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ABSTRACT 

 
Bridges play an important role in transportation systems. Their design is 
dependent on the estimated lifetime traffic load effect. Codes of practice stipulate 
the use of notional traffic load models to represent actual traffic. These load 
models are based on many conservative assumptions, which is prudent, but can 
be costly, especially when considering long-span bridges. To address some 
sources of conservatism in long-span bridge load modelling, three aspects are 
considered in this work: 
 

 Axle-to-axle gap: Current methods of simulating congestion (the critical 
case for long-span bridges) make assumptions about the axle-to-axle 
gaps maintained between vehicles. There is a potential improvement in 
traffic load modelling if accurate data on axle-to-axle gaps can be obtained.  

 Load model design: In the design of a notional load model for a code, both 
load magnitude and configuration are variables to consider. Most attention 
so far has been given to the load magnitude. This work proposes 
quantitative tools for the design of the load model configuration.  

 Traffic load patterning: The load patterning stipulated by codes of practice 
may be impossible to achieve by real traffic. A less conservative more 

faithful approach for long-span bridges is developed here, which is 

especially useful for the assessment of existing bridges.  
 

This dissertation aims to reduce the conservatism in load effect estimation for 
long span bridges. The major achievements are: 
 

 A newly-proposed wheel detection algorithm which achieves high 
efficiency and accuracy, compared with other object detection algorithms.  

 New vehicle and bridge influence line metrics are proposed to design the 
notional load model configurations, termed concentration and 
peakedness.  

 A proposed traffic load patterning method is shown to improve the 
estimation of the actual load, compared to the traditional approach.  

 
The implications of these results can be applied to current bridge design and 
assessment practices. They work together to provide more economical and 
efficient designs for bridges. Furthermore, the cost of maintenance and 
rehabilitation of existing bridges is considerable. The improved accuracy 
resulting from this work could help postpone, or even cancel such maintenance 
works.  
 
Further research is recommended to analyse more complicated cases in traffic 
microsimulation, such as considering multi-lane factors, bidirectional traffic, and 
dynamic effects.  
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1.1 Background 

Long span bridges are essential to society’s functioning. However, as costly 

assets, whether to be built or already built, it is imperative to construct or maintain 

them as economically as possible.  

The current approach to estimate traffic load is contributing to very notable visible 

features on new bridges. For example, the newly opened (2017) Queensferry 

Crossing of the firth of Forth, Scotland, is a cable-stay bridge with two 650 m 

spans (Kite et al., 2011). The Eurocode load model was used in its design, with 

patterned traffic load causing significant bending moments in the central tower 

(Figure 1-1). As a result, it was necessary to overlap the stay cables at both mid-

spans, to reduce the tower bending moment. As another example, the Norwegian 

Public Roads Administration is proposing a multi-span suspension bridge on 

floating supports to cross the Bjørnafjorden, as part of its efforts to remove ferries 

from its E39 route (Figure 1-2). This proposed bridge has three spans of 1385 – 

1325 – 1385 m. Due to the longitudinal bending caused by patterned live loading, 

it was found necessary to introduce a longitudinal horizontal cable to connect the 

tops of each tower (Villoria et al., 2017b). This top cable is adding significant 

complexity to the design. It must be heavily tensioned to avoid going slack in the 

extreme scenario adding significantly to the foundation design and complexifies 

the combined wind and wave vibration design (Villoria et al., 2017a).  

 
(a) Overlapping cables 

 
(b) Central tower bending moment due to the traffic load patterned on one span 

Figure 1-1. Design of Queensferry Crossing (after Jacobs and Arup, 2009).  
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Figure 1-2. Bjørnafjorden concept design (after Villoria et al., 2017b). 

Of course, the approach to traffic load estimation does not only affect new 

designs but potentially has even worse implications for existing long-span 

bridges. For example, around 25% of the long-span bridges in North America are 

reaching the end of their 75-year design lives, and only 63% long-span bridges 

are reportedly in good condition (Maria et al., 2018). It estimated that the US’s 

backlog of bridge maintenance is at US$123 billion (ASCE, 2017). Given the 

strong correlation between poor condition and reduced load capacity (Wang et 

al., 2011), if a more precise live load model and patterning method are used, 

many bridges may be found to be a safe as-is, and substantial portion of the 

maintenance or rehabilitation cost could be avoided. 



CHAPTER 1 INTRODUCTION 

 

Page | 4  
 

1.2 Scope of the Work 

The objective of this study is to improve the traffic loading estimation on long-

span bridges. Precisely, we consider the improvement on the axle-to-axle gaps, 

the basis of the load models and the traffic load patterning method. In detail, with 

considering the previous works, the tasks are: 

 Using existing object detection algorithms to detect wheels; 

 Proposing a better solution to detect wheels with high accuracy and 

efficiency; 

 Investigating the fundamental relationship among bridges, vehicles and 

its load effects (LEs); 

 Developing a rational and convenient tool for the next-generation load 

model design; 

 Illustrating the conservatism of the traditionally patterned traffic topology 

for long-span bridges; 

 Putting forward a more rational proposal for traffic load patterning for long-

span bridges. 

The refined work on wheel detections involves three existing algorithms, 

including Hough Transform, Template Matching and Deformable Part-based 

Models (DPM) method, and newly proposed pseudo-wavelet filter-based (PWF-

based) algorithm. In total, 80 cropped vehicle images are tested for each 

algorithm. 

The relationship among bridges, vehicles and LEs are quantitative. Only bridge 

influence line (IL) features and vehicle load concentrations are discussed. We 

consider the six load models for the new load model development tool. They are 

Australian load model S1600 and M1600, European load model LM1, British load 

model in BS5400, American load model HL93 and Chinese load model in JTG-

D60. The uniformly-distributed load (UDL) part of each load model is not 

considered, as there is no possible variation to its configuration other than 

magnitude, which is not the aim of the present study.  

The load patterning work focuses on the long span bridges. As it is known that 

the governing condition for long-span bridges is congestion traffic, several types 
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of the congested traffic flows are considered in the traffic load patterning 

simulation. Multi-lane factors and dynamic interactions of the vehicles are not 

considered, and the congestion traffic is a unidirectional traffic. 

In summary, this research examines the current loading on the bridge and the 

means of applying it. Better wheel detection algorithms supplement the work with 

better accuracy in traffic load estimations. The new 3D plot tool for load model 

design can help to compare the load models and design the load models with 

the actual traffic loads and ILs in a more rational manner. The innovative load 

patterning method not only significant benefits in the design of new bridges, but 

more probably in the assessment of existing bridges, where the costs of 

additional strength are significant.  
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1.3 Outline of the Thesis 

Chapter 1 of this thesis is an introduction to the whole research. It briefly 

discussed the problems in the bridge loading estimation and thus, the motivation 

of the research. The objectives, scope of the work and the merits of the study 

are followed. 

Chapter 2 reviews the previous algorithms for the object detection, including 

Hough transform, template matching and DPM method. International bridge 

design standards regarding the load model patterning and the load model history 

in Australia, China, Europe, UK and US are also introduced. It also listed some 

previous traffic simulation methods. A qualitative finding of the loaded length and 

loaded density is also included.   

Chapter 3 presents the technical methodology that used in the study. The 

microsimulation tools involve the Intelligent Driver Model (IDM) and Minimising 

Overall Braking Induced by Lane changes (MOBIL) models. The in-house 

program Simulation for Bridge Assessment (SIMBA) is also discussed with 

typical input parameters. Several congestion types are introduced, and traffic 

loading is closely related to them. Generalized extreme value (GEV) distribution 

is introduced, and we used that to do the data extrapolation.  

Chapter 4 gives the refined work about wheel location detection. A new image 

processing technique is proposed to detect wheels in variable light conditions. 

The proposed method is based on a PWF that amplifies circles, in conjunction 

with an algorithm that weights features in the image according to their circularity. 

This novel approach is compared to the Hough Transform, Template matching 

and DPM method previously developed. 

Chapter 5 introduces new metrics to represent the shape of the IL and the 

concentration of the vehicle loads, termed peakedness and concentration, 

respectively. The relationship among bridges, vehicles and LEs is discussed, and 

six load models are also compared quantitatively. A design tool is developed for 

the load model design. 
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Chapter 6 firstly examines design standards’ approach to load patterning. Traffic 

microsimulation is adopted to simulate the traffic flows on a generic 1200 m 

bridge. We consider the possible road topologies that might give rise to design 

standard loading patterns. The LEs results are extrapolated to 5, 75 and 1000 

years, representing common assessment and design return periods respectively 

(Lipari et al., 2017). From these results, a rational and practical load patterning 

method is proposed, based on the real topologies obtained from a combination 

of congested and free flow traffic. Two case study bridges are then analysed 

based on the new traffic load patterning method. 

Chapter 7 summarises the findings and concludes the research performed for 

the scope of the thesis. As well, it specifies the recommendations.  

 

Figure 1-3. The dissertation flow chart 
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2.1 Image-Based Wheel Detection 

This part of the work was done in collaboration with other researchers. The 

contribution of this author made specific in Chapter 4. 

Automatic identification of features in images is a much-studied area. 

Applications of feature identification are wide-ranging, including fingerprint 

identification, traffic monitoring, medical imaging, and face verification for 

security systems. For locating linear features, the Hough Transform is popular. 

This can also be generalised to locate other shapes, such as ellipses and circles. 

Where the feature to be identified is known exactly, such as in fingerprint 

recognition systems, Template matching is a quick and accurate method.  

In traffic applications, several methods have been used to extract vehicle 

features. Some of these methods are specific to the camera used or the 

application, and so are not discussed in greater detail here. Examples are Hirose 

et al. (2009) and Chen et al. (2000). For traffic scenes where the lighting, location 

and appearance of wheels can vary, the most popular method is the Hough 

Transform. However, learning methods based on Template matching have also 

shown potential (Achler and Trivedi, 2004a; Achler and Trivedi, 2004b). The 

DPM (Felzenszwalb et al., 2008; Felzenszwalb et al., 2010) has been used for 

object detection in recent years.  

2.1.1 Hough Transform 

The Hough Transform is a popular method due to its general nature. Initially used 

for locating linear features in images, this transform can also be used to detect 

ellipses and circles and was generalised by Ballard (1981) to allow completely 

arbitrary shapes to be detected. Although the method does not need to be 

‘trained’, the image must be converted to a binary, “edges-only” image using 

edge detection (Gonzalez et al., 2009). The Hough Transform is used by Frenze 

(2002) to count the number of axles on trucks. Success rates are variable and 

highly dependent on lighting conditions, ranging from 56% detection in poor light, 

to 93% in good light. False positives are twice as frequent as true wheel 

detections. The high rate of false positives is attributed to noise interference from 

edges belonging to non-wheel features. Fung et al. (2006) also use the Hough 

Transform for wheel counting. Although they do not report the success rates of 
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their application, they also comment on interference from edge points not 

belonging to wheels. Both studies comment on the computational intensity of the 

algorithm, which is of order O(n3), where n is the number of edge points detected.  

2.1.2  Template Matching 

Template Matching is a method that searches for a specimen, or template, the 

image within another image yielding a high response when the template is 

matched in the main image. It is often carried out using normalised cross-

correlation (Lewis, 1995). It is particularly successful in cases where the 

appearance of the object to be found is known exactly. Examples of this are given 

by Sao and Yegnanarayana (2007), Baohua et al. (2009), and Liu et al. (2009). 

However, the appearance of an object such as a wheel is not known exactly. To 

overcome this difficulty, learning-based approaches to Template Matching have 

been used. Jiang and Lin (2006) make the case that, while learning based 

methods are robust in vehicle detection, they are restricted in classification due 

to the variety of vehicle types. Interestingly though, Achler and Trivedi (2004a; 

2004b) develop a wheel detection method with success rate varying between 60% 

and 71%, although significant rates of false positives are reported. In their 

method, a pixel is convolved with several filters and the responses are 

normalized. These normalized responses are compared to templates of road and 

wheel responses. The templates are modelled using Gaussian Mixture Models 

and are constructed using a training set. Although not focused specifically on 

wheel identification, Jia et al. (2005) also use Gaussian Mixture Models as 

templates.  

2.1.3 Deformable Part-based Model (DPM) 

The DPM was proposed by Felzenszwalb et al. (2008) for object detection. It can 

be considered as an improved version of the Histogram Oriented Gradients 

(HOG) method (Dalal and Triggs, 2005). The algorithm compares the object and 

model using some parts. If these parts of the object are located close to the 

supposed locations and are stored in the model, the object is identified. The 

algorithm has been used for traffic applications, e.g., bicycle detection (Cho et 

al., 2010), pedestrian detection (Cho et al., 2012) and vehicle detection (Leon 

and Hirata Jr, 2012; Li et al., 2012; Li et al., 2015).  
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2.1.4 Summary 

Despite positive indications from feasibility type studies (Fung et al., 2006; 

Radford and Houghton, 1989), except DPM, existing methods have not been 

widely found to provide sufficiently accurate and consistent detection when 

applied to large sets of traffic images (Frenze, 2002; Achler and Trivedi, 2004a; 

Achler and Trivedi, 2004b; Razavi et al., 2011). The poor accuracy reported in 

the literature for both Template Matching and the Hough Transform is supported 

by the work of Kastrinaki et al. (2003). In their review of commercial systems 

available for traffic monitoring, the authors conclude that most algorithms place 

more emphasis on high processing speeds than on the accuracy of the results. 

For the present application, it is vital that wheels be accurately identified through 

a succession of frames to determine the traffic characteristics contributing to 

bridge loading properly. 
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2.2 Load Model History 

Before developing the numerical tools for notional load model (NLM) design, it is 

useful to describe the basis used for developing NLMs of notable international 

codes of practice of Australia, China, Europe, UK, and the USA. In each case, 

the historical background is briefly traced, so the evolution of load models is 

apparent. This puts the later work in context and illustrates the often-non-

technical basis for the configurations of contemporary load models in particular. 

2.2.1 Australia Standard 

Taplin and Al-Mahaidi (1997) summarised the early load model history in Victoria, 

Australia. In the early 1900s, the design load was based upon a 15-ton steam 

roller. Later in 1926, the most severe case of a uniform load of 120 pounds per 

square foot or a vehicle load of 20 t was adopted. In 1936, the loading was 

increased to a combination of the two. From 1948, the Australian load model was 

based on the American standards (HS20-44/MS18). The American Association 

of State Highway and Transportation Officials (AASHTO) standard allowed for 

vehicles with a mass of up to 36 US tons (32.7 t) at that time.  

In 1976, a new load model was adopted in Australia, called T44 loading 

(NAASRA, 1976). It is a revised version of the American load model (H20-S16), 

following truck surveys. The total weight was increased by one third and tandem 

groups replaced the trailer axles. T44 loading contains three parts; the T44 truck, 

L44 lane loading, and the Heavy Load Platform (HLP). The T44 truck is a five-

axle truck with a total load of 432 kN, more closely reflecting real trucks at the 

time. L44 lane loading combines a uniformly-distributed load of 12.5 kN/m plus a 

point load of 150 kN. HLP is a total loading of either 320 tonnes or 400 tonnes. 

The standard requires that all bridges are to be designed for the worst of T44 or 

L44. HLP is to be applied to those required to carry exceptional heavy loads.  

In the decades that followed, T44 loading was recognised as underestimating 

the real traffic loading on bridges. Heywood (1995) indicates that T44 loading 

becomes an average extreme daily event on short-span bridges. As bigger and 

more massive vehicles such as B-doubles and even B-triples, became desired 

by freight operators in Australia, it became necessary to design a new load model. 
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Pearson and Bayley (1997) defined several vehicles based on their densities 

[mass/(length×width×height)], such as S73 and L58 vehicle. These vehicles were 

believed to be the upper limits of the contemporary freight task, vehicle 

technology, safety, and pavement damage. They implicitly consider future 

increases in the allowable limits of vehicle loads. Heywood et al. (2000) proposed 

a new bridge load model to match LEs with those of the S73 and L58 vehicles. 

Monte Carlo simulation was also considered in the design, and a linear 

relationship was found between the total vehicle weight and vehicle length. 

Based on these, they designed the SM1600 configuration and UDL. From 2004, 

Australian Standards adopted the SM1600 load model (Standards Australia, 

2017). Mainly, SM1600 consists of an 80-kN wheel load, a 160-kN axle load (two 

wheels), the M1600 moving traffic load and the S1600 stationary traffic load. 

M1600 and S1600 are shown in Figure 2-1. 

 
(a)  

 
(b)  

Figure 2-1. SM1600 in Australian standard (after Standards Australia, 2017): (a) M1600, for 

moving traffic, to which dynamic load allowance factors are applied; (b) S1600 for stationary 

traffic, more critical for longer spans. 
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2.2.2 China Standard 

The early history of Chinese standard development is described by Wang (2005). 

Around 1940, there was no generally applicable load model, but different 

stipulated capacities for different bridge types. Later, due to the requirement for 

transporting heavy weapons, all bridges were required to carry at least 15 t 

vehicles. A road project design standard was published in 1954 which included 

five different vehicle load models. These load models are types of truck fleet, but 

the total loads are different. In the following years, significant revisions were 

made. However, the load models were not changed substantially, but some 

parameters adjusted such as: adding more vehicle load models for different road 

classes, adding equivalent vehicle conversion coefficient and extreme case 

loads. These changes were drive by increasing heavy traffic loads.  

In the 1990s, the Ministry of Communications (MOC) commissioned reliability 

analysis for bridges and roads (Li et al., 1997). Weigh-in-motion (WIM) traffic 

data was collected in the main traffic lane at four typical sites. Special concern 

was given to the congested traffic scenarios and the overloading cases. 

Probability distributions for the LEs were determined and extrapolated to a 100-

year design life. These LEs were then used to calibrate the proposed load model 

consisting of a concentrated load plus UDL. 

In 2004, the MOC published a new standard JTG D60 – 2004 (MOC, 2004). The 

traffic load models were separated into two levels, based on road classes, and 

the checking loads removed. The load model comprises vehicle loads and lane 

loads. The lane loads are used for global structure analysis, while vehicle loads 

are for local stress analysis. In 2015, the lane load model was renewed with 

adjusted load values (MOC, 2015). Figure 2-2 shows the current lane load 

models. Qk is 10.5 kN/m, and Pk is a piecewise function (ranging from 270 to 360 

kN), depending on the span length. 
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Figure 2-2. Lane load model in PRC’s standard after 2015 (after MOC, 2015). 

2.2.3 EU Standard 

In 1975, the Commission of the European Community started to consider 

eliminating the cross-border obstacles in technical fields. A part of this generated 

the series of technical standards for the design of construction works in the 

member states of the European Economic Community (EEC) (Dawe, 2003)—the 

Eurocodes. 

The development of the main highway bridge load model (LM1) in Eurocode 1 is 

thoroughly described in Bruls et al. (1996a). Based on Monte Carlo simulation of 

WIM data from across Europe, LEs for nine ILs, and spans up to 200 m were 

determined and extrapolated to a 1000-year return period. These actions are 

then considered the target values for the load model to replicate. Following 

consideration of various configurations and load values, a balance between 

accuracy and ease-of-use was sought, and the now well-known Load Model 1 

was developed. Variation of the load model with increasing span was considered 

but neglected for simplicity. Multiple axles (point loads) were considered, but it 

was found that more axes did not improve the accuracy of the load model in 

matching the target LEs, and so for ease-of-use, the minimum number that gave 

acceptable accuracy was adopted. The resulting Load Model 1 is shown in Figure 

2-3, for which the UDL and axle load magnitude for the first lane is 9 kN/m2 and 

300 kN when the national adjustment factors (“alpha-values”) are taken as unity. 
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Figure 2-3. Load Model 1 in Eurocode (after CEN, 2003). 

2.2.4 UK Standard 

Henderson (1954) gives a brief history of bridge loading in the UK (In the 

following, note that 1 imperial ton is about 1.016 metric tonnes). In 1875, a live 

load for the design of new bridges was specified in the UK: “Professor Unwin 

suggested ‘a load of 120 lb. per square foot (about 5.4 kN/m2), or the weight of 

a heavily loaded wagon, say, 10 to 25 tons on four wheels’”. Later, following the 

First World War, the Ministry of Transport (MOT) introduced the standard loading 

train in 1922. It consisted of a 20-ton tractor pulling three 13-ton trailers. Although 

the load model is based on a specific train of vehicles, it is quite inflexible due to 

the fixed values. Further, it proved very difficult for practitioners to use, due to 

the complexity of the computations. Consequently, in 1931, the MOT introduced 

the well-known MOT loading curve, consisting of a UDL that reduces magnitude 

with increasing span, and a knife-edge load (KEL)—a point load spread across 

the full width of the lane. This new load model greatly simplified the application 

of live loading in design.  

In the 1950s, Henderson (1954) observed that some actual traffic differs from the 

standard loading train. He recommended categorising the traffic loads into 

“normal” traffic loads and “abnormal” vehicles for bridge design—now known as 

HA and HB loading respectively. Interestingly he notes that for modelling normal 
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traffic: “A train of vehicles or an equivalent distributed load is the obvious 

selection for this purpose. Trains have the disadvantage of being awkward and 

cumbersome to use; when they are specified it is common practice to compute 

equivalent uniformly distributed loads (EUDLs) as a substitute”. Following 

calculations using some observations, Henderson (1954) updates the MOT 

loading curve somewhat. This loading curve was then subsequently fit with an 

equation (Dawe, 2003), and adopted into the well-known BS 5400: Part 2 (BSI, 

1978). For HA loading, it consists of a lane UDL (Figure 2-4) and a KEL of 120 

kN per lane.  

 

Figure 2-4. HA loading in British standard BS 5400 (after BSI, 1978) 

2.2.5 USA Standard 

Kulicki and Mertz (2006) summarise the development of the US load model. 

Specifications were first published in the transactions of the American Society of 

Civil Engineers (ASCE). Based on this, in 1931 the 1st edition of the American 

Association of State and Highway Transportation Officials’ (AASHTO’s) Standard 

Specification for Highway Design presented a truck and a group of trucks in the 

load design (AASHTO, 1931). For short bridges, a 20-ton single unit truck was 

used, termed H20. Lighter variations of this vehicle (H15 and H10) were also 

considered for secondary roads. Groups of H15 with occasional H20 were 

applied on longer bridges as a truck train.  
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In the early 1940s, the truck was extended to a tractor-semi-trailer (HS20) 

(AASHTO, 1944). This load model consists of 3 axles. The steering axle weighs 

8 kips and other two on the semi-trailer weight 32 kips. The spacing on the semi-

trailer varied from 14 to 30 ft., and the other spacing is fixed at 14 ft. Notably, 

HS20 was an idealisation and did not represent any real truck. This load model 

became the foundation of many load models around the world, including 

Australia as noted earlier. 

In 1953, slight changes are made to the traffic lane numbers and multilane factors, 

but the HS20 truckload and lane loads remained unchanged. In the following 

years, only minor modifications to the axle weights and spacings were made.  

To better reflect contemporary traffic, and the load and resistance factor (LRFD) 

design philosophy, a new code was introduced in 1994, designated the HL93 

load model. This load model provided for more uniform safety for various groups 

of bridges, and consists of the HS20 truck plus a UDL (Nowak, 1993; Nowak, 

1995). The model was derived from truck surveys, WIM measurements, and 

statistical extrapolations. Based on the measurements, simple span moments, 

shears and negative moments are calculated for various lengths. Then, extreme 

75-year loads were determined by extrapolation. The primary objective in the 

design of the NLM was a uniform bias factor (mean-to-nominal ratio).  HL93 

includes both a design truck or tandem; and a lane load. Figure 2-5 illustrates 

current design truckload model in the USA. 
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Figure 2-5. Design truck of HL93 load model (after AASHTO, 2017). 

2.2.6 Summary 

Based on the previous discussions, some general points about the development 

of load models can be made: 

1. Load models are continually evolving. In the main, the reason for this is to 

better match both actual traffic configurations and load magnitudes. 

2. Load models are often developed from small changes to a predecessor. 

Thus, modern load models can have a configuration and load magnitude 

like that from many decades past. 

3. A typical modification to an existing load model is to increase the total 

weight. Configurations are rarely changed.  

4. Most load model magnitudes have been developed to match LEs from 

surveys, measurements, or simulations of real traffic. In more recent years, 

statistical predictions of extreme LEs have been used as the target. 

5. Most load model configurations have been selected to resemble real 

vehicles closely. BS5400 and the Eurocode are notable exceptions in 

which it is visually apparent that the load models are ‘notional’. 

6. Uniquely, the Australian load model is based on a hypothesized freight 

density and maximum truck volume, implicitly accounting for future growth. 
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Overall, it can be said that while the magnitude of a load model is calibrated to 

achieve target LEs of real traffic, the configuration of the load model originates 

from a far less objective basis. A quantitative tool to allow the investigation of 

both magnitude and configuration simultaneously should support future 

development of design code load models.  
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2.3 Load Patterning in Notable Codes 

Australian load model SM1600 (Standards Australia 2017) requires that the UDL 

component be continuously or discontinuously applied to produce the most 

adverse effect. Similarly, the Eurocode (2003) load model LM1 requires that the 

UDL be applied only in the unfavourable parts of the influence surface. AASHTO 

(2007) also requires patterning the UDL of HL-93 to produce the extreme force 

effects. Many other codes follow the same approach (Figure 2-6). 

 

Figure 2-6. Traditional load patterning approach 

The technical issue with the traditional load patterning approach is that it is a joint 

extreme: it combines both extreme loading values and an extreme loading 

topology. The probability of this joint occurrence of extreme loads and 

arrangements has not been studied in detail (as will be seen later). As a result, 

bridge engineering practice has followed a worst-case scenario approach 

combining extreme (lifetime) levels of loading in the extreme (lifetime) possible 

traffic topologies. Of course, it is reasonable that traffic is somehow patterned 

since it is apparently not uniformly distributed, due to truck queue formations and 

other traffic phenomena. Thus, a more rational basis for this patterning is 

required to estimate traffic action effects at the lifetime level.  

 

Step1. Given a four-span bridge

Step2. Influence line

Step3. Load pattern on positive influence line region only
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2.4 Relationship between Load Magnitude and Loaded Length 

A previous study indicated the relationship among bridge IL, vehicle loads and 

LEs. Burgoyne (1987) used a tide line to illustrate that vehicle length, or vehicle 

weight is not the only factor that causes the worst load case scenario on the 

bridges (See Figure 2-7). When the loaded length is smaller, the load density 

becomes more substantial (Figure 2-4). Therefore, the product of the loaded 

length and load density (i.e., load) will have a turning point, and it leads to a 

maximum LE. In other words, compact vehicles still can cause the worst LE even 

it is lighter than a long vehicle. However, the research is qualitative.  

 

  

Figure 2-7. Tide line (after Burgoyne, 1987) 
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2.5 Traffic Loading on Long Span Bridges 

Long span bridge traffic loading is governed by many vehicles, typically 

congested. A large amount of work is based on the mixed vehicles and fixed 

vehicle gaps (Ivy et al., 1954; Buckland, 1981; Ditlevsen and Madsen, 1994; 

Nowak et al., 2010; Caprani et al., 2012). Such work assumes cars and trucks 

are at a minimum bumper-to-bumper distance and the weight data is taken from 

on-site surveys or WIM data. However, WIM data is captured from free flow traffic 

as the sensor is not accurate in congestion (OBrien et al., 2015). Consequently, 

these measurements cannot be directly used for long span bridge loading. 

Another noticeable feature of the traffic is that the vehicle compositions can be 

entirely different across lanes. For example, car drivers tend to change lanes to 

overtake a slower moving truck. This results in slower lanes having a greater-

than-average percentage of trucks. This phenomenon is more severe in the 

breakdown to congestion, often forming long truck platoons in the slow lane 

(Carey et al., 2017). Therefore, the direct use of a survey or WIM data can be 

unrealistic. To overcome this challenge, some researchers have used videos of 

congested traffic (Ricketts and Page, 1997; Nowak et al., 2010; OBrien et al., 

2012). Many observations are obtained from the video, such as the typical traffic 

jam scenario, but it is difficult to get quantitative data.  

A recent approach to overcome the problems with WIM noted above is the use 

of traffic microsimulation to create congested traffic from free-flow traffic 

measurements. In introducing IDM, Treiber et al. (2000) used traffic 

microsimulation to reproduce the observed congested patterns on the road. They 

introduced the bottleneck strength and discussed its relationship with the 

congested pattern types. Caprani and OBrien (2008) first used this 

microsimulation approach for bridge traffic loading. Later, Caprani et al. (2016) 

verified the relationship between bottleneck strength and congested traffic 

patterns. They used microsimulation to analyse the LEs of multi-lane traffic. 

Counter to the prevailing wisdom, it is found that the full-stop traffic is not the 

worst case of the bridge loading. Instead, slow-moving traffic can return the 

highest loading event, because there is more opportunity for critical vehicle 

arrangements to occur.  
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Not much work has been done to consider patterned traffic loading. Zhou et al. 

(2015) considered patterned traffic LEs for multi-span large bridges. In this study, 

traffic on the beneficial parts of the IL is ignored. It is found that the LEs of 

patterned traffic can be up to 8 times that of normal congested traffic on the 

bridge, which indicates the magnitude of conservatism in current code 

approaches. Nevertheless, many engineers would propose that patterned traffic 

is intended to replicate situations such as traffic accidents, and other 

interruptions to normal vehicular flow. Only a few previous works have 

considered this aspect. Recently, Lipari et al. (2017) proposed an integrated 

approach to determine lifetime levels of traffic loading considering the probability 

of occurrence of traffic incidents incorporating the level of interruption to traffic 

flow (the ‘bottleneck strength’). In doing so, they use traffic microsimulation to 

determine the traffic topology and resulting LEs for such incidents. This approach 

demonstrates that traffic microsimulation is a suitable tool to analyse the LEs due 

to hypothesised traffic incidents and their topology. This approach is therefore 

adopted in this study. 

 

 

 



 

CHAPTER 3  
TECHNICAL 
BACKGROUND 



CHAPTER 3 TECHNICAL BACKGROUND 

 

Page | 26  
 

3.1 Traffic Microsimulation  

Microsimulation models consist of car-following models and lane-changing 

models to simulate the vehicle movements on the road. The position, direction, 

speed, axle arrangement, and other features of one single vehicle can be 

captured at any time, making it very useful for bridge loading studies. 

Microsimulation models are widely used in traffic analysis with different levels of 

accuracy in the recent years (Orosz et al., 2010). As the data is simulated, it 

should be calibrated and validated with real traffic to ensure its validity (Treiber 

et al., 2000). Brockfeld et al. (2004) compared ten different microsimulation 

models (including IDM) and found it is almost impossible to calibrate results to 

within 10%. The common range of differences is 14 to 16%, and the 

performances of various models are quite similar. 

3.1.1 IDM & MOBIL Models 

The IDM is a car-following model, developed by Treiber et al. (2000). The model 

is collision-free with several parameters to control single vehicle driving 

behaviour in one lane. Many research studies use IDM to simulate traffic, and 

the results can match the observed real traffic quite well (Treiber et al., 2000; 

Kesting and Treiber, 2008; Helbing et al., 2009; Chen et al., 2010; Caprani, 2012). 

In the IDM, vehicle acceleration is given by: 

 
𝑑𝑣

𝑑𝑡
= 𝑎 [1 − (

𝑣(𝑡)

𝑣0
)

4

− (
𝑠∗(𝑡)

𝑠(𝑡)
)

2

] (1) 

where a is the maximum acceleration of the current vehicle; v(t) is the speed of 

the current vehicle at time t; v0 is the desired speed of the current vehicle; s(t) is 

the bumper-to-bumper gap from the current vehicle to the front vehicle at time t; 

and s*(t) is the minimum desired bumper-to-bumper gap at time t, given by: 

 𝑠∗(𝑡) = 𝑠0 + 𝑇𝑣(𝑡) +
𝑣(𝑡)∆𝑣(𝑡)

2√𝑎𝑏
 (2) 

where s0  is the minimum bumper-to-bumper distance from the current vehicle to 

the front vehicle; T is the safe time headway; ∆v(t) is the speed difference 

between the current vehicle and front vehicle; and b is the comfortable 
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deceleration. Caprani et al. (2011) find that the driving behaviour could be 

inconsistent when front vehicle is much faster, and so they set a minimum gap 

distance s0 as the lower limit in the simulation process, which is also used in this 

study. 

Kesting et al. (2007) introduced a lane-changing model called MOBIL. Symmetric 

(US) or asymmetric (EU) passing rules can be implemented. In MOBIL, a vehicle 

will change lane if there is a sufficient acceleration advantage to be gained: 

 𝑎̃𝑐(𝑡) − 𝑎𝑐(𝑡) > ∆𝑎𝑡ℎ + 𝑝[(𝑎𝑛(𝑡) − 𝑎̃𝑛(𝑡)) + (𝑎𝑜(𝑡) − 𝑎̃𝑜(𝑡))] (3) 

where ∆ath is the acceleration threshold, and a(t) is the acceleration at time t, 

which is calculated by Equation (1). The subscript indicates the vehicle: old 

follower (o), new follower (n) and current vehicle (c) and the tilde identifies the 

situation after a hypothetical lane-changing. The politeness actor, p, controls how 

much consideration a driver gives to the impact of the lane change on 

surrounding vehicles’ accelerations. 

3.1.2 SIMBA and Parameters 

Commercial traffic microsimulation software does not include bridge LE 

calculation. Consequently, since 2006, Caprani et al. (2012) developed a 

software program called SIMBA. It uses IDM and MOBIL for vehicle movements, 

coupled with LE calculation based on ILs at each time step of the simulation. The 

model input parameters are shown in Table 3-1. These parameters were used in 

previous works since they have been shown to replicate real traffic behaviour 

quite well (Treiber et al., 2000; Kesting and Treiber, 2008; Caprani et al., 2012; 

OBrien et al., 2015). 
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Table 3-1. IDM and MOBIL parameters. 

Parameters Car Truck 

Safe time headway, T(s) 1.6 1.6 

Maximum acceleration, a(m/s2) 0.73 0.73 

Comfortable deceleration, b(m/s2) 1.67 1.67 

Minimum jam distance, s0(m) 2 2 

Elastic jam distance, s1(m) 0 0 

Desired velocity, v0(km/h) 120±20% 80±20% 

Acceleration exponent, Δ 4 4 

Lane change politeness factor, p 0.2 0.2 

Outside lane bias factor, ΔAbias 0 0 

Lane change threshold, ΔAth(m/s2) 0.4 0.4 

Maximum safe deceleration, Bsafe(m/s2) 4 4 
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3.2 Congestion Types and Bridge Loading 

Interestingly, traffic conditions are not a binary choice between free-flow traffic 

and congested flow traffic. Instead, traffic conditions occur on a spectrum, with 

many different forms of congested traffic, such as stop-and-go waves (SGW), 

oscillating congested traffic (OCT), and the most severe—homogenous 

congested traffic (HCT). The occurrence of these traffic types is mostly governed 

by the difference between demand and capacity, termed the bottleneck strength. 

Usually, the higher bottleneck strength, the lower road capacity in that region. 

Treiber et al. (2000) discussed the relationship between the bottleneck strength 

and different congestion types using a phase diagram (Figure 3-1). The bottleneck 

strength (or the dynamic capacity difference) ∆Q is the local decrease of the 

traffic capacity: 

 ∆𝑄 = 𝑄𝑜𝑢𝑡 − 𝑄𝑜𝑢𝑡
′  (4) 

where Qout is the maximum dynamic road capacity on the (hypothetically) free 

road and Qout' is the maximum dynamic road capacity with the bottleneck in place. 

Bottleneck strength can be introduced locally by either directly decreasing the 

desired speed v0 (e.g. a speed limit) or by increasing the safe time headway T 

(driver response time, leading to bigger desired gaps). Both can reduce the 

capacity of the road, but the latter is more effective (Treiber et al., 2000) and is 

used in this study. For the different level of the bottleneck strength, the traffic 

before the bottleneck can be different.  
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Figure 3-1. Phase diagram, indicating regions of the different traffic types (after Treiber et al., 

2000). The main forms of traffic identified are: FT is free-flow traffic; TSG is triggered stop and 

go traffic (or SGW); OCT is oscillating congested traffic, and; HCT is homogenous congested 

traffic. 

Caprani et al. (2012) and OBrien et al. (2015) studied different types of 

congestion and their influence on long-span bridge traffic LE. The densest type 

of traffic, HCT, is that intended to be replicated by bridge live load models. 

However, since it is a continuous heavy stream of traffic, it has little innate 

patterning.  

Conversely, SGW has both dense and free-flow regions, and of course, these 

can become coincident with adverse and beneficial parts of an IL, leading to 

critical loading situation. Figure 3-2 illustrates this case. However, no previous 

research covering this point is known. This paper discusses the LE from SGW 

and uses it as a prototype to develop a proposal for traffic load patterning. 

 

 

Figure 3-2. A graphic example of SGW. The rectangles are the moving vehicles on the bridge. 
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3.3 Extreme Value Statistical Extrapolation 

Following extreme value theory (Castillo, 2012), GEV distribution is used to fit 

the block (hourly) maximum data of LE, given by: 

 𝐺(𝑥) = exp [− (1 + 𝜉 (
𝑥 − 𝜇

𝜎
))

−
1
𝜉

] (5) 

where x is the LE; μ is the location parameter; σ is the scale parameter; and ξ is 

the shape parameter. The LE at the required return period x* is determined by: 

 𝑥∗  =  𝐺−1 (1 −
1

𝑇𝑅
 )   (6) 

where TR is the return period for the LE. It is considered that there are 250 

working days per year (Caprani, 2005), and so TR  = 250Y, where Y is the 

required return period in years. A standard extremal variate (SEV) derived from 

the GEV distribution as: SEV = −log (−log (1 − 1/𝑇𝑅)). For Y = 75 years, SEV = 

9.84. 

 

Figure 3-3. An extrapolation example on Gumbel paper 

For TR = 75 years

Return Level = 46906
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The work described in this chapter is a collaboration between Dr. Colin Caprani, 

and Mr. Dong Guo of Monash University, Australia and Prof. Eugene J. OBrien, 

Ms. Serena Blacoe and Dr. Abdollah Malekjafarian at University College Dublin, 

Ireland. The author completed the work of the DPM, described in section 4.5. 

The collaborators worked on the Hough Transform algorithm, Template Matching 

Algorithm and developed the proposed PWF Algorithm, described in Sections 

4.3 and 4.4.   
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4.2 Introduction 

Among all the vehicle data, wheel locations are of importance as these are the 

locations at which the weight of the vehicle is transferred to the bridge. It is 

proposed that a vision system can provide the locations of the wheels of vehicles, 

regardless of the traffic state. Such a vision system will make it possible to track 

vehicles through successive frames to find the statistical distributions of axle-to-

axle gaps in all types of traffic. This data is not currently available due to the 

limitations of existing data collection systems. Identifying wheels is a complex 

task. Wheels can vary in appearance between classes of vehicle and within a 

single class of vehicle.  

This chapter illustrates the use of a camera to collect wheel location. A new 

image processing technique is proposed to detect wheels in variable light 

conditions. The proposed method is based on a PWF that amplifies circles, in 

conjunction with an algorithm that weights features in the image according to 

their circularity. This new approach is compared to the Hough Transform, 

Template matching and the DPM methods previously developed. 
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4.3 PWF-Based Algorithm for Wheel Detection 

An overview of the proposed algorithm for the detection of circular objects is 

presented in this section along with the theoretical basis. Implementation details 

are given in section 4.4. The concept for this algorithm is based on wavelets, 

which amplify changes in signal (or colour) of a particular nature and can search 

for these changes at different scales. The PWF concept developed here 

amplifies changes in colour around the circumference of a disc or circle. The aim 

is to amplify circles and, hence, wheels. By using multiple PWFs of differing sizes, 

wheels of different size (or scale) can be amplified.  

Following amplification using PWF, each point in the image is assigned a 

weighting based on its circularity. The circularity factor (CF) weights the location 

based on how closely the colour change matches that of an ideal circle or disc, 

which has an entirely consistent colour change along its circumference. 

The combined filtering result is given by multiplying the PWF response for a 

location by its CF. This is carried out at every location in the image. Selection of 

an appropriate threshold allows for peaks in the combined result to be identified. 

These peaks correspond to the centres of wheels in traffic scenes. 

4.3.1 Pseudo-Wavelet Filter (PWF) 

The PWF is constructed in filter space, centred on the origin. Each location (x, y) 

of the filter space is described in polar coordinates,  and  from the centre of 

the filter space. The PWF is based on the hyperbolic cosecant function and 

defined by:  

 

 

𝐹(𝑥, 𝑦; 𝑟) = csch(𝜌 − 𝑟)  

𝐹𝑚𝑖𝑛 ≤  csch(𝜌 − 𝑟) ≤ 𝐹𝑚𝑎𝑥 

(7) 

(8) 

where r is the sought wheel radius and   is the radius represented by the point 

(x, y) with the centre located at the centre of the filter space: 𝜌 = √𝑥2 + 𝑦2. 𝐹𝑚𝑖𝑛 

and 𝐹𝑚𝑎𝑥 represent thresholds to ensure that the filter only returns a non-zero 

response if there is a colour change around the circumference of a circle centred 

at the location. These thresholds are discussed in more detail in section 4.1.  
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Although the PWF shares many features with a wavelet, it cannot be directly 

scaled and so is referred to here as a pseudo-wavelet.  

A three-dimensional image of the filter function is shown in Figure 4-1(a) and a 

section through the centre is shown in Figure 4-1(b). The purpose of the 

algorithm is to obtain a high response at a point for which there is sharp contrast 

around a circle centred on it. Using the hyperbolic cosecant allows for values 

outside the sought radius to be positively amplified and values inside the sought 

radius to be negatively amplified. If the values inside and outside the sought 

radius are the same, the result will be zero. By varying the sought radius, r, circles 

of different size can be amplified. 

The response of a location (x,y) in the image to the PWF is calculated by 

convolution. The square filter is centred on the image cell (pixel) of interest. Each 

cell in the PWF overlaps a single image cell. The PWF response, RPW, for the 

sought radius, r, is then given by: 

 𝐹𝑅𝑃𝑊(𝑥, 𝑦; 𝑟) = ∑ ∑|𝐹(𝑥, 𝑦; 𝑟)𝐼(𝑥, 𝑦)|

𝑛

𝑦=1

𝑛

𝑥=1

 (9) 

where n is the number of rows and columns in the square filter. This calculation 

is carried out for all points within the image. Because the algorithm must amplify 

all circular shapes, and not just dark shapes on a light background, the absolute 

value of the response is taken.  

4.3.2 Circularity Factor (CF) 

A CF is introduced to weight the PWF response of an image location according 

to how closely the colour change around the circumference resembles that of an 

ideal circle or disc. The CF is required because the PWF alone cannot distinguish 

between circles with modest intensity changes and non-circular shapes with 

regions of extreme intensity change.  

For an area of the image space with the same dimensions as the filter space, the 

mean pixel intensity, Ī, of the circumference at a radius r+ is calculated, where r+ 

is equal to a radius marginally larger than the sought radius, r. The reasoning for 
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using a slightly larger radius is that pixilation at the sought radius can cause 

artificially low circularity factors for true circles. This is explained later.  

A location’s CF is based on the standard deviation of the pixel intensities at r+: 

 𝜎(𝑥, 𝑦, 𝑟) = √∑
[𝐼(𝜃) − 𝐼]̅2

𝑁

2𝜋

𝜃=0

 (10) 

where 𝐼(𝜃) is the pixel value at angle θ and N is the number of pixels at a radius 

r+. The CF for a location (x,y) at the sought radius, r, is then defined as: 

 𝑅𝐶𝐹(𝑥, 𝑦, 𝑟) = 1 −
𝜎(𝑥, 𝑦, 𝑟)

𝜎𝑚𝑎𝑥
 (11) 

 

Figure 4-1. Proposed PWF in filter space. 

This formulation ensures that the CF for a location lies between 0 and 1, where 

1 indicates perfect circularity and 0 indicates no circularity. The maximum 

possible standard deviation, σmax, represents a case where the pixels at r+ 

alternate between black and white. The value of σmax varies depending on the 

image representation (e.g. black and white, greyscale, etc.). It is given by: 

 𝜎max =
1

2
[√(𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑒𝑑)2 + √(𝐼𝑚𝑖𝑛 − 𝐼𝑚𝑒𝑑 )2] (12) 

where 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 represent the maximum and minimum possible pixel values 

respectively, and Imed is the median value of pixel intensity for the chosen image 
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representation. 𝜎max is a function only of the image representation and so will 

have the same value for all points in the image. Where the image representation 

denotes 𝐼𝑚𝑖𝑛 as zero, as is common, Equation 12 simplifies to: 

 𝜎max =
𝐼𝑚𝑎𝑥

2
 (13) 

In 8-bit unsigned grayscale representation, max = 127.5 and in 16-bit unsigned 

representation,max = 32767.5. 

4.3.3 Combined Response 

The combined response is obtained by element-wise multiplication of the PWF 

response, RPW, and the CF response, RCF for the selected centre pixel at (x, y) 

and for the considered radius, r: 

 𝑅(𝑥, 𝑦; 𝑟) = 𝑅𝑃𝑊(𝑥, 𝑦; 𝑟)𝑅𝐶𝐹(𝑥, 𝑦; 𝑟) (14) 

Real traffic contains wheels of many different sizes. Therefore, multiple radii must 

be considered, in the range rmin to rmax. The range of the radii of interest, rmin  r 

 rmax, is discretised into a number of radii of separation, Δr. The combined PWF-

CF response at a location is calculated separately for each radius, R(x, y; r). The 

result is a three-dimensional array, with each layer in the z-direction representing 

the combined response at a particular radius. These layers are summed to give 

the multiple radii or total combined response for each location: 

 𝑅(𝑥, 𝑦) = ∑ 𝑅(𝑥, 𝑦; 𝑟)

𝑟𝑚𝑎𝑥

𝑟=𝑟𝑚𝑖𝑛

 (15) 
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4.4 Implementation of Proposed Algorithm 

4.4.1 Pseudo-Wavelet Filter (PWF) 

Inherent to filtering of images are problems associated with borders. For pixels 

close to the edge of the image, part of the filter will be located outside the image 

borders. To overcome this problem and ensure that values of RPW are obtained 

for all pixel locations, the image is ‘padded’ before being analysed (Gonzalez et 

al., 2009). The amount by which the image is padded is half the dimension of the 

PWF. Although the dimension of the filter is dependent on the sought radius, this 

does not cause problems when considering multiple radii. Responses to the filter 

are not calculated for pixels in the padded region, and so the response matrix is 

of the same dimensions as the original image.  

Equation 8 describes the PWF limits the maxima and minima to high and low 

thresholds. These thresholds exist because the hyperbolic cosecant tends 

towards positive and negative infinity as 𝜌 − 𝑟 tends towards zero. Maxima are 

limited to an empirically chosen high threshold of 100. To set a low threshold, the 

discretization of the filter space must be accounted for, and this is explained with 

reference to Figure 4-2. In this figure a light coloured pixelated disc is seen 

against a darker coloured background. The white circle gives the location of the 

high peaks in the PWF, 𝑟+, and the black circle gives the location of the low 

peaks, 𝑟−. From Figure 4-2 it can be seen that the low peaks form a ring inside 

the high peaks. Because of the larger radius, the ring of high peaks incorporates 

more cells then the ring of low peaks. The difference in the number of high and 

low peaks means that, if the high and low peaks have the same value, a non-

zero response will be returned in areas of constant intensity. Further, this could 

cause a zero response where there is a change in intensity. In setting the capping 

thresholds, the difference in the number of high and low peaks must be 

considered so as to ensure a zero response where no change in intensity occurs. 

To do this, the absolute sum of the low peaks is set to equal the absolute sum of 

the high peaks, as given by: 

 𝐹𝑚𝑖𝑛 =
𝑁ℎ𝑖𝑔ℎ𝐹𝑚𝑎𝑥

𝑁𝑙𝑜𝑤
 (16) 
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where 𝑁ℎ𝑖𝑔ℎ and 𝑁𝑙𝑜𝑤 are the number of high and low peaks, respectively.  

 

Figure 4-2. Locus of high and low PWF peaks. 

4.4.2 Circularity Factor (CF) 

The CF described in Section 4.3.2 is calculated at a radius 𝑟+. The reason it is 

not calculated at the sought radius, r, is that the pixels at the colour boundary 

can be quite inconsistent: some of the pixels at the sought radius will be the outer 

colour, whilst some will be the inner colour, and some may be an intermediate 

colour. To account for this, the radius at which the CF is calculated is increased 

by two pixels (𝑟+ = 𝑟 + 2𝑝𝑥). This was empirically found to be as close to the 

boundary as possible without encountering pixelation problems.  

The use of 𝑟+ rather than 𝑟− (a radius marginally smaller than the sought radius) 

is to eliminate the effect of hubcap features. If the wheels were perfect discs 

surrounded by tires, the use of either r+ or r- would not be critical. However, many 

hubcaps have spokes and cut-outs. These features are often present at the 

radius r- and cause a low circularity for the location. By calculating at 𝑟+, the CF 

for true wheels is high due to consistent colour around the circumference.  

Finally, a threshold criterion is applied to the CF. If the CF for a centre point is 

less than 0.9, or 90% circular, the CF for that point is set to zero. Thus, only 

centre points of high circularity can be considered as wheel centres, regardless 

of the magnitude of the intensity change.  

4.4.3 Illustrative Example 

There are three inputs to the proposed algorithm – a grayscale image; the range 

of sought radii given in pixels, and a circularity threshold. To demonstrate the 

R+

R-
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proposed algorithm, a synthetic grayscale image is used. Only the correct radius 

is considered here, and the circularity threshold is set at 90%. The test image 

comprises a disc and half-disc of differing contrasts to the background, as shown 

in Figure 4-3(a). For (b)-(d), zero is shown as black with increasing values being 

shown as increasingly lighter shades of grey. As can be seen in Figure 4-3(b), 

the PWF response from the half-disc is higher than the response from the full 

disc. This is due to the significantly higher contrast between the half-disc and 

background (I(white) = 0; I(black) = 256; I(grey) = 195). Figure 4-3(c) shows the 

circularity factors for the image, before the threshold criterion of 90% circularity 

is applied. From this, it is clear that the full-disc shows much higher circularity 

than the half-disc. After the circularity threshold criterion is applied, the combined 

response is found from Equation 14 and the result shown in Figure 4-3(d). The 

only non-zero point that remains is the pixel at the centre of the full disc. 

  
(a) Test Image (b) PWF response 

  
(c) CF response (d) Combined response 

Figure 4-3. Illustrative example showing the sequence of operations. 
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4.5 Application and Accuracy 

4.5.1 Image Acquisition 

To test the proposed algorithm on real vehicles, a sequence of traffic containing 

100 cars was recorded. The camera used is a monochrome IDS uEye LE USB 

camera, model number 1245M. It was used in conjunction with the Theia 

technologies SY125M lens, which is a wide-angle aspherical lens. This allows 

for a field of vision in excess of 165 degrees with minimal distortion. Images were 

captured at a rate of 10 frames per second with a shutter speed of 1/500 s. The 

camera was positioned approximately 2 m from the closest vehicle wheel and 

was focused on the near lane of traffic. The size of the captured images is 

12801024 pixels, which is later cropped to a strip in which wheels are to be 

found. This typically results in images of the bottom of cars of 550110 pixels. 

The site layout is shown in Figure 4-4. 

 

Figure 4-4. Site Layout. 

In total 100 wheels were measured to select an appropriate radius range for the 

algorithm. The radii ranged from 17 cm to 26 cm. The average radius is 20.62 

cm with a standard deviation of 1.54 cm. The algorithm operates in image space 

and so physical radii are converted as follows: 

 𝑟𝑝𝑖𝑥𝑒𝑙𝑠 =
𝑊𝑖𝑚𝑎𝑔𝑒𝑟𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑓

𝐷𝑊𝑠𝑒𝑛𝑠𝑜𝑟
 (17) 

where rpixels is the radius in image (or pixel) space; Wimage  is the width of the un-

cropped image in pixels; rphysical is the wheel radius in physical space; f is the 
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focal length of the lens; D is the distance between the wheel and the camera 

sensor, and Wsensor  is the width of the camera sensor.  

The lateral positioning of the vehicles can affect the imaged size of the wheels, 

so this was accounted for in the selection of the radius range. The radius range 

without accounting for lane wander is 24 pixels to 32 pixels. To allow for lane 

wandering of 0.5 m, the radius range was extended to encompass radii from 21 

pixels to 35 pixels. This radius range was considered in increments of three pixels.  

4.5.2  Algorithm Performance 

The captured sequence of 100 cars is divided into sets of 20 and 80. The 

sequence of 80 cars is analysed using the Hough Transform, Template Matching, 

DPM and the proposed pseudo-wavelet-based algorithm. The set of 20 cars is 

employed as a training set for DPM. To carry out the Hough Transform, the 

images are first converted to binary “edges” images using the Canny edge 

detector (Canny, 1986). For Template Matching, synthetic templates are 

constructed and matched using normalised cross-correlation. A range of 

templates is constructed and shown in Figure 4-5. These templates have an inner 

disc representing the wheel or hubcap (intensity 127), with a dark ring around it 

representing the tire (intensity 0) on a lighter grey background (intensity 195). 

The radii of the inner discs are the same as the radii sought in the Hough 

Transform and the proposed algorithm, i.e. from 21 to 35 pixels, in increments of 

3 pixels.  

 

Figure 4-5. Synthetic templates used in evaluating the performance of Template Matching 

algorithm. 

Three criteria are used for evaluating the performance of the algorithms:  

1. Wheel location: The algorithms are deemed to have correctly located a 

wheel if a peak is detected within 15 cm on either side of the centre of the 

wheel. This tolerance is deemed acceptable on the basis that over the 
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course of a long-span bridge an axle positioning error of such a small 

magnitude is not likely to be significant in determining traffic loading. 

2. False positives: If the peak occurs more than 15 cm from the wheel centre, 

a false positive is recorded. Recording false positives increases the 

number of axles recorded, potentially overestimating the load to which a 

bridge is subject.  

3. Full vehicle identification: The third criterion evaluates the number of 

vehicles for which both wheels are correctly located without any false 

positives. 

Two images are used here to demonstrate the application of the four methods. 

The first, a relatively easy one, is a case where the wheels have hubcaps that 

are clear and distinct. It is expected that all four methods should perform well. 

The identified wheel locations are shown in Figure 4-6. In this case, both the 

PWF and DPM algorithms and Hough Transform are deemed to have correctly 

located the wheels, with the PWF based algorithm having better accuracy. In the 

case of Template Matching, the dark bumpers against the light road more closely 

match the template than the black tire against the black car body. Although it 

may seem that the solution, in this case, is to modify the template so that the 

dark ring representing the tire is against a dark background, the template must 

be general enough to cope with many different colours of vehicles. This highlights 

a disadvantage with Template Matching methods because both the proposed 

PWF-based algorithm and the Hough Transform are effective in many colours of 

vehicles.  

  
(a) 

 
(b) 

 

  
(c) 

 
(d) 

 
Figure 4-6. Example application of the four algorithms to a relatively easy image. (a) PWF-

based algorithm, (b) DPM algorithm, (c) Hough Transform and (d) Template Matching. 

(a) PW based algorithm

(b) Hough transform

(c) Template Matching

(a) PW based algorithm

(b) Hough transform

(c) Template Matching

(a) PW based algorithm

(b) Hough transform

(c) Template Matching
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A second, more difficult, image is also considered, shown in Figure 4-7. There 

are no hubcaps and the whole wheel is dark and difficult to distinguish from the 

tire, even by eye. Of the four algorithms tested, the DPM algorithm performs best. 

The PWF-based algorithm also performs well. Although neither wheel is located 

on the true wheel centre, both wheels are located within the 15 cm tolerance. 

The Hough Transform identifies a wheel at the edge of the 15 cm tolerance, and 

another at the rear bumper. The false positive at the rear bumper is a result of 

interference due to the identification of road texture as edges. Although modifying 

the edge detection threshold could reduce the number of road points identified 

as edges, no wheel details would then be identifiable as edge points either. For 

this image, the Template Matching algorithm detects the rear wheel of the vehicle 

but fails to detect the front wheel, for similar reasons as before.  

  
(a) 

 
(b) 

 

  
(c) 

 
(d) 

 
Figure 4-7. Example application of the four considered algorithms to a difficult image. (a) PWF 

based algorithm, (b) DPM algorithm, (c) Hough Transform and (d) Template Matching. 

Table 4-1. Results of application to 80 images of cars. 

Method Criterion 1 Criterion 2 Criterion 3 

Wheels Detected False Positives Full Vehicles Identified 

PWF-based algorithm 96.9% 11 90% 

DPM method 97.5% 2 94% 

Hough Transform 54.5% 164 23% 

Template Matching 68.5% 31 49% 

 

The results of the application of the four algorithms to the 80-image sequence 

are given in Table 4-1. It shows that the proposed algorithm and DPM provide 

the most accurate results with 96.9 and 97.5% of the wheels detected, 

respectively. The proposed algorithm significantly outperforms the Hough 

(a) PW based algorithm

(b) Hough transform

(c) Template matching

(a) PW based algorithm

(b) Hough transform

(c) Template matching

(a) PW based algorithm

(b) Hough transform

(c) Template matching
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Transform and Template Matching algorithms and provides a similar level of 

accuracy as DPM. It correctly locates about 97% of all wheels, but notably, 90% 

of vehicles have their wheel locations accurately determined, with no false 

positives present. This compares with 54.5% and 68.5%-wheel detection and 23% 

and 49% correctly analysed vehicles for the Hough Transform and Template 

matching respectively. It is also observed that PWF runs faster than DPM which 

is a more complicated algorithm and needs extra time for training. No training or 

validation is needed for the PWF-based algorithm which makes it more user-

friendly. Because 90% of vehicles are analysed correctly, there is good indication 

that the proposed algorithm is an effective means of locating wheels in images 

of cars.  
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5.1 Introduction 

Bridges vary enormously in their structure (such as simply-supported, continuous, 

suspension, cable-stayed.) and relevant LEs (such as shear, bending, reactions). 

Therefore, the set of ILs across the bridge network of a region or country varies 

tremendously. Alongside this, the vehicle fleet that uses the bridges in the 

network also differ hugely. Commonly, the number of axles comprising vehicles 

ranges from 2 to 6, and the gross vehicle weight (GVW) varies from 2 to 100 t 

(ABS, 2017). Further, the vehicle configuration differs significantly due to varying 

axle loads and spacings. Currently, it is accepted that heavy vehicles govern 

short bridges, while the total vehicle load governs long bridges (Harman et al., 

1984; Nowak, 1993; OBrien et al., 2012; OBrien et al., 2014; Caprani et al., 2016). 

However, in the face of the wide variation of both ILs and vehicles, there is no 

quantitative method to evaluate this understanding of the bridge traffic load 

phenomenon.  

Compounding the difficulty of developing a standard, and the difficulty of 

identifying critical loading arrangements, the volume and composition of the 

traffic fleet is continuously evolving. According to the World Health Organization 

(2017), there was a 16% increase in the number of registered vehicles between 

2010 and 2013. Furthermore, the loads that trucks are permitted to carry are also 

increasing. In Australia, this tendency is estimated to be 10% per decade 

(Heywood and Ellis, 1998; Heywood et al., 2000), and a similar situation exists 

in other countries (Cohen et al., 2003). This is to be expected given the economic 

benefits of increasing truck limits (McKinnon, 2005). A further consequence of 

changing legal limits is new vehicle configurations, such as tractor-trailer-trailer 

combinations. With the above changes in both magnitude and configuration of 

traffic loads taking place, NLMs ought to be continuously revised and updated to 

ensure bridge safety. However, NLMs in most standards are rarely updated, in 

part because there is no numerical approach to assist with updating the NLM 

configuration. 

To facilitate the development and updating of NLMs in standards, we introduce 

quantitative metrics of both vehicle configuration and IL shapes. A peakedness 

metric is introduced to characterise IL shape. A generalised influence line 
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function (GILF) is introduced to represent any real IL, explicitly using peakedness 

as a parameter. A concentration metric is introduced to characterise the 

configuration of vehicle loading. The relationship between peakedness, 

concentration, and LE is established. This is done for the NLMs of existing 

standards for Australia, China, EU, UK, and the USA. Further, it is done for real 

traffic from both Australia and the EU. As a result, the quality of the NLM 

representations of real traffic can be quantitatively and rationally assessed. 

Finally, it is shown how by working backwards using a prescribed concentration 

and peakedness an NLM can be readily designed. Consequently, this chapter 

should facilitate the development of standards with improved NLMs that better 

target specific configurations of vehicle loading, or traffic loading more generally.  

As NLMs are usually different, it can be understood that only one of NLMs is the 

most critical for a certain bridge. But the most critical NLM varies when bridge 

length changes. Take two bridges and two NLMs as an example. The ILs are 

triangle ILs with bottom length of 30 m and 100, but the heights are the same (1). 

The live load is from the load models of S1600 (Figure 2-1) and LM1 (Figure 2-3). 

Results are shown in Table 5-1. 

Table 5-1. LEs for different bridge lengths and load models. Numbers outside the brackets are 

the results of NLMs with UDL parts. Numbers inside the brackets are the result of NLM without 

considering the UDL parts. 

LE (kNm) AU-S1600 EU-LM1 

30 m bridge 827 (467) 981 (576) 

100 m bridge 2010 (810) 1942 (592) 

 

The Eurocode (LM1) governs the short bridge (30 m), and Australian NLM 

(S1600) governs the long bridge (100 m). The difference can be even more 

evident if UDL part of the load model is ignored. It is not rational to say which 

NLM is more accurate as they all virtual vehicles. However, it can be inferred that 

for different bridge length, the critical traffic loading is not always the same. It is 

necessary to study the load models for different circumstances.  
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This chapter provides new metrics that quantify the effect of the IL shape and the 

concentration of vehicle axle loads. The relationship is found to be complicated 

as there are many variables involved in the concentration of the loads. NLMs 

from many international codes are quantitatively evaluated against real traffic 

from Europe and Australia using these new metrics. 
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5.2 The Generalized Influence Line Function (GILF) 

To study the entirety of potential IL lobe shapes, it is useful to introduce a general 

function that can represent an extensive range of lobe shapes. Such a function 

allows discrete ILs which are common in practice, to be represented on a 

continuum by fitting. Further, it is most useful if the parameters of this function 

can be directly linked to metrics of interest, such as peakedness. The GILF 

proposed here is a simplified function based on a wide range of IL functions given 

in Larnach (1964). The GILF is given by: 

 𝑦 = (𝑎1𝑟 + 𝑎2𝑟2 + ⋯ + 𝑎𝑛𝑟𝑛)(𝑟 − 1) + 𝑏𝑚 (18) 

where r is the non-dimensional distance (x/L); x and y are the IL coordinate; L is 

the total length for the lobe; ai (i = 1, 2…, n) and b are shape parameters; and m 

is a piecewise function, given by:  

 𝑚 = {

𝑥

𝑠
, 𝑥 ≤ 𝑠

𝑥 − 𝐿

𝑠 − 𝐿
, 𝑥 > 𝑠

 (19) 

where s is the skewness parameter.  

For convex IL lobes, n = 2 is found to be sufficient. On the other hand, for 

concave lobes, b = 0, and n is usually less than four but increases for higher 

static indeterminacy. Figure 5-1 shows several lobes generated using the GILF. 

The ILs are seen to be good representations of lobes of common ILs.  

 



CHAPTER 5 BASIS FOR THE DESIGN OF NOTIONAL LOAD MODELS 

 

Page | 52  
 

 

Figure 5-1. ILs generated by GILF. The parameters are shown in Table 5-2. The numbers in 

parentheses are the peakedness values (section 4.2) and are seen to reflect intuition. 

Table 5-2. Parameters for the curves from GILF curve fitting 

Curve No. l a1 a2 a3 r b 

G1 100 0.06 0 0 0 0 

G2 100 0 0.12 0 0 0 

G3 100 0 0 0 0.5 0.02 

G4 100 -0.1 0 0 0.5 0.0533 

T1 100 0 0 0 0.5 1 

T2 100 -4 0 0 0.5 2 

T3 100 4 0 0 0 0 

T4 100 0 0 0 0.5 2 

T5 50 0 0 0 0.5 1 

T6 50 0 0 0 0.5 2 

GGB(b) 398.22 24895 -66 0 0.504 -19596 

GGB(c) 446.59 16733 -11672 -4699 0 0 
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5.3 The IL Metric – Peakedness 

An IL is the variation of a LE at a point as a unit load traverses the structure. A 

multi-span large bridge can have a long and complicated IL, and it can be divided 

into several sections based on where it crosses the zero LE line (x-axis). These 

IL sections are termed lobes. For different ILs, there are convex (or leptokurtic) 

lobes and concave (or platykurtic) lobes (see Figure 5-2). Consequently, the LE 

responses for different shapes of IL lobes vary significantly. However, although 

the terms tend to be understood, ‘convex’ and ‘concave’ are qualitative 

descriptions of the lobe shape. To investigate the relationship between IL and 

resulting LE (for a given vehicle), a quantitative metric for representing the shape 

of IL is needed. More specifically, a means to measure the ‘peakedness’ or 

concentration of the lobe about the maximum point, is required. 

 

Figure 5-2. A typical convex IL lobe (left) and concave IL lobe (right). 

Pearson (1905) defined the fourth standardised moment of a curve as kurtosis. 

He termed “leptokurtic”, “mesokurtic” and “platykurtic” to show the degree of flat-

toppedness. Since then, much research (Kitchenham et al., 2001) has used this 

metric to indicate the peakedness, especially in probability theory. However, 

recently some work has pointed out that this concept is flawed, and instead 

kurtosis represents tail extremity (Darlington, 1970; DeCarlo, 1997). Therefore, 

although appealing, kurtosis cannot be used to represent the peakedness of the 

ILs. 

To measure the peakedness of IL lobes, a new peakedness metric, p, is 

introduced, defined by: 



CHAPTER 5 BASIS FOR THE DESIGN OF NOTIONAL LOAD MODELS 

 

Page | 54  
 

 𝑝 =
𝑦0 − ℎ

√𝐴
 (20) 

where, with regard to the lobe, A is the area underneath; y0 is the maximum 

ordinate, and; h is the ordinate to the centroid of the lobe. Note that all variables 

are taken as absolute values. The parameters of this metric are illustrated in 

Figure 5-3. The peakedness metric is invariant with respect to with different lobe 

lengths and heights (Figure 5-4), or influence ordinate values. Higher 

peakedness indicates that the shape of the IL is more convex (or leptokurtic), 

and vice versa. For example, the peakedness for a rectangular lobe of unit height 

is 𝑝 = (1 − 0.5)/√𝐿 = 1/(2√𝐿), and for a triangular lobe of unit height, 𝑝 = (1 −

0.33)/√0.5𝐿 = √8/(3√𝐿). 

 

 

Figure 5-3. An illustration of the parameters in the peakedness algorithm. 

A

LE

x
h

l

y0
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Figure 5-4. A peakedness test for ILs with various shapes and scales. The numbers in the 

bracket are the peakedness. The parameters are shown in Table 5-2. 

The proposed peakedness metric is given in Figure 5-4 for the lobes generated 

using the GILF. Again, the results are consistent with intuition. The peakedness 

of real ILs can also be determined by curve fitting using the GILF. Figure 5-5 

illustrates the latter method for an IL for the Golden Gate Bridge taken from 

Enright et al. (2013). Two lobes are fit: one convex and one concave. The GILF 

is seen to fit the IL data quite well. Notably, the fitting curve indicates the vertex 

in the convex case, which is not included in the actual IL data points. The 

calculated peakedness values are 6.11 and 2.02 respectively, which again reflect 

intuition about the curves. 
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(a) 

 
(b) 
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(c) 

Figure 5-5. IL of mid-span girder bending moment for the Golden Gate Bridge (after Enright et 

al., 2013): (a) discrete points at 7.62 m spacing, determined from a finite element model; (b) 

Curve fitting a convex lobe (from 795.45 m to 1193.43 m) using the GILF, for which the 

peakedness is 6.11; (c) A concave lobe (from 1193.43 m to 1640.02 m) fitted by GILF, for 

which the peakedness is 2.02. Fitting parameters are shown in Table 5-2. 
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5.4 The Vehicle Metric – Concentration 

For a given IL, the distribution of axle loads over the length of a vehicle apparently 

plays an essential role in the resulting LE. In developing a metric to capture this 

effect, it is vital to avoid invariance with respect to axle position – this is because 

the sequence of axle loads is critical to the LE. This requirement removes ‘global’ 

vehicle metrics from consideration, such as standard deviation of axle loads 

(invariant to axle position). Following presentation of the proposed metric, 

explanation of the rationale and meaning behind the various quantities is given. 

To measure the concentration of load for a particular vehicle configuration, the 

concentration metric, c, is given by: 

 
1

1 Force

Length

n

i

ie

c q
n 

 
  

 
   (21) 

in which, ne is an equivalent number of axles for the n-axle vehicle and, qi is the 

effective UDL for each axle. The equivalent number of axles, ne, is given by: 

  
221

max ; 1
2

e a sn n n D n D    
 

  (22) 

where the mean absolute deviation (MAD) of axle loads, Da, and the MAD of axle 

spacing, Ds, are given by:  

 
1

1 n

a i

i

D
n

 


    (23) 

 
1

1

1

1

n

s i

i

D
n

 




 

   (24) 

in which 0 1iw W    is the relative weight of an axle, and 0 1is S    is 

the relative spacing for axle i, given GVW is W and the vehicle length is S. 

Overbars represent mean quantities.  

Running from 1, , 1i n K , the effective UDL for the i-th axle is given by: 

  min , ,
1

H

i
i H

w
q H L R

x

 
  

  
  (25) 
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in which H is the left (L) or right (R) hand side outermost axle and Hx  is the shift 

that occurs in the position of the vehicle’s resultant weight should the considered 

axle be removed. Depending on which axle (L or R) gives the minimum, that axle 

is removed, and the effective UDL calculated again for the remaining vehicle 

configuration. This procedure continues until there is just one axle left, for which 

the effective UDL is calculated by taking a unit length: 1n n nq w w  . The general 

calculation procedure is illustrated in Figure 5-6 and followed by an example. 

 

Figure 5-6. A flowchart of the concentration calculation procedure. 
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5.4.1 Example Calculation 

An example of concentration calculation for a four-axle vehicle with 100 total 

weight is given in Table 5-3. 

Table 5-3. An example of concentration calculation for a four-axle vehicle. 

 

Step1: Calculate the equivalent number of axles: 

𝐷𝑎 =
2 |0.1 − 0.25| + 2 |0.4 − 0.25|

4
= 0.15 

𝐷𝑠 =
3 |0.333 − 0.333|

3
= 0 

𝑛𝑒 = 4 − 0.5 max(42 ∙ 0.15, 32 ∙ 0) = 2.8 

 

 

 

 

 

 

 

Step2: Remove the outmost axle round by round until only 

one axle left. Calculate the effective UDL at each round. 

𝑥0 =
10 ∙ 0 + 40 ∙ 2 + 40 ∙ 4 + 10 ∙ 6

100
= 3 

Assume to remove the left axle at round 1: 

𝑥1
𝐿 =

40 ∙ 2 + 40 ∙ 4 + 10 ∙ 6

90
= 3.333 

𝑞1
𝑅 =

10

|3.333 − 3| + 1
= 7.5 

Assume to remove the right axle at round 1: 

𝑥1
𝐿 =

10 ∙ 0 + 40 ∙ 2 + 40 ∙ 4

90
= 2.667 

𝑞1
𝑅 =

10

|2.667 − 3| + 1
= 7.5 

𝑞1 = min(7.5, 7.5) = 7.5 

Therefore, the left axle is removed.  

 

 

Assume to remove the left axle at round 2: 

𝑥2
𝐿 =

40 ∙ 4 + 10 ∙ 6

50
= 4.4 

𝑞2
𝐿 =

40

|4.4 − 3.333| + 1
= 19.355 

Assume to remove the right axle at round 2: 

𝑥2
𝑅 =

40 ∙ 2 + 40 ∙ 4

80
= 3 

𝑞2
𝑅 =

10

|3 − 3.333| + 1
= 7.5 

𝑞2 == 7.5 

Therefore, the right axle is removed. 
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Assume to remove the left axle at round 3: 

𝑞3
𝐿 =

40

|4 − 3| + 1
= 20 

Assume to remove the right axle at round 3: 

𝑞3
𝑅 =

40

|2 − 3| + 1
= 20 

𝑞3 = min(20, 20) = 20 

Therefore, the left axle is removed, and only one axle is left. 

 Calculate the concentration with previous results. 

𝑐 = (7.5 + 7.5 + 20 + 40)/2.8 = 26.786 ≈ 27 

 

Note: 

 Steps 1 and 2 can be switched. 

 For qi, if the left and right values are the same in the same round, any of 

them is okay to be removed. The example removes the left one as a 

default. 

5.4.2 Essence of the Concentration Metric 

In essence, the concentration metric is a mean effective UDL for an axle in the 

vehicle, with unit force/length. It is determined by finding the effective UDL for 

each axle in turn and dividing by an equivalent number of axles. Concentration 

itself is a multiple of GVW since the effective UDLs are multiples of GVW 

(equation (8)). The term qi is the effective UDL contributed by the axle; the +1 in 

the denominator is to ensure that for very small axle spacings, the term does not 

become infinite. By selecting the axle for removal that contributes the minimum 

effective UDL, the more significant loads are retained for the next iteration. The 

expression for the equivalent number of axles arises by correcting the true 

number of axles for small axle weights or spacings. For example, a 3-axle vehicle 

may only have 2.4 effective axles because the last two axles are close, and the 

first axle is relatively light. The equivalent number of axles is found by considering 

the relative MADs of the actual vehicle axle weights and spacings to those for a 

hypothetical case in which all the vehicle weight is concentrated on just one 

outside axle. Concentration could be made dimensionless by normalising by the 

vehicle length-to-weight ratio. However, this would mean that short evenly-

loaded vehicles would return the same metric as longer heavier but still even-

40

4

2

40
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loaded vehicles. Consequently, the metric is dimensioned in consistency with the 

force and length units used in the IL and resulting LE also. 

5.4.3 Concentration for Simulated Vehicles 

To illustrate the performance of the proposed metric, Figure 5-7 shows the 

concentration calculated for different vehicle lengths, load distribution, load 

sequence and axle numbers. It is assumed that the total weight of all vehicles is 

the same, equal to 100 units. In general, the concentration algorithm identifies 

different types of vehicle with intuitive relative measures of concentration. Its 

mean effective axle weight measure corresponds with the limiting cases of a 

point load (V1) and a UDL (V9), distinguishing between intermediate cases. 

 

Figure 5-7. Configuration and calculated concentration for hypothetical non-dimensional 

vehicles. (The axle weight is shown above each axle, and the distance to each axle from the 

left-hand side is shown below.)  

5.4.4 Concentration for NLMs 

The concentration metric is next applied to several NLMs, including the 

Australian load model M1600 and S1600, American load model HL93, European 

load model LM1, Chinese load model and traditional British load model HA. Note 

UDL parts are not considered for all NLMs because we are only concerned about 

how the load model represents vehicles. The results are shown in Figure 5-8; the 

Chinese load model is the most concentrated, due to its single heavy axle 

configuration; the Australian load model S1600 has the lowest concertation. This 

is intuitive, as it has a long vehicle length with 12 relatively light axle loads.  
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Figure 5-8. Configuration and concentration [kN/m] for load models. Note that relative 

concentration can be examined by dividing concentration by total weight of the load model. 

5.4.5 Concentration for Traffic Data 

The concertation metric is next applied to Australian and French truck traffic data 

obtained from WIM. The Australian data is taken from a site at the West Gate 

Bridge (Foong and Caprani, 2016), and the French data is from the Auxerre site 

used to calibrate the Eurocode (Bruls et al., 1996a). The histograms of truck 

concentrations for the two sites are shown in Figure 5-9. Clearly, the vehicle 

configurations are entirely different between two locations. Australian vehicles 

are less concentrated than the French vehicles. The French truck fleet has a 

broader spread of concentrations, approximately in the range 60-80 [kN/m]. In 

contrast, the Australian concentrations are mostly confined to the range 20-30 

[kN/m].  Based on this, for a given IL shape, Australian and French truck fleets 

would impart different LEs (even neglecting differences in vehicle weights).  
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Figure 5-9. Concentration [kN/m] frequency in Australia and France. 

The relationship between the concentration metric and vehicle weight, for a given 

number of axles, is shown in Figure 5-10 for the Australian and French truck data. 

Also shown are various NLMs. There is a strong linear trend between GVW and 

the concentration metric for each vehicle type (as defined by number of axles), 

with decreasing slope with increasing number of axles. Interestingly this 

phenomenon also exists for the NLMs: the single axle load models of UK and 

CN are in the top left, while the 12-axle AU load models are in the bottom right. 

The Eurocode and American load models are also located on the supposed 

trendlines; for which the US one fits quite well for both sets of traffic data. Further, 

it is clear that the AU load models have much higher total weight compared to 

the real vehicles, while other load models are closer. Regarding the 

representation of real vehicle concentrations, unsurprisingly the single-axle CN 

and UK load models do not represent real vehicle configurations well; nor does 

the two-axle Eurocode. According to this metric, the most representative load 

model of real vehicles is the US load model, both regarding weight and 

configuration. Nevertheless, NLMs are not intended to replicate real vehicles, but 
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rather the LEs that result from extreme combinations of real vehicles traversing 

bridges. Consequently, it is not appropriate to evaluate NLMs solely on 

concentration, but rather the interaction of both concentration (representing 

vehicles) and peakedness (representing ILs). 

For helping designing load model, it is expected that the new load model should 

correspond to the local traffic. Take Australian traffic as an example, the new 

load model should be located on these trendlines, and the total weight is no less 

than 900 kN with concentration no higher than 120. For European traffic, the new 

load model should be located on these trendlines as well, but the total weight is 

no less than 700 kN with concentration no higher than 150. If possible, a larger 

dataset is recommended. 
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 (a) Australian data 

 

(b) French data 

Figure 5-10. Relationship between GVW and concentration metric, showing trendlines for each 

vehicle type (by number of axles), and various NLMs. 
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5.5 Interaction between Peakedness and Concentration 

The previous sections discuss the metrics peakedness and concentration 

separately. However, the primary purpose for them is to analyse how these two 

metrics combine to govern the LE. There are several tests conducted for 

quantitative measurement. As the peakedness represents the shape of the ILs, 

the test ILs are set to have same lengths (50 m) and same heights (1), ensuring 

the only variable is the shape (Figure 5-11). Concentration represents the load 

distribution of the vehicles. Therefore, the test vehicles have same total weight 

(100 kN) and same total length (10 m). However, there are many variables, other 

than previous two, involve in vehicles. In this paper, two variables are analysed 

in test 1 and test 2, respectively.  

 

Figure 5-11. Test ILs. The numbers in the bracket are the peakedness. 

Test 1 and Test 2 each change one single parameter of a standard vehicle 

(Figure 5-12). To analyse the impact of the axle loading bias, the loading in the 

middle axle varies in Test 1. The ratio of the middle axle load to other axle loads 

ranges from 1 to 64. Test 2 is to analyse the impact of the axle numbers. The 

axle number range increases from 5 to 64. Note these increase and changes are 

discrete in the tests.  



CHAPTER 5 BASIS FOR THE DESIGN OF NOTIONAL LOAD MODELS 

 

Page | 68  
 

 

Figure 5-12. A standard vehicle for the Test 1 and 2. 

The summarised result is shown in Figure 5-13. Assorted colours represent the 

LE from different ILs. It is evident that the less peak ILs are less sensitive to the 

variation of vehicle configurations and higher peakedness leads to lower LEs. 

This is reasonable as ILs with higher peakedness have lower ordinates. 

As for concentration, it was believed that more separated loadings (or lower 

concentration) leads to lower LE. However, this result indicates it does not. The 

reduction of the LE depends on what is the reason behind for that concentration. 

The lower concentration from axle load bias can dramatically reduce the LE but, 

on the contrary, the lower concentration due to the axle number increases it. 

Though the impact of the load bias is much more severe, the relationship 

between the concentration and LE is not positive as previously expected. In the 

tests, the highest LE is from the single axle load case. The lowest is from the 2-

axle load with no bias on loadings. 

Vehicle configuration is complicated. The axle number and axle loads can have 

an impact on the LE. The axle load sequence can also impact the LE, especially 

when vehicle axle number is higher. There is no single rule which can illustrate 

the trend for different concentration vehicles.  
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Figure 5-13. LE of varies ILs with different vehicles (cycles indicate the result from Test 1, Stars 

indicates the result from Test 2). 

For actual vehicles, the relationship is slightly different. Actual vehicles tend to 

have more axle numbers when vehicle length gets longer. Meanwhile, the total 

weight increases but the axle loads decrease. An illustration is shown in Figure 

5-14. It also illustrates that even the total load increases, the concentration 

decrease. Those vehicles are applied to the previous ILs, and the result is shown 

in  

(c) 

Figure 5-15. It verifies the previous research conclusion (Burgoyne, 1987). There 

is a peak in the LE result, and this peak is not located at the most concentrated 

end or the least concentrated end. Besides, for different peakedness ILs, the 

peak location is different. The critical case for low peakedness (concave) ILs is 

when the vehicle is less concentrated. The counterpart in the high peakedness 

(convex) ILs is when the vehicle is more concentrated. If to compare between 

ILs, no matter what vehicle concentration is, the low peakedness IL always 

governs. For the new load model design, it is recommended to consider the IL 

shape at first. Then the sensitivity range for vehicles are determined.  
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Figure 5-14. Examples of the reasonable cases. Ce is the concentration of each real example. 
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(b) 

 
(c) 

Figure 5-15. LE result for reasonable cases. (a) is a 3D view plot. (b) and (c) are 2D plot 

compressed from two different directions in (a). In the plot, assorted colours represent different 

ILs. 
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5.6 Load Models Application 

Major load models with the test ILs are tested to see how different the load 

models are. The IL bottom length varies from 20 m to 220 m with 50 m steps, 

and the height is kept the same. The shape of the IL is the variable rather than 

the bridge length. Others are the same as Figure 5-11 shows, and the results are 

shown in Figure 5-16. The LE in the figure is the ratio of the original LE value 

with the maximum LE value among all cases. UDL parts in load models are not 

considered.  

 
(a) 

Yellow' AU-M1600

Magenta AU-S1600

Cyan US-HL93

Red EU-LM1

Green CN-LANE

Blue UK-BS5400HA
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(b) 

 
(c) 

Figure 5-16. The LE from varies load models with different ILs. (a) is a 3D view plot. (b) and (c) 

are 2D plot compressed from two different directions in (a). In the plot, assorted colours 

represent different load models, and different marker type represents the different bridge 

length. 
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From Figure 5-16b, it can be referred that the Australian M1600 load model is 

the most conservative load model among all the tested load models, especially 

in the low peakedness ranges. European load models tend to govern the cases 

when it comes to the high peakedness ranges. On the contrary, UK-HA loading 

always is the lowest case regarding the LE, no matter what peakedness is. 

Moshiri and Montufar (2013) made a comparison of international bridge formulas. 

Though the view is from the allowable vehicle weights on the bridge, it also 

reflects that the Australian limit is the highest, compared with others, and US limit 

is the lowest. Figure 5-16c is a more random-like image. EU and CN have much 

higher concentrations while the rest is lower. There is no simple relationship 

between the concentration and LE.  

Actual vehicles are imported into the image to show whether the load model can 

represent the actual vehicles. 50 vehicles are randomly selected from the 

Australian and European dataset, and they are plotted in Figure 5-17 and Figure 

5-18, respectively.  

 
(a) 

Yellow' AU-M1600

Magenta AU-S1600
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(b) 

 
(c) 

Figure 5-17. The LE from varies load models and actual vehicles from Australia dataset. (a) is a 

3D view plot. (b) and (c) are 2D plot compressed from two different directions in (a). In the plot, 

assorted colours represent different load models, and different marker type represents the 

different bridge length. 
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(a) 

 
(b) 
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(c) 

Figure 5-18. The LE from varies load models and actual vehicles from European dataset. (a) is 

a 3D view plot. (b) and (c) are 2D plot compressed from two different directions in (a). In the 

plot, assorted colours represent different load models, and different marker type represents the 

different bridge length. 

With no doubt, the LE from actual vehicles in Australia and Europe are less than 

their standard load models. However, there are still some differences. SM1600 

converges to the actual vehicles when peakedness is getting higher while LM1 

diverges. SM1600 represents the actual vehicles better as the concentration 

value is much closer to the actual vehicles, compared to LM1.  

To design the next-generation load model, the traffic data and bridge data are to 

be examined. For example, based on the European data mentioned above and 

a triangle IL, we suggest using a short vehicle as the prototype because short 

vehicles are more sensitive to the peak ILs. The candidate load model could be 

a 4-axle load model with a 15-metre length and its GVW is around 500 kN, based 

on the relationship between GVW and concentration. Though the LE analysis is 

still needed but it can accelerate the design process at the very beginning. 
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6.1 Introduction 

This chapter examines design standards’ approach to load patterning. Traffic 

microsimulation is adopted to simulate the traffic flows on a generic 1200 m 

bridge. We consider the possible road topologies that might give rise to design 

standard loading patterns. The LEs results are extrapolated to 5, 75 and 1000-

year return periods, representing typical assessment and design return periods 

respectively. A proposed load patterning considers the free flow traffic as 

supplementary on the bridge loading and two more actual bridges are tested. 
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6.2 Traffic Load Patterning Phenomenon 

6.2.1 Hypothesis 

In this section, we investigate the phenomenon of traffic load patterning and 

address some precepts about its real behaviour and the relationship to code-

implied behaviour. To do this, a hypothetical bridge is considered with an IL that 

is sensitive to patterned loading. 

 Study 1: Firstly, we examine whether the natural patterning of traffic has 

a significant effect on bridge loading. This is done by generating several 

types of congestion on the bridge and examining the resulting LEs. 

 Study 2: Secondly, we impose the code-implied traffic patterning by 

cropping the ILs, perfectly ignoring traffic on the beneficial parts of the IL, 

and examine the resulting LEs. 

 Study 3: Finally, we examine whether it is possible for the code-implied 

patterned traffic to be created by the occurrence of some critically spatially 

arranged incidents that affect the traffic flow. For these hypothetical critical 

traffic scenarios, we determine the resulting LEs. The road topology can 

even be unrealistic as we only pursue code-referred traffic. 

Comparison of the LEs from these studies is informative on both the nature of 

natural traffic patterning and its relation to code-implied patterning. However, 

before examining the results of these studies, the details of the studies are 

described. 

6.2.2 Basis of the Studies 

For the studies, a generic 1200 m bridge is used, which can be regarded as a 

large multi-span bridge (Figure 6-1). This geometry is reflective of some existing 

bridges, such as The Millau Viaduct (204+6×342+204), Charilaos Trikoupis 

Bridge (286+3×560+286), Brooklyn Bridge (283+487+283) and Jiaxing-

Shaoxing Sea Bridge (270+5×428+270). The two traffic directions on the bridge 

are considered as independent, and so only one direction is considered, 

consisting of two lanes of traffic. 
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Figure 6-1. The elevation view of a generic 1200 m bridge. 

For the generic bridge, one LE is considered through a hypothetical IL which is 

sensitive to patterning, shown in Figure 6-2. Both maximum (most positive) and 

minimum (most negative) values of the LE are studied. The complete IL is studied 

as the real response to the traffic stream (Figure 6-2(a)). Code-implied traffic 

patterning is considered by cropping the beneficial regions of the IL to consider 

the worst-case maximum LE (Figure 6-2(b)), and similarly for the worst case 

minimum LE (Figure 6-2(c)).  

 

(a) Full IL 

Span 1 - 400 m Span 2 - 400 m Span 3 - 400 m
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(b) Maximum IL 

 

(c) Minimum IL 

Figure 6-2. Hypothetical IL of a generic 1200 m long bridge for consideration of traffic 

patterning. 

The same input traffic dataset is used throughout the work, to avoid this variable 

affecting the results. Since the studies are solely relative comparisons, and not 

intended to quantify actual values of loading, this is acceptable. The traffic 

characteristics are modelled on data taken from the A6 motorway near Auxerre 

in France. This data is significant as it formed the basis for the Eurocode load 

mode (Bruls et al., 1996b). The traffic used in this work is randomly generated 
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using Monte Carlo simulation (Jacob and Labry, 2002; Caprani, 2005). Cars were 

not measured at Auxerre but are artificially injected into the traffic stream for 

these studies, since it is vital to represent real traffic streams in the 

microsimulation (Caprani, 2013; Caprani et al., 2016). The traffic flow is set to 

1500 veh/h/lane and the truck percentage as 16% (Lipari, 2013). Additionally, an 

80:20% distribution of trucks between lanes is set for this two-lane bridge (Fwa 

and Li, 1995; Caprani et al., 2016). 

For the studies, the road is taken as 6 km long, and the bridge is located starting 

at 3 km. The first 3 km is used to allow the traffic settle after injection to avoid 

boundary effects (Lipari, 2013). Bottlenecks are introduced into the traffic stream 

by locally altering the safe-time headway parameter of the IDM, as 

recommended by Treiber et al. (2000). This alteration is made gradually 

(transition part in the figures) to avoid sudden shocks to the traffic stream —see 

OBrien et al. (2015) for further details. The bottleneck (or transition) starts at 

4.2 km – just at the end of the bridge. 

For each study, 100-hours of congestion data is generated and recorded. It is 

considered that 1 hour of congestion occurs in each day, and so the 100 hours 

of congestion corresponds to 100 days of the bridge lifetime. Simultaneous to 

recording the value of the LE through time, the coincident total amount of load 

on each span, or lobe of the IL, is also recorded. The maximum LE in each 

simulated hour of congestion is retained for this analysis as the ‘block’ maximum. 

Of course, congestion does not occur immediately at the start of the simulation 

but takes time to build upon the virtual road. Hence the LEs for the first hour of 

the simulation are discarded as being from a mix of free- and congested-flow 

traffic.  

6.2.3 Study 1: The Relationships between Bottleneck and Time Headway 

OBrien et al. (2015) and Caprani et al. (2016) respectively consider single and 

multi-lane LEs caused by different forms of traffic. However, the ILs used in these 

works are not sensitive to load patterning. Indeed, there is little work in the 

literature that analyses the significance of different forms of congested traffic on 

ILs with multiple lobes: those ILs with alternating positive and negative regions 

that are sensitive to load patterning. To address this for the considered generic 
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bridge and hypothetical IL, a range of congestion types are generated with the 

layout setup in Figure 6-3. 

 

Figure 6-3. The simulation layout for Study 1. 

Figure 6-4 shows the relationship between the locally-modified safe time 

headway parameter and resulting bottleneck strength which serves as a proxy 

for the type of congestion (Caprani et al., 2016). The results are close to those 

found in the previous papers (Treiber et al., 2000; Caprani et al., 2012; OBrien 

et al., 2015; Caprani et al., 2016). 

 

Figure 6-4. Congestion types and the relationship between time headway ΔT and bottleneck 

strength ΔQ. The numbers in the bracket are the exact coordinate of each dot point. 

For each bottleneck strength considered, the maximum (most positive) and 

minimum (most negative) LEs are calculated using the extreme value 

extrapolation previously described (Figure 6-5). As may be expected, for the 

maximum LE, free flow traffic is the least onerous form of traffic, and congested 

3000 m 5200 m4200 m

Complete IL

Transition Bottleneck

Bridge 4800 m
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traffic types give higher LEs. Interestingly, there is a ‘saddle’ in the graph. The 

light bottleneck ΔQ = 240 veh/h and strongest bottleneck ΔQ = 1332 veh/h both 

trigger high LEs. These correspond to SGW and HCT congestion respectively. 

The fact that stop-and-go-wave traffic gives high LEs indicates that the natural 

‘pressure waves’ in traffic do cause onerous LEs for patterning-sensitive ILs. 

Further, these LEs are similar to those caused by the most onerous form of traffic, 

HCT, which is the one that codes of practice attempt to replicate. Finally, the LE 

caused by second strongest bottleneck ΔQ = 1146 veh/h veh/h is similar to that 

of the strongest bottleneck ΔQ = 1332 veh/h, but the simulation time is far shorter. 

Besides, the vehicle speed before these two bottlenecks are 5 km/h and 3 km/h, 

respectively. The bottleneck ΔQ = 1332 veh/h for the 3 km/h is too severe, which 

is too unrealistic. Consequently, for Study 2 and Study 3, the bottleneck of ΔQ = 

1146 veh/h is used. 

 

Figure 6-5. Relationship between middle bottleneck strength and extrapolated LE in Study 1. 

Similar to the maximum LE result, for the minimum LE, the congested traffic types 

give the most severe loading. Most interestingly, the SGW bottleneck ΔQ = 240 

veh/h yields the minimum LE. This is further evidence that natural variations in 
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the traffic are important for patterning-sensitive ILs. Further, by comparing the 

critical form of traffic for the maximum and minimum results, the ratio of the areas 

of the positive and negative lobes of the IL also plays a role in determining the 

most onerous form of congested traffic. The critical bottleneck of ΔQ = 240 veh/h 

is selected as the characteristic minimum LE for Study 1. 

A useful visual representation of the traffic state is a spatio-temporal space mean 

speed (ST-SMS) plot (Treiber and Kesting, 2013). For the two critical types of 

traffic identified above, ΔQ = 240 veh/h and ΔQ = 1146 veh/h, the ST-SMS plots 

are shown in Figure 6-6. The difference in behaviour of the SGW and HCT forms 

of congestion is clear, and it is also clear that the pressure waves of the SGW 

are responsible for the high negative (minimum) LE observed. Of course, these 

findings are intuitively obvious, but the methodology adopted here allows their 

quantification and enables further analysis of less intuitive results. 

 
(a) ΔQ = 240 veh/h traffic 
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(b) ΔQ = 1146 veh/h traffic 

Figure 6-6. ST-SMS plots in Study 1. 

6.2.4 Study 2: Comparison between Real LE and Load Patterned LE  

In this study, the implications of typical code requirements to pattern live load are 

examined. The road and bridge layout for this study is shown in Figure 6-7. For 

the traffic stream simulated, this is affected by cropping the ILs as noted earlier, 

to remove contributions of the load from regions that are beneficial to the effect 

of interest. From the results of Study 1, the bottleneck strengths ΔQ = 1146 veh/h 

is used to cause HCT traffic in Study 2, which generates the maximum loading 

on the adverse or beneficial parts, leading to the maximum and minimum LEs. 

The layout (b) functions as a check to illustrate that transition has an ignorable 

impact on the LEs. 
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(a) Layout with transition part 

 
(b) Layout without transition part 

Figure 6-7. The simulation layout for Study 2. 

The characteristic maximum and minimum LE results are calculated as 

described earlier. The results are expressed as a ratio to those of Study 1, for 

the bottleneck considered, and given in Table 6-1. The total coincident loads on 

each span are also extrapolated and converted to an EUDL, and these are shown 

in Figure 6-8.  

Table 6-1. LEs of a generic bridge, expressed as a ratio of the real traffic results from Study 1 

 
LE 

Return 
period 

Study 1 Study 2 Study 3 
Proposal Bottleneck 

transition 
Bottleneck 
transition 

No 
transition 

Two 
bottlenecks 

Maximum 

5 93.8% 114.3% 109.2% 107.2% 106.7% 

75 97.6% 120.1% 113.1% 113.0% 111.0% 

1000 100.0% 124.2% 115.6% 117.2% 113.8% 

Minimum 

5 84.1% 205.6% 195.5% 130.7% 109.6% 

75 93.5% 216.7% 203.6% 141.3% 118.3% 

1000 100.0% 224.4% 208.9% 148.0% 124.1% 
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For the maximum LE, the patterned traffic gives 24.2% higher value than real 

traffic. The reason for this is evident from the EUDLs in Figure 6-8: as the 

congestion traffic states for the characteristic LEs are the same, the EUDLs on 

spans 1 and 3 are quite similar. Thus, the major difference arises from the 

beneficial effect contributed from the load in span 2. For the minimum LE, the 

difference becomes quite considerable at 124.4% of the LE for real traffic. Two 

aspects are different for this case: the critical traffic is SGW in the actual traffic 

(Q = 240 veh/h), and the ratio of the beneficial/adverse areas of the IL is 

different. Nevertheless, it is interesting to note that the coincident EUDLs on the 

adverse portions of the IL, for both maximum and minimum, situations are quite 

similar (around 24.6 and 23.9 kN/m respectively – quite close to Eurocode's 27 

kN/m). Overall though, the level of conservatism in the load patterning approach 

is seen to be significant, at least for this bridge and IL. 

 
(a) Maximum LE 
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(b) Minimum LE 

Figure 6-8. 1000-year extrapolated EUDL arrangement of a generic 1200m bridge. 

In Study 1, the typical arrangement of a gradual introduction of the bottleneck is 

adopted, as explained earlier. However, to make the bottlenecks occur at the 

critical locations relative to the bridge for this study, the transition would overrun 

the intended bottleneck location on the bridge at 3.4-3.8 km (see Figure 6-3). 

Therefore, an initial simulation was conducted to determine the influence of the 

transition region on the resulting LEs. This road layout is shown in Figure 6-7(b), 

and the results given in Figure 6-8. It is clear that the results are not much 

affected by the absence of the transition region. 

6.2.5 Study 3: Cause of the Critical Case Load Patterning 

In this study, we examine the possibility of traffic becoming patterned in the 

manner implied by codes. To do this, we hypothesise the occurrence of two traffic 

incidents, at the same time, located at exactly the critical positions for this IL, to 

cause both worst-case maximum and minimum LE values. As the rationality of 

the road is not the priority, and the most code-referred traffic is of concern, we 

assume two bottlenecks are formed in this short distance, and the bottleneck 

strengths are suddenly changed. Figure 6-9(a) shows the hypothesised road 

layout for the worst-case scenario maximum LE, while Figure 6-9(b) shows that 
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for the minimum. The bottleneck strength in bottleneck 1 varies while that in 

bottleneck 2 is 1146 veh/h/lane. 

 
(a) Maximum LE 

 
(b) Minimum LE 

Figure 6-9. The simulation layout for Study 3.  

The additional bottleneck on the bridge is found to interact with the first bottleneck, 

limiting the throughput of vehicles in total. Therefore, several trial bottleneck 

strengths for the additional region are conducted. Again, in a worst-case scenario 

approach, we select the bottleneck strength that reduces to a minimum the traffic 

density at the beneficial parts of the IL, while making the density on the adverse 

part a maximum. If the bottleneck strength is too small, there would be too many 

vehicles in the middle span. While if the bottleneck strength is too large, the full 

congestion on the span 3 will take much longer to occur. In short, there is a trade-

off between the vehicle density and congestion formation time.  The result 

indicates that a bottleneck strength of  ∆𝑄 = 1073 veh/h at the second incident 

location is suitable. 

Spatio-Temporal density plots illustrate the vehicle numbers on the road sections. 

Figuratively then, the code-implied spatio-temporal density plot would have a 

maximum density on the adverse regions and zero traffic density on the 

beneficial regions. This situation is shown in Figure 6-10, and this is considered 

the target load patterned traffic densities. Note that in this figure, a maximum 

possible density of 250 veh/km (100% cars of 4 m length positioned bumper to 

3000 m 4200 m

Complete IL

Bottleneck 2

Bridge 4600 m

Bottleneck 1

3000 m 4200 m

Complete IL

Bottleneck 2

Bridge
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bumper) is shown. Corresponding to the target spatio-temporal plot, Figure 6-11 

shows the actual spatio-temporal densities achieved in the simulation of the road 

layout in Figure 6-9a. It is seen that the road layout generates quite a similar 

result to the target, with a large number of the vehicles occupying the adverse 

parts. However, there are two aspects to note: (a) the lowest density in the 

beneficial region occurs as traffic builds up at the second incident, since the 

vehicles can travel at high speed; (b) once the second incident has caused a 

high-density backlog of vehicles, a non-zero density of vehicles exists in the 

adverse portion of the IL. Interestingly, for this optimised bottleneck setup (ΔQ1 

=1073 veh/h and ΔQ2 = 1146 veh/h), the beneficial region has around 80 veh/km, 

which is close to that of free-flow traffic. The result for the minimum follows the 

same logic and it is listed in Table 6-1.  

 
Figure 6-10. ST-Density plot for the target load pattern of maximum LE 
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(a). ST-Density plot for the actual load pattern of maximum LE 

 

(b). the vehicle topology at time 1000 s in (a) 

 

(c). the vehicle topology at time 3000 s in (a) 

Figure 6-11. ST-Density plot for the actual load pattern of maximum LE and its corresponding 

traffic at different times. Note that the black boxes are cars and red boxes are trucks in SIMBA. 

This study shows that it is possible to come close to code-implied traffic 

patterning. However, multiple aspects must converge to make this possible: 

incidents must occur at the right locations, and at a very specific set of inter-

related bottleneck strengths. The joint probability of these occurrences is 

infinitesimally small for regular traffic situations. Finally, and importantly, despite 
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the worst-case scenario approach, the results also show that it is not possible to 

have no traffic on the beneficial parts of the IL. Clearly then, a more rational 

approach to load patterning is needed. 
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6.3 Innovative Method of Load Patterning 

6.3.1 Proposed Approach 

The results of the previous studies demonstrate that it is impossible to obtain the 

code-implied traffic topology for real traffic. This is not to say that engineers 

should not consider a worst-case scenario approach, but if it is, it could 

conceivably be better treated as an accidental load case. For lifetime levels of 

in-service (non-accidental) loading scenarios, it is prudent to propose a load 

patterning scheme that is commensurate with the phenomenon of traffic loading. 

Nevertheless, in doing so, we ignore the improbability of joint occurrence of 

onerous events and consider that the road topology is a worst-case scenario and 

that the bottleneck strengths are also worst-case-scenario. Clearly these 

conservative assumptions could be relaxed in future work.  

For our proposal, we consider both the results of Study 3 in combination with the 

well-known load combination method, Turkstra’s Rule (Turkstra and Madsen, 

1980). Mathematically, Turkstra’s Rule can be expressed as: 

 𝑋max,𝑇 = max{[max(𝑥1) + 𝑥̅2], [𝑥̅1 +max(𝑥2)]} (26) 

where Xmax,T is the maximum combined LE in period T; x1 and x2 are two sources 

of loading, with maximum lifetime levels and mean values indicated. In the 

context of this work, the various sources of loading can be considered as types 

of traffic on the adverse and beneficial parts of the ILs. Based on the results of 

the phenomenological studies, the maximum load process is considered as the 

HCT traffic, and the average load process is free-flow traffic. Based on this then, 

the proposal for load patterning is shown in (b) Layout for the minimum LE 

Figure 6-12 for maximum and minimum LE on the example generic bridge IL: 

adverse portions are covered with a congested traffic loading, which is the same 

as current practice, but in addition, the beneficial parts are covered with free-flow 

traffic loading. 
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(a) Layout for the maximum LE 

 

(b) Layout for the minimum LE 

Figure 6-12. Layouts for the proposal. FT is free flow traffic and CT is congested traffic.  

6.3.2 Implementation using Traffic Microsimulation 

The proposed load patterning approach is easily implemented using traffic 

microsimulation. Since there are two different traffic types involved, the 

simulation is run twice, as follows:  

 For the HCT traffic, the adverse portions of the IL are considered, and the 

beneficial portions cropped. As before, in each 1-hour block, the block 

maximum HCT LE is noted, and the characteristic extreme LE calculated.  

 For the mean FT LE, the beneficial portions of the IL are considered, and 

the adverse portions cropped. The temporal average of the complete time-

history of resulting FT LE is calculated.  

The lifetime LE is then the combination of the two results. The HCT LE is the 

same as the prevailing method, and so the benefit of the FT (beneficial) LE 

represents the improvement of our approach to current practice. 

The LE results for the proposal are shown in Table 6-1. All values are compared 

to those of Study 1 from earlier. The proposed load patterning approach gives 

similar results to those of Study 3. Compared to Study 2 results (current practice), 

up to a 105% reduction for the minimum 100-year characteristic LE can be 

observed. The EUDL for the proposed approach on each span is shown in Figure 

6-8, along with those of the earlier studies. Again, it is clear that our proposal is 

quite similar to Study 3. It is neither entirely congested with the traffic as Study 1 

indicates, nor are no vehicles applied to the beneficial parts as Study 2 (current 

practice) indicates. For the minimum LE, the load on span 2 is consistent with 

CT CT
FT

FT
CT

FT
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that of Study 2 but maintains the onerous loads of Study 1 on the remaining. It is 

seen from these results that our approach is a compromise between real traffic 

behaviour and current practice. 

6.3.3 Implementation using Design Code Traffic Live Load Models 

Mean free-flow traffic loading is not readily available from codes of practice. A 

means to determine the mean free-flow traffic from the code live load model, 

which is typically based on lifetime levels of HCT loading, is needed. However, 

since it is being used for beneficial portions of the IL, it is not appropriate to 

overestimate it. Writing the code lifetime loading as w*, we propose that the mean 

free-flow traffic is determined from the code stipulated loading as: 

 𝑤𝐹𝐹 =
𝑘

𝜆
𝑤∗ (27) 

In this, 𝑘 is the ratio of mean daily maximum congested traffic to mean free flow 

traffic, and  is the bias factor of the loading distribution: the ratio of lifetime 

characteristic extreme to mean daily maximum loading, all considered as being 

for HCT. The ratio 𝑘 is approximately 0.25, based on results from Lipari (2013), 

OBrien et al. (2015) and Caprani et al. (2016). 

Considering traffic loading to the Gumbel-distributed as is common, Caprani et 

al. (2017) show that the ratio of characteristic value to mean value (the bias factor) 

is given by: 

 𝜆 =
1 + 𝑟𝑠𝑝

1 + 𝑟𝛾
 (28) 

where the ratio of scale to location parameter, r, of the Gumbel distribution is 

given by: 

 𝑟 =
𝜃

𝑢
= (

𝜋

𝐶𝑜𝑉√6
− 𝛾)

−1

 (29) 

and coefficient of variation, CoV, is the ratio of the standard deviation to mean 

value. The SEV is sp = -ln (-ln (1-p)) where p is the probability of exceedance. As 

before, we consider there to be 250 working days per year, and so p = 1/ (250TR). 

Consequently, once the return period, TR, and CoV are known, the bias factor of 
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Equation 28 can be found. Table 6-2 gives the ratios of congested traffic lifetime 

loading levels to mean free-flow (w*/wFF) for some selected CoV of loading. 

Typically, traffic loading is considered to have a CoV of around 0.18 and so 

depending on the design life or return period of the code in use, the mean free 

flow traffic can be estimated from Table 6-2. For example, the Eurocode has a 

UDL component of 27 kN/m for a standard lane, and is based on a 1000-year 

return period, so its mean free-flow traffic can be estimated as 27/10.65 = 2.53 

kN/m (for a lane). 

Table 6-2. Ratios of congested traffic lifetime loading levels to mean free-flow (w*/wFF) for 

different CoV of loading based on k = 0.25. 

CoV 
Return Period (years) 

5 75 100 1000 

0.12 6.45 7.47 7.57 8.43 

0.16 7.27 8.62 8.77 9.91 

0.18 7.68 9.20 9.36 10.65 

0.20 8.09 9.78 9.96 11.39 

0.24 8.91 10.93 11.15 12.87 
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6.4 Case Study Applications 

Two case study bridges are selected to demonstrate the application of the 

proposed traffic load patterning approach. The two bridges are the Queensferry 

Crossing, a four-lane bridge with a total length of 2700 m, and Golden Gate 

Bridge, a six-lane bridge with a total length of 2737 m. Although the traffic on 

both bridges is two-way traffic, only one direction is considered, as before. For 

both bridges, the input traffic data is the same as that of the generic bridge 

considered earlier, and the same input flow rate per lane is used. The ILs for 

these two bridges are shown in Figure 6-13. The IL for the Queensferry Crossing 

is estimated from drawings for the central tower bending moment (Jacobs and 

Arup, 2009), and the IL for the Golden Gate Bridge is taken from Enright et al. 

(2013). The road topologies of Studies 1 and 2 (Figure 6-3 and Figure 6-7a) are 

used as a comparison to the proposed approach. 

 

 

 

 

(a) Central tower bending moment of 

Queensferry Crossing 

(b) Bending moment at the middle span of 

Golden Gate Bridge. 

 
Figure 6-13. ILs of the two existing bridges 

Table 6-3 summarises the 1000-year relative results for both the Queensferry 

Crossing and Golden Gate Bridge. It can be inferred that the Study 1 (actual LE) 

is lowest, as expected. The LEs from the proposed approach are smaller than 

those of the onerous Study 2 scenario, by up to 31.3% actual traffic (Study 1). 

Therefore, it can be concluded that the proposed approach is still conservative 
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but has a more rational than the traditional load patterning approach for long-

span bridge assessment and design.  

Table 6-3. Case study application of proposed method to two bridges 

Bridge LE (1000 year) Study 1 Study 2 Proposal 

Queensferry Crossing 
Maximum 100.0% 127.3% 110.0% 

Minimum 100.0% 126.8% 119.1% 

Golden Gate Bridge 
Maximum 100.0% 300.9% 269.6% 

Minimum 100.0% 136.3% 125.1% 

 

Earlier it was noted that the critical form of traffic seems sensitive to the relative 

areas of adverse and beneficial regions of the IL. Table 6-4 summarises the 

results for the three bridges considered in this paper, compared against the 

relative influence lobe areas. The differences in LE between the proposed 

approach and current practice (Study 2) are given and shown along with the 

coincident EUDLs applied to each lobe of the IL. It is interesting to note that the 

EUDL on the beneficial regions of the IL, is around 12% (1/9) of that on adverse 

parts. 

Table 6-4. IL area ratios, 1000-year characteristic LE and EUDL ratios for experiment bridges. 

Bridge 
IL Area Ratio 

The 1000 Year 
Difference1 EUDL ratio2 

Positive Negative Max. Min. Max. Min. 

Generic 1200 80% 20% 8% 45% 8.05 8.56 

Queensferry 
Crossing 

40% 60% 14% 6% 9.30 8.97 

Golden Gate Bridge 40% 60% 10% 8% 9.63 10.72 
1 The LE ratio between the Proposal to Study 2 (traditional load patterning method). 
2 EUDL ratio is the ratio between EUDL at beneficial IL region and EUDL at adverse IL 
region. 
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7.1 Conclusions 

This thesis aims to improve the traffic load estimation for long-span bridges in 

three aspects: axle-to-axle gaps, load model design, and load patterning. The 

wheel locations are obtained by the new PWF-based algorithm for more accurate 

axle-to-axle gaps, and the result is compared with the existing algorithms. We 

also examined the current load models and their means of load patterning. The 

load models are compared quantitatively with new proposed metrics. Traffic 

microsimulation is used to simulate the vehicles on the bridges, which mimics 

the traffic load patterning. Major conclusions from this thesis are: 

 A new method based on a PWF and circularity is described. The likelihood 

of a location in an image being at the centre of a circle is calculated based 

on the response to the PWF combined with the circularity of the object. 

The proposed algorithm, Hough Transform, Template matching and DPM 

methods, are applied to a sample set of 80 cars.  

 The PWF-based algorithm is a less complex algorithm and no training or 

validation is needed, which is a key advantage. The results show that the 

proposed method is viable for locating wheels in images of traffic and 

should, therefore, find good use in a range of traffic applications. 

 The relationship between bridges and vehicles, and the resulting LEs is 

complicated, but some trends are identified. Peakedness and 

concentration are proposed as the metrics for the bridge and the vehicle, 

respectively. The metrics can identify the different the shape of the ILs 

and different vehicle configurations. The relationship is found to be 

complicated due to a considerable number of variables involves but the 

trends are clear. Lower peakedness ILs always yield the most adverse LE 

when comparing in the same bridge length. The critical cases for peaked 

ILs are relatively high-concentrated vehicles while relatively low-

concentrated vehicles govern the flat ILs. However, there is a trade-off 

between the concentration and LE. The most concentrated vehicle and 

least concentrated vehicle are not generally the most critical. 

 A new 3D plot tool is developed. It illustrates the vehicle distribution 

feature, bridge IL feature as well as the LE quantitatively in the same figure, 

which indicates relationship for the given vehicle and the given bridge. It 
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can examine the current load models and help the next-generation load 

model design.  

 By using the load model design tool, it is expected that the new load model 

should correspond to the local traffic. If possible, a larger dataset is 

recommended. 

 As the axle spacing, axle loads and loading sequence vary, there are 

many combinations. For load model design, it is expected to see many 

candidate load models.  

 Current codes and standards use a quite conservative load patterning 

approach to determine the live load on the bridge. It only considers the 

worst-case scenario theoretically but ignores the probabilities of 

occurrence. The LE of load-patterned traffic is more than doubled the 

actual traffic. The traffic flow in beneficial regions of the IL is idealised. It 

is not possible that no vehicles are on the road between two adjacent 

congestion regions.  

 Based on the possible road topology from SGW, a new load pattern is 

proposed to estimate the LEs more precisely for long-span bridges. It is 

found that the SGW can trigger worst-case scenario as well, which is 

usually ignored. The new load patterning method considers not only HCT 

on the adverse parts of the ILs but also FT on the beneficial parts. The LE 

estimation can be reduced up to 45% from the traditional way. It is strongly 

recommended for MSLB, whose ILs usually are alternate up and down. 

The load on the free flow region can be determined by using of congested 

traffic lifetime loading levels to mean free-flow ratio. 
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7.2 Recommendations for Further Research 

Key aspects for further work identified are: 

 More complicated cases can be investigated such as multi-lane factors, 

bidirectional traffic, and dynamic effects. Also, more bridges with different 

ILs should be analysed, and there still is a space for improvement in the 

traffic load estimation.  

 The proposed concentration algorithm is still not perfect due to the 

limitation on the equivalent axle number calculation. Further development 

is needed for more complicated cases. 

 



REFERENCES 

 

Page | 105  
 

REFERENCES 

AASHTO 2007. Bridge Design Specifications, Si Units. Washington DC: American Association 

of State Highway and Transportation Officials. 

ACHLER, O. & TRIVEDI, M. M. Camera based vehicle detection, tracking, and wheel baseline 
estimation approach.  Intelligent Transportation Systems, 2004. Proceedings. The 7th 

International IEEE Conference on, 2004a. IEEE, 743-748. 

ACHLER, O. & TRIVEDI, M. M. Vehicle wheel detector using 2D filter banks.  Intelligent 

Vehicles Symposium, 2004 IEEE, 2004b. IEEE, 25-30. 
AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION 

OFFICIALS 1931. Standard Specifications for Highway Bridges and Incidental 

Structures, 1st Edition. 
AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION 

OFFICIALS 1944. Standard Specifications for Highway Bridges and Incidental 

Structures, 4th Edition. 
AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION 

OFFICIALS 2017. AASHTO LRFD Bridge Design Specifications, 8th Edition. 

ASCE 2017. ASCE 2017 Report Card for America's Infrastructure. 

AUSTRALIAN BUREAU OF STATISTICS 2017. Motor Vehicle Census, Australia. 
BALLARD, D. H. 1981. Generalizing the Hough transform to detect arbitrary shapes. Pattern 

recognition, 13, 111-122. 

BAOHUA, Z., YUANCHUN, J., JIANFENG, Z., DAHUA, Y. & QUANLIN, Z. Fingerprint 
Template Matching Algorithm Based on Daubechies Wavelet.  Communication 

Software and Networks, 2009. ICCSN'09. International Conference on, 2009. IEEE, 807-

811. 
BRITISH STANDARDS INSTITUTION 1978. BS 5400-2:1978 Steel, concrete and composite 

bridges. Specification for loads. 

BROCKFELD, E., KüHNE, R. & WAGNER, P. 2004. Calibration and validation of microscopic 

traffic flow models. Transportation Research Record: Journal of the Transportation 
Research Board, 62-70. 

BRULS, A., CALGARO, J., MATHIEU, H. & PRAT, M. 1996a. ENV 1991, Part 3: The main 

models of traffic loads on road bridges Background studies. IABSE REPORTS, 215-228. 
BRULS, A., CROCE, P. & SANPAOLESI, L. 1996b. ENV1991 - part 3: traffic loads on bridges: 

calibration of road load models for road bridges. IABSE reports, 74. 

BUCKLAND, P. G. 1981. Recommended design loads for bridges. Journal of the Structural 

Division, 107. 
BURGOYNE, C. J. 1987. Calculation of shear and moment envelopes by Macauley's method. 

Engineering Computations, 4, 247-255. 

CANNY, J. 1986. A computational approach to edge detection. IEEE Transactions on pattern 
analysis and machine intelligence, 679-698. 

CAPRANI, C. 2013. Traffic Microsimulation for Bridge Loading Assessment and Management. 

CAPRANI, C. & OBRIEN, E. The governing form of traffic for highway bridge loading. 2008. 
CAPRANI, C., OBRIEN, E. & LIPARI, A. 2011. Extension of a lane-changing model to a micro-

simulation tool. Proceedings of the Irish Transport Research Network 2011, Cork, 31 

August-1 September 2011. 

CAPRANI, C. C. 2005. Probalistic analysis of highway bridge traffic loading. 
CAPRANI, C. C. 2012. Calibration of a Congestion Load Model for Highway Bridges Using 

Traffic Microsimulation. Structural Engineering International, 22, 342-348. 

CAPRANI, C. C., LIPARI, A. & OBRIEN, E. J. 2012. Load effect of multi-lane traffic 
simulations on long-span bridges. Bridge Maintenance, Safety, Management, Resilience 

and Sustainability. CRC Press. 

CAPRANI, C. C., MELHEM, M. M. & SIAMPHUKDEE, K. 2017. Reliability analysis of a 
Super-T prestressed concrete girder at serviceability limit state to AS 5100:2017. 

Australian Journal of Structural Engineering, 18, 60-72. 



REFERENCES 

 

Page | 106  
 

CAPRANI, C. C., OBRIEN, E. J. & LIPARI, A. 2016. Long-span bridge traffic loading based 

on multi-lane traffic micro-simulation. Engineering Structures, 115, 207-219. 
CAREY, C., CAPRANI, C. C. & ENRIGHT, B. 2017. A pseudo-microsimulation approach for 

modelling congested traffic loading on long-span bridges. Structure and Infrastructure 

Engineering, 1-14. 

CASTILLO, E. 2012. Extreme value theory in engineering, Elsevier. 
CEN 2003. EN 1991-2:2003 Eurocode 1: Actions on Structures. Part 2: Traffic Loads on Bridges. 

Brussels: European Committee for Standardization. 

CHEN, C., LI, L., HU, J. & GENG, C. Calibration of MITSIM and IDM car-following model 
based on NGSIM trajectory datasets.  Vehicular Electronics and Safety (ICVES), 2010 

IEEE International Conference on, 2010. IEEE, 48-53. 

CHEN, N.-S., HARTMANN, G. & DRUE, S. Circle location from intensity and range data using 
the singular value decomposition.  Pattern Recognition, 2000. Proceedings. 15th 

International Conference on, 2000. IEEE, 774-777. 

CHO, H., RYBSKI, P. E. & ZHANG, W. Vision-based bicycle detection and tracking using a 

deformable part model and an EKF algorithm.  Intelligent Transportation Systems 
(ITSC), 2010 13th International IEEE Conference on, 2010. IEEE, 1875-1880. 

CHO, H. G., RYBSKI, P. E., BAR-HILLEL, A. & ZHANG, W. D. 2012. Real-time Pedestrian 

Detection with Deformable Part Models. 2012 Ieee Intelligent Vehicles Symposium (Iv), 
1035-1042. 

COHEN, H., FU, G., DEKELBAB, W. & MOSES, F. 2003. Predicting Truck Load Spectra under 

Weight Limit Changes and Its Application to Steel Bridge Fatigue Assessment. Journal 
of Bridge Engineering, 8, 312-322. 

DALAL, N. & TRIGGS, B. 2005. Histograms of oriented gradients for human detection. 2005 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 

1, Proceedings, 886-893. 
DARLINGTON, R. B. 1970. Is Kurtosis Really “Peakedness?”. The American Statistician, 24, 

19-22. 

DAWE, P. 2003. Research perspectives: Traffic loading on highway bridges, Thomas Telford. 
DECARLO, L. T. 1997. On the meaning and use of kurtosis. Psychological methods, 2, 292. 

DITLEVSEN, O. & MADSEN, H. O. 1994. Stochastic vehicle-queue-load model for large 

bridges. Journal of engineering mechanics, 120, 1829-1847. 

ENRIGHT, B., CAREY, C. & CAPRANI, C. C. 2013. Microsimulation Evaluation of Eurocode 
Load Model for American Long-Span Bridges. Journal of Bridge Engineering, 18, 1252-

1260. 

FELZENSZWALB, P., MCALLESTER, D. & RAMANAN, D. 2008. A discriminatively trained, 
multiscale, deformable part model. 2008 Ieee Conference on Computer Vision and 

Pattern Recognition, Vols 1-12, 1984-+. 

FELZENSZWALB, P. F., GIRSHICK, R. B., MCALLESTER, D. & RAMANAN, D. 2010. 
Object Detection with Discriminatively Trained Part-Based Models. Ieee Transactions 

on Pattern Analysis and Machine Intelligence, 32, 1627-1645. 

FOONG, M. F. & CAPRANI, C. 2016. Victoria traffic modelling for bridge loading application. 

FRENZE, J. F. 2002. A VIDEO-BASED METHOD FOR THE DETECTION OF TRUCK 
AXLES. NIATT Report, No. 2. 

FUNG, Y. F., LEE, H. & ERCAN, M. F. 2006. Image processing application in toll collection. 

Recent Advances in Engineering and Computer Science 2007, 62, 85-90. 
FWA, T. F. & LI, S. 1995. Estimation of Lane Distribution of Truck Traffic for Pavement Design. 

Journal of Transportation Engineering-Asce, 121, 241-248. 

GONZALEZ, R., WOODS, R. & EDDINS, S. 2009. Digital Image Processing Using Matlab 
Gatesmark Publishing. 

HARMAN, D. J., DAVENPORT, A. G. & WONG, W. S. S. 1984. Traffic loads on medium and 

long span bridges. Canadian Journal of Civil Engineering, 11, 556-573. 

HELBING, D., TREIBER, M., KESTING, A. & SCHöNHOF, M. 2009. Theoretical vs. 
empirical classification and prediction of congested traffic states. The European Physical 

Journal B-Condensed Matter and Complex Systems, 69, 583-598. 



REFERENCES 

 

Page | 107  
 

HENDERSON, W. 1954. British highway bridge loading. Proceedings of the Institution of Civil 

Engineers, 3, 325-350. 
HEYWOOD, R. 1995. Live loads on Australian bridges-statistical models from weigh-in-motion 

data. TRANSACTIONS OF THE INSTITUTION OF ENGINEERS, AUSTRALIA, CIVIL 

ENGINEERING. 

HEYWOOD, R. & ELLIS, T. Australia’s new bridge design load-improving transport 
productivity.  5th International Symposium on Heavy Vehicle Weights and Dimensions, 

Australian Road Research Board, Melbourne, Mar, 1998. 

HEYWOOD, R., GORDON, R. & BOULLY, G. 2000. Australia's bridge design load model: 
Planning for an efficient road transport industry. Transportation Research Record: 

Journal of the Transportation Research Board, 1-7. 

HIROSE, K., TORIU, T. & HAMA, H. Accurate Estimation of Wheel Center Points for Estimate 
of Vehicle Baseline Length in a Circular Fisheye Image.  Innovative Computing, 

Information and Control (ICICIC), 2009 Fourth International Conference on, 2009. IEEE, 

306-309. 

IVY, R., LIN, T., MITCHELL, S., RAAB, N., RICHEY, V. & SCHEFFEY, C. 1954. Live 
loading for long-span highway bridges. American Society of Civil Engineers 

Transactions. 

JACOB, B. & LABRY, D. Evaluation of the effects of heavy vehicles on bridges fatigue.  
Proceedings 7th International Symposium on Heavy Vehicle Weights & Dimensions, 

2002. 

JACOBS & ARUP 2009. Forth Replacement Crossing: Main Crossing (Bridge) Scheme 
Assessment Report Development of Options. 

JIA, Z., BALASURIYA, A. & CHALLA, S. Target tracking with Bayesian fusion based template 

matching.  Image Processing, 2005. ICIP 2005. IEEE International Conference on, 2005. 

IEEE, II-826. 
JIANG, F. & LIN, X. A Learning Based Approach for Vehicle Detection.  TENCON 2006. 2006 

IEEE Region 10 Conference, 2006. IEEE, 1-4. 

KASTRINAKI, V., ZERVAKIS, M. & KALAITZAKIS, K. 2003. A survey of video processing 
techniques for traffic applications. Image and vision computing, 21, 359-381. 

KESTING, A. & TREIBER, M. 2008. Calibrating car-following models by using trajectory data: 

Methodological study. Transportation Research Record: Journal of the Transportation 

Research Board, 148-156. 
KESTING, A., TREIBER, M. & HELBING, D. 2007. General Lane-Changing Model MOBIL 

for Car-Following Models. Transportation Research Record: Journal of the 

Transportation Research Board, 1999, 86-94. 
KITCHENHAM, B. A., PICKARD, L. M., MACDONELL, S. G. & SHEPPERD, M. J. 2001. 

What accuracy statistics really measure [software estimation]. IEE Proceedings - 

Software, 148, 81-85. 
KITE, S., HUSSAIN, N. & CARTER, M. 2011. Forth Replacement Crossing – Scotland, UK. 

Procedia Engineering, 14, 1480-1484. 

KULICKI, J. M. & MERTZ, D. 2006. Evolution of vehicular live load models during the 

interstate design era and beyond. Transportation Research Circular E-C10, 1-26. 
LARNACH, W. J. 1964. Influence lines for statically indeterminate plane structures, London, 

London : Macmillan. 

LEON, L. C. & HIRATA JR, R. Vehicle detection using mixture of deformable parts models: 
Static and dynamic camera.  Graphics, Patterns and Images (SIBGRAPI), 2012 25th 

SIBGRAPI Conference on, 2012. IEEE, 237-244. 

LEWIS, J. P. Fast normalized cross-correlation.  Vision interface, 1995. 120-123. 
LI, S., WANG, B., ZHENG, Z. H. & WANG, H. L. Multi-view vehicle detection in traffic 

surveillance combining hog-hct and deformarle part models.  Wavelet Analysis and 

Pattern Recognition (ICWAPR), 2012 International Conference on, 2012. IEEE, 202-

207. 
LI, Y., BAO, W. & GUO, X. 1997. Structural Reliability and Probability Limit Design of 

Highway Bridges, Beijing, China Communications Press [In Chinese]. 



REFERENCES 

 

Page | 108  
 

LI, Y., ER, M. J. & SHEN, D. Y. 2015. A Novel Approach for Vehicle Detection Using an AND-

OR-Graph-Based Multiscale Model. Ieee Transactions on Intelligent Transportation 
Systems, 16, 2284-2289. 

LIPARI, A. 2013. Micro-simulation modelling of traffic loading on long-span bridges. 

University College Dublin. 

LIPARI, A., CAPRANI, C. C. & OBRIEN, E. J. 2017. A methodology for calculating congested 
traffic characteristic loading on long-span bridges using site-specific data. Computers & 

Structures, 190, 1-12. 

LIU, X., JIANG, W., XIE, J. & JIA, Y. An image template matching method using particle swarm 
optimization.  Computational Intelligence and Industrial Applications, 2009. PACIIA 

2009. Asia-Pacific Conference on, 2009. IEEE, 83-86. 

MARIA, J. D., CAPRANI, C. C. & GUO, D. 2018. Long span bridges – current age & design 
life – a global survey. 9th International Conference on Bridge Maintenance, Safety and 

Management (IABMAS 2018). Melbourne. 

MCKINNON, A. C. 2005. The economic and environmental benefits of increasing maximum 

truck weight: the British experience. Transportation Research Part D: Transport and 
Environment, 10, 77-95. 

MINISTRY OF COMMUNICATIONS 2004. JTG D60 – 2004 General Code for Design of 

Highway Bridges and Culverts Beijing. 
MINISTRY OF TRANSPORT 2015. JTG D60 – 2015 General Specification for Design of 

Highway Bridges and Culverts Beijing. 

MOSHIRI, M. & MONTUFAR, J. Comparison of International Bridge Formulae and the 
Analysis of Imposed Bridge Load Stresses for Consideration in the Development of a 

European Bridge Formula TRB 2014 Annual Meeting, 2013. 

NATIONAL ASSOCIATION OF AUSTRALIAN STATE ROAD AUTHORITIES 1976. 

NAASRA bridge design specification, National Association of Australian State Road 
Authorities. 

NOWAK, A. S. 1993. Live load model for highway bridges. Structural safety, 13, 53-66. 

NOWAK, A. S. 1995. Calibration of LRFD bridge code. Journal of Structural Engineering, 121, 
1245-1251. 

NOWAK, A. S., LUTOMIRSKA, M. & SHEIKH IBRAHIM, F. 2010. The development of live 

load for long span bridges. Bridge Structures, 6, 73-79. 

OBRIEN, E. J., BORDALLO-RUIZ, A. & ENRIGHT, B. 2014. Lifetime maximum load effects 
on short-span bridges subject to growing traffic volumes. Structural Safety, 50, 113-122. 

OBRIEN, E. J., HAYRAPETOVA, A. & WALSH, C. 2012. The use of micro-simulation for 

congested traffic load modeling of medium- and long-span bridges. Structure and 
Infrastructure Engineering, 8, 269-276. 

OBRIEN, E. J., LIPARI, A. & CAPRANI, C. C. 2015. Micro-simulation of single-lane traffic to 

identify critical loading conditions for long-span bridges. Engineering Structures, 94, 
137-148. 

OROSZ, G., WILSON, R. E. & STéPáN, G. 2010. Traffic jams: dynamics and control. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 368, 4455-4479. 
PEARSON, K. 1905. "Das Fehlergesetz und Seine Verallgemeinerungen Durch Fechner und 

Pearson." A Rejoinder. Biometrika, 4, 169-212. 

PEARSON, R. A. & BAYLEY, C. 1997. Economic Impacts of Higher Bridge Design Loadings, 
Stage I: Vehicle Alternative and Benefits. AUSTROADS Project RUM.H.96 working 

paper. 

RADFORD, C. & HOUGHTON, D. Vehicle detection in open-world scenes using a hough 
transform technique.  Image Processing and its Applications, 1989., Third International 

Conference on, 1989. IET, 78-82. 

RAZAVI, N., GALL, J. & VAN GOOL, L. Scalable multi-class object detection.  Computer 

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 2011. IEEE, 1505-
1512. 

RICKETTS, N. & PAGE, J. 1997. Traffic data for highway bridge loading. TRL REPORT 251. 



REFERENCES 

 

Page | 109  
 

SAO, A. K. & YEGNANARAYANA, B. 2007. Face verification using template matching. IEEE 

Transactions on information Forensics and Security, 2, 636-641. 
STANDARDS AUSTRALIA 2017. AS 5100.2:2017 Bridge design. Design loads. Standards 

Australia. 

TAPLIN, G. & AL-MAHAIDI, R. 1997. Methods of analysis and strengthening for shear 

capacity of cast-in-place T-beam bridges. Report to VicRoads. 
TREIBER, M., HENNECKE, A. & HELBING, D. 2000. Congested traffic states in empirical 

observations and microscopic simulations. Physical Review E. 

TREIBER, M. & KESTING, A. 2013. Traffic flow dynamics. 
TURKSTRA, C. J. & MADSEN, H. O. 1980. Load combinations in codified structural design. 

Journal of the Structural Division, 106, 2527-2543. 

VILLORIA, B., VEIE, J., HOLTBERGET, S. & JENA, P. Multi span suspension bridge on 
floating foundations – behaviour under operation.  IABSE Symposium, 2017a 

Vancouver. 509-516. 

VILLORIA, B., VEIE, J., HOLTBERGET, S., JENA, P., CATO, D. & MADSEN, P. Concept 

overview of a multi-span suspension bridge on floating foundations.  IABSE Symposium, 
2017b Vancouver. 3037-3044. 

WANG, N., O’MALLEY, C., ELLINGWOOD, B. R. & ZUREICK, A.-H. 2011. Bridge rating 

using system reliability assessment. I: Assessment and verification by load testing. 
Journal of Bridge Engineering, 16, 854-862. 

WANG, Z. 2005. The Development History of the Vehicle Load Standard in Our Country's Road 

and Bridge Design Regulations. Communications Standardization, 32-33 [In Chinese]. 
WORLD HEALTH ORGANIZATION. 2017. Number of registered vehicles: Situation and 

trends [Online]. Available: 

http://www.who.int/gho/road_safety/registered_vehicles/number_text/en/# [Accessed 

18/12/2017]. 
ZHOU, J., RUAN, X. & CAPRANI, C. C. 2015. Characteristic of traffic loading response for 

multi span large bridge. In: MAGALHAES, P. P. A. F. (ed.). CRC Press. 

http://www.who.int/gho/road_safety/registered_vehicles/number_text/en/


APPENDIX: DIGITAL DATA 

 

Page | 110  
 

APPENDIX: DIGITAL DATA 

The digital data involved in this work is available at monash.figshare: 

https://figshare.com/s/f5fc9a7fb4b5e785e294  

All data are compressed into a zip file. Its directory structure and brief description 

are listed below: 

Item Name Description 

Folder: 
BTLS 

This folder contains in-house BTLS traffic file 
generator. It is used to generate required traffic 
data file for SIMBA use. Users can define the 
traffic by nominating the truck distribution, 
traffic volume, lane distribution and so on.  

Folder: 

DPM 
This folder contains the DPM code modified for 
wheel detection. The test file and result are also 
included.  

Folder: 
InfluenceLines 

This folder contains the ILs used in the test, 
such as IL from GGB and Queensferry. 
Besides, the general IL generator is also 
included. It is the basis of GILF. 

Folder: 
Matlabs 

This folder contains all the script and functions 
used in this work, such as extrapolation and 
metric calculation. They are used to process the 
raw data.  

Folder: 
Simba Files 

This folder contains all the raw data and road 
topology setup file for SIMBA use.  

File: 
concentration 
example.xlsx 

This file is an example file showing how to 
calculate the concentration metric step by step. 

File: 
Iteration for axle no.xlsx 

This file shows how the equivalent number of 
axle come from.  

File: 
Standard vehicle data.xlsx 

This file provides the standard vehicles in 
numerical format. Ready to use for MATLAB. 
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