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Abstract

Motivated by two biological questions concerning the way radiation treatment a↵ects cell
behaviour and the way interactions between cells control cell segregation and cluster for-
mation, we constructed a mathematical model for cell migration and interactions. Starting
from first principles and basic biological assumptions, we arrived at a stochastic di↵eren-
tial equation where the drift term accounts for short term interactions between cells and
the random term accounts for independent cell motion. Likelihoods of di↵erent values for
model parameters given particle paths were obtained using Girsanov theorem, and then
used to estimate actual parameter values by maximising these likelihoods (MLE). Accu-
racy of this method was tested by comparing estimated parameter values given computer
generated paths to the actual values used to generate these paths, for a few di↵erent drift
functions. Application of this technique to a data set containing real cell paths which
were observed in laboratory experiments studying the e↵ect of radiation treatment on cell
migration and interaction unveiled a clear trend in cells’ response: radiation dosage of
10Gy was found to increase cell motility by 50% and diminish cell adhesion e↵ectively to
zero. An extended version of our model which further accounts for cell births and interac-
tions between di↵erent population types was designed to help understand cell segregation
and cluster formation regulated by cell membrane proteins called Eph and ephrin. First
this helped identify the significant components in controlling the behaviour and dynamics
displayed by the biological system, which has countlessly more components over many
time and distance scales. Second, when compared against experimental results it was able
to replicate both the dynamics and range of cell segregation that was observed in the
laboratory by our collaborators1.

We thus present here a powerful yet simple model which is both generic and versatile.
With only a small number of parameters that can be estimated from data containing cell
paths, it holds information regarding independent cell motion and mutual cell-cell inter-
actions, and can reproduce, predict and help analyse dynamics and behaviours observed
in laboratory experiments.

1Work on the Eph-ephrin project was conducted in collaboration with Dr Peter Janes and late Prof.
Martin Lackmann who has sadly passed away during our collaborative work. Both from the Department
of Biochemistry & Molecular Biology at Monash University.
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Chapter 1

Introduction

1.1 Background

The human body is made of trillions of cells (Bianconi et al., 2013). These cells have
many di↵erent roles and functionalities. Cell characteristics can vary dramatically between
di↵erent cell types; blood cells for example can essentially flow like a fluid and transfer
oxygen or carbon-dioxide from place to place, while skin cells stay put and form strong
yet supple structures to make the skin tissue. These very di↵erent cells have a lot of
commonalities, they all have a nucleus, a membrane, and a cytoskeleton (an inner cell
skeleton) mitochondria, genetic matter, and more. They can all move when on their
own, and can all interact with their environment and with neighbouring cells. They all
metabolise, may proliferate (this can depend on the cell type etc’) and eventually die. The
di↵erent functionalities can often be achieved by di↵erent levels of manifestations of the
same characteristic: For example, Blood cells do not adhere to their neighbour, while skin
cells do to a very high degree, which orchestrates the di↵erence between the fluid like form
of blood and the stable form of the skin (Alberts et al., 2008).

When biologists approach the investigation of a certain biological aspect or mechanism,
they would attempt to look at it first in as much isolation as possible. Therefore, when
trying to understand mechanisms involved in the behaviour and reaction of a population
of cells to changes in its environment or to a di↵erent population of cells, a laboratory
experiment aimed to study these scales would often start in a two dimensional sample of
same type cells that are introduced with the ‘trigger’ under investigation. Depending on
the time scale relevant for the phenomena under investigation, the treated sample is placed
under the microscope either for a (semi) continuous observation (i.e. an image taken every
20 or 30 minutes), or at the end of the experiment, to document the end result only (i.e.
a single image taken after 24 or 48 hours).

The biological questions we explore in this dissertation deal with such samples. More
particularly, in the first application a homogeneous cell population was introduced with
a radiation treatment of varying levels to study the e↵ect radiation treatment has on
the way cells move and interact with each other (chapter 5). In the second application,
a homogenous population of randomly scattered (Eph-expressing) cells was introduced
with another population of randomly scattered (ephrin-expressing) cells, to study the way
Eph-ephrin interactions regulate the segregation between the two populations and the
formation of homogenous clusters over time, while cell birth in both populations increases
cell densities to full confluence (chapter 6).

The mathematical model presented here is carefully designed to handle the scope of
these systems, and to capture the relevant mechanisms that control their dynamics. In
what follows we present the relevant cellular mechanisms that take place, and go through
common approaches in their mathematical modelling. A more detailed survey of models

1



2 CHAPTER 1. INTRODUCTION

that deal with systems of the same scope as ours is given in chapter 2, where the di↵erent
models are compared, contrasted and weighted with respect to the functionalities we need
included in our model, and the particular questions we want answered.

1.1.1 Cell motility

Most cells in the human body can move around by crawling over the surface they are
on. This happens essentially in three stages: Protrusion, in which actin rich structures
are pushed out at the front of the cell. Attachment, in which the actin cytoskeleton
connects to the surface the cell is on, and traction, in which the cell essentially pulls itself
forward to ‘catch up’ with the protruding structure. Cell motility is essential for healthy
embryonic development, where cells need to move from their place of origin to di↵erent
sites around the developing body. Further, in the adult, cell motility has an essential part
in the functioning of macrophages in an healthy immune system, in the process of bone
renewal, and in tissue repair. In cancer, cell motility plays a significant role in metastases,
where cells can leave the tumour they originated in, crawl into adjacent blood or lymph
vessels and then spread to other sites (Alberts et al., 2008).

Mathematical and computational approaches to cell motility consider di↵erent aspects
of cell motility that impact on cell motion, including cytoplasm dynamics (Alt and Dembo,
1999), the growth of actin filaments (Bindschadler et al., 2004), and the distribution of
adhesion proteins in the cell membrane (Dickinson and Tranquillo, 1993) or, more recently,
integrating the di↵erent aspects (Gracheva and Othmer, 2004; Shao et al., 2012). For
a more comprehensive review of mathematical models for cell motility see for example
Mogilner (2009).

When considering migration distances that greatly exceed the length of a single cell,
and time scales that are longer than the cell’s ‘persistence’ time, the Mean Square Dis-
placement (MSD) of a single cell is linear in time (Dickinson and Tranquillo, 1993). Thus,
when considering these scales, it is su�cient to represent a single cell’s motion by a ran-
dom walk in the discrete case, or by a Brownian motion in the continuous case, see for
example Ionides et al. (2004). Accordingly, when considering large cell populations, av-
eraging techniques can be used to derive the di↵usion equation. Di↵usion equations are
used for example to describe cell migration on growing domains (Baker et al., 2010) and
cancerous cell invasion (Gatenby and Gawlinski, 1996).

Cell motion can be directed by external signals, where, for example the direction in
which the actin filaments grow is dictated by the concentration of an external chemical
(chemotaxis), see e.g Alberts et al. (2008). Cell migration induced by chemical gradient
was one of the first cellular phenomena to be subjected to mathematical modelling using
di↵usion equations, this enabled understanding of the phenomenal ability of cells that
are smaller than the size of spatial fluctuations in the concentration of the chemical that
leads them to move up its global gradiant (Keller and Segel, 1971). In SDE type models,
chemotaxis can be introduced through the introduction of the spatial gradient of the
chemical (or other) signal through the drift term (Stokes et al., 1991; Ionides et al., 2004).

1.1.2 Cell-cell interactions

A cell can interact with other cells in its environment through the secretion of chemical
signals to its environment, which can then trigger di↵erent mechanisms in the neighbour-
ing cells, such as directed motion (mentioned above), apoptosis, cell division etc’ (Alberts
et al., 2008). This mechanism can have long distant e↵ects, and its role in di↵erent biolog-
ical systems is of great interest for research through mathematical models, for example in
wound healing (Maini et al., 2002), or in cancer invasion (Gatenby and Gawlinski, 1996;
Smallbone et al., 2005).
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A cell can also have short distant interactions with its neighbour. These are essentially
contact interactions, in which a physical contact or bond is made between corresponding
proteins embedded in both cells’ membranes. Depending on the proteins and the interac-
tions between them, this leads to a downstream of signals within the cells which can result
in the formation of adhesion connections between the two cells, or in cell retraction and
separation. Short term interactions within mesoscale cell populations stand in the core of
this research work. Current approaches to mathematical modelling of this are mentioned
below, and an extended survey is given in section 2.1, where these are compared and
contrasted in the light of the biological questions we want answered.

Models for mutual cell-cell interactions within large cell populations commonly explore
an ‘agent-based’ approach assuming each ‘agent’ (cell) follows a set of rules, which allow
it to perform a random walk exclusion process (where each cell moves randomly on a grid
but cannot move to a site already occupied by another cell), and interact with its neigh-
bours. For simple contact interactions between agents (interactions only with immediate
neighbours), this detailed description given at the ‘microscopic’ level, was shown to give
rise to a non-linear di↵usion at the macroscopic level (Deroulers et al., 2009). The con-
tinuous approximation can then be used to give predictions regarding behaviour of very
large population sizes, for which there are too many to run the agent based computational
model. Fernando et al. (2010) determined the di↵usion functions arising for di↵erent
choices of interaction functions, and their dependency on the chosen lattice and the way
the contact neighbourhood is defined. When introducing more general interactions (not
only between immediate neighbours, but also imposing some spatial structure, such as
aggregation or chain formation), it was shown that while a computerised simulation of the
agent based model does indeed give rise to aggregation or chain formation, the continuous
approximation of the model may fail to capture those (Simpson et al., 2010).

1.1.3 Segregation between two cell types

When contact interactions occur between cells that come from two di↵erent cell popula-
tions, it can lead for example to segregation between the two populations. Di↵erential
adhesion, a mechanism in which a particular cell has di↵erent a�nity levels to surface
adhesion with di↵erent types of cells, was shown to lead to cell segregation and cluster
formation (Steinberg, 2007). Further, short distance interactions regulated by Eph-ephrin
interactions, a specific type of proteins embedded in the cell’s membrane, were shown to
regulate cell positioning, tissues and organ patterning (Pasquale, 2010; Lackmann and
Boyd, 2008). A simple demonstration of this can be observed in laboratory experiments
where two types of cells are cultured together on the surface of a two dimensional sub-
strate. Initially they are all intermingled, scattered randomly on the two dimensional
surface. With the progression of time, cell migration along with cell-cell interactions re-
sult in segregation between the two populations as homogenous cell clusters are formed.

A computational model (the cellular Potts model) for modelling cell dynamics in a two
dimensional sample, developed by Glazier and Graner (1993), explored use of cell surface
energy as a function of its interactions with neighbouring cells and area constraints, to
predict a configuration which minimises the energy of the entire system. Di↵erent relative
surface energies were found to correspond with di↵erent levels of cell sorting.

The cellular Potts model was further used to model cell positioning and segrega-
tion along the intestinal crypt epithelium, guided by the assumption that di↵erential
ephrinB/EphB activation can be modelled as a form of di↵erential adhesion (Wong et al.,
2010). While the predictions of the Potts model often match observations of the biological
system they model well, the dynamics or evolution of the system as it approaches the pre-
dicted state may be harder to address in them. This is due to the fact that incorporation
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of the physical constraints on cell migration under increasing cell density or full confluence
conditions is not straight forwards in this setup.

A more recent approach that simulates both adhesive and migratory cell behaviours
(Taylor et al., 2011), allowed modelling of the time course of the segregation of cells
di↵ering in their expression of cadherin adhesion proteins, which was within 50% agreement
of empirical data (Taylor et al., 2012). However, this model was not capable to reproduce
the significantly faster rate of cell segregation due to Eph-ephrin interactions, suggesting
that mechanisms additional or alternative to di↵erential adhesion contribute to Eph-ephrin
mediated cell segregation (Taylor et al., 2012).

1.2 Stochastic di↵erential equations, applications and anal-
ysis

Stochastic di↵erential equations (SDE’s) represent a concise formulation of a random pro-
cess that follows an evolution law in which the mean follows a deterministic function (the
drift function), and the evolution of the covariance of the random variable is defined by
the di↵usion matrix. A definition is given in section 2.2.1, or see Karlin and Taylor (1981);
Bhattacharya and Waymire (1990); Klebaner (2011) to name a few textbooks.

SDE’s, as one would expect, are often used to model systems that have a random
element in them. For example, pricing of options in the stock market (Black and Scholes,
1973), or physical systems that have thermal noise.

1.2.1 Similar approach in other applications

Brillinger (2003) suggested using Brownian motion to model animal behaviour and include
the interactions between individuals and their environment through the drift term, and
then used this type of model to analyse elk behaviour from experimental data to identify
‘attracting spots’ in the elks’ environment. Ionides et al. (2004) suggested it can be done
for modelling cell behaviour, but to our knowledge, while environmental components (like
chemical attractants) were incorporated through the drift term before (Stokes et al., 1991),
cell-cell interactions have not been included in such models so far. We incorporate this
approach and add the interactions between individual cells through the drift term by using
functions often used in modelling of swarm behaviour.

This general approach might resemble the one applied in models for molecular dynam-
ics. In particular, the general form of our model’s equation is known in the chemical-physics
literature as the over-damped Langevin equation, which is obtained under the assumptions
that the drag force is large and particle mass is small, similar to what can be assumed
in the biological applications of our model (see section 3.1.1 for more detail). Parameter
estimation methods applied there often have to deal with more global parameters than
the ones our methods provides estimations for, since in the molecular level, observations
of individual particle paths over time are not as straightforward. In molecular dynamics,
however, much more common conditions are the no friction or the fluctuation-dissipation
assumption, for which the steady state of both systems can be represented by the Gibbs
canonical ensemble (Espanol and Warren, 1995).

1.2.2 Parameter estimations in stochastic di↵erential equations

Parameter estimation methods in stochastic di↵erential equations make a wide field of on-
going research. See for example Rao (1999); Kutoyants (2013), or some relevant definitions
in section 2.2.3. Particularly for the type of equation obtained in our model, an interesting
discussion comparing parameter estimation procedures which fit to the empirical measure
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generated by the data, with estimation procedures which fit di↵usion processes to data by
applying the maximum likelihood principle to the path-space density of the desired model
equation can be found in Pokern et al. (2009).

Furthermore, experimental data is always made of discretise observations, which re-
quires adaptations to the theoretical estimators or the formulations of entirely new es-
timators, see a review in Nielsen et al. (2000). Indeed, both the sampling rate and the
integration rate should be considered, and some estimation techniques can be computa-
tionally expensive (Timmer, 2000). However, the likelihood function for our model can
be obtained explicitly. This enables us to perform a discretised version of the maximum
likelihood estimation procedure and obtain relevant estimations of parameter values from
cell paths observed in laboratory experiments.

1.3 In this dissertation...

We develop a mathematical model to simulate cell migration and mutual interactions,
which when applied to single cell type is kept analytic (as opposed to the common approach
of employing an agent based inclusion process described above). This allows an analysis
of its solution and formulation of an analytic method for estimation of model parameters.
Further, it can handle very low population densities (where the distribution of cells is very
sparse) up to high population densities (where cell-cell interactions become significant)
seamlessly.

The position of the centre of each cell is described by a Stochastic Di↵erential Equation
(SDE) in which the independent random part of cell motion is described by an indepen-
dent Brownian Motion (BM). The interactions between cells are incorporated into the drift
term, which is a vector of deterministic functions that depend on the distance between
the cells. Our model analysis shows weak existence and the weak uniqueness property of
the solution. We find the stationary solution when it exists, and discuss the conditions
on the interaction type for it to predict the formation of a stable cluster in which a most
likely value for the distance between neighbouring cells exists (chapter 3). We formulate
a method for estimation of model parameters from experimental results containing cell
paths, utilising basic statistical concepts along with a Maximum Likelihood Estimation
(MLE) technique (chapter 4). A demonstration of the use of this method with real experi-
mental data sheds light on the e↵ect radiation treatment has on cell migration and mutual
interactions (chapter 5, see biological motivation therein). An extension to our model that
further facilitates simulation of a range of interactions between two di↵erent cell types is
then applied to explore the Eph-ephrin modulation of cluster formation, comparing our
model predictions to experimental results (chapter 6, biological background therein).

Contributions of this thesis

• The formulation of a mathematical model that describes cell migration and interac-
tions. The model incorporates a unique approach which to our knowledge was not
applied to cell behaviour before. An SDE is used to describe the position of all cell
centres, where the BM part accounts for independent cell motion, and all cell-cell
interactions are incorporated into the drift term.

• Model analysis which verifies weak existence and the weak uniqueness property of the
solution, provides its stationary solution, and demarcates the parameter range for
which a stable cluster with a most likely value for the distance between neighbouring
cells exists.
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• A method for estimation of model parameters from experimental results containing
cell paths, utilising basic statistical concepts along with a Maximum Likelihood
Estimation technique.

• Application of the aforementioned method to experimental data which unveils clear
trends in the e↵ect radiation treatment has on cell migration and mutual interac-
tions. It shows cell motility increases with increase in radiation level, and cell-cell
interactions diminish as radiation dosage increases.

• An extended version of the model that further facilitates simulation of a range of
interactions between two di↵erent cell types aimed to study cell segregation and
cluster formation regulated by Eph-ephrin interactions. Comparison to experimental
results showcases our model’s ability to replicate both the dynamics and possible
range of cluster formation in the experimental system.



Chapter 2

Backgound

In this chapter, current approaches to mathematical modelling of mesoscale biological sys-
tems are surveyed in the light of the specific questions relevant to the biological applications
studied in this dissertation. The fact we required an analytic model which is relatively
tractable and accessible to some form of mathematical analysis, can account for complex
localised interactions, and be applied to growing population densities (growing from very
sparse, through a pure birth process, to very dense cell population), lead as to take our
own innovative approach in formulating our model (see chapter 3 to follow). Further in
this chapter, background regarding mathematical concepts and techniques employed in this
research is presented.

2.1 Common approaches to modelling cell dynamics
in mesoscale biological systems

Here we present a more detailed survey of some common mathematical and computational
models currently used to help understand, analyse and predict biological systems of the
same scope of the applications we study in this work. Namely, spatiotemporal biological
systems focused on the mesoscale level2, where mutual cell-cell interactions take place
within a small to medium cell population (hundreds to thousands of cells) and control the
overall dynamics observed within the relevant time scale (24-48 hours).

For each family of models presented bellow we briefly describe the main mathematical
approach, equations and basic assumptions of the model, followed by summary of model
applications. Further, we discuss each model’s strengths and weaknesses, in particular
with respect to their tractability and ability to account for complex, localised cell-cell
interactions.

2.1.1 Di↵usion models

Model description

Di↵usion models essentially use the motility coe�cient of an individual cell D ⌘ �2

�t
,

where � is the length of a single step and �t is the average time interval between steps,
to describe the evolution of cell density C(x, t) over time. The simplest representation of
the di↵usion equation for modelling cell density C(x, t) in one dimension is:

@C

@t
=

@

@x

✓
D
@C

@x

◆
(2.1.1)

2This is the intermediate scale between those of the entire tissue and an individual cell.

7
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Model applications

Di↵usion models with the relevant adaptations are widely used to describe a variety of bi-
ological applications. For example, the addition of an advection term representing motion
that follows a gradient of a chemical makes it suitable to describe cell density of a popu-
lation following chemotaxis (Keller and Segel, 1971). Its generalisation to two dimension
and the association of cell density with cell di↵erentiation (also known as ‘reaction di↵u-
sion models’) can give rise to pattern formation (Maini, 2000). When extended further to
include two types of cell populations, normal cells and tumour cells, and the presence of
a chemical secreted by the tumour cells that cause apoptosis amongst the normal cells, it
is applied to generate predictions regarding cancer cell invasion (Gatenby and Gawlinski,
1996).

Synopsis

Di↵usion models are analytic and can sometimes be solved explicitly. They can often be
subjected to analysis in order to find steady state solutions, or dependency of the dynamics
on model parameters. These models are highly adaptable in handling interactions, at the
density level, between di↵erent population types or with varying environmental changes
(such as chemical agents). This enables the inclusion of population growth due to cell
birth, or some sort of ‘populations competition’ (e.g as in the Lotka-Volterra competition)
when needed. However, since these models deal with continuous cell densities and not
with individual cells, it is not possible to specify the position of any individual cell, and
therefore the introduction of spatial based cell-cell interactions within or between di↵erent
cell populations is not relevant here.

2.1.2 Agent based models with localised cell-cell interactions

Model description

This type of models assume all cells can move on a pre-defined grid Zd, where each
grid location has a predefined number of neighbouring grid sites n. Each individual cell
performs a random walk exclusion process on the grid. That is, at a given time step, a
cell chooses to move into one of its neighbouring grid sites at random. If the chosen site
is unoccupied, the cell moves into the new site.

Interactions between cells are normally introduced through the construction of the
probability profile over the n adjacent grid sites. For example, if the model lets the cells
have positive (also referred to as attractive) interactions between them, a new site that
has n � 1 occupied sites around it is assigned a higher probably to be chosen over a site
that has n� 2 (or less) occupied neighbouring sites around it, following a particular (user
defined, usually application based) probability function.

Applications

Agent based models are widely employed to explore a variety of cellular phenomena in
the mesoscale realm. Modelling of cell invasion (Deroulers et al., 2009), cluster formation
(Simpson et al., 2010), neural crest cell migration, where an o↵-lattice model was employed
(McLennan et al., 2015), are only a few examples.

Continuous approximations of an agent based model with simple contact interactions in
two dimensions were shown to match simulation results (Deroulers et al., 2009). Fernando
et al. (2010) derived the continuous approximation for di↵erent choices of cell-cell interac-
tion functions and di↵erent model geometries (i.e lattice type and arrangement of contact
neighbourhood), and obtained non linear di↵usion functions: D = D(C) in equation 2.1.1
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above. They showed that model geometry, as well as the choice of cell-cell interaction
type, give rise to di↵erent di↵usion functions D(C) in the continuous approximation.

Employing such an agent based model and its continuous approximation, Bowden et al.
(2013) performed a sensitivity analysis which showed that the ability to correctly interpret
trajectory data is extremely sensitive to the geometry and timing of the experiment,
the degree of motility bias and the number of experimental replicates. The same type
of model was used to infer cell-cell interactions from population density characteristics
and individual cell trajectories on static and growing domains (Ross et al., 2015). More
particularly, they showed the concavity of a single agents’ trajectory as well as its expected
displacement and standard error of the mean could give an indication whether cell-cell
interactions are of repulsive or attractive type when considered over short time scales. To
our knowledge, a more exact estimation of model parameters can only be done in the cases
where the continuous approximation to the agent based model holds.

Synopsis

Agent based models are very common in addressing this scale of biological problems.
Indeed they present great flexibility in the design of rules the cells shell follow, and generate
reliable results in the form of computer simulations. Cell birth can be formulated and
introduced in various ways, and so can cell di↵erentiation, resulting in various types of
populations and interactions between them. In terms of analysis, these models do not have
an analytic description, and can not be solved explicitly. Continuous approximations, for
which methods of parameter estimations are available, can be made in some cases. The
continuous approximation may not be valid in the case of low densities where the spatial
distribution of cells is very sparse, which is often the case in the biological applications
we study (see chapters 3-6 to follow), or in the case of complex interactions between
and within two di↵erent populations as in our second application, regarding Eph-ephrin
regulation of cell-cell interactions (chapter 6).

Even when the continuous approximation is available, the main di�culty with this type
of model for us is with methods for parameter estimations. E↵ectively, the choice of model
geometry can change model predictions, this is evident through the fact di↵erent choices of
grid type and neighbour numbers give rise to di↵erent di↵usion functions in the continuous
approximation (Deroulers et al., 2009; Fernando et al., 2010), or more directly in the
sensitivity analysis that indicated extreme sensitivity to model geometry (Bowden et al.,
2013). In our case, in particular at the low density setups, this choice of model geometry
would be arbitrary, and therefore the e↵ect it has on model dynamics is undesirable.
It would jeopardise our ability to estimate model parameters from experimental data
correctly. Further, we want the di↵erence in interaction type to become apparent in
the model through parameter sizes rather than the actual choice of function that should
substitute for a particular term. This enables the method of parameter estimation to
di↵erentiate between possible types of cell-cell interactions that could occur in the observed
biological system.

2.1.3 Potts model

Model description

When considering the interactions between two or more cell types, di↵erential adhesion
often comes into play. The cellular Potts model, first presented in Glazier and Graner
(1993) highlights the role of di↵erential adhesion in cell sorting through the incorporation
of di↵erent adhesion a�nity between adjacent cell types into the energy term (Hamilto-
nian). The model starts from a grid on which each site is labeled by its cell type based
on predefined initial conditions. Each cell is made of a large number of adjacent sites on
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the grid (generally around 40, need not to be simply connected grid sites), this number is
subjected to an elastic constraint which acts to keep each cell size around its fixed target
area.

Propagating on the grid in a Monte Carlo manner, the probability to accept a change
of a given cell label �(i, j) to the label of one of its adjacent sites �0 (chosen at random)
for temperature T > 0 is

P
�
(�(i, j) ! �0(i, j)

�
=

⇢
exp (��H/kT ) , �H > 0

1 , �H  0
(2.1.2)

and For T = 0:

P
�
(�(i, j) ! �0(i, j)

�
=

8
<

:

0 , �H > 0
0.5 , �H = 0
1 , �H < 0

(2.1.3)

where �H > 0 is the di↵erence in energy gained by performing the change.
For more details see Glazier and Graner (1993), where this model was developed and

used to predict the configuration which minimises the energy of the entire system. It was
found that di↵erent surface energies, used to represent a range of cell-cell interactions,
give rise to di↵erent levels of cell sorting or patterning.

Applications

Later adjustments to the model include an added negative surface energies, constrained
membrane area and a spin flip energy threshold to include description of cells fixed mem-
brane area, their attractive binding and the dissipation of making and breaking membrane
contacts (Ouchi et al., 2003). A more e�cient algorithm which enables parallelised com-
puting by making it based on a random walk instead of a Monte Carlo method (Chen
et al., 2007), and an extension to enable it to address multi scale systems (Scianna and
Preziosi, 2012). A continuous approximation to this model is presented in Lushnikov et al.
(2008), using mean field approximation and other techniques.

The cellular Potts model was employed to help explore the role of extracellular matrix
in glioma invasion (Rubenstein and Kaufman, 2008), and its multi scale version was used
to analise a wound healing essay (Scianna, 2015).

In the context of Eph-ephrin regulation of cell-cell interaction, the cellular Potts model
was employed to model cell positioning and segregation along the intestinal crypt epithe-
lium, controlled by di↵erential adhesion due to varying ephrinB/EphB activation, where
the di↵erential adhesion was shown to regulate the coordinated migration of cells within
the crypt (Wong et al., 2010).

Synopsis

Potts model was shown to be applicable to many mesoscale biological systems. In par-
ticular, it translates the idea of di↵erential adhesion into a working algorithm which can
replicate and predict behaviours in relevant biological systems. In the second application
of our model (chapter 6), we explore the role of Eph-ephrin regulation of cell segregation
and cluster formation, which possibly acts di↵erently to the mechanism behind di↵eren-
tial adhesion, see for example Taylor et al. (2012) for a discussion regarding the faster
segregation rate in Eph-ephrin regulated cell-cell interaction and possible di↵erences from
Cadherin regulated segregation (which is a ‘classical’ di↵erential adhesion driven mecha-
nism). Therefore a model which does not link back directly to di↵erential adhesion is in
need.
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Further, in terms of analysis, while this model is based on mathematical equations,
it does not have an explicit solution and predictions can be obtained only by employing
computer simulations. Continuous approximations exist for some cases under limiting
assumptions, which do not apply in our case.

2.2 Mathematical background, concepts and terminology

2.2.1 Stochastic di↵erential equations

Let X(t) 2 Rd, t
0

< t < T be a random system. Its evolution in time is described by
the solution to the stochastic di↵erential equation in the Itò sense:

dX(t) = µ
�
X(t), t

�
dt+ �

�
X(t), t

�
dB(t) for t � 0 (2.2.1)

with B(t) an m-dimensional Brownian motion. The drift function µ : [t
0

, T ] ⇥ Rd ! Rd

accounts for the evolution in mean of the state variables in the interval [t, t + dt). The
evolution of the covariance of the states in the same time interval, which is defined in
terms of the dispersion matrix � : [t

0

, T ]⇥Rd ! Rd⇥m is described by the di↵usion matrix

⌃
�
X(t), t

�
= �

�
X(t), t

�
�
�
X(t), t

�
T

.

2.2.2 Stationary solution

The transition probability function P (y, t, x, s) = P
�
X(t)  y|X(s) = x

�
that determines

the weak solution to the SDE above (equation 2.2.1) is uniquely defined by the probability
distribution p(y, t, x, s): P (y, t, x, s) =

R
y

�1 p(u, t, x, s)du.

The probability distribution is a fundamental solution3 to the backward equation:

@u(x, s)

@s
+ L

s

u(x, s) = 0 (2.2.2)

and if �(x, t) and µ(x, t) are bounded and continuous functions such that

(A1) �2(x, t) � c > 0,

(A2) µ(x, t) and �2(x, t) satisfy a Hölder condition with respect to x and t, that is, for all
x, y 2 IR and s, t > 0
|µ(y, t)� µ(x, s)|+ |�2(y, t)� �2(x, s)|  K(|y � x|↵ + |t� s|↵).

Then the PDE (2.2.2) has a fundamental solution p(y, t, x, s), which is unique, and is
strictly positive.

If in addition µ(x, t) and �(x, t) have two partial derivatives with respect to x, which
are bounded and satisfy a Hölder condition with respect to x, then p(y, t, x, s) as a function
in y and t, satisfies the PDE

�@p

@t
+

1

2

@2

@y2

⇣
�2(y, t)p

⌘
� @

@y

⇣
µ(y, t)p

⌘
= 0 (2.2.3)

3A fundamental solution of the PDE 2.2.2 is a non-negative function p(y, t, x, s) with following proper-
ties:

i. it is jointly continuous in y, t, x, s, twice continuously di↵erentiable in x, and satisfies equation
(2.2.2) with respect to s and x.

ii. for any bounded continuous function g(x) on IR, and any t > 0

u(x, s) =

Z

IR
g(y)p(y, t, x, s)dy

is bounded, satisfies equation (2.2.2) and lims"t u(x, s) = g(x), for x 2 IR.
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(this equation is known as the Fokker-Planck, or the forward equation).
The stationary distribution ⇡, if it exists and is twice continuously di↵erentiable, should

further satisfy
@⇡

@t
= 0, and thus the ODE:

1

2

@2

@y2

⇣
�2(y)⇡

⌘
� @

@y

⇣
µ(y)⇡

⌘
= 0 (2.2.4)

If the coe�cients µ and � are twice continuously di↵erentiable with second derivatives
satisfying a Hölder condition, an invariant density exists if and only if the following two
conditions hold

1.
R
x0

�1 exp
⇣
�
R
x

x0

2µ(s)

�

2
(s)

ds
⌘
dx =

R1
x0

exp
⇣
�
R
x

x0

2µ(s)

�

2
(s)

ds
⌘
dx = 1,

2.
R1
�1

1

�

2
(x)

exp
⇣ R

x

x0

2µ(s)

�

2
(s)

ds
⌘
dx < 1.

Equation 2.2.4 can be solved using the integration factor: e

⇣
�

R x
a

2µ(y)

�2(y)
dy

⌘

. Its solution is:

⇡(x) =
Z

�2(x)
exp

✓Z
x

x0

2µ(s)

�2(s)
ds

◆
(2.2.5)

where Z is obtained from
R
⇡(x)dx = 1.

For more detail see for example Klebaner (2011) or Soize (1994).

2.2.3 Parameter estimation methods for stochastic di↵erential equations

Assume the drift and the di↵usion functions in equation 2.2.1 are known up to the value of
some parameter ✓, and do not have an explicit dependence on time. The observed process
is now:

dX(t) = µ
�
X(t); ✓

�
dt+ �

�
X(t); ✓

�
dB(t) for 0  t  T (2.2.6)

Below we describe common methods for estimation of the unknown parameter ✓ 2 ⇥,
where ⇥ = (↵,�) is the space of possible parameter values. Theoretical considerations
regarding these estimators generally deal with proving an estimator is consistent for the
specific choice of drift function, its convergence rate, asymptotic distribution etc’; often by
employing the law of large numbers and the central limit theorem for stochastic integrals.
Further theoretical discussion is out of the scope of this work, for more details see for
example Rao (1999); Kutoyants (2013).

Maximum likelihood estimation

The likelihood ratio function for the SDE above is:

⇤
�
✓, X(T )

�
= exp

(Z
T

0

µ
�
X(t); ✓

�

�
�
X(t); ✓

�
2

dX(t)� 1

2

Z
T

0

µ
�
X(t); ✓

�
2

�
�
X(t); ✓

�
2

dt

)
(2.2.7)

and the maximum likelihood estimator (MLE) is defined by:

✓̂
T

= argmax
✓2⇥⇤

�
✓, X(T )

�
(2.2.8)

(Kutoyants, 2013)
We employ a discretised version of this method for estimation of model parameters

from data in section 4.2. See a more detailed derivation, example and application therein.
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Bayesian estimation

Suppose that the unknown parameter ✓ is a random variable with the prior density function
p(⌫), ⌫ 2 ⇥ = (↵,�). Then the bayesian estimator (BE) ✓̃

T

is defined by:

✓̃
T

= E
�
✓|X(T )

�
=

Z
�

↵

⌫p
�
⌫|X(T )

�
d⌫ =

R
�

↵

⌫p(⌫)⇤
�
⌫, X(T )

�
d⌫

R
�

↵

p(⌫)⇤
�
⌫, X(T )

�
d⌫

(2.2.9)

with ⇤
�
⌫, X(T )

�
the likelihood ratio defined in equation 2.2.7 above (Kutoyants, 2013).

Method of moments

Denote m(✓) = E
✓

g(⇠) and suppose that m(⌫) is a strictly monotone function. Then the
estimator of the method of moments (EMM) ✓̄

T

is defined by the relation:

m(✓̄
T

) =
1

T

Z
T

0

g
�
X(t)

�
dt (2.2.10)

(Kutoyants, 2013)

Trajectory fitting approach

Introduce the family of stochastic processes:

X̂
t

(✓) = X
0

+

Z
t

0

µ
�
X(s); ✓

�
ds, 0  t  T, ✓ 2 ⇥ (2.2.11)

The trajectory fitting estimator (TFE) is defined by:

✓⇤
T

= arg inf
✓2⇥

Z
T

0

h
X(t)� X̂

t

(✓)
i
2

dt (2.2.12)

(Kutoyants, 2013)

Estimates from discrete time series

Parameter estimations from experimental observations are almost always based on sam-
pled paths rather than continuously observed ones. Numerous estimation methods are
available, some are discretised versions of continuous estimators, and some are derived
particularly for estimations from discrete paths, see for example a review by Nielsen et al.
(2000).

When estimating model parameters from discretely observed paths, two time scales
should be noted: One is the observation rate (or sampling time scale), and the second is
the integration time scale. Indeed, it is not always possible to prove these estimators are
consistent or that they have unbiased convergence, and in particular, the discrete version
of MLE is often computationally expensive (Timmer, 2000). However, for our choice of
model, the likelihood function can be obtained explicitly and therefore it is possible to
employ a discretised version of the the maximum likelihood estimation technique to the
type of experimental data sets we analyse in chapters 4 and 5, see further discussion,
examples and applications therein.
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2.2.4 Branching Brownian motion

Branching Brownian motion, referred to as BBM hereafter, is a simple model of an evolving
population. As the name suggests, individual particles follow Brownian motion (BM) in
space, and reproduce following a continuous time Galton Watson branching process.

The Galton Watson branching process starts at time zero with a single particle.
After an exponential time of parameter V , this particle splits into k particles according to
some probability distribution p on N. Then each of the new particles splits at independent
exponential times independently according to the same branching rule, and so on (Bovier,
2015).

A formal definition of BBM is given below, see for example Etheridge (2000):

Definition 2.2.1. Branching Brownian motion has three ingredients:

1. Spatial motion: Each individual moves around independently in Rd according to a
Brownian motion.

2. Branching rate, V : Each individual has an exponentially distributed lifetime with
parameter V . Meaning, if the particle is alive at time t, its probability to die in the
time interval [t, t+ �t) is V �t+ O(�t).

3. Branching mechanism, �: When it dies, an individual leaves (at the location where
it died) a random number of o↵spring with probability generating function �(s) =P1

k=0

p
k

sk. O↵spring evolve independently of each other, but conditionally on their
time and place of birth.

The distribution of the BBM can be characterised as the solution to a martingale
problem, and some analysis can be performed by construction the of the Dawson-Watanbe
super-process as a weak limit of the rescaled version of this characterisation (Etheridge,
2000). Other approach can be to study the process through the analysis of its maximal
value, see for example Bovier (2015). Further discussion is outside the scope of this work.
The interested reader is referred to literature mentioned above, Etheridge (2000), or Bovier
(2015) to name a few.



Chapter 3

A mathematical model for cell
migration and mutual interactions

A mathematical model was formulated, starting from first principles and some basic sim-
plifying assumptions. It describes cell migration and mutual cell-cell interactions within
‘in vitro’ experimental systems which are much larger than the size of a single cell, and
are observed for 24-48 hours. Having system’s scope in mind, we kept it at the minimum
complexity level required to truly replicate laboratory experimental results. More precisely,
we employ a multidimensional SDE to describe the position of all cell centres and the way
it changes over time. The drift term accounts for all interaction between cells and the
Brownian Motion term represents internally generated independent cell migration. Weak
existence and uniqueness of its solution were confirmed, and a stationary solution under
certain conditions was provided. Further analysis identified the region within the param-
eter space for which our model predicts a stable cluster with a most likely value for the
distance between neighbouring cells.

3.1 Model formulation

3.1.1 Model’s scope

This mathematical model is designed specifically to describe ‘in vitro’ experimental sys-
tems, in which the response of a (two dimensional) sample of cells to some manipulation
on them or their environment is being observed over a long period of time. These systems
can present either high, low or a continuously changing cell density, and their length and
time scales of interest are much larger than the length and time scales representing the
persistence of a single cell.

Internal cellular mechanisms controlling the motion of all individual cells are therefore
not included, nor do we employ an ‘averaging approach’ which averages over all cells
and treats those as a continuum. Alternatively, the position of the centre of each cell
is described by an equation of motion which includes a random space homogenous term
to account for internally generated cell motion, and a deterministic representation of all
external e↵ects (such as interactions with the environment and with other cells).

For the i’th cell, let F
ij

be the force due the interaction with cell j, and assume the drag
force due to interaction with the substrate is proportional to the velocity with constant �.
The equation of motion is then:

mdV
i

(t) =

0

@
X

j 6=i

F
ij

� �V
i

(t)

1

A dt+ �̃(t)dW
i

(t) (3.1.1)
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where m is the mass of cell i, V
i

is the velocity of its centre, q
i

2 D is its position within
the bounded4, two dimensional domain D . W

i

is an independent random term, and �̃ is
a 2⇥ 2 diagonal matrix which can depend on time.

Assume the drag force ��V
i

(t) is large and the mass m is small so
m

�
⌧ 1, and that

�̃

�
= � ⇠ O(1). The equation of motion gives:

V
i

(t)dt = dq
i

(t) =
X

F
ij

dt+ �(t)dW
i

(t)

(3.1.2)

Further assume the random term is a Brownian motion W
i

= B
i

, and formulate our
first assumption:

Assumption 1 (Individual cell motion). The motion of a single cell can be described by
a stochastic di↵erential equation of the form: dq

i

(t) =
P

j 6=i

F
ij

dt + �(t)dB
i

(t). Where
q
i

(t) 2 D is the location of the centre of the ith cell at time t, F
ij

is the force exerted on
cell i due to the interaction with cell j, and B

i

(t) is an independent Brownian Motion.
All vectors are of order 2, and �(t) is represented by a 2⇥ 2 diagonal matrix.

3.1.2 Mutual interaction forces

The interactions between cells are introduced as forces which depend only on the distance
between cell centres:

Assumption 2 (Radial force). Assume the force F
ij

between the i’th and j’th cells
located at q

i

and q
j

respectively depends only on the distance between them:
F
ij

= f(q
i

� q
j

). If we further assume that f is a smooth function, then 9 a potential
function u, s.t f = �ru.

All forces which take place in the interaction between two cells are divided into two
groups: attraction and repulsion forces, and represented by only two functions which are
characterised by their amplitudes and length scales.

Assumption 3 (Repulsion and attraction forces). For any pair of cells one can
write: f = f r � fa. Where f r is the repulsion force and fa is the attraction force. These
are characterised by their amplitudes R,A and their length scales r, a respectively.
We further assume f r and fa are positive, monotonically decreasing function.

These assumptions are often used in deterministic descriptions of swarm behaviour,
see Mogilner et al. (2003) for example. Here, the repulsion force corresponds to surface
tension and all other exclusion forces which prevent the cells from occupying the same
space. The attraction force corresponds to cell adhesion and all other forces which act to
keep cells close together.

To summarise this, the interactions between cells are represented by radial forces (i.e.
depend only on the distance between cell centres) and divided into two groups: attraction
and repulsion forces f r and fa respectively. Thus

F
ij

= f(d
ij

) = f r(d
ij

)� fa(d
ij

) (3.1.3)

with d
ij

= q
i

� q
j

.

4Note this can be introduced analytically by adding a ‘boundary’ term to the potential UD , which
ensures that Ū(q) = U(q)+UD(q) ! 1 as |qi| or |qij | ! L, with U(q) the interaction potential mentioned
below, and L the relevant length scale representing the boundary of the domain. In the program written
to simulate our model’s predictions this was introduced as periodic boundary conditions (the di↵erence
between implementing periodic or reflective boundaries was tested in early stages of the development of
this program, it was found insignificant and thereafter periodic boundary conditions were implemented).
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3.1.3 A specific choice of potential function

Take f to be a smooth function, so there exists a potential function u, s.t f = �ru.
Our specific choice for the functional form of the potential in this model is:

u(d) = ur � ua, where (3.1.4)

ur(d) = rRe�|d|/r and ua(d) = aAe�|d|/a

Where |d| is the Euclidean distance, R and A set the magnitudes, and r and a set the
length scales of the repulsion and attraction forces respectively. Subsequently f r = �rur,
and fa = �rua.

More explicitly, the forces are:

f r(q
i

� q
j

) = Re�dij/r

 
qx
i

� qx
j

d
ij

· x̂+
qy
i

� qy
j

d
ij

· ŷ
!

fa(q
i

� q
j

) = �Ae�dij/a

 
qx
i

� qx
j

d
ij

· x̂+
qy
i

� qy
j

d
ij

· ŷ
!

(3.1.5)

Where d
ij

= |d
ij

| = |q
i

� q
j

| is the Euclidean distance between the i’th and j’th cells,
and (qx

i

, qy
i

) are the (x, y) coordinates of the i’th cell. x̂ and ŷ are the unit vectors in the
x and y directions respectively.

This choice of potential function comes from a group of functions commonly used in
describing swarm behaviour (Mogilner et al., 2003). We particularly chose exponential
descent to describe the forces between cells in our system, due to the fact that cell-cell
interactions are preliminary short distant and drop very rapidly as cells move further
apart. While this choice might seem (in the mathematical sense) somewhat arbitrary, the
analysis that follows can, to some extent, be adjusted to fit any smooth monotonically
decreasing functions. Limiting to a specific choice of a potential function at this stage
indeed leads to some loss of generality, but our particular choice of potential function still
allows for a versatile representation of possible cell-cell interactions: Di↵erent values of
the characteristic parameters above will result in either total repulsion, total attraction,
equilibrium distance, or other (non biological) interactions between each two cells (see
section 3.2.3 for more detail).
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3.1.4 Model equations

Consolidate assumptions 1-3 above to formulate our model’s equations:
q(t), the vector holding all positions of all cell centres at time t is given by:

dq(t) = �rU
�
q(t)

�
dt+ �(t)dB(t) (3.1.6)

where U =
1

2

NX

i=1

NX

j 6=i

u
ij

=
N�1X

i=1

NX

j=i+1

u
ij

with u
ij

= rRe�
d
r � aAe�

d
a

and d
ij

=
q
(qx

i

� qx
j

)2 + (qy
i

� qy
j

)2 ⌘ d

Note that rx

i

u
ij

=

✓
�Re�

dij
r +Ae�

dij
a

◆⇣
q

x
i �q

x
j

dij

⌘
, and the explicit representation of

the SDE for the motion of the i’th cell in the x direction gives:

dqx
i

= �rx

i

Udt+ �dBi

x

(t)

dqx
i

=
NX

j 6=i

✓
Re�

dij
r �Ae�

dij
a

◆✓
qx
i

� qx
j

d
ij

◆
dt+ �(t)dBx

i

(t) (3.1.7)

and similarly for the y coordinate.
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3.2 Model analysis

In our model equation, the drift term is F (x, t) = �rU(X), and we set �(x, t) = � to
be a constant, which is su�cient to describe the biological systems we explore here (see
biological application chapters 5 and 6 for more details).

3.2.1 Existence and Uniqueness of solutions

Lemma 3.2.1. The SDE given in equation 3.1.6 above has weak solution and the weak
uniqueness property.

Proof. In equation 3.1.6 we limit the di↵usion coe�cient �(t) to be global Lipschitz, and
the drift term�rU

�
q(t)

�
is bounded. Thus it has a weak solution and the weak uniqueness

property. See for example Theorem 37.7 in (Métivier, 1982).

3.2.2 Stationary Solution

The stable solution to our system can be obtained by solving the Fokker Planck (or for-
ward) equation with @⇡

@t

= 0 (see appendix 2.2.2 or (Klebaner, 2011; Soize, 1994) for more
details). For the drift term we have µ = �rU , and the di↵usion coe�cient �(y) = � is a
constant. Indeed the drift term is once and the di↵usion coe�cient is twice di↵erentiable,
and they meet the a Hölder condition (as in 2.2.2). Condition 1 for the existence of the
invariant distribution is readily met. As for condition 2, we need to emphasise our model
is on a bounded domain (D), so the integration is over a finite interval5. Thus condition
2 also holds.

Now
R
x

a

2µ(y)

�

2
(y)

dy = �2U(x)

�

2 + const (some meaningless constant), and for the solution

we have:

Lemma 3.2.2 (Invariant probability distribution). The weak solution to the SDE in equa-
tion 3.1.7 is given by the invariant distribution:

⇡(x) =
1

Z̃
exp

✓
�2U(x)

�2

◆
(3.2.1)

with Z̃ =
R
D exp

⇣
�2U(x)

�

2

⌘
dx.

3.2.3 Analysis of the Stationary Solution

The weak solution to our system is obtained in terms of an invariant probability distribu-
tion, implying the probability to find the system in a any given state does not change over
time. Therefore, once the system reached its steady state, the most likely state for the
system to be in is the one for which the probability distribution obtains a maximal value.
More precisely, the most likely state q

m

is the one that maximises the value of ⇡(x = q
m

)
or equivalently, minimises the value of U(x = q

m

) (= -log(⇡(q
m

)):

q
m

= argminq2DU(q) (3.2.2)

(if more than one solution exists, either of the solutions can be considered).
Thus we now need to explore the solution to our system based on the analysis of the
function U under di↵erent choices of parameter sizes.

5Alternatively one can use the amended potential Ū mentioned in footnote 4 before. The weak solution

will be ⇡̄(x) =
1

Z̄

exp
⇣
� 2Ū(x)

�2

⌘
with Z̄ =

R
exp

⇣
� 2Ū(x)

�2

⌘
dx
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Consider our model with rescaled variables: q̂ =
q

r
and t̂ = t

A

r
. Away from the

boundary, our model equation for a single coordinate (equation 3.1.7) will then be

dq̂x
i

(t̂) =
NX

j 6=i

q̂x
i

� q̂x
j

d̂
ij

✓
Ke�

ˆ

dij � e�
d̂ij
l

◆
dt̂+ �̂dB̂x

i

(t̂) (3.2.3)

and the scaled model parameters are: l =
a

r
,K =

R

A
and �̂ =

1p
Ar

�.

with d̂ij =
dij

r
, and B̂(t̂) = B

⇣
t̂
r

A

⌘
=

r
r

A
B(t̂).

The rescaled potential is

Û =
1

2

NX

i=1

NX

j 6=i

û
ij

=
N�1X

i=1

NX

j=i+1

û
ij

(3.2.4)

with û
ij

= Ke�
ˆ

dij � le�
d̂ij
l

and omit the ˆ symbols from here on. This helps consolidate the number of model pa-
rameters to the minimum necessary (Lin et al., 1988).

Look at the l�K parameter space, considering the function U assuming an equidistance
spacing between all neighbouring individuals as suggested by Mogilner et al. (2003). They
showed that when all individuals are spaced within an equal distance to all their nearest
neighbours, U can be found analytically and obtains a minimal value if l and K are in
region 4a, see figure 3.1(a) below. For example, in the one dimensional case, and under
the assumption that all individuals are spaced within an equal distance, �, to all their
nearest neighbours, the potential U

i

for individual i was found analytically:

U
i

= 2
1X

j

u
ij

(�j) = 2

✓
�l

e�/l � 1
+

K

e� � 1

◆
(3.2.5)

and could then be analysed for di↵erent regions in l �K space. It was then generalised
to two and three dimensions and a variety of cluster geometries (Mogilner et al., 2003).

Based on the analysis of the potential between two individuals (u
ij

) and of the total
potential (U

i

) for the 2 dimensional case as mentioned above, we conclude that our stable
solution can have di↵erent characteristics based on the choice of parameter sizes in the
l �K space, summarised below and in figure 3.1.

In particular, we will have a stable solution with a most likely value for the distance
between all neighbouring cells if K > 1, l > 1 and �l3 < K, where � ⇠ 1 is a constant
for which the actual value is determined by the specific assumptions made regarding the
cluster’s geometry, as explained in Mogilner et al. (2003). In all other cases the probability
density does not obtain a maximal value at a finite distance away from zero and thus does
not give a prediction for a most likely value for the distance between neighbouring cells.

Region 1 K > 1 and l < 1. The probability density does not have a maximal value at
a finite distance, see figure 3.1(b). This is a case of net repulsion - cells will move
away from each other (neither u

ij

nor U
i

in the case of equal spacing has a local
minima at a finite inter-individual distance).

Region 2 K < 1 and l < 1. The probability distribution function does not obtain a
maximal value away from zero, figure 3.1(c). All individuals collapse to a point if
all mutual distances are closer than a certain distance, and move apart if all mutual
distances are greater than some other given distance.
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(a) Di↵erent regions within the l-K parameter space.

(b) Region 1 (c) Region 2 (d) Region 3 (e) Region 4

Figure 3.1: Bifurcation diagram over the l �K parameter space. Images (b)-(e) present
U in a dashed line and the probability density / log(⇡) in solid line. In regions 1 to 3,
the probability density which follows log(⇡), does not display a maximal value away from
zero, meaning a most likely value between two individuals does not exist. In region 4,
a most likely value for the distance between two individuals exists. In the case of many
cells, the net potential (sum over all interactions, assuming a solution with equidistant
spacing between neighbouring cells) function has been analysed in Mogilner et al. (2003).
It has been shown that in region 4a it has no minima other than zero i.e. - a most likely
value for the equi-distance spacing does not exist. In region 4b the equal spacing potential
was found to have a minimal value at a finite distance (Mogilner et al., 2003), meaning
the stable solution in the case of many cells has a most likely value for the equal spacing
distance.
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Region 3 K < 1 and l > 1. Probability density function does not have a maximal
value away from zero, this case also fails to lead to an aggregate with a well-defined
individual distance, figure 3.1(d). This is a case of net attraction, the functions are
not bounded from below when the mutual distances between individuals all tend to
zero.

Region 4 K > 1 and l > 1.

N = 2 In zone 4, where U
i

has one minima, one will get a stable equilibrium at a
‘preferred distance’ ,r

0

, between the cells. When translated back into our invariant
probability distribution, this means we have one value for the distance between cells
which is the most likely value, figure 3.1(e). This distance can be readily calculated:

r
0

=
ar log(Ar/Ra)

2(r � a)
, and is used later in the graphic representations of our numeric

solutions as the e↵ective radius of all simulated cells.

N � 2
Similarly, when considering the potential for many particles, it has been shown that
it obtains a minima where all cells are positioned within an equal distance, �, from
their nearest neighbours as long as �l3 < K (where the constant � ⇠ 1 obtains a
specific value depending on cluster’s geometry, e.g. number of nearest neighbours).
It has been further shown that no minima exists if �l3 > K and thus there is no
stable equidistance at this parameter range (Mogilner et al., 2003).

Region 4a For many particles: Probability density under the assumption of an
equidistant solution obtains a maximal value at the ‘most likely spacing dis-
tance’ between neighbouring cells

Region 4b For many particles: Probability density under the assumption of an
equidistant solution does not obtain a maximal value away from zero.



Chapter 4

Estimation of model parameters
from experimental data containing
cell paths

A method for estimating model parameters from experimental data containing particle
paths was formulated. First, it was shown that under suitable conditions �(t) can be
calculated directly from these paths, and that Dambis Dubins-Schwarz (DDS) theorem can
be applied to ‘change time’ so that the model is reduced to have a constant �, so that
�(t) = �. For the drift term, likelihoods of di↵erent parameter values given particle paths
were obtained using Girsanov theorem, and then used to estimate actual parameter values
by maximising these likelihoods (MLE). Accuracy of this method was tested by comparing
estimated parameter values given computer generated paths to the actual values used to
generate these paths.

4.1 Reconstructing � directly from cell paths

The SDE describing the displacement of a single cell at time t given in equation 3.1.7 is a
specific case of an Itô process of the form:

dq
i

(t) = µ
i

�
q(t), t

�
dt+ �(t)dB

i

(t) with i = 1, . . . , N (4.1.1)

Where as before: q
i

(t) is the location of the i’th particle at time t, µ
i

is its drift term,
B

i

(t) is the ith particle’s independent BM (all are 2-dimensional vectors) and �(t) is a
2x2 matrix. q(t) is a 2xN vector which includes 2 location coordinates for all N particles,
and µ is a 2xN general function representing the drift term.

Each particle’s path can be calculated from Itô equations:

qx
i

(t) = qx
i

(0) +

Z
t

0

µx

i

�
q(s), s

�
ds+

Z
t

0

�x

i

(s)dBx

i

(s) (4.1.2)

qy
i

(t) = qy
i

(0) +

Z
t

0

µy

i

�
q(s), s

�
ds+

Z
t

0

�y

i

(s)dBy

i

(s) with i = 1, . . . , N.

Where the mean displacement is

E
i

�
qx
i

(t)� qx
i

(0)
�

= E
Z

t

0

µx

i

�
q(s), s

�
ds

E
i

�
qy
i

(t)� qy
i

(0)
�

= E
Z

t

0

µy

i

�
q(s), s

�
ds (4.1.3)
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since E
i

⇣R
t

0

�x

i

�
q(s), s

�
dBx

i

(s)
⌘
= 0, and the same holds for the y coordinate,

the quadratic variation (QV) is

hqx
i

, qx
i

i (t) =

Z
t

0

⇣
µx

i

�
q(s), s

�⌘2
ds+

Z
t

0

�
�x

i

(s)
�
2

dBx

i

(s)

hqy
i

, qy
i

i (t) =

Z
t

0

⇣
µy

i

�
q(s), s

�⌘2
ds+

Z
t

0

�
�y

i

(s)
�
2

dBy

i

(s) (4.1.4)

and
⌦
qx
i

, qy
i

↵�
t
�
=
⌦
qx
i

, qx
j

↵�
t
�
=
⌦
qx
i

, qy
j

↵�
t
�
= 0

see e.g Karlin and Taylor (1981).

Low density condition: Importantly, in order to be able to reconstruct �(t) from
known cell paths labeled X(t) hereafter, which can either be observed or simulated, it is
necessary that these paths were obtained in low cell density conditions, so that all cells
i 2 [1..N ] are positioned far enough from each other such that µ

i

�
X(t)

�
⇡ 0 for all i at

any given time t.

When this condition holds, and observed paths are substituted into the equations for
the QV, we have: µx

i

�
X(s), s

�
ds ! 0, µx

i

�
X(s), s

�
2

ds ! 0, and:

E
�
X(0)�X(t)

�
! 0

d hXx

i

, Xx

i

i (t) =
�
�x(t)

�
2

dt

d hXy

i

, Xy

i

i (t) =
�
�y(t)

�
2

dt

d hX
i

,X
i

i (t) = ��T (t)dt

hX
i

,X
i

i (t) =

Z
t

0

��T (s)ds (4.1.5)

4.1.1 Obtain � from the variance of the sample of cell paths

Under the low density condition described above, all particles follow the exact same evolu-
tion rule. I.e �

i

(t) and �
j

(t) are the same for all i and j, and µ
i

or µ
j

all go to zero for any
t. Thus, equation 4.1.1 is exactly the same for any choice of i. This means we can think
of each observed cell path as a di↵erent realisation of the solution to equation 4.1.1 with
µ
i

! 0, and the theoretical characteristics of the mean and quadratic variations of the Itô
process under the low density condition given in equations 4.1.5-4.1.5 can be associated
with the statistical mean and variance calculated from the sample of observed cell paths.

mean
�
X

i

(t)�X
i

(0)
�
=
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N

NX

i=1

X
i

(t)�X
i

(0)

=) lim
N!1

1

N

NX

i=1

X
i

(t)�X
i

(0) ! 0 (4.1.6)
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var
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q(t)� q(0)
�
2

⌘
= hq, qi (t) =

Z
t

0

��T (s)ds (4.1.7)

Thus
R
t

0

��T (s)ds can be reconstructed from the variance of the sample of all observed
cell paths X(t)6.

4.1.2 Obtain � from the variance of the sample of cell displacements

When handling experimental data, often particle paths are not observed in full. This is
mainly due to the tracking algorithm used: It may lose track of a certain cell, or gain track
of a cell that was not observed before. Further, cells may leave (or enter) the observed
frame throughout the experiment, or simply stop (or start) moving, all can result in
ending (or starting) the recording of their paths. Therefore, instead of obtaining X(t),
the locations of all particles at all observation times as an input, one may have some
fragmented version of it. For this reason we suggest to apply a slightly altered method,
described below.

Start from the single equation which describes the displacement of any particle (equa-
tion 4.1.1 under the condition of low density): dq(t) = �(t)dB(t), but now integrate only
over a single time step:

q(t
n

) = q(t
n�1

) +

Z
tn

tn�1

�(s)dB(s)

�q(t
n

) =

Z
tn

tn�1

�(s)dB(s) (4.1.8)

and:

d hq, qi (s) = ��T (s)ds

hq, qi (t
n

� t
n�1

) =

Z
tn

tn�1

��T (s)ds

� hq, qi (t
n

) =

Z
tn

tn�1

��T (s)ds (4.1.9)

Note that in this setup, even when the condition of low density is eased, if time intervals
t
n

� t
n�1

= � are small, then
R
tn

tn�1
µ
�
q(s)

�
ds is much smaller than the stochastic integral

R
tn

tn�1
�
�
q(s)

�
dB(s). Because the first integral is of order � and second is of order

p
�.

Therefore the e↵ect of the drift term µ would be negligible in the QV and could be
dropped for high cell densities too.

6Note this can also be related to the mean square displacement, E
 �

Xi(t)�Xi(0)
�2

t�0

!
often mentioned

in literature regarding cell migration (Ionides et al., 2004).
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Following the same arguments as before, but this time for the observed displacements
defined by: �X(t

n

) = X(t
n

)�X(t
n�1

), rather than the entire paths, we get:
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! 0 (4.1.10)
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Clearly, � can not be obtained in more detail than the experimental observation rate.
Alternatively, it can be estimated at the observation times, assuming it is a simple function
(which jumps at t

n

and stays constant until t
n+1

where it jumps again). The last integral
is then: Z

tn

tn�1

��T (s)ds = ��T (t
n

)(t
n

� t
n�1

)

and the estimate for � is:

��T (t
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) ⇠
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�
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)
�
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, (4.1.12)

where �t
n

= t
n

� t
n�1

.
�(t) can then be parametrised by extrapolation or by a polynomial (or any other)

curve fitting method.

4.1.3 Change of time

Recall we assume all Brownian motions are independent of each other and that all cells
have the same value for �x

i

(t) = �y

i

(t) = �(t). The SDE for a single coordinate is thus:

dqx
i

(t) = µx

i

�
q(t)

�
dt+ �(t)dBx

i

(t) for all i = 1, . . . , N (4.1.13)

One can apply DDS (Dambis, Dubins-Schwarz) theorem for change of time in a similar
manner to each coordinate separately and obtain:

Lemma 4.1.1 (Apply DDS to reduce our model to have a constant �). Let qx
i

(t) be a
solution to 4.1.13 and define X

i

(t) = q
i

(⌧
t

). Then X
i

(t) is a weak solution to the SDE:

dXx

i

(t) =
µx

i

�
X(t)

�

�2(t)
dt+ dBx

i

(t) for all i = 1, . . . , N (4.1.14)

with ⌧
t

= G�1(t), G(t) =
R
t

0

�2

i

(s)ds, and Xx

i

(0) = qx
i

(0).
(and similarly for all coordinates: qy

i

(t), qx
j

(t), qy
j

(t) )

Proof. This is a particular case of theorem 7.41 in Klebaner (2011) with g(Y (t)) = �2(t)
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One can apply this lemma in cases where data suggests that �(t) is not a constant
over time, and change to an equivalent model which ensures a constant �. Taking this
step will allow to employ our MLE method (described below) also in cases which have a
non constant �(t)( 6= �), to find an estimation of the drift term parameters.

4.2 Maximum Likelihood Estimation of drift term parame-
ters

In our model, the drift term takes the specific form: µ̄
�
q(t), t

�
= �rU . For N cells in

the two dimensional case, it is a vector valued function of length 2N. When �(t) = � is
constant over time, one can use the non dimensional representation of it given in equation
5.2.1. More explicitly, the drift term for a given particle i in the x and y directions is:

µx

i

(q̄) =
NX

j 6=i

⇣
R̄e�

¯

dij � Āe�
¯

dij/l

⌘✓ q̄x
i

� q̄x
j

d̄
ij

◆

µy

i

(q̄) =
NX

j 6=i

⇣
R̄e�

¯

dij � Āe�
¯

dij/l

⌘ q̄y
i

� q̄y
j

d̄
ij

!
(4.2.1)

with the rescaled variable q̄ =
q

r
, re-scaled model parameters R̄ =

rR

�2

, Ā =
rA

�2

, and

l =
a

r
, and rescaled distance d̄ =

d

r
(further discussed in section 5.2.2).

This definition of µ̄ gives rise to a ‘family’ of functions, a specific member of it is
characterised by setting a specific set of values to the parameters R̄, Ā, and l. Let ↵ =
(R̄

↵

, Ā
↵

, l
↵

) be a specific choice of parameter values, and µ̄
↵

is the ‘family’ member which
corresponds to this choice.

To best fit our choice of µ
↵

to the experimental data, we use Girsanov theorem for
equivalent measures and their likelihood ratio: We change the probability measure from
P to Q so that the process will have a change of drift from µ

↵0 to µ
↵

. The likelihood ratio
(given cell paths obtain in experimental data) will obtain its maximum at a certain value
of ↵. This value will determined the drift term (i.e. µ

↵

) best fitted to our data.

In this section, our method is stated in detail for a general function µ̄
↵

�
q(t), t

�
, starting

from the original theorem with its generalisation to many dimensions. A few examples
of its application to the reconstruction of the drift term from simulated data based on
di↵erent choices of U are given along with error calculations. In chapter 5 we go back and
focus on the single functional form of µ (given in equation 4.2.1 above) which corresponds
to the specific potential we found to best describe the biological systems we study.

4.2.1 Girsanov theorem: Change of measure and the likelihoods ratio

To demonstrate our method we first look at a 1-dimensional process. Consider the 1-
dimensional representation of Girsanov theorem (Girsanov, 1960; Klebaner, 2011):

Theorem 4.2.1 (Girsanov theorem, 1-dimension). Let B(t) be a 1-dimensional P-Brownian
motion, and H(t) be a predictable process with

R
T

0

|H(s)|2ds < 1.

Let Z = �
R
t

0

H(s)dB(s) = �(H ·B)(t) and assume that E(Z) is a martingale7.
Then there is a measure Q equivalent to P, such that the process: W (t), where W (t) =

7A su�cient condition for this is that E
⇣
e

1
2

R T
0 |H(s)|2ds

⌘
< 1.
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B(t) +
R
T

0

H(s)ds is a Q-Brownian motion.

The likelihood ratio is given by ⇤ =
dQ
dP = E(Z)

T

. 8

Now, let X(t) be a 1-dimensional Itô process, which is defined with a P- Brownian
motion B(t):

dX(t) = µ
↵

�
X(t), t

�
dt+ �dB(t), (4.2.2)

where B(t) is 1-dimensional, µ
↵

�
X(t), t

�
is 1-dimensional, and � is a scalar. Assume that

��1 exists.
Under change of probability measure from P to Q, the process X(t) can be written

using W (t), a (1-dimensional) Q -Brownian motion:

dX(t) = µ
↵0

�
X(t), t

�
dt+ �dW (t) (4.2.3)

To simplify this further, choose ↵
0

such that µ
↵0 = 0, and change notation so µ = µ

↵

.
Obtain the likelihood ratio for the change of measure which eliminates the drift:

Lemma 4.2.2. Let X(t) be defined by equations 4.2.2 and 4.2.3 above with ↵
0

s.t. µ
↵0 = 0,

and µ
↵

= µ. Then

log⇤ = �(��1)2
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µ
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ds (4.2.4)

Further, if µ
�
X(t), t

�
is such that there is a twice di↵erentiable function U

�
X(t), t

�
which

satisfies: �rU = µ
�
X(t), t

�
, then:

log⇤ = (��1)2U
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U 00�X(s)
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ds+
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Z
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�
X(s), s

�
ds (4.2.5)

See proof in appendix A.1.
One then needs to find ↵ which maximises the likelihood (or the log- likelihood due to

monotonicity) given the data:

↵
e

= argmax
⇣
log⇤

�
↵|X(t)

�⌘
(4.2.6)

It can be found analytically by di↵erentiation with respect to ↵ and equating to zero:

d log⇤
�
↵|X(t)

�

d↵
= 0 (4.2.7)

Or by any other method. The drift term best fitted to the data is then µ = µ
↵

, see for
example Klebaner (2011).

4.2.2 Generalise to higher dimensions

In order to use the method above for our 2 x N model, now consider Girsanov theorem in
higher dimensions (Girsanov, 1960):

Theorem 4.2.3 (Girsanov theorem, d-dimensions). Let B̄(t) be a d-dimensional P-Brownian
motion, and H̄(t) be a predictable process with

R
T

0

|H̄(s)|2ds < 1.

Let Z = �
P

d

i=1

R
t

0

H i(s)dBi(s) = �(H̄ · B̄)(t) and assume that E(Z) is a martingale9.

8E(Z)T ⌘ exp
�
ZT � 1

2 [Z,Z]T
�

9A su�cient condition for this is that E
⇣
e

1
2

R T
0 |H̄(s)|2ds

⌘
< 1.
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Then there is a measure Q equivalent to P, such that the process: W̄ =
�
W 1(t), . . . ,W d(t)

�
,

where W i(t) = Bi(t) +
R
T

0

H i(s)ds is a Q-Brownian motion.

The likelihood ratio is given by ⇤ =
dQ
dP = E(Z)

T

. 10

Let X̄(t) be a d-dimensional process, with a P - Brownian motion B̄(t).

dX̄(t) = µ̄
↵

�
X̄(t), t

�
dt+ �dB̄(t) (4.2.8)

Where B̄(t) is a d-dimensional vectors. µ̄
↵

�
X̄(t), t

�
is a d-dimensional vector valued func-

tion, and � is a d⇥ d matrix. Assume that ��1 exists.
Under change of the probability measure, the process X̄(t) can be written using a

(d-dimensional) Q -Brownian motion W̄ (t):

dX̄(t) = µ̄
↵0

�
X̄(t), t

�
dt+ �dW̄ (t) (4.2.9)

This change of drift corresponds to taking H̄ = ��1

⇣
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�
X̄(t), t

�
� µ̄

↵0
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�⌘
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Girsanov theorem for d-dimensional di↵usions given above (theorem 4.2.3). Further we

have: H i =
P

j

(��1)
ij

⇣
µj

↵

�
X̄(t), t

�
� µj

↵0

�
X̄(t), t

�⌘
.

Let µ̄
↵

= µ̄ and µ̄
↵0 = 0 for simplicity, so H̄ = ��1µ̄

�
X̄(t), t

�
andH i =

P
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(��1)
ij

µj

�
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�
.

Denote ⌃ = �T�, and therefore ⌃T = ⌃, and ⌃�1 = ��1��T = ⌃�T , and obtain:

Lemma 4.2.4. Let X̄(t) be defined by equations 4.2.8 and 4.2.9 above with ↵
0

s.t. µ̄
↵0 = 0,

and µ̄
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= µ̄. Then
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Further, if µ̄
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is such that there is a twice di↵erentiable function U
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satisfies: �rU = µ̄
�
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, and all the BM’s are independent so ⌃ = �2I, then:
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Proof can be found in appendix A.2

4.3 Numerical demonstration

A java code was programed to numerically solve our model’s equations for three di↵erent
choices of potential functions, and a given set of model parameter values, in order to
generate numerically simulated cell paths. A di↵erent part of the script then analysed
these paths based on the method presented in section 4.2 above to estimate the values
of model parameters used to generate these paths. A calculation of the error was then
performed, based on the di↵erence between actual parameter value (used in generating
the paths) and its corresponding estimated value.

This was done using three di↵erent choices for the potential function (i.e U):

* Linear drift

* Linear interactions

10E(Z)T ⌘ exp
�
ZT � 1

2 [Z,Z]T
�
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* Exponential attraction and repulsion interactions11

In each of the cases, the e↵ect of changing the integration time, the integration interval,
and the sample interval on the error was demonstrated. As one would expect, smaller
integration steps and longer integration times were found to yield the smaller error values.
Higher sample rate (=1/sample interval) decreases the error further.

Furthermore, error estimations in the cases of the linear drift and the linear interactions
between cells could readily reach their lower limit which are determined by programmatic
constraints and adjustable by the user. In the exponential interactions case, errors were
found to be further dependent on the spatial arrangement of cell paths, where paths that
are too far apart result in larger errors, as the potential diminishes exponentially with
distance and parameter sizes can not be retrieved correctly.

4.3.1 Error calculation

Let ↵ represent the set of parameters characterising the drift term µ
↵

. Depending on the
choice of potential function, ↵ can contain a discrete number of parameters, marked ↵

i

(for the potential functions demonstrated here, i is between 1 and 4). Further, set ↵s

to represent parameter values used in the simulation to generate cell paths, and let ↵e

represent parameter values estimated by using our MLE method (see 4.2).
Then define some error estimators based on the di↵erence between ↵s and ↵e:

Absolute error : errabs
i

= |↵s

i

� ↵e

i

|,

Relative error : errrel
i

=
|↵s

i

� ↵e

i

|
↵s

i

,

Errors sum : sum of relative errors: errsum =
P

i

|↵s

i

� ↵e

i

|
↵s

i

These estimators are calculated for paths obtained using di↵erent choices of potential
functions below. Note these errors are bounded from below by a pre-defined grid size of
the parameter space, since at this stage our algorithm employs a ‘broote force’ method in
order to find the arguments which maximise the likelihood (argmax(log⇤)), i.e likelihood
valued are calculated at a pre-defined (passed in as an input to the code) set of grid points
which constitute the parameter space on which argmax is searched for. Of course one
can employ a ‘smarter’ method for finding the argmax, such as gradient decent or others,
which can increase e�ciency, and eliminate dependency on a pre-defined grid. We leave
this for future work.

4.3.2 Linear drift

Simulated particle paths were generated by numerically solving the SDE

dq(t) = �↵q(t)dt+ �dB(t) (4.3.1)

Here this is a set of 2 x N independent equations since the linear drift term does not include
interactions between particles. While ↵ here is a 2 x N vector, all particles are set to follow
the same rule, thus ↵

i

= ↵
j

and �
ii

= �
jj

= �. In particular for this demonstration we
set: ↵x

i

= ↵x

j

= 2, ↵y

i

= ↵y

j

= 3, and � = 0.5. Figure 4.1(a) below shows simulated particle
paths obtained at �t = 0.005.

11This is the specific choice for the potential function we use everywhere else in this dissertation
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For the calculation of the likelihoods as given in lemma 4.2.4 above, substitute:
U =

P
N

i=1

u
i

, where

u
i

=
1

2
↵x

i

(qx
i

)2 +
1

2
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(qy
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)2 (4.3.2)
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, ry
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2 +ry

i
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u
ij
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i
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(4.3.3)

Errors sum (errsum) calculated from the di↵erence between estimated parameter values
obtained by applying MLE (↵

e

) and actual parameter values used to generate simulated
paths (↵

s

) as a function of integration time T , obtained using di↵erent integration intervals
(�t) are shown in figure 4.1(b), with sample interval = 1. Error estimations generally
decrease with decrease in the integration interval, with the estimations from �t = 0.01
and �t = 0.005 pretty close together, both limited from below by the grid size, which
at this stage is given as an input by the user, and defines the grid points within the
parameter space for which the likelihoods are calculated. Errors sum (errsum) obtained
using di↵erent sample intervals (with �t = 0.005) are shown in figure 4.1(c). These error
estimators clearly decrease with decrease in sample interval.

Further results including simulated paths with integration intervals (�t = 0.1, 0.05, 0.01)
and further error calculations including the breakdown of the errors sum to the errors in
estimations of the separate parameters (i.e errrel

i

for ↵x and ↵y ) can be seen in appendix
B.1.1.
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(a) computer generated sample paths, �t = 0.005

(b) err

sum for di↵erent �t values

(c) err

sum for di↵erent sample intervals at �t = 0.005

Figure 4.1: Linear drift (well potential). (a) Computer generated sample paths, N = 20,
↵
x

= 2,↵
y

= 3, and � = 0.5. Random initial condition was generated from a uniform
distribution over a 20x20 domain: q(t = 0) ⇠ U [�10, 10]2N . (b) Error estimations ob-
tained for di↵erent �t values (with sample interval=1). (c) Error estimations obtained
for di↵erent sample intervals at �t = 0.005.
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4.3.3 Linear interactions

To verify our method can work to estimate parameter values correctly in the case of
linear (attraction) interactions between agents, simulated particle paths were generated
by numerically solving the SDE:

dq
i

= �r
i

Udt+ �dB
t

where U =
1

2

NX

i=1

NX

j 6=i

u
ij

with: u
ij

=
1

2
↵d2

ij

and d
ij

=
q

(qx
i

� qy
i

)2 + (qy
i

� qy
j

)2 as in chapter 3. Sample simulated paths are presented

in figure 4.2(a).
Further, substitute the potential and its derivatives in lemma 4.2.4, to obtain estima-

tions for parameter values.

rx

i

u
ij
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✓
qx
i

� qx
j

d

◆

ry

i

u
ij
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qy
i

� qy
j

d

!

r2

i

u
ij

= ↵

Here, since the potential is defined by a single parameter, we have errsum = errrel
0

.
Errors calculated for di↵erent integration intervals �t = 0.05, 0.01, 0.001 and integration
times T = 0.5, 1, 2, 5, 7 are presented in figure 4.2(b). Errors calculated for di↵erent
sample intervals (1,50 and 100) are presented in figure 4.2(c). Again, a decrease in error is
evident with decrease in integration and in in sample intervals. More results can be seen
in appendix B.1.2.
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(a) Computer generated sample paths �t = 0.01

(b) err

sum for di↵erent �t values

(c) err

rel
0 for di↵erent sample intervals at �t = 0.01

Figure 4.2: Linear interactions, attraction only. (a) Computer generated sample paths.
N = 16, ↵ = 1,� = 0.3. Initial condition was a grid of 4x4 nodes, over an 8x8 domain. (b)
Error estimations obtained for di↵erent �t values (with sample interval = 1). (c) Error
estimations obtained for di↵erent sample interval at �t = 0.01.
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4.3.4 Exponential repulsion and attraction interactions

In this section we tested the ability of our method to estimate parameter values for the
model we formulate and apply to di↵erent biological systems in this dissertation. Simu-
lated particle paths were generated by numerically solving a re-scaled version of our model
equations with the drift term introduced in equation 4.2.1 above (more details in chapter
3 and in section 5.2.2). A sample of simulated particle paths can be seen in figure 4.3(a)
below, parameter values used were: R̄ = 25, Ā = 10, l = 1.3 and � = 0.3 (number of
particles N=16).

For the calculation of the likelihoods as given in lemma 4.2.4, substitute U, u
ij

, and
r2

i

u
ij

with:

where U =
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Errors calculated from the di↵erence between estimated parameter values obtained by
applying MLE (↵

e

) and actual parameter values used to generate the simulated paths
(↵

s

) as a function of integration time T , obtained using di↵erent integration intervals
(�t) and di↵erent sample intervals are shown in figures 4.3(b)-(c) below.

Additional results including the break down to errors estimated separately for the
di↵erent parameters and sample paths obtained at di↵erent integration intervals can be
seen in appendix B.1.3.
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(a) Cell paths

(b) err

sum for di↵erent sample intervals at �t = 0.005

(c) err

sum for di↵erent �t values

Figure 4.3: Exponential interactions, repulsion and attraction forces. (a) Computer gen-
erated sample paths, N = 16. R̄ = 25, Ā = 10, l = 1.3 and � = 0.3. (b) Error estimations
obtained for di↵erent �t values (with sample interval = 1). (c) Error estimations obtained
for di↵erent sample interval at �t = 0.005.



Chapter 5

Model application: The e↵ect of
broad beam radiation treatment
on cell migration and cell-cell
interactions

The method developed in chapter 4 was applied to analyse the response of normal cells to
radiation treatment. Model parameter values were estimated from cell paths which were
obtained experimentally by observing normal (i.e not cancerous) fibroblast cells, after being
irradiated in vitro, for 48 hours after the treatment. Our analysis showed that cell motility
increases dramatically when irradiated by dosages increasing between 0 and 10 Gy, and
that interactions between neighbouring cells decrease e↵ectively to zero when irradiated by
this dosage. 12

5.1 Biological motivation

Biological studies of a new radiation treatment, known as Micro Beam Radiation Treat-
ment 13 (MBRT hereafter) which was shown to dramatically decrease cancerous tumour
growth, have triggered substantial interest in understanding the way radiation treatment
may e↵ect cell motility and mutual interactions in normal and in cancerous cells.

Radiation treatments designed to eliminate cancerous tumours are based on the fact
that cancerous cells display a very di↵erent response to radiation than that of normal
(healthy) cells. The main and probably most well understood di↵erence, which is also the
main reason for the success of those treatments is the fact that healthy cells can recover
much better and much faster from damage due to radiation than cancerous cells can. The
cellular mechanisms responsible for DNA repair are amongst the first ones which get lost
in the process of a cell becoming cancerous, and thus leaving it less able to recover from
damage due to radiation, which is mostly pronounced as single or double strand breaks in
the DNA sequence (Alberts et al., 2008).

The new MBRT studies shed light on another significant, yet not that well studied
di↵erence, which was manifested in the fact that in the cancerous tumour, the cells moved

12The experimental data analysed in this chapter was provided to us by Dr Je↵rey Crosbie from The
Royal Women’s Hospital, and Dr Camden Lo from The Micro Imaging Centre at Monash University, as
a part of a wider project designed to help understand the response of both normal and cancerous cells to
radiation treatment.

13A new type, still only experimental, of radiation treatment for cancer currently studied in research
laboratories around the world. The innovation of it is that it applies a non uniform pattern of radiation,
of which the picks may obtain much higher dosage than in the traditional radiation treatment.
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much more than in the healthy tissue. As was demonstrated by Crosbie et al. (2010),
the healthy irradiated tissue kept its original arrangement and maintained the pattern
induced by the initial radiation (i.e alternating lines of radiation damaged cells and non
damaged cells) until recovery, while the tumour cells got all intermingled - the tumour
initially displayed the same damaged/not damaged pattern as the healthy tissue did, but
after 24 hours damaged cells appeared everywhere throughout the tumour, intermingled
amongst the non-damaged cells.

There is a vast literature describing the e↵ect of radiation treatment on tumour growth,
incorporating a variety of mathematical models mainly to help design the optimal radiation
pattern that will result in the most e↵ective elimination of the tumour (Niemierko and
Goitein, 1992; Sachs et al., 2001; Rockne et al., 2009). In the past, the e↵ect radiation has
on cell motility was recorded mainly in the context of gliomas14 (Kil et al., 2012). The
metastatic potential of carcinoma15 cancerous cells through their migratory ability was
only discussed much more recently (Zheng et al., 2015), and to our knowledge, there are
no mathematical models utilised to describe it so far.

While the e↵ect of radiation treatment on cell migration and mutual interactions is
clearly a question needs resolving in the context of this new experimental MBRT due to the
exploration of increasing radiation dosage levels (Crosbie et al., 2010), finding an answer
is also valuable in the case of the widely used traditional treatment to cancer using Broad
Beam Radiation (BBR), as it may explain the increased risk of metastasis in some types
of cancer after traditional radiation treatment. Here we analyse experimental data that
was obtained by observing normal fibroblast cells16 for 48 hours after being irradiated by
BBR in vitro. We apply our method (as described in chapter 4) to find parameter values
given cell paths obtained under di↵erent radiation dosage, and unveil a clear trend in the
e↵ect radiation treatment has on cell migration and mutual interactions amongst these
cells.

5.2 Results

In this section we present initial results obtained when using the techniques in chapter 4
to estimate parameter values for the model we constructed in chapter 3, given cell paths
that were obtained experimentally under di↵erent BBR levels (0, 2, 5, and 10 Gy).

Starting from our model equations 3.1.6- 3.1.7, we analysed cell paths obtained under
very low cell density conditions at the di↵erent radiation levels, to derive estimation of �
for these radiation levels. We found that for the part of the experiment where �(t) = � is a
constant over time (see below), �2 increased from about 9 to 25 µm2/min when radiation
levels increases from 0 to 10 Gy.

From cell paths obtained at high cell density (scratch assay17 for di↵erent radiation
levels, a value for � can not be estimated directly from the data. To overcome this, assum-
ing � is a constant18, we consider a rescaled version of our model (equation 5.2.1 below)
which allows to obtain an estimations of the drift parameters without an explicit knowl-
edge of the value of �. When analysing the data from those first 20 hours in which � was
a constant, a trend in parameter values was found: K and l decrease as the radiation level

14Gliomas are more fluid like tumours, where di↵usion models are more often used.
15Carcinoma - cancer that develops from epithelial cells. It results in more solid tumours.
16L929 - Mouse C3H/An connective tissue cell line.
17Cell sample in which cells were grown to full confluence and then ‘scratched’ using a thin laboratory

device, to create a gap for which the remaining cells can move in to
18Note that even if we do not assume a constant �, we could apply DDS theory as mentioned in section

4.1.3 and obtain estimations of the parameter values for the updated drift term, see therein.
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increases, which implies a decrease in the strength of the interactions between neighbour-
ing cells from having a ‘comfortable distance’ of equilibrium representing cell-cell adhesion
at zero Gy to e↵ectively no cell-cell interactions at 10 Gy.

5.2.1 The e↵ect of radiation treatment on cell motility

The e↵ect of radiation treatment on cell motility was studied by applying the approach we
describe in section 4.1.2 (in particular, equation 4.1.12), which relates � in our model to
the variance of the sample of cell displacements and/or to the mean square displacement
(MSD) for data collected at low cell density.

At any given time step t
n

, �X
i

(t
n

) was calculated for each observed cell path X
i

(t)
from: �X

i

(t
n

) = X
i

(t
n

)�X
i

(t
n�1

). The variance over all those �X
i

(t
n

)’s was obtained
for every t

n

. The result for this calculation is presented as a function of time for the four
radiation levels we studied in figure 5.1(a).

Although our approach can handle � which is not a constant over time, the literature
points to e↵ectively constant MSD at this length and time scales (see model formulation
section 3.1, and Dickinson and Tranquillo (1993); Taylor et al. (2012) for further detail).
We thus chose to focus on the response to radiation during the first 20 hours after treat-
ment, where the MSD over time can be fitted with linear curves which have close to zero
slopes. The fitted curves are plotted on top of the data presented in figure 5.1(a). Curve
parameters (constant value of MSD over time) are presented as a function of radiation
dosage in figure 5.1(b).

This shows a clear trend which indicates an increase in cell motility due to increase in
dosage level of the radiation treatment. As more data will become available to us, error
estimations could be made more rigorous.

5.2.2 The e↵ect of radiation treatment on cell-cell interactions

Data containing cell paths that were observed at high cell density (scratch essay) was
used to estimate parameter values by applying the maximum likelihood estimation (MLE)
method we described in section 4.2 (in particular given in lemma 4.2.4) with a rescaled
(non-dimensional) version of our model below.

We let � be a constant over time, as was found in the low density experiment for the

first 20 hours, and considered the rescaled model variables q̄ =
q

r
and t̄ = t

�2

r2
. Our model

equation for a single coordinate gives
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with the rescaled model parameters R̄ =
rR
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a

r
. The rescaled distance
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r
and rescaled BM B̄(t̄) = B(t̄
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�2

) =
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�
B(t).

This allowed us to perform our estimation despite the fact our method is not capable
to retrieve � value directly from data obtained at high cell density: Instead, the estimation
found the non dimensional ratios: R̄, Ā, and l. System’s dynamics could then be analysed

looking at K =
R̄

Ā
=

R

A
and l as described in section 3.2.3.

Figure 5.2(a) shows an example of all cell paths that were observed between times t
10

and t
20

at a specific repetition within the scratch essay which had been irradiated by 0 Gy.
Then figure 5.2(b) focuses on a group of close neighbours between which the potential does
not diminish (recall our potential function goes to zero rapidly as the distance between



40 CHAPTER 5. RADIATION EFFECTS MIGRATION AND INTERACTIONS

(a) Sample variance over time, from data obtained
after radiation at four dosage levels (0, 2, 5, 10
Gy). Linear curves fitted to data from the first 20
hours have close to zero slopes.

(b) �

2 values as obtained from curves’ parame-
ters, as a function of radiation level.

Figure 5.1: �2 values obtained from experimental data. Increase in radiation levels in-
creases cell motility.

neighbouring cells increases). Our method was applied to paths of neighbouring cells which
are included in such groups, from within data sets that were obtained at the di↵erent
radiation levels 0,2, 5, and 10 Gy.

A summary of all estimations obtained for the values of K and l as a function of the
radiation level is presented in figure 5.3(a). The potential functions drawn with these
values, indicating a decrease in cell-cell interactions with the increase of radiation levels
can be seen in figure 5.3(b). In particular the potential between two individual cells
changes from having one minimum at r

0

at the radiation level of zero Gy, to having no
salient points and staying close to zero for the 10 Gy radiation level. Meaning the change
from cell cell adhesion at 0 Gy to no significant interaction between neighbouring cells at
10Gy. Based on the analysis in section 3.2.3, our model predictions change from predicting
a stationary solution with the equal spacing arrangement obtaining a finite most likely
distance between neighbouring cells in the 0 Gy case, to having no particular preferable
arrangement in the 10 Gy case.
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(a) (b)

Figure 5.2: Cell paths obtained experimentally. (a) All paths observed from t = 10 to
t = 20 (hours). (b) Focus on a group of neighbouring cells to obtain a relevant estimation
of model parameters (recall forces between cells decrease rapidly with distance.

(a) (b)

Figure 5.3: Drift term parameters estimated from experimental data. Increase in radiation
levels shallows the potential well responsible for neighbouring cells having a ‘comfortable
equilibrium distance’, e↵ectively diminishing cell-cell adhesion.
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5.3 Conclusions and future work

Studies of an experimental type of radiation treatment to help eliminate cancerous tumours
had highlighted the need to deepen the understanding of the e↵ect radiation treatment
may have on cell motility and mutual interactions in normal and in cancerous cells (Crosbie
et al., 2010). More recently, an increase in tumour metastasis potential, which manifested
both as lower cell-cell adhesion and as higher cell motility, was recorded due to increase
in radiation dosage (Zheng et al., 2015).

Here we demonstrate how the method formulated in chapter 4 can help analyse exper-
imental data containing cell paths and identify trends in cellular responses to increasing
dosage of radiation treatment (0,2,5 and 10 Gy). In particular, we found that cell motility
almost doubles when radiated by 10 Gy, and that cell adhesion decreases e↵ectively to
zero when radiated at that level.

Although the results presented here are only preliminary in the sense they stem from
analysing a limited data set regarding only a single cell type from a single experimental
repetition, they already show the strength of our method in studying the way cell behaviour
may change under changing conditions. These results further highlight the importance of
studying the possible e↵ect radiation treatment may have on cell migration and mutual
interactions in more depth and rigour.

A direct continuation of the work presented here would be to analyse data from more
experimental repetitions and thus enabling error estimations (e.g. formulating calculations
of p-values). Further it would be conductive to look at the response of di↵erent cell types
(cancerous cells from di↵erent types of tumours, other types of normal cells, etc.) to
the same radiation treatment investigated here. Another step would be to look at higher
BBR dosages, especially at low cell densities, to help understand the tampering in response
strength as increasing radiation dosage to approach the physical limitations on cell motility.

In the front of MBRT (micro-beam radiation treatment) studies, as di↵erent cells in
the same essay are exposed to di↵erent radiation levels, once cell paths can be recorded
along with the radiation dosage each particular cell was exposed to, one could analyse cells
response and compare it to the response patterns collected from BBRT (broad-beam radi-
ation treatment) experiments. Until then, a theoretical extrapolation from data collected
in BBR experiments can be valuable.19

19Methods for this chapter can be seen in appendix C.1.



Chapter 6

Extended model - The e↵ect of
Eph-ephrin regulated cell-cell
interaction on cell segregation and
cluster formation

In this second application of our model we explored the way interactions between two dif-
ferent cell populations, which are regulated by the Eph-ephrin signalling pathway, control
cell segregation and cluster formation. Our mathematical model was extended to account
for two di↵erent cell types and the interactions between them, and to also include cell
proliferation which we found plays a significant role in controlling the dynamics of this
experimental system. The aim of this extension is to enhance the understanding of cell
segregation due to Eph-ephrin regulation of cell-cell interactions by highlighting the con-
trolling mechanisms, and studying the inter-relations between them and their e↵ect on cell
segregation dynamics and outcome. A designated Java script was written, to numerically
solve the extended version of our model’s equations and generate computer simulated model
predictions. These predictions were tested against results obtained in the laboratory by our
collaborators. A statistical analysis of the results suggested a good fit between simulated
and experimental result concerning both clustering dynamics and the range of possible seg-
regation due to manipulation of the strength of Eph-ephrin interactions. Furthermore, our
model gave rise to the necessity of asymmetry between like-cell interactions in the two dif-
ferent populations in order to generate experimental results that had been observed in the
laboratory. This finding triggered additional laboratory and research work, which confirmed
this asymmetry is indeed present in the biological system studied.20

6.1 Biological background

Eph receptors (Ephs) are the largest subfamily of receptor tyrosine kinases (RTKs). Their
cell-cell contact dependent interaction with cell-bound ephrin ligands orchestrates cell
positioning, tissues and organ patterning, and controls cell survival during normal and
neoplastic development (Pasquale, 2010; Lackmann and Boyd, 2008; Janes et al., 2008).
In humans, five GPI cell surface-bound type-A ephrins and three transmembrane type-B
ephrins interact promiscuously with nine EphA - and five EphB family members, respec-
tively, initiating receptor clustering, tyrosine phosphorylation and downstream forward

20Work presented in this chapter was conducted in collaboration with and Dr Peter Janes and Assoc.
Prof. Martin Lackmann from the Department of Biochemistry & Molecular Biology at Monash University.
It has been published in PLOSONE (Aharon et al., 2014) with some variations, in memory of late Martin
Lackmann, who has sadly passed away during our collaborative work on this project.
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signalling into Eph-bearing cells (Lackmann and Boyd, 2008; Davis et al., 1994; Pasquale,
2008). Concurrently, ligated ephrins are drawn into a cluster on the opposite cell surface
(Salaita et al., 2010), eliciting a reverse signal (Daar, 2012; Davy and Soriano, 2005), so
that mutually dependent consequences from Eph/ephrin interactions are relayed into both
cell populations (Egea and Klein, 2007). As a direct consequence of Eph/ephrin signalling,
cells undergo changes in their actin cytoskeleton and morphology (Carter et al., 2002;
Lawrenson et al., 2002; Wimmer-Kleikamp et al., 2008), their contact to neighbouring
cells (Foo et al., 2006; Janes et al., 2005), substrate adhesion, motility, and their viability
(Huynh-Do et al., 1999; Miao et al., 1999, 2005; Genander et al., 2009), with downstream
e↵ects on cell invasion, tissue boundary formation and on specialised secretory or immune
functions, as well as on cell survival, reviewed in Pasquale (2010); Genander and Frisn
(2010); Watanabe and Takahashi (2010); Nievergall et al. (2011); Batlle and Wilkinson
(2012).

Ephs and ephrins are distinctively less prevalent in adult than in embryonal tissues,
but are over-expressed and functionally implicated in a broad range of cancers, including
breast, colon, lung and kidney carcinomas, melanomas, sarcomas, neuroblastomas, ovarian
and prostate cancers and leukemias (Pasquale, 2010; Watanabe and Takahashi, 2010),
and their implication in disease progression is emphasised by a conspicuous frequency
of somatic Eph mutations detected in various cancers genome profiles (?Watanabe and
Takahashi, 2010). Not surprisingly, oncogenic Eph functions often reiterate developmental
activities, and depending on tumour type, and disease stage, Eph overexpression can
promote or inhibit tumour progression (Genander et al., 2009; Cortina et al., 2007; Noren
et al., 2006; Miao et al., 2009), a review can be seen in Genander and Frisn (2010).

Eph/ephrin mediated tissue patterning has been modelled experimentally using iso-
lated zebrafish embryo caps (Mellitzer et al., 1999) and cultured epithelial cell lines (Jor-
gensen et al., 2009; Nievergall et al., 2010; Poliakov et al., 2008), whereby co-culture of
cells expressing either an Eph receptor or corresponding ephrin binding partner(s), leads
to cell-cell interactions (Pasquale, 2010) that result in cell-cell segregation or de-adhesion
between, and adhesion within, the two cell populations. During developmental patterning,
overlapping expression gradients of multiple Ephs and ephrins (Flanagan, 2006; McLaugh-
lin and O’Leary, 2005; Lackmann and Boyd, 2008; Xu et al., 2000) and the integrated
signals from all the cell surface Eph receptors competing for available ephrin targets de-
termine the final position and interaction partner of migrating cells (Reber et al., 2004).
The complexity of the composition and regulation of such elaborate signalling clusters
and emanating pathways is only beginning to be appreciated, but it is clear that the
net outcomes depend on cell surface concentration, kinase-signalling capacity, type of co-
expressed Ephs and ephrins and their crosstalk with other signaling systems (Nievergall
et al., 2011). It is likely that the di�culty of interpreting on cellular, organ and whole
organism levels experimental outcomes of manipulated Eph signalling is (at least partially)
responsible for the confusing and often contradictory literature describing Eph signalling
responses (Pasquale, 2010; Lackmann and Boyd, 2008). Accordingly, there is increasing
appreciation that the complexity of this signalling network, which relays input from a large
number of parallel cues into a range of fine-tuned cellular responses, will require mathe-
matical modelling to reliably predict signalling outcomes (Salaita et al., 2010; Jorgensen
et al., 2009; Miao et al., 1999, 2005; Reber et al., 2004).

6.2 Extended model

Our collaborators and others (Janes et al., 2011; Poliakov et al., 2008) have previously
used 2D co-culture of ephrin-B1- and EphB2-expressing (HEK293) cells as a model of
Eph/ephrin mediated segregation of the two populations. Building on existing knowledge
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of Eph/ephrin-mediated cell interactions, where active bi-directional signalling in Eph-
and ephrin-expressing cells leads to cell retraction and de-adhesion, overcoming usual
cell-cell adhesion, we identified some basic assumptions that we considered essential for
orchestrating cell segregation and cluster formation. Our approach is designed to describe
the concept underlying Eph/ephrin-mediated sorting of two cell populations by using a
small number of generic functions, for which the specific choice of explicit function and
parameter sizes can be matched to describe experimental observations.

In the experiment we model, two cell populations are co-cultured within a monitored
domain of about ⇠ 500⇥ 700µm (representing the microscope field of view). One popula-
tion expresses green fluorescent protein (GFP)-tagged EphB2, and the other non-tagged
ephrin-B1. The total population size grows from a few hundred to thousands within
about 48 hours. Given the relative size of a single cell with respect to the size of the en-
tire domain, we can keep all previous assumptions regarding independent cell motion and
interactions with the environment and like-type neighbouring cells in place (see chapter
3). We now need to add a term which incorporates the interactions between di↵erent type
cells into the potential function, and add a birth process to describe the growth of both
cell populations due to cell division.

6.2.1 SDE describing the position of all cell centres

We start with assumptions 1-3 which are repeated here for clarity, with their formulation
and more detailed explanations given previously (see section 3.1). In order to generalise
our model to include interactions between cells from di↵erent populations, and to account
for cell birth, we add two further assumptions (4 and 5) which are explained and formulated
in the next sections.

Assumption 1 (Individual cell motion). The motion of a single cell can be described by
a stochastic di↵erential equation of the form: dq

i

(t) =
P

j 6=i

F
ij

dt + �(t)dB
i

(t). Where
q
i

(t) is the location of the centre of the ith cell at time t, F
ij

is the force exerted on cell
i due to the interaction with cell j, and B

i

(t) is an independent Brownian Motion. All
vectors are of order 2, and �(t) is represented by a diagonal matrix.

Assumption 2 (Radial force). Assume the force F
ij

between the i’th and j’th cells located
at q

i

and q
j

respectively depends only on the distance between them:
F
ij

= f(q
i

� q
j

). If we further assume that f is a smooth function, then 9 a potential
function u, s.t f = �ru.

Assumption 3 (Repulsion and attraction forces). For any pair of cells one can write:
f = f r � fa. Where f r is the repulsion force and fa is the attraction force. These are
characterised by their amplitudes R,A and their length scales r, a respectively.
We further assume f r and fa are positive, monotonically decreasing functions.

6.2.2 Dynamics of interactions between cells of di↵erent types

This further assumption is designed to capture the modulation of cell-cell interactions due
to Eph-ephrin regulation, which come to play in interactions between the two di↵erent
subpopulations (Eph and ephrin expressing cells). When an Eph- receptor on a cell mem-
brane binds with an ephrin ligand on an adjacent cell, a signalling pathway within the
cell acts to decrease the adhesion between the two cells. This decrease in adhesion can be
modulated based on the levels of Eph and ephrin expression within the cell membrane.
We introduce a parameter C 2 [0, 1] and can regulate the strength of the Eph-ephrin
interruption to the normal adhesion between the di↵erent cells by adjusting the value
of C.
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Assumption 4 (Cell segregation due to Eph-ephrin interaction). When Eph-ephrin in-
teraction takes place, an additional repulsion term is introduced to attenuate the attrac-
tion due to adhesion. The attraction term is countered by f e = +Cfa, where C is a
constant which controls the attenuation level of the attraction force. Now f(q

i
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� q
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)� (1� c
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� q
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). with c
ij

= c
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= 0 if the cells are of the same type (i.e.
no Eph-ephrin interaction), or c

ij

= c
ji

= C if the i’th and j’th cells are of di↵erent types
(i.e one is Eph and the other is an ephrin expressing cell).

The biological analog to it is to assume that once an Eph containing cell meets an
ephrin containing cell, the adhesion force between them will be diminished, maximally to
zero (when C=1). There will only be a repulsion force due to surface tension which does
not allow cells to occupy the same space. This indeed gives rise to a form of ‘di↵erential
adhesion’, but unlike in other models, the possible change of the e↵ective cell size is
accounted for (i.e. two cells which have adhesion between them will normally be closer
together than two cells who just had the adhesive bonds between them released due to
the Eph-ephrin interaction).

Thus, the specific choice of the potential function is now:

u(d) = rRe�|d|/r � aAe�|d|/a + c
ij

aAe�|d|/a (6.2.1)

where the first term is the potential for the repulsion force between cells and the second
term is the potential for the attraction force, with R and A setting the magnitudes and r
and a setting the length scales of the repulsion and attraction respectively. The last term
gives rise to the Eph-ephrin regulation: when i and j are of the same type it equals zero,
and when i and j are of di↵erent types c
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= C, so it attenuates the adhesion force.
The list of functions representing the forces given in equation 3.1.5 is completed as
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In the computer simulation based on the numeric solution of these we further allow f r

and fa to be di↵erent between the Eph and ephrin expressing cell populations by setting
A = Aeph and R = Reph to give f eph, or A = Aephrin and R = Rephrin to give f ephrin for the
specific cell populations. This lets us explore a much larger set of clustering scenarios.21

6.2.3 Birth process

In this biological system cell death is insignificant at the relevant time scales, thus we let
each population size follow a pure birth process: The initial number of cells is taken to
match the experimental initial conditions, and after this, each cell can ‘give birth’ to a
daughter cell, following a Poisson process of rate �. The daughter cell will always be of
the same type (i.e. eph or ephrin expressing) as the mother, and its initial position will

21In the case where the forces between same type cells are di↵erent between the two populations (i.e
A

eph 6= A

ephrin or R

eph 6= R

ephrin ), we set two other parameters: A

eph:ephrin and R

eph:ephrin (meaning
the attraction and repulsion amplitudes between not-like cells respectively) to avoid ambiguity.
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always be the location of the mother at the time it was split. Indeed this is a specific case
of the Galton-Watson branching process, where the number of o↵springs is k = 2 with
probability = 1 (see further details in section 2.2.4 and references therein).

Assumption 5 (cell proliferation). Assume each population size follows a pure birth
process. At a given time t > t

0

, each existing cell can give birth to a new cell of the same
type with probability p = e��(t�t0), where t

0

is the last time at which that cell divided (or
was first created). The initial position of the new cell is taken to be the location of the
mother cell at the time it was split.

At any given time t, the total number of cells N(t) = N ephrin(t)+N eph(t) is a random
variable. The expected value of the total number of cells at time t is:

EN(t) = N(0)e�t (6.2.3)

Since the cell population size doubles every 16 hours, we set: � =
log 2

16h
.

6.2.4 Model equations

This generalise version of our model gives rise to a form of a Branching Brownian Motion
(BBM) with interactions. Indeed, as discussed in section 2.2.4, BBM is a well defined
process which can be explored in terms of its weak limit or duel process. However, here
we have an additional, fairly un-trivial, drift term which dictates interactions between the
particles. Furthermore, the model accounts for two di↵erent types of particles which have
complex interactions with like particles, and even more complex interactions with un-like
particles.

With the biological question which motivated us to formulate this generalised model
in mind, we choose not to go down the path of rigorous formulation and analysis. Instead,
we find that the simulations of this model’s predictions by generating numeric solutions
of its equations (using a specially designed and executed computer code) is appropriate,
and gives adequate and comprehensible answers.

Consolidate assumptions 1-5 above to formulate our model’s equations:
For each population type, at a given time t > t

0

, each existing cell can give birth to a new
cell of the same type with probability p = e��(t�t0), where t

0

is the last time at which that
cell divided (or was first created). The location of the new cell is taken to be the location
of the mother cell at the time it was split.

At any given time t, the total number of cells is

N(t) = N ephrin(t) +N eph(t) (6.2.4)

where N ephrin(t) and N eph(t) both independently follow a pure birth process with rate �.

q(t), the vector holding all positions of all cell centres at time t is of length 2N(t), and
is given by:
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and similarly for the y coordinate.

Our simulation follows a discretised version of these equations, where in particular, a
cell that was born between times t

i

and t
i+1

will take the position of its ancestor at time t
i

.
More details regarding the simulation can be seen in appendix C.2.1.

6.3 Comparison of simulated and experimental cell-cell seg-
regation

6.3.1 Dynamics of cluster formation

We commenced the evaluation of this extension to our mathematical model, initially by
comparing simulated and experimental cell-cell segregation in co-cultures of two cell types:
either expressing EphB2, together with a green fluorescent protein, GFP, for ease of vi-
sualisation (Poliakov et al., 2008; Janes et al., 2011), or expressing ephrin-B1, which is
a EphB2 ligand. As previously reported (Nievergall et al., 2010; Janes et al., 2011), us-
ing time-lapse fluorescence microscopy to record the continuous changes in (cell) cluster
size distribution, it was clear that within 49 hours, an initially mixed cell population
consisting of a 1:3 ratio of GFP/EphB2 expressing (EphB2+) and ephrin-B1-expressing
cells (ephrinB1+), gives rise to defined clusters of GFP-fluorescent EphB2-expressing cells
that are surrounded by non-stained ephrin-B1 cells (Figure 6.1A). We simulated this ex-
periment, using empirically-derived parameter values for the mean square cell displace-
ment (MSD, see relation between MSD and � in chapter 4, footnote 6), cell prolifera-
tion rate and an initial Eph:ephrin cell ratio of 1:3. Free parameter values were set to:
A

eph

= A
ephrin

= 100, R
eph

= R
ephrin

= 250, a = 7.5, and r = 5.8 so that both cell popu-
lations would display equal inter-cellular adhesion and surface tension forces (see chapter
3 for more details). Numerical solutions of our model equations, generating cell positions
and graphic representations at defined time points, revealed that the relative distributions
of (cell) cluster sizes were very similar in the simulated and experimental images through
most of the time course of the experiment (Figure 6.1B).

A quantitative comparison between simulated and experimental cell-cell segregation is
presented in figure 6.2, where images from 6 laboratory experiments and a corresponding
set of 6 independent numeric realisations of the model were analysed. Direct comparison of
experimental and simulated clusters suggested very similar size distributions. For ease of
comparison though, (green) cell clusters were sorted by their areas into three groups: small
(100�1500µm2), medium (1500�15000µm2) and large (> 15000µm2) cell clusters. The
group boundaries were chosen, as described previously (Nievergall et al., 2010), to reflect
closely the actual cell patterning behaviour: Small clusters correspond to the average
size of only 1-2 cells, and the medium bin captures transition to larger groups of cells
representing cluster formation. The first two (small- and medium-size cluster) bins thus
captured the majority of all observed clusters, and the less frequent, very large clusters
that formed mainly at the end of the simulation were captured in the third bin.
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Statistical analysis (multivariate-ANOVA) of cluster sizes suggested a good fit between
experimental and simulated results considering frequencies of small and medium-sized clus-
ters formed up to the 33 hour time point22 (p = 0.5317), see further discussion regarding
statistical analysis methods we applied to these results in appendix C.2.4.

By the final time point (49h) however, significant di↵erences (p = 0.0028) between
the simulated and experimental data emerged: The increased number of small (100 �
1500µm2) clusters in the experiment as compared to the simulation is due to some single
cells remaining separated from the larger clusters, as increasing cell density prevents their
e↵ective sorting so they therefore remain in small clusters. This apparent variability in
the cell population (i.e. the occurrence of slow cells) may be caused by variability in
Eph/ephrin surface expression levels between individual cells, which is not present in the
simulated cell population in which all cells are identical.

Similarly, the significant number of large simulated clusters (> 15000µm2) at the
49h time point was not reflected by the experiment. This is likely due to the very tight
compaction of EphB2-positive cells which reduced the overall footprint of clusters and of
individual cells at the end of the experiment, as was revealed in a detailed analysis of
the corresponding microscopic images (Figure 6.1A, further analysis not included). By
contrast, the simulation assumes equal adhesion and repulsion forces within both cell
populations throughout the experiment, so that simulated clusters appear larger than
the experimentally observed clusters. This suggests that during Eph/ephrin-regulated
cell sorting, clustering of the EphB2 cell population may be modulated according to the
expression level and kinase activity of the Eph receptors (Pasquale, 2010; Nievergall et al.,
2011).

6.3.2 Modulation of the Eph-ephrin signalling strength e↵ects cluster
formation

We assessed the relationship between the Eph-ephrin signal strength and cluster size dis-
tribution on the basis of previously-published co-culture experiments, where the e↵ects of
modulating expression level and kinase signalling activity of Eph receptors on cell segre-
gation and cluster formation had been analysed (Janes et al., 2011). That study revealed
that changes in the composition of Eph signalling complexes, by additional exogenous ex-
pression and recruitment of kinase-active or kinase-inactive receptors, can either increase
cell contraction and clustering or promote spreading and intermingling, respectively (Janes
et al., 2011). To accommodate the complexity of Eph cell signalling in the model we mod-
ulated the attenuation constant C (see assumption 4 and equation 6.2.1), and to simulate
the uneven repulsion and/or attraction forces within the two di↵erent populations we let
R

eph

6= R
ephrin

and A
eph

6= A
ephrin

respectively.
In the experiments, over-expression of the inactive EphB2 mutant lacking the intra-

cellular domain (Figure 6.3A, left column) completely blocked cell-cell segregation and
cluster formation, compared to Wt EphB2 expressing cells (Figure 6.3A, third column),
when co-cultured with cells expressing ephrinB1. In comparison, co-cultures of Wt EphB2-
expressing cells with parental HEK293 cells, which express low but detectable levels of
ephrin-Bs, resulted in an intermediate phenotype, revealing some segregation between the

22Note we do not use multivariate-ANOVA here in its conventional use, as we are seeking for similarities
between the samples rather than a significant di↵erence. We interpret the p -value obtained here merely
as an indication of how close the two samples are.
The analysis was done considering only the first bin (very small clusters) at times 16 and 33 hours: The
third bin assumes zero values for most of the data points, and therefore was excluded. The frequencies
from the first and second bins always add up to one, and therefore data included in the first bin contains all
the information. The first time frame (t=0) was also left out, as it represents the initial conditions which
were designed to have similar frequencies by definition. Considering data from times 16 and 33 hours gave
a p-value of p=0.5317.
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Figure 6.1: Time-lapse imaging and simulation of Eph/ephrin-driven cell-cell segrega-
tion (Aharon et al., 2014). A) Representative time-lapse microscopic images (taken ev-
ery 20 minutes for indicated times) from co-cultured EphB2/GFP (green) and ephrin-
B1 (unstained) expressing HEK293T cells. Bright-field micrographs (top panels), green-
fluorescent images (middle panels) and merged images (bottom panels) are shown, scale
bars, 100µm). B) Simulation of the same experiment; the corresponding time points are
shown, ephrin-B1 and EphB2/GFP-expressing cells are represented as black and green
circles, respectively.

two cells types, but lacking apparent clusters or clear cluster boundaries (Figure 6.3A,
2nd column). Modulation of the attenuation constant of the attraction force C allowed
us to simulate these conditions, so that increasing the values of C from 0 to 1 e↵ectively
introduced increasing de-adhesion/segregation between the simulated Eph and ephrin cell
populations (Figure 6.3B,C).

Further, an extreme case of clustering was examined, where over-expression of a sec-
ond signalling-competent Eph receptor, EphA3, increased the cellular response in EphB2-
expressing cells to the interaction with ephrin-B1 cells and resulted in enhanced cell seg-
regation (Janes et al., 2011). In this experimental setting, the clusters of Eph-expressing
cells appear brighter, as the cells condense and become more tightly packed than the cor-
responding ephrin cells, thereby e↵ectively decreasing the footprint of individual clusters
(Figure 6.3A, right-most panel). In this case, even a maximal attenuation constant of C
= 1 was inadequate for simulating the corresponding increase in the packing of individual
EphB2 cells within clusters (Figure 6.3B). Therefore we considered that modelling of the
increased cell compaction within the EphB2/EphA3 clusters might require lowering the
repulsion term, or alternatively increasing the attraction force within the Eph-expressing
cell population (see Figure 6.4 below), to e↵ectively increase cell packing beyond that seen
in the ephrin-expressing cells. By reducing the repulsion strength, which simulates cell
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Figure 6.2: Distribution of cell cluster sizes during segregation (Aharon et al., 2014).
Clusters of EphB2/GFP expressing cells from the time course experiment in Figure 6.1
were grouped according to their footprint into three groups as indicated; bar graphs illus-
trate frequency of clusters in each bin at indicated time points, (red bars), experimental
microscopy data; (blue bars), simulated data. Error bars represent the upper and lower
bounds, below which 75% and 25% of the data points are included. *Multivariate-ANOVA,
p > 0.5.

surface tension of EphB2 cells to R
eph

= 220 6= R
ephrin

= 250 (see equation 6.2.1), and
thereby decreasing the e↵ective radius of Eph expressing cells relative to that of ephrin
expressing cells, the simulation now yielded a pattern of tightly-clustered Eph cells in a sea
of ephrin-expressing cells that closely matched the experimentally-derived pattern (Figure
6.3B, right-most panel). Note, this decrease in the e↵ective radius of Eph cells makes them
pack more closer together, and therefore leaves more space for the ephrin cells, evident by
the space left in the simulation even after 48 hours, whereas in the laboratory experiment,
the ephrin cells expand to occupy the free space.

Quantitation and statistical (ANOVA) analysis of the experimental and simulated cell
densities in the Eph cell clusters (Figure 6.3D), suggested a close fit between experimental
and simulated data (p = 0.506), whereby in particular, adjustment of the cell density by de-
creasing the cell surface tension of the EphB2/EphA3-expressing cells resulted in simulated
cell densities which closely matched the experimental data. Our observations suggest that
the cell morphology and cell-cell adhesion within these clustered Eph-expressing cell pop-
ulations are changed compared to the surrounding ephrin-expressing cells, in agreement
with a range of reports on mechanisms of Eph/ephrin-facilitated tissue patterning and
boundary formation (Batlle and Wilkinson, 2012), possibly due to Eph receptor crosstalk
with cell-cell adhesion molecules (Solanas et al., 2011).
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6.3.3 The formation of tightly-packed islands-in-the-sea Eph cell clus-
ters relies on enhanced cell-cell adhesion within clusters

We went on to examine crosstalk between Eph signalling and cell-cell adhesion proteins,
by simulating the e↵ect of altering the relative adhesion within one of the two cell pop-
ulations. As a starting point we considered two equally sized populations of Eph and
ephrin expressing cells with identical adhesion forces between the two distinct cell types
(A

eph

= A
ephrin

). While in this setting of the simulation, the two cell populations clearly
segregated from each other, a preference for clustering of one cell type over the other was
not apparent and the segregation did not yield the typical Islands-in-a-sea pattern ob-
served in other experiments (Figure 6.4A, left panel). As expected, increasing the cell-cell
adhesion term in one of the simulated cell populations over the other (A

eph

6= A
ephrin

),
resulted in tighter clusters of this population and led to islands within the sea of cells of
the other type (Fig 6.4A, right panel). We tested this prediction experimentally: cell-cell
adhesion was increased within the EphB2-expressing cell population by overexpressing the
cell-cell adhesion protein E-cadherin23. As illustrated in Figure 6.4B,C, overexpression of
E-cadherin indeed resulted in the islands in a sea pattern predicted from the simulation,
due to the formation of distinct EphB2 cell clusters with significantly enhanced cell density
as compared to the parental cells which lack E-cadherin. Western blotting confirmed the
expression of the m-cherry E-cadherin in the transduced cells, and that the transduced
and control cells maintained similar levels of EphB2 (Figure 6.4D).

These results indicate that our mathematical model, based on the concept that the
sum of various Eph and ephrin-derived signal inputs is translated into cellular responses
which can be represented by adjustable terms for cell-cell adhesion and repulsion, provides
the robustness and flexibility to allow realistic simulations of Eph/ephrin-regulated cell
sorting under a range of experimental conditions.

23This was achieved by lentiviral transduction of mCherry-tagged E-cadherin (Solanas et al., 2011) into
the EphB2-expressing HEK293 cells, which lack endogenous E-cadherin, but in agreement with their neural
origin (Shaw et al., 2002) express N-cadherin.
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Figure 6.3: Eph expression level and signalling capacity regulate cell segregation: compar-
ison of experimental versus modelling outcomes (Aharon et al., 2014). A) Increased Eph
signalling capacity results in enhanced cell-cell segregation (Janes et al., 2011): HEK293
cells expressing cytoplasmic deleted (signalling-inactive), wild type EphB2 or co-expressing
EphB2 and EphA3 were co-cultured with cells expressing low or high levels of ephrin-B1,
as indicated. EphB2 cells were stained with Cell-Tracker green for ease of visualisa-
tion, images taken after 48 h co-culture when cell-cell segregation was regarded as com-
plete. B) Simulation of the same experimental conditions, using parameter values of:
A

eph

= A
ephrin

= 100, R
eph

= R
ephrin

= 250, a = 7.5, r = 5.8 and �2 = 10, apart
from the right-most panel, where R

eph

= 220. The initial ratio of Eph: ephrin cells in
all cases is 1:1. C) Functions of the force potential, u(d) between two cells at distance
d > 0, for the simulations illustrated in B. Unbroken black line, u

r

,is the potential of the
repulsion force at R

eph

= 250; Unbroken red line, u0
r

,is the potential of the repulsion force
at R

eph

= 220; Broken black line, u
a

, is the potential of the attraction force; Unbroken
blue line, u

r

� u
a

,is the potential of the total force between same type cells R
eph

= 250;
Broken blue line, u0

r

� u
a

,is the potential of the total force between same type cells when
R

eph

= 220; Broken green line, u
r

� (1� C)u
a

, is the potential of the total force between
cells of di↵erent types; D) Statistical analysis of cluster characteristics from a minimum
of 5 independent data sets: Comparison of the cellular densities that were observed ex-
perimentally by microscopy (green bars), or by simulation under the conditions detailed
in panels C (blue bars; except for C = 1, R

eph

= 250, red bar). For microscopic images
the number of cells in a cluster was estimated from the total fluoresence intensity of the
cluster, divided by the average fluorescence intensity of a single cell as detailed previously
(Janes et al., 2011). Error bars represent the upper and lower bounds, below which 75%
and 25% of the data points are included.
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Figure 6.4: Increased cell-cell adhesion within one cell population is required for the
formation of tightly packed cell clusters (Aharon et al., 2014). A) Simulation of cell-cell
segregation using the same adhesion term in both cell types (A

eph

= A
ephrin

= 100, left
panel) vs. increased adhesion only in the green cell population (A

eph

= 110, A
ephrin

= 100,
right panel). Both simulations started with the same number of (green) and ephrin (black)
expressing cells. In the Equal adhesion case, an Islands-in-a-sea pattern is less apparent.
B) Representative images from segregation assays of unlabelled ephrin-B1 cells co-cultured
with Cell Tracker- green labelled EphB2 cells, without (left) or with E-cadherin-cherry
expression (right). Scale bar 75 micron. C) Quantitation of EphB2 cell cluster density by
image analysis of the experiment in B (n=10). D) Western blot analysis of lysates from
parental and E-cadherin-cherry-transduced cells, using the indicated antibodies.
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6.4 Discussion

Eph-ephrin interactions between neighbouring cells control the dynamic changes in cell
morphology, adhesiveness and motility that underlie tissue patterning and boundary for-
mation. As the number of cell-biochemical pathways implicated in these processes grows,
the di�culty in predicting outcomes from knowledge of individual signalling pathways
increases (Jorgensen et al., 2009). It is clear that prediction of in vivo and in vitro cellu-
lar behaviour during patterning can be assessed by mathematical modelling and several
approaches have been used to aid our understanding of molecular and cellular concepts
underlying cell positioning and tissue patterning (Salaita et al., 2010; Reber et al., 2004;
Batlle and Wilkinson, 2012).

In this chapter we described a mathematical approach to simulate modes of Eph/
ephrin-controlled 2-dimensional cell-cell segregation and aggregation. We developed a
stochastic model based on the Lagrangian approach, which incorporates empirical param-
eters for cell movement and cell proliferation and theoretical knowledge regarding cell
adhesion and surface tension. It allows both a realistic simulation of Eph/ephrin-directed
segregation between two cell populations and the modelling of responses to modulation
of adhesive and repulsive signalling mechanisms. Direct comparison of experimental and
computer-simulated formation of cell patterns shows that our model recapitulates the
spatial and temporal dynamics of the cell-cell segregation processes.

The cellular Potts model, a computational model based on the concept that di↵er-
ences in binding energies between two interacting cell populations direct the separation
between non-like cells (the di↵erential adhesion hypothesis), has been adopted to simulate
EphB/ephrin-B controlled cell sorting along the intestinal crypt epithelium (Wong et al.,
2010). An alternative approach, including a term for cell density-dependent cell motility
(Taylor et al., 2011), was used to model segregation in 2-D tissue culture between two
cell populations that di↵er in their expression of the cell-cell adhesion protein E-cadherin.
However, in the case of Eph/ephrin regulated cell-cell interactions, the kinetics of the
simulated sorting lagged behind the tissue culture experiment by an order-of-magnitude
(Taylor et al., 2012), suggesting that additional terms may be required to model sorting
between Eph- and ephrin-expressing cells.

Considering the characteristic dichotomous functions of Eph receptors, eliciting either
cell-cell repulsion and segregation or cell-cell adhesion (Pasquale, 2010; Nievergall et al.,
2012), we developed a model for the behaviour of two intermingled cell populations that
display di↵ering adhesive/repulsive forces within and between each population. We took
a novel approach of complementing terms of surface tension (representing cell-cell repul-
sion) and attraction (representing cell-cell adhesion) that can be adjusted according to
the Eph/ephrin signal strength. We are aware that on a molecular level Eph/ephrin-
facilitated cellular patterning relies on a fine-tuned interplay of a large number of known
and potentially an even larger number of unknown signalling pathways (Jorgensen et al.,
2009), however, we propose that collapsing this complexity to a selected, small number
of measurable mathematical terms, which can approximate the sum of all contributions,
provides a model that realistically reflects the overall processes. Thus, we introduce a
Brownian motion term to represent the movement of a single cell that is not influenced
by any neighbours and bundle all possible interactions between two cells into two radial
forces: a repulsion term that represents the sum of cell surface tension and spatial exclu-
sion forces that prevent cells to occupy the same space, as well as an attraction term which
represent all adhesion forces, including those governed by cadherin interactions. For any
cell type, the size of parameters controlling the Brownian motion and the strength and
length scale of both radial forces can be estimated directly from the paths of cells moving
independently and at a density where interactions with neighbouring cells occur (chapter
4). In this model extension, the Eph-ephrin regulated interaction can act to cancel part or
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all of the adhesion forces between Eph and ephrin expressing cells. The characteristics of
these forces impose a stronger (spatial) separation between the two di↵erent types of cells.
This heterologous interaction promotes the retraction of Eph- and ephrin- expressing cells
from each other, as well as diminishing the adhesion between them.

Computer simulations, based on numerical solutions of our model, allowed the predic-
tion of the dynamics of cell segregation and cluster formation. A comparison to experimen-
tal data demonstrated our models capacity to reproduce the spatial and temporal dynamics
of cluster formation seen in the tissue culture experiments. In contrast to previous models
of Eph/ephrin-regulated cell segregation, our model adjusts for the proliferative increase
in number of cells in the two di↵erent cell populations throughout the experiment. As cell
density increases, cells in our model are inherently slowed down due to interactions with
increasing numbers of neighbouring cells. We find that cell proliferation is an important
contributor to the dynamics of cluster formation.

We demonstrate the capacity of our model to accommodate variation in Eph expression
and strength of signalling function, by modulating the amplitude of those model param-
eters that control the strength of the Eph-ephrin interaction (Figure 6.3). A comparison
between our model-based predictions and experimental cell behaviour revealed the neces-
sity to include asymmetry in the adhesive behaviour of the Eph and ephrin-expressing
cell population in order to arrive at the typical cellular pattern, where one population of
tightly-packed cells with increased adhesion (or accordingly-reduced repulsion) between
like cells is surrounded by a sea of less-tightly packed cells of the other type (Figure 6.4).
Specifically, our model highlighted that ephrin/Eph-driven cell retraction/repulsion at the
interface between the two cell populations is insu�cient to generate this typical Island-
in-the-sea pattern and pointed to the critical role of additional cell-cell adhesion within
the Eph-expressing population that is required to generate the tighter cell packing in this
population. Interestingly, this same conclusion was previously drawn from experiments
addressing EphA4/ephrin-B2-driven rhombomere formation in Zebrafish, where EphA4-
expressing cells show increased adhesion to each other (Cooke et al., 2005). Since the
cell-cell adhesion protein E-cadherin is known for its co-ordinated and co-localised expres-
sion with Ephs at sites of cell-cell contacts (Orsulic and Kemler, 2000) and is implicated
in Eph/ephrin-facilitated boundary formation (Solanas et al., 2011), we over-expressed
mCherry-E-cadherin in EphB2 cells. Our experiments confirmed a role for unequal adhe-
sion in generating the asymmetry between the enclosed (i.e., the island) and the enclosing
(i.e., the sea) cell populations. Eph/ephrin and E-cadherin interactions control the parti-
tioning of two cell populations, by co-ordinately controlling the cell segregation between,
and the adhesion within, each population.

In summary, we conclude that a simple model based on terms defining di↵erential cell-
cell adhesion, in which cell-cell adhesion forces are balanced to varying degrees by Eph-
ephrin regulated cell-cell de-adhesion, is su�cient to describe the cell patterning observed
between Eph and ephrin expressing cell populations migrating on a 2-dimensional surface
over time.

Methods for this chapter can be found in appendix C.2



Chapter 7

Summary

Mathematical models for cell motility range over a large scale of detail, from attempts to
account for the biochemical reactions within a cell up to models for migration of a large
cell population. When adding mutual interactions, complexity level increases even fur-
ther, and agent based models employing random walk inclusion processes are commonly
used. Computer simulations allow to easily incorporate a wide range of possible cell-cell
interactions, and continuous approximations obtained by averaging were shown to capture
simple interactions within a single population type (Deroulers et al., 2009; Fernando et al.,
2010). More realistic interactions, however, can not be averaged to an analytic (continu-
ous) model which still captures significant behaviours of the biological system (Simpson
et al., 2010). Furthermore, models for interactions between two population types almost
always resort to highly detailed computerised models, making them practically inaccessible
to mathematical analysis (Glazier and Graner, 1993; Wong et al., 2010).

Here we constructed a mathematical model for cell migration and mutual interactions,
aimed to describe the significant features of a highly complex biological system and thus
help interpret experimental results (chapter 3). All internal processes that take place
within an individual cell controlling its independent motion were reduced down to a single
term made of an independent Brownian Motion function multiplied by a (possibly) time de-
pendent function. All processes controlling any possible interaction between neighbouring
cells were reduced down to two smooth (anywhere but at r = 0), monotonic deterministic
functions representing radial forces (which therefore have a gradient that represents the
potential energy, and depend only on the distance between cell centres). The first bundles
all attraction forces such as cell adhesion, and the second counts for all repulsion forces
such as surface tension. Identifying these governing mechanisms resulted in a simple yet
powerful mathematical model, which is flexible and versatile enough to accommodate a
wide range of system behaviours. This allowed us to apply analytical methods to find
its steady state solution and to develop a method for estimating model parameter values
from experimental data. Computer simulations based on numeric solutions of our model
equations further allowed direct comparison of model predictions to experimental results.

Girsanov Theorem was used to derive likelihood ratios for di↵erent parameter values
given cell paths (which can be obtained either experimentally or by using computer simu-
lation), and then estimated parameter values that maximise that likelihood. A computer
program was written specifically to apply this algorithm and to generate error estima-
tions. Studying the di↵erence between estimated values given simulated cell paths and
the known values that were used to generate those paths, for a few di↵erent choices of
potential functions, revealed that decreasing sample rate and increasing integration time
minimises the error. For the specific potential chosen to be used in our model (exponential
attraction and repulsion forces), it was further found that the accuracy of the estimations
obtained depend also on the distance between the cells observed: when looking at cells that
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are too far apart so the potential between them diminishes, the method fails to estimate
parameter sizes correctly.

The first application of our model was to study the e↵ect of radiation treatment on cell
migration and mutual interactions. Our method was applied to estimate model parameters
from experimental data obtained by observing cells after radiation treatment. It unveiled
a clear trend of an increase in individual cell motility and a decrease in mutual interactions
as a result of an increase of radiation dosage from 0 to 10 Gy. This type of quantitation,
which was not accessible to biologists before, points to the need of further experimental
work in this field and provides a new tool for the analysis of experimental results.

The model was extended to account for cell proliferation and for interactions between
two di↵erent cell types, and a second computer program was written based on its numeric
solutions (chapter 6). In its application to a biological system concerning cell segregation
and cluster formation regulated by Eph-ephrin interaction it was capable to replicate
both the dynamics and the possible range of cell-cell segregation. It then generated further
predictions highlighting the role of inner population (cadherin regulated) cell-cell adhesion
in determining the outcomes of cell segregation. These were verified in the laboratory by
our collaborators and backed up by further (biological) research.

We are aware that when attempting to answer biological questions using mathematical
tools one should take extra care: On one hand, when translating the biological system
into mathematical equations it is inevitable that some (if not a lot) of the intricate detail
in the making of the biological system will be left out. It is important to conduct a careful
assessment of the contributions of the di↵erent components in the system and identify the
dominant mechanisms controlling its behaviour. On the other hand, in attempt to apply
mathematical theories which are often designed to handle theoretical concepts (such as
Brownian Motion or infinite domains) to real life questions (such as concerning particles
which have a mass and a volume on a bounded domain), one will often have to ease
some conditions or add some constraints. This is a common issue for all attempts in
mathematical biology, (or any other mathematical application to that matter), and for
this reason an ongoing examination of the mathematical model and its predictions against
experimental results when possible adds valuable credibility.

We thus conclude that the model we develop and present here addresses a complex
system that is usually hard to handle using analytical tools. Our minimalistic yet in-
clusive approach resulted in a flexible and powerful model which can address di↵erent
experimental systems and accommodate for di↵erent experimental conditions. Its appli-
cation to the investigation of radiation treatment highlighted trends which were not well
noted before. In the Eph-ephrin regulation front, it added comprehensive understanding
of the governing processes, along with being, to our knowledge, the first computational
model which was found capable of replicating both the dynamics and range of possible
segregation outcomes.

Future work

One can deepen model analysis, e.g by exploring the existence of a steady state in the
case of two cell populations. Then new mathematical predictions can be translated to
biological terms and enhance the understanding of the biological system.

Work can be done on our JAVA program to improve e�ciency and accuracy of our
MLE algorithm. Error analysis can be extended further, e.g.: study what kind of cell path
give the best estimations of model parameters (as was done by Bowden et al. (2013) using
an agent based model), formalise the analysis of goodness of fit for the actual choice for
the drift function, etc.
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For the model applications presented here, adjustments to the model can be added
(if required) as experimental work continues. More particularly, in the study of radiation
treatment one can apply the methods developed in chapter 4 to data obtained from more
experimental repetitions and a variety of cell types in order to formulate a stronger state-
ment regarding the trends we saw in the response of cells to radiation treatment. When
experimental data regarding cells’ response to microbeam radiation treatment will become
available, our model could be adjusted to help understand these new experimental results.

Further, our mathematical model and MLE algorithm can be applied to a variety of
other ‘real world’ systems, where the response of a group of ‘socially interacting’, indepen-
dently mobile agents to changes in their environment is studied, e.g molecular dynamics,
wild life behaviour, etc.
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Appendix A

Proofs

A.1 Proof for lemma 4.2.2

Proof. Note this change of drift corresponds to takingH = ��1 (µ
↵

(X(t), t)� µ
↵0(X(t), t))

in Girsanov theorem above (theorem 4.2.1). Since ↵
0

is such that µ
↵0 = 0, and due to

changed notation µ = µ
↵

, one has Z = �
R
t

0

��1µ(X(s), s)dB(s), and dB(t) = ��1(dX(t)�
µ(X(t), t)dt). Substitute in Girsanov theorem and get:

log⇤ = Z � 1

2
hZ,Zi

= �
Z

t

0

��1µ(X(s), s)��1(dX(t)� µ(X(t), t)dt)� 1

2
hZ,Zi

= �(��1)2
Z

t

0

µ(X(s), s)dX(s) +
(��1)2

2

Z
t

0

µ2(X(s), s)ds

because d hZ,Zi = d
⌦
��1µ(X(s), s)B(s),��1µ(X(s), s)B(s)

↵
= (��1µ

↵

(X(s), s)2ds.
Now one may use Itô formula to re-write the first (Itô) integral above. Recall Itô formula:

Z
t

0

f 0(X(s))dX(s) = f(X(t))� 1

2

Z
t

0

f 00(X(s))d hX,Xi (s)

and since we chose our µ so there is a U such that: µ(x) = �dU

dx
, it gives:

�
Z

t

0

µ(X(s), s)dX(s) = U(X(t))� 1

2

Z
t

0

U 00(X(s))d hX,Xi (s)

= U(X(t))� �2

2

Z
t

0

U 00(X(s))ds

so:

log⇤ = (��1)2U(X(t))� 1

2

Z
t

0

U 00(X(s))ds+
(��1)2

2

Z
t

0

µ2(X(s), s)ds (A.1.1)

61



62 APPENDIX A. PROOFS

A.2 Proof for lemma 4.2.4

Proof.

Z = �
dX

i=1

Z
t

0

H
i

(s)dB
i

(s)

= �
Z

t

0

H̄T · dB̄(s)

(āT implies the vector / matrix transposed, and then · is a vector / matrix product)

= �
Z

t

0

�
��1µ̄(X̄(t))

�
T

��1(dX̄(s)� µ̄(X̄(t))dt)

= �
Z

t

0

µ̄T (X̄(t))��T��1(dX̄(s)� µ̄(X̄(t))dt)

= �
Z

t

0

µ̄T (X̄(t))⌃�1dX̄(s) +

Z
t

0

µ̄T (X̄(t))⌃�1µ̄(X̄(t))dt (A.2.1)

Due to substituting dB̄(s) = ��1(dX̄(s)� µ̄(X̄(t))dt).

Substitute dZ(t) =
�
��1µ̄(X̄(t))

�
T

dB(t) in the quadratic variation gives:

d hZ,Zi (t) = d
D�

��1µ̄(X̄(t))
�
T

B,
�
��1µ̄(X̄(t))

�
T

B
E
(t)

=
�
��1µ̄(X̄(t))

�
T

�
��1µ̄(X̄(t))

�
dt

= µ̄T (X̄(t))��T��1µ̄(X̄(t))dt

= µ̄T (X̄(t))⌃�1µ̄(X̄(t))dt

and:

hZ,Zi =

Z
t

0

µT (X̄(s))⌃�1µ̄(X̄(s))ds (A.2.2)

Thus the log-likelihood is:

log⇤ = Z � 1

2
hZ,Zi

= �
Z

t

0

µ̄T (X̄(s))⌃�1dX̄(s) +
1

2

Z
t

0

µ̄T (X̄(s))⌃�1µ̄(X̄(s))ds (A.2.3)

Where the first integral is an Itô integral.
One can use Itô formula to re-write the first integral above:

Z
t

0

f 0(X(t))dX = f(X(t))� 1

2

Z
t

0

f 00(X(s))d[X,X](s)

And in its 2 dimensional form:

df(X(t), Y (t)) =
@f
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+
1

2

@2f

@x2
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1

2

@2f

@y2
(X(t), Y (t))d[Y, Y ](t)

+
@2f

@x@y
(X(t), Y (t))d[X,Y ](t)
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Generally for d-dimensions:

df(X̄(t)) =
dX

i=1

@f

@x
i

(X̄(t))dX
i

(t) +
1

2

dX

i=1

dX
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@x
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@x
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(X̄(t))d[X
i

, X
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2
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(��T )
ij

@2f

@x
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@x
j

(X̄(t))dt

= rf(X̄(t))dX̄(t) +
1

2
r2fd[X̄, X̄]

and: rf(X̄(t))dX̄(t) = df(X̄(t))� 1

2
r2fd[X̄, X̄]

note the two last lines are true when all X
i

and X
j

are independent.
Now recall we chose µ̄ so there is a U such that µ̄ = �rU , so the Itô integral in equation
A.2.3 is:

�
Z

t

0

µ̄T (X̄(s))⌃�1dX̄(s) =

Z
t

0

(r̄U(X̄(s)))T⌃�1dX̄(s)

When we take ⌃ = �2I, where I is the identity matrix and � is a scalar (all BM are
independent, and have the same constant �), so d[X

i

, X
j

] = ⌃
ij

dt = �2dt if i = j and 0
otherwise. The Itô integral is:

= (��1)2
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1

2
r2Uds
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And the log-likelihood is:

log⇤ = Z � 1
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hZ,Zi (A.2.4)
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Appendix B

Additional results

B.1 Additional numerical demonstration

B.1.1 Linear drift

(a) �t = 0.1 (b) �t = 0.05

(c) �t = 0.01 (d) �t = 0.005

Figure B.1: Linear drift, computer generated sample paths, N = 20, ↵
x

= 3,↵
y

= 2,
� = 0.5. Random initial condition: q(t = 0) ⇠ U [�10, 10]2N .
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(a) err

rel
x for di↵erent �t values (b) err

rel
x for di↵erent sample rates at �t = 0.005

(c) err

rel
y for di↵erent �t values (d) err

rel
y for di↵erent sample rates at �t = 0.005

(e) err

sum for di↵erent �t values (f) err

sum for di↵erent sample rates at �t = 0.005

Figure B.2: Linear drift, error estimations, N = 20. Here p
0

⌘ ↵
x

and p
1

⌘ ↵
y

.
Left panels show error estimations obtained for di↵erent �t values (integration intervals).
Right panels show error estimations obtained for di↵erent sample rates at �t = 0.005
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B.1.2 Linear (attraction) interactions

(a) �t = 0.05 (b) �t = 0.001

Figure B.3: Linear interactions (attraction only), computer generated sample paths. N =
16, ↵

0

= 1(⌘ p
0

),� = 0.3. Initial condition was a grid of 4x4 nodes, over an 8x8 domain.

(a) err

rel
0 for di↵erent sample intervals at �t =

0.05
(b) err

rel
0 for di↵erent sample intervals at �t =

0.01

(c) err

rel
0 for di↵erent sample intervals at �t =

0.001
(d) err

sum for di↵erent �t values

Figure B.4: Linear interactions (attraction only), error estimations, N = 16.
(a)-(c) Error estimations obtained for di↵erent sample interval at �t = 0.05, 0.01, 0.001
respectively. (d) Error estimations obtained for di↵erent �t values (with sample interval
= 1).
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B.1.3 Exponential (repulsion and attraction) interactions

(a) �t = 0.05 (b) �t = 0.01

(c) �t = 0.005

Figure B.5: Exponential interactions (repulsion and attraction forces included), computer
generated sample paths. R̄ = 25(⌘ p

0

), Ā = 10(⌘ p
1

), l = 1.3(⌘ p
2

) and � = 0.3 (number
of particles N=16). Initial condition was a grid of 4x4 nodes, over an 8x8 domain.
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(a) err

rel
0 for di↵erent sample intervals at �t =

0.01
(b) err

rel
0 for di↵erent sample intervals at �t =

0.005

(c) err

rel
1 di↵erent sample intervals at �t = 0.01 (d) err

rel
1 for di↵erent sample intervals at �t =

0.005

(e) err

rel
2 for sample intervals at �t = 0.01 (f) err

rel
2 for di↵erent sample intervals at �t =

0.005

(g) err

sum for di↵erent sample intervals at �t =
0.01

(h) err

sum for di↵erent sample intervals at �t =
0.005

Figure B.6: Exponential interactions (repulsion and attraction), error estimations, N =
16. Here p

0

⌘ R̄, p
1

⌘ Ā and p
2

⌘ l.
Left panels show error estimations obtained for di↵erent sample intervals at �t = 0.01.
Right panels show error estimations obtained for di↵erent sample intervals at �t = 0.005
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Appendix C

Methods

C.1 Methods for chapter 5

The experimental data analysed in this chapter was obtained by first irradiating cells
using BBR with di↵erent levels of radiation dosage (0,2,5 and 10 Gy), and then observing
them continually under the microscope for 48 hours, taking an image every 20 minutes.
A tracking algorithm (a commercial product by LEICA microsystems) was used to track
cells within those images and extract information about the position of each cell at each
timeframe. This was done once with cells at a very low density, where cells were far from
each other so e↵ectively no interactions between cells could take place (low density). The
second set up had cells at a high density (cells were grown till confluence) with a little gap
that was made right before the radiation treatment took place (scratch essay), there cells
were closely packed so interactions could take place, but also had a little room to move
around so cell migration still occurred and cell paths could be observed.24

For each radiation level, the raw data for the analysis presented here came in 6 separate
files: 3 files containing data from 3 di↵erent position within the low density set up, and 3
files containing data from 3 di↵erent position within the scratch essay. Each file contained
lists of cell ID labels, positions and time stamps. First, an initial basic ‘rearranging ’ and
‘cleaning’ of the data was performed, where the raw data was read and put into a suitable
data structure from which cell paths can be readily drawn by either cell ID or a relevant
time label. Zeros and gaps in the data where treated by extrapolation when possible, or by
omitting data points which could not be resolved or identified with a particular cell path.
The magnitude of cell motility, represented by � in our model was estimated from cell
displacements as explained in section 4.1.2. The MLE technique described in section 4.2
was applied to give an estimation of parameter values associated with cell-cell interactions
given cell paths. At this stage, MLE was applied to data from a single repetition for each
dosage level. Our program needs to be further automated in order to be able to identify
groups of neighbouring cells within the data (this is done by the user at this stage), and
pass their respective paths into the (already existing) part of the program which calculates
the likelihoods and generates the estimations of parameter values.

24The experimental data analysed in this chapter was provided to us by Dr Je↵rey Crosbie from The
Royal Women’s Hospital, and Dr Camden Lo from The Micro Imaging Centre at Monash University.
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C.2 Methods for chapter 6

C.2.1 Numeric solutions

A JAVA script was written to solve a discretised version of the model’s equations, and
obtain N(t

i

) and q(t
i

) (using a 1st order Euler method), for t
i

2 [0, 1, .., 48 ⇤ 3600]sec,
given all other model parameters as inputs.

Model parameters set directly from observations of their physical sizes, are: �2 = 10,
r
eff

= 15µm and � = log 2

16

1/h Other parameters values are: A
eph

= A
ephrin

= 100, R
eph

=
R

ephrin

= 250, a = 7.5 and r = 5.8 (unless mentioned otherwise).
Output was generated as images in which each cell is represented as a circle of radius

r
eff

around its calculated position, with a colour determined by the cell’s type. A video
file, made of all images, and a .csv file which includes the position of all cells at all
calculated times were also generated.

C.2.2 Image analysis

Analysis of both simulation and experimental results was done using ImageJ together with
a designated MATLAB code written specifically for this purpose employing MATLAB’s
image analysis package.

For the analysis of microscopic images, thresholds were adjusted to guarantee optimal
performance in capturing cell clusters with the least possible noise. Once clusters were
identified, their areas and fluorescence intensities were recorded. The number of cells in
a cluster was then estimated from the intensity by dividing by the average intensity of
single cells determined from the images.

Images obtained from simulations have only three set colours (green, black and white)
and therefore the threshold for identifying Eph (i.e. green) clusters was the same for all
simulation setups. Once the clusters were identified, areas were recorded. The number
of cells within each cluster was then obtained by crossing the data regarding all clusters
positions and the .csv file containing all cell positions at the relevant time.

C.2.3 Experimental setup

Segregation assays of EphB2- and ephrin-B1-expressing HEK293 cells were performed as
described previously (Orsulic and Kemler, 2000), using approx. 50,000 cells seeded into
a well (⇠ 0.8 cm2 surface area) of a cell culture slide pre-coated with 10 µg

ml

fibronectin.
To monitor cell movement over the course of the experiment (48-60h) we used time-lapse
fluorescent microscopy (Leica AF6000LX microscope), taking images every 20 minutes.
For experiments in Figure 3 and 4, images were taken at the end of the experiment
when cells achieved confluence. In Figure 3, images are shown from previously reported
experiments (Janes et al., 2011) using EphB2 cells stably transfected with the indicated
constructs and labelled with Cell Tracker Green (Invitrogen). For experiments in Figure
4, EphB2 cells expressing E cadherin-cherry (kindly provided by E. Batlle) were produced
by lentiviral transduction and sorted by flow cytometry. Western blots of cell protein
extracts were with antibodies against EphB2 (R&D Systems) and E-cadherin (Abcam).25

C.2.4 Statistical analysis of data regarding dynamics of cluster forma-
tion

In this experiment we look at the distribution of cluster sizes and its evolution over time.
Ultimately, in order to show our mathematical model is capable of capturing the dynamics

25These laboratory experiments were done by our collaborators Dr Peter Janes and Late Assoc. Prof.
Martin Lackmann.
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observed in laboratory experiments, we would like to perform a statistical test where the
null hypothesis is that the two samples (the one obtained in the laboratory and the second
obtained from simulations of numeric solutions to our model) are drown from the same
distribution. The choice of test is not as straight forwards as it first seems (the Kolmogorov
Smirnov test for example), in particular due to the fact we have to also account for the
time variable, which is a dependent variable.

Figure C.1 presents semi-continuous snapshots of the cluster size distributions for both
simulation and experimental results at four di↵erent times (0, 16, 33 and 49 hours). Cluster
size distributions for the first three time frames appear close when comparing experimental
to simulated results, but it is not possible to estimate the e↵ect of time dependency in
this manner. We therefore choose to group our measurements into three groups: small
(100�1500µm2), medium (1500�15000µm2) and large (> 15000µm2) cell clusters. This
is often done in this specific field, in order to highlight the formation of clusters as the
majority of clusters transition from small size to medium over time (Nievergall et al.,
2010).

When the data is grouped in this manner, multivariate-ANOVA can be performed.
Indeed this test is originally designed under the assumption the two data sets come from
di↵erent distributions, and the p- value gives an indication of the significance level in which
the hypothesis can be accepted or rejected by. We use multivariate-ANOVA here since we
need to address the dependency of our sample on time, but unlike in its conventional use,
as we are seeking for similarities between the sample rather than a significant di↵erence.
We therefore interpret the p -value obtained here merely as an indication of how close the
two samples are.
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(a) Experimental results (b) Numeric results

(c) Averaged results

Figure C.1: Semi-continuous snapshots of cluster size distributions. Top left 0 hour,
top right 16 hour, bottom left 33 hours, bottom right 49 hours. (a) Results obtained
from 6 independent positions in a laboratory experiment. (b) Results obtained form 6
independent runs of our model simulation. (c) Averaged results appear close for all times
but 49 hours. See explanation within main text (section 6.3.1).
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