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0.2 Abstract

Feature matching is a fundamental step in many image processing tasks, such as panorama

stitching and stereo depth estimation. In essence it involves finding some characteristic in mul-

tiple images and then identifying commonalities between these detected characteristics. For

instance, one could locate blobs of colour in two different images, then identify pairs of blobs of

the same colour in the two images.

A number of algorithms have been developed, both for detecting features, and also for

matching those features once detected. This work looks into the ORB1 feature extraction al-

gorithm, and specifically investigates its applicability to hardware acceleration using a Field-

Programmable Gate Array (FPGA) device.

This work has designed and developed an FPGA implementation of the Harris–Stephens

corner detection algorithm and ORB feature extraction algorithm. The system operates using

an image pyramid, allowing detection and matching of corners at different scales, and has been

designed with the foremost goal being high throughput.

The system has been developed in SystemVerilog, and eachmodule is accompanied by a test-

bench to verify the correct operation of the hardware designs.

The developed system has been implemented and tested on an Arria V FPGA, and attains

very high framerates on real data: approximately 72 fps at 1920×1080 and 488 fps at 640×480,

compared to a quad-core CPUwith 13 fps and 88 fps respectively. The power consumption under

load is also very low, drawing approximately 6W, in comparison to a CPU at around 90W. The full

hardware accelerator, which has been named a Tarsier, can be attached to a PC via PCI-Express

bus, and communicates with userspace software by way of a Linux kernel-mode driver.

In order to achieve tight realtime bounds on computation time, and to best take advantage

of the FPGA platform, the algorithms have been modified slightly from their CPU originals. This

thesis contains analysis of the effects of these modifications, and demonstrates that the changes

have a minimal effect on the utility of the feature extraction.

1Oriented FAST (Features by Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Element-
ary Features)
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Chapter 1

Introduction

Many robots today use GPS as their primary source of nagivation information, such as unmanned

aerial vehicles, autonomous vehicles, and agricultural robots. However, when indoors or when

GPS is unavailable, or too inaccurate for a robot to use, many robots turn to visual sensors for

localisation and mapping.

We humans use visual information as our primary sourcewhen navigating. Our stereoscopic,

binocular vision allows us to estimate the distance to objects based on the disparity between the

two images we receive, one from each eye, and vision allows us to determine our position in

space by tracking how objects around us move. The same principles are applicable to robots

with cameras mounted atop them.

Cameras take in light from the environment around a robot and convert the information in

this light into images, which can be encoded electrically and used for robot navigation. The im-

ages are processed to identify objects, and these objects can be tracked by a computer onboard

the robot to estimate the robot’s motion accurately. This processing, however, can be computa-

tionally demanding, and consumes significant amounts of energy. For a mobile vehicle, energy

is often at a premium, and every joule saved from computation can be spent doing other tasks,

such as driving locomotion.

This work seeks to design and develop a hardware accelerator for this image processing. A

hardware accelerator, implemented using a Field-Programmable Gate Array (FPGA), is able to

perform the image processing extremely quickly, significantly faster than a CPU, while using

much less power. In addition, while the hardware accelerator is processing an image, the CPU is

free to do other work, potentially allowing the use of a cheaper or less powerful CPU.
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Figure 1.1: Features (green) detected in an image

Figure 1.2: Matches (green) detected in an image pair

The approach used in this work is called sparse feature detection, extraction and matching.

This means that interesting points in the images (features) are located (detection), and then a

value is derived from the features (extraction) which allows them to be matched against other

features in other images. The features only use interesting regions of the images, discarding

areas with low information, such as flat colours, so the coverage of the images is sparse.

Figure 1.1 shows an imagewith features detected, shown in green. These features are located

at points that are determined to be corners by the Harris–Stephens corner detector [3].

It is useful to be able to recognise the same physical object in different images. Feature

matching is able to assist with this, by finding features in two images that are similar, and record-

ing the correspondences. Figure 1.2 shows two images of the same scene, taken from different

viewpoints. The features are detected using Harris–Stephens, and then feature descriptors are

12



extracted using the ORB feature descriptor extraction algorithms [4]. These descriptors allow

comparisons to be made between features, and similarity measured. Features whose descriptors

are more similar than a threshold are considered matches, and these matches are shown in fig-

ure 1.2. Green lines connect points in each image that look similar, according to the difference

between their descriptors.

Over the course of this PhD candidature, a hardware acceleration device, termed a Tarsier,

has been developed. This device is implemented using an Arria V GX Starter Kit FPGA board,

and connects to a host PC via PCI-express. Images may be streamed to the device over the PCI-

express interconnect, where they are processed, and the results are returned to the host PC over

the same interconnect.

The Tarsier accelerator has been integrated into the ORB-SLAM2 [5], where it is used to ac-

celerate feature detection and matching. ORB-SLAM2 is a software implementation of Visual

Simultaneous Localisation And Mapping (Visual SLAM). SLAM is a family of algorithms for taking

observational input from the environment of a robotic vehicle and using the information con-

tained therein to construct a map of the robot’s surroundings, and localise the robot within that

map.

Visual SLAM algorithms take images from cameras and use these to build a map of the sur-

roundings visible to the camera. SLAM is, in general, a hard computational problem, and robots

making use of visual SLAM are far inferior to humans performing the same tasks.

The device implements the feature detection and extraction phases of the image processing,

but the matching is performed on the host PC using the CPU. An earlier version of the hardware

architecture, developed and presented in [1], did include a basic matching system, but this was

removed in the process of developing the integration with ORB-SLAM2, since it implements a

more sophisticated matching process.
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1.1 Objectives of this Research

1. To develop a hardware accelerator that can operate with hard real-time constraints to de-

tect features in images and extract descriptors for them. In this instance, real-timemeans

that execution time is constant for a given image size. The hardware accelerator should

be easily usable from within program code running on a host machine.

2. To maximise the frame rate the accelerator is able to work at. The frame rate should be at

least 60 frames per second (fps) at 1920× 1080 resolution.

3. As far as possible, to minimise the modification to the standard algorithms, while still

achieving real-time guarantees and high frame rate.

4. To characterise the performance of the accelerator, and determine how variation in the

design parameters affects the quality and usefulness of the output. This will increase the

applicability of the design to different hardware platforms.

5. To release the source code openly, so that the research community can build on this work.

14



1.2 Contributions of this Work

The primary contributions of this work are:

1. Development of a new hardware architecture for accelerating the detection and descrip-

tion of ORB feature in real time using FPGAs. This work [1], while not the first, makesmore

effective use of the FPGA platform than the preceding work [6], and thus demonstrates

significantly improved speed. It predates two other publications [7], [8], while remaining

competitive.

2. Development and analysis of a multi-scale ORB implementation in hardware [2] using a

streaming image pyramid structure. This work was the first and remains the only such

multi-scale ORB implementation in hardware, and it results in significantly improved

matching performance. Other ORB implementations [6]–[8] only perform feature detec-

tion and extraction at the base image scale.

3. Characterisation of the performance of the systemwith varying image pyramid structures

and numbers of modules per level. This allows customisation of the design based on the

hardware budget available and desired performance.

4. Characterisation of the number of features that must be dropped as a result of the hard

real-time constraints of the system, and thus not appear in the output. This is highly de-

pendent on the use of buffering in the ORB feature extraction pipeline.

5. Development of a Linux kernel-mode driver to interface with the Tarsier device over PCI-

express

6. Provision of an open-source, Mozilla Public Licensed repository of the SystemVerilog

code, to allow effective comparison by the research community (https://github.com/

raiker/tarsier).
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1.3 Thesis Outline

This thesis is divided into a number of chapters, with three chapters addressing design and im-

plementation of the FPGA system, one chapter addressing analysis of the design and exploration

of the design parameter space, and one presenting conclusions and future work.

Chapter 2 examines feature detection. The state of the art is investigated, previous hardware

implementations are described and compared, and the implementation of the Harris–Stephens

feature detector used in this work is presented.

Chapter 3 examines feature extraction. The chapter investigates a number of different ap-

proaches to feature extraction, then describes the existing work in hardware acceleration of the

selected algorithm, ORB. The implementation of ORB used in this work is presented in detail, and

it is compared to other implementations in the literature.

Chapter 4 examines multiscale processing, the approach of applying feature detection

and extraction on an image at multiple scales simultaneously. The chapter investigates why

multiscale processing is useful, then presents the efficient streaming architecture employed in

this work.

Chapter 5 examines the parameter space of the algorithms implemented on the FPGA, and

investigates the effects that changes in one parameter can have on the system performance.

The validation system used to verify the accuracy of the hardware is described, and then the

integration of the Tarsier accelerator into ORB-SLAM2 is examined in depth. The performance

of the Tarsier device is discussed in this chapter.

Chapter 6 contains the conclusions drawn from the project, as well as an investigation of

how the work presented can be generalised to other problems, before closing with work for the

future.

Appendix A contains documentation for each of the hardware modules making up the core

of the Tarsier device. The SystemVerilog code for the Tarsier core is available under a Mozilla

Public Licence on GitHub at https://github.com/raiker/tarsier.
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Chapter 2

Feature Detection

2.1 Introduction

Feature detection is the process of finding interesting features in images. This is often the first

step in a computer vision system, since it identifies information-rich areas of the image for fur-

ther processing, enabling effective use of limited computation resources. In this system, once

detected, feature locations are passed to a feature extractor (see chapter 3).

This chapter opens with a definition of images and of features, then investigates several fea-

ture detection algorithms in current use. A description of the implementation of feature detec-

tion in this system follows.

2.1.1 Images

An image is a two-dimensional rectangular grid of picture elements, or pixels. The pixels in an

image can be colour (three-dimensional) or greyscale (one-dimensional). This work deals solely

with greyscale images. Mathematically, the pixels are discrete samples from a continuous 2-

dimensional image signal, termed I(x, y). This formal representation becomes significant when

discussing image downsampling, in section 4.1.2.

The value of a greyscale pixel is alternatively referred to as the intensity at that point. The

pixel intensity represents the value of the underlying image signal at that coordinate.

Image[x, y] = I(x, y), where x, y ∈ N0 (2.1)
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The spatial derivatives of image intensity are commonly used in computer graphics to de-

termine local properties of the image. Since we have only discrete samples into a continuous

function, we are unable to determine the derivative at a point directly, but we can apply a dis-

crete differentiation filter to approximate the derivative at a point.

Gx =

[
−0.5 0 0.5

]
∗ Image ≈ ∂I

∂x
(2.2)

Gy =


−0.5

0

0.5

 ∗ Image ≈ ∂I

∂y
(2.3)

where ∗ represents convolution.

Gx approximates the image gradient in the x-axis, whileGy approximates the image gradi-

ent in the y-axis.

2.1.2 Features

A feature, in the context of computer graphics, is a generic term for some component of a visual

input that can be tracked. Examples of features include edges, corners, and blobs. Features in

image space typically represent a characteristic of the underlying 3-dimensional scene, like a

blob of colour painted on a wall, or the corner of a brick. If a camera takes two images of such

a real-world feature from two nearby positions, ideally the image representations of the feature

will be similar. This allows a suitable feature detector to match the two views successfully.

Edges are generally defined to be locations in an imagewhere the image intensity derivatives

are of large magnitude; that is, where the intensity changes rapidly. This typically occurs at the

edge of an object, or where there is a texture on an object, such as a painted sign. The most

prominent edge detector is the Canny edge detector [9], which blurs the image, finds regions of

high derivative, prunes the edge so that only strong edges are allowed, and attempts to connect

up nearby sections of edge into a longer edge.

Edges are hard to match between frames, since they represent an area in the image that can

deform significantly between frames, such as when one object occludes another behind it. In

addition, edges only constrain the feature in one dimension, meaning that an edge can match
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with any position along another edge. For these reasons they are typically not used in navigation

systems.

Blobs are regions of an image that satisfy a particular condition, for example, pixels that are

red, or brighter than their neighbours. A blob is detected when a region larger than a particular

size satisfies the condition, perhaps representing a red object. The blobs are expanded to best fit

the region, so there are typically few blobs in an image. Blobs are tracked from frame to frame

by matching each blob to the nearest blob in the previous frame — since there are few, this is

relatively reliable.

Blobs are typically not used for robot navigation systems, either, since they distort signific-

antly with orientation, and large areas of colour are uncommon in many environments; instead,

they are primarily used in special, controlled applications.

Corners are locations defined by the intersection of two edges, locations where the image

intensity gradient is strong in two directions at once. Corners are found anywhere two edges

cross, such as where two objects occlude a third, or are silhouetted against a background. There

are several commonly-used corner detection algorithms in general use, the most common being

FAST[10] and Harris–Stephens[3] corner detection.

Corners are generally good features to track because they typically do not distort signific-

antly between successive frames. They arewell-defined, andmany algorithms exist for detecting

image corners stably andmatching them to distorted versions of themselves. Corners formed by

the intersection of two occluding objects are unstable under changes of orientation, but corners

formed by texture are stable. This work employs corners as its features, since corners provide

more tracking information than edges or blobs in general environments.
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2.2 Algorithms

This section investigatesmore deeply the two primary algorithms employed in corner detection,

Harris–Stephens and FAST.

2.2.1 Harris–Stephens

The Harris–Stephens Corner Detector [3] was introduced in 1988 as a general-purpose detector,

capable of detecting either corners or edges, depending on the value of tunable parameters. In

essence, the detector finds regions where the image intensity derivatives in two directions are

both strong, indicating that two edges cross.

Consider a small circularwindowpositionedover an image. Ifwemove the imageunderneath

the window, the way in which the visible part of the image changes provides information about

that local region. If the visible region is in a featureless area of the image, for instance a painted

wall or sky, a small movement of the image will have minimal effect on the visible region. If the

visible region shows an edge, a movement parallel to the edge will show minimal change, while

movements in all other directions will show a significant change. If the visible area is a corner,

however, every possible motion will show a significant change.

This window observation is formalised as a sum of squared image differences. For a given

window, w, we integrate the squared difference between the image intensity function, I , and a

version of itself, shifted by (δx, δy).

E(δx, δy) =

∫∫
w

(I(u+ δx, v + δy)− I(u, v))2 du dv (2.4)

High values ofE represent shifts with a large difference between the windowed regions, and low

values represent shifts with a small difference. A featureless wall would be expected to have low

E-values for all shifts, an edge would be expected to show low values for shifts parallel to the

edge and high elsewhere, and a corner would have highE-values for all shifts.

Since we don’t have access to the image intensity function, just a discretely-sampled version

of it, we instead must use the discrete version of the above:
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E(δx, δy) =
∑
u,v∈w

(I[u+ δx, v + δy]− I[u, v])2 (2.5)

The earlierMoravec detector [11] considers only shifts of δx, δy ∈ {−1, 0, 1}, and thus is only

effectively able to detect corners and lines that are either axis-aligned or 45 deg from the axis.

We want to consider all possible orientations of lines and corners, so this requires an anisotropic

method of trialling shifts.

If we take I[u− δx, v − δy] and perform a first-order Taylor series expansion around (u, v),

we have

I[u− δx, v − δy] ≈ I[u, v] +
∂I

∂x
(u, v)δx +

∂I

∂y
δy (2.6)

and therefore

E(δx, δy) ≈
∑
u,v∈w

(
∂I

∂x
(u, v)δx +

∂I

∂y
(u, v)δy)

2 (2.7)

If we use a rectangular window, the result will not be anisotropic, as a small rotation of the

image will cause a change in the pixels covered by the area. Thus we must choose a rotationally

symmetrical window. A circular window is possible, although typically a Gaussian filter is used,

since it smooths the output as well.

E(δx, δy) ≈
∑
u,v

w(u, v)(
∂I

∂x
(u, v)δx +

∂I

∂y
(u, v)δy)

2 (2.8)

where w(u, v) represents a 2-dimensional Gaussian filter of some σ.

Expanding, we get
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E(δx, δy) ≈
∑
u,v

w(u, v)

((
∂I

∂x

)2

δ2x + 2
∂I

∂x

∂I

∂y
δxδy +

(
∂I

∂y

)2

δ2y

)
(2.9)

Using the result from section 2.1.1, we approximate the image derivatives with derivative

filters:

let Ix = I ∗
[
−0.5 0 0.5

]
≈ ∂I

∂x
(2.10)

Iy = I ∗


−0.5

0

0.5

 ≈ ∂I

∂y
(2.11)

(2.12)

and further

let A = I2x ∗ w (2.13)

B = I2y ∗ w (2.14)

C = (IxIy) ∗ w (2.15)

Thus, for small shifts, the sum of squared errors can be expressed as

E(δx, δy) = Aδ2x + 2Cδxδy +Bδ2y (2.16)

This expression lends itself to a matrix representation
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E(δx, δy) =

[
δx δy

]
A

δx
δy

 (2.17)

where A =

A C

C B

 (2.18)

The matrix A describes the curvature of the autocorrelation function at the centre of the

window, and its two eigenvectors and eigenvalues give the directions and magnitudes of the

principal curvatures, respectively. Since the direction of curvature is unimportant to us, it is

sufficient to examine the eigenvalues. If the two eigenvalues are both small, any small shift will

have a smallE, thus the point has high autocorrelationwith its neighbourhood. Thismeans that

the point is in a region of the image with little gradient, and not a corner or edge.

If one eigenvalue is significantly larger than the other, it suggests a gradient in one direction.

Shifts in this direction will result in a small E value, while shifts perpendicular to the direction

will result in a largeE value. This means that the point represents an edge.

If both eigenvalues are large, there are two strong gradients approximately normal to one

another. Shifts in any direction will result in a large E, and the point represents a corner. This

particular case is what we are seeking.

Calculating matrix eigenvalues is unfortunately a computationally expensive operation,

and the Harris–Stephens corner detector introduces an algorithmic simplification, returning a

Harris–Stephens corner score:

score = det (A)− κ trace (A)2 (2.19)

= AB − C2 − κ(A+B)2 (2.20)

where κ is a free parameter. High scores indicate higher likelihood that a given point is a corner.
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Figure 2.1: The FAST corner detector sample points

2.2.2 FAST Corners

Features from Accelerated Segment Test (FAST) is a computationally-cheap corner detector in-

troduced in [10]. FAST examines a ring of pixels around a test point and reports a corner if a

continuous run of pixels around the ring is brighter or darker than the centre pixel.

For each candidate pixel in the image, a Bresenham circle of radius 3 is constructed, com-

prising 16 points, as shown in figure 2.1. The pixel value at each of these points is compared to

the centre, candidate pixel with a threshold. Given a threshold T , centre pixel intensity Ip and

circle pixel intensity Ix, two separate comparisons are evaluated: Ix < Ip − T and Ix > Ip + T .

Thereafter, the two comparison sets are treated separately.

If a candidate pixel represents a corner, it is likely that at least 12 consecutive circle pixels

of the 16 will be either darker or lighter than the centre pixel, as shown in figure 2.2. On a CPU,

bit operations can be used to test for this quickly, and such pixels are reported as corners. How-

ever, FAST in 12-pixel mode is only able to detect sharp corners, and can fail to detect sharp

90-degree corners as well (fig. 2.3). To combat this, the test can be made more permissive, re-

quiring between 9 and 11 consecutive pixels passing the test to determine a corner. FAST-9 is

themost common of these, requiring 9 consecutive pixels to be lighter or darker than the centre

pixel. FAST-9 is then vulnerable to spurious corners, such as shown in figure 2.4.

It is standard in FAST implementations to use FAST as an early-cull filter, passing candidate

corners on to Harris–Stephens or another corner detector for refinement. FAST is a good first

filter because it is so quick to calculate, meaning that the significantly more computationally-

expensive Harris–Stephens detector only runs on a subset of the input pixels. This approach can

lead to the situationwhere a pixel that would have returned a highHarris–Stephens corner score

is discarded at the FAST stage, and thus is not represented in the output, but with tuning of the
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Figure 2.2: FAST-12 identifies this corner successfully, since 13 consecutive pixels are darker than
centre pixel

Figure 2.3: FAST-12 can fail to detect sharp 90-degree corners, since only 11 pixels are darker
than the centre pixel

threshold value, this situation can be made rare, and losing a small number of features does not

typically affect the efficacy of later processing steps.

FAST itself does not return a corner score for pixels, just a binary “is-a-corner” value. In

some applications this is sufficient, but its output is unsuitable for non-maximum suppression.

Since non-maximum suppression is critical for increasing the signal-to-noise ratio of detected

features, in most implementations, FAST is used as an early cull, and corner candidates are then

checked with Harris–Stephens afterwards. Since FAST is so much simpler than Harris–Stephens,

its runtime ismuch shorter, and Harris–Stephens is only used to check possible corners reported

by FAST, reducing total feature detection time.

2.2.3 Non-Maximum Suppression

Both Harris–Stephens and FASTwill often return a cluster of corner pixels in the neighbourhood

of a corner, since pixels slightly offset from the point of a corner will often have high corner

scores or pass the FAST test, respectively. Figure 2.5 shows the corner scores for pixels in the

vicinity of a corner point, demonstrating a peak in the corner score dimension. One central
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Figure 2.4: FAST-9 identifies this pixel as being a corner, despite it being some distance from the
actual corner point, since 9 consecutive pixels are darker than the centre

(a) Input image (b) Corresponding Harris–Stephens
corner scores (normalised)

Figure 2.5: Corner scores emitted by the Harris–Stephens detector. White indicates higher val-
ues. The corner scores on the right correspond to the pixels on the left. The corner scores were
generated using a 7× 7 Gaussian smoothing window. [2] ©IEEE 2017

pixel has the strongest score, but others around it also have high responses.

Since this peak represents only one corner in the input image, it would be nonsensical to

treat each pixel in the peak as an independent corner, and could jeopardise later matching (in

particular when prominence filtering is enabled, as described in section 3.6.1). To that end, we

want to select only the pixel with the maximal score, and suppress all others.

Non-maximum suppression is an algorithm for this. For each candidate corner, the corner

scores of the neighbouring pixels in a square window are examined. If any of those scores is

higher than our candidate’s, it is excluded from the output stream. This ensures that only local

maxima in the corner score surface are selected.
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2.3 Hardware Primitives

2.3.1 Sliding Window

This work makes extensive use of a 2-dimensional Sliding Window structure, which allows easy

and fast access to pixel values in a small rectangular window. When pixels from an image are fed

into the sliding window one at a time, in a raster scan, the rectangular windowwill progressively

iterate over every position in the image, providing access to the image pixels covered by the

window.

The sliding window structure is a common choice in computer vision applications on FPGA,

begin used as a primary component in [12], [13] and [14].

As shown in figure 2.6, each row of the window is constructed as a shift register, with one

8-bit register for each pixel in the row. A series of line buffers (see section 2.3.2), implemented

in RAM, allow the input to each row of the window to be delayed by the width of the image

(image_width), and so the start of each row’s shift chain is fed with the pixels forming a column

of the input image. This ensures that all of the rows of the sliding window are synchronised, and

that a given x offset into the window represents the same image x-coordinate in all the rows.

The dimensions of the shift register array, WINDOW_WIDTH and WINDOW_HEIGHT, are spe-

cified at design time, as described in appendix A. The parameter image_width is configurable

at runtime. The maximum image width, MAX_IMAGE_WIDTH, must be specified at design time,

as this determines the amount of memory to be allocated. At the beginning of each frame,

image_width is programmed with the width of the image, ensuring that the linebuffers align

correctly.

The sliding window does buffer large numbers of input words, in effect causing a pipeline

delay. The delay is due to the necessity of waiting for future pixels before the neighbourhood of

a given pixel is available. This delay is proportional to the width of the image and the height of

the window:

delay =

⌊
WINDOW_HEIGHT

2

⌋
× image_width +

⌈
WINDOW_WIDTH

2

⌉
cycles (2.21)

The sliding window offers a number of desirable traits. It keeps its own state internally,

and all it requires is a single pixel to be input each clock cycle. In addition, each pixel in the
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Figure 2.6: A block diagram of an 8-bit 5 × 7 sliding window. The diagram is arranged so that
the registers represent pixels in the order they appear in the image, as a rectangular window of
the source. The top-left register represents the top-left pixel of the window, the bottom-right
register represents the bottom-right pixel of the window. This means that input flows into the
window right to left, bottom to top, opposite to the normal schematic convention.
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input image only needs to be read once. Access to specific cells of the sliding window is very

simple. The output from each word register of the shift register is routed into the next in the

sequence. Some of the output values will be fanned out into other logic that performs a function

using the window as input. For instance, a gradient function could be implemented by taking

the difference between two adjacent cells in a sliding window’s shift register array. Since the

values come directly out of registers, this means that the cells can be accessed with no latency,

and requiring minimal additional routing.

The structure does have a number of disadvantages. In addition to the shift register chains, it

is necessary to store multiple rows of the image in row buffers. The total memory consumption

of the row buffers (in bytes) is

(window_height − 1)× MAX_IMAGE_WIDTH (2.22)

MAX_IMAGE_WIDTH is typically a power of two, since it represents a RAM address. The num-

ber of linebuffers needed is one less than the height of the window. It is not necessary to buffer

the input to the first (bottom) row of the sliding window, since that is fed directly from the input,

as shown in figure 2.6.

The other primary disadvantage of the sliding window is that it does not directly support

random access to the pixels within. Since the registers are implemented using flip flops, there

is no addressing logic implicitly provided. External random-access circuitry, in the form of mul-

tiplexers in the x- and y-axes, would provide random access at the cost of large logic usage and

latency, but typically block RAM offers a better solution in these cases, as described in section

3.4.2.

If both random access and fast fixed access are required simultaneously, a logic-efficient

implementation is one sliding window and one RAM-backed window, handling each access sep-

arately.

2.3.2 Configurable Linebuffer

In between each pair of rows of the sliding window is positioned a linebuffer. The purpose of this

module is to form a shift chain, the length of image_width, so that each row of pixels is delayed

by the correct amount to align with the row below. In addition, in order to support images of
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Figure 2.7: The coverage pattern of a sliding window across a window. Light blue represents
pixels not yet covered, dark blue represents pixels that have been covered by a window, and
orange shows the current contents of the window. The window scans left to right, top to bottom.

variable widths, it is necessary to have image_width be configurable to suit the current frame.

The linebuffer could be implemented using logic elements, but because this would use a

prodigious amount of logic, particularly for large images, and because it would complicate

runtime reconfiguration, this system instead uses a block RAM (BRAM)-based linebuffer. A dual-

ported BRAM is used, with one read port and onewrite port. The length of the RAM is dictated by

the maximum supported image width, MAX_IMAGE_WIDTH. Both ports access the same address,

and the address counter register increments every time a value is written. The address counter

register will reset to 0when it is incremented to reach image_width. This ensures that the delay

between a value being written and being read is exactly image_width write operations.

Upon module reset, the image_width is loaded from an external source.

2.3.3 Margins

All of the image processing algorithms used in this work operate on a rectangular window

centred at a particular point, with some input pixels to the left, right, above and below the centre.
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Figure 2.8: At the image margins, insufficient image data is available

This means that, for pixels near the edges of the input image, insufficient input data is available

for calculation.

There are a number of different approaches for dealing with this situation mathematically.

Pixel accesses outside of the window can be wrapped around to the other side, or mirrored back

onto the same side. Wrapping is, however, unsuitable for most images, since one side of the

image is typically unrelated to the other side.

Method Virtual coordinate Effective coordinate
Wrapping (-2,5) (30,5)
Wrapping (5,-2) (5,30)
Mirroring (-2,5) (2,5)
Mirroring (5,-2) (5,2)

Sliding Window Naive (-2,5) (30,4)
Sliding Window Naive (5,-2) n/a

Table 2.1: Effective coordinates for virtual coordinates on a 32× 32 window

Mirroring and wrapping are both straightforward to implement using random-access hard-
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Figure 2.9: The contents of the sliding window at different positions in the margins of an image.
Windows projecting off the edge of the image contain image data fromprevious rows (in the case
of the left edge) and future rows (in the case of the right edge).

ware. Each coordinate access is checked before the read is performed, and if necessary, is mod-

ified so that it is within the image bounds. In a streaming, sliding window-based architecture,

such transformations require more complicated implementations, involving extra hardware.

Unmodified Sliding Window

Along the top and bottom edges of the image, a sliding window will contain garbage data for the

part of the window outside the bounds of the image. Along the sides of the image, some image

data from the opposite side of the image will be wrapped, but with a one-line offset, as shown in

figure 2.9.
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Wrapping

The sliding window can be modified to perform wrapping in the x axis relatively easily. Almost

all the required pixels are already present in the sliding window, just offset by one row. In order

to access them, the y-coordinate must simply be increased by 1. These slightly increases the

complexity of the routing, since two signals must be routed to the relevant logic, with a multi-

plexer to select between them.

Wrapped accesses in the bottom row of the window are more complicated, since the pixel

data is not yet present in the window — it has not yet arrived, and is still a full row away. This

can be worked around by making the window one row higher than otherwise needed, adding

another row of delay. This will ensure that the required data is present when needed.

Wrapping in the y-axis, however, is essentially impossible without buffering an entire frame,

since thewrapped pixel data is not present in thewindow at all. For windows along the top of the

image, wrapped pixel accesses would be at the bottom of the image, which has not yet entered

the window and will not for a long time. Along the bottom of the image, the accesses refer to

image data that exited the window and the system long ago, and is no longer available. While it

would be possible to buffer the pixel data in this case, the buffer would have to be the full size of

the image, which is highly impractical (see section 3.4.5).

Mirroring

Mirroring can be implemented relatively straightforwardly on a sliding window, since the

needed pixels are always present in the window. The complexity comes from the routing logic

required to access the pixels. Since the mirrored coordinate depends on how far out of bounds

the access is, there are nowmany potential window coordinates which contain the desired pixel.

This greatly increases the amount of routing needed to synthesise the design, and could lead to

delays because of the increased fan-out.

Coordinate mirroring also has the disadvantage that false information is being created and

treated as true input, where image samples are being treated as if they are from elsewhere. This

can have impacts on the quality of the processing.
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Dropping

The simplest approach, and the one employed in this work, is to regard the margin region of the

image as being invalid. The size of the margin is defined by the size of the window: for a window

of size m × n, the x-axis margin is m−1
2 and the y-axis margin is n−1

2 . Any window centred at

a point within the margin is invalid, since at least part of the window is invalid. Any window

outside the margin is guaranteed to be entirely valid.

This does mean that no features can be detected in a portion of the image around the border.

The larger the image, the less significant this border region is, but the region is a fixed width

regardless of pyramid level. Since higher-level images are smaller, a higher proportion of the

image pixels are lost.

The input to the Harris–Stephens corner detector is a 3 × 3 window of image pixels, which

would suggest a margin of only size 1. However, within the detector itself, further windows are

used. As described in section 2.5.1, the implemented Harris–Stephens detector has three sliding

windows, with sizes

(3× 3) → (7× 7) → (3× 3)

The margins for chained windows are additive, thus the total margin is 5, for an effective

window size for the Harris–Stephens detector of 11× 11.

The window used in ORB feature extraction, however, is 37 × 37, as described in section

3.4.5. Since the two operations (Harris–Stephens corners and ORB extraction) are functionally

independent, the combined margin of the two is not the sum, but rather the maximum of the

two, namely 18.

Level Dimensions Usable dimensions Usable
0 640× 480 604× 444 87.30%
1 512× 384 476× 348 84.25%
2 409× 307 373× 271 80.50%
3 320× 240 284× 204 75.44%
4 256× 192 220× 156 69.82%
5 204× 153 168× 117 62.98%
6 160× 120 124× 84 54.25%
7 128× 96 92× 60 44.92%
8 102× 76 66× 40 34.06%

Table 2.2: Usable image area with pyramid level
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Figure 2.2 shows the usable image area for a selection of image sizes. Since the windowmar-

gin for all image sizes is 18 pixels, a strip 18 pixels wide is unusable along the perimeter of all the

images. In the case of small images, this strip represents more than half of the total image area.

The image sizes are derived from the dimensions of the levels of an image pyramid rooted at

640× 480, as described in 4.1.1. Note that the usable area of pyramid levels as a percentage falls

with increasing levels of the pyramid.
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2.4 Previous Work

2.4.1 Harris–Stephens

Several FPGA implementations of the Harris–Stephens feature detector have been published, all

employing a sliding window structure, as described in section 2.3.1.

Hsiao, Lu and Fu [13] (2010) employ a chain of three separate sliding windows, with each

window in the chain handling a separate part of the algorithm. Each stage of the Harris–

Stephens algorithm executes independently of the others, allowing effective pipelining. While

the firstwindow in the chain is processingnewly-arrivedpixels, the laterwindows are processing

previously-computed outputs.

The implementation uses a slightly unconventional formulation of Harris–Stephens, per-

forming a Gaussian blur before taking the image derivatives. Consequently, a 9 × 9 window

is used for extracting derivatives, a 7 × 7 window is used to perform a Gaussian filter on the

derivative products to calculate the structure tensor, and a final 3 × 3 window is used for non-

maximum suppression. No details are given as to the bit width used for the intermediate calcula-

tions. Hsiao, Lu and Fu report a performance of 46 fps for 640× 480 images, which is equivalent

to 14 MPix/s, on a Cyclone II FPGA. No details are given for the latency, but it must be at least

8× image_width, given the sizes of the sliding windows.

Possa, Mahmoudi, Harb, Valderrama and Manneback [12] (2014) present a similar archi-

tecture to [13], which has much higher performance. A more conventional approach is taken to

calculating derivatives, employing a standard 3×1 convolutional derivative filter, 5×5Gaussian

filtering of the structure tensor elements, and a large 9× non-maximum suppression window.

Interestingly, the Harris–Stephens score is only calculated with 8 bits of precision, saturating

large values to 255. This is to minimise the storage space required for the 9× 9 sliding window’s

linebuffers, but it has the problem of creating regions of the image with equal corner scores (all

255). This is mitigated by inserting an additional 5 × 5 Gaussian low-pass filter, at the cost of

added latency and storage.

Additionally, instead of invalidating windows in the margins of the image, the implementa-

tion uses the “mirroring” strategy described in section 2.3.3. This is a problematic choice, since

the “mirroring” strategy creates information that is not present in the original image. All other
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implementations adopted the “drop” strategy, since it does not introduce any additional inform-

ation.

The authors report an operating speed of 232 MPix/s on an Arria V FPGA (the same as used

in this work). Latency is 9× image_width + 53 cycles. Additionally, they measure power con-

sumption at 6.7 mJ for a 1024× 1024 image.

Amaricai, Gavriliu and Boncalo [15] (2014) present a low block-RAM-usage variant on this

approach, specifically for situations where on-chip RAM is limited, but logic elements are not.

The work makes the observation that a large part of the memory cost of the design in [13] is due

to persisting the calculated Harris matrices and Harris–Stephens scores between rows. These

values are stored in a block RAM, which must be at least as wide as the image.

The design presented uses “tall” windows to calculate multiple values simultaneously, and

discards these values after use. The tall windows contain the information for multiple overlap-

ping input windows, and these are computed in parallel. “Taller” sliding windows are used so

that intermediate values can be calculated for several rows at once. The values are not persisted

between image rows, and must be recalculated on the next pass.

To realise this, only one sliding window is employed, windowing the input pixels. Instead

of storing previously-calculated intermediate values—such as derivative products and Harris–

Stephens scores—in a sliding window, these values are instead recalculated every row. Interme-

diate results are buffered in a shift register for that row, so some reuse occurs, but significantly

less than either of the above approaches.

The one sliding window is a 3× 7 pixel window on the input. This constitutes 5 overlapping

3× 3windows, each of which provides the input to a derivative calculation module. The output

derivatives are multiplied to yield the derivative products, and thus we have a 1 × 5 vector of

2 × 2 Harris–Stephens matrices. This is used as the input to a 3 × 5 shift register, constituting

3 overlapping 3 × 3 windows, which are the inputs for 3 Gaussian filters. The outputs from the

Gaussian filters are a 1×3 vector of structure tensors, which are the inputs for 3 Harris–Stephens

score calculation modules. Finally, the 1 × 3 vector of corner scores provides input for a 3 × 3

shift register, and non-maximum suppression is performed on this.

In effect, each Harris–Stephens matrix is calculated five times, each smoothed structure

tensor three times, and each corner score three times. This imposes no extra latency over the

alternative methods, but does impose a cost in logic and in power consumption. The authors
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report a performance of 225 MPix/s on a Virtex-5 FPGA, but no power consumption figures.

Latencies are given for many of the modules, but not the system total. Using the provided

latencies and estimates based on the implementations in this work, total system latency is es-

timated as 3 × image_width + 12 cycles. This figure is significantly lower than those for the

other two implementations primarily because the windows are somuch smaller. A 3×3window

introduces only 1 row of latency, and all three “effective” windows are 3× 3.
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2.5 Implementation

This section describes the hardware implementation of a feature detector, comprising a Harris–

Stephens corner detector (see section 2.2.1) and non-maximum suppression (see section 2.2.3).

The mathematics of the implementation, as well as latency and precision, are discussed, and the

performance is compared to other existing implementations.

This work does not use the FAST feature detector. In CPU implementations, FAST is almost

never used without Harris–Stephens as well, since FAST does not return a corner strength score.

It is instead used as an optimisation, because it reduces the computational load on the Harris–

Stephens detector by filtering out points that are definitely not corners.

This hardware feature detection implementation is highly-pipelined, and guarantees a 1

pixel per clock throughput, since there are no pipeline stalls. The logic for Harris–Stephens

corner detection is completely independent of all other stages, and thus there is no advantage

to early exit, if it is determined that a pixel could not possibly represent a corner. The Harris–

Stephens logic would still compute a result, which would then be ignored. This contrasts with a

CPU implementation, where the same processor is used for calculating Harris–Stephens scores

and doing other tasks, such as feature matching.

It must be noted that the combination of FAST and Harris–Stephens does not have identical

output to just Harris–Stephens alone. It is possible for pixels to be arranged such that FAST

will not detect a corner, but Harris–Stephens will report a strong corner. In such cases, Harris–

Stephens alone will detect more corners than the combination. This is not considered to pose a

problem.

The input to the detector is a stream of pixels, one per clock cycle. The output is a single-

bit signal indicating whether the corresponding pixel coordinate is determined to be a corner

or not. The output signal is delayed relative to the input, since later pixel values are required

to determine whether a coordinate is a corner or not. See figure 2.11 for per-module latency

details.

Harris–Stephens
Detector

Non-maximum
Suppression

pixels corner scores corners

Figure 2.10: Overview of the Corner Detection system
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Figure 2.11: Data flow and latency in the Harris-Stephens corner detector

2.5.1 Harris–Stephens Detector

Introduction

This section describes a hardware implementation of the Harris–Stephens feature detector. The

input to the module is a stream of pixels, and the output is a corner score for each pixel coordin-

ate.

This implementation is similar to those in [12], [13], since they are architectures that repres-

ent efficient use of logic and yield 1 pixel/clock throughput. The approach of [15] represents a

different tradeoff, for situations where logic is plentiful, but memory is constrained. The FPGA

used in this work, an Arria V, has plentiful memory, so this is not considered necessary.
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Gradient calculation

The input pixels flow into a 3× 3 sliding window. This sliding window contains enough inform-

ation to approximate the image gradients using the Sobel operator[16]. This operator is used

instead of a simpler derivative filter because it combines a smoothing operation with the deriv-

ative calculation, and draws gradient information from the local neighbourhood of the point.

The Sobel operator convolves the input image (A) with two 3 × 3 kernels, one for the gradient

in the x-axis, one for the gradient in y:

Gx =


−1 0 1

−2 0 2

−1 0 1

 ∗ A, Gy =


−1 −2 −1

0 0 0

1 2 1

 ∗ A

This convolution is performed in hardware with shifts, adds and subtracts.

Harris matrix calculation

Next a “Harris Matrix” is constructed, which is the outer product of a vector of the two gradient

components with itself:

H =

Gx

Gy

[Gx Gy

]
=

 G2
x GxGy

GxGy G2
y


Since the H12 and H21 components are identical, we can save a multiplication, and so only

three multipliers are needed. The implementation of these first two steps can be found in Har-

risMatrixPipelined.sv.

Gaussian filtering

The next step is to smooth the gradients using a Gaussian filter. The standard deviation σ of the

filter is a free parameter of the detector, and this work uses a sixth-order binomial filter, with a

kernel of size 7:
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Higher- and lower-order Gaussian filters were briefly tested, but little effect on the output

was observed, so this parameter was not investigated in depth. The size of the window has a sig-

nificant impact on the resource consumption, however, since each cell of the window requires

three wide multipliers and each additional row requires an additional row of Harris matrix coef-

ficients be stored in memory. This invites further investigation of its effects.

The standard deviation of a one-dimensional binomial distribution is given by σ =
√
n
2 ,

where n is the order of the filter. When two separable one dimensional filters are convolved

with one another orthogonally, as here, the standard deviation of the combined filter in each

axis is unaffected. Since both filters have order 6, the combined filter has a standard deviation

of
√
6
2 in both the x- and y-axes.

This filter is applied individually to each of the components ofH, yielding amatrix called the

structure tensor, A, which represents the smoothed Harris matrix. Each multiplication in this

convolution has one input constant, so they are implemented as shifts and adds, instead of using

DSP multipliers, then the products are summed using a pipelined adder tree.

Corner score calculation

The Harris–Stephens corner score is derived from the components of A:

score = det (A)− κ trace (A)2 (2.23)
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In expanded form:

score = A11A22 − A12A21 − κ(A11 + A22)(A11 + A22) (2.24)

Constant κ should be a small constant. This work chooses 1
16 , a power of two, since it allows

the multiplication to be replaced with a shift, enabling calculation of the score with only three

multipliers. The effect of modifying κ has not yet been investigated in detail, and would be a

good avenue of further research.

The SystemVerilog implementation of the smoothing and score calculation is inHarrisCorner-

sPipelined.sv.

Bit widths

The selection of bit widths used in various intermediate calculations of the Harris–Stephens fea-

ture detector is a significant subproblem. In general, the more bits of precision, the better the

detector operates, since it is able to detect finer differences in corner scores. However, memory

usage is proportional to the number of bits used, since a high-precision value requires a wider

memory.

[12] attempts to sidestep this issue by using saturating arithmetic, which clamps overflow

values to the maximum and underflow values to the minimum. This nonlinear transformation

destroys information, however, and so this work does not use such an approach.

For simplicity and efficiency, this work uses solely integers. Some values, such as the input

pixels, are unsigned integers, while others, such as the structure tensor and the corner scores,

are two’s complement signed integers.

In order to reduce memory requirements, this work reduces the precision of some interme-

diate values. There are sliding windows for the input pixels, for the Harris matrices, and for the

Harris–Stephens scores, so these are the most effective values to target. The value is calculated

to full precision internally, and then truncated before entering the sliding window. With the

exception of thresholding, all the subcomponents of Harris–Stephens operate on relative mag-

nitude, so truncating values has no effect on the algorithm result, aside from precision issues.

These are explored in section 5.3.

The input pixels are 8-bit unsigned integers, representing greyscale values, with 0 beingblack
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and 255 white.

Value Range (8-bit input) Bits needed Bits (k-bit input)
Input pixels [0, 255] 8 (unsigned) k

Sobel response [−1020, 1020] 11 (signed) k + 2
Harris matrix terms [−1040400, 1040400] 21 (signed) 2(k + 2)

Table 2.3: Bitwidths needed for full precision calculating Harris matrix terms

Table 2.3 shows the precision required to calculate Harris matrix terms to full precision. The

maximum Sobel response is approximately 4 times the maximum pixel input, and the minimum

is −4 times the minimum value. The Harris matrix terms are products of the Sobel responses.

The diagonal elements are guaranteed to be non-negative, since they are squares, whereas the

off-diagonal terms (which are identical) can be negative or positive.

As discussed in section 5.3, 21 bits of precision for the Harris matrix terms is more than

required, and so the values are truncated before passing into the sliding window.

Value Range (8-bit input) Bits needed Bits (k-bit input)
Input Harris matrix terms [−128, 127] 8 (signed) k
Sum of weighted responses [−524288, 520192] 20 (signed) k + 12

Re-normalised structure tensor [−128, 127] 8 (signed) k
Harris–Stephens score [−17408, 12097] 16 (signed) 2k

Table 2.4: Bitwidths needed for full precision calculating Harris–Stephens score (7× 7 Gaussian
filtering)

Table 2.4 shows the precision required to calculate the Harris–Stephens score for a point to

full precision. The weights in a 7×7 binomial Gaussian filter sum to 2048 (212), so the sum of the

weighted components requires 12 bits more than the input matrix terms. In effect, each weight

is a fractionwith denominator 256, and so the weighted sum should be re-normalised afterwards

by right shifting 12 bits.

The range of the Harris–Stephens score is complex to evaluate. For a structure tensor

a b

b c

 (2.25)

themaximal value is obtained when a = c and b = 0. Theminimal value is obtained when a = 0

and b = c = −128, or equivalently a = b = −128 and c = 0. This has the effect of leaving the

range unbalanced, with a larger negative range than positive.
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Figure 2.12: The tests performed for non-maximum suppression. x is the value of the centre
pixel.

2.5.2 Non-Maximum Suppression

Non-maximum suppression is implemented as a post-processing stage following Harris score

calculation. The scores from the pipelinedHarris–Stephens corner detector pass into a 3×3 slid-

ing window. For each position of the window, the centre score is compared against a threshold,

which defines the minimum response required to detect a corner.

If a given corner candidate has a higher corner score than the threshold, itmust then be com-

pared against its neighbours to determine whether it is the local maximum score. This is done

by comparing the score against the scores in the eight neighbouring pixels, which are present

in the window. To better break ties, a corner candidate is reported as being the maximum if its

score is greater than or equal to all its neighbours to the left and above, and if its score is greater

than all its remaining neighbours. This ensures that one point from two adjacent pixels with the

same score is selected and reported as being a corner.

If a corner candidate passes all these tests, it is determined to be a corner. The output from

the module is a binary value indicating whether the current pixel is a corner or not. This signal

is then used to trigger ORB modules in the second part of the system.

2.5.3 Performance

There are two main aspects of performance for a feature detector, timing and accuracy.

45



Timing

Timing has two major aspects, throughput and latency.

Throughput is the rate at which input can be processed. This system, and the three other

examples presented in section 2.4.1, are all able to sustain a throughput of 1 pixel per clock cycle,

meaning that the input is handled as quickly as it is received, since there are no possibilities for

pipeline stalls. Thus themain factors affecting actual throughput are the clock speed and the rate

at which pixel input can be supplied to the FPGA. The entire system, as implemented, attains a

maximum clock speed of approximately 150 MHz, which is lower than [12], [15] at around 230

MHz, but neither of these systems included a feature extractor, and so the comparison is not

entirely fair.

Latency is the delay caused by the pipelining of the algorithm. This work defines module

latency as the delay between when a particular pixel enters the detector and when the detector

reports its corner score. There is necessarily a delay, since the detection of the corner relies

on information that will arrive after the pixel. Pixels from later rows of the image contribute

information to the detector, and thus earlier information must be buffered.

In this system, and in all the others examined, the latency is dependent on the width of the

image, since multiple rows must be buffered. In effect, each corner score is only delayed by

a small number of clock cycles after the last, critical pixel is received, which provides the last

piece of information required to calculate the output value.

The latency of each of the implementations is primarily dependent on the sizes of its sliding

windows. This system has a total latency of 5×image_width+22 cycles, with the window sizes

configured as shown in figure 2.11. [15], with only 3× 3 windows, has the lowest latency of any

of the systems considered, at only 3 × image_width + 12 cycles. [12], with its large windows,

has the highest latency of all considered, at 9× image_width + 53 cycles.

It is important to realise, however, that the cycle time in all these systems is very fast, and so

the latencies are on the order of tens of microseconds. For an image 1920 pixels wide (eg 1080p

video), this Harris–Stephens detector implemented in this work has a latency of 64 µs.

Frame Latency is a combination of throughput and pixel latency. It measures the time

between a when a frame begins being sent to the detector and when the detection results are

available, and is a useful high-level abstraction of how long it takes to process an image. The
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frame latency is given by:

Frame latency = Latency +
Pixels

Throughput
(2.26)

For a standard 1080p video frame (1920 × 1080), the system implemented in this work will

take 2083222 clock cycles, or 13.89 ms at 150 MHz.

Accuracy

Accuracy is the second factor in feature detection performance. Accuracy is very hard to

quantify, since it is all but impossible to define a “ground truth” for the process of feature detec-

tion. The ground truth for an image would consist of a set of coordinates that are corners, and

algorithms could be tested to ensure they return exactly this set when the same image is input.

Unfortunately, for all but the simplest geometric images, it is impossible to construct a

ground truth, since real images have texture and gradients. These ensure that any two feature

detection algorithms are almost guaranteed to detect the same features, andmean that compar-

ing two different implementations of the same feature detector is difficult.

As described in chapter 5.3, this work instead uses simple corner counts at a given threshold

to evaluate the performance of particular internal parameters.

47



2.6 Conclusion

This chapter has provided an introduction to feature detection, a selection of algorithms for

corner detection, a history of hardware implementations of Harris–Stephens, and details of the

hardware implemented in this work. Harris–Stephens has been selected as the sole corner de-

tector, instead of the more common combination of FAST and Harris–Stephens.

The reason for this is that the FAST detector only provides an early cull of possible corner

candidates, it does not actually return the necessary corner scores. FAST will reduce the compu-

tational load on a Harris–Stephens detector implemented on a CPU, but in this hardware imple-

mentation, the Harris–Stephens module will run regardless of any FAST preemption, and thus

FAST is unnecessary. For more details, see section 2.5.

The architecture presented here is very similar to those of previous works, specifically Possa,

Mahmoudi, Harb, Valderrama and Manneback [12] and Hsiao, Lu and Fu [13]. Both these papers,

and thiswork, describe systems built from slidingwindows, with the operations being performed

on these windows. The throughput of all of these is identical on a per-cycle basis, and thus

depends entirely on the clock speed of the implementation. This work has a significantly higher

clock speed than [13] (150 MHz vs. 14 MHz), but a lower clock speed than [12] (232 MHz). The

latency and hardware requirements for the three designs are dependent on the window sizes

selected, and on the bit widths of the windows. For the same parameters, each design should

have essentially identical latency and requirements.

The paper from Amaricai, Gavriliu and Boncalo [15] focuses on reducing memory consump-

tion, which is achieved by recalculating previous values, instead of storing them for reuse. The

throughput of this design is again 1 pixel/cycle, with a clock speed comparable to [12] (225MHz).

For the same design parameters, this implementation will have identical latency to any of the

other three designs, but logic use will be significantly higher (on the order of 4 times as large),

and block RAM usage will be around half of that of the others. Table 2.5 shows details of resource

usage for the described implementations.

The design parameters shown in figure 2.11 represent a typical configuration of the module.

The input window is 3×3, the Harris matrix window is 7×7 and the non-maximum suppression

window is 3× 3, although all of these may be changed at design time.

The following chapter will discuss what happens with the features once they are detected
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Implementation Memory bits Register bits
[13] 433920 1729
[12] 276480 1120
[15] 92160 705

This work 341760 1153

Table 2.5: Memory and register usage for some Harris–Stephens implementations. Image size is
1920× 1080. For this system, input window 3× 3, Harris matrix window 7× 7, non-maximum
suppression window 7 × 7, 8-bit input, 16-bit Harris matrix terms, and 33-bit Harris–Stephens
scores.

– the extraction of descriptors, which allow corners to be compared against one another, and

similarities between them found.
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Chapter 3

Feature Descriptor Extraction

3.1 Introduction

As a camera moves through an environment, typically most of the objects visible in one frame

will also be visible in the following frame. If the camera has moved, the apparent positions and

orientations of the objects may have changed slightly, but in general, the majority of the objects

will still be visible.

In order to determinehow the apparent positions of objects have changed, it is first necessary

to identify which objects in one frame are actually the same objects viewed in the next frame.

This can be done by identifying features on the objects that resemble features in the other frame.

It is vanishingly unlikely that the regions of pixels around a feature in two successive frames will

be identical, and thus a more nuanced approach must be taken to identifying features in two

frames that represent the same physical feature. Ideally, we want to calculate for each feature

a value that will allow us to match approximately against other values calculated from other

features.

3.1.1 Feature Descriptors and Extractors

A feature descriptor is a value (typically a vector) calculated for a feature using a feature ex-

tractor. Feature extractors will typically calculate the descriptor for a feature using the local

environment around the feature, since little information is contained in a single pixel. Fea-

ture descriptors are structured in such a way that they can be easily compared against other

descriptors from other features, in order to find feature matches.
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All practically-used descriptors represent a vector in a multidimensional space. Some, such

as SIFT (Scale-Invariant Feature Transform, see section 3.2.1), represent a vector of real values

in a multidimensional space, and similarity between two descriptors is judged using Euclidean

distance. Others, such as BRIEF (Binary Robust Independent Elementary Features, see section

3.2.2) and ORB (Oriented FAST and Rotated BRIEF, see section 3.2.3) are binary descriptors—each

dimension of the descriptor is either 0 or 1, and distance between descriptors is judged using

Hamming distance, the number of bits that differ in the representations.

In informal speech, it is common to refer to a feature extraction algorithm as a “feature

descriptor”, although strictly it is the output of a feature extractor that is the feature descriptor.

3.1.2 Invariance

Many feature extraction algorithms are described as being scale invariant, rotation invariant,

illumination invariant or even affine transformation invariant. In practical terms, these mean

that the descriptors can be used to match features that differ in the respective way.

Scale invariance means that two features may be matched that differ in scale. This property

is particularly useful in SLAM applications, since it allows features to be matched regardless of

image depth. A robot might see a particular feature from 10 m away and store its descriptor.

When the robot is 5m away, it sees the same feature again, but this time it has twice the apparent

size, thanks to foreshortening. A naive feature extractor may not be able to match these two

features, since the scales are so different, but one with scale invariance should be able to.

Rotation invariance allows descriptors to be used to match features that are rotated relative

to one another. This particular invariance is less useful for ground-based robotic vehicles, but is

extremely useful for airborne robots, particularly ones that observe the ground or bank in order

to turn. When observing the ground, the “orientation” of a feature is entirely dependent on the

compass orientation of the vehicle, and thusmultiple passes over the same ground featuremight

appear different. Use of a non-rotation invariant feature extractor would cause two descriptors

to be significantly different. The same applies to banking—banked flight causes the features to

be rotated relative to the vehicle.

Illumination invariance allows an extractor to generate similar descriptors for two views of

the same feature under different lighting conditions. Commonly this is achieved by perform-

ing calculations relative to a pixel in the feature, and assuming that lighting conditions across
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the feature are similar, taking advantage of spacial coherence. A feature extractor without illu-

mination invariance is typically unable to match two views of the same feature under different

lighting conditions, for example at two different times of day, or when a light is turned on.

Affine transformation invariance is a property that allows descriptors to be used to match

features that have undergone a more complex transformation than simple rotation or scaling,

such as a skew or trapezium transformation. Such transformations are less commonly seen in

physical objects, but can result from lens distortion around the outer edges of an image.
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3.2 Algorithms

This section details a number of the algorithms used for corner-based feature descriptor extrac-

tion. Particular attention is given to ORB, which is used in this work.

3.2.1 SIFT

Scale Invariant Feature Transform (SIFT) was introduced in Lowe in 1999. SIFT produces, for a

given feature, a 128-dimensional real-valued unit vector representing a histogram of the gradi-

ents around the feature point.

The gradient histograms are determined by taking subsets of the pixels around the feature

point and determining their image gradients as a vector. The vectors are grouped into 8 bins at

45° spacing, and the sums of the magnitudes of the vectors used to determine the value of the

histogram bins.

SIFT provides rotation and scale invariance, and partial illumination and affine transforma-

tion invariance. In order to provide rotation invariance, SIFT determines a feature’s orientation,

and performs all later operations relative to this orientation. This feature orientation is determ-

ined by a voting mechanism, where the image gradients at each point in a window around the

point contribute to the vote in proportion to the strength of the gradient. The rotation angle is

quantised to values of π
18 , or 10°.

Scale invariance in SIFT is achieved by means of an image pyramid (see section 4.1.1). This

means that the feature detection and extraction steps are performed at multiple scales, and the

results combined together.

The illumination invariance in SIFT is provided by the use of intensity gradients. Since the

gradients are calculated as the difference in brightness between two points, assuming that they

are subject to the same illumination, the difference in their intensities should be independent of

the illumination of the feature.

Limited affine transformation invariance is achieved by selecting the subsets of pixels for

gradient histograms such that they represent different distortions of the image. If the distortion

is modest, there is a good chance that the gradient histogram will be similar for two different

transformations of the same feature.

The SIFT descriptors generated by the extractor are normalised to unit length, and can be
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compared to others using Euclidean distance.

SIFT has very good matching accuracy, at the cost of very slow computation and large

descriptor size. If stored with 32-bit floating point numbers (the default in OpenCV), each

descriptor takes 512 bytes.

3.2.2 BRIEF

Binary Robust Independent Elementary Features (BRIEF) is a feature descriptor extraction al-

gorithm introduced in [18] to address the performance and storage issues of SIFT. The extractor

computes, for a feature point, a binary vector representing the results of a number of pixel com-

parisons in the neighbourhood of the feature.

Each bit of the descriptor is generated by comparing a pair of pixels at predetermined offsets

from the feature centre. For example, a pair might be defined as ((−3, 4), (2,−1)), and the

feature might be located at (100, 100). The pixels at (97, 104) and (102, 99) are sampled from

the image, and then compared. If the first has a higher intensity than the second, then a 1 is

written to the descriptor, otherwise a 0 is written.

The number of pixel comparisons used in BRIEF is variable, but typically between 128 and

512 are performed. The precise set of descriptors is a parameter of the implementation, but is

generally unimportant. The authors show good performance with 128 pairs of points chosen

randomly with Gaussian-distributed radius from the central point.

BRIEF does not have scale, rotation or affine transformation invariance, just illumination

invariance. The illumination invariance comes fromusing relative comparisons, instead of using

absolute intensities. The extractor is not rotation invariant, since a rotation of the input image

will cause a different set of pixels to be sampled. Scale invariance can, however, be achieved by

using an image pyramid (see section 4.1.1), in the same way as with SIFT and ORB.

BRIEF descriptors are comparedusingHammingdistance, that is, counting the bits that differ

between two descriptors. The matching accuracy is reasonable for cases with minimal rotation,

but descriptor calculation and matching performance is much faster than SIFT.

3.2.3 ORB

Oriented FAST and Rotated BRIEF (ORB) was introduced in [4] to address the lack of rotation

invariance in BRIEF. ORB uses the same principle of a vector of binary tests, but instead of the

54



samples being taken at fixed offsets from the central feature point, the samples are rotated to

match a canonical orientation of the feature.

The canonical rotation is defined by the angle of a vector pointing towards a point called the

image centroid. The image centroid is in turn defined in terms of image moments.

An image moment is a value defined on a region of an image in amanner similar to amoment

of a probability distribution:

Mpq =
∑
x,y∈w

xpyqI[x, y] (3.1)

whereMpq is the moment of the image of order p in the x-axis and order q in the y-axis, and w

is the window over which the moment is to be calculated, typically a circle or square.

M00 is equal to the sum of the pixels in the window and the image centroid is defined as:

Centroid =

(
M10

M00
,
M01

M00

)
(3.2)

The centroid is approximately the average location of maximum intensity, so in an image

that is mostly black except for a patch of white, the centroid will be located in the middle of the

white patch. On real images it will typically be in or near the brightest point, as shown in figure

3.1.

Once the image centroid has been located, the canonical orientation is determined using the

atan2(y, x) function

Orientation = atan2
(
M01

M00
,
M10

M00

)
(3.3)

In the case that the centroid is located at the origin, the orientation is undefined. This work

discards such cases as degenerate.

In the original ORB paper[4], this angle was quantised to 12° increments (i.e. 30 different

angles) in order to enable the use of precalculated lookup tables for the samples. The version

of ORB currently in OpenCV now has an accuracy of “about 0.3 degrees”[19], corresponding to

approximately 1024 angles, and no longer uses multiple lookup tables.

The lookup table for the sample coordinates used in ORB has them stored relative to an ori-

entation of 0°. Before the samples are drawn from the image, their coordinates are rotated by
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Figure 3.1: The image centroid for a feature
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Figure 3.2: Some ORB samples

the negative of the feature’s orientation, to align themwith the rotated descriptor. This is shown

for a few pairs of samples in figure 3.3.

Since the samples are rotated according to the orientation of the feature, ORB is significantly

more invariant to rotations of the input image, and will successfully match in such cases. Ad-

ditionally, in an improvement upon BRIEF, the sample points are chosen with more care than

simple random selection.

According to the paper[4], a large number of pairs of samples was generated, and then these

were ranked in order of how much information they provided about the feature. The highest-

scoring pair was selected as the first bit, and then the remaining pairs were again ranked by how

much additional information they provided, before selecting the pair for the second bit. This

process was repeated until 256 pairs had been selected.

Since only high-information pairs are selected, this has the effect of reducing the correlation

between different bits in the binary descriptor, and generally improves the information content

of the 256 bits that ORB returns for a feature.
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Figure 3.3: The ORB samples from figure 3.2 rotated to align with a feature
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ORB has rotation invariance, as described above, and illumination invariance, in the same

way as BRIEF. Scale invariance can be introduced with the use of an image pyramid, as discussed

in section 4.1.1. General affine transformation invariance is, however, minimal, since distortion

of the image will change the pixels sampled.

ORB has generally good performance, a little slower than BRIEF because of the extra image

moment calculation and rotation steps, but fast enough for realtime video processing of small

images. The matching performance is, however, significantly better than BRIEF, particularly for

image pairs where the transformation involves a rotation. ORB is significantly faster than SIFT,

with comparable matching performance[4].

Since there were few high-performance implementations of ORB at the outset, and since it

shows good matching performance, ORB was selected as the feature extraction algorithm to use

in this work.
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3.3 Previous Work

3.3.1 SIFT

Bonato, Marques and Constantinides [20] developed an FPGA-based implementation of SIFT

in 2008, using a Difference-of-Gaussians feature detector. The algorithm is otherwise a close

translation of the CPU implemention onto the FPGA platform. Performance was reported as 30

fps for 320× 240 pixel images, a throughput of 2.3 MPix/s.

Yao, Feng, Zhu, Jiang, Zhao and Feng [21] developed a higher-performing implementation

in 2009 by making small modifications to the algorithm to better conform to the FPGA environ-

ment, including reducing the length of the vector of floats output as the descriptor. Performance

was reported as 32 fps for 640× 480 pixel images, a throughput of 10 MPix/s.

3.3.2 BRIEF

The BRIEF algorithm is much better-suited to FPGA implementation than either SIFT or ORB,

since it does not involve any expensive rotation operations, meaning that a sliding window can

be used for both feature detection and feature extraction, and direct access to the pixels in the

feature extraction window can be performed. This means that BRIEF descriptors can be calcu-

lated using a pipeline with unity throughput, and that the only barrier to performance is clock

speed.

de Lima, Martinez-Carranza, Morales-Reyes and Cumplido [22] developed a hardware

implementation of BRIEF in 2015, using specially-selected BRIEF sample points to maximise per-

formance. The work does not detect corners, but instead assumes that they are already detected

and in a memory, ready to use.

The BRIEF sample points are arranged in such a way that all the necessary pixels can be

sampled using 22 4-byte reads. The memory the authors use is capable of unaligned reads, and

the BRIEF sample tests are selected such that they only use pixels from these 22 read opera-

tions. This allows the pixels to be read using random access relatively quickly. Once loaded into

registers, the pixel comparison tests can be executed rapidly using fixed addresses.

Since the design does not have to detect corners, the throughput is best measured in terms

of features processed. This architecture manages one 256-bit descriptor every 15 clock cycles.
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This, in theory, means that for a unity-throughput feature detector, it should be able to extract

one BRIEF feature descriptor every 15 pixels. Fmax is reported as 125 MHz.

Hu and Ikenaga [23] developed an extremely fast implementation of BRIEF in 2017, which

processes four pixels per clock cycle on average to achieve a throughput of 400 MPix/s at 100

MHz, equivalent to 1300 fps at 640×480, on a Kintex-7 FPGA. The BRIEF points are not randomly

selected, but chosen in such a way as to maximise the information content, in a similar way to

ORB.

3.3.3 ORB

Lee [6] developed an FPGA-based ORB implementation in 2014. The design uses FAST as the

corner detector and appears to store the image in an external RAM.

The method used for image storage in the FAST detector is unclear from the paper, but it

appears that it is loaded from some external storage into a 7× 7 internal memory, which might

be a sliding window, or possibly just a wide RAM.

FAST corner detection proceeds in a standard manner, doing the pixel comparisons. It ap-

pears that the corner detection has a maximum throughput less than 1 pixel/clock, possibly due

to the time taken to fill thememory. If a point is determined to be a feature, its address is pushed

into a FIFO queue for feature extraction.

A second submodule is used to calculate the ORB descriptors for points. It appears that pixels

are fetched from the external memory once again and fed into a 31 × 31 block-RAM (BRAM)

memory. The image moments are calculated from this BRAM, processing one column of data at

a time. The orientation is computed using an atan2 lookup table.

The descriptor bits themselves are calculated using four copies of thewindow in parallel. The

coordinates are transformed according the orientation of the feature, and samples taken from

the window. The parallel modules allowmultiple bits to be calculated in parallel, shortening the

total calculation time.

The paper is unfortunately short on detail, and skims over many of the complex aspects of

the design, such as the time taken to load the windows, the external memory access patterns,

and the design of the pixel samplers.

The design was implemented on an Artix-7 FPGA, running at 100 MHz. Throughput is re-

ported at 33 MPix/s for 640× 480 images with 600-800 features, or approximately 100 fps. The
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design is able to process around 80000 features/s.
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3.4 Implementation

Input Column CentroidWindow

atan2

Rotation SamplesSampler

Descriptor bits

Figure 3.4: The ORB Module [2] ©IEEE 2017

This section details the FPGA implementation of ORB feature extraction. The input to the com-

ponent is a stream of single pixels and an accompanying feature signal from a feature detector,

and the output is a stream of coordinate/descriptor pairs.

This systemhas been designedwith the goal of achievingmaximum throughput. It is capable

of handling input of one pixel every clock cycle, and thus is able to keep up with the feature de-

tector. However, since the extraction of ORB feature descriptors takes longer than 1 clock cycle,

the extractor is not necessarily able to keep up with all of the detected corners. The approach

taken in this work is to drop corners that cannot be processed in real time.

Owing to the use of non-maximum suppression in the feature detector, the maximal density

for corner detection is one every two pixels (two adjacent pixels cannot both have the highest

score in their 3× 3windows). The extraction of a descriptor can take up to 266 clock cycles, and

thus for an input of 1 pixel/clock cycle, it is possible for 132 features in every 133 detected to be

dropped. A feature density of 1
2 is thankfully rare in real-world images, and so typical drop rates

are significantly lower.

In addition, it is possible to havemultiple independent instances of the ORBmodule running

in parallel, so if onemodule is busy processing a feature and another is detected, a secondmodule

can handle the second feature, avoiding a drop. The addition of additionalmodules will of course

provide diminishing returns, as regions of low density will lead tomanymodules sitting idle, and

each module has a substantial logic and memory cost. A more detailed analysis of this trade-off

is presented in section 5.4.
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37× 37 window
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…×256 …

Sample Rotation

Sampling

Compare Samples

Output Descriptor

Figure 3.5: ORB data flow and dependencies

TheORB algorithmhas two primary processing steps. The first is the calculation of the image

centroid, in order to determine the rotation of the sample mask. The second is to sample pairs

of points from the feature environment and compare them to generate descriptor bits.

As shown in figure 3.5, the calculation of the rotation angle is a precondition on performing

any of the samples. The determination of the image centroid is a precondition on calculating

this angle, and this requires all the pixels of the 37× 37 window. Once the angle is determined,

however, all the samples could potentially occur in parallel.

3.4.1 Feature Orientation

The rotation angle is calculated as
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θ = atan2 (ȳ, x̄) = atan2
(
M01

M00
,
M10

M00

)
(3.4)

Since hardware divisions are so expensive, we would like to remove the division by the patch

sumM00. Conveniently, atan2 is independent of scale, and thus

θ = atan2
(
M01

M00
,
M10

M00

)
= atan2 (M01,M10) (3.5)

This result means that we only need to calculate M01 and M10, then use them as inputs to

some realisation of atan2 (see subsection 3.4.1).

Image Moments

In order to calculate the rotation angle, we need the the first image moment in the x- and y-

axes (M10 andM01 respectively) for a region around the detected feature. Image moments are

defined as:

Mpq =
∑

(x,y)∈w

xpyqI[x, y] (3.6)

where p, q ∈ Z and w is a windowing region around (0, 0).

This work uses w as the region {−18,−17, . . . , 17, 18}2, representing a 37 × 37 window

centred about 0, since this is the rectangular bound from which the ORB samples are drawn. In

theory, any size region could be used to determine the moments — a Gaussian window centred

at the origin, or a circular window with antialiased edges, would be two options worthy of con-

sideration. This work uses a rectangular region since it greatly simplifies the calculation, and

doesn’t significantly affect the detected corner orientation.

Proposal 1: Gigantic adder tree

The naive approach to calculating these two desired moments would be to construct two ex-

tremely large adder trees, one for eachmoment, with 1369 input elements, one for every element
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of the window. This tree would need to be 11 levels tall, and each input would require a constant

multiplier representing either its column or row address, as appropriate. Such a structure would

impose a latency of at least 12 cycles, and consume a very large fraction of the available routing

logic.

Proposal 2: Integral images

An alternative approach is to use a structure like an integral image, introduced in [24], to accel-

erate the calculation of the image moments. An integral image is an array of values the same

size as the input image, where the value at each coordinate represents the sum of the values in

the rectangle defined by that coordinate and the origin, in the input image.

ii[x, y] =
∑

x′≤x,y′≤y

i[x′, y′] (3.7)

where i is the input image and ii the integral image.

Integral images can be used to calculate the sum of the pixels in any arbitrary axis-aligned

rectangle of the image in constant time, independent of the size of the rectangle, using the rela-

tion

RectSum((a, b), (c, d)) = ii[c, d]− ii[a, d]− ii[c, b] + ii[a, b] (3.8)

where (a, b) and (c, d) specify two opposite corners of the rectangle.

It is possible to generate an integral image on the fly, using a sliding window. Since the

integral image values are stored in the cells of the sliding window, the size of the rectangular

sum is limited by the size of the window. An integral image generated over a 37 × 37 sliding

window would have sufficient information to enable calculation ofM00.

It is possible to calculate the sums of each row and column of the image moment window

using this 37× 37 integral image. The sums are then multiplied by their respective offset from

the centre of the window to enable calculation ofM01 andM10.

The sliding window necessary to implement this integral window must be very high-
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precision. For a 1920 × 1080 image with 8 bits per pixel, the bottom-right array cell needs 29

bits of storage, and thus a 37-row-high sliding windowwould require over 2Mb of block RAM. By

taking advantage of the commonalities between successive image moments, this approach can

be improved upon, significantly reducing the memory requirements, as described in the next

section.

Proposal 3: Iterative computation

Figure 3.6: At each step, a column of input pixels is added to the right side of the window, and a
column of old pixels is removed from the left side, leaving the window size constant.

The approach employed in this work makes use of iterative computation for both the x- and y-

moments. The ORB window can be considered as a sliding window moving across the image.

Each update step, one column of pixels from the image is added to the right-hand side of the

window, and one column of pixels from the left-hand side of the window is removed. Iterative

calculation of the imagemoments then becomes a function of the incoming column of pixels and

some internal state, instead of requiring access to the value of every pixel in the window.

X-Moment

(Lindsay Kleeman contributed to the analysis in this section) Consider the x-moment case. We

assume that we have some internal state for a given 37 × 37 window, and we want to find the

moment for the next window. Formally, we want to find a function for

M10|k+1 (Sk, inputk) (3.9)
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where Sk is the current state and inputk is the incoming column of pixels.

In our particular case, with a 37× 37 window, we have

M10|(kx,ky) =
18∑

x=−18

18∑
y=−18

x · I[kx + x, ky + y] (3.10)

where kx and ky are the x- and y-coordinate of a particular point, k. Likewise,

M10|(kx+1,ky) =

18∑
x=−18

18∑
y=−18

x · I[kx + x+ 1, ky + y] (3.11)

For the sake of generality, we defineh as the half-window size; the full windowhas dimension

(2h+ 1)× (2h+ 1). For the 37× 37 window, h = 18.

In addition we define a new function,

colsum(x, y) =
h∑

a=−h

I[x, y + a] (3.12)

Using these definitions,M10 can be expressed as:

M10|(kx,ky) =
h∑

x=−h

x · colsum(kx + x, ky) (3.13)

SubtractingM10|(kx,ky) fromM10|(kx+1,ky) gives:

M10|(kx+1,ky) −M10|(kx,ky) =
h∑

x=−h

x · colsum(kx + 1 + x, ky)−
h∑

x=−h

x · colsum(kx + x, ky)

(3.14)

=
h+1∑

x=−h+1

(x− 1) · colsum(kx + x, ky)−
h∑

x=−h

x · colsum(kx + x, ky)

(3.15)

68



Expanding the first term

M10|(kx+1,ky) −M10|(kx,ky) =
h+1∑

x=−h+1

x · colsum(kx + x, ky)−
h∑

x=−h

x · colsum(kx + x, ky)−
h+1∑

x=−h+1

colsum(kx + x, ky)

(3.16)

The first two terms in equation 3.16 have significant overlap, and thus they cancel out par-

tially

M10|(kx+1,ky) −M10|(kx,ky) =

x · colsum(kx + x, ky)
∣∣
x=h+1

− x · colsum(kx + x, ky)
∣∣
x=−h

−
h+1∑

x=−h+1

colsum(kx + x, ky)

(3.17)

Substituting we get

M10|(kx+1,ky) −M10|(kx,ky) =

(h+ 1) · colsum(kx + h+ 1, ky) + h · colsum(kx − h, ky)−
h+1∑

x=−h+1

colsum(kx + x, ky)

(3.18)

The third term in equation 3.18 is equivalent to M0|(kx+1,ky), that is to say, the sum of the

elements of the next patch. We can expand it to transform the term into M0|(kx,ky), i.e. the

current patch sum:
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h+1∑
x=−h+1

colsum(kx + x, ky) =

h∑
x=−h

colsum(kx + x, ky)− colsum(kx + h+ 1, ky) + colsum(kx − h, ky) (3.19)

Substituting back into equation 3.18, we have

M10|(kx+1,ky) −M10|(kx,ky) =

h · colsum(kx + h+ 1, ky) + (h+ 1) · colsum(kx − h, ky)−
h∑

x=−h

colsum(kx + x, ky) (3.20)

This expression allows us to calculate the change in x-moment cheaply, only requiring the

sum of the column of pixels entering the window, the sum of the column of pixels exiting the

window, and the sum of all the pixels in the window:

∆M10(k + 1) = 18 ·
∑

(incoming pixels)− 19 ·
∑

(outgoing pixels)−M00 (3.21)

= 18 ·
∑
y

inputk[y]− 19 ·
∑
y

inputk−37[y]−M00|k (3.22)

Reformulating the above into the discrete state-space representation of equation 3.9, we

have:

Sk =
(
M10|k,M00|k,

∑
inputk−1 . . .

∑
inputk−37

)
(3.23)

M00|k+1 = M00|k +
∑

inputk −
∑

inputk−37 (3.24)

M10|k+1 = M10|k + 18 ·
∑

inputk − 19 ·
∑

inputk−37 −M00|k (3.25)

Sk+1 =
(
M10|k+1,M00|k+1,

∑
inputk . . .

∑
inputk−36

)
(3.26)

Thus, the state required to be maintained between steps is:

• the current x-moment,M10
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• the current sum of all pixels in the window,M00

• a shift register of the sums of the previous 37 columns of input

The new output x-moment is a function of the previous x-moment, the current input, the

input from 37 steps ago, and the sum of the pixels in the window.

Y-Moment

The calculation of the y-moment is more straightforward. Again, an iterative computation is

used, but because the window moves in the x-axes, a given pixel always has exactly the same

weighting in the y-moment for the duration of its time in the window.

The sum of the pixels in each row of the window is tracked as the window moves across the

input image, and these sums are multiplied by their y-coordinate before being summed to yield

the y-moment value (M01).

M01|(kx,ky) =
18∑

y=−18

18∑
x=−18

y · I[kx + x, ky + y] (3.27)

In state space

Sk =
(
rowsum−18 . . . rowsum18, inputk−1 . . . inputk−37

)
(3.28)

rowsumn|k+1 = rowsumn|k + inputk[n]− inputk−37[n] (3.29)

Sk+1 =
(
rowsum−18 . . . rowsum18, inputk . . . inputk−36

)
(3.30)

M01|k+1 =

18∑
y=−18

y · rowsumy (3.31)

The state required to be maintained between steps is:

• the sums of all the pixels in each of the rows of the window

• the previous 37 columns of input

Unlike the x moment calculation, the full delayed input column is required, not just the sum

of the pixel values. Thus instead of a shift register, the x moment calculation reads a column

71



directly out of the ORB window (see section 3.4.2).

Arctangent

The original ORB paper[4] suggests quantising corner rotation angles to one of 30 values, repres-

enting increments of 12°. However, the code currently (at the publication of this work) available

on OpenCV GitHub has switched to using a higher-precision representation, with an error of

“about 0.3 degrees”[19]. The precision of the angle is in fact a free parameter, and can be chosen

to optimise some criterion.

The approximate angle calculation is done by quantising the angle to the centroid into one

of 2n sectors, where n is the number of bits. Sector 0 points directly upwards (in the negative

y direction in image coordinate space) and sector numbers increase in the clockwise direction.

The angle for a sector k is given by:

θ =
2πk

2n
, k ∈ {0, 1, . . . , 2n − 1} (3.32)

Angle 0 is defined to point upwards (negative y direction) and angle π
2 to point right (positive x

direction).

Figure 3.7 shows a number of runs of the Tarsier simulator using different precisions of the

sector calculation. As can be seen, for coarse angle divisions, matching performance is low, since

the algorithm is effectively functioning as BRIEF. When the number of rotation angles is very

high, the results tend to stabilise, and no extra performance is attained by adding finer divisions.

In the middle, around 26 sectors, the number of matches found is significantly higher. This is

attributed to false matches, where two corners that should not be matched are similar enough

to match.

This work chooses to quantise to 64 sectors, as this number offers a good compromise

between accuracy and reduced complexity of implementation, relative to 1024 angles.

The arctangent module itself is designed to calculate a 6-bit (64-value) approximation of the

angle towards the centroid. The first two bits represent the quadrant of the 2-dimensional space

that the centroid lies in, which is easily calculated by examining the signs of the x and y ar-

guments to the module. Once the quadrant has been identified, the centroid coordinates are

rotated so that they lie in the top right quadrant of the plane, as shown below:

72

https://github.com/opencv/opencv/blob/master/modules/features2d/src/orb.cpp


10 100 1,000

0

200

400

600

800

1,000

Count of possible angle values

Co
rn
er

m
at
ch

es

Match count for different numbers of quantisation angles

Figure 3.7: A plot of the number of corner matches for different degrees of angle quantisation,
matching the same pair of images

x > 0 y > 0 Quadrant New x New y

no no top left −y x

no yes bottom left −x −y

yes no top right x y

yes yes bottom right y −x

If both x and y are 0, the orientation is undefined, since the centroid lies at the origin. In this

case, the feature is degenerate, and cannot be processed, thus is dropped.

The remaining four bits depend on the angle within the quadrant. The following analysis

examines the top right quadrant and using only four angles per quadrant, for the sake of simpli-

city. Figure 3.8 shows this quadrant and the five sectors that cover parts of it. The results can be

generalised to the full unit circle.

The problem is thus reduced to determining which sector a given point lies in. One possible

approach is to map the centroid point onto the line x = 1, using similar triangles. The mapped

y value could then be compared against the values of the blue sector boundaries at x = 1, and

the appropriate sector determined by finding the highest boundary less than the y value.

ymapped =
y

x
(3.33)
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Figure 3.8: The sectors of one quadrant. Red lines mark possible output angles. Blue dotted
lines mark the boundaries between different sectors. If a centroid lies within a sector, the red
line represents the angle that will be returned by the atan2 module. This diagram represents a
configuration with four angles per quadrant, thus 4 bits of angle precision across the full unit
circle.
Note that the coordinates are in image coordinate space, thus positive y is downwards.

Sector Upper bound at x = 1 Upper bound at x = 174

0 -5.027 -874.8
1 -1.497 -260.4
2 -0.668 -116.3
3 -0.199 -34.6
4 0.199 34.6

Table 3.1: The comparison table for a centroid at x = 174

The downside of this approach is that mapping the centroid onto the line requires a division

operation, which is slow and logic-intensive. However, the approach can be salvaged by instead

calculating the comparison table at x = 1 and then using similar triangles to shift it to the

appropriate x coordinate.

Consider a featurewith a centroid at (174,−212). Since thex coordinate is 174, the intercept

comparison table must be scaled by a factor of 174, as shown in table 3.1. The y coordinate is

compared against each of the scaled upper bounds, and the feature belongs to the first sector

with an upper bound greater than the y coordinate. In this case, the centroid is in sector 2.

This algorithmcanbe implementedwithout requiring any division in 5 clock cycles, as shown

in SectorSel.sv.
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3.4.2 ORB Window

Structure

The ORB window is a memory structure specifically designed for the access patterns needed in

ORB. ORB requires random read access to pixels in a 37 × 37 window, and the window needs to

be able to be kept up to date as new image data arrives. The window is able to load image data

in the same way as a sliding window, with a new column of pixels entering the window every

clock cycle, and an old column exiting to make space. Additionally, the window provides the

data necessary for calculating the X and Y moments of its contained pixels iteratively.

The window is realised as a very wide ring buffer in block RAM. A ring buffer is a memory

where input data is written into consecutive addresses. When thewrite pointer of the ring buffer

reaches the end of the memory, it begins again from the beginning. This means that the ring

buffer stores a history of the elementswritten into it. Earlier values are stored at lower addresses.

The ORB window is implemented as a ring buffer of width 37 × 8 = 296, and length of 64,

the smallest power of two greater than 37. On each update step, the window is loaded with a

column of 37 pixels, which replaces the oldest word in the memory. This column then becomes

the rightmost column of the window contents. The 37 addresses preceding the current value of

the write pointer represent the contents of the window, with columns to the right having higher

addresses than those to the left. As each new column is written, the left column of the window

leaves the window, but remains in an unused portion of the memory until it is later written over

by new data.

The column of new input pixels comes from a source external to the window. In the system

as implemented, this takes the form of a sliding window that also provides the pixels for the

Harris–Stephens detector.

The structure of thewindowmeans that the effective location of thewindow rolls around the

ring buffer, and so thememory address of a givenwindow coordinatemust be calculated dynam-

ically by adding an offset given by the address of the write pointer. It is possible for the window

to be split into two parts—one at the end of the memory, and one at the beginning, with unused

memory in the middle. Since the memory has length of a power-of-two, it is straightforward to

use wrapping arithmetic to calculate a given address. The window coordinates are defined such

that the origin of the window is in the middle of the 37 × 37 square. The most recently input
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Figure 3.9: A depiction of the state of an ORB window in memory. The origin is at address 5, the
write head is at address 24, and the read head is at address 51. The current window contents are
shown in green and unused space in red.

column is at x = 18, and the oldest column has x = −18. y coordinates are defined according

to image convention, so the bottom of the window has y = 18, and the top has y = −18.

As an example, if the write pointer into the ORB window is currently at address 24, the

column of pixels at address 23 has y = 18. Thus, the column containing the origin (at x = 0 is at

address 5. The column with x = −18was written before the write head wrapped around, and is

located at address 51. The space between addresses 24 and 50, inclusive, contains old pixel data

which is no longer needed. This is shown in figure 3.9.

When a new column of pixels is written into the window, it will be written into address 24.

The write pointer will then advance to address 25 and the origin to address 6.

The ORB window is implemented in ORBWindow.sv.

Access

The ring buffer is implemented in dual-ported block RAM, which constrains the access patterns

to the ORB window. Each of the ports can operate as a read port or as a write port, and both are

used in different operation modes of the window.

TheORBwindowoperates in twomodes—writemode and readmode. Inwritemode, columns
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of input arewritten into thewindow and themoments are updated. Whenever a column of input

is written, the write head advances one position. Write mode is the mode used to keep the ORB

window in sync with the stream of input.

Read mode on the window is used when a corner has been detected, and the ORB module

must access pixels for the comparisons that generate the descriptor. In read mode, write up-

dates to the window cease, and thus the window can become out of sync with the input pixel

stream. While in read mode, each of the two ports operates as an independent random access

port, allowing access to any pixel in the window. This means that two pixel accesses can occur

concurrently, constituting one ORB comparison per clock cycle.

It is necessary to freeze the ORB window when a corner is detected, since otherwise the

window’s contents would soon be overwritten by new input columns. When ORB descriptor

generation finishes, and the ORBwindow returns to writemode, it is possible that input columns

have been received without being written to the window. Since this implementation does not

have the facility to replay previous input, it is then necessary for the ORB window to wait until

a full 37 columns of input have been received without interruption before the window is once

again fully valid. Owing to pipeline delays in themoment calculationmodules, this takes 46 input

columns in the current implementation.

The validity status of the window is managed by a dirty flag. When the ORB windowmodule

transitions into read mode, the flag is cleared, marking the window as being clean. If a column

of input is received while the module is in read mode, it cannot be included in the window, and

must be discarded. This means that if the window later resumes writing, it will have missed

some input, and there will be a gap. Thus when the input is received, the flag is set, indicating

the window is dirty. If the dirty flag is set when the window returns to write mode, it will take a

full refresh of 46 columns of input before the window is once again valid and ready to transition

back to read mode.

Moments

TheORBwindowalso provides the rawdata for the calculation of imagemoments. TheXmoment

calculator only requires the column of input pixels, which is passed inwithoutmodification. The

X moment module will sum the pixels and feed them into its own shift register.

The Y moment calculator, on the other hand, requires a shift register of a window’s width
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Figure 3.10: State machine for each ORB module

of input columns, so that it can remove values from its row sum registers once they leave the

window. The only value actually required from the shift register, however, is the outgoing pixel

column, which is always resident in the ORB window. Since only one of the two memory ports is

used when the ORB window is in write mode, the other memory port can be used as a read port

pointing to the column of pixels that will leave the window on the next update step, thus the

ORB window itself serves as the shift register needed for the Y moment module. The read head

location is shown in figure 3.9.

3.4.3 ORB Module

TheORBmodule is responsible for coordinating one ormoreORBwindows and actually doing the

comparisons for the ORBdescriptor. AnORBmodule contains ORBwindows,moment calculation

modules and an arctangent module.

An ORB module can be in one of three high-level states—filling, ready, or processing.

The filling state represents the condition where the module’s ORB windows have not yet

received a full window’s worth of consecutive image pixels. This may be because the current

location is at the beginning of the image, or because input wasmissed during a recent descriptor

generation. In this state, the windows are all in write mode, allowing them to remain in sync

with newly-received pixel columns. Since the windows are not ready, the module is unable to
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process any features that are detected.

After a full window’s worth of pixels have been received, the ORB module transitions into

the ready state. While in the ready state, the ORB module is ready to begin processing a feature

to extract its descriptor when triggered. The windows remain in write mode, and the image

moments are valid. The arctangent module also provides valid output in this state, so feature

orientation is continuously calculated, even if the pixel in question is not determined to be a

feature. When triggered by a feature detector, the module transitions into the processing state.

In the processing state, the module proceeds to calculate the bits for the ORB descriptor. In

this mode, the ORB windows are in read mode, permitting two random access pixel reads per

clock cycle. The ORB windows can be duplicated to allow multiple comparisons to be executed

in parallel. One module allows one comparison per clock, two modules allow two comparisons,

and so on. While the ORB module is in the processing state, it is unable to respond to further

detected corners. Once the descriptor generation is finished, themodule will transition to either

the filling state or the ready state, depending on whether the ORB modules are dirty or clean,

respectively.

Calculation of the sector to which the centroid belongs imposes a delay of 6 clock cycles.

Once this result is available, it is used as an index into a precomputed table of sin and cos values.

These trigonometric tables provide the values used to transform the sample coordinates used

in the ORB descriptor from their unrotated positions into the orientation of the feature. For an

unrotated sample (x, y) rotated by angle θ, the rotated sample coordinates (x′, y′) are given by:

x′
y′

 =

cos θ − sin θ

sin θ cos θ


x
y

 (3.34)

This calculation is performed using signed fixed-precision arithmetic and the final values

are rounded. The trigonometric lookup table values are precomputed to 8 bits of precision, and

the rotation operation imposes a latency of one clock cycle. This rotation is implemented in

VectorRotate.sv.

Once the rotated coordinates are obtained, they are used to address the read operations in

the ORB windows. Each read has a latency of one clock cycle, and the read values from the two

samples are compared together to provide one bit of the descriptor. These are shifted into a
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256-bit serial-to-parallel converter for output.

The total computation time for the ORBmodule is dependent on the number of ORBwindows

operating in parallel. In the case of one window per ORB module, the delay is 266 clock cycles.

For nmodules, the total computation time is given by

time = 10 +
256

n
(3.35)

The implementation of the ORB module can be found in ORB2.sv.

3.4.4 ORB Arbitrator

Since ORB modules are only able to process one feature at a time, if another feature is detected

while a module is still generating the descriptor for the previous one, the module cannot handle

it and it must be dropped. This will result in a reduced proportion of detected features having

their descriptors extracted successfully, which may lead to impaired matching performance.

To reduce the impact of this dropping,multiplemodules can be implemented in parallel. This

way, if a feature is detectedwhile onemodule is still processing, anothermodule can take its place

and handle the newly-received feature. An arbitrator is needed to coordinate the behaviour of

these multiple ORB modules.

The ORB arbitrator module is responsible for delegating each received feature to one of its

subservient ORB modules. It keeps track of the state of each of the modules, and feeds each

detected feature to the next availablemodule in the ready state. In addition, it collects the output

from each of the ORB modules and returns this to the remainder of the system. Since only one

module can be triggered every clock cycle, and descriptor generation time is fixed, it is only

possible for one module to return a descriptor during a given clock cycle, so there is no need for

internal buffering.

The implementation of the ORB arbitrator can be found in ORBArbitrator.sv.

3.4.5 Design Choices

Why not just store the whole image in RAM?

The ORBwindows take a lot of resources. Could one not just store the whole image in a big buffer

and do random access on it?
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The Tarsier device in its default configuration is able to process images up to 4K (3840×2160

pixels). This represents almost 71 Mbit to store a full frame in on-chip block RAM (row lengths

must be a power of 2). The largest andmost expensive Stratix V FPGAs, at the time of publication,

have approximately 52 Mbit of block RAM, and so are not able to store even one frame, let alone

the whole image pyramid.

For 1080p images (1920 × 1080 pixels), merely 18 Mbit of storage is sufficient, which is the

entire block RAM complement on the Arria V GX used for implementation. It is effectively im-

possible to store images of any useful size entirely in block RAM.

Moreover, block RAM only has two ports. Random access on a whole image stored in block

RAMwould be limited to onemodule at a time, completely negating the benefits of multiple ORB

modules operating in parallel.

Why not just copy pixels into the patch when needed?

As an alternative to storing the whole image in block RAM, it could be stored on off-chip DRAM

and feature neighbourhoods streamed in when needed. This architecture is very similar to the

CPU or GPU approach, where the image itself is stored in main memory, and random accesses to

the image are stored in a local cache.

The disadvantage of streaming from external RAM is the latency. DDR3 latency is approxim-

ately 50 ns[25], and 667 MHz [26] DDR3 is able to stream at 1333 MT/s, although the transfer rate

will be limited by the module clock speed, approximately 150 MHz. 370 32-bit word reads are

necessary to transfer a full patch of image pixels, which will take at least 370 cycles. 370 cycles

is significantly longer than the time taken to compute a descriptor with the current system (266

cycles).

Why is the window 37× 37, and not 27× 27?

The published sample points of the ORB feature extractor are confined to a 26 × 26 window

centred approximately at the point (0, 0) and ranging from -13 to 12 in both axes. The samples

are spread over the whole of the square (points (−13,−13), (−13, 12), (12,−13) and (12, 12)

are all sampled).

When these samples are rotated, however, the corners are now rotated out of the 27 × 27

bounding window. The point at (−13,−13) is the furthest from the centre, at a radius of
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√
132 + 132 ≈ 18.38, and thuswhen rotated by π

4 , would be located at (0,−18) (after rounding).

Because of this, the sampling window must be of radius 18 at least.

It would be possible to implement this using a circular window, but for simplicity, this work

uses a square window of 37× 37 pixels, covering the range from -18 to 18 in both x and y axes.

Could one not load multiple samples simultaneously?

It could be argued that the implemented ORB window structure wastes considerable memory

bandwidth. When in read mode, each row of the window is effectively an independent dual-

ported 8-bit RAM, but yetwe use the same address for all the rows on each port, and only take one

byte from the 37 bytes read on each port. Since each row has its own address bus, theoretically

a design could read 37× 2 = 74 pixels from the ORB window every clock cycle, and finish all the

memory accesses in only 7 clocks.

The ORB algorithm as described in [4] is conducive to an easy implementation of the above.

The limiting factor for this approach is the number of distinct samples drawn from each row of

the image. Since the two ports on each row can only feed 2 pixels per clock cycle, any row with

more than 14 pixel samples would require longer than 7 clocks.

As it happens, there are only 374 distinct pixel samples in the ORB descriptor, and they are

reasonably evenly distributed between row -13 and 12, with a minimum of 7 samples per row

and a maximum of 22. Thus, all the accesses required for an unrotated ORB descriptor could be

performed in only 11 clock cycles. This is, of course, a huge improvement over the 256 clock

cycles required to perform random pixel access in the current design.

However, when rotation is taken into account, the situation becomes significantlymore com-

plicated. Because different samples are at different radii from the central point, when their co-

ordinates are rotated, two samples which were previously on the same row can be located on

different rows, with the effect that the sequencing of the accesses is dependent on the rotation.

With 64 different rotation angles, it becomes highly impractical to orchestrate all the different

access patterns.

One possible approach would be to implement a reorder buffer (ROB), similar to that used

in an out-of-order superscalar CPU architecture. The ROB would contain the samples yet to be

performed, and processors for eachmemory row could takememory addresses from the ROB and

perform the samples in an out-of-order manner. In effect, we would have 37 distinct processing
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units, each capable of dispatching two operations per clock cycle.

The performance of this approach is highly dependent on the size of the ROB. A ROB of size

2 has identical performance to the approach presented in this work, while requiring minimal

crossbar logic. A ROB of size 374 (the number of distinct ORB samples) would have optimal speed,

because each rowwould be immediately occupied and never starved of input. The cost of such an

approach is the crossbar switch required to route coordinates to their target rows, and samples

to their comparators. While not impossible, such a switchwould occupy somuch of the hardware

resources as to be intractable.
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3.5 Other Work

Lima, Martinez-Carranza, Morales-Reyes and Cumplido [7] is a modification of the authors’

previous work, [22], turning the BRIEF extractor into an ORB extractor. Like its predecessor, this

work assumes that the features (and now their orientations) have already been detected, and are

stored in a list in memory.

The paper describes using an identical set of pixel samples as in the BRIEF paper. The pixel

comparisons only use 88 pixels, which are clustered into 22 4-byte read operations, two of which

can occur in parallel. Instead of just translating the sample addresses so that they are in the

neighbourhood of the detected feature point, this work rotates the sample points to coincide

with the detected feature alignment.

If the random accesses were single-pixel reads, this would be a reasonable and effective

strategy. Unfortunately, because the reads are chunks of four pixels, adjacent to one another

in the x-axis, this is a problematic approach, since some pixels are rotated around the incorrect

centre point (see figure 3.11). This can cause a pixel sample to be offset by up to 7 pixels from its

correct location.

Performance is identical to the BRIEF implementation—each descriptor can be extracted in

15 clock cycles. For feature matching with minimal rotation, this implementation will perform

well, but for caseswith significant rotation, it is expected that thiswill have severe consequences.

Sun, Liu, Wang, Accetti and Naqvi [8] is a more conventional approach to designing an

FPGA ORB extractor. Features are detected using a sliding window-based FAST detector, and

are then queued in a FIFO. A separate module handles determination of the image centroid and

orientation, and calculation of the descriptors.

An image pyramid (see section 4.1.1) is used to allow multiscale processing, with a 4
5 scale

factor between layers.

When the extractor module reads a feature location from the FIFO, it begins by loading the

relevant pixel area fromexternal (DDR3)memory. Thewindow loaded is 31×31pixels by default,

but certain rotations require a larger window, and in these cases, the extra pixels are loaded after

the orientation is calculated.

The orientation itself is calculated as the image enters the window, using a radius 15 circle.

This is a more accurate approach than the square window used in this work, but is computation-
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Figure 3.11: The ORB feature extractor in [7] performs its samples in horizontal blocks of four,
which leads to significant positional discrepancy when rotated. The orange rectangle shows two
samples (blue and orange) at canonical orientation. The green rectangle shows the “correct”
position for these two samples, if they are rotated by 90°, according to the ORB algorithm. How-
ever, the approximations used in [7] mean that instead, the samples are taken from the locations
shown in the red rectangle, a significant distance from their correct locations.

ally more complicated, and does not allow easy iterative calculation. A CORDIC[27] algorithm is

used to determine the orientation from the centroid position.

The descriptor calculation itself is standard, performing one pair of pixel samples and out-

putting one bit of descriptor every clock cycle.

Performance is quoted as extracting 1000 features from 1080p images at 42 fps, which is equi-

valent to 42000 features/s or 87 MPix/s.
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3.6 Feature Descriptor Matching

In order to do anything useful with image features, theymust bematched against corresponding

points in other frames. A corresponding point is a point that represents the same real-world

object but viewed from a different viewpoint.

ORB descriptors are 256-bit binary vectors, and the distance between two ORB descriptors is

measured using the Hamming distance. Hamming distance is defined as the count of bits that

differ between two values, and a low Hamming distance indicates a high similarity, and vice

versa.

The Hamming distance defines ametric space on the set of ORB descriptors, since it defines a

distance between each point. Unfortunately, the structure of the Hamming metric space makes

approximate nearest neighbour matching a hard problem. Some success has been reported with

location sensitive hashing (LSH)[4], but the false negative match rate is unacceptably high.

Because of this, almost all ORB implementations use brute-force matching. This involves

comparing each descriptor against the full set of candidate features one by one, and recording

the lowest Hamming score found. This is a computationally expensive task. Matching a set of

n features against m candidates to find correspondences requires n × m comparisons, each of

which involves a wide XOR and a bit population count.

This particular operation is very parallelisable, and well-suited to an FPGA architecture. A

very basic brute-force ORB descriptor matcher was implemented as part of this work in [1], but

is not currently included in the Tarsier system. It was intended to implement a more powerful

version of matching on FPGA, but time constraints meant that this had to be abandoned.

3.6.1 Thresholding and Prominence Matching

When scanning a list of candidate descriptors for the bestmatch, it is common to simply take the

feature with the lowest Hamming distance as the bestmatch. However, in some cases, there is no

corresponding point, owing to clipping, obstruction, or the feature being dropped due to high

load. In these cases, the “bestmatch”might actually represent a completely different object, and

will introduce a spurious correspondence, causing inaccuracy in later processing. Many systems

will impose a maximum threshold, above which a correspondence is not considered valid. This

threshold represents the maximum number of bits that can differ between two descriptors for
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them still to be allowed to match.

The precise value of the threshold is a parameter of the system thatmust be tuned, but values

on the order of 40 are common.

A further technique that can be applied to reduce the number of false matches is prominence

matching. This tracks not only the bestmatch but also the second-bestmatch, and only considers

the match to be a correspondence if the difference between the two best matches is above a

threshold. Prominence matching helps to ensure that a correspondence is strong by weeding

out cases where many similar features have been encountered. This is common in cases such as

repeating patterns, where for instance every window on a wall has the same set of features.

Although prominence matching also inhibits correct matches, in most cases it improves the

quality of the matches and removes false positives.
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3.7 Conclusion

This chapter has examined several feature descriptor extractors in common use, and investig-

ated a number of hardware implementations of them. ORBwas selected as the algorithm for this

work, owing to its unexplored state in the hardware acceleration community, its applicability to

the FPGA platform, and its discrimination performance.

The implementation of ORB on FPGA offers a number of design decisions—some implement-

ations take the approach of translating the algorithm literally from CPU to FPGA, and keep the

same access patterns as a CPU. Others attempt to modify the algorithm to better conform to

the hardware platform. This implementation has attempted to create a very high speed sys-

tem for descriptor extraction, sometimes dropping features in order to comply with real-time

constraints.
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3.8 Comparison with other work

The implementation of ORB feature extraction in this work is generally higher-performing than

other implementations, as far as speed is concerned. There are two main metrics useful for

judging speed—pixel rate and feature processing rate. The pixel rate is the rate at which the

system can accept pixels, detecting corners and passing them for extraction. It is primarily gov-

erned by the feature detector speed. The feature processing rate is the rate at which the system

can generate descriptors for features. It is primarily governed by the throughput of the feature

descriptor extractor.

The two rates are coupled: a system can only process features as fast as it detects them,

and (in some systems) the feature processing elements can apply backpressure to the feature

detectors, limiting the pixel rate.

Work Pixel Rate Feature Rate
[6] 33 MPix/s 80× 103 features/s
[7] n/a 8.3× 106 features/s
[8] 87 MPix/s 42× 103 features/s

This work 150 MPix/s 170× 103 features/s

Of the three implementations with published pixel rates, this work is by far the fastest, since

it imposes hard real-time constraints on the processing of frames. Because of this, the pixel rate

is 1 pixel/clock cycle, and since the clock frequency is 150 MHz, the pixel rate is 150 MPix/s.

The figure selected for the feature rate of this work is a typical figure for one module. The

theoretical maximum for a single module is 563000 features/s, for a situation where one module

is buffered and remains clean at all times (these is described further in section 5.4). In this situ-

ation, extracting a descriptor takes 266 cycles. [7] reports a performance of one descriptor every

15 clock cycles at 125 MHz. This has been included for comparison, but since the algorithm im-

plemented has been significantly modified from standard ORB to better suit their architecture,

it is unclear how relevant the comparison is.

3.8.1 Scale invariance

The implementation presented in this work has not addressed the issue of scale invariance so

far. Scale invariance is critical to the performance of a robotic visual navigation system, since it

allows a robotic vehicle tomatch objects viewed fromdifferent distances. The standard approach
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to achieving scale invariance is the image pyramid, comprising multiple versions of the image

at different resolutions. The investigation of an FPGA implementation of an image pyramid is

described in the following chapter.
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Chapter 4

Multiscale Processing

4.1 Introduction

A highly-desirable property for a feature descriptor to possess is scale invariance. Scale invari-

ance means that two views of the same corner at different sizes should generate descriptors

that will match one another. These two views can arise due to the camera zooming in or moving

towards the object, for example.

Unmodified ORB does not have the property of scale invariance. The sample pattern is ro-

tated according to the rotation of the corner, giving it rotation invariance, but the pattern is a

fixed size, and will always look at the same region of image space around a detected corner. This

means that if a corner is detected at a given position, and then the camera moves towards the

object, a descriptor generated from the view at the closer position will likely have a descriptor

that will not match the previous one.

4.1.1 Image Pyramid

One commonmethod of adding scale invariance to a system is to use an image pyramid[4]. Image

pyramids were introduced in a restricted form in [28]. The structure contains multiple copies of

an image at smaller scales, generated by downsampling the original image, similar to mipmap-

ping[29] in computer graphics. The original image is considered the base of the pyramid, and

each level above is a downsampled version of the level beneath it. The corner detection and

feature extraction processes are duplicated for each level of the pyramid and the results are col-

lected at the end. In effect, each level of the pyramid is treated independently of all of the others,
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Figure 4.1: Exponential image pyramid. Octave levels are in black, intermediates are in red. This
pyramid uses a scaling factor of 2−1/3 between levels. [2] ©2017 IEEE

as if it were a separate image. If sufficient numbers of downsampled images are generated, it is

likely that at least one level will have the feature at a scale close enough to result in a match.

The scale factors are usually chosen to be exponential, somoving a given number of levels up

the pyramid results in the same factor reduction of image size. The simplest method is to have

each level as 1
2 the size of the one below in each axis, so it has 1

4 the number of pixels. Levels

are numbered starting with 0 for the base, so if level 0 has k pixels in the x axis, level 1 will have

k/2, level 2 will have k/4, and so forth. Each scaling of 1/2 is termed an octave, by analogy with

music, where an octave represents a doubling of frequency. Typically the number of octaves is a

parameter of the system.

Using only one level per octave has acceptable matching performance, as shown in section

5.2, but it can be improved by inserting intermediate levels in-between, maintaining the expo-

nential scaling. With two levels per octave, the scaling factor is 2−1/2 ≈ 0.707 . . . between levels,

and with three levels per octave 2−1/3 ≈ 0.793 . . .. Adding additional levels increases the like-

lihood of a downsampled feature matching the target, but comes at the expense of complexity

and resource consumption. On a CPU, this takes the form of additional memory consumption

and computation; on an FPGA, logic for the duplicated processor chains and block RAM for their

sliding windows.

As described further in section 5.2, in general, matching performance increaseswith increas-

ing numbers of pyramid levels, but with diminishing returns. When matching pairs of images

with little scale difference, the impact of the use of an image pyramid is less than it is when

matching pairs of images radically differing in scale.
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Figure 4.2: The positions of samples in a 4
5 downsampling operation. The top row shows the po-

sitions of the samples in the original resolution signal, while the bottom row shows the reduced
density of samples in the lower-resolution output signal.

4.1.2 Resampling

Resampling is the process of representing a discrete signal with different samples. Down-

sampling reduces the sample rate and upsampling increases it. Downsampling necessarily re-

moves information from the sampled representation, but upsampling does not add it back —

information cannot be created.

Since each level in the pyramid (aside from the base) is a reduced-resolution version of a level

below, a downsampling operation must be performed to yield its image data.

As shown in figure 4.2, most of the output samples in a downsampling operation are coincid-

ent with those of the input, and so the signal value is not known at those output sample points.

For the 4
5 downsampling operation shown, no more than one in four output points can be co-

incident with an input. Determining the value to output at these intermediate points requires

reconstructing an approximation to the continuous signal that was originally sampled.

When resampling the input signal, we want to ensure that the resultant samples represent

the signal as closely as possible. Nyquist–Shannon sampling [30] ensures that the samples can

be used to perfectly reconstruct the continuous input signal, provided that the input signal is

bandlimited—that is, its Fourier transform is zero for frequencies above the Nyquist frequency,

defined as half the sampling frequency. Any signals above this Nyquist frequency are aliased—

after sampling, they are reconstructed at different frequencies below the Nyquist limit.

In order to ensure that the image signal does not cause aliasing when downsampled, it is

necessary to apply a low-pass filter to reduce the amplitude of the high-frequency components.

This work uses a 2 × 2 box filter as the low-pass filter for the ratio 1
2 downsampling operation,

which is applied in combinationwith the resampling by averaging squares of four pixels together.

Low-pass filtering has not yet been applied for the ratio 4
5 downsampling, but this is an area

worthy of future investigation.

Figure 4.3 showshow the original continuous image function is sampled by the camera, yield-
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(a) The original continuous signal

(b) The continuous signal sampled at high frequency

(c) The discretely-sampled signal

(d) The signal reconstructed using linear filtering

(e) The reconstructed signal sampled at the new rate

(f) The discrete resampled signal

Figure 4.3: Reconstruction of a sampled continuous function for downsampling
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ing a discrete signal. The continuous signal is reconstructed using a linear filter, as described in

the next section. It is then resampled at 4
5 the original sample rate, yielding the output discrete

signal.

There are a number of different resampling approaches used to reconstruct the original con-

tinuous sample for downsampling, but the primary filters used are bilinear, bicubic[31] and

Lanczos[32] interpolation, in increasing order of computational complexity. Bilinear interpol-

ation uses the four pixels surrounding a point to provide the image data, interpolating linearly

in both x and y axes. Bicubic interplation uses the 16 pixels around the point, fitting a cubic

polynomial to the image data in both x and y axes. Lanczos interpolation uses a windowed sinc

function as its filter kernel, and in general provides a better-quality resampling, at the expense

of computation time. The size of the window is a parameter of the filter – typically 9 to 49 points

are used around a point.

4.1.3 Interpolation Filters

The various interpolation methods differ in the process they use to reconstruct the continuous

function (see figure 4.4). All of the filtering methods described below are one-dimensional, but

they can be extended ton dimensions simply by performing the interpolation inmultiple axes at

once. By convention, the terms “linear” and “cubic” filtering are reserved for one-dimensional

implementations. For higher dimensions, prefixes are added, e.g. “bilinear”, “trilinear”, etc.

Nearest-neighbour filtering approximates the function by taking the value of the nearest

point, effectively dividing the image into Voronoi cells. Halfway between each pair of samples,

the interpolated function experiences a step change in value, causing sharp visual artefacts.

Computationally, nearest-neighbour interpolation is the simplest, since it only requires one

sample and no arithmetic.

Linear filtering fits a straight line between every pair of adjacent points, causing gradient dis-

continuities at points. Each output requires two samples and a weighted average, so it is slightly

more computationally-intensive than nearest-neighbour.

Cubic filtering[31] fits a cubic equation between each pair of adjacent points, with the

gradients at the endpoints given by the average gradient in the local neighbourhood, using a

curve known as a Catmull-Rom spline. The resultant compound curve is smooth, and generally

provides more aesthetically-pleasing results than linear (or bilinear) filtering.
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Sinc filtering[30] is performed by multiplying each sample point by a sinc function. The sinc

function, defined as

sinc(x) = sinπx
x

(4.1)

has unity response at x = 0 and zeroes at nonzero integer x. When aligned to a discrete input

signal, the response will be the sample value at its position, and zero at the positions of all other

samples, so the interpolated function uses the sampled value directly. The sampled values are

known exactly, and do not need to be interpolated. In between these sample points, the calcu-

lated value is a combination of every input sample. The sinc filter is provably [30] the optimal

reconstruction filter for bandlimited signals.

However, since the interpolated value at all non-integer points is a function of every sample,

the sinc filter is computationally impractical. Formally, the sinc filter has infinite support, where

the support of a filter is the number of input values required to calculate an output value. To

make the problemmore tractable, the Lanczos filter[32] applies a window to the sinc filter, using

a parameter a.

L(x, a) =


sinc(x)sinc(x/a) −a < x < a

0 otherwise

(4.2)

The parameter a is a small integer, usually 2 or 3. The Lanczos filter retains the property

of having zero response at all nonzero integer x values, while at the same time restricting the

support of the filter to only 2a samples.
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(a) Five input points (plus two adjacent points
for interpolation purposes)

(b) Nearest-neighbour interpolation (c) Linear interpolation

(d) Cubic interpolation (Catmull-Rom spline)

(e) Lanczos interpolation (a = 3)

Figure 4.4: Various interpolation methods applied to the same input points. Some interpolation
methods require additional points outside of the interpolated range in order to satisfy smooth-
ness constraints. These are shown as dotted circles.
The red curve in 4.4d shows the cubic curve that is used as the interpolation function between
two of the sample points.
The red curve in 4.4e shows one of the scaled Lanczos basis functions that are combined to yield
the interpolated curve.
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4.2 Implementation

This section discusses the approach taken in integrating a multilevel image pyramid into the

Harris–Stephens/ORB system developed in the previous chapters.

4.2.1 Pyramid Structure

The conventional approach for implementing image pyramids in software involves down-

sampling the images successively in memory. Once all the downsampled versions are available,

the feature detection and extraction stages are run sequentially on each of the levels of the pyr-

amid.

This approach is an option for FPGA implementation, but requires a large amount of RAM to

store the images—approximately double the image size for an image pyramid with one level per

octave, and more than double for more levels per octave. In addition, it fails to take advantage

of the parallelism inherent in the process. Each level of the image pyramid is effectively inde-

pendent of all of the others, and can be processed at the same time without conflict, something

for which FPGAs are well-suited.

The input to the feature detection/extraction chain is a streamof pixels in raster order, left to

right, top to bottom. An effective multilevel implementation would be able to feed all the levels

of the pyramid with their respective pixel streams simultaneously, using a single full-resolution

input.

A critical observation is that regardless of which interpolation method is selected, each

higher-level pixel is only dependent on a small region of pixels around it in the source image

(sinc filtering excepted). This means that as soon as all the pixels from that small region have

been received by the FPGA, sufficient information is present to calculate the value of the output

pixel. This enables the downsampling to be implemented as a finite-impulse response (FIR) filter,

with optional output, greatly simplifying the design.

An FIR filter is a filter whose output is a linear combination of its recent inputs. On FPGA

hardware, an FIR is easily formulated as a function applied to the values in a shift register. On

each update step, the new input value is fed into the shift register, pushing everything along the

chain, and discarding the oldest value. More details on the filter coefficients is in section 4.2.2.

The pixel stream used as input to the Harris–Stephens/ORB feature extraction chain consists
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clk
in_valid
in_pixel

Figure 4.5: Fragmentary pixel stream

of two signals: the pixel value itself, and a valid signal. This valid signal indicates whether the

pixel value is valid, and functions as a clock enable for later logic. The valid signal allows a pixel

stream to be fragmentary and uneven, as shown in figure 4.5, and supports the optional output

from the FIR filters.

Since we are performing downsampling, it is guaranteed that each level in the pyramid has

either the same number or fewer pixels than its source level. This further guarantees that the

fragmentary pixel stream will be able to keep up with its input, since the input rate is limited to

1 pixel/clock cycle.

There are twomain parameters in the design of the structure of an image pyramid: the num-

ber of octaves, and the number of levels per octave. The number of octaves is the simpler of the

two, since the design scales linearly with the number of octaves. For each octave above the base,

its levels are half-scale versions of those in the preceding octave. This work uses 2 octaves, but

it is an easily-adjusted compilation parameter.

The number of levels per octave has a significant impact on the design of the filtering, since

it determines the sampling ratio between successive levels of the pyramid. As justified in section

5.2, three levels per octave has been selected for this system.

The (linear) resampling ratio between levels of the pyramid is thus given by:

2
1
3 ≈ 0.793 . . . ≈ 4

5
(4.3)

To simplify the design of the FIR filters, a small integer ratio is preferable, since it reduces

the number of different filter coefficients needed. This ratio specifies the size of the repeating

tile units that cover the input and output images, and each input tile maps uniquely to an output

tile, independent of any other pixels around. A ratio of 4
5 means that the input tiles are 5 × 5

pixels, and the output tiles are 4 × 4 pixels. A ratio of 1
2 means that the input tiles are 2 × 2

pixels, and the output tiles are 1× 1 pixel.

Each offset in the output tile has a different set of filter coefficients, but the same offset in
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Figure 4.6: The arrangement of scalers used in a three level per octave, two octave image pyramid

each tile has the same filter coefficients.

The ratio used between levels in octave 0 (the base octave) is 4
5 , and between levels in higher

octaves and their source levels 1
2 . This cascade of scalers is shown in figure 4.6.

As described below in section 4.2.2, bilinear filtering has been selected for this system. Bi-

linear filtering requires only the four pixels immediately surrounding a point to have sufficient

information to calculate its value. The two filter patterns shown in figure 4.7 have been selected

for the two filters used.

In the case of the 1
2 filter, each input pixel contributes to exactly 1 output pixel, with four

inputs contributing equally to each output. Until all four input pixels are received, no output

can be generated. Consequently, no output is produced for rows of input with even y value, and

no output is produced for input pixels with even x value. The pattern of output that results from

this can be seen in figure 4.8, specifically the signals for Level 3. Level 3 is derived from Level 0

passed through a 1
2 filter. Since output is only produced if the input x and y coordinates are both

odd, the output rate is approximately 1
4 , as desired in a half-scaling filter. Note that the output

rate is not exactly 1
4 if one of the dimensions of the input image is an odd number, since some of

the blocks of four pixels are incomplete.
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(a) 1
2 filter (b) 4

5 filter

Figure 4.7: Sample point arrangements for the two downsampling filters. Input: black circles,
Output: red dots. [2] ©2017 IEEE

The case of the 4
5 filter is more complex. Again, each output pixel depends on (up to) four

input pixels, but their relative weighting depends on the coordinates of the output pixel modulo

4. The red circles in figure 4.7 represent the positions of the output pixels relative to the input

pixels (white circles). As can be seen, each output sample is in a different position relative to its

input samples from its fellows.

The red dot in the upper left corner, representing an output coordinate with x, y ≡

0 (mod 4), is coincident with the input point x, y ≡ 0 (mod 5). This means that it requires

only one sample to provide all its pixel information. By extension, all the output points with

either x ≡ 0 (mod 4) or y ≡ 0 (mod 4) require only information from two input pixels, and thus

the relevant output pixel can be output as soon as those two inputs are available. Input pixels

with one coordinate c, where c ≡ 1 (mod 5), however, do not complete the 2× 2 input window

necessary for an output pixel, and thus no output is produced in these cases. In effect, for the
4
5 filter, the output is only valid for inputs with x, y ̸≡ 1 (mod 5). This ensures that the output

rate approximates 4
5

2
= 16

25 , since there are 16 output pixels for every square of 25 input pixels.

This pattern of output is demonstrated in figure 4.8, specifically in levels 1 and 2.

4.2.2 Resampling

Three different scaling methods—bilinear, bicubic, and Lanzcos—were tested in software to de-

termine the best choice for hardware implementation. Two views of the same scene were used

as image inputs to two image pyramids, and then correspondences were found using Harris–

Stephens feature detection and ORB feature extraction. The method used to interpolate points
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clk
Level 0 valid

Level 0 x 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Level 0 y 0 1 2 3 4 5

Level 1 valid
Level 1 x 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Level 1 y 0 0 1 1 2 2 3 3 4 4

Level 2 valid
Level 2 x 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Level 2 y 0 0 1 1 2 2 3 3

Level 3 valid
Level 3 x 0 1 2 0 1 2 0 1 2

Level 3 y 0 0 0 1 1 1 2 2 2

Level 4 valid
Level 4 x 0 1 0 1

Level 4 y 0 0 1 1

Level 5 valid
Level 5 x 0 1 0 1

Level 5 y 0 0 1 1

Figure 4.8: Pixel timing for a 6-level pyramid with three levels per octave. Image is 6× 6.

Level Resolution
0 6× 6
1 5× 5
2 4× 4
3 3× 3
4 2× 2
5 2× 2

Table 4.1: The resolutions of the levels in a pyramid with base 6×6. Three levels per octave, two
octaves.
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for scaling the levels of the image pyramid was varied, and the number of correspondences used

as a proxy for matching performance.

No difference in matching performance was observed between the three algorithms used,

likely because any difference in pixel values was lost in the quantisation noise.

Bilinear filtering requires a 2 × 2 window of input pixels, bicubic filtering requires a 4 × 4

window, Lanczos (a = 2) requires a 4× 4window, and Lanczos (a = 3) requires a 6× 6window.

Since the interpolation performance of the methods is essentially identical for the purposes of

image pyramid construction, it was decided to use bilinear filtering, since it is the simplest, and

requires the least logic.

4.2.3 FIR Filter

The actual interpolation, for both the 1
2 and the 4

5 filters, is implemented using an FIR filter. The

FIR filter’s output is entirely dependent on a 2× 2 window of input pixels, although whether it

outputs anything is dependent on the coordinates of the most recent input sample, as discussed

above. This is a perfect use for the sliding window design presented in section 2.3.1. The window

is 2× 2× 8 bits, and has a line width equal to the width of its input level.

The filter convolves the input pixel window with the matrix

b0,0 b1,0

b0,1 b1,1

 (4.4)

Since bilinear filtering is being used, for the 1
2 filter, the coefficients of the filter are

b0,0 = b1,0 = b0,1 = b1,1 =
1

4
(4.5)

so each element in the window has equal weighting.

Because each of the 16 output positions in a 4
5 filter’s 4 × 4 output tile has a different set of

coefficients, these must be determined based on the offset within the tile. The filter coefficients

are fortunately all small binary numbers, simplifying the hardware implementation. They are
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given by

factorsa =

[
0 0 3

4
1
2

1
4

]
(4.6)

factorsb =
[
1 0 1

4
1
2

3
4

]
(4.7)

b0,0(x
′, y′) = factorsa[x′]× factorsa[y′] (4.8)

b1,0(x
′, y′) = factorsb[x′]× factorsa[y′] (4.9)

b0,1(x
′, y′) = factorsa[x′]× factorsb[y′] (4.10)

b1,1(x
′, y′) = factorsb[x′]× factorsb[y′] (4.11)

where x′ = xmod 5 and y′ = y mod 5.

The formula for the coefficients is slightly complicated by the decision to output the first

row and column in each output tile before the whole 2 × 2 filter contents are available. This

means that one more row/column is output in images with dimension d, where d ≡ 1 (mod 5).

The source for these filters can be found in Scale_1_2_Bilinear.sv and Scale_4_5_Bilinear.sv.

4.2.4 Dimensions

For the 1
2 filter, if an input image has a dimension x, the corresponding dimension in the output

image will be

⌊x
2

⌋
(4.12)

where ⌊x⌋ denotes the “floor” of x—the largest integer less than or equal to x.

For the 4
5 filter, if an input image has a dimension x, the corresponding dimension in the

output image will be

⌊
4(x− 1)

5

⌋
+ 1 (4.13)

This calculation is performed at the beginning of each frame by a divider. The code for this

can be found in DimensionCalculator_4_5.sv.

Another useful result is the critical pixel for a given output. This pixel is the pixel that

provides the last piece of information necessary to determine the output value. For the 1
2 fil-
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ter, the critical pixel for a point with coordinate x has coordinate

2x+ 1 (4.14)

and for the 4
5 filter, the critical pixel has coordinate

⌊
5(x+ 3)

4

⌋
− 3 (4.15)

4.2.5 Coordinate Transformation

When a feature is detected, the detector only has access to the coordinates of that pixel in its

level of the pyramid. Since the levels of the pyramid are of differing sizes, the coordinates of a

point in one level of the pyramid will be different to those of the scaled version of that point in

a different level of the pyramid. In order to be able to use the coordinates for matching features

against one another, all the coordinates must be transformed into the same coordinate frame.

The coordinate frame used is that of the base level of the pyramid. Coordinates of detected

features must be transformed before they are returned, and this can be done using one multi-

plication by a constant, an addition and a shift. For a feature with a coordinate x in level awithin

octave b, the transformed position is given by

(
2b+15ax+

(
2b − 1

)
5a + 4a

)
≪ (2a + 1) (4.16)

This expression includes rounding the feature to the nearest pixel, rather than simply trun-

cating, and is different from the expression for finding the critical pixel.

The implementation of coordinate transformation can be found at CoordinateTransformer.sv.
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4.3 Conclusion

This chapter has presented a justification of the use of image pyramids, and an efficient hardware

implementation of a real time streaming multiscale system. Only two rows of the source image

pyramid levelmust be retained, and somemory consumption is limited to just two rows of image

data. In addition, new pixel data flows through the image pyramid as soon as it is available, and

so higher levels of the pyramid are not required to wait for completion of the processing of lower

levels before they can perform their own processing, resulting in significant speed up.

The pipeline delay of the 1
2 scaler is only one clock cycle, and only four clock cycles for the

4
5 scaler, and so the time taken to process a full six-level image pyramid is only 9 cycles longer

than processing the bottom level alone. The primary cost of the image pyramid, however, is

in the additional logic and memory required for the duplication of the feature detection and

extraction hardware. In resource-constrained systems, it might be necessary to process each of

the levels sequentially through the same logic, instead of in parallel through many sets of logic.

The following chapter presents results and analysis of the performance of the complete sys-

tem, and provides justification for a number of the design choices.
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Chapter 5

Analysis, Validation and Integration

5.1 Introduction

This chapter opens with an examination of the design parameter space of the hardware imple-

mentation, and an investigation of the effects of changing the various parameters of the design

on the output. Examples of such parameters that are considered include: bit-widths of Harris–

Stephens feature detection intermediate values; number of levels per octave of the image pyr-

amid; and the strategies adopted for buffering input at each level of the pyramid. This is followed

by a discussion of the processes used to establish the accuracy of the FPGA implementation of

Harris–Stephens feature detection and ORB feature descriptor extraction. The chapter closes

with a description of the full Tarsier hardware accelerator device and its integration into the

ORB-SLAM2 system to create a demonstrator.

The design parameter space of the hardware implementation is divided into three sections:

Harris–Stephens (section 5.3), ORB (section 5.4), and image pyramid (section 5.2). Each division

has a number of configurable parameters which influence its performance, in many cases de-

pendent on the contents of the images being processed. Due to the sheer number of parameters,

it is not straightforward to compare all of them simultaneously, and so the approach taken is to

choose the best performing set in each division and use these when optimising the other divi-

sions.
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5.1.1 Simulation tools

The analyses described in this chapter make extensive use of two software simulation tools,

which emulate in software the exact arithmetic executed on the FPGA device. The two util-

ities are written in the Rust programming language1, and allow the effects of varying design

parameters to be simulated easily, without requiring recompilation of the entire SystemVerilog

design. The fullTarsier design, with 6 pyramid levels and 10ORBmodules, takes approximately 90

minutes to compile on a recent quad-core CPU, emphasising the value in being able to simulate

performance before testing on the FPGA.

Sweeper

The first utility, termed the sweeper (short for parameter sweeper), is able to simulate changes

to the feature detection and pyramid construction parameters. This allows one to observe what

the results on detected feature counts will be, if one changes the detection threshold, or the

structure tensor filter window size. The effects of changing the number of pyramid levels, or the

number of octaves, and their effect on the feature counts, can also be observed.

The sweeper is also able to generate descriptors for detected features, but it does not simulate

dropping of features; instead, every feature is processed correctly. This allows for comparisons of

the descriptors generated by the hardware, to verify that they are correct, but it does not provide

a model of which features will be dropped. Descriptor verification is performed by comparing

the output of the sweeper against the descriptors calculated by the Tarsier for the same images.

A separate python script takes the extracted features and draws matches between pairs of

images, allowing visual confirmation of the quality of the extracted features.

Feature Drop Simulator

The Feature Drop Simulator is designed to performa fast timing simulation of theORBmodules in

a level, allowing one to analyse the effects of changing parameters on the feature drop rate. The

simulator allows the module numbers, buffer length and buffering strategy (see section 5.4) to

be varied, and the performance observed. It takes an image as input, detects all its corners using

the same Harris–Stephens detector used in Sweeper, and then does a clock-by-clock simulation
1https://rust-lang.org
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of the state of the system. On every update step, it determines whether there is an input pixel,

if so, whether it is a feature or not, and if it is, attempts to allocate it to an ORB module. The

states of the modules are modelled, and if no module is available to receive the feature, it must

be dropped.

The drop simulator executes the same state machine as the hardware design, and the cor-

respondence between the two has been verified with the use of SystemVerilog testbench code.

The feature drop simulator will display statistics of how many features are processed and

how many dropped, for each level of the image pyramid, and it can also list the exact features

processed and dropped.
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5.2 Pyramid Structure

The image pyramid has three main design parameters—the interpolation method, the number

of levels per octave, and the total number of levels. In general, the more levels in the pyramid,

the better the performance will be, since more levels allow extraction of features at more scale

levels, increasing the chance that a match will be found successfully. For the same number of

octaves, increasing the levels per octave will tend to lead to better matching quality, since the

finer gradations of scale mean that there is likely to be a closer match found. However, holding

the total levels constant while increasing levels per octave will decrease the total scale range,

that is, the ratio between the smallest and largest scale levels in the pyramid, which often has a

limiting effect on accuracy.

Since the resource consumption of the system scales with the total number of levels, rather

than the number of octaves or the levels per octave, the number of levels will usually be limited

by the resource budget of the implemented system. The Tarsier, as implemented on an Arria V

GX, fits approximately 6 levels, although this could be increased at the cost of resources else-

where.

This section analyses the performance of a multilevel Harris–Stephens/ORB system as the

number of levels per octave and the total number of levels are varied. The analysis is performed

using the Sweeper tool 5.1.1. Image pyramids are constructed for each of a pair of images, where

the two images are different views of the same scene. Features are detected in these image pyr-

amids using the Harris–Stephens detector, and ORB descriptors are calculated for them, using

the configuration shown in table 5.1. They are then matched, and the count of matches is used

as the metric to judge the performance of the image pyramid parameters.

The images come from two datasets. The two “kitti_08” images are a stereo pair from the

KITTI2 [33] dataset, sequence 8. The images comprising the “graffiti”, “boat” and “bikes” pairs

are from the Oxford Visual Geometry Group’s Affine Covariant Regions Datasets3 [34]. The im-

ages are shown in figure 5.1.

The four image pairs represent a range of different image pair types. The “kitti_08” images

contain almost exactly the same content at the same scale, just viewed from slightly to the side.
2http://www.cvlibs.net/datasets/kitti/
3https://www.robots.ox.ac.uk/~vgg/data/data-aff.html
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(a) kitti_08

(b) graffiti

(c) boat

(d) bikes

Figure 5.1: The dataset image pairs used in this analysis
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Harris–Stephens
Matrix bits 16

Structure tensor window size 7× 7
Score bits 33

Non-maximum window size 3× 3

ORB
Quantisation angles 64
Moment window 37× 37
Parallel windows 1

Matching
Threshold 0
Prominence 20

Table 5.1: Pyramid structure analysis configuration

The “graffiti” images are rotated relative to one another, but hold the scale relatively constant.

The “boat” images again have a small rotation, but also a dramatic change in scale: there is a

scaling ratio of approximately 3:1 between them. Finally, the “bikes” images are taken from a

very similar viewpoint, but with the second image significantly blurred by being defocused.

Figure 5.2 shows how the count of matches for each of the four image pairs changes with

different resampling techniques. All of the images show similar results. Lanczos, bicubic and

bilinear resampling show consistently good matching performance, and nearest neighbour res-

ampling shows poor performance in comparison. Although it is faster than any of the other

techniques, its inaccuracy leads to significantly reduced matching performance.

Of the other three, bilinear filtering is by far the simplest to implement, and requires less

logic. Bilinear filtering only requires four neighbouring pixels, where Lanczos and bicubic need

16. Since the performance of bilinear is indistinguishable from Lanczos and bicubic, and the

resource requirements are so much lower, this work uses bilinear filtering exclusively.

Figure 5.3 shows how the count of matches for each of the four image pairs changes with

different image pyramid construction. The top graph shows a pyramid with 3 levels, the middle

with 6 levels, and the bottom with 9 levels. Consequently, 3 levels at 1 level/octave represents

the same range of scale as 9 levels at 4 levels/octave. The number of levels is held constant in

each graph so that the tradeoff can be seen between fineness of subdivision of scales and total

scale range.

The “kitti_08” images show a small improvement in match count with increasing levels per

octave at all three level counts. This signifies that in this case, the fineness of scale division is
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Figure 5.2: Match counts for the four image pairs using different resampling techniques. The
pyramid is constructed with 2 octaves each of 3 levels.

more useful than scale range.

The “graffiti” images show a much stronger improvement with increasing levels per octave,

but the improvement levels off at 3 levels per octave. This is attributed to the loss of scale range

experienced when 4 levels per octave are used, compared to at 3 octaves per level. The reduced

step between scales is not as advantageous at this point as having a broader range of scales.

The “boat” images show an interesting effect. With three total levels, no downsampled ver-

sions of the zoomed-in image are close enough in scale to the other image to yield any good

matches. With one level per octave, this is because the steps between level scales are too big

to match with the zoomed-out image. Increasing the levels per octave reduces the scale range

further, and means that the image levels are even further apart in scale. It is only once we get

to 6 levels at 3 octaves/level that two levels of the pyramids are similar enough in scale to yield

some matches. The effect is more pronounced with 9 total levels, and the highest match counts

are observed with 9 levels at 4 levels per octave.

The “bikes” images again have difficulty matching when the scale range is very low. The

blurred image has few detectable corners at low pyramid levels, since sharp corners have been
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blurred out. If the blurred image is downsampled sufficiently, however, effective image sampling

rate drops low enough that the low-pass filtering performed by the blur is sharpened, and fea-

tures can be detected. When both images are downsampled this far, the same features can be

detected in both, and matched successfully. As with the “kitti_08” images, increasing the total

scale range helps with detecting more features, and so a downturn is observed at 4 levels per

octave, where this is reduced.

This work has selected 3 levels per octaves as the ideal number of levels per octave, since it

performs better than 1 or 2 levels per octave, while still maintaining a wide total scale range,

given limited total levels.

Figure 5.4 shows the results of unrestricted total level count. The same process is performed

as in figure 5.3, except that this time, the levels per octave value is held constant at 3, and the total

pyramid levels count is increased. All four image pairs show an increase followed by a flattening

out, as additional levels stop contributing useful features. The position of the flat region depends

on the image pair, however. The “kitti_08” images have reached 90% of theirmaximumwith only

5 levels, while the “bikes” images are still showing improvements at 9 levels.

Given unlimited hardware, an effective design would include as many levels as possible in

the pyramid. The six levels that will fit on this FPGA, however, provide adequate performance,

although blurry images like “bikes” would benefit most from any additional levels.
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Figure 5.3: Match counts for four dataset images, using varying numbers of total levels and levels
per octave.
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Figure 5.4: Match counts for the dataset images, varying the number of levels while using three
levels per octave.

116



5.3 Harris–Stephens Parameters

This design allows for the configuration of the precision used for intermediate values within the

Harris–Stephens feature detector, as well as the precision of the output corner scores. These val-

ues are controlled by parameters: MATRIX_BITS and SCORE_BITS, respectively. The parameter

MATRIX_BITS specifies the number of bits used to store elements of the Harris matrices and of

the structure tensor (see section 2.5.1), while the parameter SCORE_BITS specifies the number

of bits used to express the output score. Since these values are used in sliding windows, their

bitwidth has a significant effect on the memory consumption of the Harris–Stephens detector,

and so, if possible, they should be kept as small as possible.

At the same time, the use of the non-maximum suppression filter (see section 2.2.3) means

that pixels with exactly the same score as their neighbours may not be considered as corners,

thus it is often the low-order bits of the corner score that determine whether a pixel is a feature

or not. Particularly low-precision settings of these parameters will thus result in lower pixel

counts than higher-precision settings.

This section uses the same four pairs of images as in section 5.2. Using the Sweeper tool (see

5.1.1) and the parameters shown in table 5.2, an image pyramid is constructed for each image in

the pair, then the features are detected using different values of the two configuration paramet-

ers. These features have descriptors computed with ORB, and then they are matched against the

other image in the pair.

As in section 5.2, the number of successful matches is used to score the performance of the

parameter configuration.

Figure 5.5 shows the matching performance for varying Harris matrix precision and Harris

score precision. Beyond 16 bits of Harris matrix precision, no further improvement in matching

accuracy is observed, irrespective of the score precision, so 16 is selected as MATRIX_BITS, the

precision of Tarsier’s matrix calculations.

Figure 5.6 shows how changing the score precision affects the matching performance, hold-

ing the Harris matrix precision constant at 16 bits, for the same four image pairs as before. Bey-

ond a precision of 24 bits, no improvement inmatching performance is observed, so 24 is selected

as the value for SCORE_BITS.

If memory is very tight, it may be worthwhile to reduce the precision allocated to these val-
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Harris–Stephens
Structure tensor window size 7× 7
Non-maximum window size 3× 3

ORB
Quantisation angles 64
Moment window 37× 37
Parallel windows 1

Matching
Threshold 0
Prominence 20

Image Pyramid
Octaves 2

Levels per octave 3

Table 5.2: Harris–Stephens analysis configuration

ues. In particular, the Harris–Stephens score precision shows a slower decline in performance

as it is reduced, and so gains can be made here. At the same time, however, the Harris–Stephens

score is only used in one 3 × 3 sliding window, so only two rows of scores need to be stored

in memory at once. The matrix values, on the other hand, are stored in three 7 × 7 sliding

windows, meaning that eighteen rows of the matrix values must be stored in memory at once.

Thus, if memory pressure is high, reducing the precision of the Harris matrix scores will have

the biggest impact on memory usage.
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Figure 5.5: Match counts for the dataset images, varying the precision to which the Harris
matrices are stored.
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Figure 5.6: Match counts for the dataset images, varying the precision to which the Harris score
is computed, while the Harris matrix precision is held constant at 16 bits
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Figure 5.7: The multilevel feature extraction system [2] ©2017 IEEE

5.4 Feature Drop Analysis

5.4.1 Introduction

This section addresses the effects of different numbers of ORBmodules at each level and different

buffering strategies on the proportion of features thatmust be dropped by the feature extraction

system. Three different buffering strategies, with two variants, are presented and their relative

utilities compared using real images. The two images used present a contrast between low and

high feature densities, for comparison.

Each level of the multilevel feature extraction system operates independently of all of the

others. The input is a stream of pixels, and the output is a stream of features, in the form of

coordinate pairs and 256-bit ORB descriptors.

The processing component of each level consists of a Harris–Stephens corner detector and

one or more ORB feature extraction modules. As described in section 3.4.3, the ORB modules re-

quire 46 input pixel columns to fill their internal memories and then 266 clock cycles to generate

the descriptor itself.

As shown in figure 5.8, each module has three states it can occupy — initial filling (unable to

process, blue), ready (ready to process, green), and processing (unable to process further corners,

red). When a corner is detected by the Harris–Stephens corner detector in each level, one ORB
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processingmodule is selected from those in the ready state to process the incoming corner. This

module then moves into the processing state. Once the descriptor is ready, the module moves

into the filling state, where it remains until 46 consecutive input columns have filled its internal

memory. The filling state is the initial state of all of the processing modules upon device reset.

As a special optimisation, if no input columns are received while the module is processing,

the ORB window remains up to date (“clean”) and does not become inconsistent with the input

(“dirty”). This means that the module can transition directly from processing back to ready,

saving the refill.

If no processingmodules are availablewhen a corner is detected, the cornermust be dropped,

since some of the information needed to generate its descriptor is not present in the internal

memory of any of the processing modules. In general, this is an undesirable event, as it means

that that corner is unavailable for matching.

Since no input is requiredwhile a processingmodule is in the processing state, it is possible to

buffer input pixels, potentially containing corners, in an input FIFO aheadof the corner detection

system (see figure 5.7). This FIFO accepts input pixels from the scaling system and feeds them

into the corner detector when requested. This means that the input into the level can be stalled,

delaying the detection of features until a module is ready to process them.

This section deals solely with the input FIFO at the start of each level. The output FIFO is

only responsible for buffering the output descriptors, to ensure that two levels do not attempt

to output at the same time.

It is important to note that themodulesmust be refilledwith input pixels before they are able

to process a corner once more. Since stalling the input for a level stops input from reaching any

of themodules in that level, no refilling progress can occurwhen input is stalled, only processing.

If input is being stalled because an ORB module is processing, and the FIFO becomes full, a

problem arises when further input arrives. This input cannot simply be discarded, since that

would cause the sliding window linebuffers to become desynchronised with the input, meaning

that the feature detector and extractors would produce garbage thereafter. Instead, input must

be forced into the detector/extractor chain, so that space is made in the FIFO for the newly-

received input. This is termed an overrun. The feature detector is capable of dealing with this

input data, but corners detected while the buffer is in overrun may not have a module available

to process them, and thus may have to be dropped.
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The following analysis assumes that the host system supplies image data to the Tarsier at

a constant rate of 1 pixel/clock. This data rate has been observed in the demonstrator, as the

host system is reliably able to saturate the input buffers. If the host system does not sustain a 1

pixel/clock input rate, the feature drop distribution will be different, since the feature extractor

modules can run while Tarsier input is stalled.

If the input data rate is 1 pixel/clock, the FIFO is unable to empty until the end of the frame,

as the input rate is the same as the maximum output rate. This means that the fill level of the

FIFO increases whenever input is stalled, with no way of reducing the fill level so long as input

continues. This only arises in level 0 of the pyramid, but it means that this level is themost likely

to overflow the FIFO buffer. At level 0, the FIFOwill provide the ability to stall the input, reducing

the drop rate, but only until it fills, and thus only for the first part of the image. Consequently, the

use of buffering is of most use in higher levels of the pyramid, where it can reduce the number

of ORB modules needed for a given drop rate.

This work investigates two potential strategies for stalling the FIFO input, based upon the

states of the ORB processing modules, in addition to the control case, where no buffering is per-

formed.

5.4.2 Guide to Timing Diagrams

Figures 5.10, 5.11, 5.12, 5.13 and 5.14 represent the timing of the states of two ORB modules for

two basic sequences of pixels, selected because they show differences in strategy performance.

Figure 5.9 shows a representation of parts of two input images. 56 pixels are shown for each im-

age, with dark grey cells representing input pixels that are corners and white cells non-corners.

The pixel stream enters the system from index 0 and continues until index 55, possibly being

stalled by the choice of strategy in use. Both input images contain three corners, and the initial

system state has both modules in the ready state and the FIFO empty.

All five diagrams assume unlimited buffer space and an input rate of 1 pixel/cycle, the same

as level 0 of the pyramid. Section 5.4.7 addresses the situation in other levels of the pyramid,

when the pixel rate is lower than the clock rate.

Figures 5.10, 5.11 and 5.12 show the operation of each of the strategies, without the use of the

dirty bit, on these two pixel sequences. Along the top, the row labelled t shows time, measured

in clock periods (this is not to scale). The next row down, labelled corner, displays a symbol if a
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corner is detected at this point in time. Ticks indicate that a module is available to process the

detected corner, and crosses indicate that nomodule is available, so the cornermust be dropped.

The next two lines show the state of each module using colour. Green represents the ready

state, inwhich allmodules start in this steady-state analysis. Red represents the processing state,

and blue shows the filling state. A hashed-out area indicates that the module would be filling,

but the input is stalled, so it has to wait.

The third line, where present, indicates times where the input is stalled by the choice of

strategy. Input stalls do not stall processing of descriptors, but they do delay refilling ofmodules.

Figures 5.13 and 5.14 show how the introduction of the dirty flag to the ORB modules affects

performance. In these two diagrams, two additional rows are appended, showing the state of the

ORB window’s dirty flag. The flag is set (shown in grey) when input is received while the ORB

module is in the processing state, meaning any time when a window is processing and input is

not stalled. If the flag is set when themodule finishes processing, it must refill its window before

it can be marked ready again.

5.4.3 Strategy 0: No buffering

This strategy does not use the input FIFObuffer at all, and serves as a useful reference comparison

against the other two strategies. Figure 5.10 shows a simulation of its operation. In both cases,

the third corner to arrive is dropped since there are no modules available to process it.

Bothmodules start in the ready state. At t = 0, a corner is detected, andmodule 1 transitions

into the processing state. At t = 6, a second corner is detected, so module 2 transitions into the

processing state. At this point, neither module is available to accept detected features, and so

when the third corner is detected, at t = 54 or t = 50, it must be dropped. The two modules

complete processing and begin refilling, shown in blue, and eventually return to the ready state.

In general, the no buffering strategy has the lowest latency of the three methods — since the

buffer is never used, there is minimal delay between the input of the final pixel in an Image And

the completion of descriptor generation. Additionally, the memory requirements are lowest,

since there is no buffer.

This method does however drop the largest number of corners of the three strategies.
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5.4.4 Strategy 1: Stalling when all modules are processing

This strategy ensures that the input is stalledwhen there is no chance of a detected feature being

processed. Whenever all the processing modules in a level are in the processing state, the input

is stalled. When all the modules are processing, there is no use in feeding input, as any detected

corners will necessarily be dropped, since there are no free modules. As soon as any one of the

modules completes processing and moves into the filling state, input is resumed, allowing this

module to be filled with pixels. Note that the requisite 46 columns still need to arrive before the

module can move into the ready state, where it is able to process corners once more.

The same two examples used in the above section are shown in figure 5.11. The start is the

same, but as soon as the second module beings processing, input is stalled, since both modules

are unavailable. Once the first module begins refilling, input is resumed. The first example has

the third corner arriving 48 pixels after the second, two pixels more than are required to refill

completely, and so module 1 is available to process the third corner. The second example, how-

ever, has only 44 pixels between second and third corners, so it cannot be processed by either

module and must be dropped. Although there are 50 pixels between the first corner arriving

and the third, enough that the samemodule could theoretically handle both corners, input con-

tinues to flow until the second corner is detected, occupying both the modules and stalling the

input.

5.4.5 Strategy 2: Stalling when any module is processing

This strategy is the most conservative of the three, ensuring that modules are returned to avail-

ability as soon as possible, so that as few corners as possible are dropped. It does this by stalling

input whenever any module is in the processing state.

The primary justification for this approach is the refilling delay after processing. Since 46

columns of input are required after a successful feature extraction before themodule is available

to process another corner, this approach attempts to ensure that another module is available

during the refilling phase.

This comes at a cost of heavy buffer usage — we buffer far more input data than the above

strategy for a given input image. Thus it is only advantageous on higher pyramid levels, where

the pixel rate is sufficiently low that the buffer can catch up to the input.
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Figure 5.8: State machine for each ORB module. The “Finished, clean window” transition is only
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Figure 5.9: Two pixel arrival sequences. Each square represents a pixel entering the system, and
black squares indicate pixels that are detected as corners. Sequence A has corners at time 0, 6
and 54. Sequence B has corners at time 0, 6, and 50.

The two examples are repeated with this strategy in figure 5.12. In both cases, the buffer is

stalled immediately after the first corner arrives, and the second corner arrives once the first

module is already in the filling state. This causes a further buffer stall, and again, input resumes

once the second module is in the filling state. In both cases, the first module has returned to

the ready state before the third corner arrives, meaning that all three corners are processed

successfully.

For one module, this strategy is identical to strategy 1.

5.4.6 Small-Scale Analysis

Figure 5.10 shows the strategy with no buffering of input, and hence no stalls. This approach

yields the tightest real-time bounds on processing time, since the processing time is independent

of the content of the image. As each feature is detected, it is delegated to the first available

processing module. If not processing modules are available, the feature is dropped. Since the
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Figure 5.10: Use of two modules for the examples in figure 5.9 (Strategy 0 - no stalling)
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(b) Image B: Corners at 0, 6, 50

Figure 5.11: Use of twomodules for the examples in figure 5.9 (Strategy 1 - stall when all modules
processing)
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(b) Image B: Corners at 0, 6, 50

Figure 5.12: Use of twomodules for the examples in figure 5.9 (Strategy 2 - stall when anymodule
processing)
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(b) Image B: Corners at 0, 6, 50

Figure 5.13: Use of twomodules for the examples in figure 5.9 (Strategy 1 - stall when all modules
processing, dirty bit in use)
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(b) Image B: Corners at 0, 6, 50

Figure 5.14: Use of twomodules for the examples in figure 5.9 (Strategy 2 - stall when anymodule
processing, dirty bit in use)
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processing time for a corner is much more than the interval between the detected features, this

strategy fails to process the third corner in either of the two sequences presented in 5.9.

Figure 5.11 shows the strategy where input is blocked if all modules are processing. This

halts input in particularly dense regions of the image, so that fewer features are lost, compared

to no buffering. The two pixel sequences are selected to show a difference with this buffering

mode. The strategy handles sequence A well, since module 1 become ready again immediately

before the detection of the feature in pixel 54. Sequence B, on the other hand, is not handled

as well. The feature in pixel 50 arrives while both modules are refilling, and thus the feature

is dropped. Input cannot be stalled while both are refilling, since they would never be able to

finish. Notice that although the strategy handles sequence A successfully, the time taken to do

so is significantly longer than strategy 0, since the input is blocked for 260 clock cycles.

Figure 5.12 shows the strategy where input is blocked if any module is processing. Input

is stalled as early as possible, in order to ensure that as few modules as possible are unavailable

due to needing to refill. This comes at the cost of increased total processing time, since the input

is stalled at times when it might not be necessary to attain minimum drop rate. This strategy

successfully processes all three corners in both sequence A and sequence B. In both sequences,

the first corner is processed on module 1, and then the second is processed on module 2 while

module 1 is refilling. Processing the second feature causes the input to be stalled once again,

meaning that the refill of module 1 takes significantly longer than other refills (312 clock cycles

instead of 46). In both sequences, at least one module is available to process the third feature to

be detected. It is still possible for the strategy to drop a feature, since it is possible for all modules

to be refilling when a feature is detected, but this will happen less frequently than with strategy

0 or strategy 1. Since this strategy makes such heavy use of the FIFO buffer, it is better suited to

higher pyramid levels, where the decreased pixel rate allows more chance to catch up with the

input by emptying the FIFO.

Figure 5.13 shows strategy 1 again, but this time with the use of the dirty flag. The dirty flag

can boost the efficiency ofmodules by allowing them to return immediately to readinesswithout

refilling, so long as no input has been missed. The dirty flag is ineffectual without the ability to

stall the input, since input will always be received while the feature is being detected4. It is also
4This is because of the margin region at the end of each row of the image. A feature cannot be detected less than

18 pixels before the end of the row, and even at the highest level of the pyramid, at least one more pixel will arrive
before the 266-cycle descriptor processing is complete.
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ineffectual when used with more than one ORB module. If input is not stalled when one module

is processing, as in strategy 1, the input supplied to the othermoduleswill immediately cause the

first window to be marked dirty, removing the advantage of quick return to availability. If input

is stalled when one module is processing, as in strategy 2, that module will return to availability

immediately upon finishing processing, as shown in figure 5.14. This means that unless the FIFO

fills up and starts forcing input through, any further modules will never be pressed into service,

and will always sit idle. In this case, further modules will have a benefit, processing features that

would otherwise be dropped.

Use of the dirty flag with a single module is usually the most hardware-efficient approach.

So long as the FIFO does not fill, a system using the dirty flag and a single module will never drop

a corner. This dropping performance comes at the cost of time performance, but because the

time taken to refill the windows is avoided, total image processing time is less than strategy 2

without the dirty flag.

5.4.7 Large-Scale Analysis

This section investigates the use of different strategies at different levels of the pyramid and

their effects on feature drop rates. This analysis is performed by taking two images (see figure

5.15), constructing an image pyramid for them, detecting all the features in the image pyramids,

then feeding the detected features into a simulation of the module timing, using the Feature

Drop Simulator described in 5.1.1. The settings for the image pyramid and the feature detector

are shown in table 5.3.

The two images have been selected to display different corner densities. The high-contrast

text of Newton’s Principiæ has a very high density of corners, whereas the photo of a cat on a bed

has amuch lower density. Since the density of corners iswhatmost affects dropperformance, the

two images provide a useful contrast. Some basic statistics for the corner detection are shown

in table 5.4.

Since processing a feature takes 266 clock cycles, a singlemodule will be unable to process all

of the features in a level if the feature temporal density is less than 1/266, unless the entire image

may be buffered. Temporal density is defined to be the the reciprocal of the average number of

clock cycles between successive feature detections, or equivalently, the probability that a feature

will be detected in a given clock cycle. Feature detection approximates a Poisson process, where
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Harris–Stephens
Matrix bits 16
Score bits 24

Structure tensor window size 7× 7
Non-maximum window size 3× 3

Threshold 200
ORB

Quantisation angles 64
Moment window 37× 37
Parallel windows 1

Matching
Threshold 0
Prominence 20

Image Pyramid
Interpolation Bilinear

Octaves 2
Levels per octave 3

Table 5.3: Drop analysis configuration

(a) cat.png
(b) principia.png

Figure 5.15: The two images used in this analysis
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Level Corners Spatial density Temporal density
0 1073 1/286 1/286
1 454 1/433 1/677
2 182 1/690 1/1688
3 143 1/537 1/2148
4 106 1/464 1/2898
5 78 1/402 1/3938

(a) Corners detected in cat.png (480× 640)
Level Corners Spatial density Temporal density
0 2386 1/116 1/116
1 1759 1/100 1/157
2 1149 1/98 1/240
3 733 1/94 1/376
4 425 1/103 1/649
5 287 1/98 1/960

(b) Corners detected in principia.png (441× 625)

Table 5.4: Corner statistics from two images. Spatial density is the reciprocal of the average
number of pixels processed per feature detected, and temporal density is the reciprocal of the
average number of clock cycles between successive feature detections.

the probability of detecting a feature in a given length of time is constant for a particular image

level. There are some deviations from the ideal Poisson process, however, since two features

cannot be detected in consecutive pixels (thanks to the non-maximum suppression), and since

features are not evenly distributed.

Figures 5.16, 5.17, 5.18, 5.19 and 5.20 show the raw counts of features successfully processed

at several levels of each pyramid, using varying numbers of modules and strategies. For each of

the two sample images, a timing simulation, using the Rust feature drop simulator, is run for 1

to 5 modules and using the three stalling strategies described above. For the two strategies that

actually use the FIFO, the effect of enabling the dirty flag, and only flushing the ORB windows

when necessary, is shown as well.

Level 0 of the pyramid is a unique case (see figure 5.16). Since no scaling is performed on its

input, the input rate is a constant 1 pixel/cycle. This means that the module can never empty

its FIFO until it reaches the end of the image, since it cannot extract pixels from the buffer any

faster than they are inserted. This means that the buffer rapidly fills up and then provides no

more use, and as a consequence, every buffering strategy performs essentially identically for

both images. Increasing the number of modules, however, has a significant effect on the drop

performance. With every additional module, the number of features drops significantly. The
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Figure 5.16: Raw count of features processed at level 0 of the two images, with a 512-pixel FIFO.
The number of features in the image is shown as a red line. This represents dropping no features,
and is the target for the system.
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Figure 5.17: Raw count of features processed at level 1 of the two images, with a 512-pixel FIFO.
The number of features in the image is shown as a red line. This represents dropping no features,
and is the target for the system.
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Figure 5.18: Raw count of features processed at level 2 of the two images, with a 512-pixel FIFO.
The number of features in the image is shown as a red line. This represents dropping no features,
and is the target for the system.
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Figure 5.19: Raw count of features processed at level 3 of the two images, with a 512-pixel FIFO.
The number of features in the image is shown as a red line. This represents dropping no features,
and is the target for the system.
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Figure 5.20: Raw count of features processed at level 5 of the two images, with a 512-pixel FIFO.
The number of features in the image is shown as a red line. This represents dropping no features,
and is the target for the system.
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Figure 5.21: Raw processed feature count at level 0 using strategy 2, varying number of modules
and FIFO length. The number of features in the image is shown as a red line. This represents
dropping no features, and is the target for the system.
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Figure 5.22: Raw processed feature count at level 2 using strategy 2, varying number of modules
and FIFO length. The number of features in the image is shown as a red line. This represents
dropping no features, and is the target for the system.
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effect grows smaller with each additional module added, with 8 % more features processed with

five modules compared to four.

Level 1 of the pyramid exhibits a curious behaviour (see figure 5.17. This level is able to take

advantage of the buffering, since its input pixel rate is around 0.64 pixels/clock cycle. Strategy 1

(stall when all busy + dirty flush) has the best performance for all module counts, although the

dirty flag has no effect for more than one ORB module. The margin over strategy 2 (stall when

any busy + dirty flush) is small, but significant. This is due to the more effective use of multiple

modules in parallel achieved by strategy 1. Since input continues to flow while one module is

processing, fewer input stalls are required. If no other features are detected until the firstmodule

has finished processing and refilling, no buffer space is used, and no buffer overruns can occur.

The timing simulation showsmanymore overruns on strategy 2 compared to strategy 1, asmany

as five times asmany for the case with fivemodules. At the particular pixel rate observed in level

1, the tradeoff between strategy 1 and strategy 2 is in favour of strategy 1.

By comparison, in levels 2, 3, 5, and beyond, strategy 2 is the clear victor in dropping per-

formance, especially when using the dirty bit. Since the pixel rate is yet lower, the time taken

to process a feature represents fewer pixels entering the system than at lower levels of the pyr-

amid. This means that the cost of stalling the input is small, since the detector/extractor chain

can rapidly catch up with its buffer. For the cat image, a single ORB module, using strategy 2

and the dirty flag, is sufficient to process every single feature in levels 2 and up. For the text

image, with its extra feature density, only 52% of the features are processed successfully at level

2, but the rate is 82% at level 3 and 100% thereafter. The temporal feature density at level 2 of

principia.png is 1
240 , meaning that the average time between features is less than the time taken

to process them, and so it is impossible for a single module to ever process all of the features. If

the hardware is available, it might be advantageous to use an additional module at level 2, but

otherwise one module should be sufficient for levels 2 and above.

Figures 5.21 and 5.22 show how drop performance is affected by FIFO length at levels 0 and 2.

Extreme FIFO sizes at level 0 show a modest improvement in drop performance, but this is most

likely due to features being detected while the buffer is still filling at the top of the image. A

buffer of size 32768 represents 32768÷ 480 ≈ 68 rows of image data, or about 10% of the image,

so for the first 10% of the image, the buffer will allow themodules to stall input. After this point,

the FIFO will be full, and no further stalling will be possible.
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The effect of larger buffer sizes is more interesting at level 2. A reduced buffer size of 128,

down from 512, causes amajor performance handicap at this level, providing significantly worse

drop rate than 512. Increasing the buffer size beyond 512 does yield slightly more features pro-

cessed, but the effects are small. A buffer size of 32768 does show a more pronounced improve-

ment, most likely for the same reasons as for level 0.

These results suggest that a buffer of size 512 is an appropriate choice, with a small increase

in size offering modest improvements in drop rate. If the hardware is available, this may be a

valid selection.

5.4.8 Conclusion

In summary, the best choice of buffering strategy is strategy 1 at levels 0 and 1 and strategy 2

at levels 2 and up, using the dirty flag in all cases. A good strategy selection gives a boost in

performance for negligible hardware cost, and so it is a clear recommendation.

A buffer size of 512 is appropriate for all levels. Less than this and performance suffers, more

than this and the extra memory is wasted, because the performance gains are so small.

The number of modules to select at each level is a more complicated decision, and it depends

very much on the resources available and the number of levels desired. The system as imple-

mented has enough memory for 10 modules, and uses the arrangement

Level Modules
0 4
1 2
2 1
3 1
4 1
5 1

This uses the largest number of modules where they stand to make the most improvement,

specifically at levels 0 and 1.
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5.5 Testbenching

Accompanying each of the functional modules of the SystemVerilog design is a testbench script,

also written in SystemVerilog, whose role is to verify the correct functioning of the module.

Many of these testbenches will feed the module a basic image and check that the result matches

what is calculated by the Rust simulation utilities. There are several additional utilities that will

take an image, detect its features and compute their descriptors, then prepare the image for

input through a testbench into the module.

The testbenches are run in ModelSim5, and it is confirmed that the results from ModelSim

match the simulation results. This double-checking process provides additional confidence that

the hardware has been written successfully. The testbenches have been an invaluable tool in

debugging the design and validating changes.

5https://www.altera.com/products/design-software/model---simulation/
modelsim-altera-software.html
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5.6 Tarsier: Integrating Corner Detection, ORB Feature Extraction,

Scaling and Buffering

The Tarsier device provides a wrapper around the feature detection and extraction system, ex-

posing it as a hardware coprocessor to a computer system. The reference Tarsier implementation

is constructed on anAltera ArriaV Starter Kit board and connects to a desktop PC via PCI Express.

Both input and output are carried over a PCI-e 2.0 x4 connection, providing 2 GB/s of bandwidth

in each direction.

5.6.1 Input

The input to the Tarsier is an uncompressed bitmap image.

Input to the Tarsier is handled by a Scatter-Gather DMA controller. This controller reads data

from host system memory then streams it to the feature detector. PCI Express grants access to

the host system bus, so the DMA controller is able to read without the involvement of the host

CPU.

Although the Arria V Starter Kit board has an ethernet socket, suitable for connecting an

ethernet camera, PCI Express was chosen as the input interface, as it allows more flexibility in

the source format. Where an ethernet camera might have allowed lower latency, taking the

images directly from the camera, it does not allow for images to be taken from a prerecorded

source instead of a live camera. A prerecorded source makes it simpler to achieve reproducible

results, which is important in testing.

The Scatter-Gather DMA controller allowsmultiple short transfers to be queued sequentially,

which are then processed in order. This allows images to be stored in memory with padding

between rows, as each row can be queued as a separate transfer.

Each frame is prefacedwith a short header containing its dimensions and the desired Harris–

Stephens threshold, and the frame pixels themselves are transferred in 8-bit greyscale, raster

scanned left to right, top to bottom.

The maximum rate that the Tarsier device can accept image data is constrained by its core

clock speed. The implemented frequency is 150 MHz, and it can accept one 8-bit pixel per clock

cycle, thus the maximum data rate is 150 MB/s, well below the interface maximum.
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5.6.2 Output

The output from the Tarsier is an array of detected features.

The output from the Tarsier device is transferred into system memory using another DMA

controller. The output is in the form of an array of structures, with each structure representing

one detected feature. The structure for each feature contains the 256-bit ORB descriptor, its x-

and y-coordinates, and the pyramid level on which it was detected, with the total structure size

being 40 bytes.

Once all the features detected in an image have been copied into systemmemory, the Tarsier

device signals an interrupt on the host system. This is handled by the driver, which then passes

the feature array to the user mode program making use of the accelerator.

Since it it is possible for an ORB feature extraction module to process one descriptor every

266 clock cycles, and there are 10 modules on the Tarsier device, it is possible for one 40-byte

output feature to be emitted every 26 clock cycles at peak burst rate. For this reason, the output

data path is 32 bits wide, allowing each feature to be transmitted to the host PC in 10 cycles, and

ensuring that the output rate is never the bottleneck.

5.6.3 Integration

This work employs the Tarsier as an accelerator for the ORB-SLAM2 software SLAM system de-

veloped by Mur-Artal et al[5]. ORB-SLAM2 runs a customised version of the ORB code from

OpenCV6 on CPU, without taking advantage of any hardware acceleration. Feature detection

is performed using FAST (see 2.2.2), and corners are selected from images using an octree, with

the goal of ensuring relatively even distribution across the image.

ORB-SLAM2 has been modified slightly to allow it to make use of the Tarsier accelerator. It

has been refactored to allow multiple feature detection/extraction backends to be selected at

runtime—the original software extractor, the Tarsier hardware, and a software reference imple-

mentation of the Tarsier. Subpixel refinement in ORB-SLAM2 has had to be disabled, since it

required access to the raw images from the downsampling pyramid, which are no longer avail-

able. They are generated on demand on the Tarsier, and never appear as a whole image, let alone

in system memory.
6https://opencv.org
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Parameter Value
Maximum width 2048
Maximum height 2160

Harris–Stephens
Matrix bits 16

Structure tensor window size 7× 7
Score bits 33

Non-maximum window size 3× 3

ORB
Quantisation angles 64
Moment window 37× 37
Parallel windows 1

Image Pyramid
Resampling method Bilinear

Octaves 2
Levels per octave 3
Buffer length 512

Level 0 modules 4
Level 1 modules 2
Level 2 modules 1
Level 3 modules 1
Level 4 modules 1
Level 5 modules 1
Level 0 strategy Stall when all busy + dirty clear
Level 1 strategy Stall when all busy + dirty clear
Level 2 strategy Stall when any busy + dirty clear
Level 3 strategy Stall when any busy + dirty clear
Level 4 strategy Stall when any busy + dirty clear
Level 5 strategy Stall when any busy + dirty clear

Table 5.5: The selected configuration parameters for the Tarsier device

All three backends still make use of the existing feature matching and tracking code in ORB-

SLAM2.

5.6.4 Performance

Table 5.5 lists the values selected for each of the configurable parameters in the system.

Table 5.6 shows the resource utilisation, calculated Fmax and estimated power consumption

of the compiled Tarsier device.

Table 5.7 shows the amount of each resource various subdivisions of the Tarsier use. The

memory consumption of Harris–Stephens depends on the maximum width of the image, and so

it is given as a range.

With these compilation parameters, the Tarsier is able to process input pixels at 150 MPix/s,
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Value %
Logic elements (ALMs) 103,605 76%

Memory bits 7,328,480 41%
Multipliers 272 26%

Fmax(fast model) 150 MHz
Power 4778 mW

Table 5.6: Resource utilisation, calculated Fmax and estimated power consumption of the com-
piled Tarsier device

Module ALUTs Registers Memory bits Multipliers
PCI-express 10953 10681 307232 0
Feature extractor 128421 250162 7021248 272

Control logic 2171 3170 4608 0
Level 0 32017 76842 1573408 97
Level 5 17776 30855 786248 28

Harris–Stephens 11492 13625 442368 5
ORB module 4782 15673 21320 23

Table 5.7: Resource utilisation by module

and features at a typical rate of 170 k features/s. This pixel rate is equivalent to 72 fps for 1920×

1080 (Full-HD) images, and 488 fps for 640×480 images. A quad-core Intel 2500K CPU running at

4.3 GHz running the OpenCV implementation of FAST and ORB manages 48 fps for 1920× 1080

images, demonstrating the clear performance advantage of the Tarsier device. The CPU has a

rated Thermal Design Power (TDP) of 95 W, and, although it is challenging to measure, the CPU

was probably drawing at least half of this value when running all four cores.

The CPU implementation does not allow parallelism over an image. Dividing an image into

smaller tiles and processing each tile with a separate thread would result in a reduced latency

and increased throughput, but such anoperationwasnot supportedusing the testedAPI. Instead,

parallelismwas implemented by processingmultiple images simultaneously, starting each image

as soon as it was received from the input stream. With this approach, each image takes the same

length of time to process, but more can be processed in the same time, compared with a single

CPU thread.

AGPU, specifically anNvidia GeForceGTX970, was also used as a comparison, usingOpenCV’s

OpenCL implementation of FAST and ORB (there is no GPU-accelerated Harris–Stephens al-

gorithm in OpenCV). This device was only able to process 1920 × 1080 frames at 19 fps, and

has a much higher TDP than the CPU, over 200 W.

Table 5.8 shows the relative performances for the three devices. The performance figure
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Device Throughput Frame Latency 1080p FPS Energy per
frame (approx)

CPU
(1 thread)

28 MPix/s 74.1 ms 13.5 405 mJ

CPU
(4 threads)

100 MPix/s 74.1 ms 48.2 430 mJ

GPU 40 MPix/s 52.1 ms 19.2 15.5 J
Tarsier
(fast model)

150 MPix/s 13.8 ms 72.3 74 mJ

Table 5.8: Performance comparison of the Tarsier device against a CPU and a GPU, for 1920 ×
1080 frames. The 4-threaded CPU implementation assigns frames to a specific thread, processing
multiple frames in parallel, but not reducing the per-frame latency. [2] ©2017 IEEE

shown for the Tarsier is determined using the Fast Model. This is the speed achievable using

a mid-range silicon bin, that is an FPGA with low electrical impedance. The achievable clock

speed on a low-quality silicon FPGA will be lower.

5.6.5 Testing

The integrated system was tested by running images from the KITTI[33] dataset through ORB-

SLAM2 with the Tarsier device enabled as the accelerator. The KITTI dataset features a video se-

quence from two cameras mounted atop a car, as it drives through the German city of Karlsruhe.

The two cameras allow a visual SLAM system to perform stereographic depth estimation, where

the distance to objects in the view can be estimated by calculating the positional discrepancy in

the two views, just like human binocular vision.

The results are acceptable, but the system is not as stable as it is with ORB-SLAM2’s custom,

optimised feature detector/extractor. ORB-SLAM2 attempts to construct a map of the path that

the camera follows by tracking howpointsmove in the image as the vehiclemoves. If the number

of points that the detector is able to track from one frame to another drops too low, the SLAM

system is unable to determine the transformation between the frames, and it loses its track.

Certain regions of the KITTI datasetwill cause ORB-SLAM2 to lose track of its positionwhen using

the Tarsier accelerator, while they are tracked correctly using the inbuilt detector/extractor. The

Tarsier works adequately well on certain, easy regions of the dataset, but fails in these harder

sequences.

Further work is required to improve the SLAM tracking robustness. The octree structure

used in ORB-SLAM2’s optimised detector achieves better coverage of the image by using dynamic
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thresholding, allowing the detection threshold to vary across the image. This means that its

detectorwill detect corners that the Tarsier fails to detect. In addition, the feature drops intrinsic

to the Tarsier architecture can contribute to lower match rates, since the match will fail if only

one of the pair of features is dropped.

The intimate knowledge of SLAM required to take a general feature extraction implementa-

tion and optimise it for tracking of robotic motion is, however, beyond the scope of this work.

A video of the operation of the ORB-SLAM2 system can be found at https://youtu.be/

VXK0lcJOHok.
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5.7 Conclusion

The design parameters allow the customisation of this hardware architecture to its environment.

If it is desired to implement Harris–Stephens corner detection and ORB feature extraction on a

resource-constrained FPGA, for reasons of cost or availability, aspects of the design, in particular

the number of pyramid levels used and the precision of values in the Harris–Stephens feature

detector, may be adjusted to minimise their requirements. On the other hand, if the highest

performance is desired, and a suitable FPGA is available, the pyramid can be enlarged to 12 levels

and more ORB modules added at each level. This may also improve SLAM tracking robustness.

The design is intended to be highly configurable, and the SystemVerilog parameters for the

design are all exposed at the top level, for simple reconfiguration. The parameters selected for

the Tarsier implementation on an Arria V GX have been chosen because they provide good per-

formance, while still fitting into the hardware resources available.

The following chapter addresses generalisation of the techniques presented in this work to

other problems, then discusses the achievements of this work, before closing with an investiga-

tion of further work that can be undertaken to improve the design.
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Chapter 6

Generalisation, Conclusions and

Future Work

This chapter considers approaches for generalisation of the image processing algorithms presen-

ted in this work, and specifically their implementation on an FPGA device. A conclusion section,

examining the achievements of the work, follows, before the chapter closes with ideas for future

work.
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6.1 Generalisation of Results: Stencil Codes

Stencil codes are a family of algorithms employed for solving discrete problems in multiple di-

mensions. They can be used to solve problems as diverse as Conway’s Game of Life, heat flow in

three-dimensional objects and weather modelling.

Stencil codes are only applicable to problems on a uniformgrid space, where the newvalue of

each cell in the space is a function of the old values of the cells in the immediate neighbourhood.

The same function is applied to every cell in the space, so the access patterns around all the cells

are identical (with the possible exception of the boundary cells).

Stencil codes normally operate on spaces with one temporal dimension and either two or

three spatial dimensions, although theoretically any number of spatial dimensions can be ap-

plied. The temporal dimension is causal, meaning that functions are only allowed to depend on

previous values, never on future values. This is a necessary condition, because the function itself

is used to generate these future values.

FAST, Harris–Stephens, ORB, SIFT and other image processing algorithms are similar to sten-

cil codes, in that they are applied to every window in an input domain, except that instead of

updating the values for the stencil code states, they instead output a new stream of values, which

is not written back but instead further processed.

Consider a k-dimensional array of elements, St, of dimensions (n0, n1, . . . , nk−1), upon

which our stencil code will operate, at a particular time t. I is the set of valid coordinates in

the array. Each element in St can take values from a set S, representing the set of states.

I =
k−1∏
i=0

{0, . . . , ni} (6.1)

p ∈ I (6.2)

t ∈ N0 (6.3)

St[p] ∈ S (6.4)

where N0 is the union of the set of natural numbers and zero, or {0, 1, 2, . . .}.

The stencil region is defined by the set of points it operates on, and a function on the values
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of these cells. The points are given by the set

s ∈
l−1∏
i=0

Zk (6.5)

that is, a set of l points, each of which is an offset from a central pixel at 0, and the function is

given by

T : Sl → S (6.6)

This function T , termed the stencil function, takes the states of the l neighbouring cells and

returns a new state for the central pixel.

The stencil function is applied to every element inSt, and calculates the element’s newvalue,

St+1[p], from its neighbourhood.

The values in the cells of the space, represented by the set S, can themselves be discrete or

continuous. Discrete values include examples like states in cellular automata, and continuous

values include examples like pressure and air temperature in weather modelling.

6.1.1 Discrete-Domain Problems

Problems on a discrete domain, such as cellular automata and image processing, are the most

straightforward to implement with stencil codes.

In the case of Conway’s Game of Life, the space is an ”infinite” 2-dimensional grid, the cells

are each binary values, and the new value is a function of the neighbouring 8 cells. This function

is applied to each 3×3window in the space, and the resultant value is the new value of the centre

cell of the window. Given the initial state of the automaton, St=0, applying the stencil code once

yields the next state, St=1. Further applications of the stencil code generate later states.

Gaussian blur of images can also be implemented easily using a slight variation on a stencil

code. The input image is the image to be blurred, and the function to apply across the input

is a Gaussian blur filter response. In image processing, the time dimension does not represent

a physical quantity, as it does in other problems, but instead represents the number of times
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the filter is applied. Applying a Gaussian blur multiple times will have the effect of blurring the

input image more. A stencil code implementation of a Gaussian blur would choose the number

of iterations as a design parameter, and simply return the current system state after the desired

number of iterations have been applied.

6.1.2 Continuous-Domain Problems

Continuous-domain partial differential equations, such as heat flow, can also be modelled with

stencil codes by first discretising the domain, using a process like finite-element analysis. Finite-

element analysis involves chopping the domain up into small cubes and treating each of these

as a discrete value. In a problem like heat flow, each cell in the stencil code, representing a cube

of physical matter, transfers some of its value to nearby cells and receives some of their value on

every update step, with the rate of change proportional to the difference in value. The value in

this case represents heat.

The rules applied to the stencil code can vary across the domain. For instance, a part of the

domain might represent an insulator, and thus its rate of heat flow will be very low. A different

part might represent a good conductor, and there the rate of head flow will be fast.

6.1.3 Boundary Conditions

Stencil codes, by their nature, will only operate effectively on finite domains. Conway’s Game

of Life is traditionally evaluated over an infinite domain, and so some solution must be found to

deal with the boundaries of the domain.

For some problems, like the Game of Life, it is acceptable to have a topologically toroidal

world, where the left side is connected to the right side and the top to the bottom. Stencil codes

operating along the margins of the domain are affected by cells on the far side, and cells can

interact as if they are adjacent.

For modelling of physical problems, this approach is often inappropriate. Instead, boundary

conditions can be constructed, where for instance the top edge of the domain can always have

the same value. In the case of heat flow, this can represent a heat source.
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6.1.4 FPGA Realisation

FPGAs are good candidates for realisingmanyof these stencil codes, using amemory and a sliding

window(see section 2.3.1), and have been used by other groups in the past[14]. The state is stored

in the memory, and read out from the memory and into the sliding window. The stencil code is

applied to the contents of the sliding window, and the results are written back into the memory.

Each scan of the memory represents a single time step of the stencil code.

If the entire domainwill fit into on-chip RAM, a single dual-ported RAMmay be used for both

reading and writing. The read port and write port point to different positions in the memory,

and allow simultaneous read and write.

If the domain is too large to fit into on-chip RAM, it may be necessary to use off-chip SDRAM

to store the state. Since SDRAM is single-ported, it is necessary to alternate reading andwriting—

both cannot be done simultaneously. A small cache of on-chip RAM will help to reduce latency,

and allow more effective batching.

The sliding window is an ideal structure for accessing the regions of the image used by the

stencil code, since it presents the entire neighbourhood at once as register values, not requiring

random memory access. Additionally, the sliding window will always present the current state

to the stencil code, not the new state. A naive stencil code applied to an array of cells in memory

will update cells that are still to be used by future executions of the stencil code, corrupting the

state.

The stencil code in question operates upon the input neighbourhood, returning the new

value of the centre cell. This value is then written back to the memory, ready to be read out or

to be updated yet again. The throughput of the stencil operation is critical to the speed of the

FPGA design, since it limits the rate at which pixels can flow into the stencil code window. It is

thus advisable to pipeline the stencil operation aggressively, since two executions of the stencil

function are independent of one another.

Memory consumption of the sliding window can be large, and is the primary disadvantage

of this architecture. An n-dimensional sliding windowmust store complete (n−1)-dimensional

slices of the input domain in order to operate efficiently. For a one-dimensional domain, this

means storing single points. For a two-dimensional domain, full rows of domain data must be

stored, like in the Harris–Stephens detector. For a three-dimensional domain, entire planes of
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input datamust be stored. These slicesmust be stored in on-chip block RAM, and this can rapidly

eat up all the available RAM on the device.

For example, a heat flow stencil code, evaluated to 16 bits of precision, with a window size of

3× 3× 3, in a 1000× 1000× 1000 domain, requires the storage of 3× 1000× 1000× 16 bits,

or 48 Mbits. The Arria V GX used in this work has only 19.8 MBits of on-chip block RAM, and so

this particular problem is too large for it. The total SDRAM usage would also be 2 GB, which is

much larger than the 256MB available on the Arria V GX starter kit board used in this work.

A smaller 200×200×200problemwould fit comfortably into the availablememory, however,

at the cost of resolution.

A well-pipelined stencil code should be able to achieve a frequency of 250 MHz on an FPGA,

allowing execution rates of around 250 million cells/s. Depending on the exact stencil function,

this may be much faster than a CPU is able to manage, particularly if the window is very large,

since thiswould requiremanyRAMaccesses on a CPU. For problemswith very largewindows, the

memory locality enabled by the sliding window provides very fast access to the whole window

content, where a CPU would have to access RAM.

6.1.5 Conclusion

The sliding window structure is an effective tool for applying stencil codes to multidimensional

domain problems on an FPGA. It can yield very high speeds, at the cost of high memory usage.

The speed advantage relative to a CPU is primarily dependent on the size of thewindow, however,

with larger windows being more advantageous to the FPGA, thanks to the memory locality.
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6.2 Conclusions

This work has presented a newhardware architecture for the acceleration of detection of Harris–

Stephens corner features [3] and extraction of ORB feature descriptors [4]. While not the first

such hardware architecture, this implementationmakesmore effective use of the hardware than

the previous work [6], achieving much higher speeds and guaranteed worst-case performance,

allowing the Tarsier device to serve in a hard real-time environment.

The usefulness of the ORB feature descriptor extractor has been improved significantly with

the addition of multi-scale image processing, significantly increasing the quality of the feature

matches achievable with the Tarsier device over other implementations [6]–[8].

The Tarsier accelerator has demonstrated high frame rates, allowing processing of 1920 ×

1080 video at 60 fps (1080p60) in real time, processing each frame completely before the next

arrives. The modifications to the standard algorithms are minor, despite this performance.

The design parameter space has been explored in detail, justifying the choices made in the

design, as well as providing a guide to modifications that can be made in resource-constrained

environments.

And finally, the core source code, the SystemVerilog that is compiled to construct the feature

detector and extractor, has been released to the research community under a Mozilla Public

Licence.
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6.3 Future Work

6.3.1 Hardware matching

At themoment, one of the limiting factors to the usefulness of the Tarsier accelerator is that only

the stages of feature detection and extraction are done in hardware—the process of matching,

which is computationally expensive, is still done on the CPU as part of the ORB_SLAM2 frame-

work [5].

As discussed in section 3.6, the Hamming distance operation required to match ORB

descriptors lends itself well to an FPGA implementation, and a basic one was written for the

work presented in [1]. The matching algorithm itself is straightforward; the complication is

storage of descriptors from previous frames. It is impractical to stream the features from previ-

ous frames to the Tarsier device for matching, and so ideally, they would be stored on the device,

for instance in the on-board DDR3 SDRAM.

A further complexity is the integration of the hardware feature matcher into ORB_SLAM2.

The code as written operates directly on the features and performs its own specialised object

recognition matching, and so significant changes would need to be made, or even a new SLAM

system. Construction of a new SLAM system is beyond the scope of this work.

6.3.2 Further detection and scaling analysis

Several parameters of the feature detection and resampling subsystems have not yet been invest-

igated in detail, namely, the size of the Gaussian window, the value used for κ, and the nature of

the antialiasing filters used in the resampling process. These are likely to have a minimal effect,

but should be investigated for completeness

6.3.3 Further drop analysis

In section 5.4, the module arrangement and buffering strategies were selected to maximise the

number of features successfully processed at each level, and minimise the number dropped.

What was not, however, analysed, was the impact that these dropped features have on the ability

of the algorithm to reconstruct a scene properly. It appears that despite dropping some corners,

the Tarsier works correctly as an accelerator for ORB-SLAM2, but further investigation is neces-
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sary to establish the effect that dropping corners has on SLAM accuracy and tracking robustness.

6.3.4 Comparison with optimised GPU implementation

The GPU implementation tested for comparison with the Tarsier device was drawn directly from

OpenCV without modification, and potentially did not exploit the GPU fully. Images were not

streamed, but instead required the return of results before the next frame was input. A worth-

while target of further research would be optimising a GPU algorithm, such that it can deal with

streamed images, and such that it fully utilises the hardware available.

6.3.5 Separate clock domains

The system presented in this work runs at the one clock frequency throughout. Certain regions

of the system may, however, be able to run faster than this. For example, if the ORB modules

are able to run at 200 MHz, while the rest of the system operates at 150 MHz, a separate clock

domain could be created for the ORB modules. It would necessary to create clock-crossing logic

to handle the mismatched clocks, particularly where the domains interface.

Having the ORB modules operate at a higher clock speed than the feature detector would

be advantageous for performance, because the ORB module processing is decoupled from the

pixel clock, and is not subject to the pixel stream clock enable line. This means that the ORB

modules could process features in less than 256 pixel clock cycles, meaning that they can return

to availability sooner.

6.3.6 Tiling

A major performance boost that has not been examined in this work is the application of tiling.

Tiling divides the input image into chunks, each of which is handled by a separate processing

system. For instance, with two tiles, a separate image pyramid could be constructed for each half

of the input image, and each of the levels in the pyramids would have an independent feature

detection/extraction chain.

This has been implemented in computer vision before, in the Canny edge detector imple-

mented in [35], but not for Harris–Stephens or for ORB.

Tiling at a factor of 2 can theoretically double the speed of a computer vision application,
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because each tile only has to process approximately half as much input data, but this comes at

the cost of increased logic usage, since all the hardware must be duplicated. The current FPGA

being used in this work, an Arria V GX, does not have sufficient logic remaining to implement a

second parallel system, and so a larger FPGA would need to be acquired for full testing.

One additional cost of tiling is in the boundary region. If the input image is simply halved,

and each tile handles half the pixels as if they were a full image, an extra margin region will be

created in the middle of the image. The ORB feature extractor has a margin of 18 pixels, and so

this central stripe would be 36 pixels wide. No features could be detected in this region.

To mitigate this stripe, the regions covered by each tile need to overlap, such that they in-

clude pixels notionally on the other side of the dividing line. By widening the input fed to each

module by 18 pixels, the central region is covered completely, while ensuring that the same fea-

ture will not be processed in both tiles.

An additional complication is ensuring that each tile is fed with pixels. This is relatively

simple if the image is stored in on-board SDRAM, because thememory bandwidth is high enough

to read from two locations at once.

If the image is being streamed in over PCI-express, as is the case for the Tarsier, it is more

complicated, since the image data must be interleaved appropriately, so that the tiles take turns

receiving image data.

The tiling factor can be further increased above 2, so long as sufficient logic is available.

This means that there will be more overlapping regions, which lowers the performance boost

available and increases the memory requirements, as shown in table 6.1. This table shows the

tile widths and speedup for an image 1920 pixels wide. In narrower images, the performance

boost will be smaller, since the overlap region will be a larger proportion of the image. The

efficiency is also shown, which is defined as the speedup divided by the number of tiles.

Tiles 1 2 3 4 5 6
Tile width 1920 978 664 507 413 350
Speedup 1.00 1.96 2.89 3.79 4.65 5.49

Efficiency 1.00 0.98 0.96 0.95 0.93 0.91
Memory requirement 1.00 1.02 1.04 1.06 1.08 1.09

Table 6.1: Tile widths, speedups and efficiencies for a 1920-pixel wide image
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Appendix A

Overview of Hardware Description

Language Modules
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Figure A.1: The multilevel feature extraction system [2] ©2017 IEEE
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clk
begin_frame_reset

frame_reset_complete
r_width
r_height

r_threshold
in_valid
in_pixel

frame_end

Figure A.2: Timing diagram from frame reset. The time between begin_frame_reset and
frame_reset_complete

A.1 Concepts

Frame Reset

The frame reset signal is asserted at the beginning of the frame, and is responsible for coordinat-

ing changing the image dimensions of image processing components. The frame reset signal is

asserted for all levels of the pyramid simultaneously, but with different dimensions. Two signals

— r_width and r_height — accompany the frame reset, and are used to convey the appropri-

ate width and height of that level. For certainmodules, the frame reset additionally specifies the

Harris–Stephens threshold to use for the incoming frame using r_threshold.

Each level has a second signal to signal the completion of the frame reset. Once the frame

controller has received this completion signal from all the levels, the pixels begin to flow into

the processing system.

The timing for this is shown in figure A.2. begin_frame_reset is asserted, as are

r_width, r_height and r_threshold. Each of the modules that is dependent on the

dimensions of the image is then expected to reconfigure itself accordingly, then assert

the frame_reset_complete signal. Once all the modules in the system have asserted

frame_reset_complete, the image data begins to flow through the system. As each module

receives the last pixel in its image, it asserts the frame_end signal. Once all of these have been

received by the central controller, the frame is deemed complete, and the next frame begins.
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A.2 AdderTreePipelined

Source available on GitHub: AdderTreePipelined.sv

The AdderTreePipelined module represents a signed binary adder tree, summing a

configurable-sized array of values, each of configurable bit-width, to yield a grand total. The

summation is done as a binary tree, meaning that each adder adds two values together to yield

an intermediate sum, and so the total number of adders required is n−1, where n is the number

of values in the input array. The addition is pipelined such that one addition is performed per

pipeline stage, and the output is registered. A clock enable signal is also provided in order to

pause the processing, to better synchronise with other modules. For an n-value input array, the

total delay (in clock cycles) is ⌈log2(n)⌉.

The module itself is written as a recursive generator, so each instantiation of the module

represents only one addition, and its adder’s inputs are calculated using generated submodules

of half the input size. If a given instantiation of AdderTreePipelined has an input array of size

1, it simply delays its input for the appropriate number of clock cycles before forwarding it to

the output. If the instantiation has input array size of more than 1, two recursive submodules

are generated, whose input array sizes are half the size of the first instance, and whose outputs

are summed together.

Parameters

DATA_WIDTH The bit-width of each of the input values

LENGTH The number of input values

Input/Output

clk clock signal

reset synchronous reset

in_addends input values (2’s complement)

in_advance clock enable

out_sum output sum (2’s complement)
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A.3 BufferedCornersAndDescriptors

Source available on GitHub: BufferedCornersAndDescriptors.sv

BufferedCornersAndDescriptors serves as a wrapper around CornersAndDescriptors,

providing FIFO queues to the input side of the module. This allows input to the underlying

CornersAndDescriptors module to be delayed if the ORB modules are not ready for it.

As with CornersAndDescriptors, the input is a stream of pixels and the output is a stream

of detected and extracted features.

Parameters

LUMA_BITS the bit-width of the pixel input

MAX_IMAGE_WIDTH the largest frame width this module can be configured

to use (frame reset)

MAX_IMAGE_HEIGHT the largest frame height this module can be configured

to use (frame reset)

COORD_BITS the bit-width of the coordinate signals

MATRIX_BITS the number of bits to use for results in HarrisMatrix

NONMAX_SCORE_BITS the number of bits to use for non-maximum suppression

scores

PARALLEL_MODULES the number of parallel ORB modules to instantiate

BUFFERING_STRATEGY the buffering strategy to use. 0means the “stall when all

modules processing” strategy. 1 means the “stall when

any module processing”.

FIFO_LEN the maximum length of the input FIFO
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Input/Output

clk clock signal

reset synchronous reset

in_begin_frame_reset signals that the frame reset is beginning, and that

r_width and r_height are valid

r_width the image width of the incoming frame

r_height the image height of the incoming frame

r_threshold the Harris–Stephens corner detection threshold to use

for the incoming frame

in_valid signals that in_pixel, in_x, and in_y are valid

in_pixel the incoming pixel

in_x the x-coordinate of the incoming pixel

in_y the y-coordinate of the incoming pixel

in_consume signals that the current FIFO output is being dequeued

in_mask allows particular ORB modules to be disabled. A set bit

disables the corresponding module

out_frame_reset_complete signals that the frame reset has been completed

out_corner_count_increment signals that a corner has been detected, allowing an ex-

ternal counter to keep track of corner counts

out_frame_end signals that all the pixels in the frame have passed

through the module

out_valid signals that out_descriptor, out_feature_x, and

out_feature_y are valid

out_descriptor the ORB descriptor for the output feature

out_feature_x the x-coordinate of the output feature

out_feature_y the y-coordinate of the output feature
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A.4 CoordinateTransformer

Source available on GitHub: CoordinateTransformer.sv

The CoordinateTransformer module is used to calculate the effective full-scale position of a

detected feature. Higher levels of the pyramid operate with smaller images than lower levels of

the pyramid, and features coordinates output by them are in a different coordinate from from

the original image. The CoordinateTransformer module is responsible for scaling these co-

ordinates to the base scale and additionally performing a round-to-nearest, to preserve as much

position information as possible.

The module is entirely combinational, and performs only shifts and adds (all the multiplica-

tions are by constants). See section 4.2.5 for details of the mathematics of unscaling.

Note that this module only supports a scaling ratio of 4
5 , and handles each dimension separ-

ately. Two modules are required for each pyramid level.

Parameters

COORD_BITS the bit-width of the coordinate signals

OCTAVE the octave of this level i.e.
⌊
level
3

⌋
SUBLEVEL the sublevel of this level i.e. level mod 3

Input/Output

in_coord the input coordinate (one dimension)

out_coord the output coordinate
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A.5 CornersAndDescriptors

Source available on GitHub: CornersAndDescriptors.sv

CornersAndDescriptors is the core of the feature detection and extraction system. Pixels

enter at the input side and features exit at the output side. This module is instantiated once per

level of the image pyramid, and contains the corner detector and one or more ORB modules.

CornersAndDescriptors counts pixels internally in order to generate the coordinates for

its submodules. Since each submodule operates with a different input delay, each receives a

different coordinate for a given input coordinate. This has the effect that the input coordinates

are ignored, but they are useful for debugging.

CornersAndDescriptors is also the home of the main sliding window. This is a rectangu-

lar stripe of the image that contains all the raw pixel values needed for the various submodules.

HarrisCornersAndNonmax takes a 3× 3 window, which is used to calculate the image derivat-

ives for Harris–Stephens corner detection. ORBArbitrator takes a 37-element column of pixels,

which are inserted into the ringbuffers of each ORB module. The main sliding window is sized

and positioned to fit both these input areas, with the effect that the “centre” pixel of thewindow,

at virtual coordinate (0,0), is not actually present in the window when a corner is detected.

167

https://github.com/raiker/tarsier/tree/master/src/CornersAndDescriptors.sv


Parameters

LUMA_BITS the bit-width of the pixel input

MAX_IMAGE_WIDTH the largest frame width this module can be configured

to use (frame reset)

MAX_IMAGE_HEIGHT the largest frame height this module can be configured

to use (frame reset)

COORD_BITS the bit-width of the coordinate signals

MATRIX_BITS the number of bits to use for results in HarrisMatrix

NONMAX_SCORE_BITS the number of bits to use for non-maximum suppression

scores

PARALLEL_MODULES the number of parallel ORB modules to instantiate

BUFFERING_STRATEGY the buffering strategy to use. 0means the “stall when all

modules processing” strategy. 1 means the “stall when

any module processing”.
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Input/Output

clk clock signal

reset synchronous reset

in_begin_frame_reset signals that the frame reset is beginning, and that

r_width and r_height are valid

r_width the image width of the incoming frame

r_height the image height of the incoming frame

r_threshold the Harris–Stephens corner detection threshold to use

for the incoming frame

in_valid signals that in_pixel, in_x, and in_y are valid

in_pixel the incoming pixel

in_x the x-coordinate of the incoming pixel

in_y the y-coordinate of the incoming pixel

in_consume signals that the current FIFO output is being dequeued

in_mask allows particular ORB modules to be disabled. A set bit

disables the corresponding module

out_frame_reset_complete signals that the frame reset has been completed

out_corner_count_increment signals that a corner has been detected, allowing an ex-

ternal counter to keep track of corner counts

out_frame_end signals that all the pixels in the frame have passed

through the module

out_request_stall signals that the module is applying backpressure to its

input. The BufferedCornersAndDescriptors mod-

ule will attempt to respect this signal, but if the FIFO is

full, it will be ignored.

out_valid signals that out_descriptor, out_feature_x, and

out_feature_y are valid

out_descriptor the ORB descriptor for the output feature

out_feature_x the x-coordinate of the output feature

out_feature_y the y-coordinate of the output feature
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A.6 DimensionCalculator_4_5

Source available on GitHub: DimensionCalculator_4_5.sv

DimensionCalculator_4_5 is used to calculate the dimensions of image pyramid levels at

frame reset time. When a frame reset signal arrives, the r_width and r_height signals cor-

respond to the width and height of the base-scale image, respectively. Each level of the pyramid

above the base works with smaller images. This module calculates the size of those smaller im-

ages.

Given the dimension of an image pyramid level, this module will calculate the corresponding

dimension for the level immediately above it, the next sublevel in that octave. These dimensions

are in a ratio of approximately 5 : 4, as detailed in section sec:scaling. The module actually

performs a division, as opposed to multiplication by the reciprocal (1.25), since it is critical that

the result be exact over the full range of input values.

The computation performed is

y =
4(x− 1)

5
+ 1

which compensates for the unevenness of the 4
5 scaling filter. Division is performed by

SlowDividerUnsigned, and takes many clock cycles (approximately 1 cycle for every bit of

quotient). Since this is only performed once per frame, this is considered an acceptable delay.

Assert in_valid to commence calculation. out_valid will be asserted when the result is

ready. If in_valid is asserted again, before computation is complete, the previous unfinished

calculation will be cancelled.

Parameters

COORD_BITS the bit-width of the coordinate signals
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Input/Output

clk clock signal

in_valid signals that in_dim is valid, and that the calculation

should commence

in_dim the dimension to be scaled

out_valid signals that the result in out_dim is ready

out_dim the scaled dimension
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A.7 FIFO

Source available on GitHub: FIFO.sv

The FIFO module represents a standard “first-in, first-out” queue, implemented with a ringbuf-

fer. The length of the ring and the width of the data elements are customisable at compile time,

and a signal is provided to indicate when the storage is full. The FIFO exhibits overwriting be-

haviour — if a word is written while the buffer is full, the oldest input is overwritten with the

newest.

Parameters

DATA_BITS the bit-width of each element

ADDRESS_BITS the number of bits used for internal addressing. The

maximum number of elements stored in the queue is

equal to 2ADDRESS_BITS − 1

Input/Output

clk clock signal

reset synchronous reset

in_write assert to write the value on in_data to the FIFO and ad-

vance the write head

in_data the input to the FIFO

in_read assert to advance the read head by one position

out_data the output from the FIFO

out_valid signalswhether the value onout_data is valid. Thiswill

be set unless the FIFO is empty

out_full signalswhether the FIFO is full. If full, any furtherwrites

will cause data loss
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A.8 HarrisCornersAndNonmax

Source available on GitHub: HarrisCornersAndNonmax.sv

The HarrisCornersAndNonmaxmodule represents the combination of Harris–Stephens corner

detection and 3 × 3 non-maximum suppression. The module takes a 3 × 3 window of image

pixels as input and returns a corner determination for the centre point 4 rows and 23 columns

later. This means that the corner score for pixel (x, y) arrives when the input window holds the

contents of (y + 3 . . . y + 5, x + 22 . . . x + 24). This assumes that the input window follows a

raster scan, such as provided by the SlidingWindow module.

The image width is reloaded upon synchronous reset, allowing this module to accept images

of varying sizes without recompilation.

Parameters

LUMA_BITS the bit-width of the pixel input

MAX_IMAGE_WIDTH the largest frame width this module can be configured

to use (frame reset)

COORD_BITS the bit-width of the coordinate signals

MATRIX_BITS the number of bits to use for results in HarrisMatrix

NONMAX_SCORE_BITS the number of bits to use for non-maximum suppression

scores
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Input/Output

clk clock signal

reset synchronous reset

r_width the image width of the incoming frame

r_threshold the Harris–Stephens corner detection threshold to use

for the incoming frame

in_valid signals that in_window is valid; serves as clock enable

in_window a 3× 3 window, used as input to the Harris detector

out_is_corner signals whether a corner is detected, but delayed by 4

rows and 23 columns
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A.9 HarrisCornersPipelined

Source available on GitHub: HarrisCornersPipelined.sv

The HarrisCornersPipelined module calculates Harris–Stephens corner scores for image

pixels. When fed a raster scan of 3 × 3 windows of an image as input, it calculates the corner

score and then outputs it with a delay of 2 rows and 17 columns.

The module feeds its input window into an instance of HarrisMatrixPipelined, which

calculates the three distinct terms of the structure tensor. Each term goes into its own 7 × 7

sliding window. These three windows of matrix terms are blurred using a 7 × 7 binomial filter,

implemented bymultiplying each element by a constant (in effect a shift-and-add) and summing

all 49 terms using an AdderTreePipelined. Since the sum of the coefficients of a binomial

distribution is always a power of 2, the resultant sum can be shifted to the right to renormalise,

instead of requiring a costly divider.

Finally, the Harris–Stephens score is calculated from the filtered structure tensor as de-

scribed in section 2.2.1, using a k-value of 0.25 in order to yield simple arithmetic.

The image width is reloaded upon synchronous reset, allowing this module to accept images

of varying sizes without recompilation.

Parameters

LUMA_BITS the bit-width of the pixel input

MAX_IMAGE_WIDTH the largest frame width this module can be configured

to use (frame reset)

COORD_BITS the bit-width of the coordinate signals

MATRIX_BITS the number of bits to use for results in HarrisMatrix
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Input/Output

clk clock signal

reset synchronous reset

r_width the image width of the incoming frame

in_valid signals that in_window is valid; serves as clock enable

in_window a 3× 3 window, used as input to the Harris detector

out_score the corner score of the centre pixel, delayed 2 rows and

17 columns
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A.10 HarrisMatrixPipelined

Source available on GitHub: HarrisMatrixPipelined.sv

The HarrisMatrixPipelined module calculates the Harris matrix (see section 2.2.1) of an im-

age at a particular point.

The Harris matrix is given by

( ∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2


using Sobel filters with response


−1 0 1

−2 0 2

−1 0 1

 and


−1 −2 −1

0 0 0

1 2 1


for the x-derivative and y-derivative respectively.

The calculation is performed with a pipeline delay of 2 clocks, and calculates the results to a

variable precision, configurable at compile time.

Parameters

LUMA_BITS the bit-width of the pixel input

MATRIX_BITS the number of bits to use for results in HarrisMatrix

Input/Output

clk clock signal

advance the clock enable signal, signals that window is valid

window a 3× 3 window of input pixels

matrix a 2 × 2 matrix of the structure tensor, with precision

given by MATRIX_BITS
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A.11 MultilevelBarrier

Source available on GitHub: MultilevelBarrier.sv

The MultilevelBarrier module operates similarly to a software barrier, waiting for a number

of subordinate tasks to complete before another task is able to continue. The module waits until

every task has asserted its line of the in_wait signal before asserting out_release.

This module is used in the frame reset system to ensure that all levels of the pyramid have

finished resetting and are ready for the incoming frame. The module is also robust to multiple

wait signals on one line before any signal is received on another. A 4-bit counter is implemented

for each line, with each assertion of the line incrementing the counter. Once all the counters are

> 0, they are all decremented and out_release is asserted, allowing another task to proceed.

Parameters

NUM_LEVELS the number of lines to implement

Input/Output

clk clock signal

reset synchronous reset

in_wait a bus with NUM_LEVELS signals, on which signals are

sent to indicate completion of the subtasks

out_release signals that all lines have been asserted, and that the

main task may resume
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Figure A.3: Caption

A.12 MultitapShiftRegister

Source available on GitHub: MultitapShiftRegister.sv

The MultitapShiftRegister module represents a shift register with multiple output taps

along its length. The taps are evenly spaced, but their spacing is configurable at reset time.

The shift register is implemented using a wide RAM as the backing store, where the width of

the RAM word is at least the data size multiplied by the number of taps.

As shown in figure A.3, on each update, one word is read from the RAM and then a word is

written back to the same address. The new value is a left-shifted version of the old value, with

the current input value in the low order bits, and the oldest data word discarded.

This allows the MultitapShiftRegister module to implement the backing storage for a

sliding window. If the spacing between taps is set to the width of a row of image data, and the

module is fed with pixels in a raster scan of the image, the values of the taps will represent a

column of pixels from the input image.

If the shift register is configured to use a tap spacing less than the maximum, the memory

write head will return back to address 0 before it reaches the end of the address space. For

instance, if the maximum spacing is 1024 and the module is configured to use a spacing of 720,

the head will update addresses in sequence (. . . 718, 719, 0, 1 . . .). This allows the module to

serve as the backing store for a sliding window on images of variable size.

The image width is reloaded upon synchronous reset, allowing this module to accept images

of varying sizes without recompilation.

Parameters

DATA_BITS the bit-width of the input

COORD_BITS the bit-width of the coordinate signals

MAX_TAP_SPACING the maximum configurable distance between output

taps (the actual distance used is the smallest power of

two greater than or equal to this value)

NUM_TAPS the number of output taps
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Input/Output

clk clock signal

reset synchronous reset

r_tap_spacing the tap spacing that will be loaded on module reset

in_valid signals that in_data is valid

in_data the input value to be loaded into the shift register

out_data an array of NUM_TAPS elements with the values of the

shift register at each of the taps
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A.13 NonmaxSuppression

Source available on GitHub: NonmaxSuppression.sv

The NonmaxSuppression module examines a window of values and determines whether the

centre value is the largest value in the window. With a window size of 3×3, it is used to perform

non-maximumsuppression ofHarris–Stephens corner scores, and ensure that only localmaxima

are returned from the corner detector. The centre value is also compared against a threshold,

andwill only be considered a local maximum if its value is higher than the threshold. This allows

weak corners to be rejected.

Themodule is purely combinational, so there is no pipelining. Additionally, in order to break

ties, if two equal values are adjacent, the value to the right or down is considered to be larger

than the value to the left or up.

The centre pixel is defined to be that one at

(⌊
WINDOW_WIDTH

2

⌋
,

⌊
WINDOW_HEIGHT

2

⌋)

Parameters

DATA_BITS the bit-width of the input

WINDOW_WIDTH the width of the window

WINDOW_HEIGHT the height of the window

Input/Output

window the window to be examined

threshold the minimum corner score required to accept a corner

out signals whether the centre pixel is a local maximum

181

https://github.com/raiker/tarsier/tree/master/src/NonmaxSuppression.sv


A.14 ORB2

Source available on GitHub: ORB2.sv

The ORB2 module is responsible for actually calculating ORB descriptors at detected feature loc-

ations. The module drives an ORBWindow module that stores the local neighbourhood of the

feature and enables random access to offsets within that neighbourhood.

ORB2 contains a state machine that performs the various tasks of the ORB algorithm in order

(see 3.4). First, the image moments calulated by ORBWindow are provided to SectorSel to de-

termine the appropriate rotation angle. This rotation angle is used by the VecRotate modules

to determine the appropriate rotated sample coordinate at which to sample the image. There

are 256 pairs of samples that are accessed by the ORB2 module over the course of calculating the

descriptor, and they are performed at a configurable rate, defaulting to one pair per clock cycle

throughput. Once the samples have been acquired, they are compared and the result shifted into

an output register.

The module may be configured to hold multiple ORBWindows, allowing it to perform mul-

tiple pairs of samples every clock, but typically the resources are better spent on extra ORB2

modules. With one window in amodule, the latency is 266 clock cycles between commencement

of calculation and availability of descriptor.

If columns of input pixels are received while the ORB2 module is calculating the descriptor

for a feature, these cannot be written into the window, and thus the window will need to be

refilled before it can be used again to calculate a descriptor.

Parameters

LUMA_BITS the bit-width of the pixel input

BITS_PER_CLOCK the number of ORBWindow modules to instantiate, and

by extension, the number of descriptor bits that can be

calculated per clock

COORD_BITS the bit-width of the coordinate signals

182

https://github.com/raiker/tarsier/tree/master/src/ORB2.sv


Input/Output

clk clock signal

reset synchronous reset

in_valid signals that in_col and in_go are valid

in_col a 37-element column of input pixels

in_go signals the detection of a corner at the coordinate spe-

cified by (in_x,in_y) and triggers calculation of the

descriptor. Additionally signals that in_x and in_y are

valid

in_x the x-coordinate of the detected feature

in_y the y-coordinate of the detected feature

out_valid signals that out_descriptor, out_feature_x and

out_feature_y are valid

out_descriptor 256-bit value of the feature descriptor

out_feature_x the x-coordinate of the output feature

out_feature_y the y-coordinate of the output feature

out_window_ready signals whether the module is currently available to cal-

culate descriptors

out_accepting_input signals whether the module is currently accepting pixel

input. This will be set unless the module is currently

processing.
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A.15 ORBArbitrator

Source available on GitHub: ORBArbitrator.sv

The ORBArbitrator module is responsible for managing multiple ORB modules at a particular

level of the image pyramid. It keeps track of the readiness of multiple modules, directs input

pixel columns to those that are ready, and dispatches one module when a corner is detected. It

contains a FIFO to buffer the output of themultiple ORBmodules, and ensure that their output is

not lost if later steps in the pipeline are not yet ready for the feature descriptors, while allowing

the modules to return to service as soon as possible.

ORB modules can be in one of 3 broad states: filling, ready, and processing. A module in the

filling state requires more pixel input before it enters the ready state and is able to generate

descriptors. A module in the ready state will accept input to remain in the ready state, and is

ready to process a detected feature. When it receives the signal to start processing, the mod-

ule transitions into the processing state, at which point it is unable to accept input until the

processing finishes. If input has arrived since it began processing, the module is out of sync,

and must refill. If no input has arrived, however, the module is still in sync, and may transition

directly back to ready.

The ORBArbitratormodulemanages the states of themodules. If a corner is receivedwhen

at least one module is in the ready state, it will trigger the processing on that module. If no

module is available, the corner must be dropped, and will not appear in the output.

Parameters

LUMA_BITS the bit-width of the pixel input

PARALLEL_MODULES the number of parallel ORB modules to instantiate

BITS_PER_CLOCK the number of ORBWindow modules to instantiate, and

by extension, the number of descriptor bits that can be

calculated per clock

COORD_BITS the bit-width of the coordinate signals

BUFFERING_STRATEGY the buffering strategy to use. 0means the “stall when all

modules processing” strategy. 1 means the “stall when

any module processing”.
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Input/Output

clk clock signal

reset synchronous reset

in_valid signals that in_col is valid

in_col a 37-element column of input pixels

in_is_corner signals the detection of a corner at the coordinate spe-

cified by (in_x,in_y) and may trigger calculation of the

descriptor. Additionally signals that in_x and in_y are

valid

in_x the x-coordinate of the detected feature

in_y the y-coordinate of the detected feature

in_consume signals that the current FIFO output is being dequeued

in_mask allows particular ORB modules to be disabled. A set bit

disables the corresponding module

out_valid signals that out_descriptor, out_feature_x and

out_feature_y are valid

out_descriptor the ORB descriptor for the output feature

out_feature_x the x-coordinate of the output feature

out_feature_y the y-coordinate of the output feature

out_request_stall signals that the module is applying backpressure to its

input
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A.16 ORBMultiscale

Source available on GitHub: ORBMultiscale.sv

The ORBMultiscale module implements an image pyramid for the ORB feature de-

tector/extractor system. All the scaling and coordinate transformation occurs within this mod-

ule.

The input to the module is the input pixels and coordinates of the image base layer. These

pixels are fed into the cascade of scalers (see section 4.2) to generate the inputs for each level of

the pyramid. The inputs then flow into instances of BufferedCornersAndDescriptors, one

for each level.

The scaler cascade is implemented using two instances of Scale_4_5_Bilinear, one for

each sublevel of the first octave (excluding the base), and one instance of Scale_1_2_Bilinear

for each other sublevel.

ORBMultiscale is additionally responsible for calculating the sizes of the down-

samples levels of the pyramid. This calculation is performed using four instances of

DimensionCalculator_4_5, one for each dimension of the two sublevels that have 4
5 scaling

ratios. (All levels above these are exactly half the height and width of another level, and this

division can be done simply using right shift operations.) Since the calculation takes some time,

and the result for the first instance (the dimensions of level 1) is required to begin the second

instance (the dimensions of level 2), this is the primary component of the frame reset delay.

The module itself is implemented as a generate block. Each model is either the base level

(level 0), or it derives its input from a scaled version of the input to a lower level. For each level,

the source level’s pixels are fed through the appropriate scaler, and then into an instance of

BufferedCornersAndDescriptors. The relationships are shown in figure A.4.

When output features are received from the ORBmodules, their coordinates are in the frame

of the respective level of the pyramid. In order to be useful, all coordinates must be in the

same, base scale, frame. This is done by passing the output coordinates through instances of

CoordinateTransformer.

The image width is reloaded upon synchronous reset, allowing this module to accept images

of varying sizes without recompilation.
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Parameters

LUMA_BITS the bit-width of the pixel input

MAX_IMAGE_WIDTH the largest frame width this module can be configured

to use (frame reset)

MAX_IMAGE_HEIGHT the largest frame height this module can be configured

to use (frame reset)

COORD_BITS the bit-width of the coordinate signals

NONMAX_SCORE_BITS the number of bits to use for non-maximum suppression

scores

MATRIX_BITS the number of bits to use for results in HarrisMatrix

FIFO_LEN the maximum length of the input FIFO

Level Source Level Relationship
0 Input 1
1 0 4

5

2 1 4
5

3 0 1
2

4 1 1
2

5 2 1
2

6 3 1
2

7 4 1
2

8 5 1
2

Figure A.4: The scaling relationships between levels
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Input/Output

clk clock signal

reset synchronous reset

in_begin_frame_reset signals that the frame reset is beginning, and that

r_width and r_height are valid

out_frame_reset_complete signals that the frame reset has been completed

r_width the image width of the incoming frame

r_height the image height of the incoming frame

r_threshold the Harris–Stephens corner detection threshold to use

for the incoming frame

in_valid signals that in_pixel, in_x and in_y are valid

in_pixel the incoming pixel

in_x the x-coordinate of the incoming pixel

in_y the y-coordinate of the incoming pixel

in_output_ready signals that the enclosingmodulewishes to consume the

feature at the head of the output FIFO

in_masks contains the enable masks for all the levels in the image

pyramid

out_corner_count_increments bus of signals, one for each level, to indicate the detec-

tion of a corner. Allows for an external counter to count

the number of corners detected at each level

out_frame_end signals that all the pixels in the frame have passed

through the module

out_valid signals that out_descriptor, out_level,

out_feature_x and out_feature_y are valid

out_descriptor the ORB descriptor for the output feature

out_feature_x the x-coordinate of the output feature

out_feature_y the y-coordinate of the output feature

out_level the level of the detected feature
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A.17 ORBWindow

Source available on GitHub: ORBWindow.sv

ORBWindow is the core pixel buffer for the ORB module. It stores a window of 37 × 37 pixels in

a ring buffer and enables random access to their values. As described in section 3.4.2, incoming

columns of pixels are written into one end of the active area of the ring buffer, and cause the

head to advance one position. This module is also responsible for feeding the appropriate input

to theXMoment andYMomentmodules, which calculate the imagemoments for the rotation angle

calculation.

The ORBWindow module can operate in read mode and in write mode. In read mode, input

is ignored, and two two-dimensional asynchronous read ports are made available to the ORB

module. In write mode, input is written into the ring buffer, and the read ports are inoperative.

If input is received while the ORBWindow is in read mode, the window is marked as being ‘dirty’,

or not up to date, and it must be flushed completely with new input columns before it can be put

into read mode again. The current read operation can be completed first, however.

This module is completely agnostic to image dimensions, and so does not need to be reset in

between frames.

Parameters

LUMA_BITS the bit-width of the pixel input

COORD_BITS the bit-width of the coordinate signals

MOMENT_BITS the bit-width of the output image moments
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Input/Output

clk clock signal

in_valid signals whether in_col is valid

in_col a 37-element column of input pixels

in_coord1 read address for port 1 (range ([−18, 18],[−18, 18]))

in_coord2 read address for port 2 (range ([−18, 18],[−18, 18]))

in_flush commence flush cycle manually (e.g. at start of frame)

in_mode unset for read mode, set for write mode. Value must be

held steady.

out_patch_valid signals whether the contents of the patch are clean and

ready to be read

out_xmoment the current value of the x moment for the 37× 37 win-

dow

out_ymoment the current value of the y moment for the 37× 37 win-

dow

out_pix1 the read value from port 1 (undefined if in write mode)

out_pix2 the read value from port 2 (undefined if in write mode)
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A.18 RAMBlock

Source available on GitHub: RAMBlock.sv

RAMBlock represents a block of synchronous-write, asynchronous-read RAM. The dimensions

are customisable at compile time, and the block has one port for write and one for read.

Parameters

DATA_WIDTH the bit-width of a word of data

ADDR_BITS the bit-width of the address lines. The totalmemory size

is 2ADDR_BITS .

Input/Output

clk clock signal

in_we write-enable for the write port

out_read_data output from the read port

in_read_addr address for the read port

in_write_data input to the write port

in_write_addr address for the write port
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A.19 RecBinaryMux

Source available on GitHub: RecBinaryMux.sv

RecBinaryMux is a recursive pipelined structure, to allowmultiplewide inputs to bemultiplexed

onto a single output, where ordering is unimportant. The structure is implemented as a binary

tree, where each module has up to two inputs and a wide register. Each module can be either

full or empty, and is aware of the states of its two children. An empty module, or one that will

be taken from in this cycle, can take a value out of one of its full children, allowing a value to

propagate from the input end of the tree to the output end. Because each module will take from

one of its children by preference, it is possible for a value that entered the tree before another

value to be output after it.

Parameters

DATA_WIDTH the bit-width of a word of data

LENGTH the total number of inputs to both of this module’s sub-

trees

Input/Output

clk clock signal

reset synchronous reset

in_data a LENGTH-element array of input values for all this mod-

ule’s children

in_valid a LENGTH-element array to signal validity for each of

in_data

in_ready signals to consume the input values from earlier mod-

ules

out_data output to pass towards the end of the tree

out_valid signals that out_data is valid

out_ready input signal to consume the value in this module
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A.20 Scale_1_2_Bilinear

Source available on GitHub: Scale_1_2_Bilinear.sv

Performs ratio-12 bilinear-filtered scaling on an input image. The input is a stream of pixels and

coordinates, and the output is also a stream of pixels and coordinates, at approximately 1
4 the

average rate of the input.

As described in section 4.1.1, the output rate from the scaler modules is some fraction of the

input rate. Whenever sufficient image information is available to calculate the value of the scaled

output pixel, a pixel is emitted. The coordinates for the output pixel are generated internally by

halving the input coordinates.

The image width is reloaded upon synchronous reset, allowing this module to accept images

of varying sizes without recompilation.

Parameters

LUMA_BITS the bit-width of the pixel input

MAX_IMAGE_WIDTH the largest frame width this module can be configured

to use (frame reset)

MAX_IMAGE_HEIGHT the largest frame height this module can be configured

to use (frame reset)

COORD_BITS the bit-width of the coordinate signals
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Input/Output

clk clock signal

reset synchronous reset

r_width the image width of the incoming frame

in_valid signals whether in_pixel, in_x and in_y are valid

in_pixel the incoming pixel

in_x the x-coordinate of the incoming pixel

in_y the y-coordinate of the incoming pixel

out_valid signals whether out_pixel, out_x and out_y are valid

out_pixel the outgoing pixel

out_x the x-coordinate of the outgoing pixel

out_y the y-coordinate of the outgoing pixel
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A.21 Scale_4_5_Bilinear

Source available on GitHub: Scale_4_5_Bilinear.sv

Performs ratio-45 bilinear-filtered scaling on an input image. The input is a stream of pixels and

coordinates, and the output is also a stream of pixels and coordinates, at approximately 16
25 the

average rate of the input.

As described in section 4.1.1, the output rate from the scaler modules is some fraction of the

input rate. Whenever sufficient image information is available to calculate the value of the scaled

output pixel, a pixel is emitted. The coordinates for the output pixel are generated internally

from the input coordinates.

The image width is reloaded upon synchronous reset, allowing this module to accept images

of varying sizes without recompilation.

Parameters

LUMA_BITS the bit-width of the pixel input

MAX_IMAGE_WIDTH the largest frame width this module can be configured

to use (frame reset)

MAX_IMAGE_HEIGHT the largest frame height this module can be configured

to use (frame reset)

COORD_BITS the bit-width of the coordinate signals
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Input/Output

clk clock signal

reset synchronous reset

r_width the image width of the incoming frame

in_valid signals whether in_pixel, in_x and in_y are valid

in_pixel the incoming pixel

in_x the x-coordinate of the incoming pixel

in_y the y-coordinate of the incoming pixel

out_valid signals whether out_pixel, out_x and out_y are valid

out_pixel the outgoing pixel

out_x the x-coordinate of the outgoing pixel

out_y the y-coordinate of the outgoing pixel
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A.22 SectorSel

Source available on GitHub: SectorSel.sv

The SectorSel module performs an approximate atan2 calculation, using 64 output angles (6

bits of precision), or approximately 5.6°steps. It is used in the ORB module to calculate the ro-

tation angle from the image moments, to determine the orientation of a corner. As described

in section 3.4.1, the calculation is done by multiplying the x-coordinate of a point by a list of

precomputed factors, then comparing these to the y value.

The module takes 5 clock cycles to calculate the angle to 6 bits. In addition, the degenerate

case where x = y = 0 is detected early, so that descriptor calculation can be aborted if the angle

is undefined.

Parameters

INPUT_BITS the bit-width of the input coordinates

Input/Output

clk clock signal

in_valid signals whether in_x and in_y are valid, additionally

serves as clock enable

in_x the x-coordinate of the point

in_y the y-coordinate of the point

out_sector the nearest angle (6 bits). 0 is defined to be upwards

(negative y direction) and 16 points right (positive x dir-

ection)

out_nan asserted if in_x = in_y = 0 and the angle is undefined
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A.23 ShiftRegister

Source available on GitHub: ShiftRegister.sv

The ShiftRegister module is a configurable-length and -width single-tap shift register.

Parameters

DATA_BITS the bit-width of the input

LENGTH the length of the shift register

Input/Output

clk clock signal

reset synchronous reset

wr_en write- and clock-enable

in input data

out output data
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A.24 SlidingWindow

Source available on GitHub: SlidingWindow.sv

The SlidingWindow module implements a 2D sliding window, as described in section 2.3.1. The

window itself is implemented with an array of register-based shift registers, and the backing

store is implemented with a MultiTapShiftRegister. The input to the module drives the

bottom shift register row, while each of the other rows is driven by the output from one of the

taps of the RAM-backed shift register.

Themodulemakes thewhole register-backedwindowavailable via its output, enabling fixed-

offset access to the whole window.

The image width is reloaded upon synchronous reset, allowing this module to accept images

of varying sizes without recompilation.

Parameters

DATA_BITS the bit-width of the input

WINDOW_NUM_ROWS the number of rows in the register window

WINDOW_NUM_COLS the number of columns in the register window

MAX_ROW_LENGTH the maximum runtime-configurable length of a row

COORD_BITS the bit-width of the coordinate signals

Input/Output

clk clock signal

reset synchronous reset

r_row_length the image width to configure on reset

in_valid signalswhetherin_data is valid, also serves as clock en-

able

in_data the input word

out_window the register-backed window
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A.25 SlowDividerUnsigned

Source available on GitHub: SlowDividerUnsigned.sv

SlowDividerUnsigned is an implementation of binary long division in hardware, generating

one bit per clock cycle. The divider is used in the DimensionCalculator_4_5 module, to en-

sure accuracy of calculated dimensions. Since the division only occurs twice per frame, it is con-

sidered acceptable to wait the delay, instead of implementing a faster, more complex algorithm,

such as Newton-Raphson.

A dividend and divisor are input, and then, DIVIDEND_BITS cycles later, the quotient and

remainder are output. If the divisor is 0, the divide-by-zero bit is set.

Parameters

DIVIDEND_BITS the bit-width of the dividend

DIVISOR_BITS the bit-width of the divisor

Input/Output

clk clock signal

in_valid signals whether in_dividend and in_divisor are

valid

in_dividend the dividend

in_divisor the divisor

out_valid signals whether out_error, out_quotient and

out_remainder are valid

out_error set if a divide-by-zero occurred

out_quotient the quotient

out_remainder the remainder
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A.26 UnsignedAdderTreePipelined

Source available on GitHub: UnsignedAdderTreePipelined.sv

Identical to AdderTreePipelined, just unsigned (see section A.2).
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A.27 VectorRotate

Source available on GitHub: VectorRotate.sv

The VectorRotate module is used to rotate pairs of sample coordinates for indexing into an

ORB window. The input is a vector representing an untransformed coordinate pair, as well as

the sine and cosine values of the rotation angle from a lookup table, and the output is a rotated

vector of the same magnitude as the input.

The input vector elements are 5-bit signed values ([-16,15]) and the sine and cosine values

are 9-bit signed fixed-point values. In Q-notation, the input vector elements are in Q4.0 form,

and the trigonometric values are in Q0.8.

Two intermediate values are calculated

a = x cos θ − y sin θ

b = x sin θ + y cos θ

which are signed 14-bit numbers with 8 fractional bits (Q5.8). These are then rounded to the

nearest integer using Banker’s rounding (break ties towards the nearest even number), and the

signed 6-bit results are returned.

The latency of this module is 2 clock cycles, which is hidden by pipelining the pixel sample

access in ORB2.

Parameters

none
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Input/Output

clk clock signal

ix input x in signed Q4.0

iy input y in signed Q4.0

cos cos θ in signed Q0.8

sin sin θ in signed Q0.8

ox output x in signed Q5.0

oy output x in signed Q5.0
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