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Abstract

Granular flow and mixing is an important research area which has attracted extensive

attentions for more than half a century. The granular mixing has a wide range of appli-

cations in industries such as pharmaceutical, food, and cosmetics industries. Developing

methodology to predict precisely particle behaviors in granular flow and mixing is of great

importance to engineering projects across industries. Currently, the prevailing and full-

fledged numerical technique for this purpose is discrete element method (DEM). Although

its validation is beyond doubt, it has a sever limitation in computational efficiency. To

overcome this obstacle, one promising way is establishing a continuum model that can cap-

ture the bulk behaviours of granular material. The finite element method (FEM) based

on elastoplastic theory is one of such approach having many desirable advantages.

This thesis aims to utilise this Eulerian FEM approach to establish a continuum model of

granular mixing and apply the model to study various mixers such as rotating drums and

high shear mixers. It is demonstrated that the Eulerian approach, superior to the tradi-

tional Lagrangian method, can overcome the mesh distortion during the process of granular

flow. Most features of particle mixing are captured qualitatively and quantitatively. In

the first part of this study, a granulator with a complex geometry (bladed-mixer) was used

to test the Eulerian FEM validation of flow model. Flow patterns, velocity statistical dis-

tributions and mixing pattern evolution derived from FEM are highly consistent with the

results from the positron emission particle tracking (PEPT) experiment and the discrete

element method (DEM) simulations. The convection mixing model was introduced in the

first part of primary study. By this model we find convection plays a dominant rule in the

granular mixing process in the bladed mixer. However, diffusion, as an important mech-

anism to mixing should not be neglected. In the second part of the study, the diffusion
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mechanism is added to the FEM model via an operator splitting method, by which more

convincing and quantitatively accurate results are generated and validated with the DEM

results. It is further found that diffusion has a positive effect on accelerating the mixing

progress by parametric studies. In the third part of study, mixing with different material

properties was focused. Segregation is the main feature in the different-particle mixing

process. In order to manifest this feature, two mechanisms (percolation and Cahn-Hilliard

equation) representing the segregation of different-sized particles were introduced to the

FEM mixing model. The FEM segregation model successfully reproduced some main tra-

ditional features in a rotating drum such as the core formation in radial segregation and

band formation in the axial direction. In the final part, a general 3D FEM convection-

diffusion-segregation mixing model was established and verified in a commercial mixer,

Mipro. A wider range of parameters concerning operation and material property were

studied in this component. It was demonstrated that the FEM mixing model is strictly

validated and a promising way to study a variety of complex granular flow and mixing

phenomena in industries.
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Chapter 1

Introduction

Mixing of particles from initial separate phases into a homogeneous phase is an impor-

tant process in pharmaceutical, food, cosmetics, and powder metallurgical industries and

has been an open area of research for decades. The mixing process is complex and most

problems are cracked on an ad hoc basis by engineers (Ottino and Khakhar, 2000) before.

The general three mixing mechanisms were attempted to propose based on analogies with

fluid mixing (Bridgwater, 2012). “Convection” is highly correlated to flow. It refers to the

movement of particles in clumps from one location to elsewhere in mixers. “Diffusion” de-

scribes the penetration of different materials to each other’s territory. It is mainly caused

by frequent collisions between particles. “Shear” describes the mixing phenomenon at the

two materials’ interfacial areas which are usually extended by large shear forces. Of the

three mixing mechanisms, convection is commonly important and always play a dominant

role in most mixing processes. The study of particles’ flow behaviour is fundamentally

important, since the movement of particle groups is an essential factor in accelerating the

mixing progress. Previous works on this topic were commonly based on the experiments

and numerical simulations of discrete element models (DEM), but neither methods can

be satisfactorily applied in industrial sectors. Experiments can be costly and erroneous

while DEM is often limited by the computational power when treating billions of parti-

cles, which is recognised as the scale-up issue (Chandratilleke et al., 2010; Nguyen et al.,

2014). It can be solved either by hardware upgrade or theoretical innovation. This thesis

focuses on a new continuum theory which treats particle flow as strange fluid with special

characterizations. Granular flow is complex since even within a simple geometry, granular

systems can undergo a dual-behavior or tri-behavior process. Three distinctive regions
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can be recognised: a solid region at the bottom of the pile in which grains do not move

or creep very slowly, a liquid region in which a dense layer flows, and a gaseous region in

which the beads bounce in all directions creating a dilute chaotic medium. The gas phase

can be modelled by the kinetic theory of granular flow (KTGF), where collisions between

particles are treated as binary collisions in an ideal gas. This method coupled with fric-

tional stress model can be used to simulate particle flow in different regions of high shear

mixers (Darelius et al., 2008a; Ng et al., 2009; Khalilitehrani et al., 2013, 2014, 2015; N-

guyen et al., 2014). The case of flow in dense phase is more complicated. Particles usually

move in groups and chunks, exhibiting a collective and dual behaviour of mixed solid and

liquid. Granular flow in the dense region can be regarded as continuum flow with elesto-

plastic characteristics, which has been demonstrated with different constitutive laws and

under different geometric circumstances such as pressure dip in a hopper flow (Ai et al.,

2013), granular eddies in a chute flow (Kamrin, 2010), and JiangLiu granular elasticity

law (Jiang and Liu, 2003). Mohr-Coulomb plasticity was the simplest model widely used

in granular materials for industrial purposes. However, its shortcomings were illustrated

by some publications (Kamrin, 2010). One disadvantage is the model attributes most of

characteristics of granular matter yield condition into a single internal friction angle. In

order to manifest some specific features of granular flows, a series of models with various

constitutive laws were established (Jop et al., 2006; Henann and Kamrin, 2013; Kamrin

and Koval, 2012; Bouzid et al., 2013). However, it is less convincing to add extra degrees

of freedom and parameters into the theory frame, because most physical hypotheses intro-

duced stay at the phenomenology level, which is lack of physical insight and first principle

based calculations. It may hinder the seeking of the real mechanism behind observed

granular phenomena and makes the extra added constitutive laws unnecessarily redun-

dant. Recent investigations indicated that using the Mohr-Coulomb plasticity model to

describe granular flow can be valid with the numerical calculation technique of Eulerian

finite element method (FEM) (Zheng and Yu, 2014). The Eulerian method overcomes

the mesh distortion brought about by the traditional Lagrangian method. Its validation

has been tested by studies in various geometries (Zheng and Yu, 2015a,b; Hashemnia and

Spelt, 2015). The method is a breakthrough and promising to study granular flows in

arbitrary complex geometries. The study of mixing with this method has never been tried

by researchers before. In hope of finding a general and effective 3D mixing model based
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on such the continuum approach, the thesis structure is created based on the Eurerian

FEM and the three mixing mechanisms.

Chapter 2 gives a summary of literature survey on the academic histories of study on

particle mixing. Particular attention is given to mixing mechanisms, the types of mixers,

numerical simulation methods which include molecular dynamics and continuum approach-

es, and typical examples on the mixing process in the mixers with different geometries.

In Chapter 3, the cylindrical bladed mixer (CBM), owing to its high shear rate and com-

plex flow behaviours, is considered here with focus on the solid flow field and convective

mixing. The method is verified by comparing features of the solids flow reproduced by

FEM with the results generated by DEM. Many features of solid flow such as the formation

of heaps, the recirculating flow around blades and the spatial distributions of velocities

are well reproduced by FEM model. However, due to the lack of a physical dispersion

law, the simulated mixing index depends largely on the size of computational mesh and

thus is only of qualitative implication at present. While much work needs to be done in

future, the FEM approach allows considering the general solid flow and convective mixing

in large-scale mixers and can serve as a good basis for an ultimately predictive capacity

of particle mixing.

In Chapter 4, in order to overcome the problems of absence of diffusion, an operator split-

ting method is used to couple the diffusion term in form of second order partial differential

equation to the convection mixing dynamics. The relationship between diffusivity and s-

hear rate D = χγ̇d2 is used to determine the diffusivity at a local area. The result is tested

by comparison with DEM in a rotating drum. The mesh size dependency on mixing index

evolution can be neglected when it reduced under a certain threshold. Parametric studies

are carried out concerning the effects of filling levels and internal friction angles on the

mixing process with different diffusion coefficients. It is found that diffusion has a positive

influence on the enhancing the effects of those parameters. The axial diffusion mainly

caused by self diffusion resulting from frequent collisions between particles is also studied

by the diffusion model. The axial diffusivity is much smaller than the radial diffusivity

which is confirmed by comparing results with DEM. Because the shear rate along the

axial direction is almost negligible, diffusion can take more time to make the whole mixing

complete than the radial mixing process.
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In Chapter 5, focuses are placed on the mixing process with different materials. Segre-

gation is the prominent phenomenon which is complicated for its outstanding mechanism

and has interested researchers for several decades. In this chapter, we only study the

phenomenon of size segregation in a rotating tumbler. Two mechanisms concerning per-

colation and spinodal decomposition are added to the earlier mixing model by the operator

splitting method. The core formation in the radial segregation and band formation in the

axial segregation are successfully reproduced by this approach. However, we only arrived

at the qualitative agreement level. For the percolation model, the number of stripes and

the band width of large particles can not match the experiment results quantitatively. For

the spinodal decomposition model, although the agreement of quantitative surface profile

has been reached, it produces nonphysical and undesired results which can not be observed

in experiments. More work on the development of segregation model still needs to be done

in the future research.

In Chapter 6, parametric studies on a wide range of operational properties are carried

out in a three-bladed commercial mixer, Mipro. The 3D convection-diffusion-segregation

mixing model is applied in this component. The effects of velocity and stress with dif-

ferent blade speeds, blade rake angles on mixing indexes and statistical distributions are

mainly studied. The percolation model is able to reproduce the segregation pattern where

sediment of small particles is observed in the inner and bottom region while large particles

get together in the top and outer region. It is predicted that the 3D convection-diffusion-

segregation mixing model is a promising continuum approach to describe the granular flow

and mixing in the future studies and to be applied in industry.

Chapter 7 gives a final summary of investigations and results in the thesis and proposes

possible future research and outlook.
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Chapter 2

Literature Review

2.1 Introduction

The process of granular mixing is ubiquitous in a variety of industries from pharmaceuti-

cal tablets manufacture to blending cosmetic materials with different properties. However,

the knowledge of the particle flow and mixing behaviour is quite limited in the process

engineering, because granular material has never been a simple subject to investigate.

Even in a simple geometry container like hopper or a simple particulate process like sand-

pile formation, granular system can show dual-behavior or tri-behaviors. Fig2.1 shows a

typical granular flow in a sand pile formation. Usually, Three distinctive regions can be

observed: a solid region under the pile in which grains do not move or creep very slowly, a

liquid region in which a dense layer flows, and a gaseous region in which the beads bounce

in all directions creating a dilute chaotic phenomenon.

The implementation of experimental study has been proven difficult. More emphasises

have been put on the simulations of granular flows. Mixing studies provide a useful tool to

study and understand granular flows, chances are that mixing flows are able to generate a

large variety of patterns and structures, which can be visualized and recognized as a means

to track particles. Meanwhile, particle mixing has a large scale of practical implications in

a multitude of industry processes such as pharmaceutical industry, food industry, cosmetic

industry, product manufacture, building materials industry.

Generally, mixing describes the process from a separate original state to a final homoge-

neous state. Sometimes mixing process can perform in an opposite way, i.e. segregation.

There have been a series of works focusing on granular mixing in various experimental
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Figure 2.1: An illustration of the solid, liquid, and gas flow regimes obtained by pouring
steel beads on a pile.

containers including drums (Yang et al., 2003, 2008; Cleary et al., 1998), high shear mixer

(Chandratilleke et al., 2009, 2010, 2012), ribbon mixer (Musha et al., 2013), and shear

cell (Wang et al., 2013, 2012). In their works, the discrete element method based on

Newton’s second law was proved an efficient and accurate way of tracking particle to in-

vestigate the mixing process. However, the computational power of today allows the flow

of less than a million particles to be modelled using DEM, whereas billions of particles

are present in the real mixing process (Goldschmidt et al., 2004). So the limitation of

computational power makes it not applicable for large-scale processes. Another approach

for modelling multi-phase flows is the Eulerian-Eulerian approach where the particles are

not tracked, but instead are treated as a continuous flowing medium with fluid consti-

tutive laws derived from closure models. In dilute region, particle collisions are viewed

as molecules collisions in an ideal gas, which is the basically theoretical assumption of

the kinetic theory of granular flow (KTGF) (Lun et al., 1984; Ding and Gidaspow, 1990;

Gidaspow, 1994), a promising model in the dilute region. As for denser flows, e.g. hopper

flow, where particles are in frequent contact and move in a group manner, frictional stress

is added to the computing model of KTGF (Ng et al., 2009; Srivastava and Sundaresan,

2003; Savage et al., 1983). Another approach regarding the visco-plastic rheology model

developed by Jop et al (Jop et al., 2006) was adopted to investigate granular flows in a

disc impeller granulator (Khalilitehrani et al., 2013). However, in all these models above

for dense region, discrepancies were still observed when measuring particle velocities. The
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reason of failing to keep the simulation data consistent with experiments lies in that the

transition regime between solid and liquid is always neglected. Assumptions of constant

volume fraction was also invalid. In the mean time, the elasto-plastic theory originally

dealing with problems in civil engineering achieved a success in granular flows in hoppers

(Ai et al., 2013), chute (Kamrin, 2010), and even shear cell (Henann and Kamrin, 2013).

The basic idea is based on the Mohr-Coulomb or Drucker-Prager model using finite ele-

ment method for simulations. However, the method they used is under the theory frame

of Lagrangian method, which hardly treat the problem of flows since high mesh distor-

tion is inevitable during the computational calculation. Recently, a new method based on

Eulerian approach has been proposed (Zheng and Yu, 2014), which successfully describe

the characteristic phenomenon of granular flow that continuum methods failed to obtain

before. In this project, we hope to develop the continuum approach proposed by (Zheng

and Yu, 2014) and apply the method in various mixers such as drums, high shear mixers

and even couette cells.

2.2 Granular Mixing

2.2.1 Mixing mechanisms

Before the discussion of mixers classification, it is useful to introduce the mixing mecha-

nisms, based on which the mixers can be identified and created more reasonably. Basically,

there are three kinds of mechanisms in the mixing processes (Bridgwater, 2012): convec-

tion mixing, shearing mixing, and diffusion mixing.

Mixing by convection

Driven by the effect of advection, particles in the form of clusters or clumps move or shifted

in a group manner to other locations in the mixer, the sizes of chunk are reduced when

the process goes on. This method is able to mix particles more efficiently and uniformly

to improve homogeneity. A typical example is the flowing mixing in a bladed mixer.

Mixing by shearing

This mechanism is related to convection. During the convective movement, there is a

narrow region connecting two kinds of particles called slip zone in which particles get mixed
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by the effect of momentum exchanges because of the high velocity gradients. Slipping plays

an important role in the mixing process since it extends the contact areas where particles

are blended in a high efficiency. The breakdown of particle planes promote the mixing at

a semi-microscopic scale.

Mixing by diffusion

In the contact area, two group of particles penetrate into the regions of each other by

frequent random collisions, which is the main reason for the driven force of diffusion

mixing. It is evident that the rate of mixing caused by diffusion is much slower than the

two mechanisms aforementioned. However, at a microscopic scale, diffusion is important

to the mixing process in certain mixers such as ribbon where a homogeneous phase can

be reached in a short time.

2.2.2 Different types of mixers

All types of mixers can be basically classified into two categories based on mechanisms

listed above. The first group is characterised by the rotation of external shell. Shear and

diffusion are the dominant mixing mechanisms for those mixers which include (Fig.2.2):

The cylindrical drum The vessel rotation gives rise to both radial and axial mixing.

These mixers are frequently used for free-flowing or slightly cohesive materials but

are less suitable for particles which agglomerate.

The off-centre drum One end of the cylindrical mixer rises and falls with respect to

the other. The idea is to improve mixing by making material slop backwards and

forwards in the axial direction.

The double cone It is made from two parts, each of which is part of a conical section,

the two being joined at the base of the cones. The action rolls and folds material. A

bar or blade can be fixed to the axis of rotation to serve as an internal breaker for

agglomerates.

The V mixer It has two arms forming a V and has many of the features of the double

cone mixer. However, there is a further action of division of material into the two

arms followed by inter-meshing when the two bodies of material recombine.
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Tote mixers They are in the form of a storage vessel which is sealed, mounted on an

axis and then rotated. These may be with an upper rectangular section, or with a

circular upper section. This axis can be horizontal or can be inclined at an arbitrary

angle. The idea is to use asymmetry to cause more irregular flow patterns to break

up the flow in the hope that mixing improves.

In the second main class of mixer, the shell is stationary but there is an internal rotor or

rotors fitted with blades causing agitation. Examples of this type are:

The centrifugal mixer with a horizontal axis At low speeds, the mixer contents are

pushed circumferentially and then are displaced axially as the blade moves out of

the material. At high speeds, the material is centrifuged. The range of materials

that can be processed is broad. The mixer can be hard to clean.

The centrifugal mixer with a vertical axis At low speeds, the blades push the con-

tents around the mixer with a surface wave of material being associated with each

blade. At high speeds the contents form a toroid next to the wall. This mixer is

particularly effective for the formation and treatment of agglomerates. Cleaning can

be relatively easy.

Ribbon mixer This mixer can have one or two helical screws as blades. In the two-screw

type, one screw pushes in one axial direction close to the centre and simultaneously

the other screw pushes in the opposite direction close to the wall. Material is rolled,

folded, reversed in direction and radially displaced. The screw makes it easy to push

product to an exit although it can make cleaning more difficult. The mixer can be

used for a wide range of materials from dry powders to pastes. Radial mixing is good,

axial mixing is less so. The ribbon mixer is a good choice for aerating materials.

Planetary mixer Here a bed of material is rotated about a vertical axis, being brought

into the zone of action of a mixing blade rotating at a high speed about an offset

vertical axis. The mechanism is convection and shear. It is not well suited to adhesive

or very cohesive materials.

The draught tube and screw mixer (Fig.2.3 (a)). Here material is conveyed to the

free surface under the action of the vertical screw contained within a tube. The

material then falls down the free surface and is recycled back to the base of the
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screw. The recirculation time is a function of radial position in the annulus and thus,

overall, axial mixing occurs. The free surface adds diffusion to the mechanisms.

Orbiting screw mixer (Fig.2.3 (b)). These mixers are in the form of an inverted cone

with a screw attached at the base of the cone and are generally confined to batch

operation. The screw rotates about its own axis while at the same time processing

about the vertical axis of the cone. Material is conveyed upwards in the screw with a

general flow downwards over the cross-section of the mixer. At the top the screw acts

to distribute material onto the surface. The mechanisms here are convection and

diffusion. Segregation when using free-flowing materials can be reduced by running

the screw during discharge.

2.2.3 Mixing index

Types of mixing state

The earliest discussion of the states of a granular mixture can be attributed to Lacey

(Lacey and P.M.C., 1954), where he illustrated the likely arrangements of particles at

the end of an ideal mixing process using schematics as shown in Fig.2.4. Fig.2.4 (a)

demonstrates the perfect mixture defined as a mixture in which the probability of finding

a particle of a constituent of the mixture is the same for all points in the mixture. These

probabilities will be different if the mixture is not well mixed. Fig.2.4 (b) demonstrates the

random mixing state, in which the probability of finding a particle of one component is not

constant through out the mixture. A further description can be illustrated mathematically.

There are various sampling methods for characterising the state of a given mixture. One

common practice involves repeatedly taking random samples of a fixed size and shape

from the mixture with replacement, and recording the pro-portion of black particles within

each sample; given that a sufficient number of samples are taken, the distribution of these

sample proportions (denoted using the random variable XSP ) will characterise the state

of the mixture. Alternatively, one can divide the entire domain of the mixture into a

finite number of fixed cells, with the number of black particles in each cell counted to

give cell counts (denoted using the random variable XCC); the state of the mixture can

also be described by the distribution of these cell counts. This approach is particularly
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Figure 2.2: Typical mixers used in industries (Bridgwater, 2012).

11



Figure 2.3: (a) Draught tube screw mixer and (b) Nauta mixer with orbiting screw (Bridg-
water, 2012).

Figure 2.4: Pictorial representations of the likely arrangements of particles in a granular
mixture at the end of an ideal mixing operation.

straightforward if the cells all contain an equal number of particles. Other techniques

include, for instance, counting the contact points between different types of particles.

The perfectly ordered state

In Fig.2.4 (a), we may define the perfectly ordered state using the probability statement

Pr(XSP = P ) = 1

which says that the sample proportion is always equal to the overall proportion of black

particles in the mixture; that is to say, the outcome of random sampling is deterministic.

As (M.Poux et al., 1991) have noted, the perfectly ordered state is only attainable in very

special cases, and for the mixing of non-interacting particles that are only distinguishable

12



Figure 2.5: Instances of the randomly mixed state represented on a 2D lattice

by colour, the perfectly ordered state does not represent the final state of the mixture at

the steady state.

The randomly mixed state

Non-interacting particles that are identical except colour at the end of an ideal mixing

operation will reach the randomly mixed state. On a 2D lattice, this state is represented

by Fig.2.5. These randomly mixed states can be generated by completely randomising the

arrangement of black and white particles on the lattice, where the number of each type is

set by a prescribed value of the overall proportion of black particles in the mixture.

Unlike the perfectly ordered state, random samples taken from a granular mixture in the

randomly mixed state will likely contain a different number of black particles each. Given

a sample size of n, the distribution of sample proportions is approximated by

Pr(XSP = x) = Cnx
n Pnx(1− P )n(1−x)forx = 0,

1

n
,
2

n
, ..., 1

where Cb
a denotes a binomial coefficient. The mean and variance of this distribution can

be shown to be P and P(1-P)/n, respectively. Note that the variance of the distribution

of sample proportions for the randomly mixed state asymptotically approaches zero in the

limit of n→ ∞: this implies that the two states become increasingly indistinguishable as

the number of particles per sample increases. However, for a granular material, unlike a

fluid, there are only a finite number of particles in any sample taken; thus, the perfectly

ordered state and the randomly mixed state are indeed two dissimilar states.

Finally, the probability mass function of XCC for the randomly mixed state can be written

as

Pr(XCC = x) = Cx
N
b

P x(1− P )N/b−xforx = 0, 1, 2, ...,
N

b

13



whose mean and variance are NP/b and NP(1-P)/b, respectively.

Variance of sample proportions; the Lacey index

A large portion of the mixing indices available, especially those found in the early litera-

ture, are based on or related to the variance of sample proportions, commonly denoted as

s2. The expected values of the variance of sample proportions for the characteristic states

can be derived from appropriate probability distributions. For the completely unmixed

state, the expected value of the variance of sample proportions for the completely unmixed

state is

s20 = E(X2
SP )− [E(XSP )]

2 = P (1− P )

The variance of randomly mixed state is

s2r =
P (1− P )

n
(2.1)

and the perfectly ordered state is given by

s2p = 0 (2.2)

The well-known Lacey index is defined as

M =
s20 − s2

s20 − s2r
(2.3)

Since s20 and s2r are fixed with given P and n, it is useful to think of the Lacey index as

a normalised version of the variance of sample proportion. Because the normalisation is

based on the completely unmixed and the randomly mixed states, the expected values of

the Lacey index for these two states are M0 = 0 and Mr = 1, respectively. As the mixture

evolves from the completely unmixed state to the randomly mixed state during a typical

mixing process, the variance correspondingly decreases from s20 and converges to s2r, while

the Lacey index increases from zero to unity.
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2.2.4 Particle segregation

Particle segregation, a most commonly observed phenomenon in various particle process-

es in industry, is worth being investigated by researchers. However, particle segregation

violates the basic requirement of granular mixing. Particles are supposed to be blended

sufficiently in most processes in industry like pharmaceutical industry, food industry, cos-

metic industry. Thus, particle segregation should be deeply depressed and avoided during

the product generation process.

To begin investigating, several quantities are introduced to described the intensity of

segregation. Lacey index:

M =
σ20 − σ2

σ20 − σ2R
(2.4)

where, σ20 and σ2R are sample variances of fully-segregated and fully-random states respec-

tively, and σ2 is the sample variance of a mixture at a transition state between the two

states reference states.

This index can be regarded as an order parameter in most phase transition process.

M = 1 stands for most uniform mixture (homogenous and fully-random mixture), while

M = 0 represents a fully-segregated (order) mixing state. Later, the index was developed

by Missiaen:

I =
σ2 − σ2R
σ20 − σ2R

(2.5)

and Yamane:

I =
σ

σ0
(2.6)

which is more suitable for DEM simulations.

The investigation of particle segregation originates from (Rosato et al., 1987), in

which a Monte-Carlo method is proposed to investigate the “Brazil nuts” segregation

phenomenon. Recent investigation regards it as a phase transition from a disorder initial

configuration to an order final state. Pedro M.Reis and Tom Mullin (Reis and Mullin,
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2002) set up an experimental study of patterned segregation in a horizontally shaken shal-

low layer of a binary mixture of dry particles. An order parameter was introduced and the

segregation can be regraded as a critical phenomenon with the critical exponent decided.

Factors influencing segregation

Segregation can be influenced by physical properties of particles, such as size, density, or

shape. Changing the mixing operation can also change the segregation results. vibration,

gravity, shear, or rotation lead to different final configurations. Mixers such as hoppers,

drums, ribbon mixers and chutes are also considered as other significant factors to influence

the mixing process. Mixing in various mixers is still under study in many research works.

2.3 Numerical Simulation Models

2.3.1 Molecular Dynamics

A landscape of Molecular Dynamics (MD)

The main ingredients of an MD simulation are basically threefold:

• A model is needed for the interaction between the system constituents (e.g. atoms

or molecules).

• Time integration is required to advance the particle trajectories (positions and veloc-

ities) from time t to t+∆t. Alternatively, one may want to solve a stability problem

which in an atomistic system requires an algorithm to relax the atomic coordinates

to positions of vanishing forces.

• An ensemble has to be chosen, for which boundary conditions and thermodynamic

quantities like temperature, pressure or the number of particles is controlled.

Force calculation

Forces are derived from the potential energy U that depends on the positions of all atom-

s. The description for the calculation of the energy can be based on different physical

approximations. The force acting on an atom i is given by taking the derivative of the
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potential energy with respect to the position vector xi of atom i

fi = −dU(x)

dxi
(2.7)

where x denotes the coordinates of all atoms. Once the force vector fi acting on all atoms

is known, the Newtonian equation of motion

fi = mi
d2xi
dt2

(2.8)

can be integrated in time t to yield the motion of the atoms in space. The mass of the

atom is given by mi.

Integrating the Equations of Motion

Equation [2.8] constitutes a set of second-order ordinary differential equations (ODEs),

which can be strongly nonlinear. By converting them to first-order ODEs in the 6N-

dimensional space, general numerical algorithms for solving ODEs such as the Runge-

Kutta method could be applied. However, these general methods are rarely used in

practice, because the existence of a Hamiltonian allows for much simpler and even more

accurate integration algorithms. To represent other thermodynamic ensembles than the

micro-canonical ensemble for which Equation [2.8] can be integrated directly, requires that

Equation [2.8] is modified to create a dynamics in phase space that has the desired dis-

tribution density of e.g. a canonical or a grand-canonical ensemble. The time-average of

a single-point operator on such a trajectory then approaches the thermodynamic average.

An integrator serves the purpose of propagating particle positions and velocities over small

time increments ∆t. The time step ∆t has to be chosen such that the thermal oscillations

of the atoms around their equilibrium positions are resolved in time. A typical frequency

of this oscillation is the Debye frequency vD = ct/a, where ct is the speed of transverse

sound waves and a is the lattice parameter. A typical value for metals is vD = 1013 Hz.

This implies that the typical time step for MD simulations has to be on the order of

femtoseconds (10−15 s), which generally limits the method to simulations of fast processes

such as brittle fracture or high-strain-rate plastic deformation.
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Verlet algorithm

Assuming that the x3N (t) trajectories are smooth, one may perform a third-order Tylor

expansion of the positions xi(t0) forward xi(t0 + ∆t) and backward xi(t0 − ∆t) in time;

their sum yields

xi(t0 +∆t) + xi(t0 −∆t) = 2xi(t0) + ẍi(t0)(∆t)
2 + o((∆t)4) (2.9)

Since ẍi(t0 + ∆t) = fi(t0)/mi can be evaluated given the atomic positions at t = t0,

x3N (t+∆t) in turn may be approximated by,

xi(t0 +∆t) + xi(t0 −∆t) = 2xi(t0) +
1

m
fi(t0)(∆t)

2 + o((∆t)4) (2.10)

Neglecting the o((∆t)4 term, we obtain a recursion formula to compute x3N (t + ∆t).

Although velocities are not needed in the recursion, they are often calculated since they

are required for analysis of ensemble properties. They can be approximated by

vi(t0) = ẋi =
1

2∆t
[xi(t0 +∆t)− xi(t0 −∆t)] + o((∆t)2) (2.11)

This algorithm is not only one of the simplest, but also a good choice in general. It is fast,

but not particularly accurate for long time steps, such that the forces on all particles must

be computed rather frequently. It requires about as little memory as is at all possible.

This is useful when very large systems are simulated.

Velocity-Verlet algorithm

It starts with v3N (t0) and x3N (t0). One then evaluates

xi(t0 +∆t) = xi(t0) +
1

2m
fi(t0)(∆t)

2 + o((∆t)3) (2.12)

With f3N (t0 +∆t) evaluated from xi(t0 +∆t) one gets

vi(t0 +∆t) = vi(t0) +
1

2m
[fi(t0) + fi(t0 +∆t)]∆t+ o((∆t)3) (2.13)
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and has advanced by one step. This algorithm requires a little more computing but is very

popular since it gives v3N and x3N simultaneously.

Leap-frog algorithm

In the leap-frog algorithm, position and velocities are calculated with the same accuracies

but are offset by ∆t/2. It starts with v3N (t0 − ∆t/2) and x3N (t0). Time integration is

then first done on v.

vi(t0 +
1

2
∆t) = vi(t0 −

1

2
∆t) +

1

m
[fi(t0)]∆t+ o((∆t)3) (2.14)

Followed by integration of x,

xi(t0 +∆t) = xi(t0) + vi(t0 +
1

2
∆t) + o((∆t)3) (2.15)

It can be shown that the leap-frog algorithm produces identical trajectories to the Verlet

algorithm besides numerical rounding errors. It therefore has similar properties than the

Verlet algorithm but of course provides coordinates and velocities at once.

2.3.2 Continuum Methods

DEM is the common approach for the numerical simulation of multiphase particulate flow.

One of the advantages is that every motion of single particles can be tracked. However,

it is not applicable to large-scale number (billions of particles) of particle system due

to the incapability of computer power. This disadvantage has been being improved by

application of GPU, which accelerates the work rate of computer. However, it still has

a long way to solve the problem. Another way is through continuum approaches, which

are based on a series of continuum partial differential equations describing the states and

flow of granule particles. Overall, according to different regions, characteristics of particle

flows can be described by different frames of continuum theories. In the dilute region,

granule flow displays the characteristics of gas. An approach called Kinetic theory based

on Boltzmann equation has been widely used in the dilute region. In the dense region,

both CFD and FEM are good candidates which have been focused in many research

publications.
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2.3.3 Kinetic theory of granular flow (KTGF)

KTGF is based on a series expansion solution to a number of statistical moments of

the Boltzmann equation (van Beijeren and Ernst, 1979; Montanero et al., 1999; Darelius

et al., 2008b). For dilute systems of elastic particles, there are a number of solutions

using an expansion around the equilibrium state, represented by a Gaussian particle state

distribution function. The KTGF model satisfying mass, momentum, and the fluctuating

kinetic energy can be represented as (Nguyen et al., 2014)

∂

∂t
(αsρp) +∇ · (αsρpvi) = 0

∂

∂t
(αsρpvi) +∇ · (αsρpvivj) =

∂τij
∂xj

− αs∇Ps

where αs is the solid volume fraction, ρp is the particle density. v is the velocity vector

and τij is the combined kinetic and collision stress tensor that can be written in the form

of Newton’s law of viscosity, Eq.(2.16)

τij = (λs −
2

3
µs)(∇ · vi))Iij + 2µsSij (2.16)

where λs represents the bulk viscosity and µs the shear viscosity. Iij is the identity

matrix and Sij is the strain rate tensor. The third statistical moment is in the velocity

fluctuations, C, defined as vi = Ui+Ci, where Ui is the mean motion of the particles. The

fluctuations are represented by the fluctuating kinetic energy as seen in Eq.(2.17):

∂

∂t
(αsρs

< C2
i >

3
) +∇ · (αsρpvj

< C2
i >

3
) = (−PsIij + τij) : ∇vi +∇ · q − γ (2.17)

where <> denotes the ensemble average and Tg = 1
3 < C2

i > can be referred to as the

granular temperature. The first term on the right hand side is the energy production due

to deformation, while γ is the dissipation of energy due to inelastic collisions and Ps is

the solid phase pressure given in Eq.(2.22) and Eq.(2.23), respectively. The combined flux

of the fluctuating kinetic energy due to collisions and translation is denoted by q and is

described by the Fourier’s law of heat transfer, Eq.(2.18).

q = k∇Tg (2.18)
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In Eq.(2.18), k is the conductivity of the granular temperature. The transport coefficients

are then determined by the Chapman-Enskog method. The method determines the coeffi-

cients by expressing them as a series expansion, using a small parameter and the grdients

of the solved fields (mass, momentum and fluctuating kinetic energy) around a known

solution. The solutin used is that of a dilute gas phase in equilibrium. This solution is

only valid for low solid volume fractions and instantaneous elastic, or nearly elastic, binary

collisions. The expressions used for the transport coeffecients are given by Eqs.(2.19) -

(2.20) and include the above-mentioned assumptions.

µs =
4

5
α2
sρpdpg0(1 + ep)

√
Tg
π

+
10ρsdp

√
Tgπ

96(1 + ep)g0
[1 +

4

5
g0αs(1 + ep)]

2 (2.19)

ks =
150

√
Tgπρpdp

384(1 + ep)g0
[1 +

6

5
αsg0(1 + ep)]

2 + α2ρpdpg0(1 + ep)

√
Tg
π

(2.20)

Eq.(2.19) and Eq.(2.20) are from Gidaspow and Ding, where ep is the binary restitution

coefficient and g0 = [1− (αs/αs,max)
1/3]−1 is the radial distribution function.

λs =
4

3
α2
sρpdpg0(1 + ep)

√
Tg
π

(2.21)

γ =
12(1− e2p)g0

dp
√
π

α2
sρpT

3/2
g (2.22)

Ps = αsρpTg + 2ρpα
2
sg0(1 + ep)Tg (2.23)

The boundary condition used for the granular phase is that derived by Johnson and

Jackson. It sets a heat flux at the well as a function of the solid volume fraction, granular

temperature and the particle mean velocity, Eq.(2.24).

q = (
π

6

√
3ϕ

αs

αs,max
ρpg0

√
TgUi · Ui)−

π

4

√
3

αs

αs,max
ρpg0T

3/2
g (1 + e2w) (2.24)

2.3.4 Frictional model

Under quasi-static conditions, the frictional sliding causes the particle-particle interaction

and the momentum transfer. The frictional viscosity is calculated from a Coulomb-like
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friction law (Khalilitehrani et al., 2013; Vun et al., 2010).

µfriction =
Pfrictionsinφ

2
√
I2D

The expression contains the frictional pressure, Pfriction the second invariant of the stress

tensor, I2D, and the material property angle of internal friction, φ. The frictional pressure

can be described by:

Pfriction = Fr
(αs − αs,min)

n

(αs,max − αs)p

where Fr, n and p are empirical constants, αs,min is an empirical value indicating when

the transition to a quasi-static system starts and αs,max is the maximum packing limit.

These properties are then assumed additive with the KTGF results in the transition region

according to Eq.(2.25) and Eq.(2.26).

µs = ΣµKTGF + µfriction (2.25)

Ps = ΣPKTGF + Pfriction (2.26)

2.3.5 Elastoplastic model

DEM simulations of Rycroft et al. (Rycroft et al., 2009; Kamrin, 2010) showed in multiple

3D well-developed flow environments, a dense granular element of width ∼ 5d (for d =

particle diameter) captures many of the plastic flow properties expected of a representa-

tive element. Among neighboring volume elements of this width, the average stress and

deformation rate appear to vary smoothly. Within a flowing element, the eigenvectors of

the instantaneous space-average Cauchy stress align to a high degree with those of the

deformation rate tensor, evidencing the onset of a deterministic relationship between the

two fields. Moreover, a predictable dependence of the packing fraction on the pressure

and shearing rate emerges at this length-scale.
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Figure 2.6: Force diagram for a wedge.

Elastic constitutive model

The elastic behavior of both Mohr-Coulomb Elesto-Plastic (MCEP) and Drucker-Prager

Elesto-Plastic (DPEP) can be described as the following relationship (Nedderman, 2005):

σi,j = Dijklϵkl

where σij is the total stress, and ϵkl the elastic strain. Dijkl, the fourth-order tensor of

elasticity, is completely determined by Young’s modulus E and Poisson’s ratio ν following

the isotropic elastic law.

Mohr-Coulomb plastic constitutive relation

Generally, we can demonstrate Mohr-Coulomb plasticity mathematically below (Rao,

2006). If we treat a granular material as an “Ideal Coulomb Material” (ICM), any s-

mall amount of material selected (here we choose wedge) can be analysed under the frame

of force balance (Fig.2.6). We derive:

σθ =
1

2
(σxx + σyy) +

1

2
(σxx − σyy) cos 2θ − τxy sin 2θ (2.27)

τθ =
1

2
(σxx − σyy) cos 2θ + τxy cos 2θ (2.28)

If we define parameters as follows:
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Figure 2.7: Mohr-Coulomb failure criterion.

p =
1

2
(σxx + σyy) (2.29)

tan 2ψ =
−2τxy

σxx − σyy
(2.30)

R =

√
(
σxx − σyy

2
)2 + τ2xy (2.31)

A more simplified and obvious relationship between normal stress and shear stress appears:

σθ = p+R cos(2θ − 2ψ) (2.32)

τθ = R sin(2θ − 2ψ) (2.33)

The derivation above demonstrate that at any plane with certain angle θ, the stress state

(σθ, τθ) lies on a circle centered at (p, 0) with radius R. The circle is also referred to as

”Mohr’s Circle” (Fig.2.7).

Mohr-Coulomb plastic yield condition

When it comes to yielding part, the Mohr-Coulomb model assumes the following relation

between normal stress and shear stress (2.34):

τ = c− σ tanϕ (2.34)

If we consider parametric equations 2.32 and 2.33, 2.34 can be rewritten as:

s+ σm sinϕ− c cosϕ = 0 (2.35)
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where

s =
1

2
(σ1 − σ3) (2.36)

is half of the difference between the maximum principal stress, σ1, and the minimum

principal stress, σ3 (and is, therefore, the maximum shear stress),

σm =
1

2
(σ1 + σ3) (2.37)

is the average of the maximum and minimum principal stresses, and ϕ is the friction angle.

For general states of stress the model is more conveniently written in terms of three

stress invariants as

F = Rmcq − p tanϕ− c = 0

where

Rmc =
1√

3 cosϕ
sin(Θ +

π

3
) +

1

3
cos(Θ +

π

3
) tanϕ

ϕ is the slope of the Mohr-Coulomb yield surface in the p − Rmcq (Fig.2.8) stress plane,

which is commonly referred to as the friction angle of the material and depends on pre-

defined field variables. p = −1
3trace(σij) is the first invariant of stress representing the

equivalent pressure; q =
√

3
2SijSij is the Mises equivalent stress and Sij is the deviatoric

stress; ϕ and c are the angles of internal friction and and the cohesion of granular ma-

terial, respectively. Θ is the deviatoric polar angle defined as cos(3Θ) = (r/q)3 where

r = (92SjiSjkSki)
1
3 is an invariant measure of deviatoric stress. The friction angle, ϕ, con-

trols the shape of the yield surface in the deviatoric place (Fig.2.8). The friction angle

range is 0◦ ≤ ϕ < 90◦. In the case of ϕ = 0◦ the Mohr-Coulomb model reduces to the

pressure-independent Tresca model with a perfectly hexagonal deviatoric section. In the

case of ϕ = 90◦ the Mohr-Coulomb model reduces to the “tension cutoff” Rankine model

with a triangular deviatoric section and Rmc = ∞.
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Figure 2.8: Mohr-Coulomb and tension cutoff surfaces in meridional and deviatoric planes
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Mohr-Coulomb flow rules

Granular flow can be well described as flow rules. The flow potential G is chosen to be

a hyperbolic function in the meridional stress plane and a smooth elliptic function in the

deviatoric stress plane, defined by:

G =
√

(ϵc |0 tanψ)2 + (Rmwq)2 − p tanψ (2.38)

and

Rmw =
4(1− e2) cos2Θ+ (2e− 1)2

2(1− e2) cosΘ + (2e− 1)
√

4(1− e2) cos2Θ+ 5e2 − 4e
× 3− sinϕ

6 cosϕ
(2.39)

where ψ is the dilatancy angle of material, c|0 is the initial cohesion yield stress, ϵ is a

parameter that characterizes the eccentricity of the flow potential. e referred to as the

deviatoric eccentricity, describing the “out-of-roundedness” of the deviatoric section in

terms of the ratio between the shear stress along the extension meridian and the shear

stress along the compression meridian, is a function of the internal friction angle ϕ, given

as e = (3− sinϕ)/(3 + sinϕ).

An additive strain rate decomposition is assumed:

dε = dεel + dεpl,

where dε is the total strain rate, dεel is the elastic strain rate, and dεpl is the inelastic

(plastic) strain rate.

The constitutive flow rule can be written as:

dε =
dε̄pl

g

∂G

∂σ
,

where g can be written as

g =
1

c
σ :

∂G

∂σ

Extended Drucker-Prager model

The extended Drucker-Prager models:
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• are used to model frictional materials, which are typically granular-like soils and

rock, and exhibit pressure-dependent yield (the material becomes stronger as the

pressure increases);

• are used to model materials in which the compressive yield strength is greater than

the tensile yield strength, such as those commonly found in composite and polymeric

materials;

• allow a material to harden and/or soften isotropically;

• generally allow for volume change with inelastic behavior: the flow rule, defining

the inelastic straining, allows simultaneous inelastic dilation (volume increase) and

inelastic shearing;

• can be defined to be sensitive to the rate of straining, as is often the case in polymeric

materials;

linear Drucker-Prager model

The deviatoric stress measure of DPEP can be defined as

t− p tanϕ− c = 0 (2.40)

where

t =
q

2
[1 +

1

K
− (1− 1

K
(
r

q
)3) (2.41)

where K(θ, fα) is a material parameter. To ensure convexity of the yield surface, 0.778 ≤

K ≤ 1.0 . This measure of deviatoric stress is used because it allows the matching of

different stress values in tension and compression in the deviatoric plane, thereby providing

flexibility in fitting experimental results when the material exhibits different yield values

in triaxial tension and compression tests. With this expression for the deviatoric stress

measure, the yield surface is defined as

F = t− p tanβ − d = 0 (2.42)

where

28



• d = (1− 1
3 tanβ)σc if hardening is defined by the uniaxial compression yield stress,

σc;

• d = ( 1
K + 1

3 tanβ)σt if hardening is defined by the uniaxial tension yield stress, σt;

• d = d if hardening is defined by the shear (cohesion) yield stress, d;

and β(θ, fα) is the friction angle of the material in the meridional stress plane. Potential

flow in the linear model is assumed, so that

dϵpl =
dϵ̄pl

c

∂G

∂σ
(2.43)

where

• c = (1− 1
3 tanψ) if hardening is defined in uniaxial compression;

• c = ( 1
K + 1

3 tanψ) if hardening is defined in uniaxial compression;

• c = 1
2(1 +

1
K ) if hardening is defined in uniaxial compression

and

• dϵ̄pl = |dϵ̄pl| in the uniaxial compression case;

• dϵ̄pl = dϵ̄pl in the uniaxial tension case;

• dϵ̄pl = dγpl
√
3

in the pure shear case, where γpl is the engineering shear plastic strain.

G is the flow potential, chosen in this model as

G = t− p tanψ (2.44)

Non-dilatant double-shearing model

If the flow is considered to be in a vertical channel or slot in the (x,z) plane, with the

z-axis vertically upwards. Assuming plane strain conditions, the non-zero components of

the stress tensor satisfy the equilibrium equations:

∂σxx
∂x

+
∂σxz
∂z

= 0,

∂σxz
∂x

+
∂σzz
∂z

= ρg

29



where ρ denotes the bulk solid density, assumed constant, and g is the acceleration due to

gravity. In terms of stress invariants p and q and the stress angle Ψ which are defined by

p = −1

2
(σxx + σzz),

q =
1

2

√
(σxx − σzz)2 + 4σ2xz,

tan 2Ψ =
2σxz

σxx − σzz

we have the following standard expressions

σxx = −p+ q cos 2Ψ

σzz = −p− q cos 2Ψ

σxz = q sin 2Ψ

For a cohesionless granular material, the stress relations are completed with the assumption

of the Coulomb-Mohr yield condition

q = p sinϕ (2.45)

where ϕ denotes the angle of internal friction which is assumed to be constant. The above

equations are generally accepted as a reasonable basis for the determination of the stress

components. For steady flow the non-zero velocity components u(x, z) and w(x, z) in the

x and z directions respectively satisfying the equations

∂u

∂x
+
∂ω

∂z
= 0 (2.46)(

∂u

∂z
+
∂ω

∂x

)
cos 2Ψ−

(
∂u

∂x
− ∂ω

∂z

)
sin 2Ψ + sinϕ

(
∂u

∂z
− ∂ω

∂x
+ 2ω

)
= 0 (2.47)

where for steady flow the quantity ω is defined by

ω = u
∂Ψ

∂x
+ w

∂Ψ

∂z
(2.48)
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2.3.6 Finite Element Method

Overview of Eulerian analysis

Pure Eulerian analysis is a finite element technique in which materials are allowed to

flow across element boundaries in a rigid mesh. In the more traditional finite element

formulation (also known as the Lagrangian technique), materials are closely associated

with an element, and the materials move only with the deformation of the mesh. Because

the element quality issues associated with a deformable mesh are not present in Eulerian

analyses, the Eulerian technique can be very effective at treating problems involving very

large deformations, material damage, or fluid materials.

Eulerian mesh deformation

The Eulerian time incrementation algorithm is based on an operator split of the gov-

erning equations, resulting in a traditional Lagrangian phase followed by an Eulerian, or

transport, phase. This formulation is known as Lagrange-plus-remap process.During the

Lagrangian phase of the time increment nodes are assumed to be temporarily fixed within

the material, and elements deform with the material. During the Eulerian phase of the

time increment deformation is suspended, elements with significant deformation are auto-

matically remeshed, and the corresponding material flow between neighboring elements is

computed.

At the end of the Lagrangian phase of each time increment, a tolerance is used to

determine which elements are significantly deformed. This test improves performance

by allowing those elements with little or no deformation to remain inactive during the

Eulerian phase. The inactive elements typically have no impact on the visualization of

an Eulerian analysis; however, plotting an Eulerian mesh using a very large deformation

scale factor may reveal slight deformations for elements within the deformation tolerance.

Eulerian material advection

As material flows through an Eulerian mesh, state variables are transferred between el-

ements by advection. The variables are assumed to be linear or constant in each old
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element, then these values are integrated over the new elements after remeshing. The new

value of the variable is found by dividing the value of each integral by the material volume

or mass in the new element.

Second-order advection assumes a linear distribution of the variable in each old elemen-

t. To construct the linear distribution, a quadratic interpolation is constructed from the

constant values at the integration points of the middle element and its adjacent elements.

A trial linear distribution is found by differentiating the quadratic function to find the

slope at the integration point of the middle element. The trial linear distribution in the

middle element is limited by reducing its slope until its minimum and maximum values

are within the range of the original constant values in the adjacent elements. This pro-

cess is referred to as flux limiting and is essential to ensure that the advection is monotonic.

The Eulerian analysis technique can be coupled with traditional Lagrangian techniques

to extend the simulation functionality in Abaqus:

• Arbitrary Lagrangian-Eulerian (ALE) adaptive meshing is a technique that combines

features of Lagrangian and Eulerian analysis within the same part mesh. ALE

adaptive meshing is typically used to control element distortion in Lagrangian parts

undergoing large deformations, such as in a forming analysis.

• Coupled Eulerian-Lagrangian (CEL) analysis allows Eulerian and Lagrangian bodies

within the same model to interact. Coupled Eulerian-Lagrangian analysis is typically

used to model the interactions between a solid body and a yielding or fluid material,

such as a Lagrangian drill traveling through Eulerian soil or an Eulerian gas inflating

a Lagrangian airbag.

Some features, advantages, and disadvantages of the Lagrangian and Eulerian can be

summarized in the table below.

2.4 Common Mixers

Mixer used in industry are diverse; the type of mixer to be used and its operational con-

ditions are dependent upon the intended application. For example, in the pharmaceutical

industry, bladed mixers are used for mixing and granulation of powders.
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Lagrangian mesh Eulerian mesh

Lagrangian coordinates of n-
odes move with the material.
Material coordinates of mate-
rial points are time invariant.

Eulerian coordinates of nodes
are fixed and coincide with s-
patial points. Spatial coordi-
nates of material points vary
with time.

No material passes between
elements.

Material flows through the
mesh.

Element quadrature points re-
main coincident with material
points.

The material point at a giv-
en element quadrature point
changes with time. This
makes dealing with history-
dependent materials difficult.

Boundary nodes remain on
the boundary. Therefore,
boundary conditions and in-
terface conditions are easily
applied.

Boundary nodes and the ma-
terial boundary may not co-
incide. Therefore, boundary
conditions and interface con-
ditions are hard to apply.

Severe mesh distortion can oc-
cur because the mesh deforms
with the material.

There is no mesh distortion
because the mesh is fixed in
space. However, the domain
that needs to be modeled is
larger because we do not want
the body to leave the domain.

Table 2.1: A comparison of Lagrangian mesh and Eulerian mesh
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Figure 2.9: Diagrammatic representation of the mixer. Dimensions are cited in mm

2.4.1 High Shear Mixer

DEM studies

The experiment of high shear mixer was carried out in (Steward et al., 2001), in which

a vertical cylinder stirred by two long flat blades opposed at 180◦ (Fig.2.9). The mixer

and blade configurations were chosen so that the flow produced was as simple as possi-

ble. Because the mixer is vertical the blades are constantly immersed at the same depth,

producing a steady-state flow, unlike a horizontal mixer where flow is periodic. This con-

figuration is used directly for a wide range of industrial processes, but most commonly

for high intensity mixers and high shear granulators. Flat blades are the simplest type of

mixing element. The three-dimensional motion of glass beads in a simple bladed mixer has

been studied at five different shaft speeds and five different fill levels using PEPT. Particle

motion for the different conditions has been shown by sections through the velocity fields

and by frequency distributions of the velocity components.

A detailed comparison between DEM study and PEPT was studied with the same ge-

ometry in (Stewart et al., 2001). Flow patterns, velocity distributions were compared

between the results of experiment and five cases of different DEM parameters (shown

in Fig.2.10, 2.11). More extensive investigations with DEM was carried out by (Chan-

dratilleke et al., 2009, 2010, 2012) in which effects of operation and material properties was

taken into consideration. Study of mixing process was also involved. In (Chandratilleke

et al., 2010), the influence of blade speed on mixing was studied in terms of a wide range

of parameters related to flow, structure, and forces, such as flow fields in horizontal and

cylindrical sections, coordination number, porosity, mixing index, force network in hori-

zontal and vertical sections, inter-particle forces, and blade torque. The mixing pattern
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Figure 2.10: Surfaces from PEPT experiment and the five DEM simulations.

Figure 2.11: Velocities fields from experiment and DEM simulations
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Figure 2.12: Mixing of dark and light gray particles initially arranged in the left and right
halves of the mixer sliced at 37.5 mm height.

Figure 2.13: Mixing index as a function of time (a) and revolutions (b)

and index was shown in Fig.2.12 and 2.13. The effects of blade rake angle and gap in

a cylindrical mixer were also investigated in (Chandratilleke et al., 2009). The geometry

can be illustrated in Fig.2.14, in which the angle between blades and bottom as well as

gap were defined. In Fig.2.15, the DEM model was verified by comparison with PEPT

via the probability of density distribution in detail. The results show that the probability

density curve of the simulations agrees reasonably well with those of the PEPT study.

CFD studies

In terms of continuum method used in investigation of high shear mixer, most studies have

focused on computational fluid dynamics (CFD). Based on KTGF, an Eulerian-Eulerian

approach where particles are treated as a continuous medium was used for study in a

high shear mixer (Darelius et al., 2008b). It was found that the bed height could not be
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Figure 2.14: (a) Geometry of the mixer used in the simulation, (b) Definitions of gap and
rake angle a for a single blade.

Figure 2.15: Comparison of simulations with PEPT results in terms of probability density
distribution of blade relative velocities in circumferential direction for the entire bed
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captured in the simulation using free slip as wall boundary condition for the solid phase,

but as the partial slip was implemented to increase energy dissipation at the wall, the bed

height was well predicted. Moreover, the wall velocity magnitude could be reasonably well

predicted using both free and partial slip boundary conditions, but the velocity direction

was poorly predicted as too much particle tangential momentum was transformed into axial

momentum at the vessel wall. The discrepancy between simulated and measured velocities

in the region close to the impeller can probably be better described if the frictional stress

models are developed, e.g. by tackling the cohesiveness in dense particle flow. In the

dense region, a constitutive law based on visco-plastic approach was proposed by Jop et

al (Jop et al., 2006). The model gives quantitative predictions for the flow shape and

velocity profiles. For stiff particles the shear stress is shown to be proportional to the

normal stress, with a coefficient of proportionality, a single dimensionless number called

inertial number I :

τ = µ(I)P (2.49)

I = γ̇d/(P/ρs)
0.5 (2.50)

µ(I) = µs + (µ2 − µs)/(I0/I + 1) (2.51)

where µ(I) is the friction coefficient, d is the particle diameter and ρs is the particle density.

However, the simple scalar law (2.49) cannot be applied in more complex flows where shear

in different directions is present and a full three-dimensional rheology is needed. In their

dense model, the granular material is described as an incompressible fluid with the internal

stress tensor:

σij = −Pδij + τij (2.52)

τij = η(|γ̇|, P )γ̇ij (2.53)

η(|γ̇|, P ) = µ(I)P/|γ̇| (2.54)

I = |γ̇|d/(P/ϱs)0.5 (2.55)

The simulation proceeds by solving the incompressible Navier-Stockes equations with the

internal stress given by 2.52. The results in Fig.2.16 show that the proposed rheology
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Figure 2.16: Comparison of 3D simulations (lines) and experimental results (symbols) for
different flow rates in an inclined chute (Jop et al., 2006).

gives quantitative-agreed predictions for this complex 3D flow.

In (Khalilitehrani et al., 2013), a approach applied to dense particulate systems and based

on the constitutive law proposed by Jop et al (Jop et al., 2006) was employed to study

the dense regions of a High Shear Granulator. The model gave a good general description

of the flow field and bed shape. However the model is insufficient in some aspects mostly

related to the regions with low volume fraction. The agreement of comparison between

experimental and simulated velocity fields is fairly good, but the model overestimates the

velocity of the particle field as compared to experimental data (shown in Fig.2.17). This

may be due to the fact that the fluctuating part of the velocity of the particles is not

modelled when the particulate phase is assumed to be a non-Newtonian fluid.

A further study (Khalilitehrani et al., 2014) modelled a high shear granulation system,

including both dense and dilute regions. The dense region was modelled using an approach

in which the system was treated as a visco-plastic fluid and the rheology of such a fluid
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Figure 2.17: Tangential velocity profiles along the sidewalls left: Model right: Experiments
(Khalilitehrani et al., 2013).

was evaluated. The dilute regions were modelled by the standard Kinetic Theory of

Granular Flow (KTGF). The switching between the models was accounted for by using

the dimensionless inertial number, defined as the ratio of shear forces and pressure forces.

Compared with the earlier models, the current model showed a good prediction of the

velocity field as shown in Fig.2.18. In a transient mixing study (Nguyen et al., 2014), an

Eulerian-Eulerian multiphase framework was employed to model and simulate particulate

flow and mixing behaviours in the blending of dry powders for inhalation. The model can

capture the main features in granular flow motion, e.g. bed height and the dominating

flow direction. The flowing patterns were easily obtained (Fig.2.19), however, no matter

using the theoretical frame of KTGF or extended KTGF, the simulation results are still

not able to agree well with the experimental results, as shown in Fig.2.20.

2.4.2 Rotating Drum

Among most mixers, rotating drum is a simplification of industrial 2D or 3D mixing

devices. The simple rotating drum enables to easily understand mixing dynamics. The

system consists of a cylinder in axial rotation and is filled with a mixture of particles,

often binary mixtures. The use of rotating drums or kilns as granular mixers, dryers and

gas-solid reactors is widespread in the chemical industries and new applications are still

emerging. The interest for rotating drums lies in its simplicity and inherent flexibility. It

can also be designed to accommodate a broad range of material characteristics. The main

flow regimes for solid mixtures in rotating drums are classified from the Froude number

(Fr). It is accepted that the cross-sectional behaviour of the bed progresses through six
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Figure 2.18: Velocity profiles; left: experimental data; right, up: Rheology + KTGF
(current model); right, down: Rheology model (Khalilitehrani et al., 2014).

Figure 2.19: Horizontal snapshots of axial velocities at heights of (a) 1cm, (b) 2cm, (c)
3cm, and (d) 4cm. (Nguyen et al., 2014)
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Figure 2.20: Velocity profiles at the vessel wall (a) velocity magnitude, (b) tangential and
axial velocities. (Nguyen et al., 2014)

characteristic patterns as rotational speed increases. From the definition of the Froude

number, it is possible to determine the effect of centrifugal forces over gravitational forces

via:

Fr =
Rω2

g
(2.56)

where R is the cylinder radius and g is the gravitational acceleration. Bell noted that scal-

ing of particulate processes should be done with extreme caution since granular materials,

unlike gases and liquids, behave differently at different scales. A Froude number (Fr) of

unity indicates that the gravitational forces are balanced by centrifugal ones resulting in

a motion within the cylinder where the material adheres to the walls: a regime known

as centrifuging. The work of Henein et al. showed that the rolling bed regime occurs at

low Froude numbers. They also showed that for a range of materials, the bed motion was

in the rolling regime at Fr above 10−3 at even their lowest experimental drum loading

of 4%. Mellmann reviewed the different operating regimes based on the Froude number.

He showed that rolling beds typically occur at Fr between 10−4 and 10−2 with a cylinder

loading greater than 10% and the centrifugation regime occurs at Froude numbers greater

than 1.

Comparison between DEM and PEPT

Conventionally, the results derived from DEM was supposed to be compared with that

from PEPT. The paper (Yang et al., 2003) presented a numerical study of particle flow in

a horizontal rotating drum by DEM with special reference to the effect of rotation speed.

The results were analysed in terms of microdynamic variables related to flow structure

such as porosity and coordination number, and force structure such as particle interaction
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Figure 2.21: Dynamic angle of repose as a function of rotation speed.

forces, relative collision velocity and collision frequency. The results of DEM was compared

with that of PEPT, for example, Fig.2.21 shows the dependence of the dynamic angle of

repose θ on the rotation speed Ω, where θ is defined as the angle of the surface of rotating

particles relative to a horizontal plane and obtained via a least square fitting of centres of

particles at the surface. The agreement between DEM simulation and PEPT measurement

is fairly good, both indicating the dynamic angle of repose increases linearly with the speed

of rotation.

Six flow regimes in a rotating drum

With the discrete element method Runyu Yang et at (Yang et al., 2008) investigated the

granular flow dynamics in different regimes. By varying the rotation speed and particle-

wall sliding friction over a wide range, six flow regimes were produced. The results showed

that the angle of repose of the moving particle bed had a weak dependence on the rotation

speed in the slumping and rolling regimes, and increased significantly as the flow transited

to the cascading and cataracting regimes. The mean flow velocity increased with the rota-

tion speed, but the normalised velocity against the drum speed in the continuous regimes

collapsed into a single curve, which can be well described by a log-normal distribution.

The corresponding six regimes are shown in Fig.2.22. The particle flow went through dif-

ferent flow regimes as the rotation speed varied from 0.1 to 300 rpm (Fr=5.6× 10−7 ∼ 5).

At 1 rpm, the flow was in the slumping regime with particles at the bottom of the bed in

small, intermittent avalanches. As the speed increases to 5 rpm, the time interval becames
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Figure 2.22: Particle flow patterns at different rotation speeds showing different flow
regimes: (a) slumping; (b) slumping-rolling transition; (c) rolling; (d) cascading; (e)
cataracting; and (f) centrifuging. Colour represents particle velocity.

shorter and the flow was in the transition period due to the competition between the grav-

ity and the centrifugal force. So the particle bed was not stable and moved back and forth

around the equilibrium position. At 40 rpm, the flow was clearly in the rolling regime

characterised by a flat surface, a thin layer of fast moving particles and the majority of

particles moving slowly at the bottom. Further increasing the rotation speed to 80 and

150 rpm led the flow into the cascading regime which showed an S-curved surface with a

clear shoulder and tail. At 200 rpm, the particles had enough energy to be thrown off the

bed surface into the space beyond the middle point, which defines the cataracting regime.

At 245 rpm, the particles were thrown so far into the space that they traveled around the

inner edge of the cylinder. This centrifuging motion was characterised by the particles

adhering to the drum wall as a uniform solid layer with little relative motion between

particles. Note at this speed, the Froude number Fr is 3.35 far beyond the unity.

Geometry method applied to drum

Slow granular mixing processes can be analysed by a geometric technique commonly seen

in industry (Metcalfe et al., 1995a). An upright two-dimensional disk partially filled with
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Figure 2.23: (a) Schematic of avalanche mixing for a quarter-filled disk; (b) a half-filled
disk and a three-quarter-filled disk. (c) In all cases, the disk rotates slowly clockwise,
and distinct avalanches occur which take material from an uphill wedge (dark grey) to
a downhill wedge (white), as indicated by solid arrows. Mixing within the wedges is
taken to obey a deterministic map; mixing between wedges occurs in quadrilateral wedge
intersections indicated.

coloured passive particles and rotating about its axis is considered as an example of a mod-

elled system. For slow rotations, the surface layer mixes through the action of successive

avalanches (shown in Fig.2.23). Slow mixing implies that each avalanche stops completely

before a new one begins. The avalanche duration scales as
√
D/g, where D is the container

diameter and g is the acceleration due to gravity, so we require Ω
√
D/g ≪ 1, where Ω is

the rotation rate. Material below the surface layer rotates as a solid body with the disk. A

side-by-side comparison between experiments and numerical simulations, using a random

map to model mixing within the wedges, are shown in Fig.2.24.

However, there are limitations of this geometrical method (McCathy, 1996). Core periph-

ery is different under the mixing of two powders with size, shape, and density differences.

The core precession, the line rotates past its original position in the direction of the con-

tainer rotation (shown in Fig.2.25), can not be captured by the geometrical method. A
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Figure 2.24: Mixing patterns form simulation (left) and experiment (right) after two disk
revolutions at the indicated fill levels f.

Figure 2.25: A comparison between two experimental photos of a 2-D mixer with a circular
cross-section filled with large cubic particles. The first photo (a) is after 3 revolutions and
the second (b) is after 40 revolutions. Note that the interface within the core has precessed
by 42 degrees.

hybrid simulation technique merging geometrical and dynamical approaches improved the

original geometrical method. The comparisons between hybrid simulations and experi-

ments are shown in Fig.2.26.

Kinematics in the rolling regime

A representative lagrangian approach is kinematics in the low speed rotation regime, when

the free surface of the granular solids is nearly flat, and when particles are identical so that

segregation is unimportant. The flow is divided into two regions: a rapid flow region of

the cascading layer at the free surface, and a fixed bed of particles rotating at the angular

speed of the cylinder. The continuum model, in which averages are taken across the layer,

is used to analyze the flow in the layer. As shown in Fig.2.27, particles in a partially filled
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Figure 2.26: Shown is a comparison of experiments (a) and simulations (b) of segregating
materials at f = 0.4 and f = 0.75. The simulations easily capture the large-scale, geomet-
rical features, such as the core, as well as the smaller-scale, dynamical characteristics like
radial segregation. The simulation at the top involves 3,000 particles; the simulation ar
the bottom, 6,000 particles.

horizontal drum rotate about its axis. Conditions are as follows: the system operates

in the rolling regime where the free surface is nearly flat, and there is a steady flow of

particles in a thin layer at the free surface of the bed. The flow in the drum can be divided

into two regions: the rapid flow region of the cascading layer and the bed rotating at the

angular velocity of the drum. In general, there is a region of slow flow between these tow

regions, where the nearly close-packed particle assembly experiences plastic deformation.

Rotation of the drum results in a flow of particles from the fixed bed into the cascading

layer in the upper half of the layer and a flow from the layer into the fixed bed in the lower

half. The steady state mass balance equation for the flow in the layer is given by

d

dz
(ρuδ) = ρbvint · n (2.57)

where δ(x) is the layer thickness, and u(x) is the velocity averaged across the layer,

u =< vx >=
1

δ

∫ 0

−δ
vxdy. (2.58)
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Figure 2.27: Schematic view of the flow in the rotating drum mixer

Figure 2.28: Model configurations used in the CFD simulations

As a result, essential aspects of mixing of granular materials in the continuous flow regime

in a rotating cylinder corresponding to a flat interface with a velocity dependent dynamic

angle of repose can be modeled in terms of a cross-averaged, nearly one-dimensional con-

tinuum model. The model yields the average velocity in the cascading layer of particles

and the shape of the layer. Model results are presented for three different cases: plug flow,

Bagnold’s profile and simple shear flow. The model has one adjustable parameter which

determines the magnitude of the collision stresses. All other parameters are independent-

ly estimated from the static and dynamic angles of repose, the rotational speed and the

filling level of the cylinder.

CFD studies

Based on KTGF, D.A.Santos et al (Santos et al., 2013) studied the hydrodynamic be-

havior in a rotating drum under different operating conditions with the Eulerian-Eulerian

multiphasic model. The theory of granular flow was used in the simulations. The results

concerned with different solid flow regimes and velocity distributions were compared with

experimental data. In order to obtain the volume fraction of the granular solid phase

and particle velocity profiles in a rotating drum, six different models configurations were

used in this work, as shown in Fig.2.28. Various filling levels were studied with the ex-

48



Figure 2.29: volume fraction of the granular solid phsse of 1.09mm and fill level of 31.40%
for drum rotating at 1.45, 4.08, 8.91 and 16.4 rad/s from the left to the right, respectively:
experimental and simulated using model configurations S1, S2, S3, S4, S5 and S6.

perimental data. Fig.2.29 was one of them. However, only four regimes concerned with

rolling, cascading, cataracting and centrifuging were identified by simulations as the ro-

tational speed increases. S1 and S2 configurations qualitatively agreed better with the

experimental observations than the other configurations.

Stochastic approach

A stochastic approach of Markov chains was proposed by Javan D.Tjakra (Tjakra et al.,

2012, 2013). This approach captures the collective dynamics which can be obtained from

the Markov chains operator. The obtained operators are used to estimate the spatial

particle distribution and the degree of particulate mixing as examples of collective dynamic

features of polydisperse particulate systems. The results derived from Markov chains were

also compared with DEM (shown in Fig.2.30).

Chaotic advection mixing in a drum

Experiments and computations show that granular flows in circular containers is steady

which leads to poor mixing if advection is taken into account alone (no particle diffusion

49



Figure 2.30: The RSD mixing index of binary disperse of particulate system at Ω = 120
rpm

generated by interparticle collisions). In contrast, the flow in elliptical and square mixers is

time periodic and results in chaotic advection and rapid mixing. Computational evidence

for chaos in noncircular mixers is studied in terms of Poincarê sections (obtained from

computing the particle trajectories by integration of the velocity field with respect to time

[no diffusion considered], and noting the position after each half revolution of the mixer)

and blob deformation (Khakhar et al., 1999). Poincarê sections show regions of regular

and chaotic motion, and blobs deform into homoclinic tendrils with an exponential growth

of the perimeter length with time. In contrast, in circular mixers, the motion is regularly

everywhere and the perimeter length increases linearly with time. Poincarê sections and

blob deformations are shown in Fig.2.31. The other signatures of chaos are a positive

Liapunov exponent - exponential stretching - and the presence of horseshoe maps; the

rate of stretching is considered in Fig.2.32. The change in the computed perimeter length

of the blob increases linearly with time in the circular mixer, whereas an exponential

increase of length with time is obtained for the blobs in the chaotic regions of the square

and elliptical mixers.

2.5 Research Plan

Finite element study of flow kinematics and mixing

behaviors in various particle mixers
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Figure 2.31: Comparison of the mixing of tracer particles in a circular, elliptical, and
square mixer simulated using the model with no particle diffusion. The inset figure on the
upper left-hand side shows the Poincarê section, and the initial condition is shown in the
upper right-hand inset.

Figure 2.32: Variation of the relative perimeter length of a blob with time in the mixers.
Note that while the perimeter length in the circular mixer grows linearly, the length in
the non-circular mixers grows exponentially.
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2.5.1 Research aims

Model development and validation

To develop and testify the new model (FEM within the frame of Eulerian method) under

various circumstances by comparison with DEM results and experiments measurement.

Model studies

To study various mixing cases by taking into account the geometries (containers), opera-

tions in laboratories, material properties.

Potential industrial applications

To extend our new model from lab scale to a larger scale to fulfil the needs of industrial

applications.

2.5.2 General methodology

FEM based on the Mohr-Coulomb model of elasto-plastic theory as the continuum simu-

lation method will be used throughout the whole research.

2.5.3 Stages in the Research

Method validation in a high shear mixer

In order to validate the FEM model, we will establish the model in a high shear mixer with

parameters similar to (Chandratilleke et al., 2010) and compare our results derived from

FEM against that from DEM and experiments. To testify our method, we will consider

the following aspects:

• Granular flow patterns.

• Bed profile types.

• Various types of flow velocity distributions.

• Stress distribution along the wall and blade.

• Torque variation as a function of time.
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Practical application of FEM simulation to Mipro mixer

We will consider various effects of operational and material property to granular flow and

mixing in the context of a realistic Mipro mixer. Operational effects taken into account

include:

• Blade speed varied in a large range.

we will study instantaneous vector field of relative velocities with different blade

speeds at different sections.

• Blade rake angle and blade gap at the bottom.

we will study probability density distribution of blade relative velocities at different

angles, flow patterns in vertical cylindrical sections at different radii, angles and

blade gap.

• Optimization of mixing time.

we try to figure out an optimizing method of minimizing time to get to the well

mixed state.

Material properties taken into account incorporate:

• Various material properties with respect to a continuum method such as cohesive-

ness, internal friction angle, dilation angle, etc.

Granular kinematics studied by FEM in a circular rotary drum

In a circular rotary drum at the rolling regime, we will investigate kinematics with FEM

from the following aspects:

• The distribution of velocity magnitude.

• Transverse velocity distribution.

we will compare our results of transverse velocity distribution to simple shear flow

and Bagnold solution profile, which has been testified with experiments.

• Flow layer thickness and layer length in the active zone at various conditions.

• Proposing a scale-up law of flow layer thickness as a function of internal and external

parameters.
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Granular kinematics studied by FEM in a non-circular rotary drum

The whole study will be performed in the rolling regime of a non-circular (square, ellipse)

rotary drum. We will study in the frame of FEM:

• The distribution of velocity magnitude.

• Transverse velocity distribution.

• Chaotic advection without considering the effects of diffusion.

We try to simulate the streamline of Poincaré sections as well as deformation pattern

of the marked blob by tracing particles in our method.

Mixing process in a circular rotary drum

We try to measure RSD (relative standard deviation) and mixing index during the mixing

process. Results will be compared with DEM, CFD and Markov chains method results

provided by (Tjakra et al., 2012, 2013). Several factors affecting mixing will be studied as

follows:

• Rotational speed. Various Froude numbers characterising angle velocity will be tried

during simulation.

• Material property from a continuum point of view such as cohesion yield stress,

internal friction angle.

• Non-circular drum.

2.5.4 Time lines

• Model development and validation in a high shear mixer

2014.03 — 2015.06

• Material properties and operational studies in a high shear mixer

2015.06 — 2015.12

• Mixing in a drum

2016.01 — 2017.02
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Chapter 3

FEM study of particle flow and

convective mixing in a cylindrical

bladed mixer

3.1 Introduction

Blending different kinds of granules from initial separate phases into the homogeneous

state is a common process in many industries such as pharmaceutical, food, and cosmetic

industries. This process has many fascinating physical implications that demand contin-

uous research (Aranson and Tsimring, 2006). The common device to complete particle

blending mainly comprise the rotating drums (Yang et al., 2003, 2008), V-blenders, ribbon

mixers (Musha et al., 2013) and CBM (Bridgwater, 2012). The CBM, consisting of an

exterior shell and a central shaft inside with two opposed flat blades, can generate a high

shear force to enhance the convective movement of particles and thus attracts extensive

experimental and numerical-investigations in the literature (Stewart et al., 2001; Zhou

et al., 2004; Chandratilleke et al., 2009, 2010, 2012). Parkerb et al. (2001) studied the

motion of glass beads in a CBM using a positron emission particle tracking (PEPT) tech-

nique focusing on the influences of different shaft speeds and filling levels (Steward et al.,

2001). Their experiment revealed several important features of particle flow such as the

heap formation and recirculation zone around the blades, and evaluated the distributions

of particle velocity residence time in the CBM system. A similar mixer was later simu-

lated by Stewart et al. (Steward et al., 2001) via discrete element method (DEM). With
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properly selected parameters of sliding friction and rolling friction, DEM can provide good

predictions of the overall bed profile and particle velocities in various cases. Zhou et al.

(Zhou et al., 2004) investigated the flow structure in terms of porosity and coordination

number by DEM considering the binary mixing under different conditions of initial parti-

cle filling levels. Chandratilleke et.al. (Chandratilleke et al., 2009, 2010) further studied

the effects of blade speed and blade rake angle on particle mixing index. They found

that by increasing the blade speed, the mixing rate calculated in terms of step time can

be significantly enhanced whereas the rate in terms of revolution number is adversely re-

duced. Their study also unveiled the critical importance of the particle recirculating flow

for the mixing efficiency. Mixing of fine particles was explored by Chandratilleke et.al

(Chandratilleke et al., 2014) aiming to develop a more universal understanding towards

the effects of inter-particle van de Waals force, blade speed and rake angle on mixing rate

so as to find the optimal design and operational conditions of CBMs.

However, how to efficiently simulate the collective behaviour of particles in practical mix-

ing equipment is still challenging. It is known that, the DEM modelling, limited by the

current computer capacity, is technically difficult to deal with the large scale industri-

al mixers where as many as billions of particles may be involved (Nguyen et al., 2014).

Continuum models can largely mitigate such computational tension as they neglect the

detailed particle microdynamics and treat the particle assembly as a continuum media.

The motions of the continuum are governed by the common physical equations of mass,

momentum and energy conservation together with a particular constitutive law for de-

scribing the characteristics of granular material. Many such constitutive laws have been

proposed for the dense granular flow previously (Jop et al., 2006) and some of them were

also applied to the CBM (Khalilitehrani et al., 2013, 2014, 2015). More Recently, an Eu-

lerian FEM approach based on Mohr-Coulomb elasto-plasticity (MCEP) theory has been

employed to simulate several common industrial processes (Zheng and Yu, 2014, 2015a,b),

and satisfactorily reproduced the stress and flow characteristics in different systems. In

theory, continuum modelling of mixing process should embody the correct mixing mech-

anisms. Bridgewater (Bridgwater, 2012), elucidated three primary mixing mechanisms of

particle mixing in usual mixer systems. The most common way of mixing is convection

which transfers groups of particles from one location to another as attached?clumps fol-

lowing the flow field. An alternative mechanism, i.e. shear mixing, is characterized by the

56



considerable slip zones at locations of high velocity gradient, which effects a continuous

extension of the interfacial areas between the two groups of particles. The third mechanis-

m, diffusion, roots in the frequent particle collisions that cause particles penetrating into

other domains stochastically. To account for such a mixing description, an extra scalar

transport equation is usually needed to couple with governing equations of particle flow in

a continuum approach (Nguyen et al., 2014). Nonetheless, as the most important mixing

mechanism (Bridgwater, 2012), the convective flow, is of fundamental significance to the

mixing process and lays the basis for understanding particle shear and diffusion, and hence

is therefore focused in this paper.

This work utilises the recent Eulerian FEM model (Zheng and Yu, 2014, 2015a,b) to

investigate the flow and the mixing processes of cohesionless particles in a CBM. The con-

ventional MCEP model is selected for description of granular flow for its simplicity and less

empirical parameters. The simulated results including bed pattern, velocity distribution,

and mixing index are presented in section 3.3 and compared with DEM and experimental

outcome when possible. The complicated effects of model parameters such as the internal

friction angle on flow and mixing behaviours are also discussed based on the FEM results.

3.2 Theory and numerical simulation method

3.2.1 Governing equations

The granular materials within CBM are treated as a continuum medium in view of the

fact that the size of a CBM is far larger than the average size of particles. Similar to other

forms of matter, the flow of a granular material also needs to satisfy the fundamental

principles of conservation of mass, momentum, and energy, as written below:

Mass conservation,

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

Momentum conservation,

∂(ρv)

∂t
+∇ · (ρv ⊗ v) = ▽ · σ + ρb (3.2)

and energy conservation,

∂ϵ

∂t
+∇ · (ϵv) = σ : ε̇ (3.3)
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where ρ refers to the bulk density of granular material, σ is Cauchy stress tensor, b is

the body force, v is the velocity vector and ϵ is the internal energy per unit volume.

ε̇ = (1/2)∇v + (∇v)T represents the strain rate.

3.2.2 Mohr-Coulomb elastoplastic theory

Granular flow in the dense region can be viewed as a continuum flow characterised by

elesto-plastic behaviours, which has been demonstrated under various constitutive laws

and geometry circumstances such as pressure dip in a hopper flow (Zheng and Yu, 2014),

granular eddies in a chute flow, and JiangLiu granular elasticity law (Jiang and Liu, 2003).

Mohr-Coulomb plasticity was the simplest continuum model widely applied in granular

materials for industrial purposes, however, its shortcomings were illustrated by a series of

publications (Kamrin, 2010). One prominent disadvantage is that the model attributes

most of characteristics of granular matter yield condition into a single internal friction

angle. By demonstrating various properties of granular flows, a series of models with con-

stitutive laws were established (Henann and Kamrin, 2013). However, it is less convincing

and necessary to add extra degrees of freedom and parameters into the model, because

most physical hypotheses introduced stay at the level of phenomenology which is lack

of physical insight and first principle calculations. The consequence is the hinderance of

seeking the real reason for certain granular phenomenon and making the whole continuum

granular theory bloated. Recent investigations indicate that Mohr-Coulomb plasticity is

still valid under certain circumstances and appropriate numerical simulations (Zheng and

Yu, 2014, 2015a,b), which makes the additional phenological theories unnecessarily useful.

With fewer parameters involved, we hope to use the minimum and powerful model (clas-

sic Mohr-Coulomb elasto-plastic model) to capture most of major features with respect to

complex granular phenomena in containers of various geometries.

A linear relation between stress and elastic strain is adopted as:

σij = Del
ijklϵ

el
kl (3.4)

where σij is the total stress; ϵelkl is the elastic strain; and Del
ijkl is the fourth-order tensor

of elasticity.
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The yield condition is given by:

Rmcq − p tanφ− c = 0 (3.5)

where

Rmc =
1√

3 cosφ
sin(Θ +

π

3
) +

1

3
cos(Θ +

π

3
) tanφ

φ is the slope of the Mohr-Coulomb yield surface in the p − Rmcq stress plane, which is

commonly referred to as the friction angle of the material and can depend on temperature

and predefined field variables. p = −1
3trace(σij) is the first invariant of stress representing

the equivalent pressure; q =
√

3
2SijSij is the Mises equivalent stress and Sij is the devi-

atoric stress; φ and c are the angles of internal friction and and the cohesion of granular

material, respectively. Θ is the deviatoric polar angle defined as cos(3Θ) = (r/q)3 where

r = (92SjiSjkSki)
1
3 is an invariant measure of deviatoric stress. The friction angle, φ,

controls the shape of the yield surface in the deviatoric place. The friction angle range is

0◦ ≤ ϕ < 90◦. In the case of ϕ = 0◦ the Mohr-Coulomb model reduces to the pressure-

independent Tresca model with a perfectly hexagonal deviatoric section. In the case of

ϕ = 90◦ the Mohr-Coulomb model reduces to the “tension cutoff” Rankine model with a

triangular deviatoric section and Rmc = ∞.

Granular flow can be well described as flow rules. The flow potential G is chosen to be

a hyperbolic function in the meridional stress plane and a smooth elliptic function in the

deviatoric stress plane, defined by:

G =
√

(ϵc |0 tanψ)2 + (Rmwq)2 − p tanψ (3.6)

and

Rmw =
4(1− e2) cos2Θ+ (2e− 1)2

2(1− e2) cosΘ + (2e− 1)
√
4(1− e2) cos2Θ+ 5e2 − 4e

× 3− sinφ

6 cosφ
(3.7)

where ψ is the dilatancy angle of material, c|0 is the initial cohesion yield stress, ϵ is a

parameter that characterizes the eccentricity of the flow potential; and e referred to as

the deviatoric eccentricity describing the “out-of-roundedness” of the deviatoric section
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in terms of the ratio between the shear stress along the extension meridian and the shear

stress along the compression meridian, is a function of the internal friction angle φ, given

as e = (3− sinφ)/(3 + sinφ).

An additive strain rate decomposition is assumed:

dε = dεel + dεpl,

where dε is the total strain rate, dεel is the elastic strain rate, and dεpl is the inelastic

(plastic) strain rate.

The constitutive flow rule can be written as:

dε =
dε

g

∂G

∂σ
,

where g can be written as

g =
1

c
σ :

∂G

∂σ

3.2.3 Coupled Eulerian-Lagrangian method of FEM

In the Eulerian FEM, the nodes of material are fixed so that the meshes are not distorted

and material flows through the meshes freely. The algorithm to realize the performance is

known as Lagrange-plus-remap. More details can be found in (Zheng and Yu, 2014). The

coupled Eulerian- Lagrangian method allows interactions and interprets a good contact

condition between rigid body of lagrangian part and materials set up as Eulerian part. In

our simulation, the whole rigid body including the rotating blades and the exterior wall is

completely immersed in the Eulerian meshes as Fig.3.1 shows.

3.2.4 Simulation conditions

The considered setup of CBM is shown in Fig.3.1 , similar to that adopted in previous

experiment (Stewart et al., 2001; Zhou et al., 2004) and DEM simulation (Zhou et al.,

2004). It comprises a cylindrical container of inner diameter 249mm, a fixed axial shaft

of diameter 32mm, and two identical flat blades of 40 mm high and 10 mm thick. The

container and the blades are modelled as Lagrangian parts (element type R3D4) in the

FEM simulation. The cohesionless particles regardless of size and shape are treated as a
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Figure 3.1: (A) The geometry of CBM under consideration; (B) computational mesh for
FEM modelling (Eulerian mesh is set to be transparent so that the inside blade and drum
can be sighted).

Parameters Symbols Basic values Range of variation

Particle density ρ 1500kg/m3 -
Poisson’s ratio ν 0.3 -

Young’s modulus E 1× 106 -
Internal friction angle ϕ 15◦ 10◦-35◦

Friction coefficient of material-wall interaction µ 0.3 0.1-0.5
Dilation angle Ψ 0.1 -

cohesion yield stress c 0 -

Table 3.1: Physical parameters used in the simulation

continuum Eulerian fluid (element type EC3D8R). As shown in Fig 3.1, these Lagrangian

parts should be totally immersed in the Eulerian meshes in order to contact with the gran-

ular materials. For clarity, Fig 3.1 shows the cross-section of a coarse Eulerian mesh only;

the mesh size adopted in computation is approximately 0.5 cm. The Eulerian meshes are

assigned with materials at the initial step. An Eulerian Volume Fraction (EVF) is defined

to calculate the volume fraction of material occupying the elements. The parameters to

characterize material property are listed in Table 3.1. The initial height of granular bed

is equivalent to the top of blades. The simulation starts with blades rotating about the

shaft at an angular velocity of 1 rad/s. The Eulerian elements are fixed in space and time

while the materials are pushed through them by the rotating blades. More details about

the algorithm can be found elsewhere (Zheng and Yu, 2014). The whole simulation lasts

for at least 10 seconds until the fluctuation of system kinetic energy becomes negligible, in

other words, when granular flow arrives at a steady state. Information of various physical

quantities is then collected at this state.
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Figure 3.2: A comparison of the bed profiles between (A) FEM and (B) DEM (Zhou et al.,
2004)

3.3 Results and discussion

3.3.1 Bed heaps

Fig.3.2 illustrates a typical profile of bed material in the simulated CBM. When stirred

by the blades, the bed is forced to rotate about the central axis and forms two heaps in

the front of blades. Such heaping phenomena have been commonly observed in previous

PEPT experiment (Stewart et al., 2001) and DEM simulations (Chandratilleke et al., 2009,

2010). Note that as a consequence of the heaps, there are two obvious recirculating flow

(RF) regimes in the vicinity of blades which considerably affect the mixing rate (to be

discussed later).

The altitude of bed heaps is mainly determined by the internal friction angle φ. As

displayed in Fig.3.3, bed profiles are obtained with different internal friction angles. The

particle-wall friction coefficient µ equals to 0.3 for all the cases. The colour indicates

the bed altitude in units of m, with a fixed friction coefficient µ, the heap height grows

remarkably from around 0.08 m to 0.113 m as φ increases from 15◦ to 35◦. Previous

discrete studies (Stewart et al., 2001; Zhou et al., 2004) found that the heap height can also

be promoted by enhancing the sliding friction coefficient µs between component particles.

This finding is in principle consistent with the present FEM observations, because the

inter-particle friction µs is to a large extent related to the internal friction angle φ although

they are concepts of different scales. The flow bed profile can be different by changing the

internal friction angle.
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Figure 3.3: Bed profiles obtained with different internal friction angles. The particle-wall
friction coefficient µ equals to 0.3 for all the cases. The colour indicates the bed height in
units of m.

63



Figure 3.4: Velocity vectors in horizontal sections of different heights for µ = 0.3. The
colour indicates the velocity magnitude in units of m/s.

3.3.2 Velocity profile and distribution

Fig.3.4 depicts the translational velocities of particles in horizontal sections of different

heights. As seen, in the lower areas such as H = 10 mm, the majority of particles flow

in the same angular direction (counter-clockwise). The velocity reaches maximum at the

front surface of blades where particles are subject to the strongest normal propelling force,

and then gradually decreases with the distance from blades. The velocity distribution

above the top of blades (up to 45 mm) is somewhat complicated, as the particles in this

region can surmount the blades and flow in both directions, generating a recirculating

flow velocity in the rear of the blades. At the top of the heap, however, particles flow in

a variety of directions depending on the shape of heap, including an obvious radial flow

at the perimeter (H = 45 mm and H = 69 mm). The vertical distribution of velocity in
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Figure 3.5: Recirculation pattern of the velocity field in FEM simulation. The colours
denote the magnitude of velocity in units of m/s.

the immediate area of blade is illustrated in Fig.3.5. As seen, the majority of particles

in this area are propelled to move forward while a small proportion of particles near the

surface move back in a counter-clockwise vortex manner, forming a similar recirculating

flow (RF) pattern to the previous DEM observations (Zhou et al., 2004). Those particles

flowing downward can either end in laying on the bed surface or re-joining the forward

flow along with the particles behind.

Velocity statistics is a common way to quantitatively evaluate the flow field in many

granular flow systems. Analogous to the treatment in previous work (Zhou et al., 2004),

the following velocity frequency density is defined in our analysis:

f(Vi) =
number of nodes ∈ [Vi, Vj +△V ]

total number of nodes
× 1

△V
(3.8)

, where V represents certain velocity measure under investigation, such as resultant velocity

Vm =
√
V 2
x + V 2

y + V 2
z , radial velocity Vr = Vx cosα + Vy sinα or tangential velocity

Vt = Vy cosα − Vx sinα, where α = arctan(y/x), x and y are the coordinates of particles

on X-Y plane. △ V = 0.004 m/s is the velocity interval designated in statistics. Note

that all the FEM data are retrieved from the nodes of Eulerian elements and the statistics

is performed on the number of element nodes that are occupied by the granular material

(neglecting the void elements).

Fig.3.6 shows the probability distributions of velocities Vm in the rotated particle bed.

Different values of internal friction angle φ and wall friction µ are used because the two

variables significantly influence the collective behaviours of particles at macroscopic scale.

It is observed that for small internal friction angle φ = 25◦, the speed curve peaks at a very

low value Vm < 0.01 because most particles keep inertial in this case. As φ increases and
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µ keeps constant, the apex of velocity distribution becomes less sharp and shifts gradually

from the lower-valued speed side to higher-valued side, indicating an increasing number

of particles entering into the flowing regime. By contrast, if φ stays unchanged and wall

friction µ increases, the proportion of high-speed particles within the system will decline

oppositely as seen from Fig.3.6 (B). Such distributions bear a high resemblance to the

trend in DEM results (Zhou et al., 2004) when the sliding friction coefficient µs between

particles is reduced. Moreover, the FEM and DEM data can agree quantitatively when

the values of parameter φ and µ are properly adjusted as shown in Fig.3.7. Note that

in cases of extremely great internal friction angle such as φ = 89◦ (Fig.3.6 (A)) or tiny

wall friction, e.g. µs = 0.1 (Fig.3.6) and µ = 0.0001 (Fig.3.6), there is an evident linear

correlation between speed frequency f(V) and speed V. This pattern in fact corresponds to

a special flow state where all particles move at the same angular velocity about the CBM

axis like an integral solid adhering to the blades. According to the MCEP theory, granular

material will behave like solid where the critical incipient failure state tanφ < τ/σ (τ and σ

are the respectively shear stress and normal stress exerted on the element) is not satisfied.

Hence the larger φ, the more materials staying at solid/elastic state. For sufficiently large

φ, the entire bed will move as a rigid solid without any heaps or recirculation. Likewise,

if the frictional resistance from CBM walls is too small, the bed material will also rotate

freely as a rigid body. Under both circumstances, the translational velocities are simply

along the tangential direction and proportional to the radial coordinates in magnitude.

Assuming that the effective angular velocity of bulk bed is ωb and the translational velocity

at certain radial position r is vr, the velocity frequency density in this particular condition

can be found from

f(Vi) =
number of particles ∈ [Vi, Vj +△V ]

total number of particles
× 1

△V
(3.9)

, given by

f(vp)dvp =
dNp

Ntotal

, where Np indicates the number of particles within the range vrdvr and Ntotal is the total

number of particles in DEM simulation. In FEM, Np and Ntotal represent the number of

element nodes as mentioned above.

66



This situation can be considered as two dimension owing to the uniformity of velocity

along the bed depth. Hence, dNp = 2prπdr and Ntotal = πR2ρ where R is the radius of

mixer and ρ is the bulk density, and the following linear relationship between the frequency

density and the velocity can be derived:

f(vr) =
2

ω2
bR

2
vr

This equation explains the linear distributions of resultant velocity shown in Figs.3.6 and

3.7, that is, those cases all correspond to a uniform angular flow state. By Eq.3.10, we can

also infer the effective angular speed of whole bed about shaft. Taking the case φ = 89◦

and µ = 0.3 in Fig.3.6 (A) as an example, the slope of f(vr) versus vr is approximately

150. Recalling the geometric parameters R = 0.125 m, the bulk angular velocity is found

to be ωb = 0.92 rad/s. In another case of φ = 50◦ and µ = 0.0001 (Fig.3.6), the bulk

angular velocity is estimated as ωb = 1.03 rad/s via the same method. By and large, both

values are equal to the applied blade rotating speed 1 rad/s.

Fig.3.8 illustrates the statistical distributions of the radial velocity component Vr and

tangential component Vt. The radial velocity within CBM is generally small and distribute

only in a narrow regime. But with the increase in φ, particles are increasingly involved in

the radial flow of RF region, which in turn creates a slightly wider distribution of radial

velocity, just as observed in previous DEM study (Zhou et al., 2004). For internal friction

angle φ ≥ 30◦, the collective particles tends to rotate as a rigid solid as discussed above

and the tangential velocity Vt becomes the major composition of resultant velocity Vm.

As such, the average value of tangential velocity Vt shows a considerable increase with φ

while the majority of radial velocities Vr fall gradually to almost zero.

3.3.3 Mixing kinetics

Mixing pattern evolution

Mixing occurs when more than two kinds of particles occupy one detection cell. To model

this behaviour, a state variable cr is defined to represent the concentration of particles

in each FEM mesh, with cr = 1 for meshes full of red particles, cr = 0 for those of blue

particles and cr = 0.5 representing a complete mixing state. It should be emphasized that

the colours here only serves as identifiers of different parts of the bed rather than different
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Figure 3.6: Statistical distributions of the particle velocity Vm for different material pa-
rameters when (A) µ = 0.3; (B)φ = 15◦.
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Figure 3.7: Comparison of the velocity statistical distributions obtained by FEM and
DEM. Note that µs is the inter-particle sliding friction coefficient used in DEM (Zhou
et al., 2004) while µ indicates the macroscopic friction between bulk material and CBM
components in FEM modelling.

materials-both red and blue parts in effect have the same physical properties given in

Table 3.1. In FEM simulation, the initially apart red and blue material points may come

close as a result of the evolving flow field and mix with each other. An additional principle

is applied implicitly, i.e. that assumingly the materials are immediately uniformly mixed

in each individual mesh irrespective of the mesh size. This in essence endows the flow

process with an artificially diffusional characteristic, without which the boundary between

materials would never disappear, however lengthy and curly it becomes, just like the

mixing picture of fluids (Ottino, 1990). Such a treatment is in general reasonable although

as shown momentarily it may introduce an undesirable mesh-dependency of mixing rate.

Fig.3.9 shows the simulated mixing patterns at different stages. The materials of different

colours are separated by the blades at t = 0 s. Shortly after the blades start rotate, a

clear S-shaped boundary shows up between the two bulks and then two small RF regions

in green colour (cr = 0.5) emerges at 4.5 s indicating a the commencement of solid mixing.

With the continuing rotation of blades, the green regions grows slowly and eventually

expand to the whole bed at t = 18s, indicating that the system has reached an overall

homogeneous mixing state.
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Figure 3.8: Radial and tangential velocity distributions at different φ when µ = 0.3.
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Figure 3.9: Top view of Mixing patterns at different time steps for φ = 15◦, µ = 0.3. The
colour denotes the concentration of red particles cr.

Mixing mechanisms

This subsection presents a detailed investigation into the mixing mechanism based on the

FEM results. Since the particle diffusion is not rigorously considered in FEM modelling;

only the convective and shear mixing related to macroscopic solid movement are focused

here. Fig.3.10 shows a lateral view of the mixing process at times 3.75 s and 4.5 s respec-

tively. At 3.75 s, the red materials start to overlap the blue ones due to the existence of

velocity gradient, creating a narrow slipping and mixing zone (in green colour), which is

commonly observed and recognized as the characteristics of shear mixing in centrifugal

mixers (Bridgwater, 2012). This shear-induced mixing may expand slowly with time but is

overall localised to the interfacial regime where two kinds of substance contact. Very poor

mixing can be attained outside the regime at this stage. A better mixing zone appears at

4.5 s in the rear of blade as depicted in Fig.3.10 (B), which corresponds to the RF regime

discussed in Sec.6.2. This is because particles in this regime undergo rapid and complex

motions as shown in Fig.3.5, and thus have greater chances of meeting others in one mesh

and blending. The critical importance of RF zone for mixing was also found in a previous
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Figure 3.10: A lateral view of mixing at (A) 3.75 s; (B) 4.5 s. The parameters used are
identical to those in Fig.3.9.

study on the influences of mixer geometries (blade rake angle and gap) (Chandratilleke

et al., 2009).

In fluid mixing, the interfacial area between different fluids is a commonly studied funda-

mental quantity which reflects how the fluid stretch and fold during the mixing process

(Zhendong et al., 2012). This concept is also adopted here to ascertain the respective

contributions of shear and RF zones to the mixing efficiency. The interfacial area per

unit volume of the layers is given by (Ottino, 1990) aV (x, t) = limV→0
S
V , where S is the

interfacial area between fluid layers within the volume V enclosing point x at time t. For

the total system, aV =
∫
aV (x, t)dx and is independent of space. By definition, a larger

aV represents a better mixing. Technically in our modelling, we take the interfacial area

as the number of nodes that have cr values within the range 0.49 < cr < 0.51, Ninter.

Fig.3.11 shows the mixing pattern in case of f = 15◦ and µ = 0.1, where the recirculation

flow is suppressed by the use of small wall friction and therefore shear plays the dominant

role in the mixing process. The S-shaped interface stretches and becomes larger with time

but it changes at a quite lower rate for a long period. Even until 28.8s, the system is still

far from being well mixed. As shown in Fig.3.12 (A), Ninter increases linearly with time

in this case. In contrast, in case that the recirculation becomes dominant (e.g. φ = 15◦

and µ = 0.3), Ninter increases more rapidly as an exponential function of time (Fig.3.12

(B)). The emergency of exponential behaviour in Fig.3.12 (B) (t ≈ 5s) coincides in time

with the appearance of RF zone shown in Fig.3.10 (B) (t ≈ 4.5s).
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Figure 3.11: Bottom view of mixing patterns when φ = 15◦ and µ = 0.1.

Mixing index

Mixing index characterizes quantitatively the extent of particle mixing, with values be-

tween 0 (totally segregated state) and 1 (fully mixed state). Lacey (Zhou et al., 2004)

proposed a popular index based on the local sampling variance, which is however mainly

suitable for discrete studies. In this continuum study, the intensity of mixing proposed

for characterizing the liquid mixing efficiency (Zhendong et al., 2012) is selected as the

mixing index, written as

M = 1−

√
σ2

σ2max

, (3.10)

,where σ is defined as:

σ =

√√√√ 1

N

n∑
i=1

(ci − cm)2, (3.11)

N is the total number of sampling points. ci is the concentration of particle at the sam-

pling point i. cm = 0.5 is the optimal mixing fraction, which also stands for the average

concentration of the whole material assembly. σ is the standard deviation of concentration

at certain time, and σmax is the maximum standard deviation during the whole mixing

process. M equals 0 at the initial stage when particles are completely separated (σ = σmax)

and equals 1 at the final homogeneous mixed state (σ = 0). In our work, the sampling

points are taken as the computational grids of FEM meshes, so the value of M may be

affected by the mesh density as discussed in the following section.
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Figure 3.12: (A) Variation of interfacial area between the two species in case of φ = 15◦

and µ = 0.1; (B) The logarithm of interfacial area when φ = 15◦ and µ = 0.3.
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Figure 3.13: Mixing index as a function of time. DEM result is from ref. (Zhou et al.,
2004)

Fig.3.13 plots the increasing mixing index as a function of time. It is seen that the ob-

tained mixing index with φ = 15◦ and µ = 0.3 agrees well with that by DEM when µs =

0.3, although the definitions of mixing index M are slightly different. The mixing index

in other cases also exhibits a similar trend to the DEM data, rising dramatically at the

first few seconds and then slowly approaches the plateau value 1.0. The increase rate of M

appears to be substantially affected by the internal friction angle φ and wall friction µ. In

preceding Fig.3.6, we demonstrate that the increase of φ can speed up the particle motions

in CBM; however, such effect mainly enhances the uniform rotation of entire bed about

the shaft but on the other hand weakens the convective flow inside bed and the mixing

rate. The mixing rate is the poorest in case φ = 15◦ and µ = 0.1, which, as illuminated

in Sec.3.3.3, is mainly driven by the shear mixing at the interface of bulk solids. This

confirms again that the interface shear is less effective than convection in mixing particles.

Influence of mesh size

The choice of mesh size can influence the characterization of mixing in many ways. Even

in physical experiment or discrete modelling (Liu et al., 2013a), how to select an appro-

priate mesh for computing mixing index is still an open question, much depending on the
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scale of studied system and particle size. This is apparently an important issue because

technically there will be zero mixing if the mesh size is too small to accommodate more

than two particles, or invariably complete mixing if the cell is so large that all particles are

included. In previous CFD simulation, the mesh density was also found to significantly

influence the fluid mixing process in a micro-mixer (Zhendong et al., 2012). This section

aims to illustrate the mesh size effect in our FEM simulation. Fig.3.14 shows the mixing

rates yielded by FEM with different mesh densities. Apparently, the fine mesh produces

a slow mixing rate in FEM modelling, much similar to the observations in previous CFD

simulation of fluid mixing (Zhendong et al., 2012). The problem is mainly because the

continuum approaches always consider the materials in a mesh as uniformly mixed, ir-

respective of their detailed spatial distribution below the mesh scale. Hence a particle

assembly may be regarded as a good mixture in a coarse mesh but may not in a fine mesh.

Fig.3.14 gives an example to elucidate this issue. Suppose cr reaches 0.5 in coarse element

(inset A) while there are actually many different states of particle arrangements if the

coarse mesh is further decomposed into more fine elements, such as the one represented by

insets B and C. In case B, the particles can be still deemed as homogeneously mixed since

the standard deviation σ is unchanged. By contrast, the particles in case C are completely

separated and σ becomes larger than case A, although the nominal values of concentration

cr within this domain are the same. Therefore, coarse mesh tends to overlook the particle

separations more easily and leads to a faster mixing rate, which introduces some uncer-

tainties into continuum predictions of mixing. One possible resolution to this problem is

by introducing a diffusion equation to physically control the propagation/rate of mixing

within individual mesh, replacing the instant mixing mechanism implicitly embodied in

current simulations. In practice, the mesh size should be carefully selected in light of the

system scale, particle size and the diffusional rate as well as the sustainable computational

costs because simulation with fine mesh can be fairly time-consuming.

3.4 Conclusions

A numerical study of the flow and mixing process within a cylindrical blade mixer is per-

formed by means of Eulerian FEM approach. Focused on cohesionless particles, this work

investigates various features of the blade mixer including the profile of particle bed, the
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Figure 3.14: Mesh element size effect. The case is selected as φ = 15◦ and µ = 0.1.

recirculation flow pattern, the mixing index and their dependencies on material properties

such as internal friction angle φ and particle-wall friction coefficient µ. The following

conclusions can be drawn from this study:

• The formation of heaps in front of blades associated with the counter-wise recircu-

lation flow is the main reason of mixing in a cylindrical blade mixer. It produces an

exponential increase in the total interfacial area between two mixed solids and thus

a quick mixing rate. Without such heaps, the interfacial area rises only linearly with

mixing time. This is because the heaps create a localised vortex flow field enhancing

the chance of contact of different materials. It would be beneficial to encourage such

vortex flow in practical applications by adjusting the blade height and angle.

• Material characteristics such as internal friction angle and wall friction significantly

influence the performance of mixer. Different material parameters generate com-

pletely different flow behaviours and mixing efficiency. Those materials with large

internal friction angle mobilise in the system more like a solid and hence are more

difficult to mix. Wall friction, on the other hand, can prevent such rigid solid motion

and promote particle mixing.

• By properly selecting material parameters, FEM modelling can well reproduce the

velocity fields and mixing index measured in previous DEM work. It can also agree
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with the theoretical results yielded under a special condition. This method may help

to overcome the scale-up issues in bulk solid handling industries owing to its high

simulation speed. However, some challenges exist in this method: a) a physically

sound law describing the diffusional mixing of particles is still absent, and b) the

obtained mixing rate depends heavily on the size of computational mesh. These

aspects are important to the quantitative accuracy of FEM approach and require

more studies in future.

3.5 Nomenclature

ϱ bulk density of granular material [kg/m3]

E Young’s modulus [Pa]

ν Poisson’s ratio [-]

φ internal friction angle [degree]

c shear cohesion [Pa]

µ Coulomb friction between granular material and drum wall [-]

µs sliding friction coefficient in DEM simulation [-]

H height of granular flow bed [m]

V velocity of granular material [m/s]

Vm resultant velocity of granular material [m/s]

Vr radial velocity of granular material [m/s]

Vt tangential velocity of granular material [m/s]

△V statistical velocity interval of granular material [m/s]

f (V) statistical speed frequency [s/m]

ωb angular velocity of bulk bed [1/s]

vr translational velocity at certain radial position r [m/s]

Np number of particles within the range vrdvr [-]

Ntotal total number of particles in DEM simulation [-]

R radius of mixer [m]

Ninter interfacial area in form of number of nodes [-]

M Mixing index [-]

σ standard deviation of concentration [-]
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Chapter 4

Development and validation of a

FEM-based convection-diffusion

model for granular mixing

4.1 Introduction

Mixing of granular materials is commonly seen and widely applied in many manufacto-

ry processes such as the production of tablets and capsules in pharmaceutical areas, the

production of composite materials with high hardness in powder metallurgy, plastic and

cosmetics. During the mixing process, the flowing particulate material can go through a

very complex process due to the collective motion of a great number of particles. It is

essential to simulate and understand those complicated behaviours for a better design-

ing of practical mixers. Among the various mixers, rotating drums partially filled with

particles are the commonly used mixer in industry for mixing, granulation, grinding and

calcination. Complicated granular flows regimes such as avalanching, rolling, cascading,

cataracting, and centrifuging are observed experimentally and numerically in the rotating

drums (Yang et al., 2003, 2008). So drums are ideal mixers to carry out simulations and

test new hypotheses in theory and new methods in model development.

However, in terms of the traditional discrete element method (DEM) in simulation, the

scale problem can always be encountered when a group of granular particles are treated

individually. Consequently the numerical simulation with DEM can only be tested and

proceed in mixers within a small scale, such as the bladed mixer with the diameter of
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approximate 10 cm in which a limited number of particles are simulated.

Continuum approaches are an another way to solve the scale up problem. Various contin-

uum approaches are proposed in the history of granular flow investigation. The simplest

model is the geometrical model studying avalanche flow in a 2D drum (Metcalfe et al.,

1995b). The material in the drum is divided into many wedges which are transferred by

a convection algorithm. The geometrical method is able to reproduce main features of

mixing in a slowly rotating drum when avalanche happens. It provides a picture of un-

derstanding the mixing mechanism in a visual way. As the drum rotates more quickly for

example in a rolling regime, a set of algebraic equations based on geometrical characters

are established to describe the behaviors in the rolling region and stagnant part sepa-

rately (Khakhar, McCarthy, Shinbrot and Ottino, 1997). In most complicated cases, An

Eulerian-Eulerian multiphase mode based on kinetic theory is the most commonly used

technique describing granular flows in complex mixers (Nguyen et al., 2014). The numer-

ical calculations in those models are mainly based on the finite volume method widely

applied in CFD. In the drum study (Santos et al., 2013), rolling, cascading, cataracting

and centrifuging regimes can be identified by choosing appropriate types of kinetic theo-

ry, which demonstrates that the kinetic model can also be applied in the dense granular

flow treatment. When granular flow becomes denser, many theories fail to achieve the

description of complex behaviour of granular flow such as solid-liquid duality characteris-

ing the behaviour of sandpile. The Eulerian FEM based on Mohr-Coulomb elastoplastic

(MCEP) model is a promising approach which has been tested and demonstrated well in

simulating a wide range of complex granular phenomena (Zheng and Yu, 2014, 2015a,b).

In (Zheng and Yu, 2015b), Slipping and slumping regimes are well reproduced by the

FEM simulation. FEM accurately predicts some key aspects of the bed kinematics such

as the linear increase of surface angle with Froude number and the linear distribution of

velocity in the active layer. Applying this method to mixing problems is a tentative try

in recent research where convection is the only mixing mechanism considered (Bai et al.,

2017). Convection relying on particle flow is the most common way to transfer particles to

different locations during which mixing happens. For most mixing processes, convection

plays the dominant role and determines the mixing status. Another mechanism, diffusion,

resulting from frequent particle collisions at the interface where two kinds of materials

contact, causes the materials penetration, which enhances the mixing process at certain
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circumstances. The diffusion process is also important in some cases and should not be

ignored in the mixing process. Therefore a general 3D FEM model coupled with diffu-

sion is needed in the mixing simulation process. Diffusion can be implemented into the

mathematical models via different ways such as by adding an extra term from diffusion

equations into the fluid dynamics (Zhendong et al., 2012) or coupling the random walk

mechanics from a microscopic perspective (Khakhar et al., 1999).

In this work, we develop the model by adding the diffusion term in the form of second-

order differential equations into our FEM dynamics (Bai et al., 2017). The algorithm which

couples diffusion with FEM convection will be represented in Sec.5.4. Since tumblers and

stirrers are the most commonly used mixers for comparing data out of theories and exper-

iments, a quasi-2D drum is selected to validate our model for its simplicity in geometry

and easy comparison with data in previous work, which is demonstrated in Sec.4.2.6. A

series of patterns as well as physical quantities such as mixing index from FEM will be

studied in Sec.6.3.

4.2 FEM simulation conditions and the algorithm of con-

vection coupled with diffusion

The Eulerian FEM simulation is used through out the work in this chapter (Zheng and

Yu, 2014, 2015a,b).

4.2.1 governing equations

The granular material inside the CBM is treated as a continuum medium since the dimen-

sion of CBM is far larger than the diameter of particles. Similar to other forms of matter,

granular dynamics also needs to satisfy the fundamental principles of mass, momentum

and energy conservation, given by mass conservation

∂ρ

∂t
+∇ · (ρν) = 0

Momentum conservation

(ρν)

∂t
+∇ · (ρν

⊗
ν) = ∇ · σ + ρb
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Energy conservation

(ρϵ)

∂t
+∇ · (ϵν) = σ : ϵ̇

where ρ refers to the bulk density of granular material, σ is Cauchy stress tensor, b

is body force, v is velocity vector and ϵ is the internal energy per unit volume. ϵ̇ =

(1/2)(∇v + (∇v)T )represents the strain rate.

4.2.2 Mohr-Coulomb model

In the Mohr-Coulomb elastoplastic model, a linear relation between stress and elastic

strain is adopted as:

σij = Del
ijklϵ

el
kl (4.1)

where σij is the total stress; ϵelkl is the elastic strain; and Del
ijkl is the fourth-order tensor

of elasticity.

The yield condition is given by:

Rmcq − p tanφ− cy = 0 (4.2)

where

Rmc =
1√

3 cosφ
sin(Θ +

π

3
) +

1

3
cos(Θ +

π

3
) tanφ

φ is the slope of the Mohr-Coulomb yield surface in the p − Rmcq stress plane, which is

commonly referred to as the friction angle of the material and can depend on temperature

and predefined field variables. p = −1
3trace(σij) is the first invariant of stress represent-

ing the equivalent pressure; q =
√

3
2SijSij is the Mises equivalent stress and Sij is the

deviatoric stress; φ and cy are the angles of internal friction and the cohesion of granular

material, respectively. Θ is the deviatoric polar angle defined as cos(3Θ) = (r/q)3 where

r = (92SjiSjkSki)
1
3 is an invariant measure of deviatoric stress. The friction angle, φ,

controls the shape of the yield surface in the deviatoric place. The friction angle range is

0◦ < φ < 90◦. In the case of φ = 0◦ the Mohr-Coulomb model reduces to the pressure-

independent Tresca model with a perfectly hexagonal deviatoric section. In the case of
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φ = 90◦ the Mohr-Coulomb model reduces to the “tension cutoff” Rankine model with a

triangular deviatoric section and Rmc = ∞.

Granular flow can be well described as flow rules. The flow potential G is chosen to be

a hyperbolic function in the meridional stress plane and a smooth elliptic function in the

deviatoric stress plane, defined by:

G =
√

(ϵc |0 tanψ)2 + (Rmwq)2 − p tanψ (4.3)

and

Rmw =
4(1− e2) cos2Θ+ (2e− 1)2

2(1− e2) cosΘ + (2e− 1)
√
4(1− e2) cos2Θ+ 5e2 − 4e

× 3− sinφ

6 cosφ
(4.4)

where ψ is the dilatancy angle of material, c|0 is the initial cohesion yield stress, ϵ is a

parameter that characterizes the eccentricity of the flow potential. e referred to as the

deviatoric eccentricity, describing the “out-of-roundedness” of the deviatoric section in

terms of the ratio between the shear stress along the extension meridian and the shear

stress along the compression meridian, is a function of the internal friction angle φ, given

as e = (3− sinφ)/(3 + sinφ).

An additive strain rate decomposition is assumed:

dε = dεel + dεpl,

where dε is the total strain rate, dεel is the elastic strain rate, and dεpl is the inelastic

(plastic) strain rate.

The constitutive flow rule can be written as:

dε =
dε

g

∂G

∂σ
,

where g can be written as

g =
1

c
σ :

∂G

∂σ
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4.2.3 Transient mixing model

The general scalar transport equation governing the mixing process (Khakhar, 2011) can

be expressed in Eq.4.5, where c is the concentration (also known as volume fraction) of

granular materials of one spices and v is its velocity. The left side refers to the terms for

the traditional convection only and the right hand side indicates the term for diffusion

mechanism.

∂c

∂t
+ v · ∇c = ∇ · (D∇c) (4.5)

The notion D in front of the gradient operator refers to the diffusivity which can be treated

as a tensor (Campell, 1997). In our work for simplicity, it is assumed as a scalar. In the

dilute region (Fan et al., 2015), the relationship between diffusivity and particle diameter

and granular temperatures can be expressed as:

D ∼ dp
√
T (4.6)

where dp is the particle diameter and T is the granular temperature. In the dense region

of granular material (Hajra and Khakhar, 2005), the linear relationship can be represented

as:

D = χγ̇d2p (4.7)

where γ̇ and χ are the local shear rate of material and diffusion coefficient respectively.

4.2.4 Boundary conditions

For the governing equations of Eulerian method, according to ABAQUS manual (Abaqus

6.10 Analysis User Manual (Dassault Systmes Simulia Corp, Providence, RI)), there are 3

types of boundary conditions for inflow materials: free inflow, no inflow and void inflow.

Free inflow

If no Eulerian boundary is defined, material can flow into the Eulerian domain freely; and

the material content and the state of each inflow material are equal to that which presently

exists within the element.
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No inflow

Material or void can flow into the Eulerian domain through the specified boundary. The

normal component of the velocity is set to zero if the velocity is directed inward at the

boundary, while the tangential component of the velocity remains unchanged.

Void inflow

Inflow can occur but the influx volume contains only void.

There are also 4 types of boundary conditions for outflow materials: free outflow, nonre-

flecting outflow, equilibrium outflow and zero-pressure outflow.

Free outflow

Material can flow out of the Eulerian domain freely; and the material content and the

state of each outflow material are equal to that which presently exists within the element.

Nonreflecting outflow

A nonreflecting outflow condition can be used in boundary value problems defined in

unbounded domains or problems in which the region of interest is small in size compared

to the surrounding medium.

Equilibrium outflow

It is assumed that the stress is zero-order continuous across the element faces on the

boundary. Traction is applied to these element faces to balance the nodal forces created

by the stress in the boundary elements. This condition is usually applied at the outflow

boundary where the pressure distribution is unknown.

Zero-pressure outflow

It is common in flow problems to specify a zero pressure at the outlet of the flow. Since

the normal traction on the boundary contains the contribution from both the pressure

and the shear stress, the natural boundary condition is not sufficient to provide such a

condition if the shear behavior of the flow is also considered. The zero pressure outflow

condition applies a traction that counteracts the shear contribution and, thus, generates

85



a uniformly distributed pressure field on the boundary.

In this chapter, the simulation happens in a 2D cylindrical mixer where materials are

able to flow freely through the boundaries, so the boundary conditions of no-inflow and

free outflow are applied in this work.

For the mixing process, the zero-flux boundary condition is adopted throughout the work

as Eq.6.8 describes.

∇ · (D∇c) = 0 (4.8)

4.2.5 Implementation of coupling diffusion to FEM

A splitting operator method (Karlsen et al., 2001; Lanser and Verwer, 1999; Fan et al.,

2014) which decomposes a complex equation into two parts for obtaining numerical solu-

tions is applied in this work. The concentration equation 4.5 can be split into the LHS

part which indicates the convection mechanism and the RHS part representing the diffu-

sion term during the mixing process. Finally, the whole concentration equation can be

decomposed into a couple of differential equations:

∂c

∂t
= −v · ∇c (convection quation) (4.9)

∂c

∂t
= ∇ · (D∇c) (diffusion quation) (4.10)

The numerical solution of concentration ctci,j of the LHS convection part (Eq.4.9) at each

time step t and the node (i, j ) can be made by the FEM dynamics and obtained via

ABAQUS. The RHS diffusion part (Eq.4.10) can be solved numerically by the Finite

Central Difference Method (FCDM). A two dimensional case of FCDM regarding the

second order derivative can be illustrated as the way of calculating algorithm bellow. The

diffusion term in form of continuous space and time is smashed down into a set of discrete

quantities located at the nodes of the FEM grid :

(
∂2c

∂x2

)
i,j

=
ci+1,j − 2ci,j + ci−1,j

(△x)2
+O((△x)2) (4.11)

, where i, j are the node numbers of the mesh created by FEM and △x is the length

of interval between two nodes as Fig.4.1 shows. O((△x)2 refers to infinitesimal of high
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orders. The diffusion part of ctci,j can be obtained by Eq.4.10 and Eq.4.11:

ctdi,j = D ∗ dt ∗
ctci+1,j − 2ctci,j + ctci−1,j

(△x)2
(4.12)

Figure 4.1: The integration grids in FEM mesh configuration.

As the flow chart (Fig.4.2) indicates, the whole FEM diffusion dynamics proceeds

explicitly via the ABAQUS solver. To obtain the concentration of each node at time step

t+1, the concentration ctci,j at each time step t calculated by FEM convection dynamics

continue to be updated through the following algorithm:

ct+1
i,j = ctci,j + ctdi,j (4.13)

= ctci,j +D ∗ dt ∗
ctci+1,j − 2ctci,j + ctci−1,j

(△x)2
(4.14)

, where ct+1
i,j refers to the species concentration at time step t+ 1. The updated ct+1

i,j will

be involved in a new round of convection calculation through the ABAQUS solver. The

coupling procedure is implemented via the user subroutine VUSDFLD.
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Figure 4.2: The algorithm of updating variables by FEM explicit solver.

4.2.6 Simulation conditions

Three dimensional (3D) thick drums and quasi-2D thin drums are the two typical common-

ly studied drums in many literatures (Zheng and Yu, 2015b; Santos et al., 2013; Khakhar,

McCarthy, Shinbrot and Ottino, 1997). In a 3D drum, particle flow in the middle can be

hardly influenced by the friction from walls at both ends of the drum, while the interaction

with walls plays an important role in the flow processing in a 2D drum. However, in order

to simplify the numerical simulation in this work, a quasi-2D thin drum with no end walls

is adopted and modelled as Lagrangian parts (element type R3D4). The granular bulk

is immobile along the axial direction, which is similar to the periodic boundary condi-

tion (BC) treatment. Granular material is described by the Mohr-coulomb elastic-plastic

modelling and treated as a continuous Eulerian part (element type EC3D8R). To achieve

the high accuracy, a high mesh density with mesh size of 0.5 cm (the optimized mesh size

in (Bai et al., 2017)) is employed throughout the simulation. The geometry and mesh

condition similar to the work (Zheng and Yu, 2015b) are shown in Fig.4.3 where these

Lagrangian elements should be totally immersed into the Eulerian meshes to contact with

granular materials. To visualize the boundary of material in an Eulerian field, an Eulerian

Volume Fraction (EVF) is defined to determine the volume of material within Eulerian

elements. More information of the Eulerian FEM technique can be found in (Zheng and

Yu, 2014, 2015a,b). The parameters of the drum and the granular material are listed in

88



Table 4.1.

Figure 4.3: Drum geometry and mesh condition (Zheng and Yu, 2015b).

Parameters Symbols Values Range of variation

Drum diameter d 0.07 m -

Drum thickness Z 0.01 m -

Drum rotation speed ω 15 rpm -

Particle diameter dp 1.3 mm -

Particle density ρ 1500 kg/m3 -

Poisson’s ratio ν 0.3 -

Young’s modulus E 1× 106 Pa -

Internal friction angle φ 20◦ 15◦ - 30◦

Friction coefficient of material-wall interaction µ 0.3 0.1 - 0.3

Cohesion yield stress cy 0 Pa -

Diffusion coefficient χ 0.1 0.01 - 0.5

Diffusivity D 10−3 10−4 - 10−3

Table 4.1: Parameters used in the simulation
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4.3 Results and discussion

4.3.1 FCDM Diffusion test with ABAQUS

The accuracy of diffusion algorithm is tested through 1D Gaussian pulse diffusion case.

The 1D diffusion equation can be written as:

∂c(x)

∂t
= D

∂2c(x)

∂x2
(4.15)

The diffusion equation above admits a Gaussian function as solution:

c(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
(4.16)

At t = 0s this is a Dirac delta function, so for computational purposes one must start to

view the solution at some time t = tϵ > 0. Replacing t by tϵ + t makes it easy to operate

with a (new) t that starts at t=0s with an initial condition with a finite width. The

important feature of Eq.4.16 is that the standard deviation σ of a sharp initial Gaussian

pulse increases in time according to σ =
√
2Dt, making the pulse diffuse and flatten

out. We tested the numerical results generated by the Finite Central Difference Method

above in comparison with the analytical equation Eq.4.16. The diffusion patterns of 1D

and 2D are shown in Figs.4.4 and 4.5. At t=1.0s the value is concentrated in the center

and spread symmetrically to both sides. As time increases, the value evolves due to

diffusion effects and tends to be distributed uniformly in space. The quantitative results

of D = 10−3m2s−1 are shown in Fig.4.6. It can be seen that the two kinds of results

also overlap which demonstrates the high accuracy of our method. As time increases,

the central pulse becomes flat and will finally equals to zero when time goes to infinite.

The time interval is selected as △t = 10−3s much wider than the average time increment

(△t = 10−5s) in FEM dynamics, which demonstrates our method is hardly dependant on

time increment steps. Figs.4.7 and 4.8 show the cases of mesh size effects ( △s = 0.02

m and △s = 0.04 m respectively). However, when the diffusion coefficient decreases to a

lower value, the results are sensitive to the grid density. Fig.4.9 and 4.10 show the cases

when the mesh size is above certain threshold, deviation to the analytical function can

be observed. The courser mesh can only be applied when the diffusivity is large enough
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Figure 4.4: 1D diffusion pattern evolution.

Figure 4.5: 2D diffusion pattern evolution.

for FCDM. The RHS of Eq.4.15 can be discretized by FCDM into Eq.4.17. The value of

the discrete term on the RHS is the high order of intestinal related to △x so for most

simulation cases, FCDM can rarely be affected by the mesh size.

c(x+△x) + c(x−△x)− 2c(x)

△x2
= c′′(x) +

1

12
c(4)△x2 +O(△x) (4.17)

4.3.2 Model verification in 2D shear flow

Diffusion in sheared granular systems has attracted considerable attention in granular flow.

In order to further validate the FEM diffusion model, the FEM simulation of quasi-two

dimensional Couette shear flow is carried out. The original DEM simulation schematic

is shown in Fig.4.11. White spheres are adhered and fixed at the bottom and top walls.

The bottom wall is driven at a constant velocity along the x direction to apply shear to

interior particles, while the upper wall is stationary. The boundaries of the x direction

(streamwise direction) and z direction (vertical direction) are periodic such that particles
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Figure 4.6: Comparison of results between numeration and analysis. N-t: numerical
results, A-t: the analytical results, △t = 10−3 s, D = 10−3 m2s−1.

Figure 4.7: Comparison of results between numeration and analysis. N-t: numerical
results, A-t: the analytical results, △s = 0.02 m, D = 10−3 m2s−1.
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Figure 4.8: Comparison of results between numeration and analysis. N-t: numerical
results, A-t: the analytical results, △s = 0.04 m, D = 10−3 m2s−1.
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Figure 4.9: Influence of mesh size on simulation results. t = 7 s, D = 10−4 m2s−1.
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Figure 4.10: Mesh size effect on calculation accuracy. t = 7 s, D = 10−4 m2s−1.

exit from one side and reappear on the other with the same altitudes and velocities. In

FEM simulation, two very long thin rigid body are used as the fixed top and the bottom.

The top is fixed while the bottom moves toward right at a constant speed. A very narrow

range of Eulerian material in the middle from the whole entity is selected to eliminate

the boundary effects. The interface between two materials of different colors becomes

broadened because of diffusion caused by shear force, indicating the material penetration.

The overall average velocities of DEM and FEM at different heights along x direction are

compared in Fig.4.12. It is observed that at a lower speed (µ0 = 0.66 m/s) the results of

velocity from FEM and DEM match well. However, at a higher speed (µ0 = 1.55 m/s)

a large bifurcation is noted. A possible reason is that the constitutive law in our current

model does not take nonlocal effects into consideration. Fig.4.13 shows the evolution and

development of the FEM and DEM simulation mixing layer thicknesses. Both FEM and

DEM show that the mixing layers expand with time and develop faster in the initial stages

before growing smoothly. The mixing layers are almost symmetric. The panel velocity has

a significant influence on the development of mixing layer. For those cases where larger

bottom speeds are applied, the mixing layers end up in thicker blocks.
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Figure 4.11: Schematic of the sheared granular flow. Left: Three-dimensional diagram
(Lu and Hsiau, 2008); Right: FEM results.
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Figure 4.12: Distributions of overall average velocity in x direction. µ0 indicates the
moving speed at the bottom panel.
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Figure 4.13: Evolution by FEM and DEM mixing layer thicknesses simulated.

4.3.3 Model verification in a 2D rotating drum

Diffusion occurs in the flowing layer (active region in Fig.4.14) if the FEM diffusion model

is applied. Fig.4.14 shows the contour of shear rate γ̇ where Eq.6.7 is applied. In the

active region γ̇ has an observable value while it can be negligible in the passive region.

So that diffusivity can be almost zero in the passive region, which means diffusion mainly

take effects in the active region especially in those areas where the value of γ̇ is consider-

able. Fig.4.15 shows the comparison between the convection only case and the case when

diffusion mechanism is added on. The case of convection only shows no mixing happening

in all regions. For the diffusion case, the interface between two materials becomes more

blurred and widened in the active region as materials penetrate to each other due to the

existence of concentration gradient. Please note that the two mixing states in the passive

region almost have the same mixing pattern because the diffusivity is almost zero in that

regime and diffusion can be hardly observed. The FEM results with different diffusion

coefficients are compared with DEM (Liu et al., 2013a). For FEM, all the geometrical

and operational parameters are set up as same as DEM. As the value of χ increases, the

contour of red material gets more unrecognized. It shows that when certain value (0.1

in our case) is chosen as the value of fitting parameter χ, the mixing pattern at some

time step produced by FEM matches that of DEM. A quantitative comparison of mixing
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Figure 4.14: Evolution of the FEM and DEM mixing layer thicknesses.

Figure 4.15: The roles of convection and diffusion in mixing. Left: mixing under convective
motion. Right: mixing with convection and diffusion.

index (defined in Chapter 3) between FEM and DEM is shown in Fig.4.17. If χ is the

fitting parameter, the mixing index of FEM is able to match that of DEM as illustrated

in Fig.4.17 which shows the mixing index evolution as a function of revolutions. When

χ varies from 0.05 to 0.5, the best fitting curve for the whole mixing process is χ = 0.5.

However, please note that at 1 rev the best fitting parameter χ is 0.1. That is why the

most resemble pattern is χ = 0.1 in Fig.4.16. The fitting method in the current diffusion

model is quite different from that in the convection model discussed in Chapter 3, where

the best way of matching the mixing index to DEM is implemented by changing the mesh

size.

4.3.4 Mesh size effects

Many physical quantities produced by continuum methods are sensitive to Mesh sizes. In

the study of mixing process, the mixing index can be more influenced. Generally, as the

mesh size shrinks, the simulation result shows that the whole mixing process has a slower

mixing rate and needs a long mixing period to complete. The reason why the mixing

process is delayed has been analysed in Chapter 3. However, the mesh size effect should
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Figure 4.16: Comparison between DEM and FEM patterns with different diffusion coef-
ficients at 1 rev. upper left: DEM results from (Liu et al., 2013a). Right: FEM mixing
results with different values of χ.
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Figure 4.17: Comparison of mixing index between DEM and FEM. The parameters se-
lected are the same used in DEM (Liu et al., 2013a) (f=40% and Ω = 15rpm)
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Figure 4.18: Mesh size effects on mixing index

be avoided and reasonably controlled by the model since improper mesh sizes may lead

to inaccurate results. Fig.4.18 provides a possible way to reduce the mesh size effect by

increasing the diffusion coefficient. As the diffusion coefficient increases from 0.1 to 0.5,

the difference between the two indexes with the same χ but different mesh densities is

narrowed. It can be inferred that when χ continues to increase, the mesh size effect wears

off and can be finally neglected. Fig.4.18 further demonstrates that when the value of

diffusion coefficient is above a threshold, the mixing index is independent of mesh size.

In our case, when χ is 0.5, the gap between two mesh sizes (s = 0.001 m and s = 0.0015

m) can be negligible. However, when χ = 0.1 the mixing index can still be affected by

the mesh size. Our study indicates that when the mesh size is less than 1/3 Ld (diffusion

length defined below), it is small enough to get a reliable mixing index independent of

mesh sizes. The diffusion length can be defined as below:

Ld =

√
Dmid

L

vmid
, (4.18)

where L is the surface length of materials in the active region. Dmid and vmid refer to the

diffusivity and velocity at the middle point of L respectively.
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Figure 4.19: Mixing pattern evolution.

4.3.5 Mixing patterns at different filling levels

Fig.4.19 shows the mixing patterns at different stages with a lower filling level of 25%.

The materials with different colours are separated at t = 0 s. Shortly after the drum

starts rotating, the interface (in green) bends, curves and distorts. The stretching and

expanding of interface indicates the commencement of particle mixing. As the rotation

continues, the green region grows gradually because of the diffusion effect and eventually

expands to the whole assumably at t = 150 s, suggesting that the system has reached an

overall homogeneous mixing state. Fig.4.20 shows the pattern formation with the filling

level more than one half (3/4 in our case). A final core forms in the center if the drum

rotates slowly (0.05 rad/s in our case) and the material moves in an avalanche way. The

pattern can be generated by different simulation methods, one of which is the famous

geometrical approach by which blocks of material are transferred in the way of wedges

movement (Metcalfe et al., 1995b) (shown in the lower side in Fig.4.20). FEM is also

able to easily reproduce the pattern as shown in the upper side in Fig.4.20. Our results

are more realistic in comparison with experiments, since FEM shows the margin that the
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Figure 4.20: Pattern formation in the case of avalanche.

geometrical method failed to produce between the red material and the surface (lower left

side in Fig.4.20).

Chaotic mixing

In fluid mixing, the interfacial area between different fluids is a commonly studied funda-

mental quantity which reflects how the fluid stretch and fold during the mixing process

(Ottino, 1990; Christov et al., 2011; Khakhar et al., 1999). The interfacial area per unit

volume of the layers is given by (Ottino, 1990; Christov et al., 2011; Khakhar et al., 1999)

av(x, t) = limV→0
S
V , where S is the interfacial area between fluid layers within the volume

V enclosing point x at time t. For the total system, av =
∫
av(x, t)dx and is independent of

space. By definition, a larger av represents a better mixing. Technically in our modelling,

we take the interfacial area as the number of nodes that have cr values within the range

0.49 < cr < 0.51, Ninter. As shown in Fig.4.21, Ninter increases linearly with time in a

circular drum. In contrast, in the case of an ellipse drum, Ninter increases more rapidly

as an exponential function of time (Fig.4.22). It is the sign of chaotic mixing reported in

(Khakhar et al., 1999) when av(x, t) grows in an exponential way. Although the definition
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Figure 4.21: Interface nodes in a circular drum.

of Ninter in our method is slightly different to av(x, t), Ninter can be regarded as a way

of describing the chaotic mixing in a convective motion. In addition, Ninter is a more

general quantity which can be applied in a complicated geometry such as a bladed mixer

in chapter 3.

4.3.6 The diffusion effect on mixing with different parameters

The question that how diffusion influences the mixing process has intrigued many re-

searchers. Some scholars assert that when the container diameter is much larger than

the particle diameter, the influence of diffusion is not as important as a smaller mixer

(Khakhar, McCarthy, Shinbrot and Ottino, 1997). As the Fig.4.17 shows, when the diffu-

sion coefficient increases the mixing index will have a higher rate, which means when the

granular diffusion is enhanced, the whole system can reach the homogenous state more

quickly. The mixing index as a function of time should have the following form:

M =M0 +N0e
−kt (4.19)

where k (s−1) is the mixing rate. Fig.4.23 - Fig.4.24 show the development of mixing

index and the mixing rate with different diffusion coefficients for different filling levels

and internal friction angles. The mixing index for Lower filling levels (20%) reaches the
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Figure 4.22: Interface nodes in an ellipse drum.

final mixed state more quickly than the other two higher filling levels (30% and 40%). It

demonstrates lower filling levels result in a higher mixing rate, which can be verified in the

lower part of Fig.4.23. At lower filling levels, materials have a lower surface angle and can

be easily stretched, twisted, and folded, so that particles get mixed mainly by convection.

For lower diffusion coefficients (χ = 0.05, 0.1), the slopes of mixing rate drop as a function

of filling level are almost the same. For a higher diffusion coefficient (χ = 0.5), the drop

has a steeper slope, which indicates diffusion helps to enhance the effect of filling level on

the mixing process. It further indicates convection and diffusion are positive-correlated

in this case. Fig.4.24 indicates small internal friction angles lead to a higher mixing rate.

As previously analysed in Chapter 3, materials with a small internal friction angle have

a good quality of fluid, which makes the granular bulk flow more flexibly. In such case,

the enhanced convection can easily transfers particles to different locations where particles

with different properties can be met with a high possibility. The slope of mixing rate as

a function of internal friction angles is larger for the range from φ = 10◦ to φ = 20◦ than

from φ = 20◦ to φ = 30◦. This phenomenon is more evident when χ increases to 0.5.

This demonstrates that the effect of convection can be enhanced by diffusion especially

when convection plays a dominant role in the mixing process. The two cases illustrate

the two mechanisms (convection and diffusion) are interrelated. However, understanding
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the interaction of the them is complex and complicated and need more analyses and

explanations in the future study.

4.3.7 Axial diffusion in a long cylindrical drum

It is indicated that the axial mixing of granular materials is a self-diffusive process driven

by frequent collisions between particles. So it is interesting to find if the FEM diffusion

model can be extended and applied to the axial mixing in a 3D case. For axial diffusion

along Z axis, the diffusion equation can be described

∂c

∂t
= D

∂2c

∂z2
(4.20)

Fig.4.25 plots the mixing band pattern along Z axis at two different time steps by the FEM

diffusion model with the governing equation 4.20. For the binary mixing, materials with

same properties but different colors are set at both sides along the Z axis at the beginning.

The parameters in the 3D drum simulation are listed in Table 4.20. As the drum rotates,

the band in green grows widely and the interface between two types of materials becomes

blurred due to the particle penetration caused by diffusion. The average concentration

c(z) along the Z axis as a function of time is compared with that of DEM. Fig.4.26 shows

that with a proper diffusion coefficient ( χ = 2× 10−2 in our case ), the FEM results from

the diffusion model basically agree with the DEM results obeying Fick’s law

c(z, t) =
1

2

[
1 + erf

(
z

2
√
Dt

)]
(4.21)

where D is the diffusivity and erf(x) = 2/
√
π
∫ x
0 e

−x2
dx is the error function. As the mix-

ing process continues, the transition zone between two materials changes from a sharply

narrow band with a high concentration gradient to a smoother widely material-mixed area.

It indicates that the homogeneous mixing state can also be achieved via the self-diffusion

mechanism. Please note that the axial diffusion coefficient is much smaller than the ra-

dial diffusion coefficient. This is because the axial diffusion is mainly driven by particles’

collisions without external pressures or the effect of gravity. The investigation of materi-

al diffusivity is very important in order to understand the particle mixing performance.

Previous DEM study shows the diffusivity increases with the rotation speed Ω, while in-

creasing the drum filling level can reduce the particle diffusivity. To calculate the material
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Figure 4.23: Mixing index and rate development under different filling levels with ω =
15 rpm, φ = 20◦.
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Figure 4.24: Mixing index and rate development under different internal friction angles
with ω = 15 rpm, f = 40%.
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Parameters Symbols Values Range of variation

Drum diameter d 0.07 m -
Drum length Z 0.078 m -

Particle diameter dp 0.001 m -
Filling level f 35% 35% - 89%

Table 4.2: Physical parameters used in the simulation

Figure 4.25: A lateral view of mixing patterns along the drum axis at different time. The
materials are different in colour only (blue and red but have the same physical properties),
f = 43%, Ω = 15 rpm.

diffusivity, the formula

D = D̄F
VF
V

(4.22)

is adopted in the FEM diffusion model. D̄F is the mean diffusivity of flow layer which

is proportional to the particle size and mean shear rate ¯̇γ. VF and V are the volumes of

the flowing layer and the entire bed respectively. Fig.4.27 and 4.28 show the changing of

diffusivity when the rotation speed and filling levels vary. Both results show the trend

of diffusivity development which agrees well with DEM. Lager rotation speeds cause a

higher shear rate in the flowing regime which results in a larger value of diffusivity in that

region. Higher filling levels lead to a smaller fraction of rapid flow layer (volume of rapid

flow layer divided by total bed volume in Eq.4.22). The diffusivity in Eq.4.22 is therefore

reduced. One the other hand, in Sec.4.3.6, it is analysed that materials with lowering

filling levels are sensitive to the diffusivity coefficient in the 2D case. It can be predicted

that the diffusion effect is also strengthened at lower filling levels in the 3D case, which

brings about a larger value of particle diffusivity in Fig.4.28.

4.3.8 Conclusion

In this chapter, a general 3D FEM convection-diffusion mixing model is developed based on

the operator splitting method. The diffusion term D∇2c is coupled to the FEM convection
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Figure 4.26: Concentration of red particles in the axial direction, f = 43%, Ω = 15 rpm,
χ = 2× 10−3.
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Figure 4.27: Variations of diffusivity with different rotation speeds at f = 43%.
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Figure 4.28: Variations of diffusivity with different filling levels at Ω = 15 rpm.

model by the finite central difference method. The model is validated through 1D Gaussian

pulse diffusion and 2D shear flow. The quasi 2D rotating drum in rolling regime is studied.

The relationship D = χγ̇d2 is applied in order to determine the areas where diffusion

occurs, which is consistent with the fact that mixing always happens in the flowing regime.

Although this FEM mixing model is strictly tested and verified well in a quasi 2D rotating

drum, it can be extended to the 3D case and applied in a more complicated granulator in

the future mixing study. The FEM mixing patterns and indexes are compared with that

from DEM. The influence of operational properties and material properties to diffusion

mixing is studied. The following conclusions can be drawn from this study:

• The dynamics of explicit diffusion algorism is verified through 1D and 2D Gaussian

pulse diffusion case and the numerical outcomes compare well with the analytical

results. The dynamics of FEM diffusion can be independent of time steps and mesh

sizes when the mesh size is below certain threshold value.

• In 2D drum study, diffusion take effects in the regime where the shear rate is nonzero

because of the relation of diffusivity D = χγ̇d2 applied. D = χγ̇d2 is a good

approximate criteria to determine passive regions and active regions in a granulator.

• The interface between two materials becomes more blurred when the diffusion algo-

rithm is applied. The mixing index can be comparable to that from DEM when a

proper fitting value of χ is chosen. The 2D FEM mixing model is independent of

mesh sizes when the mesh size is less than 1/3Ld.
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• Diffusion has a positive influence on the effects of filling levels and internal friction

angles on the mixing process. However, more studies and explanations are needed

to understand the mechanism on diffusion dependency in the future study.

• The 2D FEM mixing model can be extended and used to study the 3D axial mixing

process. The axial diffusivity is much smaller than the radial diffusivity which is

confirmed by comparing results with DEM. Because the shear rate along the axial

direction is almost negligible, diffusion takes more time to make the whole mixing

complete than the radial mixing process. It is predicted that the general 3D FEM

convection-diffusion mixing model can be used to study more complicated mixing

processes in industries.

4.4 Nomenclature

ϱ bulk density of granular material [kg/m3]

E Young’s modulus [Pa]

ν Poisson’s ratio [-]

φ internal friction angle [degree]

cy shear cohesion [Pa]

c volume fraction [-]

µ Coulomb friction between granular material and drum wall [-]

µs sliding friction coefficient in DEM simulation [-]

Ninter interfacial area in form of number of nodes [-]

M mixing index [-]

σ standard deviation of concentration [-]

D diffusivity

γ̇ shear rate

dp diameter of particles

χ diffusivity coefficient

s mesh size

f filling level
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Chapter 5

FEM Modelling of the size

segregation of granular materials

in a rotating cylinder

5.1 Introduction

Segregation of granular materials is ubiquitous and unquestionably important to many

industries including chemical and pharmaceutical processes. It usually happens under

external agitations when particles have different material properties such as size, density,

shape or even surface roughness. Within a wide range of different conditions, size segre-

gation is the most common and intriguing phenomenon. The famous example is ”Brazil

nut” effect (Williams, 1963; Rosato et al., 1987) whereby large particles of mixed nuts

rise to the top in a shaken container. When particles are filled into silos or hopers by

heap flow, stratified or segregated layers can be formed depending on different particle

properties (Ketterhagen et al., 2007, 2008). In a rotating cylinder, the radial segregation

(Cantelaube and Bideau, 1995; Dury and Ristow, 1997; Chakraborty et al., 2000; Khakhar,

McCarthy and Ottino, 1997) and axial banding pattern (Hill et al., 1997; Nakagawa, 1994;

Aranson et al., 1999; Gupta et al., 1991; Kuo et al., 2005) in the rolling regime have at-

tracted substantial interest. The radial segregation states that smaller particles particles

migrate towards the core of the cylinder. The axial segregation is more complex. Exper-

iments show that the granular materials of different-sized particles segregate into bands

when the speed of rotating cylinder is large enough, whereas the two materials may remix
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at a lower rotating speed. Hill and Kakalios (Hill et al., 1997) reported that axial segre-

gation is strongly related to the difference of in the dynamic angles of repose between the

mixed and segregated phase and it is initiated with large particles rich at the endwalls.

However, those segregation phenomena are imperfectly understood and studies on con-

tinuum theory are limited. Many studies are devoted to understanding the underlying

mechanism and developing predictive frameworks for size segregation and pattern forma-

tion in sheared granular flow (Fan et al., 2017). Those studies revealed basic assumed

mechanism of segregation. In the dilute flow regime characterized by frequent particle

binary collisions, the granular temperature gradient based on kinetic theory is able to

model size segregation. In the dense flow regime, the percolation theory characterized

by the percolation velocity suggests that small particles can squeeze into small voids be-

low large particles in the flowing layer. As a result, smaller particles sink to the inner

streamlines and the core of smaller particles forms after many revolutions. A mixture

model extending kinetic theory in dense regime is proposed by (Gray and Thornton, 2005;

Gray and Chugunov, 2006), in which two kinds of particle flows (large and small particles)

interacting with each other are described by a coupled governing equations, but it still

obtained qualitative agreement with discrete element method (DEM) simulations. Re-

cently an advection-diffusion-percolation model has been proposed on a broad theoretical

framework (Fan et al., 2014). The model is used to describe a wide range of segregation in

several dense sheared flows including plug flow (Gray and Thornton, 2005), simple shear

flow (Gray and Chugunov, 2006) and annular shear flow (Johanson et al., 2005).

The axial segregation in a long horizontal rotating cylindrical tumbler has attracted sub-

stantial attention in recent decades. Due to the complexity of the phenomenon, the fun-

damental onset mechanism of axial segregation is still unclear and the theoretical progress

is limited. In mathematical physics, A modified phenomenological Cahn-Hilliard (CH)

equation based on spinodal decomposition theory describing was postulated by Das and

Puri (Das and Puri, 2003) to describe a long term cluster evolution in granular gases

and was consistent with the observed morphology of clusters. In the 2D case of mixtures

subject to horizontal oscillations, the CH equation was used to reproduce the stripe pat-

tern and predicted analytically (Ciamarra et al., 2006). The travelling wave bands were

successfully reproduced with a one-variable 1D CH equation coupled with convection (I-

nagaki and Yoshikawa, 2010). The coupling of the phase separation of the CH equation
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to certain fluid flow convection equation such as Navier-Stokes equation is a big inter-

est to researchers at present (Vignal et al., 2015). The concept of “negative diffusivity”

resulting from different dynamic repose angles is introduced to a diffusion equation to

create a counter diffusion along the axial flow (Zik et al., 1994). But both the “spinodal

decomposition” and the “negative diffusivity” may not be the right physical mechanism

of band formation. Another onset mechanism based on the non-uniform distribution of

axial velocity and unbalanced distribution of axial flow was proposed to demonstrate the

percolation along with curved flow fields is the only physical segregation mechanism that

leads to band formation along the axial direction (Chen et al., 2010, 2011).

In this work, we develop a FEM convection-diffusion-segregation model which is able to

describe size segregation in granular physics. This chapter is organized as follows. Sec-

tion 5.2 introduces the continuum theory of segregation including both percolation and

spinodal decomposition. Section 5.3 discusses the Mohr-Coulomb elastoplastic theory and

geometries and parameters used in the Eulerian FEM simulation. In section 5.4, the algo-

rithm based on splitting operator method is discussed to couple segregation equations to

dynamic FEM convection equations. In section 6.3, the results of radial segregation and

axial segregation derived from percolation and CH model are discussed and compared with

that from DEM. In the percolation model, the effects of percolation length and diffusion

coefficient on the segregation process are studied, while as for the CH model, bseg and ζ

are also investigated to determine the segregation rate and degree. Finally, summaries

and conclusions are presented in section 6.4.

5.2 Continuum theory of segregation

5.2.1 Percolation theory

In a binary mixture of different-sized particles, ci denotes the volume fraction of species

i (i = l for large particles and i = s for small particles). It can be defined as ci = fi/f

where fi is the solids volume fraction of species i and f =
∑
fi. The continuum transport

equation for the volume concentration of species i can be described as :

∂ci
∂t

+ vi · ∇ci = ∇ ·D∇ci (5.1)
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where vi is the velocity of species i and D is the diffusivity caused by collisions between

particles. For simplicity, it is assumed that D is isotropic here and satisfy the relation:

D = χγ̇d2p, (5.2)

where γ̇ is the shear rate and dp is the particle diameter. In the percolation theory (Fan

et al., 2014; Schlick et al., 2015), small particles driven by gravity are more likely to

fall through voids between particles, which generates a percolation velocity vertical to

streamlines. The percolation velocity depends on the particle size ratio, the strain rate,

and the normal stress. In the cylinder case, it can be approximated as (Fan et al., 2014;

Schlick et al., 2015):

wl = lsegγ̇(1− cl)

ws = −lsegγ̇(1− cs),

where lseg in the units of length is the percolation length depending both on the particle

size ratio and particle sizes. It can be represented as:

lseg = 0.26ds log

(
dl
ds

)
, (5.3)

where dl, ds represent the size of large particles and small particles respectively. The

whole transport equation taking into account convection, diffusion and percolation can be

written as:

∂ci
∂t

+ vi · ∇ci +
∂

∂z
(wp,ici) = ∇ ·D∇ci (5.4)

where z is the direction of gravity in the cylinder geometry.

5.2.2 The Cahn Hilliard equation

The Cahn-Hilliard (CH) equation phenomenologically describes the process of phase sep-

aration in mathematical physics. It originates from Ginzburg-Landau free energy:

F [ϕ] =

∫
ΩT

Ψ(ϕ)f(ϕ,∇ϕ)dΩT

=

∫
ΩT

Ψ(ϕ) +
ζ

2
|∇ϕ|2dΩT

114



where ΩT ∈ Rd(d = 2, 3) is the domain which contains the binary mixture. ϕ is the phase

field which effectively represents the concentration of one of the components present in the

system. Ψ(ϕ) = 1/(2θ)(ϕlogϕ+(1−ϕ)log(1−ϕ))+ϕ(1−ϕ) is the bulk free energy density

that includes entropic effects. ζ
2 |∇ϕ|

2 is the internal energy contribution to the free energy

which is used to model interfacial effects. The parameter ζ is a positive constant related

to the interface thickness. Euler-Lagrange equation gives that:

δF

δϕ
=
δf

δϕ
−∇ · δf

δ∇ϕ
, (5.5)

which leads to the Cahn-Hilliard equation

∂ϕ

∂t
= ∇ · (M(ϕ)∇(Ψ′(ϕ)− ζ∇2ϕ)) (5.6)

The mobility function is defined asM(ϕ) = ϕ(1−ϕ).Ψ′(ϕ) represents the chemical potential

given by

Ψ′(ϕ) =
1

2θ
log

(
ϕ

1− ϕ

)
+ 1− 2ϕ (5.7)

The parameter θ represents the ratio between the critical and the absolute temperature

with the value of 3/2 to be in the spinodal regime. In our model, the whole transport

equation for small particles including the CH equation can be written as:

∂cs
∂t

+ vs · ∇cs = ∇ ·D∇cs +∇ · (M(cs)∇(Ψ′(cs)− ζ∇2cs)) (5.8)

where we assume the mobility M(cs) is irrelevant to cs for simplicity and satisfies the

relation:

M = bsegγ̇d
2
p, (5.9)

where γ̇ is the shear rate and dp is the particle diameter. In this work shear rate can be

expressed as the equation of strain rate in FEM:

γ̇ =
√

2ėPi,j ė
P
i,j , (5.10)

where ėPi,j is the deviatoric plastic strain rate which can be defined as ϵ̇Pi,j − (ϵ̇Pkk/3)δi,j
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5.2.3 Boundary conditions

At the bottom and top of the flowing layer (along z axis), the segregation flux is equal to

the diffusive flux (Fan et al., 2014; Schlick et al., 2015). It states that if particles leave

out of the boundary at the flowing layer, it is because of the effects of convection only

rather than diffusion or segregation. For the percolation model, the boundary condition

for small particles at z direction can be reduced to:

lseg(1− cs) + χd2p
∂

∂z
cs = 0 (5.11)

while for the CH equation, it is expressed as:

χcs + bseg(Ψ
′(cs)− ζ∇2cs) = 0 (5.12)

5.3 Granular dynamics

5.3.1 governing equations

The granular material contained inside CBM is treated as a continuum medium since the

dimension of CBM is far larger than the diameter of particles. Similar to other forms

of matter, granular dynamics also needs to satisfy the fundamental principles of mass,

momentum and energy conservation, given by Mass conservation

∂ρ

∂t
+∇ · (ρν) = 0 (5.13)

Momentum conservation

∂(ρν)

∂t
+∇ · (ρν

⊗
ν) = ∇ · σ + ρb (5.14)

Energy conservation

∂(ρϵ)

∂t
+∇ · (ϵν) = σ : ϵ̇ (5.15)

where ρ refers to the bulk density of granular material, σ is Cauchy stress tensor, b

is body force, v is velocity vector and ϵ is the internal energy per unit volume. ϵ̇ =
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(1/2)(∇v + (∇v)T )represents the strain rate.

5.3.2 Mohr-Coulomb model

In the Mohr-Coulomb elastoplastic model, a linear relation between stress and elastic

strain is described as:

σij = Del
ijklϵ

el
kl (5.16)

where σij is the total stress; ϵelkl is the elastic strain; and Del
ijkl is the fourth-order tensor

of elasticity.

The yield condition is given by:

Rmcq − p tanφ− c = 0 (5.17)

where

Rmc =
1√

3 cosφ
sin(Θ +

π

3
) +

1

3
cos(Θ +

π

3
) tanφ

φ is the slope of the Mohr-Coulomb yield surface in the p − Rmcq stress plane, which is

commonly referred to as the friction angle of the material and can depend on temperature

and predefined field variables. p = −1
3trace(σij) is the first invariant of stress representing

the equivalent pressure; q =
√

3
2SijSij is the Mises equivalent stress and Sij is the devi-

atoric stress; φ and c are the angles of internal friction and and the cohesion of granular

material, respectively. Θ is the deviatoric polar angle defined as cos(3Θ) = (r/q)3 where

r = (92SjiSjkSki)
1
3 is an invariant measure of deviatoric stress. The friction angle, φ,

controls the shape of the yield surface in the deviatoric place. The friction angle range is

0◦ ≤ φ < 90◦. In the case of φ = 0◦ the Mohr-Coulomb model reduces to the pressure-

independent Tresca model with a perfectly hexagonal deviatoric section. In the case of

φ = 90◦, the Mohr-Coulomb model reduces to the “tension cutoff” Rankine model with a

triangular deviatoric section and Rmc = ∞.

Granular flow can be well described as flow rules. The flow potential G is chosen to be

a hyperbolic function in the meridional stress plane and a smooth elliptic function in the

117



deviatoric stress plane, defined by:

G =
√

(ϵc |0 tanψ)2 + (Rmwq)2 − p tanψ (5.18)

and

Rmw =
4(1− e2) cos2Θ+ (2e− 1)2

2(1− e2) cosΘ + (2e− 1)
√

4(1− e2) cos2Θ+ 5e2 − 4e
× 3− sinφ

6 cosφ
(5.19)

where ψ is the dilatancy angle of material, c|0 is the initial cohesion yield stress, ϵ is a

parameter that characterizes the eccentricity of the flow potential. e referred to as the

deviatoric eccentricity, describing the “out-of-roundedness” of the deviatoric section in

terms of the ratio between the shear stress along the extension meridian and the shear

stress along the compression meridian, is a function of the internal friction angle φ, given

as e = (3− sinφ)/(3 + sinφ).

An additive strain rate decomposition is assumed:

dε = dεel + dεpl, (5.20)

where dε is the total strain rate, dεel is the elastic strain rate, and dεpl is the inelastic

(plastic) strain rate.

The constitutive flow rule can be written as:

dε =
dε

g

∂G

∂σ
, (5.21)

where g can be written as

g =
1

c
σ :

∂G

∂σ
(5.22)

Three dimensional (3D) thick drums and quasi-2D thin drums are the two typical common-

ly studied drums in many literatures (Zheng and Yu, 2015b; Santos et al., 2013; Khakhar,

McCarthy, Shinbrot and Ottino, 1997). In a 3D drum, particle flow in the middle can be

hardly influenced by the friction with walls at both ends of the drum, while the interac-

tion with walls plays an important role in the flowing process in a 2D drum. However,

in order to simplify the numerical simulation, a quasi-2D thin drum is adopted under the
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Figure 5.1: Drum geometry and mesh condition (Zheng and Yu, 2015b).

Parameters Symbols Values Range of variation

Drum diameter D 0.16 m 0.16 m - 0.28 m
Drum thickness Z 0.01 m -
Particle diameter dp 0.001 m -
Particle density ρ 1500 kg/m3 -
Poisson’s ratio ν 0.3 -

Young’s modulus E 1× 106 Pa -
Internal friction angle φ 20◦ 15◦ - 30◦

Friction coefficient of material-wall interaction µ 0.3 0.1 - 0.3
Cohesion yield stress cy 0 Pa -
Diffusion coefficient χ 0.1 0.1 - 1
Percolation length lseg 0.001 m 0.001 m - 0.005 m

Mesh size ms 0.001 m 0.001 m - 0.002 m
Rotation speed ω 15 rpm -
Filling level f 43% -

Table 5.1: Parameters used in the simulation

periodic boundary condition (BC) treatment in this work. Granular flow is described by

the Mohr-coulomb elastic-plastic modelling. The geometry and mesh condition are similar

to the work (Zheng and Yu, 2015b) (shown in Fig.5.1). The parameters of the drum and

the granular material are listed in Table 5.1.

5.4 Implementation of segregation in FEM

A operator splitting method (Karlsen et al., 2001; Lanser and Verwer, 1999; Fan et al.,

2014) which decomposes a complex equation into two parts for obtaining numerical so-

lutions is applied in this work. The concentration equation 5.4, 5.8 can be split into the

LHS part which indicates the convection mechanism during the mixing process and the

RHS part representing the diffusion term. So that the whole concentration equation for
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small particles can be decomposed into a couple of differential equations:

∂c

∂t
= −v · ∇c (convection) (5.23)

∂c

∂t
= ∇ ·D∇c− ∂

∂z
(wp,sc) (diffusion+percolation) (5.24)

= ∇ ·D∇c+∇ · (M(c)∇(Ψ′(c)− ζ∇2c)) (diffusion+CH equation) (5.25)

The numerical solution of concentration ctci,j of the LHS convection part (Eq.5.23) at each

time step t and the node (i, j ) can be derived from the FEM dynamics and obtained by

ABAQUS. The RHS diffusion-percolation part (Eq.5.24) can be solved numerically by the

Finite Central Difference Method (FCDM). A 1D case of FCDM can be illustrated as the

way bellow. The diffusion-percolation term in form of continuous space and time is broken

down into a set of discrete quantities located at the nodes of the FEM grid :

(
∂c

∂x

)
i,j

=
ci+1,j − ci−1,j

2△x
+O(△x), (5.26)(

∂2c

∂x2

)
i,j

=
ci+1,j − 2ci,j + ci−1,j

(△x)2
+O((△x)2), (5.27)(

∂4c

∂x4

)
i,j

=
ci+2,j − 4ci+1,j − 4ci−1,j + 6ci,j + ci−2,j

(△x)4
+O((△x)2), (5.28)

where i, j are the node numbers of the mesh created by FEM and △x is the length of

interval between two nodes. O(△x)2 stands for infinitesimal of high orders. The parts of

percolation c
tp
i,j , diffusion c

td
i,j , and CH ctCH

i,j can be obtained by Eq.5.23, 5.24, 5.25, 5.26,

5.27 and 5.28:

ctdi,j = D ∗ dt ∗
ctci+1,j − 2ctci,j + ctci−1,j

(△x)2
(5.29)

c
tp
i,j = lseg ∗ dt ∗

c
tp
i+1,j − c

tp
i−1,j

2△x
(5.30)

ctCH
i,j = M ∗ dt ∗

Ψ′(ctci+1,j)− 2Ψ′(ctci,j) + Ψ′(ctci−1,j)

(△x)2

−ζ ∗ dt ∗
ctci+2,j − 4ctci+1,j − 4ctci−1,j + 6ctci,j + ctci−2,j

(△x)4
(5.31)

As the flow chart (Fig.5.3) indicates, the whole FEM diffusion dynamics is processed

explicitly via the ABAQUS solver. To get the concentration of each node at time step

t+1, the concentration ctci,j at each time step t calculated by FEM convection dynamics
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continues to be updated through the following algorithm.

For the percolation mechanism,

ct+1
i,j = ctci,j + ctdi,j + c

tp
i,j

= ctci,j +D ∗ dt ∗
ctci+1,j − 2ctci,j + ctci−1,j

(△x)2
+ lseg ∗ dt ∗

c
tp
i+1,j − c

tp
i−1,j

2△x
. (5.32)

For the CH equation,

ct+1
i,j = ctci,j + ctdi,j + ctCH

i,j

= ctci,j +D ∗ dt ∗
ctci+1,j − 2ctci,j + ctci−1,j

(△x)2

+M ∗ dt ∗
Ψ′(ctci+1,j)− 2Ψ′(ctci,j) + Ψ′(ctci−1,j)

(△x)2

+ζ ∗ dt ∗
ctci+2,j − 4ctci+1,j − 4ctci−1,j + 6ctci,j + ctci−2,j

(△x)4
. (5.33)

, where ct+1
i,j refers to the material concentration at time step t + 1. The updated ct+1

i,j

will be involved in a new round of convection calculation by the ABAQUS solver. For the

calculation of boundary condition, the elements out of boundary adjacent to the elements

inside the boundary can be calculated through Eqs.5.11 and 5.12 as

For percolation:

cz+1
s = czs −

mslseg
χd2p

czs(1− czs) (5.34)

cz−1
s = czs +

mslseg
χd2p

czs(1− czs), (5.35)

in which the relation 0.1 <
mslseg
χd2p

< 1 should be satisfied.

For CH:

ci+1
s = 2cs − ci−1

s − m2
s

γi
(
χ

dseg
cs +Ψ′(cs)), (5.36)

where i = x, y, z.

The whole coupling procedure is implemented via the user subroutine VUSDFLD.
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Figure 5.2: The integration grids in FEM mesh configuration.

Figure 5.3: The algorithm of updating variables by the FEM explicit solver.
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5.5 Results and discussion

5.5.1 Radial segregation with 2D FEM percolation model

Pattern formation and segregation index

The eulerian material with volume fraction of 0.5 (actually a small fluctuation around 0.5

is applied at the calculating grid nodes) fills the 2D drum until 50% level is satisfied. The

drum with radius 0.14 m starts to rotate at 0.4 rad/s. After 1/4 revolution, the congrega-

tion of small particles appears in the middle of the granular bulk. The top of Fig.5.4 shows

the pattern evolution of small particle concentration at 4 different time steps in form of

rotations (1/4 rotation - 1 rotation). In the flowing layer, small particles travel down to

the bottom through voids between particles and gather in the core center of particle beds.

On the contrary, large particles float upward to the top of the flowing layer and accumulate

at the surface near the wall. After 1/2 rotation, most of small particles are segregated and

concentrate at the core in the center. After 1 rotation, more segregated particles contribute

to the core formation and the degree of segregation is thereby enhanced compared to the

case at 1/2 rotation. The segregating pattern is compared with experiments shown at the

bottom of Fig.5.4. In the experiment, the mixture contains 1 mm small black particles

and 3 mm white large particles. With no adjustable fitting parameters in FEM model,

only qualitative agreement between model and experiment has been reached. The core of

small particles representing segregation can be easily noticed, but the radius of the core is

much smaller than that from experiment. Despite the quantitative failure, the qualitative

similarity is still able to show the success of the FEM segregation model to some extent.

To make the prediction of FEM model quantitatively matches the DEM simulation un-

seasonably well, the percolation length lseg needs to become adjustable. Fig.5.6 shows the

comparison of segregation indexes between FEM and DEM when lseg changes from 0.01

mm to 0.08 mm. The case of lseg = 0.06 mm presents a relatively good consistency with

DEM in segregation index and pattern formation as well. The case is shown in Fig.5.5

and Fig.5.6 in which the core size of small particles is large enough in comparison with

DEM. The segregation index can be defined in FEM model:

I =

√
σ2

σ20
, (5.37)
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Figure 5.4: Pattern evolution of segregation in the particle-filled portion of the tumbler.
Top: FEM pattern. The contour shows the concentration of small particles. Bottom:
Experiment results (Schlick et al., 2015). ω = 0.4 rad/s, Ddrum = 0.28 m, χ = 0.1,
lseg = 0.001 m.

,where σ is defined as:

σ =

√√√√ 1

N

n∑
i=1

(ci − c̄t)2,

N is the total number of nodes. ci is the concentration of particle at the node i. σ20 is the

variance of fully-segregated state and σ2 is the variance of the mixture at time t, where

σ20 = c(1− c) and c represents the particle number ratio of the target particles to the total

particle number in the binary mixture. c̄t represents the average of ci at time t. I equals

0 at the initial stage because particles are well mixed at the homogeneous state (σ = 0)

and equals 1 when the particles are completely mixed ideally (σ = σ0). In our work, the

sampling points are collected from the FEM computational grids.
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Figure 5.5: Comparison of core formation in the tumbler with DEM. The contour shows
the concentration of small particles. Left: DEM (Liu et al., 2013b). Right: FEM. ω = 15
rpm, Ddrum = 0.104 m, χ = 0.1, lseg = 0.06 m.
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Figure 5.6: Comparison of segregation index in the tumbler with DEM when the percola-
tion length is adjustable. ω = 15 rpm, Ddrum = 0.104 m, χ = 0.1.
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Figure 5.7: Mesh size dependency of segregation index. ω = 0.4 rad/s, Ddrum = 0.28 m,
lseg = 1 mm, ldiff = 4 mm.

Dependency of segregation index on mesh size

The discussion of mesh size dependency is an important step in model verification. To

ensure a high accuracy of numerical simulation, the grid sensitivity and mesh dependency

need to be tested at the beginning. For the FEM convection model in chapter 3, the

mixing index is largely influenced by the mesh size. For the FEM convection-diffusion

model in chapter 4, the mixing index stays independent of grid density when the mesh

size is less than 1/3 diffusion length. For the FEM convection-diffusion-segregation model,

the mesh size effect on the evolution of segregation index is shown in Fig.5.7, in which

three cases with different percolation lengths (2 mm, 1.8 mm, 1.5 mm) are calculated. The

evolution of segregation index tends to become faster as the mesh becomes finer. It shows

little changes and reaches the convergency independent of mesh sizes and standing for a

high resolution after the mesh size is below 1.5 mm. So for further analyses, the mesh size

of 1.5 mm is fine enough and chosen as the criteria of calculation in the FEM segregation

model. However, the quantitative relationship between the minimum mesh size required,

diffusion length and percolation length is unclear and has not been decided yet and needs

further investigation.
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Parametric study of FEM percolation model

After a satisfied FEM model verification discussed in 5.5.1 and 5.5.1, a further parametric

study is needed. In this section, the effects of percolation length, diffusion coefficient and

internal friction angle on the segregation process will be explored.

In Fig.5.8, the segregation index I is plotted for the three cases of different percolation

lengths. Initially, I equals zero which indicates the whole mixing is in its homogeneous

state. As t increases, particles are segregated gradually and the value of I becomes larger.

As t tends to become infinite, I approaches approximately a steady value which means

the evolution of segregation process ends up with a partially segregated state with the

segregation index less than 1. The segregation rate keeps increasing as the percolation

length changes its value from lseg = 0.1 mm to 0.3 mm. This is because the increase of

percolation length means more particles penetrating into the bottom of flowing layer at

every time step. Fig.5.9 shows that when the diffusion coefficient increases, the final steady

value of segregation index decreases by a large amount. By contrast, the segregation rate

can be less influenced than the segregation degree. The diffusion mechanism can largely

cause the remixing of the segregated particles at the border between the two different-

sized particles at the bottom of flowing layer. The penetration process depends less on

diffusion than percolation, so that the segregation index I can be rarely changed when

the diffusion effect becomes stronger. Fig.5.10 shows the evolution of segregation index

when the internal friction angle changes. The segregation rate decreases with the increase

of φ. A higher friction angle result in a lower segregation rate. It demonstrates a more

intense convection accelerates not only the mixing process but also the segregation process.

Material with a smaller φ tends to behave like liquid, leading to a larger area of flowing

layer within which a great number of particles travel at a relatively rapid speed. So that

with a higher percolation velocity, the percolation effect becomes prominent. On the other

hand, as discussed in Chapter 4, according to the FEM diffusion model, the diffusion effect

on material with a lower friction angle is largely reduced. The segregation process, as a

result, is promoted finally. On the contrary, higher friction angles hinder the process of

reverse diffusion.
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Figure 5.8: Evolution of segregation index in the tumbler for different percolation lengths.
ω = 0.4 rad/s, Ddrum = 0.28 m, χ = 0.1.
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Figure 5.9: Evolution of segregation index in the tumbler for different diffusion coefficients.
ω = 0.4 rad/s, Ddrum = 0.28 m, lseg = 0.1 mm.
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Figure 5.10: Evolution of segregation index in the tumbler for different internal friction
angles. ω = 0.4 rad/s, Ddrum = 0.28 m, lseg = 0.1 mm.

5.5.2 Axial segregation with 3D FEM percolation model

The axial segregation, also called band formation, has a long history of investigation.

When a long thin cylindrical tumbler filled with homogeneously mixed particles with d-

ifferent sizes rotates at a certain speed above a threshold, the particles with the same

size congregate and separate from particles of a different size. After hundreds of revolu-

tions (usually more than 200 revs), several transverse bands vertical to the axis emerge

at the surface of the granular bulk. Early research shows there are three critical factors

contributing to this intriguing phenomenon: the friction between particles and wall, the

repose angle of particles, and the percolation mechanism. No band formation can be ob-

served if any one of the three conditions is absent. In this section, the 3D FEM percolation

model is applied to explore the simulation of 3D axial segregation and try to unveil a bet-

ter understanding toward the potential mechanism behind this.

As the geometry is shown in Fig.5.11, a 3D tumbler with the diameter of D = 0.2 m and

length of L = 0.5 m is partially filled with equal-volumed but different-sized particles,

rotating at the speed of 1 rad/s. In order to characterize the different repose angles for

particles of different sizes, the different friction angles are introduced to apply to material

nodes related to the concentration. The friction angles of different sized particles are set

129



to be φs = 35◦ for small sized particles, and φl = 15◦ for large sized particles. This is

based on the research fact that particles with small sizes and large internal friction angles

should have a larger repose angle (Zhou et al., 2002). It is assumed in our model that the

concentration at certain grid point can be calculated by the linear relation φ = csφs+clφl.

The pattern evolution of axial segregation at certain time steps are shown in Fig.5.12. In

the first stage (1 r - 2 r), big particles with a lower concentration of small particles (in

blue) congregate at the verge of the wall. At the stage of 3 r - 5 r, core formation in radial

segregation appears in the inner part of the bulk. Higher concentration of small particles

can be observed alongside the blue band near the wall and in the middle of the long parti-

cle assembly. At the next stage (6 r - 10 r), the concentration beneath the surface can be

higher and more evident as the process continues and bands of small particles turn out to

show up above the surface. The bridges between two small particle bands are noticeable

and will not disappear for the rest of revolutions. The final steady state is shown at 12 r.

Three red bands in high concentration of small particles are remarkably distinguishable.

A relatively lower concentration in the vicinity of 0.4 meaning large particle gathering

is found at either end of the wall. Different repose angles of assembly (33.69◦ for small

particles , 30◦ for mixing particles) are demonstrated by the cross-section as shown in

Fig.5.14.

The formation of band can be explained by the axial velocity field caused by wall friction

and different dynamic angle of repose. Fig.5.15 shows the curved velocity field on the band

surface. Because of the frictional end walls, particles near the wall in the upstream have a

higher repose angle and move away in the flowing layer and move back in the downstream.

During the moving process, some small particles are transferred to the solid regime and

never flow back to the wall in the downstream. In this way, more large particles congre-

gate at the end of the wall. The difference of repose angle leads to a further curved flow

field, which contributes to the stable band of small particles in the middle. However, some

problems still remain unsolved. Compared to the band formation of DEM results provided

in Fig.5.13, the band of large particles adjacent to the middle band of small particles is

still absent and the cause of bands in the middle is complex and remain mysterious for the

percolation theory gives limited explanations. All of these phenomena and explanations

need further study in future work.
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Figure 5.11: The geometry of the 3D tumbler. Ddrum = 0.2 m, L = 0.5 m.

Figure 5.12: The evolution of band formation in the 3D tumbler. The contour shows the
concentration of small particles. The left is a vertical plane in the middle of the granular
bulk. Ddrum = 0.2 m, L = 0.5 m, ω = 1 rad/s, lseg = 0.1 mm.
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Figure 5.13: DEM results of the evolution of band formation in the 3D tumbler (Chen
et al., 2011). The red material (left) refers to small particles and the green material (right)
refers to large particles

Figure 5.14: Intersection of bands with different repose angles.
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Figure 5.15: The curved flow field related to the axial bands.

5.5.3 Radial segregation with 2D FEM CH model

Since a lot of research indicates that the evolution of granular coarsening and band struc-

ture in a 3D cylinder is analogous to the spinodal decomposition and can be described by

the CH equation (Van Noije and Ernst, 2000; Orza et al., 1997; Wakou et al., 2002; Puri

and Hayakawa, 2001b,a), it is interesting to apply the FEM CH model to study granular

segregation and test its applicability. Prior to the 3D study, the 2D CH FEM segregation

model is tested in a rotating tumbler with the initially mixed materials at the filling level

of 40% as shown in Fig.5.16. The drum starts to rotate at 10 rpm at the beginning before

a small core representing small sized particles appears in the center at 1.5 revs. The core

gets bigger as the drum continues to rotate until it is stabilized at 10.5 revs.

Fig.5.17 and 5.18 shows I as a function of time for different values of bseg and ζ. Para-

metric study shows if bseg changes to a lager value, the process has a higher segregation

rate while the segregation degree remains unchanged. On the contrary, the large value of

ζ leads to a lower segregation degree with segregation rate unchanged. If both bseg and ζ

are adjustable, the segregation index I from FEM matches that from DEM by the fitting

method as the Fig.5.19 shows. However, some undesired nonphysical results show up. As

shown in Fig.5.18, when ζ stays at a small value (ζ = 1), the core formation of segrega-

tion can be produced by the FEM CH model. If ζ increases to a lager value (ζ = 8), a

complete segregation which separates two kinds of particles in two sides can be noticed in

the pattern. So far the side by side segregation pattern has not been observed in either

simulations or experiments.
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Figure 5.16: The evolution of core formation in 2D tumbler. The contour shows the
concentration of small particles. ω = 10 rpm, Ddrum = 0.15 m, χ = 0.1, bseg = 0.1, ζ = 1.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

  b
seg

=0.08
  b

seg
=0.05

  b
seg

=0.03

S
eg

re
ga

tio
n 

in
de

x

Time (s)

Figure 5.17: Time evolutions of segregation index in the tumbler for different diffusion
coefficients. ω = 10 rpm, Ddrum = 0.15 m, bseg = 0.1, ζ = 1.
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Figure 5.18: Time evolutions of segregation index in the tumbler for different segregation
coefficients. ω = 10 rpm, Ddrum = 0.15 m, χ = 0.1, ζ = 1.
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Figure 5.19: Comparison of segregation index in the tumbler with DEM ω = 15 rpm,
Ddrum = 0.104 m, χ = 0.1, ζ = 1.
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Figure 5.20: The evolution of band formation with CH FEM model in the 3D tumbler.
The contour shows the concentration of small particles. The legend is the same as in
Fig.5.16. Ddrum = 0.2 m, L = 0.5 m, ω = 1 rad/s, bseg = 0.1, χ = 0.1, ζ = 1.

5.5.4 Axial segregation with 3D FEM CH model

The 3D CH FEM model is used to simulate the axial band formation in a long cylindrical

drum. The no flux boundary condition in axial direction is applied, so walls are absent

at both ends and axial flow does not exist. As the Fig.5.20 shows, the particles start to

segregate into small clusters by spinodal decomposition at 5 revs. Those clusters with

the same species move together, forming large islands at 20 revs. Influenced by the flow

field, the islands are stretched into long thin stripes at 50 revs. As the drum continue to

rotates, the long thin stripes coalesce into wide bands and finally merge into five stable

bands at 80 revs at the final stage. Although 5 bands can be carried out, the physical

meaning of segregation is unclear and can not be well understood by the current CH

model. Fig.5.21 shows the transverse section of spinodal decomposition in the granular

bulk. Unlike the core and bridge formation beneath the surface shown in Fig.5.12, the

spinodal decomposition also occurs inside. It is the nonphysical and undesired numerical

results that should be avoided in the segregation model.

5.6 Conclusions

In this chapter, A general 3D FEM convection-diffusion-segregation mixing model is devel-

oped based on the operator splitting method. The segregation term is established based on

the percolation theory, which is coupled to the FEM convection part by the finite central
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Figure 5.21: Transverse-section of band formation with CH FEM model in the 3D tumbler.
Parameters are the same as in Fig.5.20.

difference method. The percolation model is validated through the test of radial segrega-

tion in a 2D rotating drum by comparison of DEM. Parametric studies are carried out to

investigate the effect of percolation length and diffusion coefficient on the segregation rate

and degree. The axial segregation regarding band formation is studied by the 3D FEM

percolation model and CH model respectively. The results are discussed and compared

with DEM simulation. The following conclusions can be drawn from this study:

• The pattern of radial segregation produced by the percolation model is consistent

with that from DEM. The segregation indices of FEM can match that of DEM

match if the percolation length is adjustable. The percolation length determines

the segregation rate and degree while the diffusion coefficient largely affects the

segregation degree. Small friction angles representing fast speeds of flow and strong

convection accelerate the segregation process by increasing the segregation rate.

• Only by the percolation model, the 3D axial segregation can be produced quali-

tatively. The band formation results from three critical factors: radial segregation,

wall interaction, and different particle repose angles. However, the number of stripes

and the band width of large particles can not match the experiment results quanti-

tatively.

• Compared with the percolation model, the CH segregation model reproduces a more

reasonable surface strips profile. However, nonphysical and undesired results by
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spinodal decomposition are noticeable, which should be avoided in a further model

development and case study.

5.7 Nomenclature

ϱ bulk density of granular material [kg/m3]

E Young’s modulus [Pa]

ν Poisson’s ratio [-]

φ internal friction angle [degree]

cy shear cohesion [Pa]

c volume fraction [-]

µ Coulomb friction between granular material and drum wall [-]

µs sliding friction coefficient in DEM simulation [-]

Ninter interfacial area in form of number of nodes [-]

M mixing index [-]

σ standard deviation of concentration [-]

D diffusivity

Ddrum drum diameter

γ̇ shear rate

dp diameter of particles

χ diffusivity coefficient

ms mesh size

lseg segregation length

I segregation index
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Chapter 6

Application of FEM model for

Mipro mixer

6.1 Introduction

Granular mixing is a vital unit operation encountered with a variety of manufacturing

processes such as food, cosmetics, and pharmaceutical industries. It has also been a great

interest of research for many years. The purpose of mixing is to blend fully separated

particles with different material properties into a homogenous mixture. For various in-

dustries, the types of mixers are very important and should be carefully selected. Of the

diverse mixers in application, more emphasis of research has been put on bladed mixers

for its ability to generate high shear forces which are advantageous for obtaining a high

quality of mixing.

The MiPro mixer (Procept, Belgium) (Nguyen et al., 2014; Watson et al., 2009; Khalilitehrani

et al., 2015; Darelius et al., 2008b, 2007) is such a bladed cylindrical mixer consisting of

a central shaft with three blades at the rake angle of 45◦ by default. During the mixing

process, both the operational conditions and material properties highly influence the mix-

ing rate and the final mixture property. In a two-bladed cylindrical mixer, Chandratilleke

et.al. (Chandratilleke et al., 2010, 2009) studied the effects of a wide range of blade speeds

(2-100 rpm), blade rake angle and gap on the local flow structure and the mixing rate.

They found that the changes of those factors imposed a significant effect on the bed pro-

file, recirculation zone, force structure, blade torque, and even mixing rate in terms of

revolutions. Despite the extensive study on bladed mixer in the past, lots of investigations
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are still needed because of the complicated geometrical structure of the granulator and

the complex phenomena of flow and mixing generated by it.

A number of researchers have pointed out that the lack of qualitative analysis and funda-

mental understanding of granular flow structure and mixing behaviour makes it difficult

to design mixers and control mixing processes. PEPT experiments and DEM simulation

are the two most commonly used particle-scale methods that are able to track particle tra-

jectories for determining flow fields and provide in-depth perspectives towards the force

structures. The continuum methods recently developed overcome the disadvantages of

experiments and the limitation of computational power for large-scale simulations with

DEM. The Eulerian finite element method (FEM) based on Mohr-Coulomb elastic-plastic

theory is a promising continuum approach to describe the solid-fluid dual behavior and

overcome the problem of mesh distortion in the traditional Lagrangian method. Its vali-

dation has been testified in a variety of geometries from sandpile to bladed mixers (Zheng

and Yu, 2014, 2015a,b; Bai et al., 2017). Recently, a convection mixing model has been

established based on the FEM granular flow model and validated in a bladed cylindrical

mixer in Chapter 3. The mechanisms of diffusion and segregation have been added on

the basic convection equation using finite difference algorithms. The FEM mixing model

has been developed and verified in a rotating drum in Chapter 4 and Chapter 5. In this

chapter, the FEM based convection-diffusion-segregation mixing model will be applied in

a complicated 3D commercial granulator in industry, i.e. the Mipro mixer. The effect of

a wide range of operational parameters such as blade speed and rake angle are studied

comprehensively. This chapter is organized as follows. Section 6.2 introduces the Eulerian

Finite Element Method based on the Mohr-Coulomb elasto-plastic (MCEP) theory. Sec-

tion 6.2.3 introduces the convection-diffusion-segregation equation in the transient mixing

model. The results and discussions on the effects of operational parameters on the mixing

and segregation process will be presented in Section 6.3. Finally, Section 6.4 is devoted to

summaries and conclusions.
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6.2 Theory and numerical simulation method

6.2.1 Governing equations of granular flow

The granular material inside Mipro is treated as a continuum medium since the container’s

dimension is far larger than the diameter of particles. Similar to other forms of matter,

granular dynamics also needs to satisfy the fundamental principles of mass, momentum

and energy conservation, given by Mass conservation

∂ρ

∂t
+∇ · (ρν) = 0

Momentum conservation

∂(ρν)

∂t
+∇ · (ρν

⊗
ν) = ∇ · σ + ρb

Energy conservation

∂(ρϵ)

∂t
+∇ · (ϵν) = σ : ϵ̇

where ρ refers to the bulk density of granular material, σ is Cauchy stress tensor, b

is body force, v is velocity vector and ϵ is the internal energy per unit volume. ϵ̇ =

(1/2)(∇v + (∇v)T )represents the strain rate.

The boundary conditions (BC) of no inflow and free outflow are used in this work.

No inflow BC

Material or void can flow into the Eulerian domain through the specified boundary. The

normal component of the velocity is set to zero if the velocity is directed inward at the

boundary, while the tangential component of the velocity remains unchanged.

Free outflow BC

Material can flow out of the Eulerian domain freely; and the material content and the

state of each outflow material are equal to that which presently exists within the element.
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6.2.2 Mohr-Coulomb model of granular rheology

In the Mohr-Coulomb elastoplastic model, a linear relation between stress and elastic

strain is adopted as:

σij = Del
ijklϵ

el
kl (6.1)

where σij is the total stress; ϵelkl is the elastic strain; and Del
ijkl is the fourth-order tensor

of elasticity.

The yield condition is given by:

Rmcq − p tanφ− c = 0 (6.2)

where

Rmc =
1√

3 cosφ
sin(Θ +

π

3
) +

1

3
cos(Θ +

π

3
) tanφ

φ is the slope of the Mohr-Coulomb yield surface in the p − Rmcq stress plane, which is

commonly referred to as the friction angle of the material and can depend on temperature

and predefined field variables. p = −1
3trace(σij) is the first invariant of stress representing

the equivalent pressure; q =
√

3
2SijSij is the Mises equivalent stress and Sij is the devi-

atoric stress; φ and c are the angles of internal friction and and the cohesion of granular

material, respectively. Θ is the deviatoric polar angle defined as cos(3Θ) = (r/q)3 where

r = (92SjiSjkSki)
1
3 is an invariant measure of deviatoric stress. The friction angle, φ,

controls the shape of the yield surface in the deviatoric place. The friction angle range is

0◦ ≤ φ < 90◦. In the case of φ = 0◦ the Mohr-Coulomb model reduces to the pressure-

independent Tresca model with a perfectly hexagonal deviatoric section. In the case of

φ = 90◦ the Mohr-Coulomb model reduces to the “tension cutoff” Rankine model with a

triangular deviatoric section and Rmc = ∞.

Granular flow can be well described as flow rules. The flow potential G is chosen to be

a hyperbolic function in the meridional stress plane and a smooth elliptic function in the

deviatoric stress plane, defined by:

G =
√

(ϵc |0 tanψ)2 + (Rmwq)2 − p tanψ (6.3)
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and

Rmw =
4(1− e2) cos2Θ+ (2e− 1)2

2(1− e2) cosΘ + (2e− 1)
√
4(1− e2) cos2Θ+ 5e2 − 4e

× 3− sinφ

6 cosφ
(6.4)

where ψ is the dilatancy angle of material, c|0 is the initial cohesion yield stress, ϵ is a

parameter that characterizes the eccentricity of the flow potential. e referred to as the

deviatoric eccentricity, describing the “out-of-roundedness” of the deviatoric section in

terms of the ratio between the shear stress along the extension meridian and the shear

stress along the compression meridian, is a function of the internal friction angle φ, given

as e = (3− sinφ)/(3 + sinφ).

An additive strain rate decomposition is assumed:

dε = dεel + dεpl,

where dε is the total strain rate, dεel is the elastic strain rate, and dεpl is the inelastic

(plastic) strain rate.

The constitutive flow rule can be written as:

dε =
dε

gm

∂G

∂σ
,

where gm can be written as

gm =
1

c
σ :

∂G

∂σ

6.2.3 Transient mixing model

General mixing equation

The general scalar transport equation governing the mixing process (Khakhar, 2011) is

shown in Eq.6.5, where c is the concentration of granular materials of one kind and v is

the corresponding velocity. The left hand side refers to the traditional convection only

and the right hand side indicates the diffusion mechanism.

∂c

∂t
+ v · ∇c = ∇ · (D∇c) (6.5)
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The symbol D in front of the gradient operator stands for the diffusivity which can be

interpreted as a tensor (Campell, 1997). In our work, for simplicity, we assume it is a

scalar. In the dilute region (Fan et al., 2015), the relationship between diffusivity and

particle diameter and granular temperature can be expressed as:

D ∼ dp
√
T (6.6)

where dp is the particle diameter and T is the granular temperature. Alternatively, in the

dense region of granular material (Hajra and Khakhar, 2005), the linear relationship can

be represented as:

D = χγ̇d2p (6.7)

where γ̇ and χ are the local shear rate of material and diffusion coefficient respectively. In

Charpter 4, we demonstrate that diffusion can be heterogenous when the mixing model

extends to the 3D case. However, for simplicity we assume that D is a homogenous scalar

in the 3D Mipro simulation.

For the mixing process, the zero-flux boundary condition at all boundaries is adopted

throughout the work as described bellow.

∇ ·D∇c = 0 (6.8)

The size segregation process in this chapter is described by 3D percolation model similar

to that in chapter 5. The whole transport equation of small particles including convection,

diffusion and percolation can be written as:

∂c

∂t
+ v · ∇c+ ∂

∂z
(wpc) = ∇ ·D∇c (6.9)

where z is the direction of gravity in the mixer geometry and wp can be written in the

following form:

wp = −lsegγ̇(1− cp),

144



, where lseg in the units of length is the percolation length depending on the particle size

ratio and particle sizes.

Mixing index

Mixing index characterizes quantitatively the extent of particle mixing, with values be-

tween 0 (totally segregated state) and 1 (fully mixed state). Lacey (Zhou et al., 2004)

proposed a popular index based on the local sampling variance, which is however mainly

suitable for discrete studies. In this continuum study, the intensity of mixing proposed

for characterizing the liquid mixing efficiency (Zhendong et al., 2012) is selected as the

mixing index, written as

M = 1−

√
σ2

σ2max

,

,where σ is defined as:

σ =

√√√√ 1

N

n∑
i=1

(ci − cm)2,

N is the total number of sampling points. ci is the concentration of particle at the sam-

pling point i. cm = 0.5 is the optimal mixing fraction, which also stands for the average

concentration of the whole material assembly. σ is the standard deviation of concentration

at certain time, and σmax is the maximum standard deviation during the whole mixing

process. M equals 0 at the initial stage when particles are completely separated (σ = σmax)

and equals 1 at the final homogeneous mixed state (σ = 0). In our work, the sampling

points are taken as the computational grids of FEM meshes, so the value of M may be

affected by the mesh density.

Segregation index

The segregation index can be defined in a similar way:

I =

√
σ2

σ20
, (6.10)
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,where σ is defined as:

σ =

√√√√ 1

N

n∑
i=1

(ci − c̄t)2,

N is the total number of nodes. ci is the concentration of particle at the node i. σ20 is the

variance of fully-segregated state and σ2 is the variance of the mixture at time t, where

σ20 = c(1− c) and c represents the particle number ratio of the target particles to the total

particle number in the binary mixture. c̄t represents the average of ci at time t. I equals

0 at the initial stage because particles are well mixed at the homogeneous state (σ = 0)

and equals 1 when the particles are completely mixed ideally (σ = σ0). In our work, the

sampling points are collected from the FEM computational grids.

6.2.4 Simulation conditions

The MiPro high shear mixer (Procept, Belgium) considered here consists of a 1900 ml

vessel and a three-bladed bevelled impeller with the blade rake angle of 45◦. The granular

material has the physical properties of Nonparil 200 (250-150 µm) with the density of 0.72

g/mL. The geometry of mixer and mesh condition are shown in Fig.6.1. The container and

rotating blades are all modelled as Lagrangian parts (element type R3D4) in FEM. The

cohesionless particles, regardless of size and shape, are treated as a continuous Eulerian

part (element type EC3D8R). To guarantee accuracy, a high mesh density with mesh

size of 0.5 cm (the optimized mesh size in (Bai et al., 2017)) is employed throughout the

simulation. More information about the Eulerian FEM technique can be found in (Zheng

and Yu, 2014). When simulation starts, the material (260g) is set up in the middle of

the vessel with the height of 0.02 m suspending over the impeller and settles down under

gravity to cover the bottom of the container, before blades rotate about the shaft driving

the material to flow within the Eulerian elements. The simulation usually needs to last

for a while until the solid flow becomes steady. The data of various physical quantities are

then collected and analysed. The parameters of the drum and the granular material are

listed in Table 6.1. Please note that the density used here is the bulk density of particles.
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Figure 6.1: The geometry of Mipro mixer and mesh condition.

Parameters Values Range of variation

Mixer diameter 0.15 m -
Bulk height 0.02 m -

Particle diameter 0.001 m -
Particle density 432 kg/m3 -
Poisson’s ratio 0.3 -

Young’s modulus 1× 106 Pa -
Internal friction angle 17◦ 15◦ - 30◦

Cohesion yield stress 0 Pa -
Diffusion coefficient 0.1 0.1 - 1
Percolation length 0.1 mm 0.1 mm - 0.25 mm

Mesh size 0.005 m -
Rotation speed 20 rpm 20 rpm - 300 rpm
Blade angle 45◦ 45◦ - 135◦

Table 6.1: Physical parameters used in the simulation
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6.3 Results and discussion

6.3.1 Comparison of simulation with experiments

Fig.6.2 shows the magnitude, tangential and axial components of velocity profiles at the

vessel wall derived from experiment, CFD (Nguyen et al., 2014) and FEM. The values by

FEM simulation are calculated by averaging the material velocities in all grids adjacent to

the wall at specific vessel heights. In contrast to the over-predicted results from CFD, the

velocity components by FEM are much closer to the experiment. The work in (Nguyen

et al., 2014) attributed the over prediction to the under-estimated frictional interaction

between particles and the coarse approximation of the slip coefficient in the partial slip

boundary condition. In Mohr-Coulomb theory, the materials friction is described by the

internal friction angle φ which is determined according to the relationship between φ and

the sliding friction coefficient in a shear test (Bai et al., 2017; Zheng and Yu, 2015b,a).

The only changeable parameter in FEM is the interaction between particles and the vessel

wall. In the FEM model, a general contact including tangential behaviour and normal

behaviour is used to describe the interaction between different materials. If the contact

friction coefficient increases (in this case, µ = 0.5), the curve of velocity profile is much

similar to that from experiments. However, discrepancies from the experiment can still

be noticeable. This is probably because the constitutive law provided by Mohr-Coulomb

elastoplastic model fails to describe the transition state of granular flow, which needs

further theoretical development of rheology.

6.3.2 Effects of blade speed

Flow pattern

Fig.6.3 shows the bed profile at different rotating speed (20 rpm, 50 rpm, 100 rpm) in

the simulated cylindrical bladed mixer. Three obvious heaps emerge in the vicinity of

blades and exhibit different patterns for different speeds. As the shaft speed increases, the

altitude of heaps becomes higher and the slope of the heaps turn to be sharper. When ω

= 100 rpm, small vacancies appear near the central shaft. This is because more particles

travel outward due to the strong centrifugal force and congregate at the outer part of the
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Figure 6.2: Comparison of velocity profiles at the vessel wall. ω = 300 rpm. (A) Velocity
magnitude; (B) Axial velocity; (C) Tangential velocity;
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Figure 6.3: Bed profiles obtained by FEM at different rotating speeds. The legend shows
the altitude of bed in units of m

blade near the vessel due to the recirculation zone where the minority of particles flow

over the blade, moving backwards and forming a vortex of flow field.

Statistical distribution

Fig.6.4, 6.5 show the probability density distribution as a function of magnitude of velocity,

radial velocity, tangential velocity, Mises equivalent stress q =
√

3
2S : S and equivalent

pressure p = −1
3trace(σ) where σ and S are the stress and deviatoric stress tensors

respectively. The data is collected when the whole system evolves into a steady state. The

data to calculate the probability density function (PDF) can be defined in the following

way:

f(β) =
number of nodes ∈ [β, β +△β]

total number of nodes
× 1

△β
(6.11)

, where β is the random variable falling within the small interval [β, β + △β] in the

statistical distribution. The interval △β is chosen according to the random variable range

defined in 6.11. It is observed that as for the velocity distributions, all the three peak

values become lower and wider when the rotating speed increases, which suggests the

distribution of velocity magnitude gets decentralized and disperse. This can be better

explained by the flow bed profile in Fig.6.3. The vacancies in the vicinity of the shaft

demonstrate the majority of particles are dynamically mobile and travelling at a faster

velocity. Only a small group of particles stay stationary at the bed. The PDF of tangential

velocity shifts to the right side as ω becomes larger, which indicates more particles travel

in the same direction with the blade rotation. It also indicates the recirculating zone

becomes smaller with the increase of the blade speed. Both the PDF of Miese equivalent

stress and equivalent pressure show a wider range of force distribution. Most of forces

are observed to fall within the range of 0 to 400 pa. Both peaks stay at a small value of
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forces, which indicates most particles in motion interact through small contact forces with

their neighboring particles. The particles with large forces are mainly distributed around

the blade because of the impact of blade impelling as Fig.6.6 shows. When ω increases

from 20 rpm to 100 rpm, the peak of contact force becomes lower and shifts slightly to

the higher force range, implying many particles are propelled by large forces at contact

surface. Considering the relationship between Mises and pressure S = σ + pI, it is not

surprising to see the similarity of their distributions.

Effect of diffusion on the mixing pattern

Fig.6.7 shows the evolution of mixing process with different diffusion coefficients. The

contour value shown in Fig.6.7 represents the concentration of red particles cr, with cr = 1

for cells full of red particles and cr = 0 for cells full of blue particles. Naturally, cr = 0.5

means a complete mixing state. The particles of the same material properties but different

colours are arranged side by side at the initial stage. As the blades rotate, the two kinds

of particles are blended and mixed due to the convection diffusion mechanism in Eq.6.5. It

can be observed that at first particles are transferred to different locations via convection

and the diffusion effect is not yet significant since χ = 0.1 and χ = 0.5 are almost identical

at t = 1s. As the process continues, the two cases have a similar pattern such as the shape

of curves and contour but different distribution of C. Both of the colour become lighter

under a higher diffusion effect (χ = 0.5) at t = 3s, 5s, which indicates that the larger

diffusivity results in faster particle mixing.

Effects of speed on the mixing index

Fig.6.8 shows the effect of blade speed on the mixing evolution of index. If the mixing

index is expressed as a function of the number of blade revolutions, it reaches the fully

mixed state earlier at slow blade speeds than at fast blade speeds. With different diffusion

coefficients, the evolution of mixing index exhibits different trends. With a lower diffusion

coefficient (χ = 0.1), the mixing index for ω = 50 rpm evolves more slowly than ω = 20

rpm at the first 2 revs. The two indexes collapse into a single curve after 3 revs. When

diffusion is weak, mixing occurs by transport of material bulk in the recirculation zone.

The similarity of pressure distribution at a lower rotating speed in Fig.6.5 indicates the

yield condition in Eq.6.2 is not changed. As a result, the volume of granular chunk for
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Figure 6.4: The statistical velocity distribution of probability density with different rotat-
ing speeds. (A) Magnitude of velocity; (B) Radial velocity; (C) Tangential velocity.
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Figure 6.6: Mises shear stress profiles obtained by FEM. The legend shows the stress in
units of N
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Figure 6.7: Mixing pattern evolution with different diffusion coefficients. ω = 20 rpm.

transport stays stable. As most mixing happens within the chunk, the mixing rate is

actually a function of the anular displacement the blade passes rather than time. When

χ increases to 0.5, the trend of mixing index evolution keeps the same as that of small χ

at the first 2 revs. However, the mixing index for ω = 50 rpm evolves more quickly than

ω = 20 rpm after 3 revs and reaches the steady mixed state first. The crossover of the

two indexes can be clearly seen in Fig.6.8. It indicates that among the three cases, the

mixing process takes the greatest advantage of diffusion effect at the rotating speed of ω

= 50 rpm.

6.3.3 Effects of blade rake angle

The blade rake angle α is defined as the angle between the front blade surface and hori-

zontal vessel bottom (shown in Fig.6.9). Three rake angles (45◦, 90◦, 135◦) are studied in

this section.

Statistical distribution

Figs.6.10 and 6.11 show the probability density distribution of velocity magnitude, radial

velocity, tangential velocity, Mises equivalent stress, and equivalent pressure with different
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Figure 6.8: Mixing index evolution with different diffusion coefficients.

Figure 6.9: Definition of blade rake angle in Mipro Mixer
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blade rake angles (α = 45◦, 90◦, 135◦) at the rotating speed of ω = 50 rpm. The curves

of speed distribution for α = 45◦, 90◦ are almost identical. In case of α = 90◦, there is a

small group of particles travelling at a faster speed. This is probably because the blade

height of α = 90◦ is higher than the other two, which causes a slightly higher altitude of

recirculating zone, thus particles flow down from a high plateau and gain a faster speed.

Generally, the difference of speed distribution between the three cases is small, suggesting

that the granular flow field is almost independent of blade rake angle. However, as for each

component of the velocity, the trends can be different. The PDFs of radial velocity for α =

90◦, 135◦ are similar with a wider distribution than that of α = 45◦. It demonstrates that

particles tend to be dispersed in different directions when the blade rake angle becomes

blunt, leading to a lager recirculating zone. The PDFs of tangential velocity for α =

45◦, 90◦ are much similar while in case of α = 135◦, many particles move in an opposite

direction to the blade rotation. The flow field is complex when the blade angle is close

to 90◦ because of the reduced areas above the bottom of container and underneath the

blades. In this area, particles are squeezed harshly and confined with little freedom of

motion. The contact forces in this regime are therefore intense, as further illustrated in

Fig.6.12.

When the blade rake angle is small (α = 45◦, 90◦), the force statistical distributions of

Mises and pressure are quite similar. The peak of probability density curve is very high

and occurs at small force, indicating that the interaction forces between particles are

mostly small. When the blade rake angle increases to the obtuse angle, the curve shifts to

a higher force range, indicating slightly larger inter-particle forces between most particles.

This can be better explained by the dynamics of flow shown in Fig.6.12. When α = 45◦,

the majority of particles move in the same direction of the blade, creating a small heap in

front of the blade. When α = 135◦, the particles beneath obtuse blade are trapped and

hence form a recirculation zone, characterised by the vortex flow field in front of the blade.

The volume of this zone is larger than that in the case of α = 45◦. The bulk imparts a

higher stress density to the blade as shown in Fig.6.12, in which the areas with Mises over

1000 Pa is much larger for α = 135◦.

Fig.6.13 shows the evolution of the applied torque on the reference point of shaft. The

torque experiences large oscillations for the first several seconds before reaching a relatively

stable value. Although the blade with the angle of 135◦ receives larger forces, the torque
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variations and tendencies for both α = 45◦ and α = 135◦ almost overlap. This is because

the torque depends not only on the magnitude of the contact forces but also on the

distances from the shaft axis to the granular material contact points on the blade. For

α = 90◦, the large blade height causes a great number of particles within higher forces

congregating near the forepart of the blade, which increases the number of torques in

higher values for each material grid.

Mixing evolution

Fig.6.14 shows the effect of blade rake angle the mixing index evolution. When the diffusion

coefficient is low (χ = 0.1), the inclined blade (α = 45◦, 135◦) gives a slower mixing rate

than that of vertical blade (α = 90◦). By contrast, when the diffusion coefficient is higher

(χ = 0.5), the mixing indexes almost collapse into a single curve, which suggests that the

mixing index is independent of blade rake angle when diffusion plays a dominant role in

the mixing process. When the value of χ is small, which indicates the effect of convection

is dominant, the vertical blade with the angle of 90◦ gives a strong recirculating flow

in the vicinity of blades. It leads to a faster mixing process than other blade angles

(α = 45◦, 135◦). When the value of χ is higher, diffusion affects the mixing process very

much. As a result, in all three cases (α = 45◦, 90◦, 135◦), all the mixing rates increases with

χ. The mixing rates for α = 45◦, 135◦ grow faster than that for α = 90◦. This is probably

because in the mixing process of α = 45◦, 135◦, convection is weaker and diffusion is more

important. In those areas where α = 90◦ and convection is strong, the effect of diffusion

may be overwhelmed by convection and becomes less effective.

6.3.4 Effects of blade gap on the mixing process

The blade gap is another factor that can influence the mixing rate in the bladed mixer.

Some research on this issue has been done in two-bladed mixer by (Chandratilleke et al.,

2009). In this section, we yield a similar conclusion in the Mipro mixer. As Fig.6.15 shows,

when the gap increases (from g = 0 R to g = 0.1 R. R is the radius of the vessel), the effect

on the initial rate of mixing is not noticeable at first, but it can finally reduce the degree

of mixing. Increasing the gap to g = 0.2 R changes the mixing rate heavily, but the final

mixing uniformity changes little in comparison with the case of g = 0.1 R. The mixing

pattern in Fig.6.16 illustrates that at t = 0.3 s, most particles above the blade are well
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Figure 6.10: Mixing index evolution with different diffusion coefficients. ω = 50 rpm. (A)
Magnitude of velocity; (B) Radial velocity; (C) Tangential velocity.
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Figure 6.11: Mixing index evolution with different diffusion coefficients. ω = 50 rpm. (A)
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Figure 6.12: Granular flow and forces on the blade.
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Figure 6.14: Evolution of mixing index with different diffusion coefficients. ω = 50 rpm.
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Figure 6.15: Mixing index evolution with different blade gaps. ω = 50 rpm, χ = 0.05, α
= 90◦.

Figure 6.16: Mixing pattern at t = 0.3 s. g = 0.2 R, ω = 50 rpm, χ = 0.05.

mixed due to the intense convection effect there. However, some particles under the blade

are confined at the bottom and cannot move up into the recirculation zone. They can

only get mixed by the Taylor shear mixing (Bridgwater, 2012) which could last a longer

period. So the lower mixing degree at the bottom slows down the overall mixing rate.

6.3.5 Size segregation with the 3D percolation model

The size segregation phenomenon in a bladed mixer has been studied by (Zhou et al.,

2003) using DEM. It is found that large particles are mainly distributed in the top and

outer regions due to the upward buoyancy forces, and small particles usually stay in the

inner and bottom region. In this section, the 3D FEM percolation model is used to study

the size segregation in the Mipro mixer.

Fig.6.17 shows the distribution of particle concentration in the simulated Mipro mixer. It
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is observed from both top view and cross-section view that the large particles pop up to

the top and outer regions, while small particles penetrate downward to the bottom and

are enclosed large-sized particles. The bottom view illustrates the percolation of small

particles first occurs around the blades where the shear rate is high. With the rotation

of blades, at 1 rev, the small particles form a circle along the vessel circumference before

more small particles settle at the centre of bottom at 3 revs. This observation is similar

to the results given by DEM. Finally they end up settling at the bottom of the mixer.

Fig.6.18 shows the evolution of segregation index with four different percolation lengths.

It is sensible that large percolation length leads to a higher rate of segregation which is

similar to the segregation happening in the 2D rotating drum. Note that the segregation

index may not be linearly dependent on the percolation length because the segregation

of lseg = 0.1 mm is apparently much slower than the other three cases. Fig.6.19 shows

the evolution of segregation index at different blade rotating speeds. It is reasonable

that higher blade speeds result in a higher segregation rate when the segregation rate is

evaluated in terms of time rather than revolutions. This is due to the higher shear rate

in the vicinity of blades, which is caused by a higher density of shear forces brought by

the strong blade rotation impact. Differing from the segregation rate, the final degree

of segregation is not much subject to the rotating speed. When the segregation index is

plotted against the number of revolutions, the three curves show marginal difference and

are independent of blade speed.
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Figure 6.17: Segregation pattern with 3D percolation model. The contour shows the

concentration of small-sized particles. ω = 1 rad/s, χ = 0.1, lseg = 0.25 mm
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Figure 6.18: Segregation index evolution with different segregation lengths. ω = 1 rad/s,

χ = 0.1.
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Figure 6.19: Segregation index evolution with different rotating speed. lseg = 0.2 mm, χ

= 0.1.

6.4 Conclusions

The 3D FEM-based convection-diffusion-segregation model of granular mixing is used to

investigate the mixing efficiency of a Mipro mixer. The velocity profiles obtained by FEM

is firstly validated by comparing with that of experiment. The effects of various operational

parameters, such as blade speed and rake angle on the mixing process are studied, with

attention to the statistical distributions of velocities and stresses as well as the mixing

index evolution. The segregation in this mixer is considered by using a percolation model.

Several conclusions can be drawn from this chapter:
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• The FEM result of velocity profile at the circumference of vessel is closer to ex-

periments than that from CFD. However, The difference between numerical and

experimental results has not been completely overcome. Probably new rheology

should be introduced and added in the current Mohr-Coulomb model to make it

quantitatively agreed with experiments in the future study.

• Statistical distributions of velocity and stress show that as the blade speed increases,

more particles become mobile and dynamic, travelling in the same direction of blade

rotation at a faster speed. The recirculation zone breaks down as the uni-direction

movement is dominant among most particles, which provides a good explanation to

the counter-intuitive slow mixing rate as a function of blade revolutions.

• The speed distribution is not sensitive to blade rake angle, but it changes the distri-

bution of radial and tangential velocity. When the blade angle becomes obtuse, more

particles can be easily transferred in multiple directions and the flow field becomes

more complicated in the area under the blade where the force density is higher,

which could impose damage to the blade.

• In the Mipro, small particles tend to be separated and congregate at the centre

of vessel bottom. Increasing the blade speed can increase the segregation rate but

the degree of segregation remains the same. However, when the segregation rate is

evaluated in term of the revolution number, it is hardly influenced by the rotating

speed.

6.5 Nomenclature

ϱ bulk density of granular material [kg/m3]

E Young’s modulus [Pa]

ν Poisson’s ratio [-]

φ internal friction angle [degree]

cy shear cohesion [Pa]

c volume fraction [-]

µ Coulomb friction between granular material and drum wall [-]

M mixing index [-]
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σ standard deviation of concentration [-]

D diffusivity

R radius of drum

g blade gap

α blade rake angle

ω blade speed

γ̇ shear rate

dp diameter of particles

χ diffusivity coefficient

lseg segregation length

I segregation index
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Chapter 7

Conclusion and future work

The granular flow and mixing processes have been investigated at the continuum level.

A FEM-based mixing model has been developed and verified against DEM results and

experiments in rotating drums and bladed mixers. The chapters of the thesis are organised

and sequenced by the mixing mechanisms: convection, diffusion and segregation. The

first three chapters are devoted to the three mechanisms individually and the final chapter

focuses on the application of the developed mixing model in a commercial mixer Mipro.

The conclusions can be drawn and classified in the following three categories:

7.1 Convection

The convection of particles is highly dependant on granular flow. The flow model in FEM

is based on the Mohr-Coulomb elastic-plastic theory which is able to describe the solid-

liquid dual behaviour of granular material. The applicability of flow model is verified in a

bladed mixers (CBM). The main conclusions can be made as follows:

• The FEM modelling can reproduce a series of main features of complex granular

flow such as the counter-wise recirculation flow in front of blades in CBM, which

contributes to a higher mixing rate, and more statistically scattered velocity fields.

Those simulation results agree with previous DEM study both qualitatively and

quantitatively. The distribution of velocity fields can also agree with the analytical

results in some special condition when granular friction is extremely high (φ =89◦)

and particle-wall interaction is minor (µ = 0.05). As for the mixing, the curve of

mixing index as a function of time generated by FEM can qualitatively agree with
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that from DEM. This method may help overcome the scale-up issues prevalent in

bulk solid handling industries, owing to its high computational efficiency.

• Material properties such as internal friction angle and wall friction significantly influ-

ence the performance of the mixer. Different material parameters generate complete-

ly different flow behaviours and mixing efficiency. A material with a large internal

friction angle moves in the system more like a rigid body and hence is more difficult

to mix. Wall friction, on the other hand, can prevent such rigid body motion and

promote particle mixing. It is therefore suggested that rough walls and flowable

materials are optimal choices for mixing in industrial applications.

• In Mipro mixer, the FEM results of velocity are closer to experiments than that from

CFD. However, difference between FEM and experiment has not been completely

eliminated. New rheology may be introduced to make FEM simulation better agree

with experiments in the future. A wide range of operational parameters including

blade speeds, blade rake angles are investigated. Statistical distributions of velocity

and stress show that with the increase of blade speed, more particles become mobile

and dynamic, travelling in the same direction of blade rotation with a faster speed.

The recirculation zone breaks down as the uni-direction movement is dominant a-

mong most particles, which provides a good explanation to the counter-intuitive

decrease in mixing rate per revolution number as blade speed increases. The resul-

tant velocity is not much sensitive to the blade rake angle, but the components of

radial velocity and tangential velocity are. For obtuse blade angles, particles tend to

be transferred in multiple directions, and the flow field becomes more complicated

in the areas under the blade where contact forces are more intense, and probably

cause damage to the blades.

7.2 Diffusion

Although the convection dominates the blending in a complex mixer, some challenges exist

in this model. Particle diffusion must be considered to give a more reasonable prediction.

In order to solve the problem, the convection model is extended to account for diffu-

sion mechanism, using a second order differential equation term D∇2c and an operator

splitting method. The model is validated in 1D Gaussian pulse diffusion, 2D shear flow,
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and rolling flow regime in a 3D rotating drum, against the results of mixing patterns and

indexes obtained previously DEM. The following conclusions can be drawn from this study:

• The modelling results are consistent with the analytical solution in 1D and 2D

Gaussian pulse diffusion cases. The developed method is independent of time steps

and mesh sizes given that the mesh size is below certain threshold value.

• The interface between two materials is blurred when diffusion is applied to the

convection model, resulting that materials penetrate to each other. The obtained

mixing index can match that from DEM when the value of χ as a fitting parameter

is chosen properly. The FEM mixing index is independent of mesh sizes when the

mesh size is less than 1/3Ld, where Ld is the diffusion length.

• Diffusion has a positive influence on the mixing process, especially in certain range

of parameters. When the diffusion coefficient increases, the effects of filling levels

and internal friction angles on the mixing process are more obvious. In Mipro mixer,

when diffusion comes into effect, the mixing index at ω = 50 rpm shows significant

increase above that at ω = 20 rpm within just 2.5 revs. This represents the most

effective and optimised mixing condition among different blade speeds. The differ-

ence of mixing indexes for different blade rake angles narrows when χ increases.

Different blade rake angles cause different convection flow fields, but the effects can

be weakened when diffusion plays a role.

• The 2D FEM mixing model can be extended and used to study the 3D axial mixing

process. The axial diffusivity is much smaller than the radial diffusivity, which is

confirmed by comparing results with DEM. Because the shear rate along the axial

direction is almost negligible, it takes more time to disperse particles along the axial

direction than in the radial direction.

7.3 Segregation

The attention is now turned to the mixing of materials with different properties. Segre-

gation is the most salient feature and controversial issue in research of particle mixing. In
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this thesis, the scope was confined to mixing of particles with different sizes. Two the-

ories: percolation and spinodal decomposition described by Cahn-Hilliard equation were

incorporated into the FEM model. Both 2D radial segregation and 3D axial segregation

in a rotating drum were reproduced by either percolation model or Cahn-Hilliard equation

under certain conditions. The effects of percolation length and diffusion coefficient on the

segregation rate and segregation index degree are explored. The following conclusions can

be drawn:

• The pattern of radial segregation (core formation) produced by the percolation model

bears a high level of resemblance with the DEM results. If the percolation length

is adjustable, the segregation index of FEM is able to match that of DEM. The

percolation length determines the segregation rate while the diffusion coefficient

largely influences the final segregation degree.

• The axial segregation in a 3D drum can be only produced qualitatively by the perco-

lation model. Three critical factors, namely radial segregation, wall interaction, and

different particle repose angles, contribute to the formation of alternative stripes of

small-sized and big-sized particles. However, the number and width of stripes still

show a quantitative discrepancy from the experiment results.

• The CH segregation model generates a more reasonable surface strips profile. How-

ever, undesired patterns of stripe by spinodal decomposition are noticeable at the

vertical cross-sections of granular bulk.

• The 3D size segregation in a bladed mixer is studied by the percolation model. It

reproduced the scenario that large particles go upward and get together at the top

and outer area of the granular bulk, while small particles stay inside and at the

bottom.

7.4 Future work

In terms of the flow dynamics, the FEM model also warrants further developments to

account for the various unconventional behaviours of granular materials, including the

effects of microscopic grain size, the rate-dependent internal friction, the non-coaxiality of

stress and deformation rate, hardening/softening and dilatancy as well as many possible
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pressure and density effects. The known shear banding behaviour is also neglected due to

the lack of a microscopic length in the present model. These aspects are important for

improving the quantitative accuracy of the FEM approach and require further studies in

future.

The general diffusion mechanism in form of D∇2c was introduced and used in the current

FEM mixing model. The diffusivity itself can vary in different geometric conditions. In

the dilute gas region, diffusivity is related to the particle diameter and granular temper-

ature with the relation D ∼ dT 1/2. In the dense region, diffusivity can also be shear rate

independent (Fan et al., 2015). More broadly, in some cases such as a long drum mixer

granular mixing can exhibit a anomalous diffusive behaviour like sub-diffusion or super-

diffusion, namely, indicating the mean squared displacement of particles follows a power

law in time with exponent more or less than unity (Khan and Morris, 2005; Christov and

Stone, 2012). Considering those complicated mathematical terms of diffusion and diffu-

sivity in the FEM model is an intriguing area of further research.

In the chapter of segregation, it is demonstrated that the axial band formation has not

been well explained either by percolation or CH equation. In my view, a new segrega-

tion mechanism along the axis should be introduced to the current model while keeping

unchanged the percolation responsible for radial segregation. The shear-induced segrega-

tion mechanism is a promising candidate model which has been established based on the

mixture theory (Gray and Thornton, 2005; Gray and Chugunov, 2006) and developed by

(Fan and Hill, 2011a,b) in a vertical shear cell. It is interesting to build a segregation

model with combined two directional (radial and axial) segregation mechanisms to further

obtain deep understanding of the segregation phenomenon.
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