situation. It is common for the robot to take a few steps without getting 

closer to the light source (e.g. when adjusting its walking direction) before it can 

make further progress. However, in this investigation the following two cases, where 

a lack of progress is manifested, have been related to the identification of abnormal 

situations.  

 

 Sustained lack of progress: occurs when the robot is unable to make any 

progress after a number of steps. In other words, 2 0   for the considered 

number of steps. 

 

 Cyclic lack of progress: in this case the robot enters into a loop where after 

some progress is made, the robot suffers a setback that reduces its progress 

until it is equal or less than that at the beginning of the loop. Here 2  may be 

positive or negative during the cycle, but  at the beginning of the loop is 

greater or equal to  at the end of the loop. 
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Both, sustained and cyclic lack of progress are identified when expression 4.9 is 

satisfied. 
 1 2s s s s s s n          (4.9) 

Where n  is the number of previous steps taken into account during the robot’s 

performance evaluation.  

 

For instance, if we consider 10n  and the following simulated data set containing 

 values associated with the first 15 steps taken by the robot. 

 

  set 300,312,320,299,285,276,290,293,301,308,297,280,286,290,300  

 

This  set has been graphed as shown in Fig. 4.3. In this case, the robot has 

alternating periods of progress and lack of progress. As 10n  and 

13 3 286 320 34 0      , an abnormal situation alarm will be triggered at step 

13. In other words, since the robot is unable to exceed the 3 320  value after 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Cyclic Lack of Progress (Simulated Data). 
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10n  steps, a cyclic lack of progress is detected. 

 

The selection of the value n  determines the sensitivity of the lack of progress 

detection. A very small value of n  (e.g. 2n ) will trigger false alarms, while a large 

value of n will make the detection slow. As in the previous example, 10n  has 

empirically demonstrated to be a good compromise between speed and sensitivity. 

Therefore, this value is utilised during this research. This means that the robot must 

make progress within every set of 10 consecutive steps; otherwise, an abnormal 

situation alarm is triggered. 

 

The performance assessment method has been tested using the experimental robot. In 

this work it is considered that the robot has accomplished its mission when the 

maximum light sensor reading is greater than or equal to 1000  1000 . Initially, a 

single light source was located on the floor and the robot started walking towards it 

as shown in Fig. 4.4. Then, after the robot had taken 11 steps under normal 

conditions, light sensor 2 was covered as can be seen in Fig. 4.5.  

 

The robot’s performance, corresponding to the maximum value of all the robot’s 

light sensors, was monitoring during the experiment. This data is plotted on the graph 

in Fig. 4.6, where the abscissa represents the number of steps taken by the robot and 

the ordinate is the output of the ADC (Analogous/Digital Converter) digitalising the 

maximum light sensor reading. In this research, 10 bit ADCs, with an output in the 

range 0~1023, were utilised.  
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Figure 4.4. Experimental Robot Walking Towards a Light Source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Covered Light Sensor. 
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Figure 4.6 shows that under normal conditions (before step 11) the experimental 

robot achieved good performance characterised by continuous progress. Once light 

sensor 2 was covered, the robot continued progressing in its mission until step 13. 

Then, between steps 13 and 21, although the robot was alternately closer and farther 

from the light source, it was still able to make progress overall. At step 21, the robot 

hit a peak of 961 in its light sensor readings. However, after 10 steps, (even when it 

was close at steps 26 and 27 with a sensed value of 960) the robot was unable to 

exceed this reading. Therefore, an abnormal situation alarm was triggered at step 30.  

 

Figure 4.7 illustrates the robot’s behaviour during the experiment, before and after 

light sensor 2 was covered. Here, the yellow circle represents the light source, the red 

sector(s) represent(s) the light sensor(s) where the maximum amount of light is 

received and the grey sector represents the blind zone associated with the covered 

sensor. Then, robot operation during the experiment can be described by considering 

the robot initial state, represented by Fig. 4.7(a), and the three robot orientations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6. Robot's Performance during an Experiment with Covered Light Sensor. 
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depicted in Fig. 4.7(b-d), as follows.  

 

 Initially, all the light sensors operate normally and the robot makes sustained 

progress in its task. As can be seen in Fig. 4.7(a), under these conditions the 

maximum amount of light is received by either light sensor 2 or 3.  

 Once light sensor 2 is covered, Fig. 4.7(b) shows that the maximum amount 

of light is received by sensor 3. Consequently, the robot performs a 

counterclockwise rotation on the spot towards the expected light source 

direction.  

 Once the robot reaches orientation (c), the maximum amount of light is then 

received from the sensor 1 direction. This time the robot performs a 

clockwise rotation on the spot towards the expected light source direction. In 

this case, the robot rotates until it reaches orientation (d). Here, the maximum 

amount of light is received by either light sensor 3 or 4.  

 Following this, the robot performs a new counterclockwise rotation towards 

the expected light source direction. In this ocassion, the robot rotates until it, 

once again, reaches orientation (b).  

 

Therefore, the robot enters into an infinite loop of rotations on the spot resulting from 

the covered light sensor and associated miscalculation of the light source direction. 

Figure 4.7. Abnormal Robot Behaviour after One of Its Light Sensors Is Covered. 
(Note that the Blue Square Indicates the Front of the Robot). 
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This infinite loop is only interrupted when the system detects the resulting cyclic lack 

of progress in the robot’s mission.  

 

The periods of increase in the robot’s performance shown in Fig. 4.6 coincide with 

the periods where uncovered light sensors face the light source. Those periods where 

the covered light sensor was facing the light source coincide with a decrease in the 

robot’s performance. 

 

The graph in Fig. 4.8 displays the output of all the robot’s light sensors during the 

experiment. As it can be seen here, the maximum sensor reading values are provided 

by light sensor 2 between steps 1 and 11, light sensor 1 between steps 15 and 18, 

light sensor 4 between steps 23 and 25; and light sensor 3 otherwise. The output of 

these sensors, during the corresponding interval where they are the greatest, 

represents the robot’s performance illustrated by the graph in Fig. 4.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.8. Light Sensor Outputs during an Experiment with a Covered Light Sensor 
(Sensor 2 Covered after Step 11). 
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The response of the robot’s light sensors during the experiment can be seen in Fig. 

4.8. The robot operation corresponding to this experiment is described as follows. 

 

 Between steps 1 and 11 the robot walks with all light sensors functioning 

correctly and light sensor 2 receives the maximum amount of light. This 

means that the light source is in front of the robot but slightly to the right.  

 At step 11, light sensor 2 is covered. As a result, its readings drop to zero, but 

the robot’s performance is not immediately compromised. This is due to the 

fact that the robot is positioning its legs to perform a rotation on the spot and 

light sensor 3 is still facing the light source.  

 The robot operation after step 11 is more clearly explained by considering the 

three orientations of the experimental robot shown in Fig. 4.7(b-d). As soon 

the robot begins to rotate to orientation (c), there is an increment in the 

readings of light sensor 1 and a decrease in the readings of light sensor 3.  

 At step 16, the robot reaches orientation (c) and makes a new estimation of 

the light source direction. This time a counterclockwise rotation is performed 

towards orientation (d). As the robot rotates, light sensor 3 and then light 

sensor 4 start to receive more light, whereas the readings of light sensor 1 

drop.  

 At step 23, the robot reaches orientation (d) and makes a new estimation of 

the light source direction. This time a clockwise rotation is performed 

towards orientation (b). As the robot rotates, light sensor 4 and then light 

sensor 3 start to receive less light, whereas the readings of light sensor 1 are 

increased.  

 This loop is interrupted when a cyclic lack of progress is detected after step 

30, before the robot is able to reach orientation (b). 

4.1.2. Pain 

In some circumstances, regardless of the progress that the robot is making in its task, 

one or more of the robot’s sensor readings may be very different from what is 
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expected. This kind of detrimental disturbance will be referred to as pain. When this 

is not compensated, it could have a devastating impact on the robot’s performance in 

the short or long term. For instance, a robot’s motor could become overheated even 

when the robot is performing its task correctly. However, if this situation is not 

addressed, that motor will become permanently damaged, which in time will affect 

the robot’s performance. 

 

In comparison with the lack of progress previously introduced, this kind of 

disturbance is simpler to detect. In order to provide the experimental robot with the 

faculty of experiencing pain, those sensors that can evidence a potentially damaging 

situation for the robot must be identified. Then, a threshold must be established for 

each one of these sensors. Therefore, sensor readings above this threshold value will 

be identified by the robot as pain. Because pain is “built into” living creatures rather 

than learned, the threshold values are not calculated by any learning method. They 

are included as part of the initial information the robot possess.  

 

In this research, the experimental robot’s sensors able to identify a damaging 

situation are the servo motor and leg tip force sensors. A high value of these sensors 

during a prolonged period of time can burn out a servo motor or break a robot’s leg, 

respectively. In order to determine the pain threshold and the period of time the robot 

can experience pain without being damaged, an empirical approach was adopted. The 

servos where manually forced until they became hot and the legs were stressed by 

applying a reasonable amount of force. As a response to a painful experience the 

robot has a reflex reaction. This is comprised of shutting down the servo motors of 

the leg(s) in pain, moving the rest of the legs to home position (in which the legs are 

retracted and stop supporting the robot’s weight) and triggering an abnormal 

situation alarm.  

 

In order to illustrate the effect of the pain mechanism, a force has been applied to one 

of the leg servo motors and the output of its force sensor has been displayed in the 
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graph of Fig. 4.9. As was mentioned in chapter 3, the force sensor’s output is the 

width of the PWM signal applied to the servo motor. This is measured by an 

algorithm that continuously increments a counter while the PWM signal is in a low 

voltage state. The larger the magnitude of the force applied by the servo motor to 

stay in its commanded position, the larger the value of the counter. The graph in Fig. 

4.9 shows the value of this variable for 550 samples of the servo’s force sensor. As 

can be seen in the graph, a force was detected by the sensor around sample 20. Then, 

the applied force had an upward trend until the force sensor gave an output of 3500 

at sample 276. This is the pain threshold established for the force sensor. From this 

point, the time while the force sensor output is greater than the pain threshold is 

measured by the system. Once 10 seconds of continuous pain have passed, which 

corresponds to the period between sample 276 and 500, the system disconnects the 

control signal of the motor. As a result, overheating the servo and the associated 

impact on the robot’s performance are avoided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Force Sensor Output of a Servo Motor Experiencing Pain. 
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4.2. Classification Algorithm 

In the simplest scenario a detrimental disturbance source can be related to a sensor 

providing readings that are very different from its expected value (pain). However, as 

it is common to find tens of sensors in a robot, different combinations of sensors may 

present unexpected readings. This obscures the relationship between the sensorial 

information evidencing the detrimental disturbance, and the detrimental disturbance 

source. The same situation occurs with detrimental disturbances identified by means 

of a performance assessment. In this case, the sensorial information may present only 

slight differences from expected values. Here, more important than the magnitude of 

this variation is the particular combination of sensors presenting the difference. A 

first step to addressing these problems, and to be able to link an identified 

detrimental disturbance with its source, is anomaly classification. Therefore, once a 

detrimental disturbance has been properly classified and labelled it can be quickly 

identified in future recurrences. As a result, an anomaly can be directly linked with 

its associated compensatory measures if these have been previously determined. The 

classification algorithm developed in this research is presented as follows. 

4.2.1. Sensor Reading Set 

In order to report status and mission performance, the experimental walking robot 

transmits all of its sensor readings to the external computer after every step. These 

data grouped in a vector constitute the SRS (Sensor Reading Set) shown in Table 4.1. 
 

Where 

 
kLs  represents the reading of the k-th light sensor, with 1,2,...,6.k     

 ijPs  represents the position sensor reading of the servo motor j located in the 

experimental robot’s leg i. 

Table 4.1. Experimental Robot's Sensor Reading Set. 

kLs  ijPs   i jFs  
iTFs  

xAcc  yAcc  
kBl  Ws  
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 ijFs  represents the force sensor reading of servo motor j located in the 

experimental robot’s leg i. 

 1,2,...,6i   represents each robot’s leg. These have been enumerated in 

counterclockwise order starting from the right middle leg. 

 1,2,3j   indicates each leg’s servo motors. As illustrated in Fig. 4.1, Servos 

1, 2 and 3 provide the robot’s leg with coxa, femur and tibia articulations, 

respectively. 

 
iTFs  represents the tip leg force sensor reading of leg i. 

 
xAcc  and yAcc  represent the x-axis and y-axis accelerometer readings, 

respectively. 
 

kBl  represents the reading of the k-th battery level indicator, with 1,2,3k   
as illustrated in Table 4.2. 

 Ws  represents the whiskers’ status as shown in Table 4.3. 
 

Table 4.2. Battery Level Indicator Symbology. 

Symbol Voltage Battery Power Application 

1Bl  6 volts Leg PCB and leg microcontroller 

2Bl  6 volts Servo motors and leg release mechanism 

3Bl  9 volts Core sensors and core microcontroller 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Distribution of Leg Servo Motors. 
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4.2.2. Expected Sensor Readings 

The information contained in a SRS is received and processed by the external 

computer to be translated into an AIS (Abnormality Index Set), which is the input for 

the proposed classification algorithm. The AIS is a vector of normalised differences 

between expected and actual sensor values. This is calculated by means of expression 

4.10. 

 k k

K

k

SRS E
AIS Nr

R


   (4.10) 

Where 

 
kSRS  is the reading of the k-th sensor. 

 
kE  is the expected value of the k-th sensor reading. 

 
kR  is the range of the k-th sensor. 

 Nr is the normalisation value of AIS (in other words, 0 kAIS Nr  ). 

 1,2,...,k N  (number of the robot’s sensors). 

 

It must be noted that the 
k kSRS E  operation, in expression 4.10, describes a 

general process whereby a sensor reading is compared with its corresponding 

expected normal value. The expected value of a sensor reading depends on a number 

of factors such as type of robot, application and the robot’s environment. Therefore, 

a general solution for the calculation of this value is not provided here. However, the 

Table 4.3. Ws Code for Whiskers' Status.  

Ws Whiskers’ status 

0 Both whiskers deactivated 

1 Only right whisker activated 

2 Only left whisker activated 

3 Both whiskers activated 
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determination of the expected sensor readings, under normal conditions, for the 

experimental robot is presented as an example as follows. 
 

 Calculation of expected robot light sensor readings. 

The lighting conditions the robot may find during its mission are unknown. Under 

normal operation they may span from complete darkness to sufficient light to 

saturate the light sensors, which will cover the whole of the light sensors’ range. In 

addition, considerable differences between readings of light sensors facing the light 

source and those facing shadows are anticipated. However, under normal operation, 

similar patterns are expected for all of the robot’s light sensor readings. On the other 

hand, faulty light sensors most commonly present two abnormal conditions. They 

may produce noise (a low amplitude random signal) or a constant signal 

(corresponding to a short-circuited or open-circuited light sensor). Therefore, an 

abnormal light sensor reading has a constant value, while the rest of the light sensors 

provide readings that change with time, or an abnormal light sensor has a variable 

value, when the rest of the light sensors present constant readings. Because, this is a 

complex case where there is an expected pattern rather than an expected sensor 

reading, the AIS will be determined by means of Eq. 4.11. 

 

 

0 1

1

0 1

,  

( ) ,

n

i k k

i

k

k k

k

Nr
c if Ls Ls

n
AIS

Nr
Ls Ls median D otherwise

R











 
  



  (4.11) 

Where   

 
0
kLs  and 1

kLs  are the current and the previous readings of the k-th light 

sensor, respectively. In general, i

kLs is the i-th previous reading of the k-th 

light sensor. 

 
00 ,  

1 ,

i

k k

i

if Ls Ls
c

otherwise

 
 


 

 n  is the number of previous steps taken into account during the robot’s 

performance evaluation.  
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      0 1 , 1,2,3,4,5,6i iD Ls Ls i k       

 A normalisation value  Nr  of 100 has been utilised for all of the robot’s 

sensors. Therefore, the abnormality index is in the range 0 to 100. 

 The range  R  of the light sensor depends on the maximum value of the 

ADC digitalising the sensor reading. Therefore, 1023kR   was utilised in Eq. 

4.11. 

 

It must be noted that while expression 4.11 has been successfully utilised for the 

identification of faulty light sensors, abnormal situations affecting functional light 

sensors might not be detected by using this method. For instance, a partially covered 

functional light sensor will not be identified by using expression 4.11. Nevertheless, 

this kind of abnormality will be identified by the research actions discussed in 

subsection 4.3.2. 

 

 Calculation of expected position sensor readings. 

The outputs of the position sensors are the angles of the leg servo motors. These 

sensor readings are compared with the expected angles of the servo motors, which 

are the output of the inverse kinematic model of the robot when the commanded xyz 

coordinates of the legs are used as inputs. Therefore, by using the range of the 

position sensors (180 degrees corresponds to the servo motor rotation range), the 

indexes of abnormality for the position sensors can be determined by means of Eq. 

4.10. 

 

 Calculation of expected force sensor readings. 

The output of these sensors is directly proportional to the error signal, that is to say, 

the difference between the current and the target servo positions. Because it is 

required that the servo motors reach their commanded positions, an expected value of 

0 is utilised for the force sensor outputs. Therefore, by considering a range of 0 to 

5000, the indexes of abnormality for the force sensors are calculated by means of Eq. 

4.10. 
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 Calculation of expected leg tip force sensor readings. 

The leg tip force sensors measure compression and tension of the robot’s legs. When 

no force is applied to the leg’s tip, the reading of the sensor is around the middle of 

the scale (initial value). Then, tension and compression of the leg decreases or 

increases the sensor reading value, respectively. Because, a high magnitude of any of 

these forces can damage the robot’s legs, it is expected that the sensor readings will 

be close to their initial values. Consequently, the abnormality index for this sensor is 

determined by using Eq. 4.12. 
 

 

_ ,  _
_ max _

_ ,
_ _ min

k k
k k

k k

k

k k

k k

TFs TFs initial
Nr if TFs TFs initial

TFs TFs initial
AIS

TFs initial TFs
Nr otherwise

TFs initial TFs


 

 


 

  (4.12) 

Where 

 _ kTFs initial  is the unloaded middle scale value of the k-th leg tip force 

sensor reading. 

 _ maxkTFs  is the maximum possible value of the k-th leg tip force sensor 

reading. 

 _ minkTFs  is the minimum possible value of the k-th leg tip force sensor 

reading. 

 

 Calculation of expected accelerometer readings. 

 

The output of this sensor is two angles that indicate the inclination of the robot with 

respect to the xy-plane (See Fig. 4.1). In this case, the expected sensor readings are 

the angles corresponding to the direction cosines of the plane formed by the tips of 

the robot’s supporting legs. Given the non-collinear xyz coordinates of three 

supporting legs:  1 1 1 1, ,P x y z ,  2 2 2 2, ,P x y z  and  3 3 3 3, ,P x y z . The angles of the 

plane formed by these points with respect to the xy axes of the robot’s coordinate 

system can be determined by means of Eqs. 4.13 and 4.14. 
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2 2 2

arccos a

a b c


 
  

  
  (4.13) 

 
2 2 2

arccos b

a b c


 
  

  
  (4.14) 

Where 

   is the angle between the supporting plane and the x axis. 

   is the angle between the supporting plane and the y axis. 

      3 1 3 2 3 2 3 1a y y z z y y z z       

      3 1 3 2 3 2 3 1b x x z z x x z z        

      3 1 3 2 3 2 3 1c x x y y x x y y       

 

The   and   angles are the expected values for 
xAcc  and yAcc , respectively. Then, 

by considering a possible range of 360 degrees, the indexes of abnormality for the 

accelerometer readings are calculated by means of Eq. 4.10. 

 

 Calculation of expected battery level indicators. 

Initially, it is expected that batteries are fully charged (considering a maximum over-

voltage of 20% of the battery’s nominal voltage). Therefore, the expected sensor 

value is in the range [818 1023] whereas the sensor range is [0 1023] (1023 being the 

maximum possible output of the sensor’s ADC).  

 

 Calculation of expected whisker readings. 

Under normal conditions, the whiskers are expected to provide readings with value 0 

(indicating no collision detected). Any larger output indicates the presence of an 

anomaly. Consequently, the abnormality index for this sensor can be calculated by 

means of Eq. 4.15. 

 
0 ,  0

,k

if Ws
AIS

Nr otherwise


 


  (4.15) 
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4.2.3. Classification of Abnormality Levels 

The range and resolution of current robot sensors allow the detection of very small 

changes of the corresponding measured property. In comparison, human beings do 

not seem to have as many levels of perception. For instance, in [129] six methods for 

the measurement of clinical pain intensity have been compared. Here patients are 

asked to identify their level of pain by using different scales. The authors comment 

that some patients struggle when discriminating between 6 pain levels. If our 

biological sense of abnormality is extrapolated to robots, then it is necessary to 

classify the differences between actual and expected robot sensor readings, or 

indexes of abnormality, into only a few manageable groups. The number of groups 

utilised for the classification of each index of abnormality will depend on the range 

of output of the corresponding sensor. This classification can be performed by using 

Eq. 4.16, where each AIS is labelled by means of an Abnormality Label (AL). 

 
  1 2,  ,  ... ,  nAL AL AL AL   (4.16) 

Where   

 k k
k

Se AIS
AL

Nr

 
  
      

 

 
kSe  is the sensitivity value for the k-th sensor. This is the number of groups 

into which the abnormality index of the k-th sensor is classified  kSe . 

 /k kSe AIS Nr    is the nearest integer value higher than /k kSe AIS Nr . 

 

For instance, if it is necessary to classify the abnormality index of a force sensor into 

one of three levels of abnormality (low, moderate or extreme), an Se value of 3 must 

be set. Consequently, if the abnormality index of this sensor is in the range [0,100], 

then the 3 groups formed and their respective range of values will be as indicated by 

Table 4.4. 
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The previous example corresponds to only one abnormality index. However, this can 

be expanded to as many dimensions as necessary. Then, because there is an Se value 

assigned to each sensor, it is possible to specify the number of groups into which 

each sensor’s abnormality index will be classified.  

 

The graph shown in Fig. 4.11 has been obtained after applying the proposed 

classification algorithm to a simulated data set of abnormality indexes associated 

with force and position sensor readings. The data, represented by circles, have been 

normalised to the range [0 50]. Then, this range has been divided into 5 groups for 

both sensors ( 1 5Se  and 2 5Se ). As a result, each square in Fig. 4.11 encloses 

data points that represent a different group. For instance, the red rectangle in Fig. 

4.11 represents a group of two elements, with abnormality label (2,2)AL  . 

Table 4.4. Classification Example. 

Abnormality Label ( AL ) 1 2 3 
Level of Abnormality Low Moderate Extreme 
Index of Abnormality [0,33.3] (33.3,66.6] (66.6,100] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Data Clustered with Proposed Classification Method. 
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The maximum number of groups the classification algorithm can create depends on 

the target robot’s number of sensors and the values of the sensitivity parameter 

associated with each sensor. For instance, if the abnormality indexes of a robot with 

15 sensors are divided in 3 groups, then the classification algorithm will be able to 

create a maximum of up to 315 (or 71.43 10x ) groups. Ideally, when the sensitivity 

parameter values are optimally set, the robot will classify each type of anomaly into a 

different group. In this case, the number of created groups will exclusively depend on 

the number of different anomalies experienced by the robot and not on the number of 

sensors the robot has. In practice, it is very unlikely that a robot will face as many as 
71.43 10x  different anomalies. Therefore, they will not all be created. However, if 

this number of different anomalies did exist and provided that a suitable amount of 

memory and processing power has been incorporated into the robot, then the 

proposed algorithm will be still capable of classifying them. 

4.2.4. Classification of Abnormal Situations 

The abnormality indexes classified during the identification of a detrimental 

disturbance can be utilised for the classification of the associated abnormal situation. 

In the case where the anomaly is identified by means of a performance assessment, 

the abnormal situation can be classified as the centroid of the n corresponding 

abnormality labels (as indicated for Eq. 4.9, n  is the number of previous steps taken 

into account during the robot’s performance evaluation). This can be expressed by 

means of Eq. 4.17. 

 
1

s n
k

k s

AL

ASC
n







  (4.17) 

Where 

 ASC  is the Abnormal Situation Centroid. 

 
kAL  is the Abnormality Label of the AIS associated with the k-th step. 
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If the abnormal situation is identified by means of the pain mechanism, the ASC is 

simply determined by using 0n   in Eq. 4.17. This is because only the current 

sensor reading set is utilised in pain identification. The abnormal situation centroid 

will be used by the method presented in chapter 5, which aims to provide robots with 

a technique for recognising previously experienced abnormal situations. 

 

The abnormality labels associated with the last 10 steps taken by the robot during the 

experiment with the covered light sensor have been added to form the Cumulative 

Abnormality Label (CAL) illustrated in the graph of Fig. 4.12. This is the numerator 

of expression 4.17. As expected, the covered light sensor (Ls2) shows the maximum 

abnormality levels. However, the leg tip force sensors, and particularly TFs2, also 

show high cumulative abnormality labels. This is because the rotations on the spot 

performed by the robot as depicted in Fig. 4.7 generate extra pressure in the robot’s 

legs. If the cumulative abnormality labels are divided by the number of steps 

considered for the performance evaluation of the robot (10 in this case), the abnormal 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Cumulative Abnormality Label of the Experiment with the Covered Light Sensor. 
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situation centroid is obtained. As a result, the abnormal situation where Ls2 is 

covered can be represented by the following abnormal situation centroid.   

 





0 2.9 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.4 2 0.1 0.1 0 0 0 0 0 0 0

ASC  


 

Similarly, an ASC can be calculated and used for representing any abnormal 

situation experienced by the experimental robot. 

4.3. Identification of Detrimental Disturbance Sources 

In this section two techniques for the identification of detrimental disturbance 

sources are presented. The first method uses information provided by the physical 

location of a robot’s sensors and the robot’s moving parts in the creation of a 

hierarchical list of possible anomaly sources. These items are confirmed or rejected 

by the second process, which uses a series of robot actions especially developed for 

this purpose.  

4.3.1. Body Map 

A starting point, from which a robot could list possible causes of a lack of progress, 

is to consider the robot’s anatomy. The physical distribution of sensors and moving 

parts on the robot’s body could provide useful information regarding the location of a 

hardware malfunction or a feature of the robot’s environment that degrades the 

robot’s performance. This seems to correspond with what we humans do when 

experiencing pain or when some part of our body collides with our physical 

environment. That is to say, we focus our attention on that part of our body sensing 

pain or contact with our environment. 

 

In some cases a malfunction has stronger effects on sensors that are physically 

further away from the hardware experiencing it. However, as this is not the most 

common situation, it still seems reasonable for a robot to first look for the origin of a 
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malfunction in the area surrounding the sensors detecting it. This could accelerate the 

search for the cause of a detrimental disturbance. If we consider a robot with i 

moving parts and k sensors, it is possible to utilise expression 4.18 in order to 

determine the moving parts that are closer to those sensors showing high levels of 

abnormality.  

 

 
1

N
k

MPi

k Sk MPi

CAL
w

P P




   (4.18) 

 

Where, 

 
MPiw  is the weight associated with the i-th moving part. 

 Sk AiP P  is the Euclidean distance between the physical location of the k-th 

sensor  SkP  and the i-th moving part  MPiP . 

 If 0Sk MPiP P   then 1MPiw  .  

 N  is the number of sensors in the robot. 

 

A fact that is important to note before using expression 4.18 is that not all of a 

robot’s sensors provide information that is often related to a specific part of the 

robot’s body. Some examples of this kind of sensors are: accelerometers, gyroscopes 

and battery level indicators. These sensors should not be included in expression 4.18.  

 

As a result of using expression 4.18, the weights associated with each moving part 

are determined. Then, those moving parts with the higher weights should be 

considered first as possible causes of a detrimental disturbance. These assumptions 

must be rejected or validated by the robot via a series of research movements. 

Therefore, those moving parts with higher associated weights are the first to be 

considered for executing the research actions. Examples of using the body map will 

be presented in section 4.4.  
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4.3.2. Research Actions 

In order to reject or validate a robot’s theories about causes of a lack of progress in 

its mission, the robot must be able to perform a set of research actions. Although this 

set could be different depending on the type of the robot’s moving parts, 

environment and application; some examples are available in the literature. For 

instance, the authors in [56] incorporate two reflexes for walking robots, the elevator 

and the searching reflex. The elevator reflex is used when a swinging leg encounters 

an obstacle. Then the leg is moved backwards and lifted before swinging forward. If 

the reflex is triggered again, then the leg is lifted higher the next time. This reflex 

could be used as a research action to reject or validate a robot’s theory about the 

existence of an obstacle obstructing the leg. On the other hand, a searching reflex is 

utilised when the robot’s leg loses ground contact. Here, the leg’s tip is moved in 

circles of increasing radius for a fixed number of times. This reflex could be used to 

determine the validity of the robot’s assumptions about the existence of a hole in its 

path. 

 

There is no need to create a research action for every possible situation. But, the 

research action set should be as general as possible. By combining different research 

actions a large range of the possible robot actions, rather than the much larger 

spectrum of possible situations that could affect the robot, should be covered. 

 

After the set of research actions has been established, the robot must select the subset 

of actions that is suitable for the moving parts involved in the research process. 

These are the moving parts with the largest associated weights (calculated by means 

of expression 4.18). The research actions do not aim to solve the problem that is 

generating the poor performance of the robot. At this stage, the goal is just to identify 

its source. So, after executing these actions and analysing their effect on the sensor 

readings of the robot, the list of possible causes of the problem should be reduced. As 

an example, some of the research actions utilised by the experimental robot are 

presented next. In general, before executing these actions, the robot is sent to its 
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home position with legs raised off the ground. This allows decoupling the robot’s 

legs, so the robot’s actions only have localised effects. 

 

 Servo motor research actions. 

The servo motor research action consists of rotating the motor from the minimum to 

the maximum possible rotation angle considering that the legs should not collide 

with the rest of the robot’s body. Each time the servo reaches one of these extreme 

positions, the abnormality indexes of force and position sensor readings are analysed. 

As a result, a high abnormality index value in one of the sensors will indicate a high 

probability that the sensor is faulty, there is something abnormal in the robot’s 

environment or the robot structure is damaged. 

 

 Leg tip force sensor research actions. 

When executing this action, the robot’s leg with the suspect leg tip sensor is 

progressively lowered. As this occurs, the system waits for changes in two 

consecutive leg tip force sensors readings. Then, if the sensor works as expected, 

these changes should be generated as soon as the leg touches the floor. However, if 

no changes are detected after the leg is lowered below a threshold position, the 

system assumes that either the sensor is faulty or it is the interaction between the 

robot and its environment what is causing the problem. 

 

 Accelerometer research action. 

The accelerometer is one of the sensors which are not included in the body map 

presented in section 4.3.1. In this case all the robot’s legs execute the research 

actions, which consist of tilting the robot. Thus, the robot is tilted forward, backward, 

to the right and to the left. After each tilt, the abnormality index is calculated. As a 

result, a high abnormality index is associated with a high probability of 

accelerometer malfunction. A video showing the experimental robot executing 

accelerometer research action can be found by following the link D04 in Appendix 

D. 
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 Light sensor research action. 

The light sensor research actions consist of a series of robot rotations. After each 

rotation all of the light sensor readings are recorded. As illustrated in Fig. 4.13, the 

rotation angle is equal to the angle between adjacent light sensors. The number of 

light sensors in the robot determines the number of research rotations, the number of 

points (represented by orange circles in Fig. 4.13 for the initial configuration of 6 

operational light sensors) where the light measures are taken; and the number of light 

sensor readings recorded at each point. Once the robot has finished executing the 

research rotations and recording light sensor readings at each point, abnormal light 

sensor conditions are identified by means of expression 4.19. 
 

 
1

,  / 2
 status

,

N
p

k

p

k

normal if c N

Ls

abnormal otherwise







 




  (4.19) 

Where, 

 
0 ,  -1.5 1.5

1 ,

p p p p p

kp

k

if Ls Ls Ls
c

otherwise

    
 


 is a binary variable 

associated with the k-th light sensor when this is measuring the light at point 

p (illustrated in Fig. 4.13). 

 N  is both, the number of operational light sensors and the number of p 

points. 

 pLs  is the mean value of the k light sensor readings registered at point p. 

 p  is the standard deviation of the k light sensors readings registered at point 

p. 

 p

kLs  is the sensor reading registered at point p by the k-th light sensor. 
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4.4. Illustrative Examples 

This section illustrates the application of the classification method presented in this 

chapter by means of 2 experiments. As before, the robot’s mission is to find a single 

light source. Initially, the robot takes a few steps under normal conditions, but then a 

different detrimental disturbance is introduced in each test. These experiments and 

associated results are presented next. 

4.4.1. Disconnection of Servo Motor Control Signal 

In this experiment, the PWM control signal of Servo 1, located in leg 1, was 

disconnected after the robot had taken 10 steps. This motor will be referred as the 

target servo in this subsection. The robot’s performance during this experiment is 

shown in Fig. 4.14. Once the servo control signal is disconnected, the robot is still 

able to make progress until step 33. Then, because the robot is unable to make further 

progress after 10 steps; a cyclic lack of progress is detected at step 42.  

Figure 4.13. Light Sensor Research Rotations. 
(Note that the Red Square Indicates the Front of the Robot). 
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The abnormality index set of the robot’s sensors during steps 33 and 42 has been 

labelled. As a result of adding all these labels, the cumulative abnormality label 

depicted in the graph of Fig. 4.15 has been obtained. In this case, the largest 

cumulative abnormality label corresponds to abnormal readings of Ps11, the position 

sensor associated with the target servo. 

 

However, the displacement of leg 1 spreads its effects to other parts of the robot. 

This is mainly detected by leg tip force sensors and position sensors of the legs 

located on the same side of the robot as the target servo (legs 1 and 6). In addition, 

the leg tip force sensor associated with leg 3 also shows a high cumulative 

abnormality label. This occurs as a result of the displacement of leg 1 when legs 1, 3 

and 5 are the robot’s stance legs. The abnormal situation examined during this 

experiment can be classified by using expression 4.17 into the following abnormal 

situation centroid. 

 





0 0 0 0 0 0 2 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0  

         0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.5 0.1 0.5 0 0 0.7 0 0 0 0 0 0

ASC  


 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14. Robot's Performance during the Experiment with a Disconnected Servo Motor Control 

Signal. 
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The weights associated with each one of the 18 servo motors in the experimental 

robot are shown in Table 4.5, where Sxy represents the servo motor y located in leg x. 

These weights indicate the order in which the robot’s moving parts must execute the 

research actions. 
 
 

Table 4.5. Moving Part Weights during Experiment with  Disabled Servo Motor Control Signal. 
S11 S12 S13 S21 S22 S23 S31 S32 S33 

20.12 0.92 0.32 0.26 0.27 5.16 0.18 0.17 0.15 

S41 S42 S43 S51 S52 S53 S61 S62 S63 

0.15 0.14 0.12 0.17 0.16 0.14 0.31 1.28 5.19 

 

The relation between location and weight of the robot’s moving parts is more clearly 

illustrated in Fig. 4.16. Here, the size of the circles representing the leg servo motors 

is related to the associated weight magnitude. As can be seen in the figure, servo 

motor 1 of leg 1 is the moving part with the largest weight. This is followed by servo 

3 of legs 2 and 6. Therefore, these parts are the first to be selected for executing the 

corresponding research actions. Because the largest cumulative abnormality label 

corresponds to a position sensor, a servo motor research action is executed by S11.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 

 
 
 

Figure 4.15. Cumulative Abnormality Label during the Experiment with the Disabled Servo Motor 
Control Signal. 
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Then, the system is able to identify inconsistencies between the commanded 

coordinates of the servo and the position sensor readings. As a result, the system 

determines that the source of the detrimental disturbance experienced by the robot is 

a fault in S11 or its position sensor, something in the robot’s environment or damage 

in the robot’s structure that is affecting S11 normal operation. 

4.4.2. Robot’s Legs over Soft Terrain 

In this experiment, the robot walked under normal conditions until step 11. Then, leg 

3 (at step 12) and leg 4 (at step 21) walked onto a foam sponge sheet as shown in 

Fig. 4.17. The idea of the experiment is to simulate an environment where some of 

the robot’s legs experience resistance when walking. For instance, a robot could walk 

over a soft terrain such as grass, sand, mud or snow. Because the robot’s legs could 

sink into the terrain, extra force will be necessary to perform the gait. In fact, the 

resistance offered by the sponge utilised during the experiment was enough to 

prevent the robot from getting closer to the light source. The robot’s performance 

during this experiment is shown in Fig. 4.18. 

Figure 4.16. Weight Distribution among Robot's Moving Parts during Experiment with Disabled 
Servo Motor Control Signal. 
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Servo 3 Servo with Disconnected 
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Figure 4.17. Experimental Robot Walking over Soft Terrain. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.18. Robot's Performance when Encountering Soft Terrain. 
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Once leg 3 steps onto the sponge, the robot is still able to make progress until step 

17. Then, because the robot is unable to make further progress after 10 steps; a cyclic 

lack of progress is detected at step 26. 

 

The abnormality index set for the robot’s sensors during steps 17 and 26 has been 

labelled. As a result of adding all these labels, the cumulative abnormality label 

depicted in the graph of Fig. 4.19 has been obtained. In this case, the largest 

cumulative abnormality label corresponds to abnormal readings of TFs3, the leg tip 

force sensor associated with leg 3. However, the extra force applied by the legs while 

they try to move the robot forwards and the displacement of the legs caught in the 

sponge spreads abnormal readings to other parts of the robot. This is mainly detected 

by servo force and leg tip force sensors of legs 1 and 5. That is to say, an opposite leg  

and an adjacent leg to one of the legs caught in the sponge (leg 1 is opposite and leg 

5 is adjacent to leg 4). The abnormal situation examined during this experiment can 

be classified by using expression 4.17 into the following abnormal situation centroid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Cumulative Abnormality Label when Encountering Soft Terrain. 
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0 0 0 0 0 0 0.1 0 0 0 0 0 0.5 0 0 0.1 0 0 0 0 0 0 0 0 0.2 0 0 0  

         0 0 0.8 0 0 0.4 0 0 0.5 0 0 0 0 0 1.9 0 2.3 0.2 0.3 0 0 0 0 0 0 0

ASC  


 

As in subsection 4.4.1, the weights associated with each one of the 18 servo motors 

in the experimental robot have been determined for establishing the order of the 

research actions.  These weights are shown in Table 4.6. 

 
Table 4.6. Moving Part Weights during Robot’s Legs Over Soft Terrain Experiment. 

S11 S12 S13 S21 S22 S23 S31 S32 S33 

3.27 0.39 0.29 0.32 0.30 0.26 13.26 0.77 0.39 

S41 S42 S43 S51 S52 S53 S61 S62 S63 

5.29 0.47 0.28 5.23 0.41 0.24 0.26 0.25 0.21 
 

The relation between location and weight of the robot’s moving parts for this 

experiment is illustrated in Fig. 4.20. As can be seen in the figure, only servo motor 1 

of legs 1, 3, 4 and 5 have visible representing circles. This is a consequence of the 

robot’s inability to move forward. In this experiment, servo motor 1 of leg 3 is the 

moving part with the largest weight. This is followed by servo 1 of legs 4 and 5. 

Therefore, these parts are the first in executing the corresponding research actions. 

Because the largest cumulative abnormality label corresponds to a leg tip force 

sensor, a leg tip force sensor research action is executed by leg 3. However, this test 

Figure 4.20. Weight Distribution among Robot's Moving Parts during Robot’s Legs over Soft Terrain 
Experiment. 
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does not reveal abnormal conditions. Consequently, the second test on the list is 

performed. The following two largest cumulative abnormality labels shown in Fig. 

4.19 correspond to force and position sensors of servo S31, respectively. Therefore, 

servo motor research actions are executed by S31. Then, the system identifies 

inconsistencies between the commanded coordinates of the servo and the position 

sensor readings; and abnormal values of force sensors readings. As a result, the 

system is able to identify that the source of the detrimental disturbance experienced 

by the robot is either a fault in S31 or its associated position and force sensors; or 

something in the robot’s environment that is affecting S31 normal operation. 

4.5. Additional Experimental Results 

Experimental validation of self-diagnosis methods presented in the thesis will be 

addressed by conducting three groups of experiments. In the first series of 

experiments, failures will be introduced into the robot’s hardware and, under normal 

environmental conditions; the performance of the methods presented in this chapter 

will be analysed. Another group of experiments will be used for examining the 

performance of the proposed methods when the robot’s hardware is fully functional 

but abnormal environmental conditions arise. The last set of experiments will allow 

the evaluation of the proposed self-diagnosis methods in the presence of both robot’s 

hardware failures and abnormal environmental conditions occurring at the same time. 

 

Because it is unfeasible to expose the robot to every possible situation or even 

consider all of the possible combinations of faults that the robot may undergo on 

each situation, only a small subset has been selected. The experiments as a whole 

consider faults that affect all of the sensors of the robot, moving parts, robot’s body, 

low battery levels and even a simulated software bug. Due to time constraints and 

considering the scope of the thesis, the self-diagnosis methods are only tested in the 

experimental robot and not on other robotic platforms. However, the experimental 

robot is equipped with an array of sensors and compensation capabilities that are 

superior to the ones commonly found on other robotic systems. In any case, the 
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experimental robot is able to provide a large amount of suitable data for the 

evaluation of the proposed methods. Once again, the robot’s mission is to find a 

single light source. During the conducted experiments, the robot was set to identify a 

sustained or cyclic lack of progress by using sets of 7 steps ( 7n   in Eq. 4.9). These 

experiments and their associated results are presented next. 

4.5.1. Experiments with Anomalies in the Robot’s Hardware. 

These experiments were designed to evaluate the self-diagnosis methods presented in 

this chapter when the robot deals with faults in its hardware. When a lack of progress 

in the robot mission is detected, the robot generates a table of Cumulative 

Abnormality Labels which are shown as bar graphs. The legend of these graphs is the 

same as previously utilised in section 4.4 and it is also shown in Fig. 4.21. 

 

CAL values are analysed in order to evaluate if the system is able to identify the 

considered fault in the robot’s hardware. Each one of the robot’s theories about the 

source of the anomaly is analysed according to the order established by the system 

and they are verified by the execution of the corresponding research action. If the 

system determines that a theory is not valid, the next theory is tested and so on. Then, 

the system continues in this fashion until the anomaly is identified or the robot runs 

out of theories. Each diagnosis attempt demands energy and time from the robot and 

divert it from performing its mission. Therefore, the best possible result occurs when 

the system is able to diagnose the problem correctly on its first attempt. Two criteria 

will be utilised in this subsection for the evaluation of the self-diagnosis: 

 

 

 

 

 

Figure 4.21. Legend of Cumulative Abnormality Label Bar Graphs. 
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i)  Whether or not the system is able to diagnose the anomaly correctly. 

ii) Number of attempts required when the correct diagnosis was accomplished. 

 Disconnected Control Signal of Leg Servo Motors. 4.5.1.1

As the experimental robot has 18 servo motors which are prone to overheating and 

physical damage, it is important to evaluate if the system is able to detect and 

diagnose a faulty servo. This situation has been represented by disconnecting the 

PWM control signal of the motor simulating the fault. The conducted experiments 

consider combinations of number and position of faulty motors. However, due to the 

huge number of possible combinations, it is not feasible to consider all of them. 

Therefore, only a small subset of experiments, which includes faulty motors located 

in up to 3 legs, has been considered. 

 

In a first set of experiments only one servo motor was disconnected at a time. Figures 

4.15 (where the CAL associated with the disconnection of servo 1, in leg 1, is 

depicted) and 4.22 to 4.24 show the results of these experiments in the form of 

Cumulative Abnormality Labels (CALs). As illustrated in Fig. 4.1, servos 1, 2 and 3 

provide the robot’s leg with coxa, femur and tibia articulations, respectively. 

 

Ideally, the effects of the disconnection of one or more of the robot’s servo motors 

should only increase the CAL value of the position sensor corresponding to the 

disconnected motor(s). However, in practice these effects are spread to other sensors. 

As a result of the disconnection, the robot’s legs can reach awkward positions which 

increase CALs associated with force and pressure sensors. In addition, the robot may 

lose stability, which is register by CALs corresponding to accelerometer readings.  
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Figure 4.22.Cumulative Abnormality Labels from Experiments with One Disabled Servo Motor in Legs 

1 and 2. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4.23. Cumulative Abnormality Labels from Experiments with One Disabled Servo Motor in 
Legs 3 and 4. 
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The best results for this set of experiments were obtained when the following servo 

motors were independently disconnected.  

 

 Servo 1 of Leg 1 

 Servo 3 of Leg 2 

 Servo 1 of Leg 3 

 Servo 1 of Leg 4 

 Servo 2 of Leg 4 

 Servo 2 of Leg 5 

 

In all of these cases, the system was able to immediately identify the source of the 

anomaly. Then, in experiments where the following servos were independently 

disconnected, the system was able to identify the source of the abnormal situation on 

a second attempt. 

 

 Servo 2 of Leg 1 

 Servo 3 of Leg 1 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.24. Cumulative Abnormality Labels from Experiments with One Disabled Servo Motor in 

Legs 5 and 6. 
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 Servo 1 of Leg 2 

 Servo 2 of Leg 2 

 Servo 3 of Leg 2 

 Servo 3 of Leg 3 

 Servo 3 of Leg 4 

 Servo 3 of Leg 5 

 Servo 3 of Leg 6 

 

For instance, during the experiment where servo motor 3 of leg 1 was disconnected, 

the robot executed accelerometer research actions. Consequently, it was corroborated 

by the robot that this sensor was functional. Then, the robot continued executing 

servo motor research actions for servo motor 3 of leg 1.  As a result, the source of the 

anomaly was found.  

 

When other leg servo motors were independently disconnected, the robot was able to 

identify the source of the anomaly on its third attempt. 

 

Another set of experiments was conducted in order to test the capability of the self- 

diagnosis methods to identify the simultaneous disconnection of two servo motors 

(servos 2 and 3 of the corresponding robot’s leg). The cumulative abnormality labels 

of these experiments are shown in Fig. 4.25. Here, the best results were obtained 

when servo motors 2 and 3 were disconnected in legs 5 and 6 (hind legs). In these 

cases, the system had no difficulty identifying the source of the anomaly on its first 

attempt. When servo motors 2 and 3 on legs 1, 2 and 3 were disconnected, the system 

was able to immediately identify one of the disconnected servo motors. The other 

one was identified only after performing servo motor research actions. Most 

difficulties arose when servo motors 2 and 3 were disconnected in leg 4. In this case, 

there were high CAL values associated with leg 3 (in blue). Therefore, only after the 

robot had checked that everything was normal with this leg, were the disconnected 
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servos in leg 4 identified. Table 4.7 shows the number of attempts necessary for the 

identification of the disconnected servos during the conducted experiments. 

 

Table 4.7. Number of Attempts for Identification of Disabled Servo Motors 2 and 3. 
Leg Servo Number of Attempts 

1 
2 1 

3 6 

2 
2 1 

3 3 

3 
2 1 

3 3 

4 
2 2 

3 5 

5 
2 1 

3 2 

6 
2 1 

3 2 

 

Experiments were also conducted by disconnecting servo motors located in different 

legs. Fig. 4.26 shows the obtained CAL values after disconnecting servo motor 1 in 

different pairs of legs. The effects of the disconnection of servo 1 are notoriously 

propagated to other legs. This is a result of the awkward position the not fully 

controlled legs adopt, which increase the force required from other servos in order to 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.25. Cumulative Abnormality Labels from Experiments with Disabled Servo Motors 2 and 3. 
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maintain their commanded positions. In addition, the robot may lose stability, which 

increases CAL values corresponding to accelerometer readings. 

 

The best results for these experiments were obtained when servo motor 1 of legs 1 

and 5; and legs 2 and 5 were disconnected. Here the system was able to recognise the 

disconnected servos at its first attempt. Then, 2 attempts were necessary for the 

identification of the disconnected servo in legs 2 and 4, 3 attempts for the servo in 

legs 2 and 6; 4 attempts for the one in legs 1 and 3; and 6 attempts for the one in legs 

1 and 4. Table 4.8 shows the number of attempts necessary for the identification of 

the disconnected servos during this set of experiments. 

 
Table 4.8. Number of Attempts for Identification of Disabled Servo Motors 1 in Different Pairs of 

Legs. 
Experiment Leg Servo Number of Attempts 

1 
1 1 3 

3 1 5 

2 
1 1 7 

4 1 6 

3 
1 1 1 

5 1 2 

4 
2 1 2 

4 1 3 

5 
2 1 1 

5 1 2 

6 
2 1 2 

6 1 3 

 

 

 

 

 

 

 

 

 

 

Figure 4.26. Cumulative Abnormality Labels from Experiments with Disabled Servo Motor 1 in 
Different Pairs of Legs. 
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 Disconnected Light Sensors.  4.5.1.2

During these experiments the robot performed its mission with one or a combination 

of disconnected light sensors. These disconnections may be produced by a cut wire. 

Initially, each one of the robot’s light sensors was disconnected in a separate 

experiment. The results in the form of cumulative abnormality labels are shown in 

Fig. 4.27. In general and for simplicity purposes, the graphs of this section will not 

show negligible CAL values  1 . As a result, in this case only CALs associated 

with light sensors are shown. As can be observed in the figure, in this series of 

experiments 100% of the disconnected light sensors were identified by the system at 

the first attempt.  

 

In order to test the methods described in the chapter with more challenging situations 

a new set of 6 experiments was conducted. Here, the capability of the described 

methods for detecting combinations of different numbers of disconnected light 

sensors (between 2 and 5) was tested. Results of these experiments are shown in the 

graphs of Fig. 4.28.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.27. Cumulative Abnormality Labels from Experiments with One Disconnected light Sensor. 
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Here, it can be seen that after calculating the corresponding CALs, the system had no 

difficulty detecting adjacent pairs of disconnected light sensors. In general, this 

method was capable of detecting up to 4 disconnected light sensors. When 5 light 

sensors were disconnected, the system was still able to identify that an anomalous 

situation was affecting these sensors. However, the calculation of the corresponding 

CAL only identifies 3 out of the 5 disconnected light sensors. This is an extreme case 

where the robot is unable to identify all of the disconnected sensors even after 

executing the light sensor research action described in subsection 4.3.2. This is 

because there are more sensors giving incorrect information than sensors working 

correctly. Another extreme case occurs when all of the robot’s light sensors are 

disconnected. In this situation the robot tries to clean all of its light sensors. After 

realising that this does not improve the situation the robot assumes that there is no 

light source and goes to its home position. Here the robot indefinitely waits for a 

light source to appear.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.28. Cumulative Abnormality Labels from Experiments with Different Combinations of 

Disconnected Light Sensor. 
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 Broken Legs 4.5.1.3

These experiments were designed to evaluate the performance of the self-diagnosis 

methods when all of the robot’s sensors and moving parts were fully functional but a 

part of the robot’s body had been damaged. A broken leg was simulated in these 

experiments by unscrewing the lower part of the leg. The result of this operation is 

shown in Fig. 4.29.  

 

A first set of experiments was conducted by simulating a single broken leg. The 

obtained cumulative abnormality labels are shown in Fig. 4.30. In these graphs it can 

be observed that the effects of the broken leg are quickly propagated and measured 

by sensors located in other parts of the robot’s body. In this case, the calculation of 

the respective CALs is not enough for the identification of the broken leg. Because 

legs that are adjacent to the broken leg show larger CAL values, the robot’s body 

map can be used to identify in which area the broken leg should be looked for first. 

However, the system is only able to identify the anomalous leg after this executes leg 

tip force sensor research actions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29. Simulated Broken Leg. 
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As could be expected, when more than one leg is broken simultaneously, the 

calculation of the CALs is not enough for the identification of broken legs, either. 

Results of experiments with pairs and trios of broken legs are shown in Figs. 4.31 

and 4.32, respectively. The only case when the anomalous legs were detected 

exclusively by the use of CALs was when legs 1 and 4 were broken (Fig. 4.31). 

However, in most of the cases, the effects of the broken legs are propagated to other 

sensors. In contrast to experiments with only one broken leg, here the robot is not 

able to maintain a stable gate and the broken legs support a part of the robot’s 

weight. As a result, the values of the leg tip force sensor readings of the broken legs 

are incremented and registered in the respective CAL. In this case, the leg tip force 

sensors measure the force applied in the middle of the leg instead of the force applied 

in the leg’s tip as the sensor’s name indicates. Similarly to the experiment with one 

broken leg, the methods discussed in the chapter can only indicate the area of the 

robot most affected by the abnormal situation by means of a body map. The exact 

legs which present the anomaly are only detected once the leg tip force sensor 

research actions are executed.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.30. Cumulative Abnormality Labels from Experiments with a Single Broken Leg. 
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Additional experiments with broken legs were conducted, this time the leg tip force 

sensors of the broken legs were disconnected. The results are similar to the ones 

shown on Figs. 4.30 to 4.32, but in this case the CAL value associated with the leg 

tip force sensor of the broken leg is 0. As a consequence, the robot was unable to find 

the anomalous leg with the research actions considered in this thesis.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4.31. Cumulative Abnormality Labels from Experiments with Pairs of Broken Legs. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.32. Cumulative Abnormality Labels from Experiments with Trios of Broken Legs. 
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 Low Battery Levels. 4.5.1.4

In this experiment there are no faulty sensors and the robot’s body is intact. 

However, the robot starts performing its mission with little charge in battery 2Bl . 

This battery provides the energy utilised by the servo motors and the leg release 

mechanism.  Initially, the robot walks towards the light source without any apparent 

problem. However, when the energy level is too low, the lack of energy prevents the 

robot from making progress in its mission. This abnormal situation is detected by the 

system and the CAL showed in Fig. 4.33 is generated. Here it can be seen that the 

effects of the considered abnormal situation are propagated and detected by other 

sensors. This is because when the energy levels are too low the robot’s legs are 

unable to reach the commanded coordinates. As a result, before the robot falls over, 

the legs reach awkward positions which increment the torque required from the 

servos and the pressure applied in the legs’ tip. This, in turn, increases even more the 

error in the commanded position of the servo motors. However, because the low 

level of 2Bl  arises before other effects in the robot behaviour, the CAL value 

associated with 2Bl  is the greatest in the group. As a result, the system attributes 

correctly the anomaly to the low level of 2Bl  on its first attempt. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.33. Cumulative Abnormality Labels from Experiments Low Battery Level. 
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Experiments with low levels of batteries 1Bl  and 3Bl were conducted. These batteries 

power the microcontrollers and electronics located on the legs and the robot’s core, 

respectively. As expected, when the level of any of these batteries is too low, the 

corresponding microcontroller stops working properly and the control of the robot is 

lost. This occurs even before the robot is able to detect a lack of progress. However, 

this situation is unlikely to happen because more power is required from the servo 

motors and normally 2Bl  discharges first. Nevertheless, a method which would allow 

the system to detect low battery levels of 1Bl  and 3Bl  is to treat low battery levels as 

pain. So, when battery levels go below a determined threshold, compensatory actions 

could be executed immediately.  

 Software Bug. 4.5.1.5

Abnormal situations generated by software bugs can be more difficult to detect. In 

this experiment a software bug with detrimental effects on the robot’s performance 

was introduced into the robot’s code. The considered software bug disabled the 

turning and the rotation on the spot movements, which prevented the robot from 

reaching the light source. During the experiment, the robot detected a lack of 

progress but in this case all of the CAL values were 0. Therefore, the robot was 

unable to identify the source of the abnormality even after all the repertoire of 

research actions was executed. In this case, an alternative for the robot is to execute 

the methods presented in sections 5.4 and 5.5. 

4.5.2. Experiments with Anomalies in the Robot’s Environment 

 Robot Walking Uphill 4.5.2.1

The experimental robot has been provided with information regarding expected 

sensor readings when walking uphill. The slope of the terrain changes the weight 

distribution of the robot among its legs. As a result, CAL values corresponding to leg 

tip force sensor readings of hind legs are greater than those of front legs. 

Simultaneously, CAL values of yAcc  are slightly less than the number of steps used 

for identifying a cyclic lack of progress (7 in these experiments). The mean value of 
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the ASCs obtained during experiments with the robot walking uphill has been 

utilised for desribing the abnormal situation. As a result, the abnormal situation 

centroid shown in Table 4.9 has been obtained.  

Table 4.9. Abnormal Situation Centroid for Robot Walking Uphill. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.06 0 0 0.07 0 0 0.07 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0.10 0.06 0.06 0 0.01 0 0.23 0 0 0.01 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.01 0 0 0 0 0 0 0 0.04 0 0 0 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.43 1.03 1.16 1.16 2.07 2.13 0 0.81 0 0 0 0   

 

Experiments have been conducted in order to evaluate the performance of the self-

diagnosis methods when the robot is walking over a steep terrain. In this case, the 

slope of the terrain is so steep  40  that it prevents the robot from making further 

progress in its mission. Figure 4.34 shows one of the CAL sets obtained during these 

experiments. In order to verify that the abnormal CAL values are not generated by 

faults in sensors or other of the robot’s components, the corresponding research 

actions must be executed. In this case, the executed research actions are those 

corresponding to position of servo motors, leg tip force sensors and accelerometer. 

Once the robot has verified that the abnormal CAL values were not generated due to 

 

 

 

 

 

 

 

 

 

 
Figure 4.34. Cumulative Abnormality Labels from Experiment with Robot Walking Uphill. 
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the robot’s malfunction or damage; the corresponding ASC is calculated by means of 

expression 4.17. This ASC is compared with the one previously incorporated into the 

robot for describing this abnormal situation. Then, the Euclidean distance between 

both ASCs was calculated as a discrepancy measure. Table 4.10 contains the 

discrepancy obtained from 10 experiments where the robot walks uphill. For 

comparison purposes, discrepancy values with ASC corresponding to other abnormal 

situations are also shown in the table. 

 

Table 4.10. Discrepancy Values from Experiments with Robot Walking Uphill. 
Experiment 1 2 3 4 5 6 7 8 9 10 

Robot Walking Uphill 0.40 1.04 1.60 0.34 0.63 0.43 0.45 0.57 0.39 0.44 

Slippery Surface 2.19 2.98 3.25 2.30 2.19 2.29 2.06 2.19 2.30 2.13 

Air Walking 4.28 3.62 3.21 4.25 4.36 4.23 4.36 4.34 4.16 4.28 

Collision with Small Obstacles 1.23 1.42 1.78 1.35 1.39 1.45 1.28 1.45 1.13 1.18 

Leg 1 on Soft Terrain 4.18 3.51 3.34 4.28 4.45 4.25 4.30 4.41 4.10 4.19 

Leg 2 on Soft Terrain 4.18 3.53 3.04 4.19 4.32 4.15 4.25 4.27 4.11 4.19 

Leg 3 on Soft Terrain 3.85 3.37 2.85 3.80 3.91 3.80 3.90 3.97 3.75 3.90 

Leg 4 on Soft Terrain 3.67 3.24 2.84 3.63 3.84 3.58 3.69 3.76 3.60 3.73 

Leg 5 on Soft Terrain 3.60 3.27 2.95 3.70 3.72 3.72 3.72 3.66 3.64 3.68 

Leg 6 on Soft Terrain 3.89 3.65 3.28 3.96 3.94 3.93 3.96 3.87 3.88 3.89 

Legs 1 and 2 on Soft Terrain 4.19 3.88 3.37 4.32 4.36 4.30 4.30 4.27 4.17 4.20 

Legs 2 and 3 on Soft Terrain 3.79 3.68 2.82 3.78 3.84 3.76 3.82 3.77 3.73 3.86 

Legs 5 and 6 on Soft Terrain 3.66 3.43 3.36 3.78 3.79 3.80 3.76 3.77 3.79 3.76 

Legs 1 and 4 on Soft Terrain 3.93 3.70 3.42 4.06 4.10 4.02 4.03 4.00 3.92 3.94 

Legs 1 and 6 on Soft Terrain 4.04 3.40 3.30 4.09 4.22 4.06 4.11 4.19 4.00 4.04 

Legs 1, 3 and 4 on Soft Terrain 4.42 3.89 3.58 4.48 4.61 4.46 4.50 4.60 4.36 4.44 

Legs 1, 3 and 5 on Soft Terrain 4.26 3.61 3.53 4.37 4.50 4.39 4.38 4.52 4.31 4.33 

Legs 1, 2 and 6 on Soft Terrain 4.22 3.61 3.35 4.29 4.44 4.25 4.30 4.38 4.17 4.22 

Legs 4, 5 and 6 on Soft Terrain 4.30 3.80 3.91 4.35 4.41 4.39 4.39 4.49 4.38 4.38 

 

This data shows an average discrepancy value of 0.42, which was small enough to 

allow the correct identification of the abnormal situation during the experiments. 

 

 Slippery Surface 4.5.2.2

When walking over a slippery surface the experimental robot’s legs tend to spread 

out. As a result, more torque is required from the servo motors and servo position 

errors arise. Eventually, legs get to awkward positions, which increases readings in 

leg tip force sensors. The effects may escalate until the robot falls over and is unable 

to stand up and continue with its mission. A number of experiments have been 
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conducted in order to evaluate the proposed self-diagnosis methods when dealing 

with this situation. In this case, a slippery surface has been simulated by removing 

the robot’s rubber feet while walking on a wood surface. This is shown in Fig. 4.35. 

As before, the robot has been provided with an ASC for that situation obtained 

empirically. In this case, the ASC shown in Table 4.11 has been calculated. 

 

Table 4.11. Abnormal Situation Centroid for Robot Walking Over a Slippery Surface. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.03 0.63 0 0 0.04 0 0 0.03 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0.6 0 0 0.79 0 0 0.84 0 0 0.5 0 0 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0 0 0 0 0 0.04 0.49 0 0 0.03 0 0 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

2.33 1.30 1.46 2.56 2.33 2.49 0 0 0 0 0 0   

 

In general, when the robot walks on slippery surfaces high CAL values of leg tip 

force sensors are expected. In addition, noticeable CAL values corresponding to the 

position sensor of servo 2 are expected to be present. This can be seen in Fig. 4.36, 

where a CAL set obtained during experiments with a slippery surface is displayed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35. Robot Walking Over a Slippery Surface (Rubber Feet Removed). 
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Once again the robot must verify that the abnormal CAL values are not generated by 

faults in sensors or other of the robot’s components. Therefore, the corresponding 

research actions must be executed. 

 

The discrepancy measure for 10 experiments where the robot walks over a slippery 

surface is shown in Table 4.12.  

 

Table 4.12. Discrepancy Values from Experiments with Robot Walking Over a Slippery Surface. 
Experiment 1 2 3 4 5 6 7 8 9 10 

Robot Walking Uphill 2.67 2.26 2.31 2.49 2.58 2.43 2.14 2.61 2.78 2.55 

Slippery Surface 1.27 0.81 0.81 1.06 0.98 0.88 0.87 1.08 0.88 0.64 

Air Walking 5.77 5.37 5.49 5.05 5.71 5.33 5.10 5.74 6.10 5.75 

Collision with Small Obstacles 2.77 2.50 2.42 2.63 2.76 2.68 2.37 2.80 3.04 2.74 

Leg 1 on Soft Terrain 5.65 5.30 5.44 4.97 5.61 5.30 5.04 5.72 6.02 5.68 

Leg 2 on Soft Terrain 5.54 5.17 5.31 4.82 5.48 5.18 4.90 5.60 5.90 5.57 

Leg 3 on Soft Terrain 5.36 4.95 5.12 4.73 5.42 4.93 4.63 5.35 5.55 5.32 

Leg 4 on Soft Terrain 5.08 4.60 4.81 4.34 5.10 4.76 4.31 5.25 5.30 5.10 

Leg 5 on Soft Terrain 5.00 4.58 4.65 4.31 4.97 4.55 4.33 4.91 5.19 4.82 

Leg 6 on Soft Terrain 5.15 4.73 4.83 4.41 5.11 4.69 4.47 5.07 5.34 4.98 

Legs 1 and 2 on Soft Terrain 5.50 5.05 5.16 4.78 5.42 5.02 4.84 5.41 5.66 5.29 

Legs 2 and 3 on Soft Terrain 5.26 4.58 4.73 4.44 5.18 4.68 4.33 5.13 5.14 4.92 

Legs 5 and 6 on Soft Terrain 4.80 4.49 4.66 4.18 4.84 4.42 4.23 4.78 5.03 4.73 

Legs 1 and 4 on Soft Terrain 5.14 4.71 4.85 4.44 5.10 4.73 4.51 5.14 5.35 4.98 

Legs 1 and 6 on Soft Terrain 5.27 5.03 5.19 4.67 5.32 5.02 4.75 5.41 5.71 5.38 

Legs 1, 3 and 4 on Soft Terrain 5.63 5.42 5.56 5.15 5.74 5.42 5.16 5.78 6.03 5.73 

Legs 1, 3 and 5 on Soft Terrain 5.46 5.33 5.49 5.00 5.59 5.27 5.03 5.61 5.91 5.62 

Legs 1, 2 and 6 on Soft Terrain 5.54 5.20 5.36 4.86 5.50 5.23 4.94 5.63 5.90 5.58 

Legs 4, 5 and 6 on Soft Terrain 5.26 5.29 5.46 4.98 5.53 5.16 4.98 5.46 5.82 5.55 

 

 

 

 

 

 

 

 

 

 
Figure 4.36. Cumulative Abnormality Labels from Experiment with Robot Walking Over a Slippery 

Surface. 
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In this case, the data shows an average discrepancy value of 0.93 and the abnormal 

situation was identified in all of the considered experiments. 

 Air Walking 4.5.2.3

While walking over unstructured terrain, the robot could eventually get to a position 

where all of its legs lose contact with the ground and the only point of contact 

between the robot and the irregular terrain is the robot’s underside. Then, the robot 

could perform its normal gait without moving forward. These experiments aim to 

evaluate the performance of the self-diagnosis methods when the robot is facing this 

kind of situation. During experiments dealing with air walking the robot has been 

located on a plastic container with enough height to prevent the robot’s legs from 

establishing contact with the ground while walking. This is shown in Fig. 4.37. As 

the robot is unable to make any progress in its mission, an abnormal situation is 

detected. However, in this case nothing abnormal is detected by the robot’s sensors 

(all of the CAL values are 0). This situation could be described by the following 

abnormal situation centroid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37. Robot Air Walking. 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ASC  


 

Because the resulting CAL values are always the same for this experiment, the 

discrepancy measure is always 0. However, there are different abnormal situations 

that can present exactly the same CAL values (e.g. partially covered light sensors). In 

these cases, the robot must execute compensatory measures in turn for each of the 

situations with the same ASC until one is able to compensate the abnormal situation. 

 Partially Covered Light Sensors 4.5.2.4

During this experiment, fully functional light sensors were partially covered. In 

general, the robot found no difficulty in performing its mission with partially covered 

light sensors. However, the calculation of the direction of the light source was 

strongly affected when one of the two light sensors facing the light source was 

partially covered. Then, the robot was unable to progressively approach the light 

source and, after 7 steps without making any progress in its mission, a cyclic lack of 

progress alarm was triggered. Similarly to the experiment in subsection 4.5.2.3, all of 

the CAL values registered by the robot with partially covered light sensors were 0. 

As a result, the system was unable to identify the anomaly with this method. 

However, partially covered light sensors can be identified by the incorporated light 

sensor research actions if the number of uncovered and functional light sensors is 

greater than the number of partially covered light sensors. Therefore, a non-optimal 

solution for the correct identification of the anomaly is to execute all of the repertoire 

of research actions until the abnormal situation is identified.  

 Collision with Small Obstacles. 4.5.2.5

Small obstacles, as the ones shown in Fig. 4.38, could pass under the robot’s 

whiskers and collide with the robot’s legs, preventing the robot from making further 

progress in its mission. Exposing the robot to this situation will allow additional 

evaluation of the performance of the self-diagnosis methods. 
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Empirical data has been utilised for describing this situation. Here, high CAL values 

of leg tip force sensors have been obtained. In addition, small CAL values 

corresponding to the force sensor of servo 1 and accelerometer y-coordinates are 

present. An example of the CAL values obtained during experiments with small 

obstacles is shown in Fig. 4.39. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38. Robot Colliding with Small Obstacles. 

 

 

 

 

 

 

 

 

 

 
Figure 4.39. Cumulative Abnormality Labels from Experiment with Robot Colliding with Small 

Obstacles. 

 

0

5

10

15

20

A
c
c
y

T
F

s
6

T
F

s
5

T
F

s
4

T
F

s
3

T
F

s
2

T
F

s
1

F
s
4
1

F
s
3
1

F
s
2
1

F
s
1
1

Sensor Reading Set (Robot Dealing with Small Obstacles)

C
u
m

u
la

ti
v
e
 A

b
n
o
rm

a
lit

y
 L

a
b
e
l



 
 

Chapter 4. Autonomous Identification of Detrimental Disturbance Sources 

113 
 

Considering the obtained data, the ASC shown in Table 4.13 has been incorporated 

into the robot for identifying this kind of abnormal situation. 

 

Table 4.13. Abnormal Situation Centroid for Robot Colliding with Small Obstacles. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 0 0 0 0.43 0 0 0.5 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0 0 0.41 0 0 0.39 0 0 0 0 0 0 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.43 0.71 0.94 1.39 1.90 2.14 0 0.09 0 0 0 0   

 

As usual, the corresponding research actions must be executed in order to discard 

CAL generated due to the robot’s malfunction or damage. 

 

The discrepancy measures obtained from 10 experiments where the robot deals with 

small obstacles are shown in Table 4.14.  

 

Table 4.14. Discrepancy Values from Experiments with Robot Colliding with Small Obstacles. 
Experiment 1 2 3 4 5 6 7 8 9 10 

Robot Walking Uphill 1.88 1.68 1.36 1.54 1.43 1.73 1.81 1.39 1.89 1.17 

Slippery Surface 2.95 2.88 2.28 2.63 2.52 2.82 3.19 2.44 3.13 2.40 

Air Walking 4.09 3.85 4.59 4.18 4.14 3.26 2.89 4.11 3.75 4.22 

Collision with Small Obstacles 1.48 0.88 0.93 0.77 0.99 1.32 1.47 0.73 1.16 1.02 

Leg 1 on Soft Terrain 3.94 3.81 4.43 4.01 4.15 3.23 2.94 3.94 3.74 4.09 

Leg 2 on Soft Terrain 3.95 3.65 4.37 3.97 3.92 3.11 2.73 3.87 3.65 4.13 

Leg 3 on Soft Terrain 3.91 3.58 3.96 3.68 3.57 2.90 2.56 3.62 3.65 3.70 

Leg 4 on Soft Terrain 3.83 3.37 3.79 3.54 3.30 2.71 2.37 3.48 3.47 3.49 

Leg 5 on Soft Terrain 3.70 3.43 3.96 3.75 3.61 2.64 2.69 3.39 3.37 3.53 

Leg 6 on Soft Terrain 3.89 3.68 4.19 3.98 3.84 2.76 2.87 3.59 3.64 3.78 

Legs 1 and 2 on Soft Terrain 4.21 3.74 4.30 4.14 4.12 3.14 3.06 3.68 3.85 3.97 

Legs 2 and 3 on Soft Terrain 4.16 3.35 3.69 3.57 3.45 2.84 2.57 3.17 3.66 3.30 

Legs 5 and 6 on Soft Terrain 3.83 3.78 4.06 3.97 3.74 2.73 2.96 3.60 3.78 3.81 

Legs 1 and 4 on Soft Terrain 4.02 3.65 4.12 3.99 3.91 2.84 2.96 3.53 3.72 3.73 

Legs 1 and 6 on Soft Terrain 3.78 3.77 4.30 3.94 3.92 3.04 2.88 3.86 3.70 4.07 

Legs 1, 3 and 4 on Soft Terrain 4.22 4.03 4.46 4.17 4.19 3.41 3.33 4.07 4.02 4.27 

Legs 1, 3 and 5 on Soft Terrain 4.02 4.13 4.50 4.16 4.21 3.33 3.33 4.09 4.06 4.35 

Legs 1, 2 and 6 on Soft Terrain 4.00 3.79 4.38 4.03 4.05 3.26 2.95 3.91 3.81 4.16 

Legs 4, 5 and 6 on Soft Terrain 4.17 4.32 4.60 4.49 4.13 3.34 3.49 4.38 4.20 4.60 

 

In this case, the data shows an average discrepancy value of 1.08 and the abnormal 

situation was identified in all of the considered experiments. 
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 Robot Walking over Soft Terrain. 4.5.2.6

This group of experiments considers situations that are potentially challenging for the 

system to diagnose. When the experimental robot walks over soft terrain, its legs sink 

into the terrain and the robot is unable to move forward. As a result, more torque is 

demanded from both the servo motors of legs walking over hard terrain and those 

walking over soft terrain. The propagation of the effects of the anomaly over 

components of the robot not directly connected with the abnormal situation also 

extends to the robot’s leg tip force sensors. Because of this propagation it is more 

difficult for the system to diagnose which parts of the robot are directly connected 

with the abnormal situation.  

 

A series of experiments was conducted in order to test the capability of the self-

diagnosis methods presented in this chapter when one of the six robot legs is walking 

on soft terrain. As in the experiment presented in subsection 0, the soft terrain was 

simulated by using a sponge. In general, high CAL values for the position and force 

sensors of servo 1, corresponding to the leg walking on soft terrain, were obtained. In 

addition, different leg tip force sensors presented high CAL values depending on the 

leg walking on soft terrain. An example of the CAL values registered by the robot 

during the experiments is shown in Fig. 4.40.  

 

 

 

 

 

 

 

 

 

 

Figure 4.40. Cumulative Abnormality Labels from Experiments with One Leg Walking Over Soft 
Terrain. 
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Here it can be seen that when legs 1 or 2 walked over soft terrain, they were 

identified by the experimental robot on its first attempt. This was possible due to 

high values of CALs corresponding to abnormal position and force sensor readings 

of the leg walking over soft terrain. In the remaining cases, there is a high CAL 

associated with leg tip force sensors 1TFs  or 5TFs . Therefore, the robot had to 

execute leg tip force sensor research actions first in order to check that the anomaly 

was not associated with these sensors. Then, the robot was able to identify that the 

leg was walking over soft terrain.  

 

In order to provide the robot with a representation of each situation, the ASCs shown 

in Tables 4.15 to 4.20 were incorporated into the robot’s database of abnormal 

situations. These ASCs were obtained from empirical data collected by the robot 

while walking on soft terrain.  

 

Table 4.15. Abnormal Situation Centroid for Leg 1 Walking on Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.79 0 0 0.16 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 0.11 0 0 1.54 0.03 0 0.07 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.01 0 0.17 0.01 0 0.14 0.06 0 0.16 0.06 0 0.17 0.01 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.03 0.03 0.1 0.59 0.09 0.04 0 0 0 0 0 0   

 Table 4.16. Abnormal Situation Centroid for Leg 2 Walking on Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.16 0 0 1.01 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 0.2 0 0 0.11 0.01 0 1.04 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0 0 0.06 0.04 0 0.11 0.07 0 0.16 0.01 0 0.13 0.06 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.04 0.03 0.07 0.69 0.09 0.07 0 0 0 0 0 0   
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Table 4.17. Abnormal Situation Centroid for Leg 3 Walking on Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0 1.09 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 0 0 0 0.19 0.01 0 0.21 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.04 0 1.07 0.01 0 0.09 0.06 0 0.11 0.04 0 0.09 0.06 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.07 0.73 0.09 0.06 1.24 0.04 0 0 0 0 0 0   

 

Table 4.18. Abnormal Situation Centroid for Leg 4 Walking on Soft Terrain.. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0.01 1.04 0 0 0.04 0 0 0 0 0 0.09 0.03 0 0.13 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.09 0 0.17 0.03 0 1.11 0.03 0 0.16 0.04 0 0.13 0.03 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.1 0.01 0.07 0.83 1.44 0.09 0 0 0 0 0 0   

 

Table 4.19. Abnormal Situation Centroid for Leg 5 Walking on Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0.07 0 0 0 0.96 0 0 0 0 0 0.14 0.03 0 0.07 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.05 0 0.07 0.01 0 0.17 0.04 0 1.1 0.17 0 0.06 0.01 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.69 0.33 0.06 0.36 0.27 0.36 0 0 0 0 0 0   

 

Table 4.20. Abnormal Situation Centroid for Leg 6 Walking on Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 0.96 0 0 0.13 0.03 0 0.14 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.06 0 0.14 0.02 0 0.11 0.04 0 0.04 0.06 0 1.2 0.06 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.74 0.39 0.04 0.56 0.06 0.09 0 0 0 0 0 0   

 

These ASCs were compared with results obtained from 5 experiments conducted for 

each case and the discrepancy measures shown in Table 4.21 were obtained. 
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Table 4.21. Discrepancy Values from Experiments with One Leg Walking Over Soft Terrain. 
Experiment 1 2 3 4 5 

Discrepancy (Leg 1 on Soft Terrain) 0.34 0.41 0.48 0.42 0.42 

Discrepancy (Leg 2 on Soft Terrain) 0.44 0.55 0.52 0.59 0.51 

Discrepancy (Leg 3 on Soft Terrain) 0.60 0.43 0.51 0.86 0.54 

Discrepancy (Leg 4 on Soft Terrain) 0.99 0.68 0.64 0.82 0.89 

Discrepancy (Leg 5 on Soft Terrain) 0.43 0.63 0.63 0.63 0.62 

Discrepancy (Leg 6 on Soft Terrain) 1.12 0.77 0.89 0.84 0.66 

 

A comparison between the maximum discrepancy values for each row in Table 4.21 

and the discrepancy values corresponding to other type of experiments can be done 

by considering the data shown in Table 4.22. 

 
Table 4.22. Discrepancy Values Between Obtained ASCs in Experiments with One Leg Walking Over 

Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 
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Robot Walking Uphill 4.30 4.47 4.08 3.69 3.82 3.74 

Slippery Surface 5.35 5.49 5.25 4.70 4.75 4.54 

Air Walking 2.12 2.07 1.57 3.00 2.47 2.56 

Collision with Small Obstacles 3.70 3.85 3.55 3.32 3.45 3.39 

Leg 1 on Soft Terrain 0.48 2.34 2.13 3.25 2.71 2.81 

Leg 2 on Soft Terrain 2.21 0.59 2.19 3.11 2.64 2.71 

Leg 3 on Soft Terrain 2.75 2.83 0.86 2.74 2.87 3.13 

Leg 4 on Soft Terrain 2.67 2.84 2.34 0.99 2.82 3.01 

Leg 5 on Soft Terrain 2.74 2.99 2.45 3.21 0.63 2.02 

Leg 6 on Soft Terrain 2.76 2.87 2.67 3.50 2.19 1.12 

Legs 1 and 2 on Soft Terrain 2.46 2.34 3.06 3.90 2.68 2.56 

Legs 2 and 3 on Soft Terrain 3.51 2.81 2.47 3.13 2.96 3.04 

Legs 5 and 6 on Soft Terrain 3.16 3.39 3.12 3.61 1.63 2.08 

Legs 1 and 4 on Soft Terrain 2.44 3.30 3.17 3.15 2.64 2.02 

Legs 1 and 6 on Soft Terrain 1.69 2.34 2.48 3.33 2.82 2.46 

Legs 1, 3 and 4 on Soft Terrain 2.43 3.35 2.49 3.06 3.44 3.24 

Legs 1, 3 and 5 on Soft Terrain 2.33 3.26 2.27 3.72 2.58 3.30 

Legs 1, 2 and 6 on Soft Terrain 1.86 1.68 2.74 3.50 2.99 2.63 

Legs 4, 5 and 6 on Soft Terrain 3.30 3.56 3.31 3.24 2.70 3.18 

 

Results show 100% of correct first attempt identification for the considered 

experiments. Even in the worst case, with the largest discrepancy between the target 

ASC and the obtained ASC, first attempt identification was achieved. 
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Figure 4.41 shows the CALs obtained when the robot performed its mission with 2 

legs walking over soft terrain. In the considered experiments, high values of CALs 

associated with leg tip force sensors arose. Therefore, once again the robot had to 

execute leg tip force sensor research actions and discard the possibility that the 

abnormal situation was associated with these sensors. Only then the robot was able to 

identify that the legs were walking over soft terrain. In these cases, a body map has 

proved to be useful for the identification of these legs. 

 

The ASCs shown in Tables 4.23 to 4.27 were incorporated into the robot’s database 

of abnormal situations in order to provide the robot with a representation of each 

anomaly.  

 

Table 4.23. Abnormal Situation Centroid for Legs 1 and 2 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 1 0 0 0 0 0.07 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 1.01 0 0.1 0.71 0.14 0 0.31 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.04 0 0.13 0.03 0 0.11 0.06 0 0 0.11 0 0.96 0.04 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.14 0.49 0.14 1.01 0.10 0.13 0 0 0 0 0 0   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41. Cumulative Abnormality Labels from Experiments with Different Pairs of Legs Walking 
Over Soft Terrain. 
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Table 4.24. Abnormal Situation Centroid for Legs 2 and 3 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 1.01 0 0.09 0.67 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0.04 0 0 0 0 0 0 0 0 0 0.11 0.03 0 1.19 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.06 0 1.21 0.06 0 0.16 0.03 0 0.14 0.04 0 0.14 0.01 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.59 0.14 0.09 0.14 1.69 0.10 0 0 0 0 0 0   

 

Table 4.25. Abnormal Situation Centroid for Legs 5 and 6 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0.06 0 0 0 1.16 0 0 1.01 0 0 0.11 0.21 0 0.17 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.10 0 0.13 0.06 0 0.14 0.03 0 1.07 0.04 0 1.04 0.06 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.64 1.03 0.36 1.10 0.30 0.14 0 0 0 0 0 0   

 Table 4.26. Abnormal Situation Centroid for Legs 1 and 4 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 1.14 0 0 0 0 0.06 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 1.01 0 0 0 0 0 0 0 0.04 1.00 0.16 0 0.19 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.07 0 0.09 0.03 0 0.89 0.03 0 0 0.03 0 0.96 0.01 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.84 0.14 0.33 0.77 0.29 0.11 0 0 0 0 0 0   

 

Table 4.27. Abnormal Situation Centroid for Legs 1 and 6 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 1.00 0 0 0 0 0.07 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 1.01 0 0.10 0.71 0.14 0 0.31 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.04 0 0.13 0.03 0 0.11 0.06 0 0 0.11 0 0.96 0.04 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.14 0.49 0.14 1.01 0.10 0.13 0 0 0 0 0 0   

 

Once again, these ASCs were compared with results obtained from the 5 experiments 

conducted for each case. Then, the discrepancy measures shown in Table 4.28 were 

obtained. 
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Table 4.28. Discrepancy Values from Experiments with Different Pairs of Legs Walking Over Soft 
Terrain. 

Experiment 1 2 3 4 5 

Discrepancy (Legs 1 and 2 on Soft Terrain) 0.88 0.65 0.71 0.76 0.67 

Discrepancy (Legs 2 and 3 on Soft Terrain) 1.01 1.01 0.86 1.05 0.82 

Discrepancy (Legs 5 and 6 on Soft Terrain) 1.00 0.70 0.77 0.67 0.67 

Discrepancy (Legs 1 and 4 on Soft Terrain) 1.13 0.82 0.88 0.68 0.77 

Discrepancy (Legs 1 and 6 on Soft Terrain) 0.61 0.74 0.60 0.73 0.67 

 

Table 4.29 shows discrepancy values between the target ASC of the repertoire of 

conducted experiments and the ASC with the maximum discrepancy value from each 

row in Table 4.28. 

 
Table 4.29. Discrepancy Values Between Obtained ASCs in Experiments with Different Pairs of Legs 

Walking Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 
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Robot Walking Uphill 4.29 3.73 4.12 3.75 4.03 

Slippery Surface 5.07 4.68 4.93 4.58 5.08 

Air Walking 3.13 3.30 3.17 3.02 1.79 

Collision with Small Obstacles 3.73 3.25 3.79 3.29 3.55 

Leg 1 on Soft Terrain 2.67 3.51 3.37 2.48 1.62 

Leg 2 on Soft Terrain 2.50 3.07 3.13 3.05 1.92 

Leg 3 on Soft Terrain 3.38 2.69 3.46 3.33 2.48 

Leg 4 on Soft Terrain 3.56 3.05 3.52 2.56 2.55 

Leg 5 on Soft Terrain 2.74 2.87 1.79 2.49 2.60 

Leg 6 on Soft Terrain 2.68 3.00 1.80 2.54 1.99 

Legs 1 and 2 on Soft Terrain 0.88 2.70 3.23 2.15 2.74 

Legs 2 and 3 on Soft Terrain 2.66 1.01 3.48 3.07 3.38 

Legs 5 and 6 on Soft Terrain 3.25 3.51 0.77 3.05 2.52 

Legs 1 and 4 on Soft Terrain 2.37 3.25 2.96 1.12 2.47 

Legs 1 and 6 on Soft Terrain 2.85 3.68 2.72 2.79 0.73 

Legs 1, 3 and 4 on Soft Terrain 3.30 3.78 3.69 2.74 2.45 

Legs 1, 3 and 5 on Soft Terrain 3.27 3.95 2.95 3.37 2.44 

Legs 1, 2 and 6 on Soft Terrain 2.42 3.43 2.96 2.91 1.54 

Legs 4, 5 and 6 on Soft Terrain 4.22 4.49 2.33 3.54 2.56 

 

In this set of experiments, 100% of correct first attempt identification was achieved. 
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Another series of experiments considering 3 legs walking over soft terrain was 

conducted to test the capability of the self-diagnosis methods to identify this 

abnormal situation. Figure 4.42 shows the CAL values obtained during this set of 

experiments. As in the previous experiments with legs walking on soft terrain, the 

robot was able to identify these legs after executing leg tip force sensor research 

actions in order to discard high CAL values associated with these sensors. 

 

In this case, a representation of each abnormal situation was incorporated into the 

robot. This information was provided by means of the ASCs shown in Tables 4.30 to 

4.33, which were obtained from empirical data collected by the robot while walking 

on soft terrain.  

 

Table 4.30. Abnormal Situation Centroid for Legs 1, 3 and 4 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 1.16 0 0 0 0 0 1.13 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 1.09 0 0 0 0 0 0 0 0.19 1.12 0 0 0.14 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.07 0 1.04 0 0 1.03 0 0 0 0.07 0 1.09 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.17 0.50 0.14 0.64 0.53 0.17 0 0 0 0 0 0   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42. Cumulative Abnormality Labels from Experiments with Different Trios of Legs Walking 
Over Soft Terrain. 
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Table 4.31. Abnormal Situation Centroid for Legs 1, 3 and 5 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.94 0 0 0 0 0 1.10 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0.93 0 0 0 0 0.34 0.97 0 0 0.17 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.06 0 1.09 0 0 0.11 0 0 1.19 0.09 0 0.40 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.11 1.00 0.16 1.06 0.13 0.11 0 0 0 0 0 0   

 Table 4.32. Abnormal Situation Centroid for Legs 1, 2 and 6 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.73 0 0 0.69 0 0.16 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 0.74 0 0 0.97 0 0 1.07 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0 0 0 0.14 0 0 0 0 0 0.06 0 1.10 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.19 0.14 0.14 0.95 0.16 0.09 0 0 0 0 0 0   

 

Table 4.33. Abnormal Situation Centroid for Legs 4, 5 and 6 Walking On Soft Terrain. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 1.04 0 0 1.10 0 0 1.06 0 0 0 0 0 0 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0 0 0 0 0 1.14 0 0 1.00 0.13 0 1.06 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.20 1.56 0.33 1.06 0.13 0.13 0 0 0 0 0 0   

 

These ASCs were compared with results obtained from 5 experiments conducted for 

each case and the following discrepancy measures were obtained. 

 
Table 4.34. Discrepancy Values from Experiments with Different Trios of Legs Walking Over Soft 

Terrain. 
Experiment 1 2 3 4 5 

Discrepancy (Legs 1, 3 and 4 on Soft Terrain) 1.35 0.82 0.49 0.84 0.84 

Discrepancy (Legs 1, 3 and 5 on Soft Terrain) 0.59 0.73 0.80 0.76 0.61 

Discrepancy (Legs 1, 2 and 6 on Soft Terrain) 0.46 0.67 0.71 0.77 0.63 

Discrepancy (Legs 4, 5 and 6 on Soft Terrain) 0.56 0.69 0.71 0.79 0.87 

 

Table 4.35 shows discrepancy values between the target ASC of the repertoire of 

conducted experiments and the ASC with the maximum discrepancy value from each 

row in Table 4.34. 
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Table 4.35. Discrepancy Values Between Obtained ASCs in Experiments with Different Trios of Legs 
Walking Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 
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Robot Walking Uphill 4.33 4.39 4.41 4.43 

Slippery Surface 5.43 5.29 5.42 5.29 

Air Walking 2.63 3.10 2.36 3.52 

Collision with Small Obstacles 3.73 3.86 3.89 4.14 

Leg 1 on Soft Terrain 1.86 2.59 1.99 3.67 

Leg 2 on Soft Terrain 2.83 2.97 1.90 3.53 

Leg 3 on Soft Terrain 1.95 2.41 2.90 3.70 

Leg 4 on Soft Terrain 2.38 3.27 2.88 3.24 

Leg 5 on Soft Terrain 3.25 3.03 3.12 2.99 

Leg 6 on Soft Terrain 3.32 3.24 2.14 2.95 

Legs 1 and 2 on Soft Terrain 3.03 3.29 2.78 4.14 

Legs 2 and 3 on Soft Terrain 3.12 3.40 3.38 4.32 

Legs 5 and 6 on Soft Terrain 3.67 2.93 2.73 2.12 

Legs 1 and 4 on Soft Terrain 2.69 3.20 2.76 3.36 

Legs 1 and 6 on Soft Terrain 2.46 2.45 1.02 2.97 

Legs 1, 3 and 4 on Soft Terrain 1.35 2.10 2.70 3.45 

Legs 1, 3 and 5 on Soft Terrain 2.13 0.80 2.88 3.24 

Legs 1, 2 and 6 on Soft Terrain 2.76 2.76 0.77 3.42 

Legs 4, 5 and 6 on Soft Terrain 3.39 3.07 2.88 0.87 

 

In general, for the 3 series of experiments analysed in this subsection, results show 

that when the robot has been previously provided with the ASC corresponding to the 

abnormal situation that must be identified, a correct first attempt diagnosis is 

performed in 100% of the cases. That is to say, the system is able to identify the 

anomaly affecting the robot in a database of 19 different abnormal situations.  

4.5.3. Experiments with Anomalies in the Robot’s Hardware and in the Robot’s 

Environment 

 Robot Walking Uphill with Faulty Accelerometer 4.5.3.1

This experiment is similar to the one presented in subsection 4.5.2.1, but in this case 

the effects of the introduction of a faulty accelerometer on the performance of the 

self-diagnosis methods when the robot walks uphill will be analysed. Here, the fault 
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is simulated by disconnecting the accelerometer. An example of the CAL values 

registered by the robot during this kind of experiments is shown in Fig. 4.43. 

 

The high CAL values associated with the accelerometer give a clear indication that 

the anomaly is connected to this sensor. Then, the robot proceeds to execute 

accelerometer research actions and the faulty accelerometer is identified. In order to 

proceed with the diagnosis, the system ignores the accelerometer readings (by setting 

accelerometer CAL values to 0). This procedure was followed by the robot in 10 

experiments. Results are presented in the form of discrepancy measures between the 

ASC of these experiments and the target ASC of experiments with other abnormal 

situations. The results of the 5 smallest discrepancy measures are shown in Table 

4.36. Here, the smallest discrepancy measures for each experiment are displayed in 

bold numbers. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.43. Cumulative Abnormality Labels from Experiment with Robot Walking Uphill and Faulty 

Accelerometer. 
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Table 4.36. Discrepancy Values Between Obtained ASCs in Experiments with Robot Walking Uphill 
and Faulty Accelerometer, and Target ASCs of the Repertoire of Conducted Experiments (Target 
ASC for Experiments with Robot Walking Uphill and Faulty Accelerometer Not Incorporated). 

Experiment 1 2 3 4 5 6 7 8 9 10 

Robot Walking Uphill 1.74 0.94 0.94 1.04 0.92 1.15 1.03 0.95 0.96 1.03 

Collision with Small Obstacles 1.38 1.13 1.05 1.16 1.00 1.40 1.16 1.12 1.15 1.25 

Slippery Surface 3.13 2.13 2.06 1.94 2.02 1.83 2.05 1.97 1.94 1.89 

Trapped legs 5 & 6, Faulty P. S. 2.21 2.22 2.34 2.53 2.47 2.67 2.56 2.43 2.56 2.60 

Trapped leg 6, Faulty P. S. 2.80 2.23 2.25 2.52 2.48 2.51 2.65 2.32 2.47 2.52 

 

The discrepancy measures show that in 9 of the 10 experiments the system was able 

to identify correctly the abnormal situation on its first attempt. In the other 

experiment, the robot first believed to be in the presence of a collision with a small 

obstacle. Only, on its second attempt was it able to identify the abnormal situation 

correctly. 

 

Discrepancy measures could be reduced if a new ASC corresponding to robot 

walking uphill with faulty accelerometer is included in the robot’s database. The 

ASC shown in Table 4.37 was calculated by using data obtained from the 10 

previous experiments. 

 

Table 4.37. Abnormal Situation Centroid for Robot Walking Uphill with Faulty Accelerometer. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0.06 0.03 0.04 0.03 0.03 0.01 0.17 0 0 0.01 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.01 0 0 0 0 0.04 0 0 0.03 0 0 0 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.63 1.10 1.14 1.17 2.10 2.14 0 0 0 0 0 0   

 

Then, discrepancy measures in Table 4.38 are obtained if this ASC is included into 

the robot’s database of abnormal situations. 

 
Table 4.38. Discrepancy Values Between Obtained ASCs in Experiments with Robot Walking Uphill 

with Faulty Accelerometer and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 6 7 8 9 10 

Walking Uphill, Faulty Acc. 1.67 0.43 0.50 0.48 0.24 0.61 0.44 0.45 0.34 0.42 

Robot Walking Uphill 1.74 0.94 0.94 1.04 0.92 1.15 1.03 0.95 0.96 1.03 

Collision with Small Obstacles 1.38 1.13 1.05 1.16 1.00 1.40 1.16 1.12 1.15 1.25 

Slippery Surface 3.13 2.13 2.06 1.94 2.02 1.83 2.05 1.97 1.94 1.89 

Trapped legs 5 & 6, Faulty P. S. 2.21 2.22 2.34 2.53 2.47 2.67 2.56 2.43 2.56 2.60 
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Results show how discrepancy values were reduced. However, this reduction was 

insufficient for the correct identification of the abnormal situation on the first attempt 

during experiment 1. 

 Obstacle Collision with Faulty Whiskers. 4.5.3.2

In this experiment the robot hits a block of transparent material. Because the robot is 

able to sense light through the material, the course of locomotion is not altered 

significantly when the robot approaches the obstacle. As a result, the robot hits the 

obstacle directly. Normally, collisions with objects are detected by the robot’s 

whiskers. However, in this set of 10 experiments, the whiskers have been 

disconnected in order to simulate a fault. Typical CAL values for this type of 

experiments are shown in Fig. 4.44. In general, the main difference between these 

CAL values and those representing obstacle collision with functional whiskers is the 

Ws label (0 in this case and 7 with functional whiskers). The corresponding ASC of 

obstacle collision with functional whiskers was included into the robot’s database of 

abnormal situations. Then, a correct diagnosis of the system should indicate that an 

obstacle collision took place. This should be evidenced by a minimum discrepancy 

value between the ASC of the collision with faulty whiskers and the one 

corresponding to the obstacle collision with functional whiskers. Discrepancy 

 

 

 

 

 

 

 

 

 

 

Figure 4.44. Cumulative Abnormality Labels from Experiment with Obstacle Collision and Faulty 
Whiskers. 
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measures corresponding to this set of 10 experiments considering obstacle collision 

with faulty whiskers are shown in Table 4.39.  
 

Table 4.39. Discrepancy Values Between Obtained ASCs in Experiments with Obstacle Collision and 
Faulty Whiskers, and Target ASCs of the Repertoire of Conducted Experiments (Target ASC of 

Experiments with Obstacle Collision and Faulty Whiskers Not Incorporated). 
Experiment 1 2 3 4 5 6 7 8 9 10 

Obstacle Collision 2.15 2.01 2.72 2.43 2.96 2.14 2.16 2.71 2.39 2.31 

Walking Uphill, Faulty Acc. 2.37 2.38 3.37 3.28 3.59 2.86 1.95 3.35 2.35 2.89 

Robot Walking Uphill 3.66 3.55 3.94 2.78 2.60 3.52 3.62 3.71 4.13 2.07 

Obstacle Collision, Faulty Front L. S. 2.45 3.55 3.68 4.19 3.27 3.83 3.11 3.98 3.56 3.07 

Slippery Surface 4.49 3.92 4.32 3.11 3.38 4.33 4.62 4.43 4.67 2.91 

 

Results show that in 6 of the 10 conducted experiments the robot was able to identify 

the abnormal situation on its first attempt, while in the rest of the experiments a 

correct diagnosis were performed on the second attempt. 

 

As before, discrepancy measures could be reduced if a new ASC corresponding to 

obstacle collision with faulty whiskers is included in the robot’s database of 

abnormal situations. The ASC shown in Table 4.40 were calculated by using data 

obtained from the 10 previous experiments. 

 
Table 4.40. Abnormal Situation Centroid for Experiments with Obstacle Collision with Faulty 

Whiskers. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0.23 0 0 0.09 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0.06 0 0 0 0 0 0 0 0 0 0.74 0.16 0 0 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0.23 0 0.51 0 0 0.3 0.24 0 0 0 0 0.04 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

1.94 1.83 1.71 1.89 1.95 1.53 2.09 1.73 0 0 0 0   

 

Once this ASC is included into the robot’s database of abnormal situations, 

discrepancy measures shown in Table 4.41 can be calculated.  
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Table 4.41. Discrepancy Values Between Obtained ASCs in Experiments with Obstacle Collision and 
Faulty Whiskers, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 6 7 8 9 10 

Obstacle Collision, Faulty Ws 2.49 1.65 2.19 1.72 2.52 2.07 1.54 1.98 1.76 1.76 

Obstacle Collision 2.15 2.01 2.72 2.43 2.96 2.14 2.16 2.71 2.39 2.31 

Walking Uphill, Faulty Acc. 2.37 2.38 3.37 3.28 3.59 2.86 1.95 3.35 2.35 2.89 

Robot Walking Uphill 3.66 3.55 3.94 2.78 2.6 3.52 3.62 3.71 4.13 2.07 

Obstacle Collision, Faulty Front L. S. 2.45 3.55 3.68 4.19 3.27 3.83 3.11 3.98 3.56 3.07 

 

In this case discrepancy values were reduced and in 9 out of 10 experiments, the 

robot was able to diagnose the abnormal situation correctly on its first attempt. In 

experiment 1, the robot identified the anomaly as an obstacle collision. Although this 

assumption was correct, this did not imply the presence of faulty whiskers.  Because 

no research actions for whiskers were considered, the system is unable to verify if 

whisker readings are correct. In spite of this, experiments showed that obstacle 

collisions with faulty whiskers can still be identified if the ASC corresponding to this 

anomaly is incorporated into the robot. 

 Obstacle Collision with Faulty Front Light Sensors. 4.5.3.3

This experiment introduces a situation not covered by the experiments previously 

presented. In this case, the robot has faulty front light sensors which were already 

compensated. As a result, the robot walks backwards towards the light source. 

However, the robot commonly uses whiskers to detect obstacles and these do not 

protect the robot’s back. Therefore, this could pose an issue for the correct diagnosis 

of the situation. A new set of 10 experiments has been conducted and compared with 

the previous set (obstacle collision with faulty whiskers) in order to look for 

differences in the performance of the self-diagnosis methods when dealing with these 

abnormal situations. 
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A typical set of CAL values for obstacle collision with faulty light sensors is shown 

in Fig. 4.45. Here, there are no CAL values for abnormal front light sensors because 

during these experiments it was assumed that this anomaly was already compensated. 

 

A correct diagnosis in these experiments could be indicated by minimum discrepancy 

levels between the ASC registered during the experiments and those corresponding 

to obstacle collisions. The obtained discrepancy measures are shown in Table 4.42. 
 

Table 4.42. Discrepancy Values Between Obtained ASCs in Experiments with Obstacle Collision and 
Faulty Front Light Sensors, and Target ASCs of the Repertoire of Conducted Experiments (Target 
ASC of Experiments with Obstacle Collision and Faulty Front Light Sensors Not Incorporated). 

Experiment 1 2 3 4 5 6 7 8 9 10 

Obstacle Collision 3.44 3.09 3.21 3.01 2.92 3.64 3.36 3.14 2.69 3.48 

Walking Uphill, Faulty Acc. 2.15 2.31 2.57 2.34 1.60 2.72 1.93 2.73 1.73 2.24 

Obstacle Collision, Faulty Ws 3.67 3.38 2.97 2.99 3.06 3.54 3.39 3.17 3.00 3.35 

Robot Walking Uphill 4.47 4.20 2.84 3.69 3.87 3.20 4.41 2.75 3.59 4.63 

Collision with Small Obstacles 4.80 4.35 3.19 3.83 4.16 3.74 4.85 2.98 3.97 5.03 

Trapped leg 2, Faulty P. S. 4.77 4.59 3.35 4.26 3.98 3.29 4.76 3.22 4.07 5.18 

 

Results show that in 0 of the 10 conducted experiments the robot was able to identify 

the abnormal situation on its first attempt. This is mainly due to the orientation of the 

robot as it approaches the obstacle, which produces very different sensor reading in 

comparison with those normally generated during frontal obstacle collision. In these 

 

 

 

 

 

 

 

 

 

Figure 4.45. Cumulative Abnormality Labels from Experiment with Obstacle Collision and Faulty 
Front Light Sensors. 
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cases, the robot was able to diagnose the abnormal situation correctly with a second 

attempt in experiments 1,2,5,7 and 9. A third attempt was necessary in experiments 4 

and 10. A fourth attempt was required in experiment 8. Finally, the robot was able to 

diagnose the abnormal situation on its fifth attempt in experiments 3 and 6. 

 

Once again, discrepancy measures could be reduced if a new ASC corresponding to 

obstacle collision with faulty front light sensors is included in the robot’s database of 

abnormal situations. The following ASC was calculated after data obtained from the 

10 previous experiments was considered. 

 
Table 4.43. Abnormal Situation Centroid for Experiments with Obstacle Collision and Faulty Front 

Light Sensors. 
Ls1 Ls2 Ls3 Ls4 Ls5 Ls6 Ps11 Ps12 Ps13 Ps21 Ps22 Ps23 Ps31 Ps32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ps33 Ps41 Ps42 Ps43 Ps51 Ps52 Ps53 Ps61 Ps62 Ps63 Fs11 Fs12 Fs13 Fs21 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fs22 Fs23 Fs31 Fs32 Fs33 Fs41 Fs42 Fs43 Fs51 Fs52 Fs53 Fs61 Fs62 Fs63 

0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 

TFs1 TFs2 TFs3 TFs4 TFs5 TFs6 Accx Accy Bl1 Bl2 Bl3 Ws   

0.79 0.36 0.19 2.09 1.46 1.99 2.64 2.46 0 0 0 0   

 

After this ASC was included into the robot’s database of abnormal situations, 

discrepancy measures shown in Table 4.44 were obtained.  

 
Table 4.44. Discrepancy Values Between Obtained ASCs in Experiments with Obstacle Collision and 

Faulty Front Light Sensors, and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 6 7 8 9 10 

Obstacle Collision, Faulty Front L. S. 1.21 1.68 1.67 1.37 1.23 2.23 1.17 1.67 1.07 1.67 

Walking Uphill, Faulty Acc. 2.15 2.31 2.57 2.34 1.6 2.72 1.93 2.73 1.73 2.24 

Obstacle Collision 3.44 3.09 3.21 3.01 2.92 3.64 3.36 3.14 2.69 3.48 

Obstacle Collision, Faulty Ws 3.67 3.38 2.97 2.99 3.06 3.54 3.39 3.17 3 3.35 

Robot Walking Uphill 4.47 4.20 2.84 3.69 3.87 3.20 4.41 2.75 3.59 4.63 

Collision with Small Obstacles 4.80 4.35 3.19 3.83 4.16 3.74 4.85 2.98 3.97 5.03 

 

In this case discrepancy values were significantly reduced and in 10 out of 10 

experiments the robot was able to diagnose the abnormal situation correctly on its 

first attempt.  
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 Robot Walking Over Soft Terrain with Faulty Force Sensors. 4.5.3.4

Experiments conducted in subsection 4.5.2.6 showed that force sensors provide 

useful information for the diagnosis of abnormalities produced when the robot walks 

over soft terrain. In this new group of experiments, the same situation is faced by the 

robot but this time the robot’s force sensors are not functional. Results obtained from 

these experiments will be used to evaluate the performance of the self-diagnosis 

algorithms when diagnosing these combined anomalies.  

 

A first set of 5 experiments, for each one of the robot’s leg walking over soft terrain 

while the rest of the legs walk over hard terrain, will be conducted. Typical CAL 

values for all of the experiments of this subsection are the same shown in Figs. 4.40 

to 4.42, with the exception that in this case, CAL values corresponding to force 

sensors are 0. 

 

A correct diagnosis of the consider abnormality is indicated by minimum 

discrepancy levels between the ASC registered during the experiments and the one, 

corresponding to the same leg walking over soft terrain, introduced in subsection 

4.5.2.6. The obtained discrepancy measures are shown in Tables 4.45 to 4.50. Here, 

the first row of disparities is the one that is obtained after including the ASC of the 

experiment into the robot’s database of abnormal situations. In addition, disparities in 

bold numbers represent the first attempt of classification if the ASC is not 

incorporated into the database. 

 
Table 4.45. Discrepancy Values Between Obtained ASCs in Experiments with Leg 1 Walking Over 

Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Leg 1 on Soft Terrain, Faulty F. S. 0.41 0.49 0.40 0.38 0.40 

Leg 1 on Soft Terrain 1.61 1.61 1.60 1.60 1.60 

Air Walking 1.03 1.35 1.30 1.01 1.25 

Leg 2 on Soft Terrain, Faulty F. S. 1.11 1.37 1.33 1.09 1.24 

Legs 1, 2 & 6 on Soft Terrain, Faulty F. S. 1.11 1.28 1.22 1.31 1.02 

Legs 1 & 6 on Soft Terrain, Faulty F. S. 1.34 1.30 1.25 1.45 1.12 

Leg 2 on Soft Terrain 1.47 1.60 1.47 1.40 1.57 
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Table 4.46. Discrepancy Values Between Obtained ASCs in Experiments with Leg 2 Walking Over 
Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Leg 2 on Soft Terrain, Faulty F. S. 0.52 0.42 0.51 0.49 0.48 

Leg 2 on Soft Terrain 1.22 1.16 1.16 1.23 1.15 

Legs 1, 2 & 6 on Soft Terrain, Faulty F. S. 1.47 1.29 1.20 1.35 1.27 

Air Walking 1.55 1.37 1.61 1.14 1.03 

Leg 1 on Soft Terrain, Faulty F. S. 1.57 1.33 1.39 1.01 1.04 

 
Table 4.47. Discrepancy Values Between Obtained ASCs in Experiments with Leg 3 Walking Over 

Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Leg 3 on Soft Terrain, Faulty F. S. 1.11 0.55 1.02 0.77 0.44 

Leg 3 on Soft Terrain 1.82 1.28 1.37 1.19 1.21 

Air Walking 0.88 1.68 2.03 2.10 1.59 

Leg 1 on Soft Terrain, Faulty F. S. 1.22 1.83 2.17 2.25 1.82 

Leg 4 on Soft Terrain, Faulty F. S. 1.58 1.90 1.78 1.90 1.62 

Legs 1, 3 & 4 on Soft Terrain, Faulty F. S. 2.29 1.91 2.26 2.25 2.03 

Leg 2 on Soft Terrain, Faulty F. S. 1.37 1.93 2.24 2.32 1.90 

Legs 1, 3 & 5 on Soft Terrain, Faulty F. S. 2.19 2.00 2.60 2.41 2.22 

Leg 2 on Soft Terrain 1.67 2.15 2.36 2.52 2.20 

 
Table 4.48. Discrepancy Values Between Obtained ASCs in Experiments with Leg 4 Walking Over 

Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Leg 4 on Soft Terrain, Faulty F. S. 0.94 0.63 0.55 0.63 0.62 

Leg 4 on Soft Terrain 1.28 1.26 1.70 1.29 1.20 

Air Walking 1.83 1.95 1.18 1.87 2.11 

Leg 1 on Soft Terrain, Faulty F. S. 1.94 1.84 1.28 2.02 2.01 

Leg 2 on Soft Terrain, Faulty F. S. 2.04 1.94 1.47 2.11 2.09 

Leg 3 on Soft Terrain, Faulty F. S. 1.58 1.82 1.61 1.65 1.88 

Leg 2 on Soft Terrain 2.25 2.14 1.64 2.29 2.30 

 
Table 4.49. Discrepancy Values Between Obtained ASCs in Experiments with Leg 5 Walking Over 

Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Leg 6 on Soft Terrain, Faulty F. S. 0.56 0.75 0.53 0.68 0.69 

Leg 5 on Soft Terrain 1.27 1.29 1.25 1.30 1.29 

Leg 6 on Soft Terrain, Faulty F. S. 1.68 1.78 1.76 1.53 1.70 

Legs 5 & 6 on Soft Terrain, Faulty F. S. 1.71 1.67 1.72 1.81 1.49 

Air Walking 1.89 2.14 2.04 1.74 2.19 

Leg 6 on Soft Terrain 1.91 1.96 1.90 1.63 1.97 

 

 
Table 4.50. Discrepancy Values Between Obtained ASCs in Experiments with Leg 6 Walking Over 

Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Leg 6 on Soft Terrain, Faulty F. S. 0.56 0.75 0.53 0.68 0.69 

Leg 6 on Soft Terrain 1.37 1.50 1.37 1.39 1.38 

Leg 5 on Soft Terrain, Faulty F. S. 1.69 2.09 1.89 1.91 1.72 

Legs 5 & 6 on Soft Terrain, Faulty F. S. 1.84 1.52 1.66 1.44 1.70 

Leg 5 on Soft Terrain 1.92 2.30 1.95 2.10 2.02 

Legs 1 & 2 on Soft Terrain, Faulty F. S. 2.08 2.29 2.11 2.13 2.13 
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Experiments show different results depending on the leg walking on soft terrain. 

Worst results without providing the robot with the ASC of the abnormality were 

obtained when leg 1 walked on soft terrain. Here, the system was able to diagnose 

the abnormal situation correctly only after 5 failed attempts. On the other hand, in 4 

out of 5 experiments, the robot was able to identify the abnormality on its first 

attempt when legs 3 or 4 walked on soft terrain. In addition, the robot did not require 

the ASC of the abnormal situation for diagnosing correctly at the first attempt when 

legs 5 or 6 walked on soft terrain. Once the ASC of the corresponding experiment 

was incorporated into the robot’s database of abnormalities, the robot was able to 

identify the anomaly on its first attempt in almost all of the experiments. The only 

exception occurred in experiment 1, with leg 3 walking on soft terrain, where a 

second attempt was necessary. 

 

Another set of 5 experiments for combinations of 2 legs walking on soft terrain was 

conducted. The obtained discrepancy values are shown in Tables 4.51 to 4.55. 

 
Table 4.51. Discrepancy Values Between Obtained ASCs in Experiments with Legs 1 and 2 Walking 

Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Legs 1 & 2 on Soft Terrain, Faulty F. S. 0.68 0.58 0.46 0.94 0.71 

Legs 1 and 2 on Soft Terrain 1.89 1.93 1.86 2.07 2.00 

Legs 2 & 3 on Soft Terrain, Faulty F. S. 1.93 1.89 1.94 2.32 1.87 

Legs 1, 2 & 6 on Soft Terrain, Faulty F. S. 1.95 1.79 1.81 2.19 1.65 

Leg 2 on Soft Terrain, Faulty F. S. 1.99 1.90 2.02 2.53 1.78 

Leg 1 on Soft Terrain, Faulty F. S. 2.15 2.10 2.09 2.37 1.95 

Legs 1 & 4 on Soft Terrain, Faulty F. S. 2.27 2.08 1.80 1.73 2.00 

 
Table 4.52. Discrepancy Values Between Obtained ASCs in Experiments with Legs 2 and 3 Walking 

Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Legs 2 & 3 on Soft Terrain, Faulty F. S. 0.75 0.99 0.65 0.50 0.93 

Legs 2 and 3 on Soft Terrain 1.84 1.95 1.84 1.79 2.02 

Legs 1 & 2 on Soft Terrain, Faulty F. S. 2.13 2.35 1.70 1.95 1.38 

Leg 5 on Soft Terrain, Faulty F. S. 2.27 2.80 2.01 2.40 1.69 

Leg 5 on Soft Terrain 2.37 2.85 2.23 2.48 1.94 

Leg 3 on Soft Terrain, Faulty F. S. 2.45 2.08 1.70 2.24 2.20 

Leg 6 on Soft Terrain, Faulty F. S. 2.50 3.01 2.22 2.58 1.87 

Leg 6 on Soft Terrain 2.57 3.04 2.34 2.76 1.94 
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Table 4.53. Discrepancy Values Between Obtained ASCs in Experiments with Legs 5 and 6 Walking 
Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Legs 5 & 6 on Soft Terrain, Faulty F. S. 0.50 0.60 0.74 0.54 0.66 

Legs 5 and 6 on Soft Terrain 1.56 1.63 1.74 1.67 1.61 

Leg 5 on Soft Terrain, Faulty F. S. 1.66 1.74 1.34 1.81 1.33 

Leg 6 on Soft Terrain, Faulty F. S. 1.57 1.77 1.84 1.68 1.40 

Leg 5 on Soft Terrain 1.98 2.04 1.78 2.09 1.71 

Leg 6 on Soft Terrain 1.93 2.14 2.13 2.04 1.77 

 
Table 4.54. Discrepancy Values Between Obtained ASCs in Experiments with Legs 1 and 4 Walking 

Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Legs 1 & 4 on Soft Terrain, Faulty F. S. 0.51 0.66 0.85 0.64 0.56 

Legs 1 and 4 on Soft Terrain 1.56 1.52 1.52 1.54 1.51 

Leg 6 on Soft Terrain 1.84 1.91 1.61 2.24 2.07 

Legs 1, 3 & 4 on Soft Terrain, Faulty F. S. 2.01 2.03 2.45 1.96 2.29 

Legs 1 & 2 on Soft Terrain, Faulty F. S. 2.03 1.67 1.80 2.17 2.08 

Legs 1 and 6 on Soft Terrain 2.20 2.08 2.55 2.39 2.51 

 
Table 4.55. Discrepancy Values Between Obtained ASCs in Experiments with Legs 1 and 6 Walking 

Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Legs 1 & 6 on Soft Terrain, Faulty F. S. 0.72 0.48 0.41 0.68 0.63 

Legs 1 and 6 on Soft Terrain 1.45 1.36 1.33 1.31 1.44 

Legs 1, 2 & 6 on Soft Terrain, Faulty F. S. 1.08 1.24 1.23 1.28 1.35 

Leg 1 on Soft Terrain, Faulty F. S. 1.17 1.26 1.34 1.10 1.48 

Leg 2 on Soft Terrain 1.72 1.98 1.97 1.68 2.18 

Leg 2 on Soft Terrain, Faulty F. S. 1.78 2.03 2.02 1.78 2.16 

 

Results of this series of experiments showed that the robot was able to identify all of 

the abnormal situations on the first attempt if the corresponding ASC representing 

the anomaly was provided. When this was not the case, results vary from experiment 

to experiment. Best results were obtained when legs 1 and 4 walked on soft terrain. 

Here, the robot identified the abnormal situation at the first attempt. In contrast, legs 

1 and 6 walking on soft terrain presented the worst results. In this case, the robot 

failed on its first attempt of diagnosis in all of the 5 experiments of the series. 

 

Sets of 5 experiments considering 3 legs walking on soft terrain were also conducted. 

The obtained discrepancy measures are shown in Tables 4.56 to 4.59. 
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Table 4.56. Discrepancy Values Between Obtained ASCs in Experiments with Legs 1, 3 and 4 
Walking Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Legs 1, 3 & 4 on Soft Terrain, Faulty F. S. 0.46 0.70 0.67 0.78 0.68 

Legs 1, 3 and 4 on Soft Terrain 1.94 1.99 1.97 2.01 2.02 

Legs 1, 3 & 5 on Soft Terrain, Faulty F. S. 2.00 1.76 1.66 2.08 2.39 

Leg 3 on Soft Terrain, Faulty F. S. 2.05 2.17 1.78 2.01 2.13 

Leg 4 on Soft Terrain, Faulty F. S. 2.10 2.15 1.94 2.16 1.93 

Legs 1 & 4 on Soft Terrain, Faulty F. S. 2.15 1.94 2.22 2.20 2.32 

Legs 1 and 6 on Soft Terrain 2.25 1.86 2.01 2.04 2.49 

Leg 1 on Soft Terrain, Faulty F. S. 2.34 2.03 1.80 2.07 2.47 

 
Table 4.57. Discrepancy Values Between Obtained ASCs in Experiments with Legs 1, 3 and 5 

Walking Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Legs 1, 3 & 5 on Soft Terrain, Faulty F. S. 0.61 0.70 0.61 0.75 0.77 

Legs 1, 3 and 5 on Soft Terrain 1.97 2.04 1.97 2.06 2.07 

Legs 1 & 6 on Soft Terrain, Faulty F. S. 1.65 1.64 1.99 2.18 2.49 

Leg 1 on Soft Terrain, Faulty F. S. 1.66 1.71 1.97 2.14 2.47 

Legs 1, 3 & 4 on Soft Terrain, Faulty F. S. 1.81 2.14 1.87 2.27 2.13 

Legs 1 and 6 on Soft Terrain 1.82 2.05 2.06 2.36 2.53 

Legs 1, 2 & 6 on Soft Terrain, Faulty F. S. 1.85 1.84 2.05 2.30 2.66 

Leg 3 on Soft Terrain, Faulty F. S. 1.96 2.22 2.13 2.13 2.45 

 
Table 4.58. Discrepancy Values Between Obtained ASCs in Experiments with Legs 1, 2 and 6 

Walking Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Legs 1, 2 & 6 on Soft Terrain, Faulty F. S. 0.61 0.57 0.50 0.57 0.57 

Legs 1, 2 and 6 on Soft Terrain 1.93 1.97 1.90 1.96 1.93 

Legs 1 & 6 on Soft Terrain, Faulty F. S. 1.25 1.37 1.47 1.19 1.14 

Leg 1 on Soft Terrain, Faulty F. S. 1.48 1.52 1.26 1.30 1.50 

Leg 2 on Soft Terrain, Faulty F. S. 1.50 1.47 0.91 1.40 1.51 

Leg 2 on Soft Terrain 1.71 1.70 1.31 1.67 1.70 

Legs 1 and 6 on Soft Terrain 1.74 1.85 1.82 1.70 1.64 

Legs 1 & 2 on Soft Terrain, Faulty F. S. 2.12 1.66 1.90 1.71 2.11 

Air Walking 2.14 2.20 1.67 1.99 2.14 

 
Table 4.59. Discrepancy Values Between Obtained ASCs in Experiments with Legs 4, 5 and 6 

Walking Over Soft Terrain and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Legs 4, 5 & 6 on Soft Terrain, Faulty F. S. 0.78 0.46 0.68 0.63 0.73 

Legs 4, 5 and 6 on Soft Terrain 2.05 1.90 2.00 1.99 1.98 

Trapped leg 1, Faulty P. S.. 0.78 0.46 0.68 0.63 0.73 

Legs 5 & 6 on Soft Terrain, Faulty F. S. 2.15 1.91 2.12 2.06 2.10 

Legs 5 and 6 on Soft Terrain 2.56 2.33 2.50 2.47 2.49 

Legs 1, 3 & 5 on Soft Terrain, Faulty F. S. 2.77 2.12 2.22 2.65 2.35 

 

In general, results show that more attempts are necessary for the correct diagnosis of 

the anomaly without incorporating the corresponding ASC into the robot’s database 

of abnormal situations. Only in a maximum of 2 out of 5 experiments, when legs 1, 3 

and 4 or 1, 3 and 5 walked over soft terrain, was it possible to identify the anomaly at 
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the first attempt. Once the ASC of the abnormal situation was incorporated into the 

robot, the system was able to diagnose correctly on its first attempt. An exception 

could occur when legs 4, 5 and 6 walked on soft terrain. Here, discrepancy measures 

are similar to the abnormal situation where leg 1 is trapped. In this case the system 

will correctly diagnose the abnormality in a maximum of 2 attempts. 

 Trapped Legs with Faulty Position Sensors. 4.5.3.5

In this series of experiments one or two of the robot’s legs are firmly held in order to 

simulate a trapped leg. In addition, the position sensors of the held leg have been 

disconnected in order to simulate an internal fault. In most cases, a trapped leg was 

unable to get to its target position, which would generate large CAL values 

corresponding to the leg’s position sensors. Therefore, the disconnection of these 

sensors imposes a greater challenge on the self-diagnosis methods. Then, the aim of 

this new set of experiments is to evaluate the behaviour of the self-diagnosis 

algorithms when dealing with this situation. 

 

In this first series of experiments only one of the robot’s legs is held at the time. For 

each leg, 5 experiments were conducted. Typical CAL values for these experiments 

are shown in Fig. 4.46. 

 

The resulting discrepancy measures, for experiments where one of the robot’s legs is 

held, are shown in Tables 4.60 to 4.65. Disparities showed in the second row of these 

tables are the ones that would be obtained if the ASC of the analysed anomaly was 

incorporated into the robot’s database of abnormal situations. Otherwise, if this ASC 

is not incorporated, correct first attempt identifications will be represented by a 

minimum discrepancy value (written in bod numbers) in the third row of the tables. 

A minimum discrepancy value in any other row would indicate that more than one 

attempt was necessary for the correct identification of the abnormal situation. 
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Table 4.60. Discrepancy Values Between Obtained ASCs in Experiments with Leg 1 Held and Faulty 
Position Sensors, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Trapped leg 1, Faulty P. S.. 0.61 0.65 0.71 0.72 0.58 

Trapped leg 1 5.26 5.41 5.50 5.25 5.34 

: : : : : : 

Legs 4, 5 & 6 on Soft Terrain, Faulty F. S. 0.61 0.65 0.71 0.72 0.58 

Legs 4, 5 and 6 on Soft Terrain 1.94 1.97 2.01 2.04 1.96 

Legs 5 & 6 on Soft Terrain, Faulty F. S. 2.15 2.30 2.05 2.29 2.43 

Legs 1, 3 & 5 on Soft Terrain, Faulty F. S. 2.20 2.40 2.59 2.71 2.56 

Legs 1 & 6 on Soft Terrain, Faulty F. S. 2.46 2.64 2.67 2.69 2.41 

 
Table 4.61. Discrepancy Values Between Obtained ASCs in Experiments with Leg 2 Held and Faulty 

Position Sensors, and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Trapped leg 2, Faulty P. S. 0.50 1.33 0.87 1.30 1.04 

Trapped leg 2 3.36 3.58 3.46 3.62 3.55 

: : : : : : 

Trapped legs 5 & 6, Faulty P. S. 1.73 2.17 1.80 1.35 1.77 

Trapped leg 6, Faulty P. S. 1.80 1.94 1.93 2.04 1.71 

Trapped legs 1 & 6, Faulty P. S. 1.89 1.79 2.17 1.99 1.85 

Trapped leg 5, Faulty P. S. 1.97 2.05 2.00 1.56 2.20 

Robot Walking Uphill 2.69 3.05 2.77 2.15 2.27 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4.46. Cumulative Abnormality Labels from Experiments with Faulty Position Sensors and One 
Leg Held. 
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Table 4.62. Discrepancy Values Between Obtained ASCs in Experiments with Leg 3 Held and Faulty 
Position Sensors, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Trapped leg 3, Faulty P. S. 0.77 1.41 1.63 1.58 1.41 

Trapped leg 3 3.10 3.31 3.41 3.39 3.31 

Trapped legs 5 & 6, Faulty P. S. 4.77 4.51 4.86 4.90 5.04 

Trapped legs 2 & 3, Faulty P. S. 4.79 4.47 5.12 5.25 4.95 

Legs 1, 3 and 5 on Soft Terrain 4.83 4.45 4.58 5.28 5.35 

Collision with Small Obstacles 4.85 4.23 4.67 5.05 4.97 

 
Table 4.63. Discrepancy Values Between Obtained ASCs in Experiments with Leg 4 Held and Faulty 

Position Sensors, and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Trapped leg 4, Faulty P. S. 0.37 0.89 0.70 1.15 0.96 

Trapped leg 4 3.48 3.57 3.53 3.65 3.59 

: : : : : : 

Trapped legs 1 & 4, Faulty P. S. 2.40 2.81 2.42 2.31 2.87 

Collision with Small Obstacles 2.74 3.22 2.69 2.78 3.12 

Robot Walking Uphill 2.81 3.21 2.64 2.90 3.02 

Leg 4 on Soft Terrain 3.20 3.46 3.47 3.33 3.57 

Trapped legs 5 & 6, Faulty P. S. 3.31 3.63 3.19 3.73 3.49 

 
Table 4.64. Discrepancy Values Between Obtained ASCs in Experiments with Leg 5 Held and Faulty 

Position Sensors, and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Trapped leg 5, Faulty P. S. 0.85 0.72 1.11 1.08 0.72 

Trapped leg 5 3.42 3.38 3.49 3.48 3.38 

: : : : : : 

Trapped legs 5 & 6, Faulty P. S. 1.26 1.74 1.72 1.93 2.03 

Trapped leg 2, Faulty P. S. 1.72 1.56 1.96 1.92 2.13 

Trapped leg 6, Faulty P. S. 1.90 1.74 1.99 2.12 2.20 

Trapped legs 1 & 6, Faulty P. S. 1.92 1.78 2.30 1.96 2.36 

Collision with Small Obstacles 2.29 2.41 2.15 2.41 2.38 

 
Table 4.65. Discrepancy Values Between Obtained ASCs in Experiments with Leg 6 Held and Faulty 

Position Sensors, and Target ASCs of the Repertoire of Conducted Experiments. 
Experiment 1 2 3 4 5 

Trapped leg 6, Faulty P. S. 0.64 1.10 1.07 0.91 0.99 

Trapped leg 6 3.82 3.92 3.91 3.87 3.89 

: : : : : : 

Trapped legs 5 & 6, Faulty P. S. 1.58 1.87 1.93 1.80 1.62 

Trapped leg 2, Faulty P. S. 1.67 2.09 1.78 1.57 1.86 

Trapped legs 1 & 6, Faulty P. S. 1.87 2.37 1.66 1.89 1.95 

Trapped leg 5, Faulty P. S. 1.89 2.22 2.22 2.08 2.29 

Robot Walking Uphill 2.69 2.56 2.58 2.77 2.57 

 

Discrepancy values in this set of experiments show that a larger number of diagnosis 

attempts are necessary when no information about the abnormal situation is provided 

to the robot. For instance, when leg 6 is held, in experiment 1 of Table 4.65, the 

robot must perform 14 attempts at diagnosis before identifying correctly the 
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abnormal situation. This situation changes when the corresponding ASC is included 

into the robot’s database of abnormalities. In those cases, the robot was able to 

identify the abnormal situation on its first attempt. The only exception could occur in 

experiments where leg 1 was held. Here, the discrepancy values are the same as 

those obtained during experiments with legs 4, 5 and 6 on soft terrain with faulty 

force sensors. Therefore, here the robot correctly identifies the abnormal situation in 

a maximum of 2 attempts. 

 

A second series of experiments were conducted where combinations of 2 legs are 

held at the time. Once again, 5 experiments were conducted for each combination of 

legs. Typical CAL values registered during these experiments are shown in Fig. 4.47. 

In addition, resulting discrepancy values are shown in Tables 4.66 to 4.70. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.47. Cumulative Abnormality Labels from Experiments with Faulty Position Sensors and 

Pairs of Legs Held. 
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Table 4.66. Discrepancy Values Between Obtained ASCs in Experiments with Faulty Position 
Sensors and Legs 1 and 2 Held, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Trapped legs 1 & 2, Faulty P. S. 0.54 1.41 1.49 1.16 1.08 

Trapped legs 1 & 2 5.16 5.32 5.35 5.26 5.24 

: : : : : : 

Trapped legs 2 & 3, Faulty P. S. 1.74 1.84 2.75 2.29 1.74 

Trapped leg 6, Faulty P. S. 3.41 3.47 4.37 3.75 3.13 

Trapped leg 2, Faulty P. S. 3.54 3.59 4.51 3.97 3.14 

Trapped legs 1 & 6, Faulty P. S. 3.57 3.69 4.44 4.01 3.36 

Trapped legs 2 & 3 3.77 3.82 4.33 4.05 3.77 

 
Table 4.67. Discrepancy Values Between Obtained ASCs in Experiments with Faulty Position 
Sensors and Legs 2 and 3 Held, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Trapped legs 2 & 3, Faulty P. S. 0.70 1.42 1.02 1.23 1.37 

Trapped legs 2 & 3 3.42 3.63 3.49 3.56 3.61 

: : : : : : 

Trapped legs 1 & 2, Faulty P. S. 2.24 2.31 1.72 2.45 2.27 

Trapped leg 2, Faulty P. S. 2.69 3.67 2.76 2.68 3.39 

Trapped legs 1 & 6, Faulty P. S. 2.89 3.73 2.82 2.94 3.21 

Trapped leg 6, Faulty P. S. 3.01 3.84 2.85 3.09 3.51 

Trapped legs 5 & 6, Faulty P. S. 3.05 4.26 3.21 3.11 3.72 

 
Table 4.68. Discrepancy Values Between Obtained ASCs in Experiments with Faulty Position 
Sensors and Legs 5 and 6 Held, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Trapped legs 5 & 6, Faulty P. S. 0.42 0.82 0.69 0.66 0.91 

Trapped legs 5 & 6 3.68 3.75 3.72 3.72 3.77 

: : : : : : 

Trapped leg 2, Faulty P. S. 1.62 1.85 1.69 1.72 1.28 

Trapped leg 5, Faulty P. S. 1.72 2.09 2.01 1.97 1.46 

Trapped leg 6, Faulty P. S. 1.76 1.96 1.57 1.74 1.38 

Trapped legs 1 & 6, Faulty P. S. 1.88 1.94 1.64 1.97 1.54 

Collision with Small Obstacles 2.27 2.28 2.38 2.26 2.51 

 
Table 4.69. Discrepancy Values Between Obtained ASCs in Experiments with Faulty Position 
Sensors and Legs 1 and 4 Held, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Trapped legs 1 & 4, Faulty P. S. 0.44 1.21 1.54 1.47 0.84 

Trapped legs 1 & 4 4.10 4.25 4.36 4.33 4.16 

: : : : : : 

Trapped leg 4, Faulty P. S. 2.31 3.22 3.11 2.45 2.14 

Collision with Small Obstacles 2.33 2.58 2.57 2.41 1.98 

Robot Walking Uphill 2.57 2.83 2.91 2.52 2.15 

Trapped leg 5, Faulty P. S. 2.84 2.68 3.25 3.53 2.82 

Trapped legs 1 & 6, Faulty P. S. 2.85 2.49 3.46 3.18 2.59 
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Table 4.70. Discrepancy Values Between Obtained ASCs in Experiments with Faulty Position 
Sensors and Legs 1 and 6 Held, and Target ASCs of the Repertoire of Conducted Experiments. 

Experiment 1 2 3 4 5 

Trapped legs 1 & 6, Faulty P. S. 0.71 0.87 1.40 1.09 1.26 

Trapped legs 1 & 6 5.22 5.25 5.36 5.29 5.32 

: : : : : : 

Trapped leg 2, Faulty P. S. 1.66 1.92 1.62 2.27 1.80 

Trapped leg 6, Faulty P. S. 1.70 1.89 1.52 2.12 2.00 

Trapped legs 5 & 6, Faulty P. S. 1.78 1.93 1.67 2.28 1.97 

Trapped leg 5, Faulty P. S. 2.03 2.18 2.08 2.55 2.02 

Collision with Small Obstacles 2.81 2.47 2.78 2.57 3.04 

 

In this last series of experiments, discrepancy values show that a considerable 

number of diagnosis attempts are necessary when no information about the abnormal 

situation is provided to the robot. For example, when legs 1 and 6 are held, in 

experiment 1 of Table 4.70, the robot must perform 54 attempts at diagnosis before 

identifying correctly the abnormal situation. This number varies from experiment to 

experiment even when the same combination of legs is considered. However, 

discrepancy values are larger than in experiments where only on leg was held. 

Results improve greatly when the corresponding ASC is included into the robot’s 

database of abnormal situations. In all of those cases, the robot was able to identify 

the abnormal situation on its first attempt.  

4.5.4. Analysis of Experimental Results 

Experiments with anomalies in the robot’s hardware have shown that faults with 

isolated effects detected by sensors directly linked to the fault are normally identified 

correctly by the self-diagnosis methods on the first attempt. As these effects 

propagate to other sensors, the system needs more attempts before a correct 

identification is achieved. This is especially true when the effects on sensors directly 

linked to the fault are smaller than for other sensors. On the other hand, there are 

cases when a fault may not produce any abnormal sensor reading at all. Although, 

this situation could be tackled by improving the methods for the calculation of 

expected sensor readings, in some cases it may be necessary to increase the number 

and/or type of sensors in the robot. However, the effects of faults among the 
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increased number of robot sensors could propagate and increase the complexity of 

arriving at a correct diagnosis in certain situations.  

 

The experiments that were conducted with anomalies in the robot’s environment 

showed the good performance of the self-diagnosis methods when identifying 

situations that generated abnormal sensor readings. However, here the system 

struggles once again to identify those situations where abnormal sensor readings are 

not generated. This occurs, for instance, while the robot is air walking or when one 

of the two light sensors facing the light source is partially covered. 

 

A disadvantage of the proposed self-diagnosis methods is the time they require for 

the identification of abnormal situations generated in the robot’s environment when a 

large number of abnormal sensor readings are generated. In these cases, the robot 

generates many theories about possible sources of the anomaly. Then, the 

corresponding research actions must be executed and these theories are rejected one 

by one. Only once the possibility of a fault in the robot’s hardware is discarded, does 

the system turn to the identification of abnormal situations in the robot’s 

environments. Additional research could be conducted in order to implement a faster 

method for differentiating the two types of anomaly sources. 

 

The self-diagnosis methods also showed a good identification rate in experiments 

where both anomalies in the robot’s hardware and in the robot’s environments were 

considered. Best results were achieved in those cases where the ASC corresponding 

to the target abnormal situation was previously incorporated into the robot’s database 

of abnormalities. In some cases, the robot was still able to identify the abnormal 

situation correctly at the first attempt when this information was not available. 

However, in other cases with unknown target ASC the performance of the system 

dropped drastically. For instance, the robot had to perform more than 54 attempts of 

diagnosis before identifying correctly the abnormal situation when legs 1 and 6 were 

held, in experiment 1 of Table 4.70. 
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In general, the rate of first attempt identification of abnormal situations in the robot’s 

environment will depend on the number and types of the ASCs located in the robot’s 

database of abnormalities. Discrepancy values are usually larger for linearly 

independent ASCs. Therefore, better diagnosis is performed for databases 

incorporating this type of ASCs. In the presence of linearly dependent ASCs, the 

classification of the abnormal situation will depend more on the magnitude of the 

ASC components. This dependence between the performance of the self-diagnosis 

algorithms and the nature and size of the database of abnormalities incorporated into 

the robot increases the complexity of the evaluation of the system. The database used 

during the evaluation of the self-diagnosis methods incorporated data gathered in 

experiments presented in sections 4.4 and 4.5. The creation of a larger database of 

experiments may allow a more exhaustive evaluation of the self-diagnosis methods. 

However, a practical implementation of this database goes beyond the scope of this 

thesis and it is proposed as future work.   

4.6. Summary 

This chapter has introduced a method for autonomous identification and 

classification of detrimental disturbance sources as a self-diagnosis technique for 

robots facing abnormal situations.  

 

Initially, section 4.1 has presented two methods for the detection of detrimental 

abnormal conditions. Here, poor robot performance or extreme abnormal sensor 

readings (pain) are used as inputs for the disturbance detection algorithm. Then, a 

classification algorithm has been introduced in section 4.2. As a result of the 

application of this algorithm, abnormal situations have been classified into centroids 

of the sensor reading space generated by the robot experiencing the abnormal 

conditions. The output of the classification algorithm will be utilised by the robot 

self-compensation techniques presented in chapter 5. Furthermore, use of 

information relating to the robot’s anatomy for accelerating the search for possible 

disturbance sources has been proposed in section 4.3. This search is executed using 
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the robot’s actuators and consists of a series of specialised research actions. In 

general, each abnormal symptom has an associated research action. These 

movements allow the validation or rejection of the robot’s assumptions about the 

source of an abnormal condition. The method presented here will be complemented 

by techniques introduced in section 5.3 of the next chapter. In addition, the 

algorithms and techniques discussed in this chapter have been illustrated by means of 

two experiments in section 4.4. Finally, experiments had been conducted in section 

4.5 in order to evaluate the self-diagnosis methods discussed in the chapter. The 

experimental results showed the capability of the proposed method for detection of 

abnormal conditions and identification of their source. In addition, it was shown that 

the performance of the self-diagnosis algorithms was affected by the propagation of 

the effects of abnormal conditions to sensors not directed linked to the anomaly. In 

most of the considered cases, the proposed method was able to find those moving 

parts responsible for or able to compensate the introduced disturbance. However, 

results may be affected by the nature and size of the robot’s database of 

abnormalities. 

 

This chapter has dealt with the detection, identification and classification of 

detrimental disturbances. Once the abnormal condition source is identified, or the list 

of possible sources is reduced, it is necessary to execute compensating actions to 

overcome or at least reduce the problem. This topic is the subject of the next chapter. 

 

 



 
 

 
 

Chapter 5  

Compensation of Detrimental 

Disturbances 

 

Techniques for robotic self-compensation of detrimental disturbances are presented 

in this chapter. These methods are biologically inspired by evolved and instinctive 

behaviours. The proposed techniques allow robots to find suitable compensatory 

actions when experiencing known abnormal situations. This chapter also addresses 

the autonomous generation of actions able to compensate detrimental disturbance 

where the source is unknown and the selection of the robot’s moving parts executing 

those actions.   

 

Chapter 5 is structured as follows. Initially, innate compensatory measures and 

application examples using the experimental robot are presented in sections 5.1 and 

5.2, respectively. Then, in section 5.3, the use of compensatory measures in the final 

determination of detrimental disturbance sources is addressed. This is followed by 

section 5.4, where autonomous generation of compensatory actions and selection of 

the robot’s moving parts for executing those actions is discussed. In addition, section 

5.5 introduces “last resort” measures, which are used if the techniques previously 

discussed fail to compensate a robot’s disturbance. Finally, a summary of the 

chapter is presented in section 5.8. 
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5.1. Innate Compensatory Measures 

As discussed in chapter 4, a robot’s performance may be strongly degraded when 

facing an abnormal situation. In these cases, a robot can generally execute a number 

of actions in order to improve its performance and continue making progress in its 

mission. In this thesis, they will be referred to as compensatory actions or 

compensatory measures. A special case of compensatory measures inspired by 

biological instinctive behaviour is introduced in the next subsection. Both, when 

referring to living creatures or robots, these actions will be presented as innate 

compensatory measures (ICMs) or innate compensatory actions.  

5.1.1. Biological Inspiration 

Biological creatures deal with the same problems a robot may find in unstructured 

environments. They are successfully able to compensate several different detrimental 

disturbances due to a repertoire of compensatory measures developed via evolution. 

Biological ICMs are not learned during a creature’s life, but are an innate part of the 

heritage of its species. The ability to compensate abnormal situations goes beyond 

purely behavioural aspects, by incorporating physical adaptation. One example of 

this is the autotomy capability present in over 200 species of animals [53] [5]. These 

creatures can shed parts of their body in order to escape from a predator. In cases 

where a leg is severed, they can promptly adapt their gait to the new number of legs. 

Another example of biological ICM is provided by the work of Walter Hangartner at 

the University of Zurich [130]. He made experiments with ants following a trail of 

pheromone. In one experiment, Hangartner removed the left antenna of an ant. 

Although the ant invariably overcorrected to the right, it had no problem following 

the trial.  This shows that this ant species (Lasius fuliginosus) is able to compensate 

the loss of an antenna. The immediacy of the creatures’ adaptation in the two 

previous examples suggests that there is no learning process involved. 
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When talking about ICMs, it may be worthwhile to indicate that anomalies or 

abnormal situations are faced by members of a species. They are uncommon 

situations for individuals. However, these may be common or normal situations in 

terms of the corresponding species. It is precisely because these situations are faced 

by the species over generations that the slow evolution process is able to compensate 

them. For instance, it may be common for a species of insects to be hunted by 

lizards. Consequently, evolution may develop a range of defence techniques in this 

species so that insects can avoid being eaten by lizards. However, before evolving a 

defence strategy, repeated encounters between a particular insect of the species and 

lizards would be uncommon because the insect would probably be eaten on the first 

encounter. 

5.1.2. Innate Compensatory Measure Set Aspects 

Biological ICMs can be emulated and incorporated into robots, as a number of action 

sequences intended for compensating abnormal situations. As the case with 

biological instinctive behaviour, ICMs are a part of the initial information provided 

to robots. An ICM set should be as comprehensive as possible. Compensation for 

general abnormal situations must be incorporated into the set first. Then, 

compensatory measures for more specific cases can be gradually incorporated when 

necessary. Important aspects that have to be considered when creating an ICM set 

are: 

 

 Robots’ components that are prone to failure. As more fragile components have a 

higher probability of being damaged, it is advisable to include suitable ICMs, able 

to compensate this kind of event, into the ICM set. For example, if a robot’s 

whiskers were thin and not very flexible, it is likely that they are permanently bent 

or broken. Therefore, a suitable ICM should be considered. 

 

 Mission demands on robots. Depending on the mission a robot is performing, 

some of the robot’s components may be exposed to higher demands. Because 
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these parts are more likely to worn out, appropriate ICMs should be incorporated. 

For instance, the leg servo motors of the experimental robot are heavily used by 

the robot when walking. Therefore, the failure of a servo motor should be 

incorporated into the ICM set. 

 

 Potential hazards of the robots’ environment. The elements of an ICM set should 

include compensation for potential detrimental disturbances robots may encounter 

in the specific environment where they perform their mission. Here, factors such 

as terrain features, temperature, humidity, pressure and obstacles should be 

considered. 

5.1.3. A Taxonomy of Innate Compensatory Measures 

The classification and labelling of ICMs facilitates the identification and search for 

suitable ICMs to compensate for a particular disturbance. The following five 

categories, presented as mutually exclusive attribute pairs (or triads), are utilised 

during ICM classification:  

 

 Enabled, disabled and in-execution ICMs. Initially, all of the robot’s ICMs are 

enabled and available for use. However, as the robot is damaged or some 

abnormal situations arise, the requirements demanded by some ICMs may not be 

satisfied. For instance, the execution of an ICM may require that a hexapod robot 

has all of its legs. Therefore, if the robot has lost one leg, this ICM cannot be 

executed. In these cases, the ICM is disabled.  A third category, in-execution, 

corresponds to those ICMs that are currently being executed. These ICMs are not 

considered by the system when new detrimental disturbances need to be 

compensated. 

 

 Versatile, specific and component-oriented ICMs. While versatile ICMs can 

compensate more than one kind of detrimental disturbances, specific ICMs are 

only able to deal with one type. The use of versatile ICMs reduces the number of 
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elements of the ICM set. As a result, the searching process for suitable 

compensatory measures is accelerated. Specific ICMs should be included into the 

ICM set only as a last resort. In addition, component-oriented ICMs are intended 

to deal with faulty components rather than with other kinds of disturbance. 

 

 Mobile, static and disturbance-oriented ICMs. When compensating one kind of 

detrimental disturbance, mobile ICMs can be applied to more than one robot 

component whereas static ICMs can be applied to only one part. This category is 

more related to the robot’s structure than the ICM itself. For instance, the same 

ICMs could be utilised for releasing a walking robot’s trapped leg regardless of 

which leg is experiencing the disturbance. Then, because the compensatory 

measure can be applied to more than one of a robot’s components experiencing 

the same disturbance, this is a mobile ICM. However, if the robot only had one 

remaining leg, the ICM would lose its mobile status and it would become a static 

ICM. As common components (e.g. legs, light sensors, etc.) usually appear more 

than once in a robot’s structure, the use of mobile ICMs is another strategy for 

reducing the ICM set. In addition, disturbance-oriented ICMs are intended to deal 

with abnormal situations arising from the robot’s environment rather than with the 

robot’s malfunctions. 

 

 Reversible and irreversible ICMs. Depending on whether or not it is feasible to 

return to the original state after the application of an ICM, allows a classification 

into reversible or irreversible, respectively. Commonly, the execution of an 

irreversible ICM may affect the robot’s capabilities necessary for executing other 

compensatory measures or performing the robot’s mission. Therefore, reversible 

ICMs should be applied first whereas irreversible ICMs should only be used as a 

last resort. An example of a reversible ICM could be the movement of a walking 

robot’s leg, as it should be feasible for the robot to return its leg to the original 

position. On the other hand, an ICM could be the shedding of a robot’s leg. In this 
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case, the robot may be unable to reattach its leg in an autonomous fashion. 

Therefore, this ICM would be irreversible. 

 

 Temporary and permanent ICMs. According to the duration of an ICM, it can be 

classified as temporary or permanent. In general, those ICMs dealing with a 

robot’s hardware failures or a robot’s structure damage are permanent. On the 

other, hand, ICMs compensating for changing features of a robot’s environment 

are temporary. This kind of ICM is assigned with a limited duration, so robots 

stop executing them once they expire. This is useful for avoiding the continued 

execution of demanding ICMs in order to compensate for past situations. Once a 

temporary ICM expires, the robot can evaluate its performance without executing 

the ICM. If the condition that triggered the ICM in the first place is still present, 

the robot’s performance will be degraded. In this case, the temporary ICM is 

enabled for a new period. Otherwise, the robot discards it and the ICM is returned 

to the ICM set.   

 

All ICMs must be classified into one of the previous categories, selecting one 

attribute by category (as they are mutually exclusive). All of the possible 

combinations are allowed, except temporary-irreversible or component-oriented – 

disturbance-oriented pairs. As a result, ICMs can be classified into 69 (or 33 22 – 

3x3x3x1x1 - 3x1x1x2x2) different groups. The ICM taxonomy and allowed 

combinations of categories are represented by the flow diagram in Fig. 5.1. 

5.1.4. Detrimental Disturbance Identification 

Before selecting a particular ICM for compensating a detrimental disturbance, the 

abnormal situation must be correctly identified. In chapter 4 abnormal situations 

were labelled by means of abnormal situation centroids (ASCs). However, it is 

unlikely that each time the abnormal situation arises, an exact copy of the 

corresponding ASC is generated. Therefore, it is necessary to establish what range of 
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relatively similar ASCs will represent the same abnormal situation. This can be 

determined by means of Eqs. 5.1 and 5.2.  
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  (5.2)  

Where 

 *ASC  is the centroid of the ASCs corresponding to the E  times the robot has 

experienced the detrimental disturbance. 

Figure 5.1. ICM Taxonomy Flow Diagram. 
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 ASCT  is a threshold that specifies the maximum Euclidean distance an ASC can 

have and still belong to the detrimental disturbance represented by *ASC .  

 kASC  is the ASC corresponding to the k-th time the robot experienced the 

detrimental disturbance.. 

 n  is the number of sensors in the robot. 

 
Because only once the detrimental disturbance has been experienced by the robot is it 

possible to obtain the corresponding ASC, robots must experience the abnormal 

situation before its corresponding ICM can be incorporated into the system. The ASC 

value is corrected each time the robot experiences the detrimental disturbance. As a 

result, the *ASC  calculated by means of Eq. 5.1 is obtained. Then, using  Eq. 5.2, the 

maximum Euclidean distance between *ASC  and all of the ASCs, associated with 

the same kind of disturbance, is determined. The result is the threshold value ASCT , 

which will be included into the ICM labels and will be used for matching pairs of 

ICM-disturbance. As the robot gains more experience with a particular disturbance 

and both *ASC  and ASCT  are updated accordingly, it is more likely that the 

disturbance will be correctly identified by the system. 

5.1.5. Robot Anatomy Labelling 

In those situations where, by means of research actions discussed in chapter 4, a 

detrimental disturbance has been associated with specific parts of the robot, innate 

compensatory measures (ICMs) corresponding to those components must be 

selected. This can be done by labelling all of the robot’s components. This is 

equivalent to the labelling system people use for referring to specific parts of their 

body. However, a numeric system of labelling seems more convenient than words 

like “lung” or “heart” in this case. In the proposed labelling method, a robot anatomy 

label (RAL), consisting of four elements, is used. The first element indicates if the 

component is a part of the robot’s structure  1 1RAL  , the robot’s sensors 

 1 2RAL  or the robot’s moving parts  1 3RAL  . Then, the second element 

establishes if the component appears more than once in the robot. Examples of such 
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components are legs, light sensors, etc. Each set of similar components of this kind is 

identified by using a different 2RAL  value whereas all of the components in the set 

are labelled with the same 2RAL  value. For instance, all of the robot’s legs are 

labelled with the same 2RAL value, but the group of legs and the group of light 

sensors are labelled with different 2RAL values. Moreover, 2 0RAL   is the label 

assigned to all of those components that appear only once in the robot’s structure. 

The third element identifies the component itself and the fourth element indicates the 

status of this component (operational: 4 1RAL   , temporarily disabled: 4 2RAL   or 

permanently disabled: 4 3RAL  ).  A summary of RAL notation is shown in Table 

5.1. 

Table 5.1. RAL notation. 
RAL Element Code Description 

Type 1RAL   
1: structure 
2: sensors 
3: moving parts 

Component 
Set’s Tag 2RAL  

0: component appears only once in the robot’s structure. 
A number between 1 and the number of sets of 
components that appear more than once in the robot’s 
structure. A different number is used for each set. 

Component’s 
Tag 3RAL  

If 2 0RAL  :   
A number between 1 and the number of components with 

2 0RAL  in the robot’s structure.  A different 3RAL value 
is assigned to each component with 2 0RAL  . 
Otherwise: 
A number between 1 and the number of components in the 
set. A different 3RAL value is assigned to each component 
in the set. 
 

Status 4RAL  
1: operational 
2: temporarily disabled 
3: permanently disabled 

 

Tables 5.2 to 5.4 show, as an example, the labelling system utilised with the 

experimental hexapod robot.  The Code column in the tables utilises the same 

notation introduced in chapter 4 for symbolising the robot’s sensors and servo 

motors. Table 5.2 shows the RAL associated with a robot’s leg, which is represented 
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by X. For example, if X was replaced by 2, then Table 5.2 would contain the RAL 

corresponding to leg 2. 

 
Table 5.2. Example of RAL for Robot's Components that Appear more than once in the Robot’s 

Structure (Legs). 
Component Code 1RAL  2RAL  3RAL  4RAL  

Leg xLeg  1 X 1 1 

Position Sensor 
1xPs  2 X 1 1 

2xPs  2 X 2 1 

3xPs  2 X 3 1 

Force Sensor 
1xFs  2 X 4 1 

2xFs  2 X 5 1 

3xFs  2 X 6 1 
Tip Leg Force Sensor xTFs  2 X 7 1 

Servo Motor 
1xS  3 X 1 1 

2xS  3 X 2 1 

3xS  3 X 3 1 

 

Table 5.3 shows the labelling of the robot’s light sensors and battery level indicators. 

These sensors appear more than once in the robot’s structure but they are not part of 

a leg. Therefore, they have different 2RAL  values (7 and 8, respectively). The k  

letter has been used for labelling each light sensor in Table 5.3. Therefore 2k  , for 

instance, is used for labelling the light sensor 2Ls . Similarly, j  has been used for 

labelling each battery level indicator. For example, 3j   is used for labelling the 

battery level indicator 3Bl . 

 
Table 5.3. Example of RAL for Robot's Components that Appear more than once in the Robot’s 

Structure (Light Sensors and Battery Level Indicator). 

Component Code 1RAL  2RAL  3RAL  4RAL  

Light Sensor jLs  2 7 j   1 

Battery Level Indicator kBl  2 8 k   1 

 

Table 5.4 shows the labelling of the robot’s components that appear only once in the 

robot’s structure. This is indicated by 2 0RAL  . In addition, the values of  4RAL  
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have been changed to illustrate the use of this element. In this case, the 4RAL  

indicates that the accelerometer has been temporarily disabled  4 2RAL  and the 

whiskers have been permanently disabled  4 3RAL  . 

 
Table 5.4. Example of RAL for Robot's Components that Appear Only Once in the Robot’s Structure. 

Component Code 1RAL  2RAL  3RAL  4RAL  

Accelerometer 
xAcc  2 0 4 2 

yAcc  2 0 5 2 

Whiskers sW  2 0 6 3 

5.1.6. ICM Labelling 

In order to identify ICMs and be able to execute them when the corresponding 

detrimental disturbance arises, an ICM labelling method is utilised. The number of 

elements of an ICM label depends on the number of abnormal situations and robot’s 

component malfunctions that the ICM is intended to compensate. Table 5.5 shows 

the notation utilised with ICM label, where the terms introduced in subsection 5.1.3 

are utilised. 

 

Table 5.5. ICM Label Notation. 
ICM Label 
Component Description 

Status  s   
0: if the ICM is disabled. 
1: if the ICM is enabled. 
2: if the ICM is being executed. 

Disturbances  d   

0: if the ICM is component-oriented. 
1: if the ICM is specific 
The number of abnormal situations the ICM is intended to compensate 
if the ICM is versatile. 

Components  c   

0: if the ICM is disturbance-oriented. 
1: if the ICM is static. 
The number of faulty robot components the ICM is intended to 
compensate if the ICM is mobile. 

Effects  e   0: if the effect of the ICM is reversible 
1: if the effect of the ICM is irreversible 

Duration  t   0: if the ICM is permanent. 
The ICM duration in seconds if the ICM is temporary.  

1 4 to A ARAL RAL  
(Compensation) 

The four elements of an ICM associated robot anatomy label. This 
RAL corresponds to the c  robot’s components the ICM is intended to 
compensate. 
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1 4 to B BRAL RAL  
(Requirements) 

The four elements of an ICM associated robot anatomy label. This 
RAL corresponds to the r  enabled and functional robot’s components 
required by the ICM in order to be executed. 

* *
1  to nASC ASC   

The n  elements of an abnormal situation centroid representing the d  
disturbances the ICM is intended to compensate. 

 

The ICM label data frame is shown in Table 5.6.  

 

Table 5.6. ICM Label Data Frame. 

Status Disturbances Components Effects Duration Requirements 

s d c e t r 
 ↓ ↓   ↓ 

1
ASCT   *1 *1

1  to nASC ASC  1 1
1 4 to A ARAL RAL     1 1

1 4 to B BRAL RAL   
2

ASCT  *2 *2
1  to nASC ASC  2 2

1 4 to A ARAL RAL    2 2
1 4 to B BRAL RAL  

  
⋮   ⋮ 

d

ASCT  * *
1  to d d

nASC ASC  ⋮   ⋮ 

  1 4 to c c

A ARAL RAL    ⋮ 

     1 4 to R R

B BRAL RAL  

 

All of the ICM types presented in subsection 5.1.3 can be represented by the ICM 

label shown in Table 5.6.  

5.1.7. Compensation of the Robot’s Malfunctions 

In cases where abnormal situations are produced by a malfunction in the robot, 

component-oriented, static or mobile ICMs associated with the faulty parts may be 

selected. The robot’s malfunctions are identified by means of the techniques 

discussed in chapter 4. Once the faulty part is determined by the system, a suitable 

ICM must be selected from the ICM set. ICM selection involves an elimination 

process where four subsets are utilised. This procedure is performed as follows.  

 

 Subset 1 is created by selecting ICMs labels with sections 1status   and 

0components  , from the ICM set.  
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 Subset 2 is created by searching for RAL1 to RAL3 of the faulty part in the 

corresponding section of the ICM labels contained in subset 1.  

 ICMs in subset 2 are classified into subset 3 and subset 4 according to the Effects 

section of the ICM labels. As a result, reversible ICMs are classified into subset 3 

whereas irreversible ICMs are classified into subset 4. 

 If subset 3 ≠ Ø, then the ICM with the minimum number of requirements is 

selected from subset 3. This is the ICM used by the system for compensating the 

robot’s faulty component. 

 If subset 3 = Ø, then the ICM with the minimum number of requirements is 

selected from subset 4. This is the ICM used by the system for compensating the 

robot’s faulty component. 

5.1.8. Compensation of Abnormal Situation of the Robot’s Environment 

Detrimental disturbances generated by the robot’s environment can be compensated 

by disturbance-oriented, specific and versatile ICMs associated with the disturbance. 

In order to select a suitable ICM from the ICM set, the following procedure is 

executed. 

 

 Subset 1 is created by selecting ICM labels with sections 1status   and 

0disturbances  , from the ICM set.  

 Subset 2 is created by considering the *ASC  of the disturbance and the list of 
*ASCs  in the ICM label. Those *ASCs  that are labelling an ICM will be referred 

to as target abnormal situation centroid (TASC). Then, those *ASCs TASC pairs 

that satisfy relation 5.3 will be considered as matching pairs. 

 

      
2 2 2* * *

1 1 2 2 n n ASCASC TASC ASC TASC ASC TASC T         (5.3) 

 

As a result, all of the ICMs that have at least one *ASCs TASC  matching pair 

will become an element of subset 2. 
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 ICMs in subset 2 are classified into subset 3 and subset 4 according to the Effects 

section of the ICM labels. As a result, reversible ICMs are classified into subset 3 

whereas irreversible ICMs are classified into subset 4. 

 If subset 3 ≠ Ø, then the ICM with the minimum number of requirements is 

selected from subset 3. This is the ICM used by the system for compensating the 

robot’s environment detrimental disturbance. 

 If subset 3 = Ø, then the ICM with the minimum number of requirements is 

selected from subset 4. This is the ICM used by the system for compensating the 

robot’s environment detrimental disturbance. 

5.1.9. Closest ICM Compensation 

An alternative to the previous innate compensation methods is the use of closest ICM 

compensation. This method can be utilised when none of the available ICMs in the 

ICM set has been selected by the system for compensating a particular detrimental 

disturbance.  The closest ICM compensation consist of finding the minimum distance 

between the detrimental disturbance experienced by the robot, and  the target 

abnormal situation disturbance-oriented, specific and versatile ICMs available in the 

ICM set. Furthermore, the distance between any pair of detrimental disturbances can 

be calculated by means of Eq. 5.4. 

 

      
2 2 2* * *

1 1 2 2
S S S

ASC n nd ASC TASC ASC TASC ASC TASC         (5.4) 

Where 

 *ASC  is the centroid of the detrimental disturbance experienced by the robot. 

 STASC  is the target abnormal situation centroid associated with the S-th ICM 

of the ICM set. 

 

Therefore, the ICM, whose TASC has the minimum distance to the detrimental 

disturbance experienced by the robot, is selected and executed. If the detrimental 

disturbance is compensated, both *ASC and ASCT  associated with the abnormal 
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situation are updated. Otherwise, this process can be repeated so the next ICM with 

minimum ASCd  distance is selected and executed. The process can be stopped when a 

fixed number of ICMs have been tried or the ASCd  distance has exceeded a certain 

threshold.  

 

In general, irreversible ICMs should be avoided when using closest ICM 

compensation. Otherwise, unsuitable compensatory measures, with associated 

permanent adverse effects on the robot’s capabilities, could be executed. 

5.1.10. Post-Compensation Tasks 

Once an ICM has been selected and the corresponding detrimental disturbance has 

been compensated, it is necessary to modify the ICM label accordingly. To begin 

with, the status value of the ICM label must be set to 2. This indicates that the ICM 

is currently being executed. In cases where the selected ICM is temporary, a monitor 

process must be executed. Therefore, once the period established in the duration 

section of the ICM label has passed, the ICM execution is stopped. Next, the robot’s 

performance is evaluated. If this is degraded, the compensatory measure is restored 

for a new period. Otherwise, the ICM is deactivated and the status value of its label 

is set to 1. 

 

The RALs must also be modified if the selected ICM has changed the robot’s status 

or if a faulty component has been identified. Therefore, the RAL4 elements, 

associated with the robot’s components that the ICM has temporarily disabled, are 

set to 2. In addition, the RAL4 elements, corresponding to recently identified faulty 

robot components, are set to 3. 

5.1.11. Reflexes 

This kind of compensatory measure is used when a quick response is required. Two 

main features differentiate reflexes from other types of compensatory actions. Firstly, 

reflexes are generated by low-level control that has faster communication with the 
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robot’s moving parts executing the compensatory actions. Therefore, the robot’s 

central control is not involved in reflex action generation. This is only informed once 

the reflex action has been executed. Secondly, reflexes aim to reduce the effects of 

highly detrimental disturbances (pain) in order to avoid robot damage. Consequently, 

improvement of a robot’s performance is not a goal of reflexes as is the case with 

other kinds of compensatory actions. Nevertheless, by preventing a robot from being 

damaged, reflexes actions may indirectly improve a robot’s performance in the long 

term. This is true in all of those cases where the damage being avoided by the reflex 

action has a potential impact on the robot’s performance. 

 

Reflexes are included here as an ICM. However, these are not included into the ICM 

set, as this will be limited to higher level ICMs. A reflex action must be linked to 

pain in the robot, so reflex-pain pairs are established. Therefore, every time the robot 

experiences pain, which will be triggered when the robot’s pain threshold is 

exceeded, the corresponding reflex action will be executed. An example of this was 

presented in section 4.1.2. Here, the painful experience was an overloaded servo 

motor. The pain threshold was determined by the amount of time the servo could be 

overloaded and the reflex action was shutting down the servo and moving the robot 

to its home position. 

5.2. ICM Examples 

This section provides examples of innate compensatory measures (ICMs) 

implemented in the experimental robot. ICMs described in Subsections 5.2.1 to 5.2.9 

were programmed into the experimental robot in order to test the correct 

compensation of their associated disturbances. A complete set of ICMs is not given 

here, as that would be specifically related to only one robot. Therefore, rather than 

providing particular solutions to every possible disturbance a robot could experience, 

this section aims to present a few disturbances and the corresponding ICMs. Some of 

the ICMs presented here involve the shedding of a leg. This is accomplished by using 

the leg release mechanism introduced in section 3.4. In addition, more information 
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regarding ICMs adapting the robot’s gait to different numbers of legs or changing the 

direction of the robot’s locomotion is available in Appendix B. 

5.2.1. Covered Light Sensor 

When one or more light sensors are covered by dirt or other obstruction, the 

experimental robot makes an incorrect estimate of the light source direction. In order 

to compensate this situation, the robot executes a cleaning action (ICM 1). As 

illustrated by Fig. 5.2, this consists of a sweeping movement that intends to clean or 

remove objects covering light sensors. A video showing the robot compensating a 

covered light sensor by executing a sweeping movement can be watched by 

following link D05 in Appendix D. If this compensation strategy does not work, then 

the robot changes its direction of locomotion (ICM 2). This course of action ensures 

that two adjacent working sensor face the light source. As a result, the light source 

direction is more accurately calculated. This process is depicted by the flow diagram 

in Fig. 5.3. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2. (a). Covered Light Sensor. (b) Robot’ Leg Sweeping the Covered Light Sensor. (c). Close 

Up of Robot’s Leg Sweeping the Covered Light Sensor. (d) Uncovered Light Sensor. 

(a) (b) 

(c) (d) 

Cleaning action. 

 Cleaning pad. 

Robot leg. 

 Light Sensor. 
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The 0 2    angle in Fig. 5.4 represents the heading direction with respect to the 

body of the robot. For instance, 0   and    mean that the robot is walking 

sideways, to the right and left, respectively. / 2   indicates the robot is walking 

forward and 3 / 2   the robot is walking backwards. Therefore, when a light 

sensor is not working properly, the robot can adjust the   angle, so the heading 

direction is the middle point between two adjacent working light sensors. 

 

Two videos showing the robot changing its direction of locomotion for compensating 

one or more covered light sensor can be found by following links D06 and D07 in 

Appendix D. The video in D06 shows the robot walking backwards  3 / 2 

whereas the video in D07 shows the robot walking diagonally  2 / 3  .      

 
 

Figure 5.3. Covered Light Sensor ICMs. 

Figure 5.4. Robot Heading Direction as a Function of the θ Angle. 
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5.2.2. Soft Terrain 

The hexapod robot’s legs may sink in when walking over soft terrain such as snow, 

mud, grass or sand. As a result, the swing legs may not be able to move forwards, 

which may impede the robot’s locomotion. The ICM utilised by the experimental 

robot in this situation is to increase the elevation of the legs performing the swing 

phase. This ICM is depicted by the flow diagram in Fig. 5.5. 

A video showing the experimental robot walking over soft terrain and compensating 

this abnormal situation can be found by following link D08 in Appendix D. 

5.2.3. Low Power 

The experimental robot used in this investigation does not incorporate self-

recharging capabilities. Therefore, when the robot detects that its power source is 

low, it sends a distress signal asking for help. This ICM is illustrated by the flow 

diagram in Fig. 5.6.  

 

A video showing the experimental robot performing the low power innate 

compensatory measure can be found by following link D09 in Appendix D. 

 

 

Figure 5.5. Soft Terrain ICM. 

Figure 5.6. Low Power ICM. 
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5.2.4. Disconnected Servo Motor PWM Signal 

When damage results in a servo motor PWM signal being interrupted, it is not 

possible to control that motor anymore. This situation would have the same effect as 

other damage to a servo including burnt out electronics, seized motor, stripped gears, 

etc. As a result, the robot’s gait is not correctly executed and the robot may fall over. 

When servo 1 or 2 is disconnected, the leg with the disconnected motor may interfere 

with adjacent legs. This situation further degrades the robot’s gait performance. 

There are two ICMs responsible for compensating this detrimental disturbance. 

When the PWM signal of servo 3 is disconnected, the robot may limp. Otherwise, if 

this does not work or the PWM signal of servos 1 or 2 is disconnected, the robot 

must shed the affected leg and change the gait according to the new leg 

configuration. This process is illustrated by the diagram in Fig. 5.7. 

5.2.5. Trapped Leg 

If a leg has become entangled, trapped or is held by some object in the robot’s 

environment, the experimental robot would be unable to make further progress 

towards the light source. In this case, the robot will try to free the leg by making a 

series of movements. If this does not work, the robot will shed the trapped leg and 

change its gait accordingly. This situation is represented by the diagram in Fig. 5.8. 

 

 

Figure 5.7. Disconnected Servo Motor PWM Signal. 
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A video showing the shedding of a leg can be watched by following link D03 in 

Appendix D. In addition, a video showing the experimental robot walking with 5 legs 

can be found by following link D10 in Appendix D.   

5.2.6. Frontal Collision 

A frontal collision is detected by abnormal readings from the robot’s whiskers. In 

this case, the robot moves backwards, turns and advances. This ICM is illustrated by 

the diagram in Fig. 5.9. 

 

A video showing the experimental robot performing the frontal collision innate 

compensatory measure can be found by following link D11 in Appendix D. 

5.2.7. Broken Leg 

Depending on where the robot’s leg has been broken, the experimental robot may be 

able to walk by lowering the broken leg further during the stance phase. If the broken 

leg is able to make contact with the ground, then it is not necessary to make 

additional modifications to the robot’s gait. Otherwise, if the robot cannot make 

contact with the ground and the robot loses stability when walking, the robot must 

shed the leg and adapt its gait to the new leg configuration. This process is depicted 

by means of the diagram in Fig. 5.10. 

Figure 5.8. Trapped Leg ICM. 

Figure 5.9. Frontal Collision ICM. 
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5.2.8. Lights Off 

This disturbance occurs when the robot does not have any light source to find, so it 

cannot make progress in its mission. In this case, the robot assumes that its light 

sensors are covered and proceeds with the cleaning actions shown in Fig. 5.3b. If this 

does not work, the robot waits until a light source is switched on. This ICM is 

illustrated by means of the flow diagram in Fig. 5.11. 

 

A video showing the experimental robot performing the lights off innate 

compensatory measure can be found by following link D12 in Appendix D. 

5.2.9. Abnormal Accelerometer Readings 

This ICM considers two causes of abnormal accelerometer readings in cases where 

the robot’s performance has been degraded. First, the robot could be walking over a 

steep slope that prevents the robot from approaching the light source. On the other 

hand, there could be a mass added to the robot or a shift in the location of the robot’s 

battery or other cargo. This could unbalance the robot and prevent it from walking. 

The former disturbance can be compensated by returning the robot to the location 

where the terrain’s slope was normal and taking a different path from there towards 

Figure 5.10. Broken Leg ICM. 

Figure 5.11. Lights Off ICM. 
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the light source. The compensation of the latter disturbance can be achieved by 

tilting the robot in order to equalise its leg tip force sensor readings. This 

compensation approach is represented by the diagram in Fig. 5.12 

5.3. Compensatory Measures in the Identification of Detrimental 

Disturbance Sources 

Chapter 4 introduced techniques for the identification of detrimental disturbance 

sources. Once these methods have been applied, a hierarchical list of possible 

abnormal situation causes is generated. However, the system can only ensure that the 

source of an anomaly has been found once the associated compensatory actions have 

been executed successfully. Consequently, if this compensatory measure is able to 

restore the robot’s normal performance, it means that the abnormal situation source 

was correctly determined. If this is not the case, there are two possible options. 

 

1. The detrimental disturbance source is not on top of the hierarchical list of possible 

abnormal situation causes. 

2. The detrimental disturbance source is on top of the hierarchical list of possible 

abnormal situation causes, but the associated compensatory measure was unable 

to restore the normal robot’s performance. 

 

Figure 5.12. Steep Slope and Shifted Robot Cargo ICMs. 
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Initially, the system assumes that the first alternative will correct the problem. 

Consequently, if compensatory actions associated with the first detrimental 

disturbance source on the hierarchical list fail, then the robot executes compensatory 

measures for the second possible detrimental disturbance on the list. This process 

continues until the disturbance is compensated or there are no more elements on the 

list of detrimental disturbance source candidates. This is illustrated by Fig. 5.13. 

 

If the second alternative is true, it means that the method has been unable to 

compensate the abnormal situation. In this case, the system can recourse to closest 

ICM compensation. If this also fails, then compensatory measure can be found by 

using one of the methods discussed in sections 5.4 and 5.5.  

5.4. Autonomously Generated Compensatory Measures 

Although biological innate compensatory measures cover a broad range of 

detrimental disturbances, they do not address every possible situation a living 

creature may find during its life. In general, they fail to compensate relatively new 

Figure 5.13. Flow Diagram of Compensatory Measure Selection 
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detrimental situations or anomalies that affect only a few members of the species. 

For instance, innate compensatory measures (ICMs) may be unable to compensate 

abnormal situations that do not belong to a species’ habitat. That is the reason why 

living creatures may die when they are brought into different environments. ICMs 

may also be quite inefficient when compensating abnormal situations generated by 

accidents or birth defects. 

 

In order to compensate those detrimental disturbances not covered by ICMs, robots 

must be provided with techniques for the autonomous generation of compensatory 

measures. The method presented in this thesis uses available information about the 

robot’s status, robot’s anatomy and the *ASC  describing the abnormal situation. 

These data together with a set of significant actions are utilised for the autonomous 

generation of compensatory actions. 

 

The theory behind the autonomous generation of compensatory measures will be 

introduced next. However, these techniques were not implemented into the 

experimental robot as it was considered to be beyond the scope of the thesis. 

Therefore, they will be proposed as future work. 

5.4.1. Robot’s Moving Part Selection 

In order to determine which of the robot’s moving parts will execute the 

compensatory measures different criteria may be utilised. The following methods 

have been considered in this research. 

 

 Hierarchical weight list 

Those of the robot’s moving parts that are physically closer to the sensors providing 

abnormal readings, can be determined and labelled by means of Eq. 4.14. As a result, 

each moving part is assigned a weight. These weights are directly proportional to the 

physical distance between the robot’s moving parts and the sensors providing 

abnormal readings. Therefore, a hierarchical weight list can be generated by ordering 
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the robot’s moving parts according to their associated weight. This list can be utilised 

for the generation of the robot’s moving part selection sequences (RMPSSs). Eq. 5.5 

shows a simple RMPSS where the robot’s moving parts are selected individually 

according to their position in the weight list.  

 
  1 1 2, , , Lseq M M M   (5.5) 

 

Where 

 1 2, , , LM M M  are the robot’s L  moving parts ordered from the greatest to the 

least associated weight.  

 

When selecting a robot’s moving parts according to 1seq , only one part executes a 

compensatory action at any particular time. The selection process continues until the 

disturbance has been compensated, all of the robot’s moving parts have executed 

their full range of compensatory measures without compensating the disturbance, or 

a threshold has been exceeded. This threshold  WT  can be calculated by means of 

Eq. 5.6. 

 

 1WT M   (5.6) 

 

Where 

 0 1   is the normalised percentage of 1M . 

 1M  is the greatest weight associated with the robot’s moving parts.  

 

If WT  is used during the robot’s moving part selection process, only parts whose 

associated weight is greater than WT  execute the compensatory measures. 

 

The robot’s moving parts could also execute compensatory measures in pairs. 2seq  

in Eq. 5.7 is a sequence of this type.  
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       2 1 2 2 3 1, , , , , ,L Lseq M M M M M M   (5.7) 

 

On the other hand, 3seq  in Eq. 5.8 shows a different association of the selected 

robot’s moving part pairs. 

 

       3 1 2 3 4 1, , , , , ,L Lseq M M M M M M   (5.8) 

 

In general, different associations and numbers of elements considered in each 

combination of the robot’s moving parts can be used. These sequences can be 

generated by using three parameters, as represented in Eq. 5.9. 

 

  , ,Wseq N D L   (5.9) 

 

Where 

 N  is the number of selected robot moving parts in each combination. 

 D  is the distance between the maximum element indexes of two adjacent 

combinations. 

 L  is the number of robot moving parts. 

 

Examples of the notation used in Eq. 5.9 are provided in Table 5.7. 

 

Table 5.7. Notation Example of Robot Moving Part Selection Sequences (Hierarchical Weight List). 

N   D   L   Wseq   

1 1 7  1 2 3 4 5 6 7, , , , , ,M M M M M M M  

2 1 6           1 2 2 3 3 4 4 5 5 6, , , , , , , , ,M M M M M M M M M M  

2 2 8         1 2 3 4 5 6 7 8, , , , , , ,M M M M M M M M  

3 1 6         1 2 3 2 3 4 3 4 5 4 5 6, , , , , , , , , , ,M M M M M M M M M M M M  

3 3 12         1 2 3 4 5 6 7 8 9 10 11 12, , , , , , , , , , ,M M M M M M M M M M M M  

4 2 8       1 2 3 4 3 4 5 6 5 6 7 8, , , , , , , , , , ,M M M M M M M M M M M M  

4 4 12       1 2 3 4 5 6 7 8 9 10 11 12, , , , , , , , , , ,M M M M M M M M M M M M  
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Therefore, by modifying N , D   and  , the system is able to autonomously generate 

a set of RMPSSs.  

 

 Hierarchical weight list and the robot’s anatomy 

Information about the robot’s anatomy can be used in combination with the 

hierarchical weight list in order to determine which of the robot’s moving parts will 

execute the compensatory measures. This kind of RMPSS is represented by means of 

expression 5.10. 

 

 
   

 

1 11 12 1 1 2 21 22 2 2

1 2

, , , , , , , , , ,

, , , , ,
D D

WA

L L L LDL

M M M M M M M M
seq

M M M M

  
  
  

  (5.10) 

 

Where 

  1 2, , ,i i iDiM M M  is an ordered list of the Di  closest robot moving parts to iM . 

 Di  is the number of the robot’s moving parts whose distance from iM  is less than 

or equal to a threshold value  WAT .  

 

The WAT  value establishes the maximum distance that two moving parts can have and 

still be associated together. This value depends on the specific anatomy of each 

robot. 

 

RMPSSs that consider both hierarchical weight lists and the robot’s anatomy can be 

generated by using 1L  parameters. This is represented by means of expression  

5.11. 

 
  1 2, , , ,WA Lseq D D D L   (5.11) 

 

If we consider that the 1 2, , , LD D D  parameters are calculated by the system as a 

function of WAT , then WAseq  can be represented by means the following expression:  
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  ,WA WAseq T L   (5.12) 

 

Examples of the notation used in Eq. 5.11 are provided in Table 5.8. 

 
Table 5.8. Notation Example of Robot Moving Part Selection Sequences (Hierarchical Weight List 

and Robot’s Anatomy). 

1 2, , , LD D D
 L   WAseq

 
1,2,3   3       1 11 2 21 22 3 31 32 33, , , , , , , ,M M M M M M M M M  

2,2,2  3       1 11 12 2 21 22 3 31 32, , , , , , , ,M M M M M M M M M  

1,1,1,1,1  5           1 11 2 21 3 31 4 41 5 51, , , , , , , , ,M M M M M M M M M M  

5,2  2     1 11 12 13 14 15 2 21 22, , , , , , , ,M M M M M M M M M  

3,2,1,0  4       1 11 12 13 2 21 22 3 31 4, , , , , , , , ,M M M M M M M M M M  

1,0,3,0,2,0  6       1 11 2 3 31 32 33 4 5 51 52 6, , , , , , , , , , ,M M M M M M M M M M M M  

0,0,3,3,1  5       1 2 3 31 32 33 4 41 42 43 5 51, , , , , , , , , , ,M M M M M M M M M M M M  

 

The WT  threshold introduced in the hierarchical weight list can also be used in this 

selection method. As a result, only iM  parts whose corresponding weight is greater 

than WT , and their associated close parts  1 2, , ,i i iDiM M M , execute the 

compensatory measures. The modification of WT  and WAT  parameters allows the 

system to autonomously generate new RMPSSs.  

5.4.2. Autonomous Action Generation 

Robotic actions are defined by a series of parameters. For instance, a robot’s tasks 

are commonly executed by motors whose angle of rotation and speed can be 

modified. The entire repertoire of robot actions can be controlled by changing these 

values.  At the lowest control level, the compensation method proposed in this 

subsection generates different combinations of parameter values. Then, the actions 

associated with these parameters are executed and their effects are monitored. 

Initially, the only restriction imposed on the generated actions is that they must not 

damage the robot. Therefore, movements are constrained by the robot’s workspace 

and “painful” experiences are avoided. 
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If a robot’s mission is divided into a number of steps, then the robot’s moving part 

parameter values can be used for describing the robot’s action status at each step. 

This can be represented by means of the parameter matrix tP  in expression 5.13. 

 

 

11 12 1 1

21 22 2 2

1 2

t t t

F

t t t

F

t

t t t

L L LFL

p p p

p p p
P

p p p

 
 
 
 
 
  

  (5.13) 

 

Where 
 t

xyp  is the value of the y-th parameter associated with the robot’s moving part xM

at the instant t . 

 L  is the number of the robot’s moving parts. 

 Fx  is the number of parameters associated with the robot’s moving part xM . 

Because the Fx value varies for different values of x , not all of the columns in tP  

have the same number of columns. Therefore, those columns with fewer elements 

are filled with a number that is forbidden for the rest of the tP  elements. 

In order to generate different actions, the elements of the parameter matrix must be 

changed. These changes can be generated by applying increments to each parameter. 

The increments used can be different for each parameter, and can be expressed by 

means of the step size matrix in 5.14. 

  

 

11 12 1 1

21 22 2 2

1 2

F

F

p

L L LFL
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  (5.14) 

In addition, the range of each parameter can be represented by means of the range 

matrix in expression 5.15. 
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  (5.15) 

A robotic action can be defined as the series of parameter matrices corresponding to 

that action. This is expressed by means of Eq. 5.16. 

 
  1 2, , , maction P P P   (5.16) 

Here, m  is the minimum number of parameter matrices required for describing the 

action. As the m value is incremented, it is possible to represent more complex 

actions by means of expression 5.16. 

 

Therefore, the full range of robotic actions can be generated by means of the 

following algorithm. 

 

1. Set 1m    

2. Initialise 1 2, , , mP P P . 

3. Set 1x  , 1y   and 1z  . 

4. If the 1 2, , , mP P P action is harmless for the robot, then execute the action. 

5. If abnormal readings were compensated, then stop. 

6. Increment z
xyp  by xyS .  

7. If z
xy xyp R  then initialise z

xyp  and increment z  by 1. Otherwise, go to step 3. 

8. If z m  then set 1z   and increment y  by 1. 

9. If y Fx  then set 1y   and increment x by 1. 

10. If x L  then increment m  by 1 and go to step 2.  

11. Go to step 6. 

 

A maximum iteration time can be assigned to the previous algorithm in order to stop 

it when no compensatory measure is found. 
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5.4.3. Compensation with Malleable Actions 

An alternative to the method introduced in subsection 5.4.2 is to provide robots with 

a set of malleable actions and parameters. The kind of action to be generated is very 

dependent on the particular robot executing it. However, the same restriction 

imposed on the generated actions applies here. That is to say, executed actions must 

be non-damaging for the robot.  

 

Malleable actions can be distinguished by the number of moving parts executing the 

actions and the associated parameters. For instance, a malleable action could involve 

a leg of a walking robot and the associated parameters could be the angles of the leg 

servo motors. Another malleable action could involve a circular movement of the 

leg, and the associated parameters could be the radius and the  ,x y  centre 

coordinates of the circle described by the leg. Higher-level malleable actions could 

involve robot locomotion. For instance, a malleable action could be robot walking 

and the associated parameters could be direction of locomotion, type of gait, and the 

height reached by the legs during their swing phase.  

 

When using this technique, robots can modify the parameters associated with 

malleable actions in order to generate a larger action set. Then, by executing these 

tasks, the robots could eventually compensate a detrimental disturbance.  In order to 

determine if the abnormal situation has been compensated, robots should monitor the 

effects of the executed actions on the abnormal robot sensor readings.  

 

Malleable actions can be described by expressions 5.13 to 5.16 and generated by the 

algorithm introduced in the previous subsection. However, in this case not all of the 

robot’s moving parts are necessarily utilised and the action parameters have a 

different interpretation. In addition, as malleable actions are generated by means of a 

constant number of steps, the m  value in the algorithm is not incremented.  
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The use of malleable actions seems to correspond with the instinctive behaviour of 

biological organisms. Here, innate actions are adapted and utilised in the 

compensation of abnormal situations. For instance, as Konrad Lorenz observed 

[131], the jackdaw has an instinctive nest-building behaviour that consists of 

selecting twigs (malleable action) and incorporating them into a foundation. Initially 

the bird selects any kind of twigs and, as a result of the selection of weak twigs, its 

nest collapses (disturbance). Then, the jackdaw tries different types of twigs until it 

discovers a suitable type, one that lodges firmly and does not break. From that 

moment on, the bird selects only that type of twig for the construction of its nest 

(compensatory measure).  

5.5. Last Resort Measures 

5.5.1. Monitoring Sleep Mode 

When other compensatory measures have been unable to compensate a detrimental 

disturbance, robots can still take a nap and wait for better times. During the nap 

period, a robot enters into sleep mode. As a result, the robot’s energy consumption is 

minimised and a periodic evaluation of the detrimental disturbance is established. 

For instance, as was mentioned before, the mission of the experimental robot used in 

this research is to localise a single light source. Therefore, when the robot is in 

complete darkness a detrimental disturbance is detected. The robot initially assumes 

that something is covering its light sensors. However, if after a reasonable period 

none of the compensation methods previously discussed in this chapter work, the 

robot stops trying. Instead of wasting energy with random action sequences, the 

robot takes a compensatory nap. The robot enters into sleep mode in order to 

minimise its energy consumption and evaluates its light sensors regularly. Then, 

when a light source is detected, the robot still has energy to continue making 

progress in its mission. 
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5.5.2. SOS 

This is a last resort measure that is only used when all of the previous compensatory 

methods have failed. The SOS technique simply consists of sending a distress signal. 

As a part of this signal, relevant information should be transmitted. For instance, a 

robot could send its current location and an *ASC  indicating its status.  

5.6. Learned Compensating Measures 

Autonomously generated actions that are able to compensate a detrimental 

disturbance are included into the ICM set. Therefore, these learned behaviours can be 

used in possible future occurrences of the abnormal situation. As a result, more 

experienced robots will be able to compensate more quickly to a broader range of 

anomalies. Although the theory behind learned compensating measures is presented 

next, these methods have not been incorporated into the experimental robot. 

 

In order to include a learned compensatory measure (LCM) into the ICM set, this 

must be autonomously labelled by the robot. The label structure associated with 

autonomously generated compensatory measures is shown in Table 5.9. 

 

Table 5.9. LCM Label. 

Status Disturbances Components Effects Duration Requirements 

2 1 0 0 t r 
 ↓ 

 

  ↓ 
1
ASCT   *1 *1

1  to nASC ASC    1 1
1 4 to B BRAL RAL   

    2 2
1 4 to B BRAL RAL  

 
  ⋮ 

  ⋮ 

    ⋮ 

    1 4 to R R

B BRAL RAL  

 

The values assigned by the robot to each label category are explained as follows. 
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 Status: Learned compensatory measures are generated once autonomously 

generated actions have been able to compensate a disturbance. Only then, the 

robot detects that a suitable compensatory measure has been generated and the 

system begins the labelling of the compensatory measure. Because the 

compensatory measure will be in execution when labelled, the label status value 

is 2. 

 

 Disturbances: In this work, it will be assumed that compensatory measures 

associated with faulty components will be included in the original ICM set. 

Hence, LCM will be classified as disturbance-oriented. Initially, the LCM will be 

able to compensate only one disturbance. Consequently, the disturbance value in 

the label is set to 1 and the ASC associated with the compensated disturbance is 

attached to the label. The ASCT  threshold value is set to a predetermined initial 

value. An alternative is to use the mean value of ASCT  thresholds corresponding 

to other disturbances in the ICM set. 

 

 Components: the value of this category is set to 0 because it is assumed that the 

LCM is disturbance-oriented. 

 

 Effects: Because autonomously generated compensatory measures must not 

damage the robot, all of them have reversible effects. Hence, the value of this 

category is set to 0. 

 

 Duration: LCMs are intended for compensating abnormal situations generated in 

a robot’s environment. In order to check if the anomaly is no longer affecting the 

robot’s performance, the LCM execution should be interrupted from time to time. 

Therefore, if the robot’s performance is degraded when the LCM is interrupted, 

the system executes the LCM for a new period. Otherwise, the status LCM label 

category is set to 1 and the LCM is not executed until the disturbance arises 
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again. Because the LCM is temporary, the duration category in the LCM label is 

set to t (number of seconds the LCM should be in execution during each period). 

 

 Requirements: This category is completed with the anatomy label corresponding 

to each moving part involved in the LCM execution. In addition, the r value in 

the category is set to the number of participating moving parts. 

5.7. Overview of Identification and Compensation Methods  

The flow diagram in Fig. 5.14 illustrates the detection, identification and 

compensation of the detrimental disturbances introduced in section 4.4. In that 

section, the experimental robot was exposed to two abnormal situations: the 

Figure 5.14. Flow Diagram of Detrimental Condition Detection and Compensation of Disconnected 
PWM Signal from Servo Motor and Robot Walking over Soft Terrain. 
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disconnection of the PWM signal of a leg servo motor and walking onto a sponge 

that simulated soft terrain.  

 

The blue blocks of the flow diagram show the steps described in chapter 4 for the 

detection and identification of the abnormal situations. First, the robot performance 

was monitored. Then, an abnormal situation was detected due to a lack of progress in 

the robot’s mission. In the experiment where the PWM servo control signal was 

disconnected, the affected leg was unable to move to the position required by the 

robot’s gait. This produced problems due to lack of stability and interference 

between the dysfunctional leg and the fully operational legs. In the case where the 

robot walked onto soft terrain, the two legs that step onto the sponge were unable to 

move during their swing phase. As a result, those legs acted like a pivot, which 

prevented the robot’s straight line locomotion. In both experiments, the robot was 

unable to consistently walk towards the light source and the corresponding abnormal 

situation was detected as a lack of progress in the robot’s mission. 

 

After an anomaly was detected, this was classified as the centroid of the sensors 

readings provided by the robot during the detection of the detrimental disturbance. 

Then, the robot used information about the robot’s anatomy in order to generate a 

hierarchical list of possible sources of the detrimental disturbance. These theories 

were corroborated or rejected by means of a series of research actions. In the 

experiment described in subsection 4.4.1, the system identified the faulty servo 

motor with the first research action on the list. By contrast, a possible source of the 

disturbance affecting the experimental robot in subsection 4.4.2 was identified by the 

second research action on the list.  

 

Both detrimental disturbances described in section 4.4 were considered as being in 

the Innate Compensatory Measure Set. Therefore, no autonomously generated 

compensatory measures were required. The system used the information provided by 

research actions and cumulative abnormality labels in order to find a suitable 
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compensatory measure. In the case where the PWM servo motor control signal was 

disconnected, the system identified the disconnected servo motor as a possible source 

of the disturbance. Therefore, the component-oriented compensatory measure 

described in subsection 5.2.4 was executed. After executing the corresponding 

compensatory measure, the robot performance was evaluated. The progress in the 

robot mission was satisfactorily improved. Hence, the system assumed that the 

abnormal situation was compensated.  

 

In the experiment where the robot walks over soft terrain, the first theory about the 

possible source of the disturbance was servo 1 of leg 3. In this case, the system 

searched for suitable compensatory measures corresponding to this robot component. 

However, after executing the corresponding component-oriented compensatory 

measure the robot’s performance was not improved. In this case, the system could 

either consider a second theory about the detrimental disturbance source or verify if 

the abnormal situation was generated by conditions in the robot’s environment. 

Because the robot moving part weight associated with servo 1 of leg 3 was 

considerable larger than the weights corresponding to other parts of the robot, the 

system opted for the latter. Therefore, the cumulative abnormality label was used for 

searching for corresponding disturbance-oriented compensatory measures. This time 

a suitable compensatory measure (described in subsection 5.2.2) was found and the 

robot performance was improved. As a result, the system assumed that the abnormal 

situation source was correctly identified.   

5.8. Summary 

The aim of this chapter has been the presentation of techniques that allow robots to 

emulate biological capabilities such as the use of instinctive and learned behaviour in 

the compensation of detrimental disturbances. Chapter 5 has presented a number of 

self-compensation techniques for robots experiencing detrimental disturbances.  
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Firstly, biological inspired innate compensatory measures (ICMs) were discussed in 

section 5.1. This method utilises an ICM set, where each element is represented by 

means of a label. The ICM set is part of the initial information provided to robots and 

consists of a series of measures intended to compensate expected disturbances that 

robots may experience. The ICM technique matches abnormal situation centroids 

(ASC), introduced in chapter 4, with their corresponding compensatory measures in 

the ICM set. In addition, by labelling components such as sensors, moving parts and 

pieces of the robot’s structure, this method was able to associate a robot’s failures 

with their corresponding ICM. In cases where no suitable ICMs were found, the 

closest ICM compensation technique was utilised. This method searched for ICMs 

that are not intended for compensating exactly the same disturbance a robot may be 

currently experiencing, but that were designed for similar situations. 

 

Examples of ICMs implemented in the experimental robot used in this investigation 

were presented in section 5.2. Here, external links with videos of the experimental 

robot performing some of the compensatory measure were provided. Following this, 

the identification of detrimental disturbances presented in chapter 4 was completed in 

section 5.3. Here, the theories developed by a robot about the possible source of a 

detrimental disturbance were rejected or corroborated.  The robot executed ICMs 

corresponding to each disturbance source candidate. As a result, when the 

disturbance was compensated, the robot assumed that the correct detrimental 

disturbance source was found. 

 

Section 5.4 introduced a method for the autonomous selection of moving parts and 

generation of actions that can eventually compensate detrimental disturbances. A 

general method of action generation was presented first. Then, a more robot-related 

technique that could accelerate the search for suitable compensatory measures was 

proposed. Techniques discussed in this section were not implemented in the 

experimental robot. This implementation will be proposed as future work.  
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Section 5.5 provided robots with last resort measures. These can be used when the 

previous methods introduced in this chapter are not able to compensate a particular 

detrimental disturbance. Techniques discussed in this section were not implemented 

in the experimental robot. This implementation will be proposed as future work. 

 

Finally, section 5.6 presented methods for the autonomous generation of 

compensatory measures. These techniques intend to emulate capabilities of 

biological creatures, which are able to modify their instinctive behaviour as a result 

of a rewarding experience or punishment. This new behaviour is also referred to as 

learned behaviour.  



 
 

 
 

Chapter 6  

Conclusions 

This chapter summarises the main findings of this investigation and provides 

recommendations for further work. 

6.1. Summary of Work 

The contributions of this research can be classified into the areas of self-diagnosis, 

self-compensation and mechatronics in robotics. Findings related to each of these 

areas are discussed as follows. 

6.1.1. Self-Diagnosis in Robotics 

This research has developed a method where abnormal situations are detected either 

as a lack of progress in the robot’s mission or pain. The latter is identified as a large 

difference between expected and current sensor readings, which can often generate 

robot malfunction if not promptly compensated. In order to detect degraded robot 

performance, a quantitative measure of the robot’s progress is required. Therefore, 

the simplicity of this technique strongly depends on how difficult it is to calculate 

this value, which is related to the type of robot mission and sensors. When applied to 

the experimental robot used in this research, abnormal situations were consistently 

detected in real-time. 

 

Abnormal situations were classified by using a predetermined number of samples 

consisting of all of the sensorial information provided by the robot. The centroid of 
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these sensor readings was then utilised for labelling the corresponding abnormal 

situation. This method has been demonstrated to be effective in the classification of 

anomalies evidenced by either a single sensor or a combination. Although this 

technique has been applied to a walking robot, as most (if not all) robots are 

equipped with sensors, it can be used for a wide range of robots.  

 

In order to determine the source of a detrimental disturbance in a robot, information 

regarding the robot’s anatomy and a set of research actions have been utilised. The 

robot’s anatomy provides information about which of a robot’s moving parts are 

closer to the sensors evidencing an abnormal situation. These components are more 

likely to be faulty or provide extra information about the source of the anomaly. 

Therefore, these components are the first to be used for executing research actions. 

The set of research actions must be specifically designed for each kind of robot in 

order to help identify faulty components. This is analogous to instinctive behaviour 

being specific for each individual species. Once research actions are executed and 

their effects monitored, unexpected sensor readings can be associated with faulty 

components or a feature of the robot’s environment that is affecting that component. 

In general, it is simpler to identify faulty components than unexpected features of the 

robot’s environment. This is especially true when the effects of the anomaly are 

spread among the robot’s sensors. When no faulty robot components are found, the 

system assumes that the abnormal situation was generated via the robot’s 

environment. Assumptions or the robot’s internally generated theories about the 

source of a detrimental disturbance are corroborated or rejected after the 

corresponding compensatory measure is executed. Therefore, if the robot’s 

performance is improved after this compensatory measure has been executed; the 

system considers that the anomaly source was correctly determined. Otherwise, the 

next moving part close to the sensors providing abnormal readings is selected to 

perform the corresponding research actions and a new iteration of the identification-

compensation process is executed. 
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The self-diagnosis method proposed in this research provided correct identification 

of a series of faults induced in the experimental robot. Although no other kinds of 

robots were utilised during the testing stage, it is expected that these results can be 

extrapolated to most robot types. 

 

Experiments with anomalies in the robot’s hardware showed that faults with isolated 

effects detected by sensors directly linked to the fault were normally identified 

correctly by the self-diagnosis methods on the first attempt. As these effects 

propagated to other sensors, the system needed more attempts before a correct 

identification was achieved. This was especially true when the effects on sensors 

directly linked to the fault were smaller than for other sensors. On the other hand, 

there were cases when a fault did not produce any abnormal sensor reading. 

Although, this situation could be tackled by improving the methods for the 

calculation of expected sensor readings, in some cases it may be necessary to 

increase the number and/or type of sensors in the robot. However, the effects of 

faults among the increased number of robot sensors could propagate and increase the 

complexity of arriving at a correct diagnosis in certain situations.  

 

The experiments that were conducted with anomalies in the robot’s environment 

showed the good performance of the self-diagnosis methods when identifying 

situations that generated abnormal sensor readings. However, here the system 

struggled to identify those situations where abnormal sensor readings were not 

generated. This occurred, for instance, while the robot was air walking or when one 

of the two light sensors facing the light source was partially covered. 

 

The self-diagnosis methods also showed a good identification rate in experiments 

where both anomalies in the robot’s hardware and in the robot’s environments were 

considered. Best results were achieved in those cases where the ASC corresponding 

to the target abnormal situation was previously incorporated into the robot’s database 

of abnormalities. In some cases, the robot was still able to identify the abnormal 
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situation correctly at the first attempt when this information was not available. 

However, in other cases with unknown target ASC the performance of the system 

dropped drastically. For instance, the robot had to perform more than 54 attempts of 

diagnosis before identifying correctly the abnormal situation when legs 1 and 6 were 

held, in experiment 1 of Table 4.70. 

 

In general, the rate of first attempt identification of abnormal situations in the robot’s 

environment will depend on the number and types of the ASCs located in the robot’s 

database of abnormalities. Discrepancy values (Euclidean distance between the 

centroid of an abnormal situation experienced by the robot and the centroid of 

abnormal situations incorporated into the robot’s database of anomalies) are usually 

larger for linearly independent ASCs. Therefore, better diagnosis is performed for 

databases incorporating this type of ASCs. In the presence of linearly dependent 

ASCs, the classification of the abnormal situation will depend more on the 

magnitude of the ASC components. 

 

As mentioned before, self-diagnosis methods proposed in this thesis require the 

target robot to autonomously assess its performance. In addition, they require 

techniques for the calculation of expected values for all of the types of sensors on the 

robot. However, this information may be difficult or impossible to obtain in certain 

robotic systems or missions. Therefore, a limitation of the proposed self-diagnosis 

methods is that their application is constrained to those robots that are able to provide 

this information. However, in spite of this limitation, there are many robotic systems 

where the proposed methods are applicable, which is an advantage. In addition, the 

sensitivity of each sensor on the target robot can be regulated by a parameter of the 

classification algorithm. This is an advantage that allows the system to work with 

different sensor resolutions and better adjust the self-diagnosis methods to different 

robotic systems and environments. 
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A disadvantage of the self-diagnosis methods proposed in this thesis is the time they 

require for the identification of abnormal situations generated in the robot’s 

environment when a large number of abnormal sensor readings are generated. In 

these cases, the robot generates many theories about possible sources of the anomaly. 

Then, the corresponding research actions must be executed and these theories are 

rejected one by one. Only once the possibility of a fault in the robot’s hardware is 

discarded, does the system turn to the identification of abnormal situations in the 

robot’s environments.  

 

Another disadvantage of the proposed methods is that robots utilising them may 

require more time to complete their mission. This is because these robots must be 

constantly monitoring their performance and providing all of their available sensorial 

information in order to communicate their status. In addition, depending on the 

number of anomalies these robots are expected to detect, they may be provided with 

more sensors. These sensors consume more energy, increase the robot complexity 

and introduce more components prone to failure. 

6.1.2. Self-Compensation in Robotics 

A number of techniques for the compensation of detrimental disturbances faced by 

robots have been developed during this investigation. Firstly, a group of 

compensatory measures designed into robots has been considered. This emulates the 

instinctive behaviour that living creatures have since they were born. In the artificial 

case, these compensatory measures are programmed by the robot designer.  

 

This thesis has proposed a labelling system that allows matching abnormal situations 

with their corresponding compensatory measures. The centroid of the abnormal 

situation that the compensatory measure is intended to compensate is included into 

the label. Then, the Euclidean distance between the centroid of the current 

detrimental disturbance experienced by the robot and the centroids included into the 

compensatory measure labels, is used for finding a suitable compensatory measure. 



Chapter 6. Conclusions 

190 

 

Here, a threshold value determining the maximum allowed distance between 

corresponding pairs of disturbance-compensatory measure is utilised. Matching 

errors may arise due to variations in the centroid associated with different 

occurrences of an abnormal situation, or an inappropriate initial threshold value. The 

method proposed in this research adjusts both parameters. As a result, more accurate 

centroid and threshold values are obtained as the robot accumulates more experience 

with a particular detrimental disturbance. Hence, it is recommended to expose the 

robot a number of times to the same detrimental disturbance before including these 

parameters into the associated compensatory measure label.  

 

This work has also investigated techniques for the association of compensatory 

measures and a robot’s faulty components. These algorithms use a labelling system 

for the robot’s parts. Then, corresponding compensatory measures include this 

information into their own labels. Therefore, once a faulty component is detected, the 

system searches for the minimum Euclidean distance between the faulty component 

label and target components in compensatory measure labels.  

 

The compensation of every single abnormal situation affecting every single type of 

robot is far beyond the scope of this research. However, this thesis has provided 

several examples of detrimental disturbances induced in the experimental robot and 

their corresponding compensatory measures. This work also presents techniques for 

the automatic generation of compensatory actions. Although these techniques were 

proposed, they were not implemented into the experimental robot. Because these 

methods require more processing time and the robot’s energy, they should only be 

used when the previously discussed techniques are unable to compensate an 

abnormal situation.  

 

Although it was not incorporated into the real robot, the proposed methods integrate 

autonomously generated actions, which have been able to compensate an abnormal 
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situation, into the robot’s compensatory measure database. This type of 

compensatory measure is part of the robot’s learned behaviour.  

 

Two last resort measures for robots that have been unable to compensate a 

detrimental disturbance have been included into this research. In the first technique, 

the robot enters into a monitoring sleep mode, saving energy and waiting until the 

abnormal situation rectifies itself. The second measure consists of transmitting a 

distress signal with information about the robot’s position and status.  

 

An advantage of the self-compensation methods proposed in this thesis is that in 

theory they can be applied to different robotic systems performing different types of 

missions. Although compensatory measures built into the target robot must be 

adjusted to each specific case, the general methods proposed in this thesis are not 

constrained to the experimental robot utilised in this research. In addition, this thesis 

has proposed self-compensation methods for different degrees of information about 

possible anomalies found in a robotic mission. Consequently, the target robot may be 

provided with a large number of innate compensatory measures for those missions 

where the kinds of anomalies the robot may experience are known. On the other 

hand, autonomously generated compensatory measures could be used when there is 

little information about the environment where the robot will perform its mission. 

 

A disadvantage of the proposed self-compensation methods is that they require 

computer memory in order to create a database of compensatory measures. This 

database starts with the innate compensatory measures provided by the robot 

designer and it may be later extended with autonomously generated compensatory 

measures. As this database grows, the time required for finding suitable 

compensatory measures is increased. However, this may only be an issue for 

complex systems which are required to compensate a very large number of 

anomalies. 
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6.1.3. Mechatronics 

This research has lead to the development of an opto-mechanical leg tip force sensor. 

This sensor measures a voltage derived from an opto-interrupter, which is related to 

pressure or traction applied to the leg's tip. In comparison with the other type of force 

sensor present in the robot, this opto-mechanical sensor is more sensitive and 

accurate. Previously in this research, the force applied by each leg was determined by 

combining information about the applied force and the rotation angle of the leg's 

servo motors. The leg tip force sensor is more convenient because this information 

can be directly calculated from the sensor output and the sensor requires less wiring 

and fewer microcontroller inputs. 

 

This investigation has also led to the development of a leg release mechanism, which 

is used in extreme circumstances as a last resort corrective action. For instance, a 

broken or faulty leg could interfere with or prevent a stable gait, or a leg could be 

entangled in some feature of the robot’s environment. In these cases, the leg release 

mechanism allows the robot to continue making progress in its mission. The 

compactness of this novel mechanism allows its incorporation into highly integrated 

robotic systems. Furthermore, because the operation of the leg release mechanism 

involves only a few simple components, it may be more reliable than complicated 

systems including a large number of failure-prone elements.  

 

A disadvantage of the proposed leg release mechanism is that its activation requires 

more energy that the R-LEGAM system. The proposed system heats up a resistor, 

which must dissipate heat during a certain period of time (around 3 minutes average) 

in order to melt the alloy. On the other hand, R-LEGAM only uses energy for 

rotating a servo motor so its activation is more energy efficient. However, this 

system utilises more components which add more weight and take up more space on 

the robot. This means that the R-LEGAM mechanism utilises more energy for its 

transportation than the proposed method. 
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6.2. Further Research 

Although a number of methods targeting self-diagnosis and self-compensation in 

robotics have been proposed in this work, it is clear that more research must be 

conducted in these areas before robots can perform their missions as effectively as 

living creatures in unstructured environments.  

 

The techniques proposed in this thesis can be further developed by implementing 

them in a wider range of robots. In these cases, the robot innate behaviour must be 

modified according to the anatomy and kind of mission performed by the specific 

robot. Moreover, the range of abnormal situations that robots are able to compensate 

can be extended by increasing the number of robot research actions and innate 

compensatory measures. This range can also be extended by exposing robots to a 

wider range of abnormal situations and allowing them to generate and learn suitable 

compensatory measures. In addition, the autonomous generation of compensatory 

measures can be improved by increasing the number of malleable actions 

incorporated into the robot. This method can be further developed, so parameters 

associated with every single task a robot is able to perform can be modified and used 

in the generation of malleable actions. 

 

Self-diagnosis could be accelerated by proposing a better method that allows to 

distinguish between intrinsic and extrinsic robot anomalies. Currently with the 

proposed methods, the robot must execute research actions in order to test if every 

abnormal sensor reading is generated by a hardware fault. In some cases, when a 

large number of abnormal readings are generated by an anomaly in the robot’s 

environment, this may be very time and energy consuming and is clearly not an 

optimal solution. 

 

Methods proposed in section 5.4: “Autonomously Generated Compensatory 

Measures: and section 5.6: “Learned Compensating Measures” were not 
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implemented in a real robot. Experimental validation of these techniques is proposed 

as future work. 

 

Finally, additional robotic subsystems can be investigated in order to extend robot 

capabilities to identify and compensate abnormal situations. The leg tip force sensor 

and the leg release mechanism presented in this thesis are examples of such systems.  

6.3. Closure 

This investigation has developed and implemented a number of biologically inspired 

methods for the autonomous identification and classification of disturbances that 

have negative effects on a robot’s performance (self-diagnosis), and the autonomous 

selection and generation of suitable compensatory actions (self-compensation). 

 

The work developed in this research has reduced the gap between legged locomotion 

currently found in robots and the fully autonomous locomotion observed in living 

organisms. Moreover, it is expected that results obtained from this research will 

benefit most kinds of robots.  This is especially true when it is required to increase 

resilience to damage, extend lifespan and improve autonomy in robotic missions 

where human intervention is difficult or impossible, such as in extra-terrestrial 

exploration or deployment in other remote hostile environments. 



 
 

 
 

Appendix A  

Robot Kinematics 

 

This appendix presents direct and inverse kinematics equations of the experimental 

robot. The kinematic model allows us to relate the  , ,x y z  coordinates of a robot 

leg tip with the corresponding angles of the three leg servo motors, and vice versa.   

 

Appendix A is organised as follows. The direct kinematics of the robot is presented in 

section A.1. Finally, the robot’s inverse kinematics are provided in section A.2. 
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A.1. Direct Kinematics 

The direct kinematics of the experimental robot allows us to transform the rotation 

angles of a leg’s servo motors into  , ,k k kx y z  coordinates of the leg tip. Because the 

robot’s legs are mirrored on either side of the y-axis, there are slight differences in 

the calculation of the direct kinematics of legs located on different sides of this axis.  

Nevertheless, the direct kinematics of any leg of the experimental robot can be 

determined by means of Eqs. A.1 to A.4. 

 
    2 2_ 3 2_ 3_ 1sin / 4 sink k kcst d d d          (A.1) 

   0_ 1_cosk k k kx round x u cst         (A.2) 

   0_ 1_    sin   k k k ky round y cst        (A.3) 

     2 2_ 3 2_ 3_ 0_cos / 4 cosk k k k kz round d d z           (A.4) 

Where 

 k  represents the robot leg whose direct kinematics is being calculated. 

 If k is 1, 2 or 6 then 1_ k  is the rotation angle of servo 1 belonging to leg k . 

Otherwise, 1_ k  is the rotation angle of servo 1 belonging to leg k  and 

1_ 1_k k    .  

 If k is 1, 2 or 6 then 2_ k  is the rotation angle of servo 2 belonging to leg k . 

Otherwise, 2_ k  is the rotation angle of servo 2 belonging to leg k  and 

2_ 2_ .k k     

 If k is 1, 2 or 6 then 3_ k  is the rotation angle of servo 3 belonging to leg k . 

Otherwise, 3_ k  is the rotation angle of servo 3 belonging to leg k  and 

3_ 3_ .k k     

 1 20 d mm  is the distance between servo 1 and 2, which is measured as shown in 

Fig. A.1.  

 2 80 d mm  is the distance between servo 2 and 3, which is measured as shown in 

Fig. A.1.  
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 3 130 d mm  is the distance between servo 3 and the leg tip, which is measured as 

shown in Fig. A.1.  

 0_ kx  represents the x  coordinate of servo 1 in leg k . This value is shown in 

Figure A.2 and Table A.1. 

 0_ ky  represents the y  coordinate of servo 1 in leg k . This value is shown in 

Figure A.2 and Table A.1. 

 0_ kz  represents the z  coordinate of servo 1 in leg k . This value is 12 mm  for all 

of the robot’s legs. 

 
k  is used for adjusting the rotation angle of servo 1. This angle gives consistency 

to the rotation angle of servo 1 regardless of the leg distribution in the robot. For 

instance, by using this angle any of the robot’s legs will be in a horizontal position 

when the rotation angle of servo 1 is 0 rad. The 
k  angle value is shown in Table 

A.1. 

 If k is 1, 2 or 6 then 1u  . Otherwise, 1u   .  

 

 

Figure A.1. Distances Associated with the Experimental Robot Kinematics. 
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Table A.1. Values of Parameters Associated with Robot Kinematics. 
Leg  1 2 3 4 5 6 

0_  ( )Legx mm  150 75 -75 -150 -75 75 

0_  ( )Legy mm  0 127 127 0 -127 -127 

 ( )Leg rad  / 2  / 6  / 6  / 2  5 / 6  5 / 6  

A.2. Inverse Kinematics 

The inverse kinematics of the experimental robot allows us to transform the 

 , ,k k kx y z  coordinates of a leg tip into rotation angles of the corresponding leg 

servo motors. A first step towards the calculation of these angles is to find the 

 1_ 2_ 3_, ,k k k    angles from the system of equations Eqs. A.1 to A.4. After some 

algebraic manipulation of this system of equations, the following equations are 

obtained. 

Figure A.2. Parameters Associated with the Experimental Robot Kinematics. 
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A.2.1. Calculation of 1_ k .  

 
0_

1_
0_

arctan 2 k k

k k

k k

y y

x x
 

 
   

 

  (A.5) 

 

Because the servo motor angles are in the range 0 to  , the 1_ k  angle is converted 

to the first or second quadrant. 

A.2.2. Calculation of 2_ k .  

 If 0R  , 

 1 2
B R

S
A

 
   (A.6) 

 2 2
B R

S
A

 
   (A.7)  

If 2 1S  ,  

 1 arcsin / 4
2

B R
S

A


  
  

 
  (A.8) 

 2 / 4S    (A.9) 

 

 If 0R  , 

 

 1 2
B

S
A


   (A.10) 

If 1 1S    , 

 1 2 3 / 4S S      (A.11) 

If 1 1S   , 

 1 2 / 4S S     (A.12) 

 

Where 

 
2 2
1 4A K K  , 3 42B K K  , 2 2

3 1C K K   and 2 4R B AC  . 

  1 2 0_2 k kK d z z     
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2 2 2 2

3 0_ 2 3 2k kK z z d d K        

 4 2 22K d K   

After solving the equation system resulting from Eqs. A.1 to A.4, four solutions for 

2_ k  in the first four quadrants are determined. These solutions are shown in 

expression A.13. 

 

  2_ 1 1 2 2, , ,
2 2k S S S S
 

      (A.13) 

 

Because the servo motor angles are limited to the range 0 to  , 2_ k  angles outside 

this range are discarded.  

A.2.3. Calculation of 3_ k .  

After 1_ k  was calculated and possible solutions of 2_ k  determined, the obtained 

angles were used for solving for 3_ k  from the equation system. Then, the four 

solutions for 3_ k in expression A.14 were considered. 

 

  1 2 3 4
3_ 3_ 3_ 3_ 3_, , ,k k k k k       (A.14) 

Where, 
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The final  1_ 2_ 3_, ,k k k    solution was determined by considering all of the possible 

combinations of solutions in expressions A.5, A.13 and A.14. Then, the combination 

that satisfied the equations in the system was selected as the final  1_ 2_ 3_, ,k k k  

angles. 

A.2.4. Calculation of Leg Servo Motor Angles. 

The leg servo motor angles are the  1_ 2_ 3_, ,k k k    angles obtained in the previous 

subsection if k  is 1, 2 or 6. Otherwise, the leg servo motor angles are the 

 1_ 2_ 3_, ,k k k    angles calculated by means of Eqs. A.15 to A.17. 

 
 1_ 1_k k      (A.15) 

 2_ 2_k k      (A.16) 

 3_ 3_k k      (A.17) 

  

Finally, the  , ,k k kx y z  Cartesian coordinates of leg k ’s tip can be transformed into 

the  1_ 2_ 3_, ,k k k    or  1_ 2_ 3_, ,k k k    corresponding angles of the leg servo 

motors by following the procedure described in this section. 



 
 

 
 

Appendix B   

Adaptable Gait Generation for 

Autotomised Legged Robots 

 

This appendix presents an adaptable gait generation method, which allows legged 

robots to walk in a stable fashion after they have shed a number of legs. By using this 

technique, robots will be able to continue with their mission even after one or more 

legs have been damaged. The method selects and calculates the final coordinates of 

a robot’s stance and swing legs by maximising the stable mobility of the robot in the 

direction of locomotion. As a result, stable straight line locomotion in any desired 

direction can be generated. The proposed technique has been tested in a hexapod 

robot, but results can be extended to robots with any number of legs. This method 

intends to reduce the current gap between biological and robot locomotion, 

extending robot resilience to damage and improving autonomy. 

 

Appendix B is organised as follows. First of all, an adaptable gait generation method 

is presented in section B.1. Next, a method where the robot’s tilt is modified in order 

to improve the robot’s stability is proposed. This is followed by sections B.3 and B.4, 

where techniques that allow the robot to change its direction of locomotion are 

explained. Experimental results of the introduced gait generation method are then 

presented and discussed in section B.5. A summary of this appendix is provided in 

the final section. 
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B.1. Gait GenerationEquation Chapter  2 Section 1 

In general, gait generation in a robot capable of shedding its legs must be suitable for 

all possible leg configurations. Once the robot has autotomised one or more of its 

legs, it must continue walking with its remaining hardware resources. In addition, the 

gait must be flexible enough to be able to deal with complex terrain and unexpected 

obstacles. Another two major aspects that should be considered in any proposed gait 

are stability and mobility. The robot’s relative stability is ensured only if the vertical 

projection of its centre of mass on the ground plane (from now on simply referred to 

as robot´s centre of mass) is inside the convex hull formed by the vertical projection 

of the points of contact of the supporting legs on the ground plane. Therefore, 

stability can only be maintained if there are at least three legs on the ground. 

 

Initially the intact robot has six legs, which have been named as shown in Fig. B.1. 

The legs’ positions are established by using the Cartesian coordinate system located 

on the robot, with its positive z axis pointing out of the paper plane and with its 

positive y axis pointing in the direction of the front of the robot, as is also shown in 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. The Robot’s Cartesian Coordinate System and Initial Leg Configuration. 

 

 

 

 

Y 

X 
Z 

Leg 1 

Leg 2 Leg 3 

Leg 4 

Leg 5 Leg 6 

Right Middle Leg 

Right Hind Leg 

Right Front Leg 

Left Middle Leg 

Left Front Leg 

Left Hind Leg 

Front of  

the Robot 



 
Appendix B. Adaptable Gait Generation for Autotomised Legged Robots 

204 

 

the figure.  

 

Considering the case when one leg is missing, then there are 10 possible 

combinations of supporting triangles of legs that can be formed from those still 

attached to the robot. Overall, the number of possible triangles is determined by 

performing combinatorial calculations between legsn , the total number of available 

robot legs, and 3, the number of supporting legs that form the triangle. This is 

expressed by Eq. B.1. 

 

 
 

!
3! -3 !

legsn legs

3

legs

n
number of  triangles n C

n
      (B.1) 

 

In general, the set of available robot legs can be defined as  1 2, ,...,available nL l l l , 

where each l  is a number that represents the corresponding available leg. For 

instance, if  6,5,3,2availableL , in this case the value 21 l  indicates that Leg 2 is one 

of the available legs. Then, the set S  of all the possible supporting tripods contained 

in 
availableL  is represented by Eq. B.2. 

 

  1 2, ,..., nS s s s


      (B.2) 

Where 
  1 2 3, ,i k k ks l l l . 
 1,2,....,i n . 
 1 1,2,..., 2legsk n  . 

 2 1 11, 2,..., 1legsk k k n    . 

 3 2 21, 2,..., legsk k k n   . 

 

However, not all of the elements of S  represent leg tripods which provide a stable 

support for the robot. Therefore, only the stable tripods, those which enclose the 

robot’s centre of mass, are selected.  Then, the set of stable leg triangles can be 

defined by means of expression B.3. 
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  |  s s S s is a stable tripod        (B.3) 

 

Considering that no collinear points can enclose the robot’s centre of mass, each 

element of   represents a set of three legs that form a stable supporting triangle. The 

position of the tips of these legs corresponds with the location of the triangle’s 

vertexes in the robot’s Cartesian coordinate system. Finding the most suitable 

triangle for supporting the robot and calculating the final coordinates of both stance 

and swing legs in order to maximise stable robot mobility are the main tasks of the 

proposed gait generation approach. 

B.1.1. Six Legs Gait Generation 

The first step in the proposed six legs gait generation algorithm is to find all of the 

possible triangles formed with the available robot legs and verify if the robot’s centre 

of mass is located inside these triangles. Once all the unstable triangles are discarded, 

relative stability is guaranteed if any of the remaining triangles is selected as the 

supporting legs. Then, a measure of relative stability of each triangle is calculated. 

This is simply the distance _stabled  between the robot’s centre of mass and the 

respective triangle’s centroid.  

 

In the second step, the distance stance_stabled  between the robot’s centre of mass and the 

side of each stable triangle in the direction of locomotion is calculated. During the 

stance phase, the maximum distance that the triangle formed by the supporting legs 

can be moved whilst it still contains the robot’s centre of mass is determined by

stance_stabled . However, this distance might be larger than the available backward 

mobility of the stance legs. Hence, it is necessary to calculate the backward mobility 

of each triangle, which is the minimum distance stance_mobd  between the current 

position and the posterior extreme position (PEP) of its legs. Then, the stance legs 

triangle *  can be established by means of expression B.4 and the '  set, which is 

composed of all the elements of   whose stance_stabled  and  stance_mobd  are different from 

zero. 
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 (B.4) 

Where  

 ,...,2,1i number of elements of ' . 

 

The final  yx,  coordinates of the stance legs, the position of the legs once their 

stance cycle has concluded, are determined by means of expression B.5. 
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  (B.5) 

 

 Where   is the robot movement heading, 2  for straight ahead walking. The   

parameter is utilised in order to avoid the robot’s centre of mass lying exactly on 

the edge of the stance legs triangle, which could lead to an unstable condition. 

This would be the case if 0  when *

stance_stabled  is less than *

stance_mobd  and the 

stance triangle is moved to the limit of stable mobility. In this work  5  has 

been adopted, meaning that in the worst case the stance legs will be 5 mm inside 

the outer limit of the stance triangle. 

 

The   angle allows the robot to change its direction of locomotion without rotating. 

This may be useful when the robot is walking in constrained spaces. In comparison 

with the rotation methods introduced in sections B.3 and B.4, the technique presented 

here is the faster way to change the robot’s direction of locomotion. However, this 

method presents two drawbacks. The first one is that if some of the robot’s sensors 

are intended for forward locomotion, then some sensorial information may be lost. 

The second is that the legs’ mobility may be reduced when the robot is not walking 
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in the direction for which was designed. As a result, the robot's locomotion could be 

slower. 

 

A top view of a selected stance legs triangle and the respective swing legs triangle 

are shown in Figs. B.2 and B.3. Some of the parameters utilised by Eqs. B.4 to B.6 

are also illustrated in these figures. In both of them the   value is around 4 /9 (or 

80o). Therefore, in this case, the robot is heading forwards but with a slight 

inclination to the right.  

 

The position of the robot’s centre of mass depends on the hardware structure, in this 

example for simplicity it coincides with the origin of the robot’s coordinate system. 

 

The swing legs are simply determined as the remaining available legs once the stance 

legs are known. When the robot still has six functional limbs, the final coordinates of 

Figure B.2. Top View of a Stance Legs Triangle Including Related Parameters. 
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the swing legs are established by considering the minimum mobswingd _  and the 

maximum swing_stabled  distance. The former is the distance between the current position 

of the swing legs and their respective anterior extreme position (AEP), and the latter 

is the distance that the triangle formed by the swing legs can be moved towards the 

opposite direction of locomotion whilst still containing the robot’s centre of mass. 

This assures the existence of a stable triangle when the swing legs finish their cycle 

and become stance legs. 

 

The final  yx,  coordinates of the swing legs, the position of the legs once their 

swing cycle has concluded, are calculated as follows. 

 

 
   

   

min cos

min sin

* *

swing_stable swing_mobfinal_swing_coord initial_swing_coord

* *
final_swing_coord initial_swing_coord

swing_stable swing_mob

d - ,dx x
= +

y y d - ,d

 

 

    
    
        

(B.6) 

Figure B.3.Top View of a Swing Legs Triangle Including Related Parameters. 
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B.1.2. Five Legs Gait Generation 

The basic strategy employed in the five legs gait generation is analogous to the one 

described in the previous subsection. However, once three stance legs have been 

selected, there are only two remaining swing legs. Thus, it is unfeasible to 

immediately form the triangle of supporting legs for the next cycle. In this case, one 

of the stance legs must be selected in order to calculate the final  yx,  coordinates of 

the swing legs triangle by means of Eq. B.6. This is achieved by evaluating all of the 

possible stable triangles, constituted by the two swing legs and each one of the stance 

legs, in Eq. B.4. Determining the future supporting legs in this way means that once 

again stability and mobility are the employed criteria. The resulting gait has two 

stages. First, the three initial stance legs are moved against the direction of 

locomotion, towards their final coordinates calculated by means of Eq. B.5. At the 

same time, the two swing legs are moved in the opposite direction, towards the 

coordinates determined by Eq. B.6. In this calculation, the information about the 

position of the selected third swing leg, at the beginning of its stance phase has been 

employed, but the current movement of the leg is still governed by its stance phase. 

In the next stage, once all the legs have reached their target coordinates, the stance 

leg selected as the third swing leg is moved in the same direction as that previously 

followed by the two initial swing legs. In this stage there is no forward motion, only 

the third swing leg is moved whilst there are four legs supporting the robot. Once this 

leg reaches the coordinates specified by Eq. B.6, the cycle starts again with stance 

legs becoming swing legs and vice versa. 

B.1.3. Four Legs Gait Generation 

A similar approach to the one previously discussed for five legs can be adopted for 

gait generation when there are only four functional legs. In this case, the stance legs 

are also calculated by Eq. B.4. Nonetheless, there is a slight difference with respect 

to how the final coordinates of both stance and swing legs are established. If these 

coordinates were determined by means of Eqs. B.5 and B.6, respectively, there 

would be a point where the only stable triangle that could be selected as stance legs 
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had no mobility at all. In order to avoid this situation, observations of quadruped 

gaits, particularly in the elephant, have been conducted. The main elephant gait 

feature incorporated in the four legs robot gait is that each elephant leg stays in 

stance phase until the remaining three legs have experienced the swing phase, 

moving the stance legs on each step only about one third of their available backward 

mobility. Consequently, the backwards mobility of the robot stance legs has been 

restricted to be equal or less than a third of 
mobmax , the maximum backwards 

mobility of all the robot’s legs. This value is calculated at the beginning of the 

locomotion or every time the four legs have experienced the swing phase. Once 

mobmax  has been determined, the target stance legs and swing leg coordinates are 

established by means of Eqs. B.7 and B.8, respectively. 

 

 min cos

min sin

final_stance_coord

final_stance_coord

* * mob
stance_stable stance_mob

initial_stance_coord

initial_stance_coord * * mob
stance_stable stance_mob

x
=

y
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d - ,d ,

x 3
+

y max
d - ,d ,
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 (B.7) 

 
 

 

cos

sin

mob

final_swing_coord home_swing_coord

final_swing_coord home_swing_coord mob

max
x x 2

= +
y y max

2





 
    
    
    
  

  (B.8) 

 

Where home_swing_coordx  and home_swing_coordy  represent the home position coordinates of 

the robot legs, which correspond with the middle point between the respective AEP 

and PEP. 

 

One difference between expressions B.6 and B.8 in the determination of the final 

coordinates of the swing legs is that in Eq. B.8, the stability of possible triangles 

formed with a given swing leg is not considered in the calculation of its coordinates. 

This is unnecessary because, in the proposed four legs gait, sending the swing legs to 
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their AEP results in the creation of stable stance triangles. However, this is not 

absolutely true at the start of walking, when the four legs are in their home position 

and must initiate the gait cycle. In order to maintain gait stability each step must be 

short at the beginning, and then becoming gradually larger until the regular gait has 

been reached. This is also accomplished by means of the 
mobmax value, which 

maintains an equilibrium between the backward and forward movement of stance 

and swing legs, respectively. 

B.1.4. Gait Generation with Fewer Legs 

The three legs gait generation is analogous to the six legs gait generation. The 

differences are that here there is only one possible triangle, which constitutes the 

stance and swing legs alternately. When the legs are in the stance phase the robot is 

lifted and the legs are moved backwards according to Eq. B.5. Then, the robot is 

lowered to the ground and the legs start their swing phase. In this stage the legs are 

moved forwards by using Eq. B.6. Finally, the legs start their stance phase again, 

lifting the robot and beginning a new stance-swing cycle. 

 

With two or one leg, there is no stable feasible purely legged gait. However, if a 

point on the bottom plate of the robot is considered as a third leg, it is possible to 

generate a gait similar to the one for three legs. The difference here is that this kind 

of locomotion, which resembles a paddling movement, involves dragging the body of 

the robot. Hence, the robot’s bottom plate must be designed accordingly, minimising 

friction with the terrain and being robust enough to undergo dragging. Once the 

vertexes of the stance triangle have been identified, the robot rotates until its centroid 

is closer than the dragging point to the target location, whilst both are located on the 

straight line defined by the direction of locomotion. Finally, Eqs. B.5 and B.6; and 

the same sequence of movements described for the three legs gait generation can be 

employed to generate the gait. 
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When there is only one leg remaining, the robot is rotated until the dragging point is 

closer than the robot’s centre of mass to the target location, whilst both are located 

on the straight line defined by the direction of locomotion. In this case, the whole 

bottom plate of the robot’s body is dragged. During the swing phase, the leg is 

moved forwards to its AEP aligned with the direction of locomotion. Then, during 

the swing phase, the leg is moved towards the robot’s body until it reaches its PEP. 

B.2. Z Coordinate Calculations and Improvement of Stability 

The initial robot legs z coordinates that are used when it is standing up have been 

calculated by considering the minimisation of the torque in the joints’ motors and 

maximisation of the legs’ mobility. The latter can be determined by calculating the 

mean value of the distance between each possible leg position and all of the 

remaining reachable points. Once the minimisation has been performed, it is possible 

to find the z coordinates which require less energy consumption and allow a wide 

range of movement. By using this method, the same z coordinate value has resulted 

for all of the legs, which is represented by 0z . 

 

In some circumstances, changing the z coordinates of the legs in order to modify the 

robot inclination, and therefore its centre of mass, can improve stability during 

locomotion. This is true especially when the four or five legs gait is employed and 

the robot’s centre of mass is close to one side of the stance legs triangle. Then, new z 

coordinates can be calculated, as a function of the desired movement    of the 

robot’s centre of mass towards the stance legs triangle’s centroid, by means of 

expression B.9.  

 

     0tan tanL L c L cz x x y y z         (B.9)  

   

Where  

  LL yx ,  are the xy coordinates of the leg L . For instance,  55, yx  represents the 

xy coordinates of the Leg 5. 
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  cc yx ,  are the coordinates of the robot’s centre of mass. 

 
 cos

arccos c

c

d

d

 


 
  

   
is the rotation angle of the robot’s XZ plane around 

the y axis. 

 
 sin

arccos c

c

d

d

 


 
  

 
 is the rotation angle of the robot’s YZ plane around 

the x axis. 

 
cd  is the distance between the robot’s centre of mass and the stance legs convex 

hull’s centroid. 

   is the angle in the range  2, 0  , between the horizontal (parallel to x axis) and 

the line described by 
cd . 

 Lz  is the z coordinates of the leg L . 

 

Figs. B.4 and B.5 illustrate the parameters   and   involved in Eq. B.9. In Fig. B.4, 

the robot’s centre of mass lies on the positive x axis. In this case, a positive value of 

  moves the robot’s centre of mass towards –x by rotating about the y-axis. If the 

Figure B.4. Robot Tilt for a Positive α Angle. 
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robot’s centre of mass was lying on the negative x axis, then a negative value of   

would produce the same effect. Clearly, in both cases the opposite sign of   moves 

the robot’s centre of mass in the opposite direction. The same principle is illustrated 

in Fig. B.5, but referring to   instead of  . In this case the robot’s centre of mass 

lies on the y axis and it is moved towards -y with a positive value of  . The 

superposition of the tilt specified by   and   allows the movement of the robot’s 

centre of mass in any direction on the ground plane. 

 

Figure B.6 shows the remaining parameters of Eq. B.9. In this case, the tilt is 

necessary for moving the robot’s centre of mass inside the stance legs triangle. The 

  parameter is a value between 0 and 
cd , which is also constrained by  the values of 

  and   that the robot can reach. In practice, these values are limited by the legs’ 

workspace and the relation between 0z  and the robot’s body dimensions. In some 

cases, it may be necessary to decrease 0z  (lowering the legs and lifting the robot’s 

body) in order to avoid dragging the robot’s body during the tilt. 

Figure B.5. Robot Tilt for a Positive β Angle. 
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When the proposed method is included in the four legs gait, the result is a swaying 

movement, which improves stability during locomotion. This kind of movement is 

characteristic of the elephant gait and it can also be observed in many species of 

quadrupeds.  

B.3. Turning Movement   

The turning movement is performed by the stance legs, rotating the robot whilst it is 

walking and mixing rotational and forward locomotion. This generates a smooth 

robot rotation that resembles the one exhibited by biological creatures. The turning 

Figure B.6. Parameters Associated with Robot Tilt and Stability Improvement. 
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movement can be utilised when it is not desired to stop the robot in order to perform 

the rotation.  

 

Considering that all the stance legs selected by using expression B.4 have one single 

leg located on one side of the robot and the remaining two on the opposite side, the 

single one is chosen as the pivot leg. Then, the turning movement is achieved by 

maintaining the pivot leg immobile whilst the remaining two legs are moved 

describing an arc. As a result, a rotation towards the side of the pivot leg is obtained. 

Hence, the set of stable supporting triangles of legs that allow a turning movement 

can be defined by expression B.10. 

 

 |  turn s s s has the pivot leg on the side of  the desired rotation       (B.10) 

The same principles of stability and mobility have been applied in the robot turning 

movement. The difference here is that relative stability is determined by the angle  

 stable  that the robot’s centre of mass can be rotated whilst it is still enclosed by the 

stance legs triangle. On the other hand, mobility is defined by the allowed robot’s 

legs rotation from their current position  mob . The 
stable  angle is calculated by 

means of Eq. B.11.  

 

 
   

2 2

2arcsin
2

i i

i

i

c inters c inters

stable

p

x x y y

R


 
   

  
 
 

   (B.11) 

Where 
 1,2,..., turni n  and 

turnn  is the number of elements of turn . 

  cc yx ,  are the coordinates of the robot’s centre of mass. 

  
ii pp yx ,  are the coordinates of the pivot leg. 

    
2 2

p pi i ip c cR x x y y   
 
is the distance between the robot’s centre of mass 

and the current coordinates of the pivot leg 
ip . 
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  ,
i iinters intersx y  are the coordinates of the intersection point between the circle of 

radius 
ipR  centred on the pivot leg, and the side of the stance legs triangle first 

intersected by the robot’s centre of mass. 

 

The 
mob  angle is determined using Eq. B.12  

 

 
   

   

2 2

2 2
1min 2arcsin
2i

i i

k PEPk k PEPk

mob

k p k p

x x y y

x x y y


  
    

  
    
  

   (B.12) 

Where 

  ip},{|, 
iturnbabak  represents the legs specified by the 

thi  element of 

turn minus its respective pivot leg. 

  kk yx ,  are the coordinates of the legs represented by k . 
  ,PEPk PEPkx y  are the leg k  PEP coordinates, when this leg is moved over the 

circumference of radius    
2 2

p pi ik kx x y y  
 
and centred on the pivot leg.  

 i  and  
ii pp yx ,  are the same as Eq. B.11. 

 

Then, it is possible to determine the stance legs which allow maximum stable 

rotation by means of Eq. B.13. 
 

   * * * *| ,min , min ,
i iturn i turn stable mob stable mobstance_legs             (B.13) 

Where 
turnni ,...,2,1 .  

 

A top view of a stance legs triangle performing a counterclockwise rotation is shown 

in Fig. B.7. The diagram also illustrates a number of parameters utilised by the 

equations discussed in this subsection. In this example, 6,2k ; the legs different 

from the pivot leg (leg 4). Besides, the 
mob  angle has been calculated using the 
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smallest leg mobility between the legs specified by k  (the mobility of leg 6 in this 

case). 

 

The final coordinates of the stance legs selected by means of expression B.13 and 

different from the pivot leg, which remains immobile, are determined utilising Eq. 

B.14.  
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Figure B.7. Top View of a Stance Legs Triangle Performing a Turning Movement 
(Related Parameters are Included). 
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Where  

 c  is -1 if the rotation is clockwise, or 1 otherwise. 

   has the same function as in Eqs. B.5 to B.7, but in this case it is an angle. 
o1  has been used in this research. 

  ** , pp yx  are the xy coordinates associated with the pivot leg of the *  triangle. 

 The desired angle of rotation should be used instead of  * *min ,stable mob   when the 

former is less than the latter. 

 

Finally, depending on the number of available legs, the swing leg’s final coordinates 

are calculated by means of one of the expressions previously discussed in section 

B.1. 

B.4. Rotation on the Spot 

This type of movement may be utilised when it is necessary to rotate the robot a 

large angle in a reduced space or when a pure rotation movement is desired. In 

comparison with the turning movement, rotation on the spot allows a larger rotation 

but it lacks a straight line locomotion component.  

 

Rotation on the spot is performed rotating the robot around its centre of mass. Once a 

stable stance legs polygon has been determined, this kind of rotation ensures stability 

independent of the rotation angle. Hence, the rotation is only limited by the leg’s 

workspace.  

B.4.1. Two Tripods Rotation 

When there are six available legs and the angle of rotation is larger than the one 

achievable by rotating the current stance legs, a sequence of two or more tripod 

rotation could be employed. The suitability of this approach depends on the existence 

of the two stable stance triangles necessary for completing the movement. A 

parameter utilised in order to determine this is the angle 
mobrot _  that a stance legs 
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triangle can be rotated only considering the legs’ workspace. This angle is calculated 

for each element of   by means of expression B.15. 

 

 
   

min arcsin
i

2 2

k EPk k EPk

rot_mob_

k

x - x + y - y
2

2R
 

  
  
   

  

  (B.15) 

Where 
 

irot_mob_   is the 
mobrot _  angle associated with the 

thi  triangle belonging to  . 

 , , |{ , , }k a b c a b c stance_legs   represents each one of the stance legs. 

  kk yx ,  are the coordinates of the legs represented by k . 

    22
ckckk yyxxR   is the distance between the robot’s centre of mass 

and the current coordinates of the leg k . 

  ,EPk EPkx y  are the leg k  PEP or AEP coordinates when this leg is moved over 

the circumference of radius 
kR  and centred on the robot’s centre of mass. 

Whether the PEP or AEP coordinates should be used depends on the direction in 

which the leg is rotating.  

 

Then, one of the two tripods (if they exist) which allow the maximum rotation is the 

triangle formed by the stance legs. These are determined by means of expression 

B.16. On the other hand, the second tripod is the triangle formed by 

-  availableL stance_legs . 

 

* *
* *

* *| 0 ,
i

c c c

i i rot_mob_rot_mob_ rot_mob_

stance_legs

s s s    



       
  (B.16) 

Where  

 *rot_mob_



 is the 

rot_mob  angle associated with the *  triangle. 

 c

is  is 1 if 
available iL   , or 0 otherwise.  

 cs*  is 1 if  *
availableL , or 0 otherwise.  
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If none of the elements of   satisfies the conditions in Eq. B.16, this means that it is 

not possible to perform a rotation on the spot from the current position of the legs. 

When Eq. B.16 succeeds in selecting the stance legs triangle, the final stance legs 

coordinates are established by means of expression B.17.  
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  (B.17) 

 

Next, the final swing legs coordinates are their respective PEP or AEP when these 

legs are moved over the circumference of radius 
kR  and centred on the robot’s centre 

of mass. If the desired robot rotation is clockwise, then AEP should be used for right 

legs and PEP for left legs. On the other hand, PEP for right legs and AEP for left legs 

should be used when the robot rotation is counterclockwise. 

 

During the next stage of the two tripods rotation, swing and stance legs interchange 

roles. The legs that are on their PEP are moved towards their AEP, and vice versa. 

Always moving them over the circumference of radius 
kR  and centred on the robot’s 

centre of mass. This cycle can continue until the desired angle of rotation has been 

reached or when this is small enough for using the rotation described in the next 

subsection instead. 

B.4.2. Rotation with Fewer Legs and Small Angle Rotation 

This subsection describes a mode of rotation on the spot, which does not require two 

tripods. Therefore, it is employed when fewer than six legs (and more than three) are 

available. The method is also suitable when the robot has six functional legs, if a 

rather small rotation, which can be achieved lifting only some of the robot’s legs, is 

required. In some cases, the rotation can be performed maintaining all the legs on the 

terrain. Depending on the current position of the robot’s legs and the desired rotation, 
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this may also require one or several alternating sequences of rotational stance and 

swing phases. The order in which the stance and swing legs are selected affects the 

rotation stability, angle and energy consumption. Hence, the goal of the proposed 

method is to find the best order of stance and swing legs optimising these parameters.  

 

The first step in the proposed algorithm is to calculate the available rotation of each 

leg (
rot_mob_k ) in the direction that produces the desired robot rotation (

d ). This can 

be achieved if k  in the “min” function argument of Eq. B.15 is replaced by each one 

of the robot’s legs. Then, all the legs whose 
rot_mob_k  is less than the desired angle of 

rotation must be lifted to initiate their swing phase. When the rotation can be 

performed maintaining all the legs on the ground, the final coordinates of the legs are 

calculated by using Eq. B.17, after replacing *rot_mob_



 by 

d . The final stance legs 

coordinates are established in the same way when only some of the robot’s legs must 

be lifted and the remaining legs form a stable stance triangle. If this triangle is 

unstable or the total number of the robot’s legs minus the number of legs that must 

begin their swing phase is less than three, additional processing is necessary. First of 

all, the order in which the legs are lifted is determined. For instance, if the robot has 

six legs and four of them must be lifted, considering that always three or more must 

be on the terrain, the operation would require at least two stance-swing phases. This 

could be done by means of a 2-2 sequence, meaning that two legs are lifted during a 

first stance-swing phase and the remaining two during a second one. However, 1-3 

and 3-1 are also valid sequences. In addition, each sequence could be performed 

using different leg orders. For example, if the chosen sequence is 2-2 and the legs 1, 

2, 3 and 4 must be lifted, this could be done by selecting legs 1 and 2, 1 and 3, 1 and 

4, 2 and 3, 2 and 4 or 3 and 4 as swing legs during the first stance-swing phase and 

the two remaining legs during the second one. In general, the different orders in 

which the legs could initiate their swing phase during the first stance-swing phase are 

determined by means of expression B.18. 

 

  order_1 order_2 order_nleg_order = l ,l ,...,l     (B.18) 
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Where 
 { }

1 2order_i k k seq1l swing_legs ,swing_legs ,...,swing_legs   

 1seq  indicates the number of legs that initiate their swing phase during the first 

stance-swing phase. (e.g. 3 if the sequence is 3-1). 

 
  1

!
1,2,....,

! !
swing

swing 1

n
i

n seq seq


  
. 

 1 1,2,..., swingk n . 

 2 1 11, 2,..., swingk k k n   . 

 3 2 21, 2,..., swingk k k n   . 

 
swingn  is the total number of swing legs (considering all the stance-swing phases). 

All the swing legs not included in 
order_il  initiate their swing phase during the second 

stance-swing phase. 

 

Once all the possible orders in which the swing legs could initiate their swing phase 

has been established, the best leg order for each sequence must be determined 

considering stability, feasible rotation and energy consumption. Eq. B.19 can be used 

for determining which leg order has the better relation between stability and feasible 

rotation. The leg order with the maximum associated 
orderlegms _  value requires the 

fewest steps for performing a stable robot rotation and hence minimises energy 

consumption. 
 

 
   

max ,
1 1

A Bi i

i

i A i Bi i

stable_poly stable_poly

leg_order

A rot_mob_poly B rot_mob_poly

d d
ms =

s s 

 
 
   
 

   (B.19) 

Where  

 i , as in Eq. B.18, represents each of the possible orders in which the swing legs 

can initiate their swing phase during a given sequence. 
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 The 
iA  (

iB ) subscript indicates that the associated parameter must be calculated 

with respect to the first (second) stance-swing phase and the 
thi  element of 

leg_orders . 
 

polystabled _  is the distance between the robot’s centre of mass and the centroid of 

the polygon formed by the stance legs. 

 
is  is 1 if  the robot’s centre of mass is enclosed by the polygon formed by the 

stance legs, or 0 otherwise. 
 

polymobrot __  is the available rotation of the polygon formed by the stance legs. 

 

The possible sequences in which the swing legs initiate their swing phase are 

determined by means of expression B.20. 

 

  1 2, ,...,
seqnseqs seq seq seq      (B.20) 

Where 

  1 2,kseq k k .  
 1 3, 2,..., 3swing legs swing legs legsk n n n n n      . 

 2 1swingk n k  . 

 1,2,..., seqk n , with 2 5seq swingn n n   . 

Then, once the set of possible leg orders is calculated for each sequence by means of 

Eq. B.18, the leg order that maximises the stability and the angle of rotation for each 

sequence is given by expression B.21. 

  

* i

k order* order* k order_i k

leg_order leg_order

best_leg_order l | l leg_order l leg_order ,

ms ms

   


 (B.21) 

  

Where 

 
kleg_order  is the leg_order  set associated with the 

thk  element of seqs . 
 *

_leg orderms  is the _leg orderms  value associated with order*l . 
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The criterion established by Eq. B.21 must be modified in order to consider energy 

consumption in the selection of the sequence employed to perform the robot’s 

rotation. The energy required is related to the difference in the number of stance legs 

employed during both parts of the sequence. For instance, a 2-2 sequence is more 

energy efficient than a 3-1 sequence, even when in both cases four legs experienced a 

swing phase. Hence, the sequence that performs the robot rotation is finally 

determined by means of expression B.22. 

 

 

 
* * * *

* *

_ _ _ _ _ _

_ _ _ _ _ _

| ,

,

,
k k k

k

best leg order best leg order swing legs swing legs

best leg order best leg order swing legs swing legsk

seq s s seqs seq seqs

ms ms std A B

ms ms std A B

   

 



 (B.22) 

 

Where  
 1,2,..., seqk n . 

 _ _ kbest leg orderms
 
is the _leg orderms  value associated with 

kbest_leg_order . 

 
*_ _best leg orderms  is the value associated with *s . 

  
klegsswingklegsswing BAstd __ ,  is the standard deviation between the number of swing 

legs in the first and second stance-swing phase of 
kseq , respectively. 

  
*_*_ , legsswinglegsswing BAstd  is the standard deviation between the number of swing 

legs in the first and second stance-swing phase of *s , respectively. 

 

The stance-swing phase in which each swing leg initiate its swing phase is 

determined by the best_leg_order  set that corresponds with seq . Next, the final 

stance legs coordinates are calculated replacing *
rot_mob_ 

 by  *

rot_mob_poly , the available 

rotation angle of the polygon formed by the stance legs, in Eq. B.17.  In addition, the 

swing legs are moved using the same strategy discussed in subsection B.4.1. Finally, 

all the steps described in this subsection can be repeated until the desired angle of 

rotation has been reached. 



 
Appendix B. Adaptable Gait Generation for Autotomised Legged Robots 

226 

 

B.5. Experimental Results 

This section shows experimental results of the gait generation described in 

subsections B.1.1 to B.1.4. The results are presented in tables, which specify the 

robot’s stance legs (in black) and swing legs (in white) in each step (for the 

correspondence between leg number and leg position in the robot, please refer to Fig. 

B.1). All of the generated gaits are periodic. Therefore, the tables show all the steps 

belonging to one period. The generated gait has been obtained by considering that 

the robot’s centre of mass is on the origin of the robot’s coordinate system. Besides, 

it has been assumed that all the robot’s legs are in their home position at the 

beginning of gait generation. Figures B.8 to B.13 show the experimental robot 

walking with different numbers of legs. In these figures, the position of the robot 

centroid after each gait cycle is represented by means of yellow asterisks and arrows. 

B.5.1. Six Legs Gait Generation Results 

Table B.1 shows the generated gait for a six legged robot. The results show that a 

tripod gait has been obtained, which is commonly utilised by hexapod creatures. 

 

Table B.1. Six Legs Gait Generation. 
Step 1 2 

Le
g 

1   

2   

3   

4   

5   

6   

 

Figure B.8 shows the experimental robot walking with the tripod gait. In Fig. B.8(a), 

the robot is in its initial stand up position. Then, in Fig. B.8(b and d), legs 1, 3 and 5 

act as the stance legs and are moved backwards whilst the rest of the legs, or swing 

legs, are moved forward. Conversely, in Fig. B.8(c), legs 2, 4 and 6 act as stance legs 

whilst legs 1, 3 and 5 perform the swing cycle. 
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B.5.2. Five Legs Gait Generation Results 

Tables B.2 to B.7 contain the generated gait for the robot after it has lost one of its 

legs. Each table corresponds to the generated gait after a different robot leg has been 

shed. 

 

Table B.2. Five Legs Gait Generation (Leg 1 Lost). 
Step 1 2 3 4 

Le
g 

2     

3     

4     

5     

6     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.8. Experimental Robot and Six Legs Gait Generation. 
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(c) (d) 
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Table B.3. Five Legs Gait Generation (Leg 2 Lost). 
Step 1 2 3 4 

Le
g 

1     

3     

4     

5     

6     

 

Table B.4. Five Legs Gait Generation (Leg 3 Lost). 
Step 1 2 1 2 3 4 

Le
g 

1       

2       

4       

5       

6       

 

Table B.5. Five Legs Gait Generation (Leg 4 Lost). 
Step 1 2 1 2 3 4 

Le
g 

1       

2       

3       

5       

6       

 

Table B.6. Five Legs Gait Generation (Leg 5 Lost). 
Step 1 2 1 2 3 4 

Le
g 

1       

2       

3       

4       

6       

 

Table B.7. Five Legs Gait Generation (Leg 6 Lost). 
Step 1 2 3 4 

Le
g 

1     

2     

3     

4     

5     
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The results for the five legs gait generation show a periodic gait composed of 4 steps. 

During steps 2 and 4 only one swing leg is moved, the four stance legs stay still 

supporting the robot. Therefore, the robot is supported alternately by 3 and 4 legs. 

Tables B.4 to B.6 show cases where the robot takes two steps before actually starting 

the periodic gait. These are called Initial Steps due to the fact that they are taken only 

at beginning of the sequence of steps.  

 

Figure B.9 shows the experimental robot walking with five legs, after leg 1 has been 

severed. In this case, the generated gait is contained in Table B.2. Those cases where 

there is only one swing leg, which correspond to steps 2 and 4 in Table B.2, are 

shown in Fig. B.9 (a and b). Here, leg 2 is shown during its swing cycle. In Fig. B.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.9. Experimental Robot and Five Legs Gait Generation. 
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(c) (d) 
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(c), legs 2, 3 and 5 act as the stance legs and are moved backwards whilst the rest of 

the legs, or swing legs, are moved forward. On the other hand, Fig. B.9 (d) shows the 

case where legs 2, 4 and 6 act as stance legs whilst legs 3 and 5 perform the swing 

cycle. Figure B.9 (c and d) correspond to steps 1 and 3 in Table B.2, respectively.  

B.5.3. Four Legs Gait Generation Results 

Tables B.8 to B.16 contain the generated gait for the robot after it has shed two of its 

legs. Each table corresponds to the generated gait for a different combination of 4 

legs. The combinations that consider the loss of two legs on the same side of the 

robot are not included. This is because it is not possible to generate a stable gait with 

these leg configurations if the restrictions imposed by the leg workspace of the 

experimental robot are considered. A solution to this problem is to use the three legs 

gait generation, but with four legs instead of three. 

 

Table B.8. Four Legs Gait Generation (Leg 1 and 3 Lost). 
Step 1 2 3 4 1 2 3 4 

Le
g 

2         

4         

5         

6         

Table B.9. Four Legs Gait Generation (Leg 1 and 4 Lost). 
Step 1 2 3 4 1 2 3 4 

Le
g 

2         

3         

5         

6         

Table B.10. Four Legs Gait Generation (Leg 1 and 5 Lost). 
Step 1 2 3 4 1 2 3 4 1 2 3 4 

Le
g 

2             

3             

4             

6             
Repeated 4 times 
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Table B.11. Four Legs Gait Generation (Leg 2 and 3 Lost). 
Step 1 2 3 4 1 2 3 4 

Le
g 

1         

4         

5         

6         

 

Table B.12. Four Legs Gait Generation (Leg 2 and 4 Lost). 
Step 1 2 3 4 1 2 1 2 3 4 

Le
g 

1           

3           

5           

6           
Repeated 4 times 

 

Table B.13. Four Legs Gait Generation (Leg 2 and 5 Lost). 
Step 1 2 3 4 1 2 1 2 3 4 

Le
g 

1           

3           

4           

6           
Repeated 4 times 

 

Table B.14. Four Legs Gait Generation (Leg 3 and 6 Lost). 
Step 1 2 3 4 1 2 1 2 3 4 

Le
g 

1           

2           

4           

5           
Repeated 4 times 

 

Table B.15. Four Legs Gait Generation (Leg 4 and 6 Lost). 
Step 1 2 3 4 1 2 1 2 3 4 

Le
g 

1           

2           

3           

5           
Repeated 4 times 

 

 



 
Appendix B. Adaptable Gait Generation for Autotomised Legged Robots 

232 

 

Table B.16. Four Legs Gait Generation (Leg 5 and 6 Lost). 
Step 1 2 3 1 2 3 4 

Le
g 

1        

2        

3        

4        

 

The results for the four legs gait generation show a periodic gait composed of 4 

steps. In this case, the initial steps are always generated at the beginning of the gait, 

regardless of the combination of severed legs. They allow the stable transition from 

the home position of the robot’s legs to the position established by the periodic gait. 

The number of initial steps varies with the robot leg configuration. The following 

four numbers of initial steps were present during the experiment: 3 (Table B.16), 4 

(Tables B.8, B.9 and B.11), 18 (Tables B.12, B.13, B.14 and B.15) and 20 (Table 

B.10). Figure B.10 shows the experimental robot walking with four legs, after legs 1 

and 4 have been severed. In this case, the generated gait is contained in Table B.2. 

This gait has four associated initial steps, which are shown in Figs. B.10(a-d).  

 

B.5.4. Three Legs Gait Generation Results 

The results for the three legs gait generation when the experimental robot walks with 

different combinations of three legs are shown in Table B.17. As expected, the 

generated gait is periodic and it is composed of 2 steps. 

 
 

Table B.17. Three Legs Gait Generation 
(Experimental Robot Walking with Legs LA, LB and LC). 

Step 1 2 

Le
g 

LA   

LB   

LC   
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The combinations that consider the loss of three adjacent legs are not included. This 

is similar to the four legs gait generation, when two legs were lost on the same side 

of the robot. In these cases, it is not possible to generate a stable gait with these leg 

configurations if the restrictions imposed by the leg workspace of the experimental 

robot are considered. A solution to this problem is to use the two legs gait generation, 

but with three legs instead of two. 

 

Figure B.11 shows the experimental robot walking with three legs, after legs 1, 2 and 

4 have been severed. Therefore,    , , 3,5,6A B CL L L   in Table B.2. Figure B.11(a) 

shows the corresponding home position for this leg configuration. In addition, Figs. 

B.11(b and c) show the robot’s legs performing the stance cycle (step 1 in Table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.10. Experimental Robot and Four Legs Gait Generation. 
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B.17). On the other hand, Fig. B.11(d) shows the robot’s legs performing the swing 

cycle (step 2 in Table B.17). 

B.5.5. Two Legs Gait Generation Results 

The results for the two legs gait generation, where the experimental robot drags its 

body with different combinations of two legs, are shown in Table B.18. Once again, 

the generated gait is periodic and it is composed of 2 steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.11. Experimental Robot and Three Legs Gait Generation. 
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Table B.18. Two Legs Gait Generation. 
(Experimental Robot Dragging Its Body with Legs LA and LB). 

Step 1 2 

Leg 
LA   

LB   

 

Figure B.12 shows the experimental robot dragging its body with two legs, after legs 

1, 2, 3 and 4 have been severed. Therefore,    , 5,6A BL L   in Table B.18. Figure 

B.12(a) shows the corresponding home position for this leg configuration. As a 

consequence of the missing legs, the robot has a backward locomotion. In general, 

the direction of movement will vary as it depends on the robot’s leg configuration. 

Figure B.12(b) shows the robot’s legs performing the stance cycle (step 1 in Table 

B.18). Here, the robot is lifted and dragged towards the direction of the light source. 

Finally, Fig. B.12 (c and d) show the robot’s legs performing the swing cycle (step 2 

in Table B.17). In this cycle, the legs are first lifted (Fig. B.12(c)) and then stretched 

(Fig. B.12(d)). Whilst the legs are extended, they are gradually lowered until they 

touch the floor and the stance cycle begins again.  

B.5.6. One Leg Gait Generation Results 

The results for the one leg gait generation, where the experimental robot drags its 

body with a single leg, are shown in Table B.19. As expected, the generated gait is 

periodic and it is composed by 2 steps. 

 
Table B.19. One Leg Gait Generation. 

(Experimental Robot Dragging Its Body with Leg LA). 

Step 1 2 

Leg LA   

 

Figure B.13 shows the experimental robot dragging its body with only one leg, after 

legs 1, 2, 3, 4 and 5 have been severed. Therefore, 6AL   in Table B.18. Figure 

B.13(a) shows the corresponding home position for this leg configuration. Once 

again, the robot has a backward locomotion as a consequence of the missing legs.  
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In general, the direction of movement will vary as it depends on the robot’s leg 

configuration. Figure B.13(b) shows the robot’s leg performing the stance cycle (step 

1 in Table B.19). Here, the robot is lifted and dragged towards the direction of the 

light source in Table B.19). In this cycle, the leg is first lifted (Fig. B.13(c)) and then 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.12. Experimental Robot and Two Legs Gait Generation. 
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stretched (Fig. B.13(d)). Whilst the leg is extended, it is gradually lowered until it 

touches the floor and the stance cycle begins again.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.13. Experimental Robot and One Leg Gait Generation. 
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(c) (d) 
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This section has shown the generation of different stable gaits using the theory 

explained in section B.1. All the generated gaits are periodic, but the number of steps 

of each period depends on the available number of robot’s legs. Experimental results 

show that the proposed approach generates a stable gait from almost any leg 

configuration, which includes between 3 and 6 legs. In addition, those cases where 

the robot is unable to walk in a stable fashion are covered by gaits that involve 

dragging the robot’s body. Table B.20 shows the average distance per gait cycle 

covered by the experimental robot. This data shows that symmetrical stable gaits (six 

and four legs gait generation) cover more distance per gait cycle in comparison with 

the asymmetrical stable gait (five legs gait generation). On the other hand, unstable 

gaits (one, two and three legs gait generation) show only slight differences in their 

distance per gait cycle. However, the trend indicates that the more legs are used the 

more distance is cover per gate cycle. This can be attributed to sliding effects on the 

robot’s leg(s), which are increased as fewer legs drag the robot during the stance 

phase. 

 

Table B.20. Average Distance per Gait Cycle. 
Number of Legs 1 2 3 4 5 6 

Average Distance per Gait Cycle [mm] 60 65 67 107 99 225 

 

B.6. Summary 

Appendix B has presented an adaptable gait generation method that allows damaged 

or autotomised robots to walk with different combinations of leg losses. The 

proposed technique maximises the stable mobility of robots once the position of their 

centre of mass has been calculated. This means that if the position of the robot’s 

centre of mass changes, either because the robot is carrying a load or its hardware 

configuration has been altered, by using this method the target robot will still be able 

to generate a stable gait. Instead of proposing a different gait generation method for 

each possible number of functional legs, slight modifications of a six legs gait 

generation technique are used. This allows the extension of the method to other leg 
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configuration and to produce stable gaits when fewer functional legs are available. 

The proposed technique also covers those cases where the robot is unable to walk in 

a stable fashion. In this kind of situations, locomotion is achieved by dragging the 

robot’s body. 

 

Finally, the stable gaits introduced in this appendix (used when the robot has 

between 4 and 6 legs) generate straight line locomotion in any desired direction, 

which allows the robot to modify its direction of locomotion without actually 

rotating the robot. This could be useful when is necessary to manoeuvre the robot in 

restricted spaces.  

 



 
 

 
 

 

Appendix C  

Robot Circuit Diagrams 

 

This appendix contains electronic circuit diagrams for a selection of the 

experimental robot hardware components. The design and construction of the 

experimental robot electronics was part of the work executed during this 

investigation. In this appendix, circuit diagrams corresponding to leg tip force 

sensor, light sensor, whiskers, control panel and leg PCB were drawn by using 

CadSoft Eagle (Easily Applicable Graphical Layout Editor). These circuit diagrams 

are shown in Figs. C.1 to C.5. 
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Appendix D   

External Links 

 

This appendix contains a list of links to videos of the experimental robot executing 

basic movements, research actions and compensation of abnormal situations. 

 

Link D01: Turning Movement. 

This video shows the experimental robot performing a turning movement, a 

combined translation and rotation to the right. 

 

https://www.dropbox.com/s/noch3chvltxp7ur/D01%20Turning%20Movement.mpg?

dl=0 

 

Link D02: Rotation on the Spot. 

This video shows the experimental robot performing a clockwise rotation on the spot. 

 

https://www.dropbox.com/s/ps5ibivo473mn3x/D02%20Rotation%20on%20the%20S

pot.mpg?dl=0 

 

Link D03: Leg Release Mechanism. 

This video shows the leg release mechanism in action. The mechanism is activated at 

00:08 minutes and leg separation occurs at 03:01 minutes. 

 

https://www.dropbox.com/s/noch3chvltxp7ur/D01%20Turning%20Movement.mpg?dl=0
https://www.dropbox.com/s/noch3chvltxp7ur/D01%20Turning%20Movement.mpg?dl=0
https://www.dropbox.com/s/ps5ibivo473mn3x/D02%20Rotation%20on%20the%20Spot.mpg?dl=0
https://www.dropbox.com/s/ps5ibivo473mn3x/D02%20Rotation%20on%20the%20Spot.mpg?dl=0
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https://www.dropbox.com/s/vmijhj4hoy3eh1x/D03%20Leg%20Release%20Mechani

sm.mpg?dl=0 

 

Link D04: Accelerometer Research Action. 

This video shows the experimental robot performing the accelerometer research 

action. 

 

https://www.dropbox.com/s/pac2wj7jtzl2wuf/D04%20Accelerometer%20Research%

20Action.mpg?dl=0 

 

Link D05: Faulty Light Sensor Compensation - Method 0. 

This video shows an experiment where one of the robot’s light sensors (light sensor 

2) has been fully covered. As a result, the robot is unable to correctly calculate the 

direction of the light source and a cyclic lack of progress is detected. Then, the robot 

performs a sweep action in order to clean the covered light sensor. This time, the 

robot successfully uncovers the sensor and is able to continue with its mission in a 

normal fashion. 

 

https://www.dropbox.com/s/lhsz30mhyflmsid/D05%20Faulty%20Light%20Sensor%

20Compensation%20-%20Method%200.mpg?dl=0 

 

Link D06: Faulty Light Sensor Compensation - Method 1. 

This video shows another experiment where one of the robot’s light sensors (light 

sensor 2) has been fully covered. Once again, the robot is unable to correctly 

calculate the direction of the light source and a cyclic lack of progress is detected. 

Then, the robot performs a sweep action in order to clean the covered light sensor. In 

this case, the robot fails to uncover the sensor and after resuming the mission a new 

cyclic lack of progress is detected. This time, the robot compensates the abnormal 

situation by changing its direction of locomotion by 180º. Therefore, the robot 

continues with its mission by walking backwards towards the light source. 

https://www.dropbox.com/s/vmijhj4hoy3eh1x/D03%20Leg%20Release%20Mechanism.mpg?dl=0
https://www.dropbox.com/s/vmijhj4hoy3eh1x/D03%20Leg%20Release%20Mechanism.mpg?dl=0
https://www.dropbox.com/s/pac2wj7jtzl2wuf/D04%20Accelerometer%20Research%20Action.mpg?dl=0
https://www.dropbox.com/s/pac2wj7jtzl2wuf/D04%20Accelerometer%20Research%20Action.mpg?dl=0
https://www.dropbox.com/s/lhsz30mhyflmsid/D05%20Faulty%20Light%20Sensor%20Compensation%20-%20Method%200.mpg?dl=0
https://www.dropbox.com/s/lhsz30mhyflmsid/D05%20Faulty%20Light%20Sensor%20Compensation%20-%20Method%200.mpg?dl=0
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https://www.dropbox.com/s/81mr2din6oe4p3p/D06%20Faulty%20Light%20Sensor

%20Compensation%20-%20Method%201.mpg?dl=0 

 

Link D07: Faulty Light Sensor Compensation - Method 2. 

This new video shows an experiment where light sensors 2, 4 and 6 have been fully 

covered. As a result, the robot is unable to correctly calculate the direction of the 

light source and a cyclic lack of progress is detected. Then, the robot performs a 

sweep action in order to clean the covered light sensor. In this experiment, the robot 

fails to uncover the sensor and after resuming the mission a new cyclic lack of 

progress is detected. This time, the robot fails to find two adjacent uncovered light 

sensors. Then, the robot compensates the abnormal situation by changing its 

direction of locomotion by 30º. Therefore, the robot continues with its mission by 

walking diagonally towards the light source. 

 

https://www.dropbox.com/s/adjawmrw1eehhwe/D07%20Faulty%20Light%20Sensor

%20Compensation%20-%20Method%202.mpg?dl=0 

 

Link D08: Soft Terrain Compensation. 

This video shows an experiment where leg 3 of the experimental robot walks over 

soft terrain. As a result, the robot is unable to move forward and a cyclic lack of 

progress alarm is triggered. Then, the robot performs position sensor research actions 

and nothing abnormal is detected. Once the robot has discarded the possibility that 

the abnormal sensor readings are due to intrinsic anomalies, it searches for an 

abnormal situation, similar to the one currently experienced, in its database of 

anomalies. Finally, the abnormal situation is identified and compensatory actions 

corresponding to soft terrain are executed. 

 

https://www.dropbox.com/s/lth6emwrks0bs40/D08%20Soft%20Terrain%20Compen

sation.mpg?dl=0 

 

https://www.dropbox.com/s/81mr2din6oe4p3p/D06%20Faulty%20Light%20Sensor%20Compensation%20-%20Method%201.mpg?dl=0
https://www.dropbox.com/s/81mr2din6oe4p3p/D06%20Faulty%20Light%20Sensor%20Compensation%20-%20Method%201.mpg?dl=0
https://www.dropbox.com/s/adjawmrw1eehhwe/D07%20Faulty%20Light%20Sensor%20Compensation%20-%20Method%202.mpg?dl=0
https://www.dropbox.com/s/adjawmrw1eehhwe/D07%20Faulty%20Light%20Sensor%20Compensation%20-%20Method%202.mpg?dl=0
https://www.dropbox.com/s/lth6emwrks0bs40/D08%20Soft%20Terrain%20Compensation.mpg?dl=0
https://www.dropbox.com/s/lth6emwrks0bs40/D08%20Soft%20Terrain%20Compensation.mpg?dl=0
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Link D09: Low Power Compensation. 

This video shows an experiment where the robot walks towards the light source with 

battery 2Bl  almost completely discharged. The robot manages to take some steps 

towards the light source but soon it is unable to move further. Then, a cyclic lack of 

progress alarm is triggered. The robot is able to identify that the abnormal situation 

was generated by a low power condition and a distress signal (represented by the 

flashing green LEDs) is sent. 

 

https://www.dropbox.com/s/6npxodsa4704j7i/D09%20Low%20Power%20Compens

ation.mpg?dl=0 

 

Link D10: Five Legs Gait Generation. 

This video shows the experimental robot walking with 5 legs. In this case, leg 5 has 

been disabled by positioning it in its home position so it does not interfere with the 

robot’s locomotion. 

 

https://www.dropbox.com/s/9mbkegffe19vnov/D10%20Five%20Legs%20Gait%20

Generation.mpg?dl=0 

 

Link D11: Frontal Collision Compensation 

This video shows the compensatory measure taken by the experimental robot after 

colliding with a transparent obstacle. The collision is detected by the robot’s 

whiskers. Then the robot changes its direction of locomotion and is able to continue 

moving towards the light source. 

  

https://www.dropbox.com/s/zwi56banvzlmkeg/D11%20Obstacle%20Avoidance.mp

g?dl=0 

 

 

 

https://www.dropbox.com/s/6npxodsa4704j7i/D09%20Low%20Power%20Compensation.mpg?dl=0
https://www.dropbox.com/s/6npxodsa4704j7i/D09%20Low%20Power%20Compensation.mpg?dl=0
https://www.dropbox.com/s/9mbkegffe19vnov/D10%20Five%20Legs%20Gait%20Generation.mpg?dl=0
https://www.dropbox.com/s/9mbkegffe19vnov/D10%20Five%20Legs%20Gait%20Generation.mpg?dl=0
https://www.dropbox.com/s/zwi56banvzlmkeg/D11%20Obstacle%20Avoidance.mpg?dl=0
https://www.dropbox.com/s/zwi56banvzlmkeg/D11%20Obstacle%20Avoidance.mpg?dl=0
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Link D12: Lights Off Compensation. 

This video shows the experimental robot performing the lights off innate 

compensatory measure. Initially, the robot walks normally towards the light source 

until the lights are switched off. Then, the robot performs a sweeping movement in 

an attempt to clean all of its light sensors. When the robot realises that this action 

does not improve the situation, it decides to wait until a new light source appears. 

After a short time, lights are switched on again. This is detected by the robot and the 

mission is resumed. 

 

https://www.dropbox.com/s/0kuk8wx383py0lt/D12%20Lights%20Off%20Compens

ation.mpg?dl=0 
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