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ABSTRACT

Carbon-based emissions and greenhouse gases (GHG) are critical global issues, where transport sector
is a significant contributor to GHG emissions in most countries. The automobile transport is the principal
CO2 emitter. From the energy safety point of view, the transport sector as a whole is also exceedingly
dependent on fossil oil and would probably be affected by any changes in energy resources. Therefore,
changes to energy structure are in urgent need to reduce emissions and oil-dependence.

Battery Electric Vehicles (BEV) are deemed to be a solution as a type of new alternative fuel vehicles
(AFV) to reduce GHG emissions, noise pollution and reliance on fossil. There are a number of studies
on the BEV market potential, BEV characteristic, BEV charging facility location problem (CFLP) and
BEV routing problem. Given the current scarce deployment of charging facilities and driving range limit,
it is crucial for BEV drivers to choose the best route to fulfil their trips while satisfying the charging
needs. Although there is an increase in current research in BEV CFLP and equilibrium network
modelling with BEV, there are several unresolved methodological issues as well as the practical
concerns of such models. This research aims at developing BEV charging facility location models while
investigating stochastic equilibrium network models considering a mixed BEV and gasoline vehicle
(GV) flows. This research aims to examine the interaction between BEV charging facility location and

BEV equilibrium flows and the effects of BEV range limits on stochastic traffic assignment.

In order to accomplish this broader research goal, the study has defined four main research objectives:
i) investigate the impact of BEV driving distance limit on BEV drivers’ route choice behaviour and
equilibrium BEV flow ii) explore the effects of a flow-dependent energy consumption rate and fixed
battery capacity on equilibrium BEV flow iii) explore the applicable BEV charging facility location
model that maximize the charging facility coverage with a limited financial budget, and iv) explore the
location and configuration of battery swapping station (BSS) in the application of battery electric buses
(BEBS). Each component is the focus of a thesis chapter where detailed research context, methodologies

and the key findings are presented.

Before investigating the first objective, the key problem is to find the unique and distinctive behaviour
of BEVs that distinguish it from GV. The driving range limit and scarcity of charging facilities are the
main concerns at current stage. Public charging facilities are not considered in this model. The focus of
the first objective is to investigate a general stochastic traffic assignment problem (STAP) model with
mixed BEV and GV flows considering path distance constraints. It was found that a modified method
of successive averages (MSA) can be applied to solve the model for both multinomial logit and
multinomial probit loading. A feasibility check procedure is essential to ensure the feasibility of this
problem owing to the fixed travel demand between each O-D pair. The BEV drivers would prefer
physically short paths when their driving distance limit is low. The GV drivers would use those longer

links with less BEVs to reduce their travel time.
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The second objective is to investigate the effect of a flow-dependent link energy consumption on
stochastic traffic assignment of BEVs. This task employed a more realistic assumption that BEVs’
energy consumption rate is based on not only distance but also travel time which makes it a path-based
flow-dependent general stochastic traffic assignment problem. A key contribution of this task is to enrich
the STAP family with path-based constraints. A solution framework was proposed to solve this type of

model.

The third task involved identifying the potential location of charging facilities to maximize the exposure
to BEV drivers. The results suggest that the equilibrium traffic flows are affected by charging speed,
range limit, and charging facilities’ utility and that BEV drivers incline to choose the route with charging

stations and less charging time.

The final objective investigates a new way of refuelling for BEBs: battery swapping. Four fundamental
guestions are answered: How many BSSs should there be? Where should they be? Which BEBs should
they serve? How big should they be? Results shows that the battery capacity would affect the number
of BSS to locate and the local charging system configuration mainly depends on the charger and battery

costs.

In summary, this thesis provides a number of original contribution to knowledge in the field of transport
network modelling by addressing important methodological issues as well as the consideration of

practical application.
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Chapter 1: Introduction

CHAPTER1 INTRODUCTION

1.1 Overview

This thesis focuses on transport network modelling and designing with the emphasis on electric vehicles
link flow prediction and charging facility location problem (CFLP) for both private electric vehicles and
electric buses. The thesis seeks to understand the primary behaviour and characteristic of battery electric
vehicles (BEV) that distinguishing BEV from gasoline vehicles (GV) and to predict the traffic network
equilibrium flows when BEVs account for a given amount of total travel demand. Moreover, it develops
general stochastic user equilibrium (SUE) models with flow-independent path distance constraints and
flow-dependent battery capacity constraints in a traffic network, which accounts for BEV’s behaviour and
characteristic. The thesis further investigates the refuelling facility location problems for both private
vehicles and public transport, namely BEV and electric buses (EB), in terms of their different
characteristics. This introductory chapter presents the background to the thesis, followed by a description

of the research aims and objectives. The last part of this chapter shows the organization of the thesis.
1.2 Background and motivations

Electric vehicle (EV) is a broad term that Any passenger vehicle with a battery component that provides
the propulsion to the vehicle could be an EV. Generally, there are two types of propulsion designs to be
found in passenger road vehicles today. The internal combustion engine (ICE) is the dominant design for
propulsion. As we are moving towards an increased electrification of the road vehicles, an increased use
of electric motors (EMs) is applied within passenger road vehicles. The different designs have been
developed to foster the transition, including the hybrid electric vehicle (HEV), plugin hybrid electric
vehicle (PHEV), the extended range electric vehicle (EREV), the battery electric vehicle (BEV) and the
fuel cell electric vehicle (FCEV). The HEV and the PHEV use both an ICE and EM for the propulsion of
the vehicle. However, an EREV uses the ICE only to charge the battery, which in turn propels the vehicle.
One could argue that it is in essence a BEV, but uses additional means (i.e. a gasoline engine) to charge
its batteries. The BEV makes fully use of an electric motor for its propulsion as well as the FCEV (Bakker
2011). In this thesis, BEV would be the main focal point including the electric buses (EB).

Many studies have been done over the years to recognize the value of EV: helping to solve the environment
problem and easy their potential impact in transport sector, as well as governments and EV companies are
encouraging the ownership of EV through economic incentives. However, at the initial stage of the market,
a more wide-spread use of EV is still hindered by limited battery capacity and deployment of charging
stations. And they do not mention that the capacity of these stations is typically quite limited and some of
them are not open to the public (Jiang et al. 2013). On top of that, high purchase cost for EV, safety and
liability concerns, long charging time, fuel cost and improvements of the competitors remain to be other

barriers for EV adoption. It is obvious that the driving range limit inevitably adds a certain level of
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Chapter 1: Introduction

restrictions to BEV drivers’ travel behaviours, at least in a long future period prior to the coverage of

recharging infrastructures reaching a sufficient level.

The widespread adoption of BEVs calls for fundamental changes to the existing network flow modelling
tools, which is for properly capturing changed behaviours and induced constraints in forecasting travel
demands and evaluating transportation development plans. In the past, one of the most challenging aspects
of traffic assignment research is the inability to adequately predict the link flows, in order to propose
appropriate counter-measures or design transportation infrastructure, that will improve social resource

distribution.

Researchers have attempted to investigate the equilibrium BEV flow regarding the growing BEV travel
demand. Deterministic traffic assignment problem (TAP) in the context of EV is widely studied (Jiang, Xie
2014; Jiang et al. 2012; Jiang et al. 2013; Xie,Jiang 2016; Xie et al. 2017; Xu et al. 2017; Zheng et al.
2017). BEV drivers’ route choice behaviour can potentially lead to more accurate assignment results by
taking BEVs’ driving and charging behaviour into account (Adler et al. 2014; Okan et al. 2014). Omission
of drivers’ imperfect knowledge of path travel cost may lead to biased estimates of the predicted BEV
flows. Accounting for the travel cost perception errors improves the precision of the estimated equilibrium
link flows. In other words, stochastic traffic assignment models have not been studied considering EVs
and its limited driving range in the network with urban transportation planning to predict the EV flow
patterns in the near future. The driving range limit and the lack of charging infrastructure are two main
characteristics of EVs at the current stage. To our best knowledge, it remains unsolved about how to
develop the general SUE traffic assignment model with path distance constraints as well as the
corresponding solution algorithms. The main reason is that adding path distance constraints into
Daganzo’s model cannot yield an optimization one of the generalized SUE conditions, in spite of the
successful application in modelling the generalized DUE conditions. It is believed that this thesis is the

first study attempting to seek the solution to such a challenging problem.

Charging/swapping facility are regarded as an indispensable component for BEV network as gas stations
for GV network. However, currently, the chicken and egg problem (Melaina 2003)—who would build and
buy the BEVs if a refuelling infrastructure is not in place and who would build the refuelling infrastructure
before the BEVs are built—remains the most intractable barrier. A more wide-spread use of EVs is still
hindered by limited battery capacity, which allows cruising ranges of only 150 to 200 kilometres (Andreas
et al. 2010) except for Tesla models. An extensive research exists on refuelling infrastructure problem,
adopting different assumptions (fixed travel demand, simple distance-constrained vehicle routing, etc),
various objectives (e.g. maximization of BEV service levels, minimization of total cost, etc) and different
types of constraints. Most of them have not considered the equilibrium BEV flows in the transport
networks. As part of the transportation electrification plan, EBs have received significant attention
worldwide with the advance in battery and bus manufacturing technologies. Theoretically, EBs can travel

up to 250 km. Various factors, including air conditioning, driving behavior, and battery aging issues can
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Chapter 1: Introduction

significantly reduce the EBs’ operational range, often making EBs incapable of finishing a whole day’s
work without battery recharging (Li 2016). BSS are recommended as a promising strategy to eliminate
barriers of long charging time and limited mileage range faced by EVs. Generally, there are two types of
operation modes for BSSs in terms of the way of dealing with depleted batteries: central charging and
local charging (Tan et al. 2014). To avoid the tedious battery shipping between BSSs and central charging
stations and promote the development of BSSs for EBs, the optimal BSSs’ location and its local charging
system design should be investigated together. Overall, the deployment of charging facility should

consider charging/swapping facilities not only for private BEVs but also for public EBs.
1.3 Problem statement

One of the major problems facing transportation engineers and urban planners is to predict the impact of
given transportation scenarios. For a transport network with EVs, the amount of EV drivers’ trip taking
place at a given moment on any street in an urban area is the result of many EV drivers’ decisions. EV
drivers choose whether and when to take a trip, which mode of transportation to use, where to go, and
which way to get there. In this thesis, the analytical part of this problem can be dealt with in two main
stage. First, the scenarios are specified mathematically in the traffic assignment models as a set of inputs.
which are used to predict the flow pattern resulting from such a scenario in transport planning. Second,
the resulting flow pattern is used to calculate an array of charging facility location plans that characterize
the scenario under study. In the second stage, the charging facility location plans use the flow pattern as a
major input, especially for private BEVs.

1.3.1 Range anxiety and range limit

Many cities are planning the construction and expansion of charging infrastructures for BEVs. It is likely
that BEV commuters will need to charge their vehicles at home most of the time due to the availability of
public charging stations in the foreseeable future (Marrow et al. 2008). For many EVs, the current method
of recharging the vehicle battery is to plug the battery into the power grid at places like the home or
office(Bakker 2011; Kurani et al. 2008) , which requires an extended period of time to recharge before
massive adoption of fast chargers and swapping facilities. However, it is much more costly to operate fast
charging stations and it still takes much more time to recharge than a standard gasoline vehicle would take
to refuel(Botsford,Szczepanek 2009). Due to the lack of standardization in batteries and its charging
interfaces, BSSs are more suitable for buses and taxis rather than private vehicles (Zheng et al. 2014).
These inherent problems, combined with a lack of refuelling infrastructure, are inhibiting a wide-scale
adoption of EVs, especially apparent in longer trips, or inter-city trips. Range anxiety, when the driver is
concerned that the vehicle will run out of charge before reaching the destination, and range limit are major
hindrance for the market penetration of EVs(Yu et al. 2011; Jeeninga et al. 2002; Sovacool,Hirsh 2009;
Mock et al. 2010). Thus, comparing with GVs, range limit and range anxiety need to be taken into
consideration in stochastic traffic assignment models in order to effectively contribute to a more reliable

BEV flow prediction and subsequent charging facility deployment. A major objective of this thesis is to
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Chapter 1: Introduction

investigate range limit and its impact on stochastic traffic assignment models. The range limits of BEVs
are defined in two ways: flow-independent energy consumption (driving distance limit only) and flow-
dependent energy consumption (energy consumption increases with the travel time). For the driving
distance constraint, the usability of a path chosen by BEVs is independent of traffic flow and can be pre-
determined. According to a study by Bigazzi,Clifton (2015), the traffic congestion affects the fuel
economy of BEVs and BEVs may become more fuel efficient when the average speed increases. The

insufficient public charging stations and its impact on STAP are also investigated.
1.3.2 General SUE models with side constraints

There has been a great interest among transport researchers in developing and using advanced choice
models to represent EV drivers' route choice behaviour and their reaction and adaptation to different
changes in the transport system in a sufficient accuracy. Modelling route choice behaviour, however, is
one of the most challenging issues in travel demand analysis. The presence of a huge number of feasible
alternative routes connecting each O-D pair in a typical transport network, as well as the fact that route
characteristics, notably travel times, are dependent on users’ behaviours and decisions, has made this one

of the most challenging areas of transport engineering.

A probabilistic approach of network analysis has been originally developed to represent the uncertainties
involved in modelling route choice behaviour including errors in perception, measurement and model
specification. This class of stochastic models can potentially provide a more precise representation of
behaviour through the more flexible modelling structure. The stochastic user equilibrium (SUE) model is
well recognized in the literature. It relaxes the perfect information assumption of the deterministic user
equilibrium model by incorporating a random error term in the route cost function to simulate travellers’
imperfect perceptions of travel times. Route choice models, under this approach, have different
specifications according to the modelling assumptions on the random error term. The two commonly-used
random error terms are Gumbel and normal distributions, corresponding to the logit-based and probit-
based route choice models, respectively (Dial 1971; Daganzo,Sheffi. 1977). In recent years, there has been
a growing recognition of the advantages of path-based stochastic traffic assignment methods. It has been
established that SUE models allow the adaptation of random-utility in the analysis of transport networks
to address different behavioural aspects of travellers' decision. Comparing with GVs, the choice sets that
EV drivers considered are considerably ambiguous (and potentially large) to the modeler in a route choice
setting, but also the attributes of alternatives are subject to alteration according to decision makers'
perception of EV’s range, energy consumption and travel time, and hence, they could be determined
through solution of a large-scale stochastic equilibrium mathematical problem instead of deterministic

user equilibrium (DUE).

In addition, a considerable amount of research has formerly been conducted in DUE area with aforesaid

constraints focusing on EVs’ behaviours. Shortest path is commonly used in DUE to do all-or-nothing

4|Page



Chapter 1: Introduction

assignment, while advances in the efficiency of computer analysis have allowed modelers to generate and
store path-flow variables explicitly in SUE. Having their own theoretical and computational challenges,
the path set problems share a similar concern about how to produce manageable-sized and heterogeneous
subsets from universal sets of alternatives which include the actual competitor paths mostly considered by
EV travellers while excluding the irrelevant paths or infeasible paths which are rarely considered by EV
users. This study will investigate the influence of the size of generated path sets on the outcome of SUE

flow.

Side constraints are usually introduced for refining a descriptive or prescriptive traffic equilibrium
assignment model. There are several diverse reasons for side constraints, such as describing the effects of
traffic control policies, describing flow restrictions and improving an existing traffic equilibrium model
for a given application by introducing further information about the traffic flow situation at hand. Various
side constraints have been introduced to DUE models (Larsson,Patriksson 1999; Yang,Huang 2005) and
the corresponding solution algorithms have been extensively investigated. In this study, we show that the
side constraints regarding BEVs are range limit constraints in essence. The constrained problem is
equivalent to an SUE model with travel cost functions properly adjusted to consider the range limit through
the side constraints. Although the SUE principle plays a role as same as the DUE principle in describing
drivers’ route choice behaviour, the general SUE TAP has received little attention due to the complexity
of general SUE problem. It has been pointed out that directly adding side constraints into the well-known
minimization model for probit-based SUE problem does not give us an equivalent minimization model to
the probit-based SUE traffic assignment with side constraints (Meng,Liu 2011). The modelling technique
developed by (Meng et al. 2008) remains to be the sole model to address the general SUE TAP with link
capacity constraints. To deal with BEVs’ range limit, the proper SUE TAP models are explored to address

the battery capacity issues and insufficient public charging stations.
1.3.3 Charging/swapping facilities

Lastly, there are three levels of EV chargers, which are categorized by voltage and power levels: Level |
is 120V alternating current (AC) up to 20A (2.4kW), Level Il is 240V AC up to 80A (19.2kW), and Level
111 (which is yet to be defined fully) will likely be 240V AC and greater at power levels of 20-250kW.
Level | and Level Il charging can be referred to as slow charging. A Level 11l connector are DC fast
charger (SAE J1772 2010). Slow charging usually takes hours to refuel whereas fast charging may only
need less than 20 minutes to charge a depleted battery. According to Huang et al. (2016), the charger costs
is from $1,000 to $100,000 depending on the charging speed. One should weigh the costs, charging
efficiency, battery life and other factors in choosing the charging method. BSS, which removes depleted
batteries on board and replace the batteries with fully charged ones, is an alternative strategy to reduce
charging time and range anxiety (Avci et al. 2014). The most outstanding feature of this strategy is that

BSSs can complete the swapping process in less than 10 minutes. The depleted battery can be left
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overnight to get charged at a discounted electricity price. However, due to the lack of standardization in
batteries and its charging interfaces, BSSs are more suitable for buses and taxi rather than private vehicles
(Zheng et al. 2014). Different charging methods and charging equipment are suitable for different EV
types. Charging/swapping facilities deployment for both private BEVs and public EBs are investigated in

this thesis using different modelling techniques.
14 Research objectives

The broad aim of this thesis is to develop stochastic traffic assignment models for BEV network
equilibrium analysis and charging facility location models for BEV and BEB whilst considering the BEVs’
behaviour and the charging facilities characteristics. To achieve this research aim, a few specific objectives

are outlined as follows:
1. Investigating the primary behaviour and characteristic of BEV that distinguish BEV from GV

2. Developing a general SUE model with flow-independent path distance constraints in a mixed

BEV and GV flow network accounting for BEV’s behaviour and characteristic

3. Extending the SUE model with battery capacity constraints that flow-dependent path energy

consumption depends on both travel time and travel distance
4. Developing charging facility location model that maximize the coverage with limited budget
5. Developing a new model for BSS location problem with local charging system to serve BEB fleet
15 Contributions of this thesis

In response to four research gaps associated with the STAP models with BEVs and location problems of
the battery charging/swapping facility serving BEVs and BEBs, this thesis makes eight original

contributions to knowledge:
Methodological and algorithmic developments:
e New general SUE model considering flow-independent BEVs’ driving distance constraints.

e New method for solving the proposed general SUE model with driving distance constraints of
BEVs.

o New general SUE model with flow-dependent battery capacity constraints accounting for a more

reasonable battery consumption based on both distance and travel time.
o New methodology for solving general SUE model with limited battery capacity of BEVs.

o New charging facility location model considering a SUE BEV flow pattern and charging facility

deployment.
¢ New method for solving the proposed bi-level SUE-based BEV charging facility location problem.

e New swapping facility model considering local charging system serving BEB fleet.
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¢ Anunderstanding of the effects of various factors in the swapping facility system.
1.6 Organization of the thesis

Figure 1-1 presents the structure of this thesis. The thesis is divided into four parts and is made up of eight

chapters.
e Part | (Chapters 1-3) covers background, literature and methodology,

e Part Il (Chapters 4-5) consists of the development of stochastic traffic assignment models with
BEVs,

o Part Il (Chapters 6-7) discusses refuelling facility location models for both BEVs and EBs, and
e Part IV (Chapter 8) includes thesis synthesis and conclusions.

Part | of the thesis is made up of three chapters. Chapter 1 introduces the background , the research aims
and the objectives and the overall structure of the thesis. Chapter 2 presents a summary review of literature
on previous traffic assignment studies of BEVs and charging facility location problem. This chapter
reviews the various issues in current EV charging network design studies and presents the gaps or
limitations in the literature which are addressed by the thesis in the later chapters. In Chapter 3, there is a

brief overview of the research methodology used this study.

Part Il of the thesis focuses on the development of SUE traffic assignment model of BEVs with limited
range limit using advanced techniques such as the modified MSA, Lagrangian dual, gradient projection
and column generation. These models are developed because they are able to address drivers’ perception
errors, and path choice limitation. Chapter 4 develops SUE model with driving distance limit in a network
with mixed GV and BEV flows. In Chapter 5, the issue of range limit is further defined by BEVs’ battery
capacity. The energy consumption is based on not only distance travelled but also time consumed. A more
general SUE model is developed to address the impact of the flow-dependent battery consumption rate.

Chapter 4 & 5 include published materials from paper 1 and 2 respectively.

Part 11l concentrates on the development of charging facility models. Chapter 6 investigates the
deployment of charging facility for BEVs to maximize the coverage of BEV flows. The lower level
problem is to address SUE BEV flow pattern considering the deployment plan in the upper level. Chapter
6 includes published materials from paper 3. Chapter 7 focuses on the application of charging facility
location model for electric buses fleet and the understanding of the operating EBs with BSS as a likely

replacement for conventional diesel bus.

Part 1V, Chapter 8 is the concluding chapter of the thesis and provides a summary of key findings,

implications, limitations, and directions for future research.
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PART I: BACKGROUND, LITERATURE AND METHODOLOGY

CHAPTER 1: INTRODUCTION
Background, research aim, objectives and thesis structure

CHAPTER 2: LITERATURE REVIEW
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CHAPTER 4:
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CHAPTER 2 LITERATURE REVIEW

Part of the material in this chapter is from the peer-reviewed journal paper: Jing, Wentao, Yadan Yan,
Inhi Kim, and Majid Sarvi. "Electric vehicles: A review of network modelling and future research
needs." Advances in Mechanical Engineering 8, no. 1 (2016): 1687814015627981.

2.1 Introduction

The aim of this chapter is to provide a review of the existing literature on modelling and designing of
transport networks with electric vehicles and their combination effects. Considering that the focus of
this thesis are the EV flow prediction and EV refuelling facility deployment identified in Section 1.3,
the objectives of this review are to provide the understanding of:

o EV market potential, demand & behaviour study (Section 2.2)
o Deterministic traffic assignment problem of vehicles with range limit (Section 2.3)

¢ Methodological issues of stochastic traffic assignment problem with side constraints (Section
2.4)

e BEV Charging stations location problem studies (Section 2.5.1)

BEB swapping station location problem studies (Section 2.5.2)

This chapter is organised in accordance with these objectives. It concludes with a summary of gaps in
knowledge identified through this literature review. Opportunities to advance knowledge in addressing
these gaps are also discussed, which are then addressed in the following chapters of the thesis.

2.2 EV market potential, demand & behaviour study

Battery electric vehicles (BEVS), as one of the alternative fuel vehicles (AFVs), are believed to be a
solution, for alternative fuels are addressed as a new fuel choice to reduce GHG emissions (OECD-ITF
Joint Transport Research Centre 2008). However, a more wide-spread use of EVs is still hindered by
limited battery capacity, which allows cruising ranges of only 150 to 200 kilometres (Andreas et al.
2010). Currently, the chicken and egg problem (Melaina 2003)—who will build and buy the AFVs if a
refuelling infrastructure is not in place and who will build the refuelling infrastructure before the AFVs

are built—remains the most intractable barrier.

It is obvious that the driving range limit inevitably adds a certain level of restrictions to battery electric
vehicle (BEV) drivers’ travel behaviours, at least in a long future period prior to the coverage of
recharging infrastructures reaching a sufficient level. The widespread adoption of plug-in electric
vehicles (PEVs) calls for fundamental changes to the existing network flow modelling tools for properly
capturing changed behaviours and induced constraints in forecasting travel demands and evaluating

transportation development plans (Jiang et al. 2013).
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Smart et al analysed the BEV drivers (Nissan LEAF) drove 6.9 miles per trip and 30.3 miles per day on
average, and the average number of charge times per day were 1.05 per day. Besides that, 82% of
charging events were conducted at home(Smart,Schey 2012). Chargers and associated cords are
categorized by voltage and power levels: Level | is 120V alternating current (AC) up to 20A (2.4kW),
Level I1is 240V AC up to 80A (19.2kW), and Level 111 (which is yet to be defined fully) will likely be
240V AC and greater at power levels of 20-250kW. The SAE J1772 standard defines a five-pin
configuration that will be used for Level | and Level Il charging. A Level Ill connector and the use of
the current connector for direct current (DC) power flow are under development (SAE J1772 2010).
Markel summarized the components of the PEV infrastructure, challenges and opportunities related to
the design and deployment of the infrastructure and the potential benefits (Markel 2010). Dong,Lin
(2014) proposed a stochastic modelling approach to characterize BEV drivers’ behaviour using
longitudinal travel data to account for more realistic analysis of the charging station impact on BEV
feasibility. The actual range of a BEV is regarded as a Weibull-distributed variable and between-charge
travel distances is represented by Poisson-gamma distribution. Hidrue et al. (2011) used a stated
preference study to analyse customers’ willingness to pay for EVs and their attributes, showing that
driving range, fuel cost savings and charging time lead in importance and battery cost must drop
significantly before EVs will find a mass market without subsidy. He et al. (2013). proposed a model
that captures the interactions among availability of public charging opportunities, prices of electricity
and destination and route choices of PHEVS.

2.3 Deterministic traffic assignment problem of vehicles with range limit
2.3.1 DUE of EVs with range limit

Traffic assignment is in general characterized as an uncapacitated nonlinear multi-commaodity network
flow problem under some given optimal or equilibrium routing principle. It has long been recognized
as the last step of the traditional four-step travel demand modelling process and widely used an
evaluation tool for a variety of urban and regional traffic network analyses (Xie,Waller 2012). Since
Beckmann et al. (1956) first devised a set of nonlinear programming formulations for the TAPs with
the first and second Wardropian principles, various types of traffic assignment models have been
developed in past decades. These TAPs have been written as optimization programs, variational
inequalities, complementarity systems, or fixed-point problems (Patriksson 1994; Florian,Hearn 1995).
It has been shown by Beckmann et al. (1956) that the link traffic flow pattern in agreement with the
UE principle could be uniquely determined by solving a convex mathematical program, if link travel
times on a road network are separable/integrable, convex and monotonically increasing functions of
link traffic flows. Estimating these link cost functions (or link performance functions) is a non-trivial
task that involves choosing appropriate functional forms and calibrating corresponding parameters.

Most link performance functions used in practice, including the well-known Bureau of Public Roads
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(BPR) function, are polynomials whose degree and coefficients are specified from statistical analysis
of real data (Nie et al. 2004).

In addition to Beckmann et al.’s classic formulations [i.e., deterministic user-equilibrium (DUE) and
deterministic system-optimal (DSO) models], the Wardropian principles have also been extended to
stochastic problems represented by optimization programs, including the stochastic user-equilibrium
(SUE) model (Sheffi,Powell 1982) and the stochastic system-optimal (SSO) model (Maher et al. 2005).
More general elastic-demand cases of these TAPs as optimization programs have also been proposed,
such as the DUE problem with elastic demand (Beckmann et al. 1956) and the SUE problem with elastic
demand (Maher 2001). Xie,Waller (2012) first presented an alternative common optimization
formulation that can be used to represent each of TAPs (DUE, DSO, SUE and SSO), if a proper

specification of its cost and cost variance terms is given.

It is well recognized that the standard TAP can be solved efficiently with a Frank-Wolfe type algorithm.
The existing TAP models should be modified to better describe commuters’ behaviour with the
prevalence of BEVs. There have been many endeavors to address this problem. Among which, some
studies enforce flow of a path to be zero if the path distance is greater than the driving range limit of
BEVs. The classic Frank-Wolfe method with a constrained shortest path algorithm can be applied to
solve this problem under DUE (Jiang et al. 2012). As an extension of static path distance constraint,
stochastic range anxiety resulting in stochastic path distance constraint has been considered in networks
(Xie et al. 2014; Xie et al. 2017; Wang et al. 2016). Network equilibrium problem is further addressed
when modelling transportation networks that accommodated both gasoline vehicles (GVs) and BEVs
(Jiang,Xie 2014; Jiang et al. 2013; Xu et al. 2017). A multi-class dynamic user equilibrium model is
proposed to evaluate the performance of the mixed traffic flow network, where GVs chose paths with
minimum travel time and BEVSs selected paths to minimize the generalized costs including travel time,
energy cost and range anxiety cost. It is also pointed out that the BEV energy consumption rate per unit
distance travelled is lower at moderate speed than at higher speed resulting in an equilibrium that BEVs
choose paths with lower speed to conserve battery energy (Agrawal et al. 2016). Relay/charging
requirement has been taken into account in network equilibrium problems and is formulated as a
nonlinear integer programming (Xie,Jiang 2016). It is found that traffic congestion would affect fuel
economy of BEVs and BEVs might become more fuel-efficient as the average speed increases,
particularly at local arterials (Bigazzi,Clifton 2015). Hence, another work considered recharging time
based on flow-independent energy consumption in the base network equilibrium model and further
extended the proposed DUE model with flow-dependent energy consumption assumption (He et al.
2014).

2.3.2 Shortest path problem with range limit

It is well recognized that the standard TAP can be solved efficiently with a Frank-Wolfe type algorithm

in which the linearized sub-problem is finding shortest paths for each OD pair. The problem of finding
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the shortest path for an EV was originally discussed by Ichimori et al. (1981), where a vehicle has a
limited battery and is allowed to stop and recharge at certain locations. Lawler (2001) sketched a
polynomial algorithm for its solution. Adding refuelling stations to the shortest weight-constrained path
problem (SWCPP), which is known to be NP-Complete (Desrochers,Soumis 1989; Desrosiers et al.
1984), has been discussed by Laporte,Pascoal (2011) and Smith et al. (2012), and, since the fuel and

length components of the arcs are not related, the problem is still NP-hard.

Numerous works have addressed the classical vehicle routing problem (VRP) with capacity and
distance constraints (Laporte et al. 1985.). Erdogan,Miller (2012) extended the VRP to accounts for the
additional challenges associated with operating a fleet of AFV considering the driving range limit as
well as the limited refuelling infrastructure. In SWCPP, there are typically two independent measures
such as cost and time associated with a path (Desaulniers,Villeneuve 2000; Ahuja et al. 2002).
Kobayashi et al. (2011) and Siddigi et al. (2011) further included battery recharging stations in their
models and proposed heuristic techniques as solution methodologies. Ryan,Miguel (2011) introduced
the so-called recharging vehicle routing problem where vehicles with limited range are allowed to
recharge at customer locations mid-tour. Okan et al. (2014) introduced the minimum cost path for PHEV
in a network with refuelling and battery switching stations, considering electricity and gasoline as
sources of energy with different cost structures and limitations. Adler et al. (2014) proposed an EV
shortest-walk problem to determine the shortest travel distance route which may include cycles for
detouring to recharging batteries from origins to destinations with minimum detouring. Besides, it
improved on that work by adding a limit to the number of times the vehicle can stop. Cabral et al. (2007)
studied the network design problem with relays (NDPR) on an undirected graph, which generalized the
shortest path problem with relays and the weight constrained shortest path problem, trying to minimize
the total edge costs plus relay costs. The length between two consecutive relays would not exceed a pre-
set upper bound. The problem of energy efficient routing of EV has been addressed and polynomial
time algorithms have been developed in the literature by considering limited cruising range and
regenerative breaking (i.e. the EV increases its level of energy when breaking) capabilities of EV which
is actually a special case of the constrained shortest path problem (Andreas et al. 2010; Sachenbacher
et al. 2011; Eisner et al. 2011).

Several articles addressed the minimum cost path problem of conventional vehicles (MCPP-CV) in the
literature (Lin 2008a, b; Lin et al. 2007; Khuller et al. 2007; Suzuki 2008, 2009, 2012). If each arc
required an amount of fuel that did not depend on the length of the arc, and the goal is to find the shortest
path constrained on the amount of fuel used (and the vehicle cannot stop to refuel), then the problem is
exactly the shortest weight-constrained path problem (Garey,Johnson 1979). This problem is NP-hard
and has been discussed extensively in the literature (Handler,Zang 1980; Beasley,Christofides 1989;
Desrochers,Soumis 1988; Xiao et al. 2005). Some new logistical problems which were relevant to the

design and operations of a fleet of EV vehicles operating within a battery-exchanging infrastructure
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were discussed from an operations research perspective (Mirchandani et al. 2014). Table 2-2 is the

summary of the relevant research.
24 Stochastic traffic assignment problem with side constraints& path-based Algorithm
2.4.1 Models and solution algorithms for the general SUE problem

The SUE model is well known in the literature. It relaxes the perfect information assumption of the
DUE model. This assumption is unrealistic even if the users have a long-term experience about the
network conditions, due to the daily variations of travel times and the diversity from users’ sense of
time. A well-known breakthrough on this issue was made by (Daganzo,Sheffi. 1977),where a random
error term was incorporated in the route cost function to simulate travellers’ imperfect perceptions of
travel times . Travellers’ perceived travel times equal to the actual travel time plus a multivariate random
variable. The route choice models, under this approach, can have different specifications according to
the modelling assumptions on the random error term. The two commonly used random error terms are
Gumbel and normal distributions, corresponding to the logit-based and probit-based route choice
models, respectively (Dial 1971; Daganzo,Sheffi. 1977). The travellers would choose the route with
minimal perceived travel time. In this work, a conceptual framework of general SUE problem as well
as stochastic network loading (SNL) is provided. Regarding the equivalent mathematical model for the
general SUE problem, (Daganzo 1982) provided an unconstrained convex optimization model which
requires calculating the inverse travel time functions and are computationally demanding.
(Sheffi,Powell 1982) therefore transformed this model and developed an convergent solution algorithm
to solve the proposed model (MSA) (Powell,Sheffi 1982) which is much easier in terms of computation.
Convergence of the MSA type algorithms are usually proven by virtue of the Blum’s theory (Daganzo
1983; Cantarella 1997). Another efficient solution algorithm called Stochastic Assignment Method
(SAM) was developed by Maher,Hughes (1997) which adopts the Clark’s approximation to calculate
the objective function.

The logit-based route choice model has a closed-form probability expression, and the equivalent
mathematical programming (MP) formulation can be formulated with an entropy-type model for the
logit-based SUE problem (Fisk 1980). The choice probability of logit-based SUE merely depends on
the cost difference between two paths. The logit-based SUE has an inherent defect which is known as
Independent and Irrelevant Alternatives (I1A) property despite of its computational advantages. That
depends on the differences of travel time only and is insensitive to network tepology (Sheffi 1985).
Probit-based SUE takes into account the correlation of the travel costs on different paths, thus
overcomes the I1A problem. Therefore, probit-based model has better representativeness to the practical
conditions and it is a superior representativeness of the SUE problems. However, despite these robust
characteristics, no closed form can be provided for the choice probability of probit-based problem, thus
it is approximately solved by two types of methods: analytical approximation methods and Monte Carlo

simulation-based methods. In this study, Monte Carlo simulation would be used for probit-based SNL.
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Compared with logit-based SUE, the research for probit case is quite limited in recent years(Liu,Meng
2013; Meng,Liu 2011; Meng,Liu 2012).

The aforementioned models and algorithms for general SUE problem are effective for both logit-based
and probit-based SUE problem. In this thesis, models of general SUE problem are of my interests and
general SUE models with path-based constraints have been developed to fill the research gaps.

2.4.2 Path-based algorithms for solving SUE problem

As claimed above, various solution algorithms have been proposed to solve either logit-based or probit-
based SUE problems. Early algorithms developed to solve the logit-based SUE problem were link-
based [e.g.(Maher 1998)], These link-based algorithms do not require path storage and often use Dial’s
STOCH algorithm or Bell’s alternative as the stochastic loading step (Bell 1995a; Dial 1971). This
algorithm only covers those “reasonable” routes which take the drivers farther from the origins and
closer to the destinations. Path-based algorithms require explicit path storage to directly compute the
logit route choice probabilities. Olof et al. (1996) developed a path-based algorithm based on the
disaggregated simplicial decomposition algorithm to solve the MNL SUE problem. Bekhor,Toledo
(2005). compared path-based algorithms for the MNL SUE problem, and showed that the disaggregated

simplicial decomposition algorithm is superior to the path-based MSA algorithm.

Xu et al. (2012) investigated different strategies for determination of step size of the path-based
algorithms developed to solve the C-logit SUE models based on an adaptation of the GP method. Three
strategies were investigated: (a) predetermined step size(Nagurney,Zhang 1996), (b) Armijo line search
(Larry 1966; Bertsekas 1976), and (c) self-adaptive line search. The predetermined step size
circumvents the difficulty in line search but also brings an inferior sub-linear convergent speed. The
solution procedure of the general GP algorithm to solve the C-logit SUE problem is provided. The self-
adaptive step size strategy was originally proposed by He et al. (2002) for the Goldstein—Levitin—Polyak
projection algorithm. Recently, Chen et al. (2012). adopted this strategy in the GP algorithm to solve
the non-additive traffic equilibrium problem. The main idea of this strategy is to determine a suitable
step size automatically from the information derived from previous iterations. This strategy is
reminiscent of Bertsekas’s generalized Armijo rule. However, it is more practical and robust since the
step size sequence is allowed to be non-monotone. A particular strategy for step size determination is
not specified. It is found the GP algorithm with the self-adaptive step size strategy performs better than
other step size determination strategies. The MSA strategy has a fast convergence in the early iterations.
However, it cannot achieve an accurate solution within an acceptable computational budget because of
the sub-linear convergence rate. The Armijo strategy is a widely used inexact line search strategy.
However, it always starts from a fixed initial step size, which is nontrivial to choose without a priori
knowledge. The quality of initial step size thus strongly affects the algorithmic performance. In contrast,
the self-adaptive step size strategy adjusts the next initial and, consequently, the next acceptable step

sizes according to the previous iterative information. This treatment permits the initial and acceptable
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step size sequences to be non-monotone (i.e., to decrease as well as increase). This mechanism makes
the algorithm insensitive to the initial step size setting, thereby guaranteeing the robustness and
efficiency of the algorithm (Xu et al. 2012).

Thus, different strategies can be embedded. To have a fair comparison of different step size strategies,
a working route set is used. This set could be obtained from a route choice set generation algorithm
(Bekhor et al. 2006). Behaviourally, it had the advantage of explicitly identifying those routes that were
most likely to be used and also allowed greater flexibility to include route-specific attributes that might
not be obtainable directly from the link attributes(Cascetta et al. 1997; Bekhor et al. 2006).A column
generation procedure could also be readily embedded in the GP algorithm (Chen,Jayakrishnan 1998).
He et al developed a class of projection and contraction method (He 1997). Chen et al. (2001) considered
solving the non-additive traffic equilibrium problem, which is formulated as a nonlinear
complementarity problem (NCP) and solved by a self-adaptive projection and contraction method.
Among the path-based algorithms for the traffic equilibrium problem with additive path costs, much of
the recent attention has been focused on the disaggregate simplicial decomposition (DSD) algorithm,
which was proposed by Larsson and Patriksson (Larsson,Patriksson 1992), and the GP algorithm (Chen
et al. 2001). A comparison work between these two path-based algorithm could be found (Chen,Lee
1999).

Meng et al. (2007) found that adding link capacity constraints into Daganzo’s model (Daganzo 1982),
undoubtedly, would lead to a linearly constrained minimization problem. Nevertheless, any optimal
solution of the induced minimization model did not fulfil the generalized SUE conditions. This
indicated that the typical technique used in modelling the generalized DUE conditions isnot available
for the generalized SUE conditions except the logit-based generalized SUE conditions formulated by
Bell (Bell 1995b).Then a general SUE TAP with link capacity constraints is proposed. It first proposed
a novel linearly constrained minimization model, inspired by Maher et al. (2005) who formulated a SSO
that related to SUE in the same way as the SO related to the UE, in terms of path flow. As the objective
function of the proposed model involved path-specific delay functions without explicit mathematical
expressions, its Lagrangian dual formulation is analysed. On the basis of the Lagrangian dual model, a
convergent Lagrangian dual method with a predetermined step size sequence was developed (Meng et
al. 2008) . Meng,Liu (2011) extended Meng’s model for the side-constrained probit-based SUE problem
with elastic demand to investigate availability of trial-and-error method for the effective toll pattern of

cordon-based congestion pricing scheme

This study aims to use two general SUE models based on models developed by Sheffi (1985) and Meng
et al. (2008) respectively for solving the general SUE problem of EVs with range limits. The MSA
method is modified to eliminate the paths exceeding driving distance limit in the first model by adding

a path processing step and modifying SNL procedure.
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25 Charging stations location problem studies
2.5.1 Location problem of charging facility for private BEVs

Although many cities are planning the construction and expansion of charging infrastructures for BEVs,
itis likely that in the foreseeable future BEV commuters will need to charge their vehicles at home most
of the time (Marrow et al. 2008). For many electric vehicles, such as the Nissan LEAF or Chevrolet
VOLT, the current method of recharging the vehicle battery is to plug the battery into the power grid at
places like the home or office (Kurani et al. 2008). The battery requires an extended period of time to
recharge, this method has an implicit assumption that vehicle will be used only for driving short
distances. EV companies are trying to overcome this limited range requirement with fast charging
stations; locations where a vehicle can be charged in only a few minutes to near full capacity. Besides
being much more costly to operate rapid recharge stations, the vehicles still take more time to recharge
than a standard gasoline vehicle would take to refuel (Botsford,Szczepanek 2009). These inherent
problems, combined with a lack of refuelling infrastructure, are inhibiting a wide-scale adoption of
electric vehicles. These problems are especially apparent in longer trips, or inter-city trips. Range
anxiety, when the driver is concerned that the vehicle will run out of charge before reaching the
destination, is a major hindrance for the market penetration of EVs (Mock et al. 2010). Hybrid vehicles,
vehicles which have both an electric motor and a gasoline engine, have been successful since they
overcome the range anxiety of their owners by also running on gasoline. However, since hybrids still
require gasoline, these vehicles do not fully mitigate the environmental consequences (Bradley,Frank
2009).

Another refuelling infrastructure design is to have quick BSSs. These stations will remove a pallet of
batteries that are nearly depleted from a vehicle and replace the battery pallet with one that has already
been charged (Shemer 2012 ). This method of refuelling has the advantage that it is reasonably quick.
The unfortunate downside is that all of the vehicles serviced by the battery exchange station are required
to use the identical pallets and batteries which is unrealistic before battery and charger standardization.
It is assumed here that the developers of these battery pallets will coalesce around a single common
standard, as has been the case for other car parts such as tires, wipers, etc. Battery exchange stations
have been tried out by taxi vehicles in Tokyo in 2010(Schultz 2010). Denmark is investigating the
possibility of having sufficient battery exchange locations so that the country relies on none, or very

few, gasoline powered vehicles (Mahony 2011).

Of course, there is a complementary location problem (not addressed here) where we wish to locate
“refuelling” stations (battery recharging, battery exchanging and, other alternative refuelling options
can all addressed similarly) in a region where there are currently none. The problem of optimally
locating such refuelling stations has been investigated by several researchers using the flow refuelling
location model (Kuby,Seow 2005; Kuby,Lim 2007; Upchurch et al. 2009). Frade et al. (2010).

formulated a maximum covering model to locate a certain number of charging stations to maximize the
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demand covered within a given distance. A conceptual optimization model was proposed by
Nie,Ghamami (2013) to analyse travel by EVs along a long corridor whose objective is to select the
battery size and charging capacity (in terms of both the charging power at each station and the number
of stations needed along the corridor) to meet a given level of service in such a way that the total social
cost is minimized. Wang,Lin (2009).and Wang,Wang (2010) used set cover concept to propose
refuelling-station- location model based on vehicle-routing logics considering both intercity and intra-
city travel. The flow refuelling location model is reformulated and a flexible mixed-integer linear
programming model is presented, which is able to obtain an optimal solution much faster than the
previous set cover version. Besides, The model also could be solved in the maximum cover form
MirHassani,Ebrazi (2013). Xi et al. (2013). developed a simulation—optimization model that determines
where to locate EV chargers to maximize their use by privately owned EVs. Dong et al. (2014). studied
EV charging station location problems and analysed the impact of public charging station deployment
on increasing electric miles travelled. Wang et al. (2013). developed global optimization methods for
discrete network design problem which can be applied in EV network design when formulated as a bi-
level programming model, where the upper level aims to minimize the total cost and the lower level is

a traditional UE problem.
2.5.2 Location problem of charging facility for public EBs

As part of transportation electrification plan, battery electric buses (BEBs) have received significant
attention worldwide with the development and advance in battery technology and bus manufacturing
recently. The governments aim to reduce the proportion of diesel-powered buses that were dominant in
bus transportation and transition to alternative fuel buses, such as natural gas, hydrogen, electric battery,
etc. It is estimated that more than 45% nitrogen oxides and 75% of particulate matter are generated by
heavy-duty diesel trucks and buses (Elkins et al. 2003). In contrast, EBs have a unique advantage: zero

emissions.

The use of BEBs has been reported in many countries all over the world. Several cities in United States
introduced BEBs in transit service prior to mid-2000s. In 2012, Uruguay signed a deal for 500-heavy-
duty BEBs and Tel Aviv, Israel, ordered 700 BEBs. In 2013, Shenzhen, China, ordered 1000 heavy-
duty BEBs. The large-scale BEB adoptions are largely motivated by government incentives, such as
the TIGER program in the United States, the Green Bus Fund Program in the UK, the Electric Mobility
Program in German and the Ten Cities and Thousand Vehicles Program in China (SUTP 2015).

BEBs are characterized by fixed running routes, fixed depots, near-identical battery capacity. However,
configuring an overall BEB system is challenging; this would include possible battery recharging and
swapping concepts, choice of battery technology, battery sizing, positioning and dimensioning of
charging and swapping stations (Leou,Hung 2017). Comparing to conventional diesel-powered buses,
BEBs still suffer from long charging time, limited mileage range, and insufficient charging

infrastructure regardless of its regenerative braking attribute.
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Typically, three charging methods are available at current stage, namely slow charging, fast charging
and battery swapping. Slow charging usually takes hours to refuel and reduces the utilization of BEBs,
while fast charging reduces battery life (Sarker et al. 2013). It is pointed out that EV’s orderly charging
is the prerequisite for realizing its environmental benefits especially in countries with fossil-dominated
power and the disordered charging will cause load fluctuations, and increase generation costs (Rao et
al. 2015).

The deployment of BSSs, which removes the depleted batteries on the BEBs and replace the batteries
with fully charged ones, is an alternative strategy to eliminate these barriers (Avci et al. 2014). The
most outstanding feature of this strategy is that BSSs can complete the swapping process in less than
10 min, while another advantage is that charging the depleted battery can be left for the night at a
discounted electricity price. Since BSSs achieve a unified management of batteries, it contributes to the
effective maintenance of batteries and is beneficial to extend the batteries’ lifetime. However, due to
the lack of standardization of batteries and interfaces, the BSSs are more suitable for fleets of buses and
taxies (Zheng et al. 2014). Based on these contexts, China is leading the way on deploying the BSSs.
In April 2015, Ziv Av Engineering signed the deal with China’s Bustil to design 7000 BSSs for BEBs
in Nanjing city (Elis 2015). In 2016, new energy automaker BAIC BJEV has built 50 EV charging and
swapping stations to address the needs of at least 6000 EV taxis (PRNewswire 2016). So far 1300 BSSs
have been constructed and 12000 more are planned through 2020 in many pilot cities of China (Liang
etal. 2017).

Theoretically BEBs can travel up to 250 km, various factors influence the operational range in the real-
world operations. It is shown that the air conditioning, driving behavior and battery aging issue can
largely (more than 30%) reduce the BEBs’ operational range, thus making BEBs often incapable of
finishing a whole day’s work without battery recharging (Li 2016). Moreover, BSSs require large
capital investment to purchase additional batteries that are necessary to swap with ones near depletion.
The land-use is another issue, including the parking space for bus awaiting and the space for installing
local chargers on spot for local charging mode (Li 2016). Therefore, the location of BSSs and the choice
of charger types become an inevitable issue when designing battery swapping system due to their

charging speed and financial cost.

Generally there are two types of operation mode for BSSs in terms of the strategy of charging the
depleted batteries, namely central charging and local charging. In the central charging mode, EVs swap
their batteries in BSSs, and the empty batteries are sent to the central charging station. After the empty
batteries are fully charged, they will be delivered back to the BSSs. Another mode is local charging

system which excludes the empty battery depot and charges the depleted batteries in BSSs themselves.

To date, some studies have been done regarding the optimal planning, operation and location of BSSs.
The relevant research may be classified into three types. In the first type, the optimal location of BSSs

and the interaction between BSSs and power grid are the primary concern. A p-median based model is

18|Page



Chapter 2: Literature review

applied to solve the BSS location problem with central charging system (Xiang,Zhang 2017). The
optimal configuration of central charging station and its location were studied (Xu et al. 2013). A bi-
level optimal configuration model to plan the capacity and location of BSS is proposed to maximize net
profit of BSS while minimizing the operation cost of distribution company (Liu et al. 2016). The second
type primarily focuses on the operation of both BSSs and BEBs. An single-depot optimization model
for BEB scheduling with BSS is proposed to minimize the total operation cost (Li 2013) and more
operation features of BEBs were taken into consideration to minimizing the capital investment in
another single BEB depot scheduling model (Zhu,Chen 2013). Another study focused on schedule the
battery charging in the BSS so that every BEB arrives to find a full battery for swapping (You et al.
2016). Articles in the third type mainly focus on the operation details of BSS including optimal power
capacity (Leou,Hung 2017), charging scheduling (You et al. 2017) and meeting total swapping demand
(Xiong et al. 2012). A simulation-based BSS load demand model is presented considering the stochastic
charging characteristics of BSS and BEB arrival pattern (Dai et al. 2014). A central charging strategy
and scheduling of BEBs for BSS is designed to minimize charging cost based on optimal charging
priority and charging location electricity price (Kang et al. 2016). To promote development of BSSs for
BEBEs, the optimal BSSs’ location and its local charging system design should be researched first and
the major factors affecting the capital investment for the stakeholder should be fully considered in the
process of planning. Moreover, transport cost between BEB transit depot and BSSs would also be one
of the major concerns because of range limit and the energy waste during the detour to swap the depleted
battery.

2.6 Knowledge Gaps

On reviewing the literature to date regarding the transport network model and charging facility location

model development of electric vehicles scheme, clear gaps in the knowledge are identified.

(1) There have been few researches on the stochastic traffic assignment of electric vehicle

considering the driving range limit and insufficient public charging infrastructure at the current stage.

(2) The flow-dependent energy consumption rate of EVs which increases with the traffic

congestion level has not been considered in general SUE model.

(3) Charging facility location model for private BEVs have not taken SUE flow pattern into
consideration which incorporates an upper-level of EV charging facility network design and a lower-

level of stochastic traffic assignment of EVs.
(4) Swapping facility location model with local charging system for public EBs has not been studied.
2.7 Summary

In this chapter, a review of the relevant literature is undertaken focusing on the key characteristics of
BEVs, the development of traffic assignment model with BEVs, the development of stochastic traffic

assignment model with side constraints, the overall charging facility location problem (CFLP) of BEVs
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and the BSS location problem serving EBs. The review has identified important gaps in the existing
knowledge. These gaps are summarised in Table 2-3 and the research to be undertaken to address these
gaps is outlined.

Driving distance limit has been extensively used as a side constraint in equilibrium network modelling
(Xie,Jiang 2016; Wang et al. 2016; Jiang,Xie 2014; Jiang et al. 2012; Jiang et al. 2013) . In order to
explore the impact of driving distance limit on equilibrium EV flow pattern, previous equilibrium
models focus on DUE model which do not consider the stochasticity of travellers’ perception error on
travel time. To address this gap, this thesis develops the new general SUE model for predicting EV flow
pattern, using modified MSA algorithms and modified probit-loading algorithm (see Chapter 4).

Given the impacts of travel speed on the battery energy consumption (Bigazzi,Clifton 2015; Agrawal
et al. 2016), the effects of combining flow-dependent energy consumption on BEVs’ route choice
behaviour should be explored with battery capacity constraint. In existing general SUE models with
side constraints, only link capacity constraints have been considered (Meng et al. 2008) and battery
capacity constraints have only been studied in DUE models. This thesis will close this gap by proposing

new general SUE model of EVs as well as its solution methodology (see Chapter 5).

Most charging facility location models for private BEVs do not consider the traffic congestion and
equilibrium BEV flow patterns (Upchurch et al. 2009; Capar,Kuby 2012; Kuby,Seow 2005). The BEV
flow may change resulting from the change of the BEV charging facility locations considering their
route choice behaviour. Furthermore, the change of flow patterns may affect the utilization rate of the
deployed charging facilities. One focus of this thesis is the effects of combining existing SUE models
and classical facility location model into a bi-level model. Yet, it is prudent to explore if a bi-level
model, involving stochastic traffic assignment and available public charging facility, can have a fair
performance. Litter is understood about the location design of BEV charging facility accounting for a
SUE equilibrium flow pattern. This thesis will help to fill this gap by developing a new bi-level charging
facility location model for private BEVs (see Chapter 6).

Although previous studies have investigated CFLP for public EBs (Riemann et al. 2015), little attention
has been paid to battery swapping facility planning for EBs with local charging system considering its
own characteristics, such as fixed routes and given demand (Xiang,Zhang 2017; Zhu,Chen 2013; Sarker
et al. 2013). This thesis will help to fill this gap by exploring the optimal location and configuration of
BSSs as well as local charging system for EBs (see Chapter 7).

This research project aims to address the knowledge gaps identified above and attempts to obtain a
deeper knowledge in assessing public charging/swapping facility deployment in urban areas. In the next
chapter, the research methodology will be presented in detail and the detail of data used in this research

will be also provided.
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The following chapter of this thesis presents the research methodology to address the identified gaps in

knowledge, based on the abovementioned research opportunities.
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Table 2-1: Summary of Charging Station Location Studies

Author | Hodgson Bapna (P;ggg)igﬂbsyegr\:\é V\;ﬁgg V\éﬁgg Frade C:rf)gr Mak et Xi et '\;r']?;?]ff glt?a?r?g Dong et
(1990) (gt)glz) (2007)LLIJrSchurch Lin | Wang (%?0) Kuby (2?>Ii2) (2glis) Ebrazi mi 2614)
ot ali (2009) (2009) | (2010) (2012) (2013) (2013)
Facility type
Battery charging station v J N, J J
Battery swapping station J J
Alternative fuel station v v J N N J
Gas station Vv N
The number of the facility
Fixed N, N, N J J
Variable v v N J J J
Model type
Interger programming N J
Mixed interger programming v V N N N, J
Linear programming v J
Objective function
Maximize coverage v J J
Minimize cost v J N J J J
Maximize flow coverage V V V J J

Note:* v’ indicates the use of such a factor or technique.
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Table 2-2: Summary of Traffic Assignment Problem and Vehicle Routing Problem Related to EV

. Andreas et
Desrosier ) Laporte
al. (2010);
s et al Eisner et Ryan and Erdoga
Ichimori | (1984); Cabral Kobayas | Siddiqi Y Pascoal | Jiang et 08 Jiang et | Okan et | Adler et
al. . and . n and
et al. | Desroche |et al. (2011):Sac hi et al. | et al Miguel (2011); | al., Miller al. al. al.
(1981) rs and | (2007) ' (2011) (2011) g Smith (2012) (2013) | (2014) | (2014)
Soumi henbacher (2011) (2012)
oumis ot al et al
(1989) (2011) (2012)
Constraints
Shortest path problem v V V v J N}
Relay requirement N v v v N V J v J
Distance-constrained v N, N N,
Fuel-constrained v v J N,
Time-constrained v
Computational
complexity
Polynomial solvable v v N V v
NP-complete v J J J
NP-hard v ~ N,
Objective function
Minimize distance v v J v
Minimize flow cost v
Minimize total cost N v v v V

Note:* v’ indicates the use of such a factor or technique
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CHAPTER3 RESEARCH METHODOLOGY

3.1 Introduction

The previous chapter provides a literature review of TAP of EVs and their charging facility location
problem. The review identifies research gaps and discusses opportunities to advance knowledge in
addressing these gaps.

This chapter describes the overall research approach to address the identified research gaps and achieve
the objectives outlined in Section 1.4, including the application of analytical methods based on classic
facility location problem theory and STAP Models.

3.2 Overall research approach

The overall research approach includes five key research components which were designed to achieve
the five research objectives. The first research component focuses on EV drivers’ behaviour and
characteristics developments, which were then applied for understanding the key constraints to be
considered in STAP models in the subsequent components of the thesis. The second and third
components investigate STAP models with the consideration of range limit constraints to predict BEV
flow patterns in the future. The last two research components focus on deploying charging/swapping
facilities to maximize their utility. Linkages between research gaps, research objectives, research
components, and thesis chapters are shown in Table 3-1. The following sections present a brief

description of each research component.

3.2.1 Research component 1: Characteristics and behaviours of EVs affecting equilibrium

network modelling

An attempt is made to investigate the various aspects of EVs that explicitly address the problems which
come with EVs’ development as well as network modelling of EVs. Starting with the concept of EVs,
it discussed both the EVs market studies and special characteristics of EVs as well as its charging
infrastructures. From network modelling point of view, it is, therefore, important to take their special
characteristics into account when predicting EVs route choice behaviour and designing charging
infrastructure networks accordingly. It is found that a number of factors contribute to BEV network
modelling. For instance, range limit, range anxiety, charging time, charging cost, availability of charging
infrastructure, etc. The commonly used factors were examined in the five remaining research
components. EVs’ driving distance limit and scarcely available public charging stations were considered
in the development of general SUE models of transport network with mixed GVs and EVs (research
component 2). A dynamic EVs’ energy consumption rate is considered to depend on both travel time
and travel distance. Limited battery capacity and lack of public charging facility were taken into
consideration in another general SUE model (research component 3). More factors were adopted in the

formulation of bi-level charging facility location problem for private BEVs (research component 4) and
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evaluation of the proposed battery swapping facility location with local charging system serving EB
fleet (research component 5). The summary of several research directions is given to address the
emerging of BEVs in the field of network modelling in Chapter 2.

3.2.2 Research component 2: Addressing stochastic traffic assignment of mixed EV and GV flow
with path distance constraints

The methodological issues of a general SUE model of mixed EV and GV flow with path distance
constraint and how to solve this model is investigated in this component of the thesis. Directly adding
side constraints into a SUE model cannot generate a SUE flow pattern. Incorporating the path distance
constraints into the general STAP needed a mathematical proof. The BEV range limit is defined by the
path distance it can travel without charging. A classical minimization model is used with a modified
MSA method to address the SUE problem. Solution properties of equivalence and uniqueness were
provided. Path feasibility check is employed to address the path distance issue whenever generating a
path in K-shortest path algorithm or shortest path algorithm. The results suggested that range limit would
have a great impact on EV users’ route choice, especially for those with short range limit. When the
range limit became large enough, EV behaves similarly to GV. This component of research were then
adopted and further extended in research component 4 by incorporating the available public charging

facility into the general SUE model. The detailed formulation and evaluation are provided in Chapter 4.

3.2.3 Research component 3: Addressing stochastic traffic assignment of EV with battery capacity

constraints

This component of the thesis investigated a more complicated STAP in transportation networks with
BEVs owing to the fact that BEV energy consumption depends on not only the path distance but also
the travel time. The main objective is to theoretically understand how a flow-dependent path-based
constraint can be incorporated into a general SUE model. Battery capacity constraint is a flow-dependent
one, while path distance constraint is flow-independent. The flow-independent driving distance
constraint in research component 2 can be processed in the route choice procedures, while the flow-
dependent battery energy consumption depends on not only distance but also traffic flow (travel time).
A mathematical programming model is proposed for the flow-dependent path-based SUE traffic
assignment. A convergent Lagrangian dual method is employed to transform the original problem into
a concave maximization problem and a customized gradient projection algorithm is developed to solve
it. A column generation procedure is adopted to generate the path set. The solution framework,
Lagrangian dual-gradient projection-stochastic network loading, can be applied to solve path-based SUE

problem. Further details of this research component are given in Chapter 5.

3.2.4 Research component 4: Location of EV charging facilities: A path distance constrained SUE

approach
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This component of the thesis investigated a way of locating charging facilities in the network since no
public charging facilities have been considered in the previous SUE components. A bi-level model is
adopted with maximum covering objective in the upper level and STAP with path-distance constraints
in the lower level. Public charging facilities were taken into consideration in the trip chain in the lower
level STAP to accomplish this component of research. An important concept of sub-path is used to
identify the scenarios of charging need. A key application of this concept is to calculate the generalized
path travel cost composed of path travel time, charging time and equivalent travel time reduction (the
utility of charging facilities on attracting BEV drivers). Comparing to research component 2&3, the
SUE approach is extended to consider public charging facilities in the network. It is demonstrated that
the driving distance limits, charging speed and utility of charging facilities affect the equilibrium
network flow and charging facility location. It is also found that the BEVs with shorter driving distance
and risk-neutral attitude would probably have a larger value of charging facilities utility, because
charging facilities helped to ease their range anxiety. While for those with larger batteries, they would
behave more like GV users. A potential drawback of this method of defining flow coverage is that it
may lead to the location of charging facilities on several adjacent links of some high-volume freeways.
Further details of this research component are provided in Chapter 6.

3.2.5 Research component 5: Battery swapping station location serving BEB fleet

The objective of last component is to develop location models for BSS serving BEB fleet. The service
capability of BSS is restricted by the number of installed swapping robots. Depleted batteries will be
charged at BSSs which adopts a local charging system equipped with a number of batteries and chargers
in various types. This study intends to answer four fundamental questions: How many BSSs should be
installed? Where should they be? Which EBs should be assigned to each BSS? What is the service
capability of the BSSs? A mixed-integer linear program is formulated to represent this problem, which
is then solved by a GUROBI solver implemented on Python interface. The test on a real network of the
southeast region of Melbourne in Australia verifies the feasibility of the proposed model and investigates

the effects of BSS locations and configurations.

As a base model with simple assumptions, future work should consider more realistic scheduling of
electricity-price-based battery charging and BEB operation to increase the utilization rate of batteries.
Furthermore, comparing with local charging system, models of central charging system should be
considered to make an economic comparison to identify a favorable charging mode. Additionally, the
battery capacity and the charging power of BEB used for public transportation are several times greater
than those of electric cars, which can result in high energy consumption and negatively impact on power
distribution networks. Therefore a BSS deployed at a given region should be considered as capacitated
before power grid upgrade to accommodate more local charging demand. This component of research
has the potential to develop many new models for future works. Detailed model formulation and results

are given in Chapter 7.
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3.3 Conclusion

This chapter has presented the overall research approach composed via five research components, in
line with the five research objectives. The first research component focuses on identifying key
characteristics and main behaviour that distinguish EVs from GVs, as well as the factors affecting
charging/swapping facility location design. The second and third research components focus on the SUE
model and solution methodological developments, which are then applied for understanding the
equilibrium network flow in the fourth research components when charging facility becomes available
in the network. The last research component investigates location design of swapping facility serving
public EBs. Limitations of the research approach associated with each research component are discussed

in each corresponding thesis chapter.

The next chapter of this thesis presents the model that developed to formulate SUE model of mixed GV

and EV flow with flow-independent path distance constraints.
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Table 3-1: Summary of research gaps and opportunities to advance knowledge

Research Research topic Research gaps Research opportunities

component.

1 Factors affecting The factors distinguishing BEV summarizing the existing
BEVs drivers' from GV have not been researches and identifying
charging and route  thoroughly studied in transport key factors affecting
choice behaviour network modelling potential future research
(Chapter 2) directions

2&3 SUE models of Existing traffic assignment models  Developing a general
transport network  tend to ignore the stochasticity of ~ SUE model and solution
with electric travel time perception. Thereisa  algorithms to predict BEV
vehicles (Part I1) need for stochastic traffic flow pattern when

assignment model of a transport considering the maximum
network with BEVs whose driving  distance BEVs can travel.
distance is limited. (see section (see chapter 4)
2.6)
No studies have considered a SUE  Proposing a general SUE
model of BEVS with battery model and solution
capacity constraints where BEVs'  algorithm for BEVs with
range limit is restricted by both limited battery capacity
travel distance and travel time. that restricts BEVS' travel
(see section 2.6) time and travel distance.
(see Chapter 5)
4&5 Charging/swapping There is no bi-level charging Proposing a new bi-level

facility location
models of BEVs
and BEBs (Part I11)

facility location model dedicated
to considering a SUE BEV flow
pattern in the lower level problem
and maximize BEV flow coverage
in the upper level (see section 2.6)

model for deploying the
charging facility
considering a SUE link
flow pattern and
availability of charging
facility (see Chapter 6)

Battery swapping is designed to be
more suitable for electric buses.
Moreover, there is no swapping
facility location model dedicated
to swapping facility location with
local charging system serving EB

fleet (see section 2.6)

Proposing a new BSS
facility location model for
BEBs considering BEBs'
characteristics (see
Chapter 7)
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CHAPTER 4 STOCHASTIC TRAFFIC ASSIGNMENT
MODEL WITH PATH DISTANCE CONSTRAINTS

4.1 Introduction

The previous chapter describes the overall research approach, comprising five research components
aligned to five research objectives. The first research component focuses on identifying key
characteristics and main behaviour that distinguish EVs from GVs. The second and third research
components focus on the SUE model and solution methodological developments, which are then applied
for understanding the equilibrium network flow in the fourth research components when charging
facility becomes available in the network. The last research component investigates location design of
swapping facility serving public EBs.

This chapter presents the results of research component 2, which focuses on model and methodological
developments of SUE. The methodological issues of a general SUE model of mixed EV and GV flow
with path distance constraint and its solution algorithm remain unsolved. However, directly adding side
constraints into a SUE model cannot generate a SUE flow pattern like the way in DUE models with side
constraints. Incorporating the path distance constraints into the general STAP needed a mathematical

proof. The BEV range limit is defined by the path distance it can travel without charging.

The aim of this chapter is to therefore propose new model to formulate this problem. A minimization
model for path-constrained SUE is first proposed as an extension of path-constrained deterministic user
equilibrium (DUE) TAP, which also extends the existing general SUE models with link-based
constraints to path-based constraints. The resulting SUE model and solution algorithm can be used for
other conditions with similar path-based constraints. The research gap and objective associated with this

research component is described in Table 4-1.

Table 4-1: Research gap and objective associated with research component 2

Research topic Research gaps Research opportunities

SUE models of transport Existing traffic assignment Developing a general SUE model

network with electric models tend to ignore the and solution algorithms to predict

vehicles (Part I1) stochasticity of travel time BEV flow pattern when
perception. There isaneed for  considering the maximum
stochastic traffic assignment distance BEVs can travel. (see
model of a transport network chapter 4)

with BEVs whose driving
distance is limited. (see section
2.5.2)

This chapter includes the following research paper:
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Jing, Wentao, Inhi Kim, Mohsen Ramezani, and Zhiyuan Liu. ""Stochastic traffic assignment of
mixed electric vehicle and gasoline vehicle flow with path distance constraints.”" Transportation
Research Procedia 21 (2017): 65-78.

4.2 Paper 1: Stochastic traffic assignment of mixed electric vehicle and gasoline vehicle flow
with path distance constraints

The following paper details the formulation of a general SUE model of mixed EV and GV flow with
path distance constraint. It begins by discussing the shortcomings of existing methods of DUE model to
predict the EV flow pattern. It also reviews network equilibrium models for EV schemes and solution
algorithms for general SUE models. Incorporating the path distance constraints into the general STAP
needed a mathematical proof. The BEV range limit was defined by the path distance it can travel without
charging. A classical minimization model is proposed with a modified MSA method to address the SUE
problem. Solution properties of equivalence and uniqueness are provided. Path feasibility check was
employed to address the path distance issue whenever generating a path in K-shortest path algorithm or
shortest path algorithm. Finally, the results suggested that range limit would have a great impact on EV
users’ route choice, especially for those with short range limit. When the range limit became large
enough, EV behaves similarly to GV. This component of research is then adopted and further extended

in Chapter 6 by incorporating the available public charging facility into the general SUE model.
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Abstract

This paper addresses a general stochastic user equilibrium (SUE) traffic assignment problem (TAP) for transport networks with
electric vehicles (EV), where EV paths are restricted by the EV driving range limits. A minimization model for path-constrained
SUE is first proposed as an extension of path-constrained deterministic user equilibrium (DUE) TAP, which also extends the
existing general SUE models with link-based constraints to path-based constraints. The resulting SUE model and solution
algorithm can be used for other conditions with similar path-based constraints. The equilibrium conditions reveal that any path
cost in the network is the sum of corresponding link costs and a path specific out-of-range penalty term, while path out-of-range
term should equal to zero to ensure feasible flows. We develop a modified method of successive averages (MSA) with a
predetermined step size sequence where both multinomial logit and multinomial probit based loading procedure are applied to
solve the TAP. The suggested methods incorporate K-shortest paths algorithm to generate the path set on a need basis. Finally,
two numerical examples are presented to verify the proposed model and solution algorithms.

©2016 The Authors. Published by Elsevier B. V.
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1. Introduction

Carbon-based emissions and greenhouse gases (GHG) are critical global issues as addressed by the Kyoto
Protocol in 1998 (U.S. Envirionmental Protection Agency. 2006). The transport sector is a significant contributor to
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GHG emissions in most countries, comprising 23% (worldwide) of CO2 emissions from fossil fuel combustion in
2005 while automobile transport is the principal CO2 production source. From the energy safety point of view, the
transport sector as a whole is 98% dependent on fossil oil which is also exceedingly affected by changes in energy
resources (OECD-ITF Joint Transport Research Centre, 2008). So changes to the current energy structure in
transport sector are in urgent need.

Alternative fuels are addressed as a new fuel choice to reduce GHG emissions and electric vehicles (EV)are
believed to be a sustainable solution (OECD-ITF Joint Transport Research Centre, 2008). Governments and
automotive companies have recognized the value of these vehicles in helping the environment and are encouraging
the ownership of EV through economic incentives (Hacker et al., 2009). It is mentioned that one million plug-in
hybrid and electric vehicles will be on the road by 2015 in United States to reduce greenhouse gas emission and
dependence on oil (Saber and Venayagamoorthy, 2009). According to Electric Drive Transportation Association, the
plug-in electric vehicles (PEV) in US has exceeded 190,000 between January of 2011 and Mach of 2014 (Ghamami
ctal., 2014).

Although many cities are planning construction and expansion of charging infrastructures for EV, it is likely that
in the foreseeable future EV commuters will need to charge their vehicles at home most of the time (Morrow et al.,
2008). It is obvious that the driving range limit inevitably adds a certain level of restrictions to EV drivers travel
behaviors, at least in a long future period prior to the coverage of recharging infrastructures reaching a sufficient
level (Jiang et al., 2013). EV companies are trying to overcome this limited range requirement with fast charging
stations, where a vehicle can be charged in only a few minutes to near full capacity. Besides being much more costly
to operate rapid recharge stations, the vehicles still take more time to recharge than a standard gasoline vehicle
would take to refuel (Botsford and Szczepanek, 2009).

However, the widespread adoption of PEV calls for fundamental changes to the existing network flow modelling
tools for properly capturing changed behaviors and induced constraints in forecasting travel demands and evaluating
transportation development plans (Jiang et al., 2013).

In order to take into consideration of driving range limit and insufficient charging facility status in traffic
assignment, Jiang et al. (2012) proposed an approach to restrict flow of a path to zero if the path distance is greater
than the driving range limit of EV. They employed a path travel time function that is the sum of the corresponding
link cost such as the Burcau Public Road (BPR) function and showed the Lagrangian multiplier of its optimal
solution stands for the unit out-of-range travel distance cost. Classic Frank-Wolfe algorithm with a constrained
shortest path algorithm as its subroutine can be applied to solve this problem.

The deterministic user equilibrium (DUE) condition characterizes route choice behavior where users have perfect
traffic network information and always choose the shortest path accurately. A convex minimization model for DUE
conditions can be built by adding path distance constraints into the Beckmann’s conventional DUE model. A more
realistic and general situation is that travel times are random variables or travel times are perceived by travellers in
imperfect, stochastic manner. Although the stochastic user equilibrium (SUE) principle plays a more realistic role
than DUE principle in addressing road user’s route choice behavior, the SUE traffic assignment problem with path-
distance constraints has received little attention. To be consistent with the generalized DUE with path distance
constraints, the SUE traffic assignment model with generalized path travel times are referred to as generalized SUE
traffic assignment with path distance constraints. A milestone in formulating SUE conditions is Daganzo’s
unconstrained minimization model (Daganzo, 1982) of conventional SUE conditions, which can lead to a convergent
algorithm for solving the general SUE traffic assignment problem. However, adding side constraints (e.g. link
capacity constraints) into Daganzo’s model cannot yield solution fulfilling generalized SUE conditions.
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1.1. Literature Review

It is well known that the standard TAP under DUE can be solved efficiently with a Frank-Wolfe type algorithm
whose lincarized sub-problem finds shortest paths for each OD pair at each iteration. The problem of finding the
shortest path for an EV was originally discussed by Ichimori et al. (1981), where a vehicle has a limited battery and
is allowed to stop and recharge at certain locations. Lawler (2001) developed a polynomial algorithm for its
solution. Adler et al. (2014) proposed an EV shortest-walk problem to determine the shortest travel distance route
which may include cycles for detouring to recharging batteries from origins to destinations with minimum
detouring. Kobayashi et al. (2011) and Siddiqi et al. (2011) included battery recharging stations in their shortest
weight-constrained path problem models, which is known to be NP-Complete (Desrosiers et al., 1984; Desrochers
and Soumis, 1989), and proposed heuristic techniques as solution methodologies. There has been some recent
consideration of the effect of EV on traffic assignment and DUE. (Jiang et al., 2012) studied the effect of restricted
the EV path distances and assumes charging events only occur at OD nodes. which corresponds to the real
circumstance of insufficient charging facilities.

As a rational extension to the DUE, the stochastic user equilibrium (SUE) principle can be adopted to formulate
the TAP. Meng et al. (2007) found that adding link capacity constraints into Daganzo’s model would lead to a
linearly constrained minimization problem. Nevertheless, any optimal solution of the induced minimization model
did not fulfil the generalized SUE conditions. This indicates that the typical technique used in modelling the
generalized DUE conditions was not available for the generalized SUE conditions except the logit-based generalized
SUE conditions formulated by Bell (1995b). Meng et al. (2007) proposed a general stochastic user equilibrium
(SUE) traffic assignment problem with link capacity constraints, inspired by Maher et al. (2005), who proposed a
formulation for stochastic social optimum (SSO) with the objective of minimizing the total perceived travel time and
found that the solution to SSO can be achieved by solving a SUE problem using the marginal cost function. Meng et
al. (2007) found that SUE flow pattern can be generated by solving a SSO problem applying a modified link travel
time function.

Previous studies on general SUE traffic assignment problem mainly tackled link-based constraints [see, €.g.,
(Meng et al., 2007; Meng and Liu, 2011; Meng et al., 2014)]. However, for EV users, the route choice is restricted
by their driving range limit, which imposes path distance constraints to the general SUE model.

Early algorithms developed to solve the unconstrained logit-based SUE problem were link-based [e.g. Maher
(1998)]. These link-based algorithms do not require path storage and often use Dial’s STOCH algorithm or Bell’s
alternative as the stochastic loading step (Dial, 1971; Bell, 1995a). Path-based algorithms require explicit path
storage to directly compute the logit route choice probabilities. Olof et al. (1996) developed a path-based algorithm
based on the disaggregated simplicial decomposition algorithm to solve the multinomial logit (MNL) SUE problem.
Bekhor and Toledo (2005) compared path-based algorithms for the MNL SUE problem, and showed that the
disaggregated simplicial decomposition algorithm is superior to the path-based method of successive averages
(MSA) algorithm. Among the path-based algorithms for the traffic equilibrium problem with additive path costs,
much of the recent attention has been focused on the disaggregate simplicial decomposition (DSD) algorithm, which
was proposed by Larsson and Patriksson (1992), and the gradient projection (GP) algorithm. A comparison work
between these two path-based algorithm could be found in Chen and Lee (1999).

Xu et al. (2012) investigated different strategies for determination of step size of the path-based algorithms
developed to solve the C-logit SUE models based on an adaptation of the GP method. Three strategies were
investigated: (a) predetermined step size (Nagurney and Zhang, 1996), (b) Armijo line search (Larry, 1966;
Bertsekas, 1976), and (c) self-adaptive line search (He et al., 2002; Chen et al., 2012). To have a fair comparison of
different step size strategies, Bekhor et al. (2006). Used a working route set, obtained from a route choice set
generation algorithm, such as labelling, link penalty, link elimination and simulation, in path-based problem.
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Behaviorally, it had the advantage of explicitly identifying those routes that were most likely to be used and also
allowed greater flexibility to include route-specific attributes that might not be obtainable directly from the link
attributes (Cascetta et al., 1997, Bekhor et al., 2006). A column generation procedure could also be readily
embedded in the GP algorithm (Chen and Jayakrishnan, 1998).

To the best of our knowledge. it is still an open question to find an exact solution method for solving the general
SUE problem with path distance constraints on a transport network with EV.

1.2. Objectives and Contributions

Since SUE relaxes the perfect information assumption of the DUE model by incorporating a random error term in
the path cost function to model travelers’ imperfect perceptions of travel times, it would be more realistic to apply
general SUE model to assign EV flows to the transport network. It is interesting to compare the assignment results
between stochastic models and deterministic one. Hence, the results from proposed model are compared with that
from DUE with path distance constraints. The path-based approach requires path generation/enumeration, where the
size of a path set between a single O-D pair can be extremely large. Thus predetermined path set is applied in this
path-based problem.

Meng et al. (2007) proposed a solution framework for general SUE problem with link-based constraints. For the
general SUE traffic assignment problem addressed in this study, we investigate the properties of the path distance
constraints and the solution method framework. Furthermore, K-shortest paths algorithm is applied to avoid path
enumeration.

To sum up, the contributions of this study are twofold. First, a holistic methodology is proposed for general SUE
traffic assignment model with path distance constraints on EV scheme, in which the classic unconstrained SUE
model can be used to incorporate path distance constraints by modifying MSA algorithm and finding the distance-
constrained K-shortest paths in stochastic network loading process. It is assumed that the EV route choices are
restricted by the distance EV can travel with a single charge. Second. comparison results between SUE and DUE are
provided. The major part of this paper is a discussion of the modelling and solution methods for the SUE traffic
assignment problem with path distance constraints.

The remainder of this paper is organized in the following order. In Sections 2 & 3, we elaborate the problem
formulation, and analyse its solution properties. Section 4 presents the solution algorithms for both Logit-based and
Probit-based stochastic network loading models, while Section 5 presents the numerical results from applying the
algorithm procedure for a small network and Sioux Falls network as well as the comparison work between SUE
TAP with path distance constraints and DUE TAP with path distance constraints. In the end, Section 6 provides a
few concluding remarks.

2. Notation, assumptions and problem description

Consider a strongly connected network, denoted by G = (N R A). where N and A are sets of nodes and links,

respectively. (7,$) stands for certain ordered pairs of nodes, 7 € R and § € S .where node 7 is an origin and node
Sis a destination. R — N and § N are sets of origins and destinations, respectively. There are non-negative

o AT )
travel demand ¢ of n-th vehicle type between (r, s) q= (q;",n) ,V(r,s) is a column vector for all the

travel demands. Let K,S be the set of paths connecting O-D pair (I‘,S) : fkff be traffic flow of n-th vehicle type on
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. "

path ke K f° = ( iy Vn) ,k € K be acolumn vector of all these path flows between OD pair (r,s) . and
AT

f= (f "‘) , V(r, s) be a column vector of all the path flows over the entire network. Let v, denote traffic flow on

link ge A and v = (va )T ,a € A is a column vector of all the link flows. The path flows and link flows should

comply with fundamental flow conservation equations:

v,=Y )Y feor, Va4 (1)

n (rs) k
DS =g Y80 @)
K
for20,9(r,s),nkek, (3)

where 0, =1if path k € K between O-D pair (7, 5) traverses link @ € A, and 0 otherwise.
Let Z, (Va) denote the separable travel time function of link g € A, which is assumed to be a positive, strictly
increasing, convex and continuously differentiable function of the traffic flow on the link. All the link travel time

T
functions are grouped into a column vector t(v) = (ta (va )) ,ac A. Travel time on path k € K between O-D

pair (7, §) can be considered as a function of all the path flows, denoted by ¢;* (f) with the expression

c®)=21,0,)9 “)

Given any positive feasible path flow pattern f , f satisfies the conventional SUE conditions associated with the

T
path travel time functions, ¢”*(f) = (cf) ., ¥(r,s),nk € K _ is a column vector of all these path travel time

between OD pair (r, N ) ,namely
Jon =4 Po (€ (f)) ®)

where P, is the probability that vehicle type #2choose path  between O-D pair (7, ).

2.1. Path distance constraints and insufficient charging facility

Based on EV’s market potential, it is expected that in the future gasoline vehicles (GV) and EV will coexist in the
automobile market. For this reason, the proposed model includes multiple classes of vehicles, namely GV and EV,
which distinguish from each other in terms of driving distance range and travel cost composition. To derive the
theoretical properties of the problem, we consider a set of assumptions regarding demand heterogeneity and travel
behavior.

First without loss of generality, it is assumed that the demand population is only comprised of GV and EV. Plug-
in hybrid electric vehicle (PHEV) are not explicitly considered since they can be simply treated as an in-between
class of GV and EV in terms of the technological and economic features (i.e., driving range limit and travel cost
composition), or a special type of GV with lower operating costs. Readily multiple types of EV with different
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driving range limits and operating costs can be incorporated into the model.

Second, we assume the total travel demand between each O-D pair for every vehicle type is deterministically
known a-priori. SUE concept is devised for route choice procedure, in which each traveler chooses a route that
minimizes his/her perceived travel cost while no one can reduce his/her perceived travel cost by unilaterally
switching to an alternative route. For an individual GV traveler, stochastic user equilibrium simply implies a
conventional stochastic traffic assignment problem of searching for perceived minimum cost (travel time): whereas
for an EV traveler, it poses a path distance-constrained perceived minimum cost problem. In this paper, we
scrutinize the integrated effect of different vehicle types with various path constraints.

Third, without loss of generality, we assume that both GV and EV travelers use a common form of systematic
travel cost function for determining their travel choices. The link travel time functions are assumed to be separable
between different network links and identical for different vehicle classes, implying the travel time on a particular
link only depends on its own traffic flow. These functions are assumed to be positive, monotonically increasing, and
strictly convex.

In our network equilibrium analysis, it is implicitly assumed that all EV are fully charged at their origins. The
possible availability of commercial battery-charging or battery-swapping stations emerging in urban areas can be
considered in the future when charging infrastructures achieve a certain level of coverage. EV users would choose a
path whose distance /;” is less than or equal to the driving range limit of the vehicle type, denoted by D, . Hence,
any feasible path flow pattern should satisfy the path distance constraints:

Jo(D,=17)20,%(r,s),nk €K (6)

which means that if the flow of that class of EV users going through this path is positive, the path distance is
smaller than or equal to the driving range of a given class of EV: otherwise, the trip flow should equal to zero.

3. Mathematical model

Due to the complexity of probit-based SUE problem, directly adding side constraints into that general SUE model
does not give us an equivalent minimization model to the probit-based SUE traffic assignment with side constraints
(Meng and Liu, 2011). However, we can still add the path distance constraint into this minimization model
developed by Sheffi (1985) as follows, only if predetermining path set to ensure distances of all the used paths are
less than the range limit for each O-D pair.

minZ(v)=-Y, Y. 4;S"["W)]+ Lvt,(0,)- 2. |, 1, ()Mo )

n s a

st (D@)B)6)

Compared to Sheffi’s model which can be solved as an unconstrained minimization problem and still yield a
solution that satisfies the flow conservation constraints (1)(2)(3), the extra path distance constraints are the
constraints that needs a careful consideration. To prove the equivalence between the solution of the problem given in
Eq.(7) and the SUE equations, the first-order derivative of this problem have to coincide with the SUE conditions.

LW ==Y, X4 S" I @]+ Y x4, (5) -2 [ t.0Mo-Y. Y Y i3 fir (D, ~I7) @)

nors nors k

The first-order derivative require that

VL(x,p) =0 )
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The gradient is taken with respect to link flow vector X, and the derivatives of first three summation terms of Eq.
(7) can be calculated as

], 'S DIS Ors ’S &)
”“)—(ZZZq,,&,«S +x,, ZZZu -~ (10)

n rs keK n o rs keK

Note that the extra path distance constraints could be infeasible. For some OD pairs, if none of those paths
connecting them satisfies the range limit of a certain class of vehicles, the travel demand between them of this class
of vehicles cannot be assigned to the network and the problem has no feasible solution. However, those infeasible
OD pairs can be found easily by checking distance of the shortest path from the start, and if the distance of shortest
path is physically longer than range limit of a certain class of vehicles, then there would be no feasible path for the
SUE TAP between this OD pair for this class of vehicles.

If it is feasible, which means there exists at least one path between each OD pair that is within the range limit of a

certain class of vehicles. Then the term 4, - (D, —1;”). which is path out-of-range cost incurred when the path
length exceeds the distance limit of that class of vehicles should equal to zero. ,, is a proxy of equivalent travel

time value of the out-of-range cost per unit distance. Therefore, by ensuring the distance of each chosen path less
than range limit, the derivative of the SUE objective function with respect to a link-flow variable becomes

a]("’ =YY Y @RS +x,) ;’; Vb (11)

n s ke, b

Assume that link performance functions are strictly increasing, the gradient becomes zero if and only if

=20 0 4By, b (12)

nors keK,

The above equation expresses the SUE link flows when it has any feasible solution, namely whenever we assign
travel demand to paths between each OD pair, path distance should be less than the range limit of that class of
vehicles.

Following the same procedure of demonstrating uniqueness in page 319, Chap. 12, Sheffi (1985). it is obvious

that the Hessian matrix of the SUE objective function is positive definite, because the second derivative of
TS

ZZZ ™ =k )mth respect to path flow equals to zero. Therefore the model possesses two vital

n o rs

proposmons as follows.

Proposition 1: Any local feasible minimum yx°of this model satisfies the generalized SUE conditions, and the
Lagrangian multipliers associated with path distance constraint (6) are path out-of-range costs.

Proposition 2: The SUE link flow pattern induced by any local minimum solution of the linear constrained
minimization model is unique.

4. Solution method
4.1. Modified MSA algorithm
It was shown that the MSA algorithm can still be applied to the path distance constrained stochastic traffic

assignment problem (STAP) with a direction-finding step different from that of classic STAP and feasibility check
step.
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For multinomial logit model (MNL), the steps are as follows:

Step 0: Feasibility check. For each OD pair, find the shortest path according to physical distance. If the distance
of this path is longer than the range limit of a certain type of vehicle and the corresponding travel demand is
positive, then there is no feasible path for this type of vehicle between this OD pair. Record this OD pair and
infeasible vehicle type to Set A. If Set A is empty, go to the next step: if not, stop and display Set A.

Step 1: Initialization. Set x,(0)=0, 7, =¢ [x,(0)]. For cach OD pair, find K shortest path for each class of

vehicles in terms of free flow travel time. If the path distance is greater than the range limit of this class of vehicles,
set the path travel time to infinite. Calculate the probability of choose each path, record them as initial path set and
perform stochastic network loading to assign all the demand of each class of vehicles between this OD pair to the

corresponding K shortest paths. This yields X, (1) . Set iteration counter 7 =1.

Step 2: Update. Calculate a new link cost in terms of 7, =1 [x,(1)],Va .

Step 3: Direction finding. Follow the same procedure described in step 1 to find K shortest path for each class of
vehicles based on the current set of link travel times, {¢! } . If all the K paths between an OD pair exceed range limit
of this type of vehicle, use initial path set in step 1 and perform stochastic network loading. This yields an auxiliary
link flow pattern {y"} .

Step 4: Step size. {c,} is a predetermined step size sequence satisfying the three conditions:

0<a, <land lime, =0

w
Zan =400

n=1

0
2
Za” <

n=1

n—-w

There are a few step size sequences fulfilling the above conditions; for example

p

a,==—,n=12,.,0

n

where parameter 0 < p <1

Step 5: Move. Find the new flow pattern by setting X; + =x. +(1/n)(y: —x!).

Step 6: Convergence test. Let

_n

m

1 . il
Xo=—(x!+x! 4oy

If the convergence criterion

o+l n
Z(X(l _xu)l/ZXHSK
a a
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z +1y . p— . .
is met, stop and {x: } s the set of equilibrium link flows; otherwise, set 72 =+ 1 and go to step 2.

4.2. Modified probit-based loading algorithm
For multinomial probit model (MNP), the steps are

Step 0: Feasibility check. This step is the same as that of logit model.
Step 1: Sampling. Set iteration counter 72 =1. Sample 7, from 7, ~ N(t,, ft,) for each link @.

Step 2: All-or-nothing assignment. For each OD pair. find the distance-constrained shortest path based on
perceived link travel time 7”". Calculate the path distance of shortest path for this class of vehicles, if the path

distance exceeds range limit, calculate second shortest one, etc. If all the K path distances are greater than range
limit, use the initial shortest path generated in Step 0. Assign the travel demand of each class of vehicles between

this OD pair to the distance-constrained shortest path based on perceived link travel time 'I;," . This yields the set of
link flow X .

n-1
a

+x.]/n.

Step 3: Flow averaging. Let X, =[(n—1)x
2

1 n . .
D Z[XZ’—XZ]‘ . if max, 6, /x] <k stop: otherwise, set
1) m=1

- . no_
Step 4: Stopping test. Let ¢, = \/
n=n+1landgotostep 1.
5. Numerical example

Two numerical examples are adopted in this section to assess the proposed methodology.

3.1. Small network example

- N

(_) Origin

O Destination

Fig. 1. Small network

The first example consists of 9 nodes, 18 links, and 4 OD pairs: (1.3). (1.4), (2.3). and (2.4), as shown in Figure
1. The free-flow travel time is used as a proxy for the link length for each link. Travel time on each link is defined
by the following BPR (Bureau of Public Road) type function
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P

1,(v,) =17 1+0.15x o) |aed
H

a

(13)

where 13 is the free flow travel time, /, is the link & capacity and £ is a prescribed parameter. OD demands

are assumed to be the same for both GV and EV (Given in Table 1). Free-flow travel time and link capacity are
indicated in Table 2.

Table 1. OD demand of small network example.

Origin

Destination

20
40

We use this example to evaluate performance of proposed algorithms for solving both logit-based and probit-
based SUE TAP with path distance constraints. The link flow patterns under two different cases, MNL and MNP
with two classes of users (EV and GV), are estimated and compared in Table 2. EV and GV range limits are sct as
20 and 100, respectively. K is set to be 8.

Table 2. The comparison of equilibrium EV and GV flows on the small network.

Link # Link length  Link Capacity

MNL flow

EV.D=20 GV,D=100 EV+GV

MNP flow

EV,D=20 GV,D=100 EV+GV

w

6

40
30
50
80
30
60
30
30
90
30
30
30
30
30
30

30

40
30

16
14
70
0
0

16
14
%
46
0
40
1
0
59
1
20
18
4
20
)

32
2
94
46
0
126
2

1
7

12 14 25
19 16 35
61 35 96
9 35 4
0 21 21
81 20 101
10 29 39
19 22 40
7 22 29
2 29 31
29 20 49
24 28 52
42 26 68
12 20 32
36 32 67
2 22 23
12 33 45
0 26 26
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It is observed that the SUE assignment with different path distance limit resulted in different equilibrium link
flows. For some links, e.g. link 1 & 2, both GV and EV obtained similar assignment results, while for the other
links, it can be seen that the more EV use a certain link, the less GV choose that link, because the EV’s path choices
are restricted by its driving range and EV user prefer paths of short distance. When EV users crowded into those
links with short distance, they became over-saturated, thus increasing corresponding link travel time, and GV user
would rather use those unsaturated links to reduce their travel time to obtain equilibrium.

Comparing MNL with MNP, it is clear that there are 7 links close to zero flow in MNL while all the links have
been assigned some flow in MNP. This result might come from Independence of Irrelevant Alternatives (I1A)
property of MNL, which makes MNP more realistic even if it suffers from its low efficiency.

3.2. Sioux falls network example

Gl (s
1 gl
1323 1619
735 1031 9 21—@—17 7
24 1l 20- i
25 26 2247 1854
%
12 je—33—( 11 je—27— 1 16 j&e—s5 @
%l 4 32 50
4952
3440 28
5358
e ]
3738 Cllib: 2 15 57 A 5660
4271 46 67
72— 2
7 5961
7376 69 65
d?’jﬁgﬁ 34 gr 21 62 20)

64

Fig. 2. Sioux Falls network

As shown in Figure 2, Sioux Falls network has a total of 24 nodes and 76 links. The travel demand table used in
the application are from Suwansirikul et al. (1987).The link flow patterns under the same scenarios are compared.
Without loss of generality, for the first three cases, only one class of vehicles are considered. Based on free-flow

. S 5 * O I y 5 s sy
travel time, the range limit for EV is set to B Tif{{“ﬁ“ I7} . where in this example, r}}%‘{{“}\“ I7}is the
e ) Ckek™
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maximum of all shortest path between each O-D pair and /3> 1 is a parameter to ensure there is at least one feasible
path connecting each OD pair. The K is set to 3 in K-shortest path algorithm,

A similar OD travel demand is applied to all the four experiments, including UE., MNL, MNP & MNL with
MCU (Multiclass users). Two classes of users, i.c. EV and GV users, are involved in MNL with MCU, where the
travel demand of each class is half of original travel demand, which means, the EV market share is 50%. For GV

users, the range limitis setto =10,

The results illustrate that the equilibrium flows change significantly on a number of links. A few example links
were selected randomly and their flow variations were observed in terms of different range limits (Figure 3).

As can be seen from Figure 2-6 that when /3 begins to increase, the network flows on these links behave in a

different manner; UE flow patterns change little as /3 increases because the base range limit ( f=1) is the

maximum distance of shortest paths among all OD pairs while UE usually requires shortest path (All-or-nothing
Assignment, for example). Comparing with MNP, flow patterns resulting from MNL model change dramatically. As

B continuously increases, the flow rates change mildly and finally converge to values without range limit
constraints. However, these changes may not be necessarily monotone.

Link 1 Link 6
bE] L]
2 — e * o o’
e
1 + u !
7 -
31 3 /
9 2z S /
! J W 9 -
X 8 [ R Qi Sipy Qe -— ¢ —
& / & P = v ¢
- / - /

6 Bae i Py e il o il 14 +

5 2 T o
¥ ——r —

4 I = 5 e
Bl pel2 Beld Bl8 B2 (5} 1 pel2 pld Bl8 B2 ped
~t UE <% MNL =B=MNP =u=MNLwith MCU b UE <% MNL =B=MNP =s=MNLwith MCU

Link 21 Link 51
1 7
................ n
n ”k - & . 4 16
10 - 15 .
[ ARGy s T
% 9 7—"»\., gu .
(T T ) A Ty
& - -
c / c
5 1 — y cn >

6 ____,(' 1 ¢
&~ ¥

5 % 1 peeene «

4 [} = ——e
Bl Bl2 Bl4 L8 B2 Bt 1 pel2 peld Belg B2 pd
~+ UE % MNL —B—MNP =4=MNLwith MCU ~+ UE <+ MNL —B—=MNP == MNLwith MCU

Fig. 3. Equilibrium flow pattern (a) link 1 (b) link 6 (c) link 21 (d) link 51.
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3.3. Sensitivity analysis

We conduct a sensitivity test with respect to the total demand in Sioux Falls network, multiplied its value by a
constant factor and performed SUE assignment to observe the effect of the congestion level on algorithm
performance. Since the Sioux Falls matrix is quite congested (Bekhor and Toledo, 2005), the factor ranges from 0.1
to 1.5, in intervals of 0.1. The number of iterations required by MNL and MNP to reach given convergence rate is
presented in Figure 5. For all levels of demand, the modified MSA algorithm of MNL model requires less than 50
iterations to reach 0.01% precision level especially when demand level is low. However, comparing with MNL, the
convergence rate of MNP model is quite slow, which requires more than 200 iterations to achieve 0.1 precision.

The performance of MNL and MNP for the Sioux Falls network is quite different in terms of convergence rate.
For efficiency, the MNL model outperforms MNP. However, as is known to all, MNL model suffers from IIA
property, and MNP might be better when distributed computing approaches are applied.

_ 250
[} Wl’—.—__‘
-g 200 »

2 150

=

0 100

©

g 0 L 0L 0 T T T TTT

g P R L L

0 __QuassQuen®

01 02 03 04 05 06 07 08 09 1 11 12 13 14 15
Demand factor

=+Q+= [teration needed to reach 0.0001 precision for MNL

=== |teration needed to reach 0.1 precision for MNP

Fig. 4. Sensitivity of the algorithm performance to the level of demand.
6. Conclusions

This paper worked on the traffic assignment models with path distance constraints, where new SUE TAP is
formulated, solved and numerically analysed. SUE models, which include perception error of travel time, are
considered more rational than UE model. Multiclass users in SUE model represents a simplified case of current
traffic networks that carry both EV and GV. More classes of users with various range limit can also be taken into
consideration. The vehicles’ range limit is determined based on its travel distance only, while rationally the range
limit should be related to both travel distance and travel time.

This paper shows that at the equilibrium point the selected paths to assign the travel demand are different from
that of basic SUE TAP. The distance of each path must be less than the range limit of that class of vehicles. The
well-known and widely used MSA procedure and probit-based network loading method are adopted and modified to
solve this problem, following the idea of putting the path distance constraints into the path selection rules of
stochastic network loading procedure. The direction finding step for MNL, involves finding K feasible paths to load
the travel demand between each OD pair, while it requires finding feasible shortest path for MNP in all-or-nothing
assignment step. The proposed algorithm is casy to understand and implement. The application of the algorithms in
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Sioux Falls network justifies the applicability of the solution procedures to general network with path-based
constraints. The numerical analysis results show the impact of range limit on network equilibrium flows.
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4.3 Conclusion

The paper included in this chapter contributes to knowledge by developing new SUE traffic assignment
model with path distance constraints. It can be seen as an extension of DUE model with the same
constraints, which include perception error of travel time, are considered more rational than UE model.
Multiclass users in SUE model represents a simplified case of current traffic networks that carry both
EV and GV. More classes of users with various range limit can also be taken into consideration. For
most cases, one realistic assumption is that the vehicle will have full battery level for each path, because
drivers are basically rational to choose path which they are able to travel through without running out
of battery. Stochastic battery levels or driving ranges are not necessary to be considered as well. Overall,
the new model shows that at the equilibrium point the selected paths to assign the travel demand are
different from that of basic SUE TAP. The distance of each path must be less than the range limit of that
class of vehicles. The well-known and widely used MSA procedure and probit-based network loading
method are adopted and modified to solve this problem, following the idea of putting the path distance
constraints into the path selection rules of stochastic network loading procedure. The direction finding
step for MNL, involves finding K feasible paths to load the travel demand between each OD pair, while
it requires finding feasible shortest path for MNP in all-or-nothing assignment step. The proposed SUE
model with driving distance is therefore adopted to achieve reliable outputs from tasks related to SUE

EV flow patterns in remaining research components.

e Driving distance constraints and lack of public charging facilities are identified as EV’s key

characteristics in research component 1, Chapter 2.

¢ Driving distance constraints and public charging facilities are considered in research component
4, Chapter 6.

¢ Driving distance constraints are extended to a more general case-battery capacity constraint in

general SUE model in research component 3, Chapter 5.

o Driving distance constraints are used to calculate the swapping demand for EBs in research

component 5, Chapter 7.

The next chapter of the thesis presents new general SUE model of EVs with limited battery capacity
where the vehicles’ range limit is determined by both travel distance and travel time, which corresponds

to research component 3.
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CHAPTER S STOCHASTIC TRAFFIC ASSIGNMENT OF
ELECTRIC VEHICLES WITH FLOW-DEPENDENT BATTERY
CAPACITY CONSTRAINTS

5.1 Introduction

The previous chapter describes new model to predict the EV flow pattern in a mixed GV and EV flow
network under general SUE principle, corresponding to research component 2. The proposed driving
distance constraints and the availability of public charging stations will be adopted or extended to
achieve reliable outputs in the remaining chapters involving SUE models with distance limits.
This chapter presents the results from research component 3. Previous research has shown that the EV
energy consumption rate does not only depend on driving distance but also travel speed. Given the
impacts of travel speed on the battery energy consumption (Bigazzi,Clifton 2015; Agrawal et al. 2016),
the effects of combining flow-dependent energy consumption on BEVs’ route choice behaviour should
be explored with battery capacity constraint. In existing general SUE models with side constraints, only
link capacity constraints have been considered (Meng et al. 2008) and battery capacity constraints have
only been studied in DUE models. This chapter therefore aims to develop new general SUE models for
EVs which considers flow-dependent battery energy consumption. The research gap and objective
associated with this research component are provided in Table 5-1.

Table 5-1: Research gap and opportunities associated with research component 3

Research topic Research gaps Research opportunities

SUE models of transport No studies have considered a Proposing a general SUE model

network with electric SUE model of BEV'S with and solution algorithm for BEVs

vehicles (Part I1) battery capacity constraints with limited battery capacity that
where BEVS' range limit is restricts BEVS' travel time and
restricted by both travel travel distance. (see Chapter 5)

distance and travel time. (see
section 2.5.3)

This chapter begins with a description of DUE models with range limit constraints, including driving
distance limit and battery capacity constraints. General SUE model with side constraints, such as link
capacity constraints are then presented. Algorithms for solving the proposed model are discussed. This
chapter continues by validating the proposed general SUE models of EVs with limited battery capacity

using Lagrangian dual and gradient projection algorithms, followed by a conclusion.

This paper is included in this chapter: Jing W, Ramezani M, An K, et al. Congestion patterns of electric
vehicles with limited battery capacity[J]. PloS one, 2018, 13(3): e0194354-e0194354.
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5.2 Paper 2: Congestion patterns of electric vehicles with limited battery capacity

The following paper details a more complicated STAP in transportation networks with BEVs owing to
the fact that BEV energy consumption depends on not only the path distance but also the travel time.
The main objective was to theoretically understand how a flow-dependent path-based constraint can be
incorporated into a general SUE model. It begins by discussing the battery capacity constraint was a
flow-dependent one, while path distance constraint was flow-independent. The flow-independent
driving distance constraint in research component 2 can be processed in the route choice procedures,
while the flow-dependent battery energy consumption depends on not only distance but also traffic flow
(travel time). A mathematical programming model was proposed for the flow-dependent path-based
SUE traffic assignment. A convergent Lagrangian dual method was employed to transform the original
problem into a concave maximization problem and a customized gradient projection algorithm was
developed to solve it. A column generation procedure was adopted to generate the path set. The solution
framework, Lagrangian dual-gradient projection-stochastic network loading, can be applied to solve
path-based SUE problem. Finally, two numerical examples are presented to demonstrate the

applicability of the proposed model and the solution algorithm.
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Abstract

The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of
public charging stations, limited battery capacity, range anxiety and long battery charging
time. This paper investigates the congestion/flow pattern captured by stochastic user equi-
m librium (SUE) traffic assignment problem in transportation networks with BEVs, where the
i BEV paths are restricted by their battery capacities. The BEV energy consumption is
updates assumed to be alinear function of path length and path travel time, which addresses both
path distance limit problem and road congestion effect. A mathematical programming model
is proposed for the path-based SUE traffic assignment where the path cost is the sum of the
corresponding link costs and a path specific out-of-energy penalty. We then apply the con-
vergent Lagrangian dual method to transform the original problem into a concave maximiza-
tion problem and develop a customized gradient projection algorithm to solve it. A column
Citation: Jing W, Ramezani M. An K Kim 1 (2018) g neration procedure is incorporated to generate the path set. Finally, two numerical exam-
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BEV companies are trying to overcome this limited range requirement by implementing
fast charging stations, where a vehicle can be charged in minutes rather than hours to full
capacity [5]. However, operating fast charging stations is costly and fast charging reduces the
life of a battery due to the irreversible damages to charging cells [6]. Despite the development
of fast charging techniques, BEVs still take more time to recharge than the time needed for a
standard gasoline vehicle to refuel. Hence, BEV commuters are more likely to charge their
vehicles at home rather than at stations [7].

Nevertheless, insufficient charging stations and limited driving range for BEVs make traffic
assignment problem (TAP) more challenging due to the incorporation of path distance con-
straints and battery capacity constraints. The existing TAP models should be modified to bet-
ter describe commuters” behavior with the prevalence of BEVs. There have been many
endeavors to address this problem. Among which, some studies enforce flow of a path to be
zero if the path distance is greater than the driving range limit of BEVs. The classic Frank-
Wolfe method with a constrained shortest path algorithm can be applied to solve this problem
under deterministic user equilibrium (DUE) [8]. As an extension of static path distance con-
straint, stochastic range anxiety resulting in stochastic path distance constraint has been con-
sidered in networks [9-11]. Network equilibrium problem was further addressed when
modeling transportation networks that accommodated both gasoline vehicles (GVs) and BEVs
[4, 12, 13]. A multi-class dynamic user equilibrium model was proposed to evaluate the perfor-
mance of the mixed traffic flow network, where GVs chose paths with minimum travel time
and BEVs selected paths to minimize the generalized costs including travel time, energy cost
and range anxiety cost. It was also pointed out that the BEV energy consumption rate per unit
distance traveled is lower at moderate speed than at higher speed resulting in an equilibrium
that BEVs choose paths with lower speed to conserve battery energy [14]. Relay/charging
requirement has been taken into account in network equilibrium problems and was formu-
lated as a nonlinear integer programming [15]. It was found that traffic congestion would
affect fuel economy of BEVs and BEVs might become more fuel-efficient as the average speed
increases, particularly at local arterials [16]. Hence, another work considered recharging time
based on flow-independent energy consumption in the base network equilibrium model and
further extended the proposed DUE model with flow-dependent energy consumption assump-
tion [3].

However, a more realistic and general situation is that travel time is a random variable and
is perceived by travelers in an imperfect, stochastic manner. For example, travel time varies
due to stochastic traffic flow conditions. Moreover, battery energy consumption rate is demon-
strated to be not only distance-dependent but also time-dependent because it is pointed out
that heating and air-conditioning systems of BEVs may consume a substantial amount of
energy of the total battery capacity and reduce the BEV’s range limit [17]. Therefore it can be
estimated well if link flow volume can be predicted more precisely. Although the stochastic
user equilibrium (SUE) principle plays a more realistic role than DUE principle in describing
road user’s path choice behavior, the general SUE TAP considering both multinomial logit
(MNL) and multinomial probit (MNP) loading with driving range limit constraints has
received little attention because of its complexity. As a rational extension of general SUE with
flow-independent path distance constraints [18, 19], the SUE traffic assignment model consid-
ering flow-dependent link energy consumption is referred to as general SUE traffic assignment
with battery capacity constraints.

Previously proposed side constraints for the TAP are basically imposed on traffic flows
through nodes, links, paths or O-D pairs and may be grouped into two major categories, i.e.
link-based and path-based constraints [9]. The first category is generally referred to as the sto-
chastic TAP with link capacity [see e.g., [20-22]]. A milestone is Meng’s linearly constrained
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minimization model, which is a general SUE traffic assignment problem with link capacity
constraints. This work was inspired by the stochastic social optimum (SSO) traffic assignment
with the objective of minimizing the total perceived travel time by Maher, Stewart [23].
Maher, Stewart [23] found that the solution of SSO could be achieved by solving a SUE prob-
lem using the marginal cost function. Meng, Lam [22] demonstrated that SUE flow pattern
could be generated by solving an SSO problem applying a modified link travel time function.
Early developed algorithms to solve the unconstrained logit-based SUE problem were link-
based, e.g. [24]. These link-based algorithms do not require path storage and often use Dial’s
STOCH algorithm or Bell’s alternative as the stochastic loading step [25, 26].

The second category, the stochastic TAP with path-based constraints, has received much
less attention. Only deterministic TAP with flow-independent path-based constraints under
BEV scheme has been considered in these studies [3, 4, 8, 12, 15, 19, 27]. In general, they
assumed that BEV users could charge only at trip origins and destinations, that the distance of
any feasible trip must not exceed the given distance limit 8, 9, 12]. However, for general SUE
TAP, no research has taken flow-dependent path energy consumption constraints into the
general SUE TAP model.

The main challenge of using a path-based algorithm in the past is the memory requirement.
This restriction has been relaxed considerably in recent years due to rapid advances in the
computing resources. Different from link-based algorithms above, path-based algorithms
require explicit path storage to directly compute the logit path choice probabilities. Olof, Jan
[28] developed a path-based algorithm based on the disaggregated simplicial decomposition
(DSD) algorithm to solve the MNL SUE problem. Among the path-based algorithms for the
traffic equilibrium problem with additive path costs, much attention has been paid to the DSD
algorithm and the gradient projection (GP) algorithm [29]. GP algorithm has been shown asa
successful path-based algorithm for solving traditional traffic equilibrium problem with addi-
tive and non-additive path costs due to its global convergence and simple implementation
[30]. A comparison work of evaluating the performance and robustness of these two path-
based algorithms can be found in Chen and Lee [31]. Furthermore, to investigate the impact of
step size scheme, different step size strategies of the path-based algorithms developed to solve
the C-logit SUE models based on an adaptation of the GP method were investigated in [32].
Another inevitable problem of the path-based problem is the way of generating paths. A possi-
ble alternative path set can be obtained from a path choice set generation algorithm [33].
Behaviorally, this has an advantage of explicitly identifying paths which are most likely to be
used and also allows a greater flexibility to include path-specific attributes that might not be
obtainable directly from the link attributes [33, 34].

This paper is concerned with a general SUE TAP with battery capacity constraints, as an
extension and generalization of the previous DUE TAP version with driving distance con-
straints or battery capacity constraints. To the best of our knowledge, it remains to be an open
question to find an exact solution method for solving the general SUE problem with path-
based constraints, incorporating column generation to avoid path enumeration on a transport
network with BEV.

Meng, Lam [22] proposed a solution framework combining Lagrangian dual (LD) method
with GP algorithm for general SUE problem with link capacity constraints. However, due to
the existence of the implicit path-specific battery out-of-energy function, it remains uninvesti-
gated if this framework can also be applied for path-based constraints. Hence, for the general
SUE TAP, we also adopt the solution method framework of combining LD with GP and prove
its applicability. Specifically, the path set in this paper is generated prior to the assignment
using column generation procedure which has been embedded in the GP algorithm [35] to

PLOS ONE | https://doi.org/10.1371/journal.pone.0194354 March 15,2018 3/18

52|Page



Chapter 5: Stochastic traffic assignment of electric vehicles with battery capacity constraints

o~ ®
@ ) PLOS ’ ONE Stochastic traffic assignment of electric vehicles with battery capacity constraints

avoid path enumeration. The GP algorithm iteratively updates the Lagrangian multiplier cor-
responding to each path, until the optimal solution is obtained.

To sum up, the contributions of this study are threefold. Firstly, to enrich the general SUE
family with side constraints (link-based and path-based) and make consistence with side-con-
strained general DUE condition, it is believed that this is the first paper studying a general
SUE model with path-based constraints. Secondly, a holistic methodology is proposed for gen-
eral SUE traffic assignment model with battery capacity constraints on BEV scheme, in which
the path choice is restricted by the battery capacity with a single charge. Thirdly, a Lagrangian
dual based exact solution method incorporating column generation is developed for solving
this path-constrained general SUE model.

The remainder of this paper is organized as follows. In Sections 2, we elaborate the problem
formulation and analyze its solution properties. Section 3 presents an LD reformulation and
details its algorithmic implementations by incorporating a convergent GP subroutine and col-
umn generation procedure. Section 4 presents the numerical results of applying the algorithm
procedure to two case studies. Section 5 provides the concluding remarks.

Notation, problem description and model formulation
Let us assume the transport network is modeled as a connected graph, denoted by G = (N,A),

where N and A are sets of nodes and links, respectively. (r,s) stands for certain ordered pairs of
nodes, r € Rand s € S,where node r is an origin and node s is a destination. RC Nand S C N
are sets of origins and destinations, respectively. There are non-negative travel demands ¢
between (r,5). q = (¢%)", ¥(r, s) is a column vector for all the travel demands. Let K,y be the set
of paths connecting O-D pair (r,s), f* be traffic flow on path k € K., f* = (f*)",k € K bea
column vector of all these path flows between O-D pair (r,s), and f = (f*)",¥(r,s) be a column
vector of all the path flows over the entire network. Let v, denote traffic flow on link a € A and
v=(v,)",a € Aisa column vector of all link flows. The path flows and link flows should com-
ply with fundamental flow conservation equations:

v, =) ) fro.YacA (1)

(rs) &

=Y ) )
5> 0,Y(r,s), k€K, (3)

where 5:; = 1if path k € K, between O-D pair (r,s) traverses link a € A, and 0 otherwise.

Let ,(v,) denote the separable travel time function of link a € A that is assumed to be a pos-
itive, strictly increasing, convex and continuously differentiable function of the traffic flow on
the link. All the link travel time functions are grouped into a column vector.

t(v) = (t,(v,))",a € A. Travel time on path k € K;; between O-D pair (r,s) can be considered
as a function of all the path flows, denoted by ¢(f) with the expression

G =) L), ©

To generate a SUE flow pattern by solving a SSO problem, a modified link travel time func-
tion f,(v,) corresponding to link travel time function t,(v,),a € A is defined to be positive,
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strictly increasing and continuously differentiable [22].

With modified link travel time functions {f (v,),a € A}, the corresponding path modified
travel time can be expressed as

() = Y E ()85 V(rs) ke K, (6)

agA

Let ¢ (f) = (c7(f))", k € K, be a column vector of all the modified path travel times
between O-D pair (r,s). In terms of any positive feasible path flow pattern f, there are continu-
ously differentiable path-specific dummy functions, d*(f*) € R, ¥(r,s), so that the conven-
tional SUE conditions associated with the path travel time functions can be satisfied by path
flow pattern £, {(¢*(f) + d™(f*)},¥(r, s), namely

=4 PO + () o)

where P*((c(f) + d"(f")) is referred to as the probability of choosing a given path that has the
minimum perceived generalized path cost and P¥((¢*(f) + d=(f*)) = Pr(UF < UF, VI € K,).
The perceived generalized path cost of any path k € K;; connecting O-D pair (r,s), U}* is random
variable, where U = ¢ + dff -+ &' & is the random perception error of the path cost and df
represents an additional additive cost variable across all links associated with path k € K; to ful-
fill Eq (7) which is the SUE condition. At the optimum, the additional path-specific cost term
) = Zvn(afﬂ/avﬂ)ézk, thus ¢ + d* = Z(fﬂ +v,(0t,/0v,))d;, representing the

a acA
induced marginal system cost if a new traveler is added into the system traversing on path k €
K, connecting O-D pair (r,s) [36] or the so-called marginal social cost [23]. The analytical
expressions of d*(f") is presented under logit-based SUE conditions in [23, 36]. The path-spe-
cific cost [if (f*) can be expressed as,

- 1 ” o -
i = =l Yesp(-p(er + 2D - ¥ ke K, ®)
k

where p is the scale parameter of the logit model.

To simplify the traffic network modeling, only BEV (as an alternative traffic mode) is consid-
ered and a set of assumptions regarding demand heterogeneity and travel behaviors are consid-
ered. First, it is assumed that the demand population is only comprised of a single class of BEV.
Certainly, if needed, multiple types of BEV with different battery capacities, initial battery charg-
ing state (fully charged or not), range anxiety level (a safety margin that BEV drivers would like
to reserve before battery depletes) and energy consumption functions can be readily incorpo-
rated into the model without changing the problem’s nature and model’s structure [12].

Second, we assume a given fixed travel demand and SUE principle. In other words, stochas-
ticity and elasticity of travel demand are not considered regardless of its stochastic nature [37,
38]. Each BEV traveler chooses a path that minimizes his/her perceived travel cost and no one
can reduce his/her perceived cost by unilaterally switching to an alternative path. The travel
cost consists of two parts: path energy consumption and possible battery out-of-energy cost.
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When BEV runs out of battery before reaching destination, battery out-of-energy cost occurs,
e.g. a roadside assistance cost. Furthermore, without loss of generality, we assume that BEV
travelers use a common form of systematic travel cost for determining their travel choices.

In our network equilibrium analysis, we implicitly assume that all BEV are fully charged at
their origins (e.g. home garages), and there is no battery-charging or battery-swapping stations
in the network. In most transportation networks, it may take a number of years to deploy suffi-
cient electricity-recharging infrastructures for achieving a certain level of coverage. Conse-
quently, BEV users would choose the path whose energy consumption is less than or equal to
the battery capacity, denoted by D. Although it is difficult to foresee how future developments
in battery and vehicular technologies may enhance the fuel economy of BEVs at various traffic
conditions, the link energy consumption in this paper is assumed to increase with the increas-
ing energy consumption of heating and air-conditioning system over time, which is a linear
function of link length and modified link travel time, namely, e,(v,) = al, + ft,(v,),Va € A
[3]. The authors, however, do not claim the applicability and suitability of the defined energy
consumption function for accurate quantification of link energy consumption. One must con-
sider the relationship between energy consumption and travel time (speed). Note that £ (v,) is
the modified link travel time function. In practice, each path k € K;; would have a path energy
cost and EV drivers have perception error on this cost. Any feasible path flow pattern should
satisfy the battery capacity constraints:

fE(D —alf - i) >0,Y(r,s), ke K, 9)
With the above battery capacity constraints, the generalized path travel cost is defined by
& = ol + fe- (10)

which means that if the energy consumption is smaller than or equal to the battery capacity,
the flow of BEV users going through path k is nonnegative,; otherwise, the trip flow should be
equal to zero.

= 2> 0,if aff + g <D
{f" o+ Y(r,s),k €K, (1)

5 = 0,if al? + pc¢ > D’

Remark 1. If we set @ = 0, the problem would turn into a travel time-constrained SUE TAP;
if setting = 0, it becomes a SUE TAP with driving distance constraints. Therefore, flow-
dependent battery capacity constraint is a generalization of BEV’s driving distance constraint.

Model formulation

This section introduces the general SUE traffic assignment model in terms of path flows with
battery capacity constraints as follows:

minZ(f) = YD qS" () + () - YD N A () -f (12)

st (1),(2),3), )

where §¥(c™(f) + d™(f*)) = E[min{c™(f) + d™(£*)}] is the satisfaction function, i.e., the
expected value of the minimum perceived travel time for travelers between O-D pair (r,s). The
satisfaction function is a continuously differentiable, concave function [39]. Compared to the
Meng’s model [22] for general SUE with link capacity constraints, the difference lies in the
constraints of model (12). This model also possesses two vital propositions as follows.
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Proposition 1. Any local minimum f* of the minimization model (12)- satisfies the general-
ized SUE conditions, and the optimal Lagrangian multipliers associated with battery capacity
constraint (9) are battery out-of-energy costs.

Proposition 2. The SUE link flow pattern induced by any local minimum solution of the
minimization model (12)- is unique.

The mathematical proof of proposition 1 can be accessed in the appendix file “S1 Text”,
while proposition 2 can be proved by following exactly the same procedure as in Meng, Lam
[22] and substituting y, in their work with ¢, in Eq (17).

Problem feasibility

The extra battery capacity constraint in the above model could result in problem infeasi-
bility. If the energy consumption of all the paths connecting an O-D pair exceeds the bat-
tery capacity, the travel demand between this O-D pair cannot be assigned to the network
without causing additional battery out-of-energy cost. The infeasible O-D pairs can be
detected by comparing minimum energy cost path with battery capacity under free flow
scenarios.

Solution method

Lagrange Dual (LD) method. The objective function (12) includes an inexplicit path-
specific dummy functions, d*(f®), therefore the original problem cannot be solved
directly. Nevertheless, LD formulation of the original model can be established to examine
if the proposed algorithms can successfully solve the proposed problem. The solution
equivalence between the original problem and the LD problem can be realized if the dual
problem is maximized with respect to the Lagrangian multipliers according to the dual
theorem.

In order to get the optimal Lagrangian multipliers with respect to the battery capacity con-
straint in the minimization model, the LD maximization is defined as

max L(p) (13)

20

L(p) mm[Z + ZZZM" C(adf + pe; - D)) (14)

where p = (-, %, - -) € R%, where pf is the Lagrangian multiplier associated with battery
capacity constraints (9), where |K,| denotes the number of elements in set K. Q is the set of
all the feasible path flows without consideration of battery capacity constraints, i.e. Q = (f]f sat-
isfies Eqs (1), (2) and (3)). p acts as a role to convert the battery capacity constraints (9) into
the objective function (12). Moreover, L() is a concave function with respect to non-negative
Lagrangian parameter fi;’.

Following the same procedure in the proof of Proposition 1, it can be demonstrated that
any local minimum of above concave function L(y) fulfills the conventional SUE conditions
(see Eq 6 in Meng, Lam [22]) in terms of the generalized path travel cost function. The well-
defined generalized path travel time function is

& = ¢ + i (olf + P — D), V(r,s),k € K, (15)

where ;i (a7 + fic; — D) is called the battery out-of-energy cost incurred when the battery
energy needed to travel through a given path exceeds the battery capacity of the BEV. The
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generalized path travel cost and it should satisfy the following conditions:
{ =0k =P

(16)
> 0,if ol + feg > D

Hence, travel time experienced by a driver on a path consists of two parts: normal travel
cost and additional cost incurred when energy needed exceeds the battery capacity. The accu-
mulation of the battery out-of-energy cost on a link a is defined as:

YN el +pg D) =Y > N K =) e (17)
[ N r $ k a

where ¢, accounts all the paths going through it. According to the generalized path travel cost, the gener-
alized SUE conditions that take battery capacity constraints into consideration can be defined as follows.

£ =" PAE(f) + i (ol + B — D)), ¥(r,s), k € K, (18)
FE(D — ol — peg) > 0,Y(r,s),k € K, (19)

i > 0,Y(r,s), k€K, (20)

W (D — ol — per) = 0,%(r,s),k € K, (21)

The generalized link travel time functions can be defined as:

Lv)=1v)+e,ach (22)

For any given pu>0, let v(y) be the link flow pattern induced from a local minimum of the
minimization problem shown in right-hand side of (14). Following the similar proof in Meng,
Lam [22], v(y) is a unique SUE link flow pattern for networks with the modified path travel
time functions and Lagrangian dual formulation (13) is a continuously differentiable concave
maximization model. The uniqueness of the optimal link flow solution implies that the gradi-
ent of L(y) is:

VL) = (- o)l + B — D), )y (23)
Applying the Karush-Kuhn-Tucker (KKT) conditions to (13) can lead to proposition 3 that
Proposition 3. Assume that y* is an optimal solution of the LD maximization model (13).
v(p*) is the SUE link flow pattern with battery capacity constraint.

Hence, the LD formulation (13) can be efficiently solved by a global convergent GP method
with iterative solution updating scheme:

W = Popi® + 5,7 (24)

where 1 is the number of iterations; Py [0 + o, VL(n")] is the projection of vector 1™+, VLE™)

onto the |A|-dimensional non-negative orthant, i.e., R''; and the projection operation P,y [} is defined by
+

P, [yl =arg ggglj;(-\; -y (25)

Furthermore, {a,} is step size sequence and given at any point p’ € Q, where Q is the feasi-
ble set, denoted by

WO (a,) = Pl + 2, 9L, 2, >0 (26)
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The unique projection of the vector [ + a, VL(u™)] on Q where @, > 0 is a nonnegative
scalar parameter. Since the feasible set of p is the whole nonnegative orthant, the Lagrangian
multiplier updating formula shown in (24) can be rewritten in the following way:

) = max{0, ) + o (W) 0 + e — D)}, Gi ) € K, @)

It has been proved that without the requirement of the Lipschitz condition, every limit
point of the sequence ("} generated by the GP algorithm is a stationary point, as well as a
solution point. For step size, a predetermined step size which has simple structure and is com-
monly used by [Meng and Liu [20], Meng, Lam [22]] is applied in this model instead of the
generalized Armijo rule, which belongs to the inexact line search strategies and is for con-
strained minimization problems. The reason lies in that at each step, the gradient information
of the objective function and objective function evaluations are required to determine an
appropriate step size to improve the solution when using Armijo rule.

Proposition 3 confirms that solving the SUE link flow pattern with battery capacity con-
straint can be obtained by solving LD maximization model (13). Although the LD function
L(p) does not possess an explicit expression, its gradient for any u>0 can be evaluated by
implementing a conventional SUE traffic assignment procedure without consideration of bat-
tery capacity constraint. Difficulties in calculating the LD function value and applying Armijo
rule render us to employ a GP method with a predetermined step size sequence for solving the
continuously differentiable maximization problem (13), which is stated as follows.

Stage 0: Feasibility Check. For each O-D pair, find the minimum energy consumption path
according to link length and free flow travel time. If the path energy consumed is greater than the
BEV battery capacity and the corresponding travel demand is positive, then there is no feasible
path between this OD pair without causing additional energy out-of-battery cost. Record this OD
pair and infeasible vehicle type to Set A. If Set A is empty, go to the next step; if not, stop.

Stage 1. Initialization. Set v,(0) = 0, £, = ¢, [v,(0)], iteration counter n = 1 and define the
path set K, =0

1. Solve the acyclic K shortest path problem in terms of path energy cost by Yen’s algorithm
40] to generate an initial path set k_(n),K_ = k_(n) U K_ and initialize its correspond-
ing multiplier £ = 0, vk € K

2. Perform stochastic network loading to assign the travel demand to the paths generated
based on £ (0), B" (1) = q,,- Logit loading results in K paths while probit loading

generates one shortest path between each O-D pair.

3. Assign path flows to links v,(n) = ZZ’T(")O;

s keK

Stage 2. Column Generation. Increment iteration counter 1 = n+1

4. Update link travel time f (1) = [v,(n — 1)] based on £,(v,) = ¢ 0

link energy consumption e,(n) = ol + ft (n —1),Ya

5. Solve the K minimum path energy cost problem to generate new paths k., (1) and initial-

rs{n)

ize the corresponding Lagrangian multiplier ;" of the newly generated paths.
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8.1. Update pathset K (n) = k,(n) UK (1 — 1), ifk(n)¢K (n — 1); otherwise use current
path set Ki(n) in stochastic network loading procedure.

Stage 3. Equilibration. Compute the generalized path travel cost C"" = ¢ + u(fer +
ol — D) Yk € Ki(n)

6. Perform stochastic network loading procedure (logit or probit) to generate new path
flow patterns £*(p""') in terms of the current path set Ki(n)

7. Obtain the set of link flows according to link/path incidence relationship
V") =33 fror Yac A
ros k
8. Average flow. Let Va(1t™) = (=1 (" )+ V()] /n, Ya € A

9. Check stopping criterions of both flow change rate and Lagrangian multiplier change
rate. (Flow change rate can be referred to page 301 for probit loading and page 327 for
logit loading respectively in Sheffi [39].) If the following criterion hold, then terminate.

max{ " — max(0, 47 + o, f7(w) a7 + B — D)} < &, Vi
10. Otherwise, update Lagrangian multipliers according to the following equation:

Y = max{0, " + o f5 (™) (@l + B - D)}

Note that {a,} is a predetermined step size sequen ce satisfying the three conditions:

o0 o0
0<a,<land limea, = ();Z:oz,x = ﬁocZa,’, <00
n—00
n=1 n=1

Numerical examples

This section presents 2 numerical case studies to assess the performance and properties of the
proposed method.

The first example, which is also adopted by Nie, Zhang [41] and Meng and Liu [20], consists
of 9 nodes, 18 links, and 4 O-D pairs: (1,3), (1,4), (2,3), and (2,4), as shown in Fig 1. The free-
flow travel time is used as a proxy for the link length for each link. Travel time on each link is
defined by the following BPR (Bureau of Public Road) type function

4
t(v) =t (1 +0.15 % (:1_) ).a €A (28)

where t! is the free flow travel time and H,, is link a capacity. OD demands, free-flow travel
time and link capacity are the same as that in Meng, Lam [22].

() Origin
O Destination

Fig 1. Small network schematic with 2 origins, 2 destinations, 9 nodes, and 18 links.

hitps://doi.org/10.1371/jounal pone.0194354.9001
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Table 1. Path sets and corresponding optimal Lagrangian multipliers for MNL.

0-D pair Path generated and its Lagrangian multiplier
(1.3) [1,57.3] ‘ [16,57.3] [157.83] [1,687.3] [159,7,3] [169,7.3] [1683]
0 0 0.63 4.23 5.24 5.24 4.61
(14) [1,5,7,4] ‘ [1,5,7,8,4] [1,6,8,4] [1,6,5,7,4] [1,6,5,7,8,4] [1,68,7.4] [l
0 0 7.07 8.34 10.83 10.79 /
(23) [2,5,7,3] [2,57,83] [26,57,3] [2,59,7,3] [2,6,8,7,3] [2,68,3] I
0 0 10 9.95 12.92 12.45 /
24) [2,5,7,4] [2,5,7,84] [2,6,8,4] [2,5.9,74] [26,5,74] [2,5,9,7.84] ]
0 0 18.54 17.17 17.13 14.79 /

https://doi.org/10.1371/journal.pone.0194354.1001

We use this example to evaluate the performance of proposed algorithms for solving both
logit-based and probit-based SUE TAP with battery capacity constraints (further details are pro-
vided in §1 Matlab Code). The generated paths and their corresponding Lagrangian multipliers
at the equilibrium under MNL are shown in Table 1. EV range limit is set to 4, and K, o, B are 6,
0.174 and 0.116 respectively. The convergence criterion of both flow change rate and Lagrangian

multiplier change rate is 0.01. The step size sequence {a,} and the initial multiplier 1" are 1/n
and 0, respectively. The non-zero multipliers indicate that the energy consumptions of traveling
on these paths exceed the BEV battery capacity at the equilibrium, while zero multipliers (e.g.
for paths 1-5-7-3 and 1-6-5-7-3) denote paths within the battery capacity, which will not trigger
the out-of-energy cost. The number of paths generated in the column generation procedure is
related to the value of K. Fig 2 shows the convergence performance of the solution method
under MNL loading, where the equilibrium is reached after 130 iterations. Note that, in Fig 2

rs(n+1 rs(n)|

e —
Furthermore, we perform a thorough sensitivity analysis with respect to travel demand, bat-
tery capacity and the logit parameter. The high demand is double of the medium demand in
the first numerical example. Table 2 demonstrates that after a certain level of battery capacity
(e.g. battery capacity equals to 6 and 7), there is no influence on the equilibrium link flows,
whereas in extreme cases (e.g. battery capacity = 2) where battery capacity is too small to travel
through any path between an O-D pair, every corresponding Lagrangian multiplier would be
positive and each EV user would experience the battery out-of-energy cost. In addition, higher
travel demand may impose congestion on the network and thereby increase the energy con-
sumption rate for the same path comparing to the original demand because of the increasing
path travel time. Table 2 shows that the equilibrium link flow pattern is affected by travel
demand and battery capacity. For example, link flows of 9, 11, 12, and 13 in the fifth and eighth
column have much difference with each other because the network becomes congested and
link travel time goes up when travel demand is high and increasing path travel time results in

y-axis is in logarithm unit. The Euclidean distance equals to max

more energy consumption and more paths infeasible on which BEV will run out of energy and
incorporate additional out-of-battery cost.

1

&

Lagranglan multipller change

Logrithm of Euclidean distance of
IS

2 4 ] 80 100 120

Fig 2. Convergence performance of MNL loading for the small-sized case study.
https://doi.org/10.1371/journal pone.0194354.9002
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Table 2. Equilibrium link flow for different scenarios of the travel demand and battery capacity under MNL network loading.

Link No. Link capacity Medium d d High demand
capacity =2 capacity = 4 capacity = 6 capacity =7 capacity = 4 capacity = 6

1 40 21.36 23.85 14.46 14.06 14.38 20.39
2 30 8.64 6.15 15.54 15.94 45.62 39.61
3 50 68.44 68.31 5220 47.71 39.22 66.20
4 80 1.56 1.69 17.80 22.29 100.78 73.80
5 30 0.00 0.00 0.00 4.40 14.14 297

6 60 92.62 94.58 71.22 61.67 21.55 81.34
7 30 3.00 1.47 11.27 14.35 40.18 647

8 30 5.81 3.89 15.83 18.65 22.27 4.18

9 90 246 3.53 16.47 19.38 92.92 102.82
10 30 1.92 0.42 1.04 4.60 45.36 9.37
11 30 39.03 35.65 30.11 27.71 35.82 10.39
12 30 60.00 37.49 31.70 30.17 221 0.00
13 30 0.62 2443 26.81 29.32 44.48 83.50
14 30 0.97 4.35 9.89 12.29 44.18 69.61
15 30 0.00 22.51 28.30 29.83 117.79 120.00
16 30 211 1.10 5.08 6.58 11.47 1.14
17 40 4.92 1.89 12.31 18.95 49.49 11.40
18 30 0.00 0.00 0.00 0.00 36.04 4.44

hitps/doi.org/10.1371/journal.pone.0194354.1002

Table 3 shows path usage status, revealing the number of total generated paths and the pro-
portion of feasible paths without additional out-of-battery cost corresponding to the scenarios
in Table 2. When the battery capacity is extremely small and travel demand is medium, e.g.
medium demand, capacity = 2, all the generated paths exceed range limit and every path user
would experience a battery out-of-energy cost. However, while the battery capacity increase to
4, comparing two scenarios of different demand, all paths in the highly congested network are
still out of range limit, because the energy consumption increase sharply as the path travel
time increases. For the medium demand case, there are at least 2 paths within the range limit
for each O-D pair.

For MNP, K is set to be 1 because the all-or-nothing assignment is applied in MNP loading
and only the shortest path is used to load the demand. Sample size of drawing perceived travel
time in Monte Carlo simulation is 200. Fig 3 shows the convergence performance under MNP
loading where there is a fast trend during the first 10 iterations while equilibrium is reached at
iteration 100. The equilibrium path sets and their corresponding Lagrangian multipliers are

as well. Comparing to MNL, fewer paths are used between each O-D pair because the all-or-

Table 3. Path status under different travel demand and battery capacity for MNL.

0-D pair The number of paths within range limit V.S. total paths ted
Medium d d High d 1
capacity =2 capacity = 4 capacity = 6 capacity =7 capacity = 4 capacity = 6
(1,3) 0/7 1/7 717 8/8 0/19 3/12
(1,4) 0/10 0/6 5/6 8/8 0/24 3/16
(2,3) 0/6 1/6 4/6 710 0/21 2/15
(24) 0/10 1/6 2/6 718 0/24 1/16

https/doi.org/10.1371/journal.pone.0194354.t003
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Euclidean distance of Lagrangian
multiplier change

Iteration
Fig 3. Convergence performance under MNP loading for the small-sized case study.
hitps://doi.org/10.1371/joumal pone.0194354.9003

nothing assignment is used in probit loading step to assign the travel demand to the shortest
path. When the demand is low and the network is not congested, only several paths would be
calculated in column generation step as the shortest path are stored in path sets. A sensitivity
analysis is conducted with respect to probit parameter in Table 5. As we can see, the effect of
changing probit parameter values is not that obvious in terms of the link flow volume. In
MNL, different K values in K-shortest path algorithm used for column generation step would
lead to different path size. It is well known that MNL model suffers from independence of
irrelevant alternative (ITA) property [39], which is the reason why larger K value is used in
MNL model.

For the second case study, a variation of the Sioux Falls network (see Fig 4) is adopted
which has been chosen as a benchmark network in numerous traffic assignment studies
[Suwansirikul, Friesz [42]]. One particular reason for presenting the Sioux Falls network
example here is to highlight the effect of parameter setting on computational cost. This net-
work consists of 24 nodes, 76 links, and 576 O-D pairs. For computational experiments, the
number of iterations (ITR) and the total computational cost (TCC) were compared for MNL
and MNP under different battery capacities (BC), stochastic parameter values, and K values.
The weight value of link energy consumption function, namely o, B, and convergence criteria
used here are the same as the first example.

Table 6 and Table 7 list the computational cost with different parameters under logit and
probit-based loading. Assuming the travel cost coefficient of the logit model, referred to as
logit parameter, is 0.2, it can be seen from Table 6 that K value has a great impact on computa-
tional cost. By looking into ITR before convergence and comparing the first two scenarios, big-
ger K value would decrease the ITR needed while increasing the TCC. Clearly, most
computational cost is spent on calculating the K shortest paths at column generation and logit
loading steps for each iteration. Therefore, a more efficient K-shortest path algorithm would
improve TCC. According to these two tables, it can also be observed that smaller battery capac-
ity, bigger stochastic parameters and larger battery capacity, lead to slow convergence speed.
Intuitively, the larger the BC is, the more paths can be selected in the path set. More time is

Table 4. Path sets for MNP and its Lagrangian multiplier.

0-D pair Medium demand High d d
(13) (157.3] i (1573] [168,3] i
0 / 0 0 /
(14) (15.7.4] [1L5.7.84] (1574] ‘ (1684] i
0 0.35 0 , 0 /
(23) (257.3] i (2573] ‘ 2683] i
0 0 0 ‘ 0 /
(24) [2,5,7,4] [2,5,7,8,4] [2,5,74] [2,6,84] [2,5,7,8,4]
0 0.26 0 | 0 2.63

hitps/doi.org/10.1371/journal.pone.0194354.1004
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Table 5. Equilibrium link flow for different scenarios of the travel demand and probit parameter under MNP network loading.

Link No. Medium d d High d d
Parameter = 0.2 Parameter = 1.2 Parameter = 0.2 Parameter = 1.2

1 30.00 29.80 29.84 30.53
2 0.00 0.20 30.16 2947
3 70.00 70.00 111.77 108.60
14 0.00 0.00 28.23 31.40
5 0.00 0.00 0.00 0.00

6 100.00 99.80 141.61 139.12
7 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00

9 0.00 0.20 58.39 60.88
10 0.00 0.00 0.00 0.00
11 40.00 40.00 72.58 71.05
12 45.74 49.11 61.94 63.16
13 14.26 10.69 7.10 491
14 0.00 0.00 7.42 8.95
15 14.26 10.89 58.06 56.84
16 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00

hitps/doi.org/10.1371/journal.pone.0194354.1005

needed to generate the paths, calculate the path choice probability, and assign the flows. When
BC is large enough and travel demand is fixed, BEV can actually travel to every destination
with no concern about running out of energy, thus making it a conventional SUE with no
additional battery capacity constraints. In reality, BEV may not fully charged under some cir-
cumstances, e.g. power grid failure, multiple trips. Therefore, multi-class users with different
battery capacities can be further taken into consideration without changing the problem’s
structure.

Moreover, the bigger value of the stochastic parameter, the larger is the random perception
error on both travel time and energy cost. From the results, it is found that it took less time
and less iterations for probit-based network loading to converge than that of logit-based net-
work loading. This result is because the all-or-nothing assignment is used in probit-based load-
ing. Only the shortest path is generated between each O-D pair at each iteration. When BC is
relatively large, all the paths energy consumption would be within the capacity level and
Lagrangian multipliers are equal to zero.

Conclusions

This paper works on the stochastic traffic assignment models with battery capacity constraints,
where new path-constrained stochastic user equilibrium (SUE) traffic assignment problem is
formulated, solved and numerically analyzed. The method considers a flow-depend energy
consumption assumption for battery electric vehicles (BEV), which is a generalization of flow-
independent driving distance constraint. The BEV’s range limit is determined based on both
its travel distance and travel time that is a function of traffic congestion. Flow-dependent con-
straint inevitably calls for fundamental changes to the existing network flow modeling tools for
properly capturing traffic patterns and evaluating traffic assignment results. It is proved that
the solution method framework, LD-GP-stochastic network loading, could be applied not only
in link-based problems but also in path-based problems. In this path-based SUE problem, the
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Fig 4. Sioux falls network with 24 nodes and 76 links.

https://doi.org/10.1371/joumal pone.0194354.9004

column generation procedure is applied to the path choice set generation which turns out to
works well with GP and stochastic network loading and provides basic insights of solving
path-constrained SUE problem to avoid path enumeration. The application of the algorithms
in the small network justifies the applicability of the solution procedures to general network
with path-based constraints. The numerical analysis results show the impact of battery capac-
ity, travel demand and stochastic parameters on network equilibrium flow and computational

cost.

Table 6. Computational cost with different parameter settings for MNL.

K = 3,logit parameter = 0.2 K = 6,logit parameter = 0.2
BC 0.05 0.2 0.6 1 0.05 0.2 0.6 1
ITR 36 26 8 4 28 21 11 6
TCC(s) 136.21 102.06 2798 12.62 285.61 209.10 106.75 54.21
K = 6,logit parameter = 0.4 K = 6,logit parameter = 1
BC 0.05 0.2 0.6 1 0.05 0.2 0.6 1
ITR 20 13 5 3 12 6 3 2
TCC(s) 204.58 131.88 4481 23.10 12451 56.61 23.09 13.59
https://doi.org/10.1371/journal.pone.0194354 1006
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Table 7. Computational cost with different parameter settings for MNP.

K = 1,probit parameter = 0.2 K = 1,probit parameter = 0.4
BC 0.05 0.2 0.6 1 0.05 0.2 0.6 1
ITR | 8 6 ‘ 6 3 6 6 6 3
TTC(s) 6.40 5.07 5.21 2.63 4.89 4.90 4.63 2.55
K = 1,probit parameter = 1 K = 1,probit parameter = 2
BC 0.05 0.2 0.6 1 0.05 0.2 0.6 1
ITR 6 3 3 3 6 3 3 3
TTC(s) 491 | 3 | 260 155 286 246 256

https://doi.org/10.1371/journal.pone.0194354.1007

As a pure mathematical modeling tool to characterize BEVS’ travel behavior in the network
with some ideal socioeconomic assumptions, we expect that the modeling technique and solu-
tion methods demonstrated in this work would potentially trigger the interest of investigating
other types of stochastic traffic assignment problems with path-based constraints in logit-type
or weibit route choice models. The model itself can also be applied for more accurate quantifi-
cation of network flows, travel demand and battery capacity levels. As a modeling platform for
more practical and realistic model, the proposed model should be enhanced to accommodate
mixed traffic flows of different types of vehicles such as BEVs, hybrid vehicles and conven-
tional gasoline vehicles as well as the availability of charging infrastructure. Our future study
will investigate the possibility of incorporating charging time, range anxiety level and value of
time in model extensions. Based on the SUE models proposed in this paper, we will also inves-
tigate how to optimally locate charging stations in the network in terms of different objectives.
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S1 Text. Proof of Proposition 1

Consider the Lagrangian function of the minimization model (12) with constraints (1)

(2)(3)(9) below.

L(t,p) = qu"s (€ (H+d (™) - ZZZd f™ - zzzu f (D —al — fei)
+ZZ”” (qu _Zf;(rs
r 8 k
29

where p is the Lagrangian multiplier with respect to the battery capacity constraints, and row
vector p= (..., i,...) € R¥=l.

Keep in mind that the vector d"(f™) is a function of path flows between O-D pair
(r,s) only. Take partial derivative of Lagrangian function above with respect to path flow

/" on a designated path I € K, between O-D pair (7, j) can yield
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The first term of right-hand side (RHS) of the equation above can be rewritten by
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The second and fourth terms can be canceled out. The fifth term equals to
f i dt
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Hence, the equation can be simplified as

RHS = (1+ Bl )l —¢i — 41 -(D —ad’)—d (£7) (32)

Since f* is a local minimum, according to KKT conditions, there are optimal

Lagrangian multiplier 4" such that

MZO,[EK“,I'GR,.]'ES (33)
5 i 4
£UD-17)=0,Vi, j,1 (34)
w’ >0,Vi, j,l (35)
w - f(D -1)=0,Yi, jl1 (36)
4l ™) =0+ By —c - (D —adl) 37

@)=Y Y dn@™) =Y [+ ")~ -7 (D —ad})]

IeK,, m leK,j
e =¥ - i p
=c—c"+3 w (B’ +ali - D) (38)
1Ky

*

Let 47 = 4 (B +ad) ~D) A" = (., A7,..) € B!
Thus

dE™)=c ¢ 42 39)

where 4" = 1" (Bc,” +ad! — D) is the battery out-of-energy cost incurred when the energy
needed to travel through a given path exceeds the battery capacity of the EV. The Lagrangian

multiplier 4" stands for an equivalent travel cost value of the unit energy.
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£ =g B E)+10), VG, )l K, (40)

Eq. (40), (34)-(36) state that f * fulfills the generalized SUE conditions and that {2} is the

relevant SUE battery out-of-energy cost pattern.
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5.3 Discussion

The paper included in this chapter contributes to knowledge by developing new stochastic traffic
assignment models of BEVs with limited battery capacity, where new path-constrained SUE traffic

assignment problem is formulated, solved and numerically analyzed.

As a pure mathematical modeling tool to characterize BEVs’ travel behavior in the network with some
ideal socioeconomic assumptions, the modeling technique and solution methods demonstrated in this
work are expected to trigger the interest of investigating other types of stochastic traffic assignment
problems with path-based constraints in other logit-type or weibit route choice models. The model itself
can also be applied for more accurate quantification of network flows, travel demand and battery
capacity levels.

As a modeling platform for more practical and realistic model, the proposed model should be enhanced
to accommodate mixed traffic flows of different types of vehicles such as BEVs, hybrid vehicles and
conventional gasoline vehicles (GV) as well as the availability of charging infrastructure. The driving
range of BEV is subject to the battery capacity and electricity consumption rates, while the drivers
usually keep the battery full for any path they choose without worrying about so called range anxiety
concern among most driving population. Future study should focus on the possibility of incorporating

charging time, range anxiety level and value of time in model extensions.
5.4 Conclusions

In this chapter, the research adopts a battery capacity constraint as an extension and generalization of
driving distance constraints by incorporating travel time into the range limit consideration. The method
considers a flow-dependent energy consumption assumption for BEV, which is a generalization of
flow-independent driving distance constraint. The BEV’s range limit is determined based on both its
travel distance and travel time that is a function of traffic congestion. Flow-dependent constraint
inevitably calls for fundamental changes to the existing network flow modeling tools for properly
capturing traffic patterns and evaluating traffic assignment results. It is proved that the solution method
framework, LD-GP-stochastic network loading, could be applied not only in link-based problems but
also in path-based problems. In this path-based SUE problem, the column generation procedure is
applied to the path choice set generation which turns out to works well with GP and stochastic network
loading and provides basic insights of solving path-constrained SUE problem to avoid path enumeration.
The application of the algorithms in the small network justifies the applicability of the solution
procedures to general network with path-based constraints. The numerical analysis results show the
impact of battery capacity, travel demand and stochastic parameters on network equilibrium flow and

computational cost.

This chapter brings Part 1l to an end, which has focused on the development of general SUE models of

EVs with range limits as well as their solution algorithms. The first chapter of Part I, chapter 4 started
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with the general SUE model of mixed GV and EV flow using driving distance constraints. Modified
MSA method and modified probit-based loading method are applied to solve the proposed model. And
Chapter 5 have further investigated EV’s SUE flow pattern in a more realistic and more general way.
The model formulation and some propositions are discussed and the solution method for general SUE
model with path-based constraints are first addressed.

The next part of the thesis, Part I11, looks at charging facility location model for both private BEVs and
public electric buses. There are two chapters, one devoted to battery charging facility location model for
private BEVs in Chapter 6 and the other to battery swapping facility location model for public EBs in
Chapter 7.
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CHAPTER6 LOCATION DESIGN OF CHARGING FACILITY
FOR PRIVATE ELECTRIC VEHICLES

6.1 Introduction

In accordance with research objective 4, the aim of this chapter is to develop a bi-level charging facility
location model for BEVS. In the upper level, the objective is to maximize coverage of BEV flows in the
network by locating a given number of charging stations on road segments considering budget
constraints. In the lower level, BEV drivers follow the SUE principle with path distance constraint as
we have addressed in Part Il. Moreover, the availability of public charging stations, battery charging
time have been considered in the lower level problem as an extension of SUE model in Part II. Thisis a
key contribution to knowledge as no studies have investigated SUE models with driving distance limit
and battery charging. An investigation of how range limit and location of charging facilities affect
drivers’ path choice behavior and equilibrium flows of BEVS in a transportation network is yet to be
explored. This research also investigates the method of the deploying a given number of public charging
facility to maximize the coverage of BEVs public charging facilities on a network with mixed
conventional GVs and BEVs. The chapter addresses a research gap identified in the literature review:
No bi-level charging facility location model dedicated to considering a SUE BEV flow pattern in the
lower level problem and maximize the BEV flow coverage in the upper level. This is in accordance with
research objective 4 to develop a new bi-level model to locate a given number of public charging facility
to maximize their exposure to the BEV users in order to eliminate their range anxieties. Table 6-1 details

the research component, research gaps and research opportunities.

Table 6-1: Research gap, opportunity and objective associated with research component 4

Research topic Research gaps Research opportunities
Charging/swapping There is no bi-level charging facility Proposing a new bi-level
facility location location model dedicated to consideringa  model for deploying the
models of BEVs and SUE BEV flow pattern in the lower level  charging facility considering
BEBs (Part I11) problem and maximize BEV flow a SUE link flow pattern and
coverage in the upper level (see section availability of charging
2.5.4) facility (see Chapter 6)

The following paper is included in this chapter:

Jing, Wentao, Kun An, Mohsen Ramezani, and Inhi Kim. "Location Design of Electric Vehicle Charging
Facilities: A Path-Distance Constrained Stochastic User Equilibrium Approach.” Journal of Advanced
Transportation 2017 (2017).

An equilibrium-based heuristic algorithm is developed to obtain the solution of this program. Finally,
two numerical tests are presented to demonstrate applicability of the proposed model and feasibility and

effectiveness of the solution algorithm. The results demonstrate that the equilibrium traffic flows are
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affected by charging speed, range limit, and charging facilities’ utility and that BEV drivers incline to
choose the route with charging stations and less charging time.

6.2 Paper 3: Location Design of Electric Vehicle Charging Facilities: A Path-Distance
Constrained Stochastic User Equilibrium Approach

The location design problem of charging facilities can be modelled as a Leader-Follower Stackelberg
game where the decision makers are the leaders who decide the facility deployment and the BEV users
are the followers who can choose their paths freely. Most of previous studies focused on DUE problems
with BEVs. However, the driving distance limit, to the best of our knowledge, has not been considered
in stochastic network equilibrium models, especially in the mixed flow transport network. Moreover, to
tackle the range anxiety problem with a limited budget, the charging facilities should be accessible to as
many EVs as possible. Deploying the pubic charging facilities on the links where most BEV drivers use
is an efficient way to increase the utilization and perception of the public charging facilities, which
promotes BEV acceptance and relieve range anxiety. Given the high cost of building public charging
stations and financial constraints, it is essential to optimize the location of facilities in a network that
provide the maximum exposure and utilization by BEV drivers. Since various factors influence BEV
drivers’ charging decision, such as stochasticity of range anxiety, initial battery energy state, battery
energy consumption ratio and battery capacity, considering those factors in the model is of great

importance.

The following paper details a bi-level charging facility location model for deploying the public charging
facility for private BEVs. A maximal flow-covering (MFC) model is proposed to maximize BEV flow
coverage by locating a fixed number of charging facilities in the bi-level, equilibrium-optimization
framework. Coverage is achieved when the charging facilities is located on the BEV route. Secondly,
the effects of driving distance limit constraints, charging facility availability, charging facility utility
and traffic congestion are accommodated in BEVs’ route choice behaviour. The equilibrium BEV flow
pattern is determined endogenously by the general SUE traffic assignment model with driving distance
limit constraints, in which the mutual interactions between the location of charging facilities and
resultant equilibrium BEV link flow patterns are modelled. Finally a heuristic algorithm is proposed to

solve the mixed-integer nonlinear program.
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Location of public charging stations, range limit, and long battery-charging time inevitably affect drivers’ path choice behavior and
equilibrium flows of battery electric vehicles (BEVs) in a transportation network. This study investigates the effect of the location
of BEV's public charging facilities on a network with mixed conventional gasoline vehicles (GVs) and BEVs. These two types of
vehicles are distinguished from each other in terms of travel cost composition and distance limit. A bilevel model is developed
to address this problem. In the upper level, the objective is to maximize coverage of BEV flows by locating a given number of
charging stations on road segments considering budget constraints. A mixed-integer nonlinear program is proposed to formulate
this model. A simple equilibrium-based heuristic algorithm is developed to obtain the solution. Finally, two numerical tests are
presented to demonstrate applicability of the proposed model and feasibility and effectiveness of the solution algorithm. The results
demonstrate that the equilibrium traffic flows are affected by charging speed, range limit, and charging facilities’ utility and that

BEV drivers incline to choose the route with charging stations and less charging time.

1. Introduction

Carbon-based emissions and greenhouse gases are critical
global issues, where transport sector is a significant contrib-
utor. A cost-effective strategy for reducing emissions is effi-
cient use of alternative fuels. Cities, businesses, and govern-
ments have recognized electric vehicles (EVs) as an indis-
pensable part of smart and sustainable city frameworks (1],
because, comparing to conventional internal combustion
engines, EVs are more energy efficient [2]. Moreover, battery
electric vehicles (BEVs), as a type of alternative fuel vehicles,
have been developed as a promising solution for reducing
local air pollution at the point of operation [3], greenhouse
gas emissions [4], dependency on fossil oil, and improving
energy safety. Furthermore, EVs can be utilized to store
energy from renewable resources, such as wind, wave power,
and solar cells, to smoothen out the daily power fluctuation
in low peak periods [5] with the development of vehicle-to-
grid (V2G) technology [6-8]. For consumers, the monetary
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savings of switching to a BEV can be significant due to
cheaper electricity cost comparing with gasoline [9]. How-
ever, the early BEV users still suffer from the inconvenience
of limited driving range, long charging time, and insufficient
public charging stations (1, 10].

Currently the driving range of EVs can vary greatly
between 60km and 400km by model and manufacturer,
while most of them have ranges between 100 km and 160 km
[11]. The EVs can be recharged using plug-in charging or
battery-swapping facilities. The plug-in charging is catego-
rized by voltage and power levels, leading to different charg-
ing times. Slow charging usually takes hours to charge while
fast charging can achieve 50% charge in 10-15 minutes [11].
Range anxiety, when the driver is concerned that the vehicle
will run out of battery before reaching the destination, is
a major hindrance for the market penetration of EVs [12]
and will inevitably add a certain level of restrictions to BEV
drivers’ path choices, at least in a long future period prior
to the massive coverage of recharging infrastructures [13].
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Governments and automotive manufacturers have recog-
nized the environmental value of EVs and, therefore, are
encouraging BEV ownership through economic incentives
and more public charging station deployment [14].

Explicitly incorporating the range limit into facility loca-
tion problem (FLP) can be traced back to flow refueling
facility location problems (FRFLP) which utilized optimiza-
tion models to determine a set of locations to serve the
refueling demand in a network subject to a financial budget.
One branch of FRFLP sought to maximize demand coverage
by locating a fixed number of refueling facilities, which
was referred to as the maximal covering location problem
(MCLP). This problem has been typically formulated as
flow refueling location model (FRLM) [15-18], which served
demand along their shortest paths rather than demand at
their end points to maximize the coverage of these flows.
Typically, they used modifications of flow-capturing or flow
interception location models (FILM) [19, 20], which were
path-based version of MCLP. In FILM, for each O-D pair, the
shortest path between the O-D pair is considered as covered
if it passes through at least one node that contains a refueling
facility. The developed FRLM models have been compared
empirically for specific scenarios in order to choose one
location model over another [21]. Furthermore, in another
attempt, a flow-based refueling-station-location model was
proposed based on a set covering concept and vehicle-routing
logics considering both intercity and intracity travel [22, 23].
The above model was reformulated and a flexible mixed-
integer linear programming model was presented, which was
able to obtain an optimal solution much faster than the
previous set cover version. Moreover, the model also could
be solved in the maximum cover form [24].

Along another track, a large variety of other approaches
have been proposed to address the locations of EV public
charging infrastructures. Huang et al. [11] proposed a geomet-
ric segmentation method to find the optimal location for both
slow and fast charging stations. Sweda and Klabjan [25] devel-
oped an agent-based decision support system and a variant
maximal covering location problem for EV charging infras-
tructure deployment. Asamer et al. [26], by using 800 electric
taxis  operational data in the city of Vienna, Austria, proposed
a two-phase decision support system. Nie and Ghamami [3]
presented a conceptual optimization model to analyze travel
by EV along a long corridor whose objective was to select the
battery size and charging capacity (in terms of both the charg-
ing power at each station and the number of stations needed
along the corridor) to meet a given level of service. They
further proposed a fixed charge facility location model with
charging capacity constraints, considering drivers’ preference
for familiar parking lots [27]. Chen et al. [28] investigated
the optimal deployment of charging stations and lanes along
a long traffic corridor to serve the charging need of EVs
and examined the competitiveness of charging lanes over
charging stations. Xi et al. [29] developed a simulation-
optimization model that determined where to locate EV
charging stations to maximize their use by privately owned
EVs. Jung et al. [30] reported a simulation-optimization loca-
tion model including an upper level multiple-server alloca-
tion model with queueing delay and a lower level dispatch
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simulation and provided a solution algorithm that fea-
tured itinerary-interception, stochastic demand, and queue-
ing delay. Dong et al. [31] analyzed the impact of public
charging station deployment on increasing electric miles
traveled. By considering transportation and power networks
and maximizing the social welfare, He et al. [32] developed an
equilibrium-based modeling framework for locating plug-in
charging facilities. Riemann et al. [33] incorporated stochastic
user equilibrium (SUE) into a FCLM and aimed to capturing
the maximum EV path flow on a network. A global optimal
solution was applied to solve the proposed model. Wu and
Sioshansi [34] proposed a stochastic flow-capturing model to
optimize the location of fast charging stations, addressing the
uncertainty of BEV flows. Zhu et al. [35] proposed a model
that simultaneously handled the problem of where to locate
the charging stations and how many chargers should be estab-
lished in each charging station to minimize the total cost.
The location design problem of charging facilities can
be modeled as a Leader-Follower Stackelberg game where
the decision makers are the leaders who decide the facility
deployment and the BEV users are the followers who can
choose their paths freely. Most of the previous studies focused
on user equilibrium (UE) problems with BEVs. Among
these studies, Jiang et al. [13] first introduced a path-con-
strained deterministic traffic assignment problem and further
extended this work by considering trip chain and range
anxiety analysis [36-39]. Zheng et al. [40] presented a bilevel
model to locate charging facility and minimize all users cost
in the upper level and to find path-constrained equilibrium
BEV flows in the lower level. Jing et al. [41] provided a
comprehensive review for the equilibrium network modeling.
However, the driving distance limit, to the best of our knowl-
edge, has not been considered in stochastic network equilib-
rium models, especially in the mixed flow transport network.
Moreover, to tackle the range anxiety problem with a limited
budget, the charging facilities should be accessible to as many
EVs as possible [11]. It can be an efficient way to deploy the
public charging facilities on the links where most BEV drivers
use to increase the utilization and perception of the public
charging facilities, which promotes BEV acceptance and
relieve range anxiety [31]. Given the high cost of building pub-
lic charging stations and financial constraints, it is essential to
optimize the location of facilities in a network that provides
the maximum exposure and utilization by BEV drivers. Since
various factors influence BEV drivers’ charging decision,
such as stochasticity of range anxiety, initial battery energy
state, battery energy consumption ratio, and battery capacity,
considering those factors in the model is of great importance.
In this study, we present a novel bilevel public charg-
ing infrastructure location model that maximizes the total
captured BEV link flows, considering BEV range limits and
SUE principle to capture BEV drivers’ route choice behavior
in a network with mixed BEV and gasoline vehicles (GVs).
The objective of the upper level of the model is to cover the
maximum BEV link flows in a network by deploying a given
number of charging facilities. In other words, the model aims
to maximize the number of BEVs who can access the charging
facilities along their routes. In the lower level, the stochastic
traffic assignment on the network is the primary factor that
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determines the location of charging facility deployment. In
general, a network equilibrium problem with multiple vehi-
cle/mode classes cannot be written as a convex mathematical
programming model, due to the existence of the asymmetric
Jacobi matrix caused by different impacts on travel cost from
different vehicle/mode classes [42]. The approaches to deal
with the asymmetric Jacobian elements can be attributed to
Jiang and Xie (43] and Ryu et al. [44]. It should be noted that
relaxing the asymmetric restriction inevitably degrades the
realism of traffic assignment model. However, in our model,
the general compositions of path travel cost functions of the
two vehicle classes, that is, GVs and BEVs, are similar. The
only differences between these two types of vehicles lie in two
flow-independent terms, namely, charging facility utility and
charging time and thus their flow-time impacts on each other
are symmetric (i.e., the impact of GVs on the travel times of
BEVs is the same as the impact of BEV's on the travel times of
GVs).

Modeling a traffic network with realistic refueling behav-
iors may require accommodating different routing objectives
(e.g., minimization of travel time, charging time, and/or
fuel consumption), different refueling services (e.g., battery-
charging service or battery-swapping service), and different
types of vehicles (e.g., GVs and BEVs) [38]. All these factors
result in different path travel cost perception and route choice
behaviors. It is evident that BEV drivers have inherent differ-
ences in travel behavior from GV drivers and specifically
range limit, charging speed, and charging stations locations
have significant influence on BEV drivers’ decision-making
process [45].

This paper focuses on several factors to explicitly capture
BEV drivers’ behavior with the stochastic traffic assignment.
However, we understand the limitations of the stochastic
traffic assignment in the lower level for accurately capturing
realistic situations. It is believed that the results from this
paper can provide some guidelines for locating BEV charging
facility and basic insights of BEV drivers’ behavior. Despite
all the realistic situations, most data, such as demand, initial
battery state of charge, and actual range limit, are difficult to
obtain and this method and objective are easy to implement
especially at the early stage of expanding EV market share.
First, BEVs' range limit is considered as travel distance such
that any path whose distance is greater than its range limit
(referred to as infeasible paths) would not be chosen if
the existing charging facility could not help finish the trip.
Second, availability of charging facility would affect the route
choice in a way that those infeasible paths may become feasi-
ble after recharging at the charging facilities on the path. Fur-
thermore, the utility theory is applied to charging facility;
that is, BEV drivers are more likely to choose the path with
charging facilities over others without charging facilities even
if they have equal path travel time. In addition, traffic conges-
tion effects on travel time are also taken into consideration in
BEV drivers’ route choice behavior but not in the range limit
constraint. Lastly, under the principle of perceived individual
cost minimization, the path cost structure in the lower level
model consists of flow-dependent path travel time, charging
time, and utility of charging facilities (equivalent to given
amount of travel time reduction). Specifically, the lower level
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model can be stated as follows: in a traffic network with fixed
GV and BEV travel demand between each O-D pair and a
set of charging facilities at known locations, the problem is to
find such a traffic flow pattern that each trip maker chooses a
path along which his or her least perceived cost is minimized
and the vehicle can be charged before running out of energy
before arriving at the destination. Meanwhile, no one can
improve his/her perceived travel cost by unilaterally changing
a path. Given the sufficient coverage of gasoline stations and
GVs large fuel capacity, GVs’ route choice is not affected by
any other costs incurred by refueling requirement, except for
travel time.

The contributions of this study are threefold. Firstly, a
maximal flow-covering (MFC) model, that is, a modification
of classic MCLP, is proposed to maximize BEV flow coverage
by locating a fixed number of charging facilities in the bilevel,
equilibrium-optimization framework. Coverage is achieved
when the charging facilities are located on the BEV route.
Secondly, the effects of driving distance limit constraints,
charging facility availability, charging facility utility, and
traffic congestion are accommodated in BEVS’ route choice
behavior. The equilibrium BEV flow pattern is determined
endogenously by the general SUE traffic assignment model
with driving distance limit constraints, in which the mutual
interactions between the location of charging facilities and
resultant equilibrium BEV link flow patterns are modeled.
Finally a heuristic algorithm is proposed to solve the mixed-
integer nonlinear program.

The remainder of this paper is organized as follows. In
Sections 2 and 3, we elaborate the problem definition and
formulation. Section 4 presents the solution methodology
and details its algorithmic implementations, while Section 5
describes the numerical results from applying the algorithmic
procedure for a small network and Sioux Falls network. In
the end, we conclude the article and point out some future
research directions in Section 6.

2. Problem Description,
Assumptions, and Notation

BEVs rely entirely on electricity as a single power source
and are designed to be charged at the charging facilities.
BEVY electricity consumption is typically proportional to the
driving distance, resulting in a driving range limit because
of the battery capacity. On the basis of current battery
technology, charging a BEV still takes more time than
refueling a GV’s fuel tank. The distance limit, the charging
time, and the location of the charging facilities inevitably
change BEV drivers’ route choice behavior in a stochastic
manner where BEV drivers may have imperfect information
regarding their travel cost over the entire mixed flow (i.e.,
BEVs and GVs) traffic network. The massive adoption of
BEVs requires a certain level of coverage of the charging
facility. Given the financial budget and high cost of installing
public chargers, it is a sound approach to maximize the pass-
ing BEV population on the links where charging facilities are
deployed.

This paper considers a strongly connected transportation
network with both BEVs and GVs demands, denoted by
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G = (N, A), where N is the set of nodes and A is the set
of links. R ¢ Nand § ¢ N denote the sets of origins
and destinations, respectively. The objective of this proposed
bilevel model is to locate a given number of BEV charging
facilities for covering maximum BEV flows on the mixed
traffic flow network. All the candidate charging facility loca-
tions are grouped into a set of pseudonodes in the middle of
the links denoted by Z. GVs and BEVs are distinguished by
their driving distance limits, travel cost composition, and the
availability of refueling facilities.

Without loss of generality, the following assumptions are
made:

(Al) The technological characteristics of BEVs and demo-
graphic features of BEV drivers are homogeneous in
the network, and so are GVs and GV drivers. Only
one type of BEV with identical driving distance limit
and battery consumption rate is considered.

(A2) Every vehicle is fully charged at its origin.

(A3) The variation of BEV drivers range anxiety level and
risk-taking behaviors are ignored.

(A4) A charging facility is deployed on the midpoint of the
link in the network.

(A5) The facilities have unlimited charging capacity.
Hence, an EV can get charged without delay after
its new arrival. En route charging time at the public
charging facilities is linear related to the remaining
distance to reach the destination.

(A6) The BEV link flow is covered if a charging facility
exists on this link.

(A7) The deployment of a charging facility on a route/path
would increase the “attractiveness” or “utility” of this
route. The utility of a charging facility is considered as
a fixed value and converted into travel time reduction.

(A8) Travel demand of both GV and BEV between each O-
D pair is fixed. That is, elastic and stochastic demands
are not considered in this model.

See the Notations for variables and parameters used
throughout this paper, where subscripts g and e indicate vari-
ables or parameters associated with GV and BEV, respectively.

3. Model Formulation

In this section, we formulate the bilevel optimization model
for the charging facility location problem. Bilevel problems
split the decisions of the system planner (leader, i.e., infras-
tructure developer in this paper) and system users (followers,
i.e.,, drivers) into two levels so that the subproblems are
solvable and an iterative approach can be used to achieve an
equilibrium state. The upper level aims at determining the
locations of charging facilities to increase an objective to max-
imize the covered BEVs flows assuming BEV's flows remain
unchanged. The lower level subproblem is characterized as
BEV drivers’ route choice behavior with a generalized travel
cost structure. SUE conditions with mixed BEVs and GVs
assuming fixed locations of charging facilities from the upper
level subproblem are analysed.
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3.1 Preliminaries. A feasible path for GVs between a given
O-D pair may be infeasible for BEVs because of the limited
driving distance range and absence of a charging facility.
Hence, a feasible path used by GVs can be decomposed into
several parts for BEVs according to whether a charging action
should be taken by BEV drivers at each charging station.
To model BEVSs paths, three notions, namely, subpath, pure
subpath, and feasible subpath, proposed by Xie and Jiang
[38], are introduced in the formulation of the lower level
stochastic assignment problem and three charging action
based scenarios are analyzed as follows.

Subpath. A part of path k connecting O-D pair (r,s) is a
subpath if charging stations are located at the head and tail
nodes/pseudonodes of this part. A subpath consists of a
number of consecutive links and half links since we assume
charging stations locate in the middle of the links. We denote
K, i, j € Z, as a subpath of path k, where charging station
i(j) is the head (tail) node of this subpath. l,r:”" is the length
of the subpath.

Pure Subpath. Subpath k” is a pure subpath if there are no
other charging facilities on this subpath except i and j.

Feasible Subpath. Subpath k' is feasible on path k of O-D pair
(r,s), if its length is no greater than BEV driving distance
limit; that is, [, < D,.

The concept of subpaths allows us to better illustrate the
BEV drivers’ path travel cost structure and add the driving
distance constraint.

The generalized path travel cost is composed of three
parts: path travel time, path charging time, and equiva-
lent travel time reduction (the utility of charging facilities
on attracting BEV drivers). Without loss of generality, we
consider 3 scenarios based on the relationship between the
driving distance limit D, and subpath distances. For a given
path k shown in Figure 1, path travel time and equivalent
travel time reduction are fixed and can be represented by a
consistent form: ;* + t[7;, where £7; = 2 -t,. Note thatt; isa
nonpositive value.

Scenario 1. There is no need for charging. When [’ < D,,
the BEV driver can reach the destination without en route
charging. The generalized path travel cost is T, = ¢* +2- £,

Scenario 2. If any pure subpath distance exceeds the driving
distance limit D,,, this path becomes infeasible to BEV drivers.
In other words, if path k cannot be decomposed into a set
of feasible subpaths, path k is not feasible. In this case, the
generalized path travel cost becomes extremely large and the
probability of choosing this path is zero.

Scenario 3. Charging is needed to reach the destination. If the
path distance is larger than the distance limit (ie., ;> > D)
and the distances of its all pure subpaths are less than D,,,
the BEVs need to charge at least once. BEVs would charge as
little as possible to reduce the path travel time. The minimum
charging time is t], = & ("™ - D,). The generalized path
travel costis Ty, = " +2- 1, + L.
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FiGURE I: Illustration of subpaths definitions. We consider a path k
of O-D pair (r, s), along which nodes and jare located in the middle
of links ab, bs, respectively. There exist 3 pure subpaths denoted by
dotted lines, namely, K", k”,andk**, and another 3 subpaths k7, k",
and k* by solid lines on path k. These subpaths are feasible if their
distance is less than the BEV driving distance limit D,.

For GVs, the generalized path travel cost is & = ¢,
Hence, BEV drivers are more likely to choose path k than GV
users under Scenario 1 due to the utility (attractiveness) of the
charging facilities on this path, while only GV drivers would
choose this path under Scenario 2 because of the infeasible
pure subpath. A trade-off between charging time and charg-
ing facility utility should be made to identify the generalized
travel cost difference of BEVs and GVs under Scenario 3. For
example, charging time of fast charging or battery swapping
may be shorter than the equivalent travel time reduction
converted from the charging facility utility, and thus more
BEVs would be assigned to this path even if they may need
several charging instances on this path. If multiple charging
stations are available on a path, BEV drivers will go through
the following process to decide whether charging should be
conducted at a station. Let us consider Scenario 3 only where
each pure subpath is feasible for BEVs to reach the destination
without running out of energy. When arrived at a charging
station, BEVs would not charge at the current charging
station if they can reach the next one without charging.

3.2. Bilevel Model Formulation. Given the key concepts and
terms above, we define the upper level problem as

max Fx,v(x)]

1)
Subject to  E [x,v(x)] <0,

where v(x) is implicitly determined in the lower level problem
min flxv]
Subject to e[x,v] <0,

where F and E are the objective function and constraints
of the upper level problem while f and e are those of the
lower level distance-constrained SUE model. F models the
total covered BEV link flows and E guarantees the number of
charging facilities to be equal to the given design value. x and
v are decision variables for upper and lower level problems;
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that is, x and v denote charging facility locations and BEV
link flow pattern, respectively. Subsequent sections detail
the mathematical properties of both upper and lower level
subproblems.

Furthermore, in the lower level distance-constrained SUE
problem in mixed traffic flow networks, the link performance
functions are assumed to be a BPR (Bureau of Public Road)
type function as follows:

))

+v
telVag¥i) =1, (1 +0.15 % (
ac€A.

Vag T Vae

©)

a

Ast and " are flow-independent, we can easily obtain
the Jacobi matrix for the lower level problem, with its
elements given for GVs and BEVs, respectively, as follows:

7S
0cyy B
v,

ae

B _g 6 toor (g *toe) w) (4)
o, ’ '

+v,
a’ak H4

a9 acA a

This proves that the Jacobi matrix is symmetric so that the
lower level model can be established as a convex mathemati-
cal problem.

3.2.1. Upper Level Formulation. The upper level problem
aims to maximize the total covered BEV link flows with the
deployment of a given number of charging facilities, where
the network coverage is defined as the total sum of BEV link
flows on only links with charging facility. That is,

©)

max ZV,,lexa
a

Subject to Zxﬂ =p.

aeA

(6)

Equation (6) is the budget constraint and can be relaxed as
locating the maximum number of p facilities in the network
as shown in constraint (7). Consider

0< Yx,<p.

acA

@

3.2.2. Lower Level Problem. The lower level problem is to
obtain the equilibrium BEV flow under SUE routing principle
in a congested mixed traffic network considering charging
facility locations. The network is assumed to be connected;
that is, there is at least one path connecting each O-D
pair. We formulate the flow conservation and nonnegativity
constraints in the mixed traffic network as follows:

a= Zngkg et ZZ% 60, VacA

q§=;f£} ¥ (1)

4 = Yfie ¥(r9) ®)
;

frg

e

>0, V(ns), keK;’

>0, V(rs), keKr.
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The link travel cost functions are assumed to be separable
between different network links, and they are positive, mono-
tonically increasing, and strictly convex as well. The travel
cost for GV drivers includes travel time only, whereas BEV
drivers travel cost consists of travel time, charging time, and
charging facilities utility. The perceived path cost is equal to
the generalized path travel cost plus a random error term.

C;;; rs +

s

rs
o K€K

IS —TS s (9)
Co=to+&, keKl.

Under SUE, for each O-D pair, GV and BEV flows are dis-
tributed on those paths that experience a minimum perceived
travel cost and no user can improve its perceived travel cost
by unilaterally changing its path. The probability that path k
is chosen (by both GV and BEV drivers) can be expressed as

PG =

Pr[C<Cl VreK”, r#k].  (10)

Thus, the SUE path flows are the solution of the following
equations:

fra =3P (Ci)s VK€K, ¥(r,9) (1)
fre = P (C), VkeK:, V(rs).  (12)

It has been proved that adding side constraints directly
into the general SUE model does not generate the probit-
based SUE traffic assignment with side constraints [46].
Jing et al. [47] proposed a solution framework by properly
selecting the path set for each O-D pair to ensure the
distances of all the used paths are within the BEV range limit
with no charging facilities in the network. We extend that
SUE model with path-distance constraints to include public
charging facilities.

n}in Z(v)

zq rs ] zqnsn [Crs (V)]

+ Zvata (v,) - Z J‘(:" t, (w)dw

rs,lj) >0,
(14)
v (r, (i,j) € 2.

The objective function (13) of the lower level problem is
the classical unconstrained minimization model proposed by
Sheffi [48], whose solution is equivalent to SUE conditions
satisfying network constraints (8). The novelty of this prob-
lem lies in the introduction of subpaths in path selection
procedure in constraints (14). It is easy to decide whether a
charging action should be taken when arriving at a charging
station to make sure BEVs can reach the next charging station

Subject to f, (

s), ke KZS,

or destination; namely, the subpath distance I (i, j) €
Z;, of path k € K.* is less than D,. Supposing that there
are Z; charging stations deployed along a path for BEVs,
only less than 2% charging decision should be made and
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¢%,.» subpaths exist when going through this path. Therefore,
by comparing the driving distance limit D, with subpath

dxstancel “ the set of feasible subpaths generated from finite
paths between each O-D pair can be predetermined. The
generation of feasible subpaths is illustrated in Figure 1 which
is similar to the way of predetermining battery-swapping
action based feasible paths in Xu et al. [49]. First we prove
the equivalence between the solution of the proposed model
(see (13)) and SUE solution. The Lagrangian function can be

written as
=22 d;S [ ] - XY [
+ Zxata Z Lx t, (w)dw (15)
ISR ).

where 47 is the Lagrangian multiplier corresponding (0

path/subpath-distance constraint (14). 14,:5” (D,

can be perceived as the path out-of-range cost mcurred when
the path/subpath distance exceeds the driving distance limit
of the BEV and it should fulfill the following conditions:

_ Ilr;st )

we =0, ¥ <D, (16)

e, €5,

If the flow of BEV drivers going through this path is positive,
the path/subpath distance is smaller than or equal to the
driving distance limit; otherwise, the trip flow is zero. y,:';"’
is the unit path/subpath out-of-range cost.

The first-order derivative of (13) must satisfy the SUE
conditions. Let

VL (v, 1) = 0. (17)
The gradient with respect to link flow vector is
oL (v, )
o,
TS s a1 TS DTS aTs dll:
= _zz Z qg Pkgab,k - ZZ Z 9. P;;ea[z,k TV W (18)
s kel(’; TS keK? b
33 0 1)
TS keKet

Note that the extra path/subpath-distance constraints could
be infeasible if the distance of any selected subpath exceeds
the BEVS’ driving distance limit. If all the selected paths and
their subpaths are within driving distance limit, the subpath
out-of-range cost ‘ukE’ (D, -1 4 ) should be equal to zero.
The derivative of the SUE objecnve function becomes

OL(v.p)
av,
(19)
dt,
d"l,

{

DIINHANEDPIPW R A AR

T8 keKy T S keK?



Chapter 6: Location design of charging facility for private electric vehicles

Journal of Advanced Transportation

The gradient equals zero if and only if

=Y Y AP0+ XY ) dy Bt

TS keKT® TS keK?

(20)
Vb € A.

Equation (20) expresses the SUE link flows consisting of
BEV and GV flows and the feasible solution can be ensured
by properly selecting paths. Then we can prove the Hessian
matrix of the SUE objective function is positive definite,
™. fa i

because the second derivative of ', ¥’ ¥ o 4y,
Irs,ij

) with respect to path flow equals zero. This proves that the
resulting SUE link flow pattern is unique.

4, Solution Method

The bilevel programming problem is NP-hard. Thus, we
propose an equilibrium-based heuristic to iteratively solve
the lower level SUE problem and the upper level problem.
The interaction between the upper and lower levels, shown
in Figure 2, captures the effect of charging facility location
on the routing behavior of BEV drivers, which further
determines the BEV and GV flow patterns. Initially, we
assume no charging facilities in the network. The lower level
problem is a stochastic traffic assignment of mixed GV and
BEV flows under path-distance constraints. After the first
run of the lower level problem, we can obtain the initial
BEV link flow pattern. The upper level problem then finds
the best p charging facility locations to maximize the total
covered BEV flow. The obtained charging facility locations
will be compared with the previous location solutions. If
there is no change in charging facility location, the procedure
ends with the current solution; otherwise, the lower level
SUE assignment is repeated with updated charging facility
locations.

The detailed procedure is as follows. Note that a Multino-
mial Logit choice model is used in the lower level SUE TAP.

Step 1. Set upper level iteration counter z = 1. Input initial
charging facility location, namely, no charging facility in
the network. Relax BEVS’ distance constraints and perform
conventional SUE assignment to identify the corresponding
SUE link flow pattern.

Step 2. Increase the upper level iteration counter by 1. Sort all
the links in ascending order of their BEV flows and find the
top p of them. Locate the charging facilities (uncapacitated)
in the middle of the p links.

Step 3. Perform SUE assignment with charging facilities in
the network from Step 2. The detailed steps are listed below.

Step 3.1 (subpath feasibility check). Set x,(0) = 0 and t, =
t,[x,(0)]. For each O-D pair, find K shortest paths for both
GVs and BEVs in terms of free-flow travel time and record
them as initial path set. For each path of BEVs, identify
the path distance, the number of charging facilities on this
path, the location of charging facilities, and pure subpath
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distances. If any pure subpath distance is greater than the
BEVS’ driving distance limit, set its corresponding path travel
time to infinity and this path becomes infeasible. If all the K
paths are infeasible, record this O-D pair to Set A. If Set A
is empty which means there exists at least one feasible path
between each O-D pair, go to the next step; otherwise, stop.

Step 3.2 (initialization). Calculate the generalized BEV path
travel cost ¢}, and the probability of choosing each path to get
the auxiliary link flow pattern. Perform stochastic network
loading to assign the entire demand of each class of vehicles
between each O-D pair to the corresponding K shortest
paths. This yields v, ,(1) and v,(1). Set iteration counter
n=1

Step 3.3 (update). Calculate a new link cost in terms of t, =
tlv,(1)], Va.

Step 3.4 (direction finding). Follow the same procedure
described in Step 3.1 to find K shortest path for each class of
vehicles based on the current set of link travel times, {¢7}. Ifall
the pure subpaths of the generated K paths between an O-D
pair exceed the range limit, use initial path set in Step 3.1 and
perform stochastic network loading. This yields an auxiliary

link flow pattern {ya,g}, {Vaek

Step 3.5 (step size). A predetermined step size sequence {a,,}
isused: o, = 1/n, n=1,2,...,00.

Step 3.6 (move). Find the new flow pattern by setting

1
VAR [V
n
ntl _ _n 1 n n 21
va,g = va,g & ; (ylz,g = va,g) ( )
ntl _ _n 1 n n
ae = VaeT ; (y{l,k‘ 1 va,e) s
Step 3.7 (convergence test). Let
I " ”
V;=;(VZ+V:1+‘--+V2m+]). (22)
If the convergence criterion
=+l 1 2
Zzz (Vi: - V:x) (23)
-1 <K
Za Vﬂ
is met, stop and {v/'*'}, {v/"%'} are the sets of equilibrium link

flows and BEV link flows, respectively; otherwise, setn = n+1
and go to Step 3.3.

Step 4. Repeat Step 2 and update the current charging
facility location. Compare the current location with previous
location status at Step 2. If the locations do not change, stop
and record the current charging facility location; otherwise,
go to Step 3.
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Network attributes input

Initial charging facility location in the network

(i) Assume that no charging facilities are deployed in the network
(i) Relax the BEVS’ driving distance constraints

Upper level maximum flow-covering problem
Maximize
(i) total covered BEV link flow
Subject to
(i) number of BEV charging facilities to locate

BEV facility location pattern of Ith
iteration, X

No

(—| Identify the top p BEV link flows

Lower level mixed flow SUE assignment
with driving distance constraints
Subject to

Relocate BEV charging

Yes
v

Stop the iteration

Final location pattern of BEV charging
facility

facilities with X,/ =1 +1

(i) limited driving distance
(ii) limited BEV charging facilities
(iiii) generalized path travel cost

FIGURE 2: Framework of the bilevel proposed method for the equilibrium-optimization-based BEV charging facility location problem.

TasLe I: O-D demand of Nguyen-Dupuis network.

0-D BEV GV
1,2) 200 200
(1,3) 400 400
(4,2) 300 300
(4,3) 100 100
5. Numerical Analysis

This section presents the numerical results of the model and
solution algorithm applied to two network case studies. The
analysis aims at assessing the impacts of charging facility
utility, charging speed, and driving distance limit on the
optimal placement of charging facility locations.

The first numerical example is the Nguyen-Dupuis net-
work; see, for example, [49]. The network consists of 13 nodes,
19 links, and 4 O-D pairs: (1,2), (1,3), (4,2), and (4,3), as
shown in Figure 3. The network supply and O-D demands
information are from Nguyen and Dupuis [50]. The O-D
demand is assumed to be the same for both GVs and BEVs;
that is, BEV market penetration rate is 50% (given in Table 1)
to facilitate the equilibrium flow comparison between BEV
and GV. The free-flow travel time is used as a proxy for the
link length for each link. Due to the small size of the Nguyen-
Dupuis network, the enumerated path sets information is
obtained from Jiang and Xie [43] in Table 2.

We use this case study to evaluate the performance of the
proposed algorithm for solving the bilevel model where lower
level problem is logit-based SUE assignment with driving
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FiGure 3: The Nguyen-Dupuis network with 2 origins, 2 destina-
tions, 13 nodes, 19 links, and 25 paths between the 4 O-D pairs.

distance constraints. The following parameter values are con-
sidered. We do not claim the suitability of the defined param-
eters for accurate quantification of network performance. To
avoid the dominant role of tg in the path cost, a relatively
small proportion of charging facility is deployed in this 19-
link network: p = 3. The BEV driving distance limit is set to
20, the scale parameters of the logit model for route choice of
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TaBLE 2: Path compositions and lengths in the Nguyen-Dupuis
network example.

0-D Path number Path composition Length
1 1-5-6-7-8-2 29
2 1-5-6-7-11-2 33
3 1-5-6-10-11-2 38
(1,2) 4 1-5-9-10-11-2 41
5 1-12-6-7-8-2 35
6 1-12-6-7-11-2 39
7 1-12-6-10-11-2 44
8 1-12-8-2 2
9 1-5-6-7-11-3 32
10 1-5-6-10-11-3 37
(1,3) 1 1-5-9-10-11-3 40
12 1-5-9-13-3 36
13 1-12-6-7-11-3 38
14 1-12-6-10-11-3 43
15 4-5-6-7-8-2 31
16 4-5-6-7-11-2 35
4.2) 17 4-5-6-10-11-2 40
18 4-5-9-10-11-2 43
19 4-9-10-11-2 37
20 4-5-6-7-11-3 34
21 4-5-6-10-11-3 39
4,3) 22 4-5-9-10-11-3 42
23 4-5-9-13-3 38
24 4-9-10-11-3 36
25 4-9-13-3 32

GVand BEV arey, =y, = 0.1, the charging speed is¢ = 1, the
utility of a charging facility on pathis 2 = ~2, and K in the K
shortest paths is set to be 5. In addition, the link capacity and
free-flow travel time (link length) are given in Table 3 with
the equilibrium BEV link flow at each upper level iteration.

The relationship between charging facility location pat-
tern in the upper level and BEV link flows in the lower
level is first examined. Table 3 lists the charging facility
locations and the corresponding BEV link flows in each
iteration. At the first iteration, we assume no charging facility
is available in the network and relax the driving distance
constraints. The results clearly show the overall BEV link flow
pattern in the first iteration is quite different from those in
the others, especially after the first iteration when charging
facilities are located in the network. In the first iteration, every
enumerated path is feasible for BEV drivers since the driving
distance constraint is relaxed. As for the other iterations,
some paths become infeasible due to the lack of charging
facilities. For example, only path 18 between O-D pair (4,2) is
feasible in the last iteration because two charging stations are
deployed on links 6 and 14 so that each pure subpath distance
is smaller than the range limit.

The total covered flows by locating 3 charging facilities
in this example are “0, 1054.3, 1048.5, and 1048.5” during
the four iterations. The amount of total covered BEV flows
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in the third iteration may decrease comparing to the second
iteration because the BEV flow covered in the second iteration
is actually generated by using the charging facility locations
in the first iteration. Therefore, when new locations are
generated, the BEV link flow changes accordingly until the
last two iterations that produce the same facility locations.
The potential drawback of this modified definition of max-
imum covering flow is that if a route contains multiple
links with charging stations (e.g., paths 4 and 11), a trip
by a driver is counted multiple times even though BEV
drivers may not charge or only charge once during the trip.
As a result, this method could locate charging facilities on
several adjacent links of some high-volume freeways, while
in practice fast charging facilities are usually deployed with
long intradistances along the freeways.

A sensitivity analysis is conducted with respect to the
charging facility utility, charging speed, and BEV driving
distance limit. The results are illustrated in Figure 4, where
only one parameter is changed in each scenario. In scenario
(a), we set the charging speed as ¢ = 0.1 which can be
regarded as relatively fast charging and we conduct tests on
different level of charging facility utility. The utility value
can be perceived as the risk-taking level of BEV drivers. A
smaller utility value indicates that BEV drivers are willing
to take more risks. As the equivalent travel time reduction
value (ie., utility) goes up, the total covered BEVs flows
increases, because BEVs drivers are more likely to choose
feasible lengthy paths with fast charging facilities instead of
paths with less travel time. If we consider multiple classes of
BEV drivers with different driving distance limits, the BEVs
with shorter driving distance and risk-neutral attitude would
probably have a larger value of charging facilities utility,
because charging facilities help to ease their range anxiety,
while, for those with larger batteries, they would behave
more like GV users. In general, large travel time reduction
value should apply to fast charging method, small battery
capacities, and risk-taking BEV drivers.

We then examine the impacts of charging speed, that is,
&, in scenario (b), where a smaller value represents a faster
charging speed, with charging time estimated as ¢}, = -
(I - D,). This parameter translates to different charg-
ing methods (i.e., slow charging, fast charging, or battery-
swapping technology) that lead to different charging facility
location patterns. Given a charging facility location pattern
(e.g., {1,5,7}), charging speed affects the total travel cost on
a feasible path. As a result, the probability of choosing each
path changes if there exist at least two feasible paths between
each O-D pair. With ¢ 0.01, the charging facilities are
deployed on link {1,5,7} and the feasible paths are paths 9
and 13 between O-D pair (1,3), whereas, with ¢ = 10, the
charging facilities are located on {6,12, 14}. Only path 11 is
feasible between O-D pair (1,3), and all the BEV drivers
will be assigned to this path if no other paths are feasible.
In this case, charging speed does not affect the path choice
probability. Fast charging attracts more BEV flows compared
to slow charging when at least one another path with no
charging need is available to BEV users, because the charging
speed would have the influence on the total travel cost and
path choice probability only if BEV drivers take charging
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TaBLE 3: The charging facility locations and BEV flows over iterations.
Upper level iteration
Link number ~ Link length ~ Link capacity 1 2 3 4
Location BEV flow Location BEV flow Location BEV flow Location BEV flow
(1,5) 1 7 500 / 349.8 i 316.2 v 335.5 v 3355
(1,12) 2 9 500 / 250.2 / 283.8 / 264.5 / 264.5
(4,5) 3 9 500 / 2571 / 188.0 / 1945 / 1945
4,9) 4 12 400 / 142.9 / 212.0 / 205.5 / 205.5
(5,6) 5 3 500 / 395.4 v 202.5 / 2281 / 228.1
(5,9) 6 9 500 / 2115 / 3016 v 3018 v 3018
6,7) 7 5 500 / 4044 v 1725 / 196.5 / 196.5
(6,10) 8 13 500 / 159.0 / 175.7 / 158.1 / 158.1
(7,8) 9 5 500 / 1614 / 75.4 / 87.8 / 878
(7,11) 10 9 500 / 243.0 / 972 / 108.7 / 108.7
(8,2) 11 9 500 / 2435 / 2135 / 2259 / 2259
(9,100 12 10 500 / 164.7 / 260.8 / 253.0 / 253.0
(9,13) 13 9 400 / 189.7 / 2529 / 2543 / 2543
(10,11) 14 6 500 / 3238 / 436.5 v 411.2 v 411.2
(1,2) 1 9 500 / 256.5 / 286.5 / 2741 / 2741
(11,3) 16 8 500 / 3103 / 2471 / 2457 / 2457
(12,6) 17 7 500 / 168.1 / 145.7 / 126.5 / 126.5
(12,8) 18 14 400 / 82.1 / 1381 / 138.0 / 138.0
(13,3) 19 1 500 / 189.7 / 2529 / 2543 / 2543
s 2 Charging speed analysis
e 1600 & 1600 - E ¢
. 1400 . 1400
g 1200 i 1200 -
1000 1000
T 800 T soof
2600 2600
8 400 S 400}
E 200 3 200}
=) 0 L < 0 L
5N 2 5 5 2 3 4
Iteration Iteration
—— Utility =-0.1 == Utility = -5 —— Charging speed =0.01 --- Charging speed = 1
-e= Utility = -1 —— Utility = -10 -+- Charging speed =0.1 ~ —=— Charging speed = 10
(a) Utility (b) Charging speed
5 Driving distance limit analysis
2 1600 T :
>
1]
)
9
2
:
3
=
Iteration
—— Distance limit = 15 - Distance limit = 35

--4-. Distance limit = 20
.=~ Distance limit = 25
—— Distance limit = 30

Distance limit = 40
»~ Distance limit = 45

(c) Driving distance limit

FIGURE 4: Sensitivity analysis for various input parameters (a) charging facility utility; (b) charging speed; and (c) driving distance limit on
the total covered BEV flows.
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action with these facilities. The generalized travel cost on
paths with charging actions would be too high when charging
speed is extremely slow (e.g., € = 10) and charging time takes
over path travel time. BEVs would probably choose saturated
paths with high travel time. However, as can be seen from the
results, the total covered BEV flow is not strictly increasing
with the increase of charging speed and it is also influenced
by the feasible path set between O-D pairs.

In scenario (c), the lower bound of distance limit is set
to 15 to make sure there exists at least one feasible path
between each O-D pair. In addition, given that all paths are
enumerated in Table 2, the distance limit 45 is the path length
upper bound in the network without imposing the distance
limit. The charging facility locations for distance limits 15,
20, and 25 are {5,7, 14}, {1,6, 14}, and {1, 5, 14}, respectively,
and the total covered BEV flows are 1131.6, 1040.9, and 995.5.
Additionally, the charging facilities are all located on {1, 5,7}
for distance limits 30, 35, 40, and 45, covering, respectively,
1164.7, 1265.4, 12675, and 1267.6 BEV flows. It is observed
that as the distance limit increases, the total covered BEV
flow decreases at first, while after the distance limit reaches
a certain value, the total covered BEV flows increase till it
reaches a stable value. The driving distance limit affects the
number of feasible subpaths and charging time. As the driving
distance limit increases, more paths are eligible to carry flows
and a larger K value should be used to generate more feasible
paths during the assignment process. However, as indicated
in [38], the change in the number of feasible paths does not
always increase with the distance limit, since each subpath of
the generated K shortest paths would be feasible when the
distance limit is large enough.

From the three sensitivity analysis scenarios, it is
observed that the proposed model can satisfy the stopping
criteria after 3 or 4 iterations for this small network. Although
there is no significant difference in the total covered BEV
flows, the charging facility locations vary for each scenario.
It is noteworthy that the deployment of charging facilities
changes BEV path flow patterns while the aggregated covered
BEV link flows do not change significantly. Therefore, the
strategy of locating charging facilities is still focusing on those
BEV saturated links to increase the exposure of charging
facilities to BEV flows. Taking realistic situation into con-
sideration, when budget is limited, the number of charging
facilities can be flexible by adjusting its size and configuration.
It would be better to scatter more small size charging facilities
than large ones to increase the exposure to BEV drivers.
The charging speed affects the BEVs perceived travel cost
only when they need charging. Thus fast charging station or
chargers should be deployed along freeways or highways to
reduce the charging time of long-distance trips while slow
chargers can be deployed along urban roads to eliminate
range anxiety and to increase exposure. Under some cir-
cumstances, charging station equipped both slow and fast
chargers may enable more flexible charging operation. We
also found that the BEVs are restricted to some relatively
short paths especially when distance limit is low; however,
the equilibrium mechanism will assign more GV to relatively
long paths since the GV drivers still try to minimize their
perceived travel time.
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The second numerical experiment is done on the Sioux
Falls network shown in Figure 5, which has been chosen
as a benchmark network in numerous traffic assignment
studies. We adopt a variation of this network presented in
Suwansirikul et al. [51]. The exact network attributes and
travel demands are also used in our study. For simplicity, the
free-flow travel time is used as proxy for link length and BEV
penetration rate is assumed to be 50%. Sioux Falls network
consists of 24 nodes, 76 links, and 576 O-D pairs. The number
of charging facilities is p = 8. This example is to evaluate
the computational performance of the proposed solution
algorithm. For computational experiments, the number of
iterations (ITR) and the total computational cost (TCC) were
compared under different parameter settings.

Table 4 lists the computational cost under different
parameter settings. Assuming the logit scaling parameter be
0.1, it can be seen from Scenario 1 that the computational
cost generally increases as the driving distance limit increases.
The underlying reason might be that many paths become
feasible in the K paths generated, thus requiring the related
path/subpath choice probability calculation and assignment.
From the first two scenarios, clearly K value has an impact
on the computational cost, because bigger K value would
increase the computational time in the K shortest path
algorithm as well as the stochastic network loading procedure
in the lower level problem. Comparing Scenario 2 with
Scenarios 3 and 4, respectively, the results demonstrate that
charging speed and charging facilities’ utility affect computa-
tional time marginally. Finally, we can observe that K value
has the most impact on increasing computational time and
the number of iterations needed for the upper level prob-
lem.

6. Conclusions and Future Work

This paper formulates, solves, and evaluates the problem of
potential location of public charging facilities for BEV in a
network with mixed GVs and BEVs. The path travel cost of
BEVs is modeled by considering path travel time, charging
time, driving distance limit, and charging facilities’ utility,
where driving distance limit restricts the path choice. A
bilevel model has been proposed to address the issue of coex-
isting equilibrium GV-BEV flows. A mix-integer nonlinear
program is constructed based on MSA to maximize the total
BEV flow coverage on high-BEV-traffic paths. The key part of
this formulation is the lower level path-distance constrained
stochastic traffic assignment. The solution equivalency is
proved to satisfy SUE condition as well as the uniqueness of
link flow pattern. Moreover, a modified MSA method with K
shortest path algorithm and generalized BEV path travel cost
are applied to solve the charging facility location problem.
In the numerical analysis, we also demonstrated how the
driving distance limits, charging speed, and utility of charging
facilities affect the equilibrium network flow and charging
facility location.

We expect that the strategy of locating charging facilities
and the modeling technique presented in this work would
potentially trigger the interest of incorporating other types
of BEV-specific constraints in the lower level problem, such
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TasLE 4: Computational cost with different parameter settings for MNL.
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FIGURE 5: Sioux Falls network with 24 nodes and 76 links.

as flow-dependent battery capacity constraints and time-
dependent battery-charging price. As for the upper level
problem, some other approaches, such as FILM and FRLM,
locating charging facilities to maximize passing BEV flows
without double counting, can be explored to better serve the
BEV travel demand. The model uses anumber of assumptions
to simplify the problem and make it tractable, which will be

relaxed in the future work to deal with more complicating and
realistic issues.

Notations

K3, K;': Set of paths connecting O-D pair (r, s) of
GV and BEV, respectively
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g Set of pseudonodes of charging stations on
path k € K[ connecting O-D pair (r, s)

1,:5‘” : Length of subpath k' in path
k, (,j) € Z;

L Length of linka, a € A

Vgl Traffic flow on link a € A, which is the
summation of GV link flow v, , and BEV
link flow v, that is, v, = v, ; + v,

v; A column vector of all the link flows;
v=(), acA

x4 Binary variable, equaling 1 if there is a
charging facility at location z € Z on link
a 0 otherwise

> & A column vector of all the location
variables; x = (xa)T, a€A

t,(v,):  Link travel time on link a

ni  Link path incidence: 8}, = 1 if path

ke K';, K* between O-D pair (r, s)
traverses link aand 0 otherwise

i = Y la0oy length of path k between

O-D pair (r,s)

Driving distance limit of BEV
Traffic flow of GV and BEV on path
ke KY;, K:

Dz
TS 1S,
f kg> Jke*

¢ (f):  Path k travel time between O-D pair
(r.s), k€ K K3 6°(6) = X ta(v,)00
toys Total travel time reduction on path k € K[
th: The utility of one charging facility on the
path, equivalent to a constant nonpositive
travel time reduction value
'};‘;, ot Generalized travel cost of GV or BEV ona

given path k € K;s, K

& Battery-charging speed, min/km

i Charging time needed on a given path
k € K between O-D pair (r,s)

£ Free-flow travel time on link a

H,: Capacity of link a

p: The number of charging facilities to be
located

q;, g, GV and BEV travel demand between O-D

’ pair (r, s)

Pg» Pyt The probability that GV or BEV choose
path k between O-D pair (r, s)

Yo Ve Scale parameter of the logit model for
route choice of GV and BEV, respectively

S;“, S7°: The satisfaction function: the expected

value of the minimum perceived travel
time for GV and BEV travelers between
O-D pair (r, s) respectively

Random error term of perceiving
generalized GV and BEV path k cost
between O-D pair (r, s).

& &
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6.3 Conclusion

BEVs rely entirely on electricity as a single power source and are designed to be charged at the charging
facilities. BEVs’ electricity consumption is typically proportional to the driving distance, resulting in a
driving range limit because of the battery capacity. On the basis of current battery technology, charging
a BEV still takes more time than refuelling a GV’s fuel tank. The distance limit, the charging time and
the location of the charging facilities inevitably change BEV drivers’ route choice behaviour in a
stochastic manner where BEV drivers may have imperfect information regarding their travel cost over
the entire mixed flow (i.e. BEVs and GVs) traffic network. The massive adoption of BEVs requires a
certain level of coverage of the charging facility. Given the financial budget and high cost of installing
public chargers, it is a sound approach to maximize the passing BEV population on the links where
charging facilities are deployed.

This paper formulates, solves and evaluates the problem of potential location of public charging facilities
for BEV in a network with mixed GVs and BEVs. The path travel cost of BEVs are modelled by
considering path travel time, charging time, driving distance limit and charging facilities’ utility, where
driving distance limit restricts the path choice. A bi-level model has been proposed to address the issue
of co-existing equilibrium GV-BEV flows. A mix-integer non-linear program is constructed based on
MSA to maximize the total BEV flow coverage on high-BEV-traffic paths. The key part of this
formulation is the lower level path-distance constrained stochastic traffic assignment. The solution
equivalency is proved to satisfy SUE condition as well as the uniqueness of link flow pattern. Moreover,
amodified MSA method with K shortest path algorithm and generalized BEV path travel cost are applied
to solve the charging facility location problem. In the numerical analysis, we also demonstrated how the
driving distance limits, charging speed and utility of charging facilities affect the equilibrium network

flow and charging facility location.

Although this study provides insights into the definition of charging facilities’ coverage, we still expect
the strategy of locating charging facilities and the modelling technique presented in this work would
potentially trigger the interest of incorporating other types of BEV-specific constraints in the lower level
problem, such as flow-dependent battery capacity constraints, time-dependent battery price, etc. As for
the upper level problem, some other approaches, such as FILM and FRLM, locating charging facilities
to maximize passing BEV flows without double counting, can be explored to better serve the BEV travel
demand. The model uses a number of assumptions to simplify the problem and make it tractable, which

will be relaxed in the future work to deal with more complicating and realistic issues.

This chapter focused on deploying public charging facilities for private BEVs based on the SUE flow
patterns of BEVs. The SUE models used in the lower-level problem is an extension of those in Part II.
The next chapter, which is the last chapter of Part 111, is dedicated to another charging facility, battery

swapping facility for public EBs, which is an important part of transportation electrification process.
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CHAPTER 7 BATTERY SWAPPING FACILITY LOCATION
MODEL OF PUBLIC ELECTRIC BUSES

7.1 Introduction

In accordance with research objective 5, the aim of this chapter is to specifically design the refueling
facility network for electric buses (EBs) that are known to follow fixed routes and timetable during their
operation. This chapter considers EBs’ own characteristics which are different from BEVs and addresses
the research gap identified in the Literature Review: No studies have explored the BSS location model
with local charging system serving EB fleet. Table 7-1 details the research objective, research

component, research gap and research opportunity associated with this chapter.

Table 7-1: Research gap, opportunity and objective associated with research component 5

Research topic Research gaps Research opportunities

Charging/swapping Battery swapping is designed to be more Proposing a new BSS facility

facility location models  suitable for electric buses. Moreover, location model for BEBs

of BEVs and BEBs (Part there is no swapping facility location considering EBs'

1)) model dedicated to swapping facility characteristics (see Chapter
location with local charging system 7)

serving EB fleet (see, section 2.5.5)

The models and findings of the research in this chapter have been submitted in the form of one journal
paper as follows:

Jing, Wentao, Inhi Kim and Kun An. (Under review) " The capacitated battery swapping facility location
problem with local charging system serving electric bus fleet.” Submitted to Journal of Transport

Geography.

As battery charging stations for private BEVs in chapter 6, battery swapping technology has been
considered more suitable for EBs. In this chapter, a BSS location problem is considered for battery EBs
with local charging system. The depleted batteries will be charged at BSSs with local charging system
in terms of its charger type and the quantity of both chargers and batteries. This chapter starts with an
introduction of EBs’ adoption and its refueling system around the globe. The intention of this chapter is
to answer four fundamental questions: How many BSSs should be optimal? Where should they be?
Which EBs should be assigned to them? How big should they be in terms of service capability?

The service capability of the BSS is restricted by the number of swapping robots in each BSS.
Understanding the key cost factors in BSS system that serves EBs will assist city planners or bus service
operators in making better EB-related decisions at the planning level. This is particular important in
public transit, as there is limited research on BSS location problem studies and BSS can largely improve

the utilization rate of EBs by reducing the refueling time.
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7.2 Background

Along with increasing environment and energy concerns, electric vehicles (EVs) are regarded as a
promising solution to alleviate the global energy crisis and reduce greenhouse gas emissions. As part of
the transportation electrification plan, battery electric buses (EBs) have received significant attention
worldwide with the advance in battery and bus manufacturing technologies. In public transport, diesel-
powered buses are still dominant, which accounts for more than 45% nitrogen oxides and 75% of
particulate matter emissions(Elkins et al. 2003). In contrast, EBs have a unique advantage: zero
emissions. Governments thus have created various incentives to switch to alternative fuel buses,
powered by natural gas, hydrogen, or electric batteries. For example, the TIGER program in the United
States, the Green Bus Fund Program in the UK, the Electric Mobility Program in German and the Ten
Cities and Thousand Vehicles Program in China, all aimed to promote green transport(SUTP 2015).
Motivated by these government incentives, EBs are being extensively used in many metropolitans.
Several cities in the United States, such as Santa Barbara, Chattanooga, Berkeley, and Denver,
introduced EBs in transit service prior to mid-2000s. In 2012, Uruguay signed a deal for 500 heavy-duty
EBs and Tel Aviv in Israel ordered 700 EBs. In 2013, Shenzhen, China, ordered 1000 heavy-duty EBs.

EBs usually have fixed running routes, fixed depots, and near-identical battery capacity. However,
configuring a public transport system using EBs is challenging; this includes possible battery recharging
or swapping strategy decisions, battery sizing, and  charging station sitting and sizing
problems(Leou,Hung 2017). Comparing to conventional diesel-powered buses, EBs still suffer from
long charging time, limited mileage range, and insufficient charging infrastructures problem regardless
of its regenerative braking attribute of recovering energy from the braking process. Theoretically, EBs
can travel up to 250 km. Various factors, including air conditioning, driving behavior, and battery aging
issues can significantly reduce the EBs’ operational range, often making EBs incapable of finishing a

whole day’s work without battery recharging (Li 2016).

Three charging methods are available, namely slow charging, fast charging, and battery swapping. Slow
charging usually takes hours to refuel a bus and thus reduces the utilization rate of EBs, whereas fast
charging may only need ¥ of the time but is to the detriment of battery life (Sarker et al. 2013).
According to Huang et al. (2016), a charger costs from $1,000 to $100,000 depending on the charging
speed. One has to weigh the costs, charging efficiency, battery life and other factors in choosing the
charging method. It is pointed out that well-aligned charging strategies with evolutionary electric vehicle
adoption are the prerequisite for realizing its environmental benefits especially in countries with fossil-
dominated power. Otherwise, the disordered charging will cause load fluctuations and increase

generation costs (Rao et al. 2015).

The deployment of battery swapping stations (BSSs), which remove depleted batteries on EBs and
replace the batteries with fully charged ones, is an alternative strategy to eliminate most of these barriers

(Avci et al. 2014). The most outstanding feature of this strategy is that BSSs can complete the swapping
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process in less than 10 minutes. The depleted battery can be left overnight to get charged at a discounted
electricity price. Such battery management method allows effective battery maintenance and is
beneficial to extend the batteries’ lifetime. However, due to lack of standardization in batteries and its
charging interfaces, BSSs are more suitable for buses and taxis rather than private vehicles (Zheng et al.
2014). Many countries are keen to explore the application possibilities of BSS systems. In April 2015,
Ziv Av Engineering signed a deal with China’s Bustil to design 7000 BSSs for EBs in Nanjing city (Elis
2015). So far 1,300 BSSs have been constructed and additional 12,000 are planned through 2020 in
many pilot cities of China (Liang et al. 2017).

Generally, there are two types of operation modes for BSSs: central charging and local charging (Tan et
al. 2014). In the central charging mode, EVs swap their batteries in BSSs, and the empty batteries are
sent to the central charging station. After empty batteries are fully charged, they will be delivered back
to BSSs. The other mode utilizes a local charging system which charges depleted batteries in local BSSs
(Mak et al. 2012). While avoiding the tedious battery shipping, the local charging method calls for
careful land-use planning to reserve sufficient spaces for bus awaiting/parking and for local charger
installation(Li 2016). Moreover, BSSs require large capital investment in purchasing additional batteries
to be swapped with ones near depletion. The location of BSSs and the choice of charger types become
an inevitable issue when designing a battery swapping system to balance the tradeoff between their

charging speed and costs.

Many efforts have been devoted to optimizing the planning and operation for BSSs. The existing
research can be classified into three categories. In the first category, the optimal location of BSSs and
the interaction between BSSs and the power grid are the primary concerns. Xiang,Zhang (2017)
developed a p-median based model to solve the BSS location problem with a central charging system.
Xu et al. (2013) studied the optimal configuration of a central charging station and its location. Liu et
al. (2016) proposed a bi-level model to plan the capacity and location of BSSs to maximize the net profit
of BSSs in the upper level while minimizing the operational costs of the distribution company in the
lower level. The second category primarily focuses on the operation of both BSSs and EBs. Li (2013)
proposed a single-depot optimization model for EB scheduling to minimize the total operating costs
with battery swapping constraints at BSSs. Zhu,Chen (2013) looked into the minimum number of
standby batteries to ensure non-stop bus operations and studied the required power supply to meet the
charging demand of EBs. You et al. (2016) focused on scheduling the battery charging in BSSs so that
every EB could find a fully charged battery for swapping. The third category addresses the operation
details of BSSs including optimal power capacity (Leou,Hung 2017), charging scheduling (You et al.
2017) and swapping demand analysis (Xiong et al. 2012). A simulation-based model was utilized to
estimate the uncontrolled energy consumption of BSSs considering random EB arrivals and disorderly
charging behavior (Dai et al. 2014). Based on a central charging system, EBs are scheduled for charging

at BSSs to minimize the charging costs considering electricity price fluctuations and EB charging
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priority (Kang et al. 2016). Regarding local charging systems, Zhu et al. (2016) proposed a mathematical
model to simultaneously determine the charging station location and the number of chargers to install
in each station.

However, no study has investigated the optimization of swapping station location, charger number,
charger type and electric bus assignment in the BSS planning problem. In addition, to swap the depleted
battery, an EB may travel a long distance to the assigned BSS. More electricity energy should be
reserved to sustain the trip to the BSS. This further reduces the number of trips that an EB can serve on
a bus route and adds to the difficulties of BSS assignment. To promote the development of BSSs for
EBs, the optimal BSSs’ location and its local charging system design should be investigated together.
Transport costs between EB transit depots and BSSs is another major factor to capture the energy waste

during the detour to swap the depleted battery, which will be considered in this study.

In this paper, we propose an optimization framework for locating capacitated BSSs incorporated with
local charging systems. Comparing with the previous studies, the main contributions of this paper can
be summarized as follows. First, to our best knowledge, this is the first study investigating the
deployment of BSSs with different types of local charging infrastructures (including batteries, chargers
and swapping robots) while taking the tradeoff between BSS installation costs and transportation costs
from EBs to BSSs into account. Second, the proposed model can provide insights for city planners and
bus operators of deploying battery swapping and charging systems. The optimal number of batteries,
chargers and swapping robots and the type of chargers initially purchased at BSSs can also be decided
through the proposed model to satisfy the swapping and charging demand of EBs. Third, a case study
of the southeast region of Melbourne network verifies the effectiveness of the proposed model and
provides cost analysis if EBs serve the current bus routes and demand. The approach proposed in this
paper may be used by city planners, power grid companies, and transit service providers to plan the
battery charging and swapping infrastructures, estimate how many chargers and what type of chargers

to install to fulfill the potential demand while minimizing the total capital investment.

This paper is organized as follows. The next section introduces the assumptions and problem settings.
Section 7.4 discusses the mechanism of capacitated BSSs with local charging systems and its
mathematical formulation. In Section 7.5, we use a case study to demonstrate the effectiveness of the

proposed model. Finally, Section 7.6 is devoted to the conclusions and future research.
7.3 Basic consideration

Facility location decisions are strategic in nature. BSSs and their local charging system will remain in
place for many years. While the conditions and policies under which BSSs will operate in the future are
not clear yet, the tactical and operational decisions of BSSs can be adjusted to some extent subject to
the pre-determined long-term decisions of the BSS location. In particular, the swapping demand of EBs

could change with weather and road conditions. With the advance of charger and battery technologies,
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their service capability is expected to improve at a lower cost. The battery charging scheduling methods
that the operator may adopt are also uncertain. Thus, it is often unwarranted to insist on the strict
satisfaction of battery quantity constraints. Since the aim of this paper is to explore a location model
regarding the newly emerging battery charging and swapping system for EBs, we make some
simplifications to model the BSSs deployment with local battery charging systems serving EB depots.

Assumptions of the modeling framework are summarized as follows:
1. All EBs use a uniform type of batteries.

2. The demand for EB battery swapping services is evenly distributed during the T time slots and

the charging scheduling optimization is not considered here.

3. EBs go to BSSs for swapping from the transit depot/bus terminals only, but not from intermediate

stops.
4. Every EB can get a fully charged battery immediately when they arrive at a BSS.
7.4 Model formulation

Facility The electric bus operating company or power grid company is considered as the major investor
to build the BSS network. They decide the location and configuration of BSSs in terms of charger type,
charger quantity, swapping robot quantity and battery inventory. The objective aims to minimize the
total investment of BSSs network while fulfilling the EB charging demand. Therefore, this paper intends
to minimize the total system investment, including fixed swapping facility costs, total transportation

costs, battery purchase costs, and installation costs of chargers and swapping robots.

The following table provides the notation of variables and parameters used throughout this paper.

Variables Description
Xj binary variable, equals 1 if a BSS is installed at candidate site J € J , 0 otherwise
Y assignment variable, fraction of demand at transit depot i € | that is assigned to the

BSS at candidate site j € J

N, number of chargers of type a € A installed at station j € J

R, number of swapping robots at station j € J

Z} number of fully-charged batteries stored at candidate site j € J intimeslot teT

W' number of depleted batteries assigned to chargers of type a < A at station j€J in

timeslot teT ,Wg =0
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t
H j
Parameters

4

swapping demand arrived at BSS station j€J intimeslot teT

coefficient, monetary costs of transporting a depleted battery between the bus depot
and the BSS for one km

swapping demand at transit depot i € |
distance between transit depot i and candidate BSS site j € J

fixed costs of constructing a BSS facility at candidate site j € J , converted to the

depreciation costs per day

costs of installing a type a € A charger, including land costs, transformer and power

line costs, converted to the depreciation costs per day

costs of purchasing a battery, converted to the depreciation costs per day
costs of installing a swapping robot, converted to the depreciation costs per day

service capability of a type a € A charger in a typical service period (No. of batteries

fully charged per day)

service capability of a swapping robot in a typical service period (No. of batteries
swapped per day)

Obijective function:

s.t

x,Y,nrl,Tgei,Qw,H JZEJ: fi Xi +7/Zzhidinij +ZZCaNja +Zcbz? +ZCCRJ (1)

iel jed jedJ aeA jed jed

DY, =1, Viel 2
jed
Y; <X, Viel,jel 3)
X;={01}, Vjel (&)
0<Y; <1, Viel,jel (5)
1 ¢ max{t+1—Ll},O} . .
Zt=Z+Y W, *l —Hj, vteT,jel (6)

acA

H;szg,VteT,jeJ (7
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H}:ZAtha:ZI:hiYij/T,VteT,jeJ (8)
t+Ll}l . S .
> LW SN, [2|, VteT,jelacA 9)
r=t ja Ja T
> hY; <D Ns,,Vjel (10)
iel acA
YN, <M*X, Vjel (11)
acA
R, <M*X,,Vjel (12)
H;SRjSC/T,‘v’teT,jeJ (13)

The objective function (1) is to minimize the costs for building battery swapping stations, transportation
costs between demand point (electric bus depot) and battery swapping stations, charger costs, battery
costs and swapping robot costs. The fixed BSS construction investment and transportation costs, which
are the first and the second terms, take the form of the classical fixed-charge facility location
problem(An,Ouyang 2016; An et al. 2017). Chargers, swapping robots, and batteries are the major
capital investment considered in configuring BSSs. Constraint (2) requires that all demand at depot i
should be assigned to BSSs, while constraint (3) ensures EBs can only be assigned to open battery

swapping facilities. Constraint (4) and (5) are the integrality and non-negativity constraints for location
variables X and assignment variables Y . The continuous variable Yij takes a nonnegative value in
[0,1], indicating that the demand at each EB transit depot i € | may be assigned to multiple BSSs.
Constraint (6) is the fully-charged battery quantity conservation constraint at time slot t +1. The second

term on the right-hand side ZijaX{”l’ta’O} calculates the number of batteries that have completed

a
aeA

charging during the time period from t to t+1. Variable H; is the swapping demand arrived at BSS

J , i.e. the number of buses with depleted batteries. Constraint (7) ensures every EB can get a fully-

charged battery immediately when they arrive for swapping services. Constraint (8) captures the
assumption that the battery swapping demand is evenly distributed over T time slots during the BSS
operation period by carefully arranging the swapping schedules. This assumption can ensure full

utilization of the charging facilities and batteries. Constraint (9) can be explained in two ways according

to the charger type. Slow chargers can usually charge 2 batteries per day, i.e. s, = 2. If we consider a
S
time duration of one hour, there are T = 24 time slots, making the term (?a—l equal to 1. It states that

the number of slow chargers should be greater than the number of depleted batteries assigned to them
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T . . .
over the {——l —1 time slots, so that the depleted batteries can start the charging process once they are
S

a
S
swapped out at the BSS. For fast chargers, {?a—l is basically greater than 1 and it explains that the

number of depleted batteries assigned to them should be less than its charging capability at any time slot

t e T . Constraint (10) indicates that the total demand assigned to site j should not exceed its charging

capability at this site. Constraints (11) and (12) indicate that chargers and swapping robots are only
deployed at open BSSs where M is a large number. The swapping robot capacity constraint (13)

guarantees that the service capability of swapping robots at station j in time slot t satisfies the

swapping demand.
7.5 Case study

We consider a pilot battery swapping program for EBs as a replacement of the existing diesel bus
services. It serves a given number of bus routes with a limited number of EB fleet. In an urban area, the
number of BSSs in a given region is typically orders of magnitude less than the number of EB transit
depots. Tens of transit depots usually accommodate over hundreds of buses in service. We assume bus
depots and large bus terminals can be candidate sites for BSSs.

7.5.1 Data preparation

We take the east region of Melbourne city for example. The study region centers around the city of
Monash consisting of eight local suburbs, namely Monash, Knox, Glen Eira, Stonnington, Whitehorse,
Maroondah, Kingston and Greater Dandenong. Bus routes information and timetables are available at
Public Transport Victoria for the eight local councils (Victoria 2017a). Bus route length, origins and
destinations are extracted from an open dataset of PTV bus route metro using ArcGIS software (Victoria
2017b). There are 109 bus routes operating in this area. The swapping demand of a bus route is assumed
to occur at the two terminals, each terminal taking half demand generated. On-route battery swapping
is not considered in this model. The swapping demand of a bus route is calculated based on the total

daily vehicle-mile traveled (route length multiply by bus service frequency) divided by the range limit
of EBs. The demand h; at terminal i is the sum of the half demand for all routes using terminal i . We

rounded up the swapping demand to integers for calculation convenience. The demand set | contains
81 demand generation points composed by origins and destinations of these bus routes. Note that several
bus routes could share the same terminal. We select the 81 terminals in | and the 38 existing bus depots

under operation in Melbourne as the candidate sites of BSSs, namely, J has 119 elements (see Fig.7-

1). The distance dij between demand point i € | and candidate BSS site j € J is calculated by Google

Maps Distance Matrix API during off-peak hours. The fixed cost f j is calculated based on the median

land price per sgm (available from https://www.microburbs.com.au/). The land value, candidate site
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index, and the name of each candidate site can be found in the appendix. We implement the proposed

model in Gurobi MIP solver to find the optimal BSS location and its charging system configuration.
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Figure 7-1:East region of Melbourne with 81 demand points and 119 candidate sites

Note: Purple marks represent demand points. Blue and orange marks represent existing bus depots within and out

of the studied region respectively.

The parameters used in this case study are listed in Table 7-2. A single EB type with a range limit of
250 km is used. In this study, we take EB manufactured by Sunwin China for example, to which battery
swapping applies. This manufacturer (Sunwin) only published part technical specifications of EBs.
Therefore, we have to refer to the parameters from several similar manufacturers. Hopefully, these key
parameters in the operational stage are all within a reasonable range for a macro level cost analysis. We
assume slow charging and fast charging are applicable to the local charging system. The costs of
chargers, batteries, and swapping robots are only referenced values used in Melbourne. The operation

time is divided into 12 time slots, i.e. T =12.

Table 7-2: Basic model input

EB range limit 250 km slow charging time 8h
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EB battery capacity 324 kWh fast charging time 2h
charging power 60 kw swapping time 15 min
operation time 24 h battery life 3 years
slow charger price $ 25,250 vehicle life 8 years
fast charger price $757,500 swapping robot life 10 years
vehicle price $1,320,000 charger life 10 years
land size 1,000 m? land use period 100 years
electricity price $0.16/km swapping robot price $100,000
battery price $192/kwh

Sources. EB range limit, battery capacity, charging power, charger price, vehicle price, charging capability, and
swapping time are from Li (2016); EB electricity price is from Eudy et al. (2016) and Lajunen (2014); land size is
1/6 that of a real case in Qingdao, China with 3 lanes, 6 swapping robot from Li (2016); bus operation time of
Melbourne metro bus differs from route to route. 24 hours is considered in this case including night buses;
swapping robot price, charger life and swapping robot life are estimated; Battery life and costs are from Wikipedia
(2017); Land purchase price is from Microburbs (2017). Note: all $ here is AUD

7.5.2 Numerical result

We consider a pilot battery swapping program for EBs as a replacement of the existing diesel bus
services. It serves a given number of bus routes with a limited number of EB fleet. In an urban area, the
number of BSSs in a given region is typically orders of magnitude less than the number of EB transit
depots. Tens of transit depots usually accommodate over hundreds of buses in service. We assume bus
depots and large bus terminals can be candidate sites for BSSs.

In the following section, we investigate two base scenarios with different construction cost settings and
further conduct sensitivity analysis on the second base scenario. In scenario A, we assume all BSSs have
the same land size and fixed land value. In scenario B, varying land size and annual land value
appreciation are taken into consideration. The land size increases with the number of swapping robots

deployed in the BSS and land value increases 3% per year.
Scenario A: common BSS land size and fixed land value

In scenario A, we utilize the basic parameters in Table 7-2 considering a fixed land size of 1,000m’ for
each BSS and fixed land price. The optimal BSS location is shown in Fig.7-2 with green marks. The
constructed 8 BSSs are scattered in the studied area, which are located at Box Hill, Clayton, Croydon
Station, Dandenong, Frankston, Gardenvale, Mordialloc, and Upper Ferntree Gully. The detailed results
are listed in Table 7-3 and Fig.7-2, including the selected BSS sites, the configuration of each BSS and
the swapping demand assigned to the BSSs.

The total costs reach $15,037, including five cost components- land costs of $278, transportation costs
of $507, charger costs of $1,522, battery costs of $12,511, and swapping robot costs of $219. Owing to
its short lifespan and high price, batteries are the primary cost component in this case, accounting for

over 80% of the total cost. The company has to maintain 16 to 32 additional batteries at each BSS (see
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Table 7-3) to ensure seamless battery swapping with no delay. The charger costs rank the second. The
quantity of slow chargers is of the same as that of the batteries stored in the BSS. Slow chargers are
deployed exclusively in the BSSs, while no fast chargers are used. The fast charger is 30 times more
expensive, while only providing 4 times charging capability than slow chargers. It is not cost-effective
to use fast chargers to charge EBs with a large battery capacity at the current stage, although fast
charging can provide more flexibility in managing the battery charging schedule. The other three costs

are of the same order of magnitude. Since the annual appreciation of land value is not considered here,

the daily land costs f j are quite low due to the long service period (100 years). The final location of

BSSs results from the tradeoff between BSS construction costs and battery transportation costs. As can
be seen from the results, the maximum number of battery swapping robots installed is 2. Generally, one
lane at BSS can install one or two swapping robots. This result justifies the use of uniform land size at
BSSs.

Furthermore, the assignment of the swapping demand is shown in Fig.7-2 Most of the demand

assignment variables equal to 1 with six exceptions (demand points No. 22, 40, 42, 52, 72 and 80). Their

values are as follows: Y,, ¢, =0.71,Y,,,6 =0.29;Y,,50 =05, Y, ,, =05;Y,,,, =08, Y,,,=0.2;
Yopu6 =0.68 ,Ye, 0, =0.32;Y,,,, =014 Y,,,,,=0.86; Yy =0.44 Yy, =0.56 . It shows that

assigning all demand at a bus terminal to one BSS may not be cost effective but can greatly simplify the
operations of bus drivers. This phenomenon can be seen in the overlapping area of the dashed line,
showing that these demand points in the boundary area are assigned to two BSSs. The installed BSSs
are approximately evenly distributed in the study region so that an EB does not have to travel too long

to get refueled.

Table 7-3: Optimization results in scenario A

location(No.) Iand(%/)alue swap robot  battery cli:;\?\g,;ver chf;fg;er S(\;\éﬁ)gr'%g
Box Hill (46) 2180 1 32 32 0 96
Clayton (59) 1500 1 32 32 0 96
Croydon Station (63) 850 1 32 32 0 96
Dandenong (64) 870 1 28 28 0 84
Frankston (76) 730 1 16 16 0 48
Gardenvale (77) 2070 1 32 32 0 96
Mordialloc (94) 1410 1 28 28 0 84

Upper Ferntree Gull

PP 113) y 520 1 20 20 0 60
Sum / 8 220 220 0 660
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Figure 7-2: Optimal location of BSSs and swapping demand assignment in scenario A

Note: Green marks represent the optimal BSS location. Purple marks represent swapping demand points. Blue

and orange marks represent the existing bus depots within and out of the studied region respectively.

Scenario B: varying BSS land size and with 3% annual land value appreciation

This section further investigates the impact of land costs by considering 3% annual land value
appreciation and land use size. In scenario A, we can see that land costs only account for 2% of the total

cost when we consider a fixed land use size (1000 m?*) and constant land value. With 3% annual land

value appreciation, the land costs increase 1.03* =18.66 times at the 100" year. The average cost
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99
D (1+3%)"

would be “:OT = 6.06 times of the current land costs, making it a more significant cost term in

the objective function. We further consider a variable land size to avoid unreasonable configuration of

BSSs. The impacts of the BSS’s land size are investigated by adding one extra term Z f ;N in the
jed

objective function (1). We assume the BSS’s land size linearly increases with the number of swapping
robots. Otherwise, it would be unimaginable to install multiple swapping robots with hundreds of slow

chargers in a 1000 m? site.

The total cost rises to $16,804, 12% higher than that in scenario A. The results show that only three
BSSs are deployed--in Frankston Depot, Noble Park and Boronia (see Fig.7-3 and Table 7-4). These are
not the cheapest areas but are relatively closer to the region center. It indicates that the planner intends
to construct BSSs in regions with lower construction costs while maintaining reasonable transportation
costs. The number of batteries and chargers in the whole system is the same as that in the previous case.
In addition, the total number of swapping robots is 7, 1 less than the previous case. This is because that
the service capability of swapping robot is abundant in the previous case. For example, the robot in
Frankston services 84 swapping demand only while its capacity is 96. When assigning these swapping
demands to one BSS, it can help to make full use of the swapping robots. Comparing with the previous
case, the main differences lie in the land costs and transportation costs. The Land costs increase from
$278 to $1,364, while the transportation costs increase from $507 to $1,214. The transportation costs
have greatly increased because EBs need to travel to rural areas to swap the depleted batteries. Under
some circumstances, e.g. from Kew to Boronia, the distance is more than 60 km for a round trip of a
battery swapping service. It consumes 24% of total battery energy for such a detour to the BSS. If the
planner wants to decrease the time or costs EBs spent on the way to BSSs, they should deploy BSSs

closer to demand points with higher land values, rather than rural areas far from demand points.

Table 7-4: Model output with 3% annual land value appreciation and land size

. slow fast swapping
location (No.) land value  swap robot battery charger  charger demand
Ventura Bus Lines-

Frankston Depot (15) 730 ! 28 28 0 84

Noble Park (96) 950 3 96 96 0 288
Boronia (115) 740 3 96 96 0 288
Sum / 7 220 220 0 660

104



Chapter 7: Battery swapping facility location model of public electric buses

’-‘-
0 ’ T -
7’ U SEat e
- // “~o‘~
. o s i,
/, 7 §
° ,, e '
Ay e = I
7’ s |
F ) ° '
pourne <\ il eading e i
N il
P S T '
NCam
\\ . . . I
e e M iy ° \\ ’ indal
“0. \\\\ A B §+3] | B
\ I '\\ : '
Q re
| %sicowic® ° A e e
' > O . i
° - AN
‘,‘0. .\\. e '
p e £8 Claedn N . %
L/ N :
| e . MR !
i ° Ly . r . I
\ S Ve o J
GIE -y N\
° 2 N
“ . ° e \\
. N\
| P\. \\
b ____‘_._'_ag——“ ! U N
law o == l \\\ .\\* b
[ \\\ . ° )
= -
l L) “s\\\\ #
. sV
I ?
! /
’ ’
[} . nteernal il
I /
! g
) = N
/
/ A
AR o L Sy
---------- ./

Figure 7-3: Optimal location of BSS and swapping demand assignment of scenario B

Note: The notations are the same as those in Fig.7-2

Sensitivity analysis on unit transportation cost in Scenario B
This section looks into the impacts of unit transportation cost on the number of constructed BSSs. Table
7-5 provides the results on locations of the deployed BSSs under various unit transportation costs, 7 .
The amount of BSSs deployed increases with the unit transportation cost. 7 =1 indicates that only
energy cost as in the base case is considered. A larger unit transportation cost means that the EB

operators values more than electricity price. Travel time and actual operation range might be other

concerns, especially when EBs detour more than 60 km to swap a depleted battery out. It takes more
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than one hour and consumes 20% of the battery for the refueling service. As a result, planners could
assign more weight on transportation costs. If the electricity price dramatically drops to 10%-20% of
the current price, only one or two BSSs are deployed in the network. When transportation costs remain
within a given range, e.g., 30%-100% and 400%-700%, the number of deployed BSSs does not change
but in different locations. In the last scenario with 1500% unit transportation cost, 215 batteries, 3 fast
chargers, and 212 slow chargers are used in the system and 2 BSSs utilize both fast chargers and slow
chargers. Comparing this configuration with other scenarios in Table 7-5, we can see that the adoption
of fast chargers helps to reduce the number of batteries needed in the system.

Table 7-5: The number of BSSs deployed considering different transport costs

Transport Cost The number of BSSs BSS location No.

0.1 1 14

0.2 2 14,26

0.3 3 14,17,69

0.4 3 17,69,113

0.5 3 17,69,113

1 3 15,96,115

15 4 0,15,69,115

2 4 15,69,93,115

3 5 15,69,93,115,116

4 8 59,62,69,72,76,94,98,113

5 8 44,59,62,69,76,77,94,113

6 8 44,59,62,69,76,77,94,113

7 8 44,59,62,69,76,77,94,113

8 10 44,58,59,69,76,77,94,113,115,116

9 11 46,58,59,60,64,76,77,94,113,115,116
10 11 46,58,59,60,64,76,77,94,113,115,116

Sensitivity analysis on fast charger price in Scenario B

A further analysis is conducted on how fast charger price would affect the choice of chargers and battery
inventory. The other parameters are fixed as in scenario B. We only reduce the price of fast chargers to
simulate the advance in charging technology. In scenario B, the fast charger costs $757,500 and can
only fully charge 12 batteries in 24 hours, while the slow charger can charge 3 batteries and costs
$25,250. On average, it costs $8,416 and $63,125 to fully charge a depleted battery by the slow and fast
charger respectively. Slow mode seems to be an economical choice. In terms of charging capability, the
price of the fast charger has to drop to 8,416 /63,125 =13.3% of the current price to be more attractive
if battery inventory impact is not considered. However, fast charging can increase the utilization rate of
batteries. In scenario B, the swapping demand arrives every two hours and fast charging also takes two
hours to fully charge a depleted battery. Fast charging can greatly reduce the number of batteries

required at each BSS. The local charging system needs either 220 slow chargers and 220 batteries or 55
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fast chargers and 55 batteries. From Table 7-6, we can see that, when fast charger price drops by around
4.5%, the local charging system can switch from slow charging to fast charging because the rise of fast
charger costs would be less than the decrease of the battery costs. Therefore, deploying local charging
system at BSS is a tradeoff between charger costs and battery costs.

Table 7-6: The charger selection based on the reduction of fast chargers’ price

fast charger price (AUD) battery quantity fast charger quantity  slow charger quantity
757,500 (0.0% reduction) 220 0 220

723,759 (4.5% reduction) 220 0 220

723,758 (4.5% reduction) 55 55 0

684,750 (10.0% reduction) 55 55 0

606,000 (20.0% reduction) 55 55 0

Several other factors, such as a relationship between charger and land requirement, will probably help
produce a better cost evaluation when data is available. Battery capacity can affect the BSS location
decision by influencing the total swapping demand. When battery capacity is relatively limited or EB
companies are making a strategic long-term planning, they value more on reducing the energy loss due
to the detour between BSSs and EB depots. Bus arrival patterns or swapping service scheduling may
also have an influence on the choice of charger types and battery quantity, which will be left for future
studies.

7.6 Discussions and conclusions

This chapter investigates the BSS location models serving public EBs. The objective was to answer five
key questions that the EB company concerns most are answered simultaneously: 1) the location of BSSs;
2) the assignment of EB swapping demand, i.e. the demands in existing EB depots should be assigned
to which BSS 3) the charger selection in terms of type and quantity; 4) the number of batteries needed
in each BSS; 5) the number of battery swapping robots installed.

Heavy capital investment on electric bus refueling infrastructures calls for prudent planning of the
system. Battery swapping stations encapsulated with local battery charging provide a promising solution
to refuel EBs with minimum delay. This paper establishes a novel and compact mixed integer program
for the BSS location problem with distinct charging system configurations to minimize the sum of the
construction and operation costs, which is then solved by a GUROBI solver implemented on Python
interface. The test on a real network of the southeast region of Melbourne in Australia verifies the
feasibility of the proposed model and investigates the effects of BSS locations and configurations.
Results show that more BSSs would be built in candidate sites closer to demand points when annual
appreciation of land value and varying land size are not considered. Otherwise, BSSs would be deployed
in low land value sites. The decision would be a tradeoff between land costs and transportation costs.

The total number of swapping robots, batteries and chargers mainly depend on technical parameters and
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the swapping demand arrival pattern. Fast chargers are unattractive at this stage unless they become

cheaper or faster with technology advances.

The case study shows the validity of the proposed model and provides insights on the BSS planning.
The study of the local charging system configuration problem can be the foundation for designing the
combination of chargers and battery inventory to satisfy EB swapping demand. In the expanded model,
we have further investigated the BSS location problem by considering not only land value appreciation
but also land size based on the number of swapping robots installed. It is found that charger price and
unit transportation costs are important factors affecting the answers to the five key questions proposed.

For this pioneering research, several simple assumptions are made to ensure its tractability. Future work
should relax these assumptions to address a more realistic problem. For example, the scheduling of
electricity price-based battery charging and EB operation will be considered to increase the utilization
rate of batteries. A more accurate BSS land use model should be adopted considering the availability of
land. Comparing with the local charging system, models of the central charging system should be created
to make an economic comparison to identify a favorable charging mode. Additionally, the battery
capacity and the charging power of EB used for public transportation are several times greater than that
of electric cars, which can result in high energy consumption and negative impact on power distribution
networks. Thus, a BSS deployed in a given region should be considered as capacitated before power

grid upgrade to accommodate more local charging demand.

From Chapter 6, it was found that public charging facility are more appropriate for locating on those
road segments with a large amount of private BEV flows as the objective is to maximize their exposure
to the BEV users. However, for public EBs, they follow fix routes and timetables, they do not refuel on
route to avoid delay. It can be easy to calculate their refueling demand based on their operation details.
It was also found that battery swapping technology is more suitable for EBs to increase EBs’ utilization
rate and a local charging system which charges depleted batteries in local BSSs helps avoiding the
tedious battery shipping. The local charging method calls for careful land-use planning to reserve
sufficient spaces for bus awaiting/parking and for local charger installation. Besides, one has to weigh
the costs, charging efficiency, battery life and other factors in choosing the charging method. It is pointed
out that well-aligned charging strategies with evolutionary EV adoption are the prerequisite for realizing
its environmental benefits especially in countries with fossil-dominated power. Otherwise, the
disordered charging will cause load fluctuations and increase generation costs, subsequently losing the

meaning of transportation electrification.

The next and final part, Part 1V, of this thesis presents the conclusions of this research, including a

summary of key findings and directions for future research.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

8.1 Introduction

This thesis has explored the general stochastic user equilibrium (SUE) models with side constraints such
as flow-independent driving distance constraints and flow-dependent battery capacity constraints and
charging facility location models for both private BEVs and public EBs based on their own
characteristics and refueling demand pattern. The research presented in previous chapters has generated
a number of original contributions to knowledge. This chapter concludes the thesis through a summary
of key findings, a summary of contributions to knowledge, and a discussion of implications for practice.

A critique of the research is then presented, followed by a discussion of future research directions.
8.2 Summary of key findings

The major contributions of the thesis commenced in chapter 2 where an attempt was made to investigate
the various factors affecting route choice behavior of EV users as well as the factors that need to be
considered when deploying any type of battery charging/swapping facilities. Starting with the concept
of EVs, it discusses both the EVs market studies and those special characteristics of EV's and its charging
infrastructures that distinguish EVs from GVs. From network modelling and design point of view, it is,
therefore, important to take their special characteristics into account when predicting EVs flow patterns
and designing charging infrastructure networks accordingly. For instance, driving distance limit,
availability of public charging infrastructures, long charging time, battery swapping time, location of
charging facilities, battery energy consumption rate, and the attraction level of different charging facility
are likely to affect EV users’ route choice behavior and the equilibrium network flow pattern. For
example, if a Nissan Leaf user is taking a trip with remaining battery energy that can only travel 20 km,
he would not choose any route longer than 20 km unless there are public charging stations en-route. The
charger costs vary with charging speed, which will definitely affect the installation choice considering
their cost-benefit effect. Hence, this research summarizes the existing barriers for EVs and selects some
factors that matter most as the key constraints in the following general SUE models and refueling facility

location models for both private BEVs and public EBs.

Chapter 4 investigated the methodological issues of general SUE model of mixed EV and GV flow with
path distance constraint and how to solve this model was investigated in this component of the thesis.
Directly adding side constraints into a SUE model cannot generate a SUE flow pattern. Incorporating
the path distance constraints into the general STAP needed a mathematical proof. The BEV range limit
was defined by the path distance it can travel without charging. A classical minimization model was
used with a modified MSA method to address the SUE problem. Solution properties of equivalence and
uniqueness are provided. It can be seen as an extension of DUE model with the same constraints, which

include perception error of travel time, are considered more rational than UE model. Multiclass users in
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SUE model represents a simplified case of current traffic networks that carry both EV and GV. More
classes of users with various range limit can also be taken into consideration. Overall, the new model
shows that at the equilibrium point the selected paths to assign the travel demand are different from that
of basic SUE TAP. The distance of each path must be less than the range limit of that class of vehicles.
The well-known and widely used MSA procedure and probit-based network loading method are adopted
and modified to solve this problem, following the idea of putting the path distance constraints into the
path selection rules of stochastic network loading procedure. The direction finding step for MNL,
involves finding K feasible paths to load the travel demand between each OD pair, while it requires
finding feasible shortest path for MNP in all-or-nothing assignment step. Path feasibility check was
employed to address the path distance issue whenever generating a path in K-shortest path algorithm or
shortest path algorithm. The results suggested that range limit would have a great impact on EV users’
route choice, especially for those with short range limit. When the range limit became large enough, EV
behaves similarly to GV. This component of research was then adopted and further extended in Chapter

6 by incorporating the available public charging facility into the general SUE model.

In Chapter 5, this thesis detailed a more complicated STAP in transportation networks with BEV's owing
to the fact that BEV energy consumption depends on not only the path distance but also the travel time.
The main objective was to theoretically understand how a flow-dependent path-based constraint can be
incorporated into a general SUE model. It begins by discussing the battery capacity constraint was a
flow-dependent one, while path distance constraint was flow-independent. The flow-independent
driving distance constraint in Chapter 4 can be processed in the route choice procedures, while the flow-
dependent battery energy consumption depends on not only distance but also traffic flow (travel time).
A mathematical programming model was proposed for the flow-dependent path-based SUE traffic
assignment. A convergent Lagrangian dual method was employed to transform the original problem into
a concave maximization problem and a customized gradient projection algorithm was developed to solve
it. A column generation procedure was adopted to generate the path set. Three solution propositions are
provided regarding equivalence and uniqueness of the solution. The solution framework, Lagrangian
dual-gradient projection-stochastic network loading, can be applied to solve path-based SUE problem.
The path set generated and their corresponding Lagrangian multiplier are demonstrated. It was shown
that the network becomes congested and link travel time goes up when travel demand is high and
increasing path travel time results in more energy consumption and more paths infeasible on which BEV
will run out of energy and incorporate additional out-of-battery cost. The numerical analysis results
show the impact of battery capacity, travel demand and stochastic parameters on network equilibrium

flow and computational cost.

The focus of Chapter 6 was to investigate a way of locating charging facilities in the network since no
public charging facilities have been considered in the previous SUE components. A bi-level model was

adopted with maximum covering objective in the upper level and STAP with path-distance constraints
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in the lower level. Public charging facilities were taken into consideration in the trip chain in the lower
level STAP to accomplish this component of research. An important concept of sub-path was used to
identify the scenarios of charging need. A key application of this concept was to calculate the
generalized path travel cost composed of path travel time, charging time and equivalent travel time
reduction (the utility of charging facilities on attracting BEV drivers). Comparing to research component
2&3, the SUE approach was extended to consider public charging facilities in the network. It was
demonstrated that the driving distance limits, charging speed and utility of charging facilities affect the
equilibrium network flow and charging facility location. It was also found that the BEVs with shorter
driving distance and risk-neutral attitude would probably have a larger value of charging facilities utility,
because charging facilities helped to ease their range anxiety. While for those with larger batteries, they
would behave more like GV users. A potential drawback of this method of defining flow coverage is
that it may lead to the location of charging facilities on several adjacent links of some high-volume

freeways. Further details of this research component are provided in Chapter 6

Chapter 7 which is the last contributory chapter had two main objectives. The first objective was to
understand the location problem of BSSs serving public EBs considering the fixed construction cost and
transportation cost between EB depots and BSSs. The second objective was to briefly investigate its
local charging system configuration including charger quantity, charger type and battery inventory so
that the depleted batteries can charge at the BSS itself and do not need any battery distribution centre
for centralize charging. A mixed-integer linear program is formulated to represent this problem, which
is then solved by a GUROBI solver implemented on Python interface. The test on a real network of the
southeast region of Melbourne in Australia verifies the feasibility of the proposed model and investigates
the effects of BSS locations and configurations. Results show that more BSSs would be built in
candidate sites closer to demand points when annual appreciation of land value and varying land size
are not considered. Otherwise, BSSs would be deployed in low land value sites. The decision would be
a trade-off between land costs and transportation costs. The total number of swapping robots, batteries
and chargers mainly depend on technical parameters and the swapping demand arrival pattern. Fast
chargers are unattractive at this stage unless they become cheaper or faster with technology advances.
Several other factors, such as a relationship between charger and land requirement, will probably help
produce a better cost evaluation when data is available. Battery capacity can affect the BSS location
decision by influencing the total swapping demand. When battery capacity is relatively limited or EB
companies are making a strategic long-term planning, they value more on reducing the energy loss due
to the detour between BSSs and EB depots. Bus arrival patterns or swapping service scheduling may
also have an influence on the choice of charger types and battery quantity, which will be left for future

studies.
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8.3 Contributions to knowledge

The thesis has provided four key contributions in the areas of the STAP models with BEVs and location
problems of the battery charging/swapping facility serving BEVs and EBs. Focus The contributions of
this thesis are dedicated to the methodological developments and summarized as follows:

. New general SUE model considering flow-independent BEVs’ driving distance constraints and

new method for solving the proposed general SUE model with driving distance constraints of BEVs
(Chapter 4): It has long been recognized as the last step of the traditional four-step travel demand

modelling process and widely used an evaluation tool for a variety of urban and regional traffic network
analyses (Xie,Waller 2012). Although there have been a number of research projects in recent years in
traffic assignment of EVs, most of these studies have focused on DUE models along with various
constraints (Xie et al. 2014; Xie et al. 2017; Wang et al. 2016; Jiang,Xie 2014; Jiang et al. 2013; Xu et
al. 2017). Very little research has payed attention to SUE models especially general SUE model
including both logit and probit stochastic loading. This thesis demonstrated a holistic methodology is
proposed for general SUE traffic assignment model with path distance constraints on EV scheme, in
which the classic unconstrained SUE model can be used to incorporate path distance constraints by
modifying MSA algorithm and finding the distance-constrained K-shortest paths in stochastic network
loading process. It is assumed that the EV route choices are restricted by the distance EV can travel with

a single charge.

. New general SUE model with flow-dependent battery capacity constraints accounting for a

more reasonable battery consumption based on both distance and travel time and a new methodology

for solving general SUE model with limited battery capacity of BEVs (Chapter 5): Few studies have

addressed stochastic traffic assignment models for EVs (Jing et al. 2017). It has been pointed out that
directly adding side constraints into the well-known minimization model for probit-based SUE problem
does not give us an equivalent minimization model to the probit-based SUE traffic assignment with side
constraints (Meng,Liu 2011). This thesis is the first to study a general SUE model with path-based
constraints and enrich the general SUE family with side constraints (link-based and path-based) and
make consistence with side-constrained general DUE condition. A holistic methodology is proposed for
general SUE traffic assignment model with battery capacity constraints on BEV scheme, in which the
path choice is restricted by the battery capacity with a single charge. A Lagrangian dual based exact
solution method incorporating column generation is developed for solving this path-constrained general
SUE model.

. New charging facility location model considering a SUE BEV flow pattern and charging facility

deployment and a new method for solving the proposed bi-level SUE-based BEV charging facility

location problem (Chapter 6): The literature on CFLP has focused on a larger variety of charging facility

models for private BEVs. Few studies attempted to apply the bi-level model for public charging facility

deployment. The location design problem of charging facilities can be modelled as a Leader-Follower
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Stackelberg game where the decision makers are the leaders who decide the facility deployment and the
BEV users are the followers who can choose their paths freely. Most of previous studies focused on
DUE problems with BEVs. However, the driving distance limit, to the best of our knowledge, has not
been considered in stochastic network equilibrium models, especially in the mixed flow transport
network. Moreover, to tackle the range anxiety problem with a limited budget, the charging facilities
should be accessible to as many EVs as possible. Deploying the pubic charging facilities on the links
where most BEV drivers use is an efficient way to increase the utilization and perception of the public
charging facilities, which promotes BEV acceptance and relieve range anxiety. This thesis used a
maximal flow-covering (MFC) model, i.e., a modification of classic MCLP, is proposed to maximize
BEV flow coverage by locating a fixed number of charging facilities in the bi-level, equilibrium-
optimization framework. Coverage is achieved when the charging facilities is located on the BEV route.
The effects of driving distance limit constraints, charging facility availability, charging facility utility
and traffic congestion are accommodated in the lower-level general SUE problem where the equilibrium
BEV flow pattern is determined endogenously by the general SUE traffic assignment model with driving
distance limit constraints, in which the mutual interactions between the location of charging facilities
and resultant equilibrium BEV link flow patterns are modeled.

. New swapping facility model considering local charging system serving BEB fleet and an

understanding of the effects of various factors in the swapping facility system (Chapter 7): It has been

pointed out that BEBs are characterized by fixed running routes, fixed depots, near-identical battery
capacity. However, configuring an overall BEB system is challenging; this would include possible
battery recharging and swapping concepts, choice of battery technology, battery sizing, positioning and
dimensioning of charging and swapping stations (Leou,Hung 2017). Existing BSSs research have
concentrated on the interaction between BSSs and power grid and the operation of both BSSs and BEBs.
This research proposed an optimization framework for locating capacitated BSSs incorporated with
local charging systems. It was the first study investigating the deployment of BSSs with different types
of local charging infrastructures (including batteries, chargers and swapping robots) while taking into
account the tradeoff between BSS installation costs and transportation costs from EBs to BSSs. The
optimal number of batteries, chargers and swapping robots and the type of chargers initially purchased
at BSSs can also be decided through the proposed model to satisfy the swapping and charging demand
of EBs.

8.4 Implications for practice

Based on the findings presented in this thesis, it is possible to discuss their implications for practice. The
stochastic traffic assignment models and charging facility location models in this thesis is intended to
help city planners, traffic and transportation engineers, EV companies and policy makers to make
informed decisions. The thesis has identified a number of factors including EV demographic, land use,

traffic and charging infrastructure variables that have the potential to influence EV flows patterns in the
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traffic network. The planning-level factors such as the selection of charger type, charger location, battery
quantity matter in practice. Even if battery charging might speed up to minutes and battery cost might
decreases greatly with the advance of technology, EVs, as an alternative vehicle, may still behave
differently from GVs because of fuel cost, demographic, vehicle type and other factors affecting the
EVs’ performance. A driver with less income may still choose a cheap EV with small battery and slow
charging only instead of high-end EV with super charger and large battery. Slow charging might be
more attractive than fast charging if its price is lower. The choice of battery capacity and the charging
speed would always be a trade-off between time and cost. High-end EVs could behave more like GVs

and more class users should be taken into consideration at that time.

First, Chapter 4 and 5 of the thesis the problem of finding the equilibrium flow pattern over a given
urban transportation network is known as traffic assignment. The amount of travel taking place at a
given moment on any street in an urban area is the result of many EV users’ decisions. In this research,
EVs are considered as part of the transportation network with their own travel behaviors. The travel time
on each of the paths connecting the origins and destinations is a function of the total traffic flow due to
congestion. EV drivers may consider more than travel time because of the range anxiety and availability
of public charging facility. The analytical approach described in this research can help to predict the EV
flow pattern in order to calculate an array of measures. These may include the following:1) Level of
service measures such as travel time and travel cost control 2) Operating characteristics such as revenues,
profits, toll pricing setting 3) Flow by-products such as pollution reduction 4) Welfare measures such as
equity and priority of EVs. The flow patterns could also help optimize the location choice of charging
facility.

Chapter 6 provides EV companies or urban planners with critical application of public charging facility
location model for maximize chargers’ exposure to the BEV users. A number of factors were identified
as being critical in determining EVS’ route choice behavior. To increase EV charging facilities’ utility
given the restricted budget, both researchers and practitioners should be interested in how EV charging
facility location can affect flow patterns and this is presented in chapter 6. The thesis provides a
theoretical/methodological basis for evaluating the utility/exposure of deployed charging facilities. An

improved and reliable tool can be used by planners and engineers at a planning level.

Chapter 7 emphasizes to both researchers and EV companies the importance of addressing swapping
facility for EBs. No study has investigated the optimization of swapping station location, charger number,
charger type and electric bus assignment in the BSS planning problem. The optimization framework in
this chapter for locating capacitated BSSs incorporated with local charging systems can give
practitioners a general view given the inputs and costs they have in hand. The outputs can provide
insights for city planners and bus operators of deploying battery swapping and charging systems. The
optimal number of batteries, chargers and swapping robots and the type of chargers initially purchased

at BSSs can also be decided through the proposed model to satisfy the swapping and charging demand
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of EBs. To our best knowledge, this is the first study investigating the deployment of BSSs with different
types of local charging infrastructures (including batteries, chargers and swapping robots) while taking
into account the tradeoff between BSS installation costs and transportation costs from EBs to BSSs. The
case study of the southeast region of Melbourne network verifies the effectiveness of the proposed model
and provides cost analysis if EBs serve the current bus routes and demand. The approach proposed in
this paper may be used by city planners, power grid companies, and transit service providers to plan the
battery charging and swapping infrastructures, estimate how many chargers and what type of chargers
to install to fulfill the potential demand while minimizing the total capital investment. This will save the
government and EV companies time, money and funds which would be useful to support other EV

programs.
8.5 Critique

While the thesis has provided a number of original contributions to knowledge, there are opportunities

to improve it. Some specific improvements could be:

. In chapter 4, it is noted that only one type of driving distance of EVs and no public charging
facility was considered. Note that the underlying SUE model focused on driving distance constraints
only. The vehicles’ range limit is determined based on its travel distance only, while rationally the range
limit should be related to both travel distance and travel time. Elastic demand, link capacity and dynamic

battery consumption were all omitted in this model.

. The general SUE models of EVs with battery capacity constraints reported in Chapter 5 ignored
the other vehicle types in the network as a sole extension of static driving distance constraints. Similarly
all the other considerations such as elastic demand, link capacity, availability of charging stations were
omitted as well. These limitations generally affect the general traffic flow prediction in real conditions.

The findings presented in this thesis may be improved if multi-class EV users were considered.

. The bi-level charging facility location model in Chapter 6 used a simple way of defining EV
coverage by exposing charging facilities to EV drivers instead of using them. The solution algorithm is
a heuristic to find a local optimum instead of a global one. Still the EV travel demand is assumed to be

known as a prior. Another limitation is that dynamic energy consumption was not considered.

. The BSS location model serving electric buses in Chapter 7 used an assumption that the demand
for EB battery swapping services was evenly distributed during the time slots. Another limitation was
that the charging scheduling optimization was not considered. Local charging station may have some
disadvantages over another mode of operating BSS with central charging system which was not
discussed. For the evaluation case study, some technical features were not available for current available

EBs and their compatible chargers. This may affect the precision of the presented results.
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8.6 Future research directions

Given the limitations discussed in the previous section, a number of areas for future research can be
identified.

The driving range limit and the lack of charging infrastructure are two main characteristics of EVs at
the current stage. There is a need to extend the general SUE with driving distance limit considering
elastic demand. There have been few researches on the stochastic or dynamic traffic assignment of
electric vehicle considering elastic demand.

As a pure mathematical modeling tool to characterize BEVs’ travel behavior in the network with some
ideal socioeconomic assumptions, we expect that the modeling technique and solution methods
demonstrated in chapter 5 would potentially trigger the interest of investigating other types of stochastic
traffic assignment problems with path-based constraints in logit-type or weibit route choice models. The
model itself can also be applied for more accurate quantification of network flows, travel demand and
battery capacity levels. As a modeling platform for more practical and realistic model, the proposed
model should be enhanced to accommodate mixed traffic flows of different types of vehicles such as
BEVs, hybrid vehicles and conventional gasoline vehicles as well as the availability of charging
infrastructure. Our future study will investigate the possibility of incorporating charging time, range
anxiety level and value of time in model extensions. Based on the SUE models proposed in this paper,
we will also investigate how to optimally locate charging stations in the network in terms of different

objectives.

Another key avenue for future research regarding the bi-level model involves incorporating other types
of BEV-specific constraints in the lower level problem, such as flow-dependent battery capacity
constraints, time-dependent battery charging price, etc. As for the upper level problem, some other
approaches, such as FILM and FRLM, locating charging facilities to maximize passing BEV flows
without double counting, can be explored to better serve the BEV travel demand. The model uses a
number of assumptions to simplify the problem and make it tractable, which will be relaxed in the future

work to deal with more complicating and realistic issues.

There is also a need for studying BSSs with central charging system where batteries can be treated as
goods and transported between central charging facilities and EB depots. There have been few studies
found on the operating mode of the battery swapping station which incorporates logistic management
into the battery pack transportation. Local charging mode may have a lot of disadvantages. First, it is
hard to accurately predict the demand of battery swapping service or the EB arriving pattern (e.g. More
EV users may swap during peak hours or public holidays) at each station, thus making it a hard choice
to decide the number of charger and battery inventory each station needs. It is a waste of money and
resource if the chargers are over-built. If the number of the chargers is less than we need, it means the

EV drivers may have to wait for hours to get a full energy battery which will discourage the user and
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further influence the market penetration. Second, DC fast charger needs a power of around 100kw per
charger for DC fast charging or level 3 charging. Building one charger at a station is already a great
burden for local electricity power grid, not to mention it usually needs more than that. So it will make
few locations available for building new battery swapping stations or rebuilding the existing gas station
restricted by the power grid and the safety issue. Last but not least, fast charging does damage to the
battery itself and reduces the battery life. By contrast, building a battery distribution center can help
solve all the problems above to ensure the acceptable level of service by proper operation of logistic
management and inventory information system. Also the existing gas station can be reconstructed by
just adding a battery swapping facility and a warehouse for battery storage. A battery distribution center
can give more flexibility of battery use with regard to spatial and temporal distribution of the demand
by adjusting the battery shipment scheme, thus reducing the number of battery needed in the system by
leveraging the battery transportation cost and battery manufacturing cost. Therefore, it is of great value
to do this research towards developing a new operating mode for battery swapping station, especially
along the corridor between cities for the optimal design of future battery swapping systems which would

help in improving the level of service and attracting more drivers to the EBs.

In summary, it is worth to highlight that this thesis has established two STAP models for predicting
BEV flows and two charging/swapping facility location models for deploying the facilities to minimize
the cost or maximize their utility. It also identified opportunities to enhance the modelling tool for EV
schemes for both private BEVs and public EBs. Firstly the methods developed in this research can be
used to explore the congestion effects of the upcoming decades when EV market share increases.
Secondly while the methods adopted in this research are considered to be robust, it is acknowledged that
they come with their own limitations. Further research can address these limitations to build on the

knowledge gained from this thesis.
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APPENDIX A -CHAPTER 7

Land Value

No. BSS Candidate Site Bus Depot demand
per Sgm
0 Ventura Bus Lines - Oakleigh South 1450 Aspendale Gardens 2
1 Ventura Bus Lines - Dandenong Depot 870 Bayswater 9
2 Ventura Bus Lines - Knoxfield Depot 830 Belgrave 8
3 Ventura Moorabbin Transit 1560 Belgrave South 3
4 Ventura Bus Lines - Lilydale Depot 670 Bentleigh 2
5 Ventura Bus Lines - Croydon Depot 830 Berwick Station 8
6 CDC Melbourne - Oakleigh Depot 1640 Blackburn 13
7 Kingstons Tours 1030 Boronia 7
8 Heatherton Bus Depot - Transdev 1520 Box Hill 6
Melbourne
9 Transdev - Doncaster Depot 1820 Brandon Park SC 2
10 Transdev - Keysborough Depot 1310 Brighton 6
11 Cardinia Transit 770 Brighton Beach 7
12 broadmeadows bus service 600 Burwood 1
13 Ventura Bus Lines - Heidelberg West 910 Caroline Springs 7
Depot
14 Ventura Bus Lines - Monbulk Depot 300 Carrum 6
15 Ventura Bus Lines- Frankston Depot 730 Carrum Downs 2
16 Ventura Bus Lines- Hastings Depot 560 Casey Central SC 3
17 Dysons Bus Service 290 Caulfield 7
18 Cranbourne Transit 660 Chadstone SC 26
19 East West Bus Company 1040 Chelsea 15
20 CDC Melbourne - Altona Depot 1280 Chirnside Park SC 18
21 CDC Melbourne - Sunshine Depot 850 Clayton 2
22 CDC Melbourne - Werribee Depot 650 Cranbourne 7
23 Ventura Bus-lvanhoe Bus Company 910 Cranbourne Station 2
24 Ventura Bus-Portsea Passenger Service 670 Croydon 14
25 Ventura Bus-SEAFORD 880 Croydon Station 1
26 Kastoria Bus Lines 300 Dandenong 42
27 Martyrs Bus Service 270 Deakin University 4
28 McKenzie's Tourist Services 340 Deep Creek 1
29 Moonee Valley Bus Lines 810 g%lcaster Park & 1
30 Moreland Bus Lines 2760 gﬁgggisr:;own 3
31 Panorama Coaches 900 Doveton 1
32 Reservoir Bus Company 1040 Eastland SC 5
33 Ryan Bros Bus Service 810 Edithvale 2
34 Sita Bus Lines 1540 Elsternwick 9
35 Sunbury Bus Service 580 Elwood 4
36 Transdev - Fitzroy North Depot 5290 Endeavour Hills 3
37 transdev sunshine west 810 Fountain Gate 1
38 Aspendale Gardens 1250 Frankston 44
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Bayswater
Belgrave
Belgrave South
Bentleigh
Berwick Station
Blackburn
Boronia

Box Hill

Brandon Park SC
Brighton

Brighton Beach
Burwood
Caroline Springs
Carrum

Carrum Downs
Casey Central SC
Caulfield
Chadstone SC
Chelsea

Chirnside Park SC
Clayton
Cranbourne
Cranbourne Station
Croydon

Croydon Station
Dandenong
Deakin University
Deep Creek

Doncaster Park & Ride
Doncaster Shoppingtown

Doveton
Eastland SC
Edithvale
Elsternwick
Elwood
Endeavour Hills
Fountain Gate
Frankston
Gardenvale
Glen lIris

Glen Waverley
Hampton
Hampton Station
Huntingdale Station
Kew
Keysborough

820
430
520
2180
910
1610
740
2180
1370
3030
3030
1860
1060
1000
700
850
2300
2130
1519
710
1500
660
680
830
850
870
1860
1330
1820
1820
610
1120
1160
2000
3300
760
730
730
2070
2690
1720
2650
2670
1640
3460
1310
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Gardenvale

Glen Iris

Glen Waverley
Hampton
Hampton Station
Huntingdale Station
Kew
Keysborough
Knox City

Knox City SC
Knoxfield
Lilydale

Middle Brighton
Mitcham

Monash University
Montrose
Moorabbin
Mordialloc
Mossgiel Park
Noble Park

North Brighton
Nunawading
Oakleigh
Ringwood
Ringwood Station
Rowville
Sandringham
Scoreshy
Southland SC
Springvale
Springvale South
St Kilda Station
St. Kilda

Stud Park SC
Templestowe
The Pines SC
Upper Ferntree Gully
Vermont East
Wantirna/ Boronia
Warrandyte
Waterways

Waverley Gardens SC 9
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85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

Knox City

Knox City SC
Knoxfield

Lilydale

Middle Brighton
Mitcham

Monash University
Montrose
Moorabbin
Mordialloc
Mossgiel Park
Noble Park

North Brighton
Nunawading
Oakleigh
Ringwood
Ringwood Station
Rowville
Sandringham
Scoreshy
Southland SC
Springvale
Springvale South
St Kilda Station

St. Kilda

Stud Park SC
Templestowe

The Pines SC
Upper Ferntree Gully
Vermont East
Wantirna/ Boronia
Warrandyte
Waterways
Waverley Gardens SC

950

1200
830

670

3030
1330
1500
590

1520
1410
760

950

3030
1330
1640
1120
1140
1040
2320
920

1560
1130
1030
4000
4000
1060
1430
1590
520

1460
740

640

1520
1090
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