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According to the classical theory of aero-

dynamics, it is impossible for a bumble-

bee to fly, but the bumblebee doesn’t know

anything about the laws of aerodynamics,

so it goes ahead and flies anyway.

Author unknown

I have no doubt that in reality the fu-

ture will be vastly more surprising than

anything I can imagine. Now my own

suspicion is that the Universe is not

only queerer than we suppose, but queerer

than we can suppose.

J. B. S. Haldane (1927)
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Abstract

Further advances in the design of micro air vehicles (MAVs) may require detailed un-

derstanding of the aerodynamics of the flapping wings of insects, which outperform the

lifting mechanisms used in standard MAVs. Researchers in the past have proposed dif-

ferent mechanisms in order to explain the higher lift observed for insect wings flapping

at very high angles of attack. Studies investigating the effects of various geometrical

and kinematic parameters on the flow structure and forces over a wing have greatly

improved our understanding of the flapping wing aerodynamics. However, studies on

some of the key parameters, such as the wing aspect ratio and Rossby number, have

resulted in seemingly contradictory results. Moreover, the effects of wing shape and

wing kinematics are also not well understood. This thesis presents results of four studies

related to the aerodynamics of a rotating and flapping insect wing. This comprehensive

work involves both experimental and numerical methods.

The first study investigates the effects of the central body size on the rotating wing

aerodynamics. It is revealed that beyond a certain central body size, the flow structure

over a wing changes dramatically. The presence of a central body is also observed to

have a detrimental effect on the forces over the wing, beyond a certain size (i.e. the ra-

dius normalised by the wing span, b̂0 > 0.5). The second study investigates the coupled

effects of the wing aspect ratio, Reynolds number and Rossby number. Interestingly,

a span-based scaling proposed for the Reynolds number and Rossby number helps rec-

oncile the past studies. The third study presents an evolutionary shape optimisation

approach to optimise the wing shape. Although, this approach has been used in the

past for load bearing structures, its use in the design of wing shapes is novel, to the

knowledge of the author. The optimised wings have more area outboard, as compared

to the generic shapes used in past studies. This study provides some possible reasons

behind the wing shapes observed in some insects and Samara seeds. The fourth study

investigates the effects of a range of flapping motion waveforms on the wing aerody-

namics. The results show that the rapid flip motion towards the end of a half-stroke

is advantageous for achieving a high lift and high power economy. However, the sweep

motion profile has different effects on the lift and power economy. Interestingly, most

insects have a near-sinusoidal sweep motion profile, which is shown to result in a high

lift.

Overall, the various aspects of the insect wing aerodynamics investigated in the four
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studies can provide useful insights into some unanswered questions regarding insect

flight. The results also highlight some optimised parameters, such as the wing aspect-

ratio, wing shape, and the flapping profile parameters, that may be useful in the design

of MAVs for better performance.
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Chapter 1

Introduction

Flying is a way of life for the majority of animals. From around 1 million species of

animals, 75% are winged insects, birds, and bats. Flight performance is crucial for

these animals as their survival and evolution depends on it. Aerodynamics of flying

animals has been a topic of interest to physicists as well as biologists around the world.

Motivated by the research in aircrafts, the aerodynamics of large flying animals has

been studied in detail over the past many years. But the aerodynamics of small flyers

is not understood well. Recent developments in micro air vehicles (MAVs) have created

a demand for designs of smaller flying vehicles. Inspired by insects, some flapping

wing MAVs have also been developed, such as DelFly II by TU Delft University and

Robobee by Harvard University, which are shown in figure 1.1. However, the natural

flyers still outperform the most sophisticated MAV designs. Hence, the study of insect

wing aerodynamics can provide useful insights into designing efficient and accurately

controlled MAVs that can find a wide range of applications, such as in fire-fighting,

hazard exploration, and rescue operations.

Flight of small birds and insects seems improbable with the standard theory of

aerodynamics. The popularly known bumble-bee paradox suggested that a bumble-bee

should not generate enough lift to fly, according to the conventional theory. With

advances in flow visualisation and force measurement techniques, it was revealed that

the unsteady phenomena associated with the flapping wings of an insect are responsible

for the generation of sufficient lift to support its weight. The insect wings maintain a

very high angle of attack during their flapping motion, at which a stationary wing

would stall, failing to generate a high lift. However, a flapping wing slices through the

air, creating a large swirling vortex past its leading edge, known as the leading-edge

vortex (LEV). This provides the extra lift necessary for the insect to fly.
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(a) (b)

Figure 1.1: Insect inspired MAVs, namely, (a) Delfly II, with a single wing span of 14 cm,

by De Clercq et al. (2009)1 and (b) Robobee, with a single wing span of 3 cm, by Ma et al.

(2013)2.

Researchers have investigated different aspects of flapping motion, both experimen-

tally and numerically. Moreover, the flow over an insect body was also found to interact

with the LEV (Liu & Zheng, 2006). However, the influence of body size on the LEV

structure has not been explored. Several other geometrical and kinematic parameters

are known to influence the insect wing aerodynamics. The effects of wing aspect ratio,

Reynolds number, and Rossby number have been studied by a number of researchers.

The influence of these parameters, particularly the aspect ratio, on the LEV structure

and the aerodynamic loads has been debatable. Recently, it was found from two in-

dependent studies that the effects of any two of these parameters are coupled (Harbig

et al., 2013; Lee et al., 2016), which may have resulted in the discrepancies in the

literature. A systematic variation of each of these three parameters will be useful to

explain their combined effects. By decoupling the effects of these parameters, it might

be possible for researchers in future to focus on each parameter independently.

Furthermore, there are some studies in the literature that have optimised wing

shapes and flapping kinematics for MAVs. Most of such studies focus on optimising

the aerodynamic loads predicted using the quasi-steady models. A different approach,

such as the evolutionary structural optimisation (ESO) method, can be explored to

optimise wing shapes. Use of the quasi-steady models has limited advantages, in that

1Republished with permission of SAGE Publications
2Republished with permission of American Association for the Advancement of Science from Ma

et al. (2013); permission conveyed through Copyright Clearance Center, Inc.

2



the predicted aerodynamic loads cannot be correlated to the flow structures. Therefore,

an experimental study of the flapping wing kinematics will be helpful in having a com-

prehensive understanding of the flow structures and the resulting aerodynamic loads.

The outcomes from these studies can help researchers design more efficient MAVs.

This thesis aims at an investigation of the effects of the geometrical and kinematic

parameters on the flow over a rotating and flapping wing. The review of past studies

on this topic is presented in chapter 2. In the present investigation, a combination of

experimental and computational methods has been used. Chapter 3 describes the ex-

perimental and computational methods. The thesis outlines four broad studies, namely,

the study of the effect of the central body size, the study of the coupled effects of the as-

pect ratio, Reynolds number, and Rossby number, optimisation of the wing shape, and

optimisation of the flapping motion profile. The results from the four studies are pre-

sented in chapters 4, 5, 6, and 7, respectively. The research outcomes are summarised

and recommendations for future studies are given in chapter 8.
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Chapter 2

Insect Wing Aerodynamics

Flapping motion of insect wings has fascinated researchers from around the world for

more than past 50 years. Very high flapping frequency and low inertia make it difficult

to accurately describe the unsteady forces and the flow field around the flapping wings of

insects. Initial research on the insect wings was focused on quantifying the aerodynamic

characteristics of insect wings. Researchers such as Jensen (1956) treated insect flight as

a sequence of stationary flow situations. Further investigation, for example by Bennett

(1966), showed that unsteady effects have significant influence on the insect flight.

Study of flapping motion of insect wings is complex in a sense that their small size

and very high wing beat frequency pose a challenge in their study. A common fruit fly

has a wing size of approximately 2-3 mm where as its flapping frequency is about 200

Hz. Some larger insects have a larger wing area and relatively lower flapping frequency.

The wing shape can be characterised broadly by its aspect ratio (A) and the wing

kinematics can be characterised by its Reynolds number (Re), which are defined later

in § 2.1. Table 2.1 shows a comparison of mass, frequency, Reynolds number, and

aspect ratio of flapping wings of three different insects and the hummingbird.

It is challenging to conduct experiments on such free flying insects, such as those

by Liu et al. (2018), as this would require a setup and measuring instruments that

continuously track an insect’s position. Hence, most such studies have been performed

Parameters Fruit fly Bumblebee Hawkmoth Hummingbird
Total mass (mg) 2 175 1579 8400

Flapping frequency (Hz) 200 150 25 23
Re 130-210 1200-3000 4200-5300 11000
A 2.91 3.33 2.65 4.5

Table 2.1: Comparison of size and frequency of small flyers (Shyy et al., 2008).
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on tethered insects (Vogel, 1966; Wootton, 1979; Zanker & Götz, 1990; Bomphrey et al.,

2005; Caballero et al., 2015). However, tethering causes a disruption to the insect’s

sensory feedback that results in a strong distortion of the flapping pattern (Fry et al.,

2005). Some attempts have also been made to perform experiments on freely hovering

insects (Fry et al., 2008). To keep an insect hovering in place, it is also important

to maintain the required lighting conditions and create a virtual reality environment

during the experiments. Considering the small size and very high flapping frequency of

insect wings, it is also difficult to measure the tiny forces and flow fields around them.

Interestingly, some flapping wing MAVs, such as those shown in figure 1.1, have also

been developed, ranging in size from a few centimetres to about a few millimetres.

Dynamically scaled mechanical models or numerical models can be used to simulate

the flapping motion and then measure or predict the forces and the flow field around

the wings. The parameters studied in the case of flapping wing motion can be broadly

classified as geometrical and kinematic parameters. The parameters such as wing shape,

aspect ratio, camber and flexibility are some of the important geometrical parameters

and the parameters such as Reynolds number, wing motion profile, Rossby number and

flapping frequency are some of the important kinematic parameters that influence the

flapping wing aerodynamics. Prior to moving on to the details of the study conducted on

each of them in literature, it is worthwhile becoming familiarised with the terminology

used in the literature.

2.1 Terminology

The terminology followed in most of the literature is shown in figure 2.1. The wing

span (b) refers to the distance of the tip of the wing from the root of the wing. The

chord is measured in the direction perpendicular to the span, from the leading edge to

the trailing edge. The wing tip radius or the total span (R) is measured from the axis

of rotation to the wing tip. This distance is the sum of the wing-root offset (b0) and

the wing span. The wing aspect ratio (A) is defined as the ratio of the wing span and

the mean chord (c).

The flapping stroke of an insect comprises two half-strokes, namely, upstroke and

downstroke. During upstroke, the wings move from the front to the dorsal side of

the insect body. The wings separate from each other and attain a constant angle of

attack. After an initial acceleration, the wings move with constant angular velocity
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Figure 2.1: Terminology followed in the literature.

and then decelerate towards the end of upstroke. During the deceleration, the wings

start increasing their angle of attack to flip into the opposite orientation. The constant

velocity rotational motion of the wing is referred to as flapping translation or sweep.

This translation is different from the linear translation, where the wing moves along a

linear axis with a given velocity, as shown in figure 2.1.

In general, an insect wing can flap about three different axes during a stroke, causing

it to sweep, pitch and deflect. The rotation angle associated with the sweep is called

the sweep angle or stroke angle (φ). The angle made by the wing plane with the stroke

plane is called the angle of attack (α). During the flapping motion, the wing may move

up or down, deflecting it from the stroke plane. The rotation angle associated with this

third axis is called the deflection angle (θ). The deflection angle is relatively small in

an insect flight. In the case of ‘normal hovering ’, the deflection is negligible and the

wings move approximately in a horizontal plane, as has been described by Weis-Fogh

(1973).

The Reynolds number of the flapping wing has been described in different ways by
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researchers. A generalised expression for the Reynolds number can be written as

Re =
Uref lref

ν
, (2.1)

where Uref is the reference velocity, lref is the reference length scale and ν is the

kinematic viscosity of the surrounding medium. Some researchers, such as Birch et al.

(2004), Aono et al. (2008b), and Kang & Shyy (2014), use the velocity at the wing tip

(Ut) as Uref , whereas other researchers, such as Luo & Sun (2005), Lee et al. (2016),

and Tudball Smith et al. (2017), use the velocity at the radius of gyration (Ug) of the

wing as Uref . Inspired by the research on two-dimensional wings and airfoils in the past,

almost all the studies on insect wings have used the mean wing chord as lref . However,

Harbig et al. (2013) have shown that the wing span is a better choice for lref as the

leading-edge vortex structure on the wing scales uniformly with the Reynolds number

based on the wing span. In the present work, Ug is used as the reference velocity. The

chord-based and the span-based Reynolds numbers are defined as

Rec =
Ugc

ν
and Reb =

Ugb

ν
, (2.2)

respectively.

The mechanical and numerical models are constructed such that their Reynolds

number and reduced frequency parameter are matched with those of an actual in-

sect. This condition is called ‘dynamic scaling’, which has facilitated the performance

of force and flow field measurements while the underlying aerodynamic phenomena

are conserved. Flow measurements and visualisation from these models have helped

researchers to understand several unsteady mechanisms associated with the flapping

wing (e.g. Sane, 2003; Liu et al., 2017).

2.2 Unsteady flow over a flapping wing

As previously described, the low inertia and high flapping frequency makes the flow over

a flapping wing highly unsteady. Different mechanisms associated with the unsteady

effects are explained below.

2.2.1 Wagner effect

When an inclined plate starts impulsively from rest, it develops a circulation around it.

Due to viscous effects, it takes some time to reach the steady state value of the circula-

tion (Walker, 1931). When the starting vortex has moved sufficiently downstream, the
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Figure 2.2: Clap-and-fling mechanism proposed by Weis-Fogh (1973), illustrations by Sane

(2003) (figure reproduced with permission).

wing attains maximum steady state circulation as proposed by Wagner (1925). Thus,

the Wagner effect relates to the growth of vorticity at the start of the flapping motion.

2.2.2 Clap and fling

The clap-and-fling mechanism, also known as the Weis-Fogh mechanism, was first pro-

posed by Weis-Fogh (1973). It explains the reason behind the high lift generation during

flapping motion of wings of some insects like the small Chalcid wasp Encarsia formosa.

As shown in figure 2.2 (A-C), at the end of the half stroke, the two wings approach each

other. The leading edges touch initially and the wings rotate about the leading edges

such that the trailing edges come closer, pushing the fluid between the two downward.

This part of the motion is called ‘clap’. This is followed by ‘fling’ (D-F) where wings

rotate about the trailing edges separating the leading edges and thus create suction in

the gap. This creates an initial boost in circulation around the wings.

2.2.3 Delayed stall and LEV

The clap-and-fling mechanism does not completely explain the high lift production as

many insects do not perform a clap (Marden, 1987). Maxworthy (1979) noted for

the first time that the presence of a ‘Leading-Edge Vortex’ (LEV) on insect wings is

responsible for producing higher lift. In the case of a linearly translating wing at high

9



Figure 2.3: Sketch of the leading edge vortex (LEV) merging with tip vortex for flinging

wing, by Maxworthy (1979) (reproduced with permission).

angles of attack, alternate shedding of leading and trailing edge vortices is observed.

However, in the case of flapping translation, the LEV remains stable and thus delays

the stall. The axial flow in the vortex feeds vorticity into the tip vortex as shown in

figure 2.3. This axial/span-wise momentum transfer helps in reducing the chord-wise

momentum and thus the LEV remains smaller. The smaller size allows the flow to

reattach and maintain the LEV stable for a longer time. This LEV is shed at the

end of a stroke when the wing flips and a new LEV is formed after the wing starts

translating back.

Birch et al. (2004) measured forces on a rotating model wing of Drosophila melano-

gaster at different Reynolds numbers and observed that the forces remain stable through-

out the stroke after initial transients. Thus, the stable lift generation shows that the

LEV is stable throughout the stroke. Interestingly, they also observed an intense narrow

region of span-wise flow within the LEV core at Re = 1400, but not at Re = 120.
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Figure 2.4: Two distinct peaks appear in the lift force, due to high lift generated during

rotation and wake capture, shown by Dickinson et al. (1999)1.

2.2.4 Magnus effect

Force measurements by Dickinson et al. (1999) showed two distinct peaks during flap-

ping motion, separated by a finite time (figure 2.4). This increase in lift in one of the

peaks, beyond the steady lift generated by a stable LEV, was explained by the pres-

ence of rotational circulation while flipping. As the wing flips near the end of a stroke,

it rotates about its span-wise axis while it is in translation. Thus, the early rotation

prior to the end of a stroke is similar to backspin, which is responsible for higher lift

as explained by the Magnus effect. Thus, the phase of pronation and supination with

respect to downstroke and upstroke is important in this case. The speed of the flip also

determines the increase in the lift.

2.2.5 Wake capture

Rotational circulation cannot explain the second peak observed at the start of a stroke.

The explanation was given by Dickinson et al. (1999) with the help of the mechanism of

wake capture in which the wing benefits from the vorticity shed in the previous stroke.

It was demonstrated that the flow generated in the previous stroke increases the effective

velocity at the start of the next stroke, thereby increasing the force production.

1Republished with permission of American Association for the Advancement of Science, from Dick-
inson et al. (1999); permission conveyed through Copyright Clearance Center, Inc.
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Figure 2.5: Rotational translation (a) shows an attached LEV whereas linear translation

(b) shows an unsteady arch vortex. There is a clear difference between the pressure developed

on the wing surface in the two cases (Garmann & Visbal, 2013)2.

2.2.6 Linear flapping and rotational flapping

The aerodynamics of 2-D sections of flapping wings is addressed widely in the litera-

ture, including the classical work by Garrick (1936), Lighthill (1970) and Wu (1971).

Since the present work addresses rotational flapping of a finite wing, it is important

to distinguish between linear flapping and rotational flapping. A finite wing has the

wing tip at a finite span that is responsible for the spanwise component of the velocity.

In the case of 2-D sections flapping linearly, the wing is assumed to be infinite in the

spanwise dimension and thus the flow velocity has components only in the plane of the

section. This assumption may be useful in the study of flight with wings of high aspect

ratios. However in small flyers, especially in insects, the aspect ratios are small and

thus the flow has a 3-D structure.

2-D wing sections at a high angle of attack are observed to shed vortices alternately

from the leading and the trailing edge forming a von Kármán vortex street. On the

other hand, a rotationally flapping wing has a stable LEV during its translation, as

described in an earlier section. Garmann & Visbal (2013) systematically studied the

2The figure is in public domain as a declared work of the U. S. government.
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difference between linear and rotational flapping (figure 2.5) and found that a linearly

translating wing generates 32% less cycle-averaged lift than does the rotational trans-

lation. Moreover, Kim & Gharib (2010) have observed a difference in the location of

the spanwise flow over the wing between a translating and a rotating wing. Inspired

by flapping wings of insects, the present work focuses on the rotational flapping.

2.3 Leading-edge vortex structure

The LEV is a peculiar flow feature of the wing in rotational translation. When observed

along the spanwise direction, the LEV grows in size from the wing root towards the

wing tip. The LEV is spiral in nature, transporting the vorticity along the spanwise

direction, which merges with the tip vortex and tilts into the wake. Due to the small

aspect ratios of the insect wings, a horseshoe-shaped vortex (HSV) is formed that

comprises the LEV, a tip vortex (TV) and a trailing-edge vortex (TEV), as can be

seen in figure 2.6. The HSV is stronger at low Reynolds number (Re ∼ 103) than

at higher Reynolds numbers. Liu et al. (2018) have performed Schlieren photography

to record the HSV structure over a free-flying Hawkmoth wings, flapping typically at

Re ∼ 5000. For such higher Reynolds numbers and with a high α, the LEV bursts into

small incoherent structures (Lentink & Dickinson, 2009b; Jones et al., 2016) at a certain

location along the span. This vortex burst can be characterised by the stagnation in

the axial flow and the entrainment of the opposite-sign vorticity.

In rotational translation, the LEV initially starts growing in size during the initial

acceleration. If the wing is rotated with a constant angular velocity, the LEV reaches

a certain size until the rotation angle φ = 90◦ and then maintains a stable size. This

initial growth and the stability of the LEV is evident from the sectional spanwise

circulation (Γ∗z) of the LEV tracked at various rotation angles. Elimelech et al. (2013)

and Achache et al. (2017) have shown that Γ∗z initially increases until φ = 90◦, followed

by a stable value. The reason behind the stability of the LEV has been a topic of

debate among the researchers. Ellington et al. (1996) associated it with the spanwise

flow through the LEV core. This was challenged by Birch & Dickinson (2001), who

artificially limited the spanwise flow over a wing with baffles and observed that the LEV

still remained attached. They hypothesised that the LEV growth was limited by the

downwash induced by the tip vortex. Later, Lentink & Dickinson (2009a) and Jardin

(2017) showed that the Coriolis effects were responsible for the LEV stability, whereas
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Horseshoe vortex (HSV) Bursting of the LEV

Figure 2.6: The horseshoe vortex structure (HSV) shown by Liu & Aono (2009) and the

LEV bursting at Re = 1400 shown by Lentink & Dickinson (2009b) (both figures reproduced

with permission).

Garmann & Visbal (2014) observed the centrifugal and pressure gradient forces to be

responsible for the spanwise flow that stabilised the LEV.

The simultaneous flow separation over the wings and thorax of an insect can result

in different LEV topologies, depending on the Reynolds number and wing morphology

(Bomphrey, 2006). Srygley & Thomas (2002) observed the LEV to be extending from

one wing tip to the other wing tip across the thorax of a butterfly, with a cylindrical

shaped core. Ellington et al. (1996) observed two independent LEVs with spanwise

flows occurring through the LEV cores on two wings of a hawkmoth. Bomphrey et al.

(2005) observed that the LEV structure changes for these wings during the downstroke,

by virtue of a shift of the spanwise flow towards midchord location.

2.3.1 Existence of dual-LEVs

While studying the LEV on a free flying butterfly, Srygley & Thomas (2002) first

observed ‘two subparallel leading-edge vortices’. These vortices originate from single

LEV, which splits into two vortices at a certain spanwise location. This structure is

called the dual-LEVs. This existence of the dual-LEVs for a wide range of A and Re

was confirmed experimentally by Lu et al. (2006). The dual structure is observed for

α > 30◦ and Re > 600.

Lu et al. (2006) discussed several reasons behind the existence of the two vortices.
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Figure 2.7: 2-D PIV images taken at different span-wise locations by Lu et al. (2006) show

single LEV formed at the root (right hand side), which separates into two vortices towards

the tip (left hand side) (figure reproduced with permission).

First, they observed the secondary separation of the opposite sign vorticity to that of

the LEV to induce the outboard separated flow to form a minor vortex. Second, the

shear layer, outboard from the minor vortex, of the negative sign vorticity also plays

a role transporting the vorticity to the minor vortex. Figure 2.7 shows the dual LEVs

where the primary vortex remains attached and the secondary vortex is shed as the

wing rotates. Later, Hu & Wang (2011) also observed the dual-LEVs over a butterfly

wing in forward sweep, even at low angles of attack (α = 8◦ − 12◦).

Lu et al. (2006) did not find the LEV structure to be sensitive toA but later Harbig

et al. (2013) showed that it is insensitive toA only when Re is calculated based on the

wing span. The effect of A is a subject of debate even in current studies, which will

be discussed in subsequent sections.

2.4 Effect of kinematic and geometrical parameters

To understand the effects of different parameters on the acceleration of fluid around a

flapping wing, the Navier-Stokes equations are revisited, following the similar method

as of Lentink & Dickinson (2009a). The flow over a flapping or a rotating wing can

be analysed by the Navier-Stokes equations cast in a non-inertial rotating frame of
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reference, which can be written as

ρ
Du

Dt
+ ρΩ̇× r + ρΩ× (Ω× r) + ρ2Ω× u = −∇p+ µ∇2u (2.3)

and

∇ ·u = 0, (2.4)

where ρ is the density of the fluid, u is the velocity in the rotating frame, Ω is the

angular velocity, Ω̇ is the angular acceleration, r is the radial location, p is the pres-

sure, and µ is the fluid dynamic viscosity. The first term in equation 2.3 involves the

material derivative of the velocity vector, whereas the next three terms are the angular,

centripetal and Coriolis acceleration terms, respectively. ∇p is the pressure gradient

term and the last term is the diffusion term. Lentink & Dickinson (2009a) have scaled

the terms using

u∗ =
u

U
, t∗ =

Ut

c
,∇∗ = c∇,Ω∗ =

Ω

Ω
, Ω̇
∗

=
Ω̇

Ω̇
, r∗ =

r

R
, p∗ =

p

p0
, (2.5)

where U is the wing tip velocity, c is the mean wing-chord, Ω is the time averaged

angular velocity, Ω̇ is the time averaged angular acceleration, R is the wing tip radius

(or the total span), and p0 is the ambient pressure. Using this scaling and omitting the

symbol ‘∗’ for simplicity, equation 2.3 can be written in a dimensionless form as

Du

Dt
+

Ω̇Rc

U2
Ω̇× r +

Ω2Rc

U2
Ω× (Ω× r) +

Ω2Rc

U2
2Ω×u = − p0

ρU2
∇p+

µ

ρUc
∇2u. (2.6)

Harbig et al. (2012), Lee et al. (2016), and Tudball Smith et al. (2017) have used the

velocity at the radius of gyration (Ug) as the reference velocity. The radius of gyration

(Rg) is the radius of the second moment of the wing area, which is a measure of wing

shape (Ellington, 1984b). It is defined as

Rg =
1

S

∫ R

0
c(r)r2dr, (2.7)

where S is the wing area.

Using Ug as the reference velocity, equation 2.6 can be re-written as

Du

Dt
+

Ω̇Rc

U2
g

Ω̇× r +
Ω2Rc

U2
g

Ω× (Ω× r) +
Ωc

Ug
2Ω× u = − p0

ρU2
g

∇p+
µ

ρUgc
∇2u. (2.8)

It can be estimated from this equation that the angular acceleration term can be in-

fluenced by the flapping motion profile of the wing. The centripetal acceleration term

has a coefficient (Ω2Rc/U2
g ), which can be simplified as

Ω2Rc

U2
g

=
Rc

R2
g

=
A

Ro2
, (2.9)
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where A is the aspect ratio (A = R/c) and Ro is the Rossby number (Ro = Rg/c).

The Coriolis acceleration term is influenced by the term (Ωc/Ug) which can be simplified

as

Ωc

Ug
=

c

Rg
=

1

Ro
. (2.10)

The diffusion term scales with Reynolds number (defined as Re = ρUgc/µ).

Thus, from several kinematic and geometrical parameters that influence the flapping

wing aerodynamics, the important parameters are the wing aspect ratio (A), Reynolds

number (Re), motion profile, and Rossby number (Ro). Moreover, the wing shape

can also be deformed by the flow, depending on the flexibility of the wing, which may

cause a change in the flow structure itself. The effects of these parameters studied by

researchers in the past are discussed in detail in the following subsections.

2.4.1 Reynolds number (Re)

It is evident from Table 2.1 that different insects fly at different Reynolds numbers.

It has been unanimously agreed that the aerodynamic force coefficients increase with

an increase in Re (Birch et al., 2004; Harbig et al., 2013; Carr et al., 2015). The

Reynolds number directly influences the formation of the LEV structure and hence

the performance of the flapping wing. As discussed in an earlier section, dual-LEVs

are observed for Re > 600. This was confirmed by the numerical study conducted by

Harbig et al. (2013). They observed a clear difference in the LEV structure at four

different Reynolds numbers, as shown in figure 2.8. The LEV is observed to be stable

throughout the stroke at low Re whereas it breaks up at higher Re. Birch et al. (2004)

observed an intense narrow region of span-wise flow at higher Re but not at lower Re.

Their study at low Re led to the conclusion that LEV stability does not necessarily

depend on the span-wise flow.

Vortex bursting occurs when a vortex breaks to form smaller, noncoherent struc-

tures. In the case of rotating and flapping wings, the burst occurs when the spanwise

velocity approaches stagnation. The LEV burst has also been observed as a function

of Re (Shyy & Liu, 2007). The location of the LEV bursting point is observed to be

radially more inward at higher Re. Thus, a fruit fly wing, having a weaker LEV at a

lower Re, maintains the LEV structure intact compared to that of a hawkmoth wing

at a higher Re.

Studies using computational models for a fruit fly wing and a Hawkmoth wing
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Figure 2.8: Vorticity plot at 50% span of a rotating wing by Harbig et al. (2013) shows the

difference between LEV structure at Reynolds number of (a) 120, (b) 300, (c) 750 and (d)

1500 (reproduced with permission).

flapping at their respective Reynolds numbers confirmed that the influence of the span-

wise flow is more evident at high Re (e.g. Liu et al., 1998; Aono et al., 2008a; Liu, 2009;

Liu & Aono, 2009). A detailed analysis by Wojcik & Buchholz (2014) demonstrated

that the span-wise convection of vorticity is insufficient to balance the vorticity flux

through the leading-edge shear layer. They found the vorticity annihilation due to

interaction between the LEV and the opposite-sign layer on the wing surface to be an

important mechanism for LEV circulation.

Liu & Aono (2009) observed that the fruit fly wing, having a low Re, has the peak

spanwise pressure gradient always close to the leading edge, driving the LEV towards

the wing tip. However, a hawkmoth wing, having a high Re, has the peak pressure

gradient shifting towards the trailing edge near the midspan region, causing the LEV

to tilt at a more inboard location than that at a lower Re. Han et al. (2014) observed

that, in the case of flapping wings, the centre of pressure (C.P.) on the wing surface

moved towards the trailing-edge root as the wings flipped. However, the movement of
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C.P. at a high Re is only gradual compared to that at a low Re. Therefore, it was

concluded that the response to the rotational lift during the flip motion was immediate

in the low-Re case.

2.4.2 Motion profile

The wing flapping motion is characterised by wing beat frequency (f), stroke ampli-

tude (φmax), phase of rotation and velocity profile. Dudley & Ellington (1990) observed

the flapping kinematics of bumblebees by filming them in their actual flight in a wind

tunnel. Their flapping stroke amplitude was not affected significantly with the wind

speed. However, the bee’s body was observed to tilt in the response, so as to adjust the

thrust and the lift to have a stable flight. Ellington (1984b) obtained the timetraces of

the stroke angles for various insects. The stroke amplitudes (peak-to-peak) were mostly

less than 180◦, eliminating the possibility of clap-and-fling. For a fixed amplitude, as

the frequency increases, the mean lift and drag forces increase with a scaling roughly

proportional to f2 (Ansari et al., 2008a). Increase in stroke amplitude linearly increases

the mean lift and drag. Berman & Wang (2007) built an analytical model for deter-

mining the optimal wing kinematics for a fruit fly, bumble bee and hawkmoth. They

found that the frequency, that minimised the power consumption, while producing just

enough lift to balance the weight in hovering, was close to that observed in nature.

The effect of flip timing and flip duration was first studied by Sane & Dickinson

(2001). The Magnus effect, as described in the earlier section, depends upon the phase

of flipping with respect to translation and flip duration. The lift force was observed

to be maximised by short-duration flips occurring slightly in advance of stroke reversal

(Dickinson et al., 1999; Gogulapati et al., 2014). The mean lift generated by rotation

after stroke reversal was found to be very low. Further investigation by Bross & Rock-

well (2014) showed that in pure rotation, the coherence of the tip vortex is substantially

degraded whereas the flipping motion helps in maintaining the coherence of the tip-LEV

system.

Bos et al. (2008) numerically analysed four different kinematic models for the wing

motion profile. This involved harmonic motion, robofly experimental kinematics, actual

fruit fly kinematics and simplified fruit fly kinematics. The mean aerodynamic drag

at equal lift was found to be significantly lower for a real fruit fly than other models.

Another realistic feature is the wing deviation from the stroke plane, which is found to
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have only a marginal effect on the mean lift and drag.

Various optimisation techniques have also been used to obtain the optimised flight

of MAVs (Rakotomamonjy et al., 2007; Ghommem et al., 2013; Wang et al., 2013).

These studies have found the optimum parameters, such as the amplitudes in rota-

tional translation and pitch, frequency and timing of reversal for MAV wings. Taha

et al. (2013) found that the harmonic waveform required 20% more aerodynamic power

than the robofly (triangular) waveform. However, since the force prediction models on

the flapping wings are not robust, the applicability of the optimisation models, which

include the force predictions, is limited.

2.4.3 Aspect Ratio (A)

As described in §2.1, the aspect ratio (A = b/c) is an important geometrical feature in

flapping wing aerodynamics. It is one of the most studied and yet debatable parameters

in the literature. Usherwood & Ellington (2002) reported a decrease in the horizontal

force and a negligible effect on the vertical force with an increase in A. Luo & Sun

(2005) investigated ten different insect wing shapes in the range of A values from 2.8

to 5.5 rotating at a constant angular velocity. They observed that A has a minimal

effect on the force coefficients if the velocity at the radius of the second moment of

wing area is used as a reference velocity. Garmann & Visbal (2014) also observed very

little variation in the lift coefficient (CL) by simulating rotating rectangular wings ofA

1,2, and 4. However, they observed the evolution of the LEV structure to be affected

significantly with A. As can be seen in figure 2.9, for higher A, the LEV interacts

with the wing surface post its breakdown, which creates undulations of the LEV core.

Moreover, the LEV for higherA extends in the chordwise direction to reach the trailing

edge, which hinders its growth in the spanwise direction.

Some researchers, on the other hand, observed a variation in the forces acting on

the wing with a change in A. Ansari et al. (2008b) simulated the flapping motion of

wing planforms obtained by various combinations of wing shapes and aspect ratios. By

maintaining a constant wing-area for all the wing planforms, they observed that the lift

force increased withA for all the wing shapes, except the triangular wing for which the

lift was nearly unaffected. Harbig et al. (2012) observed a maximum CL for A = 5.1

and a decrease in CL with a change in A on both the lower and the higher sides,

whereas Han et al. (2015) obtained a maximum CL for the wing ofA = 3. Among the
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Figure 2.9: Garmann & Visbal (2014) showed that, after a certain rotation angle (φ), the

LEV at higherA extends in chordwise direction to reach the trailing edge. The LEV break-

down (1) occurs at the midspan in all the cases. However, the undulations in the LEV core

(2) are observed only for high A cases (figure reproduced with permission).

A values in the range 1.5 to 8, they suggested that the wing of A = 3 had the best

aerodynamic performance, as can be seen in figure 2.10(a).

In an experimental study, Kruyt et al. (2015) rotated rectangular wings ofA values

in the range 2 to 10 at relatively high Reynolds numbers (Re ∼ 104). For a high angle of

attack, they proposed that the LEV remains attached for the normalised wing tip radius

R/c < 4. By studying different aspect ratios (1.5 ≤A ≤ 7.5) for three different wing

shapes, Shahzad et al. (2016) observed that the trend in the variation of CL depends on

its scaling. They showed that using the tip velocity (Ut) as the reference, CL decreases

with an increase inA; however, using the velocity at the radius of gyration (Ug) as the

reference, CL increases with A in a lower range and remains relatively unchanged for

A > 6. Phillips et al. (2015) showed an increase in the mean CL computed from the

LEV-circulation obtained from their PIV experiments, whereas Shahzad et al. (2016)

showed a decrease in the mean CL, which can be seen in figure 2.10(b). Ozen & Rockwell

(2013) proposed that the organised swirl of the LEV degraded with an increase in A.
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Figure 2.10: In (a), Han et al. (2015)3 have shown the lift coefficient in translation to be

maximum forA = 3, whereas in (b), Shahzad et al. (2016)4 have shown a monotonic decrease

in the lift coefficient with an increase inA. Here, the lift coefficients are calculated based on

the wing tip velocity.

They also noted that the positive spanwise flow moved towards the trailing-edge for

higher A values.

Remarkably, Harbig et al. (2013) observed a change in LEV structure with AR

similar to that observed with a change in Re and proposed a decoupling of the two

parameters by scaling Reynolds number based on span. This scaling of the Reynolds

number (Reb) indeed showed insensitivity of the LEV structure to A, as shown in

figure 2.11. With this scaling, at relatively higher values of Reb (∼ 103), they observed

that CL remained relatively unaffected with an increase in aspect ratio in the range

A ≤ 5.1, beyond which it started reducing. However, at a low Reb (∼ 102), CL

decreased monotonically with an increase in A.

Carr et al. (2015) verified this scaling of Reynolds number with experiments. How-

ever, they observed different split locations for the LEV with a change in AR. An

interesting relation between angle of attack (α) and A by Kruyt et al. (2015) showed

that for α > 200, the wing with AR = 4 outperformed the wing with AR = 10 in terms

of the force coefficients. But for α < 200, the AR = 10 wing outperformed the AR = 4

wing. It should be noted that the Reynolds number in these experiments were very

high (Reb ∼ 27, 000). This can help explain why revolving helicopter blades have lower

α than hovering insect wings.

3Republished with permission of SPRINGER-VERLAG, from Han et al. (2015); permission conveyed
through Copyright Clearance Center, Inc.

4Reprinted from Shahzad et al. (2016), with the permission of AIP Publishing.
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Figure 2.11: Span-wise vorticity (ωzs/Ug) contours for 3 different ARs (2.91, 5.1 and 7.28)

at the different Reynolds numbers Reb = 613 (a,b,c) and Reb = 7667 (d,e,f) by Harbig et al.

(2013). Scaling of Reynolds number with span decoupled the effect of AR (reproduced with

permission).

2.4.4 Central body size and Rossby number

It could be expected that LEV formation and its spanwise growth might be affected by

the presence of the insect body at the centre of rotation. The central body causes the

wing root to offset from the axis of rotation by an amount (b0 = d/2), where d is the

diameter of the body. The body size (both length and diameter) of adult insects vary

over a large range. The length, for example, of Hymenoptera, a large order of insects

with membrane wings, varies from 0.15 to 60 mm and that of Coleoptera, or beetles,

varies from 0.25 to 180 mm (Minelli et al., 2010). The maximum size of their bodies

is limited by their individual tracheal respiration systems (Harrison et al., 2010). The

wings grow mostly after the body is fully grown and the wing size adjusts to the body

size (Nijhout & Callier, 2015).

The weights of insects directly depend on their body sizes, requiring different lift

forces for flight. A higher lift may be obtained with a larger wing area and a change
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Figure 2.12: The schematic of a fruit fly (Drosophila Melanogaster), adopted from https:

//bugguide.net/node/view/204667, shows its central body size with respect to the wing

size.

in wing kinematics. This causes a significant change to the Reynolds number, which

affects the near-field and far-field vortex structures, as shown by Liu & Aono (2009).

Even the fully grown fruit flies of four different species have different sizes and weights,

and fly at four different Reynolds numbers in the range [70 < Re < 270] (Lehmann,

2002).

The fruit fly body and wing dimensions are shown by a schematic in figure 2.12.

The insect dimensions can be normalised using chosen length scales. Ellington (1984a)

has reported such normalised lengths and diameters for a wide range of insects. Thus,

the normalised offset, which is defined as the ratio of the offset and the wing span (b̂0 =

b0/b), can be calculated for all these insects, as shown in table 2.2. For a wide range of

insect species, the normalised offset values are found in the range (0.035 < b̂0 < 0.14).

An increase in the offset changes the radius of gyration (Rg), resulting in a change in

rotational acceleration terms acting across the wing. This may affect the stability of

the LEV.

The effects of the change in the insect body size relative to its wings do not appear

to have been studied, although there are some numerical studies showing the effects of

the presence of the insect body. Lee et al. (2012) and Liu et al. (2016) observed the

differences between force production on model wings with and without an insect body,

and concluded that the total lift production increased in the presence of the insect body.

As can be seen in figure 2.13, different LEV topologies have been obtained for the cases
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Species L̂ = L
b d̂ = 2b0

L b̂0 = L̂d̂
2

Coleoptera
Coccinella 0.73 0.26 0.095

Diptera
Tipula obsoleta 0.85 0.11 0.047
T. paludosa 1.04 0.10 0.052
Episyrphus 1.10 0.16 0.088
Eristalis 1.22 0.20 0.122

Hymenoptera
Apis 1.62 0.17 0.138
Psithyrus and Bombus 1.47 0.18 0.132

Lepidoptera
Emmelina 0.78 0.12 0.047
Manduca 0.81 0.16 0.065

Neuroptera
Pterocroce 0.77 0.10 0.039
Chrysopa 0.68 0.12 0.041

Table 2.2: The data for normalised mean insect body lengths (L̂) and mean insect body di-

ameters (d̂) are obtained from Ellington (1984a) and the normalised offsets (b̂0) are calculated

using these data.

with and without the presence of the insect body. The strong vortices, namely, the

thorax vortex (TXV) and the posterior body vortex (PBV), are not present in the case

without the body.

Wan et al. (2015) investigated cicada aerodynamics in forward flight and observed

that the vortex generated from the cicada thorax enhanced the overall lift. Bomphrey

et al. (2005) performed the smoke flow visualisations and PIV analysis of the LEVs

over the wings of real insects flying in a wind tunnel. They identified different LEV

topologies for different insects.

The presence of a central body is unavoidable in experimental models. The central

shaft and a connecting rod cause the wing to be offset, resulting in a change in the

Rossby number (Ro = Rg/c). As discussed in § 2.4, the Rossby number could influence

the centripetal and Coriolis acceleration terms which are responsible in stabilising the

LEVs. Wolfinger & Rockwell (2014) have systematically varied the radius of gyration by

extending the length of the connecting rod and found that the vortex system degraded

rapidly with an increase in the Rossby number, reflecting a change to the relative

influence of the rotational acceleration to other force components. With an increasing
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Figure 2.13: A comparison of the LEV topologies has been identified in terms of the isosur-

faces of pressure coefficient (Cp = −0.2) by Liu et al. (2016) for the wings without an insect

body (a) and with the body (b). The corresponding schematic of the wakes has been shown

in (c) and (d) (reproduced with permission).

Ro, the flow structure approached that for the translating wing case, as can be seen in

figure 2.14.

Tudball Smith et al. (2017) have observed a variation in the lift coefficients for a

rotating wing over a wide range of Rossby numbers (0.7 < Ro < 9). By observing

the time traces of the lift coefficients for the different cases, they have confirmed that

the lift reduces with an increase in Rossby number. Also, the flow over the wing at

a high Ro approached a near-symmetric flow of a translating wing, as can be seen in

figure 2.15. However, in the experimental studies in the past, the central body size

was not changed, whereas the radius of gyration was changed by varying the length of

the connecting rod. Moreover, in most of these studies, since the connecting rod was

attached to the centre of a rectangular wing’s root, the LEV might be unaffected by

the secondary flow.

In the aspect ratio studies, for example, Kruyt et al. (2015) observed an optimum

performance for the wing with A ∼ 4, whereas Garmann & Visbal (2014), Carr et al.
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Figure 2.14: Wolfinger & Rockwell (2014) observed that the vortex system degraded rapidly

with an increase in Ro (reproduced with permission).

(2015), and Luo & Sun (2005) observed a negligible effect ofA on the forces. In these

studies, the radius of gyration was also changed with a change in aspect ratio, since

the offset and the chord were maintained to be constant. The discrepancies regarding

the influence of A were explained later by Lee et al. (2016) by studying the A-Ro

coupling.

Recently, Phillips et al. (2017) have studied the 3D LEV structures on the flap-

ping petiolate wings by extending the root of a rectangular wing from its flapping axis.

The petiolation has been calculated as the ratio of the wing-offset to the wing-chord

(P = b0/c). They observed that the LEV’s size and strength increased with the petiola-

tion. Interestingly, by identifying the footprints of the LEV near the wing surface, they

noted that the LEV was larger at midspan and inboard regions for a longer petiolation.

However, the predicted LEV circulatory lift values were shown to increase with peti-

olation in contradiction to the numerical predictions by Lee et al. (2016) and Tudball

Smith et al. (2017), who reported a decrease in the lift with the increasing petiolation.

Like the other experimental studies, the study by Phillips et al. (2017) also involved a

uniform central body with a changing connecting rod length to extend the offset.
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Figure 2.15: CL continuously increases with a decrease in Ro, shown by Tudball Smith

et al. (2017)5.

2.4.5 Wing shape and flexibility

The effect of wing shape and camber has been studied by many researchers including

Vogel (1967), Luo & Sun (2005), Ansari et al. (2008b) and Phillips et al. (2010). It

is unanimously agreed that camber produces higher lift. Wings of actual insects have

corrugated cross-section. The effect of corrugations was studied by Kesel (2000) and

Luo & Sun (2005). At low Reynolds numbers and large angle of attack, the corrugations

do not make any significant difference in the aerodynamic performance. Hence, while

investigating the aerodynamics of flapping insect wings, a flat-plate wing can be used

instead of an actual corrugated wing.

Several optimisation models have been used to determine the optimised wing shapes

for different flight conditions, such as those by Ghommem et al. (2014); Nabawy &

Crowther (2016); Throneberry et al. (2017). In an extensive numerical study, Ansari

et al. (2008b) simulated various generic symmetric and asymmetric wing shapes such as

a rectangle, triangle, reverse triangle, semi-ellipse, inverted semi-ellipse and half-ellipse.

The wing-area was kept constant. Among the symmetric shapes, the reverse triangle

was found to have the maximum mean lift; however, among the asymmetric wings, the

reverse semi-ellipse was found to have the maximum mean lift. Indeed, in most insects,

the wing shapes can be approximated by semi-ellipses (Weis-Fogh, 1973). It can be

seen in figure 2.16 that for Hymenoptera (sawflies, wasps and bees) and Lepidoptera

5Reprinted with permission from Tudball Smith et al. (2017). Copyright (2017) by the American
Physical Society.
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Figure 2.16: Wings of various insect species by Combes & Daniel (2003) (figure reproduced

with permission).
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(butterflies and moths), the wing shapes resemble a reverse triangle whereas for all

other species, the wing shapes resemble a semi-ellipse.

In an experimental investigation of flapping wings of four different generic shapes,

Phillips et al. (2010) observed the general flow structure to be very similar, irrespec-

tive of the wing shape. Combes & Daniel (2001) conducted a theoretical study of two

dimensional wings of various shapes obtained by redistributing their area. They estab-

lished that the wings of the higher proportion of the area in the outer part have higher

thrust. However, the same wings are less efficient than the wings with a lower pro-

portion of area in the outer part. It should be noted that this two-dimensional model

did not involve the effects due to the tip vortices and the spanwise flow, which are

commonly observed in the wings of low aspect ratios in nature. Nabawy & Crowther

(2016) conducted a theoretical analysis of the hovering wing planforms. They showed

that the elliptical wing shape had a minimal profile power whereas the a highly tapered

planform similar to a hummingbird had a minimal induced power.

Luo & Sun (2005) have classified the wing shapes based on the radius of the second

moment of inertia (r2). They found that the variation of the wing shape had a negligible

effect on the force coefficients when the velocity at r2 was used as the reference velocity.

Ellington (1984a) proposed the use of the Beta distribution function to represent the

wing shapes analytically, which can be written as

ĉ(r̂;α, β) =
r̂α−1(1− r̂)β−1∫ 1

0 r̂
α−1(1− r̂)β−1dr̂

, (2.11)

where, ĉ is the local chord-length normalised by the mean chord and r̂ is the local

spanwise radius normalised by the wing span. The parameters α and β are defined as

α = r1
r1 − r22
r22 − r21

,

β = (r1 − 1)
r1 − r22
r22 − r21

,

(2.12)

where r1 is the radius at the centre of mass. Wang et al. (2013) adopted this method

to analyse various wing planforms. They observed the wings of larger r1 values to be

more efficient than those with lower r1 values.

Shahzad et al. (2016) analysed three different wing shapes created by varying the

area distribution from more-inward to more-outward proportions, as can be seen in

figure 2.17. They classified the wing shapes based on normalised radius of the first

moment of inertia (r1). For all the investigated Reynolds numbers, the wings with a
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Figure 2.17: The normalised surface pressures on the wings of r1 = 0.43 ((a)–(c)), r1 = 0.53

((d)–(f)), and r1 = 0.63 ((g)–(j)) flapping at Re = 12 (left), 400 (centre), and 13500 (right),

shown by Shahzad et al. (2016)6.

higher r1 outperformed those with a lower r1 in terms of the mean lift coefficient (CL).

However, in terms of the power economy (CL/CP ), the wings with a lower r1 performed

better. Their further analysis, by introducing the flexibility to the wings, showed that

both the chordwise and the spanwise flexibility helps in increasing the lift in high r1

wings (Shahzad et al., 2017). Recently, Chen et al. (2018) have pointed out that the

shape of the forewing of a hawkmoth matches the formation of the LEV over it.

Wing flexibility also has a significant influence on the wing aerodynamics. Combes

& Daniel (2003) have investigated the flexural stiffness of a wide range of insect wings.

In insects, wings tend to bend more along the chord as the span-wise bending stiffness

is 1- or 2-orders higher than the chord-wise bending stiffness. Nakata and Liu, for the

first time, applied a comprehensive 3D flexible wing model in their study of a hawkmoth

wing (Nakata & Liu, 2012a,b). Their predictions of spanwise bending agreed well with

literature.

Flexibility increases downwash for the same angle of attack and thus increases the

aerodynamic forces. The effect of flexibility has been studied mostly using numerical

6Reprinted from Shahzad et al. (2016), with the permission of AIP Publishing.
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simulations by researchers (see Naidu et al. (2013), Shyy et al. (2008) and Kang &

Shyy (2014)); however, it has not been studied experimentally in detail, with very few

exceptions such as Zhao et al. (2010) and Beals & Jones (2015). Zhao and co-workers

found the lift-to-drag ratio insensitive to flexural stiffness for 200 < α < 600. However,

at higher α, as stiffness was decreased, the L/D ratio increased. Thus, the flexible wing

outperformed the rigid wings for high angles of attack.

Nguyen et al. (2016) have conducted a comprehensive aerodynamic and structural

analysis of a fruit fly wing by simulating the wing veins and membranes with a given

stiffness. In addition to the increased lift and reduced drag with a flexible wing, they

have shown an increase in the storage of elastic energy of deformation, which is released

as kinetic energy during the translation phase. This increased the flapping amplitude

compared to the rigid wing.

2.5 Research challenges

It has been agreed by researchers that the leading-edge vortex is responsible for stable

lift generation on flapping wings of insects (Ellington (1999), Birch et al. (2004) and

Lentink & Dickinson (2009b), etc.). The presence of a central holder is unavoidable in

experimental models and robotic flyers as it helps to hold and rotate the wing. The

effects of the change in the central body size relative to its wings do not appear to

have been studied. Experimental studies implicitly assume that the flow over a wing

at a given Rossby number is the same with or without a holder. The question that

arises while comparing these studies is whether in fact the presence or absence of the

holder makes any difference. Since the central holder in experiments also rotates with

the wing, it can be hypothesised that the secondary flow near the wing root due to the

rotating holder may interfere with the LEV formed at the root. Beyond a certain size

of the holder, the increased secondary flow may well influence the forces on the wing.

The study of the wing aspect ratio on the wing performance has gained a significant

interest due to the contradictory results presented by researchers in the past. Lee et al.

(2016) attempted to conclude this debate by discussing various past studies and the

AR-Ro coupling of their respective geometries that converged to a common conclusion

in terms of a contour map of the lift coefficient in the plane of A and Ro. It can be

inferred from their trend that the lift coefficient can be maximised by increasingA for

any given Ro. These results were obtained at a low Re, at which only low-A wings
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are observed in nature. Therefore, this and past studies do not provide a satisfactory

explanation of why certain aspect-ratio wings are observed only at certain Reynolds

numbers in nature. Moreover, the effects of AR and Re are also observed to be coupled

(Harbig et al., 2013), which might have added an additional level of controversy in the

predicted trends of the lift coefficients. Hence, a comprehensive study of the effects of

A Ro, and Re is important to determine their combined effects.

Insect wings have additional features such as wing venation and varying thickness,

which may be functional in providing the structural strength and allowing the passive

bending as a response to the aerodynamic forces. However, the MAV wings can gen-

erally be simplistic in design, made from a flat plate without any venation. For such

wings, it would be interesting to study the optimum shape that can have a maximised

lift. Most optimisation studies seem to have used the force predictions based on the

quasi-steady models. However, an approach, purely based on the aerodynamic pressure

distribution on the wing, can explain the reasons behind the increased aerodynamic

forces with an optimised shape. Such a study does not seem to have been undertaken

in the past.

The velocity profile of the wing motion is another parameter that may have an

effect on the wing performance. The LEV has been observed to be stable on account

of centripetal and Coriolis accelerations of the flow over the rotating wing (Lentink

& Dickinson, 2009b). A change in the velocity profile can result in a change in a

mean lift generation throughout the stroke. Research on motion profiles until the last

decade concentrated mostly on timing and phase of rotation with respect to translation.

Few numerical and optimisation studies indicate that the insects’ motion profiles are

optimised for minimum power. However, many studies on the flapping wings continue

to use either the harmonic or the triangular waveforms for the wing motion. Hence,

it is important to investigate how the aerodynamic forces and power change with the

various motion waveforms and to provide experimental evidence of an optimum flapping

motion waveform.
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Chapter 3

Methods

The present study uses experimental and computational methods to investigate the

rotating and flapping wing aerodynamics of insect wings. This chapter presents a

detailed description of both the experimental and the computational techniques.

The experiments were conducted in a fluid tank in the Fluids Laboratory for Aero-

nautical and Industrial Research (FLAIR) at Monash University. Two experimental

rigs were developed for rotating and flapping a wing. Techniques such as particle image

velocimetry (PIV) and force measurement were used to study the flow over a rotating

and flapping insect wing. A scanning PIV technique was developed to obtain the flow

measurements of the three-dimensional leading-edge vortex (LEV) by rapid acquisi-

tion of images of different spanwise planes. The experimental rigs and techniques were

validated prior to conducting the experiments from which results were obtained.

The computational analysis was performed on a rotating wing. The computational

fluid dynamics (CFD) models were adopted from those used by Harbig et al. (2013)

using the commercial code ANSYS CFX version 17.2. The governing equations were

solved in a rotating frame of reference. The models were modified as per the geometries

being investigated. In this chapter, the details of the experimental rigs, techniques,

and their validation are presented in § 3.1. The governing equations for the numerical

analysis, details of the rotating-wing model, and its validation are explained in § 3.2.

3.1 Experimental system and techniques

The experiments on a rotating and flapping wing were conducted in a quiescent flow in

a tank. Both rigid and flexible wings were fabricated and the wing geometry was varied,

mainly by changing its aspect ratios. The details of the wing geometry in experiments

are described in the following section. The details of the experimental rigs and the
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measurement techniques are described later.

3.1.1 Wing geometry

The wing geometry was based on a generic fruit fly (Drosophila melanogaster) wing.

This representative wing-shape has been extensively studied by many researchers both

numerically and experimentally (Liu & Aono, 2009; Birch et al., 2004; Vogel, 1966;

Zanker & Götz, 1990; Hawkes & Lentink, 2016). The basic wing was scaled from the

actual fruit fly wing planform (Zanker & Götz, 1990), so as to have a wing-span of

120 mm and an aspect ratio of 2.91. The wing span, b, is measured from the wing root

to the wing tip, whereas the chord, c, is measured from the leading edge to the trailing

edge. The wing aspect ratio is defined as the ratio of the wing span to the mean chord

(A = b/cm).

The wings of different aspect ratios were designed by stretching or compressing the

original wing shape in the chordwise direction. The thickness to chord ratio of the wings

was maintained to be less than 5%. The wing was attached to a cylindrical central body

to hold and rotate the wing, as shown in figure 3.1. Due to this, the wing root was

offset from the rotation axis by an amount b0 such that the total span is R = b + b0.

The wing-root offset, b0, was normalised by b to give the offset ratio, b̂0. Two types of

wings were fabricated, rigid and flexible, as shown in figure 3.1.

3.1.1.1 Rigid wings

Most of the experiments were performed with the rigid wings. The wings were fabricated

using a CNC machine from stainless steel (SS) and acrylic sheets of thickness up to

2 mm. The material was chosen to avoid corrosion when used in water. The SS wings

were painted with a flat black spray paint to reduce the surface-reflections of the laser

during the PIV experiments. Two independent rigs were developed to provide the

rotational and flapping motion to the wing. The motion was controlled with the help

of servo motors driven by computer-controlled drives. The two rigs are described in

sections 3.1.2 and 3.1.3.

3.1.1.2 Flexible wings

We attempted to validate the possibility of studying the effects of wing flexibility,

necessitating an investigation into how to fabricate flexible wings. In this section, some

details of the flexible wing geometry are presented, which may be helpful for a future
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RIGID WINGS

FLEXIBLE WING

A = 2.91

A = 2.91 A = 5.1 A = 7.28

b0 b

Figure 3.1: Rigid wings of different aspect ratios (top) were fabricated from stainless steel

and a flexible wing (bottom-right) was 3-D printed using a white plastic frame and black

rubber planform. The wing was held and rotated using a cylindrical central body attached to

the bottom of a rotating shaft. During the experiments, the wing was inverted to point the

leading edge downward so as to allow the laser sheet to illuminate the leading edge vortex

from the bottom.

study on flexible wings. In this preliminary study, three different flexible wings were

fabricated to test various flexural rigidities. The three wings are as follows.

1. FlexWing1: 3D printed wing - (1-mm thick VeroWhitePlus plastic frame and

TangoBlackPlus rubber wing planform)

2. FlexWing2: 1-mm thick stainless steel frame and 100-µm polythene sheet wing

planform

3. FlexWing3: 0.75-mm PTFE frame and 100-µm polythene sheet wing planform

It should be noted that the wing frame in all these wings was based on the wing-

venation pattern of fruit fly wings. FlexWing1 was found to warp significantly with

small changes in the ambient temperature. Thus, FlexWing2 and FlexWing3 were

chosen for further validation. We first identified the flexural rigidity of the two wings

by following the method described by Combes & Daniel (2003). The wing was supported

at its root and deflected by pushing against a pointer. The force exerted on the pointer

(F ) was measured by the ATI Nano17 IP68 force transducer. The applied deflection

and the corresponding force were noted to compute the value of the flexural rigidity as

EI =
FL3

3d
, (3.1)
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Wing Spanwise EI (N-m2) Chordwise EI (N-m2)
FlexWing2 1.11e-2 7.28e-4
FlexWing3 2.04e-4 4.64e-5

Table 3.1: Flexural rigidity of the wings for spanwise and chordwise bending.

where L is the distance of the pointer from the wing root and d is the deflection of the

wing. The EI values corresponding to the spanwise and chordwise bending can be seen

in table 3.1.

Here, FlexWing3 has a flexural rigidity in the range of EI values for real insect

wings given by Combes & Daniel (2003). There were some challenges while performing

the PIV measurements on the rotating FlexWing3 due to its spanwise bending. The

bending of the wing tip blocked the view of the LEV. Moreover, the chordwise and

spanwise bending of the wing could be affected by the wing venation pattern. It could

also be affected by the wing thickness, which is not uniform in real insects. Therefore,

these factors would require experimentation over a very large parameter space; this

could form the basis of a separate extensive study on flexible wings. However, consid-

ering the focus of the present study, which included the investigation of the parameters

such as the wing aspect ratio, wing-root offset and the wing motion profile, only the

rigid wings were used to avoid the further complications arising from wing flexibility.

3.1.2 Rotational motion

As described in chapter 2, the flow structure obtained over a flapping wing during its

mid-stroke can be approximated to the flow structure obtained over a rotating wing

with a constant angular velocity at the same Reynolds number. Therefore, the study

of the flow structure over the wing in pure rotation can provide useful insights into the

flight stability of insects, which is mainly governed by the stable LEV during most of

its flapping stroke. The experimental rig and the wing kinematics for the rotational

motion are described below.

3.1.2.1 Rotation rig

For the experiments on a rotating wing, the wing was held using a central holder

attached to the central driving shaft, as shown in figure 3.2. The mounting was such

that the wing root was offset from the central axis by an amount equivalent to the

radius of the wing holder (b0). The angle made by the wing plane with the horizontal
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Pulley

Driven shaft

Wing

Wing holder

Base frame

Figure 3.2: The rotation rig consists of a belt-and-pulley mechanism in order to reduce the

motor speed and increase the applied torque.

is known as the angle of attack (α). In experiments, the leading edge was pointing

downwards, as shown in the schematic in figure 4.1. This allowed the laser plane to be

projected from bottom of the tank, to better illuminate the LEV.

The rotational speed of the wing-shaft was reduced by a belt-and-pulley system by

the ratio 4.5:1. The rotational motion was driven by a brush-less DC motor (model:

EC -max 30, Maxon Motor) equipped with an encoder (model: ENC24 2RMHF, Maxon

Motor) with 5000 counts per turn, and a gear box (model: Koaxdrive KD 32, Maxon

Motor) to further reduce the rotational speed by 63:1. This reduction also helped in

providing sufficient torque to drive the model. The rig was mounted in such a way that

the wing shaft was positioned at the centre of the tank.
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Figure 3.3: The wing is mounted on a holder that causes it to offset from the axis of rotation

by an amount b0.

3.1.2.2 Wing kinematics

During the experiments, a simplified motion was prescribed to the wing to obtain

the LEV structure that is formed during the mid-stroke of a typical flapping cycle of

an insect. This required the wing to be held at a constant angle to the horizontal

(α = 45◦) and rotated with a constant angular velocity (Ω) without requiring the wing-

flip and stroke-reversal. The wing was initially uniformly accelerated over a time of

∆t = 0.084T , where T is the total time for one complete rotation. This acceleration

period was chosen as the impulsively started wing has been shown to be comparable

to the beginning of the downstroke of a flapping cycle (Poelma et al., 2006), with the

acceleration period typically ranging between 6 and 10% (Birch et al., 2004; Lentink &

Dickinson, 2009b). After this acceleration, the wing reached a constant angular velocity

corresponding to the chosen span-based Reynolds number given by

Reb =
Ugb

ν
. (3.2)

Here, Ug is the velocity at the radius of gyration (Ug = RgΩ), Rg is the radius of

gyration of the wing, b is the wing span, and ν is the kinematic viscosity of water. The

wing was decelerated over the last 0.084T and stopped.

The flow field was captured using a scanning PIV technique at the fixed phase angle

of φ = 270◦. This phase angle was chosen to allow the flow to reach a near asymptotic

(steady) state without running into its own wake. In practice, as demonstrated in

§ 4.3, the flow pattern does not vary significantly between 90◦ and 315◦ for moderate

Reynolds numbers. The flow in the tank was disturbed by the wing rotation during

each experiment. Hence, it was allowed to dissipate the residual vorticity for 10 minutes
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before starting the next recording. This was found to be a near-optimal waiting time. A

longer time could result in thermal convection driven by a small temperature difference

between the fluid and the surroundings.

3.1.3 Flapping motion

The study of various flapping motion profiles required a flapping motion rig. The rig

was designed to provide a simplified flapping motion to the wing, with two degrees of

freedom. The wing could move along the sweep or phase angle (φ) and the angle of

attack (α). The pitch angle is defined as ψ = 90◦ − α. In this simplified motion, the

pitch axis always remained in a plane, avoiding the out-of-plane flapping of the wing.

The flapping motion rig and the motion profiles are described below.

3.1.3.1 Flapping motion rig

The flapping motion rig, as shown in figure 3.4, was fabricated to perform experiments

on the flapping wing. The flapping motion of the wing was comprised of the motion

about two axes, the rotation axis and the pitch axis. Two Maxon EC-max30 servo

motors were employed to provide the motion about these two axes. The rotation axis

was aligned with the main central shaft driven by Motor-1 at the top. The rotation

about this axis caused the wing to move in a horizontal plane, by changing its phase

angle (φ). The pitch axis was aligned with the wing span at the wing root. The rotation

about this axis made the wing to change its pitch angle (ψ).

The pitch motion was transferred to the wing from Motor-2 at the top, using a

timing belt and timing pulleys. The centrally mounted shaft was chosen to be hollow

to allow the transfer of the motion through the belt-and-pulley mechanism. A timing

pulley was mounted on the motor shaft that transferred the motion to the timing belt

placed inside the hollow shaft. The belt drove another pulley situated at the bottom

of the shaft covered with a cylindrical wing holder. The pulley was mounted on a

miniature shaft of diameter 2-mm that was held in its place by two miniature ball

bearings fitted inside the holder. Finally, the connecting rod that held the wing was

attached to the miniature shaft. It should be noted that as Motor-1 rotated the central

shaft, Motor-2 also revolved around the central axis along with it. The flapping motion

required the sweep angle to be varied by less than 180◦ peak-to-peak.
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Figure 3.4: The flapping motion rig.

3.1.3.2 Flapping wing kinematics

The flapping wing kinematics involved the 2-DOF system with varying flapping profiles,

adopted from Berman & Wang (2007). The time-variation of the sweep angle (φ) is

defined as

φ(t) =
|φ|

sin−1K
sin−1[K sin(2πft)], (3.3)

where |φ| is the magnitude of oscillations in sweep, f is the frequency of oscillations,

and K is the sweep profile parameter varying in the limit 0 ≤ K ≤ 1. A sinusoidal

profile is defined by the limit K → 0, whereas a triangular profile is defined by the limit

K → 1. In short, the time taken for the wing reversal can be varied by varying K.

Similarly, the time-variation of the pitch angle (ψ) is defined by a periodic hyperbolic

function as

ψ(t) =
|ψ|

tanhCψ
tanh[Cψ sin(2πft+ Φ)], (3.4)

where |ψ| is the magnitude of pitch oscillations, Φ is the phase difference between the

sweep and the pitch oscillations (which was maintained to be π/4), and Cψ is the pitch
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Figure 3.5: Flapping profiles for the sweep angle (φ) and the pitch angle (ψ), with varying

profile parameters.

Tank Length (mm) Width (mm) Height (mm)
WT1 500 500 600
WT2 1000 1000 800

Table 3.2: Sizes of two tanks of quiescent fluid used for experiments.

profile parameter. The profile is sinusoidal as Cψ → 0, and it is a step function when

Cψ →∞. The variation in the profiles can be seen in figure 3.5.

3.1.4 Fluid tank

The experiments were conducted in quiescent, fluid-filled square cross-section tanks.

Two different tank sizes were used for the experiments, as tabulated in table 3.2.

3.1.4.1 Tank size validation

It is important to validate the tank size, since the proximity of its walls can affect the

flow structures over a wing. During the wing rotation, the flow structures near the

wing are shed in the wake and can be transported towards the tank walls depending on

their acceleration. The validity of the results for the given size of the tank was checked

by rotating the wing and observing the evolution of the flow structures in a horizontal

plane, as shown in the schematic in figure 3.6. The flow was seeded with PIV particles

and illuminated by a laser sheet in a horizontal plane close to the mid-chord. The flow

field was recorded using Dimax PCO high speed camera. The images were processed

to give the velocity and vorticity measurements in the illuminated plane.

For this validation study, rectangular wings of three different aspect ratios were

43



Figure 3.6: Schematic of the PIV experiments setup used for validating the tank size

chosen such that they had a constant chord and different spans. The wing with a

higher aspect ratio sweeps a larger area in the tank. The wings were rotated with a

constant velocity at Re = 1500. PIV images were obtained at different phases of the

rotation of each wing. The normalised vorticity plots at different phases for the wings

are shown in figure 3.7. Vorticity contours plotted at different phases of rotation show

that the vortices from the tip are mostly left in a curved wake pattern that diffuses

with time. In all the cases, the vorticity near the tank wall remains low, indicating no

significant impact due to the wall-proximity.

3.1.4.2 Tank settling time

As the wing rotates inside the water tank, the quiescent state of water is disturbed.

The vortices formed at the wing edges are shed in a circular wake which diffuses with

time. However, the wing may encounter the residual vorticity left in the wake by the

wing in a previous rotation cycle, which may interfere with the flow over the wing.

Hence, the rotating wing experiments were conducted in such a way that the data were

recorded during one rotation of the wing and the rotation was then stopped to allow
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Figure 3.7: Normalised vorticity (ω∗
y = ωyUg/c) contours are plotted at different phases of

rotation for wings of A = 1, 2, and 2.91. Here, the counter-clockwise vorticity is considered

to be positive. The dashed line represents the starting position of the rotating wing. The

dash-dot line represents the tank wall. The grey colour shows the shadow cast by the central

holder of the wing. The vorticity near the wall even for the largest wing span is low.

the flow to settle. The duration between two consecutive rotations of the wing is called

as the tank settling time ts.

The tank settling time was found by recording the time-variation of the mean ve-

locities in the vertical plane passing through the wing-tip, where the instantaneous

velocities were maximum. The wing of A = 2.91 was initially in the tank WT1 (refer

table 3.2) rotated through 360◦ and stopped. The PIV images were recorded right from

the time when the wing rotation was stopped till the next 20 minutes at the intervals

of 30 seconds. The time variations of the mean horizontal and vertical velocities (u

and v), and the mean vorticity (ωz) are plotted in figure 3.8. Two sets of data were

recorded, for a low and a high Reynolds number rotation (Re = 120, 1500).

After the wing was stopped, the velocities were observed to fluctuate, but decrease

drastically in the first 5 minutes. Later, the velocities decrease with a lower rate,

reaching values less than 5% of the reference velocity (Ug) at times beyond 10 minutes.
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Figure 3.8: The horizontal velocity (u), vertical velocity (v), and spanwise vorticity (ωz)

reduce with time after the wing rotation was stopped at t = 0 minutes, both for the small

and the big tank. The top row shows the velocity and vorticity records for the small tank

(WT1) and the bottom row shows the velocity and vorticity records for the big tank (WT2).

The vorticity also initially fluctuated with time and then decreased to a low value

(ωz < 0.01) after 10 minutes. Hence, the tank settling time was determined to be 10

minutes for all experiments in the range of Reynolds numbers 120 ≤ Re ≤ 1500.

This procedure was repeated with the bigger tank (WT2) with the wing rotating at

Re = 1500. It can be observed from figure 3.8 that the flow in the smaller tank settled

relatively earlier than that in the big tank. However, even with WT2, the velocities

and vorticity decreased to low values 10 minutes after the wing rotation was stopped.

Moreover, in this case, the horizontal velocity began changing its direction after 15

minutes. It increased in magnitude in the negative direction, indicating a possible large

scale convection flow in the large fluid volume. The rotating wing experiment with

Re = 350 was repeated using different time intervals between the two experiments in

order to observe the impact of the tank flow velocities present at these time intervals.

A comparison of the flow structure was made with the reference case obtained

from the experiment in the small tank (WT1) by comparing the vorticity contours at

different spanwise locations, shown in figure 3.9. The flow obtained for the cases using

the settling time of 10 minutes and 12 minutes matched well with the reference case. In
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(a) Reference case with ts=10 min in WT1

(b) ts=5 min in WT2

(c) ts=10 min in WT2

(d) ts=12 min in WT2

(e) ts=20 min in WT2

Figure 3.9: The normalised vorticity contours are plotted at different spanwise locations

and compared for the cases by varying the settling time (ts). The LEV structure and its split

position is observed to change with ts.

other cases, the background velocity interfered with the LEV structure as can be seen

in the figure. Hence, the settling time between the two wing rotations was maintained

at 10 minutes.

3.1.5 Scanning PIV technique

The LEV was observed to have a 3D structure. The studies, such as those by Cheng

et al. (2013) and Jones et al. (2016), have employed 3D PIV or stereo PIV techniques to

capture the 3D structure. The LEV-vorticity is aligned predominantly in the spanwise

direction. Hence, the structure of the LEV could be characterised by obtaining the
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Figure 3.10: Schematic of the scanning PIV system shown in the front and side views. As

the polygonal mirror rotates, the laser sheet scans the distance in spanwise direction.

spanwise vorticity field in cross-sectional planes at multiple spanwise locations of the

wing. This would require the laser apparatus, or at least the laser sheet, to be shifted to

different locations for every recording. Considering an idle time of 10 minutes between

two recordings, obtaining PIV images at different spanwise locations with standard PIV

could be a time-consuming process.

Researchers in the past have developed scanning PIV systems for fast recording of

multiple planes within a volume. For instance, Brücker (1995), David et al. (2012), and

Lawson & Dawson (2014) used an oscillating mirror, whereas Green et al. (2011) and

Albagnac et al. (2014) used a mirror mounted on a high-speed linear traverse to scan

the volume. David et al. (2012) performed scanning PIV measurements for an airfoil

of a finite aspect ratio flapping in two dimensions (linear translation and pitch).

In the present work, a scanning PIV system was developed with a rotating mirror.

It allowed multiple images to be taken at high speed during a rotation of the wing.

It also provided a scanning resolution of about ∆(r/b) = 0.025 in the spanwise shift.

A schematic of this scanning PIV setup is shown in figure 3.10. A laser beam from

a continuous laser (model: MLL-N-532nm-5W, CNI) is reflected by a polygonal (oc-

tagonal) mirror. The reflected beam then passes through a plano-concave spherical

lens. The spherical lens is aligned such that the beam is refracted only in the vertical

48



0 500 1000 1500 2000
X (pixels)

0

50

100

150

200

In
te
n
si
ty

Data averaged over 100 rows

Gaussian fit

0 500 1000 1500 2000
X (pixels)

0

250

500

750

1000

Y
(p
ix
el
s)

Figure 3.11: Measurement of the laser sheet thickness. The laser sheet appears as a line

from the side view. The intensity is averaged over the central 100 rows. The width is

considered to be the full width at half maximum (FWHM) of the Gaussian.

direction. This is followed by a cylindrical lens that forms a laser sheet. The laser sheet

illuminates the PIV particles (model: S-HGS-10) around the wing in the fluid.

The rotation of the polygonal mirror was achieved using a Maxon EC -max 30 servo

motor and a Maxpos 50/5 position controller. As the polygonal mirror rotated, the laser

sheet shifted its position along the wing span. PIV images were obtained at different

spanwise positions using a PCO Dimax S4 camera sampling at a rate of 1000 frames

per second (FPS). An exposure of 0.75 ms was set so as to limit the thickness of the

shifting laser to within 3 mm. In the side view, the laser sheet appeared as a thick line.

Images were also captured from the side to measure the shifting location and width of

the laser sheet.

Figure 3.11 shows a typical image of the laser sheet captured from the side view.

The intensity of the central 100 rows is averaged to quantify the intensity variation

shown in the figure. The laser sheet width is calculated by measuring the full width at

half maximum (FWHM) of the Gaussian fit to the intensity curve. The location of the

laser sheet is identified by the location of the peak of the Gaussian fit.

For a single set of PIV measurements, the polygonal mirror was rotated through

720◦. The mirror had 8 reflecting faces. Each mirror face could reflect the beam for

45◦ rotation of the polygon. The camera was triggered only for the 15◦ rotation of

each face when the laser plane fell in the volume of interest. During the remaining 30◦,

the laser plane was shifted out of the volume of interest. Overall, 16 such scanning

sets were obtained during the measurements, with each set containing 26 images. Only

the central four scanning sets were processed to obtain the three sets PIV image pairs
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Figure 3.12: Measurements of the laser-plane location in motion. The scanning motion of

the laser plane is tracked from the side view. The position of the laser plane is tracked based

on the location of the Gaussian peak. The system is capable of scanning a distance of 50 mm

across the span consistently, except for the first and last 3 cycles, where the rotating mirror

is accelerating or decelerating. The laser sheet width is consistently between 2 and 3 mm.

used to reconstruct the velocity field. The scanning PIV was performed in the range,

600 < Reb < 1500. During the recording time of the central four sets, in the worst case

(Reb = 1500), the wing rotated through 269.45◦–270.55◦. The LEV structure remained

unchanged for a wide range of phase angles, as described in the results. For higher

Reynolds numbers (Reb > 1500), fixed-plane PIV was performed.

To calibrate the laser plane position with respect to the mirror rotation, images

were obtained from the side view. Figure 3.12 shows the results of the laser plane

position and the corresponding laser sheet width varying across the imaging sequence.

From the figure, it can be seen that the laser sheet is able to consistently scan through

a distance of 50 mm except for the first and last 3 scans. This is because when the

mirror accelerates or decelerates, the distance travelled by the laser sheet in the chosen

interval of time is less than that at the constant rotation speed programmed. The laser

sheet width observed is between 2 and 3 mm in, approximately, 90% of the images. The

laser plane position in a particular scan can be identified to an accuracy of 1 mm by

the index of the image in the scan.

For PIV measurements, the camera was focussed at the centre of the scanned dis-

tance. The aperture opening was set to f/8 to provide a greater depth-of-field. Images

of the same index from two consecutive scans were paired. Cross correlation was per-

formed between the pairs using in-house codes originally developed by Fouras et al.
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Figure 3.13: The calibration curve for positioning the traverse to give a specific laser plane

location is shown in (a). The imaging magnification factor is shown to vary linearly (b) as

the laser plane position changes.

(2008). An interrogation window of 32 pixels × 32 pixels with 75% overlap yielded a

249 × 198 array of velocity vectors in a captured area of approximately 80 × 64 mm2.

The number of bad vectors in the cross correlation was more for the out-of-focus im-

ages, as illustrated in figure 3.14. The PIV images sampled in the middle portion of

the scan, equivalent to a normalised distance ∆(r/b) = 0.25, resulted in a total number

of bad vectors below 5%.

To reconstruct the two-component velocity field over the entire wing span, the

optical components were shifted to different positions along the span. The camera

focus was readjusted and the scanning PIV measurements were repeated at the new

positions. This was achieved by mounting the optical components on a motorised linear

traverse (model: Zaber T-LSR450) controlled using Zaber Console software. However,

it was observed that the laser plane position shifted slightly more than the traverse

travelled. This was due to a small error introduced by a minute misalignment of the

optics. Hence, the traverse was calibrated to give the actual travel matching the laser

plane position. The calibration showed the resultant laser plane shift for a given traverse

shift, as can be seen in figure 3.13 (a).

During the scanning PIV recording, the laser plane was shifted by a certain distance

towards the camera; however, the camera position remained fixed. Hence, the distance

between the laser plane and the camera changed, thereby changing the magnification

factor. This change to the magnification factor was calibrated with the laser plane

position. The calibration results show a linear relationship in figure 3.13 (b). Based on
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Figure 3.14: Measurements of the filled (bad) vectors in PIV imaging.

the actual distance of a PIV image, the magnification factor was determined by linear

interpolation.

During the recording of scanned PIV images, the position of the linear traverse

was fixed and the fluid volume was subsequently scanned. The distance of the laser

plane from the wing root (r) was normalised by the wing span (b). The camera was

focussed at the centre of the scanned volume. As the volume was scanned, the imaging

varied from out-of-focus to in-focus and then to out-of-focus again. In general, images

taken further from the focal plane resulted in a greater number of bad vectors than the

better-focused images, as shown in figure 3.14.

At a fixed position of the traverse, scanning PIV measurements were undertaken to

produce three full independent datasets. For each set, three central consecutive scan-

ning cycles were chosen from 16 cycles, as discussed earlier. Thus, 9 sets of PIV images

for each spanwise position were obtained. The two-dimensional planar velocity fields

were computed separately for each set by cross-correlation. Finally, the flow quantities

were averaged to give a mean flow field within each spanwise plane for each scanned vol-

ume. Figure 3.15 shows the evolution of typical LEVs using averaged vorticity contours

obtained from the scans, where the vortex structures are identified by the Q-criterion

(Hunt et al., 1988) ignoring the unmeasured through-plane velocity component. It can

be seen that the flow separates at the leading edge, forming the characteristic LEV. The

LEV grows in size with increasing r/b. Increased numbers of bad vectors, due to poorer

illumination in the scan, are observed in the last four images. Some noise is also seen

in the contours at the start of the scan, where the particles were more out-of-focus. For
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Figure 3.15: A typical series of vorticity contours obtained from a cycle of the scanning

PIV. The normalised vorticity range is ω∗
z = ωzb/Ug ∈ [−30, 30]. The black lines represent

the vortices identified by the Q criterion. The images at the end of the scan are poorly

illuminated, and hence, can be ignored. The noise levels for Q are also high for the planes

that are out-of-focus. The LEV is observed to increase in size in the spanwise direction, and

splits at r/b ' 0.416.
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the above results, a scanning resolution of ∆(r/b) = 0.025 was achieved with the help

of the fast scanning speed coupled with a high-speed camera, both described earlier.

The wing, camera, and the motor for the scanning laser sheet system were controlled

by a real-time control system described in the following section.

3.1.6 Force measurements

The lift and drag forces on the rotating and flapping wing at low Reynolds numbers

were estimated from the force coefficients in the literature. The estimated values for

the wing motion in water were of the order of 10mN. Hence, an accurate, commercially

available force and torque transducer, ATI Nano17 IP68 was employed to measure the

forces and the torques on the wing.

The ATI Nano17 IP68 is a 6-signal F/T transducer providing the forces and torques

in the three Cartesian coordinate axes. We were interested in measuring the forces and

torques along the X and Y axes of the transducer, which were aligned in the normal

and tangential direction, respectively, to the wing surface. The calibration for the

measurements along these two axes was performed as described below.

3.1.6.1 Force and torque calibration

The schematic of the setup used for calibrating the F/T transducer is shown in fig-

ure 3.16. The ATI transducer was attached to a vertical plate rigidly mounted on a

frame. The attachment was fabricated in such a way that either of the X or Y axes

could be aligned vertically. The alignment of the frame was ensured using a digital

spirit level. After the transducer was mounted, a horizontal bar with a flange was at-

tached to it, which acted as a moment arm. A pan with chosen weights could be hung

at any chosen distance along the moment arm.

The transducer cable was connected to the interface and power supply (IFPS) box,

which was further connected to the Beckhoff analog input terminals attached to EK1100

EtherCAT coupler. The coupler transferred the input signals to the computer. The

acquired signals were recorded using TwinCAT3 software. The IFPS box was calibrated

by the supplier and a calibration matrix was provided to convert the raw voltages into

the forces and torques. This calibration was verified by applying the forces and torques

along the axes of interest, i. e. along X and Y axes.

First, the weight of the moment arm and the pan were noted by weighing them

on an electronic balance. The applied force was varied by systematically changing the
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Figure 3.16: Schematic of the setup used for the calibration of the F/T transducer (ATI

Nano17 IP68) and the calibration plots for the forces (Fx and Fy) and torques (τx and τy).
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weights in the pan. The value of torque applied can be computed as the force multiplied

by the distance on the moment arm (L), where the weight was hung. For every applied

weight, the transducer signals were recorded for 60 seconds. The recorded signals were

averaged to compute the mean measured forces and torques.

Firstly, the Y axis was aligned in the vertical direction and the forces were applied

along the negative Y axis. The same force also implicitly applied a torque along the X

axis. The force and torque were varied by adding different weights in the pan hanging

at a distance L from the transducer. In addition to the change in the weights, the

distance L was also varied to change the applied torque. By changing L, for a constant

applied weight, the value of the measured force varied slightly with an error of < 4%.

The torque measurements were found to be relatively more accurate, with an error of

< 1%. The same procedure was repeated by aligning X axis in the vertical direction and

applying the forces along the positive X axis that simultaneously applied the torques

about Y axis. The plots of the measured forces and torques against the applied forces

and torques can be seen in figure 3.16.

3.1.7 Real-time control system

A real-time control system with high temporal accuracy was required to accurately con-

trol and trigger such a complicated experimental rig consisting of a high-speed camera

for PIV imaging and motors for driving the wing model and the rotating mirror and

the force/torque measurement sensor (ATI Nano17 IP68). This was achieved by devel-

oping a system based on EtherCAT (Ethernet for Control Automation Technology). In

this system, the motor drives (model: Maxpos 50/5, Maxon Motor), the analog input

modules for recording the signals from the F/T sensor and the digital I/O modules for

the triggers were connected to an EtherCAT coupler (model: EK1100, Beckhoff). The

coupler was connected via an Ethernet cable to a high-performance workstation com-

puter that was equipped with the Beckhoff TwinCAT3.1 real-time software providing

a real-time accuracy of 0.125 ms. Customised GUI (graphical user interface) programs

were developed to control the real-time tasks. The schematic of the real-time control

system is shown in figure 3.17.

3.1.8 Flow visualisation

The flow around a rotating or flapping wing of finite span is three dimensional. Dye

visualisation and hydrogen bubble visualisation techniques were validated to observe
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Figure 3.17: The real-time control system included servo motors, controllers, a high speed

camera and a F/T sensor connected to a computer via an EtherCAT coupler.

the flow qualitatively.

3.1.8.1 Dye visualisation

The traditional dye visualisation technique involves a continuous flow of a dye injected

in the flow close to the formation of the shear layer. In the present study, the leading

edge acted as the location of the separation of the shear layer that formed the LEV.

The continuous injection of a dye would require the dye velocity to be nearly equal

to the velocity of the flow surrounding the point of injection. However, in the present

study, the flow velocity varied in time due to the wing’s motion profile and also varied

along the wing span since the wing was rotated about the central axis, which made it

difficult to inject the dye directly over the leading edge. Hence, a mixture of a dye and

other chemicals was applied on the leading edge to adhere to it before inserting the

wing in water. Leweke (2012) has suggested an addition of a thickening agent, such

as honey, which makes the dye solution syrupy, making it easy to spread over a solid

surface.

In our experiments, two different substances were tested as mixing agents. In the

first test Rhodamine-B dye and honey were mixed and applied on the leading edge.

The applied mixture was allowed to dry for 20 minutes and was then inserted in water.

The dye was illuminated using white light from a halogen lamp. However, as soon
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Figure 3.18: Dye mixed with, (a) honey gives poor contrast and higher density than water,

(b) acrylic paint gives better contrast and density close to water.

as the wing was inserted in water, the heavy drops of honey (density ∼ 1400 kg/m3)

started dropping under gravity. The captured images show much less colour contrast

as can be seen in figure 3.18 (a). In the second test, an acrylic paint (colourless Epoxy

Enamel) was mixed with the dye (Rhodamine-B). The density of this mixture was close

to that of water (∼ 1000 kg/m3). A similar procedure was followed as above, with a

drying time of 10 minutes. This mixture had the density close to that of water. Hence,

it did not flow downwards under gravity. It can be seen from figure 3.18 (b) that the

illumination is better than for the dye-honey mixture.

However, it was challenging to maintain the dye adhering to the leading edge for

a long period. Most of the dye would immediately flow out in the initial acceleration

phase of the wing, leaving very little dye available to visualise the leading-edge vortex

(LEV) formed later. Following these tests, the hydrogen bubble technique was validated

to visualise the LEV.

3.1.8.2 Hydrogen bubble visualisation

The dye visualisation technique required repeated dismantling of the setup to apply the

dye to the wing leading edge. However, hydrogen bubble visualisation did not require

the setup to be dismantled between sets of experiments. In this technique, the flow
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Figure 3.19: The hydrogen bubble visualisation of the leading-edge vortex of a fruit fly wing

planform rotating at Re = 1000 can be see in (a). At a higher Reynolds number (Re = 1500),

two co-rotating vortices, termed as the dual-LEVs, can be seen in (b). A minor vortex near

the leading edge is formed by the secondary separation, while the primary shear layer has

formed the major vortex.

is visualised by generating tiny hydrogen bubbles near the region of interest. In the

present work, a tungsten wire of diameter 25 µm was attached to the leading-edge,

which acted as a cathode. An aluminium bar inserted in the water tank acted as an

anode. When connected in a DC circuit of 30V supply, the electrolysis of water caused

the thin cathode wire to release hydrogen in the form of tiny bubbles. The smaller

bubbles had lower buoyancy forces; hence, they followed the leading-edge shear layer

before rising to the water’s surface.

The bubbles were illuminated using either the white light or the laser sheet. The

laser illumination in a plane provided a better view of the LEV than the poorly illu-

minated 3D view by the white light. In figure 3.19, the pictures of the LEV and the

dual-LEVs can be seen, which are captured using the hydrogen bubbles illuminated by

the laser.
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3.2 Computational method

3.2.1 Solver setup

The computational method used in this study has been adopted from Harbig et al.

(2013). The flow over a rotating wing was modelled by the Navier-Stokes and continu-

ity equations cast in a non-inertial rotating frame of reference. The ’alternate rotation

model’ was used to minimise the numerical error, in which the solver advects the ab-

solute frame velocity instead of the rotating frame velocity. Thus, the advection and

transient terms of the N-S equation were modified to involve the absolute frame velocity.

The solver equations were written as

∂ρuabs

∂t
+ ∇ · (ρuuabs) = −∇p+ ∇ ·σ − ρΩ× u− ρΩ× (Ω× r) (3.5)

and

∇ ·u = 0, (3.6)

where ρ is the density, p is the pressure, Ω is the rotational velocity vector, u and

uabs are the velocity vectors in rotating and absolute frames respectively. The angular

acceleration in included in the transient term as uabs = u+ Ω× r. The stress tensor

σ can be defined as

σ = µ[∇u+ (∇u)T − 2

3
I∇ ·u], (3.7)

where I is the identity matrix.

These equations were solved directly using the commercial code ANSYS CFX ver-

sion 17.2.

3.2.2 Wing geometry and motion

As described in § 3.1.1, the wing geometry was based on a generic fruit fly wing

(Drosophila melanogaster). The basic wing was modelled to be of a similar scale to

that of the actual fruit fly (Zanker & Götz, 1990) with a wing-span (b) of 2.47 mm

and an aspect ratio (A) of 2.91. The wings of different aspect ratios were produced

by stretching or compressing the original wing shape in the chordwise direction. The

thickness to chord ratio of 0.03 was maintained. The wing root was offset from the

rotation axis by an amount b0 such that the total span is R = b + b0. In some cases,

the wing was attached to a cylindrical central body to match experimental designs with

a wing holder. The central body causes the wing-root to be offset from the centre of
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Figure 3.20: Schematic of the wing, central body, and the coordinate system.

rotation by an amount b0. The schematic of the wing, central body, and the coordinate

system is shown in figure 3.20.

A simplified wing motion was prescribed in order to obtain the LEV structure that

is formed during the mid-stroke of a typical flapping cycle of an insect. This required

the wing, initially at rest in a quiescent fluid, to be rapidly accelerated to a constant

angular velocity (Ωc) by rotating about the central axis. Throughout its motion, the

wing maintained a constant angle of attack (α = 45◦) with the horizontal plane. The

acceleration period was chosen to be t = 0.084T , the same as that used by Harbig

et al. (2013), where T is the total simulation time. An impulsively started wing has

been shown to be comparable to the beginning of the downstroke of a flapping cycle

(Poelma et al., 2006), with the acceleration period typically ranging between 6 and 10%

of the total simulation time (Birch et al., 2004; Lentink & Dickinson, 2009b). With

a constant angular velocity, the flow over the wing achieved a quasi-steady state after

about t = 0.3T , as can be seen in figure 3.21. The simulation was stopped after 270◦

rotation of the wing. The prescribed motion profile is given by

Ω(t) =

{
1
2Ωc(1− cos( πt

0.084T )), t < 0.084T

Ωc, t ≥ 0.084T.
(3.8)
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3.2.3 Computational domain

The geometry was embedded in a cylindrical computational domain similar to that used

by Harbig et al. (2013). The domain had a diameter 18R and a length 48c, where R

is the distance of the wing-tip from the axis of rotation and c is the mean wing chord.

The domain was meshed using an unstructured tetrahedral mesh with triangular prism

elements near the wing surface. The overall mesh consisted of approximately 40 million

elements, with a grid spacing of 0.00725c on the wing’s surface. Mesh independence was

verified by comparing the predicted forces to those with two other meshes generated by

scaling the grid spacing by two and four, which resulted in 0.7% and 2.4% difference,

respectively, in the lift coefficients averaged over the final 30◦ rotation (CL). The time

step was chosen to be 0.00185T . This was validated by halving the time step, which

resulted in a less than 0.1% difference in the mean forces.

3.2.4 Validation studies

Mesh resolution, time-step resolution, and domain size verification studies were per-

formed by Harbig (2014). After modifying the geometry to include the central holder,

causing the wing to offset from the axis of rotation, the simulations were run to vali-

date the modified mesh size. The wing of A = 2.91, with a central body causing the

normalised offset to the wing root of b̂0 = 0.25 rotating at a low (Re = 80) and a high

(Re = 1200) Reynolds numbers, was used for the validation. The numerical errors were

estimated using the grid convergence index (GCI) method proposed by Roache (1998).

GCI between a coarse and a finer grid is given by

GCI =
Fs|ε|
rp − 1

, (3.9)

where ε is the relative error given by ε = (f2− f1)/f1, f2 and f1 are the solution values

obtained with the coarse and fine grids respectively, r is the grid refinement ratio given

by r = (N1/N2)
1/3, N1 and N2 are the number of mesh elements with the fine and

coarse grids respectively, p is the order of convergence, and Fs is the safety factor. As

per Roache (2003), the value of Fs was chosen to be 1.25 for a three-grid convergence

study. The mesh sizes were doubled in two successive steps to obtain the fine, medium

and coarse grids respectively. The corresponding values of GCI for the lift coefficient

(CL) and drag coefficients (CD) were calculated for Re = 80 and Re = 1200, which

can be seen in table 3.3. The values for GCI between the medium and the fine mesh

62



Mesh
Surface Elements Re = 80

Size (million) CL GCI(%) CD GCI(%)

1 0.0286c̄ 6.59 1.346 – 1.536 –
2 0.0145c̄ 15.58 1.343 0.283 1.521 1.507
3 0.0072c̄ 80.39 1.338 0.226 1.513 0.319

Mesh
Surface Elements Re = 1200

Size (million) CL GCI(%) CD GCI(%)

1 0.0286c̄ 6.59 1.666 – 1.572 –
2 0.0145c̄ 15.58 1.664 0.168 1.577 0.475
3 0.0072c̄ 80.39 1.665 0.044 1.583 0.250

Table 3.3: Mesh resolution study for rotating wing model with a central body.

Time-step
Time-step Re = 80

Size (∆t/T ) CL GCI(%) CD GCI(%)

1 1/540 1.344 – 1.521 –
2 1/1080 1.338 0.176 1.515 0.164

Time-step
Time-step Re = 1200

Size (∆t/T ) CL GCI(%) CD GCI(%)

1 1/540 1.664 – 1.577 –
2 1/1080 1.657 0.182 1.570 0.180

Table 3.4: Time-step resolution study for rotating wing model with a central body.

were found to be less than 0.5%. Hence, the medium mesh sizing was chosen for all the

subsequent simulations. Similarly, the time-step resolution was validated by analysing

the GCI for the time-steps ∆t = T/540 and ∆t = T/1080, where T is the total solution

time. The results obtained at Re = 80 and Re = 1200 are summarised in table 3.4.

The time-step of ∆t = T/540 was chosen for this study, which showed a GCI of less

than 0.5% for both CL and CD.

The results from the modified mesh sizing were compared to those from the lit-

erature. First, the results were compared with the experimental data by Birch et al.

(2004). The wing of aspect ratio A = 2.91 and an offset ratio b̂0 = 0.067 was rotated

at two different Reynolds numbers. The lift coefficient varied with time, as can be seen

in figure 3.21. The mean lift coefficient (averaged over last 30◦ rotation) was observed

to be within 5% of that by Birch et al. (2004). The lift coefficient was defined by Birch

et al. (2004) as

C ′L =
L

0.5ρΩ2R2
∫ 1
0 r̂

2ĉ(r̂)dr̂
, (3.10)

where r̂ is the normalised wing-radius (r̂ = r/R), ĉ is the normalised wing-chord (ĉ(r̂) =
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Figure 3.21: In (a), the time variation of the lift coefficient for a fruit fly wing planform

rotating at Re = 105 and Re = 1400 is compared with the experimental data at similar

Reynolds number by Birch et al. (2004). In (b), the time variation of the lift coefficient for a

rectangular wing rotating at Re = 1400 is compare to that for the same wing from Tudball

Smith et al. (2017).

c(r)/c̄). The lift coefficient in the present work is defined as

CL =
L

0.5ρΩ2R2
gS
, (3.11)

where Rg is the radius of gyration (Rg =
√

(1/S)
∫ R
0 r2.c(r).dr) and S is the wing area

(S = bc̄). Thus, equation 3.10 can be rearranged as

C ′L =
L.R

0.5ρΩ2R2
g.S.b

= CL(R/b)

(3.12)

To compare the experimental data by Birch et al. (2004) with the CFD results, the lift

coefficient of Birch et al. (C ′L) was scaled by (b/R) to calculate CL. No information was

available about the wing-root offset distance in their experiments. Hence, a reasonable

offset of b0/R = 0.1 was estimated from their schematic. To match the present way of

calculating CL, the data from Birch et al. (2004) were scaled by b/R. The lift values

predicted by the present method show a good match with the experiments, as can be

seen in figure 3.21(a). A reduction in the forces after t/T = 0.4 in experiments may

be due to the deceleration of the wing, whereas the wing in the numerical simulations

continued to rotate at a constant angular velocity.

An additional validation was carried out for a different velocity profile and wing

shape. Tudball Smith et al. (2017) ran the simulations with a unity aspect ratio rect-

angular wing rotating with a constant angular velocity reached after a relatively smooth
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velocity ramp initiated from rest. Their velocity profile was given as

Ω(t) =

{
Ωc[−20( t

τ1
)7 + 70( t

τ1
)6 − 84( t

τ1
)5 + 35( t

τ1
)4], t < τ1

Ωc, t ≥ τ1,
(3.13)

where Ωc was the constant final rotational velocity and τ1 was the time after starting

the wing from rest at which the constant rotational velocity was reached. The present

computational setup was modified to simulate the rectangular wing with A = 1 and

the velocity profile as above. The time trace of the lift coefficient obtained using the

present setup shows a close match with that from Tudball Smith et al. (2017) as shown

in figure 3.21(b). Here, CL is plotted as a function of the chord-lengths travelled

by the wing at the radius of gyration, represented as Rgφ/c, where φ is the angular

displacement of the wing.

3.3 Summary

The present comprehensive study included both experimental and computational in-

vestigations of an insect wing’s geometrical and kinematic parameters likely to affect

their aerodynamics. The experimental study broadly involved two independent rigs for

the wing rotation and flapping motion. The high-speed flow-field measurements were

carried out using a newly-developed scanning PIV system and the force measurements

were carried out using a force-torque transducer. All the components of the experi-

mental setup and the methods were carefully validated. The computational method

involved the setup adopted from a previously established analysis. The computational

setup was re-validated successfully after modifying the adopted setup to model the

geometries now under investigation.
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Chapter 4

Effect of the Central Body

4.1 Introduction

Fluid motion within the leading-edge vortex (LEV) over a rotating insect wing is helical

in nature, growing in size from the wing-root to the wing-tip (Ellington, 1999). It could

be expected that LEV formation and its spanwise growth might be affected by the

presence of a body at the centre of rotation. The central body causes the wing root to

be offset from the axis of rotation by an amount (b0 = d/2), where d is the diameter of

the body.

The weights of insects directly depend on their body sizes, requiring different lift

forces for their flight. A higher lift may be obtained with a larger wing area and a

change in wing kinematics. This causes a significant change to the Reynolds number,

which affects the near-field and far-field vortex structures, as shown by Liu & Aono

(2009). The Reynolds number has been observed to be a significant factor affecting

the LEV structure (Harbig et al., 2013; Birch et al., 2004; Lu et al., 2006). However,

the focus of the present study is on the change to the LEV structures with body sizes

at a chosen Reynolds number. Different insects of similar weights may fly at the same

Reynolds number. Their wings could be offset by different amounts depending on their

body sizes relative to their wings. The relative change in the Coriolis acceleration can

be studied by observing the offsets normalised with the wing spans, instead of studying

the overall body sizes.

In the present study, the effects of a change in the central body size on the flow

structure is systematically studied. A simplified motion was prescribed to the wing in

order to obtain the LEV structure that is formed during the mid-stroke of a typical

flapping cycle of an insect. This required the wing to be held at a constant angle to the

horizontal (α = 45◦) and rotated with a constant angular velocity (Ω) without requiring
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Figure 4.1: The different holder sizes allow the normalised wing offset to vary in the range

(0.063 < b̂0 < 0.5). The wing was inverted to point the leading-edge downward so as to allow

the laser sheet projected from the bottom to illuminate the LEV. The chart on the right

shows the angular velocity profile in time. Here, the instantaneous angular velocity Ω(t) is

normalised by the constant angular velocity reached after t/T = 0.085.

the wing-flip and stroke-reversal. The wing was initially uniformly accelerated over a

time of ∆t = 0.085T , where T is the total time for one complete rotation. After this

acceleration, the wing reached a constant angular velocity corresponding to the chosen

span-based Reynolds number given by

Reb =
Ugb

ν
. (4.1)

Here, Ug is the velocity at the radius of gyration (Ug = RgΩ), Rg is the radius of

gyration of the wing, b is wing span, and ν is the kinematic viscosity of water. Central

bodies of different sizes are chosen such that the normalised offset varies in the range

(0.063 < b̂0 < 0.5), which overlaps and extends beyond the offset-ratio range of most

insects. The offset values scaled with the wing-chord vary in the range (0.18 < b0/c <

1.45). Figure 4.1 shows a schematic of different holder sizes with respect to the wing.

As indicated, the wing shape is chosen based on a generic fruit fly wing planform, which

is kept constant throughout the range of studied offset ratios and Reynolds numbers

(600 < Reb < 3000). Although this range does not include the Reynolds number for

Drosophila Melanogaster due to the experimental limitations, it includes a larger fruit

fly species, Drosophila Mimica, and we note that different insects such as honeybees

and bumblebees have similar wing aspect ratios as that of the chosen wing (Lehmann,

2002; Dudley & Ellington, 1990; Vance, 2009).

In the present study, the LEV structure for the rotating wing attached to different
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bodies is obtained by performing scanning-PIV experiments. Unlike insects, the central

body in experiments also rotates with the wing. Due to the limitations of attaching

the wing holder to the rotating shaft in experiments, a separate numerical study is

conducted with and without the rotation of the wing holder. This study shows no

significant effect on the LEV structure between the two cases.

The LEV is responsible for the low pressure region created on the suction surface

of the wing. The pressure distribution on this surface depends on the LEV structure.

The split that can occur in the LEV is a prominent feature that can affect the suction.

Hence, in the experiments, the difference between the LEV structures for a range of

body sizes and Reynolds numbers is observed by comparing the split location of the

dual-LEVs, using a similar method to Harbig et al. (2013). Even though the LEV can

be thought to be influenced by the change in the secondary flow near the wing root

and also by the change in the rotational accelerations with the change in offset, at a

given Reynolds number, a negligible effect on the LEV-split is observed in the present

experiments for the offsets b̂0 ≤ 0.25. Interestingly, the vorticity in the secondary

vortex weakens with an increase in the offset and eventually, for the larger offsets, the

secondary vortex does not split from the primary LEV. Hence, beyond a certain central

body size, the LEV structure changes markedly. Coincidentally, the range of offsets

showing a minimal effect on the LEV structure coincides with the range of offsets for

most insects (b̂0 ≤ 0.14).

4.2 Determining the LEV characteristics

The data sets obtained from the scanning PIV at different spanwise planes, for φ = 270◦,

were stitched together to build a 3-D view of the LEV. The LEV centre was identified

by the local maximum of the scalar γ1 using the criteria of Graftieaux et al. (2001).

Here, γ1 was calculated from the PIV data at each spanwise interval as:

γ1 =
1

N

∑
S

(PM ∧ UM ) · z

||PM || · ||UM ||
, (4.2)

where M is any point in an area S around point P, z is the unit normal vector, UM is

the velocity vector at M, and N is the number of points M inside S. γ1 is equivalent

to the ensemble average of the term sin(θm), where θm represents the angle between

the radius vector PM and the velocity vector UM . The locations of the vortex centres

identified on different spanwise planes are plotted in figure 4.3(a). In this figure, two
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Figure 4.2: Vorticity plots at different spanwise locations, obtained from the scanning PIV

are plotted. The normalised vorticity range is ω∗
z = ωzb/Ug ∈ [−30, 30]. The black lines

represent the vortices identified by the Q criterion.

different LEV centres can be seen. LEV1 remains close to the leading edge while LEV2

moves inward. The LEV centres identified from PIV images show a good match with

the numerical predictions of Harbig et al. (2013).

An examination of the vorticity contours in figure 4.2 shows that as the distance

between the leading edge and LEV2 increases and LEV2 grows in size, there exists

a region of positive vorticity beneath LEV2, kinematically generated by the induced

velocity gradient at the surface to satisfy the no-slip boundary condition. With an

increase in r/b and an increase in LEV2 circulation, this region of positive boundary

layer vorticity grows in size, diffuses away from the boundary, and is advected clockwise

around LEV2. As this secondary vorticity moves towards the separating shear layer it

will weaken and effectively sever it, stopping vorticity being fed into LEV2 and allowing

LEV1 to form a separate structure. Lu et al. (2006) provide further discussion of this

splitting process.

The location of the split can be quantified by computing the circulation of the LEVs.

The circulation of the LEV structure was calculated using the field γ2 of the vortex

core identification algorithm of Graftieaux et al. (2001).

γ2 =
1

N

∑
S

[PM ∧ (UM − UP )] · z

||PM || · ||UM − UP ||
. (4.3)

The region with |γ2| > 2/π represents the flow locally dominated by rotation. The

circulation of the LEV was calculated by integrating the vorticity inside this identified
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Figure 4.3: In (a), the LEV centres identified using the local peak of γ1 from PIV images

are plotted along with those reported by Harbig et al. (2013). The LEV split was identified

by the sudden drop in the sectional circulation around the LEV region (|γ2| > 2/π) as seen

in (b). The open symbols represent the LEV close to the leading edge, whereas the filled

symbols represent the secondary LEV split from it.

region. The normalised circulation (Γz/Ugb) was observed to increase as we move away

from the wing root. At some spanwise location, the circulation drops and shows two

values corresponding to the dual-LEVs. This location is identified as the LEV-split

location, as can be seen in figure 4.3(b). The split location depends on the Reynolds

number, as shown in a later section.

4.3 Effect of phase angle

Initially, the LEV formation and its overall variation with the phase angle of wing

rotation (φ) was investigated experimentally. The wing, with an offset ratio b̂0 = 0.08,
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Figure 4.4: As the wing rotates, the LEV (shown by the contours of ω∗
z obtained at z/R =

0.55) is found to grow in size in the initial phases and then remains stable. The normalised

circulation (Γz/Ugb) increases initially until φ = 90◦ and remains unchanged until φ =

270◦. The development of circulation is compared to the numerical predictions with a similar

geometry. The results are also compared to the results at high Reb reported by Achache et al.

(2017) for a hummingbird wing (A = 3.35) rotating with α = 30◦ and those by Wojcik &

Buchholz (2014) for a rectangular wing (A = 4) with α = 35◦, both at z/R = 0.5.

was rotated with a constant angular velocity corresponding to a Reynolds number of

Reb = 900, and PIV images were recorded at different phases in steps of 45◦. Figure 4.4

shows the evolution of the LEV as the wing is rotated. The prominent vortical structure

identified as the LEV is visualised through the spanwise vorticity field. The LEV is

initially compact at φ = 45◦, and then increases in size. Beyond φ = 135◦, it maintains

a constant size and strength over most of the rotation cycle. However, clearly the LEV

size changes towards the end of the rotation period, possibly due to interference with

residual vorticity generated at the start of the rotation. The generally accepted reason

behind the stable size of the LEV, despite it being continuously fed circulation from

the separating shear layer, is the stable rotational acceleration, as described by Lentink

& Dickinson (2009b).

The stability of the LEV can be shown quantitatively by calculating the circulation

in the area around the LEV and examining how it changes over the rotation. The circu-

lation of the LEV is calculated using the method described in § 4.2. The development

of the circulation with the phase angle (φ) can be seen in figure 4.4. The initial increase
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in the normalised circulation (Γz/Ugb) observed during the acceleration (φ < 90◦) has

also been reported by Achache et al. (2017) and Elimelech et al. (2013). The circula-

tion remains unchanged during the rotation phase over the range 90◦ < φ < 270◦. This

observation is consistent with the stable lift observed in the same range in experiments

by Birch et al. (2004) (for α = 40◦) and numerical simulations by Harbig et al. (2013)

(for α = 45◦). The normalised circulation values predicted numerically by simulating

the same geometry are observed to be close to those observed in experiments, with a

small variation (< 10%). A comparison with the circulation obtained by Achache et al.

(2017) and Wojcik & Buchholz (2014) also showed a relatively stable circulation post

φ = 90◦. The values from both the studies have been scaled as per the present method

of normalising the circulation. It should be noted that the overall lower values in both

the cases, compared to the present results, may be due to their higher wing aspect ra-

tios, owing to the fact that the circulation reduces significantly with an increase in A

(Harbig et al., 2013). The lower values of α and differences in the wing shapes in both

compared to the present case could be the additional factors that may have caused this

reduction in circulation. The drop in the normalised circulation post φ = 135◦ observed

by Achache et al. is due to the deceleration of the wing.

4.4 Effect of holder rotation

Since it is difficult to maintain a stationary central body in experiments, the effect of its

rotation was studied by simulating the wing rotation numerically with and without the

motion of the holder. The two conditions were compared by observing the lift forces

on the wing. A large holder (b0/b = 0.25) and a large Reynolds number (Reb = 3000)

were selected to accentuate possible differences. As can be seen in figure 4.5, there is

a negligible difference in the lift coefficients in the two cases with the rotation of the

wing. Thus, the experiments with a rotating holder can be assumed to exhibit the same

effects as that of a stationary central body.

4.5 Effect of Reb and presence of a central body

An overall increase in the body size of an insect causes an increase in its mass and the

Reynolds number. The effect of Reb on the LEV structures was studied by tracking

the change in the LEV-split location. Lu et al. (2006) have reported that the dual-

LEVs could be observed only for the chordwise Reynolds numbers Re > 640. However,
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Figure 4.5: The lift coefficients on the wing for a large holder (b0/b = 0.25) with and without

its rotation remain mostly unchanged even at a large Reynolds number (Reb = 3000).

we observed the dual-LEVs even at Reb = 900 which corresponds to the chordwise

Reynolds number Re = 290. Even though the existence of dual-LEVs was reported

by Lu et al. and Carr et al. (2015), the split location was found to be tracked with

Re only by Harbig et al.. Hence, to provide a level of validation, the experimental

results are compared directly with the numerical predictions of Harbig et al.. The

wing geometry and kinematics are identical for this comparison. The only difference

is that the numerical study does not model the central holder that is present in the

experiments. The Reynolds number range investigated was 920 < Reb < 8750. The

split location normalised by the wing span (i.e. , r/b), is plotted as a function of Reb

in figure 4.6.

The present results and those of Harbig et al. (2013) show the same trend, with the

split location shifting radially inwards as the Reynolds number increases. It should be

noted that in the original analysis to determine the variation of the split location with

Reynolds number, Harbig and co-workers used the standard Q-criterion including the

spanwise velocity component. That leads to slightly increased outward split positions,

as can be seen from the curve corresponding to Q3 in figure 4.6. Thus, their data

were reanalysed here to use the same criterion (Q2) as in these experiments, i.e., still

using the Q-criterion but neglecting terms involving the spanwise velocity component,
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Figure 4.6: The normalised spanwise location (r/b) for the LEV split is shown as a function

of Reb. The experimental data are for the wing with a central body and the computational

data by Harbig et al. (2013) are for the wing without a central body and no offset. Here, Q2

represents the use of 2D Q criterion and Q3 represents the use of 3D Q criterion.

which that was not measured in the experiments. Clearly, figure 4.6 shows that the

experimental and computational split locations match to within a few percent over the

Reynolds number range considered, despite the presence of the 10 mm radius holder,

although noting that it equates to only ∼ 8% of the wing span.

There may be several reasons behind the inward shift of the LEV split location with

an increase in Reb. First, at a high Reb, the reduced viscous effects cause a reduction

in the diffusion of the vorticity of LEV2, therefore confining it to a smaller volume

and making it more concentrated. This increased vorticity of the LEV in proximity

to the wall would induce stronger secondary positive vorticity at the surface beneath

LEV2. This vorticity is then advected more strongly around the LEV at higher Reb

because the velocity closer to the surface will be higher, to interact with the leading

edge separating shear layer, as discussed previously. This process may cause the LEV

structure to separate and split at a more inward location than that at a lower Reb.

Second, the increased turbulence at even higher Reb may make the LEV structure

more unstable and prone to split at a more inboard location. This suggests that the

movement of the LEV split towards the wing root at a higher Reb may be due a

combination of factors.

However, in general, the presence of the central wing holder causes the wing root to
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be offset from the axis of rotation, thus affecting the Rossby number. It also generates

secondary flow at the root that may disturb the formation of the LEV. Since the

presence of a central body was unavoidable in experiments, the effects due to its presence

were assessed in detail using numerical analysis.

First, we modelled the wings with the holders, with offsets b̂0 = 0.08 and 0.25,

rotating at Reb = 900. The flow structures on the wings were compared to those from

the scanning PIV experiments. Figure 4.7 shows a comparison of the LEV structures in

these two cases for the wings rotating at Reb = 900. The LEV structures were identified

using isosurfaces of the constant Q criterion (Q∗ = 10). In this figure, The dual-LEVs

in CFD can be seen to be qualitatively similar to those from PIV, with a difference

of the data close to the wing tip and the wing root. These small differences are seen

because the data could not be obtained near the wing root and wing tip from PIV

due to the shining surfaces. The quantitative comparison of the results from the two

methods are shown by comparing the normalised spanwise circulation with the wing

rotation, for b̂0 = 0.08, in figure 4.4.

Furthermore, we modelled two sets of geometries: first, with the holders of varying

sizes that caused the wing to offset from the rotation axis by an amount b0; and second,

without the holders, but shifting the wing root away from the rotation axis by the same

amount as that with the holders.

In all these cases, the wing was rotated with Reb = 1000 The time traces of the

lift coefficient for different offsets are compared in figure 4.8(a). The lift coefficient

of the wing is similar with and without the holder for the offsets b̂0 < 0.5. When

averaged over the final 30◦ of rotation, the difference between C̄L acting on the wing

with and without the holder is less than 1%. However, for larger offsets, the difference

increases. Another striking difference is that the lift coefficient of the wing without the

holder remains constant after t/T ∼ 0.5, whereas the lift coefficient of the wing with

the holder keeps reducing with time. This reduction in the lift coefficient with time

is greater for larger holders, which indicates that this is caused by an influence of the

presence of the holder.

The coefficient of lift exerted on the holder was also monitored separately, as shown

in figure 4.8(b). CL of the holder with b̂0 = 0.23 is negligibly small. When observed

during the time t/T < 0.25, CL of the holder increases dramatically with its size. For

the holders in the range b̂0 ≤ 0.98, post t/T = 0.6, CL reaches a relatively stable value
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Figure 4.7: The figure shows the vortex structures identified using the constant Q-criterion

for the wings rotating at Reb = 900, with the holder causing an offset of b̂0 = 0.08 in (a) and

(b), and the holder causing an offset of b̂0 = 0.25 in (c) and (d). The flow structures obtained

from CFD, in (a) and (c), compare well with the corresponding flow structures obtained with

the scanning PIV experiments, in (b) and (d).
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Figure 4.8: The time traces of the lift coefficient acting on the wing rotating at Reb = 1000

with and without the holders for different offsets are plotted in (a). In (b), the time traces

of the lift coefficient acting on the holders for the same cases show an influence of the holder

size on the lift.
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close to 0.1. However, for larger holders, CL reduces continuously with time, without

reaching a stable value. This might be on account of the increased secondary flow

around the larger holder that continuously interacts with the LEV near the wing root,

affecting its suction. This might result in a continuous decay of lift. Therefore, larger

holders are observed to have more drop in CL, which even applies to negative values

for b̂0 ≥ 1.98. Therefore, the presence of the central body can be assumed to have a

negligible influence on the lift force only if its size (in terms of the wing offset equal to

its radius) is less than b̂0 = 0.5. This confirms that the secondary flow at the central

body wall affects the aerodynamics beyond this size. The effects due to the change in

Rossby number caused by the increased wing-root offset were assessed experimentally

by observing the 3-D LEV structure, as presented in the following section.

4.6 Effect of offset ratio

The central holder’s diameter was varied between 15 and 120 mm keeping the same

wing geometry. Hence, the wing root was offset from the axis of rotation,such that the

offset ratio varied in the range (0.063 < b̂0 < 0.5). As there is an eight times change in

the offset ratio, it was expected to also see a change in the LEV structure. Hence, the

flow structure was obtained for different offset ratios, for the wing rotated at different

Reynolds numbers (600 < Reb < 3000). First, a comparison of the LEV structures

at a chosen Reynolds number was made for different offsets. The 3-d LEV structures

were visualised by observing the isosurfaces of the normalised γ2 = 2/π using the data

obtained from the scanning PIV.

Figures 4.9(a)-(f) show a comparison of the LEV structures for the wing rotating at

Reb = 1000 with different holders. A large secondary LEV was observed to split from

the primary LEV. However, the difference between the LEV structures did not seem

significant for offsets b̂0 ≤ 0.25. In figure 4.9(g)-(l), the normalised vorticity contours

are plotted on different spanwise planes, which show that the LEV split occurred at a

similar r/b location for b̂0 ≤ 0.25. By comparing the vorticity contours on the spanwise

planes at r/b = 0.6 for different offsets, it can be observed that the secondary vortex

after the split becomes weaker as the offset is increased. This reduction in the strength

is evident from the reduced mean vorticity inside the secondary LEV with an increase

in the offset, as shown in figure 4.9.

It can be seen in figures 4.9(g)-(l) that, for lower b0/b values, the regions near
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Figure 4.9: For the wing rotating at Reb = 1000, the LEV structures for different offsets are

obtained from the isosurfaces of γ2 = 2/π from the PIV data at various spanwise locations,

shown in subfigures (a)-(f). The isosurfaces are coloured with normalised spanwise vorticity.

Subfigures (g)-(l) show the normalised vorticity contours at three spanwise locations (r/b =

0.4, 0.6, and 0.8) for different offsets.

79



500 1000 1500 2000 2500 3000
Reb

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r/
b

b̂0 = 0.06

b̂0 = 0.08

b̂0 = 0.10

b̂0 = 0.12

b̂0 = 0.15

b̂0 = 0.19

b̂0 = 0.25

Figure 4.10: Although the LEV split position exponentially shifts towards the wing root

with Reb, it remains in a narrow region for any given Reb, for the offset ratios b̂0 ≤ 0.25. The

smooth lines represent the exponential fits to the data. The LEV split could not be identified

for the offset ratios 0.33 and 0.5.

the LEV centres LEV1 and LEV2 (as shown in figure 4.3) contain relatively larger

magnitudes of the negative spanwise vorticity. As described earlier, a small region of

positive vorticity induced by the LEV is observed to grow in size with an increase in r/b.

At a certain location along the span, this vorticity gets entrained in the LEV structure,

forming the dual-LEVs. With an increase in the wing-root offset, the spanwise flow and

effects of the Coriolis force are reduced, in line with the reduced streamwise velocity

difference between the wing root and tip. The Coriolis force is important for maintaining

a compact LEV2 close to the wing surface, as shown by Jardin & David (2015). This

change to the LEV structure with offset upstream of the split position is clearly seen in

figure 4.9. This leads to a reduction in the boundary-layer secondary vorticity generated

at the surface beneath the LEV structure, and hence a reduced tendency for the LEV

structure to split. For very large offsets (such as b̂0 = 0.33, 0.5), the secondary LEV

remains attached to the primary shear layer and hence, no clear split is observed. The

LEV split location was tracked for b̂0 ≤ 0.25 to represent the quantitative comparison

of the flow characteristics.

Figure 4.10 shows the variation of the LEV split location with Reynolds number for

different offsets. It can be seen that regardless of the offset ratio the split locations are

close to each other, and only depend on the Reynolds number. The difference in the
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split locations at a given Reynolds number is within the uncertainty of the experiments.

Since the split position is an important feature affecting the LEV structure, the above

results show that, for the range of offset ratios b̂0 ≤ 0.25, the central body size has a

minimal effect on the LEV structure. In addition, it appears that the change to the

spanwise flow onto the wing root induced by different holder sizes does not strongly

affect the LEV split. However, it may affect the strength of the secondary vortex in

terms of the spanwise vorticity. The strength of the secondary vortex for the offsets

b̂0 = 0.33 and 0.5 is so low that it does not separate from the primary shear layer.

4.7 Summary

In this study, the effect of the Reynolds number and the central body size on the

spanwise position where the LEV splits into dual-LEVs, which is often used as a proxy

for overall LEV development, is studied experimentally for the flow over a rotating

fruit-fly wing model. The range of offset ratios investigated includes the offset ratios

for most insects.

The structure of the LEVs was obtained using a scanning PIV technique. The

central body’s rotational motion as compared to the stationary body of insects was

found to have a negligible effect. Thus, the scanning PIV measurements were conducted

with the wing and the central body rotated at span-based Reynolds numbers between

600 and 1500. The fixed-plane PIV measurements were conducted for 2000 < Reb <

10000. The dual-LEVs were observed to split at radially inward locations with an

increase in the Reynolds number. The comparison of the split locations with those

obtained from numerical simulations of an identical wing by Harbig et al. (2013) showed

good agreement for a small central body size. Further experiments using a wide range

of body sizes causing the offset ratios to be 0.06 ≤ b̂0 ≤ 0.25 showed a negligible effect

on the LEV split to within experimental uncertainty bounds. However, the larger offset

ratios resulted in a significantly different LEV structure with no clear identifiable split.

Interestingly, in the lower range of offsets, the values of CL remained constant past

t/T = 0.5 due to a stable LEV. However, for larger offsets (b̂0 > 0.5), CL was observed

to decrease continuously with time, suggesting a significant influence of the secondary

flow originating near the central body wall.

It is interesting to note that for most insects, the body sizes create offsets in the

range b̂0 ≤ 0.14. Thus, despite the influence of a central body on the fluid feeding into
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the LEV and the relative influence of the rotational acceleration to other acceleration

components, over this range of body sizes, the change in Reynolds number has a signifi-

cant influence. However, the wing offset due to the change in the central body diameter

was found to have a minimal effect in the normal insect range of offset ratios.
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Chapter 5

Effects of Aspect Ratio, Reynolds
Number and Rossby Number

5.1 Introduction

The complex aerodynamics of insect wings have been investigated by many researchers

in the past and it has been established that the stable attachment of the vortex formed

at the leading edge, known as the leading-edge vortex (LEV), plays a key role in achiev-

ing a stable flight (Maxworthy, 1979; Ellington et al., 1996). The wing aspect ratio (A),

Reynolds number (Re) and Rossby number (Ro) are among the important parameters

that can influence the LEV formation and its stability. Two independent studies, by

Harbig et al. (2013) and Lee et al. (2016), have shown that the effects of any two of

these parameters are coupled.

The most important geometrical parameter affecting the flapping and rotating wing

aerodynamics is A, defined as the ratio of the wing-span (b) to the mean wing-chord

(c). The influence ofA on the lift and drag forces has been a topic of debate for a long

time, as discussed in chapter 2. Lee et al. (2016) pointed out that theA studies in the

past did not preserve Ro, which would have resulted in a coupled effect of A and Ro.

Here, the Rossby number has been defined as Ro = Rg/c, where Rg is the radius of

gyration of the wing. However, all the simulations in the study by Lee et al. (2016) were

conducted at Re = 500, which showed that for a given Ro, CL could be maximised by

increasingA. On the contrary, at such Reynolds numbers in nature, only low-A wings

are observed. Therefore, even though the A− Ro coupling explains the discrepancies

in most of the past studies, it may not provide a satisfactory explanation of why certain

aspect-ratio wings are observed only at certain Reynolds numbers in nature. Moreover,

it is important to revisit the chord-based definition of the Rossby number since the
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wing-span has been shown to be the more relevant length-scale of the LEV structure

(Harbig et al., 2013).

Hence, in view of the recent understanding of the LEV structure and the associated

length scales, the present computational study investigates the effects ofA, Re and Ro

simultaneously on a rotating wing by systematically varying each of these parameters.

Harbig et al. (2013) have decoupled the effects of A and Re by using the span-based

Reynolds number for the wings with a zero wing-root offset. Since the scope of the

present study extends to the wings with varying wing-root offsets, it is necessary to

verify the use of the span-based scaling of Re for wings of differentA with an offset. In

the present study, the use of span-based Reynolds number (Reb) is shown to decouple

the effects of A on the flow structure, even for wings with an offset, b̂0 = 0.16. The

reasons behind the influence ofA on the aerodynamic forces are investigated in detail.

Furthermore, the span-based scaling is extended to Rossby number by revisiting the

normalising terms of accelerations in the Navier-Stokes equations. The modified scaling

decouples the effects of A and Ro.

5.2 Span-based Reynolds number scaling

As discussed in chapter 2, Harbig et al. (2013) have proposed the use of a span-based

Reynolds number in order to decouple Reynolds number andA effects. They observed

very similar LEV flow structures over wings of different aspect ratios rotating at a

constant Reb. However, in their numerical models, the wing-root offset was zero. Since

the root offset, or the petiolation, can also influence the flow structure, in this study

the flow structures for wings of different aspect ratios, and with a non-zero normalised

wing-root offset of b̂0 = 0.16, have been investigated.

Wings of aspect ratios 1.8, 2.91, 5.1, and 7.28, with a central body giving a wing-

root offset of b̂0 = 0.16, were rotated at different Reynolds numbers in the range

300 ≤ Reb ≤ 10 000. Note that this extends the aspect ratio range of that studied

by Harbig et al. (2013), by including the case of A = 1.8. First, the flow structures

at Reynolds numbers Reb = 300 and Reb = 4000 were compared for different aspect

ratios. In all the cases, the LEV was observed to form and increase in size from the

wing-root to the wing-tip. The LEV was identified using the Q-criterion (Hunt et al.,

1988), which is defined as

Q∗ = Qb2/U2
g =

1

2
[ΩijΩij − SijSij ] =

1

2
[||Ω||2 − ||S||2], (5.1)
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Figure 5.1: The normalised spanwise vorticity (ω∗
z) contours are shown at the spanwise

location r/b = 0.4 for different aspect ratio wings rotating at Reb = 300 in (a–d) and at

Reb = 4000 in (e–h). The black solid lines represent the vortices identified by the constant

Q-criterion. The rotation angle in all the cases is φ = 270◦.

where Ωij and Sij are, respectively, the asymmetric and symmetric components of the

velocity gradient tensor. Q∗ > 0 represents the region dominated by the rotational

strain ||Ω||2. Figure 5.1 shows the normalised spanwise vorticity (ω∗z) contours on the

spanwise plane located at r/b = 0.4. The vortices are represented by the isocontours of

Q∗ = 0 shown by solid black lines. It can be seen that at Reb = 300, there is a single

LEV with relatively lower vorticity. However, at Reb = 4000, the LEV is relatively

stronger with a higher ω∗z due to an increased swirl and it is split to form dual-LEVs.

It should be noted that the flow structure for all aspect ratios is similar at a given

Reb, suggesting that the span-based scaling of the Reynolds number is the appropriate

scaling that defines the flow structure. This was further confirmed by tracking the LEV

split location, which is a prominent flow feature, for all these wings rotating at different

Reynolds numbers.

The LEV-split is identified with the help of Graftieaux’s vortex core identification

algorithm (Graftieaux et al., 2001), as discussed by Harbig et al. (2013). The circulation

about a grid point P was computed as

γ2(P ) =
1

N

∑ [RPM ∧ (UM − UP ) · z])

||RPM || · ||UM − UP ||
, (5.2)
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Figure 5.2: The curves for the split location as a function of Reynolds number scaled with

the wing-chord for different aspect ratios in (a), collapse if the Reynolds number is scaled with

the wing span (Reb) in (b). The normalised wing-root offsets in all the cases were maintained

to be b̂0 = 0.17.

where N is the number of grid points, M , inside a bounded square region with P

as the centre, RPM is the radius vector and UPM is the velocity vector with respect

to P . |γ2| was bounded by unity and calculated on two-dimensional velocity planes

along the span, with z being the unit vector normal to the plane. The vortex core

was identified by the regions where |γ2| > 2/π as being locally dominated by rotation.

The circulation inside this region was calculated by integrating the spanwise vorticity.

When plotted against the spanwise location, the circulation initially increased and then

suddenly dropped to show two circulation values corresponding to the dual-LEVs. This

location was referred to as the LEV-split location. The details of this approach can be

found in Harbig et al. (2013).

As can be seen in figure 5.2, the LEV-split locations for the wings of four different

aspect ratios were tracked over a range of Reynolds numbers (300 < Reb < 10000).

With an increase in Reb, the split location for any A wing was observed to move

towards a lower r/b, i.e. towards an inward location along the span. If plotted against

the chord-based Reynolds number (Rec), the curves of the split location for different

aspect ratios are different. The splits at higherA at a chosen Rec occur more towards

the root than the lowerA wings. However, if plotted against the span-based Reynolds

number (Reb), all the four curves appear to collapse onto a single curve with a variation

of less than ∼ 5% of the span, suggesting that the LEV-structures at any given Reb are

similar.

Of interest is that the chord-based Reynolds number scaling appears to work better
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Figure 5.3: CL is shown as a function of A for four different Reynolds numbers, with no

wing-root offset in (a) and with the offset b̂0 = 0.32 in (b).

at smaller Reynolds numbers, as shown by the convergence of the curves in figure 5.2(a)

for the lower end of the Reynolds number range. This would seem to be related to the

fact that for smaller Reynolds numbers, the cross-sectional size of the LEV structure

is relatively much bigger because increased diffusion prevents a tight roll up of the

leading-edge separating shear layer. Adding to this is reduced spanwise flow, limiting

the advection of vorticity towards the tip. Thus, at small Rec, because of its larger

length scale, the LEV growth during rotation will be more strongly influenced by the

size of the chord. Despite this, even at Reb = 300, corresponding to that of an actual

fruit fly, figures 5.1(a)–(d) shows that the spanwise scaling still works reasonably well

in characterising the LEV structure. Therefore, throughout this study, the span-based

Reynolds number is used.

5.3 Effect ofA and Reb at different offsets

Since the LEV structure is similar for wings of various aspect ratios rotating at a

constant Reb, the lift acting on them might be expected to be the same. However,

according to Harbig et al. (2013), the lift coefficient has been found to be influenced by

A, depending on Reb. Additionally, the wing-root offset can also influence the mean

lift coefficient (CL); this offset has been shown to be responsible for the discrepancies

in the values of CL reported by various researchers. Thus, in this section, the reasons

behind the variation of CL at variousA values are investigated for two different wing-

root offset ratios (b̂0 = 0 and 0.32). Here, the time-mean lift coefficient (CL) has been

obtained by averaging the instantaneous lift coefficients over the final 30◦ rotation of the
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Figure 5.4: At Reb = 300, the normalised pressure (p∗) contours on the suction-side surface

of the wings of various aspect ratios are shown in (a–f). The LEV is represented using an

isosurface of the constant Q-criterion coloured according to ω∗
z in (g–l).

wing, but noting that the variation over that angle is relatively small (see chapter 4).

For zero offset, figure 5.3(a) shows that, for Reb = 300, CL reduces continuously

with an increase in A beyond the value 2.91. However, at a higher Reb (Reb = 1000),

CL increases slightly for A ≤ 4 and then decreases for higher A values. Further,

with an increase in Reb, the peak CL is reached at A ' 5. For an offset b̂0 = 0.32,

in figure 5.3(b), CL is not observed to increase, but remains relatively stable for the
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Figure 5.5: At Reb = 4000, the negative pressure on the wing’s surface on the suction-side

is shown to be reducing with A in (a–f). The LEV is represented using an isosurface of the

constant Q-criterion coloured according to ω∗
z in (g–l).

similar range of A values where it was observed to increase in (a). Thus, at lower

Reynolds numbers, wings of lower aspect ratios appear to perform better; however, at

higher Reynolds number, the wings of low and moderate aspect ratios perform similarly

and better than those with higher aspect ratios. It can be inferred from these results

that the wings of higher aspect ratios can perform optimally only at higher Reynolds

numbers whereas the wings of lower aspect ratios can perform optimally at relatively
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low as well as higher Reynolds numbers.

The reason behind the different behaviours at low and high Reynolds numbers

was further investigated. Figures 5.4(a–f) show the pressures on the wing-surfaces of

different aspect ratios rotating at Reb = 300. In all the cases, the highest magnitude of

suction is present under the area covered with the LEV, as can be seen in figures 5.4(g–

l). The magnitude of suction, identified by the negative pressure on the wing surface,

is observed to reduce with an increase in A, perhaps due to a lower area available to

redistribute the pressure on the wing surface. It is important to note that the vortex

breakdown has occurred after the LEV and the trailing edge vortex (TEV) have merged

with the tip vortex (TV) and turned into the wake. Moreover, the stagnation point,

identified by zero relative pressure, is always outside the wing surface. The continuous

reduction in the magnitude of suction resulted in a reduction in the lift coefficient.

The magnitude of suction is relatively higher at a higher Reb, as can be seen in

figures 5.5(a–f). At this Reb of 4000, the vorticity is transported at a higher rate

through the LEV core, causing it to reduce in size compared to that at the lower Reb.

It can be noted from figures 5.5(g–l) that, unlike the low Reb flow, the vortex breakdown

occurs at a spanwise location before the LEV merges with the tip vortex. As per Shyy

& Liu (2007), the vortex breakdown occurs at high Reb due to a weaker swirling flow.

The stagnation point is observed to be on the wing surface near the location of the

vortex breakdown, past which the LEV connects to the tip vortex, creating a trail of

small unstable vortices in the wake. With an increase in the aspect ratio, the trailing

edge is observed to move closer to the stagnation point. For A > 5.1, the stagnation

point moves away from the wing surface, accompanied by a drop in the lift.

Thus, purely based on the lift performance in rotation, the optimal wing aspect ratio

at Reb = 300 is 2.91, which interestingly is the same as a real fruit fly wing flapping

at the Reynolds number in the similar range. As Reb increases, the optimal aspect

ratio also increases. However, the aspect ratios lower than the optimal one have a lift

performance that is not very different from that of the optimal wing. Hence, the low-A

wings perform better over a wide range of Reynolds numbers whereas the high-A wings

perform better only at high Reynolds numbers. Interestingly, even in nature, the low

aspect-ratio wings are found in insects flying over a wide range of Reynolds numbers.

For example, the fruit fly Drosophila melanogaster and the beetles Cerambycid species

and Melolontha vulgaris fly at the approximate Reb values of 350, 5000, and 13000,
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Figure 5.6: The variation of CL with Reb is shown in (a) for the wing ofA = 2.91 with three

different offsets changing its Rossby number as Rg/c = 1.66, 2.05, and 2.51. The variation of

CL with Rg/c is shown in (b) for the Reynolds numbers Reb = 300, 1000, and 4000. Here, the

dashed lines represent the value for the purely translating wing at these Reynolds numbers.

respectively, and have wing aspect ratios close to 3 (Weis-Fogh, 1973). However, the

high aspect ratios (A > 5) can be found only in the insects that fly at high Reb (> 103),

such as the crane fly (Tipula paludosa,A = 5.5, Reb ∼ 3000) and the common hawker

(Aeshna juncea, A = 5.6, Reb ∼ 10000) (Ellington, 1984a).

5.4 Effect of Reb and Rob

In past studies, the lift on a rotating wing has been observed to be dependent on

the Reynolds number. However, it should also be noted that the lift also depends on

the wing-root offset, which essentially changes the Rossby number. This is shown by

comparing the variation of CL over a range of Reynolds numbers 75 ≤ Reb ≤ 4000

between three different wing-offsets b̂0 = 0, 0.08, and 0.16, such that the corresponding

Rossby numbers were Rg/c = 1.66, 2.05, and 2.51, respectively. First, the wing with

Rg/c = 1.66 was rotated about its rotation axis and the time-trace of CL was obtained in

a way similar to that described in chapter 3. Since CL remains constant past t/T = 0.3,

the mean lift coefficient CL was obtained by averaging CL over the last 30◦ of rotation,

which corresponds to the normalised time 0.66 ≤ t/T ≤ 0.75. CL was observed to

increase with Reb due to an increased suction created by the increasingly compact LEV

core, as shown in a later section. However, at higher Reynolds numbers, the reduction

in viscosity becomes less important, with LEV bursting limiting the contribution of the
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LEV.

As can be seen in figure 5.6(a), at a low Reb, there is a relatively larger increase in CL

for the same increase in Reynolds number compared to that at a higher Reb. The figure

also indicates that the lift coefficient is dependent on Rossby number, which was varied

by changing the wing-offset. With an increase in Rg/c, caused by increasing offset, the

values of CL decrease, which shifts the CL − Reb curves downwards. Extending these

results, the Rossby number was varied over a wider range (1.66 ≤ Rg/c ≤ 10.1) and the

variation of CL was obtained, as shown in figure 5.6(b). CL decreased with an increase

in Rg/c and approached the value for the translating wing. This trend is in line with

the variation of lift coefficient demonstrated by Tudball Smith et al. (2017) and Lee

et al. (2016).

It is important to note that the ratio Rg/c can be varied in two ways; first, by

varying the offset, thereby changing Rg and second, by varying the aspect ratio, thereby

changing c (for a constant wing span). In most Rossby number studies, Rg/c is called

the Rossby number. Since the wing span was found to be the more relevant parameter

to define the flow structure, the use of Rg/c was revisited in this context. The scaling

of the Navier-Stokes equations is revisited as shown in appendix A. Using an approach

similar to Lentink & Dickinson (2009a), the length scale for the acceleration terms

is taken as the wing span. The revised scaling shows that for a rotating wing, the

centripetal and Coriolis accelerations scale with Rg/b.

The difference between using the ratios Rg/c and Rg/b for Rossby number was clear

after observing the flow structures over the wings of various aspect ratios. First, the

wings ofA = 2.91, 5.1, and 7.28 were rotated at Reb = 300. The wings of smaller aspect

ratios have a relatively larger chord (for a constant wing span). Hence, to maintain a

constant Rg/c, the values of Rg for the wings of smaller aspect ratios were increased by

moving their wing roots away from the axis of rotation. The LEV structures for various

wings with a constant Rg/c are compared in figure 5.7(a–c) in the order of reducingA.

It can be seen that for A = 7.28, the vorticity is transported through the LEV in the

spanwise direction towards the wing tip. A vortex trail is left in the wake after the LEV

merges with the tip vortex and tilts. However, with a reduction in A, the spanwise

transport of vorticity gradually decreases. This is due to the incremental increase in the

wing-root offset that creates a reduction in the Coriolis effects, which are important

to maintain the LEV structure intact (Jardin, 2017). However, if the ratio Rg/b is
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Figure 5.7: The LEV structures, identified by Q-criterion, for wings of A = 7.28, 5.1, and

2.91 at a constant Rg/c rotating at Reb = 300 are shown in (a–c). The LEV structures for

the same wings at Reb = 300, but with a constant Rg/b are shown in (d–f). The isosurfaces

are coloured according to ω∗
z . The variation of CL with Rg/c, in (g), and with Rg/b, in (h),

is shown for the wings of variousA rotating at Reb = 300. The data by Tudball Smith et al.

(2017) are for the wing rotating at Reb = 350.

maintained to be constant, the wing-root offset in all the wings is the same, resulting

in similar Coriolis effects across all aspect ratios. Therefore, the LEV structure in the

constant Rg/b cases is similar, as shown in figures 5.7(d–f). This suggests that the ratio

Rg/b is a better choice to characterise the flow structure and resultant aerodynamics.

Moreover, when the variation of CL with Rg/b is obtained for various aspect ratios,

the comparison shows a monotonic decrease in CL with A, as can be seen in fig-

ure 5.7(h), unlike that in (g). This decrease in CL with an increase inA at Reb = 300

is due to the decrease in the magnitude of suction pressure, as explained earlier in § 5.3.
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Figure 5.8: The variation of CL with Rg/b is plotted for Reynolds numbers Reb = 300, 1000,

and 4000 for the wing of A = 2.91. The dashed lines represent the limit approached by the

curves as Rg/b → ∞ (purely translating wing) at the respective Reb values. The data

extracted from Lee et al. (2016) have been added for comparison.

Thus, the revised definition of the Rossby number that follows the span-based scaling

is

Rob = Rg/b. (5.3)

Following this definition, the curves from figure 5.6(b) are scaled as a function of

Rg/b, as can be seen in figure 5.8. The data for a wing with A = 2 rotating at

Reb = 1000 have been extracted by interpolation from the contour map by Lee et al.

(2016). The curve obtained from their data compares well with that from the present

study for the same Reynolds number. This is also consistent with the fact that, at

Reb = 1000, there is an insignificant change in CL in the rangeA < 4 (see figure 5.3).

In all the cases, there is a decrease in CL with an increase in Rob, which is investigated

further.

The lift force on the wing is due to the difference in the pressures on the pressure-side

and the suction-side. Hence, for the range Rob ≤ 1.02, where the lift coefficient drops

drastically, a comparison of pressures is shown in figure 5.9. The Reynolds number in

all these cases was 1000. It can be clearly seen that the pressure distribution on the

wing suction side changes dramatically with Rob. There is a relatively smaller change

observed on the pressure-side. At a low Rob, the suction-side surface has a greater

magnitude of negative pressure creating a higher suction contributing to the overall
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(a) Rob = 0.57 (b) Rob = 0.63 (c) Rob = 0.70

(d) Rob = 0.78 (e) Rob = 0.86 (f) Rob = 1.02

(g) Rob = 0.57 (h) Rob = 0.63 (i) Rob = 0.70

(j) Rob = 0.78 (k) Rob = 0.86 (l) Rob = 1.02

p∗

p∗

Figure 5.9: At Reb = 1000, the comparison of normalised pressures on the suction-side

surfaces are shown in (a–f) and those on the pressure-side surfaces are shown in (g–l) for

different values of Rob.

lift. As the Rossby number is increased, the magnitude of the suction pressure on the

wing surface reduces, thereby, reducing the lift. It should be noted that the presence

of the central body in this range of Rob has a negligible impact on the lift since the

corresponding offset ratios are in the range b̂0 < 0.5.

A detailed investigation is conducted by observing the flow structures. In fig-

ures 5.10(a–f), the LEV is shown using a semitransparent isosurface of the 3D Q-
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Figure 5.10: In figures [a-f], the LEVs for different Rob are represented using the semitrans-

parent isosurfaces of the 3D Q-criterion. Additionally, the isosurfaces of the 2D Q-criterion

coloured with the normalised vorticity are shown to highlight the secondary vortex features.

The normalised spanwise vorticity contours at the locations r/b = 0.3, 0.58, and 0.86 for

all the cases are shown in (g–l). Here, the black lines represent the isocontours of the 2D

Q-criterion.
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criterion. The secondary vortex features inside the LEV are highlighted using the

isosurface of the 2D Q-criterion. The presence of the dual-LEV structure is evident in

all the cases. The primary shear layer separated from the leading-edge and formed the

vortex, LEV1. The secondary vortex that split from LEV1 near the mid-chord location

formed the vortex, LEV2, as can be seen in figure 5.10(g). It is important to note that

with an increase in Rob, the primary shear layer spreads over a larger area, which is

accompanied by a decrease in strength of the secondary vortex. This variation of the

vortex strength in terms of its vorticity can be seen more clearly in figures 5.10(g–l),

where the spanwise vorticity contours are shown at three different spanwise locations

for each case. In the range 0 ≤ Rob ≤ 0.78, both the primary and secondary vortices

are clear and distinct. The primary shear layers elongate more for Rob ≥ 0.78 and the

secondary vortex loses its strength and merges with the primary shear layer. Thus, it

is important to note that the LEV-structure changes dramatically with an increase in

Rob. The decrease in its strength must be responsible for the decreasing suction on the

wing.

When observed across various spanwise planes, the normalised spanwise circulation

around the LEV (Γ∗z) increases, initially, with r/b, followed by a sudden drop when

the LEV split occurs, as can be seen in figure 5.11(a). Here, two different curves can

be seen, which refer to LEV1 and LEV2. For Rob = 1.02, only one curve is observed

since the LEV did not split. Overall, there is an increase in the circulation at any

given r/b, with an increase in Rob. Therefore, the LEV circulatory lift computed by

integrating the spanwise circulation is also observed to be increasing with Rob, as can

be seen figure 5.11(b). This also matches with the trends predicted from PIV images,

such as those by Phillips et al. (2017). However, the overall CL computed directly from

the forces acting on the wing is observed to be reducing with Rob. Therefore, the LEV

circulatory lift coefficient does not appear to be a true representative of the overall CL.

The spanwise variation of the mean spanwise velocity inside the LEV (uz/Ug) was

also tracked across various Rob, as shown in figure 5.11(c). In all the cases, the spanwise

velocity initially increased, followed by a gradual decrease along r/b > 0.2. Overall,

uz/Ug decreased with an increase in Rob, which resulted in a decreased spanwise vortic-

ity flux, denoted by the term uzωzb/U
2
g , as can be seen in figure 5.11(d). This reduction

in the spanwise velocity may have been induced by the reduced streamwise velocity gra-

dient, as described by the schematic and plot in figure 5.11 (e) and (f), respectively.
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Figure 5.11: The spanwise variation of the normalised spanwise circulation (Γ∗
z), mean nor-

malised spanwise velocity (uz/Ug), and mean normalised spanwise vorticity flux (uzωzb/U
2
g )

of the LEV for different Rossby numbers are shown is (a), (c), and (d) respectively. Here,

the filled circles represent the values for LEV1 and open circles represent those for LEV2.

The LEV circulatory lift coefficients obtained from Γ∗
z and the actual CL for various Rob

are shown in (b). The change in the root velocity (Ur), tip velocity (Ut), and the velocity

gradient, with a change in Rob, are shown by the schematic and line plot in (e) and (f),

respectively.

With an increase in the wing-root offset, the relative velocity gradient between the

tip velocity (Ut) and root velocity (Ur) decreases by an inverse proportion, which will

induce a lower spanwise flow. It can be noted that, after the split, there is a higher

spanwise velocity through LEV2, whereas there is a negative spanwise velocity through

LEV1. This is due to the tilting of LEV in the wake and shifting of the peak negative

spanwise pressure gradient towards the trailing edge, as discussed below.

The footprints of the decreased LEV-strength can be observed in the spanwise pres-

sure gradient on the wing’s surface, as shown in figures 5.12(a–f). Here, the normalised

spanwise pressure gradient is calculated as (∂p/∂z)∗ = (∂p/∂z)×b/(0.5ρU2
g ). The loca-
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Figure 5.12: The normalised spanwise pressure gradients, (∂p/∂z)∗, on the wing suction

side are compared for different values of Rob in (a–f).

tion of the zero pressure gradient near the mid-span region indicates the location where

the LEV changes its direction and turns into the wake. For lower Rob, a more negative

pressure gradient is present near the midspan region, which allows a stronger transport

of the fluid in the spanwise direction. Therefore, at lower Rob, the LEV is narrower and

stronger at the core, where the peak spanwise velocity is along the core of LEV2. With

an increase in Rob, the region of the negative pressure gradient shrinks towards the

wing root. Therefore, the weakening of the LEV is accompanied by a reduced spanwise

flow.

Hence, it can be concluded that the lift coefficient of the wing is a strong function of

the Rossby number in terms of the spanwise scaling, related by an inverse proportion.

The lift coefficient at a very high Rob approaches the value for a purely translating

wing. The decrease in the lift coefficient is associated with the weakening of the LEV

caused by the reduced spanwise pressure gradient, allowing a lower spanwise vorticity

transport.

The study of the three dimensional parameter space revealed that the effects of the

A, Re, and Ro can be decoupled by using the span-based Reynolds number (Reb) and

span-based Rossby number (Rob). The combined effects of these parameters can be

seen in the contours of CL mapped on the plane ofA and Reb in figure 5.13(a) and on
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Figure 5.13: The contours of CL are shown on the plane ofA and Reb in (a) for Rob = 0.7.

The contours of CL are shown on the plane ofA and Rob in (b) for Reb = 300. The variations

of Reb and Rob with respect to A in past studies are shown in (c) and (d), respectively.

the plane ofA and Rob in figure 5.13(b). The discrepancies in the literature, regarding

the effects ofA, can be attributed to the simultaneous variation in Reb and Rob. From

the information about the geometry and kinematics given in the studies on A-effects,

their respective values of Reb and Rob were computed. The variation of Reb and Rob

with respect to A can be seen in figures (c) and (d), respectively.

Consider the data, for example, by Shahzad et al. (2016), where the value of Rob

has been maintained to be constant. Their Reb has increased with A, which would

result in an increased CL. However, an increase in A beyond a certain value would

cause a reduction in CL, cancelling out the increase due to Reb. A combined effect of

these parameters resulted in a small increase in CL in the lower range of A, followed

by a relatively stable CL at higher values of A, as can be seen in their figure 26(c).

Similarly, the data by Phillips et al. (2015) show an increase in Reb and a decrease

in Rob, both contributing to an increase in CL. An increase in A beyond a certain

value should decrease CL. A combined effect resulted in an increase CL in the range
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1.5 ≤A ≤ 6, followed by a slight decrease in CL at higherA values, as can be seen in

their figure 14(b).

It should be noted that most experimental studies have been conducted at very

high Reynolds numbers (Reb ∼ 104), which are beyond the scope of the present study.

At these Reynolds numbers, the viscous effects have a lower importance and a strong

spanwise flow might cause an early bursting of the LEV with very high undulations in

the LEV structures. Hence, it might be difficult to identify the LEV characteristics,

such as the LEV split location. Therefore, in a future study at a higher Reb, a different

approach may be required to verify the correlation of the span-based Reynolds number

with the flow structures. Based on the Reynolds-number range used in this study, the

proposed scaling laws may hold for the flapping flight of most insects. However, in the

higher range, a critical Reynolds number might exist, beyond which these laws will be

unworkable.

The present study considers all the cases with a constant angle of attack (α = 45◦).

However, it has been shown by previous studies (e.g. Kruyt et al., 2015) that the flight

performance of a wing also depends on α. At high Reynolds numbers (Reb ∼ 104),

the wings of high A perform better if they maintain a lower α. This is because, in

this range of Reb, the high-A wings have a lower CL/CD ratio than the low-A wings.

Hence, for the high-A wings, the value of CD can be reduced by lowering α, without

having a significant reduction in CL. Hence, in the design of the wings of micro air

vehicles, the proposed scaling laws should be considered in conjunction with the choice

of an appropriate angle of attack.

5.5 Summary

Recent studies have shown that the effects of the wing aspect ratio, Reynolds number

and Rossby number on the flow over a rotating wing are coupled. In this study, we have

tried to uncouple the effects of these parameters by suggesting the wing-span as a length

scale for the Reynolds number and Rossby number. Furthermore, the reasons behind

the variation in the lift coefficients in all the cases have been explored by observing the

flow structures.

The study was conducted using three-dimensional direct numerical flow simulations.

From the observed flow structures, the wing-span was confirmed to be a more relevant

length scale than the wing-chord for the LEV structure formed over the wing, support-
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ing the modified way of scaling the Reynolds number (Reb) proposed by Harbig et al.

(2013). Wings of different aspect ratios were found to have a similar LEV structure at a

constant Reb, even when their roots were offset from the rotation axis. Moreover, based

on the mean lift-coefficient (CL) acting on the wing, the low-A wings were observed to

perform better at all investigated Reynolds numbers, whereas the high-A wings were

observed to perform better only at high Reynolds numbers. This may provide useful

insights into the range of wing aspect-ratios observed at different Reynolds numbers in

nature.

Experimental models of rotating wings involve a central body, for which the wing is

offset from its rotation axis. In the present study, the effect of the presence of the central

body was also investigated. For a low offset, the values of CL remained constant past

t/T = 0.3 due to a stable LEV. However, at higher offsets (b̂0 > 0.5), CL was observed

to decrease continuously with time, suggesting a significant influence of the presence of

the central body.

Furthermore, the effects of Rossby number were studied by varying the wing-root

offset over a wide range. The flow structures over various A wings were observed to

be similar with a constant Rg/b rather than a constant Rg/c, suggesting that the ratio

Rg/b describes the Rossby number better. The values of CL were observed to decrease

with Rg/b, approaching the value for the translating wing. This reduction was shown

to be due to the reduction in suction pressure on the wing surface. This was further

observed to be caused by weakening of the LEV on account of the reduced spanwise

pressure gradient and the spanwise vorticity transport.

The combined effects of the three parameters were shown on the contour maps of CL

on A-Reb and A-Rob planes. The discrepancies in past studies regarding the effects

of A on CL may be explained by the variations in Reb and Rob with respect to A.

The effects of the aspect ratio, Reynolds number, and Rossby number were shown to

be decoupled by using the wing span as the length scale for the Reynolds number and

Rossby number.
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Chapter 6

Evolutionary Shape Optimisation
of a Rotating Wing

6.1 Introduction

In past studies, it has been established that the stably attached leading-edge vortex

(LEV) plays a key role in achieving a stable lift during the rotational translation phase

of flapping wings of insects (Maxworthy, 1979; Ellington et al., 1996). The LEV is

spiral in structure, growing in size from the wing root to the wing tip. The LEV

growth is constrained by the trailing edge, which also limits the aerodynamic forces

generated by the LEV (Garmann & Visbal, 2014). The chord length at a spanwise

location determines the distance between the leading edge and the trailing edge at that

location. Hence, it is important to study the effects of wing shapes, with varying chord,

on the aerodynamic forces. This may also be of interest to the studies on winged seeds,

such as a maple seed, which auto-rotate when falling.

Past studies indicate that the semi-elliptic planforms can perform better than other

generic shapes, such as rectangles and triangles, as described in chapter 2. Wing shapes

can be characterised by the non-dimensional radius of the kth moment of inertia, derived

as

r̂kk =

∫ 1

0
ĉr̂kdr̂, k = 1, 2, 3, ..., (6.1)

where ĉ is the local wing chord normalised by the mean chord and r̂ is the spanwise

distance normalised by the wing span. Ellington (1984a) has computed r̂1, r̂2, and r̂3

of various insect wings and proposed the laws of wing shape as

r̂2 = 0.929(r̂1)
0.732 and r̂3 = 0.900(r̂1)

0.581. (6.2)

These laws are obeyed by most insect wings; however, the reasons for doing so are
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unknown. Ellington has also represented wing shapes analytically using the Beta dis-

tribution function, as mentioned in chapter 2.

Various researchers have used r̂1 as the criterion to compare the wing shapes. The

lift coefficient (CL) has been observed to improve with an increase in r̂1, while the

power economy reduced (Shahzad et al., 2016). Wang et al. (2013) have used the Beta

function to form various wing shapes of varying r̂1. They have recommended the use

of the wings with a larger r̂1 for MAVs to maximise the lift and power economy.

Some past studies have proposed a variety of optimised wing shapes, where the

aerodynamic loads were computed using quasi-steady models (Throneberry et al., 2017;

Ghommem et al., 2014). However, the impact of the change in wing shapes on the flow

structures has not been explored well. Moreover, the use of the evolutionary shape

optimisation (ESO) approach, similar to that used in load bearing structures, does not

appear to have been employed in wing shape studies.

ESO-based load bearing structures make an efficient use of building material to

support the stresses in the structure. A similar method can be used in the case of a

rotating wing to support the aerodynamic pressures on the wing surface. The results

of Chapter 5 indicate that wings at different Reynolds numbers have different pressure

distribution. Hence, in the present study, various wing shapes are obtained at different

Reynolds numbers such that their areas support the surface pressures efficiently.

In this computational study, first, a rectangular wing of unity aspect ratio is rotated

with various angular velocities in the range of insect Reynolds numbers. Based on the

results, the wing is cut to eliminate the areas having lower magnitudes of the surface

pressure. Its implications on the variation in CL are then analysed. The ESO-based

method of deriving optimal shapes may be useful in designing the MAV wing planforms

at various Reynolds numbers.

6.2 Method

The model wing, having the span b, mean chord c, and thickness of 0.01b, was placed at

the centre of a cylindrical domain of diameter 18b and length 48c, as has been described

in chapter 3. Similar to the studies on insect wings (Birch & Dickinson, 2001; Harbig

et al., 2013; Carr et al., 2015), the wing was maintained to be at a constant angle of

attack (α = 45◦). It was initially accelerated over t = 0.084T followed by a constant
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Figure 6.1: Schematic of the rotating wing model and the pressure-contour based wing cut.

angular velocity, which corresponds to the span-based Reynolds number,

Respan =
Utb

ν
, (6.3)

where Ut is the velocity of the wing tip and ν is the kinematic viscosity of the fluid. The

shape optimisation was initiated with a rectangular wing of unity aspect ratio. The

wing was rotated at the Respan values of 520, 1732, 3465, and 6930, to determine the

change in the optimised shapes at various Reynolds numbers. This range of Reynolds

numbers overlapped with that for various insects such as a fruit fly (Respan ∼ 520), a

crane fly (Respan ∼ 2900), and a beetle (Respan ∼ 5200).

The wing was rotated through 270◦. The pressure contours on the wing’s suction-

side and pressure-side surfaces were extracted at the end of the simulation. The differ-

ence in the pressures from the two sides contributed to the overall lift and drag acting

on the wing. In the subsequent design iteration, the wing was cut along a chosen pres-

sure contour and the simulation was repeated with a new wing shape to observe the

impact on the forces. The schematic of the wing and its coordinate system can be seen

in figure 6.1. The method of obtaining the shapes based on ESO is explained in detail

in § 6.4.

6.3 LEV and suction pressure

The LEV structure over a rotating wing is known to depend on the Reynolds number

(Lentink & Dickinson, 2009b). At a higher Respan, the LEV is relatively more compact

with a higher spanwise vorticity flux than that at a lower Respan. Since the LEV is
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Figure 6.2: Wing suction pressure contours are shown for the wing of A = 1 rotating at

Respan = 520 in (a) and Respan = 6930 in (b). At a high Respan the magnitude of suction

changes abruptly at location (1). The semitransparent surface shows the LEV structure

identified using the constant Q-criterion. The small black dot represents the location of the

wing root.

responsible for the suction, a change to the LEV structure with Reynolds number can

also affect the pressure distribution over the wing surface. Therefore, the resulting

optimised shape based on the pressure distribution can be expected to vary with the

Reynolds number.

In the present study, initially, a wing of unity aspect ratio was rotated at Respan =

520 and Respan = 6930. The comparison of the resulting pressure distribution on the

wing suction-side surface and the LEV structures is shown in figure 6.2. High magnitude

of suction pressure is present beneath the LEV structures shown by transparent surfaces

of a constant Q-criterion (Hunt et al., 1988). The magnitude of suction has increased at

Respan = 6930 due to the increased spanwise transport of vorticity. At this Respan, the

increase in the contour levels seems to be very sharp near the LEV boundary, highlighted

as location (1) in the figure. This represents a sharp increase in the magnitude of suction

beneath the LEV. However, at Respan = 520, the increase in the magnitude of suction

is relatively more gradual. From this comparison, it may be inferred that, at a high

Respan, the suction is concentrated in a relatively smaller area. It can be noted that,

at Respan = 6930, a small vorticity at the wing root is transported diagonally towards

the wing-tip by the action of the increased Coriolis acceleration.

The net lift on a wing results from the difference between the the pressures on the

suction side (ps) and the pressure side (pp). The pressures can be normalised as

p∗s = ps/(0.5ρU
2
t ),

p∗p = pp/(0.5ρU
2
t ).

(6.4)
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The lift coefficient can be improved by maximising the difference of the pressures av-

eraged over the wing area. This can be achieved by removing the wing area with very

little pressures acting on it. This method of material removal is similar to the evolu-

tionary structural optimisation (ESO), such as that described by Xie & Steven (1997).

However, we removed the material using the surface pressure instead of the von-Mises

stress, which is more relevant to load-bearing structures. The method of the shape

optimisation is described in the following section.

6.4 Evolution of wing shapes from pressure contours

Initially, the rectangular wing of A = 1 was rotated at Reynolds numbers, Respan =

520, 1732, 3465, and 6930. The comparison of the normalised pressures on the suction

side (p∗s) can be seen in figures 6.3 (a–d). For the same cases, the comparison of the

normalised pressures on the pressure side (p∗p) can be seen in figures (e–f). It can be seen

that the distribution of p∗s has changed with the Reynolds number. However, there is

an insignificant change in p∗p. The difference between the two pressures, ∆p∗ = p∗p− p∗s,
contributes to the lift coefficient. Here, the pressures acting on the wing edges are

neglected as the thickness of the wing is very small (1% of b), which exerts a negligible

force. The contours of ∆p∗ are shown in figures (i–l).

It can be seen that a high ∆p∗ is concentrated in the region beneath the LEV that

creates a large suction. A large area near the wing root and the trailing edge exerts

a very low pressure. Such an inefficiently used material may be eliminated using a

criterion for rejection, referred to as the rejection ratio, RR. The parts of the wing

surface satisfying the following condition are removed from the model:

∆p∗mn
∆p∗max

< RRi, (6.5)

where the subscript i denotes the design iteration number, ∆p∗mn is the value of ∆p∗ at

a location of coordinates [m, n] on the wing surface, and ∆p∗max is the maximum value

of ∆p∗ on the wing surface. In the subsequent design iteration (i + 1), the rejection

ratio is modified by introducing the evolutionary rate (ER), such that

RRi+1 = RRi + ER, i = 1, 2, 3, ... . (6.6)

In the present study, three iterations are performed with the initial rejection ratio,

RR1 = 0.2 and the evolutionary rate, ER = 0.1. To have an idea of various wing
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Figure 6.3: The contours of ∆p∗ (bottom row) are obtained by subtracting p∗s (top row)

from p∗p(middle row) for Respan = 520 (first column), Respan = 1732 (second column),

Respan = 3465 (third column), and Respan = 6930 (fourth column). The black dot represents

the position of the wing-root. The coloured contours in the last row are superimposed with

the black contour lines of constant rejection ratios.

shapes that can be produced at different values of RR, the contours of constant-RR

criteria are superimposed onto the colour map of ∆p∗ contours in figures (i–l). The

wing planform in an iteration i was obtained by cutting the rectangular wing along the

contour of ∆p∗mn/∆p
∗
max = RRi. In some cases, such as for RR3 = 0.4, where the wing

root was completely removed, the wing span was reduced. To maintain a constant wing

span, the wing was provided with an extension using a small strip at the wing root,

with a normalised chord cp/b = 0.1. In all shapes, the origin was maintained to be at

the centre of the chord at the wing root.

6.5 Optimisation of wing shapes using the ESO method

The original rectangular wing shape was modified by creating new planforms using

the ESO method, as discussed in the earlier section. The modified planforms were also

simulated to rotate at the same Reynolds number as that of the rectangular wing. First,
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Figure 6.4: The time-traces of L are shown for the wing planforms obtained by rejection

ratios RR1 = 0.2 (red), RR2 = 0.3 (green), and RR3 = 0.4 (blue), rotating at Respan = 520.

The ratio RR0 (black) corresponds to the original rectangular planform.
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Figure 6.5: The iteration-wise variation of the mean lift relative to the that of the rectan-

gular wing (L/L0) and the variation of wing area relative to that of the rectangular wing are

shown in (a). The variation of the mean lift coefficient (CL) is shown in (b). In these cases

Respan was maintained to be 520.

for Respan = 520, the time-traces of the lift (L) were extracted and compared, as shown

in figure 6.4. Here, the rejection ratio RR0 = 0 corresponds to the original rectangular

planform. It can be seen that L reaches a peak during the initial acceleration and then

drops. Furthermore, after the rotation of approximately 100◦, L reaches a stable value

due to the stable leading-edge vortex, as also shown by Birch et al. (2004) and Carr

et al. (2015). Hence, the mean lift (L) can be obtained by averaging the data over the

final 30◦ of rotation. It can be seen that L reduces with RR, due to a reduction in wing

area. A decrease in the mean lift relative to the rectangular wing can be represented
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as L/L0, where L0 is the mean lift over the rectangular wing at the same Reynolds

number. Similarly, a decrease in the wing area (S) relative to the rectangular wing can

be represented as S/S0, where S0 is the area of the rectangular wing.

The relative reductions in the mean lift and area are shown in figure 6.5(a). It

can be seen that, even though the lift on the wing is reduced with RR, the wing area

is reduced by a significantly larger amount. This resulted in an improved mean lift

coefficient. Here, the mean lift and drag coefficients are calculated as

CL =
2L

ρU2
t S

and CD =
2D

ρU2
t S

, (6.7)

where D is the mean drag over the wing. The variation of CL with RR is shown in

figure 6.5(b). The value of CL increased with RR, with the peak reached at RR = 0.3.

CL starts decreasing beyond RR = 0.3, indicating that RR = 0.3 gives the maximum

lift coefficient at Respan = 520. In general, the modified planforms obtained from the

design iterations were found to have a greater CL than the rectangular wing. The

design iterations were then repeated for different Reynolds numbers and the values of

CL were computed to determine the optimum RR at those Reynolds numbers.

The variation in CL with the rejection ratio for various Respan is shown as a contour

map of CL on the plane of RR and Respan in figure 6.6(a). It can be seen that, for all

Reynolds numbers, CL reaches a maximum value at RR = 0.3 and starts decreasing

beyond this ratio. Hence, the optimised wing shapes can be obtained with RR = 0.3

across all Reynolds numbers. The values of CL for the optimised wing shapes are

plotted as a function of Respan in figure 6.6(b). The comparison with the values for

the original rectangular wing at the same Reynolds numbers shows a remarkable 40%

improvement in CL. Moreover, these values are also greater than those for the fruit fly

wing planform rotated at the same Reynolds number.

From the optimised wing planforms shown in figure 6.6(b), it is clear that these

wings have more area outboard. Hence, their centroids have moved further away from

the wing root compared to the rectangular wing. The values r̂1 and r̂2 for the optimised

shapes are summarised in table 6.1 along with the values for the rectangular and fruit

fly wing planforms. This shows that the wings with higher values of r̂1 and r̂2 have

a higher CL. This result is consistent with the findings of Shahzad et al. (2016) and

Combes & Daniel (2001). It can be noted from figure 6.6(b) that the rectangular wing

and the fruit fly wing have a similar CL since their r̂1 and r̂2 values are very close.
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Figure 6.6: The contours of CL are plotted on the plane of RR and Respan in (a). In (b),

the variation of CL is plotted against Respan for the rectangular wing, optimised shapes at

RR = 0.3 and a fruit fly wing planform. The optimised CL values are highlighted with green

dots in (a) and the corresponding shapes are shown in (b).

Wing planform r̂1 r̂2 A

Rectangle (RR = 0.0) 0.50 0.58 1.00
Optimised shape (RR = 0.3) at Respan = 520 0.68 0.71 1.92
Optimised shape (RR = 0.3) at Respan = 1732 0.70 0.74 2.40
Optimised shape (RR = 0.3) at Respan = 3465 0.71 0.75 2.87
Optimised shape (RR = 0.3) at Respan = 6930 0.70 0.74 3.13

Fruit fly wing 0.52 0.57 2.91

Table 6.1: Characteristics of the wing shapes.

The pressures on the suction side surfaces of the optimised wing shapes are shown in

figure 6.7. The pressures are distributed more efficiently than for the rectangular wing.

At the Reynolds numbers of 1732, 3465, and 6930, it can be seen that the wing shapes

are just sufficient to support the LEV structures. It can be seen that, when compared to

the rectangular wing, the magnitude of suction pressures on the optimised wing shapes

can be slightly reduced by the action of the opposite sign vorticity from the trailing edge.

This is because the trailing edge has moved closer to the leading edge in the inboard

area of the wing. However, the reduction in the magnitude is insignificant compared

to the increase in CL obtained by cutting a large amount of low-performing area, as

discussed earlier. Furthermore, unlike for the rectangular wings, a small amount of

trailing-edge vorticity is also observed to tilt into the wake at a location approximately

30% of the span of the optimised wings. This may be due to the inability of the trailing

edge vortex to advect the vorticity along the trailing edge beyond a certain point. The

111



p∗s

(a) Respan = 520 (b) Respan = 1732 (c) Respan = 3465 (d) Respan = 6930

Figure 6.7: The normalised surface pressures on the optimised shapes (obtained from RR =

0.3) are distributed efficiently at (a) Respan = 520, (b) Respan = 1732, (c) Respan = 3465, and

(d) Respan = 6930. The LEV structures are represented by the semi-transparent isosurfaces

of the constant Q-criterion.

trailing edge becomes nearly vertical at the midspan location, requiring the advection

of the trailing edge vorticity along the chordwise direction. The separation of this

vorticity from the trailing edge might affect the suppression of the suction pressure,

restoring a higher CL.

Furthermore, the effect on the power economy of the optimised wing shapes was

also investigated. The power economy is the ratio of the mean lift coefficient and the

mean power coefficient (PE = CL/CP ). The mean power coefficient (CL) is calculated

as

CP =
2τyΩ

ρU3
t S

, (6.8)

where τy is the mean fluid mechanical torque acting along the axis of rotation and Ω

is the constant angular velocity. The comparison of the values of PE for the optimised

wing shapes at different Reynolds numbers with those for the rectangular wing is shown

in figure 6.8(a). This shows that the power economy of the optimised shapes is lower

for any given Reynolds number than that for the rectangular wing. This is also in

accordance with the result of Shahzad et al. (2016), which shows that the wings of a

higher r̂1 have a lower PE. Interestingly, the fruit fly wing is observed to have the

maximum PE, with a similar r̂1 to that of the rectangular wing. The reasons behind

this difference were investigated further.

Wings with lower power economy require more power to rotate. This power is

required to overcome the mean torque τy. The torque is derived from the mean drag

coefficient (CD) resulting from the surface pressures and the radial location of the
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Figure 6.8: The variations of (a) power economy (PE), (b) CL/CD, and (c) normalised

location of the point of application of drag (r̂D) with Respan are shown for the rectangular

wing, optimised wing shapes and the fruit fly wing.

centre of pressure. First, the variation of CL/CD with Respan was plotted for different

wings, as shown in figure 6.8(b). Although the optimised wings have lower CL/CD,

the difference is less than 5%. This implies that the increase in CL of the optimised

wings is accompanied by an increase in CD by nearly an equal amount, since both

the quantities directly depend on the surface pressures. Second, the variation of the

normalised location of the point of application of drag (r̂D = rD/b) was plotted for

different wings, as shown in figure 6.8(c). The optimised wings have higher r̂D, which

explains the increase in CP . The fruit fly wing has the lowest r̂D, and therefore, the

highest PE. Decreasing r̂1 can further decrease r̂D to obtain even higher PE. Insect

wings could have evolved to their present shapes as a result of a compromise between

maximum lift coefficient and maximum power economy. There may be several other

factors, such as the resistance to bending and resistance to torsion, which require a

broader chord inboard (Wootton, 1992; Ennos, 1989). The evolution of insect wing

morphology has also been affected by the environmental factors and requirement for

thermo-regulation, as has been discussed by Kingslover & Koehl (1994) and Johansson

et al. (2009). However, some insect species, such as Sceliphron sp. and Bombus sp. do

have a larger area outboard, i.e. a high value of r̂1.

From figure 6.8(a), it is clear that the fruit fly wing outperforms the optimised wings

in terms of the power economy. This could be due to both, the lower drag coefficient

and shorted moment arm. Since there is no significant difference between the CL/CD

ratios of the fruit fly wing and the optimised wings and CL of the optimised wings is

higher than that of the fruit fly wing, it is clear that CD of the optimised wings must
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Maple seedsFruit fly wing

Figure 6.9: Wing shapes observed in nature have thicker roots, which help the r̂1(m) to

remain inboard. Fruit fly wing photo credit: David Hole, Florida State University. Maple

seeds were photographed by me.

be higher. Moreover, this higher drag coefficient, together with a longer moment arm,

creates a higher moment on the optimised wings. Hence, the optimised wings require a

higher power coefficient to overcome the moment due to drag, which results in a lower

power economy.

The optimised shapes may also be of interest to the studies on auto-rotating Samara

seeds. The Samara seeds, such as maple seeds, are the winged seeds which auto-rotate

while falling. In this case, no power input is required since the auto-rotation is caused

by the action of the drag force. The seed requires sufficient lift to balance its weight,

such that the seed falls with a constant velocity. The lower the velocity, the more it can

be dispersed in the horizontal direction. Hence, obtaining the maximum possible lift

is essential for the Samara seeds. Interestingly, the maple seeds also have a large area

outboard, similar to the optimised wing shapes, implying that their wing shapes may

have been evolved to generate a high lift. However, these seeds carry nuts situated at

the wing root. Hence, most of their weight is concentrated near the wing root, which

makes it fall only in certain orientations. For this reason, their wing roots cannot be

too thin. It is also important to have a spanwise twist in these wings, which helps to

start the auto-rotation, as has been discussed by Norberg (1973).

Overall, it was observed that a higher CL would require a larger area outboard.

However, the value of CD would also increase simultaneously, as both the values depend

on pressure. Hence, the power requirement to overcome the drag would also increase.

One method of reducing the drag is to lower the angle of attack. However, it has been
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shown by Kruyt et al. (2015) that lower angles are beneficial for the wings of very large

aspect ratios (and at a high Respan). This is because, at a low Respan, lower angles

of attack may create a relatively smaller LEV, which would create a lower suction.

Hence, the lift coefficient would also decrease, which is not desirable. Another method

of reducing the power requirement is to lower the r̂1. For a simple flat plate planform,

the area centroid, r̂1(S), is same as the centre of mass r̂1(m). However, the centre of

mass can be shifted inward for the same planform by adding more mass to its root.

The centre of pressure, which affects CL and CD, is dependent on the spanwise wing

area distribution, as seen in this study. Therefore, a larger CL can be obtained by more

outwards wing area. Simultaneously, a lower CP can be obtained by moving the centre

of mass inward using a thicker wing root.

Interestingly, it can be seen that a maple seeds have a heavy mass (seed) at their

roots that helps in bringing r̂1(m) down. Similarly, insect wings have a thick axillary

area, where all the wing venation is connected. Moreover, the wing veins are thicker at

the wing root and thinner towards the tip, helping r̂1(m) to be inward. The pictures of

a maple seed and a fruit fly wing can be seen in figure 6.9. This design in nature may

help the wings to have a larger CL and a lower CP simultaneously.

6.6 Summary

In this study, the evolutionary structural optimisation (ESO) based method was used

to optimise the shapes of rotating wings at various Reynolds numbers. The optimised

shapes are efficient in their use of material to support the aerodynamic pressures. The

mean lift coefficient of the wing (CL) was significantly improved in successive ESO

iterations. The maximum CL was obtained for the rejection ratio (RR) of 0.3. The

optimised shapes are different for different Reynolds numbers. In general, the opti-

mised wings exhibited larger areas outboard, similar to that observed in a few insects

and Samara seeds. These shapes supported the LEV structures more efficiently than

the rectangular wings, which are used in most experimental and numerical models in

the studies on insect wing aerodynamics. The increase in the lift coefficient was also

accompanied by an increase in the drag coefficient. However, with the increased drag

coefficient and a more outboard location of the centre of pressure, the power require-

ment also increased, which resulted in a poor power economy. Most insect wings might

have evolved as a compromise between a high lift coefficient and a high power economy,
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as semi-elliptic shapes. Nevertheless, the present study presents a new approach to

obtain the optimised wing shape for any given Reynolds number while comparing its

implications on the flow structures. This may be useful in designing the high-lift wings

for MAVs.
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Chapter 7

Effects of the Flapping Motion
Profile

7.1 Introduction

Lift generated by the flow around steady wings is not enough to support the weight of

small flyers due to the increased viscous resistance at the small scales. Hence, these

flyers need to flap their wings in order to generate an extra lift and overcome the drag,

requiring an additional power than their large gliding counterparts. Hence, flight of

the hovering small flyers is costly compared to the large gliders. However, the high

lift generated as a result of multiple unsteady mechanisms makes flapping essential

for a stable flight at low Reynolds numbers. As discussed in earlier chapters, the

flapping stroke of an insect comprises the rotational translation (or sweep) during a

half stroke, followed by the flip motion (or pitch) towards the end of the half stroke.

Two such half strokes, namely, the upstroke and downstroke, make a single flapping

stroke. Although the mid-stroke aerodynamics can be represented well by the rotating

wing models, they do not capture the unsteady effects during the flip motion, such as

the rotational circulation and the wake capture, as discussed by Dickinson et al. (1999).

The cycle-averaged aerodynamic loads may be different from the loads obtained in the

quasi-steady state of a purely rotating wing. Hence, in order to have a complete idea

of the kinematic efficiency of a flyer, it is important to study its flapping kinematics.

An insect wing is free to rotate around three orthogonal axes, allowing three degrees

of freedom (3-DOF). The corresponding three Euler angles represent the phase angle

(φ), the angle of attack (α), and the deflection angle (θ). It has been established that

during ‘normal hovering’, an insect wing is minimally deflected (i.e. θ ∼ 0) and the wing

flaps symmetrically in upstroke and downstroke along nearly a single horizontal plane
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Figure 7.1: Schematic of the flapping wing setup.

(Rayner, 1979; Maxworthy, 1981). Hence, the important angles in this mode are φ and

α, which are shown in the schematic in figure 7.1. Here, the coordinates are shown in

the wing’s reference frame, where the X axis is along the streamwise velocity, the Y

axis is aligned with the sweep axis and the Z axis is aligned with the pitch axis. Also, φ

is measured as the angular displacement of the wing span axis from the mid-stroke and

α is measured as the angle made by the wing chord with the horizontal. Following the

convention from the literature, the pitch angle (ψ) is defined such that α = π/2− |ψ|.

Various past studies have investigated the influence of the mean angles (φ and α)

and the maximum amplitudes of the these angles (φA and αA), such as those by Berman

& Wang (2007), Wang et al. (2013), and Zheng et al. (2013). Overall, they suggested

the optimum amplitude values to be in the range 70◦ < φA < 90◦ and 45◦ < αA < 55◦.

The optimum mean phase angle was φ = 0◦ and the optimum mean angle of attack

was α = 90◦. Berman & Wang (2007) showed a variation in the optimum φA based on

the Reynolds number.

However, even for the given mean angles and amplitudes, the time-variation of the

angles can impact the cycle-averaged aerodynamic loads. Berman & Wang (2007) have
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Figure 7.2: Flapping motion waveforms for φ and ψ obtained by varying the parameters K

and Cψ, respectively. The kinematics of a real free-flying fruit fly, shown by the dashed black

lines, has been obtained by Fry et al. (2005).

suggested the following models to obtain various waveforms for the flapping kinematics:

φ(t) =
φA

sin−1K
sin−1[K sin(2πft+ φψ)] and

ψ(t) =
ψA

tanh(Cψ)
tanh[Cψ sin(2πft)],

(7.1)

where K is the sweep profile parameter varying in the limit 0 ≤ K ≤ 1, Cψ is the

pitch profile parameter varying in the range 0 ≤ Cψ ≤ 10 and φψ is the pitching phase

offset. Typically, for a symmetric flip rotation with respect to the stroke reversal,

φψ = π/2. An advanced rotation, with φψ < π/2, was observed to have a positive

lift peak than that for a delayed rotation, with φψ > π/2 (Dickinson et al., 1999). In

equation 7.1, φ(t) is a smoothed triangular waveform, which becomes sinusoidal as K

approaches 0. Similarly, ψ(t) is a smoothed step waveform, which becomes sinusoidal

as Cψ approaches 0. The smoothed triangular waveform of φ(t) and the smoothed

trapezoidal waveform of ψ(t) used for a robofly by Dickinson and co-workers can be

approximated by K = 0.99 and Cψ = 10. The waveforms for various values of K and

Cψ are shown in figure 7.2.

Most experimental and numerical studies on flapping wings model sinusoidal wave-

forms, whereas some studies have used the simplified robofly model of Dickinson. The

constant φ̇(t) during the translation phase of the robofly model might be responsible

for a stable lift. However, the rapid pitch motion towards the end of the stroke can

create a high lift peak, which can make the overall flight unstable. On the contrary, a

smooth harmonic waveform might not be optimal for generating a high cycle-averaged
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lift. Real insects are found to have more complex flapping waveforms, as have been

shown by Ellington (1984b), Fry et al. (2005), and Zanker (1990). Hence, it is impor-

tant to study the variation in the waveform and its impact on the flight performance.

Some studies, such as those by Berman & Wang (2007), Ghommem et al. (2013), and

Gogulapati et al. (2014) have studied the effects of flapping motion waveforms. How-

ever, these studies either use the quasi-steady models or two-dimensional numerical

simulations to predict the forces on the wing. Such models may not completely capture

the three-dimensional unsteady flow effects. The optimum values of K suggested from

these studies also don’t match with those in the real insects. Hence, it is important to

present an experimental evidence to ascertain or challenge the existing results from the

optimisation studies.

In this experimental study, a fruit-fly wing planform was made to flap at Reb = 275

using various motion waveforms for the time-variations of φ and ψ. The performance

was computed from direct measurements of the forces and torques along three Cartesian

axes. The cycle averaged lift and power economy were observed to vary with the changes

in the values of K and Cψ. The optimum K and Cψ values proposed from this study

can help the MAVs to perform better than using the simplified kinematics.

7.2 Method

A fruit fly wing planform of the wing span, b = 0.12 mm, and aspect ratio, A = 2.91,

was attached rigidly to the ATI Nano17 IP68 F/T transducer at its root. The wing was

fabricated from a 2 mm acrylic sheet. The ATI Nano17 transducer, along with the wing,

was attached to a flapping mechanism allowing two degrees of freedom. The flapping

mechanism was driven using two servo motors (model: EC-max30, Maxon Motor).

Motor-1 controlled the sweep motion (about the Y axis) via the main shaft. Motor-2

controlled the pitch motion (about the Z axis) via a timing belt-and-pulley mechanism

placed inside the hollow main shaft. The parts of the flapping wing assembly are shown

in an exploded view in figure 7.3(a). A detailed description of the flapping mechanism

can be found in § 3.1.3. The wing was offset from the sweep axis such that the offset

ratio was b0/b = 0.5. For this offset ratio, the flow over the wing can be assumed to be

minimally affected by the central body, as explained in § 4.5.

The flapping frequency was maintained to be constant (n = 0.55 Hz), which resulted

in a mean span-based Reynolds number (Reb = 275) that closely matches that of a fruit
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Figure 7.3: The parts of the flapping wing rig assembly are shown in an exploded view in

(a). The schematic in (b) shows the alignment of the forces measured using ATI-Nano17

transducer attached to the wing root.

fly wing. Here, the reference velocity was computed as Ug = 4nφARg, where Rg is the

radius of gyration of the wing. Other parameters, which were maintained to be constant

are the sweep amplitude (φA = 70◦), pitch amplitude (ψA = 45◦), mean sweep angle

(φ = 0◦), mean pitch angle (ψ = 0◦), and pitching phase offset (φψ = 90◦).

The flapping motion rig was mounted on a square tank of size 0.5 × 0.5 × 0.5 m3

filled with Stella food grade mineral oil of the kinematic viscosity, ν = 150 mm2/s. This

high viscosity helped to maintain sufficiently high signal-to-noise ratio, even at the low

Reynolds number. Mineral oil also helped in reducing the noise levels in the recorded

signals by electrically and thermally isolating the transducer.

The ATI Nano17 transducer was attached to the wing in such a way that it always

measured the forces and torques along the axes fixed to the wing’s reference frame. As

can be seen in figure 7.3(b), the transducer measured the forces along the wing chord

(Fc) and normal to the wing (Fn). The lift and drag over the wing were calculated as

L = Fc cos(ψ) + Fn sin(ψ) and D = −Fc sin(ψ) + Fn cos(ψ), (7.2)

respectively. The lift and drag coefficients of the wing were computed as

CL =
2L

ρU2
gS

and CD =
2D

ρU2
gS

, (7.3)
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where ρ is the density of the mineral oil and S is the wing area. The transducer also

measured the torques about the axes along the chord and the normal, referred to as τc

and τn, respectively. Hence, the torques along X-axis and Y-axis were computed as

τx = −τc sin(ψ) + τn cos(ψ) and τy = τc cos(ψ) + τn sin(ψ), (7.4)

respectively. Moreover, the force and torque measured along the wing span (Z-axis)

were referred to as Fz and τz, respectively. The coefficients of moments along the X,

Y, and Z axes were computed as

Cmx =
2τx

ρU2
gSb

, Cmy =
2τy

ρU2
gSb

, and Cmz =
2τz

ρU2
gSb

. (7.5)

In a reverse stroke, the direction of the flow was reversed. Accordingly, the signs for Fn

and τn were also reversed. The motors driving the flapping motion were equipped with

encoders (model: ENC24 2RMHF, Maxon Motor) to measure the angular displacements

φ and ψ. The F/T transducer, motors, and the encoders were connected to a Beckhoff

EK1100 coupler in an EtherCAT based real time control system. The forces, torques,

and angular displacements were sampled at 100 Hz and recorded using TwinCAT 3.0.

7.3 Repeatability of the flapping cycles

During an experiment, the wing starts flapping in the oil, which is initially quiescent.

However, after the wing flips at the end of the half strokes, it leaves vortical structures in

the wake, which influence the forces in the subsequent flapping cycle, due a phenomenon

known as the wake capture (Dickinson et al., 1999). Hence, the instantaneous forces at

the same flapping phase may differ from one flapping cycle to the next. To check the

repeatability of the forces, the wing was flapped 20 times and the forces and torques

were recorded throughout the wing motion.

Figure 7.4(a) shows the imposed motion profile, where K = 0.01 and Cψ = 3. The

recorded Fn and Fc over 20 cycles are shown in figure 7.4(b) as 20 overlapping curves,

which show an almost negligible deviation from the phase-averaged curve. Here, the

phase-averaged curve is obtained by phase-averaging over 10 cycles, starting from the

fifth cycle. The time traces of the corresponding lift and drag coefficients are shown

in figure 7.4(c). The peak CL during the upstroke and downstroke differs by a small

amount (< 10%), indicating the near-symmetric flapping motion in both half-strokes.

Similarly, the time variations of moment coefficients Cmx , Cmy , and Cmz are shown

122



0.00 0.25 0.50 0.75 1.00

t/T

−50

−25

0

25

50

R
ot
at
io
n
an
gl
es

(◦
) φ

ψ

(a)

K = 0.01

Cψ = 3.0

0.00 0.25 0.50 0.75 1.00

t/T

−1.0

−0.5

0.0

0.5

1.0

F
or
ce

(N
)

Fn
Fc

(b)

0.00 0.25 0.50 0.75 1.00

t/T

−1

0

1

2

3

4

F
or
ce

co
effi

ci
en
t

CL
CD

(c)

0.00 0.25 0.50 0.75 1.00

t/T

0.0

0.5

1.0

1.5

M
om

en
t
co
effi

ci
en
t

Cmx

Cmy

Cmz

(d)

Figure 7.4: The time traces of 20 flapping cycles are shown for (a) the angles φ and ψ, (b)

the forces Fn and Fc, (c) the lift and drag coefficients, (d) the moment coefficients along X,

Y, and Z axes. The black dashed lines represent the values for a phase-averaged cycle.

in figure 7.4(d) and show a similar variation to that of the force coefficients. A little

asymmetry between the two half-strokes may be on account of the backlash (∼ 4◦)

in the gear box of the driving motor-2, which slightly deviates the smooth flip motion

profile. This is evident from the sharp corners in ψ curve in figure 7.4(a) near t/T = 0.4

and t/T = 0.9.

It should be noted that Cmz has a negligible value throughout the flapping cycle.

Hence, the power associated with the flip motion, which is on account of (Cmz α̇) can

be neglected in the total power calculations. The coefficient Cmy is of interest, since

most of the power is required to overcome this moment during the sweep motion.

7.4 Effects of the motion profile

The effects of the motion profiles on the wing aerodynamics were studied by system-

atically varying the values of K and Cψ that changed the driven flapping waveforms.
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Figure 7.5: The sweep motion profile is varied by changing the values of K. The resulting

time-traces of φ̇, CL, and Cmy
are shown in (a), (b) and (c), respectively, for Cψ = 5.

First, the pitching motion profile was maintained to be trapezoidal with Cψ = 5. The

sweep motion profile was varied by changing the K values in the range [0.01–0.99].

The resulting time traces of the lift coefficient and moment coefficient about Y-axis are

shown in figures 7.5(b) and 7.5(c), respectively.

It can be seen that the time traces of both, the lift coefficient and the Y-moment

coefficient, change with K. There is a peak at the start of the sweep motion in both

half-strokes, followed by a second peak close to the midstrokes. The magnitude of the

first peak increases with an increase in K. This peak is associated with the rapid pitch

motion, whose effect is amplified by an increase in sweep acceleration with K. On the
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K
Values at t/T = 0.25 Cycle-averaged values

φ̇ (rad/s) CL Cmy CL Cmy PE
0.01 4.21 2.61 1.84 1.54 0.99 0.73
0.50 4.02 2.17 1.37 1.42 0.85 0.84
0.90 3.39 1.40 0.90 1.32 0.75 0.96
0.99 2.92 1.05 0.80 1.43 0.93 0.89

Table 7.1: Comparison of the values of φ̇, CL, Cmy
at t/T = 0.25 and the cycle-averaged

values of CL, Cmy
, and PE is shown for various values of K.

contrary, the magnitude of the second peak decreases with K. This is because the sweep

velocity profile, shown in figure 7.5(a), changes with K and reaches a nearly constant

velocity throughout a major part of the sweep motion at K = 0.99. Although a high K

value results in a nearly stable lift coefficient during the sweep, it also adversely affects

the initial peak, creating a jerk at the start of the sweep motion. Therefore, with a high

K, the flight may be relatively unstable (i.e. less smooth) compared to that at a low

K. The difference between the time-traces of CL for a sinusoidal sweep profile (K ≈ 0)

and a triangular sweep profile (K ≈ 1) shown here is in agreement with that observed

by Bos et al. (2008).

The effects of φ̇ on CL and Cmy are analysed by comparing their values at t/T =

0.25, as shown in table 7.1. It can be seen that the values of both CL and Cmy decrease

monotonically with a decrease in φ̇, indicating a strong dependence of aerodynamic

loads on the sweep velocity. The overall flight performance can be analysed by com-

paring the cycle averaged values of the lift and moment coefficients. As can be seen

in table 7.1, the values of CL and Cmy decrease with an increase in K. However, the

values are lowest for K = 0.9. The values for K = 0.99 are greater than those at

K = 0.9, possibly because of the small positive peaks observed in the time-traces at

t/T = 0.45 and 0.95.

The power required to flap the wing to overcome the aerodynamic loads can be

normalised to give the power coefficient, which is computed as

CP =
2τyφ̇+ 2τzα̇

ρU3
gS

=
(2Cmy φ̇+ 2Cmz α̇)(b)

Ug
. (7.6)

As discussed earlier, the terms in Cmz can be neglected due to their very low values.

Hence, the expression for the power coefficient reduces to CP ≈ 2Cmy φ̇b/Ug. The

power economy, which is measure of the flight performance, can be calculated as PE =

CL/CP , where CP is the mean power coefficient. It can be observed from table 7.1
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Figure 7.6: The pitch motion profile is varied by changing the values of Cψ. The resulting

time traces of ψ̇, CL, and Cmy are shown in (a), (b) and (c), respectively, for K = 0.01.

that the power economy varies in an inverse proportion to CL. The maximum cycle-

averaged lift is obtained for K = 0.01, which has the lowest PE and the lowest CL

is obtained for K = 0.9, which has the highest PE. Therefore, the selection of the

parameter K is crucial in determining the performance in terms of the maximised lift

and maximised power economy.

Furthermore, the sweep motion profile was varied by changing the values of Cψ,

while K was maintained to be 0.01. The resulting time-traces of the pitch-rotation

velocity (ψ̇), CL, and Cmy are shown in figure 7.6. It can be seen that there is a large

change in CL and Cmy values when Cψ changes from 0.01 to 3. However, for Cψ > 3,

the increase in the magnitudes of CL and Cmy is marginal.
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Cψ
Values at t/T = 0.25 Cycle averaged values

ψ̇ (rad/s) CL Cmy CL Cmy PE
0.01 0.0 0.86 0.58 0.74 0.54 0.73
3.00 0.0 2.49 1.59 1.49 0.86 0.80
5.00 0.0 2.61 1.84 1.54 0.99 0.73

Table 7.2: Comparison of the values of ψ̇, CL, Cmy
at t/T = 0.25 and the cycle averaged

values of CL, Cmy
, and PE is shown for various values of Cψ.

The effects on the peak and the cycle averaged values are tabulated in table 7.2.

At the mid-stroke, (t/T = 0.25), the wing is in a sweep motion. The pitch-rotation

velocity at this instance is zero. However, the peak values of CL and Cmy are found

to be dependent on Cψ. The cycle averaged values also increase monotonically with

Cψ. The increased aerodynamic forces for Cψ = 5 may be on account of maintaining

a high angle of attack during most of the sweep motion. However, the power economy

is minimally affected by Cψ. Hence, it can be concluded that a larger value of Cψ can

result in a high flapping performance. However, Berman & Wang (2007) have predicted

low values of Cψ to be optimum, using the optimisation models. The discrepancies can

be attributed to their force predictions models, which do not completely capture the

effects of rotational forces and Coriolis forces that change with a change in Cψ.

Finally, the sweep and pitch motion profiles were varied simultaneously by system-

atically varying K in the range 0.01 ≤ K ≤ 0.99 and Cψ in the range 0.01 ≤ Cψ ≤ 5.

The performance was measured in terms of the mean lift coefficient and power economy

in each case. The contours of CL and PE are mapped on the planes of K and Cψ, as

can be seen in figure 7.7. High CL can be obtained at a low K and a high Cψ, whereas

high PE can be obtained at a high K and a high Cψ. Therefore, a high Cψ results in a

high performance, both in terms of CL and PE. However, the selection of K is crucial

in targeting a high CL or a high PE.

7.5 Summary

In this study, the effects of the flapping motion profile were investigated by performing

the experiments on a flapping wing and measuring its performance in terms of the mean

lift coefficient (CL) and power economy (PE). The flapping motion rig involved two

degrees of freedom, in the sweep and pitch. The corresponding motion profiles were

varied by changing the values of the sweep profile parameter (K) and the pitch profile
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Figure 7.7: The contours of CL and PE are shown on the K–Cψ planes in (a) and (b),

respectively.

parameter (Cψ). The resulting CL and PE values were mapped on the planes of K and

Cψ. Both CL and PE were observed to be maximised by increasing Cψ, which applied

a trapezoidal pitch motion profile. However, changes to the value of K showed opposite

effects on CL and PE. A sinusoidal sweep motion profile, with a low K, maximised

CL, whereas a triangular sweep motion profile, with a high K, maximised PE. These

contour maps might be useful in determining appropriate flapping kinematics of a MAV.

Additional information about the flow structure, in a future study, might be useful in

explaining the variations observed in CL and PE.
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Chapter 8

Conclusions and Recommended
Future Work

8.1 Conclusions

In this thesis, the aerodynamics of both rotating and flapping wings is investigated

using both experimental and computational analyses. Review of the past studies on

the effects of various geometrical and kinematic parameters on the wing aerodynamics

revealed some challenges. These challenges are addressed in the present thesis. The

investigation comprises four broad studies, the conclusions of which are discussed below.

8.1.1 Effects of the central body size

The central body size can affect the leading-edge vortex (LEV) structure over a rotating

wing in two ways; first, by making the wing-root to be offset from the rotation axis that

reduces the spanwise velocity gradient and second, on account of the secondary flow

generated near the wall of the rotating central body, which can potentially interfere

with the LEV formed at the wing root. The offset ratio, b̂0 was calculated as the

wing-root offset (b0) normalised by the wing span (b). Scanning PIV experiments were

conducted to capture the three-dimensional LEV structure over the rotating wing with

the offset ratio varying in the range b̂0 ∈ [0, 0.5]. The large scale LEV structure shows a

negligible change for offset ratios 0 ≤ b̂0 ≤ 0.25. However, the strength of the secondary

vortex, which is formed near the mid-chord region after the LEV splits, reduces with an

increase in b̂0. Ultimately, for b̂0 > 0.25, there is a dramatic change in the large-scale

LEV, with no split occurring in it. The effect of the secondary flow at the central body

wall was investigated using numerical simulations of rotating wings with offsets, with

and without a central body. The presence of a central body, with offset ratio in the
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range b̂0 ≤ 0.5, was found to have a negligible influence on the lift over the wing. This

range includes the offset ratios typically used in experiments. Beyond this range, the

presence of a central body has a detrimental effect on the lift, indicating that the effects

of the secondary flow are significant. Overall, it can be concluded that the aerodynamics

of a rotating wing is affected markedly beyond a certain central body size. The range

of offsets, within which the flow and the forces are minimally affected, does cover the

typical range of offsets used in experimental models and micro air vehicles.

8.1.2 Effects of aspect ratio, Reynolds number and Rossby number

In this study, The individual and combined influences of aspect ratio, Reynolds number,

and Rossby number on the leading-edge vortex (LEV) of a rotating wing of insect-like

planform are investigated numerically. A previous study from our group (Harbig et al.,

2013) has determined the wing span to be an appropriate length-scale governing the

large-scale LEV structure. In this study, the aspect ratio range considered is further

extended, to show that this scaling works well as the aspect ratio is varied by a factor of

4 (1.8 ≤A ≤ 7.28) and over a Reynolds number range of two orders of magnitude. The

present study also extends this scaling for wings with an offset from the rotation axis,

which is typically the case for actual insects and often for experiments. Remarkably,

the optimum range of aspect ratios based on the lift coefficients at different Reynolds

numbers coincide with those observed in nature.

The scaling based on the wing-span is extended to the acceleration terms of the

Navier-Stokes equations, suggesting a modified scaling of the Rossby number, which

decouples the effects of aspect ratio. By varying the Rossby number over a wide range

(1.67 ≤ Ro ≤ 10), the lift on the wing is shown to decrease with increasing Rossby

number, asymptoting to the value for a translating wing. A detailed investigation

of the flow structures, by increasing the Rossby number in a wide range, reveals the

weakening of the LEV due to the reduced spanwise flow, resulting in a reduced lift.

Overall, the use of span-based scaling of the Reynolds and Rossby numbers, together

with the aspect ratio, may help reconcile apparent conflicting trends between observed

variations in aerodynamic performance in different sets of experiments and simulations.

8.1.3 Evolutionary shape optimisation of a rotating wing

Motivated by various wing shapes found in insects flying at various Reynolds numbers,

optimisation of wing shape is performed for a range of wing-tip-velocity-based Reynolds
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numbers, Respan ∈ [500, 7000]. The past optimisation studies involve force predictions

from quasi-steady models, whereas the present study establishes a new approach, i.e.

the evolutionary shape optimisation (ESO). This approached is derived from the evo-

lutionary structural optimisation of the load-bearing structures. In this method, the

wing surface pressure is used as the rejection criterion. Starting from a rectangular

wing with A = 1, the areas with low pressure magnitudes, contributing negligibly to

the lift coefficient, are removed in the subsequent design iterations. The rejection ratio

(RR) is modified in each iteration. RR = 0.3 is found to result in the shapes having

the maximum CL across all the investigated Reynolds numbers.

The optimised shapes are found to vary with Respan. However, all the shapes

exhibited a larger area distributed outboard. This also resulted in a relatively lower

power economy (PE). It is concluded that a larger outboard area is beneficial for CL

and larger inboard area is beneficial for PE. In nature, a compromise between the two

parameters can be found. Interestingly, some insect wings and winged seeds are found

to have a larger outboard area; however, their power economy is maintained to be high

by their mass concentrated more inboard.

8.1.4 Effects of the flapping wing motion profile

In this experimental study, the effects of various flapping motion profiles on the perfor-

mance of a fruit fly wing are investigated. The wing was made to flap in a mineral oil

tank and the forces and torques over the wing were measured to assess its performance.

The flapping motion involved two degrees of freedom. The sweep motion waveform was

varied from sinusoidal to triangular by changing the sweep profile factor in the range

0 ≤ K ≤ 1. The pitch motion waveform was varied from sinusoidal to trapezoidal,

independently, by changing the pitch profile factor in the range 0 ≤ Cψ ≤ 10. The

resulting contours of CL and PE were mapped on the K-Cψ planes. Higher Cψ is

advantageous for obtaining both high CL and high PE. However, K has a different

effects on CL and PE. High K results in a high PE, whereas low K results in a high

CL. Moreover, time-traces of the lift at a high K were found to have sudden peaks at

the start of the sweep motion, which might make the flight unstable. The time-traces

for a low K were relatively smooth. Indeed, in insect wings, the sweep motion is found

to be nearly sinusoidal, which can be approximated by K ∼ 0, that gives a high CL and

a relatively smooth lift variation over a flapping cycle. The power economy of insects
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may be controlled by several other factors such as the mass distribution and wing twist.

The suggested motion profiles from this study can help MAVs perform better than by

using the standard harmonic motion profiles.

8.2 Recommendations for future work

The present study has investigated some of the key features of the insect flight. The

proposed scaling laws and optimisation methods can be useful in the design of various

components and kinematics of MAVs. The improved performance of the MAVs will be

beneficial for the community, since they exhibit applications in a range of tasks from fire

fighting to agriculture. The parameter space surrounding the investigation of the insect

flight is very large, which includes several variables. Even though the present research

tries to address some of the key challenges, some questions remain under-explored.

� The effect of wing flexibility is not well understood. The recent research shows

that the lift on the wing is improved with its flexibility; however, the interaction

of the flow with the flexible wing is expected to change with the Reynolds number.

� The effects of anisotropy in the wing material needs to be investigated. Some

outcomes of the present work indicate that the anisotropy might be helpful in

the wing mass distribution to give a higher power economy. This can be investi-

gated in detail by designing the wings of various venation patterns and variable

thicknesses and observing its implications.

� The suggested span-based scaling of Reynolds and Rossby numbers is verified

in the insect range of Reynolds numbers. However, the study of this scaling

at higher Reynolds numbers can provide useful insights into characterising the

flow structures over large rotating wings, such as those of helicopters and wind

turbines.

� The torque measurements on a flapping wing show that the torque about the pitch

axis is very small, indicating the possibility of passive pitch motion. The passive

pitch motion profile can be a function of the sweep motion profile. Moreover,

the angle of attack at the mid-stroke in the passive pitching can change with the

Reynolds number. The study of a passively pitching wing at various Reynolds

numbers can provide useful insights into the wing pitching profiles and angles of

attack observed in various insects.
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Appendix A

Scaling of acceleration terms in
Navier-Stokes equations

To understand the influence of Rossby number and Reynolds number on the flow better,

the Navier-Stokes (NS) equations are revisited by examining the key scalings using the

method similar to Lentink & Dickinson (2009a). The vector NS equation in a rotating

frame-of-reference is given by

ρ
Du

Dt
+ ρΩ̇× r + ρΩ× (Ω× r) + 2ρΩ× u = −∇p+ µ∇2u. (A.1)

Lentink & Dickinson (2009a) have scaled the velocity terms by the wing-tip velocity

(Ut) and the length terms by the mean chord (c). However, using the scaling based

on the findings of Harbig et al. (2013) and the present study, the variables can be

non-dimensionalised as follows: u∗ = u/Ug, t
∗ = tUg/b, Ω∗ = Ω/Ω, Ω̇∗ = Ω̇/Ω̇,

r∗ = r/b, p∗ = p/(ρU2
g ), and ∇∗ = b∇, where Ug is the velocity at the radius of

gyration of the wing, Ω is the time-averaged angular velocity, Ω̇ is the time-averaged

angular acceleration, and b is the wing span. Substituting these terms and dividing

equation A.1 by ρUg
2/b gives

Du∗

Dt
+

Ω̇b2

U2
g

Ω̇∗×r∗+ Ω2b2

U2
g

Ω∗×(Ω∗×r∗)+
2Ωb

Ug
Ω∗×u∗ = −∇∗p∗+ µ

ρUgb
∇∗2u∗. (A.2)

Omitting the symbol ∗ for simplicity and rearranging the terms, the equation can be

rewritten as

Du

Dt
+

(Ω̇/Ω2)

(Rg/b)
2 Ω̇×r+

1

(Rg/b)
2Ω× (Ω×r)+

2

(Rg/b)
Ω×u = −∇p+

µ

ρUgb
∇2u. (A.3)

Thus, it can be noted that the viscous term scales with ρUgb/µ, which is the span-

based Reynolds number (Reb). The angular and centripetal accelerations scale with

(Rg/b)
2 and the Coriolis acceleration scales with Rg/b. For a constant speed rotation,
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the angular acceleration term can be omitted. With an increase in Rg/b, the influence of

the centripetal and Coriolis accelerations reduces, which could have caused a reduction

in the spanwise flow.
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