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ABSTRACT 

Carbon-based emissions and greenhouse gases (GHG) are critical global issues, where transport sector 

is a significant contributor to GHG emissions in most countries. The automobile transport is the principal 

CO2 emitter. From the energy safety point of view, the transport sector as a whole is also exceedingly 

dependent on fossil oil and would probably be affected by any changes in energy resources. Therefore, 

changes to energy structure are in urgent need to reduce emissions and oil-dependence. 

Battery Electric Vehicles (BEV) are deemed to be a solution as a type of new alternative fuel vehicles 

(AFV) to reduce GHG emissions, noise pollution and reliance on fossil. There are a number of studies 

on the BEV market potential, BEV characteristic, BEV charging facility location problem (CFLP) and 

BEV routing problem. Given the current scarce deployment of charging facilities and driving range limit, 

it is crucial for BEV drivers to choose the best route to fulfil their trips while satisfying the charging 

needs. Although there is an increase in current research in BEV CFLP and equilibrium network 

modelling with BEV, there are several unresolved methodological issues as well as the practical 

concerns of such models. This research aims at developing BEV charging facility location models while 

investigating stochastic equilibrium network models considering a mixed BEV and gasoline vehicle 

(GV) flows. This research aims to examine the interaction between BEV charging facility location and 

BEV equilibrium flows and the effects of BEV range limits on stochastic traffic assignment. 

In order to accomplish this broader research goal, the study has defined four main research objectives: 

i) investigate the impact of BEV driving distance limit on BEV drivers’ route choice behaviour and 

equilibrium BEV flow ii) explore the effects of a flow-dependent energy consumption rate and fixed 

battery capacity on equilibrium BEV flow iii) explore the applicable BEV charging facility location 

model that maximize the charging facility coverage with a limited financial budget, and iv) explore the 

location and configuration of battery swapping station (BSS) in the application of battery electric buses 

(BEBs). Each component is the focus of a thesis chapter where detailed research context, methodologies 

and the key findings are presented. 

Before investigating the first objective, the key problem is to find the unique and distinctive behaviour 

of BEVs that distinguish it from GV. The driving range limit and scarcity of charging facilities are the 

main concerns at current stage. Public charging facilities are not considered in this model. The focus of 

the first objective is to investigate a general stochastic traffic assignment problem (STAP) model with 

mixed BEV and GV flows considering path distance constraints. It was found that a modified method 

of successive averages (MSA) can be applied to solve the model for both multinomial logit and 

multinomial probit loading. A feasibility check procedure is essential to ensure the feasibility of this 

problem owing to the fixed travel demand between each O-D pair. The BEV drivers would prefer 

physically short paths when their driving distance limit is low. The GV drivers would use those longer 

links with less BEVs to reduce their travel time.  
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The second objective is to investigate the effect of a flow-dependent link energy consumption on 

stochastic traffic assignment of BEVs. This task employed a more realistic assumption that BEVs’ 

energy consumption rate is based on not only distance but also travel time which makes it a path-based 

flow-dependent general stochastic traffic assignment problem. A key contribution of this task is to enrich 

the STAP family with path-based constraints. A solution framework was proposed to solve this type of 

model.  

The third task involved identifying the potential location of charging facilities to maximize the exposure 

to BEV drivers. The results suggest that the equilibrium traffic flows are affected by charging speed, 

range limit, and charging facilities’ utility and that BEV drivers incline to choose the route with charging 

stations and less charging time.  

The final objective investigates a new way of refuelling for BEBs: battery swapping. Four fundamental 

questions are answered: How many BSSs should there be? Where should they be? Which BEBs should 

they serve? How big should they be?  Results shows that the battery capacity would affect the number 

of BSS to locate and the local charging system configuration mainly depends on the charger and battery 

costs. 

In summary, this thesis provides a number of original contribution to knowledge in the field of transport 

network modelling by addressing important methodological issues as well as the consideration of 

practical application.  
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CHAPTER 1 INTRODUCTION 

1.1 Overview 

This thesis focuses on transport network modelling and designing with the emphasis on electric vehicles 

link flow prediction and charging facility location problem (CFLP) for both private electric vehicles and 

electric buses. The thesis seeks to understand the primary behaviour and characteristic of battery electric 

vehicles (BEV) that distinguishing BEV from gasoline vehicles (GV) and to predict the traffic network 

equilibrium flows when BEVs account for a given amount of total travel demand. Moreover, it develops 

general stochastic user equilibrium (SUE) models with flow-independent path distance constraints and 

flow-dependent battery capacity constraints in a traffic network, which accounts for BEV’s behaviour and 

characteristic. The thesis further investigates the refuelling facility location problems for both private 

vehicles and public transport, namely BEV and electric buses (EB), in terms of their different 

characteristics. This introductory chapter presents the background to the thesis, followed by a description 

of the research aims and objectives. The last part of this chapter shows the organization of the thesis. 

1.2 Background and motivations 

Electric vehicle (EV) is a broad term that Any passenger vehicle with a battery component that provides 

the propulsion to the vehicle could be an EV. Generally, there are two types of propulsion designs to be 

found in passenger road vehicles today. The internal combustion engine (ICE) is the dominant design for 

propulsion. As we are moving towards an increased electrification of the road vehicles, an increased use 

of electric motors (EMs) is applied within passenger road vehicles. The different designs have been 

developed to foster the transition, including the hybrid electric vehicle (HEV), plugin hybrid electric 

vehicle (PHEV), the extended range electric vehicle (EREV), the battery electric vehicle (BEV) and the 

fuel cell electric vehicle (FCEV). The HEV and the PHEV use both an ICE and EM for the propulsion of 

the vehicle. However, an EREV uses the ICE only to charge the battery, which in turn propels the vehicle. 

One could argue that it is in essence a BEV, but uses additional means (i.e. a gasoline engine) to charge 

its batteries. The BEV makes fully use of an electric motor for its propulsion as well as the FCEV (Bakker 

2011). In this thesis, BEV would be the main focal point including the electric buses (EB). 

Many studies have been done over the years to recognize the value of EV: helping to solve the environment 

problem and easy their potential impact in transport sector, as well as governments and EV companies are 

encouraging the ownership of EV through economic incentives. However, at the initial stage of the market, 

a more wide-spread use of EV is still hindered by limited battery capacity and deployment of charging 

stations. And they do not mention that the capacity of these stations is typically quite limited and some of 

them are not open to the public (Jiang et al. 2013). On top of that, high purchase cost for EV, safety and 

liability concerns, long charging time, fuel cost and improvements of the competitors remain to be other 

barriers for EV adoption. It is obvious that the driving range limit inevitably adds a certain level of 
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restrictions to BEV drivers’ travel behaviours, at least in a long future period prior to the coverage of 

recharging infrastructures reaching a sufficient level.  

The widespread adoption of BEVs calls for fundamental changes to the existing network flow modelling 

tools, which is for properly capturing changed behaviours and induced constraints in forecasting travel 

demands and evaluating transportation development plans. In the past, one of the most challenging aspects 

of traffic assignment research is the inability to adequately predict the link flows, in order to propose 

appropriate counter-measures or design transportation infrastructure, that will improve social resource 

distribution. 

Researchers have attempted to investigate the equilibrium BEV flow regarding the growing BEV travel 

demand. Deterministic traffic assignment problem (TAP) in the context of EV is widely studied (Jiang,Xie 

2014; Jiang et al. 2012; Jiang et al. 2013; Xie,Jiang 2016; Xie et al. 2017; Xu et al. 2017; Zheng et al. 

2017). BEV drivers’ route choice behaviour can potentially lead to more accurate assignment results by 

taking BEVs’ driving and charging behaviour into account (Adler et al. 2014; Okan et al. 2014). Omission 

of drivers’ imperfect knowledge of path travel cost may lead to biased estimates of the predicted BEV 

flows. Accounting for the travel cost perception errors improves the precision of the estimated equilibrium 

link flows. In other words, stochastic traffic assignment models have not been studied considering EVs 

and its limited driving range in the network with urban transportation planning to predict the EV flow 

patterns in the near future. The driving range limit and the lack of charging infrastructure are two main 

characteristics of EVs at the current stage. To our best knowledge, it remains unsolved about how to 

develop the general SUE traffic assignment model with path distance constraints as well as the 

corresponding solution algorithms. The main reason is that adding path distance constraints into 

Daganzo’s model cannot yield an optimization one of the generalized SUE conditions, in spite of the 

successful application in modelling the generalized DUE conditions. It is believed that this thesis is the 

first study attempting to seek the solution to such a challenging problem.  

Charging/swapping facility are regarded as an indispensable component for BEV network as gas stations 

for GV network. However, currently, the chicken and egg problem (Melaina 2003)—who would build and 

buy the BEVs if a refuelling infrastructure is not in place and who would build the refuelling infrastructure 

before the BEVs are built—remains the most intractable barrier. A more wide-spread use of EVs is still 

hindered by limited battery capacity, which allows cruising ranges of only 150 to 200 kilometres (Andreas 

et al. 2010) except for Tesla models. An extensive research exists on refuelling infrastructure problem, 

adopting different assumptions (fixed travel demand, simple distance-constrained vehicle routing, etc), 

various objectives (e.g. maximization of BEV service levels, minimization of total cost, etc) and different 

types of constraints. Most of them have not considered the equilibrium BEV flows in the transport 

networks. As part of the transportation electrification plan, EBs have received significant attention 

worldwide with the advance in battery and bus manufacturing technologies. Theoretically, EBs can travel 

up to 250 km. Various factors, including air conditioning, driving behavior, and battery aging issues can 
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significantly reduce the EBs’ operational range, often making EBs incapable of finishing a whole day’s 

work without battery recharging (Li 2016). BSS are recommended as a promising strategy to eliminate 

barriers of long charging time and limited mileage range faced by EVs. Generally, there are two types of 

operation modes for BSSs in terms of the way of dealing with depleted batteries: central charging and 

local charging (Tan et al. 2014). To avoid the tedious battery shipping between BSSs and central charging 

stations and promote the development of BSSs for EBs, the optimal BSSs’ location and its local charging 

system design should be investigated together. Overall, the deployment of charging facility should 

consider charging/swapping facilities not only for private BEVs but also for public EBs. 

1.3 Problem statement 

One of the major problems facing transportation engineers and urban planners is to predict the impact of 

given transportation scenarios. For a transport network with EVs, the amount of EV drivers’ trip taking 

place at a given moment on any street in an urban area is the result of many EV drivers’ decisions. EV 

drivers choose whether and when to take a trip, which mode of transportation to use, where to go, and 

which way to get there. In this thesis, the analytical part of this problem can be dealt with in two main 

stage. First, the scenarios are specified mathematically in the traffic assignment models as a set of inputs. 

which are used to predict the flow pattern resulting from such a scenario in transport planning. Second, 

the resulting flow pattern is used to calculate an array of charging facility location plans that characterize 

the scenario under study. In the second stage, the charging facility location plans use the flow pattern as a 

major input, especially for private BEVs. 

1.3.1 Range anxiety and range limit 

Many cities are planning the construction and expansion of charging infrastructures for BEVs. It is likely 

that BEV commuters will need to charge their vehicles at home most of the time due to the availability of 

public charging stations in the foreseeable future (Marrow et al. 2008). For many EVs, the current method 

of recharging the vehicle battery is to plug the battery into the power grid at places like the home or 

office(Bakker 2011; Kurani et al. 2008) , which requires an extended period of time to recharge before 

massive adoption of fast chargers and swapping facilities. However, it is much more costly to operate fast 

charging stations and it still takes much more time to recharge than a standard gasoline vehicle would take 

to refuel(Botsford,Szczepanek 2009). Due to the lack of standardization in batteries and its charging 

interfaces, BSSs are more suitable for buses and taxis rather than private vehicles (Zheng et al. 2014). 

These inherent problems, combined with a lack of refuelling infrastructure, are inhibiting a wide-scale 

adoption of EVs, especially apparent in longer trips, or inter-city trips. Range anxiety, when the driver is 

concerned that the vehicle will run out of charge before reaching the destination, and range limit are major 

hindrance for the market penetration of EVs(Yu et al. 2011; Jeeninga et al. 2002; Sovacool,Hirsh 2009; 

Mock et al. 2010). Thus, comparing with GVs, range limit and range anxiety need to be taken into 

consideration in stochastic traffic assignment models in order to effectively contribute to a more reliable 

BEV flow prediction and subsequent charging facility deployment. A major objective of this thesis is to 
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investigate range limit and its impact on stochastic traffic assignment models. The range limits of BEVs 

are defined in two ways: flow-independent energy consumption (driving distance limit only) and flow-

dependent energy consumption (energy consumption increases with the travel time). For the driving 

distance constraint, the usability of a path chosen by BEVs is independent of traffic flow and can be pre-

determined. According to a study by Bigazzi,Clifton (2015), the traffic congestion affects the fuel 

economy of BEVs and BEVs may become more fuel efficient when the average speed increases. The 

insufficient public charging stations and its impact on STAP are also investigated. 

1.3.2 General SUE models with side constraints 

There has been a great interest among transport researchers in developing and using advanced choice 

models to represent EV drivers' route choice behaviour and their reaction and adaptation to different 

changes in the transport system in a sufficient accuracy. Modelling route choice behaviour, however, is 

one of the most challenging issues in travel demand analysis. The presence of a huge number of feasible 

alternative routes connecting each O-D pair in a typical transport network, as well as the fact that route 

characteristics, notably travel times, are dependent on users’ behaviours and decisions, has made this one 

of the most challenging areas of transport engineering.  

A probabilistic approach of network analysis has been originally developed to represent the uncertainties 

involved in modelling route choice behaviour including errors in perception, measurement and model 

specification. This class of stochastic models can potentially provide a more precise representation of 

behaviour through the more flexible modelling structure. The stochastic user equilibrium (SUE) model is 

well recognized in the literature. It relaxes the perfect information assumption of the deterministic user 

equilibrium model by incorporating a random error term in the route cost function to simulate travellers’ 

imperfect perceptions of travel times. Route choice models, under this approach, have different 

specifications according to the modelling assumptions on the random error term. The two commonly-used 

random error terms are Gumbel and normal distributions, corresponding to the logit-based and probit-

based route choice models, respectively (Dial 1971; Daganzo,Sheffi. 1977). In recent years, there has been 

a growing recognition of the advantages of path-based stochastic traffic assignment methods. It has been 

established that SUE models allow the adaptation of random-utility in the analysis of transport networks 

to address different behavioural aspects of travellers' decision. Comparing with GVs, the choice sets that 

EV drivers considered are considerably ambiguous (and potentially large) to the modeler in a route choice 

setting, but also the attributes of alternatives are subject to alteration according to decision makers' 

perception of EV’s range, energy consumption and travel time, and hence, they could be determined 

through solution of a large-scale stochastic equilibrium mathematical problem instead of deterministic 

user equilibrium (DUE). 

In addition, a considerable amount of research has formerly been conducted in DUE area with aforesaid 

constraints focusing on EVs’ behaviours. Shortest path is commonly used in DUE to do all-or-nothing 
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assignment, while advances in the efficiency of computer analysis have allowed modelers to generate and 

store path-flow variables explicitly in SUE. Having their own theoretical and computational challenges, 

the path set problems share a similar concern about how to produce manageable-sized and heterogeneous 

subsets from universal sets of alternatives which include the actual competitor paths mostly considered by 

EV travellers while excluding the irrelevant paths or infeasible paths which are rarely considered by EV 

users. This study will investigate the influence of the size of generated path sets on the outcome of SUE 

flow. 

Side constraints are usually introduced for refining a descriptive or prescriptive traffic equilibrium 

assignment model. There are several diverse reasons for side constraints, such as describing the effects of 

traffic control policies, describing flow restrictions and improving an existing traffic equilibrium model 

for a given application by introducing further information about the traffic flow situation at hand. Various 

side constraints have been introduced to DUE models (Larsson,Patriksson 1999; Yang,Huang 2005) and 

the corresponding solution algorithms have been extensively investigated. In this study, we show that the 

side constraints regarding BEVs are range limit constraints in essence. The constrained problem is 

equivalent to an SUE model with travel cost functions properly adjusted to consider the range limit through 

the side constraints. Although the SUE principle plays a role as same as the DUE principle in describing 

drivers’ route choice behaviour, the general SUE TAP has received little attention due to the complexity 

of general SUE problem. It has been pointed out that directly adding side constraints into the well-known 

minimization model for probit-based SUE problem does not give us an equivalent minimization model to 

the probit-based SUE traffic assignment with side constraints (Meng,Liu 2011). The modelling technique 

developed by (Meng et al. 2008) remains to be the sole model to address the general SUE TAP with link 

capacity constraints. To deal with BEVs’ range limit, the proper SUE TAP models are explored to address 

the battery capacity issues and insufficient public charging stations. 

1.3.3 Charging/swapping facilities 

Lastly, there are three levels of EV chargers, which are categorized by voltage and power levels: Level I 

is 120V alternating current (AC) up to 20A (2.4kW), Level II is 240V AC up to 80A (19.2kW), and Level 

III (which is yet to be defined fully) will likely be 240V AC and greater at power levels of 20-250kW. 

Level I and Level II charging can be referred to as slow charging. A Level III connector are DC fast 

charger (SAE J1772 2010). Slow charging usually takes hours to refuel whereas fast charging may only 

need less than 20 minutes to charge a depleted battery. According to Huang et al. (2016), the charger costs 

is from $1,000 to $100,000 depending on the charging speed. One should weigh the costs, charging 

efficiency, battery life and other factors in choosing the charging method. BSS, which removes depleted 

batteries on board and replace the batteries with fully charged ones, is an alternative strategy to reduce 

charging time and range anxiety (Avci et al. 2014). The most outstanding feature of this strategy is that 

BSSs can complete the swapping process in less than 10 minutes. The depleted battery can be left 
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overnight to get charged at a discounted electricity price. However, due to the lack of standardization in 

batteries and its charging interfaces, BSSs are more suitable for buses and taxi rather than private vehicles 

(Zheng et al. 2014). Different charging methods and charging equipment are suitable for different EV 

types. Charging/swapping facilities deployment for both private BEVs and public EBs are investigated in 

this thesis using different modelling techniques. 

1.4 Research objectives 

The broad aim of this thesis is to develop stochastic traffic assignment models for BEV network 

equilibrium analysis and charging facility location models for BEV and BEB whilst considering the BEVs’ 

behaviour and the charging facilities characteristics. To achieve this research aim, a few specific objectives 

are outlined as follows:  

1. Investigating the primary behaviour and characteristic of BEV that distinguish BEV from GV 

2. Developing a general SUE model with flow-independent path distance constraints in a mixed 

BEV and GV flow network accounting for BEV’s behaviour and characteristic 

3. Extending the SUE model with battery capacity constraints that flow-dependent path energy 

consumption depends on both travel time and travel distance  

4. Developing charging facility location model that maximize the coverage with limited budget 

5. Developing a new model for BSS location problem with local charging system to serve BEB fleet  

1.5 Contributions of this thesis 

In response to four research gaps associated with the STAP models with BEVs and location problems of 

the battery charging/swapping facility serving BEVs and BEBs, this thesis makes eight original 

contributions to knowledge: 

Methodological and algorithmic developments: 

• New general SUE model considering flow-independent BEVs’ driving distance constraints. 

• New method for solving the proposed general SUE model with driving distance constraints of 

BEVs.  

• New general SUE model with flow-dependent battery capacity constraints accounting for a more 

reasonable battery consumption based on both distance and travel time. 

• New methodology for solving general SUE model with limited battery capacity of BEVs. 

• New charging facility location model considering a SUE BEV flow pattern and charging facility 

deployment. 

• New method for solving the proposed bi-level SUE-based BEV charging facility location problem. 

• New swapping facility model considering local charging system serving BEB fleet. 
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• An understanding of the effects of various factors in the swapping facility system. 

1.6 Organization of the thesis 

Figure 1-1 presents the structure of this thesis. The thesis is divided into four parts and is made up of eight 

chapters. 

• Part I (Chapters 1-3) covers background, literature and methodology, 

• Part II (Chapters 4-5) consists of the development of stochastic traffic assignment models with 

BEVs,  

• Part III (Chapters 6-7) discusses refuelling facility location models for both BEVs and EBs, and   

• Part IV (Chapter 8) includes thesis synthesis and conclusions. 

Part I of the thesis is made up of three chapters. Chapter 1 introduces the background , the research aims 

and the objectives and the overall structure of the thesis. Chapter 2 presents a summary review of literature 

on previous traffic assignment studies of BEVs and charging facility location problem. This chapter 

reviews the various issues in current EV charging network design studies and presents the gaps or 

limitations in the literature which are addressed by the thesis in the later chapters. In Chapter 3, there is a 

brief overview of the research methodology used this study. 

Part II of the thesis focuses on the development of SUE traffic assignment model of BEVs with limited 

range limit using advanced techniques such as the modified MSA, Lagrangian dual, gradient projection 

and column generation. These models are developed because they are able to address drivers’ perception 

errors, and path choice limitation. Chapter 4 develops SUE model with driving distance limit in a network 

with mixed GV and BEV flows. In Chapter 5, the issue of range limit is further defined by BEVs’ battery 

capacity. The energy consumption is based on not only distance travelled but also time consumed. A more 

general SUE model is developed to address the impact of the flow-dependent battery consumption rate. 

Chapter 4 & 5 include published materials from paper 1 and 2 respectively. 

Part III concentrates on the development of charging facility models. Chapter 6 investigates the 

deployment of charging facility for BEVs to maximize the coverage of BEV flows. The lower level 

problem is to address SUE BEV flow pattern considering the deployment plan in the upper level. Chapter 

6 includes published materials from paper 3. Chapter 7 focuses on the application of charging facility 

location model for electric buses fleet and the understanding of the operating EBs with BSS as a likely 

replacement for conventional diesel bus. 

Part IV, Chapter 8 is the concluding chapter of the thesis and provides a summary of key findings, 

implications, limitations, and directions for future research. 
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PART I: BACKGROUND, LITERATURE AND METHODOLOGY

CHAPTER 1: INTRODUCTION

Background, research aim, objectives and thesis structure

CHAPTER 2: LITERATURE REVIEW

Review of literature and identification of research gaps

CHAPTER 3: RESEARCH METHODOLOGY

Research methodology of research tasks

PART II: DEVELPOMENT OF STOCHASTIC ASSIGNMENT MODELS

CHAPTER 4:

SUE MODELS WITH PATH DISTANCE 

CONSTRAINTS

CHAPTER 5:

SUE MODELS WITH BATTERY 

AUTOCORRELATION CAPACITY CONSTRAINTS

PART III: CHARGING FACILITY LOCATION MODELS

PART IV: SYNTHESIS AND CONCLUSION

CHAPTER 8: CONCLUSIONS

Key findings and contributions, critique, future research

  Original contributions:

Flow-independent path-constrained 

SUE model and solution algorithm

Flow-dependent  SUE model with path-

based constraints and solution method

  Models:

CHAPTER 6:

BEV CHARGING FACILITY LOCATION MODEL

CHAPTER 7:

BEB SWAPPING FACILITY LOCATION MODEL

  Original contributions:

Charging facility for lower level path-

constrained SUE problem and bi-level 

model to maximize EV flow coverage

Model to locate BSS and local charging 

system for electric bus fleet

  Models:

 

Figure 1-1: Thesis structure
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CHAPTER 2 LITERATURE REVIEW 

Part of the material in this chapter is from the peer-reviewed journal paper: Jing, Wentao, Yadan Yan, 

Inhi Kim, and Majid Sarvi. "Electric vehicles: A review of network modelling and future research 

needs." Advances in Mechanical Engineering 8, no. 1 (2016): 1687814015627981. 

2.1 Introduction 

The aim of this chapter is to provide a review of the existing literature on modelling and designing of 

transport networks with electric vehicles and their combination effects. Considering that the focus of 

this thesis are the EV flow prediction and EV refuelling facility deployment identified in Section 1.3, 

the objectives of this review are to provide the understanding of:  

• EV market potential, demand & behaviour study (Section 2.2) 

• Deterministic traffic assignment problem of vehicles with range limit (Section 2.3) 

• Methodological issues of stochastic traffic assignment problem with side constraints (Section 

2.4) 

• BEV Charging stations location problem studies (Section 2.5.1) 

• BEB swapping station location problem studies (Section 2.5.2) 

This chapter is organised in accordance with these objectives. It concludes with a summary of gaps in 

knowledge identified through this literature review. Opportunities to advance knowledge in addressing 

these gaps are also discussed, which are then addressed in the following chapters of the thesis. 

2.2 EV market potential, demand & behaviour study 

Battery electric vehicles (BEVs), as one of the alternative fuel vehicles (AFVs), are believed to be a 

solution, for alternative fuels are addressed as a new fuel choice to reduce GHG emissions (OECD-ITF 

Joint Transport Research Centre 2008). However, a more wide-spread use of EVs is still hindered by 

limited battery capacity, which allows cruising ranges of only 150 to 200 kilometres (Andreas et al. 

2010). Currently, the chicken and egg problem (Melaina 2003)—who will build and buy the AFVs if a 

refuelling infrastructure is not in place and who will build the refuelling infrastructure before the AFVs 

are built—remains the most intractable barrier. 

It is obvious that the driving range limit inevitably adds a certain level of restrictions to battery electric 

vehicle (BEV) drivers’ travel behaviours, at least in a long future period prior to the coverage of 

recharging infrastructures reaching a sufficient level. The widespread adoption of plug-in electric 

vehicles (PEVs) calls for fundamental changes to the existing network flow modelling tools for properly 

capturing changed behaviours and induced constraints in forecasting travel demands and evaluating 

transportation development plans (Jiang et al. 2013). 
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Smart et al analysed the BEV drivers (Nissan LEAF) drove 6.9 miles per trip and 30.3 miles per day on 

average, and the average number of charge times per day were 1.05 per day. Besides that, 82% of 

charging events were conducted at home(Smart,Schey 2012). Chargers and associated cords are 

categorized by voltage and power levels: Level I is 120V alternating current (AC) up to 20A (2.4kW), 

Level II is 240V AC up to 80A (19.2kW), and Level III (which is yet to be defined fully) will likely be 

240V AC and greater at power levels of 20–250kW. The SAE J1772 standard defines a five-pin 

configuration that will be used for Level I and Level II charging. A Level III connector and the use of 

the current connector for direct current (DC) power flow are under development (SAE J1772 2010). 

Markel summarized the components of the PEV infrastructure, challenges and opportunities related to 

the design and deployment of the infrastructure and the potential benefits (Markel 2010). Dong,Lin 

(2014) proposed a stochastic modelling approach to characterize BEV drivers’ behaviour using 

longitudinal travel data to account for more realistic analysis of the charging station impact on BEV 

feasibility. The actual range of a BEV is regarded as a Weibull-distributed variable and between-charge 

travel distances is represented by Poisson-gamma distribution. Hidrue et al. (2011) used a stated 

preference study to analyse customers’ willingness to pay for EVs and their attributes, showing that 

driving range, fuel cost savings and charging time lead in importance and battery cost must drop 

significantly before EVs will find a mass market without subsidy. He et al. (2013). proposed a model 

that captures the interactions among availability of public charging opportunities, prices of electricity 

and destination and route choices of PHEVs. 

2.3 Deterministic traffic assignment problem of vehicles with range limit 

2.3.1 DUE of EVs with range limit 

Traffic assignment is in general characterized as an uncapacitated nonlinear multi-commodity network 

flow problem under some given optimal or equilibrium routing principle. It has long been recognized 

as the last step of the traditional four-step travel demand modelling process and widely used an 

evaluation tool for a variety of urban and regional traffic network analyses (Xie,Waller 2012). Since 

Beckmann et al. (1956) first devised a set of nonlinear programming formulations for the TAPs with 

the first and second Wardropian principles, various types of traffic assignment models have been 

developed in past decades. These TAPs have been written as optimization programs, variational 

inequalities, complementarity systems, or fixed-point problems (Patriksson 1994; Florian,Hearn 1995). 

It has been shown by Beckmann et al. (1956)  that the link traffic flow pattern in agreement with the 

UE principle could be uniquely determined by solving a convex mathematical program, if link travel 

times on a road network are separable/integrable, convex and monotonically increasing functions of 

link traffic flows. Estimating these link cost functions (or link performance functions) is a non-trivial 

task that involves choosing appropriate functional forms and calibrating corresponding parameters. 

Most link performance functions used in practice, including the well-known Bureau of Public Roads 
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(BPR) function, are polynomials whose degree and coefficients are specified from statistical analysis 

of real data (Nie et al. 2004). 

In addition to Beckmann et al.’s classic formulations [i.e., deterministic user-equilibrium (DUE) and 

deterministic system-optimal (DSO) models], the Wardropian principles have also been extended to 

stochastic problems represented by optimization programs, including the stochastic user-equilibrium 

(SUE) model (Sheffi,Powell 1982) and the stochastic system-optimal (SSO) model (Maher et al. 2005). 

More general elastic-demand cases of these TAPs as optimization programs have also been proposed, 

such as the DUE problem with elastic demand (Beckmann et al. 1956) and the SUE problem with elastic 

demand (Maher 2001). Xie,Waller (2012) first presented an alternative common optimization 

formulation that can be used to represent each of TAPs (DUE, DSO, SUE and SSO), if a proper 

specification of its cost and cost variance terms is given. 

It is well recognized that the standard TAP can be solved efficiently with a Frank-Wolfe type algorithm. 

The existing TAP models should be modified to better describe commuters’ behaviour with the 

prevalence of BEVs. There have been many endeavors to address this problem. Among which, some 

studies enforce flow of a path to be zero if the path distance is greater than the driving range limit of 

BEVs. The classic Frank-Wolfe method with a constrained shortest path algorithm can be applied to 

solve this problem under DUE (Jiang et al. 2012). As an extension of static path distance constraint, 

stochastic range anxiety resulting in stochastic path distance constraint has been considered in networks 

(Xie et al. 2014; Xie et al. 2017; Wang et al. 2016). Network equilibrium problem is further addressed 

when modelling transportation networks that accommodated both gasoline vehicles (GVs) and BEVs 

(Jiang,Xie 2014; Jiang et al. 2013; Xu et al. 2017). A multi-class dynamic user equilibrium model is 

proposed to evaluate the performance of the mixed traffic flow network, where GVs chose paths with 

minimum travel time and BEVs selected paths to minimize the generalized costs including travel time, 

energy cost and range anxiety cost. It is also pointed out that the BEV energy consumption rate per unit 

distance travelled is lower at moderate speed than at higher speed resulting in an equilibrium that BEVs 

choose paths with lower speed to conserve battery energy (Agrawal et al. 2016). Relay/charging 

requirement has been taken into account in network equilibrium problems and is formulated as a 

nonlinear integer programming (Xie,Jiang 2016). It is found that traffic congestion would affect fuel 

economy of BEVs and BEVs might become more fuel-efficient as the average speed increases, 

particularly at local arterials (Bigazzi,Clifton 2015). Hence, another work considered recharging time 

based on flow-independent energy consumption in the base network equilibrium model and further 

extended the proposed DUE model with flow-dependent energy consumption assumption (He et al. 

2014).  

2.3.2 Shortest path problem with range limit 

It is well recognized that the standard TAP can be solved efficiently with a Frank-Wolfe type algorithm 

in which the linearized sub-problem is finding shortest paths for each OD pair. The problem of finding 
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the shortest path for an EV was originally discussed by Ichimori et al. (1981), where a vehicle has a 

limited battery and is allowed to stop and recharge at certain locations. Lawler (2001) sketched a 

polynomial algorithm for its solution. Adding refuelling stations to the shortest weight-constrained path 

problem (SWCPP), which is known to be NP-Complete (Desrochers,Soumis 1989; Desrosiers et al. 

1984),  has been discussed by Laporte,Pascoal (2011) and Smith et al. (2012), and, since the fuel and 

length components of the arcs are not related, the problem is still NP-hard.  

Numerous works have addressed the classical vehicle routing problem (VRP) with capacity and 

distance constraints (Laporte et al. 1985.). Erdoğan,Miller (2012) extended the VRP to accounts for the 

additional challenges associated with operating a fleet of AFV considering the driving range limit as 

well as the limited refuelling infrastructure. In SWCPP, there are typically two independent measures 

such as cost and time associated with a path (Desaulniers,Villeneuve 2000; Ahuja et al. 2002). 

Kobayashi et al. (2011) and Siddiqi et al. (2011) further included battery recharging stations in their 

models and proposed heuristic techniques as solution methodologies. Ryan,Miguel (2011) introduced 

the so-called recharging vehicle routing problem where vehicles with limited range are allowed to 

recharge at customer locations mid-tour. Okan et al. (2014) introduced the minimum cost path for PHEV 

in a network with refuelling and battery switching stations, considering electricity and gasoline as 

sources of energy with different cost structures and limitations. Adler et al. (2014) proposed an EV 

shortest-walk problem to determine the shortest travel distance route which may include cycles for 

detouring to recharging batteries from origins to destinations with minimum detouring. Besides, it 

improved on that work by adding a limit to the number of times the vehicle can stop. Cabral et al. (2007) 

studied the network design problem with relays (NDPR) on an undirected graph, which generalized the 

shortest path problem with relays and the weight constrained shortest path problem, trying to minimize 

the total edge costs plus relay costs. The length between two consecutive relays would not exceed a pre-

set upper bound. The problem of energy efficient routing of EV has been addressed and polynomial 

time algorithms have been developed in the literature by considering limited cruising range and 

regenerative breaking (i.e. the EV increases its level of energy when breaking) capabilities of EV which 

is actually a special case of the constrained shortest path problem (Andreas et al. 2010; Sachenbacher 

et al. 2011; Eisner et al. 2011).  

Several articles addressed the minimum cost path problem of conventional vehicles (MCPP-CV) in the 

literature (Lin 2008a, b; Lin et al. 2007; Khuller et al. 2007; Suzuki 2008, 2009, 2012). If each arc 

required an amount of fuel that did not depend on the length of the arc, and the goal is to find the shortest 

path constrained on the amount of fuel used (and the vehicle cannot stop to refuel), then the problem is 

exactly the shortest weight-constrained path problem (Garey,Johnson 1979). This problem is NP-hard 

and has been discussed extensively in the literature (Handler,Zang 1980; Beasley,Christofides 1989; 

Desrochers,Soumis 1988; Xiao et al. 2005). Some new logistical problems which were relevant to the 

design and operations of a fleet of EV vehicles operating within a battery-exchanging infrastructure 
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were discussed from an operations research perspective (Mirchandani et al. 2014). Table 2-2 is the 

summary of the relevant research. 

2.4 Stochastic traffic assignment problem with side constraints& path-based Algorithm 

2.4.1 Models and solution algorithms for the general SUE problem 

The SUE model is well known in the literature. It relaxes the perfect information assumption of the 

DUE model. This assumption is unrealistic even if the users have a long-term experience about the 

network conditions, due to the daily variations of travel times and the diversity from users’ sense of 

time. A well-known breakthrough on this issue was made by (Daganzo,Sheffi. 1977),where a random 

error term was incorporated in the route cost function to simulate travellers’ imperfect perceptions of 

travel times . Travellers’ perceived travel times equal to the actual travel time plus a multivariate random 

variable. The route choice models, under this approach, can have different specifications according to 

the modelling assumptions on the random error term. The two commonly used random error terms are 

Gumbel and normal distributions, corresponding to the logit-based and probit-based route choice 

models, respectively (Dial 1971; Daganzo,Sheffi. 1977). The travellers would choose the route with 

minimal perceived travel time. In this work, a conceptual framework of general SUE problem as well 

as stochastic network loading (SNL) is provided. Regarding the equivalent mathematical model for the 

general SUE problem, (Daganzo 1982) provided an unconstrained convex optimization model which 

requires calculating the inverse travel time functions and are computationally demanding. 

(Sheffi,Powell 1982) therefore transformed this model and developed an convergent solution algorithm 

to solve the proposed model (MSA) (Powell,Sheffi 1982) which is much easier in terms of computation. 

Convergence of the MSA type algorithms are usually proven by virtue of the Blum’s theory (Daganzo 

1983; Cantarella 1997). Another efficient solution algorithm called Stochastic Assignment Method 

(SAM) was developed by Maher,Hughes (1997) which adopts the Clark’s approximation to calculate 

the objective function. 

The logit-based route choice model has a closed-form probability expression, and the equivalent 

mathematical programming (MP) formulation can be formulated with an entropy-type model for the 

logit-based SUE problem (Fisk 1980). The choice probability of logit-based SUE merely depends on 

the cost difference between two paths. The logit-based SUE has an inherent defect which is known as 

Independent and Irrelevant Alternatives (IIA) property despite of its computational advantages. That 

depends on the differences of travel time only and is insensitive to network tepology (Sheffi 1985). 

Probit-based SUE takes into account the correlation of the travel costs on different paths, thus 

overcomes the IIA problem. Therefore, probit-based model has better representativeness to the practical 

conditions and it is a superior representativeness of the SUE problems. However, despite these robust 

characteristics, no closed form can be provided for the choice probability of probit-based problem, thus 

it is approximately solved by two types of methods: analytical approximation methods and Monte Carlo 

simulation-based methods. In this study, Monte Carlo simulation would be used for probit-based SNL. 
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Compared with logit-based SUE, the research for probit case is quite limited in recent years(Liu,Meng 

2013; Meng,Liu 2011; Meng,Liu 2012). 

The aforementioned models and algorithms for general SUE problem are effective for both logit-based 

and probit-based SUE problem. In this thesis, models of general SUE problem are of my interests and 

general SUE models with path-based constraints have been developed to fill the research gaps. 

2.4.2 Path-based algorithms for solving SUE problem 

As claimed above, various solution algorithms have been proposed to solve either logit-based or probit-

based SUE problems. Early algorithms developed to solve the logit-based SUE problem were link-

based [e.g.(Maher 1998)], These link-based algorithms do not require path storage and often use Dial’s 

STOCH algorithm or Bell’s alternative as the stochastic loading step (Bell 1995a; Dial 1971). This 

algorithm only covers those “reasonable” routes which take the drivers farther from the origins and 

closer to the destinations. Path-based algorithms require explicit path storage to directly compute the 

logit route choice probabilities. Olof et al. (1996) developed a path-based algorithm based on the 

disaggregated simplicial decomposition algorithm to solve the MNL SUE problem. Bekhor,Toledo 

(2005). compared path-based algorithms for the MNL SUE problem, and showed that the disaggregated 

simplicial decomposition algorithm is superior to the path-based MSA algorithm. 

Xu et al. (2012) investigated different strategies for determination of step size of the path-based 

algorithms developed to solve the C-logit SUE models based on an adaptation of the GP method. Three 

strategies were investigated: (a) predetermined step size(Nagurney,Zhang 1996), (b) Armijo line search 

(Larry 1966; Bertsekas 1976), and (c) self-adaptive line search. The predetermined step size 

circumvents the difficulty in line search but also brings an inferior sub-linear convergent speed. The 

solution procedure of the general GP algorithm to solve the C-logit SUE problem is provided. The self-

adaptive step size strategy was originally proposed by He et al. (2002) for the Goldstein–Levitin–Polyak 

projection algorithm. Recently, Chen et al. (2012). adopted this strategy in the GP algorithm to solve 

the non-additive traffic equilibrium problem. The main idea of this strategy is to determine a suitable 

step size automatically from the information derived from previous iterations. This strategy is 

reminiscent of Bertsekas’s generalized Armijo rule. However, it is more practical and robust since the 

step size sequence is allowed to be non-monotone. A particular strategy for step size determination is 

not specified. It is found the GP algorithm with the self-adaptive step size strategy performs better than 

other step size determination strategies. The MSA strategy has a fast convergence in the early iterations. 

However, it cannot achieve an accurate solution within an acceptable computational budget because of 

the sub-linear convergence rate. The Armijo strategy is a widely used inexact line search strategy. 

However, it always starts from a fixed initial step size, which is nontrivial to choose without a priori 

knowledge. The quality of initial step size thus strongly affects the algorithmic performance. In contrast, 

the self-adaptive step size strategy adjusts the next initial and, consequently, the next acceptable step 

sizes according to the previous iterative information. This treatment permits the initial and acceptable 
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step size sequences to be non-monotone (i.e., to decrease as well as increase). This mechanism makes 

the algorithm insensitive to the initial step size setting, thereby guaranteeing the robustness and 

efficiency of the algorithm (Xu et al. 2012). 

Thus, different strategies can be embedded. To have a fair comparison of different step size strategies, 

a working route set is used. This set could be obtained from a route choice set generation algorithm 

(Bekhor et al. 2006). Behaviourally, it had the advantage of explicitly identifying those routes that were 

most likely to be used and also allowed greater flexibility to include route-specific attributes that might 

not be obtainable directly from the link attributes(Cascetta et al. 1997; Bekhor et al. 2006).A column 

generation procedure could also be readily embedded in the GP algorithm (Chen,Jayakrishnan 1998). 

He et al developed a class of projection and contraction method (He 1997). Chen et al. (2001) considered 

solving the non-additive traffic equilibrium problem, which is formulated as a nonlinear 

complementarity problem (NCP) and solved by a self-adaptive projection and contraction method. 

Among the path-based algorithms for the traffic equilibrium problem with additive path costs, much of 

the recent attention has been focused on the disaggregate simplicial decomposition (DSD) algorithm, 

which was proposed by Larsson and Patriksson (Larsson,Patriksson 1992), and the GP algorithm (Chen 

et al. 2001). A comparison work between these two path-based algorithm could be found (Chen,Lee 

1999). 

Meng et al. (2007) found that adding link capacity constraints into Daganzo’s model (Daganzo 1982), 

undoubtedly, would lead to a linearly constrained minimization problem. Nevertheless, any optimal 

solution of the induced minimization model did not fulfil the generalized SUE conditions. This 

indicated that the typical technique used in modelling the generalized DUE conditions isnot available 

for the generalized SUE conditions except the logit-based generalized SUE conditions formulated by 

Bell (Bell 1995b).Then a general SUE TAP with link capacity constraints is proposed. It first proposed 

a novel linearly constrained minimization model, inspired by Maher et al. (2005) who formulated a SSO 

that related to SUE in the same way as the SO related to the UE, in terms of path flow. As the objective 

function of the proposed model involved path-specific delay functions without explicit mathematical 

expressions, its Lagrangian dual formulation is analysed. On the basis of the Lagrangian dual model, a 

convergent Lagrangian dual method with a predetermined step size sequence was developed (Meng et 

al. 2008) . Meng,Liu (2011) extended Meng’s model for the side-constrained probit-based SUE problem 

with elastic demand to investigate availability of trial-and-error method for the effective toll pattern of 

cordon-based congestion pricing scheme 

This study aims to use two general SUE models based on models developed by Sheffi (1985) and Meng 

et al. (2008) respectively for solving the general SUE problem of EVs with range limits. The MSA 

method is modified to eliminate the paths exceeding driving distance limit in the first model by adding 

a path processing step and modifying SNL procedure.  
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2.5 Charging stations location problem studies 

2.5.1 Location problem of charging facility for private BEVs 

Although many cities are planning the construction and expansion of charging infrastructures for BEVs, 

it is likely that in the foreseeable future BEV commuters will need to charge their vehicles at home most 

of the time (Marrow et al. 2008). For many electric vehicles, such as the Nissan LEAF or Chevrolet 

VOLT, the current method of recharging the vehicle battery is to plug the battery into the power grid at 

places like the home or office (Kurani et al. 2008). The battery requires an extended period of time to 

recharge, this method has an implicit assumption that vehicle will be used only for driving short 

distances. EV companies are trying to overcome this limited range requirement with fast charging 

stations; locations where a vehicle can be charged in only a few minutes to near full capacity. Besides 

being much more costly to operate rapid recharge stations, the vehicles still take more time to recharge 

than a standard gasoline vehicle would take to refuel (Botsford,Szczepanek 2009). These inherent 

problems, combined with a lack of refuelling infrastructure, are inhibiting a wide-scale adoption of 

electric vehicles. These problems are especially apparent in longer trips, or inter-city trips. Range 

anxiety, when the driver is concerned that the vehicle will run out of charge before reaching the 

destination, is a major hindrance for the market penetration of EVs (Mock et al. 2010). Hybrid vehicles, 

vehicles which have both an electric motor and a gasoline engine, have been successful since they 

overcome the range anxiety of their owners by also running on gasoline. However, since hybrids still 

require gasoline, these vehicles do not fully mitigate the environmental consequences (Bradley,Frank 

2009). 

Another refuelling infrastructure design is to have quick BSSs. These stations will remove a pallet of 

batteries that are nearly depleted from a vehicle and replace the battery pallet with one that has already 

been charged (Shemer 2012 ). This method of refuelling has the advantage that it is reasonably quick. 

The unfortunate downside is that all of the vehicles serviced by the battery exchange station are required 

to use the identical pallets and batteries which is unrealistic before battery and charger standardization. 

It is assumed here that the developers of these battery pallets will coalesce around a single common 

standard, as has been the case for other car parts such as tires, wipers, etc. Battery exchange stations 

have been tried out by taxi vehicles in Tokyo in 2010(Schultz 2010).  Denmark is investigating the 

possibility of having sufficient battery exchange locations so that the country relies on none, or very 

few, gasoline powered vehicles (Mahony 2011). 

Of course, there is a complementary location problem (not addressed here) where we wish to locate 

“refuelling” stations (battery recharging, battery exchanging and, other alternative refuelling options 

can all addressed similarly) in a region where there are currently none. The problem of optimally 

locating such refuelling stations has been investigated by several researchers using the flow refuelling 

location model (Kuby,Seow 2005; Kuby,Lim 2007; Upchurch et al. 2009). Frade et al. (2010). 

formulated a maximum covering model to locate a certain number of charging stations to maximize the 
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demand covered within a given distance. A conceptual optimization model was proposed by 

Nie,Ghamami (2013) to analyse travel by EVs along a long corridor whose objective is to select the 

battery size and charging capacity (in terms of both the charging power at each station and the number 

of stations needed along the corridor) to meet a given level of service in such a way that the total social 

cost is minimized. Wang,Lin (2009).and Wang,Wang (2010) used set cover concept to propose 

refuelling-station- location model based on vehicle-routing logics considering both intercity and intra-

city travel. The flow refuelling location model is reformulated and a flexible mixed-integer linear 

programming model is presented, which is able to obtain an optimal solution much faster than the 

previous set cover version. Besides, The model also could be solved in the maximum cover form 

MirHassani,Ebrazi (2013). Xi et al. (2013). developed a simulation–optimization model that determines 

where to locate EV chargers to maximize their use by privately owned EVs. Dong et al. (2014). studied 

EV charging station location problems and analysed the impact of public charging station deployment 

on increasing electric miles travelled. Wang et al. (2013). developed global optimization methods for 

discrete network design problem which can be applied in EV network design when formulated as a bi-

level programming model, where the upper level aims to minimize the total cost and the lower level is 

a traditional UE problem. 

2.5.2 Location problem of charging facility for public EBs 

As part of transportation electrification plan, battery electric buses (BEBs) have received significant 

attention worldwide with the development and advance in battery technology and bus manufacturing 

recently. The governments aim to reduce the proportion of diesel-powered buses that were dominant in 

bus transportation and transition to alternative fuel buses, such as natural gas, hydrogen, electric battery, 

etc. It is estimated that more than 45% nitrogen oxides and 75% of particulate matter are generated by 

heavy-duty diesel trucks and buses (Elkins et al. 2003). In contrast, EBs have a unique advantage: zero 

emissions. 

 The use of BEBs has been reported in many countries all over the world. Several cities in United States 

introduced BEBs in transit service prior to mid-2000s. In 2012, Uruguay signed a deal for 500-heavy-

duty BEBs and Tel Aviv, Israel, ordered 700 BEBs. In 2013, Shenzhen, China, ordered 1000 heavy-

duty BEBs. The large-scale BEB adoptions are largely motivated by government incentives, such as 

the TIGER program in the United States, the Green Bus Fund Program in the UK, the Electric Mobility 

Program in German and the Ten Cities and Thousand Vehicles Program in China (SUTP 2015).   

 BEBs are characterized by fixed running routes, fixed depots, near-identical battery capacity. However, 

configuring an overall BEB system is challenging; this would include possible battery recharging and 

swapping concepts, choice of battery technology, battery sizing, positioning and dimensioning of 

charging and swapping stations (Leou,Hung 2017). Comparing to conventional diesel-powered buses, 

BEBs still suffer from long charging time, limited mileage range, and insufficient charging 

infrastructure regardless of its regenerative braking attribute.  
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Typically, three charging methods are available at current stage, namely slow charging, fast charging 

and battery swapping. Slow charging usually takes hours to refuel and reduces the utilization of BEBs, 

while fast charging reduces battery life (Sarker et al. 2013). It is pointed out that EV’s orderly charging 

is the prerequisite for realizing its environmental benefits especially in countries with fossil-dominated 

power and the disordered charging will cause load fluctuations, and increase generation costs (Rao et 

al. 2015). 

The deployment of BSSs, which removes the depleted batteries on the BEBs and replace the batteries 

with fully charged ones, is an alternative strategy to eliminate these barriers (Avci et al. 2014). The 

most outstanding feature of this strategy is that BSSs can complete the swapping process in less than 

10 min, while another advantage is that charging the depleted battery can be left for the night at a 

discounted electricity price. Since BSSs achieve a unified management of batteries, it contributes to the 

effective maintenance of batteries and is beneficial to extend the batteries’ lifetime. However, due to 

the lack of standardization of batteries and interfaces, the BSSs are more suitable for fleets of buses and 

taxies (Zheng et al. 2014). Based on these contexts, China is leading the way on deploying the BSSs. 

In April 2015, Ziv Av Engineering signed the deal with China’s Bustil to design 7000 BSSs for BEBs 

in Nanjing city (Elis 2015). In 2016, new energy automaker BAIC BJEV has built 50 EV charging and 

swapping stations to address the needs of at least 6000 EV taxis (PRNewswire 2016). So far 1300 BSSs 

have been constructed and 12000 more are planned through 2020 in many pilot cities of China (Liang 

et al. 2017).  

Theoretically BEBs can travel up to 250 km, various factors influence the operational range in the real-

world operations. It is shown that the air conditioning, driving behavior and battery aging issue can 

largely (more than 30%) reduce the BEBs’ operational range, thus making BEBs often incapable of 

finishing a whole day’s work without battery recharging (Li 2016). Moreover, BSSs require large 

capital investment to purchase additional batteries that are necessary to swap with ones near depletion. 

The land-use is another issue, including the parking space for bus awaiting and the space for installing 

local chargers on spot for local charging mode (Li 2016). Therefore, the location of BSSs and the choice 

of charger types become an inevitable issue when designing battery swapping system due to their 

charging speed and financial cost. 

Generally there are two types of operation mode for BSSs in terms of the strategy of charging the 

depleted batteries, namely central charging and local charging. In the central charging mode, EVs swap 

their batteries in BSSs, and the empty batteries are sent to the central charging station. After the empty 

batteries are fully charged, they will be delivered back to the BSSs. Another mode is local charging 

system which excludes the empty battery depot and charges the depleted batteries in BSSs themselves.  

To date, some studies have been done regarding the optimal planning, operation and location of BSSs. 

The relevant research may be classified into three types. In the first type, the optimal location of BSSs 

and the interaction between BSSs and power grid are the primary concern.  A p-median based model is 
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applied to solve the BSS location problem with central charging system (Xiang,Zhang 2017). The 

optimal configuration of central charging station and its location were studied (Xu et al. 2013). A bi-

level optimal configuration model to plan the capacity and location of BSS is proposed to maximize net 

profit of BSS while minimizing the operation cost of distribution company (Liu et al. 2016). The second 

type primarily focuses on the operation of both BSSs and BEBs. An single-depot optimization model 

for BEB scheduling with BSS is proposed to minimize the total operation cost (Li 2013) and more 

operation features of BEBs were taken into consideration to minimizing the capital investment in 

another single BEB depot scheduling model (Zhu,Chen 2013). Another study focused on schedule the 

battery charging in the BSS so that every BEB arrives to find a full battery for swapping (You et al. 

2016). Articles in the third type mainly focus on the operation details of BSS including optimal power 

capacity (Leou,Hung 2017), charging scheduling (You et al. 2017) and meeting total swapping demand 

(Xiong et al. 2012). A simulation-based BSS load demand model is presented considering the stochastic 

charging characteristics of BSS and BEB arrival pattern (Dai et al. 2014). A central charging strategy 

and scheduling of BEBs for BSS is designed to minimize charging cost based on optimal charging 

priority and charging location electricity price (Kang et al. 2016). To promote development of BSSs for 

BEBs, the optimal BSSs’ location and its local charging system design should be researched first and 

the major factors affecting the capital investment for the stakeholder should be fully considered in the 

process of planning. Moreover, transport cost between BEB transit depot and BSSs would also be one 

of the major concerns because of range limit and the energy waste during the detour to swap the depleted 

battery. 

2.6 Knowledge Gaps 

On reviewing the literature to date regarding the transport network model and charging facility location 

model development of electric vehicles scheme, clear gaps in the knowledge are identified. 

 (1) There have been few researches on the stochastic traffic assignment of electric vehicle 

considering the driving range limit and insufficient public charging infrastructure at the current stage.  

 (2) The flow-dependent energy consumption rate of EVs which increases with the traffic 

congestion level has not been considered in general SUE model.  

 (3) Charging facility location model for private BEVs have not taken SUE flow pattern into 

consideration which incorporates an upper-level of EV charging facility network design and a lower-

level of stochastic traffic assignment of EVs. 

(4) Swapping facility location model with local charging system for public EBs has not been studied. 

2.7 Summary 

In this chapter, a review of the relevant literature is undertaken focusing on the key characteristics of 

BEVs, the development of traffic assignment model with BEVs, the development of stochastic traffic 

assignment model with side constraints, the overall charging facility location problem (CFLP) of BEVs 
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and the BSS location problem serving EBs. The review has identified important gaps in the existing 

knowledge. These gaps are summarised in Table 2-3 and the research to be undertaken to address these 

gaps is outlined. 

Driving distance limit has been extensively used as a side constraint in equilibrium network modelling 

(Xie,Jiang 2016; Wang et al. 2016; Jiang,Xie 2014; Jiang et al. 2012; Jiang et al. 2013) . In order to 

explore the impact of driving distance limit on equilibrium EV flow pattern, previous equilibrium 

models focus on DUE model which do not consider the stochasticity of travellers’ perception error on 

travel time. To address this gap, this thesis develops the new general SUE model for predicting EV flow 

pattern, using modified MSA algorithms and modified probit-loading algorithm (see Chapter 4).  

Given the impacts of travel speed on the battery energy consumption (Bigazzi,Clifton 2015; Agrawal 

et al. 2016), the effects of combining flow-dependent energy consumption on BEVs’ route choice 

behaviour should be explored with battery capacity constraint. In existing general SUE models with 

side constraints, only link capacity constraints have been considered (Meng et al. 2008) and battery 

capacity constraints have only been studied in DUE models. This thesis will close this gap by proposing 

new general SUE model of EVs as well as its solution methodology (see Chapter 5). 

Most charging facility location models for private BEVs do not consider the traffic congestion and 

equilibrium BEV flow patterns (Upchurch et al. 2009; Capar,Kuby 2012; Kuby,Seow 2005). The BEV 

flow may change resulting from the change of the BEV charging facility locations considering their 

route choice behaviour. Furthermore, the change of flow patterns may affect the utilization rate of the 

deployed charging facilities. One focus of this thesis is the effects of combining existing SUE models 

and classical facility location model into a bi-level model. Yet, it is prudent to explore if a bi-level 

model, involving stochastic traffic assignment and available public charging facility, can have a fair 

performance. Litter is understood about the location design of BEV charging facility accounting for a 

SUE equilibrium flow pattern. This thesis will help to fill this gap by developing a new bi-level charging 

facility location model for private BEVs (see Chapter 6). 

Although previous studies have investigated CFLP for public EBs (Riemann et al. 2015), little attention 

has been paid to battery swapping facility planning for EBs with local charging system considering its 

own characteristics, such as fixed routes and given demand (Xiang,Zhang 2017; Zhu,Chen 2013; Sarker 

et al. 2013). This thesis will help to fill this gap by exploring the optimal location and configuration of 

BSSs as well as local charging system for EBs (see Chapter 7). 

This research project aims to address the knowledge gaps identified above and attempts to obtain a 

deeper knowledge in assessing public charging/swapping facility deployment in urban areas. In the next 

chapter, the research methodology will be presented in detail and the detail of data used in this research 

will be also provided. 
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The following chapter of this thesis presents the research methodology to address the identified gaps in 

knowledge, based on the abovementioned research opportunities. 
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Table 2-1: Summary of Charging Station Location Studies 

 

 

Note:‘√’ indicates the use of such a factor or technique. 

 

                                                     

 

Author Hodgson 

(1990) 

Bapna 

et al. 

(2002) 

Kuby and Seow 

(2005),Kuby and 

Lim 

(2007),Upchurch 

et al. (2009) 

Wang 

and 

Lin 

(2009) 

Wang 

and 

Wang 

(2010) 

Frade 

et al. 

(2010) 

Capar 

and 

Kuby 

(2012) 

Mak et 

al. 

(2012) 

Xi et 

al. 

(2013) 

MirHass

ani and 

Ebrazi 

(2013) 

Nie and 

Ghama

mi 

(2013) 

Dong et 

al. 

(2014) 

Facility type                          

Battery charging station       √   √     √   √ √ 

Battery swapping station               √     √   

Alternative fuel station   √ √ √ √   √     √     

Gas station √ √                     

The number of the facility                         

Fixed √   √     √ √       √   

Variable       √ √     √ √ √   √ 

Model type                         

Interger programming   √                   √ 

Mixed interger programming     √ √ √   √ √   √     

Linear programming √               √       

Objective function                         

Maximize coverage   √       √ √           

Minimize cost   √   √ √     √   √ √   

Maximize flow coverage √   √   √       √ √     
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Table 2-2: Summary of Traffic Assignment Problem and Vehicle Routing Problem Related to EV 

  

Ichimori 

et al. 

(1981) 

Desrosier

s et al. 

(1984); 

Desroche

rs and 

Soumis 

(1989) 

Cabral 

et al. 

(2007) 

Andreas et 

al. (2010); 

Eisner et 

al. 

(2011);Sac

henbacher 

et al. 

(2011) 

Kobayas

hi et al. 

(2011)  

Siddiqi 

et al. 

(2011) 

Ryan 

and 

Miguel 

(2011) 

Laporte 

and 

Pascoal 

(2011); 

Smith 

et al. 

(2012) 

Jiang et 

al., 

(2012) 

Erdoğa

n and 

Miller 

(2012) 

Jiang et 

al. 

(2013) 

Okan et 

al. 

(2014) 

Adler et 

al. 

(2014)  

Constraints              

Shortest path problem  √ √ √ √ √             √   

Relay requirement √   √ √ √ √ √     √   √ √ 

Distance-constrained      √           √   √   √ 

Fuel-constrained       √ √   √     √       

Time-constrained           √               
Computational 

complexity                           

Polynomial solvable √     √ √       √       √ 

NP-complete   √       √ √         √   

NP-hard     √         √   √       

Objective function              

Minimize distance √         √       √     √ 

Minimize flow cost   √                       

Minimize total cost     √ √     √       √ √   
Note:‘ √’ indicates the use of such a factor or technique 
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CHAPTER 3 RESEARCH METHODOLOGY 

3.1 Introduction  

The previous chapter provides a literature review of TAP of EVs and their charging facility location 

problem. The review identifies research gaps and discusses opportunities to advance knowledge in 

addressing these gaps. 

This chapter describes the overall research approach to address the identified research gaps and achieve 

the objectives outlined in Section 1.4, including the application of analytical methods based on classic 

facility location problem theory and STAP Models. 

3.2 Overall research approach 

The overall research approach includes five key research components which were designed to achieve 

the five research objectives. The first research component focuses on EV drivers’ behaviour and 

characteristics developments, which were then applied for understanding the key constraints to be 

considered in STAP models in the subsequent components of the thesis. The second and third 

components investigate STAP models with the consideration of range limit constraints to predict BEV 

flow patterns in the future. The last two research components focus on deploying charging/swapping 

facilities to maximize their utility. Linkages between research gaps, research objectives, research 

components, and thesis chapters are shown in Table 3-1. The following sections present a brief 

description of each research component. 

3.2.1 Research component 1: Characteristics and behaviours of EVs affecting equilibrium 

network modelling 

An attempt is made to investigate the various aspects of EVs that explicitly address the problems which 

come with EVs’ development as well as network modelling of EVs. Starting with the concept of EVs, 

it discussed both the EVs market studies and special characteristics of EVs as well as its charging 

infrastructures. From network modelling point of view, it is, therefore, important to take their special 

characteristics into account when predicting EVs route choice behaviour and designing charging 

infrastructure networks accordingly. It is found that a number of factors contribute to BEV network 

modelling. For instance, range limit, range anxiety, charging time, charging cost, availability of charging 

infrastructure, etc. The commonly used factors were examined in the five remaining research 

components. EVs’ driving distance limit and scarcely available public charging stations were considered 

in the development of general SUE models of transport network with mixed GVs and EVs (research 

component 2).  A dynamic EVs’ energy consumption rate is considered to depend on both travel time 

and travel distance. Limited battery capacity and lack of public charging facility were taken into 

consideration in another general SUE model (research component 3). More factors were adopted in the 

formulation of bi-level charging facility location problem for private BEVs (research component 4) and 
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evaluation of the proposed battery swapping facility location with local charging system serving EB 

fleet (research component 5). The summary of several research directions is given to address the 

emerging of BEVs in the field of network modelling in Chapter 2.  

3.2.2 Research component 2: Addressing stochastic traffic assignment of mixed EV and GV flow 

with path distance constraints 

The methodological issues of a general SUE model of mixed EV and GV flow with path distance 

constraint and how to solve this model is investigated in this component of the thesis.  Directly adding 

side constraints into a SUE model cannot generate a SUE flow pattern. Incorporating the path distance 

constraints into the general STAP needed a mathematical proof. The BEV range limit is defined by the 

path distance it can travel without charging. A classical minimization model is used with a modified 

MSA method to address the SUE problem. Solution properties of equivalence and uniqueness were 

provided. Path feasibility check is employed to address the path distance issue whenever generating a 

path in K-shortest path algorithm or shortest path algorithm. The results suggested that range limit would 

have a great impact on EV users’ route choice, especially for those with short range limit. When the 

range limit became large enough, EV behaves similarly to GV. This component of research were then 

adopted and further extended in research component 4 by incorporating the available public charging 

facility into the general SUE model. The detailed formulation and evaluation are provided in Chapter 4. 

3.2.3 Research component 3: Addressing stochastic traffic assignment of EV with battery capacity 

constraints 

This component of the thesis investigated a more complicated STAP in transportation networks with 

BEVs owing to the fact that BEV energy consumption depends on not only the path distance but also 

the travel time. The main objective is to theoretically understand how a flow-dependent path-based 

constraint can be incorporated into a general SUE model. Battery capacity constraint is a flow-dependent 

one, while path distance constraint is flow-independent. The flow-independent driving distance 

constraint in research component 2 can be processed in the route choice procedures, while the flow-

dependent battery energy consumption depends on not only distance but also traffic flow (travel time). 

A mathematical programming model is proposed for the flow-dependent path-based SUE traffic 

assignment. A convergent Lagrangian dual method is employed to transform the original problem into 

a concave maximization problem and a customized gradient projection algorithm is developed to solve 

it. A column generation procedure is adopted to generate the path set. The solution framework, 

Lagrangian dual-gradient projection-stochastic network loading, can be applied to solve path-based SUE 

problem. Further details of this research component are given in Chapter 5.  

3.2.4 Research component 4: Location of EV charging facilities: A path distance constrained SUE 

approach 
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This component of the thesis investigated a way of locating charging facilities in the network since no 

public charging facilities have been considered in the previous SUE components. A bi-level model is 

adopted with maximum covering objective in the upper level and STAP with path-distance constraints 

in the lower level. Public charging facilities were taken into consideration in the trip chain in the lower 

level STAP to accomplish this component of research. An important concept of sub-path is used to 

identify the scenarios of charging need. A key application of this concept is to calculate the generalized 

path travel cost composed of path travel time, charging time and equivalent travel time reduction (the 

utility of charging facilities on attracting BEV drivers). Comparing to research component 2&3, the 

SUE approach is extended to consider public charging facilities in the network. It is demonstrated that 

the driving distance limits, charging speed and utility of charging facilities affect the equilibrium 

network flow and charging facility location. It is also found that the BEVs with shorter driving distance 

and risk-neutral attitude would probably have a larger value of charging facilities utility, because 

charging facilities helped to ease their range anxiety. While for those with larger batteries, they would 

behave more like GV users. A potential drawback of this method of defining flow coverage is that it 

may lead to the location of charging facilities on several adjacent links of some high-volume freeways. 

Further details of this research component are provided in Chapter 6. 

3.2.5 Research component 5: Battery swapping station location serving BEB fleet 

The objective of last component is to develop location models for BSS serving BEB fleet. The service 

capability of BSS is restricted by the number of installed swapping robots. Depleted batteries will be 

charged at BSSs which adopts a local charging system equipped with a number of batteries and chargers 

in various types. This study intends to answer four fundamental questions: How many BSSs should be 

installed? Where should they be? Which EBs should be assigned to each BSS? What is the service 

capability of the BSSs? A mixed-integer linear program is formulated to represent this problem, which 

is then solved by a GUROBI solver implemented on Python interface. The test on a real network of the 

southeast region of Melbourne in Australia verifies the feasibility of the proposed model and investigates 

the effects of BSS locations and configurations. 

As a base model with simple assumptions, future work should consider more realistic scheduling of 

electricity-price-based battery charging and BEB operation to increase the utilization rate of batteries. 

Furthermore, comparing with local charging system, models of central charging system should be 

considered to make an economic comparison to identify a favorable charging mode. Additionally, the 

battery capacity and the charging power of BEB used for public transportation are several times greater 

than those of electric cars, which can result in high energy consumption and negatively impact on power 

distribution networks. Therefore a BSS deployed at a given region should be considered as capacitated 

before power grid upgrade to accommodate more local charging demand. This component of research 

has the potential to develop many new models for future works. Detailed model formulation and results 

are given in Chapter 7. 
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3.3 Conclusion 

This chapter has presented the overall research approach composed via five research components, in 

line with the five research objectives. The first research component focuses on identifying key 

characteristics and main behaviour that distinguish EVs from GVs, as well as the factors affecting 

charging/swapping facility location design. The second and third research components focus on the SUE 

model and solution methodological developments, which are then applied for understanding the 

equilibrium network flow in the fourth research components when charging facility becomes available 

in the network. The last research component investigates location design of swapping facility serving 

public EBs. Limitations of the research approach associated with each research component are discussed 

in each corresponding thesis chapter. 

The next chapter of this thesis presents the model that developed to formulate SUE model of mixed GV 

and EV flow with flow-independent path distance constraints. 
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Table 3-1: Summary of research gaps and opportunities to advance knowledge 

Research 

component. 

Research topic Research gaps Research opportunities 

1 Factors affecting 

BEVs drivers' 

charging and route 

choice behaviour 

(Chapter 2) 

The factors distinguishing BEV 

from GV have not been 

thoroughly studied in transport 

network modelling 

summarizing the existing 

researches and identifying 

key factors affecting 

potential future research 

directions 

2&3 SUE models of 

transport network 

with electric 

vehicles (Part II) 

Existing traffic assignment models 

tend to ignore the stochasticity of 

travel time perception. There is a 

need for stochastic traffic 

assignment model of a transport 

network with BEVs whose driving 

distance is limited. (see section 

2.6) 

Developing a general 

SUE model and solution 

algorithms to predict BEV 

flow pattern when 

considering the maximum 

distance BEVs can travel. 

(see chapter 4) 

No studies have considered a SUE 

model of BEVS with battery 

capacity constraints where BEVs' 

range limit is restricted by both 

travel distance and travel time. 

(see section 2.6) 

Proposing a general SUE 

model and solution 

algorithm for BEVs with 

limited battery capacity 

that restricts BEVs' travel 

time and travel distance. 

(see Chapter 5) 

4&5 Charging/swapping 

facility location 

models of BEVs 

and BEBs (Part III) 

There is no bi-level charging 

facility location model dedicated 

to considering a SUE BEV flow 

pattern in the lower level problem 

and maximize BEV flow coverage 

in the upper level (see section 2.6) 

Proposing a new bi-level 

model for deploying the 

charging facility 

considering a SUE link 

flow pattern and 

availability of charging 

facility (see Chapter 6)  

Battery swapping is designed to be 

more suitable for electric buses. 

Moreover, there is no swapping 

facility location model dedicated 

to swapping facility location with 

local charging system serving EB 

fleet (see section 2.6) 

Proposing a new BSS 

facility location model for 

BEBs considering BEBs' 

characteristics (see 

Chapter 7) 
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CHAPTER 4 STOCHASTIC TRAFFIC ASSIGNMENT 

MODEL WITH PATH DISTANCE CONSTRAINTS 

4.1 Introduction 

The previous chapter describes the overall research approach, comprising five research components 

aligned to five research objectives. The first research component focuses on identifying key 

characteristics and main behaviour that distinguish EVs from GVs. The second and third research 

components focus on the SUE model and solution methodological developments, which are then applied 

for understanding the equilibrium network flow in the fourth research components when charging 

facility becomes available in the network. The last research component investigates location design of 

swapping facility serving public EBs. 

This chapter presents the results of research component 2, which focuses on model and methodological 

developments of SUE. The methodological issues of a general SUE model of mixed EV and GV flow 

with path distance constraint and its solution algorithm remain unsolved.  However, directly adding side 

constraints into a SUE model cannot generate a SUE flow pattern like the way in DUE models with side 

constraints. Incorporating the path distance constraints into the general STAP needed a mathematical 

proof. The BEV range limit is defined by the path distance it can travel without charging.  

The aim of this chapter is to therefore propose new model to formulate this problem. A minimization 

model for path-constrained SUE is first proposed as an extension of path-constrained deterministic user 

equilibrium (DUE) TAP, which also extends the existing general SUE models with link-based 

constraints to path-based constraints. The resulting SUE model and solution algorithm can be used for 

other conditions with similar path-based constraints. The research gap and objective associated with this 

research component is described in Table 4-1.  

Table 4-1: Research gap and objective associated with research component 2 

Research topic Research gaps Research opportunities 

SUE models of transport 

network with electric 

vehicles (Part II) 

Existing traffic assignment 

models tend to ignore the 

stochasticity of travel time 

perception. There is a need for 

stochastic traffic assignment 

model of a transport network 

with BEVs whose driving 

distance is limited. (see section 

2.5.2) 

Developing a general SUE model 

and solution algorithms to predict 

BEV flow pattern when 

considering the maximum 

distance BEVs can travel. (see 

chapter 4) 

 

This chapter includes the following research paper: 
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Jing, Wentao, Inhi Kim, Mohsen Ramezani, and Zhiyuan Liu. "Stochastic traffic assignment of 

mixed electric vehicle and gasoline vehicle flow with path distance constraints." Transportation 

Research Procedia 21 (2017): 65-78. 

4.2 Paper 1: Stochastic traffic assignment of mixed electric vehicle and gasoline vehicle flow 

with path distance constraints 

The following paper details the formulation of a general SUE model of mixed EV and GV flow with 

path distance constraint. It begins by discussing the shortcomings of existing methods of DUE model to 

predict the EV flow pattern. It also reviews network equilibrium models for EV schemes and solution 

algorithms for general SUE models. Incorporating the path distance constraints into the general STAP 

needed a mathematical proof. The BEV range limit was defined by the path distance it can travel without 

charging. A classical minimization model is proposed with a modified MSA method to address the SUE 

problem. Solution properties of equivalence and uniqueness are provided. Path feasibility check was 

employed to address the path distance issue whenever generating a path in K-shortest path algorithm or 

shortest path algorithm. Finally, the results suggested that range limit would have a great impact on EV 

users’ route choice, especially for those with short range limit. When the range limit became large 

enough, EV behaves similarly to GV. This component of research is then adopted and further extended 

in Chapter 6 by incorporating the available public charging facility into the general SUE model.  
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4.3 Conclusion 

The paper included in this chapter contributes to knowledge by developing new SUE traffic assignment 

model with path distance constraints. It can be seen as an extension of DUE model with the same 

constraints, which include perception error of travel time, are considered more rational than UE model. 

Multiclass users in SUE model represents a simplified case of current traffic networks that carry both 

EV and GV. More classes of users with various range limit can also be taken into consideration. For 

most cases, one realistic assumption is that the vehicle will have full battery level for each path, because 

drivers are basically rational to choose path which they are able to travel through without running out 

of battery. Stochastic battery levels or driving ranges are not necessary to be considered as well. Overall, 

the new model shows that at the equilibrium point the selected paths to assign the travel demand are 

different from that of basic SUE TAP. The distance of each path must be less than the range limit of that 

class of vehicles. The well-known and widely used MSA procedure and probit-based network loading 

method are adopted and modified to solve this problem, following the idea of putting the path distance 

constraints into the path selection rules of stochastic network loading procedure. The direction finding 

step for MNL, involves finding K feasible paths to load the travel demand between each OD pair, while 

it requires finding feasible shortest path for MNP in all-or-nothing assignment step. The proposed SUE 

model with driving distance is therefore adopted to achieve reliable outputs from tasks related to SUE 

EV flow patterns in remaining research components.  

• Driving distance constraints and lack of public charging facilities are identified as EV’s key 

characteristics in research component 1, Chapter 2. 

• Driving distance constraints and public charging facilities are considered in research component 

4, Chapter 6. 

• Driving distance constraints are extended to a more general case-battery capacity constraint in 

general SUE model in research component 3, Chapter 5. 

• Driving distance constraints are used to calculate the swapping demand for EBs in research 

component 5, Chapter 7. 

The next chapter of the thesis presents new general SUE model of EVs with limited battery capacity 

where the vehicles’ range limit is determined by both travel distance and travel time, which corresponds 

to research component 3. 
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CHAPTER 5 STOCHASTIC TRAFFIC ASSIGNMENT OF 

ELECTRIC VEHICLES WITH FLOW-DEPENDENT BATTERY 

CAPACITY CONSTRAINTS  

5.1 Introduction 

The previous chapter describes new model to predict the EV flow pattern in a mixed GV and EV flow 

network under general SUE principle, corresponding to research component 2. The proposed driving 

distance constraints and the availability of public charging stations will be adopted or extended to 

achieve reliable outputs in the remaining chapters involving SUE models with distance limits. 

This chapter presents the results from research component 3. Previous research has shown that the EV 

energy consumption rate does not only depend on driving distance but also travel speed. Given the 

impacts of travel speed on the battery energy consumption (Bigazzi,Clifton 2015; Agrawal et al. 2016), 

the effects of combining flow-dependent energy consumption on BEVs’ route choice behaviour should 

be explored with battery capacity constraint. In existing general SUE models with side constraints, only 

link capacity constraints have been considered (Meng et al. 2008) and battery capacity constraints have 

only been studied in DUE models. This chapter therefore aims to develop new general SUE models for 

EVs which considers flow-dependent battery energy consumption. The research gap and objective 

associated with this research component are provided in Table 5-1. 

Table 5-1: Research gap and opportunities associated with research component 3 

Research topic Research gaps Research opportunities 

SUE models of transport 

network with electric 

vehicles (Part II) 

No studies have considered a 

SUE model of BEVS with 

battery capacity constraints 

where BEVs' range limit is 

restricted by both travel 

distance and travel time. (see 

section 2.5.3) 

Proposing a general SUE model 

and solution algorithm for BEVs 

with limited battery capacity that 

restricts BEVs' travel time and 

travel distance. (see Chapter 5) 

 

This chapter begins with a description of DUE models with range limit constraints, including driving 

distance limit and battery capacity constraints. General SUE model with side constraints, such as link 

capacity constraints are then presented. Algorithms for solving the proposed model are discussed. This 

chapter continues by validating the proposed general SUE models of EVs with limited battery capacity 

using Lagrangian dual and gradient projection algorithms, followed by a conclusion. 

This paper is included in this chapter: Jing W, Ramezani M, An K, et al. Congestion patterns of electric 

vehicles with limited battery capacity[J]. PloS one, 2018, 13(3): e0194354-e0194354. 
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5.2 Paper 2: Congestion patterns of electric vehicles with limited battery capacity 

The following paper details a more complicated STAP in transportation networks with BEVs owing to 

the fact that BEV energy consumption depends on not only the path distance but also the travel time. 

The main objective was to theoretically understand how a flow-dependent path-based constraint can be 

incorporated into a general SUE model. It begins by discussing the battery capacity constraint was a 

flow-dependent one, while path distance constraint was flow-independent. The flow-independent 

driving distance constraint in research component 2 can be processed in the route choice procedures, 

while the flow-dependent battery energy consumption depends on not only distance but also traffic flow 

(travel time). A mathematical programming model was proposed for the flow-dependent path-based 

SUE traffic assignment. A convergent Lagrangian dual method was employed to transform the original 

problem into a concave maximization problem and a customized gradient projection algorithm was 

developed to solve it. A column generation procedure was adopted to generate the path set. The solution 

framework, Lagrangian dual-gradient projection-stochastic network loading, can be applied to solve 

path-based SUE problem. Finally, two numerical examples are presented to demonstrate the 

applicability of the proposed model and the solution algorithm.  
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5.3 Discussion 

The paper included in this chapter contributes to knowledge by developing new stochastic traffic 

assignment models of BEVs with limited battery capacity, where new path-constrained SUE traffic 

assignment problem is formulated, solved and numerically analyzed.  

As a pure mathematical modeling tool to characterize BEVs’ travel behavior in the network with some 

ideal socioeconomic assumptions, the modeling technique and solution methods demonstrated in this 

work are expected to trigger the interest of investigating other types of stochastic traffic assignment 

problems with path-based constraints in other logit-type or weibit route choice models. The model itself 

can also be applied for more accurate quantification of network flows, travel demand and battery 

capacity levels.  

As a modeling platform for more practical and realistic model, the proposed model should be enhanced 

to accommodate mixed traffic flows of different types of vehicles such as BEVs, hybrid vehicles and 

conventional gasoline vehicles (GV) as well as the availability of charging infrastructure. The driving 

range of BEV is subject to the battery capacity and electricity consumption rates, while the drivers 

usually keep the battery full for any path they choose without worrying about so called range anxiety 

concern among most driving population. Future study should focus on the possibility of incorporating 

charging time, range anxiety level and value of time in model extensions.  

5.4 Conclusions 

In this chapter, the research adopts a battery capacity constraint as an extension and generalization of 

driving distance constraints by incorporating travel time into the range limit consideration. The method 

considers a flow-dependent energy consumption assumption for BEV, which is a generalization of 

flow-independent driving distance constraint. The BEV’s range limit is determined based on both its 

travel distance and travel time that is a function of traffic congestion. Flow-dependent constraint 

inevitably calls for fundamental changes to the existing network flow modeling tools for properly 

capturing traffic patterns and evaluating traffic assignment results. It is proved that the solution method 

framework, LD-GP-stochastic network loading, could be applied not only in link-based problems but 

also in path-based problems. In this path-based SUE problem, the column generation procedure is 

applied to the path choice set generation which turns out to works well with GP and stochastic network 

loading and provides basic insights of solving path-constrained SUE problem to avoid path enumeration. 

The application of the algorithms in the small network justifies the applicability of the solution 

procedures to general network with path-based constraints. The numerical analysis results show the 

impact of battery capacity, travel demand and stochastic parameters on network equilibrium flow and 

computational cost.  

This chapter brings Part II to an end, which has focused on the development of general SUE models of 

EVs with range limits as well as their solution algorithms. The first chapter of Part II, chapter 4 started 
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with the general SUE model of mixed GV and EV flow using driving distance constraints. Modified 

MSA method and modified probit-based loading method are applied to solve the proposed model. And 

Chapter 5 have further investigated EV’s SUE flow pattern in a more realistic and more general way. 

The model formulation and some propositions are discussed and the solution method for general SUE 

model with path-based constraints are first addressed. 

The next part of the thesis, Part III, looks at charging facility location model for both private BEVs and 

public electric buses. There are two chapters, one devoted to battery charging facility location model for 

private BEVs in Chapter 6 and the other to battery swapping facility location model for public EBs in 

Chapter 7. 
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CHAPTER 6 LOCATION DESIGN OF CHARGING FACILITY 

FOR PRIVATE ELECTRIC VEHICLES 

6.1 Introduction 

In accordance with research objective 4, the aim of this chapter is to develop a bi-level charging facility 

location model for BEVs. In the upper level, the objective is to maximize coverage of BEV flows in the 

network by locating a given number of charging stations on road segments considering budget 

constraints. In the lower level, BEV drivers follow the SUE principle with path distance constraint as 

we have addressed in Part II. Moreover, the availability of public charging stations, battery charging 

time have been considered in the lower level problem as an extension of SUE model in Part II. This is a 

key contribution to knowledge as no studies have investigated SUE models with driving distance limit 

and battery charging. An investigation of how range limit and location of charging facilities affect 

drivers’ path choice behavior and equilibrium flows of BEVs in a transportation network is yet to be 

explored. This research also investigates the method of the deploying a given number of public charging 

facility to maximize the coverage of BEVs public charging facilities on a network with mixed 

conventional GVs and BEVs. The chapter addresses a research gap identified in the literature review: 

No bi-level charging facility location model dedicated to considering a SUE BEV flow pattern in the 

lower level problem and maximize the BEV flow coverage in the upper level. This is in accordance with 

research objective 4 to develop a new bi-level model to locate a given number of public charging facility 

to maximize their exposure to the BEV users in order to eliminate their range anxieties. Table 6-1 details 

the research component, research gaps and research opportunities. 

Table 6-1: Research gap, opportunity and objective associated with research component 4  

Research topic Research gaps Research opportunities 

Charging/swapping 

facility location 

models of BEVs and 

BEBs (Part III) 

There is no bi-level charging facility 

location model dedicated to considering a 

SUE BEV flow pattern in the lower level 

problem and maximize BEV flow 

coverage in the upper level (see section 

2.5.4) 

Proposing a new bi-level 

model for deploying the 

charging facility considering 

a SUE link flow pattern and 

availability of charging 

facility (see Chapter 6)  

 
The following paper is included in this chapter:  

Jing, Wentao, Kun An, Mohsen Ramezani, and Inhi Kim. "Location Design of Electric Vehicle Charging 

Facilities: A Path-Distance Constrained Stochastic User Equilibrium Approach." Journal of Advanced 

Transportation 2017 (2017). 

An equilibrium-based heuristic algorithm is developed to obtain the solution of this program. Finally, 

two numerical tests are presented to demonstrate applicability of the proposed model and feasibility and 

effectiveness of the solution algorithm. The results demonstrate that the equilibrium traffic flows are 
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affected by charging speed, range limit, and charging facilities’ utility and that BEV drivers incline to 

choose the route with charging stations and less charging time. 

6.2 Paper 3: Location Design of Electric Vehicle Charging Facilities: A Path-Distance 

Constrained Stochastic User Equilibrium Approach 

The location design problem of charging facilities can be modelled as a Leader-Follower Stackelberg 

game where the decision makers are the leaders who decide the facility deployment and the BEV users 

are the followers who can choose their paths freely. Most of previous studies focused on DUE problems 

with BEVs. However, the driving distance limit, to the best of our knowledge, has not been considered 

in stochastic network equilibrium models, especially in the mixed flow transport network. Moreover, to 

tackle the range anxiety problem with a limited budget, the charging facilities should be accessible to as 

many EVs as possible. Deploying the pubic charging facilities on the links where most BEV drivers use 

is an efficient way to increase the utilization and perception of the public charging facilities, which 

promotes BEV acceptance and relieve range anxiety. Given the high cost of building public charging 

stations and financial constraints, it is essential to optimize the location of facilities in a network that 

provide the maximum exposure and utilization by BEV drivers. Since various factors influence BEV 

drivers’ charging decision, such as stochasticity of range anxiety, initial battery energy state, battery 

energy consumption ratio and battery capacity, considering those factors in the model is of great 

importance. 

The following paper details a bi-level charging facility location model for deploying the public charging 

facility for private BEVs.  A maximal flow-covering (MFC) model is proposed to maximize BEV flow 

coverage by locating a fixed number of charging facilities in the bi-level, equilibrium-optimization 

framework. Coverage is achieved when the charging facilities is located on the BEV route. Secondly, 

the effects of driving distance limit constraints, charging facility availability, charging facility utility 

and traffic congestion are accommodated in BEVs’ route choice behaviour. The equilibrium BEV flow 

pattern is determined endogenously by the general SUE traffic assignment model with driving distance 

limit constraints, in which the mutual interactions between the location of charging facilities and 

resultant equilibrium BEV link flow patterns are modelled. Finally a heuristic algorithm is proposed to 

solve the mixed-integer nonlinear program. 

 

 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

76 

 

  



Chapter 6: Location design of charging facility for private electric vehicles 

  

77 

 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

78 

 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

79 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

80 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

81 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

82 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

83 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

84 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

85 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

86 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

87 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

88 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

89 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

90 

 

 



Chapter 6: Location design of charging facility for private electric vehicles 

  

91 

 

6.3 Conclusion 

BEVs rely entirely on electricity as a single power source and are designed to be charged at the charging 

facilities. BEVs’ electricity consumption is typically proportional to the driving distance, resulting in a 

driving range limit because of the battery capacity. On the basis of current battery technology, charging 

a BEV still takes more time than refuelling a GV’s fuel tank. The distance limit, the charging time and 

the location of the charging facilities inevitably change BEV drivers’ route choice behaviour in a 

stochastic manner where BEV drivers may have imperfect information regarding their travel cost over 

the entire mixed flow (i.e. BEVs and GVs) traffic network. The massive adoption of BEVs requires a 

certain level of coverage of the charging facility. Given the financial budget and high cost of installing 

public chargers, it is a sound approach to maximize the passing BEV population on the links where 

charging facilities are deployed. 

This paper formulates, solves and evaluates the problem of potential location of public charging facilities 

for BEV in a network with mixed GVs and BEVs. The path travel cost of BEVs are modelled by 

considering path travel time, charging time, driving distance limit and charging facilities’ utility, where 

driving distance limit restricts the path choice. A bi-level model has been proposed to address the issue 

of co-existing equilibrium GV-BEV flows. A mix-integer non-linear program is constructed based on 

MSA to maximize the total BEV flow coverage on high-BEV-traffic paths. The key part of this 

formulation is the lower level path-distance constrained stochastic traffic assignment. The solution 

equivalency is proved to satisfy SUE condition as well as the uniqueness of link flow pattern. Moreover, 

a modified MSA method with K shortest path algorithm and generalized BEV path travel cost are applied 

to solve the charging facility location problem. In the numerical analysis, we also demonstrated how the 

driving distance limits, charging speed and utility of charging facilities affect the equilibrium network 

flow and charging facility location.  

Although this study provides insights into the definition of charging facilities’ coverage, we still expect 

the strategy of locating charging facilities and the modelling technique presented in this work would 

potentially trigger the interest of incorporating other types of BEV-specific constraints in the lower level 

problem, such as flow-dependent battery capacity constraints, time-dependent battery price, etc. As for 

the upper level problem, some other approaches, such as FILM and FRLM, locating charging facilities 

to maximize passing BEV flows without double counting, can be explored to better serve the BEV travel 

demand. The model uses a number of assumptions to simplify the problem and make it tractable, which 

will be relaxed in the future work to deal with more complicating and realistic issues.  

This chapter focused on deploying public charging facilities for private BEVs based on the SUE flow 

patterns of BEVs. The SUE models used in the lower-level problem is an extension of those in Part II. 

The next chapter, which is the last chapter of Part III, is dedicated to another charging facility, battery 

swapping facility for public EBs, which is an important part of transportation electrification process.  
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CHAPTER 7 BATTERY SWAPPING FACILITY LOCATION 

MODEL OF PUBLIC ELECTRIC BUSES  

7.1 Introduction 

In accordance with research objective 5, the aim of this chapter is to specifically design the refueling 

facility network for electric buses (EBs) that are known to follow fixed routes and timetable during their 

operation. This chapter considers EBs’ own characteristics which are different from BEVs and addresses 

the research gap identified in the Literature Review: No studies have explored the BSS location model 

with local charging system serving EB fleet. Table 7-1 details the research objective, research 

component, research gap and research opportunity associated with this chapter. 

Table 7-1: Research gap, opportunity and objective associated with research component 5 

Research topic Research gaps Research opportunities 

Charging/swapping 

facility location models 

of BEVs and BEBs (Part 

III) 

Battery swapping is designed to be more 

suitable for electric buses. Moreover, 

there is no swapping facility location 

model dedicated to swapping facility 

location with local charging system 

serving EB fleet (see, section 2.5.5) 

Proposing a new BSS facility 

location model for BEBs 

considering EBs' 

characteristics (see Chapter 

7) 

 

The models and findings of the research in this chapter have been submitted in the form of one journal 

paper as follows:  

Jing, Wentao, Inhi Kim and Kun An. (Under review) " The capacitated battery swapping facility location 

problem with local charging system serving electric bus fleet.”  Submitted to Journal of Transport 

Geography. 

 

As battery charging stations for private BEVs in chapter 6, battery swapping technology has been 

considered more suitable for EBs. In this chapter, a BSS location problem is considered for battery EBs 

with local charging system. The depleted batteries will be charged at BSSs with local charging system 

in terms of its charger type and the quantity of both chargers and batteries. This chapter starts with an 

introduction of EBs’ adoption and its refueling system around the globe. The intention of this chapter is 

to answer four fundamental questions: How many BSSs should be optimal? Where should they be? 

Which EBs should be assigned to them? How big should they be in terms of service capability? 

The service capability of the BSS is restricted by the number of swapping robots in each BSS. 

Understanding the key cost factors in BSS system that serves EBs will assist city planners or bus service 

operators in making better EB-related decisions at the planning level. This is particular important in 

public transit, as there is limited research on BSS location problem studies and BSS can largely improve 

the utilization rate of EBs by reducing the refueling time. 
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7.2 Background 

Along with increasing environment and energy concerns, electric vehicles (EVs) are regarded as a 

promising solution to alleviate the global energy crisis and reduce greenhouse gas emissions. As part of 

the transportation electrification plan, battery electric buses (EBs) have received significant attention 

worldwide with the advance in battery and bus manufacturing technologies. In public transport, diesel-

powered buses are still dominant, which accounts for more than 45% nitrogen oxides and 75% of 

particulate matter emissions(Elkins et al. 2003). In contrast, EBs have a unique advantage: zero 

emissions. Governments thus have created various incentives to switch to alternative fuel buses, 

powered by natural gas, hydrogen, or electric batteries. For example, the TIGER program in the United 

States, the Green Bus Fund Program in the UK, the Electric Mobility Program in German and the Ten 

Cities and Thousand Vehicles Program in China, all aimed to promote green transport(SUTP 2015). 

Motivated by these government incentives, EBs are being extensively used in many metropolitans. 

Several cities in the United States, such as Santa Barbara, Chattanooga, Berkeley, and Denver, 

introduced EBs in transit service prior to mid-2000s. In 2012, Uruguay signed a deal for 500 heavy-duty 

EBs and Tel Aviv in Israel ordered 700 EBs. In 2013, Shenzhen, China, ordered 1000 heavy-duty EBs.  

 EBs usually have fixed running routes, fixed depots, and near-identical battery capacity. However, 

configuring a public transport system using EBs is challenging; this includes possible battery recharging 

or swapping strategy decisions, battery sizing, and  charging station sitting and sizing 

problems(Leou,Hung 2017). Comparing to conventional diesel-powered buses, EBs still suffer from 

long charging time, limited mileage range, and insufficient charging infrastructures problem regardless 

of its regenerative braking attribute of recovering energy from the braking process. Theoretically, EBs 

can travel up to 250 km. Various factors, including air conditioning, driving behavior, and battery aging 

issues can significantly reduce the EBs’ operational range, often making EBs incapable of finishing a 

whole day’s work without battery recharging (Li 2016). 

Three charging methods are available, namely slow charging, fast charging, and battery swapping. Slow 

charging usually takes hours to refuel a bus and thus reduces the utilization rate of EBs, whereas fast 

charging may only need ¼ of the time but is to the detriment of battery life (Sarker et al. 2013). 

According to Huang et al. (2016), a charger costs from $1,000 to $100,000 depending on the charging 

speed. One has to weigh the costs, charging efficiency, battery life and other factors in choosing the 

charging method. It is pointed out that well-aligned charging strategies with evolutionary electric vehicle 

adoption are the prerequisite for realizing its environmental benefits especially in countries with fossil-

dominated power. Otherwise, the disordered charging will cause load fluctuations and increase 

generation costs (Rao et al. 2015). 

The deployment of battery swapping stations (BSSs), which remove depleted batteries on EBs and 

replace the batteries with fully charged ones, is an alternative strategy to eliminate most of these barriers 

(Avci et al. 2014). The most outstanding feature of this strategy is that BSSs can complete the swapping 
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process in less than 10 minutes. The depleted battery can be left overnight to get charged at a discounted 

electricity price. Such battery management method allows effective battery maintenance and is 

beneficial to extend the batteries’ lifetime. However, due to lack of standardization in batteries and its 

charging interfaces, BSSs are more suitable for buses and taxis rather than private vehicles (Zheng et al. 

2014).  Many countries are keen to explore the application possibilities of BSS systems. In April 2015, 

Ziv Av Engineering signed a deal with China’s Bustil to design 7000 BSSs for EBs in Nanjing city (Elis 

2015).  So far 1,300 BSSs have been constructed and additional 12,000 are planned through 2020 in 

many pilot cities of China (Liang et al. 2017).  

Generally, there are two types of operation modes for BSSs: central charging and local charging (Tan et 

al. 2014). In the central charging mode, EVs swap their batteries in BSSs, and the empty batteries are 

sent to the central charging station. After empty batteries are fully charged, they will be delivered back 

to BSSs. The other mode utilizes a local charging system which charges depleted batteries in local BSSs 

(Mak et al. 2012). While avoiding the tedious battery shipping, the local charging method calls for 

careful land-use planning to reserve sufficient spaces for bus awaiting/parking and for local charger 

installation(Li 2016). Moreover, BSSs require large capital investment in purchasing additional batteries 

to be swapped with ones near depletion. The location of BSSs and the choice of charger types become 

an inevitable issue when designing a battery swapping system to balance the tradeoff between their 

charging speed and costs. 

Many efforts have been devoted to optimizing the planning and operation for BSSs. The existing 

research can be classified into three categories. In the first category, the optimal location of BSSs and 

the interaction between BSSs and the power grid are the primary concerns. Xiang,Zhang (2017) 

developed a p-median based model to solve the BSS location problem with a central charging system. 

Xu et al. (2013) studied the optimal configuration of a central charging station and its location. Liu et 

al. (2016) proposed a bi-level model to plan the capacity and location of BSSs to maximize the net profit 

of BSSs in the upper level while minimizing the operational costs of the distribution company in the 

lower level. The second category primarily focuses on the operation of both BSSs and EBs. Li (2013) 

proposed a single-depot optimization model for EB scheduling to minimize the total operating costs 

with battery swapping constraints at BSSs. Zhu,Chen (2013) looked into the minimum number of 

standby batteries to ensure non-stop bus operations and studied the required power supply to meet the 

charging demand of EBs. You et al. (2016) focused on scheduling the battery charging in BSSs so that 

every EB could find a fully charged battery for swapping. The third category addresses the operation 

details of BSSs including optimal power capacity (Leou,Hung 2017), charging scheduling (You et al. 

2017) and swapping demand analysis (Xiong et al. 2012). A simulation-based model was utilized to 

estimate the uncontrolled energy consumption of BSSs considering random EB arrivals and disorderly 

charging behavior (Dai et al. 2014). Based on a central charging system, EBs are scheduled for charging 

at BSSs to minimize the charging costs considering electricity price fluctuations and EB charging 
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priority (Kang et al. 2016). Regarding local charging systems, Zhu et al. (2016) proposed a mathematical 

model to simultaneously determine the charging station location and the number of chargers to install 

in each station.  

However, no study has investigated the optimization of swapping station location, charger number, 

charger type and electric bus assignment in the BSS planning problem. In addition, to swap the depleted 

battery, an EB may travel a long distance to the assigned BSS. More electricity energy should be 

reserved to sustain the trip to the BSS. This further reduces the number of trips that an EB can serve on 

a bus route and adds to the difficulties of BSS assignment. To promote the development of BSSs for 

EBs, the optimal BSSs’ location and its local charging system design should be investigated together. 

Transport costs between EB transit depots and BSSs is another major factor to capture the energy waste 

during the detour to swap the depleted battery, which will be considered in this study. 

In this paper, we propose an optimization framework for locating capacitated BSSs incorporated with 

local charging systems. Comparing with the previous studies, the main contributions of this paper can 

be summarized as follows. First, to our best knowledge, this is the first study investigating the 

deployment of BSSs with different types of local charging infrastructures (including batteries, chargers 

and swapping robots) while taking the tradeoff between BSS installation costs and transportation costs 

from EBs to BSSs into account.  Second, the proposed model can provide insights for city planners and 

bus operators of deploying battery swapping and charging systems. The optimal number of batteries, 

chargers and swapping robots and the type of chargers initially purchased at BSSs can also be decided 

through the proposed model to satisfy the swapping and charging demand of EBs. Third, a case study 

of the southeast region of Melbourne network verifies the effectiveness of the proposed model and 

provides cost analysis if EBs serve the current bus routes and demand. The approach proposed in this 

paper may be used by city planners, power grid companies, and transit service providers to plan the 

battery charging and swapping infrastructures, estimate how many chargers and what type of chargers 

to install to fulfill the potential demand while minimizing the total capital investment.  

This paper is organized as follows. The next section introduces the assumptions and problem settings. 

Section 7.4 discusses the mechanism of capacitated BSSs with local charging systems and its 

mathematical formulation. In Section 7.5, we use a case study to demonstrate the effectiveness of the 

proposed model. Finally, Section 7.6 is devoted to the conclusions and future research. 

7.3 Basic consideration 

Facility location decisions are strategic in nature. BSSs and their local charging system will remain in 

place for many years. While the conditions and policies under which BSSs will operate in the future are 

not clear yet, the tactical and operational decisions of BSSs can be adjusted to some extent subject to 

the pre-determined long-term decisions of the BSS location. In particular, the swapping demand of EBs 

could change with weather and road conditions. With the advance of charger and battery technologies, 
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their service capability is expected to improve at a lower cost. The battery charging scheduling methods 

that the operator may adopt are also uncertain. Thus, it is often unwarranted to insist on the strict 

satisfaction of battery quantity constraints. Since the aim of this paper is to explore a location model 

regarding the newly emerging battery charging and swapping system for EBs, we make some 

simplifications to model the BSSs deployment with local battery charging systems serving EB depots. 

Assumptions of the modeling framework are summarized as follows: 

1. All EBs use a uniform type of batteries.  

2. The demand for EB battery swapping services is evenly distributed during the T  time slots and 

the charging scheduling optimization is not considered here. 

3. EBs go to BSSs for swapping from the transit depot/bus terminals only, but not from intermediate 

stops. 

4. Every EB can get a fully charged battery immediately when they arrive at a BSS. 

7.4 Model formulation 

Facility The electric bus operating company or power grid company is considered as the major investor 

to build the BSS network. They decide the location and configuration of BSSs in terms of charger type, 

charger quantity, swapping robot quantity and battery inventory. The objective aims to minimize the 

total investment of BSSs network while fulfilling the EB charging demand. Therefore, this paper intends 

to minimize the total system investment, including fixed swapping facility costs, total transportation 

costs, battery purchase costs, and installation costs of chargers and swapping robots.  

The following table provides the notation of variables and parameters used throughout this paper. 

Variables  Description 

jX  binary variable, equals 1 if a BSS is installed at candidate site j J , 0 otherwise 

ijY  assignment variable, fraction of demand at transit depot i I  that is assigned to the 

BSS at candidate site j J   

jaN  number of chargers of type a A  installed at station j J  

jR  number of swapping robots at station j J  

t

jZ  number of fully-charged batteries stored at candidate site j J in time slot t T  

t

jaW  number of depleted batteries assigned to chargers of type a A  at station j J  in 

time slot t T ,
0 0jaW   
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t

jH  swapping demand arrived at BSS station j J  in time slot t T  

Parameters  

  coefficient, monetary costs of transporting a depleted battery between the bus depot 

and the BSS for one km 

ih  swapping demand at transit depot i I  

ijd  distance between transit depot i and candidate BSS site j J   

jf
 

fixed costs of constructing a BSS facility at candidate site j J , converted to the 

depreciation costs per day  

ac  costs of installing a type a A charger, including land costs, transformer and power 

line costs, converted to the depreciation costs per day 

bc  costs of purchasing a battery, converted to the depreciation costs per day 

cc  costs of installing a swapping robot, converted to the depreciation costs per day 

as  service capability of a type a A charger in a typical service period (No. of batteries 

fully charged per day) 

cs  service capability of a swapping robot in a typical service period (No. of batteries 

swapped per day) 

Objective function: 

 
0min j j i ij ij a ja b j c j

j J i I j J j J a A j J j J

f X h d Y c N c Z c R
      

       
X,Y,N,R,Z,W,H

  (1) 

s.t   

 1,ij

j J

Y i I


     (2) 

 , ,ij jY X i I j J     (3) 

 {0,1},jX j J    (4) 

 0 1, ,ijY i I j J      (5) 

 
max{ 1 ,0}

1 + , ,a

T
t

st t t

j j ja j

a A

Z Z W H t T j J

 
  

  



      (6) 

 , ,t t

j jH Z t T j J     (7) 



Chapter 7: Battery swapping facility location model of public electric buses    
 

98 

 

 / , ,t t

j ja i ij

a A i I

H W hY t T j J
 

        (8) 

 
1

, , ,a

T
t

s r a
ja jar t

s
W N t T j J a A

T

 
  
 



 
     

 
  (9) 

 ,i ij ja a

i I a A

hY N s j J
 

     (10) 

 * ,ja j

a A

N M X j J


    (11) 

 * ,j jR M X j J    (12) 

 / , ,t

j j cH R s T t T j J     (13) 

The objective function (1) is to minimize the costs for building battery swapping stations, transportation 

costs between demand point (electric bus depot) and battery swapping stations, charger costs, battery 

costs and swapping robot costs. The fixed BSS construction investment and transportation costs, which 

are the first and the second terms, take the form of the classical fixed-charge facility location 

problem(An,Ouyang 2016; An et al. 2017). Chargers, swapping robots, and batteries are the major 

capital investment considered in configuring BSSs. Constraint (2) requires that all demand at depot i  

should be assigned to BSSs, while constraint (3) ensures EBs can only be assigned to open battery 

swapping facilities. Constraint (4) and (5) are the integrality and non-negativity constraints for location 

variables X  and assignment variables Y . The continuous variable ijY  takes a nonnegative value in 

[0,1], indicating that the demand at each EB transit depot i I  may be assigned to multiple BSSs. 

Constraint (6) is the fully-charged battery quantity conservation constraint at time slot 1t  . The second 

term on the right-hand side 
max{ 1 ,0}at t

ja

a A

W
 



 calculates the number of batteries that have completed 

charging during the time period from t  to 1t  . Variable 
t

jH  is the swapping demand arrived at BSS 

j , i.e. the number of buses with depleted batteries. Constraint (7) ensures every EB can get a fully-

charged battery immediately when they arrive for swapping services. Constraint (8) captures the 

assumption that the battery swapping demand is evenly distributed over T  time slots during the BSS 

operation period by carefully arranging the swapping schedules. This assumption can ensure full 

utilization of the charging facilities and batteries. Constraint (9) can be explained in two ways according 

to the charger type. Slow chargers can usually charge 2 batteries per day, i.e. 2as  . If we consider a 

time duration of one hour, there are 24T   time slots, making the term as

T

 
 
 

 equal to 1. It states that 

the number of slow chargers should be greater than the number of depleted batteries assigned to them 
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over the 1
a

T

s

 
 

 
 time slots, so that the depleted batteries can start the charging process once they are 

swapped out at the BSS. For fast chargers, as

T

 
 
 

is basically greater than 1 and it explains that the 

number of depleted batteries assigned to them should be less than its charging capability at any time slot 

t T . Constraint (10) indicates that the total demand assigned to site j  should not exceed its charging 

capability at this site. Constraints (11) and (12) indicate that chargers and swapping robots are only 

deployed at open BSSs where M is a large number. The swapping robot capacity constraint (13) 

guarantees that the service capability of swapping robots at station j  in time slot t satisfies the 

swapping demand. 

7.5 Case study 

We consider a pilot battery swapping program for EBs as a replacement of the existing diesel bus 

services. It serves a given number of bus routes with a limited number of EB fleet. In an urban area, the 

number of BSSs in a given region is typically orders of magnitude less than the number of EB transit 

depots. Tens of transit depots usually accommodate over hundreds of buses in service. We assume bus 

depots and large bus terminals can be candidate sites for BSSs. 

7.5.1 Data preparation 

We take the east region of Melbourne city for example. The study region centers around the city of 

Monash consisting of eight local suburbs, namely Monash, Knox, Glen Eira, Stonnington, Whitehorse, 

Maroondah, Kingston and Greater Dandenong. Bus routes information and timetables are available at 

Public Transport Victoria for the eight local councils (Victoria 2017a). Bus route length, origins and 

destinations are extracted from an open dataset of PTV bus route metro using ArcGIS software (Victoria 

2017b). There are 109 bus routes operating in this area. The swapping demand of a bus route is assumed 

to occur at the two terminals, each terminal taking half demand generated. On-route battery swapping 

is not considered in this model. The swapping demand of a bus route is calculated based on the total 

daily vehicle-mile traveled (route length multiply by bus service frequency) divided by the range limit 

of EBs. The demand ih  at terminal i  is the sum of the half demand for all routes using terminal i . We 

rounded up the swapping demand to integers for calculation convenience. The demand set I contains 

81 demand generation points composed by origins and destinations of these bus routes. Note that several 

bus routes could share the same terminal. We select the 81 terminals in I and the 38 existing bus depots 

under operation in Melbourne as the candidate sites of BSSs, namely, J  has 119 elements (see Fig.7-

1). The distance ijd  between demand point i I  and candidate BSS site j J is calculated by Google 

Maps Distance Matrix API during off-peak hours. The fixed cost jf is calculated based on the median 

land price per sqm (available from https://www.microburbs.com.au/). The land value, candidate site 



Chapter 7: Battery swapping facility location model of public electric buses    
 

100 

 

index, and the name of each candidate site can be found in the appendix. We implement the proposed 

model in Gurobi MIP solver to find the optimal BSS location and its charging system configuration. 

  

Note: Purple marks represent demand points. Blue and orange marks represent existing bus depots within and out 

of the studied region respectively. 

The parameters used in this case study are listed in Table 7-2. A single EB type with a range limit of 

250 km is used. In this study, we take EB manufactured by Sunwin China for example, to which battery 

swapping applies. This manufacturer (Sunwin) only published part technical specifications of EBs. 

Therefore, we have to refer to the parameters from several similar manufacturers. Hopefully, these key 

parameters in the operational stage are all within a reasonable range for a macro level cost analysis. We 

assume slow charging and fast charging are applicable to the local charging system. The costs of 

chargers, batteries, and swapping robots are only referenced values used in Melbourne. The operation 

time is divided into 12 time slots, i.e. 12T  . 

Table 7-2: Basic model input 

EB range limit 250 km slow charging time 8 h 

Figure 7-1:East region of Melbourne with 81 demand points and 119 candidate sites 
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EB battery capacity 324 kWh fast charging time 2 h 

charging power 60 kw swapping time 15 min 

operation time 24 h battery life 3 years 

slow charger price $ 25,250  vehicle life 8 years 

fast charger price $757,500  swapping robot life 10 years 

vehicle price $1,320,000  charger life 10 years 

land size 1,000 
2

m  land use period 100 years 

electricity price $0.16/km swapping robot price $100,000  

battery price $192/kwh     
Sources. EB range limit, battery capacity, charging power, charger price, vehicle price, charging capability, and 

swapping time are from Li (2016); EB electricity price is from Eudy et al. (2016) and Lajunen (2014); land size is 

1/6 that of a real case in Qingdao, China with 3 lanes, 6 swapping robot from Li (2016); bus operation time of 

Melbourne metro bus differs from route to route. 24 hours is considered in this case including night buses; 

swapping robot price, charger life and swapping robot life are estimated; Battery life and costs are from Wikipedia 

(2017); Land purchase price is from Microburbs (2017). Note: all $ here is AUD 

7.5.2 Numerical result 

We consider a pilot battery swapping program for EBs as a replacement of the existing diesel bus 

services. It serves a given number of bus routes with a limited number of EB fleet. In an urban area, the 

number of BSSs in a given region is typically orders of magnitude less than the number of EB transit 

depots. Tens of transit depots usually accommodate over hundreds of buses in service. We assume bus 

depots and large bus terminals can be candidate sites for BSSs. 

In the following section, we investigate two base scenarios with different construction cost settings and 

further conduct sensitivity analysis on the second base scenario. In scenario A, we assume all BSSs have 

the same land size and fixed land value. In scenario B, varying land size and annual land value 

appreciation are taken into consideration. The land size increases with the number of swapping robots 

deployed in the BSS and land value increases 3% per year. 

Scenario A: common BSS land size and fixed land value 

In scenario A, we utilize the basic parameters in Table 7-2 considering a fixed land size of 1,000㎡ for 

each BSS and fixed land price. The optimal BSS location is shown in Fig.7-2 with green marks. The 

constructed 8 BSSs are scattered in the studied area, which are located at Box Hill, Clayton, Croydon 

Station, Dandenong, Frankston, Gardenvale, Mordialloc, and Upper Ferntree Gully. The detailed results 

are listed in Table 7-3 and Fig.7-2, including the selected BSS sites, the configuration of each BSS and 

the swapping demand assigned to the BSSs.  

The total costs reach $15,037, including five cost components- land costs of $278, transportation costs 

of $507, charger costs of $1,522, battery costs of $12,511, and swapping robot costs of $219. Owing to 

its short lifespan and high price, batteries are the primary cost component in this case, accounting for 

over 80% of the total cost. The company has to maintain 16 to 32 additional batteries at each BSS (see 
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Table 7-3) to ensure seamless battery swapping with no delay. The charger costs rank the second. The 

quantity of slow chargers is of the same as that of the batteries stored in the BSS. Slow chargers are 

deployed exclusively in the BSSs, while no fast chargers are used. The fast charger is 30 times more 

expensive, while only providing 4 times charging capability than slow chargers. It is not cost-effective 

to use fast chargers to charge EBs with a large battery capacity at the current stage, although fast 

charging can provide more flexibility in managing the battery charging schedule. The other three costs 

are of the same order of magnitude. Since the annual appreciation of land value is not considered here, 

the daily land costs jf are quite low due to the long service period (100 years). The final location of 

BSSs results from the tradeoff between BSS construction costs and battery transportation costs. As can 

be seen from the results, the maximum number of battery swapping robots installed is 2. Generally, one 

lane at BSS can install one or two swapping robots. This result justifies the use of uniform land size at 

BSSs.  

Furthermore, the assignment of the swapping demand is shown in Fig.7-2 Most of the demand 

assignment variables equal to 1 with six exceptions (demand points No. 22, 40, 42, 52, 72 and 80). Their 

values are as follows: 22,64 0.71Y  , 22,76 0.29Y  ; 40,59 0.5Y  , 40,77 0.5Y  ; 42,77 0.8Y  , 42,94 0.2Y  ;

52,46 0.68Y  , 52,63 0.32Y  ; 72,64 0.14Y  , 72,113 0.86Y  ; 80,59 0.44Y  , 80,64 0.56Y  . It shows that 

assigning all demand at a bus terminal to one BSS may not be cost effective but can greatly simplify the 

operations of bus drivers. This phenomenon can be seen in the overlapping area of the dashed line, 

showing that these demand points in the boundary area are assigned to two BSSs. The installed BSSs 

are approximately evenly distributed in the study region so that an EB does not have to travel too long 

to get refueled. 

Table 7-3: Optimization results in scenario A 

location(No.) 
land value 

($) 
swap robot battery 

slow 

charger 

fast 

charger 

swapping 

demand 

Box Hill (46) 2180 1 32 32 0 96 

Clayton (59) 1500 1 32 32 0 96 

Croydon Station (63) 850 1 32 32 0 96 

Dandenong (64) 870 1 28 28 0 84 

Frankston (76) 730 1 16 16 0 48 

Gardenvale (77) 2070 1 32 32 0 96 

Mordialloc (94) 1410 1 28 28 0 84 

Upper Ferntree Gully 

(113) 
520 1 20 20 0 60 

Sum / 8 220 220 0 660 
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 Note: Green marks represent the optimal BSS location. Purple marks represent swapping demand points. Blue 

and orange marks represent the existing bus depots within and out of the studied region respectively. 

Scenario B: varying BSS land size and with 3% annual land value appreciation 

This section further investigates the impact of land costs by considering 3% annual land value 

appreciation and land use size. In scenario A, we can see that land costs only account for 2% of the total 

cost when we consider a fixed land use size (1000 
2

m ) and constant land value. With 3% annual land 

value appreciation, the land costs increase 
991.03 18.66 times at the 100th year. The average cost 

Figure 7-2: Optimal location of BSSs and swapping demand assignment in scenario A 
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
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

times of the current land costs, making it a more significant cost term in 

the objective function. We further consider a variable land size to avoid unreasonable configuration of 

BSSs. The impacts of the BSS’s land size are investigated by adding one extra term 
j jc

j J

f N


 in the 

objective function (1). We assume the BSS’s land size linearly increases with the number of swapping 

robots. Otherwise, it would be unimaginable to install multiple swapping robots with hundreds of slow 

chargers in a 1000 
2

m site. 

The total cost rises to $16,804, 12% higher than that in scenario A. The results show that only three 

BSSs are deployed--in Frankston Depot, Noble Park and Boronia (see Fig.7-3 and Table 7-4). These are 

not the cheapest areas but are relatively closer to the region center. It indicates that the planner intends 

to construct BSSs in regions with lower construction costs while maintaining reasonable transportation 

costs. The number of batteries and chargers in the whole system is the same as that in the previous case. 

In addition, the total number of swapping robots is 7, 1 less than the previous case. This is because that 

the service capability of swapping robot is abundant in the previous case. For example, the robot in 

Frankston services 84 swapping demand only while its capacity is 96. When assigning these swapping 

demands to one BSS, it can help to make full use of the swapping robots. Comparing with the previous 

case, the main differences lie in the land costs and transportation costs. The Land costs increase from 

$278 to $1,364, while the transportation costs increase from $507 to $1,214. The transportation costs 

have greatly increased because EBs need to travel to rural areas to swap the depleted batteries. Under 

some circumstances, e.g. from Kew to Boronia, the distance is more than 60 km for a round trip of a 

battery swapping service. It consumes 24% of total battery energy for such a detour to the BSS. If the 

planner wants to decrease the time or costs EBs spent on the way to BSSs, they should deploy BSSs 

closer to demand points with higher land values, rather than rural areas far from demand points.  

Table 7-4: Model output with 3% annual land value appreciation and land size 

location (No.) land value swap robot battery  
slow 

charger  

fast 

charger  

swapping 

demand 

Ventura Bus Lines- 

Frankston Depot (15) 
730 1 28 28 0 84 

Noble Park (96) 950 3 96 96 0 288 

Boronia (115) 740 3 96 96 0 288 

Sum / 7 220 220 0 660 
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Note: The notations are the same as those in Fig.7-2 

Sensitivity analysis on unit transportation cost in Scenario B 

This section looks into the impacts of unit transportation cost on the number of constructed BSSs. Table 

7-5 provides the results on locations of the deployed BSSs under various unit transportation costs,  . 

The amount of BSSs deployed increases with the unit transportation cost.  =1 indicates that only 

energy cost as in the base case is considered. A larger unit transportation cost means that the EB 

operators values more than electricity price. Travel time and actual operation range might be other 

concerns, especially when EBs detour more than 60 km to swap a depleted battery out. It takes more 

Figure 7-3: Optimal location of BSS and swapping demand assignment of scenario B 
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than one hour and consumes 20% of the battery for the refueling service. As a result, planners could 

assign more weight on transportation costs. If the electricity price dramatically drops to 10%-20% of 

the current price, only one or two BSSs are deployed in the network. When transportation costs remain 

within a given range, e.g., 30%-100% and 400%-700%, the number of deployed BSSs does not change 

but in different locations. In the last scenario with 1500% unit transportation cost, 215 batteries, 3 fast 

chargers, and 212 slow chargers are used in the system and 2 BSSs utilize both fast chargers and slow 

chargers. Comparing this configuration with other scenarios in Table 7-5, we can see that the adoption 

of fast chargers helps to reduce the number of batteries needed in the system.  

Table 7-5: The number of BSSs deployed considering different transport costs 

Transport Cost The number of BSSs BSS location No. 

0.1 1 14 

0.2 2 14,26 

0.3 3 14,17,69 

0.4 3 17,69,113 

0.5 3 17,69,113 

1 3 15,96,115 

1.5 4 0,15,69,115 

2 4 15,69,93,115 

3 5 15,69,93,115,116 

4 8 59,62,69,72,76,94,98,113 

5 8 44,59,62,69,76,77,94,113 

6 8 44,59,62,69,76,77,94,113 

7 8 44,59,62,69,76,77,94,113 

8 10 44,58,59,69,76,77,94,113,115,116 

9 11 46,58,59,60,64,76,77,94,113,115,116 

10 11 46,58,59,60,64,76,77,94,113,115,116 

 

Sensitivity analysis on fast charger price in Scenario B 

A further analysis is conducted on how fast charger price would affect the choice of chargers and battery 

inventory. The other parameters are fixed as in scenario B. We only reduce the price of fast chargers to 

simulate the advance in charging technology. In scenario B, the fast charger costs $757,500 and can 

only fully charge 12 batteries in 24 hours, while the slow charger can charge 3 batteries and costs 

$25,250. On average, it costs $8,416 and $63,125 to fully charge a depleted battery by the slow and fast 

charger respectively. Slow mode seems to be an economical choice. In terms of charging capability, the 

price of the fast charger has to drop to 8,416 /63,125 =13.3% of the current price to be more attractive 

if battery inventory impact is not considered. However, fast charging can increase the utilization rate of 

batteries. In scenario B, the swapping demand arrives every two hours and fast charging also takes two 

hours to fully charge a depleted battery. Fast charging can greatly reduce the number of batteries 

required at each BSS. The local charging system needs either 220 slow chargers and 220 batteries or 55 
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fast chargers and 55 batteries. From Table 7-6, we can see that, when fast charger price drops by around 

4.5%, the local charging system can switch from slow charging to fast charging because the rise of fast 

charger costs would be less than the decrease of the battery costs. Therefore, deploying local charging 

system at BSS is a tradeoff between charger costs and battery costs. 

Table 7-6: The charger selection based on the reduction of fast chargers’ price 

fast charger price (AUD) battery quantity fast charger quantity slow charger quantity 

757,500 (0.0% reduction) 220 0 220 

723,759 (4.5% reduction) 220 0 220 

723,758 (4.5% reduction) 55 55 0 

684,750 (10.0% reduction) 55 55 0 

606,000 (20.0% reduction) 55 55 0 

 

Several other factors, such as a relationship between charger and land requirement, will probably help 

produce a better cost evaluation when data is available. Battery capacity can affect the BSS location 

decision by influencing the total swapping demand. When battery capacity is relatively limited or EB 

companies are making a strategic long-term planning, they value more on reducing the energy loss due 

to the detour between BSSs and EB depots. Bus arrival patterns or swapping service scheduling may 

also have an influence on the choice of charger types and battery quantity, which will be left for future 

studies. 

7.6 Discussions and conclusions 

This chapter investigates the BSS location models serving public EBs. The objective was to answer five 

key questions that the EB company concerns most are answered simultaneously: 1) the location of BSSs; 

2) the assignment of EB swapping demand, i.e. the demands in existing EB depots should be assigned 

to which BSS 3) the charger selection in terms of type and quantity; 4) the number of batteries needed 

in each BSS; 5) the number of battery swapping robots installed.  

Heavy capital investment on electric bus refueling infrastructures calls for prudent planning of the 

system. Battery swapping stations encapsulated with local battery charging provide a promising solution 

to refuel EBs with minimum delay. This paper establishes a novel and compact mixed integer program 

for the BSS location problem with distinct charging system configurations to minimize the sum of the 

construction and operation costs, which is then solved by a GUROBI solver implemented on Python 

interface. The test on a real network of the southeast region of Melbourne in Australia verifies the 

feasibility of the proposed model and investigates the effects of BSS locations and configurations. 

Results show that more BSSs would be built in candidate sites closer to demand points when annual 

appreciation of land value and varying land size are not considered. Otherwise, BSSs would be deployed 

in low land value sites. The decision would be a tradeoff between land costs and transportation costs. 

The total number of swapping robots, batteries and chargers mainly depend on technical parameters and 
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the swapping demand arrival pattern. Fast chargers are unattractive at this stage unless they become 

cheaper or faster with technology advances. 

The case study shows the validity of the proposed model and provides insights on the BSS planning. 

The study of the local charging system configuration problem can be the foundation for designing the 

combination of chargers and battery inventory to satisfy EB swapping demand. In the expanded model, 

we have further investigated the BSS location problem by considering not only land value appreciation 

but also land size based on the number of swapping robots installed. It is found that charger price and 

unit transportation costs are important factors affecting the answers to the five key questions proposed. 

For this pioneering research, several simple assumptions are made to ensure its tractability. Future work 

should relax these assumptions to address a more realistic problem. For example, the scheduling of 

electricity price-based battery charging and EB operation will be considered to increase the utilization 

rate of batteries. A more accurate BSS land use model should be adopted considering the availability of 

land. Comparing with the local charging system, models of the central charging system should be created 

to make an economic comparison to identify a favorable charging mode. Additionally, the battery 

capacity and the charging power of EB used for public transportation are several times greater than that 

of electric cars, which can result in high energy consumption and negative impact on power distribution 

networks. Thus, a BSS deployed in a given region should be considered as capacitated before power 

grid upgrade to accommodate more local charging demand.  

From Chapter 6, it was found that public charging facility are more appropriate for locating on those 

road segments with a large amount of private BEV flows as the objective is to maximize their exposure 

to the BEV users. However, for public EBs, they follow fix routes and timetables, they do not refuel on 

route to avoid delay. It can be easy to calculate their refueling demand based on their operation details. 

It was also found that battery swapping technology is more suitable for EBs to increase EBs’ utilization 

rate and a local charging system which charges depleted batteries in local BSSs helps avoiding the 

tedious battery shipping. The local charging method calls for careful land-use planning to reserve 

sufficient spaces for bus awaiting/parking and for local charger installation. Besides, one has to weigh 

the costs, charging efficiency, battery life and other factors in choosing the charging method. It is pointed 

out that well-aligned charging strategies with evolutionary EV adoption are the prerequisite for realizing 

its environmental benefits especially in countries with fossil-dominated power. Otherwise, the 

disordered charging will cause load fluctuations and increase generation costs, subsequently losing the 

meaning of transportation electrification. 

The next and final part, Part IV, of this thesis presents the conclusions of this research, including a 

summary of key findings and directions for future research.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 

8.1 Introduction 

This thesis has explored the general stochastic user equilibrium (SUE) models with side constraints such 

as flow-independent driving distance constraints and flow-dependent battery capacity constraints and 

charging facility location models for both private BEVs and public EBs based on their own 

characteristics and refueling demand pattern. The research presented in previous chapters has generated 

a number of original contributions to knowledge. This chapter concludes the thesis through a summary 

of key findings, a summary of contributions to knowledge, and a discussion of implications for practice. 

A critique of the research is then presented, followed by a discussion of future research directions. 

8.2 Summary of key findings 

The major contributions of the thesis commenced in chapter 2 where an attempt was made to investigate 

the various factors affecting route choice behavior of EV users as well as the factors that need to be 

considered when deploying any type of battery charging/swapping facilities. Starting with the concept 

of EVs, it discusses both the EVs market studies and those special characteristics of EVs and its charging 

infrastructures that distinguish EVs from GVs. From network modelling and design point of view, it is, 

therefore, important to take their special characteristics into account when predicting EVs flow patterns 

and designing charging infrastructure networks accordingly. For instance, driving distance limit, 

availability of public charging infrastructures, long charging time, battery swapping time, location of 

charging facilities, battery energy consumption rate, and the attraction level of different charging facility 

are likely to affect EV users’ route choice behavior and the equilibrium network flow pattern. For 

example, if a Nissan Leaf user is taking a trip with remaining battery energy that can only travel 20 km, 

he would not choose any route longer than 20 km unless there are public charging stations en-route. The 

charger costs vary with charging speed, which will definitely affect the installation choice considering 

their cost-benefit effect. Hence, this research summarizes the existing barriers for EVs and selects some 

factors that matter most as the key constraints in the following general SUE models and refueling facility 

location models for both private BEVs and public EBs.  

Chapter 4 investigated the methodological issues of general SUE model of mixed EV and GV flow with 

path distance constraint and how to solve this model was investigated in this component of the thesis.  

Directly adding side constraints into a SUE model cannot generate a SUE flow pattern. Incorporating 

the path distance constraints into the general STAP needed a mathematical proof. The BEV range limit 

was defined by the path distance it can travel without charging. A classical minimization model was 

used with a modified MSA method to address the SUE problem. Solution properties of equivalence and 

uniqueness are provided. It can be seen as an extension of DUE model with the same constraints, which 

include perception error of travel time, are considered more rational than UE model. Multiclass users in 
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SUE model represents a simplified case of current traffic networks that carry both EV and GV. More 

classes of users with various range limit can also be taken into consideration. Overall, the new model 

shows that at the equilibrium point the selected paths to assign the travel demand are different from that 

of basic SUE TAP. The distance of each path must be less than the range limit of that class of vehicles. 

The well-known and widely used MSA procedure and probit-based network loading method are adopted 

and modified to solve this problem, following the idea of putting the path distance constraints into the 

path selection rules of stochastic network loading procedure. The direction finding step for MNL, 

involves finding K feasible paths to load the travel demand between each OD pair, while it requires 

finding feasible shortest path for MNP in all-or-nothing assignment step. Path feasibility check was 

employed to address the path distance issue whenever generating a path in K-shortest path algorithm or 

shortest path algorithm. The results suggested that range limit would have a great impact on EV users’ 

route choice, especially for those with short range limit. When the range limit became large enough, EV 

behaves similarly to GV. This component of research was then adopted and further extended in Chapter 

6 by incorporating the available public charging facility into the general SUE model. 

In Chapter 5, this thesis detailed a more complicated STAP in transportation networks with BEVs owing 

to the fact that BEV energy consumption depends on not only the path distance but also the travel time. 

The main objective was to theoretically understand how a flow-dependent path-based constraint can be 

incorporated into a general SUE model. It begins by discussing the battery capacity constraint was a 

flow-dependent one, while path distance constraint was flow-independent. The flow-independent 

driving distance constraint in Chapter 4 can be processed in the route choice procedures, while the flow-

dependent battery energy consumption depends on not only distance but also traffic flow (travel time). 

A mathematical programming model was proposed for the flow-dependent path-based SUE traffic 

assignment. A convergent Lagrangian dual method was employed to transform the original problem into 

a concave maximization problem and a customized gradient projection algorithm was developed to solve 

it. A column generation procedure was adopted to generate the path set. Three solution propositions are 

provided regarding equivalence and uniqueness of the solution. The solution framework, Lagrangian 

dual-gradient projection-stochastic network loading, can be applied to solve path-based SUE problem. 

The path set generated and their corresponding Lagrangian multiplier are demonstrated. It was shown 

that the network becomes congested and link travel time goes up when travel demand is high and 

increasing path travel time results in more energy consumption and more paths infeasible on which BEV 

will run out of energy and incorporate additional out-of-battery cost. The numerical analysis results 

show the impact of battery capacity, travel demand and stochastic parameters on network equilibrium 

flow and computational cost. 

The focus of Chapter 6 was to investigate a way of locating charging facilities in the network since no 

public charging facilities have been considered in the previous SUE components. A bi-level model was 

adopted with maximum covering objective in the upper level and STAP with path-distance constraints 
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in the lower level. Public charging facilities were taken into consideration in the trip chain in the lower 

level STAP to accomplish this component of research. An important concept of sub-path was used to 

identify the scenarios of charging need. A key application of this concept was to calculate the 

generalized path travel cost composed of path travel time, charging time and equivalent travel time 

reduction (the utility of charging facilities on attracting BEV drivers). Comparing to research component 

2&3, the SUE approach was extended to consider public charging facilities in the network. It was 

demonstrated that the driving distance limits, charging speed and utility of charging facilities affect the 

equilibrium network flow and charging facility location. It was also found that the BEVs with shorter 

driving distance and risk-neutral attitude would probably have a larger value of charging facilities utility, 

because charging facilities helped to ease their range anxiety. While for those with larger batteries, they 

would behave more like GV users. A potential drawback of this method of defining flow coverage is 

that it may lead to the location of charging facilities on several adjacent links of some high-volume 

freeways. Further details of this research component are provided in Chapter 6 

Chapter 7 which is the last contributory chapter had two main objectives. The first objective was to 

understand the location problem of BSSs serving public EBs considering the fixed construction cost and 

transportation cost between EB depots and BSSs. The second objective was to briefly investigate its 

local charging system configuration including charger quantity, charger type and battery inventory so 

that the depleted batteries can charge at the BSS itself and do not need any battery distribution centre 

for centralize charging. A mixed-integer linear program is formulated to represent this problem, which 

is then solved by a GUROBI solver implemented on Python interface. The test on a real network of the 

southeast region of Melbourne in Australia verifies the feasibility of the proposed model and investigates 

the effects of BSS locations and configurations. Results show that more BSSs would be built in 

candidate sites closer to demand points when annual appreciation of land value and varying land size 

are not considered. Otherwise, BSSs would be deployed in low land value sites. The decision would be 

a trade-off between land costs and transportation costs. The total number of swapping robots, batteries 

and chargers mainly depend on technical parameters and the swapping demand arrival pattern. Fast 

chargers are unattractive at this stage unless they become cheaper or faster with technology advances. 

Several other factors, such as a relationship between charger and land requirement, will probably help 

produce a better cost evaluation when data is available. Battery capacity can affect the BSS location 

decision by influencing the total swapping demand. When battery capacity is relatively limited or EB 

companies are making a strategic long-term planning, they value more on reducing the energy loss due 

to the detour between BSSs and EB depots. Bus arrival patterns or swapping service scheduling may 

also have an influence on the choice of charger types and battery quantity, which will be left for future 

studies. 
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8.3 Contributions to knowledge 

The thesis has provided four key contributions in the areas of the STAP models with BEVs and location 

problems of the battery charging/swapping facility serving BEVs and EBs. Focus The contributions of 

this thesis are dedicated to the methodological developments and summarized as follows: 

• New general SUE model considering flow-independent BEVs’ driving distance constraints and 

new method for solving the proposed general SUE model with driving distance constraints of BEVs 

(Chapter 4): It has long been recognized as the last step of the traditional four-step travel demand 

modelling process and widely used an evaluation tool for a variety of urban and regional traffic network 

analyses (Xie,Waller 2012). Although there have been a number of research projects in recent years in 

traffic assignment of EVs, most of these studies have focused on DUE models along with various 

constraints (Xie et al. 2014; Xie et al. 2017; Wang et al. 2016; Jiang,Xie 2014; Jiang et al. 2013; Xu et 

al. 2017). Very little research has payed attention to SUE models especially general SUE model 

including both logit and probit stochastic loading. This thesis demonstrated a holistic methodology is 

proposed for general SUE traffic assignment model with path distance constraints on EV scheme, in 

which the classic unconstrained SUE model can be used to incorporate path distance constraints by 

modifying MSA algorithm and finding the distance-constrained K-shortest paths in stochastic network 

loading process. It is assumed that the EV route choices are restricted by the distance EV can travel with 

a single charge. 

• New general SUE model with flow-dependent battery capacity constraints accounting for a 

more reasonable battery consumption based on both distance and travel time and a new methodology 

for solving general SUE model with limited battery capacity of BEVs (Chapter 5): Few studies have 

addressed stochastic traffic assignment models for EVs (Jing et al. 2017). It has been pointed out that 

directly adding side constraints into the well-known minimization model for probit-based SUE problem 

does not give us an equivalent minimization model to the probit-based SUE traffic assignment with side 

constraints (Meng,Liu 2011). This thesis is the first to study a general SUE model with path-based 

constraints and enrich the general SUE family with side constraints (link-based and path-based) and 

make consistence with side-constrained general DUE condition. A holistic methodology is proposed for 

general SUE traffic assignment model with battery capacity constraints on BEV scheme, in which the 

path choice is restricted by the battery capacity with a single charge. A Lagrangian dual based exact 

solution method incorporating column generation is developed for solving this path-constrained general 

SUE model. 

• New charging facility location model considering a SUE BEV flow pattern and charging facility 

deployment and a new method for solving the proposed bi-level SUE-based BEV charging facility 

location problem (Chapter 6): The literature on CFLP has focused on a larger variety of charging facility 

models for private BEVs. Few studies attempted to apply the bi-level model for public charging facility 

deployment. The location design problem of charging facilities can be modelled as a Leader-Follower 
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Stackelberg game where the decision makers are the leaders who decide the facility deployment and the 

BEV users are the followers who can choose their paths freely. Most of previous studies focused on 

DUE problems with BEVs. However, the driving distance limit, to the best of our knowledge, has not 

been considered in stochastic network equilibrium models, especially in the mixed flow transport 

network. Moreover, to tackle the range anxiety problem with a limited budget, the charging facilities 

should be accessible to as many EVs as possible. Deploying the pubic charging facilities on the links 

where most BEV drivers use is an efficient way to increase the utilization and perception of the public 

charging facilities, which promotes BEV acceptance and relieve range anxiety. This thesis used a 

maximal flow-covering (MFC) model, i.e., a modification of classic MCLP, is proposed to maximize 

BEV flow coverage by locating a fixed number of charging facilities in the bi-level, equilibrium-

optimization framework. Coverage is achieved when the charging facilities is located on the BEV route. 

The effects of driving distance limit constraints, charging facility availability, charging facility utility 

and traffic congestion are accommodated in the lower-level general SUE problem where the equilibrium 

BEV flow pattern is determined endogenously by the general SUE traffic assignment model with driving 

distance limit constraints, in which the mutual interactions between the location of charging facilities 

and resultant equilibrium BEV link flow patterns are modeled. 

• New swapping facility model considering local charging system serving BEB fleet and an 

understanding of the effects of various factors in the swapping facility system (Chapter 7): It has been 

pointed out that BEBs are characterized by fixed running routes, fixed depots, near-identical battery 

capacity. However, configuring an overall BEB system is challenging; this would include possible 

battery recharging and swapping concepts, choice of battery technology, battery sizing, positioning and 

dimensioning of charging and swapping stations (Leou,Hung 2017). Existing BSSs research have 

concentrated on the interaction between BSSs and power grid and the operation of both BSSs and BEBs. 

This research proposed an optimization framework for locating capacitated BSSs incorporated with 

local charging systems. It was the first study investigating the deployment of BSSs with different types 

of local charging infrastructures (including batteries, chargers and swapping robots) while taking into 

account the tradeoff between BSS installation costs and transportation costs from EBs to BSSs. The 

optimal number of batteries, chargers and swapping robots and the type of chargers initially purchased 

at BSSs can also be decided through the proposed model to satisfy the swapping and charging demand 

of EBs. 

8.4 Implications for practice 

Based on the findings presented in this thesis, it is possible to discuss their implications for practice. The 

stochastic traffic assignment models and charging facility location models in this thesis is intended to 

help city planners, traffic and transportation engineers, EV companies and policy makers to make 

informed decisions. The thesis has identified a number of factors including EV demographic, land use, 

traffic and charging infrastructure variables that have the potential to influence EV flows patterns in the 
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traffic network. The planning-level factors such as the selection of charger type, charger location, battery 

quantity matter in practice. Even if battery charging might speed up to minutes and battery cost might 

decreases greatly with the advance of technology, EVs, as an alternative vehicle, may still behave 

differently from GVs because of fuel cost, demographic, vehicle type and other factors affecting the 

EVs’ performance. A driver with less income may still choose a cheap EV with small battery and slow 

charging only instead of high-end EV with super charger and large battery. Slow charging might be 

more attractive than fast charging if its price is lower. The choice of battery capacity and the charging 

speed would always be a trade-off between time and cost. High-end EVs could behave more like GVs 

and more class users should be taken into consideration at that time. 

First, Chapter 4 and 5 of the thesis the problem of finding the equilibrium flow pattern over a given 

urban transportation network is known as traffic assignment. The amount of travel taking place at a 

given moment on any street in an urban area is the result of many EV users’ decisions. In this research, 

EVs are considered as part of the transportation network with their own travel behaviors. The travel time 

on each of the paths connecting the origins and destinations is a function of the total traffic flow due to 

congestion. EV drivers may consider more than travel time because of the range anxiety and availability 

of public charging facility. The analytical approach described in this research can help to predict the EV 

flow pattern in order to calculate an array of measures. These may include the following:1) Level of 

service measures such as travel time and travel cost control 2) Operating characteristics such as revenues, 

profits, toll pricing setting 3) Flow by-products such as pollution reduction 4) Welfare measures such as 

equity and priority of EVs. The flow patterns could also help optimize the location choice of charging 

facility.  

Chapter 6 provides EV companies or urban planners with critical application of public charging facility 

location model for maximize chargers’ exposure to the BEV users. A number of factors were identified 

as being critical in determining EVs’ route choice behavior. To increase EV charging facilities’ utility 

given the restricted budget, both researchers and practitioners should be interested in how EV charging 

facility location can affect flow patterns and this is presented in chapter 6. The thesis provides a 

theoretical/methodological basis for evaluating the utility/exposure of deployed charging facilities. An 

improved and reliable tool can be used by planners and engineers at a planning level. 

Chapter 7 emphasizes to both researchers and EV companies the importance of addressing swapping 

facility for EBs. No study has investigated the optimization of swapping station location, charger number, 

charger type and electric bus assignment in the BSS planning problem. The optimization framework in 

this chapter for locating capacitated BSSs incorporated with local charging systems can give 

practitioners a general view given the inputs and costs they have in hand. The outputs can provide 

insights for city planners and bus operators of deploying battery swapping and charging systems. The 

optimal number of batteries, chargers and swapping robots and the type of chargers initially purchased 

at BSSs can also be decided through the proposed model to satisfy the swapping and charging demand 
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of EBs. To our best knowledge, this is the first study investigating the deployment of BSSs with different 

types of local charging infrastructures (including batteries, chargers and swapping robots) while taking 

into account the tradeoff between BSS installation costs and transportation costs from EBs to BSSs.  The 

case study of the southeast region of Melbourne network verifies the effectiveness of the proposed model 

and provides cost analysis if EBs serve the current bus routes and demand. The approach proposed in 

this paper may be used by city planners, power grid companies, and transit service providers to plan the 

battery charging and swapping infrastructures, estimate how many chargers and what type of chargers 

to install to fulfill the potential demand while minimizing the total capital investment. This will save the 

government and EV companies time, money and funds which would be useful to support other EV 

programs.  

8.5 Critique 

While the thesis has provided a number of original contributions to knowledge, there are opportunities 

to improve it. Some specific improvements could be: 

• In chapter 4, it is noted that only one type of driving distance of EVs and no public charging 

facility was considered.  Note that the underlying SUE model focused on driving distance constraints 

only. The vehicles’ range limit is determined based on its travel distance only, while rationally the range 

limit should be related to both travel distance and travel time. Elastic demand, link capacity and dynamic 

battery consumption were all omitted in this model.  

• The general SUE models of EVs with battery capacity constraints reported in Chapter 5 ignored 

the other vehicle types in the network as a sole extension of static driving distance constraints. Similarly 

all the other considerations such as elastic demand, link capacity, availability of charging stations were 

omitted as well.  These limitations generally affect the general traffic flow prediction in real conditions. 

The findings presented in this thesis may be improved if multi-class EV users were considered. 

• The bi-level charging facility location model in Chapter 6 used a simple way of defining EV 

coverage by exposing charging facilities to EV drivers instead of using them. The solution algorithm is 

a heuristic to find a local optimum instead of a global one. Still the EV travel demand is assumed to be 

known as a prior. Another limitation is that dynamic energy consumption was not considered.  

• The BSS location model serving electric buses in Chapter 7 used an assumption that the demand 

for EB battery swapping services was evenly distributed during the time slots. Another limitation was 

that the charging scheduling optimization was not considered. Local charging station may have some 

disadvantages over another mode of operating BSS with central charging system which was not 

discussed. For the evaluation case study, some technical features were not available for current available 

EBs and their compatible chargers. This may affect the precision of the presented results. 
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8.6 Future research directions 

Given the limitations discussed in the previous section, a number of areas for future research can be 

identified.  

The driving range limit and the lack of charging infrastructure are two main characteristics of EVs at 

the current stage. There is a need to extend the general SUE with driving distance limit considering 

elastic demand. There have been few researches on the stochastic or dynamic traffic assignment of 

electric vehicle considering elastic demand.  

As a pure mathematical modeling tool to characterize BEVs’ travel behavior in the network with some 

ideal socioeconomic assumptions, we expect that the modeling technique and solution methods 

demonstrated in chapter 5 would potentially trigger the interest of investigating other types of stochastic 

traffic assignment problems with path-based constraints in logit-type or weibit route choice models. The 

model itself can also be applied for more accurate quantification of network flows, travel demand and 

battery capacity levels. As a modeling platform for more practical and realistic model, the proposed 

model should be enhanced to accommodate mixed traffic flows of different types of vehicles such as 

BEVs, hybrid vehicles and conventional gasoline vehicles as well as the availability of charging 

infrastructure. Our future study will investigate the possibility of incorporating charging time, range 

anxiety level and value of time in model extensions. Based on the SUE models proposed in this paper, 

we will also investigate how to optimally locate charging stations in the network in terms of different 

objectives. 

Another key avenue for future research regarding the bi-level model involves incorporating other types 

of BEV-specific constraints in the lower level problem, such as flow-dependent battery capacity 

constraints, time-dependent battery charging price, etc. As for the upper level problem, some other 

approaches, such as FILM and FRLM, locating charging facilities to maximize passing BEV flows 

without double counting, can be explored to better serve the BEV travel demand. The model uses a 

number of assumptions to simplify the problem and make it tractable, which will be relaxed in the future 

work to deal with more complicating and realistic issues. 

There is also a need for studying BSSs with central charging system where batteries can be treated as 

goods and transported between central charging facilities and EB depots. There have been few studies 

found on the operating mode of the battery swapping station which incorporates logistic management 

into the battery pack transportation. Local charging mode may have a lot of disadvantages. First, it is 

hard to accurately predict the demand of battery swapping service or the EB arriving pattern (e.g. More 

EV users may swap during peak hours or public holidays) at each station, thus making it a hard choice 

to decide the number of charger and battery inventory each station needs. It is a waste of money and 

resource if the chargers are over-built. If the number of the chargers is less than we need, it means the 

EV drivers may have to wait for hours to get a full energy battery which will discourage the user and 
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further influence the market penetration. Second, DC fast charger needs a power of around 100kw per 

charger for DC fast charging or level 3 charging. Building one charger at a station is already a great 

burden for local electricity power grid, not to mention it usually needs more than that. So it will make 

few locations available for building new battery swapping stations or rebuilding the existing gas station 

restricted by the power grid and the safety issue. Last but not least, fast charging does damage to the 

battery itself and reduces the battery life. By contrast, building a battery distribution center can help 

solve all the problems above to ensure the acceptable level of service by proper operation of logistic 

management and inventory information system. Also the existing gas station can be reconstructed by 

just adding a battery swapping facility and a warehouse for battery storage.  A battery distribution center 

can give more flexibility of battery use with regard to spatial and temporal distribution of the demand 

by adjusting the battery shipment scheme, thus reducing the number of battery needed in the system by 

leveraging the battery transportation cost and battery manufacturing cost. Therefore, it is of great value 

to do this research towards developing a new operating mode for battery swapping station, especially 

along the corridor between cities for the optimal design of future battery swapping systems which would 

help in improving the level of service and attracting more drivers to the EBs. 

In summary, it is worth to highlight that this thesis has established two STAP models for predicting 

BEV flows and two charging/swapping facility location models for deploying the facilities to minimize 

the cost or maximize their utility. It also identified opportunities to enhance the modelling tool for EV 

schemes for both private BEVs and public EBs. Firstly the methods developed in this research can be 

used to explore the congestion effects of the upcoming decades when EV market share increases. 

Secondly while the methods adopted in this research are considered to be robust, it is acknowledged that 

they come with their own limitations. Further research can address these limitations to build on the 

knowledge gained from this thesis. 
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APPENDIX A – CHAPTER 7 

No. BSS Candidate Site 
Land Value 

per Sqm 
Bus Depot demand 

0 Ventura Bus Lines - Oakleigh South 1450 Aspendale Gardens 2 

1 Ventura Bus Lines - Dandenong Depot 870 Bayswater 9 

2 Ventura Bus Lines - Knoxfield Depot 830 Belgrave 8 

3 Ventura Moorabbin Transit 1560 Belgrave South 3 

4 Ventura Bus Lines - Lilydale Depot 670 Bentleigh 2 

5 Ventura Bus Lines - Croydon Depot 830 Berwick Station 8 

6 CDC Melbourne - Oakleigh Depot 1640 Blackburn 13 

7 Kingstons Tours 1030 Boronia 7 

8 
Heatherton Bus Depot - Transdev 

Melbourne 
1520 Box Hill 46 

9 Transdev - Doncaster Depot 1820 Brandon Park SC 2 

10 Transdev - Keysborough Depot 1310 Brighton 6 

11 Cardinia Transit 770 Brighton Beach 7 

12 broadmeadows bus service 600 Burwood 1 

13 
Ventura Bus Lines - Heidelberg West 

Depot 
910 Caroline Springs 7 

14 Ventura Bus Lines - Monbulk Depot 300 Carrum 6 

15 Ventura Bus Lines- Frankston Depot 730 Carrum Downs 2 

16 Ventura Bus Lines- Hastings Depot 560 Casey Central SC 3 

17 Dysons Bus Service 290 Caulfield 7 

18 Cranbourne Transit 660 Chadstone SC 26 

19 East West Bus Company 1040 Chelsea 15 

20 CDC Melbourne - Altona Depot 1280 Chirnside Park SC 18 

21 CDC Melbourne - Sunshine Depot 850 Clayton 2 

22 CDC Melbourne - Werribee Depot 650 Cranbourne 7 

23 Ventura Bus-Ivanhoe Bus Company 910 Cranbourne Station 2 

24 Ventura Bus-Portsea Passenger Service 670 Croydon 14 

25 Ventura Bus-SEAFORD 880 Croydon Station 1 

26 Kastoria Bus Lines 300 Dandenong 42 

27 Martyrs Bus Service 270 Deakin University 4 

28 McKenzie's Tourist Services 340 Deep Creek 1 

29 Moonee Valley Bus Lines 810 
Doncaster Park & 

Ride 
1 

30 Moreland Bus Lines 2760 
Doncaster 

Shoppingtown 
3 

31 Panorama Coaches 900 Doveton 1 

32 Reservoir Bus Company 1040 Eastland SC 5 

33 Ryan Bros Bus Service 810 Edithvale 2 

34 Sita Bus Lines 1540 Elsternwick 9 

35 Sunbury Bus Service 580 Elwood 4 

36 Transdev - Fitzroy North Depot 5290 Endeavour Hills 3 

37 transdev sunshine west 810 Fountain Gate 1 

38 Aspendale Gardens 1250 Frankston 44 
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39 Bayswater 820 Gardenvale 18 

40 Belgrave 430 Glen Iris 2 

41 Belgrave South 520 Glen Waverley 18 

42 Bentleigh 2180 Hampton 5 

43 Berwick Station 910 Hampton Station 8 

44 Blackburn 1610 Huntingdale Station 5 

45 Boronia 740 Kew 4 

46 Box Hill 2180 Keysborough 5 

47 Brandon Park SC 1370 Knox City 2 

48 Brighton 3030 Knox City SC 15 

49 Brighton Beach 3030 Knoxfield 1 

50 Burwood 1860 Lilydale 4 

51 Caroline Springs 1060 Middle Brighton 11 

52 Carrum 1000 Mitcham 22 

53 Carrum Downs 700 Monash University 15 

54 Casey Central SC 850 Montrose 1 

55 Caulfield 2300 Moorabbin 8 

56 Chadstone SC 2130 Mordialloc 32 

57 Chelsea 1519 Mossgiel Park 2 

58 Chirnside Park SC 710 Noble Park 1 

59 Clayton 1500 North Brighton 1 

60 Cranbourne 660 Nunawading 4 

61 Cranbourne Station 680 Oakleigh 16 

62 Croydon 830 Ringwood 18 

63 Croydon Station 850 Ringwood Station 4 

64 Dandenong 870 Rowville 5 

65 Deakin University 1860 Sandringham 3 

66 Deep Creek 1330 Scoresby 1 

67 Doncaster Park & Ride 1820 Southland SC 12 

68 Doncaster Shoppingtown 1820 Springvale 2 

69 Doveton 610 Springvale South 1 

70 Eastland SC 1120 St Kilda Station 8 

71 Edithvale 1160 St. Kilda 3 

72 Elsternwick 2000 Stud Park SC 7 

73 Elwood 3300 Templestowe 6 

74 Endeavour Hills 760 The Pines SC 2 

75 Fountain Gate 730 Upper Ferntree Gully 16 

76 Frankston 730 Vermont East 1 

77 Gardenvale 2070 Wantirna /  Boronia 1 

78 Glen Iris 2690 Warrandyte 15 

79 Glen Waverley 1720 Waterways 2 

80 Hampton 2650 Waverley Gardens SC 9 

81 Hampton Station 2670   

82 Huntingdale Station 1640   

83 Kew 3460   

84 Keysborough 1310   
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85 Knox City 950   

86 Knox City SC 1200   

87 Knoxfield 830   

88 Lilydale 670   

89 Middle Brighton 3030   

90 Mitcham 1330   

91 Monash University 1500   

92 Montrose 590   

93 Moorabbin 1520   

94 Mordialloc 1410   

95 Mossgiel Park 760   

96 Noble Park 950   

97 North Brighton 3030   

98 Nunawading 1330   

99 Oakleigh 1640   

100 Ringwood 1120   

101 Ringwood Station 1140   

102 Rowville 1040   

103 Sandringham 2320   

104 Scoresby 920   

105 Southland SC 1560   

106 Springvale 1130   

107 Springvale South 1030   

108 St Kilda Station 4000   

109 St. Kilda 4000   

110 Stud Park SC 1060   

111 Templestowe 1430   

112 The Pines SC 1590   

113 Upper Ferntree Gully 520   

114 Vermont East 1460   

115 Wantirna /  Boronia 740   

116 Warrandyte 640   

117 Waterways 1520   

118 Waverley Gardens SC 1090   
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