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Abstract

One of the fundamental problems in mobile robotics is simultaneous localisation

and mapping (SLAM), where one or more robots build a map and localise them-

selves or other objects within the map at the same time. SLAM often uses robot

odometry as a reliable short term pose estimation. Robot odometry estimates a

robot’s position and orientation from measuring wheel angle changes. Calibration

of odometry involves estimating wheel radii and separation distance. This thesis

aims to devise novel odometry calibration methods that can detect the difference

of multiple floors in the real time, incorporate robot linear accelerations and robot

path curvature to significantly improve the localisation and map accuracy.

Floor sensors allow a robot to segment the environment into useful regions with

properties associated with floors. Two independent floor sensing systems are de-

veloped with colour intensity and motor current sensors. Sensor data is processed

with a Support Vector Machine (SVM) and experimentally justifies the accuracy

of these floor classification systems.
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Floor dependency is often mentioned in the literature of odometry calibration,

but little effort has been dedicated to investigate odometry calibration on hetero-

geneous floors. Two independent odometry calibration methods are developed.

The first one uses an Extended Kalman Filter (EKF) to provide online odometry

calibration. An odometry correction cost function is derived from graph SLAM

to show experimentally that the calibration with multiple classified regions is

superior to calibration without floor classification. The second one uses a Parti-

cle Swarm Optimisation (PSO) algorithm to optimise the Occupancy Grid (OG)

map generated with raw encoder data and laser range finders (LRFs) data and

achieves offline odometry calibration. These two systems provide experimental

results confirming that odometry calibration parameters depend on floor surface

conditions.

The odometry model is extended with a fourth parameter that accounts for wheel

slip proportional to linear acceleration of a differential drive robot. To the au-

thor’s knowledge, this is the first robot odometry model that accounts for linear

acceleration. Experimental results show an error range of 9% in the estimation

of the wheel radii when a Pioneer2 DX H-8 indoor mobile robot accelerates and

decelerates on straight paths at an acceleration value of ±0.45 m/s2.

The odometry model is further extended to model curved paths, where the wheel

radii depend on the velocity and centrifugal accelerations. Research findings are

justified on a hard lino floor and a soft carpet floor. At the end of this thesis, a

complete model is proposed for a differential drive mobile robot equipped with

pneumatic tyres and is verified experimentally.
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Introduction

Wheeled mobile robots are arguably the most common types of robots around

the world. They can be seen in various scenarios, such as rescue missions [8, 9],

domestic environment [10], on streets [11], for education [12] and in farms [13, 14].

These wheeled robots often rely on their inbuilt wheel encoders, gyroscopes and

accelerometers to perform mapping and localisation tasks [5]. These propriocep-

tive sensors can provide direct measurements of robot poses albeit with errors

that drift with time.

Odometry calibration is important not only because the simple and inexpen-

sive wheel encoders may be the only localisation sensors for a robot but also

wrong odometry calibration may lead to a poor mapping results. In particu-

lar, a wheeled robot commonly uses odometry pose estimation for mapping and

localisation. Kümmerle et al. [5] shows in Figure 1.1 that well calibrated propri-

oceptive sensors, such as odometry, help improve not only robot navigation but

also map quality even after having taken advantage of laser scan matching. In

[15], Kelly also pointed out that a proper odometry calibration can help to reduce

the difficulty of performing loop closure, which can significantly shrink the errors

of mapping and localisation tasks. Similarly, Burgard et al. [16] claim that more

accurate odometry estimation can reduce robot pose correction in a loop closure

situation and scan matching during map construction, thereby reducing errors.

The highly cited article by Cox [17] mentions that map-matching combined with

dead-reckoning allows fast robust matching, which leads to accurate knowledge

of position.
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(a) (b) (c) (d)

Figure 1.1: (a) Map obtained by the raw uncalibrated odometry of a robot with un-
evenly inflated tires traveling along a corridor. The result of applying a scan-matching
algorithm with a large search space to account for the uncalibrated odometry leads
to the shortened map shown in (b). A restriction of the search space is not able to
fully correct the errors as visualized in (c). However, applying the correct calibra-
tion together with a small search space leads to an accurate estimate depicted in (d).
Reproduced from [5] ©2011 IEEE.
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Like other measurement methods, there are systematic odometry errors and non-

systematic odometry errors in the odometry system as mentioned in [15, 18,

19, 20, 21]. The commonly known systematic errors are caused by kinematic

imperfections of the robot [21]. They include unequal wheel radii, uncertainty

about the wheel separation distance, limited encoder resolution and so on [21].

Non-systematic errors include travelling over uneven floors, travelling over unex-

pected objects and wheel-slippage (due to slippery floors, over-acceleration and

fast turning)[21]. Some research papers [18, 19] focus on analysing and modelling

the non-systematic errors and the odometry covariance matrix for special trajec-

tories. Some other papers [21, 22] target calibrating systematic errors. Kelly [15]

develops a general technique to be used for the extraction of unknown parameters

of either systematic odometry models or non-systematic error models.

In contrast to all the previously mentioned research, the author regards the fol-

lowing three factors as systematic error sources. Novel odometry models incor-

porating them are developed and calibrated in this thesis.

� Surface of floors where mobile robots travel on. Different surfaces may

have different friction coefficients, which will affect odometry estimation in

a systematic way. Details are explained in Chapter 2 and Chapter 3.

� Constant linear acceleration or deceleration of the robot. They can cause a

relatively constant wheel slip ratio of pneumatic tyres on a certain uniform

surface. Hence the effective wheel radii should be calibrated accordingly.

Details are explained in Chapter 4.

� Robot slip angle and cornering force on pneumatic tyres under a constant

centrifugal acceleration. Details are explained in Chapter 5
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1.1. CONTRIBUTIONS

1.1 Contributions

� Online Odometry Calibration on Multiple Floors

Mobile robot odometry parameters depend on tyre pressure, wear, robot

load and surface type. The surface dependency is often quoted in the liter-

ature [5, 23, 24], but no direct experiments have been reported on different

surfaces. These experiments must be conducted within a short time dura-

tion of each other so as to eliminate any calibration time drift.

A system to perform online mobile robot odometry calibration on multi-

ple floors is developed. Experimental results are shown to prove the floor

classification method with a colour intensity sensor is effective using a Sup-

port Vector Machine (SVM) [25]. This can improve SLAM map quality by

segmenting the environment into distinct regions with different odometry

parameters. This system achieves greater than 98% precision and recall

values for a testing dataset consisting of six different floors. The Extended

Kalman Filter (EKF) and correlative laser scan matching [26] are used

to calibrate the odometry parameters. Using an odometry correction cost

function derived from graph SLAM in [16] to show experimentally that the

calibration with multiple classified regions is superior to calibration with-

out floor classification. This confirms that odometry parameters do depend

on the floor surface, a result which has not been published by other re-

searchers. In addition, the system can detect a transition to a new floor

region and then start a new odometry calibration process. It can also detect

a transition back to a previously visited region and then continue the last

suspended calibration with the calibration results on that region. This is all

done in real time without stopping the robot when changing floors. Details

about this contribution are described in Chapter 2 and Chapter 3

� Simultaneous Calibration of Odometry and Sensor Extrinsic Pa-

rameters on Multiple Floors
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1.1. CONTRIBUTIONS

This research also develops a system which can calibrate mobile robot odom-

etry and sensor extrinsic parameters simultaneously on multiple floors. This

can significantly improve the accuracy of robot mapping and localisation.

The calibration is achieved by optimising Map Information (MI) quality

for Occupancy Grid (OG) maps generated with odometry estimation and

laser rangefinder (LRF) measurements using the standard Particle Swarm

Optimisation (PSO) algorithm. The benefit of the proposed floor classi-

fication system is demonstrated by real world experiments. Furthermore,

the consistency of the calibration method is also investigated with different

datasets. To the author’s knowledge, this is also the first research that ap-

plies PSO in odometry and sensor poses calibration problems. This is the

first simultaneous sensor pose and odometry calibration approach to take

direct account of floor dependency. Note that the map quality does not

require any ground truth map. This is a data driven method described in

Chapter 2 and Chapter 3.

� Floor Classification with Motor Current

This research develops a novel floor classification system for mobile robots

based on motor current measurements compensated linearly by floor incli-

nation angle in the real time. The motor current is proportional to the

rolling resistance of a flat floor when a robot travels at constant velocity.

Small deviations in the inclination of indoor floors less than one degree are

shown to be sufficient to corrupt this measurement. Compensation for the

inclination angle with a low cost accelerometer is successfully implemented.

Using a SVM classifier, this system achieves an accuracy of 95% with 0.2 m

travelling distance to classify 4 indoor floors, including two similar carpets.

Experimental results show that this method significantly improves the pre-

vious floor classification system based on the colour sensor if floor colours

are similar or same. This contribution is described in Chapter 2.

� Odometry Model Incorporating Linear Acceleration
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1.1. CONTRIBUTIONS

Most, if not all, previous publications on indoor mobile robot odometry

calibration methods assume no wheel slip as clearly stated in [15]. Minor

wheel slip can affect the effective wheel radii estimation and result in errors

in the odometry estimation system if not included in the calibration process.

A novel differential drive robot odometry model incorporating robot linear

acceleration is developed in this thesis. A new fourth parameter is intro-

duced that accounts for wheel slip proportional to linear acceleration of

the robot. The model requires little extra computation. Accelerations can

be obtained from robot motion commands. The new odometry model is

validated via experiments on a hard lino floor. Experimental results show

an error range of 9% in the estimation of the wheel radii when a Pioneer2

DX H-8 indoor mobile robot accelerates and decelerates on straight paths

at an acceleration value of ±0.45 m/s2. The author uses another indepen-

dent experiment to show a 0.3% improvement of the quality of the OG map

[27] built using the three parameters model. The maps were generated by

attaching laser scans to robot poses based only on odometry estimation.

For fairness in the number of parameters, the proposed model is compared

with another four parameter model. In addition, two different methods to

calibrate the new model consisting of four parameters are introduced. This

contribution is described in Chapter 4.

� Novel Odometry Model on Curved Paths

Chapter 5 investigates and develops a linear model between the wheel sepa-

ration and the square of robot speeds. This model improves the estimation

accuracy of wheel separation by 0.39%. In addition, a saturation growth

model between wheel radius and wheel rotation speed is discovered. It is

shown that the saturation growth model improves the estimation accuracy

of wheel radius under normal working condition by 9.2%. These research-

ing findings are justified on a hard lino floor and a soft carpet floor. At

the end of this chapter, a five parameter model for differential drive mobile
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robot equipped with pneumatic tyres is developed and justified with real

experiments.

1.2 Publications

Published
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1.3. STRUCTURE OF THE THESIS

1.3 Structure of the Thesis

Chapter 2 gives an introduction to two independent floor classification systems.

One consists of a colour intensity sensor. The other uses a commonly avail-

able motor current sensor, where current sensing data are compensated by a

floor inclination angle detection system. It details the software platform for the

robot experiment development, i.e., Robot Operating System (ROS) and SVM

algorithm for the floor classification purpose. The conventional differential drive

mobile robot kinematic model is also introduced. Chapter 3 describes the de-

veloped online mobile robot odometry calibration on multiple floors based on an

EKF. Chapter 3 also describes the devised method to simultaneously calibrate

LRF extrinsic parameters and robot odometry parameters using PSO and Map

Information for occupancy grid maps. Chapter 4 details the acceleration depen-

dency of wheeled mobile robot odometry supported by theories in tyre mechanics.

Chapter 5 details the odometry model for robots driving on curved paths by in-

corporating the nonlinear relationship between wheel radii and wheel rotation

speeds. In the last chapter, Chapter 6 summarises this thesis and lists the future

work.
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2

Indoor Floor Classification with Sensors

2.1 Introduction

In typical scenarios, robots may drive on multiple types of floors. Floor sen-

sors allow a mobile robot to segment the environment into useful regions with

properties associated with the floor, such as odometry calibration, cleaning re-

quirements and semantic map labelling. This chapter describes two different floor

classification methods that work in real time with colour intensity sensors and

motor current sensors. Their effectiveness is demonstrated through experiments.

A SVM [25] is adopted as the classifier.

Robot Terrain Classification (RTC) is an open problem with many applications in

robotics and computer vision. By measuring accelerations at the tip of a mechan-

ical tactile probe, Giguere and Dudek [28] successfully classified 10 indoor and

outdoor floors within a few seconds using an artificial neural network. Haldane

[29] developed a heterogeneous team of legged robots to detect the slippery spots

with an accuracy of 92%. This allows the main robot in the team to avoid possi-

bly hazardous terrains. More recently, Walas [30] relied on the intensity values of

the laser beams reflected from different terrains to classify the floors with a sta-

tistical approach called the texton approach, a Fourier Transform approach and

an elevation map approach. All approaches in [30] are based on an SVM classi-

fier. Brooks and Iagnemma [31] developed a self-supervised terrain classification

framework consisting of a vibration-based classification approach and a traction-

based classification approach. With a compact camera, Filitchkin and Byl [32]

used a bag of visual words to classify different outdoor terrains with an SVM
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2.1. INTRODUCTION

classifier. Although they achieved high classification rates that were robust to

illumination changes, the system could not operate in dark environments. Ojeda

et al. [33] proposed a floor classification system with multiple sensors, such as

gyros, accelerometers, motor current and voltage sensors, ultrasonic and micro-

phones. Neural networks are adopted to differentiate the frequency components

of the signals from sensors. This work does not include compensation for floor

inclination angle variation that this thesis demonstrates is important. Best et

al. [34] developed an SVM terrain classification approach with a Hexapod robot

and its proprioceptive position sensors within leg servos aiming to improve the

robot motion on different terrains. This thesis uses a similar training approach

for supervised classification of floor colours. Posada et al. [35] developed a pure

vision based floor segmentation algorithm with a robust performance over several

hours of autonomous operation. However, this vision system can suffer from low

illumination and the inability to classify the floor immediately below the robot

due to the camera position on top of the robot.

In the literature, the colour of an object has been widely used as a feature in fire-

like object detection systems [36] and vehicle identification systems [37]. Khan

et al. [38] explored a variety of colour and texture descriptors and proposed a

compact-texture description to classify textures. A comprehensive review about

image category recognition was provided by Van et al. [39]. They evaluated

a variety of colour descriptors regarding their invariance properties and distinc-

tiveness with a recommendation of combined colour descriptors when no prior

knowledge was available. Unlike these research papers focusing on the pattern

recognition about objects or images, this thesis does not aim to develop a better

algorithm or a descriptor. Instead, it intends to use a simple colour intensity

based classification system to provide a floor classification result for the region

based odometry calibration algorithm as in Chapter 3. Therefore this thesis in-

troduces a colour sensor mounted underneath the robot that illuminates the floor

from four directions. The colour sensor is sufficiently accurate to classify floor

surfaces and provide almost immediate notification of changes in floor surface

classification. Other work [5] developed an online graph based odometry cali-

bration method by extending the graph-based formulation of SLAM. They could
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2.1. INTRODUCTION

find a floor transition or load change only after odometry parameters converge to

significant values, which is not as effective nor precise for the timely classification

of floor surfaces.

The author also develops a system to perform floor classification tasks where

colour sensors fail to work effectively. For example, classification systems based

on colour sensors will not distinguish floors with the same colour but different

materials, or multiple floors with various colours on each floor. The system based

on motor current sensors can compensate the motor current measurements using

the floor inclination angle detection based on a low-cost accelerometer. The first

five statistical moments of motor current sensing data are selected to be the

features for training and testing of a SVM. The proposed motor current floor

classification approach applies to indoor environments and is not dependent on

lighting conditions. The motor current is proportional to the rolling resistance on

a flat floor when the robot travels at a constant velocity. This chapter shows that

commonly occurring small deviations of less than one degree in the inclination

of indoor floors significantly affect motor current measurements. A classification

accuracy of 95% for a 0.2 m travelling distance on four indoor surfaces including

similar dark carpets is achieved. Experimental results show that floor inclination

has a significant effect on the motor current for common indoor floors which are

normally assumed to be flat.

In this chapter, Section 2.2 describes the robot sensing hardware system, including

a robot, two laser rangefinders (LRFs), wheel encoders, a colour intensity sensor,

a motor current sensing system and a floor inclination angle sensing system. A

brief introduction of the Robot Operating System (ROS) is presented in Section

2.3. The colour sensing system designed to differentiate different floors is detailed

in Section 2.4, where the author gives a short introduction to SVM followed by

experimental results. In Section 2.5, the above mentioned floor classification

system is developed in detail both in theoretic analysis and experimental tests.

The last section, Section 4.6 summarises the chapter.
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2.2. ROBOT SENSING HARDWARE SYSTEM

Figure 2.1: ActivMedia Pioneer2 DX H-8 differential drive robot and sensors. Reused
from [2] ©2016 IEEE.

2.2 Robot Sensing Hardware System

2.2.1 Robot Platform

The robot used in this thesis is an ActivMedia Pioneer2 DX H-8 differential drive

robot equipped with two Hokuyo URG-04LX LRFs and two driving wheels with

encoders as shown in Figure 2.1. Each range finder has a field of view (FOV)

of 240 degrees and valid range measurements from 0.02 m to 4 m. This setup

provides the ability to fuse the measurements of two LRFs and generates a virtual

LRF with a FOV of 360 degrees with benefits in the scan matching process [40].

2.2.2 Colour Sensing

Most indoor floor surfaces have unique colours or blends of colours. A detec-

tion system consisting of a colour light-to-frequency converter and Arduino UNO

microcontroller has been designed.

This research uses a TAOS TCS230 colour sensor that measures the intensity of

four channels corresponding to 16 phototransistors: 4 red, 4 blue, 4 green and 4

unfiltered. The floor is illuminated by 4 white LEDs from each side of a square
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2.2. ROBOT SENSING HARDWARE SYSTEM

Figure 2.2: Hardware schematic of the floor surface classification system. Adapted
from [3] ©2015 IEEE.

as in Figure 2.2. The TCS230 is interfaced to an Arduino Uno microcontroller

that converts the frequency encoded intensity values from the TCS320 to integer

format outputted onto a USB connection to a laptop. As shown in Figure 2.1,

the colour sensor module is fixed under the robot 10 mm above the ground and

the distance from the sensor to the center point of the two wheels is 200 mm.

Mounting the colour sensor beneath the robot can reduce interference from other

light sources or unwanted reflected light.

2.2.3 Motor Current Sensing

Torque and Current of a DC Motor

The robot wheel rolling resistance is a physical property of floor surfaces. It

is defined as the force required to maintain a constant speed, not subject to

aerodynamic forces, over a flat horizontal surface. The rolling resistance of a

surface is assumed to be related to robot odometry properties on that surface,
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2.2. ROBOT SENSING HARDWARE SYSTEM

(a) (b) (c) (d)

Figure 2.3: Floors where the training and testing data for classification were collected.
The camera was set about 1 metre to the ground. (a) Carpet 1 (b) Lino (c) Blue Rubber
(d) Carpet 2. Adapted from [2] ©2016 IEEE.

such as the effective wheel radii and separation distance. When running at a

constant speed a DC motor provides torque proportional to armature current.

This research focuses on differential drive robots powered by DC motors. As

stated in [41], the total torque developed when an armature current I is passing

through the coils of a DC motor is given by

T = KTΦI (2.1)

where Φ is the total flux produced by the magnetic field, and KT is constant for

a given motor. The flux is constant for most DC motors, so the motor torque

T is directly proportional to the armature current I. As a result, the armature

current is proportional to the rolling resistance when the robot is travelling on a

flat horizontal surface. This section describes a motor current detection system

and its performance on four indoor floors shown in Figure 2.3. Figure 2.4 shows

the system hardware structure including the inclination angle detection part.

Hardware for Motor Current Sensing

With a standard laptop and other on-board electronics, the current of the DC

motors never exceeded 1.4 Amps when the robot was driving at a speed of 0.05

m/s in a straight line on different indoor floors. Two hall-effect-based linear

current sensors ACS712 were used to measure the motor current of each driving

14
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wheel. This sensor was configured to work at the maximum sensitivity of 185

mV/A.

For a robot travelling at a constant velocity, measuring the robot tilt angle with

an accelerometer is possible since gravity is the only acceleration stimulus. The

measurement uses the projection of the gravity vector on one of the axes of an

accelerometer [42].

To measure the floor inclination angle, the low power, low profile capacitive mi-

cromachined accelerometer, MMA7361L, was chosen. It has a high sensitivity

of 800 mV/g when working at a range of [−1.5, 1.5] g. Since the floor inclina-

tion angle was limited within [−5, 5] degrees, the system was designed to operate

within this range. The accelerometer was attached on top of the flat frame of

the robot shown in Figure 2.14. The Y axis pointed to the front and it was

used to compensate for the tilt angle. Note that in the classifier in Section 2.5

this system did not require a direct measurement of the tilt angle in degrees but

only the calibrated tilt angle effect on the motor current. The current detection

system was limited to measure only the positive current when the robot moved

forward using a 10 bit Analogue-to-Digital Converter (ADC) on an Arduino Uno

board. The motor current had a sampling rate of 152 Hz. If multiple robots

are deployed around the same area, we can take advantage of their coordinating

capabilities. For example, these robots can share the location based floor type

information to each other using any internet of things technique, such as ZigBee

or bluetooth. This can speed up the floor classification process and build a more

robust classification system.

15
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Figure 2.4: Motor current and inclination angle detection system hardware structure.
Reused from [2] ©2016 IEEE.

2.3 Robot Operating System (ROS)

ROS [43] provides libraries, tools, hardware abstraction, device drivers, visu-

alizers, message-passing, package management, state-of-the-art algorithms and

more for robot developers worldwide. It is all open source and fully supported

under Linux. A brief introduction to ROS is provided in its official website,

http://www.ros.org/. The robot control algorithms is implemented based on

rosaria package, which is an interface of using Advanced Robot Interface for

Applications (ARIA). ARIA is a C++ library (software development toolkit or

SDK) for all MobileRobots/ActivMedia platforms.

A robot operating system often runs a number of executables in parallel that need

to exchange data synchronously or asynchronously. This objective is reached in

the ROS Computation Graph [6] in Figure 2.5.
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2.3. ROBOT OPERATING SYSTEM (ROS)

Figure 2.5: ROS Computational Graph Level [6].

� Nodes: They are processes that perform computation. A ROS system often

contains many nodes to execute different tasks, e.g. controlling the wheels

of a robot, performing path planning etc..

� Master: It provides name registration and lookup to the rest of the Com-

putation Graph.

� Parameter Server: It allows data to be stored by key in a central location.

� Messages: It is a way to communicate between multiple nodes.

� Topics: It is a name that is used to identify the content of a message.

Multiple nodes can publish and subscribe messages with the same topic

name.

� Service: It provides synchronous communication between two nodes by re-

quest/reply interactions.

� Bags: It is a format for saving and playing back ROS message data. All

the datasets in this thesis are stored in the format of .bag.
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Figure 2.6: System schematic with variable definitions. Reused from [1]©2015 IEEE.

2.4 Floor Classification with Colour Sensing

2.4.1 Support Vector Machine

SVM was first introduced in [44] in 1992. As a popular supervised learning algo-

rithm, SVM was originally a binary classification model. Considering the research

focus of this thesis is not proposing a new classification algorithm, the author

refers readers to the other materials about SVM. In terms of implementation of

SVM, the open-source LIBSVM library [45] was utilised in both offline MATLAB

implementation and online C++ implementation with ROS ml classifier pack-

age. The suggested Gaussian Radial Basis (RBF) kernel function [45] is adopted,

because the linear kernel function and the sigmoid kernel function behave like

RBF for certain kernel parameters and polynomial kernels have more numerical

difficulties compared to RBF. One-vs-one multi-class decision algorithm [46] was

utilised. This system uses the grid based search for the shape parameter and the

soft margin.
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Figure 2.7: Light intensity detection results when the robot travelled from Carpet 1
to Lino (appearance shown as in Figure 2.8). (a) Original results. (b) Results after a
median filter (window size is 25) and downsampling process (every 80 samples). Reused
from [1] ©2015 IEEE.

2.4.2 Experiments and Results

The intensities of the red, green and blue components of light from the floor

formed the feature vectors of SVM. Before training and classification, the original

intensity data were processed in two steps. The first one was a median filter with

a window size of 25. The second step was to down-sample the filtered data to a

frequency of approximately 2 Hz. This step was to get a clear separation between

the data from two adjacent floors. These pre-processes would reduce the confusion

for classification work of SVM as shown in Figure 2.7.

To show the effect of the multi-class SVM classification, six different floors were

selected as shown in Figure 2.8. To test this system, the robot was steered

on completely different trajectories and the testing dataset was recorded. Each

training class contained 414 three dimension feature vectors. The training data

on the soft blue rubber (8 mm thick) tiles were noisy due to the uneven colouring

and gaps between tiles. Each test class had 396 feature vectors. The results from

the MATLAB implementation are shown in the form of confusion matrix in Table

2.1.
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(a) (b) (c) (d) (e) (f)

Figure 2.8: Surfaces where the training data were collected. (a) Carpet 1 (b) Lino
(c) Carpet 2 (d) Marble (e) Carpet 3 (f) Blue Rubber. Reused from [1]©2015 IEEE.

Figure 2.9: The training data of the SVM classifier. Each class has 414 feature
vectors, which comprise the intensities of the red, green and blue components in the
light from the surfaces (a-f), respectively, in Figure 2.8. Reused from [1]©2015 IEEE.

From the results, we can see precision and recall are above 98% for all classes.

Carpet 1 is wrongly classified as Carpet 2 six times, because these two floors were

both dark carpets with little light reflection. This similarity is also clearly shown

in Figure 2.9. Nevertheless, this validation test has shown a promising result for

the proposed surface classification. A classification validation test is done in the

ROS implementation with the same training and testing dataset as well. It also

shows similar high precision and recall values.
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Table 2.1: Confusion Matrix of the Validation Test. Reused from [1] ©2015
IEEE.

Floors (a) (b) (c) (d) (e) (f) Precision (%)

(a) 390 0 6 0 0 0 98.5

(b) 0 396 0 0 0 0 100

(c) 0 0 396 0 0 0 100

(d) 0 0 0 395 0 1 99.7

(e) 0 0 0 0 396 0 100

(f) 0 0 0 0 0 396 100

Recall (%) 100 100 98.5 100 100 100

(a) Carpet 1 (b) Lino (c) Carpet 2 (d) Marble (e) Carpet 3 (f) Blue Rubber.

2.5 Floor Classification with Motor Current

In Section 2.5.1, experiments were performed to show that the floor inclination,

even on apparently flat indoor surfaces, was a significant factor in the motor

current measurement. The investigation started by measuring the motor current

with the robot propped up so that the wheels do not contact the floor. This

eliminated possible effects of gearbox and bearing variations in motor current

that were correlated with wheel position. Then the author examined the motor

current on a path outward and then returning to the start. This showed variations

in motor current that were opposite in sign for the same position between outward

and returning paths. This suggests that the floor inclination variations are the

cause of the current variations. Note that in all these experiments the robot was

controlled to travel at constant speeds.

2.5.1 Motivating Experiments

An initial measurement was made with the robot wheels propped up without floor

contact. The robot velocity was set at a constant speed of 0.05 m/s. A median
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Figure 2.10: Left wheel motor current when the robot was running at a speed of 0.05
m/s in the air. Reused from [2] ©2016 IEEE.

Figure 2.11: Motor current showing a repeat pattern and anti-symmetrical effect on
a return straight path on Carpet 2. Reused from [2] ©2016 IEEE.

filter of 1 second window size was applied to the motor current. The result

is shown in Figure 2.10. The periodic current variations can be explained by

systematic variations in the friction of the gear box and wheel bearings since this

has the same period as the wheel angles. This period is the wheel circumference

divided by 0.05 m/s that is approximately 11.5 seconds.

In the next experiment, the robot performed a return trip on the same straight

path twice on Carpet 2. Figure 2.11 shows the motor current in this test. Note

that the current varies systematically with position along the path and with a

matching negative variation in the return path. These anti-symmetrical variations

in median current are much higher than those seen in the no load test of Figure

2.10 and hence cannot be attributed to gear box or bearing friction.
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Figure 2.12: Searching for the optimal anti-symmetrical starting point for the first
return path in Figure 2.11. Reused from [2] ©2016 IEEE.

The anti-symmetrical motor current on a return trip inspires the following data

analysis. There should be an optimal starting point, Pop, in the second green

segment in Figure 2.11, where the first green segment would be most anti-

symmetrical that is current average between the forward and backward paths at

the corresponding positions would show least variation. If we average the corre-

sponding motor current in the first two green segments in Figure 2.11 starting

from Pop, the statistical variance should be the smallest among all the possible

starting point around Pop. Figure 2.12 shows the mean and two standard de-

viations of the current summed between corresponding points in the opposing

direction paths against the offset in the designated start time. Note that the four

seconds offset minimises the standard deviation and corresponds to aligning the

end of the forward path with the start of the backward path.

The scatter plot between motor current on corresponding points on the paths is

shown in Figure 2.13. The X axis is the forward path current and the Y axis is

the backward path current for the same point on the robot path. The Pearsons

product-moment correlation coefficient [47] between the two axes is -0.65, which

represents a strong negative correlation. The small floor inclination variations

are the only feasible cause. For example if the robot is travelling uphill in the
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Figure 2.13: Effect of the strong negative correlation of the motor current on a return
robot path between the forward and backward paths. Reused from [2] ©2016 IEEE.

forward path it will travel downhill in the backward path at the same point on

the floor.

2.5.2 Floor Inclination Angle Compensation

First it is necessary to calibrate the offset in the accelerometer when the robot

was travelling on a horizontal surface. A joystick was used to control the robot

to follow a closed path several times at a constant speed. Since the trajectory of

the robot started and finished at the same position, the mean robot inclination

angle should be horizontal. Therefore the mean of the ADC output was the offset

the system should be set.

An experiment was performed on Carpet 2 with two return trips. The motor cur-

rent measured using the 10 bit ADC was θ0Carpet2 = 466.9. Since the accelerom-

eter voltage shift and amplification circuit is designed to measure the inclination

angle range of [−5◦, 5◦], the measured inclination angle in this experiment can be

approximated by the following equation:

αCarpet2(t) = (θCarpet2(t)− θ0Carpet2(t))× 10◦/1024 (2.2)
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Figure 2.14: Schematic of the usage of the accelerometer for inclination angle detec-
tion. Reused from [2] ©2016 IEEE.

(a) (b)

Figure 2.15: (a) Inclination angles measured in degrees on a return straight path on
Carpet 2. (b) Motor current in the same experiment as (a). Reused from [2] ©2016
IEEE.

where αCarpet2 and θCarpet2(t) are the inclination angles measured in degrees and

in ADC values respectively. θCarpet2(t) is shown in Figure 2.15 (a) and the

corresponding motor current measurements are shown in Figure 2.15 (b). The

strong correlation between inclination angle and the motor current provides fur-

ther evidence for the motor current dependency on inclination angle. Pearsons

product-moment correlation coefficients for current and inclination on four floors

are shown in Figure 2.16.

Given a set of motor current and floor inclination measurements from the robot,

the classifier aims to determine the floor type accurately and quickly. The training

and testing datasets were collected separately on different robot paths on four

floors shown in Figure 2.3. For the training step, a 10-fold cross validation was

performed and the final accuracy was the cross-validation accuracy.
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Figure 2.16: Pearsons product-moment correlation coefficients between the median
filtered average motor current and the inclination angles on four floors. Reused from
[2] ©2016 IEEE.

A set of features need to be extracted from the data and then be provided to

the classifier to be trained and tested. These features should describe the cor-

responding motor current signals well enough to differentiate the currents on

various floors. In [48], the authors report that the first five statistical moments

(mean, variance, skewness, kurtosis, fifth moment) are effective and generalizable

features for robot-terrain interactions. These moments were chosen as features in

this work. The kth statistical moment, µxk, of a time-series of n observations of x

is defined as below [29]:

µxk =
1

n

n∑
n=1

xki (2.3)

The floor classification problem is divided into two main steps: training and

testing. The training and testing data are recorded using the rosbag tool in ROS.

Each feature was normalised to the range [0, 1] before training and testing as

suggested in [45] for the best performance of SVMs.
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(a) (b)

(c) (d)

Figure 2.17: Motor current from which the training data were extracted. (a) Carpet
1 (b) Lino (c) Blue rubber (d) Carpet 2. Reused from [2] ©2016 IEEE.

2.5.3 Motor Current Compensation

The robot was controlled to run forward in a straight line at 0.05 m/s, followed

by a stop, a 180 degree turn and another straight line back to the original point.

Figure 2.17 depicts the motor current where the training data were extracted.

The motor current and the inclination angles in the training data are correlated on

all four floors. Their linear relationships are fitted with the least square method

as the red lines in Figure 2.18.

Let us denote the compensated motor current as ī(t), the median filtered average

motor current at time t as i(t), the median filtered inclination angle measured by
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(a) (b)

(c) (d)

Figure 2.18: Linear relationships between the motor current and the accelerometer
measured inclination angles when the robot was driving straight forward. (a) Carpet
1 (b) Lino (c) Blue Rubber (d) Carpet 2. Note that the slopes are approximately
the same and consistent with expectation that the change in motor with inclination is
independent of the surface. Reused from [2] ©2016 IEEE.
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Figure 2.19: Flow chart of one loop for floor classification with compensated motor
currents. Reused from [2] ©2016 IEEE.

the accelerometer at time t as α(t) and the slope representing the linear relation-

ship between i(t) and α(t) as k.

ī(t) = i(t)− kα(t) (2.4)

In the experiments the author chose k = 0.207, the mean of the four slopes in

Figure 2.18, since the contribution to the motor current due to the inclination is

not expected to depend on the floor surface. Note that Equation (2.4) provides

direct compensation for motor current using the accelerometer input without

needing to calibrate for the actual inclination angle. Now five features for the

floor classification system are listed as µ
ī(t)
1 , µ

ī(t)
2 , µ

ī(t)
3 , µ

ī(t)
4 , µ

ī(t)
5 . Figure 2.19 is a

flow chart to explain one classification loop in the algorithm. The compensated

motor current for both training and testing data is shown in Figure 2.20.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.20: Median filtered average motor current. (a) Training data on Carpet
1 (b) Training data on Lino (c) Training data on Blue Rubber (d) Training data on
Carpet 2 (e) Testing data on Carpet 1 (f) Testing data on Lino (g) Testing data on
Blue Rubber (h) Testing data on Carpet 2. Reused from [2] ©2016 IEEE.
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(a) (b)

Figure 2.21: Standard deviation of the median filtered average motor current used
for floor classification. (a) Training data (b) Testing data. Reused from [2] ©2016
IEEE.

Figure 2.21 shows the reduction of the standard deviation of the detected motor

current due to inclination compensation for this experiment.

2.5.4 Experiments and Results

Classification of Four Floors

As pointed out in [48], there is a trade-off between data segment length and

classification accuracy. The author varied the data segment length measured in

the travelling distance from 0.025 m to 3 m. For every dataset length, a grid

search for the best feature combinations among all the combinations of the five

statistical moments was performed. In this case, the total number of feature

combinations is calculated as below.

fnum =

(
5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
+

(
5

5

)
(2.5)
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Figure 2.22: Effect of data segment length on classification accuracy. Reused from
[2] ©2016 IEEE.

Eventually the best classification accuracy for that length of data segment among

all the feature combinations was selected. It is clear that compensating the motor

current with the corresponding inclination detection is analogously successful as

shown in Figure 2.22.

Compensating the motor current with inclination angles brought significant im-

provement in the classification accuracy for every data length except those longer

than 2.5 m. With a travelling distance shorter than 2.5 m, the classification

accuracy with inclination angle compensation is higher than that without com-

pensation. For lengths longer than 2.5 m both cases have an accuracy of 100%.

This can be attributed to the average floor inclination angle being close to zero

over a 2.5 m distance, allowing the classifier to differentiate based on floor type

alone. Although the two carpets were similar and challenging to differentiate,

the system still performed well. Among these different data lengths, the author

chooses a data length of 0.2 m to show the means and variances of the compen-

sated motor current for the training and testing datasets in Figure 2.23. Among
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all the 31 possible combinations of the features, the set of mean, skewness, kur-

tosis and fifth moment generates the highest classification accuracy of 95.40%.

The confusion matrix is shown in Table 2.2.

Table 2.2: Confusion Matrix of Floor Classification on Compen-
sated Motor Current with a Median Filter on a Data Length of 0.2 m.
Reused from [2] ©2016 IEEE.

Floors (a) (b) (c) (d) Precision (%)

(a) 762 0 11 69 90.5

(b) 0 812 0 3 99.63

(c) 6 0 908 0 99.34

(d) 58 11 0 802 92.08

Recall (%) 92.25 98.66 98.8 91.76

(a) Carpet 1 (b) Lino (c) Blue Rubber (d) Carpet 2.

Classification of Two Floors with the Same Colour and Pattern

This experiment shows that floor classification system with motor current sensors

can overcome the disadvantage of the previous floor classification system based

on a colour sensor alone [1].

The robot was manually controlled to collect some training and testing data for

floor classification on two floors, a bed sheet on Lino and a bed sheet on Carpet

1 as shown in Figure 2.24. For a data length of 0.05 m, the system reached a

classification accuracy of 99%. For a data length of 0.15 m, the accuracy was

100%. The mean values of the training and testing datasets for a data length

of 0.15 m are plotted in Figure 2.25. However, the classification using only the

colour sensor data gave an accuracy of around 70%.
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(a)

(b)

Figure 2.23: Features for floor classification. (a) Mean of the motor current (b)
Variance of the motor current. Reused from [2] ©2016 IEEE.
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(a) (b)

Figure 2.24: Floor classification experiment with the same bed sheet. (a) Bed sheet
on Lino (b) Bed sheet on Carpet 1. Reused from [2] ©2016 IEEE.

Figure 2.25: Mean motor current values of the training and testing data for floor
classification on a bed sheet. Reused from [2] ©2016 IEEE.
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2.6 Summary and Conclusions

This chapter has presented two floor surface classification systems with a colour

intensity sensor and motor current sensor. The systems can provide immediate

notification of floor changes to the robot, allowing faster calibration adaptation in

the real time. The SVM algorithms implemented in MATLAB and ROS use data

collected from the floor colour sensor and successfully classify six different floor

types with precision and recall above 98%. The second classification approach

is based on mobile robot motor current with an accelerometer to compensate

for small inclination changes. The experiments show significant improvements in

classification accuracy when accelerometer data are included. The floor classifica-

tion accuracy compares well with rough terrain systems [28, 30, 48]. The system

can detect a transition to a new floor region almost immediately, which is ben-

eficial not only for the calibration of odometry and sensor extrinsic parameters

but also for a mapping process because the system actively adapts the odome-

try parameters to estimate the robot pose more accurately. At the same time,

there are some drawbacks of the proposed floor classifications. It cannot predict

the floor type where the robot will move on in a short while, which is doable

using a vision floor classification system. The motor current sensing system may

not differentiate two flat surfaces with very similar friction coefficients. However,

such floors may not affect odometry parameters very differently. Despite these

drawbacks, the developed floor classification system is still useful and accurate in

most scenarios. Despite the drawbacks, these floor classification methods can be

integrated into indoor service robots or rescue robots easily, which can help them

to locate more accurately on various floors to improve their working efficiency.

For example, a floor cleaning mobile robot can adapt its odometry parameters

to fit different floor conditions in a house. By doing that, the robot can save

its battery and clean wherever it has not been to in a map accurately. This is

essential for such a robot, because robot owners wish the robot to clean every

corner of their house more quickly and cover every piece of floors. The calibration

of odometry and sensors will be described in the next chapter.
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Calibration of Odometry and Sensor Extrin-

sic Parameters on Different Floors

3.1 Introduction

One of the fundamental problems in mobile robotics is simultaneous localisation

and mapping (SLAM), where one or more robots build a map and localise within

the map at the same time. It is important to calibrate mobile robot odometry if

good localisation and mapping accuracy are required.

Many researchers have contributed to this area. One of the most popular odome-

try calibration method is UMBmark [21]. This method experimentally calibrates

the difference between integrated robot positions and positions in a reference

frame by running the robot several times along a square trajectory clockwise and

counter-clockwise. This may not be applicable in relatively small spaces. Larsen

et al. [49] took advantage of the online estimation property of a Kalman filter

and introduce an augmented Kalman filter (AKF) algorithm to fuse the wheel

encoder measurements and the external LRF measurements to simultaneously

estimate the robot pose and its odometry parameters. More recently, Martinelli

et al. [50] introduced an Observable filter (OF) and combined it with an AKF

to estimate the systematic and non-systematic errors for both synchronous and

differential drive robots. These methods all fall into the online odometry cali-

bration category, which is beneficial, particularly when the odometry parameters

change slowly due to tyre pressure, wear, robot load and surface type as pointed

out by Maye [51].

37



3.1. INTRODUCTION

When a sensor is mounted on a robot, the position and orientation of the sensor

in robot coordinates are examples of extrinsic parameters. Levinson and Thrun

[52] addressed extrinsic parameter calibration by defining an energy function on

point clouds that penalised points far from the surfaces constructed with other

measurements of a 3D laser range finder. They applied a grid search to optimise

this cost function. Censi [22] developed closed form offline maximum likelihood

based odometry calibration and simultaneously calibrated odometry parameters

and the sensor parameters of mobile robots. The algorithms can produce accu-

rate calibration on a uniform surface. Grid search methods are suitable for low

dimensional problems, but are inefficient for optimization on many dimensions,

such as 12 dimensions in this research. Similar to the approach developed, Shee-

han et al. [53] used the Rényi Quadratic Entropy as a cost function to measure

the degree of organisation of a point cloud, which is linked to the crispness of the

point cloud of a 3D laser scanner. Their aim is to optimise extrinsic parameters.

However, the above research does not calibrate the robot odometry parameters

simultaneously. This is important since higher odometry estimation accuracy can

help improve sensor pose estimation on a robot.

The system developed here by the author allows differences in the odometry

calibration on different floor surfaces. In 2013, Maye et al. [51] first developed an

online algorithm to calibrate the robot odometry and sensor extrinsic parameters,

which detected and locked unobservable parameters in the parameter space and

only updated the parameters in the observable directions. Their contribution

is to use an information theoretic measure to automatically identify and store

incoming sensing data to reduce the computation load by discarding redundant

information. They also explore and take advantage of the observability of the

calibration parameters and calibrated parameters as they become observable,

keeping other unobservable parameters to be the initial guess. However, this

method works for a robot with a single sensor observing distinct landmarks and

known data associations at each time step. The method developed in this chapter

can work with multiple sensors and does not require known data associations, that

may not be robust in practice.
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The dependency of odometry calibration on floor surface has not been investigated

by previous research papers, although it was mentioned in [5, 23, 24]. A limited

number of publications have focused on the dependency of terrain types and robot

odometry parameters. Reinstein et al. [54] improved the root-mean-square error

(RMSE) in position by 68% with respect to a state of the art odometry model

by classifying different terrains for outdoor skid-steer robots. Ray [55] analysed

the net traction and resistive wheel torques for a robot on rigid or deformable

terrains, which directly affected the robot odometry parameters. However her

work does not include floor classification and requires a motor torque sensor.

This chapter describes two different odometry calibration methods. The first

one is based on an EKF. The other one uses PSO to find the optimal sensor

extrinsic parameters and odometry parameters simultaneously. The novelty of

the proposed methods in this chapter are calibrating these parameters on multiple

floors classified using the systems described in Chapter 2.

3.2 Conventional Differential Drive Robot Odometry Model

The widely used differential drive wheeled robot kinematic model derived by

Chong and Kleeman [19] is deployed here with the robot pose at time step k:

∆Ll(i) = ωl(i)Rl∆t(i) (3.1)

∆Lr(i) = ωr(i)Rr∆t(i) (3.2)

∆L(i) = [∆Lr(i) + ∆Ll(i)] /2 (3.3)

∆θ(i) = [∆Lr(i)−∆Ll(i)] /B (3.4)
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Figure 3.1: Coordinate frame of conventional mobile robot odometry system in Equa-
tion (3.3-3.5).


θ (k)

x(k)

y(k)

 =



θ(0) +
k∑
i=1

∆θ(i)

x(0) +
k∑
i=1

∆L(i) cos[θ(i− 1) + ∆θ(i)/2]

y(0) +
k∑
i=1

∆L(i) sin[θ(i− 1) + ∆θ(i)/2]


(3.5)

The definition of odometry coordinate system is in Figure 3.1. The odometry

parameters consist of Rl, Rr and B. Rl and Rr are the radii of left and right

wheels respectively. B is the separation distance between the two driven wheels.

The reciprocal of B is denoted as l. ωr(i) and ωl(i) are right and left wheel

angular velocities over the time interval ∆t(i). ∆Ll(i), ∆Lr(i) and ∆L(i) are

the distances travelled of the left wheel, right wheel and the robot respectively.

All variables with aˆon top of them represent that they are estimated values of

the corresponding variables without theˆsymbol. If Rl, Rr and B are known, an

accurate estimate of the robot pose can be obtained. However, small errors in the

estimated values, R̂l, R̂r, B̂ and wheel slippage can be accumulated to significant

errors in the estimation of the robot pose over time. This odometry model is

further improved in Chapter 4 and Chapter 5.
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Figure 3.2: The sketch map of the continuous differential drive mobile robot odometry
calibration on Carpet 1 and Blue Rubber, on which the robot trajectories are marked
with red and blue lines, respectively. Reused from [1] ©2015 IEEE.

3.3 Real-time Odometry Calibration on Multiple Floors

3.3.1 Calibration on One Floor with EKF

A Kalman filter is an optimal estimator for a linear system model with additive

independent white noise in both the transition and the measurement systems. It is

recursive so that new measurements can be processed as they arrive [56]. However,

since the robot motion is not a linear function of the odometry parameters as

evident in Equation (3.5), the EKF is employed to linearise the measurement

function. In Figure 3.2, suppose the robot is at tk with a state vector of three

odometry parameters, x(k) = [Rl(k), Rr(k), l(k)]T , where l(k) = 1/B(k). It

starts to move in the solid red trajectory until tk+1. This movement can be

measured with an exteroceptive sensor, such as a camera or a LRF. Proprioceptive

sensors, such as wheel encoders, are used to predict this pose change based on the

odometry parameters (i.e. the EKF state x(k)). In this case, robot pose change

estimation with scan matching is chosen as the laser pose change measurement.

The pose change based on wheel encoders with estimated odometry parameters

forms the odometry pose change prediction. The difference between the laser and

odometry pose change forms the innovation of the EKF. Then state estimate (i.e.

the odometry parameters) is updated using the EKF update equations.
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Following the notation in [56, 57], the state transition function is x(k + 1) =

f(k,x(k)) + v(k), where v(k) is the additive white noise to the state vector. f

and h in Equation 3.7 are symbols of a function with the first parameter to be the

time step and the second parameter to be the independent variable. If the robot

runs on the same surface, it is assumed that the odometry parameters do not vary

during the online calibration process. Therefore, the error covariance matrix of

v(k) denoted by Q(k) is 03×3. According to this assumption, x(k + 1) = x(k)

and the Jacobian matrix:

F(k) =
∂f(k)

∂x

∣∣∣
x=x̂(k|k)

(3.6)

where x̂(k|k) represents estimate of x(k) given measurements z(k), z(k− 1), · · · .
The measurement vector of the EKF is the laser pose change measurement. The

state x(k) is used to predict this via the odometry update Equations (3.1-3.5)

that depend on x(k). The measurement prediction is

ẑ(k + 1|k) = h(k + 1, x̂(k + 1|k)) =


∆θ̂(k + 1)

∆x̂(k + 1)

∆ŷ(k + 1)

 =


θ̂(k + 1)− θ̂(k)

x̂(k + 1)− x̂(k)

ŷ(k + 1)− ŷ(k)

 (3.7)

where x̂(k + 1|k) =
[
R̂l, R̂r, l̂

]T
is the estimated state. Note that Equation (3.7)

uses the wheel angular velocity vectors [ωl(i), ωr(i)]
T that lie between tk and tk+1.

The relative pose change between two time steps is measured using the correlative

scan matching algorithm proposed by Olson [58]. The work by Olson [58] is

instrumental for the operation of the EKF since it accurately estimates the scan

match error covariance based on the actual laser scan data. For example a scan

match in a long corridor will correctly estimate a large error in the direction of

the corridor. The measurement function is

z(k + 1) = hscan(k + 1) + w(k + 1) (3.8)
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where hscan(k+1) is the mean value of the pose change vector from scan matching

and w(k+1) is its corresponding white noise, whose covariance matrix is R(k+1).

The measurement residual is the green arrow shown in Figure 3.2 with the formula

as

v(k + 1) = z(k + 1)− ẑ(k + 1|k) (3.9)

The state covariance at tk is denoted as P(k|k). To translate the odometry

parameters estimation errors into the robot pose change measurement errors, it

is necessary to calculate the measurement Jacobian as following:

H(k) =
∂h(k + 1)

∂x

∣∣∣
x=x̂(k+1|k)

=



∂∆θ̂(k + 1)

∂R̂l(k + 1)

∂∆θ̂(k + 1)

∂R̂r(k + 1)

∂∆θ̂(k + 1)

∂l̂(k + 1)

∂∆x̂(k + 1)

∂R̂l(k + 1)

∂∆x̂(k + 1)

∂R̂r(k + 1)

∂∆x̂(k + 1)

∂l̂(k + 1)

∂∆ŷ(k + 1)

∂R̂l(k + 1)

∂∆ŷ(k + 1)

∂R̂r(k + 1)

∂∆ŷ(k + 1)

∂l̂(k + 1)


(3.10)

Since the state is assumed to be constant for a calibration process on the same

surface, the state prediction matrix is

P(k + 1|k) = P(k|k) (3.11)

Residual covariance matrix is

S(k + 1) = H(k + 1)P(k + 1|k)H(k + 1)T + R(k + 1) (3.12)

The filter gain is

W(k + 1) = P(k + 1|k)H(k + 1)TS(k + 1)−1 (3.13)

Then an updated estimate of the state vector based on the latest laser pose change

measurement and the odometry (wheel encoders) is calculated as below.

x̂(k + 1|k + 1) = x̂(k + 1|k) + W(k + 1)v(k + 1) (3.14)
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The corresponding confidence for the above estimate is expressed in a covariance

matrix as following.

P(k + 1|k + 1) = P(k + 1|k)−W(k + 1)S(k + 1)W(k + 1)T (3.15)

For a good reference of the equations in Subsection 3.3.1, the author suggests

to read the reference article [56] written by his supervisor, A/Prof. Kleeman.

Note that H(k) in Equation (3.10) may be rank deficient for some robot motions

[51, 59]. For example, a constant curvature path results in a Jacobian rank of 2

and hence its inverse is not defined. This can be seen by assuming ωr(i) = ω0 and

ωl(i) = kω0 for a robot path, where k is a constant. One can apply the odometry

Equations (3.1-3.5) to show that the final pose depends only on two parameters:

(Rr + kRl) and (Rr − kRl)/B. That means there are only 2 degrees of freedom

in the motion, so the Jacobian has a rank of 2. This is derived in Appendix A.

In Equation (3.12), the measurement covariance R has full rank in practice,

ensuring S has full rank, so Equation (3.13) is well defined. Moreover, in Equation

(3.13) the null space of H effectively removes the effects of measurements on

any unobservable subspace of the state via the Kalman gain null space. For

example, a straight path will not update the wheel separation distance B nor

the corresponding component of P in the EKF. This effect has been observed to

avoid ill-conditioned updates to the state.

3.3.2 Calibration on Multiple Floor Types

Equations (3.1),(3.2) and (3.4) assume Rl, Rr and B to be time invariant, but

this assumption is not true when a robot runs on multiple floors [1, 3] or with

accelerations [4] in one calibration process. The proposed strategy for odometry

calibration on multiple floor types is explained in Figure 3.3. The robot moni-

tors the result of the SVM floor classification. When there are four consecutive

surfaces changing classification results from the SVM classifier, the system de-

clares a different floor region has been entered. The system will then store the
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current estimated state vector xterrain(i)(tj) and its corresponding covariance ma-

trix Pterrain(i)(tj). If the current surface has not been detected previously, a new

odometry calibration is created with an initialised EKF. If the robot detects the

floor colour where the odometry parameters have been calibrated previously, it

will continue the last suspended calibration using the stored calibration state and

state covariance.
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Figure 3.3: System structure of the EKF based odometry calibration with floor surface
classification using SVM. Reused from [1] ©2015 IEEE.
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3.3.3 Experiments and Results

Simulation on Three Floors

The author simulated a differential drive mobile robot with realistic parameters

as those in the real world experiment. The wheel angular velocities were ran-

domly generated within the range [0 rad/s, 1.047 rad/s]. The robot velocity was

about 0.1 m/s at maximum. This is the same maximum speed as in the real ex-

periment below. It is a reasonable speed for indoor service robots, which should

not be operated at very high speed for safety concerns. Figure 3.4 depicts one of

the trajectories. To simulate the scan matching measurement in the real exper-

iments, Gaussian white noise was added to the ground truth pose change. The

standard deviation vector for this simulated scan matching measurement was set

to [0.024 rad, 0.018 m, 0.0075 m]T for the heading, x and y dimensions, respec-

tively. These were from the real environment test scan matching standard devi-

ations in the real world experiment. The initial odometry calibration state was

set to manufacturer values x̂(0) = [0.0955 (m), 0.0955 (m), 2.778 (m−1)]
T

. The

initial state covariance was set to about 20% of the corresponding state values

P(0|0) = diag((0.02 m)2, (0.02 m)2, (0.56 m−1)2). The ground truth odometry

parameters on the three surfaces are shown in Table 3.1. Figure 3.5 depicts cali-

bration results in one simulated odometry calibration using the proposed method

on three floors.

10,000 repeated tests were performed in order to justify that the designed calibra-

tion method worked well in terms of estimation accuracy. Table 3.2 is an overview

of the results from these repeated tests. More than 99% of the simulations have

a less than 0.5% relative error of R̂l and R̂r on all floors, where relative error is

defined as the difference from true value divided by the true value. About 90% of

the tests have 0.5% relative error of l̂, which is due to limited orientation changes

of the robot pose.
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Figure 3.4: Robot trajectory in a simulated calibration with the proposed method.
The red, green and blue lines show the robot trajectories on different surfaces. Reused
from [1] ©2015 IEEE.

Figure 3.5: Simulated calibration results of R̂l, R̂r and l̂ on three floors. The blue
curves show two standard deviation boundary around the estimated variables. The
robot travelled on Floor 1, Floor 2 and Floor 3 successively. Reused from [1] ©2015
IEEE.
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Table 3.1: Ground Truth Odometry Parameters in Simulation. Reused from [1]
©2015 IEEE.

Floor1 Floor2 Floor3

Rl(m) 0.089 0.091 0.09

Rr(m) 0.09 0.092 0.091

B(m) 0.356 0.365 0.36

Table 3.2: Numbers With Relative Errors Less Than 0.5% in 10,000 Simumlation
Odometry Calibration Tests. Reused from [1] ©2015 IEEE.

Floor1 Floor2 Floor3

R̂l 9924 9942 9932

R̂r 9937 9940 9937

l̂ 9005 8953 9027

Figure 3.6 is the histogram with a Gaussian fit curve of the relative errors of

R̂l on Floor 1. The Gaussian fit has a negligible mean of −1.4110−5 and a

standard deviation of 0.00184 in relative errors meaning approximately 95% of

the estimations of Rl have a relative error in the range [-0.368%, 0.368%]. The

other two parameters have similar results.

Real-world Experiments on Two Floors

The extrinsic parameters of the two on-board LRFs were previously calibrated

[40]. The measurements from the two lasers were merged into one virtual laser

located in the middle between the two wheels [40]. The robot was steered in

a winding trajectory in a lab environment. The sketch map of the trajectory

was shown in Figure 3.2. The robot started odometry calibration on Carpet 1.

After about 8 minutes, the robot was driven to the soft blue rubber floor and

started a new calibration there. This movement was to test the recalibration
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Figure 3.6: Histogram and Gaussian fit of the relative errors of R̂l on Floor 1 after
10,000 repeated simulated odometry calibrations. Reused from [1] ©2015 IEEE.

ability when the robot returned to Carpet 1 after one hour’s calibration on the

blue rubber floor. The maximum speed of the robot was set to 0.1 m/s to reduce

non-systematic odometry errors (e.g. slippage) and scan matching was performed

whenever the robot pose changed by 0.5 m or 20 °. x̂(0) and P(0|0) are the same

as those in the simulation experiments.

The evolution of the standard deviations of the odometry parameters during a

calibration on Carpet 1 and Blue Rubber is shown in Figure 3.7. Figure 3.8

depicts the evolutions of the odometry parameters. It shows the proposed odom-

etry calibration method can start a new odometry calibration as soon as the floor

classification system detects a change. Table 3.3 lists the calibration results with

and without floor classifications. These small differences (about 1.5 mm in wheel

radii) affect the map quality as shown below.

Odometry Correction Cost Comparison

State-of-the-art algorithms and metrics have been applied to show a convinc-

ing benefit from the proposed calibration strategy on multiple surfaces. These

algorithms are listed below and the author refers readers to the corresponding

references for more details:
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Figure 3.7: Evolutions of the standard deviations of odometry parameters during the
robot experiment. Reused from [1] ©2015 IEEE.

1. Sparse Pose Adjustment (SPA) [26]: An efficient method to construct and

solve the optimization problems in a graph based SLAM problem. The pro-

posed system in this chapter constructs the graph with an initial estimate

of the robot pose from the robot odometry and correct them based on the

scan matching estimation.

2. Odometry Correction Cost Metric [16]: A framework for analysing the re-

sults of SLAM approaches based on a metric using only relative relations

between poses to measure the square error of the corrected trajectory.

Figure 3.9 is the reference graph map built after a loop closure detection and op-

timisation of the graph with SPA. This optimised graph is a very close estimate of

the ground truth, which we can see from the clear grid map built from the graph.

The purple dots representing the poses of the robot are treated as the reference

poses when applying the metric in [16]. The different colours of the trajectory on

different floors are semantic labels. These trajectories were calculated using only

the odometry pose of Equations (3.1-3.5) based on the calibration results (with

floor classifications) in Table 3.3. It is clear that the robot trajectory almost

51



3.3. REAL-TIME ODOMETRY CALIBRATION ON MULTIPLE FLOORS

Figure 3.8: Calibration results on Carpet 1 and Blue Rubber. Blue curves in top
three plots show ±2 standard deviations from estimated variables in red. Reused from
[1] ©2015 IEEE.
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Figure 3.9: Reference graph map for odometry correction cost comparison. The robot
started performing SLAM from the bottom right corner of the map on Carpet 1. Then
it was steered clock-wise on Carpet 1 and Blue Rubber, on which the trajectories were
shown as red and blue lines, respectively. Green dots represent robot positions and
yellow lines represent relative robot poses. Reused from [1] ©2015 IEEE.

aligns with the yellow reference graph map and only becomes a little displaced

from the graph SLAM map after accumulating the pose estimation errors.

Figure 3.10 shows the odometry correction cost with and without using the de-

veloped floor classification method to calibrate the odometry parameters of the

robot based on the same recorded dataset.
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(a)

(b)

Figure 3.10: The odometry correction cost with and without the proposed floor
classification strategy. (a) The odometry correction cost in rotation. (b) The odometry
correction cost in translation. Reused from [1] ©2015 IEEE.

54



3.4. OFFLINE CALIBRATION OF ODOMETRY AND SENSOR POSES ON
MULTIPLE FLOORS

Table 3.3: Odometry Calibration Results. Reused from [1] ©2015 IEEE.

With floor classification
Without floor classification

Carpet 1 Blue Rubber

R̂l (m) 0.0949433 0.0963686 0.0955958

R̂r (m) 0.096239 0.0974883 0.0968012

l̂ (m-1) 2.7971 2.78587 2.79363

Std dev. of R̂l (m) 0.00011818 0.00012153 0.00008398

Std dev. of R̂r (m) 0.00011987 0.00012279 0.000085003

Std dev. of l̂ (m-1) 0.0053 0.0053 0.0038

3.4 Offline Calibration of Odometry and Sensor Poses on Mul-

tiple Floors

The odometry calibration method in Section 3.3.1 requires known positions and

orientations of the onboard LRFs, since the LRFs measurement data provide

the reference for EKF to converge to. On the other hand, a better calibrated

odometry system can help the estimation of the extrinsic parameters of LRFs if

we choose to optimise the quality of a map built by aggregating a series of laser

scans and robot poses. This becomes a chicken and egg problem. Therefore, the

author proposes a novel approach to calibrate odometry parameters and onboard

LRFs extrinsic parameters simultaneously. Every LRF is attached to the robot

rigidly and cannot rotate about itself, so we have 3 extrinsic parameters (posi-

tion and orientation) for each LRF. The author demonstrated the approach by

maneuvering the robot on two different floors considering the floor dependence

issue. Hence there were 6 odometry parameters in total. This offline approach

can provide a more accurate estimation of both odometry parameters and sensor

extrinsic parameters, since it is a data driven method and the optimisation algo-

rithms can be repeated many times until all parameters converge to a reasonable

55



3.4. OFFLINE CALIBRATION OF ODOMETRY AND SENSOR POSES ON
MULTIPLE FLOORS

basin with a very low cost value of the cost function. The cost function in this

section is map information (MI) that will be detailed in Subsection 3.4.1.

3.4.1 Quality Metric for Occupancy Grid Maps

The Occupancy Grid (OG) map is a common representation of a map built from

laser scan measurements and is useful for robot navigation and measuring map

quality [27]. The map consists of grid cells with discrete random variables with

two outcomes, occupied cells and free cells. The entropy of the information in an

OG map cell can be calculated as below

H(mij) = −p(mij) log2(p(mij))− p̄(mij) log2(p̄(mij)) (3.16)

where p(mij) denotes the probability of a cell which has index (i, j) of the map

m is occupied, while p̄(mij) represents the probability of that cell which is not

occupied. Blanco et al. [60] proposes the map information (MI) metric, Î(m) ,

and shows it better represents the quality of an OG map. The MI of an OG map

m is defined as Equation (3.17)

Î(m) =


∑
∀i,j

(1−H(mij))/N, ifN > 0

0, otherwise

(3.17)

where N is the total number of the cells that have been observed. The MI metric

is mostly independent of the grid resolution for the commonly used cell sizes

between 1 cm and 10 cm [60]. This metric can be explained intuitively by noting

that the better the alignment between observations (laser scans for this research)

in the map, the higher the values obtained from MI. For example a cell with

probability 0.5 contributes zero to the MI whilst a probability close to 1 or 0

contributes nearly 1. The poses of the on-board sensors for mapping and the

odometry parameters of the robot will affect how well the observations align to

each other, which is the outcome of MI.
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The author develops a similar sensor model to [61] when calculating p(mij), which

is initialised to the uniform prior of 0.5 and updated by a ray-casting operation

determining its occupancy probability along a beam between the laser origin to

the measured point. Readers are referred to [27] and [61] for a detailed expla-

nation about this sensor model and its calculation. Experimentally, the author

finds the log likelihood value locc = 1.2224 for an occupied cell and lfree = −0.585

for a free cell, corresponding to probabilities of 0.7 and 0.4 for occupied and free

volumes, work well. This selection is the same as [61], but in order to use bits/cell

as the unit for MI this system adopts the base 2 logarithm instead of the natural

logarithm.

3.4.2 Fusion of Two Laser Rangefinders Measurements

Sensor extrinsic parameters are very important for the robot to measure accurate

absolute value of its perception data, because most sensors, including LRFs, can

only measure the relative distance or angles of the target objects. In this case, it

is essential to calibrate the relative pose between the coordinate frame of LRFs

and the origin of robot odometry coordinate frame. The robot is assumed to work

on a horizontal plane and only calibrate three out of six parameters, namely the

relative position coordinate (x, y) and relative orientation angle θ.

Using multiple LRFs can reduce the chance of divergence, ambiguity and inac-

curacy in the process of scan matching as explained in the previous work [40].

However, most mapping algorithms are designed to work with only one LRF. In

this research, the measurements of two Hokuyo URG-04LX LRFs are projected to

a virtual one located at the original point of the robot coordinate frame as shown

in Figure 3.11. Each range finder has a field of view (FOV) of 240 degrees and

valid range measurements from 0.02 m to 4 m. The angular resolution is approx-

imately 0.352 degree and one laser scan contains 681 laser beams. The virtual

LRF has a FOV of 360 degrees with 1024 laser beams and the same angular

resolution. Assume the two LRFs are placed in the same horizontal plane. Co-

ordinate frames {O}, {R}, {L1} and {L2} are the world frame, the robot frame,
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Figure 3.11: Schematic of the laser range finders on the robot. The red and green
sectors show the maximum measurement ranges of Laser 1 and Laser 2, respectively.
Reused from [3] ©2015 IEEE.
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the frame of Laser 1 and the frame of Laser 2, respectively. The relative pose of a

frame {B} with respect to a frame {A} is denoted by the symbol AξB. The laser

scan of Laser 1 at time step t is described as S1(t) = (x1, y1, θ1, r
1
i (t), α

1
i (t)

n
i=1),

where x1, y1, θ1 are the position and orientation of Laser 1 in {R}. r2
i (t), α

2
i (t)

n
i=1

describes n range measurements r1
i (t) at bearings α1

i (t). n = 1, 2, · · · , N (N is

the total number of laser beams in one scan). Analogously, the laser scan of Laser

2 is defined as S2(t) = (x2, y2, θ2, r
2
i (t), α

2
i (t)

n
i=1). Note that the time step label for

the relative poses symbols is omitted for the convenience of notation. Let rLaser1i

and αLaser1i denote the virtual range measurements and bearings seen from the

central virtual laser based on the measurements of Laser 1 as in [62].

rLaser1i =
√

(r1
i cos(θ1 + α1

i ) + x1)2 + (r1
i sin(θ1 + α1

i ) + y1)2 (3.18)

αLaser1i = atan2(r1
i sin(θ1 + α1

i ) + y1, r
1
i cos(θ1 + α1

i ) + x1) (3.19)

rLaser2i and αLaser2i are calculated in the same way. Before scan projection, two

scan processing steps including a median filter and laser segmentation are done.

After the scan projection, a linear interpolation is performed and the final range

measurements are the measurements as the corresponding laser measurements if

there are no common areas between the two laser measurements. In the common

area, the shorter range measurement is chosen.

3.4.3 Particle Swarm Optimisation

Inspired by swarm intelligence in a population of simple agents interacting with

their neighbours and the whole environment, Kennedy and Eberhart [63] first

introduced Particle Swarm Optimisation (PSO) as a computer model for flocking

birds in 1995. Later, researchers used this as a metaheuristic to find the optimum

solution in a high dimensional problem. It does not require continuous or differ-

entiable fitness function in contrast to gradient descent optimisation methods. A

particle contains several properties, namely position, velocity, fitness value, pbest

and gbest [64]. The position of the ith particle is a potential solution for the

problem and is denoted Xi = [xi1, xi2, · · · , xiD] , where D is the dimension of the

59



3.4. OFFLINE CALIBRATION OF ODOMETRY AND SENSOR POSES ON
MULTIPLE FLOORS

problem. The velocity of the ith particle is the displacement used to calculate

the next position and is denoted Vi = [vi1, vi2, · · · , viD]T . The fitness value is

the function value by applying the position. The pbest Pi = [pi1, pi2, · · · , piD]

is also called personal best value, which is the best position obtained from the

corresponding particle itself. The gbest G = [g1, g2, · · · , gD]T is the global best

position so far achieved by all the particles in the swarm. The following equations

are used to update positon and velocity for the ith particle from time step t to

t+ 1 [64]:

Vt+1
i = ωVt

i + c1R
t
i1 ⊗ (Pt

i −Xt
i) + c2R

t
i2 ⊗ (G−Xt

i) (3.20)

Xt+1
i = Xt

i + Vt+1
i (3.21)

where ω is the inertia coefficient to prevent explosion of the particles. Cognitive

acceleration coefficient c1 and social acceleration coefficient c2 are used to include

the influences of the pbest and gbest for this update. Independent vectors Rt
i1

and Rt
i2 are uniformly distributed in the range [0, 1], ⊗ denotes element-wise

vector multiplication. This is the basic PSO algorithm.

3.4.4 Calibration Method

The calibration is divided into three phases: dataset collection, training a SVM

and calibration on multiple floors.

Dataset Collection

The trajectory needs to contain sufficient diversity to avoid rank deficiency as

stated in [51]. Examples of rank deficiency motions are a pure straight line, or a

rotation on the spot or a constant curvature arc motion. A combination of these

motions is not rank deficient and allows all parameters to be observable. Fur-

thermore, long datasets are not suitable for offline calibration since the proposed
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method requires the dataset to be repeated until the PSO algorithm reaches a

steady and large MI value. Experimentally, the author found a dataset of around

350 seconds was a good choice on two testing floors, Carpet 1 and Blue Rubber.

An enclosed environment with most parts visible by LRFs was chosen primarily

for efficiency reasons. This allowed full use of the range information in building

an OG map, whose quality measured in MI was most affected by the calibration

parameters of the odometry and the poses of the LRFs.

Training a SVM

Floors should ideally be of even colour for the floor classification method to work

well. The classification accuracy will be higher if more data are used to train the

SVM, so the robot is driven along a trajectory covering a greater area of the floor

than what is used in the calibration phase. In addition, the training data should

be based on data after a median filter and down sampling. These pre-processed

data were fed into the C++ implementation of SVM for floor classification.

Calibration on Multiple Floors

Calibrated parameters are odometry parameters on different floors and extrinsic

parameters of exteroceptive sensors. The fitness value of the PSO algorithm is

the MI value of the OG map built using only encoder data and laser extrinsic

parameters without scan matching. The suggested swarm size 40 was adopted

[64]. Every 100th scan and odometry poses were used to build an OG map. The

Standard PSO 2011 (SPSO-2011) was adopted, because it performed well against

28 various functions as reported in [65]. The detail of SPSO-2011 was explained

in [64]. A flowchart of the proposed calibration method is in Figure 3.12.
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Figure 3.12: Flow chart of calibrating odometry and sensor extrinsic parameters with
PSO on multiple floors. Reused from [3] ©2015 IEEE.
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3.4.5 Experiments and Results

Experiment Settings

To evaluate the proposed calibration method, two different datasets were

recorded, Dataset 1 and Dataset 2, one after the other, on Carpet 1 and Blue

Rubber in a closed environment as shown in Figure 3.13(a). Figure 3.13(b) de-

picts the robot crossing the boundary of two floors. Since every 100th laser scan

was used to build the OG map, Dataset 1 and Dataset 2 have 35 and 36 laser scan

measurements in their maps, respectively. The designed algorithm replayed the

datasets at a rate of twice the original ROS message publish rate via the rosbag

command-line tool.

Let Rl1, Rr1 and l1 be the left wheel radius, right wheel radius and the reciprocal

of the separation distance B1 on Carpet 1. Rl2, Rr2 and l2 are the corresponding

variables on Blue Rubber. Let x1, y1 and θ1 be the extrinsic parameters for Laser

1 and x2, y2 and θ2 for Laser 2. The above 12 parameters form the calibration

parameter vector in this work. According to a preliminary estimation, each cal-

ibration parameter is confined as listed in Table 3.4 when performing the PSO

algorithm. In terms of the cell size of the OG map, the commonly used cell size,

2.5 cm, was chosen. As suggested by [64], 30 generations of the PSO algorithm

in most practical problems are sufficient for a good optimisation result. It was

found that there was little improvement after 40 generations of PSO. Therefore,

the author chose 40 as the total generations in all the following experiments. On

a Lenovo Z580 laptop with an Intel i5 four core CPU working at 2.50 GHz and

a RAM of 4 GB, 40 generations of 40 particles in a PSO took approximately 14

hours of computation time. The time was proportional to the number of particles

and the number of generations in the PSO.
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(a) (b)

Figure 3.13: (a) The environment used to collect the datasets. The size of the
environment was approximately 4 m × 5 m. (b) The robot is crossing the boundary of
two floors, Carpet 1 and Blue Rubber. Reused from [3] ©2015 IEEE.

Table 3.4: Confinement of Each Calibration Parameter in the PSO. Adapted from [3]
©2015 IEEE.

Parameters Min Max

x1(m) 0.06 0.08

y1(m) -0.145 -0.125

θ1(rad) -0.8154 -0.7754

x2(m) -0.22 -0.18

y2(m) 0.125 0.145

θ2(rad) 2.2 2.4

Rl1(m) 0.093 0.099

Rr1(m) 0.093 0.099

l1(m-1) 2.765 2.84

Continued on next page
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Table 3.4 – continued from previous page

Parameters Min Max

Rl2(m) 0.093 0.099

Rr2(m) 0.093 0.099

l2(m-1) 2.765 2.84

Map Quality Improvements with Floor Classification

The effects of the floor classification was investigated by a series of experiments.

Firstly, the author calibrated the odometry and laser pose parameters with a

correct floor classification using the proposed floor classification system. Then

the parameters with a wrong floor classification which separated the robot tra-

jectory into two parts: the first 17 laser scans on Carpet 1 and the other 18

laser scans on Blue Rubber was calibrated. Figure 3.14 shows the differences of

the map information evolutions during the two comparison experiments above.

MI of the OG map built with the proposed floor classification method is higher.

Figure 3.15 shows the evolution of the mean of the MI values of the 40 particles

in each generation in the PSO algorithm, which indicates that most particles

approached better estimated values. Finally, the calibrated parameters in last

two experiments were applied onto Dataset 2 to show the benefits of successful

floor classification. Figure 3.16 summarises the experiments. MI values of the

OG maps in Figure 3.16 (c) and Figure 3.16 (d) are 0.9234 bits/cell and 0.9207

bits/cell, respectively.
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Figure 3.14: The map information evolutions during the simultaneous calibration of
odometry and laser pose parameters vs. the number of generations in PSO algorithm
when using the proposed floor classification method and a wrong floor classification.
Reused from [3] ©2015 IEEE.

Figure 3.15: The evolution of the mean of the map information values of the 40
particles in each generation in the PSO algorithm. Reused from [3] ©2015 IEEE.
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(a) (b)

(c) (d)

Figure 3.16: Mapping results to show the influence of floor classification. The tra-
jectories labelled with red and blue correpond to the classified results of floor types,
Carpet 1 and Blue Rubber, respectively. Green dots depict positions of the robot for
the laser scans used to build the OG maps and yellow lines depict the relative pose
between the consecutive laser scans. (a) OG map built with the calibrated parameters
based on the proposed floor classification method using Dataset 1. (b) OG map built
with the calibrated parameters based on a wrong floor classification as a comparison
using Dataset 1. (c) OG map built with the parameters in (a) using Dataset 2. (d) OG
map built with the parameters in (b) using Dataset 2. Reused from [3] ©2015 IEEE.
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Figure 3.17: OG map built with the calibrated parameters based on the proposed
floor classification method using Dataset 2. Reused from [3] ©2015 IEEE.

Consistency Validation on Two Datasets

The consistency of the PSO based offline simultaneous calibration of odometry

and sensor extrinsic parameters was justified by calibrating the parameters using

different datasets, Dataset 1 and Dataset 2. The map built with the calibrated

parameters using Dataset 2 is shown in Figure 3.17. Table 3.5 is the calibration

result using two datasets, which shows a consistent result for each parameter.

Define S(i) as Equation (3.22) to test the calibration consistency, where p1(i)

and p2(i) denote the ith dimension of the calibration parameters using Dataset

1 and Dataset 2, respectively. Figure 3.18 shows the consistency between the

calibration results in Table 3.5.

S(i) =
|p1(i)− p2(i)|
|(p1(i) + p2(i))/2|

(3.22)
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Figure 3.18: Relative calibration differences based on Dataset 1 and Dataset 2 using
Equation (3.22). Reused from [3] ©2015 IEEE.

Table 3.5: Calibration Results Using
Dataset 1 and Dataset 2. Adapted from
[3] ©2015 IEEE.

Dataset 1 Dataset 2

x1(m) 0.070456 0.0677955

y1(m) -0.13935 -0.134264

θ1(rad) -0.799576 -0.799708

x2(m) -0.203149 -0.206218

y2(m) 0.133731 0.136393

θ2(rad) 2.2913 2.3024

Rl1(m) 0.0945349 0.0951182

Rr1(m) 0.0960021 0.0963673

l1(m−1) 2.79122 2.7887

Rl2(m) 0.0961968 0.0963655

Rr2(m) 0.0973374 0.0973481

l2(m−1) 2.80303 2.79807
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3.4.6 Convergence Basin Verification

PSO, like other metaheuristic optimisation algorithms, cannot guarantee finding

the global optima [66]. Therefore the author applied a grid search upon the

odometry parameters to show this parameter estimation problem had a reasonable

convergence basin.

The testing environment is shown in Figure 3.19, where the robot followed an “8”

shape path with a fixed speed at 0.1 m/s and performs 90◦ rotating at each corner.

The MI map quality was applied. The odometry parameters, R, RonB and delta

were chosen as [24], which can decouple their effects on the map quality. R, RonB

and delta are defined as Equation (3.23), Equation (3.24) and Equation (3.25).

Grid search has a resolution of 0.00025 m, 0.00025 and 0.00008 for R, RonB

and delta, respectively and each dimension of the search has 35 grid elements.

Grid search results are shown in Figure 3.20 indicating that there is a reasonable

convergence basin.

R = (Rr +Rl)/2 (3.23)

RonB = R/B (3.24)

delta =
Rr −Rl

Rr +Rl

(3.25)
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(a) (b)

Figure 3.19: Experiment with an “8” shape trajectory on Lino to verify the conver-
gence basin of the odometry parameters.(a) Surrounding environment. (b) Running.
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Figure 3.20: Convergence basin for the odometry calibration with the robot following
an “8” shape trajectory on Lino. (a) Mesh plot with contour when fixing delta. (b)
Another view of (a). (c) Three slices of odometry parameters.
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3.5 Summary and Conclusions

In this chapter, online EKF based mobile robot odometry calibration on multiple

floor types has been developed. The map quality from the graph based SLAM

system in a lab environment has been improved using the proposed method. This

research has presented new experimental results that confirm that the odometry

calibration of a differential drive robot depends on the floor type. This is often

mentioned in robotics papers yet there has been little published justification of

this dependency. This research shows experimentally that odometry calibration

with floor classification is superior to that without floor classification on multiple

floors.

In addition, this chapter develops a novel offline simultaneous calibration of robot

odometry and sensor extrinsic parameters using the PSO algorithm on multiple

floors. A state-of-the-art map quality metric for OG map, Map Information [60],

has been chosen as the fitness value of the PSO algorithm. It has been shown

that a calibration with the colour floor classification system is more accurate for

each parameter than using an arbitrary classification. Note that 12 parameters

are used in both the arbitrary and colour classified cases to achieve a fair com-

parison, since a comparison with single floor region would involve optimising over

just 9 parameters and therefore disadvantage the single region. Furthermore,

the calibration method has been tested for consistency between two independent

datasets. The PSO based calibration framework could be applied to calibrate

odometry and the extrinsic sensor parameters for 3D laser scanners or Kinect

sensors by extending the MI metric to 3D occupancy grid maps built with Oc-

toMap [61]. This research takes a novel approach for calibrating odometry and

extrinsic sensor parameters by sensing and segmenting the environment into dif-

ferent floor surface types. In subsequent chapters, the effect of robot acceleration

is investigated for its impact of odometry accuracy and calculator.
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4

Odometry Model Incorporating Linear Ac-

celeration

4.1 Introduction

Many mobile robots have differential drive wheels with pneumatic tyres. Many of

these robots depend on odometry pose estimations when performing map building

or localisation tasks. Currently a three parameter odometry estimation model is

widely used as explained in Chapter 3. This model works well when robots run at

a low acceleration, i.e., a steady or slowly changing velocity. However, Equations

(3.1-3.5) assume Rl, Rr and B to be time invariant. This assumption is not

correct when a robot accelerates or decelerates as shown in this chapter and also

published here [4].

This chapter discusses the effects of acceleration on robot odometry calibration.

As a robot accelerates, wheel slip increases. Hence the effective wheel radius

is reduced. This can affect odometry accuracy and a new odometry model to

handle this effect is developed in this chapter. Researchers in the field of tyre-

road contact mechanics have known that slip or skid is the main reason for

effective tyre radius differences [67]. Those researchers have come up with a series

of theoretical and empirical models, including knowledge of contact mechanics,

physics and materials. This theory is applied to the research in this chapter. The

assumptions in this chapter are listed below.

� The robot has pneumatic tyres.
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� The floor is flat, hard and smooth with in-significant inclination variation

over the area robots are working on.

� The floor is static and temperatures do not change over the testing period.

� The surface adhesion forces between floors and the robot are insignificant.

� The two wheels of the robot have similar properties.

� The velocity of the robot is sufficiently low that air resistance is insignificant.

� No significant lateral sliding forces are present.

� No obstacles contact the robot or affect (e.g., strong magnetic field) the

movement of the robot.

Wheel slippage is known to cause odometry estimation errors. A thorough study

is provided in [68], where the authors present a kinematic EKF approach to

improve the localisation accuracy of two skid-steer outdoor robots with extensive

field testing. They report open-loop prediction errors on one wheeled robot which

is about 15% of the travelling distance compared to 45% for the no-slip model.

A robust yet non-conservative motion planner is designed for outdoor tracked

mobile robots working on deformable high slip terrain [69]. They also point out

that such a path planner that considers high slippage can potentially work well

for practical situations together with terrain classification methods.

Other researchers have contributed to improving estimation of wheel slippage.

Ojeda et al. [70] designed a slippage detection system using wheel motor cur-

rent sensors for planetary rovers working on soft soils and compensate this effect

to improve the localisation accuracy. In [71], the authors aimed to predict slip
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remotely using visual information only for Mars rovers. They developed a pre-

dictive learning system which managed to map the appearance and geometry of

the upcoming terrain to its mechanical properties for traversing. Ding et al. [72]

comprehensively studied the performance of driving wheels for planetary rovers

running in deformable soils. However, these publications mostly focused on out-

door unmanned mobile robots.

Balakrishna and Ghosal [73] proposed a model where the adhesion coefficient

between the wheels of a mobile robot and hard flat floors was a function of wheel

slip. Using numerical simulations, they demonstrated the necessity to model

the slippage effect for wheeled mobile robots when tracking their trajectories.

Only when the adhesion coefficient was chosen large representing conditions closer

to no-slip rolling, the path deviation was small. It is also worth mentioning

that Konduri et al. [74] researched into the conditions of slip for multiple robot

coordination control. They developed a trajectory tracking controller to set the

maximum value of the input wheel torque before slip happened. This can help

multiple mobile robots to locate each other more accurately, which is desirable

in a coordinating task. In the experiments, they realised localisation errors were

larger especially when the robots accelerated or decelerated. This falls into the

research focus of this chapter.

There have been significant research efforts into pneumatic tyres for road vehi-

cles. In [75], researchers presented their model predictive and feedback controllers

which prioritised collision avoidance and stabilisation for autonomous vehicles by

incorporating tyre nonlinearities when slipping. They demonstrated their con-

troller’s capability to handle emergency scenarios when the vehicle operated at

its limited speed under a tyre friction. Song et al. [76] proposed a close loop

controller to improve path tracking at high speeds and near tyre traction limits.

They used the Dugoff tyre model to calculate the remaining tyre force instead of

measuring slip angles online. They verified their controller in three test scenarios

in simulation tool, CarSim. With the same aim as [76], researchers from Stan-

ford University [77] applied PD-type and quadratically optimal (Q-ILC) iterative
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learning controllers on a real autonomous Audi TTS race vehicle driving around

Thunderhill Raceway in Willows, CA at combined vehicle accelerations of up to

8 m/s2.

To the author’s knowledge, few publications have investigated negative effects

on the quality of maps built by wheeled mobile robots on indoor smooth floors

when experiencing wheel slip using differential driven odometry models except

the author’s recent publication [4]. Wheel slip can occur even for low speeds

(<0.6 m/s) and low accelerations (<0.35 m/s2), which is verified on a Pioneer2

DX H-8 robot via two independent experiments in an office environment [4].

As explained in [67], pneumatic tyres deform due to contact patch dynamics.

Compression and stretching of tyres result in a change of effective wheel radii

when the vehicle accelerates. Note that the author refers to this effect as slip and

the term slide will refer to the effect where an entire contact patch of the tyre

loses grip with the floor.

This chapter develops and experimentally justifies a novel differential drive

wheeled mobile robot odometry model that includes changes in effective wheel

radius due to linear acceleration. Section 4.2 introduces the tyre road contact the-

ory including the definition of longitudinal slip which is the cause of wheel radius

changes during accelerating and decelerating. A detailed time synchronisation ap-

proach to overcome the time synchronisation problems between LRFs and wheel

encoders is developed in Section 4.3. Section 4.4 is dedicated to calibrate the

distance measurement model for two LRFs taking into account of warm-up time,

incidence angle of a laser beam and margin of errors of LRFs. In Section 4.5,

laboratory experiments are presented showing the significance of acceleration on

effective wheel radii under conditions encountered by indoor mobile robots. It

is demonstrated that the developed model is better than a calibration that ne-

glects the effects of robot linear acceleration (i.e. the status quo). This research

demonstrates that the acceleration model improves the map quality in OG maps

produced by a LRF and odometry. This chapter is summarised in Section 4.6.
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4.2 Tyre Road Interaction Theory

The primary cause of tyre rolling resistance on hard surfaces is the hysteresis in

tyre materials due to the deflection of the tyre carcass while rolling [67]. Friction

between tyres and roads caused by sliding, the resistance due to air circulating

inside the tyre, and other effects are less significant [67]. This is also valid for

a robot with pneumatic tyres running on flat level indoor floors. The effective

rolling radius is defined as the ratio of linear speed of tyre centre to the angular

speed of the tyre when rolling [67, 78]. This corresponds to the wheel radius used

by wheeled mobile robot odometry in Equations (3.3-3.5). Tyres often experience

both longitudinal and lateral forces when rolling. However, the effective rolling

radius is mainly related to the longitudinal force. In contrast, lateral forces on

tyres could influence the wheel separation distance. Tyre lateral force effects are

reserved for Chapter 5. Here we consider only straight line paths.

4.2.1 Longitudinal Slip

A tractive force will be generated at the tyre-ground contact patch if a driving

torque is applied to a pneumatic tyre. Hence, there will be compression between

the tyre tread in front of and within the contact patch. This effect, as noted in

[67], will result in a shortened travelling distance of the tyre when subject to a

driving torque compared to a free rolling tyre. This is longitudinal slip, i, defined

in [67] as:

i =

(
1− V

rω

)
=
(

1− re
r

)
(4.1)

where V is the speed of the tyre centre, ω is the angular velocity of the tyre, r

is the radius of the free-rolling tyre, and re is the effective rolling radius of the

tyre for a driven wheel. Under a driving torque, the tyre experiences a positive

value of longitudinal slip as result of rω > V . Many research papers [79, 80, 81]

conclude that the wheel torque and tractive force increase linearly with slip as in

Equations (4.2) when the slip is below a critical value (typically larger than 5%

under different surface conditions from experiments [81]), because slip is mainly
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Figure 4.1: One typical Magic Formula tyre model curve. Reused from [4] ©2017
IEEE.

due to elastic deformation of the tyre tread in that region. This can be graphically

shown in Figure 4.1 from the empirical tyre model known as the Magic Formula

[79].

Fx = Cii (4.2)

Fx stands for the tractive force, Ci the longitudinal stiffness of the tyre and i is

defined above as longitudinal slip. Indoor mobile robots are normally running

within this linear region when their speeds are low without severe acceleration

or deceleration. To calculate the effective radius for a driven tyre, we substitute

Equations (4.2) into Equations (4.1).

re = r

(
1− Fx

Ci

)
(4.3)

For the same robot running slowly and steadily on a straight path on different

hard indoor floors over a short time interval, r and Ci do not change. Therefore,

the tractive force Fx (and hence acceleration) applied on the robot can reveal the

effective rolling radius in a linear way.
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4.3 Time Synchronisation of Lasers and Encoders

In this section the experimental results to justify the acceleration model are pre-

sented and the effects of acceleration on odometry estimation are shown to be

significant for mobile robots under normal conditions. In order to perform accu-

rate measurements for use as ground truth the author uses distance measurements

from LRFs data fitted by straight lines of walls. These must be carefully cali-

brated and synchronised to the odometry wheel angle measurements since the

experiments for acceleration necessarily involve dynamic measurement of robot

position from odometry and laser measurements concurrently.

Compared to Chapter 3, this chapter improves the calibration accuracy of the

extrinsic parameters of two LRFs by applying the detailed time synchronization

techniques based on the method in [82, 83]. For the time synchronisation between

host computer and one LRF, the author customised the implementation of the

algorithm of [83] in ROS, i.e., urg node-hydro-devel. The algorithm in [82] to

compensate for the delays of each beam in one laser scan was utilised, because

encoder data can only be synchronised with the first beam of a laser scan.

The data processing described above is sufficient for one LRF for mapping or

localisation purposes. However, multiple LRFs are used in most robotic applica-

tions to cover the surroundings of the robot. In this experiment, measurements

of two independent LRFs were fused into one virtual scan sitting at the origin of

the robot odometry coordinate frame. Therefore, the timestamps of two LRFs

and robot encoder sensors were synchronised. The sampling rate of the LRF and

encoders were 10 Hz and 30 Hz, respectively. The timestamp of each front laser

scan was matched to a rear laser scan. Then the system synchronised both these

scans to the mean timestamp of the corresponding scans. Afterwards, the author

performed laser beam pose adjustment for the two scans separately by consid-

ering both laser beam sweeping delays and the offset of the scan timestamp to

the mean timestamp of two LRFs. The final step was to fuse the adjusted beams

from two LRFs to the odometry centre as in [62]. Figure 4.2 and Figure 4.3 shows
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(a) (b)

Figure 4.2: Front and rear laser registration errors with beam synchronisation ad-
justment for robot straight line motion. (a) Before. (b) After. Reused from [4]©2017
IEEE.

the improvement in terms of the misalignment error from a pair of scans with the

nearest timestamps from two LRFs.
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(a) (b)

Figure 4.3: Front and rear laser registration errors with beam synchronisation ad-
justment for robot rotation on the spot motion. (a) Before. (b) After. Reused from [4]
©2017 IEEE.

4.4 Laser Distance Measurement Calibration

From robot mapping experiments using LRFs, the author noticed that their dis-

tance measurements were slightly different when the target distance varied. For

example a measurement difference of 38 mm was obtained when measuring an

object sitting 4 m away. This matches the accuracy of ±1% quoted in the spec-

ification sheet of Hokuyo URG-04LX [84]. Characterisation of the same Hokuyo

URG-04LX LRF is reported in [85, 86]. To reach a higher accuracy of scan

measurements needed for the acceleration experiments, a series of calibration ex-

periments were performed. As suggested in [86], the designed experiments allowed

at least 90 minutes of warm-up time prior to recording laser data in all tests in

Chapter 4 and Chapter 5. Kneip et al. [85] and Okubo et al. [86] also pointed

out the effect of incidence angle for LRFs. Okubo et al. [86] concluded that an

incidence in the range of ±20 degrees would not cause significant errors, so the

measurement was narrowed to that range of incident angles.
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Figure 4.4: Experimental setup for calibration of the laser rangefinders using tape
measurements. Reused from [4] ©2017 IEEE.

The calibration arrangement for the two LRFs is shown in Figure 4.4 and the

results are in Figure 4.5. The author used two parallel tape measures as the

reference to locate the robot moving perpendicular towards a straight smooth

white wall from 4 m to 0.5 m with increments of -0.5 m. Eight independent

scan datasets (5 minutes, i.e., 3000 scans) were collected. The offsets of tape

measurements were manually measured, because there was approximately 1.8 cm

offset from the wall to the start point of the floor and some offsets from the lasers

to the reference points on the robot when the author manually aligned the robot

to certain tape measurement readings.
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(a) (b)

Figure 4.5: Results of calibration of the scales and offsets of the LRFs using the setup
in Figure 4.4. (a) Front LRF. (b) Back LRF. Reused from [4] ©2017 IEEE.

4.5 Experiments and Results

4.5.1 Constant Linear Acceleration Tests

The averages of effective left and right wheel radii of the robot under different

linear accelerations were estimated. The robot moved straight and perpendicular

to the front and the back walls. Wheel radii can be estimated by comparing the

robot odometry position with the LRF measurements of both walls. A square

(≈3.9 m per side) environment was designed with white polystyrene boards as

in Figure 4.6. The robot was commanded to accelerate straight for 1 m and

decelerate for 1 m before rotating 180° and repeating in the opposite direction.

This process was repeated at least 14 times for different acceleration values.

The scans during constant accelerating and decelerating were segmented for pro-

cessing. Line fitting was performed for the laser beams on the front and the back

walls, since the walls were constructed to be as straight as possible. The algorithm
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Figure 4.6: Square environment for experiments of linear acceleration scenarios.
Reused from [4] ©2017 IEEE.

restricted the measurements to only laser beams within 20° of the wall perpen-

dicular for line fitting to avoid erroneous incident angles to the wall as reported

in [86]. Next the author calculated the distance from the odometry centre to the

cross point between the robot heading direction and the walls. The changes of

distances to the front wall and the back wall were averaged, functioning as the

ground truth robot distance compared to robot odometry estimation. See Figure

4.7, Figure 4.8 and Figure 4.9.

From Figure 4.10, it is clear that a linear model could fit the effective wheel

radii and linear acceleration data as suggested by the theory in Section 4.2.1.

The author also tried to fit a sigmoid function to these data, but discarded this

idea due to the concern of overfitting. This also indicates that the robot was

running in the linear region of Figure 4.1. This relationship can be expressed in

the following equations.

Rr = Rr0 + kaa (4.4)

Rl = Rl0 + kaa (4.5)

where a is robot linear acceleration, Rr0 is the right wheel effective radius when

free rolling and Rl0 is the left wheel effective radius when free rolling. Equa-

tion (4.4) and Equation (4.5) compensate wheel radius shrinking during accel-

erating and enlarging during decelerating using robot linear acceleration (when

ka is negative). Therefore, the novel odometry estimation model for differen-

tial drive wheeled mobile robot on flat floors including Equations (3.1), (3.2),
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(a) (b)

Figure 4.7: Robot moving distances over one straight path using conventional odom-
etry estimation with equal and constant (0.098 m) wheel radius assumption for left
and right wheels. Distance measurements using scans are treated as ground truth. (a)
Accelerating. (b) Decelerating.

(a) (b)

Figure 4.8: Linear correlation between the distance measurements in Figure 4.7 using
odometry estimation and scans. (a) Accelerating. (b) Decelerating. Reused from [4]
©2017 IEEE.
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(a)

(b)

Figure 4.9: Effective wheel radius. The odd (even) indices traverse the floor in the
North (South) direction. (a) Acceleration = 0.3 m/s2; (b) Acceleration = 0.45 m/s2.
Reused from [4] ©2017 IEEE.

Figure 4.10: Summary of wall experiments with ±2 standard deviation error bars
confirming the linear variation of effective wheel radius with acceleration. Reused from
[4] ©2017 IEEE.
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(3.3), (3.4), (3.5), (4.4) and (4.5) is developed. It has four parameters, namely

Rr0, Rl0, B and ka.
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4.5.2 Calibration Incorporating Linear Acceleration

As an independent verification of the previous experimental results, the author

calibrated the four odometry parameters using PSO based method in Chapter

3. An OG map was generated from overlapping laser scans and odometry alone

(i.e. no SLAM processing) and the details can be found in Chapter 3. As a set

of odometry parameters better match the robot experimental results, the map

becomes crisper and more consistent. Using a map quality measure of the number

of occupied cells (i.e. a laser measurement is recorded in an occupied cell) is a

measure of how well different laser scans of the same region, such as a wall, overlap

appropriately. A fuzzy map due to poor localization of the robot odometry will

generate more occupied cells than a well calibrated odometry map. Therefore,

the map quality of the experiments are shown in both metrics, number of grid

cells and MI, in Table 4.1.

In experiments, the robot was commanded with constant accelera-

tion/deceleration value of 0.35 m/s2 and followed a square path in an

environment like Figure 4.6. The robot was first driven in two counter-clockwise

square loops followed by a 180° rotation at a low rotation velocity of 0.17 rad/s.

Then it performed two clockwise square loops. The system sampled evenly

245 laser scans corresponding to robot movements of at least 0.2 m or 20° for

mapping the environment with robot pose estimation. The grid cell of the map

was set to be 5 mm square. These operations were designed to illuminate the

influence of other non-systematic odometry estimation errors.

The PSO based odometry calibration was applied after collecting several inde-

pendent datasets including two LRFs data, encoder data, their timestamps and

other necessary data. The PSO tried to optimise the quality of the occupancy

grid maps generated by attaching the fused two laser scans to the robot pose

estimation based only on odometry estimation. PSO was configured to have 49

particles with the Von-Neumann neighbourhood topology.
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Note that the developed four parameters robot odometry model has one more pa-

rameter compared to the conventional model. This will add one more dimension

of parameter space for modelling the problem, resulting in a potential advantage

when estimating the robot pose. For fairness in the comparison, the author also

compares the developed model with another simple four parameter odometry es-

timation model where the 4th parameter is kv in Equation (4.6) and Equation

(4.7). This is a naive idea consisting of 4 odometry parameters for the purpose

of comparison in this section.

Rr = Rr0 + kvv (4.6)

Rl = Rl0 + kvv (4.7)

where v is robot speed, kv is a constant factor for compensating fictional effects

of robot velocity on the effective wheel radii. This (invalid) model is not expected

to result in better map quality but acts as an experimental control.

After about 310 generations of evolutions, PSO converged to steady optimal

estimation results. The odometry calibration results are shown in Table 4.1. From

the table, it is clear that the proposed model results a better quality OG map

(in both map quality metric) using the same LRF data and encoder data. The

alternative model with a velocity factor beats the conventional three parameter

model, because it has the advantage of one more parameter dimension for the PSO

to search the optimal solution. By calculating the number of cells in the OG map,

it is shown the proposed model has a 0.3% improvement over the conventional

model. It is also worth mentioning the slope (-0.0097) in Figure 4.10 and the

optimal ka (-0.0073) in Table 4.1 are similar. This shows the proposed model

is consistent in the two independent experiments. Figure 4.11 allows a zoom-in

view of visual inspection of two OG maps built using the developed model with

opposite signs of acceleration factor ka.
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Table 4.1: Odometry Calibration Results Using Different Models on the Same Real
Environment Dataset. Reused from [4] ©2017 IEEE.

Proposed Conceivable
model

Traditional
model

The proposed
model with

model with velocity
factor

(3 parameters) opposite sign of
ka

Rl (m) 0.098360 0.101256 0.098028 0.098360

Rr (m) 0.097966 0.100856 0.097627 0.097966

B (m) 0.352937 0.363715 0.352098 0.352937

ka (s2) -0.00726184 N/A N/A 0.00726184

kv (s) N/A -0.00619651 N/A N/A

Cell number in
OG map

671,964 673,742 674,006 681,134

Map Informa-
tion (bits/cell)

0.984728 0.982253 0.981816 0.972798

(a) (b)

Figure 4.11: Top right corner (1 m by 1 m) of the occupancy grid map built by
attaching 245 scans to robot pose estimation results after more than 300 generations
of PSO based odometry calibration. (a) Using optimal odometry parameters of the
developed model. (b) Using opposite sign of ka, i.e., 0.00726184 s2. Reused from [4]
©2017 IEEE.
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4.6 Summary and Conclusions

Below is a suggested procedure of calibrating the differential driven mobile robot

using the proposed four odometry parameters model under linear acceleration

conditions.

1. Calibrate sensor extrinsic and intrinsic parameters. Users can choose a

range of sensors, such as LRF, Kinect, sonar, various cameras, with the

aim to measure the robot pose accurately. The sensors can be onboard

sensors or external ones.

2. Perform time synchronisation between host computer and the sensors, in-

cluding wheel encoders [82, 83].

3. Calibrate four odometry parameters including ka using an appropriate

method [5, 21, 23, 1, 50, 3, 87, 88]. An offline optimisation method [3]

has been used to choose values of the four odometry parameters that max-

imises the map quality.

The following conclusions are reached:

1. The effect of acceleration on the robot odometry wheel radius is significant.

A wheel radii variation of 9% was measured when acceleration ranges from

-0.45 m/s2 to 0.45 m/s2.

2. The linear change in wheel radius with acceleration predicted by theory

has been validated by experiments. Improvements in laser map quality

have also been demonstrated using the new odometry model.

3. The developed model requires little extra computation and knowledge of

the current robot acceleration in addition to the usual wheel angle changes
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on each time step. Whilst it is possible to extract the robot acceleration

by twice differentiating odometry position or the use of accelerometers,

these are both relatively noisy. Since the robot motion is produced by

programmed commands, the acceleration can be taken directly from the

motion commands (as the author did in the experiments). The errors in

the proportional integral derivative (PID) motion control loop of the robot

are anticipated to be much smaller than twice differentiating position or

wheel encoder measurements or using accelerometers.

4. The two experimental justifications of the acceleration odometry model

also provide two methods for calibrating a robot and floor combination.

Optimisation of the map quality can be applied to existing environments,

and can provide the bonus of the calibration of laser extrinsic parameters.

5. The author anticipates that the four calibration parameters of the odometry

will depend on the floor surface type like research findings in Chapter 3. It

is assumed that the robot only has linear motion and on the spot turns in

this chapter.

In the next chapter, the restriction of straight paths of this chapter is lifted in

the investigation of odometry changes due to acceleration.
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5

Odometry Model for Curved Paths

5.1 Introduction

The odometry model in Chapter 4 only incorporates robot accelerations, where

the robot travels in a straight line. However, a wheeled robot can maneuver in

more complex trajectories. This motivates the study of curved paths that affect

odometry accuracy due to centrifugal forces and scrubbing of tyres on the floor

as robots twist. An aim of this chapter is to investigate the relationship between

wheel radii and wheel separation distance B and centrifugal forces on the robot.

From this investigation a new odometry model is proposed.

The research in this chapter is applicable to differential drive wheeled mobile

robots with pneumatic tyres travelling on flat and smooth surfaces. This has

been chosen to simplify the problem and also because these conditions apply

to many popular robot applications. This chapter proceeds as follows. Section

5.1 and Section 5.2 introduce the research aims and provide a literature review

respectively. A theoretical analysis of the linear relationship between wheel sep-

aration distance and the square of robot speed is introduced in Section 5.3. The

analysis is consistent with experimental results in Section 5.4. However, the esti-

mates of B with very slow wheel angular velocities (e.g., radius of curvature near

B/2, half of the wheel separation) did not match our model in Section 5.3. This

motivated further investigation of the wheel radius at slow wheel angular velocity

in Section 5.5 where a new phenomenon is observed. The effective wheel radius

increases as wheel angular velocities become small. This effective wheel radius

effect is modelled with a saturation growth curve in Section 5.5. The saturation
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growth model is applied to a new dataset for a robot running on circular paths

to justify the proposed linear relationship between wheel separation and square

of robot speed in Section 5.6. Section 5.7 justifies the two models developed in

Section 5.3 and Section 5.5 on a soft carpet with real experiments. Section 5.8

proposes a 5 parameter model based on the results of previous sections. This

model is tested on a varied set of robot paths. Finally, a summary of this chapter

is given in Section 5.9.

5.2 Literature Review of Odometry with Slip

Gonzalez et al. [89] developed a closed-loop controller for off-road robots to

improve visual odometry accuracy by compensating longitudinal robot slip. The

outdoor tracked robot was equipped two commercial level cameras and driven on

gravel terrain for circular and U-shape trajectories for experiments. Their results

showed some improvement of localisation accuracy despite a small mean slip of

5%. They expected their controller to show higher improvements on terrains with

higher slip values. However, their controller was designed to include longitudinal

slip only without considering lateral slip effects.

In the research field of vehicle motion control, some other researchers have devel-

oped systems to allow wheel slippage in both longitudinal and lateral directions.

Tian and Sarkar [90] developed regulation and turning control techniques to deal

with the underactuated nonlinear dynamic system, where both lateral and longi-

tudinal slips were included for a wheeled mobile robot. They implemented control

methods in simulations to verify the proposed algorithms aiming to better ma-

neuver a mobile robot on slippery surfaces. These two directions of slippage were

also considered in [91], where Khan et al. developed a logic-based control scheme

for a wheeled mobile robot, which could successfully follow a designed circular

trajectory in the presence of wheel slippage. Low and Wang [92] designed a con-

trol scheme using real-time kinematic (RTK)-GPS and other aiding sensors to

measure the posture, velocities, and perturbations of an outdoor wheeled mobile
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robot in the presence of wheel skidding and slipping. They related the lateral ve-

locity of the robot with the rear slip angle via geometric relations. They improved

the path following accuracy with RTK-GPS, which was normally not available

for indoor robots.

Some other researchers focus on the effects between the lateral force and wheel

slip angles. A simplified bicycle model of a robot was used to derive an explicit

lateral force control to minimise the force error in simulation environment with

different stiffness of floors in [93]. Fauroux and Vaslin [94] increased the steering

efficiency of an all-road 6×6 electric wheelchair by analysing lateral and normal

forces on wheels with minor adjusting of the vehicle suspension.

In the field of robot formation control, Tian and Sarkar [95] developed a sensitive-

controller that could stabilize the formation of wheeled mobile robots even when

slip was significant. They declared that was the first paper to consider wheel slip

in formation control. However, they only justified their method using simulation

without real robot experiments.

The wheel slip mentioned in the literature review above is predominantly incor-

porated in outdoor mobile robot control systems. In contrast, the research in this

chapter focuses on indoor wheeled mobile robot odometry calibration with a novel

model for wheel radius and wheel angular velocity. Some readers may wonder

about the existence and importance of wheel slippage for indoor mobile robots.

In this chapter, the author theoretically and experimentally investigates this is-

sue and finds there can be up to a 9.2% estimation improvement for the wheel

radius under common operating conditions of the Pioneer 2 robot. In the end, a

five parameter odometry model that augments the conventional three parameters

odometry model is developed and justified with real experiments.
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Figure 5.1: Instantaneous centre of curvature (ICC) of a differential drive robot.
Adapted from [7].

5.3 Theoretical Investigation

5.3.1 Radius of Curvature

For a wheeled mobile robot to exhibit curved rolling motion there exists a point

around which each wheel on the vehicle follows a circular course [7]. This point is

called the instantaneous centre of curvature (ICC) or the instantaneous centre of

rotation (ICR). Figure 5.1 shows the ICC of a differential drive robot consisting of

two wheels mounted on a common axis controlled by separate motors. In Figure

5.1, vl and vr are the left and the right wheel velocities and vrobot and ωrobot are

robot velocity and robot angular velocity all with respect to a global coordinate

system. At any instant in time, we can derive the equations from Equation (5.1)

to Equation (5.13) when denoting radius of curvature as R.

vl = (R− B

2
)ωrobot (5.1)

vr = (R +
B

2
)ωrobot (5.2)

By solving Equation (5.1-5.2) for R, we get Equation (5.3). The curvature of the

trajectory is κ = 1/R. There are several special cases summarised in Table 5.1

in terms of the robot trajectory.
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Table 5.1: Relationship between Radius of Curvature of Robot Paths and Wheel
Velocities without Slippage.

Wheel velocities (m/s) Radius of curva-
ture (m)

Robot motion

vl = vr R =∞ Travel straight or sta-
tionary.

vl = −vr R = 0 Rotate about a point
midway between two
wheels.

vl = 0,vr > 0 R = B
2

Rotate counter clockwise
with ICC at the centre of
left wheel.

vl > 0,vr = 0 R = −B
2

Rotate clockwise with
ICC at the centre of right
wheel.

vl < 0,vr > 0,vl 6= −vr 0 < R < B
2

Rotate counter clockwise
with ICC between the
middle of two wheels and
the centre of left wheel.

vl > 0,vr < 0,vl 6= −vr −B
2
< R < 0 Rotate clockwise with

ICC between the middle
of two wheels and the
centre of right wheel.

vl × vr > 0, vl 6= vr |R| > B
2

Travel forward or back-
ward with ICC outside
the robot.
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R =
B

2

(vr + vl)

(vr − vl)
(5.3)

5.3.2 Effective B due to Tyre Vertical Elastic Displacement

This section investigates the effect of vertical elastic deformation of wheel tyres

due to centrifugal forces on a robot. In this analysis, it is assumed that both

wheels of the robot remain on the ground. The following analysis is primarily

based on a left turning case. For simplification the trajectory is assumed to have

an instantaneous radius of curvature greater than B/2. Figure 5.2 shows the

forces of interest. The notation is defined here:

R: radius of curvature of robot path.

v: robot speed.

g: gravitational acceleration.

m: mass of the robot.

Fc: centrifugal force caused by the left turning.

h: height of the robot centre of mass.

T: middle point between the contact points of two wheels.

FgL and FgR: supporting force upon the left wheel and the right wheel from the

floor respectively.

Figure 5.2: Schematic graph of the forces of interest.

.
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It is assumed that the camber angles of both driving wheels are zero (i.e., wheels

remain in a vertical plane) and that the lateral forces on each tyre are equal,

resulting in no change in B due to lateral forces. This is reasonable since both

tyres are physically constrained to be B apart and have similar lateral stiffness.

This may naturally generate the same lateral forces when displacing the same

amount during a turn. The analysis assumes very little lateral slip occurs. The

change in radius of each wheel is modelled, which is caused by uneven distribution

of load when cornering.

In Figure 5.2, weight of the robot is balanced by the ground opposing forces

through tyres. Hence we have Equation (5.4).

mg = FgL + FgR (5.4)

The total torque about the point T must be 0. This gives Equation (5.5).

FgR
B

2
− FgL

B

2
−
mv2

R
h = 0 (5.5)

Solving Equation (5.4) and Equation (5.5)
FgL =

mg

2
−
mv2h

RB

FgR =
mg

2
+
mv2h

RB

(5.6)

It is assumed that both tyres have a vertical stiffness kv. So we have from Equa-

tion (5.6) 
RL = RL0 +

1

kv

(
mg

2
− FgL

)
= RL0 +

mv2h

RBkv

RR = RR0 −
1

kv

(
FgR −

mg

2

)
= RR0 −

mv2h

RBkv

(5.7)

where RL0 and RR0 are the wheel radii when the robot is travelling on a straight

line path. For a robot turning to the left by a small angle dθ, the travelling

distances of left and right wheels are calculated as dL and dR in Equation (5.8).
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Thus the rotating angles of left and right wheels, σL and σR, during the dθ robot

heading change can be calculated in Equation (5.9).dL = (R− B
2

)dθ

dR = (R + B
2

)dθ
(5.8)



σL ∼=
dL

RL

=

(
R− B

2

)
dθ

RL0 +
mv2h

RBkv

σR ∼=
dR

RR

=

(
R + B

2

)
dθ

RR0 −
mv2h

RBkv

(5.9)

We can model this change in terms of changes in B. The author defines Beff as

the new value of B that produces the same robot turn angle of dθ when assuming

the radii are still RL0 and RR0. Thus we get Equation (5.10) and Equation (5.11).

dθ =
dR − dL
Beff

(5.10)

dL ∼= σLRL0

dR ∼= σRRR0

(5.11)
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Therefore, Beff can be calculated as in Equation (5.13). Denote Γ =
mv2h

RBR0kv
,

assuming R0 = RL0 = RR0.

Beff
∼=
dR − dL
dθ

=

(
R + B

2

)
dθ

RR0 −
mv2h

RBkv

RR0 −
(
R− B

2

)
dθ

RL0 +
mv2h

RBkv

RL0

dθ

=

(
R + B

2

)
1− Γ

−
(
R− B

2

)
1 + Γ

=

(
R + B

2

)
(1 + Γ)−

(
R− B

2

)
(1− Γ)

1− Γ 2

(5.12)

for small Γ

Beff
∼=
(
R +

B

2

)
(1 + Γ)−

(
R− B

2

)
(1− Γ)

= B + 2RΓ

= B + 2R
mv2h

RBR0kv

= B +

(
2mh

BR0kv

)
v2

(5.13)

where the unitless Γ is assumed to be very small. Let us use an example cal-

culation to get a sense of the result above. Tyre vertical stiffness kv [96, 67] is

assumed to be 100000 N/m, and m = 20 kg, v = 0.1 m/s, h = 0.2 m, R = 1 m,

B = 0.36 m, R0 = 0.1 m for a robot. Γ 2 = 1.2e−10 � 1. Equation (5.13) means

the effective wheel separation increases approximately proportional to the square

of robot speed if radius of curvature of trajectories is larger than B/2, i.e., both

wheels rotate in the same direction (clockwise or counter-clockwise).
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5.4 Linear Dependency of B with the Square of Robot Speed

In this section, the author experimentally investigates the model in Subsection

5.3.2. Figure 5.3 is a picture of the robot and its surroundings. The floor is

cleaned with a vacuum cleaner before every experiment, because the robot may

run over grit or dust resulting in significant non-systematic odometry errors.

The odometry model used in this section is the conventional three parameter

odometry model including Rl, Rr and B, since the robot speed is kept constant

and accelerations modelled in the previous chapter can be ignored.

To get an estimate of Rl and Rr when there is little longitudinal and centrifugal

accelerations under slow movements, a PSO based odometry calibration was per-

formed when the robot speed was below 0.05 m/s. Afterwards Rl and Rr were

kept constant and only B was optimised with PSO based optimisation for other

datasets, where the robot travels steadily on different circular paths. The baseline

estimate of Rl and Rr is designed to reduce the correlation effect among these

three odometry parameters when optimising B. Calibrated Laser Range Finders

(LRFs) extrinsic parameters in Chapter 3 were adopted, since the set up of LRFs

was the same. The time synchronisation technique between encoders and LRFs

as in Chapter 4 was performed. These datasets were collected on September 27,

2017. This is noted, since changes in temperature and air pressure can affect

pneumatic tyre calibration results.

Figure 5.4 shows the calibration results for wheel separation distance B. The 2D

view of relevant calibration results of wheel separation is shown in Figure 5.5 to

remove the ambiguity of viewing 3D data on a 2D page.

The experimental results are discussed under two different robot working condi-

tions. The first one is for results where the robot travels with radius of curvature

greater than B/2 as assumed in the model analysis in Subsection 5.3.2. Figure

5.6 shows a trend that is consistent with the analysis, i.e., the effective wheel

separation increases linearly with respect to the square of robot speed. However,
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Figure 5.3: Robot and its surrounding environment in the dataset collected on
September 27, 2017.

Figure 5.4: Calibration results of wheel separation distance B for datasets on Septem-
ber 27, 2017.
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(a)

(b)

(c)

Figure 5.5: 2D view of estimated wheel separation distances B for datasets on Septem-
ber 27, 2017. (a) B vs. ω. (b) B vs. v2. (c) B vs. Radius of Curvature
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Figure 5.6: Calibration results of effective wheel separation for radius of curvature
greater than B/2 cases of datasets on September 27, 2017.

this is not significant statistically nor are the effects pronounced. Hence this ef-

fect will not be included in the odometry model in Section 5.8. This effect may

be more significant if the robot travels at higher speeds and angular velocities.

The author leaves this investigation to the future work.

The physical wheel separation distance is measured using a ruler as shown in Fig-

ure 5.7. The values of the estimated B are within the measured range [0.33, 0.38]

m. The second group of data corresponds to the cases where the robot travels

with radius of curvature less than B/2. From Figure 5.5 (b), we can see that

it is not clear what the relationship between effective wheel separation and the

square of robot speed is for very slow movements. Considering the fact that wheel

separation distance is correlated with wheel radii, the author wondered whether

wheel radii may change with respect to different wheel velocities. This leads to a

further investigation of the relationship between effective wheel radius and wheel

angular velocity in the next section.
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(a) (b)

Figure 5.7: Estimate B using a ruler. (a) Left wheel. (b) Right wheel.

5.5 Model of Wheel Radius and Wheel Angular Velocity

5.5.1 Nonlinear Regression with Saturation Growth Model

The testing environment for this section and Section 5.6 is shown in Figure 5.8.

These datasets were collected on October 13, 2017. The robot was controlled

to steadily accelerate before maintaining a constant speed for about 2.5 meters.

Then it steadily decelerated to a stop and rotated around 90 degrees. Afterwards,

the robot repeated this pattern but ran at different speeds. One example plot of

robot speeds is shown in Figure 5.9. The laser scans were sampled for mapping

and calibration according to the distance travelled by the robot. For this experi-

ment, a laser scan after every 0.1 m was utilised for future processing, including

building a map. PSO cannot always guarantee to find the global optimal point of

a cost function, in this case, the maximum of MI map quality metric introduced

in Chapter 3. Therefore the PSO based odometry calibration for each straight

trajectory with constant speeds was repeated 10 times. 36 particles and Von-

Neumann neighbourhood topology were chosen for the PSO. Each optimisation

runs for 100 generations, i.e., 3600 function evaluations of the OG maps. The map

is set to have a resolution of 5 mm square. Odometry parameters corresponding

to the highest map quality test are selected.

107



5.5. MODEL OF WHEEL RADIUS AND WHEEL ANGULAR VELOCITY

Figure 5.8: Robot and its surrounding environment in Subsection 5.5.1 and Section
5.6.
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Figure 5.9: Robot speeds on straight paths.
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Figure 5.10: Wheel radii variation with respect to wheel angular velocities. (a)Left
wheel. (b) Right wheel.

The results of experiments are shown in Figure 5.10. Interestingly, there is an

unanticipated reduction of wheel radius at slow speeds. The author’s aim is to

find a model for the wheel radius given the wheel angular velocity, which can fit

the data in Figure 5.10. Afterwards, this model can be applied to predict the

wheel radius using the direct measurement of wheel angular velocity from encoder

data in the real time. Nonlinear regression is used here.

One of the commonly used error metric of the differences between values pre-

dicted by a model and the values actually observed is root-mean-square deviation

(RMSD) [97]. Equation (5.14) is the RMSD formula of predicted values ŷi for

observations i of a regression’s dependent variable yi over n samples.

RMSD =

√∑n
i=1 (ŷi − yi)2

n
(5.14)

Two candidate models, namely exponential decay in Equation (5.15) and satu-

ration growth in Equation (5.16) were tested after visually inspecting the data

in Figure 5.10. Both models have three independent parameters or degrees of

freedom. The parameters are intuitively explained below. An absolute sign is

applied to wheel angular velocity ω in both models assuming wheel radii follow
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the same model when wheels rotate either clockwise or counter clockwise.

re (ω) = Re∞ + (Re0 −Re∞)× e
−
|ω|
τe (5.15)

rs (ω) = Rs∞ +
Rs0 −Rs∞

|ω|
τs

+ 1

(5.16)

� Re0, Rs0: wheel radius when a robot wheel does not rotate, ω = 0 rad/s.

� Re∞, Rs∞: wheel radius when a robot wheel rotates at high speed, ω →∞
rad/s. These variables represent the commonly recognised wheel radius

parameter in terms of odometry calibration.

� τe: exponential decay constant with units of rad/s.

� τs: wheel angular speed when wheel radius is equal to (Rs0 +Rs∞) /2.

Using the patternsearch function in MATLAB [98], the author constructs the

models and minimise RMSD of the regression of data in Figure 5.10. The results

are shown in Figure 5.11 and in Table 5.2. The mean absolute error (MAE) is

also reported. It is clear that the saturation growth model fits the data better.

Therefore, the saturation growth model is selected. During the experiments, it

was clear that the robot wheels cannot rotate continuously and smoothly for

wheel angular velocities below 0.035 rad/s. This appears to be an issue related to

friction and minimum motor torque. Therefore speeds greater than 0.035 rad/s

were used in experiments.
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Figure 5.11: Curve fitting of wheel radii with respect to wheel angular velocities. (a)
Left wheel using exponential model fitting. (b) Right wheel using exponential model
fitting. (c) Left wheel using saturation growth model fitting. (d) Right wheel using
saturation growth model fitting.

Table 5.2: Curve Fitting Results (RMSD and MAE) of Wheel Radii and
Angular Velocities.

Left wheel Right wheel

Exponential model RMSD (mm) 0.393 0.472

saturation growth model RMSD (mm) 0.269 0.301

Exponential model MAE (mm) 0.300 0.376

saturation growth model MAE (mm) 0.220 0.251
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5.5.2 Model Verification with Independent Datasets

To investigate the accuracy of the estimation of wheel radii using the method

in Subsection 5.5.1, the author performed the same experimental method upon

different datasets collected on October 8, 2017. The testing environment is shown

in Figure 5.12. The robot is commanded to travel straight multiple times on

Lino. Robot velocities are depicted in Figure 5.13. The author repeated 10 times

(except the last group which had 9 repeating paths with the same speed) for the

same robot speeds of the last 49 straight paths as shown in Figure 5.13. Figure

5.14 shows the normal fitting results of those five repeating experiments with error

bars of ±2 standard deviation in both axes. These results confirm the finding

in Subsection 5.5.1 is valid with very small errors. Therefore it is possible to

apply the model to predict the instantaneous wheel radius of any wheel angular

velocities. The predicted results are more accurate than the commonly assumed

constant wheel radius value in the literature. It is possible to numerically calculate

the relative wheel radius difference ratio δRratio for ω = 3 rad/s and ω = 0.05

rad/s. Use the saturation growth model for the right wheel as shown in Figure

5.11 (d), we have

δRratio =
g(0.05)− g(3)

g(3)
× 100 ∼= 9.2% (5.17)

g(3) is used as the denominator instead of g(0.05), because a wheel angular ve-

locity of 3 rad/s is closer to normal working speed of an indoor robot. This 9.2%

increase of wheel radius has not been mentioned in the literature to the author’s

knowledge despite its importance in odometry calibration.

Some readers may now question the validity of Figure 5.6, considering that Rl

and Rr are set to be constant instead of applying the saturation growth model

proposed in this subsection. However, we can see that the curve fitting results

in Figure 5.11 indicate that wheel radii are varying significantly only at wheel

angular velocities less than 0.5 rad/s, i.e., approximately 0.0025 m2/s2 in terms

of square of robot speeds. These slow movement data correspond to the first 4
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Figure 5.12: Robot and its surrounding environment in Subsection 5.5.2.
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Figure 5.13: Robot speeds of each straight paths of datasets in Subsection 5.5.2.

data points in Figure 5.6. Therefore, the slope of the line fit in Figure 5.6 will be

almost unchanged.
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Figure 5.14: Curve fitting of wheel radii with respect to wheel angular velocities of
datasets in Subsection 5.5.2. (a) Left wheel using exponential model fitting. (b) Right
wheel using exponential model fitting. (c) Left wheel using saturation growth model
fitting. (d) Right wheel using saturation growth model fitting.
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Figure 5.15: Normal fitting results of five repeating experiments in Figure 5.14 with
error bars of ±2 standard deviation in both axes. (a) Left wheel. (b) Right wheel.
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5.6 Calibration of Wheel Separation on Circular Paths

The saturation growth model in Subsection 5.5.1 is applied to estimate wheel

radii for all the rotation experiments in this section. A robot will have a constant

wheel separation distance if it turns on circular paths with a constant angular ve-

locity and a constant speed on a certain floor. 74 independent datasets including

different circular paths were collected on October 13, 2017. Figure 5.16 shows the

calibration results of wheel separation when using the saturation growth model

for wheel radii and wheel angular velocities.

Figure 5.16 shows the calibration results of wheel separation distances when ap-

plying the saturation growth model built in Figure 5.11 (c) and (d). The satu-

ration growth model helps to better predict the wheel separation distances espe-

cially for slow wheel rotation cases, i.e., those effective wheel separation distances

below 0.355 m in Figure 5.5 were compensated and became closer to other data

points in Figure 5.16. This represents a continuous change of B over various

robot speeds and angular velocities, which is considered to be natural and more

reasonable. From these results, we can see the following trends.

� Radius of Trajectory = 0: wheel separation distances spread more widely

than the other three cases. This may be due to the scrubbing of tyres on

the floor bringing more non-systematic errors of the estimation.

� 0 < Radius of Trajectory < B/2: These cases tend to have larger effective

B values in Figure 5.16 (c). The reason behind is left for future research.

� Radius of Trajectory = B/2: These cases tend to have smaller effective B

values in Figure 5.16 (c). The reason behind is also left for future research.

� Radius of Trajectory > B/2: These cases correspond to the assumption of

the model developed in Subsection 5.3.2, i.e., both robot wheels rotate in
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the same direction, forward or backwards. Effective B values appear to

be positively proportional to the square of robot speeds as the analysis in

Section 5.3. Figure 5.17 shows the line fit result of this linear relationship.

From Figure 5.17 (b) we have

B̂ = f(v2) = 0.0046465v2 + 0.35603 (5.18)

We can calculate how much this model can improve the estimation of B. Consider

B estimation relative ratio δBratio for v2 = 0 m2/s2 and v2 = 0.3 m2/s2. We have

δBratio =
f(0.3)− f(0)

f(0)
× 100 ∼= 0.39% (5.19)

This means that our linear model of wheel separation and square of speed im-

proved the estimation of B by 0.39% for these datasets.
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(a)

(b)

(c)

Figure 5.16: Calibration results of wheel separation distances when applying the
saturation growth model built in Figure 5.11 (c) and (d). (a) B vs. ω. (b) B vs. v2.
(c) B vs. Radius of Curvature.
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Figure 5.17: Partial calibration results of B on a lino floor when using saturation
growth model for wheel radii and wheel angular velocities under the assumption in
Subsection 5.3.2. (a) B vs. ω. (b) B vs. v2.

5.7 Experiments on a Carpet

Changes in B are investigated on a carpet, which is softer and more uneven

compared to Lino. The testing environment is shown in Figure 5.19. The robot

velocities during the straight running experiments are shown in Figure 5.18.

Firstly, the exponential decay curve fitting and saturation growth curve fitting

are applied to wheel radii and corresponding wheel angular velocities as in Fig-

ure 5.20. It indicates that the saturation growth model can fit better than the

exponential decay model. Secondly, the raw data of both Rl and Rr show clear

differences for the same wheel angular velocities. The corresponding Rl and Rr

pairs are estimated from opposite travelling directions on the carpet. The di-

rectional carpet pile may have caused these differences. This pattern related

phenomenon is left for future research. No research papers are known to address

directional odometry properties on carpets.

Figure 5.21 and Figure 5.22 show the 3D and 2D views of the calibration results

of effective wheel radii on the carpet after applying saturation growth model
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Figure 5.18: Robot speeds during straight running tests.

(a) (b)

Figure 5.19: Robot and its surrounding environment in Section 5.7 (a) Straight
running paths. (b) Circular running paths.
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Figure 5.20: Curve fitting of wheel radii with respect to wheel angular velocities for
datasets on Carpet 2. Note that the travel direction affects wheel radii due to the
directional surface of the carpet or floor inclination. (a) Left wheel using exponential
model fitting. (b) Right wheel using exponential model fitting. (c) Left wheel using
saturation growth model fitting. (d) Right wheel using saturation growth model fitting.
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Figure 5.21: 3D view of the calibration results of wheel separation on a carpet.

for wheel radii and wheel angular velocities. For radii of curvature of circular

trajectories greater than B/2 cases in Figure 5.23, the results match the linear

model in Subsection 5.5.1.

From the results in Figure 5.23, it is reasonable to assign a larger estimation

variance to B on the carpet compared to that on the lino. The surface texture

and softer materials of the carpet may cause significant non-systematic errors of

the odometry system. However, the experimental results here still show that B

increases linearly with respect to v2 when the radii of curvature of robot tra-

jectories are greater than B/2. It would be better to repeat this experiment

for multiple times and report the statistical results of the proposed model, but

this is not achievable due to the limit of the candidature period. The results in

Figure 5.22 show the similar trend as listed in Section 5.6. For example, wheel

separation distances spread more widely than the other three cases when Radius

of Trajectory = 0. The effective wheel separation distances when 0 < Radius of

Trajectory < B/2 are generally larger than those when Radius of Trajectory =
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(a)

(b)

(c)

Figure 5.22: Calibration results of wheel separation distance B when using saturation
growth model for wheel radii and wheel angular velocities on a carpet. (a) B vs. ω.
(b) B vs. v2. (c) B vs. Radius of Curvature.
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Figure 5.23: Partial calibration results of B on a carpet when using saturation growth
model for radii of curvature greater than B/2 cases on a carpet. (a) B vs. ω. (b) B
vs. v2.

B/2. Note that the tyre pressures of both wheels may have been different for

datasets on Lino in the last section and datasets on the carpet in this section.

Hence conclusions cannot be inferred from the comparisons of experiments on

Lino and on the carpet.

5.8 Five Parameter Differential Drive Mobile Robot Odome-

try Model

Experiments and modelling in Section 5.5 suggest the following differential drive

mobile robot odometry model with five independent variables as Equation (5.20)

and Equation (5.21). Although the cases with wheel angular velocity less than

0.035 rad/s could not be checked experimentally, the implementation of the model

limits robot wheel radii to be equal to the radii at wheel angular velocity of

0.035 rad/s for the utilised robot. This makes little difference in practice since

robot movement will be very small at this speed. The robot ground speed is

approximately 3.5 mm/s if we assume the wheel radius is 0.1 m.
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Rl = g1(ωl) =



R∞l +
R0 −R∞l
|ωl|
τ

+ 1

, |ωl| > 0.035 rad/s

R∞l +
R0 −R∞l
0.035

τ
+ 1

, |ωl| < 0.035 rad/s

(5.20)

Rr = g2(ωr) =



R∞r +
R0 −R∞r
|ωr|
τ

+ 1

, |ωr| > 0.035 rad/s

R∞r +
R0 −R∞r
0.035

τ
+ 1

, |ωr| < 0.035 rad/s

(5.21)

� R0: wheel radius when the robot wheel does not rotate, ωl = ωr = 0 rad/s.

� R∞l, R∞r: limiting wheel radii when the left and the right wheels approach

infinite speeds respectively, ωl = ωr =∞ rad/s.

� τ : wheel angular velocity when wheel radius is equal to (R0 +R∞l) /2 and

(R0 +R∞r) /2 for the left and the right wheels respectively.

� B: constant wheel separation distance.

5.8.1 Verification Experiments

This section calibrates the five parameter model developed above with real robot

experiments under changing speeds and robot angular velocities on a hard lino

floor.
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Figure 5.24: Testing environment for a robot running with different speeds and an-
gular velocities.

Datasets in this section were collected directly after experiments in Section 5.4

on September 27, 2017. Figure 5.24 shows the testing environment in this subsec-

tion. Figure 5.25 shows the robot speeds and linear accelerations during dataset

collection in this subsection.

Figure 5.26 and Figure 5.27 show the mean and maximum Map Information over

500 generations of a PSO algorithm aiming to maximise the OG map quality

respectively. Laser scans were sampled for every 0.3 m travelling distance and

15 degree rotation of the robot when being used to generate the OG map in

the PSO. There are 283 different laser scans in total. Figure 5.28 shows the

converging evolutions of five independent variables in the PSO. The optimised

result is shown in Table 5.3.

Figure 5.29 is another way to demonstrate that the five parameter odometry

model is effective. Here a brute force search for one of the five parameters was

performed by assigning the other four parameters to be the optimised result in

Table 5.3. Every independent variable is showing a clear converging basin.

Figure 5.30 is a zoom-in view of two objects in the testing environment. The

approximate widths of the wood block, the gap and the foam are labelled in the
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Figure 5.25: Robot speeds and accelerations in Subsection 5.8.1. (a) Robot speeds.
(b) Robot linear accelerations.
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Figure 5.26: Mean Map Information over 500 generations of PSO in Subsection 5.8.1.

Table 5.3: Optimised Parameters of the Complete Odometry Model with a PSO in
the Experiments in Figure 5.24.

R0 (m) R∞l (m) R∞r (m) τ (rad/s) B (m) MI (bits/cell)

0.137829 0.0970833 0.0972093 0.0128328 0.358674 0.967074

figure. These measurements can be used as ground truths to justify the OG maps

built with the calibrated odometry system as in Figure 5.31.
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Figure 5.27: Maximum Map Information over 500 generations of PSO in Subsection
5.8.1.
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Figure 5.28: Evolutions of five independent variables in the PSO process. (a) R0. (b)
R∞l. (c) R∞r. (d) τ . (e) B.
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Figure 5.29: Grid searching of one of five independent variables in the complete
odometry model by fixing the other four parameters to be the optimised result in Table
5.3. (a) R0. (b) R∞l. (c) R∞r. (d) τ . (e) B.
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Figure 5.30: Zoom-in view of two objects in the testing environment.
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(a)

(b)

Figure 5.31: OG map generated using optimised result in Table 5.3. There are 283
different laser scans by sampling every 0.3 m travelling distance and 15 degree rotation
of the robot. (a) OG map. (b) Zoom-in view. Using the distance measurement tool
in the ROS visualisation tool, rviz, the author measures a distance of 0.717 m in the
grid map between the left edge of the wood block and the right edge of the white foam
block. This distance is very close to the physical measurement of 0.636 m (i.e., summing
the widths of all three segments) in Figure 5.30 considering there are 283 scans over a
relatively long period and running distances.
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5.9 Summary and Conclusion

This chapter has focused on odometry calibration on curved robot paths. A

five parameter model for differential drive mobile robot equipped with pneumatic

tyres is developed after some key modelling efforts. In the beginning, theoretical

analysis based on the first principle force analysis and experiments about the rela-

tionship between wheel separation and the square of robot speed are conducted in

Section 5.3 and Section 5.4. Then the author develops a saturation growth model

representing the relationship between wheel radii and wheel angular velocities rel-

evant for slow speeds in Section 5.5. The extra two parameters are due to wheel

radii increases at slow speeds. The model shows that the wheel radius increases

significantly as the wheel angular velocity decreases. This makes a difference of

9.2% and is significant for wheel angular velocities less than 0.035 rad/s for the

Pioneer 2 robot used in this research. This model is utilised while investigating

the relationship between robot wheel separation distance and the square of robot

speeds in Section 5.6. Interestingly, the author intended to investigate the wheel

separation with regard to the square of robot speed in the beginning. Then the

shrinking effect of wheel radius was found with an increasing of wheel angular ve-

locity. After applying the saturation growth model to the wheel shrinking effect,

the wheel separation distances for different robot speeds did not show significant

differences. In Section 5.7, the author provides justification experiments on a

soft carpet, where much higher non-systematic errors were experienced compared

to those on the lino. In both experiments on a hard lino and those on a soft

carpet, some trends of the estimation of B values appeared. B values are noisier

when Radius of Trajectory = 0, i.e., robot rotating on a spot compared to other

cases. In addition, smaller B values were obtained for 0 < Radius of Trajectory

< B/2 cases compared to those when Radius of Trajectory = B/2. Lastly a five

parameter differential drive odometry model is developed in Section 5.8.
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6

Summary and Future Work

6.1 Summary

There has been intensive and continuous research into differential drive mobile

robot odometry modelling and calibration over the last few decades. However, not

much effort is focused on calibrating odometry models on heterogeneous indoor

floors, despite many researchers pointing out that robot odometry parameters

would vary depending on floor surfaces. Furthermore, there has been little in-

vestigation of the modelling the effects on odometry estimation brought about

by robot linear accelerations and lateral accelerations. This thesis has focused

on developing novel odometry models and comprehensive experiments to solve

the above mentioned problems from the first principle taking advantage of state-

of-the-art optimisation methods and classification techniques. Key achievements

and findings of this thesis are summarised below:

Two Novel Floor Classification Systems: The author has developed two

floor classification systems that allow fast differentiation among heterogeneous

floors. The first one is based on a colour intensity sensor equipped beneath the

robot. The colour intensity values of the light reflected by the floor surface are

fed into a Support Vector Machine (SVM) classifier. This system achieves greater

than 98.5% precision and recall rates for 6 different indoor floors. The other floor

classification system uses motor current compensated by online floor inclination

angle sensing from an accelerometer as the input data for a SVM classifier. This

system can successfully differentiate floors with the same colour or colour patterns

as shown in Chapter 2.
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6.1. SUMMARY

Calibration of Odometry and Sensor Extrinsic Poses on Heterogeneous

Floors: Secondly, two odometry calibration methods for mobile robot odometry

and sensor extrinsic parameters on multiple floors have been developed in Chapter

3. An online odometry calibration system based on Extended Kalman Filter

(EKF) for differential drive mobile robot on several floors has been designed

and experimentally validated in both simulation and real lab environment. In

addition, the author has developed an offline Particle Swarm Optimisation (PSO)

based optimisation system aiming to calibrate odometry parameters and laser

range finder (LRF) extrinsic parameters. The Map Information (MI) map quality

metric of Occupancy Grid (OG) is chosen as the cost function of PSO. These two

different calibration methods are shown to converge into a reasonable basin and

result in better location and mapping quality.

Novel Odometry Model Incorporating Linear Acceleration: Thirdly,

the author has incorporated robot linear acceleration into the widely utilised

conventional differential drive robot odometry model and develops a four pa-

rameter odometry model. This new approach has been found after many real

experiments and also validated. It has solid theoretic support from contact me-

chanics, in particular tyre mechanics. Comprehensive sensor synchronisations

and LRF measurement calibrations have been performed before validating the

proposed model. Results have shown a 9% difference of wheel radius estimation

when acceleration ranges from -0.45 m/s2 to 0.45 m/s2. This research finding has

been published in the IEEE ICMA 2017 and won the Best Student Paper Award.

Novel Odometry Model Incorporating Lateral Acceleration: Lastly,

wheel separation distance on curved paths has been investigated. A saturation

growth model for the relationship between wheel radii and wheel angular veloc-

ities is proposed. This relationship is normally assumed constant. Afterwards,

a five parameter differential drive mobile robot odometry model is proposed and

validated using real experiments.
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6.2 Future Work

Despite the contributions in this dissertation, there are still many interesting

research problems outstanding relating to mobile robot odometry calibration.

The author would like to list the future work below:

Odometry Modelling Incorporating Robot Slip Angles

In [78], Pacejka explains slip angle as the angle between a rolling wheel’s actual

direction of travel and the direction towards which it is pointing. How does a

tyre slip angle contribute to the estimation of robot trajectories? The author

has done some preliminary research on this topic. Due to the limit time of his

PhD candidature, the author includes his theoretical analysis and preliminary

experimental results in Appendix B. The differential drive mobile robot odometry

model may be improved by incorporating slip angles in the future.

Sensor Fusion and Machine Learning for Floor Classification

Different floor sensors may have different strengths in particular applications. It

is possible to develop a multifaceted indoor floor classification system by taking

advantage of several sensors, including motor current sensors, colour intensity

sensors, cameras, tactile sensors etc.. Their sensing data can be fused using

a Kalman filter (KF). Another way to combine the information from different

sensors is to use machine learning techniques. The author encourages researchers

to apply unsupervised learning algorithms to classify different floor surfaces where

human operators are not able to give predefined labels to surfaces. It is also

possible to predict and classify floor types for each individual wheel, allowing

odometry calibration or robot motion control in a more refined strategy. Some

challenging floors, such as textured directional carpets, may require more careful
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consideration, where we can use motor current sensors to detect the instantaneous

rolling resistance, cameras to detect the pattern of light reflection if possible,

tactile sensors to detect the roughness etc..

Minimum Energy Path Planning with a Floor Inclination Map

The compensated motor current can be considered in the energy efficient path

planning problem [99] with the benefit of detecting robot load changes and ad-

justing motion accordingly. If a robot is equipped with inclination angle detection

sensors, it can generate a map with different inclination angles of the seemingly

flat indoor floors after traversing most areas of the floor. This inclination map

is beneficial for planning a minimum energy cost path from point to point. In

addition, this map could be integrated into the conventional map from a Simul-

taneous Localisation and Mapping (SLAM) system. Therefore, a location in a

map will encode not only its position information but also its relative height.

Faster Odometry Calibration for Robots on Multiple Floors via Infor-

mation Sharing

To the knowledge of the author, there have been few publications about multiple

robot odometry calibration on different floors. Calibrating odometry parameters

for a group of mobile robots on different floors has several benefits. Firstly, it

may be possible to achieve a faster and more accurate odometry calibration with

a proper coordination strategy. For example, one robot can adjust its initial esti-

mate of the odometry parameters on one floor if another robot has calibrated its

odometry on that floor. Then the convergence speed of EKF or other optimisa-

tion algorithms used for odometry calibration will be faster. Secondly, multiple

robots can share the floor classification results to reduce classification errors. Last

but not least, users may only need to calibrate one of the homogeneous robots to
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get an initial estimate of odometry parameters. This could save time but with

some loss of accuracy of the odometry parameters.

Test the Developed Model in Larger Environments

The LRF used in this thesis, Hokuyo URG-04LX LRF, has limited range mea-

surements from 0.02 m to 4 m. In addition, the lab does not have larger space

for experiments. These two limitations constrain the testing conditions in terms

of robot angular velocities, robot linear acceleration, robot speeds, map size and

so on. The author would like to perform experiments beyond these limits to

see the influence of greater tyre forces (longitudinal and lateral) to mobile robot

odometry systems. It appears that no research papers have gone this far. This

investigation will be beneficial to those robots working at higher speeds, such as

those in a warehouse for logistic purposes.

Odometry Model for Non-constant Centrifugal Acceleration on Curved

Paths

Anecdotal evidence suggests that robot trajectories have a consistent bias to the

outward/inward side of curved paths when accelerating/decelerating. This phe-

nomenon is worth more investigation. For this reason, the author did not include

this situation in the modelling in Section 5.8. According to [67], researchers have

attempted to formulate an analytical framework for predicting the longitudinal

force and the cornering force as a function of combined longitudinal slip and slip

angles. For instance, it is possible to predict cornering force available at a specific

slip angle in the presence of a tractive or braking force using a friction ellipse plot.

The friction ellipse for a specific tyre requires many experimental tests. Cornering

force of tyres can be related to the robot wheel elastic displacement and therefore

more physically meaningful odometry models may be developed.
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Investigate Odometry Model for Robots with Other Tyres (Not Pneu-

matic)

The research findings in Chapter 4 and Chapter 5 are applicable to mobile robots

with pneumatic tyres. How about robots with solid rubber tyres or other ma-

terials? These types of tyres have different characteristics of contact mechanics

against floors. They may or may not have significant effects on robot odometry

estimation.

Optimise Map Quality with Other Algorithms to Calibrate Odometry

Parameters

Since the author shows that the function between map quality and odometry

parameters has a reasonably smooth convergence basin in Subsection 3.4.6, it

is possible to use other commonly available optimisation methods, like gradient

descent, to calibrate odometry parameters faster than a PSO algorithm.

Validate Odometry Models with Open Source Datasets

It is possible to validate and compare different odometry models using pub-

licly available datasets. One of those is Robotics Advancement through Web-

publishing of Sensorial and Elaborated Extensive Data Sets (RAWSEEDS)

dataset [100]. It is a EU-financed project focusing on providing benchmarking in

Robotics from 2006 to 2009. It includes accurate ground truth data together with

high quality, multi-sensor and different environments (indoor and outdoor, static

and dynamic, artificial lighting and daylight etc.). All data from the sensors,

including encoder data, were logged in raw formats with accurately synchronized

timestamp according to a single reference clock source. The ground truth in out-

door environments were collected using a standard RTK-GPS apparatus with a
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precision up to 2-6 cm. External fixed LRFs and fiducial marker detection cam-

eras were used in the indoor ground truth of robot pose collections. In addition,

they built up a validation system with accurate laser meter measurements and

proper data processing. Data fusion was implemented using a KF for robot poses

within the perception of the fixed laser range finders and cameras for ground

truth collection.

Investigate the Saturation Growth Model for Robot Moving Back-

wards, Clockwise and Anti-clockwise

The saturation growth model developed in Section 5.5 only involves forward move-

ment cases of the testing robot. One of the assumptions is that the model will be

the same for backward movements of the robot. Although the tyres of the robot

show symmetrical patterns regarding forward and backward rotations, it would

be better to investigate the backward movement model. This work is left for the

future research. In this thesis, the author assumes that the robot rotation direc-

tion, i.e. clockwise or anti-clockwise, would not affect the odometry estimation.

More investigation about this research direction is also worthy.

6.3 Concluding Remarks

Mobile robots are deployed in more and more scenarios like schools, factories

and even on other planets. This pushes forward research about modelling and

calibrating mobile robot odometry systems. This thesis shines some light upon

this topic. It investigates the dependence of floor surfaces, wheel slip, linear

acceleration and lateral acceleration. There is still much space for improvement

by other researchers. Supporting theories in the tyre mechanics field exist but yet

to be applied to wheeled mobile robots. The longitudinal and lateral forces on

the tyre are complicated. Fortunately, there are several different tyre models for

robotics researchers to use. More accurate localisation and higher quality map will
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be achievable with better odometry calibrations. Robotics, in general, is inspiring

and challenging. The author believes more exciting ideas and experiments will

be developed in the future.
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A

Derivation of Jacobian with a Rank 2 on

Constant Curvature Turning in Subsection

3.3.1

This appendix contains a significant proportion of material developed by A/Prof.

Lindsay Kleeman.

The following derivation is done in a continuous time domain, t. When a differ-

ential drive robot is running on an arc trajectory with a constant curvature on a

flat floor, its motion is defined by its left and right wheel angular speeds as below.ωl(t) = kωc

ωr(t) = ωc
(A.1)

where k and ωc are constants. For the convenience of derivation without losing

generality, the starting pose of the robot was set to be θ(0) = 0, x(0) = 0 and

y(0) = 0. Rd and Rs are defined as

Rd , Rr − kRl (A.2)

Rs , Rr + kRl (A.3)
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Therefore we have the robot pose at time t

θ(t) =

∫ t

0

Rrωr(t)−Rlωl(t)

B
dt

= ωc
Rr − kRl

B
t

= ωc
Rd

B
t

(A.4)

x(t) =

∫ t

0

Rrωr(t) +Rlωl(t)

2
cos(θ(t)) dt

=
ωcRs

2

∫ t

0

cos

(
ωc
Rd

B
t

)
dt

=
RsB

2Rd

sin

(
Rdωct

B

)
(A.5)

y(t) =

∫ t

0

Rrωr(t) +Rlωl(t)

2
sin(θ(t)) dt

=
ωcRs

2

∫ t

0

sin

(
ωc
Rd

B
t

)
dt

=
RsB

2

[
B

Rdωc

(
1− cos

(
Rdωct

B

))]

=
RsB

2Rd

(
1− cos

(
Rdωct

B

))
(A.6)
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From Equations (A.4-A.6), we can see that the robot pose z(t) = [θ(t), x(t), y(t)]T ,

only depends on the parameters, subject to Equation (A.7).
Rs = Rr + kRl

RdB ,
Rd

B
=
Rr − kRl

B

(A.7)

For a constant arc motion defined by Equation (A.1), what is the parameter

space of odometry parameters, [Rl, Rr, B]T ? Let Rs and RdB be fixed. We can

get Equation (A.8), which represents a parametric line in the 3D parameter space

spanned by [Rl, Rr, B]T with independent variable Rl , η. Any point on this 3D

straight line will produce the same motion when Equation (A.1) is satisfied.
Rl = η

Rr = Rs − kη

B =
Rs

RdB

−
2k

RdB

η

(A.8)

For constant arc turning example, the robot pose has only 2 degrees of freedom.

Hence the Jacobian of robot pose with respect to odometry parameters, J(t), can

only have a rank of less or equal to 2. This will be explained in the following

derivation. Follow the previous convention to define l(t) = 1/B(t) and x(t) =

[Rl(t), Rr(t), l(t)]
T . These variables are in the continuous time domain.

J(t) =
∂z(t)

∂x(t)
=



∂θ(t)

∂Rl(t)

∂θ(t)

∂Rr(t)

∂θ(t)

∂l(t)

∂x(t)

∂Rl(t)

∂x(t)

∂Rr(t)

∂x(t)

∂l(t)

∂y(t)

∂Rl(t)

∂y(t)

∂Rr(t)

∂y(t)

∂l(t)


(A.9)
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For the second and third row of J(t), we need the following three equations. (t)

will be omitted for the related variables from now on.

∂ (Rs/Rd)

∂Rl

=
Rd

∂Rs

∂Rl

−Rs

∂Rd

∂Rl

R2
d

=
k (Rd +Rs)

R2
d

=
2kRr

R2
d

(A.10)

∂ (Rs/Rd)

∂Rr

=
Rd

∂Rs

∂Rr

−Rs

∂Rd

∂Rr

R2
d

=
(Rd −Rs)

R2
d

=
− 2kRl

R2
d

(A.11)

∂B

∂l
=
∂1/l

∂l

= −B2

(A.12)

Now we can calculate each term of J(t) as below.

∂θ

∂Rl

=
− kωt
B

(A.13)

∂θ

∂Rr

=
kωt

B
(A.14)

∂θ

∂l
= Rdωt (A.15)
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∂x

∂Rl

=
B

2

[
∂ (Rs/Rd)

∂Rl

sin

(
Rdωt

B

)
−
kωtRs

RdB
cos

(
Rdωt

B

)]

=
B

2

[
2kRr

R2
d

sin

(
Rdωt

B

)
−
kωtRs

RdB
cos

(
Rdωt

B

)]

=
kBRr

R2
d

sin θ −
kRs

2Rd

ωt cos θ

(A.16)

∂x

∂Rr

=
B

2

[
∂ (Rs/Rd)

∂Rr

sin

(
Rdωt

B

)
+
ωtRs

RdB
cos

(
Rdωt

B

)]

=
B

2

(
− 2kRl

R2
d

sin θ +
ωtRs

RdB
cos θ

)

=
− kBRl

R2
d

sin θ +
Rs

2Rd

ωt cos θ

(A.17)

∂x

∂l
=

Rs

2Rd

(
∂B

∂l
sin θ +B

∂ sin θ

∂l

)

=
Rs

2Rd

(
−B2 sin θ +BRdωt cos θ

)
=
−B2Rs

2Rd

sin θ +
BωtRs

2
cos θ

(A.18)

∂y

∂Rl

=
B

2

[
∂ (Rs/Rd)

∂Rl

(1− cos θ)−
Rs

Rd

∂ cos θ

∂Rl

]

=
B

2

[
2kRr

R2
d

(1− cos θ)−
Rskωt

RdB
sin θ

]

=
kBRr

R2
d

(1− cos θ)−
kRsωt

2Rd

sin θ

(A.19)
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∂y

∂Rr

=
B

2

[
∂ (Rs/Rd)

∂Rr

(1− cos θ)−
Rs

Rd

∂ cos θ

∂Rr

]

=
B

2

[
− 2kRl

R2
d

(1− cos θ) +
Rsωt

RdB
sin θ

]

=
− kBRl

R2
d

(1− cos θ) +
Rsωt

2Rd

sin θ

(A.20)

∂y

∂l
=
−B2Rs

2Rd

(1− cos θ) +
BRsωt

2
sin θ (A.21)

Summarise the individual element of J as Equation (A.22). Simplify the symbols

sin θ and cos θ as sθ and cθ respectively.

J =



−kωt
B

ωt
B

Rdωt

kBRr

R2
d

sθ − kRsωt
2Rd

cθ −kBRl

R2
d

sθ + Rsωt
2Rd

cθ −B2Rs

2Rd
sθ + BRsωt

2
cθ

kBRr

R2
d

(1− cθ)− kRsωt
2Rd

sθ −kBRl

R2
d

(1− cθ) + Rsωt
2Rd

sθ −B2Rs

2Rd
(1− cθ) + BRsωt

2
sθ


(A.22)

If J has full rank, then its inverse J−1 exists and any robot pose error can be

corrected by a change in the odometry parameter vector. The author aims here

to show that for a constant curvature arc motion, J has a rank of 2 at most

and therefore J−1 does not exist. By observing Equation (A.22), we have the

following denotations.

v1 =

[
kRr

Rd

− kRl

Rd

−BRs

2

]T
(A.23)

v2 =

[
− k
2Rd

l

2Rd

B

2

]T
(A.24)
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J =



αωtvT1 + βωtvT2

B

Rd

sin θvT1 +Rsωt cos θvT2

B

Rd

(1− cos θ) vT1 +Rsωt sin θvT2


(A.25)

Assume Equation (A.26) from the first row of J has a solution of [α, β]T .

[v1 v2] [α β]T =

[
− k
B

1

B
Rd

]
(A.26)

Solving Equation (A.26), we get 
α = 0

β =
2Rd

B

(A.27)

Hence this verifies the assumption that J has rank 2.
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B

Investigation of Robot Slip Angle Effects

B.1 Theoretical Analysis

When cornering with centrifugal force Fs, a car or truck tyre is known to experi-

ence a slip angle α. At forces well below the adhesion limit of Fs, the slip angle

is proportional to Fs [67] if the camber angle is zero.

α = CαFs (B.1)

where Cα is called cornering stiffness. Cα is defined as the derivative of the

cornering force with respect to slip angle evaluated at zero slip angle:

Cα =
∂Fs

α

∣∣∣
α=0

(B.2)

According to [67, 101], the normal load on a tyre strongly influences tyre cornering

characteristics. The transfer of load from inside to outside tyres during a turning

reduces the total cornering force that a pair of tyres can develop. For a pair of

tyres on a beam axle to develop the required amount of cornering force to balance

a given centrifugal force under a steady-state turn, the lateral load transfer results

in an increase in the slip angle of tyres [67].

Note that the robot heading for each time step ∆θ (i) will remain the same as

Equation (3.4). However the actual robot moving direction will be

hr (i) = θ (i− 1) + α (i) + ∆θ (i) /2 (B.3)
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where α (i) is robot slip angle at time step i. In addition, define the sign of

α (i) to be positive when robot turns right and negative when robot turns left.

Here the slip angle is considered in terms of the robot instead of each tyre.

Equation (3.1-3.4) and (B.4) are the modified differential drive robot odometry

model considering slip angles.


θ (k)

x(k)

y(k)

 =



θ(0) +
k∑
i=1

∆θ(i)

x(0) +
k∑
i=1

∆L(i)

cosα (i)
cos[θ(i− 1) + α (i) + ∆θ(i)/2]

y(0) +
k∑
i=1

∆L(i)

cosα (i)
sin[θ(i− 1) + α (i) + ∆θ(i)/2]


(B.4)

For small α in radians, we have

∆L

cosα
= 1 +

1

2
α2 + O

(
α4
)

∼= 1 +
1

2
α2

(B.5)

According to [67], slip angles for road vehicles with pneumatic tyres under normal

conditions are very small. If α = 4◦, the relative error between
∆L

cosα
and ∆L is

approximately 0.25%.

B.2 Robot Slip Angle Measurements with Circular Paths

As defined in [102], the vehicle slip angle β is the difference between the vehicle

heading and direction travelled (the path tangent). The odometry centre of the

robot is treated as the position of the robot trajectory. For a circular path, the

vehicle slip angle is illustrated in Figure B.1.
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Figure B.1: Schematic of robot slip angle on circular paths. Solid black dots represent

robot positions. O represents the centre of a fitted circle of robot positions.
−−→
PH and−→

PT represent the vehicle heading and the path tangent, respectively.
−→
PT ⊥

−−→
OP .

The experiments in this section were performed on Lino as in Figure B.2. Dif-

ferent speed and angular velocity commands were configured to let the robot

automatically drive in circles. For several circles, the robot maintained a con-

stant speed and angular velocity before changing to another new set of speed and

angular velocity. The data during speed changing periods were eliminated for

analysis. Only the data during the constant speed were taken into account. The

median of these estimated slip angles on a certain circular path is treated as the

slip angle of the robot on that path. Every laser scan is utilised for scan matching

and generating the OG map in this section.

To get the heading of the robot the author applies the scan matching algo-

rithm Normal Distributions Transform (NDT) [103] upon a scan measurement

and localise this scan with respect to the first laser scan in the dataset. NDT

is chosen, since it is implemented in the Robotics System Toolbox of MAT-

LAB. For example, the robot has the following states: vrobot = 0.052 m/s,
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(a) (b)

Figure B.2: The testing environment for measuring the robot slip angles on circular
paths on Lino. (a) Robot is being charged. (b) Robot is automatically driving in a
circle.

Radius of Curvature = 0.281 m, ωrobot = 0.187 rad/s, B = 0.3660 m and

counter clockwise rotating trajectory in one of the datasets. Figure B.3 shows

scan matching results on circular paths using the NDT algorithm in MATLAB.

Figure B.4 is the OG map generated using the scan matching results of robot

poses and its related scans. The robot slip angle estimation results from different

datasets is shown in Figure B.6. It is clear that β is highly correlated to the radius

of robot circular trajectory. Intuitively, robot slip angles are positively correlated

to centrifugal accelerations. In contrast, our preliminary results in Figure B.6 (d)

do not show a clear correlation between robot slip angles and robot centrifugal

accelerations. This is worth more investigation in the future.
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Figure B.3: Scan matching results using NDT algorithm in MATLAB when measuring
robot slip angles on circular paths on Lino. (a) Example scan matching. (b) Robot
poses.

Occupancy Grid

-4 -2 0 2 4
X [meters]

-4

-3

-2

-1

0

1

2

3

4

Y
 [m

et
er

s]

Scan matching
Odometry
Velocity vector

(a)

-0.2 -0.1 0 0.1 0.2 0.3
X position(m)

0

0.1

0.2

0.3

0.4

0.5

0.6

Y
 p

os
iti

on
(m

)

Scan matching
Odometry
Velocity vector

(b)

Figure B.4: (a) OG map generated using the scan matching results of robot poses
and its related scans during the circular movement on Lino. The OG map is built by
attaching 2,864 laser scans to robot poses. (b) Zoom in view of Figure B.4 (a).
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Figure B.5: Robot slip angles during the circular movement on Lino.
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Figure B.6: Robot slip angle estimations of different datasets. (a) β vs. radius of
trajectory. (b) β vs. robot speed. (c) β vs. robot angular velocity. (d) β vs. robot
centrifugal acceleration.
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