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Abstract

Identifying and discerning the function of non-coding RNAs (ncRNAs) is an important

goal of genetic research. Much evidence suggests that ncRNAs play an important role

in the aetiology of many complex genetic diseases. Therefore the task of developing

methods to identify these elements in genomes has become increasingly urgent.

In this research my focus was to use a Bayesian approach to identify putative functional

non-coding genomic sequences contributing to various diseases. The analysis was mainly

carried out using a Bayesian segmentation model, implemented in the software package

changept, designed to segment discrete genomic data. In the first phase of the research,

I developed methods to expand the capabilities of changept. One simple but powerful

innovation was to develop several ways of encoding an alignment of sequences using a

D-character representation (D is a positive integer). This enables sequence alignments

to be segmented based on multiple data types: specifically conservation, GC content

and transition/transversion ratio and significantly generalizes the capacity of changept,

which previously could only segment on the basis of one of these characteristics at a

time. Incorporating multiple data types greatly helped to clearly identify complex

segmentation patterns and functional signatures among species, especially between

closely related species. A second methodological innovation was a new model selection

procedure to decide the optimal model for the data. A third, and most important,

methodological innovation was to build a process for systematically discovering genome-

wide putative ncRNAs, including data selection, cleaning, encoding, analysis and
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post-processing. To validate these findings, both experimental methods and currently

available bioinfomatics resources were used.

In the second phase of the research, my focus turned to application of changept, and

the new methods developed, to identify genome-wide putative non-coding elements

that may be associated with diseases. I was able to discover more than a thousand

highly conserved non-coding sequences in human, mouse and zebrafish genomes. A

complementary analysis focused on a set of genes involved in muscle development. Some

of these elements identified may contribute to muscle diseases. Discovery of putative

small ncRNAs in the bacterium Wolbachia pipientis is another successful application

of the new methods; this work was undertaken as part of the eradicate dengue project.

Application to malaria genomes revealed genetic mechanisms important in infecting

multiple hosts. I also identified putative regulatory sequences in 3′ UTRs in 3 closely

related Drosophila species. Although this work focussed on Drosophila rather than

human diseases, mutations in 3′ UTRs have been shown to play a crucial role in human

health and diseases.
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Chapter 1

Introduction

Genetic information is stored in Deoxyribonucleic acid (DNA), it is transferred into

Ribonucleic acid (RNA) through a process called transcription and then possibly

transferred to a protein molecule via translation. RNAs are divided into two classes:

messenger RNAs (mRNAs), which are translated into proteins, and non-coding RNAs

(ncRNAs), that do not encode a protein. It has been estimated that around 98% of

the human genomic output is ncRNAs [1]; however, what proportion of ncRNAs are

functional remains debatable [2, 3].

There are 2 groups of ncRNAs, short ncRNAs (ones shorter than ≈ 200nt: micro RNAs

-miRNAs; small nucleolar RNAs -snoRNAs; small interfering RNAs -siRNAs; small

nuclear RNAs -snRNAs; PIWI interacting RNAs -piRNAs; transfer RNAs -tRNAs) and

long ncRNAs, those longer than ≈ 200nt (lncRNAs). Based on the regions in which

they are expressed, lncRNAs fall into 4 categories: (1) Antisense lncRNAs - transcribed

from the opposite strand of protein- coding genes; (2) Intronic lncRNAs - transcribed

completely from within a single intron of a protein- coding gene; (3) Bidirectional

lncRNAs which share promoters with protein-coding genes, but transcribed in the

opposite direction; and (4) Intervening lncRNAs - transcribed from regions that are

at least 5kb or more from protein-coding genes [4]. ncRNAs have been found to
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carry out a variety of diverse functions, including transcription, splicing, translation,

regulation of gene expression, chromatin modification, regulation of differentiation

and development, regulation of epigenetic processes, and RNA modification [4–25].

Much evidence suggests that ncRNAs contribute to diseases. Alzheimer’s disease (AD)

is a chronic neurodegenerative disease associated with expression in BACE1-AS, an

antisense RNA [26]. It’s also found that the lncRNA BC200 is expressed at higher

levels in AD patients in comparison to controls [27, 28]. Many ncRNAs, including

miRNAs, snoRNAs and lncRNAs show abnormal expression patterns in cancerous

tissues [4, 29–42]. A recent study found that the expression of PIWI interacting RNA,

piR-651, in gastric, colon, lung, and breast cancer tissues was higher than that in

paired non-cancerous tissues [43]. More recently, Cheng et al. [44] discovered that the

expression level of another piRNA, piR-823, in gastric cancer tissues was significantly

lower than that in non-cancerous tissues. Several lines of evidence suggest key roles of

miRNAs in diseases, for example cardiovascular disorders [45, 46] and spinal motor

neuron disease [47]. Among other evidence, the role of miRNAs in type 2 diabetes was

first established in 2004 [48] where it is shown that miR-375 is directly involved in the

regulation of insulin secretion. The recent work published by Fernandez-Valverde et al.

[49] reveals the roles and effects of miRNAs in type 1 and type 2 diabetes. Many of

the diseases associated with ncRNAs are reviewed in [50–59].

Given the emerging picture of the importance of ncRNAs, the task of developing meth-

ods to identify these elements has become increasingly urgent. Various experimental

and computational methods used to identify ncRNAs are presented in [60–64]. One

statistical technique for identifying putative functional elements in genomes, including

ncRNAs, is known as sequence segmentation. This technique involves partitioning

of genomic sequences into compositionally homogeneous blocks. Genomes can be

segmented based on atypical sequence characteristics, such as conservation levels

relative to other genomes, GC content, SNP frequency, transition/transversion ratio

and potentially many others [65].
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Keeping all these in mind, the main objective of this thesis is to:

‘develop methods to identify putative functional non-protein coding genomic regions

contributing to diseases’

In achieving this objective, I used a Bayesian DNA segmentation algorithm, changept,

[66, 67] throughout this research. The main method developments implemented were

centred around this program. In brief, changept can be described as a segmentation-

classification model. It is capable of simultaneously segmenting a genomic alignment

and classifying segments into one of a predefined number of segment classes. In

Chapter 2 - Literature Review: Part 2, I have discussed many of the currently used

genome segmentation methods including change-point analysis. I have also explained

the mathematics of changept and have summarised few applications of it. This work

has been published in Computational and Structural Biotechnology journal [68].

The focus of Chapter 3 is to introduce new methods into program changept, so that it

can be effectively applied on different genomes to find putative functional elements.

Introducing an 8-character representation to encode a pair-wise alignment and a

32-character representation to encode a 3-way alignment capturing information about

conservation, GC content and transition/transversion ratios was a simple but powerful

methodological development described in this chapter. The second methodological

innovation was an alternative model selection procedure, less conservative than an

earlier method based on investigating DICV values (type V of Deviance Information

Criterion, [69]) to identify the most likely model for the data. I wrote several scripts

in perl and R for various kinds of processing related to these two main methodological

developments (for example a perl code to transform alignments and R code to produce

different types of trace plots). These codes are currently being integrated into a

complete package with GUI (Graphical User Interface). I applied these new methods

to a data set of three closely related Drosophila species. An unexpected discovery

was made: that segmentation patterns in 3′ UTRs of the species D. melanogaster,

D. simulans and D. yakuba are more complex than in the protein-coding regions. In
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this analysis, a number of known and putative miRNA targets in 3′ UTR regions in

D. melanogaster were also identified. This work was published in the journal PLoS

ONE [70] and also presented as a poster at two international conferences: the 13th

International Conference of Bioinformatics in Sydney (awarded as the best poster

-Gold) and the BioInfo Summer 2014 conference held in Melbourne (where it won the

2nd place poster prize).

I continued to explore methods and bioinformatics resources currently available to

discover functional ncRNAs and other regulatory sequences in various genomes. This

motivates the work of Chapter 4, where I developed a process to systematically identify

genome-wide intronic putative functional elements (PFEs) in human, mouse and

zebrafish using changept and methods developed in the previous chapter (Chapter 3).

The majority of the PFEs identified were compared with regions predicted by other

computational methods (EvoFold [71] and RNAz [72]) and bioinformatics resources

(DNase I footprints data [73] and fRNAdb entries -functional RNA database [74]) in

addition to experimental validation. In the same chapter, I also carried out a pathway-

specific analysis discovering 27 PFEs in a set of genes involved in muscle development.

Although the specific functions are unknown, these elements may contribute to muscle

disease and variation of severity of several diseases. It is known that mutations in

these genes can cause many conditions. For example, eya1 can cause a syndrome

including deafness; eya4 - deafness and cardiomyopathy; pax3 - waardenburg syndrome

and rhabdomyosarcoma; pax7 - rhabodmyosarcoma; six1 - branchiotic syndrome and

deafness; and wnt1 - osteogenesis imperfect (http://omim.org/). Further research is

required to assess the specific roles of these PFEs. This work is currently being revised

for submission to the high profile journal Genome Research.

In the second phase of the research, the main objective was to discover non-coding

genomic regions associated with diseases by using changept and methods developed in

Chapters 3 and 4. In Chapter 5, this was achieved using a dataset from Wolbachia
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pipientis, a bacterium that induces a wide range of effects in its insect hosts, includ-

ing manipulation of reproduction and protection against pathogens. In particular,

Wolbachia infected mosquitoes are currently being tested in trials with the aim of

reducing dengue virus transmission [75, 76]. This study was aimed at understanding

how Wolbachia interacts with its host species. In particular, two novel putative sRNAs

that may play significant roles in the biology of Wolbachia were identified. This work

has been published with the journal PLoS ONE [77].

By using a different disease related dataset, in Chapter 6, I successfully used changept

to segment three malaria genomes, Plasmodium falciparum - the human malaria; P.

reichnowi - which infects chimpanzees, and P. gallinaceum - which infects jungle fowls.

The main analysis performed in this chapter was examining the relationship between

different functional groups of genes (eg: general transcription factors, chromatin related

factors, specific transcription factors [78]) and the changept segment classes which

represent different functionally constrained genomic regions. The goal of this particular

application was to identify genetic mechanisms that make host generalists or species

that are able to thrive on a variety of resources. These results will help to warn

us about the next possible host of these malaria species, hence will contribute to

build early -warning systems for disease emergence. This work is in preparation to be

submitted as a letter to Nature.

As this thesis is written in fulfilment of the requirement for ‘thesis by publication’,

Chapters 2 (part 2) to 6 are comprised of journal articles. Each of these chapters

contain a section on changept modelling for the purpose of publication. Therefore, the

method sections partially overlap. Furthermore, some of the changept applications

summarised in Chapter 2 (part 2) pre-empt the more detailed discussions in succeeding

chapters. The bibliography of each chapter can be found at the end of the chapter.

In summary, the main objective of this thesis is to develop methods to identify putative

functional non-protein coding genomic regions associated with disease development.

To achieve this, I have explored the following aspects:
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1. Develop methods to enhance the applicability of program changept (Chapter 3).

2. Build a process to systematically identify putative ncRNAs and other regulatory

elements using changept and current bioinformatics resources (Chapter 4).

3. Identify putative functional non-coding elements that may contribute to various

diseases.

(a) Muscle disease (Chapter 4)

(b) Dengue (Chapter 5)

(c) Malaria (Chapter 6)
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Chapter 2

Literature Review: Part 1

2.1 Introduction

The literature review is organised as follows. It consists of two parts: (1) Part

1 includes; some background to genetics, a review of few statistical methods, an

introduction to Bayesian inference and Markov chain Monte Carlo (MCMC) method,

and the mathematics of changept model; and (2) Part 2 consists of a review of

segmentation methods including changept modelling, the new encoding method and a

few applications of changept. Part 2 of the literature review has been published in the

Computational and Structural Biotechnology journal [1].

2.2 Some Background to Genetics

2.2.1 Gene

A gene is a molecular unit of heredity of a living organism. Genes hold the information

to build and maintain an organisms cells and pass genetic traits to offspring. All

organisms have many genes corresponding to various biological traits, some of which

are immediately visible, such as eye colour or height, and some of which are not,
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such as blood type or increased risk for specific diseases, or the thousands of basic

biochemical processes that comprise life. Genes are made from a long molecule called

DNA, which is copied and inherited across generations.

2.2.2 DNA and Chromosomes

Deoxyribonucleic acid (DNA) is the carrier of genetic information. The information in

DNA is stored using a code made up of four chemical bases: adenine (A), guanine (G),

cytosine (C), and thymine (T). The order or sequence of these bases determines the

information available for building and maintaining an organism. DNA bases pair up

with each other, A with T and C with G, to form units called base pairs. Each base is

also attached to a sugar molecule and a phosphate molecule. Together, a base, sugar,

and phosphate are called a nucleotide. Nucleotides are arranged in two long strands

that form a spiral called a double helix. These two strands run in opposite directions

to each other and are therefore said to be anti-parallel. An important property of

DNA is that it can replicate, or make copies of itself.

In the nucleus of each cell, the DNA molecule is packaged into thread-like structures

called chromosomes. Each chromosome is made up of DNA tightly coiled many times

around proteins called histones that support its structure.

2.2.3 RNA

Like DNA, Ribonucleic acid (RNA) is made up of a long chain of components called

nucleotides. Each nucleotide consists of a nucleobase, a ribose sugar, and a phosphate

group. The sequence of nucleotides allows RNA to encode genetic information. The

chemical structure of RNA is very similar to that of DNA, with two differences:

(a) RNA contains the sugar ribose, while DNA contains the slightly different sugar

deoxyribose, and (b) RNA contains the nucleobase uracil while DNA contains thymine.
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Unlike DNA, most RNA molecules are single-stranded and can adopt very complex

three-dimensional structures.

2.2.4 UTRs, Introns and Exons

UTRs are the regions of the mRNA molecule that are not translated into a protein

(Figure 2.1). There is one on each side of a coding sequence (5′ and 3′). An intron is

any nucleotide sequence within a gene that is removed by RNA splicing to generate the

final mature RNA product of a gene. The term intron refers to both the DNA sequence

within a gene, and the corresponding sequence in RNA transcripts. Sequences that

are joined together in the final mature RNA after RNA splicing are called exons.

Figure 2.1: An unspliced mRNA precursor, with UTR’s, two introns and three exons
(top). The mature mRNA sequence is made after the introns have been removed via
splicing (bottom). Source: wikipedia

2.2.5 The Central Dogma of Molecular Biology

The central dogma of molecular biology was first postulated by Francis Crick about

60 years ago [2]. In its simplest form, it states that genetic information is transferred

from DNA to messenger RNA (mRNA, by a process known as transcription) and then

to protein (translation) (Figure 2.2).

Figure 2.2: The Central Dogma of Molecular Biology: DNA makes RNA makes
proteins.
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2.2.6 Non-Coding RNA

Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from

DNA, but are not translated into proteins (Figure 2.3). ncRNAs have been found to

carry out diverse functions including causing a variety of diseases (see Introduction).

There are two main groups of ncRNAs: (1) short ncRNAs (ones ≤ 200nt, such as

ribosomal RNAs, transfer RNAs, small nucleolar RNAs, microRNAs, PIWI-interacting

RNAs), and (2) long ncRNAs (>200nt).

Figure 2.3: Non-coding RNAs

2.2.7 Host, Parasite and Pathogen

A host is a living organism (eg: human, animal, plant) that nourishes and supports a

parasite. The term parasite refers to an organism that grows, feeds and is sheltered on

or in a different organism while contributing nothing to the survival of its host. For

example, in Chapter 6 we segmented three malaria parasites, Plasmodium falciparum -

the human malaria; P. reichnowi - which infects chimpanzees, and P. gallinaceum -
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which infects jungle fowls to identify genetic mechanisms that make species that are

able to thrive on a variety of resources, thus to better understand the malaria disease.

A pathogen is defined as a microbe that is able to cause a disease or capable of causing

host damage [3, 4]. All parasites that cause a disease in a specific organism are also

considered as pathogens for this specific organism. Host-pathogen interactions provide

information that can help scientists and researchers understand disease pathogenesis -

the biological mechanisms that lead to the diseased state, the biology of one or many

pathogens, as well as the biology of the host. For example in Chapter 5, we studied

about the pathogenic Wolbachia strain wMelPop, which was originally identified

during a survey of lab lines of Drosophila melanogaster for genetic mutations causing

brain degeneration [5]. This strain over replicates in host cells, causing cellular damage

and reducing lifespan by approximately one-half in flies [6, 7] and causes similar host

effects when transinfected into the mosquito Aedes aegypti [8]. The life-shortening

effect of wMelPop is being utilized as part of a novel biocontrol strategy to reduce

dengue virus transmission by A. aegypti [9–11]. In Chapter 5, our goal was to identify

candidate sRNAs that may play significant roles in its interactions with its host and

this work was carried out as a part of eradicate dengue project.

2.3 Statistical Methods

Here I present some statistical methods used in up coming chapters.

2.3.1 Z-test to compare proportions

To compare two population proportions p1 and p2, the z-test is appropriate given

the following conditions are met (used in Chapter 4 to compare the proportion

of transcription factors in PFE genes to proportion of transcription factors in the

alignment).
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• The samples are independent.

• Each sample is large enough to justify using normal approximations to the

distributions of the sample proportions. It is usually sufficient if each sample

has a minimum of 10 successes and 10 failures.

• All individuals in the population are equally likely to be sampled.

Let p̂1 and p̂2 be the observed proportions of two populations, where p̂1 = x1
n1

and

p̂2 = x2
n2

. Here n1 and n2 are the sizes of each sample, and x1 and x2 are the number

of successes in each sample respectively.

Steps in hypothesis test

1. State null (H0) and the alternative (Ha) hypotheses. Three sets of statistical

hypotheses can be formulated;

a. H0 : p1 − p2 = 0 versus Ha : p1 − p2 6= 0 ; a two-tailed test.

b. H0 : p1 − p2 ≤ 0 versus Ha : p1 − p2 > 0 ; an upper-tailed test.

c. H0 : p1 − p2 ≥ 0 versus Ha : p1 − p2 < 0 ; a lower-tailed test.

2. Summarize data into a suitable test statistic. Here the test statistic is,

p̂1−p̂2√
p(1−p)

n1
+

p(1−p)
n2

∼ N(0, 1) where p is the observed proportion from the combined

samples, calculated by p = x1+x2
n1+n2

.

3. Assuming the null to be true, find the p − value. P-value is “the probability

that the observed statistic value (or more extreme value) could occur if the null

model was correct”.

4. Decide if the result is statistically significant based on the p− value and report

conclusion. If p-value ≥ level of significance (often 0.05), do not reject H0;

otherwise reject H0.
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2.3.2 Mann-Whitney U test

In hypothesis testing, parametric tests are used when confident the assumptions of the

test are satisfied, otherwise non-parametric test are used, especially for small sample

sizes. The Mann-Whitney U test is a non-parametric test which allows non-normally

distributed and ordinal data sets to be compared (used in Chapter 5 to test significant

differences in candidate sRNA expression). It tests the null hypothesis that two

samples come from the same population against an alternative hypothesis, given below

conditions are met.

• All observations from both groups are independent of each other.

• The responses are ordinal.

Steps in calculation

1. Assign numeric ranks to all the observations, beginning with 1 for the smallest

value. Where there are groups of tied values, assign a rank equal to the midpoint of

unadjusted rankings, ie the ranks of (3, 5, 5, 9) are (1, 2.5, 2.5, 4).

2. Add up the ranks for the observations which came from sample 1. The sum of

ranks in sample 2 is determinate, since the sum of all the ranks equals N(N + 1)/2,

where N is the total number of observations.

3. U is then given by: U1 = R1− n1(n1+1)
2

, where n1 is the sample size for sample 1, and

R1 is the sum of the ranks in sample 1. Note that there is no specification as to which

sample is considered sample 1. An equally valid formula for U is U2 = R2 − n2(n2+1)
2

using sample 2.

4. Calculate U = min(U1, U2).

5. Statistical tables can be used for the Mann-Whitney U test to find the probability

of observing a value of U or lower. This is the p− value.

6. Decide if the result is statistically significant based on the p − value and report

conclusion.

23



NOTE: If the number of observations is such that n1, n2 are large enough (> 20), a

normal approximation can be used with mean, µU = n1n2

2
and standard deviation,

σU =
√

n1n2(N+1))
12

, where N = n1 + n2.

2.3.3 LOESS Model - LOcally WEighted Scatter-plot Smoother

There are two general strategies for fitting a smooth curve: parametric and nonparamet-

ric fitting [12]. Parametric fitting requires the analyst to specify the functional form of

the relationship in advance (eg: least squares regression). Often the correct functional

form is unknown. Currently, the most popular nonparametric smoother is loess [13].

Thus the biggest advantage of loess is, it does not require the specification of a function

to fit a model to all of the data in the sample. Loess provides a graphical summary of

the relationship between a dependent variable and one or more independent variables.

The following parameters must be supplied prior to the loess model fitting procedure

in order to guarantee that the loess curve really does pass through the center of the

empirical data points [14].

The smoothing parameter, α

Parameter α (a value between 0 and 1) gives the proportion of observations that is to

be used in each local regression (explained below). The fitted curve becomes smoother

with larger values of α. However a decision about a proper value of α must be made

on a case-by-case basis to avoid “over-fitting” or “lack of fitting” the model.

The degree of the loess polynomial, λ.

The λ parameter specifies the degree of the polynomial that the loess procedure fits to

the data. If λ = 1, then linear equations are fit and when λ = 2, quadratic equations

are used.
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Fitting a loess smooth curve

1. Assume that the data consist of n observations on two variables, X and Y . These

data are displayed in a bivariate scatter plot. The plotted points are the ordered

pairs (xi, yi), where i ranges from 1 to n.

2. Select a series of m locations or evaluation points, vj, with j running from 1 to

m. These evaluation points are equally-spaced across the range of X.

3. Loess performs a series of m weighted regression analyses using a subset of

observations, one at each of the vj. These regressions are “local” in the sense

that each one only uses the subset of observations that fall closest to that

evaluation point along the horizontal axis of the scatter plot.

4. Specify the proportion of the total data that is included within each subset using

a loess parameter, α.

5. Specify the functional form (either linear or quadratic) using the loess λ parameter.

The observations included in each local regression are inversely weighted according

to their distance from the evaluation point along the X axis.

6. The coefficients from each local regression are used to estimate a predicted or

fitted value, designated ĝ(vj) for that evaluation point.

7. After all of the local regressions are completed, plot m different ordered pairs,

(vj, ĝ(vj)) in the scatterplot, superimposed over the n data points that are already

shown in the plot.

8. Finally, connect adjacent fitted points that is, the (vj, ĝ(vj)) for successive vjs

by line segments (loess line).
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2.4 Introduction to Bayesian Inference

The most frequently used statistical methods assume that unknown parameters are

fixed constants, and define probability in terms of limiting relative frequencies. It

follows from these assumptions that probabilities are objective and that we cannot

make probabilistic statements about parameters because they are fixed. Bayesian

methods offer an alternative approach; they treat parameters as random variables

and define probability as ‘degrees of belief’ (that is, the probability of an event is the

degree to which we believe the event is true). Bayesian methods provide a natural and

principled way of combining prior information with data, and can incorporate past

information about a parameter to form a prior distribution for use in future analysis.

Suppose we are interested in estimating a parameter θ from data y = (y1, ..., yn) by

using a statistical model described by a density p(y|θ). The Bayesian approach assumes

that θ cannot be determined exactly and uncertainty about the parameter is expressed

through probability statements and distributions. The following steps describe the

essential elements of Bayesian inference:

1 A probability distribution for θ is formulated as π(θ), which is known as the

prior distribution. The prior distribution expresses beliefs (for example, on the

mean, the spread, the skewness) about the parameter before we examine the

data.

2 Given the observed data y, choose a statistical model p(y|θ) (likelihood model)

to describe the distribution of y given θ.

3 Update beliefs about θ by combining information from the prior distribution

and the data through the calculation of the posterior distribution p(θ|y).

The third step is carried out by using Bayes′ Theorem, which enables to combine the

prior distribution and the model in the following way:
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p(θ|y) =
p(θ, y)

p(y)
=
p(y|θ)π(θ)

p(y)
=

p(y|θ)π(θ)∫
p(y|θ)π(θ)dθ

(2.4.1)

The quantity
∫
p(y|θ)π(θ)dθ is the normalizing constant of the posterior distribution.

p(y) is the marginal distribution of y (or marginal distribution of the data). The

likelihood function of θ is any function proportional to p(y|θ).

Simply, Bayes′ Theorem tells how to update existing knowledge with new information.

We begin with a prior belief π(θ), and after learning information from data y, we

change or update our belief about θ and obtain p(θ|y).

In recent literature [15], the process of Bayesian data analysis is explained by dividing

it into following three steps.

1. Set up a full probability model - a joint probability distribution for all observable

and unobservable quantities in a problem p(θ, y). The model should be consistent

with knowledge about the underlying scientific problem and the data collection process.

2. Condition on observed data - calculate and interpret the appropriate posterior

distribution p(θ|y).

3. Evaluate the fit of the model and the implications of the resulting posterior

distribution - how well does the model fit the data, are the substantive conclusions

reasonable, and how sensitive are the results to the modelling assumptions in step 1?

In response, one can alter or expand the model and repeat the three steps.

2.5 A Markov Chain

A Markov chain is a random process with the property that, conditional on its present

value, the future is independent of the past. A typical random process Θ is a family
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{Θt : t ∈ T} of random variables indexed by some set T . If T = {0, 1, 2, ...}, we call the

process a discrete-time process; if T = R or T = [0,∞), we call it a continuous-time

process [16].

State space: S: A state space (S) is the set of values which a process can take or

the range of possible values for the random variables X. S is said to be countable if

the elements of S can be put into a one-to-one correspondence with some subset of

the integers. In other words, one can index all possible states using the integers or

some subset thereof.

Discrete-time Markov chain: Let Θ0,Θ1,Θ2, ... be a sequence of random variables

which takes values in some countable space S, called the state space. Each Θn is a

discrete random variable that takes one of N possible values, where N = |S|; it may

be the case that N =∞. The process Θ is a discrete-time first-order Markov chain if

it satisfies the following condition.

p(Θn = s|Θ0 = θ0,Θ1 = θ1, ...,Θn−1 = θn−1) = p(Θn = s|Θn−1 = θn−1) (2.5.1)

for all n ≥ 1 and all s, θ0, θ1, ..., θn−1 ∈ S.

A Markov chain is irreducible if it is possible to go from any state to any other state

(not necessarily in one step). That is, all states communicate with each other. The

chain is said to be aperiodic when the number of steps required to move between two

states is not required to be a multiple of some integer, > 1. That is, the chain is not

forced into some cycle of fixed length between certain states. Finally, a Markov chain

is recurrent, if for any given state i, if the chain starts at i, it will eventually return

to i with probability 1. It is said to be positive recurrent if the expected return

time to state i is finite; otherwise it is null recurrent.
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2.5.1 Stationary Distribution

A distribution π on target space S is stationary with respect to a transition matrix P ,

if πP = π.

The Transition matrix P = (pij) is the |S| × |S| matrix of transition probabilities :

pij = p(Θn+1 = j|Θn = i) (2.5.2)

If we can devise a Markov chain whose stationary distribution π is the desired posterior

distribution p(θ/y), then we can run this chain to get draws that are approximately

from p(θ/y) once the chain has converged. A sufficient condition for a unique stationary

distribution is that the detailed balance equation holds (for all i and j),

P (i, j)πi = P (j, i)πj

2.5.2 Ergodic Theorem

Let θ0, θ1, ..., θM be M values from a Markov chain that is aperiodic, irreducible, and

positive recurrent, and E[g(θ)] <∞, where g(θ) is some function of θ.

Then with p
(

1
M

∑M
i=1 g(θi),M →∞

)
= 1.

1

M

M∑
i=1

g(θi) '
∫

Θ

g(θ)π(θ)dθ (2.5.3)

as M →∞, where π is the stationary distribution.
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2.5.3 Monte Carlo Method

Monte Carlo is a method developed by physicists to use random number generation

to compute integrals. Suppose we wish to compute a complex integral:

∫ b

a

h(θ)dθ

If we can decompose h(θ) into the product of a function f(θ) and a probability

density function p(θ) defined over the interval (a, b), then the integral
∫ b
a
h(θ)dθ can

be expressed as an expectation of f(θ) over the density p(θ) as below.

∫ b

a

h(θ)dθ =

∫ b

a

f(θ)p(θ)dθ = Ep(θ)[f(θ)] (2.5.4)

Thus if we draw a large number of random variables, θ1, ..., θn from the density p(θ),

then we can write;

∫ b

a

h(θ)dθ = Ep(θ)[f(θ)] ' 1

n

n∑
i=1

f(θi) (2.5.5)

This is referred to as Monte Carlo integration.

2.5.4 Markov Chain Monte Carlo Method

A major limitation of Bayesian approaches is that obtaining the posterior distribution

often requires the integration of high-dimensional functions. This can be computation-

ally very difficult. If we have a Markov chain that has converged to the stationary

distribution, the draws in our chain appear to be like draws from the posterior distri-

bution, f(θ|y). The ergodic theorem allows us to perform Monte Carlo Integration to

find quantities of interests ignoring the dependence between draws.
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The Markov chain Monte Carlo (MCMC) approach is to construct a Markov chain

having the following two properties [16]

(a) The chain has π as the unique stationary distribution.

(b) The transition probabilities of the chain have a simple form.

Property (a) ensures the distribution approaches the required distribution (the posterior

distribution in Bayesian statistics) and property (b) ensures the easy simulation of the

chain. Therefore MCMC sampling is frequently used in Bayesian inference to simulate

sampling of a posterior distribution and compute posterior quantities of interest.

Consider a first-order Markov chain with a sequence of random variables θ1, θ2, ... in

a target space S, for which the random variable θt depends on all previous θs only

through its immediate predecessor θt−1,

p(θt|θ1, θ2, .., θt−1) = p(θt|θt−1), (2.5.6)

Monte Carlo integration can be used to approximate posterior (or marginal poste-

rior) distribution required for a Bayesian analysis [17]. Thus the integral I(y) =∫ b
a
f(y|θ)p(θ)dθ can be approximated by:

I ′(y) =
1

n

n∑
i=1

f(y|θi) (2.5.7)

where the θi are drawn from density p(θ).

In Bayesian statistics, there are two general MCMC algorithms that are commonly

used: (1) the Metropolis-Hastings algorithm; and (2) the Gibbs sampler.

Metropolis-Hastings Algorithm

The Metropolis algorithm is named after its inventor, the American physicist and

computer scientist Nicholas C. Metropolis. The algorithm is simple but practical,
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and it can be used to obtain random samples from an arbitrarily complicated target

distribution of any dimension, where the normalizing constant may not be known.

Suppose our goal is to draw samples from some distribution p(θ|y). The Metropolis

algorithm [18, 19] generates a sequence of draws from this distribution as follows:

(1). Start with any initial value θ0 satisfying p(θ0|y) > 0.

(2). Using current θ0 value, sample a candidate point θ∗ from a jumping distribution

q(θ1, θ2), which is the probability of returning a value of θ2 given a previous value

of θ1. This distribution is also referred to as the proposal distribution. The only

restriction on the jump density in the Metropolis algorithm is that it is symmetric,

i.e., q(θ1, θ2) = q(θ2, θ1).

(3). Given the candidate point θ∗, calculate an acceptance ratio of the density (α) at

the candidate ( θ∗) and current ( θt−1) points,

α = min

{
p(θ∗|y)

p(θt−1|y)
, 1

}
(2.5.8)

(4). Accept candidate point θ∗ as θt with probability α. If θ∗ is not accepted, θt = θt−1.

(5). Repeat steps 2-4 (M times).

This generates a Markov chain (θ0, θ1, ..., θk, ..., θM), as the transition probabilities

from θt to θt+1 depend only on θt and not (θ0, ..., θt−1). Following a sufficient burn-in

period (of say, k steps), the chain approaches its stationary distribution and samples

θk+1, ..., θM are samples from p(θ|y).

Hastings (1970) generalized the Metropolis algorithm using an asymmetric proposal

distribution, q(θ∗, θt) 6= q(θt, θ
∗). The difference in its implementation comes in

calculating the ratio of densities:

α = min

{
p(θ∗|y)q(θ∗, θt−1)

p(θt−1|y)q(θt−1, θ∗)
, 1

}
(2.5.9)
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Other steps remain the same.

The Gibbs Sampler

The Gibbs sampler, named by Geman and Geman (1984) after the American physicist

Josiah W. Gibbs, is a special case of the Metropolis and Metropolis-Hastings Algorithms

in which the proposal distributions exactly match the posterior conditional distributions

and proposals are accepted 100% of the time. Gibbs sampling requires us to decompose

the joint posterior distribution into full conditional distributions for each parameter

in the model and then sample from them. The sampler can be efficient when the

parameters are not highly dependent on each other and the full conditional distributions

are easy to sample from.

Suppose θ = (θ1, θ2, ...., θk) is the parameter vector, p(y|θ) is the likelihood, and π(θ)

is the prior distribution. The full posterior conditional distribution of π(θi|θj; i 6= j, y)

is proportional to the joint posterior density. That is,

π(θi|θj; i 6= j, y) ∝ p(y|θ)π(θ)

For instance, the one-dimensional conditional distribution of θ1 given θj = θjnew, 2 <

j < k , is computed as the following:

π(θ1|θj = θjnew, 2 ≤ j ≤ k, y) ∝ p(y|θ = (θ1, θ2new, .., θknew))π(θ = (θ1, θ2new, ..., θknew))

The Gibbs sampler works as follows:

(1) Set, t = 0 and choose an arbitrary initial value of θ0 = (θ0
1, ..., θ

0
k)

(2) Generate each component as follows:

• draw θt+1
1 from π(θ1|θt2, θt3, ..., θtk, y)

• draw θt+1
2 from π(θ2|θt+1

1 , θt3, ..., θ
t
k, y)

•
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•

• draw θt+1
k from π(θk|θt+1

1 , θt+1
2 , ..., θt+1

k−1, y)

(3) Set t = t+ 1. If t < M , the number of desired samples, return to step 2. Otherwise,

stop.

The result is a Markov chain with M draws of θ that are approximately from the

posterior, p(θ|y). We can perform Monte Carlo integration on those draws to obtain

quantities of interest.

Generalized Gibbs Sampler

Here I summarise the Generalized Gibbs Sampler (GGS) presented in [20].

The conventional Gibbs sampler is used to sample from a distribution p(x) over a space

X in which points have fixed dimension d. Each iteration of the Gibbs sampler involves

d coordinate updates in which new values for each of the d coordinates are drawn from

the one-dimensional conditional distributions of p with the other coordinates fixed.

On the other-hand, GGS can be used when points in X do not have fixed dimension,

and may not even have a representation in terms of coordinates. It is formalized by

augmenting a space I of move-types to X and defining a set Q(x) ⊂ I × {x} to be

the set of move-types available at x for each x ∈ X. The move types are analogous to

the coordinate updates of the conventional Gibbs sampler.

Let U ≡ ∪x∈XQ(x). The GGS generates a Markov chain in U such that the projection

of the chain onto X has the limiting distribution f . The GGS makes use of two

transition matrices Q and R. The first of these, Q is used to select a move type from

Q(x), where x is the most recently sampled element of X. The matrix Q assigns

probability zero to a transition between any element of Q(x) and any element of Q(y),

for y 6= x. This ensures that the selected move type is one that is available at x.

The matrix Q is otherwise arbitrary. Selecting a move type using Q is analogous to

selecting a coordinate to update in the conventional Gibbs sampler.
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The second transition matrix, R, selects an element of the set R(u), where u = (i, x)

is the element of Q(x) selected using Q, and R(u) is a subset of U containing u. The

sets {R(u) : u ∈ U} must form a partition of U , but are otherwise arbitrary. The

transition matrix R is given by:

R(u, v) =



f(y)qy(v)∑
w∈R(u)

f(z)qz(w)
for v ∈ R(u)

0 otherwise

where u = (i, x), v = (j, y), w = (k, z), and qx is a distribution on Q(x) that is

stationary with respect to the transition matrix Q.

GGS algorithm

Starting with an arbitrary U0, perform the following steps iteratively:

(1) [Q-step]: Given Un = (i, x), generate V ∈ Q(x) by drawing from the distribution

with density Q((i, x), .).

(2) [R-step]: Given V = (j, y), generate W ∈ R(j, y) by drawing from the distribution

with density R((j, y), .).

(3) Let Un+1 = W .

This algorithm generates a Markov chain {U0, U1, ...} = {(I0, X0), (I1, X1), ...} such

that the limiting distribution of Xn as n→∞ is f , provided that P is irreducible and

aperiodic.

Consider a Markov chain {U1, U2, ...} on U with transition matrix P defined by:

P = QR
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For u = (i, x) and v = (j, y),

P (u, v) =
∑
w∈U

Q(u,w)R(w, v) =
∑

w∈Q(x)∩R(v)

Q(u,w)R(w, v)

Let µ be the distribution on U defined by µ(i, x) = f(x)qx(i, x).

Note that µ is stationary with respect to R

Consider

µ(i, x)R((i, x), (j, y)) =



f(x)qx(i, x)f(y)qy(j, y)∑
(k,z)∈R(i,x)

f(z)qz(k, z)
for (j, y) ∈ R(i, x)

0 otherwise

Now consider

µ(j, y)R((j, y), (i, x)) =



f(y)qy(j, y)f(x)qx(i, x)∑
(k,z)∈R(j,y)

f(z)qz(k, z)
for (j, y) ∈ R(i, x)

0 otherwise

We know that

(j, y) ∈ R(i, x), (k, z) ∈ R(j, y) =⇒ (k, z) ∈ R(i, x)

Therefore we can write

µ(i, x)R((i, x), (j, y)) = µ(j, y)R((j, y), (i, x))
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µ is stationary with respect to R and consequently

∑
(i,x)∈U

µ(i, x)R((i, x), (j, y)) = µ(j, y)

Note that µ is stationary with Q∑
(i,x)∈U

µ(i, x)Q((i, x), (j, y)) is the probability at (j, y) after applying transition matrix

Q to the distribution µ(i, x).

Q((i, x), (j, y)) = 0 unless (i, x) ∈ Q(y) and if (i, x) ∈ Q(y) then x = y.

Therefore we have

∑
(i,x)∈U

µ(i, x)Q((i, x), (j, y)) =
∑

(i,y)∈Q(y)

µ(i, y)Q((i, y), (j, y))

=
∑

(i,y)∈Q(y)

f(y)qy(i, y)Q((i, y), (j, y))

= f(y)
∑

(i,y)∈Q(y)

qy(i, y)Q((i, y), (j, y))

As qy is stationary with respect to Q(y)

∑
(i,x)∈U

µ(i, x)Q((i, x), (j, y)) = f(y)qy(j, y) = µ(j, y)

Therefore µ is stationary with respect to Q.

Note that the distribution µ is stationary with respect to P

µ is stationary with respect to Q and R. Then in matrix notation

µP = µQR = µR = µ

Therefore µ is stationary with respect to P .
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If P is irreducible and aperiodic, µ is the limiting distribution of the process P .

The GGS is summarized in the following algorithm.

2.5.5 Assessing MCMC Convergence

There are several methods for assessing the convergence of MCMC chains. The most

simple way to see if the chain has converged is by visual inspection using a traceplot.

Visual analysis via trace plots

A traceplot is a plot of the iteration number against the value of a sampled parameter

at each iteration (Figure 2.4). The trace indicates if the chain has not yet converged

to its stationary distribution. A trace can also indicate whether the chain is mixing

well. The aspects of stationarity that are most recognizable from a trace plot are a

relatively constant mean and variance.

Figure 2.4: Examples of traceplots for parameter θ: The trace in the right seems
to have failed to converge. One can consider reparameterizing the model or run the
Markov chain for a long time. The chain in the left can be considered as converged
with mean around value of 2 and small fluctuations.

A number of more formal methods are prevalent in the literature (reviewed in [21, 22]).

Most of these diagnostics are implemented in the package CODA, which is a popular
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program for convergence diagnostics written for R [23, 24]. In this thesis, we used the

method developed by Heidelberger-Welch to assess the convergence [25].

Heidelberger and Welch Diagnostics

This test consists of two parts: a stationary portion test and a half-width test [25, 26].

The convergence test uses the Cramer-von-Mises statistic to test the null hypothesis

that the sampled values come from a stationary distribution. The test is successively

applied, firstly to the whole chain, then after discarding the first 10%, 20%, ... of

the chain until either the null hypothesis is accepted, or 50% of the chain has been

discarded. The latter outcome constitutes ‘failure’ of the stationarity test and indicates

that a longer MCMC run is needed. If the stationarity test is passed, the number of

iterations to keep and the number to discard are reported.

The part of the chain that is deemed stationary is put through a half-width test, which

checks whether the Markov chain sample size is adequate to estimate the mean values

accurately. The half-width test calculates a 95% confidence interval for the mean,

using the portion of the chain which passed the stationarity test. If the half-width

is less than ε times the sample mean (where ε is a small fraction), the half-width

test is passed and the retained sample is deemed to estimate the posterior mean with

acceptable precision. If the half-width test is failed, this implies that a longer run is

needed to increase the accuracy of the posterior estimates for the given variable. The

CODA default for ε is 0.1.

2.6 The changept model

Changept model can mainly be used to segment either a pairwise or a multiple alignment

using two types of encoding methods: (1) binary encoding - enables segmentation

based on a single property of interest (eg: degree of conservation); (2) letter encoding -

enables segmentation based on multiple properties of interest (eg: conservation levels,

GC content, transition/transversion ratio). Here I present the mathematics of each
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type of changept modelling in detail [27, 28]. A review of segmentation methods

including changept analysis is presented in Chapter 2- part 2 [1].

2.6.1 Changept modelling for segmenting a binary sequence

Generating the binary sequence

The changept model currently does not consider indels (insertions and deletions) of

an alignment. Thus the binary sequence is generated by first stripping the columns

containing an indel. Suppose we are interested in segmenting a pairwise alignment

based on the degree of conservation between two species. Then the alignment is

converted into a binary sequence by replacing alignment coloumns in which genomes

match with a ‘1′ and mismatch with a ‘0′ (Table 2.1). The boundaries between

alignment blocks are marked using a ‘#′ character and these are considered as fixed

change-points.

Table 2.1: Generating binary sequence of a pairwise alignment based on conservation
levels

Species 1 A C G G A C G T
Species 2 A A C G G G T T
Symbol 1 0 0 1 0 0 0 1

Binary sequence: 10010001

Modelling

Suppose that the length L of a binary sequence and the positions of fixed change-points

are given. Then for each position in the sequence except the first and those immediately

following the fixed change-points, a decision is made as to whether to start a new

segment at that position (at 1st position and the positions after fixed change-points, a

new segment has to start, therefore no decision to make). The probability of starting

a new segment is denoted by φ.
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Thus the probability of generating a new segmentation with total k change-points

including k′ fixed change-points at positions c = (c1, c2, ..., ck) is given by the joint

probability of k and c conditional on φ:

p(k, c|φ) = φk−k
′
(1− φ)(L−1−k) (2.6.1)

Here k + 1 segments are numbered from 0 to k and for convenience c0 = 1 and

ck = L+ 1.

Each segment is assigned to one of v conservation classes. The probability of assigning

any given segment to a class v is denoted by πv and π = (π0, π1, ...., πv−1). The class

to which segment i is assigned is denoted by gi ∈ (0, 1, .., v − 1); let g = (g0, g1, ..., gk).

The probability of a specific assignment of the k + 1 segments such that x0 segments

are assigned to class 0, ..., x(v−1) segments are assigned to class v − 1 is given by:

p(g|k, π) = πx00 π
x1
1 ...π

xv−1

v−1 =
k∏
i=0

πgi (2.6.2)

Each segment is then assigned a Bernoulli parameter representing the probability

of generating a ‘1′ at each position in that segment. For each segment i in class t,

the Bernoulli parameter θi is drawn from a beta distribution with as yet unspecified

parameters α
(t)
0 and α

(t)
1 . (θi is the probability of generating a ‘1′ at each position of

segment i in class t).

B(θi|α(t)
0 , α

(t)
1 ) =

Γ(α
(t)
0 + α

(t)
1 )

Γ(α
(t)
0 )Γ(α

(t)
1 )

θ
α
(t)
1 −1

i (1− θi)α
(t)
0 −1 (2.6.3)

Here θ = (θ0, θ1, ...., θk), α
(t) = (α

(t)
0 , α

(t)
1 ) and α = (α(0), .., α(v−1))

Finally, the binary sequence within each segment is generated by independent Bernoulli

trials at each position in that segment. Thus the probability that segment i contains a
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specific sequence Si including mi zeros and ni ones is:

p(Si|Li, θi) = θni
i (1− θi)mi (2.6.4)

Let Li = ci+1 − ci be the length of segment i. Let S be the final binary sequence

obtained by concatenating S0.....Sk. Thus the joint distribution of k, c, g, θ, S is given

by:

p(k, c, g, θ, S|φ, π, α) = p(k, c|φ)p(g|k, π)×
k∏
i=0

B(θi|α(gi))p(Si|Li, θi) (2.6.5)

To complete the Bayesian model, the prior probabilities of unspecified parameters

φ, π, α
(t)
0 and α

(t)
1 are assigned as follows.

For φ and π uniform prior densities p(φ) = 1 and p(π) = 1 are used on the interval

[0, 1]. For α(t), the uniform priors on mean µ and standard deviation of the beta

distribution, given by µ
(t)
j = α

(t)
j /(α

(t)
0 + α

(t)
1 ) and σt =

√
µ

(t)
0 µ

(t)
1 /(α

(t)
0 + α

(t)
1 + 1) for

j = 0, 1 are used.

Now using Bayes rule, integrating over φ and θ and summing over g the following

posterior distribution is obtained:

p(k, c, π, µ, σ|S) ∝ Γ(k − k′ + 1)Γ(L− k)×
k∏
i=0

f(mi, ni|π, α) (2.6.6)

where µ = (µ(0), µ(1), ..., µ(v−1)) and σ = (σ(0), σ(1), .., σ(v−1)) , α is a function of µ and

σ and:

f(m,n|π, α) =
∑
t

[
πt

Γ(α
(t)
0 + α

(t)
1 )

Γ(α
(t)
0 )Γ(α

(t)
1 )
× Γ(m+ α

(t)
0 )Γ(n+ α

(t)
1 )

Γ(m+ α
(t)
0 + n+ α

(t)
1 )

]
(2.6.7)
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Figure 2.5 shows the parameters of the model and their conditional dependencies. A

parameter at the head of the arrow is conditionally dependent on the parameter at

the tail.

Figure 2.5: The parameters and their conditional dependencies of the model: source
[28].

Sampling

In order to estimate the parameters k, c, π and α, a sample from the posterior distri-

bution in equation 2.6.6 is drawn using the Generalised Gibbs sampler (GGS) [20].

The sampler involves updating parts of the current element of a Markov chain while

holding other parts fixed, in a manner resembling the conventional Gibbs sampler.

Unlike the conventional Gibbs sampler, the GGS can sample from spaces in which the

dimension varies from point to point.

The GGS algorithm is separated in different steps using the move-types defined below.

• (I, i): decide whether to insert a new change-point in segment i, and at what

position.

• (D, i): decide whether to delete a new change-point i, if it is not a fixed and

permanent change-point.
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• (S, i): slide change-point i, to a new position between ci−1 and ci+1 if it is not a

fixed and permanent change-point.

• (πt1, πt2): simultaneously update πt1, πt2 for (t1, t2) ∈ {0, ..., v− 1}2 keeping their

sum constant.

• (t1, t2): simultaneously update πt1, πt2 and αt1, αt2 for (t1, t2) ∈ {0, ..., v − 1}2.

• πt: update πt, scaling all other π values by a constant factor.

• σt: update
√

1/(zt + 1) while holding µt constant.

• µt: update µt while holding σt constant.

The number of moves available from any given segmentation depends on k and it is

given by:

N(k) = 3k + 1 + v(v − 1) + 3v

where v is the number of conservation classes. Here the value of N(k) was obtained

by adding up the following moves.

• (I, i): k + 1 moves

• (D, i): k moves

• (S, i): k moves

• πt, σt, µt : 3v moves - 1 move for each parameter in each group

• (πt1, πt2) : v(v − 1)/2 moves

• (t1, t2) : v(v − 1)/2 moves

In each of the first 3 moves, there is a possibility no change is made, in which case the

current segmentation is repeated. The sampler cycles through the available moves in

a systematic manner, illustrated in Figure 2.6 below.

44



Figure 2.6: The order in which the updates are carried out. Note that I updates run
from 0 to k whereas D and S updates run from 1 to k. The updates shown here are
for t = 0, 1 only. source [28].

Insertion Step:(I, i)

For each segment i = (0, ...., k) an insertion move is performed as follows.

• Determine the conditional distribution over the set of segmentations that can

be obtained by inserting a new change-point between ci and ci+1, while holding

π, α and the positions of the existing change-points constant.

• Using equation 2.6.6, the conditional probability of the current segmentation is

proportional to (L− k − 1)f(mi, ni|π, α)/(k − k′ + 1).

• Using equation 2.6.6, the conditional probability of the segmentation with a

new change-point at z is proportional to f(m1
i , n

1
i |π, α)f(m1

i+1, n
1
i+1|π, α) where

m1
i and n1

i are, respectively, the number of ‘0′s and number of ‘1′s in the new

segment between ci and z − 1, and m1
i+1 and n1

i+1 are, respectively, the number

of ‘0′s and number of ‘1′s in the new segment between z and ci+1 − 1.

• Select a new segmentation with probability proportional to w− =

(1/N(k))(L − k − 1)f(mi, ni|π, α)/(k − k′ + 1) or select a new segmenta-

tion with a new change-point at z with probability proportional to wz =

f(m1
i , n

1
i |π, α)f(m1

i+1, n
1
i+1|π, α)/N(k + 1) for each z ∈ {ci + 1, ..., ci+1 − 1}.
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Improving the efficiency of insertion step (I, i)

The final step of the procedure outlined in the previous section can be improved using

the following procedure. Decide whether to insert a new change-point with probability:

min

1,

ci+1−1∑
z=ci+1

wz

w−



If the decision is made to insert a new change-point, its position z ∈ {ci+1, ..., ci+1−1} is

selected with probability proportional to wz. This modification increases the probability

of accepting an insertion, and thus slightly improves the efficiency of the algorithm.

Note that if a change-point is inserted, the move type is updated to (D, i+1), otherwise

it remains (I, i). In either case, the move-type is then updated as in Figure 2.6.

Deletion Step: (D, i)

For each non-fixed change-point i = (1, .., k), a deletion move is performed as follows.

• Determine the conditional distribution over the set of segmentations consisting

of the segmentations obtained by deleting change-point i and the segmentation

that can be obtained by sliding ci to a (possibly) a new change-point between

ci−1 and ci+1, while holding π, α and the positions of the other change-points

constant.

• Using equation 2.6.6, the conditional probability of the segmentation obtained

by deleting change-point i is proportional to (L− k)f(mi, ni|π, α)/(k − k′).

• Using equation 2.6.6, the conditional probability of the segmentation ob-

tained by sliding change-point i to the (possibly) new z is proportional to

f(m1
i , n

1
i |π, α)f(m1

i+1, n
1
i+1|π, α), where m1

i and n1
i are, respectively, the number

of ‘0′s and number of ‘1′s in the segment with end-points ci−1 and z − 1, and
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m1
i+1 and n1

i+1 are, respectively, the number of ‘0′s and number of ‘1′s in the

segment with end-points z and ci+1 − 1.

• A straight forward GGS update would be to delete the change-point with

probability proportional to w− = (1/N(k − 1))(L − k)f(mi, ni|π, α)/(k − k′)

or slide the change-point to position z with probability proportional to wz =

f(m1
i , n

1
i |π, α)f(m1

i+1, n
1
i+1|π, α)/N(k) for each z ∈ {ci−1 + 1, ..., ci+1 − 1}.

Improving the efficiency of deletion step (D, i)

Decide whether to delete the change-point i with probability:

min

1,
w−

ci+1−1∑
z=ci−1+1

wz



If the decision is made not to delete the change-point, its position remains unchanged.

Note that if a change-point is deleted, the move-type is updated to (I, i− 1) otherwise

it remains (D, i). In either case, the move-type is then updated as in Figure 2.6. Also

note that for a fixed change-point i, the (D, i) move is replaced by the trivial move of

repeating the current segmentation.

Slide Step: (S, i)

For each non-fixed change-point i = (1, ..., k) a slide move is performed as follows.

• Determine the conditional distribution over the set of segmentations obtained by

sliding ci to a (possibly) new change-point between ci−1 and ci+1, while holding

π, α and the positions of the other change-points constant.

• Using equation 2.6.6, the conditional probability of the segmentation obtained

by sliding change-point i to z is proportional to f(m1
i , n

1
i |π, α)f(m1

i+1, n
1
i+1|π, α),

where m1
i and n1

i are, respectively, the number of ‘0′s and number of ‘1′s in the
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segment with endpoints ci−1 and z − 1, and m1
i+1 and n1

i+1 are, respectively, the

number of ‘0′s and number of ‘1′s in the segment with end-points z and ci+1− 1 .

• Using equation 2.6.6, the conditional probability of the current segmentation

is proportional to f(mi, ni|π, α)f(mi+1, ni+1|π, α), where mi and ni are, respec-

tively, the number of ‘0′s and number of ‘1′s in between ci−1 and ci− 1, and mi+1

and ni+1 are, respectively, the number of ‘0′s and number of ‘1′s in between ci

and ci+1 − 1.

• A straight forward GGS update would be to re-select the current segmentation

with probability proportional to w− = f(mi, ni|π, α)f(mi+1, ni+1|π, α)/N(k) or

slide the change-point to position z with probability proportional to wz =

f(m1
i , n

1
i |π, α)f(m1

i+1, n
1
i+1|π, α)/N(k) for each z ∈ {ci−1 + 1, ..., ci+1 − 1}.
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Improving the efficiency of sliding step (S, i)

Here the probability of sliding the change-point ci to x is:


wx

w− +

ci+1−1∑
z=ci−1+1

wz



Note that for a fixed change-point i, the (S, i) move is replaced by the trivial move of

repeating the current segmentation.

Steps π, α, µ:

Updates for the parameters πt, σ
t and µt are conventional Gibbs updates, and involve

sampling the conditional posterior distributions over various one-dimensional subspaces

of the target space, in particular holding k and c constant. The conditional distributions

are straight forward to obtain, though care must be taken to multiply by the appropriate

Jacobian when a change of variables is performed. In all cases a change of variables are

performed in such a way that the one-dimensional subspace that we wish to sample

requires varying only one parameter, while holding others constant [28].

Monte Carlo Integration

For each character position in the binary sequence, thus for each column of the pair

wise alignment that does not contain an indel, the posterior probability that position

is contained within a given conservation class is estimated by Monte Carlo integration.

The posterior probability that each character position belongs to the class in question,

given an element of the sample, is then calculated and averaged over the sample [28].
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2.6.2 Changept modelling for segmenting a letter encoded se-

quence

In computational biology, because the data to be analysed are usually categorical (DNA

sequence with a four letter alphabet or protein sequences with a 20 letter alphabet),

the binomial and multinomial distributions are most commonly used. The unknown

parameters often correspond to the frequencies of each letter in the alphabet. The

conjugate priors for the multinomial families are the Dirichlet distributions, among

which Beta distribution is a special case for the binomial family. In analysing DNA

sequences, we often let θ = (θa, θt, θg, θc) represent the unknown probabilities of the

four nucleotides. With the simple model that each residue in the observed sequence is

independent and identically distributed with frequency θ, the likelihood of an observed

DNA sequence can be written as:

p(na, nt, ng, nc|θ) ∝ θna
a θ

nt
t θ

ng
g θ

nc
c

where na, nt, ng, nc are the count of the four types of nucleotides in the sequence [29].

Thus the conjugate prior for θ is of the form:

Π(θ) ∝ θαa−1
a θ

αt−1

t θαg−1
g θαc−1

c

which is a Dirichlet distribution with parameters α = (αa, αt, αg, αc).

Generating the letter encoded sequence

There are various possibilities of encoding multiple-sequence alignments into a D-

character alphabet, where the value of D is chosen based on two main criteria: (1) the

number of species in the alignment, and (2) types biological information interested in.

Below I present few different options of D-character representations.
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16-character representation

Suppose we are interested in segmenting a pairwise alignment based on multiple

properties of interest, eg: the degree of conservation between two species, GC level of

the species and transition/transversion ratio. This can be done using a 16-character

encoded sequence as the input to the program changept (Table 2.2).

Table 2.2: Generating 16-character representation to encode a pairwise alignment

Species 1 A A A A C C C C G G G G T T T T
Species 2 A C G T A C G T A C G T A C G T
Symbol a b c d e f g h i j k l m n o p

eg: characters ‘a’, ‘f ’, ‘k’ and ‘p’ represent the conserved bases, characters from ‘e’ to
‘l’ represent the GC content in species 1

32-character representation

Suppose we are interested in segmenting a 3 way-alignment based on the same properties

mentioned above and we are not interested in strand-specific information. This can be

done using a 32-character alphabet shown below by encoding alignment columns with

complementary bases using the same letters. If one is also interested in extracting

strand specific information, we can use a different set of alphabet to encode the

complementary bases.

Species 1: AAAAAAAAAAAAAAAACCCCCCCCCCCCCCCC

Species 2: AAAACCCCGGGGTTTTAAAACCCCGGGGTTTT

Species 3: ACGTACGTACGTACGTACGTACGTACGTACGT

Symbol: abcdefghijklmnopqrstuvwxyzUVWXYZ

Modelling

The input sequence S is assumed to be formed from a finite alphabet 1, ..., D. A

segmentation of S is composed of the number of change-points k and a vector of

change-point positions A = (A1, ...., Ak), where Ai is the position of the left most

character in segment i+ 1. Within each segment, the sequence is supposed to have
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been generated by independent trials with D possible outcomes. The probabilities of

these outcomes for segment i = 1, .., k + 1 are Θi = (θi1, ...., θiD). Thus the probability

of the observed sequence is a product of binomial distributions.

p(S|k,A,Θ) =
k+1∏
i=1

D∏
j=1

θ
mij

ij (2.6.8)

where θij is the probability of generating character j in segment i and mij is the

number of times character j appears in segment i.

Let φ be the probability that any particular sequence position (except the first position)

start a new segment. Thus the probability of generating a new segmentation with

total k change-points at positions A = (A1, A2, ..., Ak) is given by the joint probability

of k and A conditional on φ:

p(k,A|φ) = φk(1− φ)(L−1−k) (2.6.9)

where L is the length of S.

We can write,

p(k,A,Θ) = p(k,A)
k+1∏
i=1

p(Θi) (2.6.10)

with p(Θi) a Dirichlet distribution with parameter vector α = (α1, ..., αD) as p(k,A)

assumed to be independent of p(Θ).

Further, a beta prior B(a, b) is adopted for φ and the non standard prior density:

p(α1, ..., αD) ∝
[

Γ(
∑

j αj)∏
j Γ(αj)

]c−1

e−d
∑

j αj is adopted to α.

Most of the inferences are performed using a = b = 0.001 and c = d = 0.

Using the Bayes’ rule the posterior distribution is given by:

p(k,A,Θ, φ, α|S) ∝ p(φ)p(k,A|φ)p(α)
k+1∏
i=1

p(Θi|α)p(S|k,A,Θ) (2.6.11)
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Sampling

The posterior distribution p(k,A,Θ, α|S) can be sampled using the GGS. The first

step is to define a set of move types, analogous to the coordinate updates of the

conventional Gibbs sampler.

• Insertion move (i, I): Decides whether to reselect the current segmentation Θi

or to insert a new change point in segment i and new values are selected for Θi

and Θi+1.

• Deletion move (i,D): Decides whether to delete the change point i and new

value is selected for Θi or to slide the change point i to the new position x.

• Conventional Gibbs updates are done for each of the parameters α1, ..., αD.

• An additional Gibbs update for the sum β =
∑

j αj while holding the proportions

γj = αj/
∑

j αj constant, to improve the convergence and mixing times of the

Markov chain.

The total number of move types available, N(k) = 2k + D + 2 can be obtained by

adding up, k + 1 - I moves, k - D moves and D + 1 hyper parameter updates. The

algorithm cycles through these moves in the order shown in Figure 2.7 below with D+1

hyper parameter updates performed after the last insertion move of each iteration and

before the first insertion move of the next iteration.

Figure 2.7: Order of move types for the sampler. source [27].
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Insertion Step:(i, I)

If a decision is made not to insert a change-point, Θi updated from the Dirichlet

distribution with parameter vector (mi1 + α1, ...,miD + αD). Therefore the probability

of not inserting a change-point is proportional to:

w− =
Γ(k + a)Γ(L− 1− k + b)

∏
j Γ(mij + αj)

Γ(L− 1 + a+ b)Γ
(∑

j(mij + αj)
) 1

N(k)

If a decision is made to insert a change-point at some position in segment i, Θi and Θi+1

are sampled from Dirichlet distributions with parameter vectors (m1
i1+α1, ...,m

1
iD+αD)

and (m1
(i+1)1 +α1, ...,m

1
(i+1)D +αD) respectively. Therefore the probability of inserting

a change-point at any given position x in segment i is proportional to:

wx =
Γ(k + 1 + a)Γ(L− 2− k + b)

∏
j Γ(m1

ij + αj)Γ(m1
(i+1)j + αj)

Γ(L− 1 + a+ b)Γ
(∑

j(m
1
ij + αj)

)
Γ
(∑

j(m
1
(i+1)j + αj)

) 1

N(k + 1)

where (k+ 1, A1) is the new segmentation and m1
ij and m1

(i+1)j are the number of times

character j appears in the segments left and right to the x.

Deletion Step:(i,D)

If a decision is made to delete the change-point i, the probability is proportional to:

w− =
Γ(k − 1 + a)Γ(L− k + b)

∏
j Γ(mij + αj)

Γ(L− 1 + a+ b)Γ
(∑

j(mij + αj)
) 1

N(k − 1)

where mij is the number of times character j appears in segment i after deleting the

change-point.
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If a decision is made to move the change-point i to the new position x, the probability

of sliding the change-point is proportional to:

wx =
Γ(k + a)Γ(L− 1− k + b)

∏
j Γ(m1

ij + αj)Γ(m1
(i+1)j + αj)

Γ(L− 1 + a+ b)Γ
(∑

j(m
1
ij + αj)

)
Γ
(∑

j(m
1
(i+1)j + αj)

) 1

N(k)

where m1
ij and m1

(i+1)j are number of times character j appears in the segments to the

left and right of the change-point if it is moved to the new position x.

Hyper-parameter Updates

The new value of αj is selected from the non-standard distribution proportional to:

[
Γ(
∑

j αj)∏
j Γ(αj)

]k+c

(e−d
∏
j

θij)
αj

αj is sampled using the adaptive rejection sampling technique.

Similarly the new value of β =
∑

j αj is sampled from

[
Γ(β)∏
j Γ(γjβ)

]k+c(
e−d
∏
j

(∏
i

θij

)γj)β

using adaptive rejection sampling. These update formulae are obtained using s(u, v) = 1

as the conventional Gibbs sampler.

Additional Move Types

Two additional move types were added to further enhance convergence and mixing

properties of the chain.

Updating Θi

Updating Θi for each segment was done using conventional Gibbs updates. This was

performed after each successful deletion or failed insertion move involving segment i.
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Sliding Move

This was involved sliding change-point i+ 1 to a new position between change-point i

and i+ 2, with probability proportional to wx of choosing position x, then updating

Θi and Θi+1. Such moves are also conventional Gibbs updates, and were performed

after each failed deletion or successful insertion move involving change-point i+ 1.

These 2 additional move types add an additional 2k + 1 moves for a segmentation

with k change-points, and now N(k) = 2(2k + 1) +D + 1.
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Genomes are composed of a wide variety of elements with distinct roles and characteristics. Some of these
elements are well-characterised functional components such as protein-coding exons. Other elements play
regulatory or structural roles, encode functional non-protein-coding RNAs, or perform some other function yet
to be characterised. Still others may have no functional importance, though they may nevertheless be of interest
to biologists. One technique for investigating the composition of genomes is to segment sequences into compo-
sitionally homogenous blocks. This technique, known as ‘sequence segmentation’ or ‘change-point analysis’, is
used to identify patterns of variation across genomes such as GC-rich and GC-poor regions, coding and non-
coding regions, slowly evolving and rapidly evolving regions and many other types of variation. In this mini-
reviewwe outline many of the genome segmentation methods currently available and then focus on a Bayesian
DNA segmentation algorithm, with examples of its various applications.

© 2014 Algama and Keith.
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pre-requisite to a full understanding of the connections between
genomes and phenotypes. Yet the annotation of complex eukaryotic
genomes is still far from complete. Even the proportion of the genome
that performs biological functions is still hotly debated, with estimates
varying from 5% [1] to 80% [2]. Whatever the true figure may be, it is
clear that a vast amount of the biology underlying the structure of
genomes remains to be discovered. Bioinformatics has an important
role to play in this endeavour, and one of its tasks is to identify segments
of the genome representing elements that require annotation.

2. Segmentation methods

Several techniques have been developed to analyse variation in
properties of interest across a genome and to provide clues to the nature
of its components. In this article we review some of the most widely
used segmentation methods and discuss the main ideas behind each
technique.

2.1. Sliding window analysis

Although not technically a segmentation method, ‘sliding window
analysis’ is the most commonly used way to profile variation in a prop-
erty of interest across a genome. This technique involves averaging the
property of interest over a sliding window of a predetermined length
along the sequence. For example if the window size is 10, the first
point is obtained by averaging the property of interest over nucleotides
1–10, the second point is the average over nucleotides 2–11, and so on.
Determining the window size can be crucial: a smaller window allows
for a more precise localisation of changes, however this can increase
the noise. Tajima in 1991 has proposed an algorithm to determine
window size [3]. The main drawback of the sliding window analysis is
that it does not identify boundaries where statistically significant
changes to the property in question occur. To avoid some of the disad-
vantages of the sliding window approach, a windowless technique
based on the Z curve was introduced to analyse GC content of genomic
sequences [4]. This method enables calculation of GC content at any
resolution, even at a base position. Some applications of the sliding
window analysis can be found in papers [5–16].

2.2. Hidden Markov models

More precise segmentation methods have been developed to
identify homogenous segments aswell as the locations (change-points)
at which sharp changes in a particular property of interest occurs.
Hidden Markov models (HMMs) are one approach capable of inferring
segment boundaries. TheHMMmethodology iswell-established, dating
from the 1950s [17]. In these models, the observed sequence is consid-
ered to be composed of segments, with the sequence of each segment
generated by a Markov process. The transition probabilities for each
segment are determined by a hidden state, and transitions between
hidden states occur at segment boundaries. The sequence of hidden
states is also modelled as a Markov process. A key parameter of an
HMM is the order of the Markov chain, that is, the number of preceding
sequence positions required to condition the transition probabilities of
the observed sequence. This is unknown a priori, and usually needs to
be specified, although some approaches are able to infer the order, or
determine it adaptively.

HMMs were first used in biological sequence analysis by Churchill
[18,19]. The parameters of the model, including segment boundaries,
were estimated by using the maximum likelihood method based on
the expectation–maximisation (EM) algorithm [20]. HMMs have since
been widely used for sequence analysis problems in bioinformatics,
and an extensive literature now exists. Two important developments
were the 1998 GeneMark.hmm algorithm which used an HMM to find
exact gene boundaries [21] and an HMM developed by Peshkin and
Gelfand in 1999 to segment yeast DNA sequences [22]. Some other

important examples are included in [23–29]. The Sarment package of
Python modules built by Gueguen for easy building and manipulation
of sequence segmentations uses both sliding window and HMM
methods [30].

HMMmodels have also been implemented from a Bayesian perspec-
tive. One advantage of adopting a Bayesian approach is that it provides
quantification of the uncertainties in parameter estimates in the form of
probability distributions. In fact, one can dispense with point estimates
of parameters altogether, instead reporting marginal distributions for
key parameters, such as the locations of change-points. Boys et al. in
2000 presented a Bayesian method of segmentation using HMMs
when the number of segments is known [31] and later generalised
this method for an unknown number of segments [32]. In 2006, the
segmentation method developed by Kedzierska and Husmeier was a
combination of the sliding window analysis and the Bayesian HMM
[33]. Nur and co-workers in 2009 performed sensitivity analysis on
priors used in the Bayesian HMM to show the impact of prior choice
on posterior inference [34]. One challenge for Bayesian HMM
approaches is that they are computationally intensive and are typically
infeasible for segmenting large-scale sequences, without simplifying
heuristics.

2.3. Multiple change-point analysis

This approach arose independently of HMMs, and has an exten-
sive literature dating back to the 1970s [35,36]. Change-point analy-
sis differs from HMMs in that it typically assumes no Markov
dependence in either the observed sequence or the underlying se-
quence of hidden states. In this sense change-pointmodels are simpler
than HMMs, and have fewer parameters. However, the two types of
analysis are clearly related, and it may be useful to think of change-
point models as zeroth order HMMs. A key advantage of change-point
models, due to their simplicity, is their reduced computational burden,
a pointwhich is of particular relevancewhen implementing themwith-
in a Bayesian framework.

The use of multiple change-point models in bioinformatics was
pioneered by Liu and Lawrence in 1999, using a Bayesian framework
[37]. In 2000, Ramensky et al. developed a similar method which uses
a Bayesian estimator tomeasure the degree of homogeneity in segmen-
tation [38]. In this method, optimal segmentation is obtained by
maximising the likelihood function using the dynamic programming
technique presented in [39]. After completion, the partition function
approach is used to obtain segmentation with longer segments by
filtering the boundaries. In contrast to the approach of Liu and
Lawrence, this method does not use probability distributions for
segment boundaries and does not use sampling. A related method is
presented in [40], which uses reversible jump Markov chain Monte
Carlo (RJMCMC) sampling method to estimate posterior probabilities
[41]. In contrast to Liu and Lawrence, they have used Poisson intensity
models as the underlying model (as opposed to multinomial
likelihood). The method has been tested by applying to modelling the
occurrence of ORFs along the human genome. Another Bayesian
model can be found in [42].

Themethod onwhichwe focus in themain part of this article [43,44]
is also of this type. The method can be described as a segmentation–
classificationmodel as it not only detects change-points but also groups
segments based on their sequence characteristics. The group to which a
segment belongs is essentially a hidden state, in the terminology of
HMMs, and the classification is unsupervised, in the terminology of
machine learning. There are two main innovations in this method. The
first is that the character frequencies (emission probabilities) for a
given segment are not constant for all segments in a group. Instead,
the character frequencies are drawn from a Dirichlet distribution
specific to the group to which that segment belongs, and it is the pa-
rameters of this distribution that characterise the group. There is
thus an additional layer to this hierarchical model, and this layer is
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another characteristic distinguishing the model from HMMs.
Allowing variation in the character frequencies for segments in a
group means that this model can be used to dissect multi-modal dis-
tributions of properties of interest, a central feature in recent appli-
cations [45,46]. The second innovation in this method is the use of
the Generalised Gibbs Sampler (GGS) [47], a new technique in Mar-
kov chain Monte Carlo simulation. The GGS provides highly efficient
sampling from a varying dimensional space (important here as the
number of change points is variable).

2.4. Recursive segmentation method

The recursive segmentation method finds segment boundaries that
maximise the difference in base compositions between adjacent
segments with respect to some predefined compositional measure
(Jensen–Shannon divergence — DJS). The process is repeated until
further segmentation of sequence segments produces no statistically
significant improvements. The recursive segmentation method has
been widely applied to segmentation problems such as isochore detec-
tion or detection of CpG islands [48–52]. More recent applications
include locating borders between coding and non-coding regions of
bacteria genomes [53] and in developing IsoPlotter: a tool for studying
the compositional architecture of genomes [54].

The recursive segmentation method presented in [55] is significant
in that it does not require specification of the number of segment classes
(something most of the other methods require). This method has been
successfully used to identify alien DNAs in bacterial genomes, detect
structural variants in cancer cell lines and perform alignment-free
genome comparisons.

2.5. Other segmentation methods

Methods based on least squares estimation [56] andwavelet analysis
[57] have also been used. Sequential importance sampling (SIS) [58],
the cross-entropymethod [59] and the Bayesian adaptive independence
sampler [60] have also been used to find segment boundaries and
parameters of the process in each segment.

Olshen et al. developed the circular binary segmentation method
(CBS) in 2004 for the analysis of array-based comparative genomic
hybridisation (array-CGH) data [61]. CGH (comparative genomic
hybridization) is a technique for measuring DNA copy numbers at
thousands of locations on a genome. The modification of conventional
CGH to obtain high resolution data is called array-CGH. The variation
in DNA copy number is often used to identify cancer progression. The
CBS algorithm divides the genome into regions of equal DNA copy
number and identifies the genomic locations of copynumber transitions
(change-points). In 2007, changes were made to the original CBS
algorithm to enhance the speed by introducing, (1) a hybrid approach
for the computation of the p-value and (2) a stopping rule for early
identification of change-points [62].

In 1996, Tibshirani proposed a new method called ‘lasso’ (least
absolute shrinkage and selection operator) for estimation in regression
models, which involves constraining the sum of the absolute values of
the regression coefficients [63]. This produces some coefficients that
are exactly zero and hence gives interpretable models. In 2006 ‘fused
lasso’ — a generalisation of ‘lasso’ —was introduced to handle problems
with features that can be ordered in some meaningful way [64]. The
fused lasso penalises the sum of the absolute values of the coefficients
and their successive differences. The method was applied along with
the CBS method to estimate the copy number alterations in breast
tumour data (CGH data of breast cancer cell line MDA157) [65]. CBS
had difficulties in detecting change points whose alteration signals are
weak (chromosome 7 and 15 of the selected cell line), but the fused
lasso successfully recognised various copy number alterations. Besides
identifying gains and losses in CGH data, the fused lasso can also be

generalised to other analysis; for example, understanding the interac-
tions between copy number alternations and mRNA expression levels.

Determining the number of change-points is an important aspect of
change-point analysis. In 2007, Zhang et al. proposed the modified
Bayes Information Criterion (BIC) as a model selection procedure for
array-CGHdata analysis [66]. The first termof themodified BIC is similar
to the classic BIC (consisting of the log likelihood), but it differs in the
terms that penalise for model dimension. One of the advantages of
using the modified BIC is that it does not require a specific prior or
tuning parameters, but it can only be applied to normally distributed,
uncorrelated and homoscedastic data. However the modified BIC is
not limited to the analysis of array-CGH data. Some other methods
that adaptively determine the number of change-points can be found
in [41,46,67].

The multi-scale segmentation method developed by Futschik and
co-workers also estimates the number of segments and their bound-
aries simultaneously [68]. One advantage of this method is that it does
not require distributional assumptions regarding the lengths of
segments. Another feature is that this method is able to choose an
appropriate number of segments with user specified probability 1 − α.

Many early statistical segmentationmethods were reviewed in [69].
Elhaik et al. reviewed the performance of seven recent algorithms by
segmenting human chromosome 1 based on variability of GC content
[70].

3. Changept analysis

In the remainder of this mini-review, we focus on the changept
program developed by Keith et al. [43,44]. This is a Bayesian multiple
change-point algorithm capable of simultaneously segmenting a
genomic alignment and classifying segments into one of a predefined
number of segment classes. Segments can be classified according to
multiple properties including level of evolutionary conservation
between species, GC content and transition/transversion ratio. Pro-
gram readcp is a part of the changept package that takes the outputs
produced by changept and estimates, for each genomic position, the
probability that genomic position belongs to each segment class.
The package uses a highly efficient sampling technique known as
the Generalised Gibbs Sampler [47] resulting in a highly efficient al-
gorithm that enables chromosome or even genome-wide analysis.
The algorithm can be used to segment a genomic alignment based
on a single property of interest or multiple properties. There is no
limit on number of aligned species.

4. Method

4.1. Transforming alignment

4.1.1. Segmentation based on a single property of interest (e.g.: conservation
level)

Supposewewant to segment a pairwise alignment of size L based on
the degree of conservation between two species. The first step is to
convert the alignment into a binary sequence by replacing the
alignment columns in which two DNA sequences match with a ‘1’ and
replacing columns inwhich theymismatchwith a ‘0’. The gaps between
alignment blocks are marked by a ‘#’ symbol and these are considered
as fixed change-points by the model. The indels (alignment gaps) in
the reference species are not encoded while indels in other species are
encoded using letter ‘I’ which will be excluded from the final analysis
of the sequence. The binary sequence generated in this way is used as
the input for the program changept.

4.1.2. Segmentation based on multiple properties (e.g.: conservation level,
GC content and transition/transversion ratio)

In segmenting apairwise alignment based onmore than oneproperty
of interest, one possibility is to use a 16-character representation

109M. Algama, J.M. Keith / Computational and Structural Biotechnology Journal 10 (2014) 107–115

64



(A = (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) to encode the alignment
(Table 1).

In the case of a 3-way alignment, a 32-character representation (A=
(a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v,w, x, y, z, U, V,W, X, Y, Z) is
used to transform the alignment into the changept input sequence.
Table 2 depicts the possible encoding. Indel positions in Species 2 and
Species 3 are encoded using letter ‘I’ which will be excluded from the
final analysis.

In the 3-way alignment, alignment columns with complementary
bases were encoded using the same characters.

For example:

Species 1 ‘A’, Species 2 ‘A’, Species 3 ‘A’= Species 1 ‘T’, Species 2 ‘T’,
Species 3 ‘T’ = ‘a’
Species 1 ‘A’, Species 2 ‘A’, Species 3 ‘C’= Species 1 ‘T’, Species 2 ‘T’,
Species 3 ‘G’ = ‘b’.

In the 16-character representation, the symbols ‘a’, ‘f’, ‘k’ and ‘p’
represent the conserved bases in the alignment. Similar information is
represented by symbols ‘a’ and ‘v’ in the 32-character representation.
Both input sequences also contain other biologically significant infor-
mation such as GC content in species and transition/transversion ratio.
For example in the 16-character representation, symbols from ‘e’ to ‘l’
correspond to ‘C’ or ‘G’ content in Species 1 and similar information
is represented by symbols from ‘q’ to ‘Z’ in the 32-character
representation.

In the case of more than 3 aligned species, we have proposed two
methods that can be used to transform an alignment. The first method
is known as ‘maximum frequency transformation’ in which a score
is assigned for each alignment column equivalent to the maximum
number of nucleotides that are identical. The second method uses
Fitch's algorithm [71] to compute Parsimony score — the smallest
number of mutations along the evolutionary tree. See [45] which uses
both methods in transforming a 4-way alignment into the changept
input sequence.

4.2. Modelling

The complete model is presented in [43,44]. Here we only present
the main idea behind the model.

The process of Bayesian modelling consists of 3 main steps [72]:
(1) set up a joint probability distribution for all the variables in a prob-
lem; (2) calculate posterior distribution — the conditional probability
distribution of the unobserved parameters of interest, given the
observed data; (3) evaluate the model. Step (1) starts with writing
down the likelihood function of the model, i.e. probability of the
observed quantities given unknown parameters. This describes the
stochastic process bywhich sequences are generated, and consequently
it quantifies the probability of generating the observed sequence for any
given parameter values.

In writing down the likelihood function of ourmodel, we denote the
probability of starting a new segment by ϕ, the number of fixed change-

points by k′ and the total number of change-points (including fixed
change-points) by k. The positions of change-points are denoted by
C = (c1, c2, …, ck). We set c0 = 1. For each position in the sequence,
except for the first position and those immediately following a fixed
change-point (marked by ‘#’s), a decision has to be made whether to
start a new segment. Thus the probability of generating a segmentation
with k change-points at C = (c1, c2, …, ck) positions is given by:

p k; Cjϕð Þ ¼ ϕk−k0 1−ϕð ÞL−1−k

where L is the length of the sequence S.
Each segment is then assigned to one of ω conservation classes. Let

πt denotes the probability of assigning a segment to class t. We denote
the class to which segment i is assigned by gi ∈ {0, 1, …, ω − 1} and
let g = (g0, g1, …, gk). The probability that x0 segments are assigned to
class 0, x1 segments are assigned to class 1, …, xω − 1 segments are
assigned to class ω − 1 is:

p gjk;πð Þ ¼ π x0
0 � π x1

1 �… …:� πxω−1
ω−1 ¼ ∏

k

i¼0
πgi

:

In the case of the binary representation of the sequence S, let θi
represent the probability of generating a ‘1’ in each position of segment
i in class t. Each θi is independently drawn from the following beta
distribution with unknown parameters α0

(t) and α1
(t).

p θijα tð Þ
0 ;α tð Þ

1

� �
¼

Γ α tð Þ
0 þ α tð Þ

1

� �

Γ α tð Þ
0

� �
Γ α tð Þ

1

� � θ
α tð Þ
1 −1

i 1−θið Þα
tð Þ
0 −1

:

Here θ = (θ0, θ1, …, θk), α(t) = (α0
(t), α1

(t)) and α = (α(0), α(1), …,
α(ω − 1)).

This can be generalised when S represents the alignment formed
using a finite alphabet {1, …, D} (D-character representation). Let θij
represent the probability of generating character j in segment i =
0, …, k. We denote Θi = (θi1, …, θiD). Then for each segment i in class

Table 1
16-character representation used to encode a pairwise alignment.

Species 1 A A A A C C C C G G G G T T T T
Species 2 A C G T A C G T A C G T A C G T
Symbol a b c d e f g h i j k l m n o p

Table 2
32-character representation used to encode a 3-way alignment.

Species 1 A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C
Species 2 A A A A C C C C G G G G T T T T A A A A C C C C G G G G T T T T
Species 3 A C G T A C G T A C G T A C G T A C G T A C G T A C G T A C G T
Symbol a b c d e f g h i j k l m n o p q r s t u v w x y z U V W X Y Z

Fig. 1. Parameters of the changept model and their conditional dependencies. The
parameter at the headof the arrow is conditionally dependent on the parameter at the tail.

110 M. Algama, J.M. Keith / Computational and Structural Biotechnology Journal 10 (2014) 107–115

65



gi,Θis are drawn from a Dirichlet distribution p(Θi|α, gi) with parameter
vector α = (α1

(t), …, αD
(t)) for each class.

The binary sequence within each segment i is generated by
independent Bernoulli trials at each position in the segment. Thus the
probability that segment i contains specific sequence Si including mi

number of ‘0’s and ni number of ‘1’s is given by:

p SijLi; θið Þ ¼ θnii 1−θið Þmi

where Li = ci + 1 − ci is the length of segment i.
In using the D-character representation, we assume that within

each segment, the sequence is generated by independent trials with D
possible outcomes. Let mij be the number of times character j appears
in segment i. Thus the likelihood of an observed DNA sequence can be
written as:

p Sjk;C;Θð Þ ¼ ∏
k

i¼0
∏
D

j¼1
Θ
mij

ij :

The final sequence is obtained by concatenating sequences S0,…., Sk.
Therefore the joint distribution of parameters k, c, g, θ and S is given

by:

k; c; g; θ; Sjϕ;π;αð Þ ¼ p k; cjϕð Þ p gjk;πð Þ∏
k

i¼o
B θijα gið Þ
� �

p SijLi; θið Þ:

The prior probabilities assigned to parametersϕ, π andα are given in
[44]. Using Bayes theorem, integrating over ϕ and θ, and summing over
g, the following posterior distribution is obtained:

p k; c;π;αjSð Þ ¼ Γ L−kð ÞΓ k−k0 þ 1
� �

∏
k

i¼0
f mi;nijπ;αð Þ

where

f m;njπ;αð Þ ¼
X
t

πt

Γ α tð Þ
0 þ α tð Þ

1

� �

Γ α tð Þ
0

� �
Γ α tð Þ

1

� �
Γ mþ α tð Þ

0

� �
Γ nþ α tð Þ

1

� �

Γ mþ α tð Þ
0 þ nþ α tð Þ

1

� � :

Fig. 2. The changeptworkflow. Thisfigure illustrates the sequence of steps generally followed in analysing a set of DNA sequences by using the program changept. In step 3, T represents the
number of segment classes specified by the user.

Table 3
8-character representation used to encode a pairwise alignment.

Species 1 A T A T A T A T C G C G C G C G
Species 2 A T C G G C T A A T C G G C T A
Symbol a a b b c c d d e e f f g g h h
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In the case of the D-character representation, the posterior distribu-
tion is given by:

p k;C;Θ;ϕ;α; g;πjSð Þ∝p ϕð Þp k;Cjϕð Þp αð Þp πð Þ p gjk;πð Þ∏
kþ1

i¼1
p Θijα; gið Þp Sjk;C;Θð Þ:

Here p(ϕ), p(α) and p(π) denote the prior probabilities assigned
to parameters ϕ, α and π [43]. In simplifying further, it is possible to
integrate the above equation over ϕ and Θ and to take sum over g to
obtain the posterior distribution of p(k, C, α, π|S).

Fig. 1 shows the parameter dependencies of the model.

4.3. Sampling

The posterior distribution is sampled using the Generalised Gibbs
Sampler (GGS), a Markov chain Monte Carlo technique [47]. Unlike
the conventional Gibbs sampler, the GGS takes into account the fact
that the number of change-points is varying and thus provides an
alternative to the reversible-jump sampler [41]. It cycles through each
segment and either inserts a change-point, deletes a change-point or
updates the change-point positions. These different types of updates

are referred as ‘move-types’ which are analogous to the coordinate
updates of the conventional Gibbs sampler.

Once the alignment is transformed into the changept input sequence,
it is then run through the program changept (source code is available
upon request) to produce a user specified number of samples.

The next step of changept analysis is to check if convergence to the
limiting distribution has occurred. This is most commonly assessed by
inspecting a time-series plot of the log-likelihood against the sample
number. The same plot is used to decide the length of the ‘burn-in’
period. Changept currently requires the user to specify the number of
segment classes (T). Selecting the model with the most appropriate
number of classes can be done by using either of the followingmethods:
(1) investigating AIC, BIC and DICV plots [67]; and (2) investigating the
stability of each segment class [46]. The final model is then run through
the program readcp to calculate profile values. The profile shows
the probability that each position in the input sequence belongs to
one of the segment classes in the selected model. These posterior
probabilities are estimated using Monte Carlo integration. These out-
puts (a profile file for each segment class in the final model) are used
to generate WIG/BED files that can be uploaded to a genome browser
(e.g. http://genome.ucsc.edu/) for viewing gene-related information.

This workflow is illustrated in Fig. 2 and a full description of how to
use changept and readcp can be found in [73].

4.4. Applications of changept

In this section we discuss several applications of program changept.
These can be categorised into sub-headings:

• Investigate segmentation patterns of genomic regions
• Identify alternatively spliced exons
• Identify putative transcription factor binding sites (TFBS)
• Identify putative non-coding RNAs
• Identify rapidly evolving genomic regions.

In each sub-heading we provide examples to illustrate the perfor-
mance of the program changept.

4.4.1. Investigate segmentation patterns of genomic regions
This section summarises the results of [46]. The program changept

was applied to three possible pairwise alignments of 3′UTR among
three closely related Drosophila species: Drosophila melanogaster,
Drosophila simulans and Drosophila yakuba. We also segmented three
randomly selected portions of the alignment of D. melanogaster to
D. simulans protein-coding sequences of the same length as the 3′UTR
alignment of that pair. This was required as the number of segment
classes detectable is sensitive to the length of the changept input
sequence. These alignments were obtained from http://genomics.
princeton.edu/AndolfattoLab/Andolfatto_Lab.html. Each pairwise align-
ment is encoded using an 8-character representation (Table 3) that

Fig. 3. GC content versus conservation level for selected models. GC content (in the first
named species of each pair) versus the proportion of alignment matches, for each model
is shown. The different colours represent different classes, and each class is plotted for
the post burn-in samples; A) 15-class model for the D. melanogaster versus D. simulans
3′UTR alignment, B) 12-class model for the D. melanogaster versusD. simulans first coding
sequence (coding 1) alignment, C) 16-classmodel for theD.melanogaster versusD. yakuba
3′UTR alignment and D) 15-class model for the D. simulans versus D. yakuba 3′UTR
alignment.

Table 4
Segmentation characteristics of two genomic regions.

Alignment Component Model No. of alignment
columns

No. of fixed
change-points

Posterior average no.
of change-points

Posterior average
length of segments

Dmea vs Dsib 3′UTR 15 2,678,635 9112 50,001 54
Dme vs Dyac 3′UTR 16 2,486,711 8622 53,051 47
Dsi vs Dya 3′UTR 15 2,481,568 8607 51,547 48
Dme vs Dsi Coding 1d 12 2,680,987 6760 11,086 242
Dme vs Dsi Coding 2d 12 2,681,121 6626 10,190 263
Dme vs Dsi Coding 3d 14 2,681,284 6463 9982 268

a Dme: D. melanogaster.
b Dsi: D. simulans.
c Dya: D. yakuba.
d Coding 1, 2, 3: three different randomly selected protein-coding sequences.
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captures degree of conservation between two species, GC content and
transition/transversion ratio.

In order to select the optimal number of segment classes for each
alignment, we performed separate segmentation analysis usingmodels
with 1–20 segment classes (T = 1,.., 20). After assessing stability of
segment classes in each model of 3'UTRs, we selected the 15-class
model for the D. melanogaster versus D. simulans alignment, the
16-class model for the D. melanogaster versus D. yakuba alignment and
the 15-class model for the D. simulans versus D. yakuba alignment.
Further we selected the 12-class model for the D. melanogaster versus
D. simulans two protein-coding sequences (coding 1 and coding 2)
and the 14-classmodel for the third protein-coding sequence (coding 3).

The figure (Fig. 3) shows the segmentation patterns of each of the
alignments based on the conservation levels between two species and
the GC content of the first species in each pair. It can be seen that seg-
ment classes identified in D. melanogaster versus D.yakuba (Fig. 3C)
and D. simulans versus D. yakuba (Fig. 3D) 3'UTR alignments have very
similar characteristics. Although classes detected in the 3′UTR align-
ment of D. melanogaster versus D. simulans (Fig. 3A) show a similar pat-
tern, corresponding classes appear to be compressed towards the right
of the figure (i.e. higher conservation levels). This must be due to the
shorter evolutionary distance between D. melanogaster and
D. simulans. By contrast, the classes shown in Fig. 3B, representing the
first coding sequence alignment of D. melanogaster versus D. simulans,
exhibit a pattern distinct from the other three, making it difficult to
identify class correspondences.

Table 4 summarises further evidence of distinct segmentation
patterns of two genomic regions; 3′UTR and protein-coding.

According to these segmentation results (Table 4) it is clear that a
greater number of segment classes is identified in Drosophila 3′UTR
components compared to protein-coding regions. The number of
change-points estimated in 3′ UTRs is nearly five times that estimated
for coding sequence, and consequently the average segment length in

3′UTRs is about one fifth of that in the coding sequence. This evidence
suggests that Drosophila 3′UTRs contain more numerous sub-units
than protein-coding sequences.

4.4.2. Identify alternatively spliced exons
This example was extracted from work presented by Boyd SE and

co-workers in segmenting a 3-way alignment (human, mouse and rat
DNA sequences) of the GFAP gene [74].

Fig. 4 shows a section of theWIG file (uploaded to the UCSC genome
browser) of the segment class that corresponds to regions of high con-
servation among human, mouse and rat of the GFAP gene. In general,
the start and end points of the conserved features occur at or very
close to the boundaries of the exons (e.g. exon 6 in right of the screen).
In the case of exons 7 and 7a (as labelled), the conserved features do not
terminate immediately after the end of the annotated exon boundaries.
The conserved feature corresponding to exon 7 extends for 30 nucleo-
tides into intron 7 and the feature corresponding to exon 7a begins 50
nucleotides upstream of the start of exon 7a.

To find the possible novel splicing sites associated with exon 7a,
the human DNA sequence of the extended region has been submitted
to the Human Splicing Finder server (http://www.umd.be/HSF/HSF.
html). The HSF predicts a potential acceptor splice site located 40 nt
upstreamof the conserved region (markedbyHSF2 in Fig. 4), supporting
the hypothesis of a new splice variant of the GFAP gene.

4.4.3. Predict transcription factor binding sites (TFBS)
Identifying putative TFBS is yet another interesting application of the

program changept. To test this, we selected the pairwise alignment
(human versus mouse) of the SHH genewhich contains experimentally
identified regulatory elements within the upstream regulatory region
[75]. We used LAGAN (http://lagan.stanford.edu/lagan_web/index.
shtml) [76] to align the two DNA sequences. The alignment was
encoded using the 16-character representation. Based on the

Fig. 4. Conserved features across exon 6/7/7a of GFAP. This profile corresponds to themost conserved segment class of the 4-class model. The profile value shows the probability that the
base at each position of the GFAP gene belongs to the most conserved class. Exons (wide bars), UTRs (narrow bars) and introns (arrowed lines) are shown for three genes in the UCSC
collection and one in RefSeq. HSF1 and HSF2 mark the actual and possible acceptor sites identified by Human Splice Finder (scores 93.19 and 76.63 respectively).

Fig. 5.WIGprofiles of the twomost conserved segment classes of the SHH gene. Thefigure shows the profiles (uploaded to UCSC genome browser) of the twomost conserved classes (90%
and 85% conservation levels), as identified by the program changept applied to the 2-way alignment of human and mouse DNA sequences. The two rows below the 2nd most conserved
class profile display the exons (wide bars), the UTRs (narrow bars) and the introns (thin lines) of the SHH gene recorded in the UCSC and RefSeq collections respectively. The grey vertical
lines with value −1 represent the gaps (insertions and deletions) in the original alignment as assigned by program readcp.
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investigation of DICV values, the 6-class model was selected for human
andmouse 2-way alignment. Interestingly, for SHH, the positions of an-
notated exons were not identified as belonging to the most conserved
segment class (90% conservation), rather theywere identified to belong
to the second most conserved class (85% conservation). Fig. 5 depicts
the WIG profiles of these two most conserved segment classes.

Features A and B (Fig. 6) are regions identified as belonging to the
most conserved class. These regions have been experimentally identi-
fied as regulatory elements [75].

This result confirms that regions predicted by changept (features A
and B) are in appropriate locations for transcription factor binding.
We are currently investigating the potential of changept for genome-
wide detection of TFBS.

4.4.4. Identify putative non-coding RNAs
Non-coding RNA (ncRNA) is an RNA molecule that is not translated

into a protein. It has been estimated that 98% of human genomic output
is ncRNAs, however what proportion of ncRNAs are functional and the
functions ofmanyncRNAs remain unknown [77]. The program changept
can beused to identify highly conserved non-coding regions in genomes
that are likely to be functional. To provide an example, we can use the
WIG profiles of the two most conserved segment classes of SHH gene
(Fig. 5). The top profile shows features that are even more conserved
than the annotated protein-coding regions. Further, changept has pre-
dicted conserved features in the 2nd most conserved class that are
equally conserved as exons. These highly conserved elements could
contain either ncRNAs or regulatory sequences. In a recent project, we
are working with biologists to investigate these and other putative
ncRNAs identified using changept in a number of genomes.

4.4.5. Identify rapidly evolving genomic regions
The work presented in [44] provides an example for this changept

application. To summarise the main findings, program changept has
been applied on three whole-genome and three partial-genome
pairwise alignments of eight Drosophila species. Three main classes of
conservation level have been identified, comprising slowly evolving,
rapidly evolving and intermediate segments. In a recent project, we
are applying changept to three malaria species to identify genomic
regions likely to be involved in the ability of the malaria parasite to
infect their host species.

5. Summary

In this mini-review, we discussed various algorithms that can be
used to segment genomic sequences.We also outlined themathematics
and methods of program changept, a Bayesian segmentation algorithm
that is capable of segmenting an alignmentwhile simultaneously classi-
fying segments into different segment classes that share similar proper-
ties. We have demonstrated the effectiveness of this method through
examples. The program changept can be used to identify putative func-
tional elements in genomes such as non-coding RNAs, alternatively
spliced exons and transcription factor binding sites. Other applications

of program changept include identifying rapidly evolving genomic
regions and inferring various segmentation patterns in genomic
regions.
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Reviewing an additional approach not mentioned in the published paper in 

Literature review – part 2  

 

ChromHMM  

ChromHMM developed based on Multivariate Hidden Markov Models (HMMs) provides a 

potential alternative approach to changept - that it is also designed to handle very long 

sequences. Multivariate HMMs are graphical probabilistic models that model multiple 

`observed' inputs as generated by unobserved `hidden' states, using transitions between 

hidden states to model spatial relationships [1]. High-dimensional multivariate datasets occur 

in a large number of problem domains. In many cases, these datasets have either a sequential 

or temporal structure [2]. To uncover which combinations of histone modifications are 

biologically meaningful, Ernst and Kellis [1] has developed an automated computational 

system - ChromHMM.  ChromHMM is useful for learning chromatin sites, characterizing 

their biological functions and correlations with large scale functional datasets and visualizing 

the resulting genome-wide maps of chromatin-state annotations.  
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Chapter 3

Drosophila 3′ UTRs Are More Complex

than Protein-Coding Sequences

Chapter Objectives

The overall objective of this thesis is to develop methods to identify non-protein

coding genomic regions contributing to diseases. This chapter describes two main

methodological developments of the changept model: (1) a new method to encode a

pair-wise and a 3-way alignment by integrating multiple data types (on conservation,

GC content, transition/transversion ratios) making it possible to clearly identify

functional signatures even between very closely related species; and (2) a new model

selection procedure making it possible to discover new motifs not identified by models

selected using DICV values. These methods were tested on a dataset corresponding to

3′ UTRs of three closely related Drosophila species to identify complex segmentation

patterns. This study also discovered a number of known and predicted miRNA targets

and other regulatory sequences in 3′ UTRs of Drosophila melanogaster.
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Abstract

The 39 UTRs of eukaryotic genes participate in a variety of post-transcriptional (and some transcriptional) regulatory
interactions. Some of these interactions are well characterised, but an undetermined number remain to be discovered.
While some regulatory sequences in 39 UTRs may be conserved over long evolutionary time scales, others may have only
ephemeral functional significance as regulatory profiles respond to changing selective pressures. Here we propose a
sensitive segmentation methodology for investigating patterns of composition and conservation in 39 UTRs based on
comparison of closely related species. We describe encodings of pairwise and three-way alignments integrating information
about conservation, GC content and transition/transversion ratios and apply the method to three closely related Drosophila
species: D. melanogaster, D. simulans and D. yakuba. Incorporating multiple data types greatly increased the number of
segment classes identified compared to similar methods based on conservation or GC content alone. We propose that the
number of segments and number of types of segment identified by the method can be used as proxies for functional
complexity. Our main finding is that the number of segments and segment classes identified in 39 UTRs is greater than in
the same length of protein-coding sequence, suggesting greater functional complexity in 39 UTRs. There is thus a need for
sustained and extensive efforts by bioinformaticians to delineate functional elements in this important genomic fraction. C
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Introduction

The fundamental role played by non-protein-coding functional

DNA and RNA in cellular processes is no longer contentious.

Various lines of evidence have contributed to recognition of its

importance. Ever since it became possible to compare two

mammalian genomes, it has been clear that far more is conserved

than just the protein-coding component [1]. In mammals,

unsurprisingly since the encoded proteome is relatively stable, it

has been determined that non-coding elements are the predom-

inant source of evolutionary innovation [2], much of which is due

to variation in the regulatory architecture [3]. In the human

genome, genetic association studies have identified numerous

disease-associated genetic variants in non-protein-coding regions

[4–6]. The ENCODE project, which aims to catalogue all

components of the human genome, has found evidence that at

least *80% of the human genome is functional, where a

functional element is defined as ‘‘a discrete genome segment that

encodes a defined product (for example, protein or non-coding

RNA) or displays a reproducible biochemical signature (for

example, protein binding, or a specific chromatin structure)’’ [7].

Moreover, the ENCODE study identifies that *60% of the

genome is included in at least one long (w200 bases) RNA

transcript. The ENCODE definition of function, and the 80%

estimate, have been sharply criticised [8,9] but this debate does not

obscure a broad consensus that the functional component of the

genome far exceeds the *1:2% that codes for proteins. It is also

becoming increasingly clear that genome-wide transcription is

regulated and profoundly complex [10].

The 39 UTRs of protein-coding genes are a likely source of as

yet uncharacterised functional non-protein-coding elements, be-

cause this genomic fraction is not only transcribed but also

associated with known functional elements (the corresponding

genes). There is growing awareness of the crucial importance of 39

UTRs in post-transcriptional regulation of protein expression (for

example [11]). Mutations in 39 UTRs have been shown to play a

crucial role in human health and disease, perhaps as much as that

of coding sequences [12]. Our own interest in 39 UTRs stems from

previous work in which we found that a highly conserved

component of Drosophila genomes was highly enriched in

fragments of sequence from 39 UTRs [13].

A recent review [14] catalogues a wide range of functional

elements in 39 UTRs. One motif found in 39 UTRs is the

polyadenylation signal with consensus sequence AAUAAA. This

signal occurs approximately 10–30 nucleotides upstream of the site

at which a pre-mRNA is cleaved prior to polyadenylation, and acts

as a protein binding site around which a complex multi-protein

assembly forms. A number of other motifs are also known to
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participate in the process of polyadenylation. More than half of

human genes contain alternative polyadenylation sites, resulting in

isoforms that differ only in the length of the 39 UTR. Individual

isoforms are also differentially expressed in different cell types and

developmental stages. This has important consequences for post-

transcriptional regulation, as isoforms with shorter 39 UTRs tend

to be more stable, partly because the shorter isoforms may exclude

binding sites for microRNAs. Such binding sites are another

common functional element in 39 UTRs, and in fact most miRNA

binding sites are located in 39 UTRs.

Other key regulatory sequences found in 39 UTRs include: AU-

rich elements and GU-rich elements, to which proteins involved in

mRNA degradation bind; a CU-rich element known as the

differentiation control element (DICE) to which proteins that

inhibit translation initiation bind; other CU-rich elements bound

by proteins including polypyrimidine-tract binding protein (PTB),

which modulates a variety of mRNA processes including splicing

and polyadenylation; CA-rich elements to which proteins that

stabilise mRNAs bind; and motifs that form stem-loop structures

recognised by specialised regulatory proteins. Repetitive motifs

within 39 UTRs have previously been demonstrated to direct the

cellular localisation of mRNA transcripts [15]. Andken et al. [15]

identify computationally a CAG repeated motif common to many

mammalian genes which localise to the dendrites of neurons, and

validate experimentally in two specific cases that the correct

localisation is dependent on the presence of this motif. Numerous

other functional binding sites in 39 UTRs are known. The

database UTRsite maintains a list of experimentally validated

functional motifs in UTRs [16].

In this paper, we assess the complexity of 39 UTRs relative to

that of protein-coding sequences, by comparing the extent to

which segmental substructures can be detected within these two

genomic fractions based on sequence composition and conserva-

tion. We argue that the degree of segmental substructure is a useful

proxy for functional complexity. We find that segmental sub-

structures in 39 UTRs are shorter on average, more numerous and

more varied in type than in protein-coding sequence. Annotation

of function in 39 UTRs will therefore not be complete until it is

rather more detailed than the annotation of protein domains in

protein-coding sequences. We therefore echo [17] in calling for

bioinformaticians to turn their attention to annotation of this

important genomic fraction.

Our methodology involves comparing closely related species,

which may seem unusual given that functional signatures are more

clearly distinguishable from background patterns at greater

evolutionary distances. However, we suspect that full elucidation

of the functional component of 39 UTRs may require comparison

of closely related species, in addition to conventional comparisons

of more distantly related species. Furthermore, it may require

consideration of additional data not based on species comparisons,

and perhaps unique to individual species. The reason for this is

that some functional components of genomes may be ephemeral,

that is, may persist in genomes only briefly relative to evolutionary

time-scales, perhaps so briefly as to be unique to one extant

species.

The existence of such ephemeral functional elements is an

inevitable consequence of genetic drift. In finite populations,

beneficial mutations are not guaranteed to become fixed, and

those that do may subsequently be eliminated in the lottery of

genetic drift, particularly if the advantage conferred is slight.

Recently evolved functional elements whose integration into the

system is not yet optimal are perhaps more vulnerable to random

extinction, despite the selective pressures that favour their survival.

Such functional turnover is certain to occur in evolving genomes,

but the proportion of the human and other genomes currently

under ephemeral constraints is not known.

Evidence possibly indicative of ephemeral constraints was

uncovered by the ENCODE pilot project [18], which found that

not all bases within experimentally defined functional genomic

regions show evidence of constraint, and that many functional

elements are seemingly unconstrained across mammalian evolu-

tion. The authors of that paper proposed that the genome contains

a large pool of ‘‘neutral elements that are biochemically active but

provide no specific benefit to the organism’’ [18]. We consider that

explanation contradictory, since it is intended to address the

observation that functional elements are seemingly unconstrained,

and function implies a benefit to the organism. A more natural

conclusion is that a significant proportion of the human genome is

subject to ephemeral functional constraints, visible to comparative

genomics studies only for closely related species, if at all. More

recent ENCODE publications support this latter interpretation,

for example finding that elements without detectable mammalian

constraint do show evidence of negative selection in primates [7].

Evidence of large-scale turnover of transcription factor binding

sites (TFBSs) has been found in Drosophila. Moses et al. [19]

identified numerous known regulatory binding sites in D.

melanogaster that were not present in closely related species,

including D. simulans. There is also mounting evidence that

binding of transcription factors (TFs) to seemingly non-functional

‘decoy’ TFBSs has subtle effects on the regulation of target gene

expression [20,21]. Low information content decoy TFBSs are

frequently created and destroyed by point mutations and are likely

candidates for functional elements under ephemeral constraints.

Similarly, post-transcriptional binding sites in 39 UTRs are mostly

low information content sequences that are potentially subject to

rapid turnover.

In this paper, we present a sensitive methodology for

investigating patterns of conservation and sequence composition

in pairwise and three-way alignments of closely related species.

Segmentation models are well suited to detecting subtle variations

in sequences, and have a long history of use in bioinformatics [22].

In such models, it is assumed that the sequence (usually, but not

limited to, DNA) can be partitioned into a series of segments, each

with some degree of internal homogeneity. The challenge is to find

the positions that delineate the segments (known as change-points).

Bayesian models are attractive in these circumstances as they are

apt for modelling complex hierarchies, and also provide a natural

framework to model uncertainty. The seminal paper for such

models is [23], and the approach has recently been developed and

extended [13,24–26]. Our Bayesian model and associated Markov

chain Monte Carlo (MCMC) sampler were developed for the

segmentation of sequences derived from pairwise and multiple

alignments.

In earlier work [13], three main classes of conservation level

were identified in Drosophila, corresponding to slowly evolving,

rapidly evolving and intermediate segments. A more recent

analysis involved generalizing the Bayesian segmentation tech-

nique to identify patterns of conservation variation in multiple

sequence alignments [26]. The method was able to distinguish

multiple classes of evolutionary rate; 7 in an alignment of four

mammals (including humans) and 9 for an alignment of four

drosopholids. The classes were indicative of different degrees of

selection acting in a segmented pattern over the genome, the scale

of which was much finer than could be attributed to local

variations in the neutral mutation rate. These findings indicated a

significant problem with the conventionally assumed dichotomy of

conservation level (conserved or not) used in many previous

analyses based on evolutionary rates [1,18,27–30]. They also
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highlighted the importance of sophisticated analyses capable of

detecting sub-classes of evolutionary rates, for investigating the

vastly complex landscape of evolution. A recent simulation study

by the authors [31] demonstrated that this technique does not

detect superfluous modes, confirming the above conclusions.

Despite the success of the segmentation approach, it is clear that

conservation data alone will not provide sufficient power to detect

unique functional signatures. This point is particularly relevant in

the analysis of closely related species, where distinctions in

conservation level are likely to be fine and difficult to detect. We

therefore generalise the segmentation approach for sequences

formed from characters of an arbitrary alphabet, making it well

suited to incorporate other sequence characteristics that are also

suggestive of function. We consider the problem of integrating

multiple data types, with the aim of identifying classes on a finer

scale than previously. This issue is explored briefly in [13], and

raised as area which requires further study. Here we segment and

classify the 39 UTR sequence of D. melanogaster based on three data

types: conservation relative to one or two other species (based on

alignment matches and mismatches), GC content, and transition/

transversion rates. We illustrate the methodology for the three

pairwise, and one 3-way alignment of D. melanogaster, D. simulans

and D. yakuba 39 UTR sequences. The classes thus identified

represent a resource for the future discovery of novel functional

elements in Drosophila. We also examined several of our identified

classes and investigated the extent to which they display properties

consistent with function, and explore potential functional roles of

motifs identified to be enriched within the different classes.

Results, Discussion and Conclusions

We applied our segmentation method to the 3-way alignment

and three possible pairwise alignments of 39 UTRs among the

species D. melanogaster, D. simulans and D. yakuba. We also applied

the method to four different types of control sequence. To

compare the segmentation patterns detected in 39 UTRs to those

of known functional sequences, we segmented a randomly selected

portion of the alignment of D. melanogaster to D. simulans protein-

coding sequences, of the same length as the 39 UTR alignment for

that species pair. The requirement that this coding alignment be

the same length is necessary because the number of segment

classes identified is sensitive to the length of the input sequence. In

general, more classes can be detected with a longer input

sequence. This process was repeated three times with different

coding sequences, to ensure that the results were reproducible. In

order to demonstrate the advantage of incorporating multiple data

types into an 8-character representation, we segmented a binary

representation of conservation (matches/mismatches) in the D.

melanogaster versus D. simulans 39 UTR alignment. Similarly, we

segmented a binary representation of GC content in D. melanogaster

39 UTRs. Lastly, we segmented an artificially generated control

sequence with only one class of segments. The artificial sequence

was generated using the same overall character frequencies, and to

be the same length as the D. melanogaster versus D. simulans 39 UTR

alignment.

Model Selection
At present our segmentation algorithm requires the user to

specify the number of segment classes T . Separate segmentations

were therefore performed for each value of T in the range 1–20.

Two different procedures were then applied to select the number

of classes for each alignment; investigating Deviance Information

Criterion V (DICV) values (Procedure 1) and investigating the

stability of the classes (Procedure 2). Figure 1 shows plots of the

model selection criterion (DICV) versus T for the segmentations of

four 8-character alignment representations. Based on these plots,

using Procedure 1, we selected the 12-class model for the D.

melanogaster and D. simulans 39 UTR alignment (Figure 1A), the 10-

class model for the D. melanogaster and D. yakuba 39 UTR alignment

(Figure 1C), the 12-class model for the D. simulans and D. yakuba 39

UTR alignment (Figure 1D), and the 14-class model for the 3-way

39 UTR alignment (Figure S1).

Using Procedure 2, we selected the 15-class model for the D.

melanogaster versus D. simulans alignment, the 16-class model for the

D. melanogaster versus D. yakuba alignment, the 15-class model for

the D. simulans versus D. yakuba alignment, and the 15-class model

for the 3-way alignment. The numbers of classes selected for each

sequence by each procedure are summarised in Table 1. In

general, Procedure 1 selects a model with fewer classes than

Procedure 2.

Comparison to Control Sequences
Table 1 indicates that twelve to fourteen segment classes with

distinct character frequencies can be distinguished in each of the

three coding sequence alignments, using Procedure 1 or Procedure

2. The DICV values used for Procedure 1 and one of the three

coding sequence alignments are shown in Figure 1B. It is not

surprising that such a large number of classes can be detected in

coding sequence, given that it consists of numerous sub-units

(protein domains) subject to a variety of structural and functional

constraints. What is perhaps surprising is that a similar number of

classes can be detected in 39 UTRs, and in fact Procedure 2

consistently identifies a greater number of classes in 39 UTRs. The

implication is that 39 UTRs contain numerous sub-units subject to

an even greater variety of structural and functional constraints

than coding sequence. This is in line with the continuing focus in

genomics on the significant regulatory and evolutionary role of

non-coding sequences, particularly in regard to the regulation of

gene expression. Further evidence that 39 UTRs may have more

complex sub-structures than coding sequences is shown in Table 2.

The number of change-points estimated in 39 UTRs is nearly five
times that estimated for coding sequence, and consequently the

average segment length in 39 UTRs is about one fifth that in

coding sequence. Many of these change-points may correspond to

the boundaries of functional elements. The values shown in

Table 2 were obtained using models selected by Procedure 2, but

the same conclusions were reached using models selected by

Procedure 1.

Both model selection procedures identified a significantly larger

number of segment classes than our previous studies using binary

sequence representations of pairwise alignments [13,25]. Figures 2

and 3 demonstrate why this is the case. The figures show, for the

two model selection procedures and the four 8-character

alignments, the estimated GC content versus conservation level

(proportion of matches) for the classes identified. These are time

series plots over the MCMC sample, so the size of the ‘blobs’ is an

indication of uncertainty. It is clear from these plots that the use of

multiple data types has enabled a greater number of classes to be

distinguished, because projection onto either of the ‘GC content’

or ‘conservation’ axes would make many of these classes

indistinguishable. The same information for the 3-way alignment

of 39 UTRs is shown in Figure S2.

To further clarify this point, we compared the number of classes

found using the 8-character representation to the number

obtained using the binary sequence representing the conservation

of D. melanogaster relative to D. simulans 39 UTRs (see Table 1).

Similarly, we also determined the number of classes found using

the binary sequence representing GC content of D. melanogaster 39
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UTRs. Figure 4 shows the DICV values with T = 1–10 for the

segmentation of each of the binary representations. Based on these

plots, using Procedure 1, the 4-class model was selected for GC

content (Figure 4A), and the 2-class model was selected for

conservation (Figure 4B). Using Procedure 2, the 2-class model

was selected for GC content, and the 3-class model was selected

for conservation. It is clear that the numerous classes identified

using the 8-character representation cannot be resolved using

either GC content or conservation in isolation.

The final control sequence was artificially generated and was

designed to have only one class of segments. Figure S3 shows

DICV values for segmentation of this control sequence with T~

1–5. Note that Procedure 1 correctly selects the 1-class model, thus

supporting the use of DICV values for model selection. Figure S4

shows the time-series plot of conservation level versus sample

number for segmentations of the artificially generated control

sequence with T~1 and T~2. Figure S4A shows the 1-class

model is stable, whereas Figure S4B shows that one of the two

classes has a widely varying conservation level. This unstable class

also had a very low mixture proportion and thus the 1-class model

was again selected for the control sequence using Procedure 2.

This confirms results of our previous study [31] demonstrating that

models selected using DICV do not typically contain superfluous

modes, and are generally conservative in the number of

components identified.

Consistency of Segment Classes
In this study, we have used two different model selection

procedures to decide how many distinct segment classes can be

identified, with Procedure 1 being generally more conservative

Figure 1. DICV values for segmentation of four alignments. DICV values obtained using a varying number of classes, for four input sequences
derived from A) D. melanogaster versus D. simulans 39 UTR alignment, B) D. melanogaster versus D. simulans first coding sequence (Coding 1)
alignment, C) D. melanogaster versus D. yakuba 39 UTR alignment and D) D. simulans versus D. yakuba 39 UTR alignment.
doi:10.1371/journal.pone.0097336.g001
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than Procedure 2, in that it favours fewer classes. The question

naturally arises whether the selected number of classes T radically

alters the classification, or whether the segment classes are

consistent in the sense that increasing T merely results in some

classes resolving into two or more subclasses. A similar question

arises concerning the consistency of classes identified in the three

pairwise alignments and the 3-way alignment. Given that each

Drosophila species is involved in two pairwise alignments, one

wonders whether comparable classifications result in all three

cases.

First, we compared the models chosen by the two model

selection procedures, investigating specifically the D. melanogaster

versus D. simulans 39 UTR alignment. Nine of the classes identified

in the 12-class model map directly to individual classes in the 15-

class model. The remaining 3 classes from the 12-class model

mapped to weighted averages of two classes each from the 15-class

model, indicating that the primary difference between the 12-class

and 15-class models was the splitting of three classes into two sub-

classes each. The results of the mapping are summarised in Table

S1: characteristics considered include mixture proportions, con-

servation levels, GC content and transition/transversion ratio.

Many of the segment classes contain, in the corresponding D.

melanogaster regions, characteristic tandem repeat sequences

detected as highly significant motifs using MEME (see Methods

section ‘Class Profiling’), the significance of which are discussed

further in the following section. To further investigate the

consistency of the 12- and 15-class models, we investigated

whether the same characteristic tandem repeats were identified in

corresponding classes. In the 12-class model, ten motifs were

identified within six classes; within the ten motifs there were six

distinct types of motif. In the 15-class model, eleven motifs were

identified within eight classes; within the eleven motifs there were

six distinct types of motif. Similar motif types to each of the six

distinct motif types from the 12-class model were identified in the

15-class model, and in general the motif types found to be

common to both models were found in the corresponding classes

as identified by the previously mentioned mapping (Table S1). The

15-class model identified two additional motif types not identified

in the 12-class model. For this reason, and given that difference

between the 12 and 15-class models is only the splitting of three

classes, our further analysis of detected motifs focuses on models

identified by Procedure 2. A more detailed summary of these

results is provided in Tables S2 and S3.

Secondly, we compared the classes identified in the different

alignments. Figures 2 and 3 provide an initial indication that the

classes detected in the three 2-way alignments of 39 UTRs are

fairly consistent. Figures 3C and 3D in particular, corresponding

respectively to alignments of D. melanogaster versus D. yakuba and D.

simulans versus D. yakuba, are strikingly similar, and many of the

classes detected in one alignment can immediately be placed in

Table 1. Models selected using two procedures.

Alignment Component Encoding Procedure 1 Procedure 2

Dme vs Dsi UTR 8-char 12 15

Dme vs Dya UTR 8-char 10 16

Dsi vs Dya UTR 8-char 12 15

Dme, Dsi, Dya UTR 32-char 14 15

Dme vs Dsi Coding 1 8-char 12 12

Dme vs Dsi Coding 2 8-char 12 12

Dme vs Dsi Coding 3 8-char 14 14

Dme vs Dsi UTR GC alone
(binary)

4 2

Dme vs Dsi UTR Conservation
alone (binary)

2 3

Dme: D. melanogaster; Dsi: D. simulans; Dya: D. yakuba; Procedure 1: Models selected based on DICV values; Procedure 2: Models selected by investigating stability of
classes; Coding 1, 2, 3: three different coding sequences.
doi:10.1371/journal.pone.0097336.t001

Table 2. Segmentation characteristics of models selected by Procedure 2.

Alignment Component Length Nfixed k L

Dme vs. Dsi UTR 2678635 9112 50001 54

Dme vs. Dya UTR 2486711 8622 53051 47

Dsi vs. Dya UTR 2481568 8607 51547 48

Dme, Dsi, Dya UTR 2247759 8260 54523 41

Dme vs. Dsi Coding 1 2680987 6760 11086 242

Dme vs. Dsi Coding 2 2681121 6626 10190 263

Dme vs. Dsi Coding 3 2681284 6463 9982 268

Length: number of alignment columns in the component; Nfixed: number of fixed change-points, corresponding to the boundaries of alignment blocks; k: posterior
average number of change-points; L: posterior average length of segments. Note the length of the coding sequence is equal to that of the 39 UTRs for the same species
pair, once the number of fixed change-points (corresponding to the ends of alignment blocks) is added to the length.
doi:10.1371/journal.pone.0097336.t002
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correspondence with classes detected in the other. Figure 3A,

corresponding to the alignment of D. melanogaster versus D. simulans

also shows the same pattern, but corresponding classes appear

compressed towards the right of the figure relative to their

counterparts in Figures 3C and 3D. This is no doubt due to the

shorter evolutionary distance between D. melanogaster and D.

simulans, leading to generally higher conservation levels in most

classes. By contrast, the classes shown in Figure 3B, representing

the coding sequences alignment, exhibit a pattern distinct from the

other three, and it does not appear possible to identify class

correspondences.

Further evidence of consistency among the three 2-way 39 UTR

alignments is shown in Table 3. Based on mixture proportions,

conservation levels, GC content and transition/transversion ratios,

twelve classes were directly comparable among the three 2-way

alignments (although the correspondence is more convincing in

some cases than in others). There were four cases in which classes

were comparable in only two of three alignments, and there were

only two cases in which a class was unable to be matched with a

class from another alignment. The correspondence between

classes identified for different alignments is even more clear when

individual character frequencies are compared (Table S5). We also

compared the significant motifs detected in the D. melanogaster

versus D. simulans classes (Table S3) to those detected in the D.

melanogaster versus D. yakuba alignment (Table S4). In most cases,

classes that correspond in Table 3 were found to contain the same

or similar characteristic tandem repeat sequences (Table S5).

The pattern shown in the plot of GC content versus

conservation for the 3-way alignment (Figure S1), upon visual

inspection, does not display an obvious similarity to the 2-way

alignment plots. However, all but two of the classes can be mapped

to classes from the 2-way alignments by considering the frequency

of the individual characters within the segment classes (Table S6).

While the encodings used for 2-way and 3-way alignments are

different, a conserved A or T is represented by the character ‘a’ in

both encodings, and a conserved G or C is represented

respectively by the characters ‘f’ and ‘v’ in the 2-way and 3-way

alignments; thus these characters were used in the comparison of

the classes between 2-way and 3-way alignments.

Exploring Class Content
That such a large number of clearly distinguishable segments

and segment classes can be identified in the 39 UTRs of

Drosophila genes is indicative of a surprisingly intricate compo-

sitional and mutational complexity. We hypothesize that this

complexity results from a wide variety of structural and functional

constraints, and we speculate about some of these constraints in

this section. We focus on classes from the 15-class model of the D.

melanogaster versus D. simulans 39 UTR alignment that contain

characteristic tandem repeat sequences identified by MEME as

Figure 2. GC content versus conservation level for models selected by Procedure 1. GC content (in the first named species of each pair)
versus the proportion of alignment matches, for each model selected by Procedure 1. The different colours represent different classes, and each class
is plotted for the post burn-in samples; A) 12-class model for the D. melanogaster versus D. simulans 39 UTR alignment, B) 12-class model for the D.
melanogaster versus D. simulans first coding sequence (Coding 1) alignment, C) 10-class model for the D. melanogaster versus D. yakuba 39 UTR
alignment and D) 12-class model for the D. simulans versus D. yakuba 39 UTR alignment. This is a crude diagnostic used to determine if the model has
converged in distribution and also indicates how well separated the classes are.
doi:10.1371/journal.pone.0097336.g002
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highly significant, and which are enriched in elements from the

UTRdb, and PicTar annotation databases (see Methods section

‘Class profiling’).

One important concern regarding repetitive motifs is to ensure

that they are not in some way artifacts of sequence composition.

To test this, we artificially generated 100 control classes for each

class from the 15-class segmentation of the D. melanogaster versus D.

Figure 3. GC content versus conservation level for models selected by Procedure 2. GC content (in the first named species of each pair)
versus the proportion of alignment matches, for each model selected by Procedure 2. The different colours represent different classes, and each class
is plotted for the post burn-in samples; A) 15-class model for the D. melanogaster versus D. simulans 39 UTR alignment, B) 12-class model for the D.
melanogaster versus D. simulans first coding sequence (Coding 1) alignment, C) 16-class model for the D. melanogaster versus D. yakuba 39 UTR
alignment and D) 15-class model for the D. simulans versus D. yakuba 39 UTR alignment.
doi:10.1371/journal.pone.0097336.g003

Figure 4. DICV values for segmentation of binary sequences. DICV values versus the number of classes (1–10) for segmentation of: A) the
binary representation of GC content in D. melanogaster 39 UTRs, and B) the binary representation of conservation in the D. melanogaster versus D.
simulans 39 UTR alignment.
doi:10.1371/journal.pone.0097336.g004
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Table 3. Model comparisons.

Alignment Class MP Conservation GC content T/T

Dme vs Dsi 0 15.9% 99% 38% 1.18

Dme vs Dya 1 11.8% 98% 36% 0.96

Dsi vs Dya 1 13.5% 98% 37% 0.97

Dme vs Dsi 1 14.3% 99% 28% 0.80

Dme vs Dya 15 13.8% 96% 28% 0.82

Dsi vs Dya 7 13.6% 95% 29% 0.88

Dme vs Dsi 2 2.0% 86% 47% 0.94

Dme vs Dyaa 7 2.0% 72% 40% 1.03

Dsi vs Dya 2 2.3% 72% 39% 1.00

Dme vs Dsi 3 2.3% 99% 18% 0.50

Dme vs Dya 8 8.5% 99% 24% 0.95

Dsi vs Dya 0 11.0% 99% 25% 0.81

Dme vs Dsi 4 17.1% 96% 30% 0.91

Dme vs Dya 4 7.5% 81% 30% 0.88

Dme vs Dsi 5 2.9% 83% 25% 0.73

Dme vs Dya 13 1.6% 58% 26% 0.71

Dsi vs Dya 11 1.6% 65% 24% 0.71

Dme vs Dsi 6 7.7% 92% 24% 0.67

Dme vs Dya 14 3.9% 89% 22% 0.67

Dsi vs Dya 8 6.9% 89% 25% 0.73

Dme vs Dsi 7 0.3% 58% 60% 0.91

Dme vs Dya 3 0.8% 60% 57% 0.78

Dsi vs Dya 3 0.7% 60% 59% 0.87

Dme vs Dsi 8 8.0% 90% 33% 0.98

Dme vs Dya 10 11.1% 90% 32% 0.92

Dsi vs Dya 12 9.5% 86% 36% 1.03

Dme vs Dsi 9 3.0% 97% 60% 1.48

Dme vs Dya 12 2.3% 95% 60% 1.30

Dsi vs Dya 4 2.2% 95% 61% 1.24

Dme vs Dsi 10 8.2% 98% 51% 1.45

Dme vs Dya 0 4.1% 98% 51% 1.34

Dsi vs Dya 10 4.3% 98% 52% 1.24

Dme vs Dsi 12 11.0% 95% 42% 1.07

Dme vs Dya 11 11.7% 94% 40% 1.11

Dsi vs Dya 5 12.8% 93% 41% 1.08

Dme vs Dsi 13 5.9% 95% 54% 1.32

Dme vs Dya 2 7.9% 93% 53% 1.33

Dsi vs Dya 6 7.8% 93% 53% 1.35

Dme vs Dsi 14 0.7% 44% 34% 0.70

Dsi vs Dya 14 0.5% 52% 34% 0.83

Dme vs Dya 5 3.2% 74% 25% 0.75

Dsi vs Dya 9 6.4% 78% 27% 0.81

Dme vs Dya 6 2.5% 84% 56% 0.95

Dsi vs Dya 13 6.8% 85% 52% 1.06

Comparison of the three models selected by Procedure 2, for each pairwise alignment of 39 UTRs. MP: mixture proportions; T/T: Transition/Transversion ratio. Class 11 of
Dme vs Dsi (MP: 0.7%, Conservation: 56%, GC content: 17% and T/T: 0.5) and the class 9 of Dme vs Dya (MP: 7.5%, Conservation: 85%, GC content: 45% and T/T: 1.1)
alignments did not match with other models.
doi:10.1371/journal.pone.0097336.t003
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simulans alignment which had significant motifs detected (Classes 0,

1, 3, 7, 9, 10, 12, 13; 800 in total). Each control class was

generated independently such that the number and lengths of the

segments corresponded exactly with one of the observed classes,

and such that the frequency of bases was the same as observed in

that corresponding class. Each of the control classes was run

through MEME. No significant motifs were detected in any of

these 800 control classes.

Class 1 had the equal highest proportion of conserved bases

(*99%) and a relatively low GC content (*28%). MEME

identified two motifs within Class 1 segments: an AT repeat motif

common to 171 of 1491 Class 1 segments (E-value: 4.00E-36), and

a polyA motif common to 136 segments (E-value: 3.70E-43,

Figure 5A). The polyA motif consensus sequence matched the

Polyadenylation Signal (PAS, UTRsite motif: U0043), according

to the software UTRscan: a program for identifying known UTR

regulatory motifs within a given sequence [16]. Class 1 segments

were also found to be enriched in the PAS annotation in the

UTRdb database (observed: 866, expected: 360, associated p-

value: negligible). Given that poladenylation of the 39 end of

mRNAs is near ubiquitous in eukaryotes, it is perhaps unsurprising

that our segmentation of 39UTRs, based on sequence composition

and conservation, identified a class of segments enriched in PASs.

Cytoplasmic polyadenylation can occur for mRNAs which have

been tranlastionally repressed, for example maternally inherited

mRNAs which are activated on fertilization [14]. Class 6 segments

were found to be enriched in the Cytoplasmic Polyadenylation

Element (CPE, UTRsite motif: U0006; observed: 9, expected: 4,

associated p-value: 3.26E-9). The median length of 39 UTRs

which contained Class 6 segments was 262 bases (IQR = 480), the

shortest of all 15 segment classes, this is perhaps indicative of the

inverse relationship between 39 UTR length and mRNA stability,

given that mRNAs requiring cytoplasmic polyadenylation are also

required to be stable [14].

Along with Class 1, Class 0 also had the equal highest

proportion of conserved bases (*99%), differing on GC content

(*38%). A CAA tri-nucletide repeat motif was identified in Class

0 segments (E-value: 3.0E-34). Both Class 0 and 1 were found to

be enriched in multiple miRNA targets, as predicted by PicTar

[32]. miRNA targets represent a class of elements found in 39

UTRs which are important in gene regulation, miRNAs (in

cooperation with a protein complex) bind 6–8 mer sites in mRNAs

promoting the degradation of the bound mRNA [33] PicTar

predictions are partly based on sequence conservation so it is

somewhat unsurprising that there is significant overlap between

our highly conserved segments classes and PicTar predictions.

Class 9 had the equal highest GC content of the classes (*60%),

a relatively high proportion of conserved bases (*97%), the

longest segments (median = 142 bases, IQR = 138), the highest

transition/transversion ratio (1.48) and a bias towards the coding

end of 39 UTRs, with a median distance to the coding sequence of

21.5 bases (IQR = 240). Class 10 was notable for a relatively high

GC content (*51%), relatively high conservation (*98%), and a

relatively high transition/transversion ratio (1.45). Relatively high

GC content, high conservation and positional bias are all

independently indicative of enrichment in functional elements.

MEME identified a CAG tri-nucleotide repeat motif (Figure 5B) in

both segment classes, common to 124 of the 298 Class 9 segments

and 114 of the 1023 Class 10 segments (E-values, respectively:

5.30E-138, 1.60E-21). TOMTOM identified matches in both the

‘‘All vertebrates’’ and the ‘‘All Drosophila’’ database for both

motifs. In the ‘‘All Drosophila’’ database, both CAG repeat motifs

matched the binding site of odd, a Drosophila zinc-finger protein.

The CAG-repeat motif resembles a repeated E-box: a basic helix-

loop-helix (bHLH) binding site with consensus sequence

(CANNTG). The matches in the ‘‘All Vertebrates’’ database were

both to proteins with bHLH DNA-bonding domains; the Class 9

motif matched the mouse Ascl2 primary binding site (E-value:

2.17E-5), and the Class 10 motif matched the mouse Tcf12

binding site (E-value: 2.47E-5). bHLH protein structures are

common to DNA binding proteins involved in transcriptional

regulation in all eukaryotes [34]. In Drosophila, twist, acheate-

Figure 5. Motifs identified by MEME. Sequence LOGOs for four of the motifs identified by MEME in the 15-class model for the D. melanogaster
versus D. simulans 39 UTR alignment: A) a polyA motif identified in Class 1, B) a CAG repeat motif identified in Class 9, C) a CA repeat motif identified
in Class 12, D) a TCC repeat motif identified in Class 9.
doi:10.1371/journal.pone.0097336.g005
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scute, D-mef2 and daughterless are examples of bHLH proteins

with well documented regulatory roles that bind E-Box like

regulatory elements in order to regulate target gene expression

[35,36]. Furthermore, there are at least 56 known genes in

Drosophila coding for proteins with the bHLH DNA binding

domain [37].

A CA di-nucletide repeat motif was identified in Class 12,

common to 35 of 849 segments (E-value: 3.80E-12, Figure 5C). A

possible function for such sites is the documented CA-rich

elements (CAREs) which are known to interact with heterogenous

nuclear ribonucleoprotein L in order to stabilise mRNAs [14]. In

addition, TOMTOM identified matches to three Drosophila zinc-

finger protein binding sites in the ‘‘All Drosophila’’ database:

klumpfuss, stripe and fruitless (E-values, respectively: 9.43E-3,

2.70E-2, 3.02E-2). TOMTOM also identified matches in the ‘‘All

Vertebrates’’ database to the human zinc-finger protein RREB1

and the mouse zinc-finger protein EGR2 binding sites (E-values,

respectively: 1.31E-2, 2.55E-2). While many of motifs identified by

MEME have similarities with TFBSs, we note that regulatory

elements in 39 UTRs are primarily thought to operate post-

transcriptionally and hence to interact with proteins (and miRNAs)

that bind RNA, not DNA. The CA-dinucleotide repeat motif was

one of two motifs from the 15 class segmentation of the D.

melanogaster versus D. simulans 39UTR alignment in which

TOMTOM identified matches in the ‘‘RNA-binding motifs’’

database. (Recognising a deficiency in knowledge of RNA-binding

motifs, the ‘‘RNA-binding motif’’ database was generated by a

large-scale experiment for determining binding motifs of known

RNA-binding proteins [38]. Synthetic RNA molecules were

generated for all possible sequences of length 7, 8 and 9

nucleotides, binding affinity to each motif was measured for 193

unique RNA-binding proteins - 141 with no previously known

motif - including 61 from Drosophila.) RNA-binding proteins are

known to play a crucial role in gene expression, including roles in

splicing, polyadenylation and controlling mRNA stability. One of

the most well characterised RNA-binding proteins is the

Drosophila Sxl, well known for its role in the complex Drosophila

sex determination mechanism [39]. Classes 4, 5, and 6 were

enriched in the Sxl binding motif (Table S8). The CA repeat motif

matched eleven different RNA-binding motifs in the database, five

of which were for Drosophila proteins. Thus it has been shown

there are Drosophila proteins which will bind the sequences

generating the CA repeat motif. The second motif with a match in

the ‘‘RNA-binding motif’’ database is a TCC tri-nucleotide repeat

motif, common to 96 of 298 Class 9 segments (E-value: 3.70E-5,

Figure 5D). The TCC repeat motif matched the binding site of the

human RNA-binding protein SRSF1, a splicing factor.

The positions of segments from each segment class for the

segmentation models chosen by Procedure 2 are available in BED

format as part of supplementary materials (File S1, S2, S3). A full

summary of the motifs identified can be found in Tables S2, S3

and S4, and a full summary of the enrichment of PicTar and

UTRdb annotations can be found in Tables S7 and S8. As

discussed, several of these repetitive motifs resemble binding sites

of common regulatory proteins. While it is possible that TFBSs

located within 39 UTRs could act as enhancer elements [40], in

general 39 UTRs are not considered to play a significant role in

transcription activation. It is more likely that these motifs

participate in post-transcriptional regulatory interactions with

RNA-binding proteins and miRNAs. However, we note in passing

that many zinc-finger proteins are capable of binding RNA in

addition to DNA, and transcription factors that bind both DNA

and mRNAs are known (for example [41]).

Conclusions
A pairwise alignment can be encoded as an 8-character

sequence containing information about sequence conservation,

GC content and transition/transversion ratios. A similar approach

can be used to encode a three-way alignment as a 32-character

sequence. Such sequences can then be segmented and the

segments classified according to character frequencies. Here and

elsewhere [31] we have shown that DICV provides a method for

selecting the number of classes that is conservative in the sense that

it does not generally favour models with superfluous classes. We

have also proposed a second, less conservative, model selection

procedure. Using these encodings, it is possible to distinguish

segment classes that could not be resolved on the basis of sequence

similarity or GC content considered in isolation. We have

therefore proposed the method as suitable for analysing pairwise

alignments of closely related species.

An unexpectedly large number of clearly distinguishable

segment classes were identified in pairwise and three-way

alignments of 39 UTRs for the species D. melanogaster, D. simulans,

and D. yakuba. The number of classes found is comparable to and

possibly exceeds the number identified in equal length alignments

of protein-coding sequences. The estimated number of change-

points in 39 UTRs exceeds the corresponding estimate for protein-

coding sequences by a factor of five. This is suggestive of intricate

functional complexity in Drosophila 39 UTRs, far exceeding that

of protein-coding sequences. Similar classes were identified in all

three pairwise alignments, suggesting similar constraints are

maintained in all three species.

Several of the segment classes we identified were highly

enriched in low information content sequences. Although care

must be taken to ensure that such motifs are not artifactual, we

have used rigorous controls to demonstrate that is not the case

here. Moreover, many of the known regulatory sequences in 39

UTRs have precisely this low information character. We speculate

that such regulatory sequences may be frequently created and

destroyed in 39 UTRs, resulting in rapid turnover of functional

elements, individual variation in regulatory profiles, and ephem-

eral conservation. We further speculate that some extended low

information content regions of 39 UTRs may be functional only in

the sense that they regularly produce and lose binding sites, thus

facilitating changes in regulatory profiles in response to changing

selective pressures. A full elucidation of functional elements in 39

UTRs may therefore require comparisons of closely related

species, as well as examination of non-comparative indicators of

function.

Materials and Methods

Data Transformation
A three-way multiple sequence alignment (MSA) of D.

melanogaster, D. simulans and D. yakuba genes was obtained from

http://genomics.princeton.edu/AndolfattoLab/w501_genome.

html (see also (Hu et al. 2013)). The data is made available by the

Andolfatto Lab, and incorporates a second generation assembly of

the D. simulans genome performed in 2012. Annotations of the D.

melanogaster genome are also provided, and were used to separate

the alignments into genic sections, in particular coding regions and

39 UTRs. The three-way MSA was analysed as three pairwise

sequence alignments of D. melanogaster to D. simulans, D. melanogaster

to D. yakuba, and D. simulans to D. yakuba.

We used an 8-character sequence representation

(A~fa,b,c,d,e,f,g,hg) of the pairwise alignments, in which each

character in the sequence corresponds to a non-directional mono-

nucleotide alignment combination:
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Species 1: ATATATATCGCGCGCG

Species 2: ATCGGCTAATCGGCTA

Symbol: a a b b c c d d e e f f g g h h.

Insertions and deletions relative to D. melanogaster are excluded

from the representation of the alignment.

For each of the three pairwise alignments, the 8-character

sequences for the 39 UTRs of each gene on chromosome arms 2R,

2L, 3R, 3L were concatenated into a single sequence. Each 39

UTR segment was separated from the next by a # symbol. The D.

melanogaster versus D. simulans alignment of protein-coding

sequences was constructed in a similar manner, with each exon

separated by a # symbol. Three randomly selected subsequences

were then selected, each the same length as the D. melanogaster

versus D. simulans 39 UTR sequence. This was done by choosing a

uniform random starting position and then an end position such

that that the lengths were the same.

The 3-way alignment of D. melanogaster, D. simulans and D.

yakuba was converted to a 32-character sequence representation

(B = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,U,V,W,X,Y,Z}).

Species 1: AAAAAAAAAAAAAAAACCCCCCCCCCCCCCCC

Species 2: AAAACCCCGGGGTTTTAAAACCCCGGGGTTTT

Species 3: ACGTACGTACGTACGTACGTACGTACGTACGT

Symbol: a b c d e f g h i j k l m n o p q r s t u v w x y z U V W X Y Z

The alignment columns with complementary bases were

encoded using the same characters. For example:

Species 1 ‘A’, Species 2 ‘A’, Species 3 ‘A’ = Species 1 ‘T’,

Species 2 ‘T’, Species 3 ‘T’ = ’a’

Species 1 ‘A’, Species 2 ’A’, Species 3 ’C’ = Species 1 ’T’,

Species 2 ’T’, Species 3 ‘G’ = ‘b’.

Two binary sequence representations were also constructed: a

binary representation of the GC content in D. melanogaster 39 UTRs

(1 for ‘G’ or ‘C’, and 0 for ‘A’ or ‘T’) and a binary representation

of conservation in the D. melanogaster versus D. simulans 39 UTR

alignment (1 for a match, 0 for a mismatch). Both binary

sequences involved concatenation in a similar manner as for the 8-

character sequences. Note that the binary representations can be

recovered from the 8-char representation of the D. melanogaster

versus D. simulans 39 UTR alignment (as discussed under the

heading ‘Assessing Convergence’ below).

Change-point Modeling
We constructed a Bayesian multiple change point model for the

sequences described above. The model is described in detail for

binary sequences in previous papers [13,24,25] and for larger

alphabets in [26,31]. In summary, this approach estimates

positions in the sequence that delineate homogenous segments

(known as change-points), the number of which is unknown. The

# symbol is considered as a fixed change-point. Each segment is

drawn from a multinomial distribution with parameters drawn

from one of T Dirichlet distributions with uniformly sampled

probabilities. As the number of classes T is not known a priori,

independent runs with values of T from 1 to 20 were performed.

We used an efficient varying-dimensional MCMC technique for

simulating from the posterior distribution for the number of

change-points, k, and segment parameters for different numbers of

classes. Each model was run for 20,000 iterations and then tested

for convergence.

To test our model selection procedures, we also constructed an

8-character control sequence. The sequence was generated such

that it was the same length as the D. melanogaster versus D. simulans

39 UTR alignment, with fixed change-points in the same positions.

Each segment had parameter h~(ha,hb,hc,hd ,he,he,hg,hh) drawn

from the same Dirichlet distribution (T~1), based on the

character frequencies of the D. melanogaster versus D. simulans 39

UTR alignment.

Assessing Convergence
To assess convergence of the MCMC sampler in 8-character

sequence representation, the mean proportion of no mutations

(alignment matches: represented by input symbols ‘a’ and ‘f’) was

calculated for each iteration of the sampler:

E½hcons�~ hazhfP
j[A hj

This was plotted against the GC proportions (represented by

characters ‘e’, ‘f’, ‘g’ and ‘h’), again calculated for each iteration of

the sampler:

E½hGC �~ hezhf zhgzhhP
j[A hj

Such plots show a striking trend during the ‘burn-in’ phase of

MCMC, at the end of which is a dense ‘blob’ indicating that

convergence has occurred. Figures 2 and 3 are examples of such

plots, but show only the post-burn-in phase.

For 32-character representation, similar information is given by

symbols ‘a’ and ‘v’ for alignment matches and by symbols ‘q’, ‘r’,

‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’ and ‘Z’ for GC

proportion in species 1 (Figure S2).

Model Selection
Our current segmentation model assumes that the number of

classes (T ) is known; in reality this is not the case. We used two

procedures to select the number of classes, after fitting the model

for a range of T . In both procedures, a model containing classes

considered to be empty (low mixture proportions) was considered

to be an over-fitted model and thus a model with a fewer number

of classes would be selected in which the main criterion was still

fulfilled (see [42] for a discussion of this approach to model

selection).

Procedure 1: Investigating DICV. Deviance Information

Criterion (DIC) is a criterion for model selection related to the

better known Akaike Information Criterion (AIC) and Bayesian (or

Schwarz) Information Criterion (BIC). Here we use type V DIC,

which we investigate as a model selection criterion for sequence

segmentation in [31]. DICV is defined:

DICV~PvzD(h)

where D(h)~{2| average of log-likelihood over the set of

segmentations sampled by MCMC and Pv~1=2| variance of

log-likelihood over the set of samples.

Models with smaller DICV are preferred; however, it often

happens that there is no clear minimum. In general we select the

value of T which corresponds to the first local minimum of DICV.

However, a subjective judgement is used when it appears obvious

that the DICV values continue to decrease significantly with larger

values of T . For a detailed discussion of using information

criterion to select the number of classes, see [31].

Procedure 2: Investigating the stability of classes. In this

procedure the model selected was the model with the largest
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number of classes in which each class was considered stable.

Stability of classes was assessed based on time-series plots of

conservation levels and GC content versus sample number. Classes

which were highly variable in either GC content or conservation

level were deemed unstable (again this involved a subjective

judgement). As previously mentioned, the mixture proportions of

the classes was used as a second criteria to assess the selected

model, and a model with a smaller number of classes was selected

if any of the classes were deemed empty.

Class Profiling
The positions of segments in each of the segment classes in each

of models chosen by Procedure 2 were recorded in BED format

(BED files submitted with supplementary material), with genomic

coordinates relative to the D. melanogaster genome (release R5.33).

The D. melanogaster sequence corresponding to each segment for

each of the segment classes was also extracted in fasta format. We

defined segments as belonging to a particular class as contiguous

runs of at least eight sequence positions at which the posterior

probability of belonging to the given class is w0:5. The use of the

threshold (w0:5) is discussed in [13], and is demonstrated to be an

effective compromise between false negative and false positive

allocation of positions to segment classes.

MEME motif identification. MEME [43] was used to

search for motifs shared by segments from the profiled classes. We

allowed the option of zero or one motif per sequence in all queries,

with a maximum motif size of 20 base pairs and for the reverse

complement of each sequence to be considered. For each motif

identified by MEME with an E-value v0:05, TOMTOM [44]

(web interface: http://meme.nbcr.net/meme/cgi-bin/tomtom.

cgi) was then used to search for similar motifs in each of four

motif databases: ‘‘All Drosophila’’; ‘‘JASPAR-insects’’; ‘‘All

Vertebrates’’; ‘‘RNA-binding motifs’’ (descriptions of the motif

databases are found at the web interface). Motifs reported by

TOMTOM with an E-value v0:05 were considered significantly

similar.

Annotation enrichment. Drosophila 39 UTR annotations

were obtained from UTRdb [16] and PicTar output [32], then

segment classes were tested for enrichment in each of the

annotation types. The Drosophila subset of the UTRdb dataset

of annotations (UTRef) was obtained from http://ebi.edu.au/ftp/

databases/UTR/data/. All Drosophila annotation in UTRef are

based on pattern similarity identified using the tool UTRscan.

PicTar is a program for predicting miRNA binding sites from

multiple species alignments, sites predicted in Drosophila were

obtained from http://dorina.mdc-berlin.de/rbp_browser/dm3.

html.

The positions of annotations in D. melanogaster were compared

with the positions of each of the segment classes of the 15-class

model of the D. melanogaster versus D. simulans 39 UTR alignment.

For each annotation type we test whether there is evidence for

enrichment of that annotation type in our segment classes. For the

null hypothesis of no enrichment, the expected number of

annotations in each segment class is based on the proportion of

the D. melanogaster sequence covered by each segment class. The

bagFFT algorithm [45] (web interface: http://www.cs.cornell.

edu/w8/,niranjan/llr.html) was used to calculate p-values for an

exact multinomial goodness-of-fit test. Annotation types with p-

value v0:05, after Bonferroni correction for multiple testing, are

considered significant. Only annotation types with more than one

match in the segment classes are considered for testing. For

annotation types with significant p-values, classes containing more

occurrences of that type than expected are considered enriched in

that element.

Supporting Information

Figure S1 DICV values for segmentation of 3-way
alignment. DICV values obtained using 1–20 segment classes

for D. melanogaster, D. simulans and D. yakuba 39 UTR alignment.

The 14-class model was selected as minimum DICV has occurred

at class 14.

(TIFF)

Figure S2 GC content versus conservation level for
models selected for 3-way alignment. GC content of D.

melanogaster versus the proportion of alignment matches, for each

model selected for the 3-way 39 UTR alignment. A) 14-class model

selected by Procedure 1 and B) 15-class model selected by

Procedure 2. The different colours represent different classes, and

each class is plotted for the post burn-in samples. This plot was

used to access the convergence of the selected models.

(TIF)

Figure S3 DICV values for the control sequence. DICV

values were obtained for an artificially generated sequence having

only one class of segments. The minimum DICV has occurred at

1-class; therefore justifies models selected by Procedure 1.

(TIFF)

Figure S4 Conservation level vs sample number for
control sequences. Figure shows time-series plots of conserva-

tion level versus sample number for segmentations of artificially

generated control sequence with A) 1 segment class and B) 2

segment classes.

(TIF)

Table S1 Model comparisons - Procedure 1 versus
Procedure 2. Comparing characteristics of the two models

selected by Procedure 1 and Procedure 2 (12-class model and 15-

class model respectively) for 39 UTR alignment of D. melanogaster

versus D. simulans.

(XLSX)

Table S2 Types of motif identified in 12-class model of
D. melanogaster vs D. simulans alignment. Types of motif

identified in D. melanogaster versus D. simulans 12-class model

selected by Procedure 1.

(XLSX)

Table S3 Types of motif identified in 15-class model of
D. melanogaster versus D. simulans alignment. Types of

motif identified in D. melanogaster versus D. simulans 15-class model

selected by Procedure 2.

(XLSX)

Table S4 Types of motif identified in 16-class model of
D. melanogaster versus D. yakuba alignment. Types of

motif identified in D. melanogaster versus D. yakuba 16-class model

selected by Procedure 2.

(XLSX)

Table S5 Class comparisons of 39 UTR pairwise
alignments. Comparison of change-point character frequencies

in each of the classes identified by Procedure 2 for each pairwise

alignment of D. melanogaster (D. mel), D. simulans (D. sim), and D.

yakuba (D. yak) 39 UTRs. Classes from different models with

similar character frequencies are grouped together.

(XLSX)

Table S6 Class comparisons of 39 UTR pairwise and 3-
way alignments.

(XLSX)
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Table S7 Enrichment of PicTar miRNA targets in
segment classes.

(XLSX)

Table S8 Enrichment of UTRdb motifs in segment
classes.

(XLSX)

File S1 Positions of segments for the 15-class model of
D. melanogaster versus D. simulans alignment.

(BED)

File S2 Positions of segments for the 16-class model of
D. melanogaster versus D. yakuba alignment.

(BED)

File S3 Positions of segments for the 15-class model of
3-way D. melanogaster, D. simulans, D. yakuba align-
ment.
(BED)

Acknowledgments

The authors would like to thank Professor Peter Adams for numerous

helpful discussions.

Author Contributions

Conceived and designed the experiments: JMK. Performed the exper-

iments: MA CO ET. Analyzed the data: MA CO ET. Contributed

reagents/materials/analysis tools: JMK. Wrote the paper: MA CO ET

KM JMK.

References

1. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril J, et al. (2002) Initial
sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

2. Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, et al. (2007)

Genome of the marsupial monodelphis domestica reveals innovation in non-
coding sequences. Nature 447: 167–177.

3. Mattick JS (2005) The functional genomics of noncoding RNA. Science 309:

1527–1528.

4. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakkerand PIW, et al. (2007)

Genome-wide association analysis identifies loci for type 2 diabetes and

triglyceride levels. Science 316: 1331–1336.

5. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-

wide association study of type 2 diabetes in Finns detects multiple susceptibility

variants. Science 316: 1341–1345.

6. Zeggini E,Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007)

Replication of genome-wide association signals in UK samples reveals risk loci

for type 2 diabetes. Science 316: 1336–1341.

7. Dunham I (2012) An integrated encyclopedia of DNA elements in the human

genome. Nature 489: 57–74.

8. Graur G, Zheng Y, Price N, Azevedo RBR, Zufall RA, et al. (2013) On the
immortality of television sets: ‘‘function’’ in the human genome according to the

evolution-free gospel of ENCODE. Genome Biology and Evolution 5: 578–590.

9. Doolittle WF (2013) Is junk DNA bunk? a critique of ENCODE. Proceedings of
the National Academy of Sciences of the USA 110: 5294–5300.

10. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, et al. (2012)

Targetted RNA sequencing reveals the deep complexity of the human
transcriptome. Nature Biotechnology 30: 99–104.

11. Kuersten S, Goodwin EB (2003) The power of the 39 UTR: translational control

and development. Nature Reviews Genetics 4: 626–637.

12. Chatterjee S, Pal JK (2009) Role of 59- and 39-untranslated regions of mRNAs in
human diseases. Biology of the Cell 101: 251–262.

13. Keith JM, Adams P, Stephen S, Mattick JS (2008) Delineating slowly and rapidly

evolving fractions of the drosophila genome. Journal of Computational Biology
15: 407–430.

14. Matoulkova E, Michalova E, Vojtesek B, Hrstka R (2012) The role of the 39

untranslated region in post-transcriptional regulation of protein expression in
mammalian cells. RNA Biology 9: 563–576.

15. Andken BB, Lim I, Benson G, Vincent JJ, Ferencand MT, et al. (2007) 39-UTR

SIRF: a database for identifying clusters of whort interspersed repeats in 30
untranslated regions. BMC Bioinformatics 8: 274.

16. Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, et al. (2010) UTRdb and UTRsite

(RELEASE 2010): a collection of sequences and regulatory motifs of the
untranslated regions of eukaryotic mRNAs. Nucleic Acids Research 38: D75–80.

17. Ahmed F, Benedito VA, Zhao PX (2011) Mining functional elements in

messenger RNAs: overview, challenges, and perspectives. Frontiers in Plant
Science 2: 84.

18. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras T, et al.

(2007) Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature 447: 799–816.

19. Moses AM, Pollard DA, Nix DA, Iyer VN, Li XY, et al. (2006) Large-scale

turnover of functional transcription factor binding sites in drosophila. PLoS
Computational Biology 2: 1219–1231.

20. Burger A, Walczak AM, Wolynes PG (2010) Abduction and asylum in the lives

of transcription factors. Proceedings of the National Academy of Sciences of the
United States of America 107: 4016–4021.

21. Lee TH, Maheshri N (2012) A regulatory role for repeated decoy transcription

factor binding sites in target gene expression. Molecular Systems Biology 8: 1–11.

22. Braun JV, Muller HG (1998) Statistical methods for DNA sequence

segmentation. Statistical Science 13: 142–162.

23. Liu JS, Lawrence CE (1999) Bayesian inference on biopolymer models.
Bioinformatics 15: 38–52.

24. Keith JM, Kroese DP, Bryant D (2004) A generalized markov sampler.

Methodology and Com-puting in Applied Probability 6: 29–53.

25. Keith JM (2006) Segmenting eukaryotic genomes with the generalized gibbs
sampler. Journal of Computational Biology 13: 1369–1383.

26. Oldmeadow C, Mengersen K, Mattick JS, Keith JM (2010) Multiple
evolutionary rate classes in animal genome evolution. Molecular Biology and

Evolution 27: 942–953.

27. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. (2005)
Genome sequence, comparative analysis and haplotype structure of the domestic

dog. Nature 438: 803–819.
28. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005)

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Research 15: 1034–1050.

29. Margulies EH, Cooper GM, Asimenos G, Thomas DJ, Dewey CN, et al. (2007)

Analyses of deep mammalian sequence alignments and constraint predictions for
1% of the human genome. Genome Research 17: 760–774.

30. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of
nonneutral substitution rates on mammalian phylogenies. Genome Research 20:

110–121.

31. Oldmeadow C, Keith JM (2011) Model selection in bayesian segmentation of
multiple dna alignments. Bioinformatics 27: 604–610.

32. Grun D, Wang Y, Langenberger D, Gunsalus KC, Rajewsky N (2005)
microRNA target predictions across seven drosophila species and comparison to

mammalian targets. PLOS Computational Biology 1: e13.

33. Bartel DP (2009) MicroRNAs: Target recognition and regulatory functions. Cell
136: 215–233.

34. Massari ME, Murre C (2000) Helix-loop-helix proteins: Regulators of
transcription in eucaryotic organisms. Molecular and Cellular Biology 20:

429–440.
35. Molkentin JD, Olson EN (1996) Combinatorial control of muscle development

by basic helix-loop-helix and mads-box transcription factors. Proceedings of the

National Academy of Sciences of the United States of America 93: 9366–
9373.

36. Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and
dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD,

and myc proteins. Cell 56: 777–783.

37. Ledent V, Vervoot M (2001) The basic helix-loop-helix protein family:
Comparative genomics and phylogenetic analysis. Genome Research 11: 754–

770.
38. Ray D, Kazan H, Cook KB, et al. (2013) A compendium of RNA-binding motifs

for decoding gene regulation. Nature 499: 172–177.
39. Penalva LOF, Sanchez L (2003) RNA binding protein sex-lethal (sxl) and control

of drosophila sex determination and dosage compensation. Microbiology and

Molecular Biology Reviews 67: 343–359.
40. Splinter E, de Laat W (2011) The complex transcription regulatory

landscape of our genome: control in three dimensions. The EMBO Journal
30: 4345–4355.

41. Morrison AA, Viney RL, Ladomery MR (2008) The post-transcriptional roles of

wt1, a multifunctional zinc-finger protein. Biochimica et Biophysica Acta 1785:
55–62.

42. Rousseau J, Mengersen K (2011) Asymptotic behaviour of the posterior
distribution in overfitted mixture models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 73: 689–710.
43. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and

analyzing DNA and protein sequence motifs. Nucleic Acids Research 34:

W369–W373.
44. Gupta S, Stamatoyannopolous JA, Bailey T, Noble WS (2007) Quantifying

similarity between motifs. Genome Biology 8: R24.
45. Keich U, Nagarajan N (2006) A fast and numerically robust method for exact

multinomial goodness-of-fit test. Journal of Computational and Graphical

Statistics 15: 779–802.

Drosophila 39 UTRs Are More Complex than Protein-Coding Sequences

PLOS ONE | www.plosone.org 13 May 2014 | Volume 9 | Issue 5 | e97336

87



88



Chapter 4

Genome-wide Identification of ncRNAs

using a Bayesian Segmentation Ap-

proach

Chapter Objectives

In this chapter, I continued to develop methods to identify ncRNAs. In particular, my

aim was to build a systematic process to discover genome-wide non-coding putative

functional elements (PFEs) using a Bayesian approach. To achieve this, I used the

changept model and the methods developed in the previous chapter. This analysis

revealed over 1000 intronic and intergenic PFEs, conserved in human, mouse and

zebrafish. I compared these results with the findings of other methods which are

readily available to use for this purpose (EvoFold and RNAz predictions, DNAse I

footprints data, fRNAdb entries, and RNA-seq data). These results out-performed the

results of EvoFold. We experimentally validated 26 PFEs identified in a set of genes

involved in muscle development. These PFEs may play a role in muscle diseases.
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4.1 Abstract

Non-coding RNAs (ncRNAs) play crucial roles in a variety of biological processes.

They are sometimes encoded within the introns of protein-coding genes, and may

regulate and interact in networks involving the containing gene. In this study, we

carried out a genome-wide analysis using a Bayesian segmentation-classification model

to identify intronic elements highly conserved between three evolutionarily distant

vertebrate species: human, mouse and zebrafish. These elements may include ncRNAs

or domains of ncRNAs with crucial functions. They may also include other functional

sequences including regulatory sequences. We identified 655 such intronic sequences,

which we refer to as putative functional elements (PFEs). This included 97 regions

not identified by EvoFold. As indicated by our analysis, there was a significant

over-representation of transcription factors in the genes containing PFEs (p-value:

1.2e-56). We also performed a pathway-focussed analysis using a set of genes involved

in muscle development. We detected 27 intronic PFEs in 7 transcription factors. The

expression of 26 PFEs was experimentally validated using RT-PCR. This provides

further evidence that PFEs are predominantly representatives of a class of ncRNA

modulating expression or otherwise interacting with transcription factors. Our method

extended the length of the predicted functional regions of EvoFold. This study

demonstrates the success of our Bayesian approach in identifying putative ncRNAs

and other regulatory elements using improved alignments.

4.2 Introduction

It has become evident that non-coding RNAs play a significant role in gene regulation.

These elements have been implicated in a variety of biological functions including

transcription [1], RNA splicing [2, 3], editing [4], translation [5] and chromatin modifi-

cation [6–8]. Disruption of ncRNAs is associated with many diseases including cancer

[9], leukaemia [10], diabetes [11, 12] and neurological disorders [13–16]. Further roles
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of ncRNAs include regulation of differentiation and development (retinal and erythroid

development, breast development, epidermal differentiation - [17–21]), regulation of

epigenetic processes (X chromosome dosage compensation, parental imprinting in

mammals, vernalization in plants - [22–31]), and RNA modification and evolution

[32, 33].

Identification of conserved intronic elements is of interest due to their potential to

contain regulatory sequences and non-coding RNAs. Many regulatory elements in

introns are enriched in transcription factor binding sites [34–36] and evolutionary

conservation has been identified as a property of functional transcription factor binding

sites [37–39]. Non-coding RNAs are found in intergenic regions as well as in introns,

but their transcription as part of an intron is a potential mechanism for regulatory

and other interactions with the gene in which they occur [40, 41]. The ncRNAs can be

mainly classified into two groups: (1) short ncRNAs (<200nt, such as ribosomal RNAs,

transfer RNAs, small nucleolar RNAs, microRNAs, endogenous short interfering RNAs,

PIWI-interacting RNAs); and (2) long ncRNAs (>200nt).

The lack of identifying features, such as those used to predict protein-coding genes,

makes the identification of ncRNAs from sequence data alone very challenging. Current

computational methods to identify ncRNAs frequently rely on formation of secondary

structure of a potential ncRNA sequence (such as Mfold- [42], RNAfold- [43], RNAz-

[44]), or combine this approach with comparative sequence analysis (such as EvoFold -

[45]).

Commonly used basic analysis of DNA sequence conservation has two main disadvan-

tages, both of which limit the results that can be obtained. When using an alignment

of orthologous sequences to inspect conservation, sliding window analysis is often used.

This technique involves counting the number of matches/mismatches in overlapping

windows of a predetermined length, to obtain a profile of conservation level across

the sequence. A smaller window allows for more precise localisation of changes in the

property of interest; however a smaller window also allows for noise within the sequence
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to more significantly affect the output. Thus sliding window analysis is inherently a

compromise between these two factors [46]. This compromise fails to fully recognise

the known discrete, modular nature of DNA functionality, for example the boundaries

between exons and introns, the ends of transcription factor binding sites (TFBSs),

and the transcription start sites of expressed RNAs. Thus this technique will not be

able to accurately identify such positions in DNA sequences, and more sophisticated

segmentation methods are required ([47], reviewed in [48]). The second disadvantage is

the common consideration of conservation as a dichotomy (conserved or not-conserved).

It is reasonable to expect that the constraint on any given region will have changed

over the course of evolution, also that for different regions the constraints will have

varied differently over time. A demonstration of this is found in [49], 7 evolutionary

rate classes were identified within mammals and 9 evolutionary rate classes within

drosophilids. Further discussion of the merits of rejecting the idea of a dichotomy of

conservation levels can also be found in [49].

To overcome the above-mentioned disadvantages of conventional analysis of sequence

alignments, we performed an analysis using a Bayesian segmentation model changept

[50, 51]. Adopting a Bayesian approach is beneficial as it provides quantification of

the uncertainties in parameter estimates in the form of probability distributions. The

changept model can be described as a segmentation-classification model, which is

capable of simultaneously segmenting a genomic alignment and classifying segments

into one of a predefined number of segment classes. Segments were classified according

to multiple sequence characteristics including level of evolutionary conservation between

species, GC content and transition/transversion ratio.

Using changept, we carried out a genome-wide analysis using an automated alignment

corresponding to all zebrafish chromosomes. We identified 655 intronic putative

functional elements (PFEs) distributed among 193 zebrafish genes. To determine if

PFEs correspond to ncRNAs or other regulatory elements, the locations of PFEs were

compared with the findings of other methods (EvoFold, RNAz, DNase I footprints
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regions and fRNAdb entries). PFEs were highly enriched in transcription factors.

To examine if there were conserved elements between different members of the same

pathway, we performed a pathway-focussed analysis on 24 genes involved in muscle

development (myogenesis). Understanding the genetic and biochemical processes that

contribute to myogenesis is an important step in developing treatments for muscle

diseases. The interaction of protein-coding genes in the regulation of myogenesis has

been well characterised (reviewed in [52]). Many microRNAs are known to down-

regulate target gene expression by repressing the translation of protein-coding mRNAs

involved in myogenesis [53–55]; in addition lncRNAs have been demonstrated to up-

regulate gene expression by providing a secondary target for microRNAs to bind [56].

Using our segmentation method, we identified 27 PFEs with clearly defined boundaries

that belong to the class of most highly conserved segments. All PFEs were detected

in transcription factors, consistent with the results of the genome-wide analysis. We

validated our findings experimentally, confirming the expression of PFEs in zebrafish

embryos.

4.3 Results

To identify putative functional non-coding elements conserved between human, mouse

and zebrafish, we performed a genome-wide analysis using the readily available multiz 8-

way alignment. For each zebrafish chromosome, a zebrafish-referenced 3-way alignment

was extracted, giving 25 alignments in total. Approximately 4%-5% of each chromosome

was aligned, however this captured 50% of the Ensembl genes.

4.3.1 Identification of conserved non-coding elements

To search for the most conserved elements in each gene, changept was applied to each

alignment independently. Alignments were segmented into T classes, with the value of

T determined using either of the following methods: (1) investigating approximations
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to 3 information criteria; Akaike Information Criterion (AIC), Bayesian Information

Criterion (BIC) and Type V of Deviance Information Criterion (DICV) [57] (Fig. 4.1);

(2) investigating the stability of segment classes based on the conservation levels of

each class, calculated using the mean proportion of alignment matches between 3

species [48] (Fig. 4.2). Next, for each class we calculated profile values, using the post

burn-in iterations of the sampler [58]. These values are posterior probabilities that

each sequence location belongs to the class being profiled. The profiles were visualised

in context using BED files uploaded to the UCSC genome browser.

Figure 4.1: Model selection for eya1. Approximations to well-known information
criteria AIC, BIC and DICV for 1-12 classes. Generally, a lower value of the informa-
tion criteria indicates a better model. BIC clearly suggests a 3-class model. The first
local minimum of AIC and DICV has also occurred at the 3-class model. Therefore we
selected a 3-class model for this data.

Not all the genes on the same chromosome have similar levels of conservation; we

therefore used a gene-specific approach to identify the most conserved regions in each

gene. For each gene, intronic regions that have similar or higher conservation levels

compared to exons were the focus of this analysis. Sometimes there was more than

one class of segment overlapping with exons of the gene (Fig. 4.3). In that case
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Figure 4.2: Model selection of chromosome 1 alignment. Figure shows the time series
plots of conservation level versus iteration number for each class of (A) 19-class model;
and (B) 20-class model. In (A), all classes have stable conservation levels and in (B),
one of the classes has a widely varying conservation level. Thus the 19-class model
was selected for chromosome 1 alignment. Figure (A) also shows that the model has
converged rapidly.

we considered the segment class or classes that overlap with annotated exons (using

annotations in Ensembl) as highly conserved. Notably, there are regions within the

introns which show distinct boundaries and probabilities of belonging to the highly

conserved classes, but which have no annotated function (Fig. 4.3) and some intronic

regions that are more conserved than coding regions (Fig. 4.4).

Figure 4.3: Most conserved segment classes of lrba gene. Two BED files uploaded
to UCSC genome browser correspond to Class 0 (conservation - 71%) and Class 1
(conservation - 75%) segments of zebrafish chromosome 1. Segments in each of Class 0
and Class 1 coincide with annotated exons (wide bars) of lrba (ENSDARG00000031108).
Segments in the left end of Class 9 do not correspond to any annotated functional
elements.
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Figure 4.4: An intronic region more conserved than exons. Figure shows a section of
BED files corresponding to Class 0 and Class 9 of zebrafish chromosome 1 uploaded to
UCSC genome browser. The conservation levels of Class 0 and Class 9 are 71% and
75% respectively. The annotated exon (wide bars) of dachc (ENSDARG00000003142)
coincides with the segment in Class 0. The 261nt long segment in the right end also
belongs to Class 9, hence is more conserved than the marked exon.

Identification of putative functional elements (PFEs)

To identify putative functional non-coding elements in each gene we filtered intronic

segments of at least 100nt in length, such that each position in the region had

≥ 0.9 probability of belonging to the highly conserved class/classes of each gene

in question. Regions which passed this filtering were referred to as PFEs. These

conservative threshold values were chosen to ensure there would be very few false

positives. Consequently, many conserved functional elements that do not pass the

criteria will have been missed. For example, a PFE length threshold of ≥ 100nt will

exclude short matches that could be individual transcription factor binding sites, but

it will also exclude many spurious alignments. The probability that such long regions

could be so well preserved over vast evolutionary time-scales without some form of

constraint is vanishingly small, and thus PFEs are nearly certain to be biologically

meaningful. The later analysis of comparing PFEs with other supporting evidence

and lab results confirmed that there were very few false positives.

In the genome-wide analysis, we identified 665 PFEs distributed among 200 zebrafish

genes (including paralogues). Of these, we discarded 10 PFEs as they were located in

7 alignments of non-homologous genes (different genes in human and zebrafish; Table

B.2). The medium length of the remaining 655 PFEs was 168nt (based on zebrafish
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sequences) and 33% of the PFEs were longer than 200nt. Forty-seven PFEs were located

in zebrafish paralogues corresponding to 23 PFEs in human (highlighted in yellow

in Supplemental Table 1; http://dx.doi.org/10.6084/m9.figshare.1510941). All

other PFEs were in one-to-one correspondence between zebrafish and human. The

number of PFEs identified in each zebrafish chromosome is summarised in Fig. 4.5.

There were 17 genes containing 10 or more PFEs and another 20 genes containing

5 to 9 PFEs. Thirty-four PFEs were identified in foxp2 (ENSDARG00000005453);

this was the highest number of PFEs located in a single gene. The UCSC genomic

coordinates of identified PFEs and Ensembl gene IDs are recorded in Supplemental

Table 1 (http://dx.doi.org/10.6084/m9.figshare.1510941).

Figure 4.5: Number of intronic PFEs identified in each zebrafish chromosome. Six
hundred and fifty five intronic PFEs were identified in 25 zebrafish chromosomes in
total. The highest number of PFEs (98) was detected in zebrafish chromosome 17.
Thirty-four PFEs were identified in foxp2 (ENSDARG00000005453) in chromosome 4
and this is the highest number of PFEs found in a single gene followed by 28 PFEs in
npas3 (ENSDARG00000079182 chromosome 17).
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Comparing PFEs with other supporting evidence

Two possible reasons that a region of non-coding DNA may be conserved are: (1) that

the region is expressed as a ncRNA; and (2) the region is a regulatory element for

gene expression. To determine if PFEs represent functional elements, we compared the

locations of PFEs with functional regions identified by 4 other methods, (1) EvoFold;

(2) RNAz; (3) DNase I footprints; and (4) fRNAdb entries.

Ninety-four percent of PFEs (616) identified in the genome-wide analysis were also

identified by other methods (Fig. 4.6). Of those 616 PFEs, 534 (87%) overlapped

with EvoFold predicted regions and another 24 PFEs were located near EvoFold

regions (within 30nt either side). One hundred and seventy-four PFEs overlapped

with multiple EvoFold regions. Of 58 PFEs that do not contain or are not located

near EvoFold predictions, 5 were in experimentally validated mouse ncRNAs. EvoFold

has identified 21, 859 putative functional intronic elements, genome-wide. The median

length of an EvoFold predicted region is 31.5nt (Q1: 21nt; and Q3: 43nt). Of these,

1445 elements were ≥ 100nt as opposed to 632 identified by changept (relative to the

human sequences). However, only 260 EvoFold regions overlap with PFEs. A large

number (496) of the EvoFold regions were absent from the alignment we used, and an

additional 130 were only partially aligned. The remaining 559 EvoFold predictions

were present in the alignment, but were not detected by our method.

According to DNase I footprints data, 342 PFEs (56%) were in protein binding

regions (expected overlap -15.2%, this was calculated using simulated segments

with the same average length as PFEs using BEDtool-random - see page 120

for details). Ninety-two PFEs (15%) were predicted as structured ncRNAs by

RNAz (Supplemental Table 2; http://dx.doi.org/10.6084/m9.figshare.1510936).

Comparing with fRNAdb results, 47 PFEs matched with experimentally identi-

fied ncRNA transcripts in the database (Fig.4.6 and Supplemental Table 2; http:

//dx.doi.org/10.6084/m9.figshare.1510936). Of these, 45 mapped to ncRNAs

identified in an analysis of the mouse transcriptome [59, 60]. The remaining 2 PFEs
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Figure 4.6: Venn diagram showing the number of genome-wide intronic PFEs sup-
ported by other methods. 94% of the PFEs found in the genome-wide analysis were
overlapped with the functional elements (predicted or experimentally validated) identi-
fied in 4 other databases, EvoFold, fRNAdb, RNAz and DNase I footprints. Most of the
PFEs overlapped with entries in EvoFold and there were 47 matches with experimentally
identified ncRNA transcripts in fRNAdb.

were contained in human ncRNA transcripts [61]. Except for one of the human

ncRNA transcripts (fRNAdb reference FR407542/FR407474), all other transcripts

were substantially longer than the PFEs which they matched. This suggests that

regions identified as PFEs represent functional domains within longer RNA transcripts.

As an added check to determine if PFEs correspond to ncRNAs, we compared the

locations of PFEs with long non-coding RNAs (lncRNAs) identified in zebrafish by

[62–64]. There were 8 PFEs overlapping with lncRNA regions (Supplemental Table

2; http://dx.doi.org/10.6084/m9.figshare.1510936). Of 655 PFEs, 39 were not

identified by other methods we used for comparisons, and thus can be classified as

new predictions.

Investigation of expression using RNA-seq data

Next we used zebrafish RNA-seq data to determine if the PFEs predicted by changept

were expressed. A large number of zebrafish RNA-seq reads (≈ 327 million from Sanger

Institute) were mapped to the zebrafish genome (assembly Zv9). We recorded the
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properly paired RNA-seq read counts overlapping with each of the 655 PFEs (Supple-

mental Table 2; http://dx.doi.org/10.6084/m9.figshare.1510936). Ninety-three

percent of PFEs contained at least a single hit showing evidence of expression (expected

overlap - 85%; later analysis validated expression even with a single hit; eg: PFE # 2

of shha and # 1 of pax3b). However no hits may also mean that these are expressed at

very low levels, or in tissue types or developmental stages that are not in the database.

Supporting this, the remaining 49 PFEs that had 0 reads included 46 PFEs for which

other evidence is available (EvoFold, RNAz, DNase I footprints or fRNAdb entries).

Characterizing genes containing PFEs

Intronic ncRNAs are known to be enriched in transcription factors [40]. To find if

transcription factors were similarly overrepresented in the 193 genes containing PFEs

as identified in the genome-wide analysis, we compared the proportion of transcription

factors in 193 genes to proportion of transcription factors in the alignment, using

AnimalTFDB database [65]. Results indicated that 40.9% of genes with PFEs (79/193)

are transcription factors and 4.7% (9/193) are transcription co-factors. Of the genes

represented in the alignment, 10.6% (1733/16296) were identified as transcription

factors, 1.5% (240/16296) as transcription co-factors and another 0.5% (85/16296) as

chromatin remodelling factors. Therefore PFEs are highly enriched in transcription

factors (p-value: 1.2e-56, Z-test for comparing proportions). As an additional analysis,

we examined the distribution of Gene Ontology (GO) terms (http://geneontology.

org; [66]) in 193 genes with PFEs. According to the results, GO terms associated

with transcription factors (eg: sequence-specific DNA binding transcription factor

activity, sequence-specific DNA binding RNA polymerase II transcription factor activity,

regulation of transcription DNA-templated, transcription from RNA polymerase II

promoter, nucleic acid-templated transcription) were significantly overrepresented in

genes containing PFEs (Table B.3). This analysis identified 8 more transcription

factors not included in AnimalTFDB database (Supplemental Table 3; http://dx.

doi.org/10.6084/m9.figshare.1510937).
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Identification of intergenic PFEs

In the genome-wide study, we also identified 352 regions that satisfy PFE criteria, that

is, are allocated to the most conserved class of the model selected for each chromosome,

but are intergenic according to genes annotated by Ensembl and RefSeq. We referred

to these regions as intergenic PFEs. Of these, 340 intergenic PFEs (97%) were found to

overlap with regions identified by other methods (EvoFold, RNAz, DNase I footprints or

fRNAdb entries, Supplemental Table 4; http://dx.doi.org/10.6084/m9.figshare.

1510938). This also included 12 intergenic PFEs that were in ncRNA transcripts

according to fRNAdb entries and 11 intergenic PFEs that overlapped with intergenic

lncRNAs identified in [62]. There were 12 highly conserved intergenic regions only

identified by program changept.

4.3.2 Examination of Genome-wide results in a specific pathway

The second part of our study was a pathway-focussed analysis. This was performed to:

(1) repeat the PFE analysis with an improved alignment; (2) identify ncRNAs involved

in a well characterised pathway, since that may facilitate future work to determine

their function; and (3) identify ncRNAs that may play a role in myogenesis. Pathway-

focussed analysis was performed on 11 genes encoding transcription factors known to

play important roles in myogenesis, and 13 genes encoding other muscle proteins. For

each gene, human-referenced 3-way alignments were generated independently using

LAGAN alignment tool [67].

Identification of putative functional elements (PFEs)

To search for the most conserved elements in each gene, we applied changept to the

3-way alignments corresponding to each of the 24 myogenesis genes (as opposed to

each chromosome in the genome-wide analysis). The profiles were visualised in context

using WIG files uploaded to the UCSC genome browser. Fig. 4.7 demonstrates the

remarkable effectiveness with which the distinct boundaries of functional elements can
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be identified. Class 1 is the most conserved class, and sharp changes (from low to

high probabilities) in the WIG profile for Class 1 coincide closely with the annotated

positions of exons. Regions within the intron of the gene have not been reported as

functional, but are confidently predicted as belonging to the same conservation class

that includes all the other exons. These regions were considered for PFE analysis

using the same criteria used in the genome-wide analysis (segment length ≥ 100nt;

profile ≥ 0.9).

Figure 4.7: WIG profile of the eya1. The top three profiles show, for each sequence
position in the human eya1 DNA sequence (UCSC genomic coordinates chr8:72,109,668-
72,268,979), the probability that any base at that position belongs to Class 0 (50%
conservation), Class 1 (65% conservation), Class 2 (45% conservation) respectively.
At any position, the sum of the three profiles is 1. The two rows below the Class 2
profile display the exons (wide bars) and the introns (thin lines) of eya1 recorded in
the UCSC and RefSeq collections respectively. Exon boundaries are indicated with red
vertical lines. Class 1 corresponds mainly to the mapped exons of eya1, and covers
regions of high conservation between human, mouse and zebrafish.

We identified 27 PFEs in total and all were found in introns of 7 transcription factors

(Table B.4). Of 27 PFEs, only 5 PFEs (3 of pax3a and 2 of eya1 PFEs) were identified

in our genome-wide analysis. The majority of PFEs were distributed among eya1,

pax3a and pax7. The median length of PFEs was 222nt (based on zebrafish sequences)

and there were 15 PFEs longer than 200nt. In contrast, no PFEs were identified in the

other muscle genes examined, in either the pathway focussed or genome-wide analyses.
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Comparing PFEs with other supporting evidence

We analysed the pathway-focussed PFEs using the same methods used in the genome-

wide analysis (EvoFold, RNAz, DNase I footprints, and fRNAdb entries). An example

WIG profile of a 169nt long PFE identified in the 3-way alignment of eya1 is shown

in Fig. 4.8. Three possible translation phases (top) indicate a lack of open reading

frame within the region. The overlap of the PFE with a sequence protected in DNA

footprinting assays indicates protein binding in this region. Furthermore, the PFE is

also predicted to be a functional ncRNA by EvoFold.

Figure 4.8: WIG profile of eya1 PFE 4. This PFE is located within intron 2 of
human eya1 (UCSC genomic coordinates chr8:72,267,639-72,267,809). The third bar
from the top contains single letter amino acid codes corresponding to the actual protein
translation phase. At the bottom, the light blue bar indicates a DNase-seq peak track
and the green bar shows that there is an EvoFold prediction within the PFE which also
suggest that this region is functional.

The Venn diagram in Fig. 4.9 depicts the number of PFEs supported by other

evidence and summarised in Table 4.1 (full details in Supplemental Table 5; http:

//dx.doi.org/10.6084/m9.figshare.1510939). Of 27 PFEs, 24 were also identified

by other methods, providing strong additional evidence of a functional role. Out of

those 24, the majority of PFEs were identified by either EvoFold (67%) or DNase I

footprint regions (75%). Three PFEs overlapped with multiple EvoFold regions (PFE

# 1 of pax7b, # 3 and # 4 of pax3a). In all cases where PFEs overlap with EvoFold

regions, the PFEs are longer; this suggests that our analysis has identified extended

functional regions of EvoFold predictions.

EvoFold has predicted 44 intronic functional regions in the same human genes con-

taining PFEs. The median length of an EvoFold region is 31nt (Q1: 20nt and Q3:
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Figure 4.9: Venn diagram showing the number of pathway-focussed PFEs supported
by other methods. 88% of the PFEs found in the pathway-focussed analysis overlapped
with the functional elements (predicted or experimentally validated) identified in 4
other databases, EvoFold, fRNAdb, RNAz and DNase I footprints. Most of the PFEs
overlapped with entries in either EvoFold or DNase I footprints and there were 3
matches with experimentally identified ncRNA transcripts in fRNAdb.

Table 4.1: Pathway-focussed results: Number of PFEs supported by other
methods suggestive of function

No. of PFEs contained
Gene No. of

PFEs
identi-
fied

EvoFold DNase
I foot-
prints

RNAz ncRNA
tran-
scripts
(fR-
NAdb)

RNA-
seq
reads

eya1 6 5 6 0 1 6
eya4 2 1 1 0 0 2
pax3 (ZFa)a 7 5 4 0 1 7
pax3(ZFb) 2 1 1 0 1 2
pax7(ZFb) 6 4 3 3 0 6
shh(ZFa) 2 0 1 0 0 2
myf5 1 0 1 1 0 1
six4(ZFsix4.3) 1 0 1 0 0 1
Total 27 16 18 4 3 27

(ZFa)a human and mouse DNA sequences of pax3 is aligned with zebrafish paralog a.
Similarly corresponding zebrafish paralog is mentioned within brackets for other genes
if any.
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52nt). Only 4 of the EvoFold regions were longer than 100nt. These were contained

in PFE # 5 of eya1, # 2 and # 4 of pax3a, and PFE # 4 of pax7b. Of 44 EvoFold

predictions, only 50% overlapped with PFEs and all of these regions were shorter (Q1:

27nt; median: 47nt; Q3: 70nt) than PFEs identified in the pathway-focussed analysis

(which are at least 100nt).

Three PFEs matched with two experimentally identified ncRNA transcripts in mouse

(Table 4.2). Both transcripts that mapped to the corresponding region in the mouse

genome were substantially longer than the PFEs that they matched. This is consistent

with our earlier observation that regions identified as PFEs in the genome-wide analysis,

where they overlap with known ncRNAs, are typically shorter than those ncRNAs, and

thus may represent functional domains within longer RNA transcripts. The remaining

3 PFEs (PFE # 2 of shha, PFE # 1 of pax3a and PFE # 6 of pax7b) were not

identified by any of the 4 methods we used here.

Table 4.2: Pathway-focussed results: PFEs matching with experimentally identified
ncRNAs in fRNAdb

Gene Human UCSC
coordinates

PFE
length
(nt)

fRNAdb
reference

Length
mouse
transcript
(nt)

eya1 chr8:72267639-
72267809

169 FR127136 3697

pax3(ZFa) chr2:223153695-
223153821

126 FR205645 1521

pax3(ZFb) chr2:223153529-
223153656

113 FR205645 1521

Investigation of expression using RNA-seq data

To investigate if PFEs identified in our pathway-focussed analysis show evidence of

expression, the number of properly paired reads overlapping with each of the PFEs

is recorded in Supplemental Table 6 (http://dx.doi.org/10.6084/m9.figshare.

1510940). To ensure the robustness of our analysis, we also examined a set of negative
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controls (25) selected from each of the genes containing PFEs. These were intronic

regions randomly selected from aligned regions ≥ 100nt which do not belong to

the most conserved segment class (the class corresponding to exons) of the selected

model. Results indicates that all PFEs have at least a single hit from the zebrafish

RNA-seq database, suggesting that these regions were all expressed. However, 76%

of the control regions also contained RNA-seq reads (Supplemental Table 6; http:

//dx.doi.org/10.6084/m9.figshare.1510940). This suggests that RNA products

encoded within introns are common in these transcription factors, whether the sequence

is a PFE or not.

Experimental validation of PFEs

PFEs are transcribed

To investigate whether the intronic PFEs identified were transcribed, RT-PCR analysis

was performed using cDNA extracted from 24 hours post-fertilisation (hpf) zebrafish

embryos (Fig. 4.10). Primers were designed to amplify short products within the PFE

sequences (except for PFE # 2 of pax3b as it was too short to design a primer). All of

the genes investigated had at least one positive PCR result for a PFE. In total 92%

(24/26) of the tested PFEs showed a positive PCR result indicating transcription of

the PFE region. The positive control in each case confirmed that the gene of interest,

from which the intronic PFE is derived, is also expressed at 24hpf. The negative

controls were initially chosen from intronic regions within the gene of interest that

were not identified as PFEs. The expected result was that there would be no PCR

product as is seen for eya1 and eya4. Contrary to expectations the other 6 intronic

regions of interest showed a positive PCR result indicating that this intronic region

was also being transcribed. This supports the suggestion that PFEs may be regions

within larger transcripts.
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Figure 4.10: RT-PCR of intronic putative functional elements (PFEs) showing their
presence or absence in 24hpf zebrafish cDNA pools. Each gene has between 1 and 7
PFEs. Positive lane represents an exonic region, spanning an intron, of the gene of
interest. Negative lane represents a randomly selected intronic region that was not
identified as a PFE. Primers were designed to amplify products with sizes ranging
57-274bp. 3 bands of the ladder showing are the 100, 200 and 300bp bands. The gels
with 2 bands of the ladder showing are the 100 and 200bp bands. The panel insert
is a cDNA control. β-actin (exonic spanning an intron) and RNA (RNA used as a
template) lanes demonstrate there is no genomic contamination. No template lane
rules out contamination of other PCR reagents.
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Intronic transcripts are associated with PFEs

Given the detection of intronic transcripts for 6 out of 8 of the PFE containing genes

we wanted to determine if intronic transcripts were found more frequently in PFE

containing genes. We examined 20 additional muscle expressed genes via RT-PCR (Fig.

4.11). Five of the genes (actn2, flnca, myod1, tpma and wnt7ab) were not detected, of

the remaining 15 genes only 1, wnt7aa, showed a band in the intronic region.

Figure 4.11: RT-PCR of muscle expressed genes not containing PFEs. The positive
controls are marked exon. Exonic, intron spanning, controls are represented as exon.
Intronic regions are represented with intron. Primers were designed to amplify products
with sizes ranging 100-638bp. Lane 1 for each gel contains a 100bp ladder. The negative
lanes are no template controls to rule out contamination.
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4.4 Discussion

We carried out two independent analyses: (1) a genome-wide analysis; and (2) a

pathway-focussed analysis of 24 genes involved in myogenesis. The main advantage of

the pathway-focussed analysis was that it was based on manually curated alignments

performed with the aid of LAGAN, whereas the genome-wide analysis was performed

on pre-computed publicly available alignments. Both analyses identified intronic

sequences that are highly conserved in the genes of three vertebrate species: human,

mouse and zebrafish. We have termed these elements Putative Functional Elements

(PFEs).

As the name suggests, there is as yet little indication of what function these PFEs

might have, or how diverse these functions might be. One clue to the possible functions

of PFEs is their prevalence in the introns of transcription factors. This was strikingly

demonstrated by the pathway-focussed analysis: all PFEs were found in introns of

transcription factors, and none in introns of muscle proteins without transcription

factor activity. In the genome-wide analysis, 49.6% of the genes containing PFEs were

identified in transcription factors (p-value: 1.2e-56, Z-test for comparing proportions),

supporting the finding that PFEs are significantly enriched in transcription factors.

PFEs were also found in genes that were not transcription factors, but given that the

defining criteria for PFEs are based only on conservation level and length, a mixture

of functional types is expected.

PFEs found in the introns of transcription factors could contribute to regulatory

interactions in various ways, including:

• Containing binding sites for other transcription factors,

• Containing auto-regulatory binding sites,

• Folding into ncRNAs that interact or form complexes with the containing gene,

and

110



• Folding into ncRNAs that interact or form complexes with other genes in a

manner that coordinates their expression levels and activity with that of the

containing gene.

It is also possible that PFEs in the introns of transcription factors encode ncRNAs

whose function is unrelated to that of the containing gene, but this would not explain

why so many PFEs are so located.

Our RT-PCR results showed that PFEs from the introns of muscle-related genes are

expressed and suggest that they may play a functional role at the RNA level. In

fact, these experimental results indicate something stronger: expression of intronic

sequences (not just PFEs) is much more common in transcription factors, at least for

genes expressed in muscle tissue at 24 hpf. We found many non-PFE sequences from

transcription factor introns were also expressed, but very few sequences from the introns

of other muscle-related genes were expressed. A plausible explanation of these results

is that the PFEs identified in our pathway-focused analysis are conserved functional

domains within longer ncRNAs encoded within the introns of transcription factors.

This conclusion is supported by the 47 PFEs that matched experimentally verified

ncRNAs in human and mouse: all but one of these were from ncRNAs substantially

longer than the PFE. The fact that PFEs represent deeply conserved portions of

larger functional elements that are not as strongly conserved, supports the finding

that functional sequences need not be conserved (reviewed in [68]).

One surprising finding is that only 5 of the 27 PFEs identified in the pathway-focussed

analysis were found in the genome-wide analysis. We attribute this to the superior

quality of the alignments used in the pathway-focussed analysis, due not only to the

use of LAGAN, but also to manual interventions to improve alignment quality. This

was not feasible genome-wide. It does suggest, however, that the genome-wide analysis

may be finding only a fraction of the intronic elements conserved between human and

zebrafish.
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To determine if PFEs correspond to ncRNAs or other regulatory sequences, we com-

pared them to other bioinformatics resources (EvoFold, RNAz, DNase-seq footprints

and fRNAdb entries). The majority (85%) of our PFEs identified in the genome-wide

study contain EvoFold predicted regions. EvoFold has identified 1445 intronic regions

longer than 100nt in the human genome with the potential to form RNA structures.

However a larger number of these regions were absent from the alignment we used.

This could be due in part to using different alignments with different assemblies and

even different species. Our analysis was performed using a more recent alignment

including the human 2009 assembly, whereas EvoFold findings are based on an earlier

8-way alignment including the human 2004 assembly. The alignments contain only 4

species in common: human, mouse, zebrafish and fugu. On the other hand, we failed

to detect 559 EvoFold predictions that were present in our alignment. This could be

due to: (1) failing to satisfy the PFE gap criteria (we rejected segments with a gap of

≥ 20 alignment columns or if the total length of gaps within the segment was ≥ 10%

the length of the segment); or (2) the segments may not be as highly conserved as

exons.

This situation was reversed in the pathway-focussed analysis, where we identified 27

PFEs and EvoFold only found 4 regions ≥ 100nt in the same human genes. This could

be attributed to the success of our Bayesian method applied to an improved alignment

used in the pathway-focussed analysis.

Ninety-seven (15%) of the PFEs identified in the genome-wide analysis do not contain

EvoFold regions and are not within 30nt of an EvoFold region. Of these, 61% (59)

overlap either RNAz, DNase I footprints or fRNAdb entries and 35/38 of the remaining

PFEs not identified by these methods/resources contained at least 1 RNAseq hit.

Moreover, 11 PFEs identified in the pathway-focussed analysis do not contain EvoFold

predictions but were all found to be expressed in our RT-PCR results. In addition to

identifying putative ncRNAs not identified by EvoFold, our method typically extends

the length of the predicted functional regions, so much so that many of our PFEs

112



contain two or more EvoFold predictions. In particular, in the pathway-focussed

results, PFEs that contain an EvoFold prediction are substantially longer than that

Evofold prediction.

One of the limitations in validating PFEs using other resources is the fact that some of

the ncRNAs and regulatory sequences will only have a functional role at a particular

developmental stage in a specific tissue. For example, if one looks for expression or

DNAse sensitivity of such a PFE at a different developmental stage or in a different

tissue to that in which it has a functional role, validation will not be successful. For

this reason, even those PFEs that we were not able to validate via other methods may

yet be functional.

In summary, our study provides a systematic process centred around a Bayesian

segmentation method to identify putative intronic functional elements in genomes

that may contain ncRNAs and other regulatory sequences. That these elements are

enriched in transcription factors provides further evidence that they are functional

domains of ncRNAs, given that ncRNAs are also known to be enriched in transcription

factors [40].

4.5 Methods

4.5.1 The list of genes used in pathway-focussed analysis

Transcription factors of myogenesis pathway: eya1, eya4, pax3, pax7, six4, myf5, shh,

six1, myod1, myog, myf6

Other muscle proteins: wnt1, wnt7a, acta1, actc1, actn2, actn3, bag3, des, flnc, tpm3,

myh7, tnnt1, nebulin
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4.5.2 Sequence and alignment of data

Genome-wide analysis

Multiz 8-way alignment was downloaded from UCSC genome browser (http://

hgdownload-test.cse.ucsc.edu/goldenPath/danRer7/multiz8way/). The assem-

blies used in the alignments were: zebrafish: Zv9/danRer7; human: hg19/GRCh37

and mouse: GRCM38/mm9. For each zebrafish chromosome, the 3-way alignment

(zebrafish-referenced) was extracted using program mafExtractor (https://github.

com/dentearl/mafTools/tree/master/mafExtractor) giving 25 alignments in total,

one for each zebrafish chromosome.

Pathway- focussed analysis

Human, mouse and zebrafish DNA sequences for each of 24 genes were downloaded

from Ensembl genome browser (http://www.ensembl.org/index.html; zebrafish:

Zv9; human: GRCh37 and mouse: NCBIM37). For 10 of these 24 genes (pax3,

shh, six1, wnt7a, acta, actc, actn3, desm, flnc, tpm3 ), there are 2 paralogues in

zebrafish and for myh7 there are 3 paralogues. Thus a separate 3-way alignment was

generated for each of these, giving a total of 36 alignments (for pax7, only pax7b was

used as we could not find the complete sequence of pax7a). We used LAGAN [67]

to perform the 3-way alignments (human-referenced) using default parameters. For

the few cases where we noticed mis-alignments of exons (eg: myf6, wnt7aa), those

sequences were aligned separately using ClustalW2 (http://www.ebi.ac.uk/Tools/

msa/clustalw2/) effectively forcing exons to align. We then combined the ClustalW2

results (partial alignments) with the original LAGAN alignments.

4.5.3 Transform alignments

Each of the 3-way alignments was transformed into a single 32-character sequence

(A=a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,U,V,W,X,Y,Z) using the following
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encoding using a perl script. This sequence was used as the input for program changept.

The alignment columns with complementary bases were also encoded using the same

characters.

Human: AAAAAAAAAAAAAAAACCCCCCCCCCCCCCCC

Mouse: AAAACCCCGGGGTTTTAAAACCCCGGGGTTTT

Zebrafish: ACGTACGTACGTACGTACGTACGTACGTACGT

Symbol: abcdefghijklmnopqrstuvwxyzUVWXYZ

The insertions and deletions (indels) in the alignment were excluded from analysis. In

the genome-wide analysis, discontinuous alignment blocks with respect to each species

were also separated by using a # symbol. The # symbol is considered as a fixed

change-point in the model. Occasionally changept identified only 1-class of segments

in segmenting the 3-way alignments of relatively short genes (for example shh, myog,

six1, six4 in pathway-focussed analysis). This problem was overcome by concatenating

the 32-character sequences of such genes, thus providing changept a larger sample to

segment.

4.5.4 Change-point analysis

A full description of the changept model can be found in previous papers [50, 51,

69]. In summary, the sequences generated for 3-way alignments for each of the

genes/chromosomes were separately run through changept to find positions (change-

points) in the sequences that delineate homogeneous segments. Character frequencies

within each segment are modelled as a multinomial distribution with parameter

Θ = (θa, θb, ..., θY , θZ), where θ is drawn from one of T Dirichlet distributions. As the

number of classes (T ) is unknown a priori, independent runs with different numbers of

classes were performed. The generalized Gibbs sampler [69] was used to sample from

the varying dimensional space: it allows the number of change-points to vary. Each
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model was run with varying values of T for 1,000 iterations. Information criteria was

then used to select the value of T.

4.5.5 Assessing convergence

The convergence of the model was assessed by plotting the log-likelihood of each of the

1000 iterations using an R script. The burn-in phase is characterised by an upward

trend in the log-likelihood. In addition, we used Heidelberger and Welch convergence

diagnostic test [70, 71] of the CODA package [72, 73] to validate the convergence

results (Table B.1).

4.5.6 Model selection

To determine the optimal number of classes for each alignment, we calculated approxi-

mations to three information criterion values - AIC, BIC and DIC - using post burn-in

samples. These approximations are discussed in [57]. The model with the smallest

information criterion value is generally considered optimal. However, model selection

was not purely based on this method. A subjective judgement was made on which

model to choose by investigating the mixture proportions; a model containing classes

with very low mixture proportions was considered to be an over-fitted model and thus a

model with a smaller number of classes was selected. In combination with this method,

we also used an alternative model selection method, by investigating the stability

of segment classes [48]. Stability of classes was assessed based on time-series plots

of conservation levels versus sample number. Classes which were highly variable in

conservation levels were deemed unstable (again this involved a subjective judgement).

4.5.7 Quantifying the conservation level of segment classes

Changept employs Markov Chain Monte Carlo (MCMC) sampling. The individual

character frequencies within each class were calculated at each iteration. To determine
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the conservation level of each class for the selected model, the mean proportion of

alignment matches, E(θ) was calculated for each iteration of the sampler.

E[θ] =
θa + θv∑
j∈A θj

Here characters a and v represent conserved bases. These values were plotted against

each iteration number (Fig. 4.2). These conservation plots were also used to assess

the convergence as a second method (eg: Fig. 4.2(A) shows that convergence to the

limiting distribution has occurred).

4.5.8 The readcp program

We used readcp program (part of the changept package) to calculate profile values

showing the probability that each sequence position belongs to a given class of the

chosen model. These posterior probabilities are estimated by Monte Carlo integration.

A complete description of how to use programs changept and readcp can be found in

[58].

4.5.9 Identifying putative functional elements

PFEs were identified for the 3-way alignments of each gene using the following criteria:

an intronic segment of at least 100nt in length, such that each position had ≥ 0.9

probability of belonging to the most conserved segment class/classes. As changept

skips gaps in the alignment, gaps were considered in the following manner: a segment

was not considered continuous if there was a gap of ≥ 20 alignment columns or if

the total length of gaps within the segment was ≥ 10% the length of the segment.

In the genome-wide analysis, regions that satisfy PFE criteria belonging to the most

conserved class of the selected model corresponding to each zebrafish chromosome, but

not located in genic regions were referred as intergenic PFEs.
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4.5.10 Creating wiggle tracks and BED files

The readcp output was used to generate BED files or wiggle tracks (one for each

class in the final model) so that results could be plotted as a profile alongside gene

tracks and other information in the UCSC browser. In the genome-wide analysis, we

used the more compact BED file format to handle the large amount of data. The

positions of segments matching PFE criterion (minimum segment length of 100nt

with profile ≥ 0.9 and same gap criterion as above) in each class and in each model

were recorded in BED format with genomic coordinates relative to zebrafish. We

used intersect BEDtool (http://bedtools.readthedocs.org/en/latest/content/

tools/intersect.html) to find the segment class (or classes) that overlap with

annotated exons (3′ UTR exons, 5′ UTR exons and the coding exons downloaded from

UCSC table browser) of the gene in question. Sometimes there was more than one class

corresponding to annotated exons of the gene (Fig. 4.3) and occasionally segments

satisfying PFE criteria were found to be located in a class more highly conserved than

a class corresponding to marked exons (for example, there is a PFE in Class 9 in

Fig. 4.4). Thus in each gene, segments that were conserved at a level comparable or

higher than exons were considered for PFE analysis. In our analysis we only reported

PFEs with conservation level >50%. Wiggle tracks were used in the pathway-focussed

analysis. The WIG profile for a selected class shows the probability that the base at a

particular position in the sequence belongs to the class in question, thus every position

has an associated value between 0 and 1 (Fig. 4.7). In this analysis, we examined the

wiggle track of the most conserved segment class (for example, Class 1 of Fig. 4.7).

4.5.11 Mapping with zebrafish RNA-seq data

The RNA-seq reads were downloaded from the European Nucleotide Archive (ENA) web

application accessible at http://www.ebi.ac.uk/ena/data/view/ERP000016. These

paired-end reads were 36, 37, 54 and 76 base pairs long and had been extracted from
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zebrafish embryonic and adult tissues [74]. We performed the initial quality control

(QC) checks using FASTQC program (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/). Reads were filtered for quality using Trimmomatic [75] by

removing all leading and trailing bases with quality less than 30, and then discarding:

(1) reads shorter than 20nt after trimming; and (2) any unpaired reads. We used

Bowtie2 [76] with default options to align a total of 327,019,912 QC passed paired-end

reads to the zebrafish genome. 86% of the reads were mapped. We then used BEDtools

- multicov to count the number of properly paired reads overlapping with each of

the PFEs to get an indication whether the regions identified by the changept were

expressed.

4.5.12 Other supporting evidence

EvoFold

Human genomic coordinates of EvoFold regions were downloaded in BED format using

UCSC table browser. To check the overlap between PFEs and EvoFold regions, we

used BEDtool -intersect.

DNase I footprints

We used the database of DNase-seq footprints identified by the ENCODE project [77]

in their large-scale analysis of 41 different human cell types. The data (combined.fps.gz)

was downloaded from link ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/

integration_data_jan2011/byDataType/footprints/jan2011/. Once again BED-

tool -intersect was used to check the overlap between PFEs and DNase-seq footprints.

fRNAdb

The BLAST function of fRNAdb database (accessible at http://www.ncrna.org/

frnadb/blast) was used to search for fRNAdb entries (ncRNA transcripts and RNAz
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regions) with high sequence similarity to human sequences of each PFE identified in

our analysis.

Calculating expected “overlaps”

To find what proportion of PFEs would overlap DNAse I hypersensitive regions if

PFEs were randomly distributed in the aligned portions of the human genome, first

we generated a BED file of random segments of the aligned portion of the genome

using BEDtool- random. We set the segments’ length to average PFE length. Next,

we used BEDtool- intersect to find the overlap between randomly distributed PFEs

and DNAse I hypersensitive regions. The same method was used to find the expected

overlaps between RNA-seq properly paired reads and randomly distributed PFEs in

zebrafish genome.

4.5.13 Experimental validation

Zebrafish maintenance and cDNA synthesis

Zebrafish were maintained as previously described in [78]. RNA was collected from

24hpf wild-type embryos using TRI-Reagent (Sigma-Aldrich) and treated with DNAse

(Promega) to remove genomic DNA. cDNA was synthesised using the ProtoScript II

First Strand cDNA Synthesis Kit (NEB) according to the manufacturer’s instructions.

Designing primers

Positive control sequences were obtained using Ensembl Genome Browser (http:

//www.ensembl.org/index.html) and regions spanning introns of the genes of interest

were selected. PFE and negative control sequences were obtained after analysis with

changept and primers were designed using the online software Primer3 (http://

bioinfo.ut.ee/primer3). Polymerase chain reaction and Gel electrophoresis Reverse

transcriptase PCR was performed using GoTaq Green Master Mix (Promega). Samples

were amplified for 30 cycles with an annealing temperature of 57◦C. 15 µl of each
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sample was run on a 3% TBE gel, supplemented with GelRed (Biotium), at 60V for 3

hours.

PCR and Gel

Reverse transcriptase PCR was performed using GoTaq Green Master Mix (Promega).

Samples were run for 30 cycles with an annealing temperature of 57◦C. 15 µl of each

sample was run on a 3% TBE gel, supplemented with GelRed (Biotium), at 60V for 3

hours.

4.5.14 Identification of proportion of transcription factors in

genes with PFEs

AnimalTFDB (http://bioinfo.life.hust.edu.cn/AnimalTFDB/index.shtml;

[79]) is a comprehensive database including classification and annotation of genome-

wide transcription factors, transcription co-factors and chromatin remodelling factors

in 65 animal genomes including zebrafish. To examine the proportion of genes

containing PFEs that belong to each of these 3 categories, we first downloaded

the Ensembl gene list associated with each category. In total, there were 2,345

transcription factors, 315 transcription co-factors and 100 chromatin remodelling

factors in the database. Next we used BEDtool-intersect to check how many genes

were represented in genome-wide 3 way alignments. 16,296 genes (from total 32,475

Ensembl genes) overlapped with the segments recorded in our BED files. The final

step was to examine the proportion of transcription factors, transcription co-factors

and chromatin remodelling factors in aligned 16,296 genes using the 3 lists downloaded

from AnimalTFDB. To perform GO enrichment analysis, we used AmiGO web

interface accessible at http://amigo.geneontology.org/amigo [80]. We obtained

significant GO terms (with p-value <0.05) in each of three sub-ontologies: Biological

Process (BP), Molecular Function (MF) and Cellular Component (CC) using 193

zebrafish genes containing PFEs. Further, we manually filtered GO terms associated
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with DNA binding, regulation of gene expression, sequence-specific DNA binding and

nucleic acid binding to check if any of the genes in the sample were classified as

transcription factors using existing evidence.

4.6 Data access

The zebrafish positions of the intronic and intergenic PFEs identified in the genome-

wide analysis were recorded in BED format and are available as part of supplemental

materials (Supplemental File 1, http://dx.doi.org/10.6084/m9.figshare.1517694

and Supplemental File 2, http://dx.doi.org/10.6084/m9.figshare.1517695, re-

spectively).
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Chapter 5

Discovery of Putative Small Non-

Coding RNAs from the Obligate Intra-

cellular Bacterium Wolbachia Pipientis

Chapter Objectives

This chapter addresses the second objective of this thesis, which is to identify putative

functional non-coding genomic regions contributing to diseases. This work was carried

out as part of the eradicate dengue project. Dengue fever is transmitted by the

mosquito, Aedes aegypti. It has been revealed that the presence of Wolbachia in

mosquitoes blocks the ability of the dengue virus to grow in mosquitoes and we

hypothesise that small ncRNAs play a significant role in the biology of Wolbachia.

To identify these elements and to understand how Wolbachia interacts with their

hosts, two independent methods were used: (1) comparative genomics (by applying

changept); and (2) using RNA-seq data. Use of a 16-character representation to encode

the pair-wise alignment between two Wolbachia strains - wMel and wPip helped to

clearly distinguish a large number of segment classes. This analysis revealed a number
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of putative small ncRNAs that may play a significant role in reducing dengue virus

transmission.
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Abstract
Wolbachia pipientis is an endosymbiotic bacterium that induces a wide range of effects in

its insect hosts, including manipulation of reproduction and protection against pathogens.

Little is known of the molecular mechanisms underlying the insect-Wolbachia interaction,
though it is likely to be mediated via the secretion of proteins or other factors. There is an in-

creasing amount of evidence that bacteria regulate many cellular processes, including se-

cretion of virulence factors, using small non-coding RNAs (sRNAs), but sRNAs have not

previously been described fromWolbachia. We have used two independent approaches,

one based on comparative genomics and the other using RNA-Seq data generated for

gene expression studies, to identify candidate sRNAs inWolbachia. We experimentally

characterized the expression of one of these candidates in fourWolbachia strains, and
showed that it is differentially regulated in different host tissues and sexes. Given the roles

played by sRNAs in other host-associated bacteria, the conservation of the candidate

sRNAs between differentWolbachia strains, and the sex- and tissue-specific differential

regulation we have identified, we hypothesise that sRNAs may play a significant role in the

biology ofWolbachia, and in particular in its interactions with its host.

Introduction
Wolbachia pipientis is a vertically transmitted endosymbiotic Alphaproteobacteria that is
thought to infect up to 40% of arthropod species [1]. DifferentWolbachia strains induce a di-
verse range of effects in their hosts, including multiple forms of reproductive manipulation
that enhance transmission of the endosymbiont to the next host generation [2,3]. More recent-
ly it has also been discovered that a number ofWolbachia strains inhibit the replication of viral
and other pathogens in both their natural hosts, such as Drosophila melanogaster, and heterol-
ogous hosts such as Aedes aegypti [4–6]. These effects makeWolbachia an attractive biocontrol
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agent for vector-borne diseases, and field releases ofWolbachia-infected A. aegypti are current-
ly being tested in trials with the aim of reducing dengue virus transmission [7].

The molecular mechanisms by whichWolbachia causes these different host phenotypes re-
main largely unknown. Recent work has demonstrated thatWolbachia infection modulates ex-
pression of mosquito host miRNAs that regulate diverse genetic targets, including host
metalloprotease and methylase genes [8–10].Wolbachia infection in other taxa has also been
shown to affect transcription of host genes involved in iron metabolism and the oxidative stress
response [11–13]. At least some host responses toWolbachia infection are likely to be induced
by effectors secreted by the endosymbiont.Wolbachia has a conserved and functional type IV
secretion system (T4SS) [14], and these systems are known to play a role in infection, survival
and proliferation in many other symbiotic and pathogenic intracellular prokaryotes [15].Wol-
bachia genomes also contain an unusual number of genes encoding ankyrin domains. Host-in-
teracting ankyrin proteins are secreted via the T4SS in other intracellular Alphaproteobacteria
such as Anaplasma phagocytophilum and Ehrlichia chaffeensis, and these proteins are consid-
ered the most likely candidates to underlie the molecular dialogue betweenWolbachia and its
host [16–20].

NumerousWolbachia genes, including those encoding ankyrin domains, show host sex-
and tissue-specific expression patterns [21,22], further suggesting that they may be involved in
host interaction. The mechanisms by whichWolbachia regulates the expression of these genes
are currently unknown. Few transcription factors have been identified inWolbachia genomes,
and these factors have so far been shown to regulate only a small number of genes [23]. Recent-
ly, however, numerous other species of facultative or obligate intracellular bacteria have been
shown to use small non-coding RNAs (sRNAs) to regulate the expression of genes associated
with diverse aspects of host interaction, including iron homeostasis [24], the cell cycle [25],
quorum-sensing [26], secretion systems [27] and secreted virulence factors [28–30]. These
small RNAs are highly variable in sequence and function, and vary in number from a few tens
to a few hundreds in many bacterial genomes [31].

There are at least five main classes of sRNAs, which regulate gene expression in several ways
[31,32]. Antisense sRNAs are typically 50–500 nt in length, are transcribed from the opposite
strand of the genes that they regulate, and act via extensive complementarity with their target
mRNAs. Trans-encoded sRNAs, in contrast, are often shorter (around 100 nt), are usually en-
coded intergenically or with partial overlap of one or more CDSs, may regulate many different
mRNAs, and have much more limited complementarity with their targets. Both antisense and
trans-encoded sRNAs may interact with mRNA targets to enhance or inhibit translation. A
third kind of sRNA, also encoded outside CDSs, are 5' riboswitches, which do not operate as in-
dependent transcripts but are part of the mRNA they regulate. Fourth, there are a small num-
ber of sRNAs, such as 6S sRNA, that interact with proteins rather than mRNA. Finally,
bacteria also encode a number of 'housekeeping' sRNAs that do not pair with mRNAs or regu-
late proteins; these include the ribozyme RNase P, the 4.5S RNA component of the signal rec-
ognition peptide, and tmRNA. Genes encoding tmRNA, 4.5S sRNA, RNase P and 6S sRNA are
present inWolbachia genomes, and the latter two show host tissue-specific expression in filari-
al nematodes [21]. To our knowledge, however, no antisense or trans-encoded sRNAs have
previously been identified inWolbachia genomes.

The majority of trans-encoded sRNAs described to date are expressed under specific growth
conditions [31], and this class of sRNA may therefore be of particular interest in elucidating
host sex- and tissue-specific gene regulation inWolbachia. In this study, two independent
methods have allowed the identification of candidate trans-encoded sRNA in severalWolba-
chia strains. The first method is based on examination of RNA-Seq data from theWolbachia
strains wMelPop, wMelPop-CLA and wMelCS. To investigate the potential utility of RNA-Seq
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forWolbachia gene expression studies, we had previously performed a number of trial runs of
this sequencing technology. These data were not ideal for detection of sRNAs, as we did not
perform strand-specific sequencing and had chosen to sequence DNA fragments of*300 nt,
which is longer than many known sRNAs. Despite these limitations, however, we serendipi-
tously identified a number of sRNA candidates while analysing the sequencing reads for other
purposes. The second method we used to identify candidate sRNAs is bioinformatic, and based
on comparative genomics of the strains wMel and wPip.

To increase the probability that the candidates identified using the methods above are true
sRNAs, we have conservatively focused on transcripts that are encoded entirely within inter-
genic regions rather than overlapping a CDS, and that are transcribed specifically rather than
as an intergenic component of a polycistronic mRNA. We identified several candidate sRNAs,
and have experimentally confirmed the differential expression of one putative sRNA in four
strains ofWolbachia, and in different host sexes and tissues.

Materials and Methods

Fly rearing and cell culture
Drosophila melanogaster (w1118) stock lines stably infected with the wMel, wMelPop, wMelCS
and wAu strains ofWolbachia were maintained on standard molasses and cornmeal medium
at a constant temperature of 25°C with a 12h light/dark cycle [33,34].

C6/36 cells infected with wMelPop-CLA were routinely passaged in RPMI 1640 medium
supplemented with 10% FBS [35].

Sample preparation for RNA-Seq experiment
We performed RNA-Seq sequencing on five trial libraries. Three libraries were created using
material from C6/36 cells infected with wMelPop-CLA, and two libraries were created from
the heads of flies infected with either wMelPop or wMelCS. In an attempt to minimize the
number of experimental manipulations that could affect the transcriptomic profile, we created
the two fly libraries without performing either purification ofWolbachia from the host material
or depletion of host orWolbachia rRNA. For each of these libraries, we dissected the heads
from 10 flies. wMelCS was obtained from D.melanogaster Canton S virgin female flies at 3
days of age, and wMelPop was obtained from D.melanogaster w1118 virgin female flies at 3
days of age. In each case, total RNA was isolated after homogenization of dissected heads in
100ul of Trizol (Invitrogen). RNA was then purified according to the manufacturer’s instruc-
tions and DNase-treated (DNase I recombinant, Roche) before being sent for
Illumina sequencing.

The three samples derived from wMelPop-CLA-infected cell culture were each subject to
different treatment. For the first, total RNA was isolated from a 175cm2 flask of wMelPop-
CLA-infected C6/36 cells at*80% confluence using Trizol according to the manufacturer’s in-
structions, and the RNA was DNase treated and sent for Illumina sequencing. For the second
sample, we extracted total RNA from a single flask of cell culture as above, while for the third
sample, we purifiedWolbachia from the cell culture using the method of Iturbe-Ormaetxe et al
[36], then performed total RNA extraction. For both samples, RNA was DNase-treated and
then depleted for host and bacterial rRNA using successively the RiboMinus Eukaryote kit
(Ambion) and the MicrobExpress bacterial mRNA Enrichment kit (Ambion) according to the
manufacturer’s instructions. After depletion, first and second-strand cDNA synthesis was done
using SuperScript III Reverse Transcriptase (Life Technologies) and DNA Polymerase I, Kle-
now Fragment (NEB) according to the manufacturer’s instructions. cDNAs were purified
using the MinElute Reaction Cleanup Kit (Qiagen) before being sent for Illumina sequencing.

Wolbachia Small Non-Coding RNA Discovery
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The second and third cell culture samples (those with rRNA depletion) were indexed on a
single lane of Illumina GAII, and sequenced at Micromon (Monash University), with 300 bp
size selection and 75 bp paired-end reads. The remaining three samples were sent to Macrogen
(South Korea) for library preparation and sequencing indexed on a single lane of HiSeq, with
300 bp size selection and 70 bp paired-end reads.

The RNA-Seq sequence data have been deposited at NCBI under Bioproject PRJNA266744,
sample numbers SAMN03174110, SAMN03174111, SAMN03174113, SAMN03174115 and
SAMN03174116.

Data analysis and mapping of RNA-Seq reads
We filtered reads for quality using Trimmomatic [37] by removing all trailing bases with quali-
ty less than 30, and then discarding (1) reads shorter than 40 nt after trimming and (2) any un-
paired reads. We then performed read mapping and downstream analyses using the Nesoni
toolset (http://www.vicbioinformatics.com/software.nesoni.shtml). Filtered paired reads were
mapped to the reference wMel genome [18] using BWA [38], and then mappings were filtered
so that read pairs with multiple equally good alignments were randomly assigned to one of
those alignments. We then created a modified wMel gff file that listed intergenic regions as well
as the more typical annotation features (CDSs, rRNAs, tRNAs, etc), and used a custom Perl
script to count the alignments to each feature.

Because some intergenic regions are smaller than the mean fragment size sequenced, and
because there appears to be a substantial amount of polycistronic transcription occuring in
wMel, many "intergenic" mapping counts actually reflect transcription of flanking genes. None-
theless, these counts provided us with a preliminary list of candidate intergenic regions with
high transcription levels. We then inspected the read mapping data for these candidate regions
in the Artemis genome browser [39]. We identified regions that appeared to have intergenic-
specific transcription, based on mapping of read pairs, for further investigation.

Change-point analysis: prediction of conserved candidate sRNAs
We used the program changept to identify a class of segments characterized by a high degree of
conservation. The process followed in this analysis is described below.

Sequence and alignment of data. We used the published complete genome sequences of
wMel and wPip (NCBI accession numbers NC_002978.6 and NC_010981.1 respectively) to
identify intergenic regions that were highly conserved between these strains. Fragments of the
genome may show low levels of divergence between strains for at least two reasons. The first
possibility is that they are evolving under selective constraint, and these are the regions we wish
to identify. Alternatively, however, genomic regions that were horizontally transferred between
wMel and wPip after the divergence of these strains will also be more similar to one another
than expected, not due to selection but because they have a more recent common ancestor than
the rest of the genome. We took two approaches to exclude these regions. First, we masked pro-
phage regions [40] and a known region of horizontal gene transfer (WD0507-WD0517 [41]) in
the genomes before analysis. Secondly, we also performed a post hoc check for horizontal
transfer after candidates were identified by extracting their nucleotide sequences from the
wMel genome and using them as megablast queries against the NCBI NT database. To attempt
to exclude regions that have artifactually low levels of divergence due to recent horizontal
transfer between supergroups, we accepted only those candidate regions that had better hits to
all available A group genomes than to all available B group genomes. The changept procedure
we used to identify these conserved non-CDSs is described below. We aligned the masked ge-
nomes using progressive Mauve [42], and used the accessory script stripSubsetLCBs (available
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from http://gel.ahabs.wisc.edu/mauve/snapshots/) to extract local colinearity blocks (aligned
core genome blocks) at least 500 nt in length. We then used a custom script to convert this
XMFA output file into Fasta format.

Data transformation. The pairwise alignment of wMel and wPip was then converted into
a changept input sequence using a 16-character code (A = (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o,
p)), (Table 1). Insertions and deletions were excluded. The alignment blocks were separated
using the ‘#’ symbol; these are considered as fixed change-points by the model. In 16-character
representation, characters ‘a’, ‘f’, ‘k’ and ‘p’ represent conserved bases. Although this sequence
also contains other biologically significant information, such as the GC content of each species
and transition/transversion ratio, we were mainly focused on the different levels of conserva-
tion between wMel and wPip.

Model selection. Changept currently requires the user to specify the number of segment
classes. Separate segmentation analyses were performed for models with 1–12 segment classes.
Each model was run for 1,000 iterations. Selecting the model with the most appropriate num-
ber of classes involved model selection criteria discussed in [43]. In summary, we calculated ap-
proximations to three information criteria: AIC, BIC and DIC (Figure A in S1 File). The model
with the smallest information criterion is generally considered optimal. However a subjective
judgment was made on which model to choose; models containing classes with very low mix-
ture proportions were considered to be over-fitted and thus a model with fewer classes was se-
lected. For this data, we selected the 7-class model. BIC increases with the number of classes,
displaying an unusual behaviour (Panel B, Figure A in S1 File); therefore we based our decision
on AIC and DICV (Panel A, Figure A in S1 File). The first local minimum of both these criteria
occurred at seven classes.

The most conserved class. To determine the most conserved class of the selected model,
the mean proportion of alignment matches was calculated for each iteration of the sampler:

E yð Þ ¼ ya þ yf þ yk þ ypP
j2A yj

where θj; j 2 A is the frequency of character j in the most conserved segment class.
These values were plotted against iteration number (Figure B in S1 File). This plot was also

used as an added check to determine if the model had converged along with the loglikelihood
plot (obtained by plotting the log likelihood at each iteration for the 1000 iterations).

Calculating profile values and generating wiggle track. We used the program readcp
(part of the changept package) to calculate profile values for the most conserved segment class.
The profile shows the probability that each sequence position belongs to the specified class.
These posterior probabilities are estimated using the samples from the post burn-in phase (that
is, the first 150 samples were discarded) by Monte Carlo integration. A complete description of
the changept and readcp programs can be found in [44,45]. The readcp output is then used to
generate a wiggle track (https://cgwb.nci.nih.gov/goldenPath/help/wiggle.html). This file was
uploaded to the UCSC browser (http://microbes.ucsc.edu/) for viewing in order to identify
highly conserved non-coding segments in wMel and wPip. A section of the wiggle track corre-
sponding to one of the candidate sRNAs (wMel coordinates 1,039,579–1,039,870) predicted by

Table 1. changept 16-character code used for conversion of pairwise alignment of wMel and wPip.

wMel A A A A C C C C G G G G T T T T

wPip A C G T A C G T A C G T A C G T

Symbol a b C d e f g h i j k l m n o p

doi:10.1371/journal.pone.0118595.t001
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the changept program is shown in Fig. 1. The non-CDs regions longer than 50 nt with profile
value� 0.5 are considered as most likely candidates.

Validation of 50 ends of candidate sRNAs by Rapid Amplification of
cDNA Ends
A Rapid Amplification of cDNA Ends (RACE) procedure was used to determine the 5’ ends of
a selection of candidate sRNAs [46]. The protocol used is based on the procedure described by
[47]. Briefly, total RNA was isolated from whole bodies of*100 wMel-infected 1-day-old
adult male w1118 flies using Trizol, DNAse-treated, and treated with Tobacco Acid Pyropho-
sphatase (Epicentre) for 30 min at 37°C. T4 RNA ligase (NEB) was used to add a short RNA
adaptor on the 5’ ends of RNA. Reverse transcription of RNA was performed using primers
complementary for candidate sRNAs and Superscript III (Invitrogen). Primers and adaptor se-
quences are listed in Table A in S1 File. The resulting cDNA was used as template for PCR
using candidate sRNA specific primers and RNA adaptor specific primers. PCR products were
run on a 1% agarose gel, gel-extracted using the QIAEX II kit (QIAGEN), and cloned in
pGEMTeasy vector (Promega). E. coliDH5α were transformed with the constructs and plas-
mids were purified using the QIAprep spin miniprep kit (QIAGEN) prior to sequencing using
SP6 primer (Micromon, Monash University, Australia).

Verification of transcription of candidate sRNA within intergenic regions
In order to verify that expression in each intergenic region was due to the transcription of the
candidate sRNA itself and not the result of transcription together with a downstream gene in a
single RNA molecule, a set of RT-PCRs were done using primers overlapping genes down-
stream of the intergenic regions. These “overlapping RT-PCRs” were done to verify that the 3’
end of a 5’RACE-confirmed candidate sRNA was indeed within the intergenic region. PCR was
performed on cDNA from wMel-infected w1118 1 day-old female abdomens and ovaries. Brief-
ly, total RNA was isolated from pools of 5 abdomens or pools of 10 dissected ovaries using Tri-
zol. RNA was further purified according to Trizol instructions and DNase treated. cDNAs were
synthesized from 1 μg of total RNA using random primers and SuperScript III, in accordance
with the manufacturer's instructions. PCR was performed on cDNA and for every primer pair
on DNA controls. PCR products were then visualised on a 2% agarose gel. All primers used are
listed in Table A in S1 File.

Fig 1. TheWIG profile of a highly conserved feature. This profile shows the probability that each position in the region belongs to the most conserved
class. The conserved non-coding region is positioned in wMel coordinates 1,039,579–1,039,870. The top 3 bars containing single letter amino acid codes
show 3 possible protein translation phases. At the bottom, coding regionWD1082 is shown (in light blue with arrows). There are no previously annotated non-
coding regions corresponding to this region.

doi:10.1371/journal.pone.0118595.g001
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RNA extraction, cDNA synthesis and quantitative PCR analysis of
candidate sRNA
All RNA extractions were performed on 1-day-old flies. Three types of biological material were
used for RNA extraction and further qRT-PCR analysis: whole bodies of male flies, abdomens
of male and female flies, and dissected tissues (head, carcass, gonads) of male and female flies.
Total RNA was isolated from individual whole bodies of male w1118 flies infected with wMel,
wMelCS, wMelPop or wAu strains (n = 15 individuals per line) using Trizol. Total RNA was
isolated from pools of 5 abdomens of either male or female w1118 flies infected with wMel,
wMelCS, wMelPop or wAu strains (n = 15 pools per line) using Trizol. Total RNA was isolated
from pools of dissected tissues of 10 male or female w1118 flies infected with wMel (n = 12 pools
per tissue per sex). Flies were ice-anaesthetized, then head, gonad and carcass were dissected in
ice-cold PBS and immediately transferred into Trizol. All RNA samples were further purified
according to Trizol instructions and DNase treated. cDNAs were synthesized from 1 μg of total
RNA using random primers and SuperScript III, in accordance with the manufacturer's in-
structions. Expression of candidate sRNA in all samples was measured by qPCR using the
LightCycler480 SYBR Green I Master (Roche) on a LightCycler480 II instrument (Roche) in
duplicate on a 2–5 times dilution of the cDNAs. Primers are listed in Table A in S1 File.Wolba-
chia surface protein wsp expression was used as reference to normalize candidate sRNA expres-
sion and account forWolbachia density [48]. On a subset of samples, to confirm differential
expression, we compared the use of wsp as reference gene toWolbachia 16S and Drosophila
melanogaster rps17. Relative quantification of expression was calculated using the LightCy-
cler480 II software. Significant differences in candidate sRNA expression were tested by Mann-
Whitney U test using GraphPad Prism 5 software (GraphPad Software, San Diego, California
USA).

Results
We used two approaches to identify candidate novel sRNAs inWolbachia. For the first ap-
proach, we extracted RNA from D.melanogaster flies or Aedes albopictus C6/36 cell lines in-
fected withWolbachia, performed RNA-Seq, and mapped the resulting reads to the wMel and
host genomes (Table 2). As these sequencing runs were exploratory trials and our treatments
(rRNA depletion andWolbachia purification) were not replicated, we cannot draw any firm
conclusions about the effects of each treatment on the quality or content of the resulting se-
quence data. It is clear, however, that some kind of purification, rRNA and/or host RNA deple-
tion is necessary to obtain reasonable coverage of theWolbachia transcriptome without wasted
sequencing effort as shown in other studies [49,50]. Even though our RNA-Seq experiments
were not designed for this purpose, we observed reads mapping to intergenic regions ofWolba-
chia (S1 Data). Given the variable coverage of theWolbachia genome we obtained from the dif-
ferent RNA-Seq experiments, we have focused our work using the dataset with the highest
number of reads mapping toWolbachia: RNA extracted fromWolbachia in cell culture.

RNA-Seq reveals transcription from multipleWolbachia intergenic
regions
A large number of RNA-Seq reads from each sequencing library mapped to intergenic regions
of the wMel reference genome, as listed in S1 Data. However, many of these reads may derive
not from independent intergenic transcripts, but rather from 5' or 3' UTRs, or the intergenic re-
gions of polycistronic transcripts. We identified candidate sRNAs by selecting intergenic re-
gions with high transcription levels, and then inspecting the mapping of paired reads in these
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regions. We excluded from further analysis transcribed intergenic regions in which one read of
any pair mapped to the intergenic region and the other mapped to a flanking CDS, and focused
only on those regions in which both ends of all read pairs mapped within the intergenic region.
Candidate sRNAs presented here were identified using the data obtained from wMelPop-CLA
in C6/36 cells.

Bioinformatic prediction of candidate conserved intergenic sRNAs
Our second, independent approach to identifying candidate sRNAs was based on comparative
genomics. Previous work has demonstrated that, while some sRNAs are specific to a single bac-
terial strain or species, others show conservation of sequence across broader taxonomic dis-
tances [51,52]. If conserved intergenic sRNAs are undergoing purifying selection to maintain
functionality, we would expect them to evolve more slowly than other intergenic regions that
are not functionally constrained in this way. To search for such regions, we aligned the pub-
lished genome sequences of the moderately divergentWolbachia strains wMel and wPip (from
the A and B supergroups ofWolbachia, respectively [18,53]), and used the program changept
to identify highly conserved non-CDS regions. A full description of the changeptmodel can be
found in previous papers [54–56]. In summary, the algorithm takes as input a sequence of
characters (which may represent pairwise or multiple alignments) and estimates positions
(called change-points) that delineate homogeneous segments. Using the changept program, we
identified a class of segments (Class 4 of the 7-Class model, Figure B in S1 File) characterized
by the highest degree of conservation (*95% between wMel and wPip). Non-coding segments
longer than 50 nt and with� 0.5 probability of belonging to this class form the focus of our
analysis. There are 42 non-CDS regions in the most conserved class (Table B in S1 File). These
included the 16S, 23S and 5S rRNA genes, 17 tRNA genes, a recent pseudogene (WD0002),
and the housekeeping sRNAs RNase P and tmRNA. We also identified 19 highly conserved
intergenic regions (Table 3) with no previous annotation, which represented a preliminary list
of candidate conserved sRNAs.

Table 2. Summary of the RNA-Seq data obtained.

Source material Cells Cells Cells Fly head Fly head
Treatment Purification and rRNA depletion rRNA depletion Untreated Untreated Untreated
Wolbachia strain wMelPop-CLA wMelPop-CLA wMelPop-CLA wMelPop wMelCS
Sequencing instrument GAII GAII HiSeq HiSeq HiSeq

Number of filtered reads 31,348,758 18,079,262 135,928,880 130,923,592 132,780,000

Number of mapped reads 27,244,266 12,094,331 119,609,644 129,883,646 131,671,602

Number mapping to Wolbachia 22,734,365 932,604 21,641,258 4,176,245 1,061,022

(% of mapped reads) (83%) (8%) (18%) (3%) (1%)

Number mapping to host 4509901 11161727 97968386 125707401 130610580

(% of mapped reads) (17%) (92%) (82%) (97%) (99%)

Number mapping to host rRNA 4276896 10822638 97535071 122477846 126476269

(% of mapped reads) (16%) (89%) (82%) (94%) (96%)

(% of host reads) (95%) (97%) (99.5%) (97%) (97%)

Among reads mapped to Wolbachia:

16S 13% 9% 44% 44% 43%

23S-5S 79% 54% 50% 51% 53%

CDS 8% 37% 6% 5% 4%

% of CDS with > 10 reads 95% 83% 94% 74% 49%

doi:10.1371/journal.pone.0118595.t002
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We then checked the read pairs mapping to these regions in the wMelPop-CLA RNA-Seq
data, as described above. Reads were mapped to all but one of these intergenic regions, indicat-
ing that they were transcribed in this strain. However, only one of these intergenic regions
showed evidence of specific transcription, rather than transcription as part of a unit with one
or both flanking genes. This region (wMel coordinates 1,039,579–1,039,870) was therefore se-
lected for experimental validation together with the other candidate sRNAs identified using
RNA-Seq data above.

This approach is limited to the comparison of strains with an intermediate level of diver-
gence. We repeated the changept analysis comparing the genomes of two more closely related
Wolbachia strains, wMel and wRi. These genomes have undergone only limited divergence,
and we found that over 70% of the genome was assigned to the most highly conserved class of
segments, greatly reducing the predictive power of the method. All highly conserved non-CDS
regions identified in the wMel-wPip comparison were, however, also identified in the wMel-
wRi comparison. At the other end of the taxonomic scale, we also attempted to repeat this anal-
ysis comparing the genomes of wMel or wPip with the more distantly related D group strain
wBm. Unfortunately, the genomes of these strains have undergone extensive rearrangement
since their divergence, and too few genomic regions with conserved synteny and of sufficient
length could be identified to perform the analysis.

Experimental validation of candidate sRNAs
For all subsequent experiments to investigate expression of our candidate sRNAs, we usedWol-
bachia-infected insects, rather than cell culture, to ensure that our results reflect the natural bi-
ology of the symbiont. As an initial step, we tested whether the candidate sRNAs identified by
our two methods were transcribed specifically, rather than as part of a single transcript with a
flanking gene, in wMel in D.melanogaster. We first used a 5’ RACE procedure to identify the 5’

Table 3. Intergenic regions predicted by changept to be highly conserved.

Coordinates in wMel genome Upstream/downstream CDS Length (nt)

44,380–44,468 dnaJ/tRNA-Arg-1 89

85,867–85,929 dprA/WD0093 63

279,526–279,619 WD0299/coxB 94

547,479–547,732 nuoD/WD0562 254

611,202–611,370 WD0625/WD0626 169

612,281–612,391 WD0626/WD0627 111

622,779–622,923 WD0632/WD0633 145

623,094–623,293 WD0632/WD0633 200

639,293–639,403 fabG/WD0651 111

719,048–719,171 WD0744/WD0745 99

723,861–724,026 WD0749/WD0750 166

764,459–764,871 WD0790/WD0791 413

768,936–768,988 rho/WD0796 53

850,067–850,142 WD0878/trx 76

932,596–932,693 WD0973/WD0974 98

940,039–940,142 nuoI/trmE 104

941,823–941,975 tRNA-Ser-2/WD0982 153

1,039,579–1,039,870 WD1081/WD1082 292

1,105,661–1,105,744 tRNA-Thr-2/mutM 84

doi:10.1371/journal.pone.0118595.t003

Wolbachia Small Non-Coding RNA Discovery

PLOS ONE | DOI:10.1371/journal.pone.0118595 March 4, 2015 9 / 19

143



end of those candidate sRNA transcripts for which it was possible to design a combination of
RACE primers specific to the intergenic region. In many cases this was not possible, due to the
high levels of repetitive sequence in the wMel genome. These transcripts were discarded as can-
didates for further analysis.

We performed the 5'RACE procedure on 13 candidate sRNAs. Of these, five amplified suc-
cessfully, and sequencing of the resulting plasmid showed that the 5' end of each RNA was in-
deed within the intergenic region (Table 4). The sequences of the plasmids are provided in
Table C in S1 File. The other regions did not amplify, which could be due to multiple factors:
no expression in the given biological conditions (age or tissue for example), expression below
our detection limit, or expression from the opposite DNA strand as we designed all the primers
on the positive strand only for this preliminary analysis. These non-amplifying regions were
not considered further as candidate sRNAs.

In addition to performing 5'RACE, 'overlapping RT-PCR' was done to verify that the 3' end
of each of the candidate sRNAs was also within the intergenic region. Of the five regions with a
5' end confirmed by 5'RACE to be within an intergenic region, it was possible to design specific
RT primers for four. Two regions could be amplified using a forward intergenic primer and re-
verse downstream gene primer, indicating that the transcription of these regions occurred as a
single RNA molecule with a flanking gene. These two intergenic regions might contain sRNAs
transcribed as part of an operon, but could alternatively be 5' UTR regions, and so were exclud-
ed from further analysis. However, two regions showed no amplification when RT-PCR was
performed using reverse primers in the downstream flanking gene, while amplification oc-
curred using forward and reverse primers that both bound to the intergenic region. These re-
sults demonstrate that the transcription of RNA from these regions begins and ends in the
intergenic region, and these two RNA molecules can consequently be considered to be

Table 4. Intergenic regions (IGR) selected for 5’RACE experimentsa and name and position of the two putativeWolbachia small non-coding
RNAs we identified.

Coordinates in wMel genome IGR size (bp) Upstream/downstream
CDS (IGR IDb)

5’ end coordinatec 3’ end within IGR?d Name of putative sRNA

67,695–68,395 700 WD0072/WD0073 (IG-60) 67,860 Yes ncrwmel01

170,838–171,549 711 WD0187/mutS (IG-151) NA NA

461,742–462,763 1021 WD0478/WD0480 (IG-292) NA NA

527,661–528,615 954 hemC/sucB (IG-446) NA NA

587,733–588,439 706 WD0609/WD0610 (IG-498) 587,739 No

896,038–896,357 319 WD0931/WD0932 (IG-760) NA NA

915,181–915,500 319 WD0955/WD0956 (IG-781) NA NA

978,741–979,093 352 WD1015/WD1016 (IG-834) NA NA

1,039,579–1,039,870 291 WD1081/WD1082 (IG-884) 1,039,620 Yes ncrwmel02e

1,080,340–1,081,546 1206 tRNA-Arg-4/WD1131 (IG-921) NA NA

1,189,867–1,190,417 550 WD1243/WD1244 (IG-1021) 1,190,012 No

1,216,366–1,216,864 498 ispH/WD1275 (IG-1047) 1,216,539 NA

1,217,297–1,217,892 595 WD1276/htpG (IG-1049) NA NA

aNote that we did not demonstrate sRNA-like intergenic-specific transcription for most of these regions
bIGR ID as designed in the S1 Data
cDetermined by 5’RACE
dDetermined by RT-PCR with downstream CDS
eAlso predicted by the bioinformatic approach.

doi:10.1371/journal.pone.0118595.t004
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intergenic sRNAs. We labeled them non-coding RNAWolbachia wMel 01 and 02 (ncrwmel01
and ncrwmel02). The putative sRNA ncrwmel02 is a highly conserved intergenic region that
was predicted by both RNA-Seq and comparative genomics approaches (Table 4).

Putative sRNA shows sequence conservation but differential transcript
levels acrossWolbachia strains
We then used qPCR to test for differences in the expression of ncrwmel02 in four different
Wolbachia strains (wMel, wMelPop, wMelCS and wAu) in the whole body of 1 day-old male
D.melanogaster flies. We selected this putative sRNA because its sequence is conserved
(Figure C in S1 File), and we were able to design specific qPCR primers for the intended tem-
plate and successfully amplify cDNA from all strains, while we could not for ncrwmel01.

The expression of ncrwmel02 was normalized against the expression of theWolbachia Sur-
face Protein encoding gene, wsp, to account for differences inWolbachia density between the
strains. ncrwmel02 was expressed at a relatively low level in wMelCS and wMelPop, but ap-
proximately twice as highly in wMel, and seven-fold more highly in wAu (Fig. 2).

Wolbachia putative sRNA expression is differentially regulated in host
tissues and sexes
In order to assess whether the expression of thisWolbachia putative sRNA is constitutive or
regulated, we analysed its expression in different tissues of male and female flies. First,
ncrwmel02 expression was compared in the abdomens of male and female 1-day-old flies for

Fig 2. Expression of ncrwmel02 in fourWolbachia strains from the whole body of 1-day-old maleD.
melanogaster. Expression (mean ± 95%CI) normalized towsp expression (Mann-Whitney U test ** p<
0.01, **** p< 0.0001)

doi:10.1371/journal.pone.0118595.g002
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the fourWolbachia strains (Fig. 3). We observed only one significant difference in ncrwmel02
expression in these tissues: ncrwmel02 in wMel was more highly expressed in male than in fe-
male abdomens, demonstrating that in some conditions its expression is
differentially regulated.

Because ncrwmel02 expression in whole abdomens might not reflect the level of regulation
occurring in specificWolbachia-infected tissues, we performed a second experiment in which
its expression was analyzed in dissected tissues (gonads, head and carcasses) of male and fe-
male flies infected with the wMel strain (Fig. 4). In contrast to our observation of generally sta-
ble ncrwmel02 expression in male and female whole abdomens, its expression in dissected
tissues showed clear evidence of differential expression.

The greatest differences were observed between gonads (ovaries and testes), which have
very different physiological activity and regulation. Expression was significantly upregulated in
testes compared to ovaries with more than ten-fold difference. For body parts that are expected
to be more similar in terms of regulation and activity between males and females, such as heads
and carcasses, no differential regulation of ncrwmel02 in different host sexes was observed
(Fig. 4). In addition, we also observed differential expression of ncrwmel02 when comparing
different tissues in the same sex. For example, expression was upregulated in female carcasses
compared to female gonads, and upregulated in male gonads compared to male heads. To vali-
date the differential expression we observed on those dissected tissues we compared the use of
wsp,Wolbachia 16S and Drosophila melanogaster rps17 as reference genes. Whatever the gene
used as reference, all the patterns of expression remain the same and all differential expression
remains significant (Figure D in S1 File).

Fig 3. Expression of ncrwmel02 in fourWolbachia strains from abdomens of 1-day old male (black) or
female (red)D.melanogaster. Expression (mean ± 95%CI) normalized towsp expression (Mann-Whitney
U test, ** p< 0.01)

doi:10.1371/journal.pone.0118595.g003
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In total, these expression experiments show that theWolbachia putative sRNA ncrwme02 is
expressed in the fourWolbachia strains in a regulated pattern that differs according to the sex
of the host and the tissue in which the bacterium is localized.

Discussion
Recent research has begun to uncover the critical roles played by small RNAs in the regulation
of cellular processes ranging from highly conserved housekeeping functions to rapid responses
to environmental or host cues. Most research on sRNAs to date has focused on free-living or
facultatively intracellular bacteria. Yet we might expect that obligately host-associated bacteria
would rely on sRNAs at least as much as, if not more than, free-living bacteria, for two reasons.
First, sRNAs offer bacteria a flexible and rapidly adaptable mode of gene regulation that may
be ideally suited to the constantly changing co-adaptive interplay between host and symbiont.
Secondly, many endosymbiotic bacteria, includingWolbachia, have undergone at least some
degree of genome reduction, often resulting in the loss of genes encoding canonical transcrip-
tional regulatory proteins [18]. Intergenic regulatory regions associated with sRNAs show evi-
dence of retention and conservation even in some of the most reduced endosymbiotic genomes
[57], indicating that sRNA-based regulation may remain necessary and be under sufficient se-
lection to resist loss via genome reduction.

We have identified two novel putative sRNAs inWolbachia genomes, using two indepen-
dent methods that are likely to detect different subsets of sRNAs. The comparative genomics
approach we used could detect sRNA candidates that are conserved at the nucleotide level
across strains from A and B supergroups ofWolbachia, regardless of the conditions under
which they are expressed. It would not, however, identify candidates that are not present in

Fig 4. Expression of ncrwmel02 in thewMel strain from gonads, heads and carcasses of 1-day-old
male (black) or female (red)D.melanogaster. Expression (mean ± 95%CI) normalized towsp expression
(Mann-WhitneyU test, ** p< 0.01 *** p< 0.001)

doi:10.1371/journal.pone.0118595.g004
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both strains, have originated since the divergence of the supergroups, or are conserved at the
level of secondary structure rather than nucleotide sequence. In contrast, RNA-Seq data could
be used to detect these latter classes of sRNAs, but would not be able to identify sRNAs if they
were not expressed under the experimental conditions used to generate the data. The two puta-
tive sRNAs characterized here were identified by our analysis of wMelPop-CLA RNA-Seq data,
while only ncrwmel02 was predicted using comparative genomics. This probably reflects the
level of sequence conservation of these putative sRNAs: when used as a blastN query against
the NCBI NT and WGS databases, ncrwmel02 has longer hits, with higher percentage sequence
identity, to a broader range of otherWolbachia strains (from the A, B, C and D supergroups),
than ncrwmel01.

We showed ncrwmel02 was present and transcribed in the four A group strains we used to
experimentally characterize the expression of this putative sRNA. The strains wMel, wMelCS
and wMelPop are closely related [58], naturally infect D.melanogaster, and all induce host cy-
toplasmic incompatibility (CI), the most frequently observed type of reproductive manipula-
tion caused byWolbachia. wMel and wMelCS are otherwise benign, but wMelPop is
pathogenic, causing its adult hosts to die prematurely. In contrast, wAu is somewhat more dis-
tantly related [59], infects D. simulans, and does not cause CI. All four strains were placed into
the same genetic background (D.melanogaster w1118) for these analyses, to limit the effects of
different host species on sRNA expression patterns.

Almost all pairwise strain comparisons are significantly different at the whole body level for
ncrwmel02 expression; most strikingly, it is substantially more highly expressed in wAu than in
the three other strains. Host sex-specific differences in expression in wMel become apparent at
the tissue level. ncrwmel02 is more highly expressed in testes than in ovaries, but does not show
evidence of male-specific upregulation in other tissues. The significant upregulation of
ncrwmel02 in testes compared to ovaries suggests that sRNAs might possibly be involved in
some aspect of host reproductive manipulation, although the data we provide here only suggest
this hypothesis and future experimental demonstration would be required on a range of CI and
non-CI inducing strains. CI involvesWolbachia-induced modification of sperm in infected
hosts [2], and increased transcription of sRNAs may play a role in that process. More generally,
given the regulatory roles of sRNAs in other bacterial species, differential expression of sRNA
could contribute to a range of phenotypic differences between strains.

Developing a full understanding of the roles of sRNA inWolbachia will require not only
searching for additional sRNAs and characterizing their expression in different strains and
host tissues, but identifying the targets of these molecules. Many of these targets, whether
genes, mRNA or proteins, are expected to be ofWolbachia origin, but it is also possible that
Wolbachia sRNAs could directly target host gene expression. Although secretion of functional
bacterial sRNAs into eukaryotic host cells has not been observed, it is a possibility worth con-
sidering [60]. Viral sRNAs are known to target host genes [61], and bacterial sRNAs may have
the same ability. In addition, it has already been shown that interplay occurs betweenWolba-
chia and its insect host via eukaryote miRNA [8,9], and that the virus-blocking phenotype in-
duced byWolbachia involves changes in the expression of host miRNA [10]. It is possible that
Wolbachia-induced phenotypes such as dengue inhibition may occur as part of a molecular di-
alogue between the bacterial endosymbiont and its eukaryotic host involving uni- or bi-direc-
tional gene regulation by small non-coding RNAs.

Conclusions
Considering (a) the fundamental roles played by sRNA in other bacteria, especially in quorum-
sensing, pathogenesis and virulence, (b) the conservation of ncrwmel02 between different
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Wolbachia strains, and (c) the strain-, sex- and tissue-specific differential regulation of
ncrwmel02 expression, we hypothesize that sRNAs may play significant roles in the biology of
Wolbachia. The analyses described here are preliminary and had limited power, and the two
putative sRNAs we have identified are likely to represent only the largest, most highly express-
ed and/or conserved sRNAs inWolbachia genomes. Additional RNA-Seq experiments with
different size selection of RNA, bacterial purification, host and rRNA depletion [49,50], and
strand-specific library preparation might allow the identification of many more of these mole-
cules, and further research will be required to assess the roles of sRNAs in the insect-Wolbachia
interaction. Nonetheless, the descriptive work presented here opens a new path in understand-
ing the molecular mechanisms underlying the complex and diverse range of phenotypes in-
duced byWolbachia within its host.

Supporting Information
S1 Data. RNA-Seq reads mapping to wMel features. Reads mapping to CDS and intergenic
regions are indicated for all 5 RNA-Seq experiments.
(XLS)

S1 File. Figure A, Selection of optimal number of classes.We used approximations to the
well-known information criteria AIC, BIC and DIC to identify the number of distinct classes of
conservation levels. Generally, a lower value of the information criteria indicates a better
model. BIC favoured a 1-class model, which is inappropriate. We therefore based our judge-
ment on AIC and DICV and selected the 7-class model as the first local minimum of AIC and
DICV has occurred at seven classes. Figure B, Identifying the most conserved class. The
mean proportion of alignment matches was plotted against each iteration of the sampler to
identify the class that contains the most conserved segments in wMel and wPip (Class 4). The
different colours represent different classes in the 7-class model. Figure C, Sequence align-
ment of the ncrwmel02 amplicon from the published genome data of wMel [18], wMelCS,
wMelPop [58] and wAu [62]. Figure D, Validation of ncrwmel02 differential expression ob-
served using wsp as reference gene in dissected tissues of wMel-infected male (black) or fe-
male (red) D.melanogaster. ncrwmel02 expression calculated using wsp, 16S or rps17 is
represented for the three significant differential expression observed using wsp. Expression
(mean ± 95% CI) normalized to wsp, 16S or rps17 expression (Mann-Whitney U test, � p< 0.1,
�� p< 0.01 ��� p< 0.001). Panel A: ncrwmel02 expression in male and female gonads. Panel B:
ncrwmel02 expression in female dissected tissues. Panel C: ncrwmel02 expression in male dis-
sected tissues. Table A, Oligonucleotides used in this study. Table B, Highly conserved non-
coding region predicted by changept. Thresholds used: 1. Conservation = 0.95 (conservation
level of the most conserved class-Class 4); 2. Profile value�0.5 (probability that each position
in the conserved feature belongs to Class 4); 3. Length>50 nt (length of the conserved feature).
Table C, 5’ RACE of intergenic regions (IGR) plasmid sequences. Insert in pGEMTeasy
in bold.
(DOC)
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Chapter 6

Host-Generalism in Blood Para-

sites: a Case for Reversible Host-

Specialization

Chapter Objectives

It is well known that malaria causes enormous human loss every year. There are many

species of malaria parasites, and hence this group is ideally suited for comparative

analyses. Many malaria parasite species occur in a single vertebrate species. From the

parasites’ perspective, the shared evolutionary history (monophyly of Haemoproteidae)

that has honed its ability to use haemoglobin as a fundamental resource, coupled with

complex and divergent vertebrate immune systems that work to preclude access to

the resource, suggests that the genomes of these creatures are likely to be a mosaic of

highly conserved and divergent regions that reflect this tug-of-war. Thus a simple, two-

category, classification of genome segments (conserved, divergent) seems inadequate,

naive and too simplistic in such a system. In this chapter, using the changept model, I

performed a comparative analysis of three Plasmodium genomes: (1) P. falciparum,
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which infects humans; (2) P. reichenowi, which infects chimpanzees; and (3) P.

gallinaceum, which infects jungle fowls (it is the only Plasmodium genome available

for a species that infects something other than mammals). The changept application

allows a rich categorisation of the genome, transforming the linear three-way alignment

of nucleotides, into a high-dimensional detailed description of the mosaic that is the

genome. The goal of this work was to use new changept methods to better understand

the malaria disease by focusing on the distribution of conservation levels in DNA and

look for signatures of a shared ancestral mechanism that might explain how malaria

parasites cope with host uncertainty.
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6.1 Introduction

Eukaryotic parasites that require multiple hosts in order to complete their life-cycle

have limited control over which host species they will infect next [1]. This is especially

true of Haemosporidians; Apicomplexan Protozoans (single-cell Eukaryotes) that

include Plasmodium species causing malaria in humans, other mammals, birds and

reptiles [2]. In the Plasmodium life-cycle, uncertainty about the host environment

arises twice: once when the parasite moves from mosquito to vertebrate host, and

again when it moves from vertebrate host to mosquito [2]. This puts pressure on the

parasite to reduce uncertainty by: (1) manipulating its current host to increase the

chance of a particular transmission pathway, and/or; (2) increasing the range of its

tolerances through the evolution of host-generalism [3, 4]. In Plasmodium, there is

abundant evidence for frequent hosts [5–10], and thus for host-generalism. However,

it has its limitations, as switching between bird/reptile and mammal hosts is rare

[11, 12]. We do not know what is the mechanism that drives this characteristic, but it is

believed that such a mechanism would generate substantial genetic diversity in order to

evade the myriad host immune systems [13]. The variable surface antigen (VSA) gene

families of mammalian Plasmodium [14] are likely candidates. In P. falciparum, the

vir gene family is at the core of the parasite′s ability to rapidly generate large amounts

of genetic variation, making falciparum malaria one of the most formidable challenges

to public health officials. However, while the P. falciparum vir genes share common

characteristics with other mammalian Plasmodium VSA gene families, they do not

share a common evolutionary origin [15], and equivalent gene families have not yet been

found in Plasmodium that infect vertebrates other than mammals. Thus, it remains

unclear if the mammalian Plasmodium VSA gene families are a remarkable case of

convergent evolution, or if there is a single ancestral root that spans all Plasmodium

that might indicate a universal mechanism underlying host-generalism in this group of

parasites. We posit that while the VSA gene families provide the raw genetic material

necessary for host-generalism, the crucial unifying component rests on the parasites’
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ability to control the expression of the genetic variation stored in the VSA genes

[14]. Here, we present comparative genomic analysis that supports our hypothesis

that the mechanism controlling the expression of variable surface antigen is ancestral,

and occurs in at least one Plasmodium species that does not infect mammals. We

thus propose that host-generalism in Plasmodium is achieved through preferentially

expressing copies of VSA genes that are best suited for the individual host, a strategy

that P. falciparum has perfected to continually evade individual human immune

systems.

6.2 Results

The ability to generate high levels of genetic variation is thought to be crucial to host-

generalism [3]. In P. falciparum, the variable surface antigens are one component of an

immune evasion strategy that not only generates large amounts of genetic variation,

but also carefully controls how this variation is expressed. The strategy has three

components: (1) multiple copies of the VSA genes spread throughout the genome

[16]; (2) continuous generation of new variation through recombination among gene

copies whilst still in the vertebrate host [17]; and, (3) fine epigenetic control of gene

expression that ensures a single copy is expressed in any given cell [14, 18, 19]. The last

step, in particular, ensures that at least some individual P. falciparum in a population

of otherwise genetically nearly identical P. falciparum are able to elude the host’s

immune system [20, 21]. The variants that successfully elude the immune system are

maintained, and allow the parasite to complete its life-cycle [22, 23]. We propose that

P. falciparum ′s strategy is a candidate mechanism for how Plasmodium in general,

and other Haemosporidae, are able to frequently host-switch. We call this strategy

reversible instant host-specialisation, where the parasite generates sufficient genetic

variation to almost instantaneously adapt to a particular host’s immune system.
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At the frontline of this immune evasion strategy are the variable surface antigens,

coded by large gene families, often with >100 copies across the Plasmodium genome.

Considerable effort has been expended in identifying these genes in mammalian

Plasmodium [15], and comparative work suggests that at least some VSA gene families

may have separate evolutionary origins [24]. Searches for genes that match mammalian

Plasmodium VSA gene families in the currently available non-mammalian Plasmodium

genome have not yielded any hits. However, this is not entirely surprising. Even

within mammalian Plasmodium, high sequence variation among closely related gene

families makes it hard to identify homology [15], and there is no evidence to suggest

that currently identified mammalian Plasmodium VSA gene families have a common

ancestor that predates the switch to mammalian hosts [24, 25]. The apparent lack of

VSA gene families in non-mammalian Plasmodium, coupled with the inferred difficulty

Plasmodium experienced when first switching to mammalian hosts [11, 12] suggest

that perhaps the VSA gene family are part of a strategy that evolved after the switch

to mammalian hosts. However, the strength of P. falciparum ′s strategy lies not only

in the amount of variation it can produce, but also in how the variation is selectively

expressed [18, 19, 23].

We performed an in silico gene capture experiment in order to compare P. falciparum

(human), P. reichenowi (chimpanzee), and P. gallinaceaum (jungle fowl). Our com-

parative analysis sought to identify genome-scale patterns of functional evolutionary

conservation and divergence that might explain why host-switching between mammals

and non-mammals is rare. Most importantly, however, we focused our efforts on mea-

suring the conservation levels at genes that make up P. falciparum ′s gene expression

machinery described in [26] of which many underlie the carefully controlled expression

of VSAs. Our premise is that a high degree of conservation at these genes constitutes

indirect evidence suggesting that P. gallinaceum and more generally Plasmodium

that infect birds and reptiles has a similar immune evasion strategy, however the VSA

gene families might be completely novel to those in mammalian Plasmodium.
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Our in silico experiment proceeded in two steps with the aim of identifying shared

genomic segments across the three species, and classifying the segments along a gradient

of functional evolutionary divergence. In our first step, we obtained a three-way, whole-

genome alignment of P. falciparum [16], P. reichenowi [27], and P. gallinaceum (Sanger

Institute). P. falciparum has the best-curated Plasmodium genome; P. reichenowi

is the closest known relative to P. falciparum; and, P. gallinaceum is the only non-

mammal-infecting Plasmodium for which there is appreciable genomic data. For

our analyses, we kept alignment blocks that included all three species and were at

least 100 bases in length, totaling over 4 million bases (approximately 1/5th of the

P. falciparum genome). These alignment blocks represent shared genomic regions

across the three species. In the second step, we aimed to partition the shared genomic

regions into segments grouped into classes that shared similar levels of evolutionary

divergence. A segment is a portion of the three-way alignment assigned to a particular

segment class. Segments that fall within annotated genes of the P. falciparum genome

were further characterized by the Gene Ontology (GO) terms [28] annotated to the

gene. This was done by concatenating the alignment blocks, and applying a Bayesian

segmentation model [29]. In total, the model identified 18 segment classes. Segments

classes were then ranked in order of functional evolutionary conservation. The ranking

and validation of our ranking are described in the methods.

Homology across the three genomes was almost exclusively confined to coding regions

(96.1% of segments overlapped with an annotated coding region of the P. falciparum

genome, N = 13, 818). As expected, very few of the segments overlapped with

VSA gene families. In particular, there were no segments that overlapped with

genes belonging to the VSA gene families (var, rfin, stevor, and Pfmc-2TM ) largely

responsible for P. falciparum pathogenesis [30–33]. While var and Pfmc-2TM are

thought to be exclusive to the P. falciparum/P. reichenowi clade [27], rfin and

stevor are found in all mammalian Plasmodium investigated thus far [15, 27]. This

corroborates previous results suggesting that mammalian-like VSA genes do not likely
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exist in P. gallinaceum [15]. On the other hand, we see substantial overlap of segments

with genes associated with key biological processes, implying these processes have

been conserved following the switch to mammalian hosts. The alignment blocks

included 48.8% of the P. falciparum annotated genes (2,688 of the 5,507 annotated

nuclear genes). These spanned 85% (N = 1, 672) of GO terms currently annotated

to the P. falciparum genome. Across the Biological Processes Gene Ontology terms,

segments were found in 79% of genes annotated to P. falciparum ′s metabolic process,

60% in protein phosphorylation, 60% in translation, 59% in transport, and 59% in

regulation of transcription (Table D.1). This is in contrast to genes annotated to

biological processes directly associated with P. falciparum ′s ability to evade host

immune systems and invade host cells. Here, segments were found in only 6% of the

genes annotated to pathogenesis, >1% to antigenic variation, and in none of the genes

annotated to mediation of erythrocyte aggregation (Table D.1). The great majority of

genes annotated to these GO terms belong to the mammalian VSA gene families.

In spite of the relatively high proportion of segments found across many of Plasmodium ′s

core biological processes, there is substantial variation in proportion of segments

from the different classes that overlap with genes of these core processes (Figure

6.1, Table 6.1). Our results show that segments overlapping genes associated with

transcription and translation were generally from evolutionarily divergent classes, while

those associated with metabolism, DNA replication, and ubiquitin-dependent protein

catabolism are mostly associated with evolutionarily conserved classes (Table 6.1).

Given the importance of transcription to the carefully regulated expression of the

VSA genes this result did not support our hypothesis. However, a closer look at the

128 genes of the 202 [26] thought to be involved in controlling gene expression in P.

falciparum for which there were overlapping segments reveals an important detail:

genes involved in the fundamental processes associated with the control of expression

of vir gene family in P. falciparum were predominantly associated with segments from

classes ranked as evolutionarily conserved; while genes involved in controlling the
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parasites developmental cycle and general timing of expression were predominantly

associated with segments from classes ranked as most evolutionarily divergent.
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Figure 6.1: Scatter plot for all Biological Process GO terms with >200 overlapping
segments of segment class rank along a functional evolutionary divergence gradient
(left to right from least to most divergent along the x-axis) and z-scores for counts
of segments within segment classes (y-axis). A loess line was fitted to explore for
monotonic increase/decrease of segment class rank and z-score.

In particular, we found that the fundamental process of chromatin remodelling and

modification that drives the peculiar mode of vir gene expression in P. falciparum

(reviewed in [34, 35]) is well represented (39 of 55 histone modifying genes), and are

slightly enriched for highly functionally constrained segments (Spearman rank r =

-0.36; single tail p = 0.071; Figure 6.2). The histones themselves are poorly represented

(1 of 8), but this is likely an artefact of the low coverage of P. gallinaceum data [36].

This is in contrast to the shared genes in the Plasmodium-specific transcription factors

(48 out 73 genes shared), where there was an enrichment for segment classes ranked as

most evolutionarily divergent (Spearman rank r = 0.56; single tail p = 0.008; Figure
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Table 6.1: Spearman rank correlation results for all Biological Process GO terms with
>200 overlapping segments

GO Description r p-value

GO:0006355 Regulation Of Transcription DNA-templated 0.564 0.016
GO:0006351 Transcription DNA-templated 0.348 0.158
GO:0006468 Protein Phosphorylation 0.226 0.366
GO:0006412 Translation 0.191 0.446
GO:0006464 Cellular Protein Modification Process 0.158 0.530
GO:0006508 Proteolysis 0.129 0.609
GO:0007018 Microtubule-based Movement -0.015 0.948
GO:0006810 Transport -0.172 0.487
GO:0006886 Intracellular Protein Transport -0.207 0.403
GO:0055114 Oxidation-reduction Process -0.234 0.344
GO:0008152 Metabolic Process -0.240 0.331
GO:0006260 DNA Replication -0.325 0.185
GO:0006511 Ubiquitin-dependent Protein Catabolic Process -0.490 0.040

r:Spearman Rank correlation between segment class functional evolutionary divergence
rank and segment class z-scores (normalized and standardized counts of segments in
each segment class) for each GO term. P-values correspond to two-sided hypothesis
test under the null hypothesis of no association between two variables.

6.2). The Plasmodium-specific transcription factors include the ApiAP2 family of

transcription factors thought to control the parasite′s developmental cycle [37], and

speculated to be responsible for differences between P. falciparum and P. vivax [38].

Furthermore, disruption of gene expression can lead to severe cases of the disease [39],

highlighting its importance to successful immune evasion and infection.

6.3 Conclusion

Our comparative analysis indicates that non-mammalian Plasmodium have the machin-

ery to control the expression of VSA gene families. This suggests that P. gallinaceum

has the capacity to employ a similar immune evasion strategy to that described in P.

falciparum, and is therefore likely to be an ancestral strategy shared by mammalian and

non-mammalian Plasmodium alike. We call this strategy reversible host-specialisation.

The lack of VSA family-like genes in P. gallinaceum could be a function of the low
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Figure 6.2: Scatter plot for the four groups of transcriptionally related genes defined
in [26] of segment class rank along a functional evolutionary divergence gradient (left to
right from least to most divergent along the x-axis) and z-scores for counts of segments
within segment classes (y-axis). A loess line was fitted to explore for monotonic
increase/decrease of segment class rank and z-score.

coverage of the available genomic data, but could also be that it neither has homology

nor does it share a common ancestor with any of the currently described mammalian

VSA gene families. In P. falciparum, the strategy is suited to evading individually

variable human immune systems, and the long-history of humans and P. falciparum

[40] does not suggest it facilitates switching to other vertebrate host species. However,

the mechanism carries the hallmark characteristics that would be required to support

a host-generalist life strategy, and we propose P. falciparum ′s mechanism evolved

from a host-generalist ancestor. On the other hand, our analysis also indicates why a

switch to mammalian hosts from reptile/avian hosts has been rare. In particular, it

suggests the timing of gene expression throughout the parasite′s life cycle might be an

important constraint to host-switching. Sequencing the genome of P. relictum, an avian

Plasmodium that infects over 100 host species, and exploring its transcriptome across
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multiple hosts, would give us further insight into the evolution of the host-generalism,

and the constraints to host-switching in Haemosporida.

6.4 Methods

6.4.1 Whole genome alignment

Whole genome alignment was performed using three Plasmodium species: P. falciparum,

P. reichenowi and P. gallinaceum (abbreviated Pf, Pr, and Pg in the remainder of the

document). Summary information on the data is provided in Table D.2. Genomic data

in chromosome scaffolds were available for Pf (Assembly Version 3) and Pr (version

available online on September 2013). The Pf genome was first published by [16], and

the Pr genome has been recently published [27]. Three different Pg assemblies, build

from 3X coverage Sanger sequencing data, were available in September 2013. Without

additional data to choose among the different assemblies, we chose the one with the

most nucleotides (assembly labelled: P gallinaceum.phusion supercontigs.180705 ).

The whole genome alignment suggests that Pf and Pr are 23% divergent, while Pg is

>62% divergent to both Pf and Pr (Table D.3). The alignment between Pf and Pr

suggests high synteny between these two species, as is expected from previous work

[27]. The alignment between Pg and the mammal Plasmodium suggests that most

of the alignment blocks seen between Pf and Pr are represented in Pg (Figure 6.3).

However, a large portion of the Pg sequence data did not align simultaneously to

Pf and Pr genomes. As we see, the majority of three-way aligned sequences map to

coding regions.

6.4.2 Locally collinear blocks (LCBs)

We used the program stripSubsetLCBs (http://darlinglab.org/mauve/snapshots/

2015/2015-01-09/linux-x64/) to output locally collinear blocks (LCBs) of a specified
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pgallinaceum.fasta

2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000 18000000 20000000
preichenowi.fasta

2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000 18000000 20000000
pfalciparum.fasta

2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000 18000000 20000000 22000000

Figure 6.3: Three way whole genome alignment between Pf, Pr, and Pg produced
using progressiveMauve. Species are ordered from top to bottom as: Pf, Pr, and Pg.

minimum length. We examined LCBs of minimum length 100, 200, 300, 400, and 500

nucleotides. The total number of nucleotides covered over the three species decreased

with the increasing minimum LCB length (Table D.4 and Figure 6.4). At a minimum

length of 100 nucleotides, approximately 18% of the Pf genome is covered by the

three-way alignment. This reduces to approximately 11% by increasing the minimum

length to 500 nucleotides. Because protein domains and other functional elements can

be small, we settled on LCBs with a minimum 100 nucleotides. This value maximizes

genome coverage in our analysis, but still guarantees a low likelihood of spurious

alignments.

6.4.3 Bayesian genome segmentation

We applied the changept model [29, 41] to classify our three-way alignment of Pf,

Pr, and Pg into classes of segments with distinct levels of functional evolutionary

divergence. Here, the two dimensional three-way alignment was transformed into

a single string using a 32 character redundant alphabet that encodes each possible

permutation of four nucleotides taken in a group of three (Figure 6.5).

The model is implemented as a Bayesian hierarchical model that estimates the posterior

probability of each position in the alignment belonging to each possible class. Posterior
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Figure 6.4: Change in nucleotides covered by three way alignment across LCBs of
different minimum lengths.

distributions were estimated using an MCMC approach with Gibbs sampling [41]. A

total of 650 samples were taken from the posterior, with an additional 350 samples

being discarded as burn-in. We accepted that a particular position belonged to a

certain class k if the P(K = k |data) > 0.5. The total number of classes K is fixed, thus

the model was run separately for K ranging from 1 to 25. The model with K=18 had

the lowest type V Deviance Information Criterion (DICV) [42], and also had segments

across all classes and displayed class stability [43] (Figure 6.6). Thus, we accepted

K=18 as the model with the best fit to the data.

6.4.4 Characterizing segments

Summary characteristics of each segment class inferred by the changept model with K

= 18 classes is shown in Table D.5. Using a MySQL database, P. falciparum genome

annotations were cross referenced with segment class identity. As shown elsewhere

[29, 44], segment classes inferred with this method can exhibit distinct functional
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Figure 6.5: Illustration depicting the process of Bayesian segmentation. It starts by
obtaining a three-way alignment (top). The two-dimensional alignment is compressed
into a one- dimensional string using a 32 character alphabet (demonstrated in encoded
alignment). The alphabet is redundant, in that a position in the alignment with ‘AAA’
has the same code as a position with ‘TTT’. It also uniquely encodes each type of
mutation, as a position with ‘AAT’ gets a different code from a position that is ‘ATA’.
The one-dimensional string representing the whole-alignment is then partitioned into K
separate segment classes ( Bayesian segmentation) using a Bayesian hierarchical model,
in which the number of classes, K, is a fixed hyperprior. The optimal number of classes
K is found by selecting the K that minimizes the Deviance Information Criterion, has
segments in all classes, and has stable segment classes.

constraints and evolutionary rates. Similarly, we demonstrate that the identified

segment classes can be ranked along a gradient of functional evolutionary divergence

[45, 46] based on the probability of observing a mutation in the second codon position

[47] (Table D.6, Figure 6.7). In particular, segments from classes 0, 1, 3, 5, 6, 8, 12, 13

and 17 seem to show high levels of functional constraint. While the remaining segments

seem particularly divergent. We chose this approach because we found evidence for

mutation-saturation making it unlikely that commonly-used models for estimating

natural selection would return robust results [48].

Mutation-saturation is detected when genetic divergence is less than expected given the

amount of time since the most recent common ancestor between two lineages [49, 50].
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Figure 6.6: DICV values across different values of K. K= 18 is marked in red and
circled. K = 21 had smaller DICV, but did not meet the other criteria of segment
stability and mixture proportions.

To test for mutation-saturation we performed pairwise comparisons of the proportion of

species-specific changes across segment classes. Across segment classes we found a high

correlation between observed P. falciparum and P. reichenowi -specific changes (r =

0.99, R2 adjusted = 0.99, p <0.05; Figure 6.8, bottom left). However, when comparing

P. gallinaceum-specific changes to P. falciparum, top left- or P. reichenowi -specific

changes, the correlation disappears (Pg to Pf comparison: r = -0.48, R2 adjusted =

0.035, p >0.4; similar results were observed between Pr and Pg, Figure 6.8, top left

and top right). Thus, while there is no evidence for mutation saturation between P.

falciparum and P. reichenowi, the same cannot be said for P. gallinaceum and the

other two species.
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Figure 6.7: Posterior P(S = mutated — x, N, k, c = 2) against the posterior P(S
= mutated — x, N, k, c =3). Median values for each segment class are indicated by
red numbers. Black lines are linear regression lines fitted to 5000 samples from the
posterior. The bold white line is a linear regression line fitted to the median values.

6.4.5 Validating assumption of functional constraint in Bayesian

segmentation output

We validated our ranking of the segment classes by examining the distribution of

segment classes across two genes: actin1, known to be highly evolutionarily constrained

[51], and msp1, known to be highly divergent [52]. actin1 forms an integral part of

the parasite′s molecular motor [53]. The gene′s entire open reading frame (ORF)

was classified as a single segment from a class with a low probability of observing

mutations at the second codon position (p = 0.016, 95%HPD (highest probability

density) 0.015-0.017; Figure 6.9).

msp1 plays a significant role in red-blood cell invasion [54, 55], and is known to be

shared across the three species in this study [56]. In this case, we observed portions of

170



0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

−2.5

−2.0

−1.5

−1.0

−5 −4 −3 −2
log(proportion Pf−specific changes)

lo
g(

pr
op

or
tio

n 
P

g−
sp

ec
ifi

c 
ch

an
ge

s)

0

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

−3.0

−2.5

−2.0

−1.5

−1.0

−5 −4 −3 −2
log(proportion Pr−specific changes)

lo
g(

pr
op

or
tio

n 
P

g−
sp

ec
ifi

c 
ch

an
ge

s)
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

−5

−4

−3

−2

−5 −4 −3 −2
log(proportion Pf−specific changes)

lo
g(

pr
op

or
tio

n 
P

r−
sp

ec
ifi

c 
ch

an
ge

s)

Figure 6.8: Pairwise comparison between individual species log proportion specific
changes. Top left: Pf vs Pg; Top right: Pr vs Pg; and Bottom left: Pf vs Pr. For
comparisons including Pg, a loess model was fitted, using span of 0.99 and polynomial
of degree 2. For the remaining comparison, a linear model was fitted. In all cases, 0.99
confidence interval envelopes are plotted. Points are plotted within jitter, while some
jitter was applied to text labels to improve readability. Text labels refer to segment
class ID, as noted in Table D.5.

the ORF being classified into three different classes, all with relatively high posterior

probabilities of observing a mutation at the second codon position (the segment class

with lowest p = 0.213, 95%HPD 0.203-0.223; Figure 6.10). Together these results gave

us confidence that our method was able to correctly classify and rank the recovered

shared genomic segments along a gradient of functional evolutionary conservation.

Studies in other organisms demonstrate further the strength of Bayesian segmentation

in uncovering biologically relevant features in genomic data [57].
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Figure 6.9: Segment mapping to actin 1 gene. A single segment from class 12 mapped
to the whole of the annotated coding region of actin 1. The segment includes a few
bases both up and downstream from the annotation.

6.4.6 Biological Processes Gene Ontology (GO) term analysis

The goal of this analysis was to examine the relationship between Biological Process

GO terms and segment classes.

Cross-referencing GO terms to segments and segment classes

In order to cross-reference GO terms to segment classes, we used the Bioconductor

package org.Pf.plasmo.db (version 3.1.2). The package provides access within R to

the Pf annotation for version 3 of the Pf draft genome. Our first step was to determine

how many genes were in the org.Pf.plasmo.db, ensure that a correct mapping of

the genes could be made to our MySQL database, and then subset the nuclear genes.

In total, we mapped 5507 nuclear genes between the org.Pf.plasmo.db database

and our MySQL database that either had a peptide and/or mRNA annotation. Two

nuclear genes present in the org.Pf.plasmo.db were not present in our database

(PF3D7 1039300, PF3D7 1102000). It is unclear why these two genes are missing.
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Figure 6.10: Segments mapping to msp 1 gene. Segments from five classes mapped
to the coding region of the msp 1 gene. Segment classes are plotted from top to bottom
in decreasing probability of observing a mutation at the second codon position. The
segment of class 9 is mapped to a portion annotated as a signal peptide. The segment
of class 10 is mapped to the EGF domain 1. Many of the class 16 segments, and one of
the class 15 segments mapped to the MSP1 C-terminus domain. The segment of class
2 did not map to any known protein domain, but maps closely to an N-glycosylation
site.

In plamodb.org these two genes are annotated as producing “unspecified products”.

Given the scope of our analysis, we did not pursue the matter further. An additional 97

genes, assigned to the apicoplast and mitochondrial genomes in the org.Pf.plasmo.db

were ignored.

Overall, we found 13,295 segments mapped to the 2,688 genes of the 5,507 identified

above. This leaves 2,819 genes without a mapping segment. To examine the possibility

that the three-way alignment contributed to the missing genes, we attempted to map

the Sanger reads available for Pg onto the Pf reference genome using BWA [58, 59],

Bowtie2 [60], and LastZ [61]. These failed to improve the number of genes. Thus, the

missing genes are likely a combination of low coverage of the Pg genome, and true

biological differences between the compared species.
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A total of 1,672 GO terms were associated with 4,543 genes of the 5,507 nuclear genes

of interest in our analysis (958 had no GO term annotation in the database). Of these,

1,411 are associated with 2,370 genes that have a mapped segment, and 867 were

mapped to 2,173 genes without a mapping segment. Therefore, almost 85% of the GO

terms associated with the Pf genome are represented in the 2,370 genes for which we

observed at least one mapping segment. Count of GO terms by ontology are tallied in

Table D.7.

Spearman rank correlation between segment class evolutionary constraint

rank and segment class z -score for individual GO terms

In order to identify associations between segment class evolutionary constraint

ranks and proportion of segments for each class overlapping genes of a single GO

term, we performed Spearman rank correlations using pvrank function in R pack-

age: https://cran.r-project.org/web/packages/pvrank/pvrank.pdf. Spearman

rank correlations test for monotonic changes in two ranks. A positive correlation

coefficient (r) indicates a positive relationship between the two variables, while a

negative correlation coefficient express a negative relationship. The closer r is to +1

or −1, the stronger the monotonic relationship. The closer r is to 0, the weaker the

association between the ranks. To determine, based upon sample data, whether there is

any or no evidence to suggest that a correlation is present in the population, one needs

to perform hypothesis testing. If the information on the direction of the relationship is

available (ie positive or negative correlation, eg: plot (ii) and (iii) of Figure 6.2 show a

negative and a positive relationship between 2 ranks respectively), then a one-tailed

test is appropriate. Otherwise a two-tailed test should be performed using the null

hypothesis of ‘there is no association between variables in the underlying population’

against the alternative hypothesis, ‘there is an association between variables in the

underlying population’. A significant p - value (< 0.05) will favour the alternative

hypothesis. The aim of this analysis was to identify GO terms with particularly high

proportion of conserved segments relative to diverged segments, and vice-versa. To
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accomplish this, we first standardised and normalized the count of segments of a

particular class across GO terms. For the purposes of this analysis, we only examined

Biological Processes GO terms with > 100 associated genes. Thus, for each GO term,

we had a z -score associated with all segment classes, which measured how much more

or less likely was a segment of that class mapping to genes associated with the GO

term relative to all other GO terms. We also had the rank of segment classes based on

our evolutionary constraint analysis. The results are presented in Table D.8.

The chromatin and gene transcription regulation machinery

The transcription machinery is essential for the Pf ’s ability to evade the humans

immune system. The machinery is responsible for the fine-tuned expression of the

VAR genes, which ensure there is sufficient diversity across Pf clones that ensures at

least some clones will go unnoticed by the human immune system. A total of 202 genes

across four categories have been identified as important in regulating transcription

in Pf [26], of which 128 had overlapping segments (Table D.9). Similarly to the GO

term analysis, we also performed a Spearman rank correlation analysis. Here, z -scores

were taken based on the mean count of segments per gene. Results are displayed in

Table D.10.
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Chapter 7

Summary, Conclusions and Future

Work

The main objective of this thesis is to apply a Bayesian approach to identify genome-

wide putative ncRNAs and other regulatory sequences contributing to diseases. These

elements were identified by applying the statistical technique of sequence segmentation

to partition an alignment of multiple species. In the past, other authors have attempted

to divide a sequence alignment into conserved and divergent segments [1–5]. This

dichotomous approach fails to capture the complexity of genome-wide conservation

landscapes, which have evolved under a diverse range of structural and functional

constraints. To overcome this limitation, I used a Bayesian segmentation model

(changept model) that classifies genomic segments into more than two segment classes

based on degree of conservation and other sequence characteristics (eg: GC level,

transition/transversion ratio) [6, 7].

In the first part of the thesis, I introduced the concept of integrating multiple data types

into segmentation. To encode multiple information in an alignment (conservation, GC

content and transition/transversion ratio), I used a D-character representation (D is a

positive integer). A 3-way alignment was encoded using a 32-character representation,
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where in each alignment coloumn, the complementary bases were also encoded using

the same letters. This helped to reduce the number of parameters to be estimated, and

hence the computational cost opposed to using a 64-character representation which

also captures the strand-specific information. Changept was then applied to segment

this sequence, and segments were classified according to character frequencies. Using

this encoding greatly increased the number of segment classes identified (see Chapter

3). The method is especially beneficial in analysing segmentation patterns in closely

related species, as conservation alone cannot identify fine differences between these

species. The main drawback of D-character encoding is that it can be computationally

expensive when the number of species increases (ie >3). In this case, two other methods

can be used to transform an alignment: (1) Maximum frequency transformation; (2)

Parsimony scores (see Literature Review Part 2).

Investigating stability of segment classes to facilitate selection of the number of segment

classes was the second main methodological development I introduced in this thesis.

In general, this method identifies a larger number of segment classes than an earlier

method based on investigating DICV values. Typically, the additional classes were

resulted from splitting some of the classes identified by the DICV method. This new

method led to the discovery of additional features (eg: new motifs, see Chapter 3) not

identified using the models selected by the DICV method.

These methods were first applied to segment 3′ UTR regions of three closely related

Drosophila species: D. melanogaster, D. simulans, and D. yakuba (Chapter 3). I

demonstrated that 3′ UTRs have more complex sequence structure than coding

sequence, and argue that this is indicative of greater functional complexity. Several

segment classes were highly enriched in low information content sequences and we

propose that certain low information content regions are functional only in the sense

that they frequently gain or lose ‘decoy’ TF binding sites, thus facilitating rapid,

coordinated, adaptive responses of expression levels over many genes. We refer to this

idea as the ‘poised genome’, and in future work we are interested in pursuing this idea.
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In chapters 4 to 6, I used the new methods to identify putative functional non-coding

elements (PFEs) that may be associated with or relevant to several diseases: (1) muscle

disease; (2) dengue; and (3) malaria. In Chapter 4, I also built a systematic process

to identify genome-wide PFEs based on identifying deeply conserved regions between

human and zebrafish using changept classifications. In addition to genome-wide study,

a pathway-focussed analysis was carried out using 24 genes involved in myogenesis.

Results revealed the advantages of applying changept to a high quality alignment.

A larger number of PFEs was identified in the pathway-focussed analysis using the

alignment software LAGAN (and manual interventions) than in the genome-wide

analysis restricted to the same human genes using the readily available multiz-8way

alignment. All PFEs tested (26 PFEs) in this pathway-focussed analysis using RT-PCR

were found to be expressed. Furthermore, PFEs identified in this pathway-focussed

analysis were substantially longer than EvoFold predicted regions, and this suggests

that the method I applied has identified extended functional regions surrounding

EvoFold predictions. Both genome-wide and pathway-focussed analyses provided

further evidence that ncRNAs are enriched in transcription factors [8]. Given that

the quality of the alignment increases the number of PFEs identified, future work

should focus on repeating the genome-wide analysis using an improved alignment. In

filtering PFEs, a set of thresholds were used to ensure that laboratory validation of the

approach would be relatively easy to achieve without the hindrance of false positives

(eg: length of the PFE ≥ 100nt, number of gaps in the PFE segment < 20 alignment

columns or if the total length of gaps within the segment was < 10% the length of

the segment, profile value > 0.9, etc.). However, ideally the thresholds should have

chosen to strike an optimal balance between sensitivity and specificity, and this is an

issue for future research. Identifying the specific functions of PFEs detected in the

pathway-focussed analysis will help to determine if these regions play a role in muscle

diseases.
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Certain strains of Wolbachia inhibit replication of mosquito-borne pathogens, such

as dengue viruses, the malaria parasite, and filarial nematodes [9]. In Chapter 5, two

experimentally validated small ncRNAs in two Wolbachia strains: wMel and wPip

were identified. In addition to these, I identified 18 highly conserved intergenic regions

using changept. The main limitation of the changept method is that it would not

identify candidates that are not present in both strains, have originated since the

divergence of the supergroups, or are conserved at the level of secondary structure

rather than nucleotide sequence. To overcome these limitations, we used a second

approach based on mapping RNAseq data. However, this method would not be able

to identify putative sRNAs if they were not present in the RNAseq library. Further

research is required to identify the specific functions of these candidate sRNAs.

A simple, two-category, classification of genome segments (conserved, divergent) would

miss nuances of the data, such as GC-content, transition-transversion ratios, dN/dS

ratios, and the fact that conserved and divergent are opposite ends of a continuous

scale. This limitation was overcome by the new changept method - integrating multiple

data types into segmentation. Using this method, in Chapter 6, I carried out a

comparative genomic analysis on three malaria species - P. falciparum, P. reichenowi

and P. gallinaceaum - to identify genetic mechanisms that facilitate host jumping.

Analysis suggests that the mechanism controlling the expression of variable surface

antigen is ancestral, and occurs in at least one Plasmodium species that does not

infect mammals. The variable surface antigen (VSA) gene families of mammalian

Plasmodium are likely candidate genes contributing to host-generalism [10]. In turn,

these results will help to warn us about the next possible host of these malaria species,

hence will contribute to build early -warning systems for disease emergence. Findings

will also help to better understand the deadly malaria disease and might suggest novel

regions for drug-discovery.

The next step of this work would be to sequence a Plasmodium that is truly a host-

generalist, like Plasmodium relictum, that has been found in over 100 bird species.
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That would allow us to examine their gene transcription apparatus, and see how it

differs from P. falciparum. It would also allow us to search for VSA gene families,

and determine how similar they are to those in P. falciparum, and other mammalian

Plasmodium.

A wealth of genomic data is presented as profiles of continuous measurements across a

genome (eg: RNA expression levels, copy number variation) and the changept model

is not applicable to this type of data. Developing a model to overcome this limitation

and integrating it with changept will enable simultaneous segmentation of both types

of data, discrete and continuous.

One advantage of the Bayesian frame work is the use of priors, when prior knowledge

of parameters is available. However, changept model has been implemented using

uninformative priors. Using the boundaries of known functional elements, and forcing

them to be in the same segment class are some ways to incorporate prior information

to the model.
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Appendix A

Appendix Chapter 3

File S1: Positions of segments for the 15-class model of D. melanogaster versus D.

simulans alignment (BED file).

http://dx.doi.org/10.6084/m9.figshare.1517635

File S2: Positions of segments for the 16-class model of D. melanogaster versus D.

yakuba alignment (BED file).

http://dx.doi.org/10.6084/m9.figshare.1517636

File S3: Positions of segments for the 15-class model of 3-way D. melanogaster, D.

simulans, D. yakuba alignment (BED file).

http://dx.doi.org/10.6084/m9.figshare.1517637
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Supplementary Table 1 - Characteristics of 12-class and 15-class models for D. mel  versus D. sim  3'UTR alignment
The classes of the 12-class model are labelled 12 -0 to 12 -11, and the classes of the 15-class model are labelled 15 -0 to 15 -14. 
The averages 15 - 3&4, 15 - 12&13 and 15 - 7&14 are weighted according to the mixture proportions of the classes averaged. 
T/T: Transition/Transversion ratio.

Model-Class  Mixture proportion  Conservation  GC content  T/T Type of motif 
12 - 0 9.10% 100% 29% 0.46 poly A
15 - 1 14.30% 99% 28% 0.80 AT; poly A
12 - 1 7.20% 98% 50% 1.49 CAG; CA 
15 - 10 8.20% 98% 51% 1.45 CAG
12 - 2 20.30% 98% 38% 1.13 A[CA]
15 - 0 15.90% 99% 38% 1.18 CAA
12 - 3 8.80% 92% 24% 0.70
15 - 6 7.70% 92% 24% 0.67
12 - 4 4.60% 97% 59% 1.50 CAG; C[AT]C; CA[CG]
15 - 9 3.00% 97% 60% 1.48 CAG; CA[AG]; TCC
12 - 5 4.40% 84% 26% 0.75
15 - 5 2.90% 83% 25% 0.73
12 - 6 19.90% 98% 28% 0.84
15 - 3&4 19.40% 97% 29% 0.89 AT (15:3)
12 - 7 0.90% 54% 20% 0.53
15 - 1 0.70% 56% 17% 0.50
12 - 8 9.80% 95% 49% 1.18 CA; CAG
15 - 12&13 16.90% 95% 46% 1.16 CA (15:12) / CAG (15:13) 
12 - 9 1.80% 85% 49% 0.96 poly G
15 - 2 2.00% 86% 47% 0.94
12 - 10 12.50% 92% 34% 1.00
15 - 8 8.00% 90% 33% 0.98
12 - 11 0.60% 46% 42% 0.78
15 - 7&14 0.90% 48% 42% 0.75 poly G (15:7)
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Supplementary Table 2 - Types of motif identified in D. melanogaster-D. simulans 12-class model

Class Type of motif E-value Motif width # sites

0 poly A 1.10E-11 20 82

CAG repeat 5.10E-13 19 62

CA repeat 1.60E-07 20 32

2 A[CA] repeat 4.50E-46 20 223

CAG repeat 8.60E-88 14 120

C[AT]C repeat 1.00E-48 20 130

CA[CG] repeat 0.049 20 38

CAG repeat 6.40E-04 15 63

CAG repeat 1.00E-19 20 47

9 poly G 0.0028 15 36

1

4

8
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Supplementary Table 3 - Types of motif identified in D. melanogaster-D. simulans 15-class model

Class Type of motif E-value Motif width # sites TOMTOM matches (Number - Database)

0 CAA repeat 3.00E-34 20 240 8 - All Drodophila

AT repeat 4.00E-36 19 171 1 - All Drosophila

ployA 3.70E-43 20 136 4 - All Drosophila

3 AT repeat 1.30E-13 20 25 no matches

7 polyG 4.60E-02 15 16 8 - All Drodophila; 11 - All Vertebrates; 2 - JASPAR-insects

CAG repeat 5.30E-138 20 124 1 - All Vertebrates; 1 - JASPAR-insects

CA[AG] repeat 5.00E-08 20 32 no matches

TCC repeat 3.70E-05 15 96 1 - All Vertebrates; 1 - RNA-binding motifs

10 CAG repeat 1.60E-21 20 114 1 - All Vertebrates; 1 - JASPAR-insects

12 CA repeat 3.80E-12 20 35 3 - All Drosophila; 2 - All Vertebrates; 11- RNA-binding motifs

13 CAG repeat 3.20E-33 19 64 3 - All Vertebrates

Supplementary Table 4 - Types of motif identified in D. melanogaster-D. yakuba 16-class model

Classs Type of motif E-value Motif width # sites TOMTOM matches (Number - Database)

0 CAG repeat 3.60E-23 20 64 2 - All Vertebrates

1 CAA repeat 3.90E-11 20 151 6 - All Drosophila

2 CAG repeat 1.70E-15 19 107 2 - All Vertebrates

3 polyG 6.20E-03 15 28 7 - All Drosophila; 10 - All Vertebrates; 1- JASPAR-insects; 1 - RNA-binding motifs

6 CAG repeat 4.10E-09 20 34 1 - All Vertebrates; 1 - JASPAR-insects

polyA 2.10E-21 20 65 4 - All Drosophila; 6 - RNA-binding motifs

AT repeat 2.30E-21 18 108 1 - All Drosophila

11 CA repeat 3.30E-16 20 46 1 - All Drosophila; 11 - RNA-binding motifs

CAG repeat 9.60E-78 20 78 no matches

CCN repeat 2.70E-18 20 79 1 - All Vertebrates; 1 - JASPAR-insects

polyA 5.40E-06 20 95 6 - All Drosophila; 7 - RNA-binding motifs

AT repeat 7.90E-30 20 80 no matches

1

9

8

12

15
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Supplementary Table 5 - Class comparisons
Comparison of change-point character frequencies in each of the classes indentified by Procedure 2 for each paiwise alignment

of D. melanogaster (D. mel), D. simulans (D. sim), and D. yakuba (D. yak)  3' UTRs 

Classes from different models with similar character frequencies are grouped together.

Alignment Class a b c d e f g h Type of motif

D. mel - D. sim 0 61.6% 0.2% 0.4% 0.2% 0.1% 37.2% 0.1% 0.2% CAA

D. mel - D. yak 1 62.9% 0.2% 0.4% 0.4% 0.2% 35.4% 0.1% 0.4% CAA

D. sim - D. yak 1 62.4% 0.2% 0.4% 0.4% 0.2% 35.9% 0.1% 0.5%

D. mel - D. sim 1 72.0% 0.1% 0.2% 0.2% 0.1% 27.3% 0.0% 0.1% AT; poly A

D. mel - D. yak 15 69.3% 0.6% 0.9% 0.9% 0.5% 26.7% 0.2% 0.9% AT; poly A

D. sim - D. yak 7 68.0% 0.5% 1.0% 1.1% 0.6% 27.3% 0.2% 1.2%

D. mel - D. sim 2 45.2% 2.2% 3.9% 2.0% 1.9% 40.6% 1.3% 3.0%

D. mel - D. yak 7 44.3% 3.5% 7.3% 4.9% 3.2% 27.8% 2.1% 6.9%

D. sim - D. yak 2 46.3% 3.4% 6.7% 4.8% 3.3% 26.2% 2.2% 7.0%

D. mel - D. sim 3 80.8% 0.2% 0.2% 0.5% 0.2% 17.8% 0.1% 0.2% AT

D. mel - D. yak 8 75.0% 0.2% 0.3% 0.3% 0.1% 23.9% 0.0% 0.3% AT; ploy A

D. sim - D. yak 0 74.5% 0.1% 0.2% 0.3% 0.1% 24.5% 0.1% 0.3%

D. mel - D. sim 4 67.9% 0.5% 1.0% 0.7% 0.4% 28.6% 0.2% 0.7%

D. mel - D. yak 4 58.5% 2.4% 4.5% 4.2% 2.2% 22.7% 1.2% 4.3%

D. mel - D. sim 5 64.3% 2.3% 3.6% 4.5% 2.2% 18.6% 0.9% 3.6%

D. mel - D. yak 13 47.9% 5.7% 9.3% 11.5% 5.4% 9.8% 2.2% 8.3%

D. sim - D. yak 11 54.5% 4.6% 7.4% 10.0% 4.6% 10.2% 1.5% 7.2%

D. mel - D. sim 6 71.0% 1.2% 1.7% 2.3% 1.2% 20.5% 0.4% 1.7%

D. mel - D. yak 14 71.0% 1.5% 2.1% 3.4% 1.5% 17.7% 0.5% 2.4%

D. sim - D. yak 8 68.1% 1.4% 2.1% 2.9% 1.3% 21.1% 0.6% 2.4%

D. mel - D. sim 7 19.1% 6.3% 10.0% 4.1% 6.5% 38.9% 5.0% 9.9% poly G

D. mel - D. yak 3 22.6% 6.5% 8.8% 4.7% 6.9% 37.0% 4.7% 8.9% poly G

D. sim - D. yak 3 21.6% 6.2% 8.6% 4.2% 6.4% 38.5% 4.5% 10.0%

D. mel - D. sim 8 61.7% 1.2% 2.6% 1.9% 1.1% 28.5% 0.7% 2.2%

D. mel - D. yak 10 62.0% 1.3% 2.3% 2.3% 1.1% 27.8% 0.6% 2.6%

D. sim - D. yak 12 56.5% 1.7% 3.3% 2.7% 1.6% 29.3% 1.0% 3.9%
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Alignment Class a b c d e f g h Type of motif

D. mel - D. sim 9 38.7% 0.3% 1.0% 0.3% 0.2% 58.8% 0.3% 0.5% CAG; CA[AG]; TCC

D. mel - D. yak 12 37.0% 0.7% 1.6% 0.6% 0.4% 57.7% 0.6% 1.4% CAG; CCN

D. sim - D. yak 4 36.8% 0.5% 1.2% 0.6% 0.5% 58.4% 0.6% 1.4%

D. mel - D. sim 10 47.9% 0.2% 0.7% 0.2% 0.2% 50.3% 0.1% 0.3% CAG

D. mel - D. yak 0 47.1% 0.2% 0.8% 0.3% 0.2% 50.6% 0.2% 0.5% CAG

D. sim - D. yak 10 47.2% 0.2% 0.6% 0.3% 0.2% 50.7% 0.3% 0.6%

D. mel - D. sim 12 55.0% 0.7% 1.5% 0.8% 0.5% 40.3% 0.4% 0.9% CA

D. mel - D. yak 11 56.3% 0.6% 1.5% 1.0% 0.6% 37.9% 0.5% 1.5% CA

D. sim - D. yak 5 55.9% 0.7% 1.5% 1.3% 0.7% 37.3% 0.5% 2.0%

D. mel - D. sim 13 43.2% 0.8% 1.8% 0.6% 0.5% 51.4% 0.5% 1.3% CAG

D. mel - D. yak 2 43.4% 0.9% 2.1% 0.8% 0.7% 49.3% 0.7% 2.1% CAG

D. sim - D. yak 6 43.3% 0.7% 1.8% 0.7% 0.7% 49.9% 0.7% 2.1%

D. mel - D. sim 14 33.3% 8.0% 12.1% 12.3% 8.3% 11.1% 4.0% 10.9%

D. sim - D. yak 14 38.7% 6.7% 11.0% 9.8% 6.5% 13.4% 3.3% 10.7%

D. mel - D. yak 5 58.7% 3.6% 5.7% 6.9% 3.2% 14.9% 1.4% 5.6%

D. sim - D. yak 9 59.8% 2.8% 4.8% 5.3% 2.6% 18.7% 1.2% 4.8%

D. mel - D. yak 6 35.9% 2.2% 3.9% 2.1% 2.1% 48.4% 1.7% 3.8% CAG

D. sim - D. yak 13 40.3% 1.7% 3.5% 2.0% 2.1% 44.3% 1.6% 4.4%

Classes with no comparable class in other models

Class a b c d e f g h Type of motif

D. mel - D. sim 11 52.1% 5.6% 7.4% 17.5% 5.2% 3.9% 1.1% 7.2%

D. mel - D. yak 9 47.1% 1.7% 4.0% 2.2% 1.7% 37.7% 1.4% 4.2%
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Supplementary Table 6 - Class comparisons pairwise and 3-way alignments
Comparison of change-point models indetified by Procedure 2 for each paiwise alignments and the 3-way alignment of 3' UTRs 

Classes from different models with similar character frequencies are grouped together.

Alignment Class mixture proportion conservation GC a f Type of motif

D. mel - D. sim 0 15.9% 99.0% 38.0% 61.6% 37.2% CAA

D. mel - D. yak 1 11.8% 98.0% 36.0% 62.9% 35.4% CAA

D. sim - D. yak 1 13.5% 98.0% 37.0% 62.4% 35.9%

3-way 3 14.4% 97.4% 40.5% 57.9% 39.4% CAA; CA

D. mel - D. sim 1 14.3% 99.0% 28.0% 72.0% 27.3% AT; poly A

D. mel - D. yak 15 13.8% 96.0% 28.0% 69.3% 26.7% AT; poly A

D. sim - D. yak 7 13.6% 95.0% 29.0% 68.0% 27.3%

D. mel - D. sim 2 2.0% 86.0% 47.0% 45.2% 40.6%

D. mel - D. yak 7 2.0% 72.0% 40.0% 44.3% 27.8%

D. sim - D. yak 2 2.3% 72.0% 39.0% 46.3% 26.2%

D. mel - D. sim 3 2.3% 99.0% 18.0% 80.8% 17.8% AT

D. mel - D. yak 8 8.5% 99.0% 24.0% 75.0% 23.9% AT; ploy A

D. sim - D. yak 0 11.0% 99.0% 25.0% 74.5% 24.5%

3-way 0 16.8% 98.1% 26.1% 72.7% 25.4% poly A

D. mel - D. sim 4 17.1% 96.0% 30.0% 67.9% 28.6%

D. mel - D. yak 4 7.5% 81.0% 30.0% 58.5% 22.7%

3-way 14 7.2% 80.1% 32.7% 55.9% 24.2%

D. mel - D. sim 5 2.9% 83.0% 25.0% 64.3% 18.6%

D. mel - D. yak 13 1.6% 58.0% 26.0% 47.9% 9.8%

D. sim - D. yak 11 1.6% 65.0% 24.0% 54.5% 10.2%

3-way 7 1.5% 57.2% 26.1% 47.4% 9.8%

D. mel - D. sim 6 7.7% 92.0% 24.0% 71.0% 20.5%

D. mel - D. yak 14 3.9% 89.0% 22.0% 71.0% 17.7%

D. sim - D. yak 8 6.9% 89.0% 25.0% 68.1% 21.1%

3-way 6 6.5% 85.9% 23.9% 67.3% 18.6%

D. mel - D. sim 7 0.3% 58.0% 60.0% 19.1% 38.9% poly G

D. mel - D. yak 3 0.8% 60.0% 57.0% 22.6% 37.0% poly G

D. sim - D. yak 3 0.7% 60.0% 59.0% 21.6% 38.5%

D. mel - D. sim 8 8.0% 90.0% 33.0% 61.7% 28.5%

D. mel - D. yak 10 11.1% 90.0% 32.0% 62.0% 27.8%

D. sim - D. yak 12 9.5% 86.0% 36.0% 56.5% 29.3%

3-way 1 18.9% 92.7% 31.9% 63.8% 28.9%

D. mel - D. sim 9 3.0% 97.0% 60.0% 38.7% 58.8% CAG; CA[AG]; TCC

D. mel - D. yak 12 2.3% 95.0% 60.0% 37.0% 57.7% CAG; CCN

D. sim - D. yak 4 2.2% 95.0% 61.0% 36.8% 58.4%

D. mel - D. sim 10 8.2% 98.0% 51.0% 47.9% 50.3% CAG

D. mel - D. yak 0 4.1% 98.0% 51.0% 47.1% 50.6% CAG

D. sim - D. yak 10 4.3% 98.0% 52.0% 47.2% 50.7%

3-way 9 8.6% 94.0% 56.4% 40.5% 53.5% CAG; C[AC][AC]

D. mel - D. sim 12 11.0% 95.0% 42.0% 55.0% 40.3% CA

D. mel - D. yak 11 11.7% 94.0% 40.0% 56.3% 37.9% CA

D. sim - D. yak 5 12.8% 93.0% 41.0% 55.9% 37.3%

D. mel - D. sim 13 5.9% 95.0% 54.0% 43.2% 51.4% CAG

D. mel - D. yak 2 7.9% 93.0% 53.0% 43.4% 49.3% CAG

D. sim - D. yak 6 7.8% 93.0% 53.0% 43.3% 49.9%

3-way 12 11.2% 88.0% 47.2% 46.5% 41.5% CA

D. mel - D. sim 14 0.7% 44.0% 34.0% 33.3% 11.1%

D. sim - D. yak 14 0.5% 52.0% 34.0% 38.7% 13.4%

3-way 4 0.3% 39.7% 34.5% 28.3% 11.4%

D. mel - D. yak 5 3.2% 74.0% 25.0% 58.7% 14.9%

D. sim - D. yak 9 6.4% 78.0% 27.0% 59.8% 18.7%

3-way 2 4.5% 70.6% 26.9% 54.9% 15.7%

D. mel - D. yak 6 2.5% 84.0% 56.0% 35.9% 48.4% CAG

D. sim - D. yak 13 6.8% 85.0% 52.0% 40.3% 44.3%

3-way 8 3.6% 79.6% 55.0% 34.7% 44.9%

D. mel - D. sim 11 0.7% 56.0% 17.0% 52.1% 3.9%

3-way 11 0.4% 47.1% 22.4% 43.5% 3.6%

D. mel - D. yak 9 7.5% 85.0% 45.0% 47.1% 37.7%

3-way 5 4.3% 81.4% 37.3% 52.1% 29.3%

Classes with no comparable class in other models

3-way 10 0.2% 47.9% 47.1% 25.6% 22.4%

3-way 13 1.8% 63.2% 46.8% 33.4% 29.8%
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Supplementary Table 7 - Enrichment of PicTar miRNA targets in segment classes
Expected number of observations calculated by the total number of annotations covered by the D. melanogaster sequence in the D. melanogaster vs. D. simulans alignment 
multiplied by the proportion of bases which is covered by the given segment class
O: Observed; E: Expected
Only showing the elements considered as significant at the 0.05 level, after Bonferroni correction (actual p-vaue cutt-off: 0.00034722)

Class TOTAL
proportion of alignment 1
miRNA O E O E O E O E O E O E O E O E O E O E O E O E O E O E O E O E
dme-miR-972-5p 30 32.2 115 20.3 0 2.1 19 0.8 30 18.5 0 4.5 7 7.2 0 0.2 5 11.0 0 8.1 0 17.1 0 0.6 3 12.1 1 9.9 0 0.6 191 255.6 401 3.54E-71
dme-miR-289-5p 4 7.6 18 4.8 0 0.5 5 0.2 6 4.4 0 1.1 1 1.7 0 0.1 0 2.6 0 1.9 0 4.0 0 0.2 1 2.9 0 2.3 0 0.2 60 60.5 95 1.40E-11
dme-miR-1000-5p 11 6.7 16 4.2 0 0.4 2 0.2 3 3.8 0 0.9 0 1.5 0 0.1 0 2.3 0 1.7 0 3.5 0 0.1 1 2.5 0 2.0 0 0.1 50 52.9 83 1.35E-07
dme-miR-6-3p 16 8.2 15 5.2 0 0.5 0 0.2 10 4.7 0 1.2 0 1.8 0 0.1 0 2.8 0 2.1 3 4.3 0 0.2 0 3.1 0 2.5 0 0.2 58 65.0 102 9.96E-07
dme-miR-2c-3p 15 7.7 14 4.9 0 0.5 0 0.2 10 4.4 0 1.1 0 1.7 0 0.1 0 2.6 0 1.9 3 4.1 0 0.2 0 2.9 0 2.4 0 0.2 54 61.2 96 3.03E-06
dme-miR-2a-3p 14 7.7 15 4.9 0 0.5 0 0.2 8 4.4 0 1.1 0 1.7 0 0.1 0 2.6 0 1.9 3 4.1 0 0.2 0 2.9 0 2.4 0 0.2 56 61.2 96 4.79E-06
dme-miR-13a-3p 13 7.3 14 4.6 0 0.5 0 0.2 8 4.2 0 1.0 0 1.6 0 0.1 0 2.5 0 1.8 3 3.9 0 0.1 0 2.7 0 2.2 0 0.1 53 58.0 91 1.49E-05
dme-miR-5-3p 13 7.3 14 4.6 0 0.5 0 0.2 8 4.2 0 1.0 0 1.6 0 0.1 0 2.5 0 1.8 3 3.9 0 0.1 0 2.7 0 2.2 0 0.1 53 58.0 91 1.49E-05
dme-miR-308-3p 13 7.3 14 4.6 0 0.5 0 0.2 8 4.2 0 1.0 0 1.6 0 0.1 0 2.5 0 1.8 3 3.9 0 0.1 0 2.7 0 2.2 0 0.1 53 58.0 91 1.49E-05
dme-miR-2b-3p 13 7.3 14 4.6 0 0.5 0 0.2 8 4.2 0 1.0 0 1.6 0 0.1 0 2.5 0 1.8 3 3.9 0 0.1 0 2.7 0 2.2 0 0.1 53 58.0 91 1.49E-05
dme-miR-11-3p 13 7.3 14 4.6 0 0.5 0 0.2 8 4.2 0 1.0 0 1.6 0 0.1 0 2.5 0 1.8 3 3.9 0 0.1 0 2.7 0 2.2 0 0.1 53 58.0 91 1.49E-05
dme-miR-13b-3p 13 7.3 14 4.6 0 0.5 0 0.2 8 4.2 0 1.0 0 1.6 0 0.1 0 2.5 0 1.8 3 3.9 0 0.1 0 2.7 0 2.2 0 0.1 53 58.0 91 1.49E-05
dme-miR-277-3p 22 10.0 12 6.3 0 0.7 1 0.3 8 5.8 0 1.4 0 2.3 0 0.1 0 3.4 0 2.5 4 5.3 0 0.2 3 3.8 0 3.1 0 0.2 75 79.7 125 1.98E-05
dme-miR-1014-3p 13 5.6 11 3.5 0 0.4 1 0.1 3 3.2 0 0.8 1 1.3 0 0.0 0 1.9 0 1.4 0 3.0 0 0.1 1 2.1 0 1.7 0 0.1 40 44.6 70 0.00012977
dme-miR-263b-5p 13 3.9 3 2.5 0 0.3 0 0.1 3 2.3 0 0.6 0 0.9 0 0.0 0 1.3 0 1.0 0 2.1 0 0.1 7 1.5 0 1.2 0 0.1 23 31.2 49 0.000259158

p-value
0

0.08036
1

0.050558
2

0.005
3

0.0021
4

0.04623
5

0.011
6

0.018
7

6E-04
8

0.0274
9

0.02
10

0.0426
11

0.002
No Class

0.6373281
12

0.0301
13

0.025
14

0.002
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Supplementary Table 8 - Enrichment of UTRdb motifs in segment classes
Expected number of observations calculated by the total number of annotations covered by the D. melanogaster sequence in the D. melanogaster  vs. D. simulans  alignment multiplied by the proportion 
of bases which is covered by the given segment class
O:Observed; E:Expected
Only showing elements considered significant at the 0.05 level, after Bonferroni correction (actual p-vaue cutt-off: 0.005)

Class TOTAL
1

O E O E O E O E O E O E O E O E O E O E O E O E O E O E O E O E
PAS 432 572.6 866 360.3 23 37.4 59 15.0 771 329.4 185 80.8 428 128.6 1 4.4 278 195.1 5 144.1 47 303.6 84 11.4 123 214.8 25 175.4 26 11.5 3773 4541.6 7126 0
CPE 2 16.7 11 10.5 0 1.1 3 0.4 6 9.6 1 2.4 9 3.8 0 0.1 2 5.7 0 4.2 0 8.9 0 0.3 0 6.3 0 5.1 0 0.3 174 132.6 208 3.26E-09
BRD-BOX 40 31.3 21 19.7 0 2.0 0 0.8 23 18.0 7 4.4 6 7.0 0 0.2 9 10.7 0 7.9 10 16.6 0 0.6 13 11.7 1 9.6 2 0.6 257 247.9 389 2.18E-05
K-BOX 60 34.5 30 21.7 2 2.2 1 0.9 18 19.8 5 4.9 2 7.7 1 0.3 7 11.7 3 8.7 11 18.3 0 0.7 16 12.9 4 10.6 0 0.7 269 273.4 429 3.01E-05
SXL_BS 3 7.3 3 4.6 1 0.5 0 0.2 8 4.2 5 1.0 5 1.6 0 0.1 5 2.5 0 1.8 1 3.9 1 0.1 1 2.7 0 2.2 0 0.1 58 58.0 91 0.0002481

p-value0
0.08036

1
0.05056

2
0.00524

3
0.00210

4
0.04623

5
0.01134

6
0.01805

7 No Class
0.63733

12
0.03014

13
0.02461

14
0.00161proportion of 

alignment

10
0.04260

11
0.001610.00062

8
0.02738

9
0.02022
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Figure S1: DICV values for segmentation of 3-way alignment. DICV values obtained
using 1-20 segment classes for D. melanogaster, D. simulans and D. yakuba 3′ UTR
alignment. The 14-class model was selected as minimum DICV has occurred at class
14.

Figure S2: GC content versus conservation level for models selected for 3-way
alignment. GC content of D. melanogaster versus the proportion of alignment matches,
for each model selected for the 3-way 3′ UTR alignment. A) 14-class model selected
by Procedure 1 and B) 15-class model selected by Procedure 2. The different colours
represent different classes, and each class is plotted for the post burn-in samples. This
plot was used to access the convergence of the selected models.
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Figure S3: DICV values for the control sequence. DICV values were obtained for an
artificially generated sequence having only one class of segments. The minimum DICV
has occurred at 1-class; therefore justifies models selected by Procedure 1.

Figure S4: Conservation level vs sample number for control sequences. Figure shows
time-series plots of conservation level versus sample number for segmentations of
artificially generated control sequence with A) 1 segment class and B) 2 segment
classes.
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Table B.1: Assessing the convergence of chromosome 1: 19-class model using Heidelberger and Welch test

Class Stationarity test result Start iteration p-value Half-width test Mean Half-width

class0 passed 201 0.27 passed 0.698 0.000505
class1 passed 1 0.473 passed 0.515 0.0598
class2 passed 101 0.254 passed 0.352 0.000726
class3 passed 301 0.55 passed 0.543 0.000619
class4 passed 201 0.649 passed 0.34 0.000458
class5 passed 401 0.387 passed 0.39 0.000359
class6 passed 301 0.734 passed 0.445 0.00101
class7 passed 101 0.459 passed 0.709 0.000411
class8 passed 1 0.359 passed 0.614 0.0159
class9 passed 301 0.411 passed 0.599 0.00058
class10 passed 101 0.589 passed 0.35 0.000583
class11 passed 101 0.0509 passed 0.379 0.000184
class12 passed 201 0.471 passed 0.42 0.000563
class13 passed 1 0.192 passed 0.338 0.0278
class14 passed 201 0.154 passed 0.56 0.00111
class15 passed 1 0.381 passed 0.73 0.0541
class16 passed 1 0.148 passed 0.724 0.00358
class17 passed 1 0.0583 passed 0.427 0.00162
class18 passed 301 0.058 passed 0.369 0.00166

The stationarity test results confirm that the 19-class model selected for chromosome 1 has achieved the convergence. The half-width
tests indicate that posterior samples provide precise estimates of conservation level (mean values) of each class using the CODA accuracy
criterion of ε = 0.12.

202



Table B.2: PFEs discarded from the genome-wide analysis

Zebrafish genomic position Zebrafish gene ID Zebrafish gene name Human genomic position Human gene name

chr22:19331908-19332130 ENSDARG00000061658 polrmt chr5:44392191-44392395 fgf10-as1
chr15:47316561-47316687 ENSDARG00000060524 zgc:153039 chr5:178740426-178740551 adamts2
chr8:3492911-3493335 ENSDARG00000086603 zgc:136963 chr9:127147857-127148219 psmb7
chr7:446331-446531 ENSDARG00000090143 cabZ01074659.1 chr10:135151556-135151746 znf511
chr11:9441898-9442024 ENSDARG00000086489 cu179643.1 chr3:174811682-174811801 naaladl2
chr19:510861-510972 ENSDARG00000077668 cabz01010103.1 chr2:178215677-178215783 nfe2l2
chr21:220613-220766 ENSDARG00000007915 jak2a chr7:158128055-158128194 ptprn2
chr21:221576-221720 ENSDARG00000007915 jak2a chr7:158129217-158129341 ptprn2
chr21:222010-222165 ENSDARG00000007915 jak2a chr7:158129790-158129927 textitptprn2
chr21:222861-222961 ENSDARG00000007915 jak2a chr7:158130852-158130952 textitptprn2
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Table B.3: GO terms related to Transcription Factors

GO term GO
cate-
gory

Backgroud
frequency

Sample
fre-
quency

Expected p-value

nucleic acid binding transcription factor activity MF 653 26 4.12 1.79E-10
sequence-specific DNA binding transcription factor activity MF 653 26 4.12 1.79E-10
sequence-specific DNA binding RNA polymerase II transcription factor activity MF 239 9 1.51 0.0449
transcription from RNA polymerase II promoter BP 218 9 1.38 0.0317
regulation of transcription, DNA-templated BP 1468 55 9.26 1.71E-24
regulation of nucleic acid-templated transcription BP 1470 55 9.28 1.83E-24
nucleic acid-templated transcription BP 893 33 5.63 6.37E-13
transcription, DNA-templated BP 893 33 5.63 6.37E-13
regulation of transcription from RNA polymerase II promoter BP 452 13 2.85 0.0185

Background frequency- frequency of the GO term in question in all zebrafish genes; Sample frequency- frequency of the GO term in 193
genes containing PFEs identified in genome-wide analysis; MF: Molecular Function; BP: Biological Process
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Table B.4: UCSC genomic coordinates of PFEs identified in pathway-focussed analysis

Gene PFE number Human genomic position Zebrafish genomic position

eya1 1 chr8:72129606-72129770 chr24:13909370-13909591
eya1 2 chr8:72130576-72130808 chr24:13907414-13907687
eya1 3 chr8:72155916-72156061 chr24:13891420-13891667
eya1 4 chr8:72267639-72267809 chr24:13836991-13837100
eya1 5 chr8:72270664-72270891 chr24:13832262-13832548
eya1 6 chr8:72271490-72271729 chr24:13831700-13831937
eya4 1 chr6:133652590-133652771 chr23:31734041-31734235
eya4 2 chr6:133778149-133778268 chr23:31712298-31712447
shha 1 chr7:155601378-155601490 chr7:43615955-43616135
shha 2 chr7:155603492-155603599 chr7:43614779-43614886
pax3a 1 chr2:223078919-223079145 chr2:47629182-47629489
pax3a 2 chr2:223083770-223083947 chr2:47622371-47622515
pax3a 3 chr2:223133797-223134194 chr2:47593793-47594123
pax3a 4 chr2:223137113-223137779 chr2:47590024-47590492
pax3a 5 chr2:223153695-223153821 chr2:47587337-47587505
pax3a 6 chr2:223156764-223157217 chr2:47584072-47584367
pax3a 7 chr2:223135284-223135480 chr2:47592582-47592824
pax3b 1 chr2:223105881-223106300 chr15:40712700-40712983
pax3b 2 chr2:223153529-223153656 chr15:40722774-40722842
pax7b 1 chr1:18965463-18965874 chr23:21155541-21155912
pax7b 2 chr1:18973120-18973324 chr23:21159261-21159464
pax7b 3 chr1:18984276-18984573 chr23:21160493-21160791
pax7b 4 chr1:19037049-19037309 chr23:21193990-21194229
pax7b 5 chr1:19050405-19050528 chr23:21205291-21205404
pax7b 6 chr1:19057495-19057596 chr23:21214580-21214683
myf5 1 chr12:81111797-81111914 chr4:20679147-20679234
six4.3 1 chr14:61189618-61189728 chr18:35590841-35590970

205





Appendix C

Appendix Chapter 5

Figure A: Selection of optimal number of classes. We used approximations to the
well-known information criteria AIC, BIC and DIC to identify the number of distinct
classes of conservation levels. Generally, a lower value of the information criteria
indicates a better model. BIC favoured a 1-class model, which is inappropriate. We
therefore based our judgement on AIC and DICV and selected the 7-class model as the
first local minimum of AIC and DICV has occurred at seven classes.
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Figure B: Identifying the most conserved class. The mean proportion of alignment
matches was plotted against each iteration of the sampler to identify the class that
contains the most conserved segments in wMel and wPip (Class 4). The different
colours represent different classes in the 7-class model.
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wMel    TGTAGCGTTATGAATTAGGAGTGCTATATTAAAGCTTACCTCACTATTAAAGCTATCGGTCAGATTAGATTAAAAACCTAATCTGACCGGTTTC 
wMelCS  TGTAGCGTTATGAATTAGGAGTGCTATATTAAAGCTTACCTCACTATTAAAGCTATCGGTCAGATTAGATTAAAAACCTAATCTGACCGGTTTC 
wMelPop TGTAGCGTTATGAATTAGGAGTGCTATATTAAAGCTTACCTCACTATTAAAGCTATCGGTCAGATTAGATTAAAAACCTAATCTGACCGGTTTC 
wAu     TGTAGCGTTATGAATTAGGAGTGCTATATTAAAGCTTACCTCACTATTAAAGCTGTCGGTCAGATTAGATTAAAAACCTAATCTGACCGGTTTC 
 
Fig. C. Sequence alignment of the ncrwmel02 amplicon from the published genome data of wMel (Wu et al 2004), wMelCS, wMelPop (Woolfit et 
al 2013) and wAu (Sutton et al 2014).  
 

 

A       B      C 

 

 

 

 

 

 

 

 

 
Fig. D. Validation of ncrwmel02 differential expression observed using wsp as reference gene in dissected tissues of wMel-infected male (black) 
or female (red) D. melanogaster. ncrwmel02 expression (mean ± 95% CI) normalized to wsp, 16S or rps17 expression (Mann-Whitney U test, * p < 0.1, 
** p < 0.01 *** p < 0.001). Panel A: ncrwmel02 expression in male and female gonads. Panel B: ncrwmel02 expression in female dissected tissues. 
Panel C: ncrwmel02 expression in male dissected tissues 
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Table A. Oligonucleotides used in this study. 
Sequence (5’-3’) Description Reference 

 

5’RACE primers 

  

AUAUGCGCGAAUUCCUGUAGAACGAACACUAGAAGAAA RNA adaptor  [47] 

GCGCGAATTCCTGTAGA Adaptor specific PCR primer [47] 

   
GGATCTATGTTAAGAGATACCGTGAA IGR-60-specific RT primer  This study 

ATGACGGTTCGTGACGGTAT IGR-60-specific PCR primer  This study 

   
GCAGCTTAATCTTGCTTGTCA IGR-151-specific RT primer  This study 

ACGCCAATATTTTAAAGCGGATA IGR-151-specific PCR primer  This study 

   
GCAAAAGAAGCCCTGAGGTT IGR-392-specific RT primer  This study 

AGAAGCCCTGAGGTTATTATCCGCT IGR-392-specific PCR primer  This study 

   
TCGCACTACGTGCATCGCAT IGR-446-specific RT primer  This study 

CTACGTGCATCGCATGTCTT IGR-446-specific PCR primer  This study 

   
TTTCAAGCTTTGCCAAAAGAA IGR-498-specific RT primer  This study 

CCCCAATCAAAACAGCCTTA IGR-498-specific PCR primer  This study 

   
CACTTGAGCGATGCAACAAAGCCA IGR-760-specific RT primer  This study 

AACAAAGCCATCCCAGTGTC IGR-760-specific PCR primer  This study 

   
ATGGGAGGGAAGCAAAATCT IGR-781-specific RT primer  This study 

GGGAAGCAAAATCTGGCTTAATGGC IGR-781-specific PCR primer  This study 
   

TTGCATGACACCCTGACAAC IGR-834-specific RT primer  This study 

GCTACGTGTTAGCGGGATCT IGR-834-specific PCR primer  This study 
   

CGCTCGTGCACAAATTAAAA IGR-884-specific RT primer  This study 

TGTAGCGTTATGAATTAGGAGTGC IGR-884-specific PCR primer  This study 
   

CATAGATCCCGCTAACACGTAG IGR-921-specific RT primer  This study 

AGCCCCGTGGTTATTATCTG IGR-921-specific PCR primer  This study 
   

CCCGTGTTAGCTAGTTGTCACTCCC IGR-1021-specific RT primer  This study 

ATCCTGCAAATTGGCGTACT IGR-1021-specific PCR primer  This study 
   

AGCAGTGGGATGACGAGACT IGR-1035-specific RT primer  This study 

AAAGAAGCCCCGTGGTTGGC IGR-1035-specific PCR primer  This study 
   

CGAGATTCAGCCGCTTTTA IGR-1047-specific RT primer  This study 

GCAACTAACCTACGCTGCAA IGR-1047-specific PCR primer  This study 
   

TGTATTTGGCGTAAATCATGC IGR-1049-specific RT primer  This study 

GCACTATGTGCACCTCATGTCT IGR-1049-specific PCR primer  This study 
   

RT-PCR primers   

TGGATCCCAGTGTCAAGCAC IGR-60 Fwd in IGR This study 
ACGACAATCGTCATCCCAGC IGR-60 Rev in downstream CDS This study 

CGACGGCATGACGATAAGGT IGR-60 Rev in IGR This study 

   
GCTGTTTTGATTGGGGTCTT   IGR-498 Fwd in IGR This study 

TCGTATCGGGCAAGAACGTA IGR-498 Rev in downstream CDS This study 

TTTCAAGCTTTGCCAAAAGAA   IGR-498 Rev in IGR This study 
   

GAAACCGGTCAGATTAGGTTTTT    IGR-884 Fwd in IGR This study 

CCGTAACCGGCACTGAAGTA IGR-884 Rev in downstream CDS This study 
TGTAGCGTTATGAATTAGGAGTGC IGR-884 Rev in IGR This study 

   

AACAACGTAGTTGGCGTCTT IGR-1021 Fwd in IGR This study 
AGCACTGGGATGACACCATT IGR-1021 Rev in downstream CDS This study 

AACAACGTAGTTGGCGTCTT IGR-1021 Rev in IGR This study 

   

qPCR primers   

Fwd GAAACCGGTCAGATTAGGTTTTT ncrwmel02qPCR primers This study 

Rev TGTAGCGTTATGAATTAGGAGTGC   
Fwd ATCTTTTATAGCTGGTGGTGGT wsp qPCR primers [6] 

Rev GGAGTGATAGGCATATCTTCAAT   

Fwd CGGTGAATACGTTCTCGGGTC 16S qPCR primers This study 
Rev CACCCCAGTCACCGATCCC   

Fwd CACTCCCAGGTGCGTGGTAT rps17 qPCR primers [63] 

Rev GGAGACGGCCGGGACGTAGT   
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Table B. Highly conserved non CDS predicted by changept*.  
 

wMel coordinates 
Type of conserved 

feature 

Profile 

value 

Length 

(nt) 

1,739-2,162 pseudo WD0002 1.0 424 

2,274-2,503 pseudo WD0002 0.5 230 

3,024-3,118 tRNA 0.5 95 

44,380-44,468 intergenic 1.0 89 

83,877-83,957 tRNA 0.7 81 

85,867-85,929 intergenic 1.0 63 

117,042-117,328 ncRNA tmRNA 0.6 287 

124,753-124,836 tRNA 0.9 84 

182,216-185,396 rRNA 23S+5S 1.0 3181 

279,526-279,619 intergenic 0.9 94 

372,011-372,117 tRNA 0.8 107 

513,727-513,814 tRNA 0.9 88 

547,479-547,732 intergenic 1.0 254 

611,202-611,370 intergenic 1.0 169 

612,281-612,391 intergenic 0.7 111 

622,779-622,923 intergenic 0.5 145 

623,094-623,293 intergenic 1.0 200 

639,293-639,403 intergenic 1.0 111 

706,682-707,007 ncRNA rnpB1 0.9 326 

719,048-719,171 intergenic 0.5 99 

722,484-722,594 tRNA 0.8 111 

723,861-724,026 intergenic 1.0 166 

764,459-764,871 intergenic 1.0 413 

768,936-768,988 intergenic 0.7 53 

793,553-793,636 tRNA 0.8 84 

840,429-840,513 tRNA 1.0 85 

850,067-850,142 intergenic 0.9 76 

932,596-932,693 intergenic 0.5 98 

934,908-935,042 tRNA 1.0 135 

935,321-935,403 tRNA 0.8 83 

940,039-940,142 intergenic 1.0 104 

941,714-941,808 tRNA 0.6 95 

941,823-941,975 intergenic 1.0 153 

970,671-970,776 tRNA 1.0 106 

1,039,579-1,039,870 intergenic 1.0 292 

1,105,661-1,105,744 intergenic 0.9 84 

1,107,303-1,107,403 tRNA 1.0 101 

1,152,142-1,152,229 tRNA 0.7 88 

1,158,600-1,158,694 tRNA 1.0 95 

1,167,332-1,169,526 rRNA 16S 1.0 2195 

1,186,283-1,186,373 tRNA 1.0 91 

1,208,797-1,208,903 tRNA 0.5 107 

 

* Thresholds used: 1. Conservation = 0.95 (conservation level of the most conserved 

class-Class 4); 2. Profile value ≥0.5 (probability that each position in the conserved 

feature belongs to Class 4); 3. Length >50 nt (length of the conserved feature) 
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Table C. 5’ RACE of intergenic regions (IGR) plasmid sequences*. 

 
IGR 

coordinates in 

wMel 

genome 

Sequence 

IGR-60 

 

CACTAGTGATTGCGCGAATTCCTGTAGAACGAACATTAGAAGAAAAAAAAACATTG

TATTTTAACGTAAAACAGCTATTTTTATGCTCACCAACTTAATAAAATTCCTGGATC

CCAGTGTCAAGCACTGGGATGACAAGATATAAACCTTATCGTCATACCGTCACGAA

CCGTCATAATCGAATTCCCGCGGCCGCC 

IGR-498 

 

CACTAGTGATTGCGCGAATTCCTGTAGACTAGAAGAAAAAAAACTTCTTTTAAGATT

AAGCGTTTGAAAGGTTTTTGAGTAAGGCTGTTTTGATTGGGGAATCGAATTCCCGCG

GCCGCC 

IGR-884 

 

CACTAGTGATTGCGCGAATTCCTGTAGAACACGAAGAAAAGAGTTTAGAGGGTTAT

AGAGAAACCGGTCAGATTAGGTTTTTAATCTAATCTGACCGATAGCTTTAATAGTG

AGGTAAGCTTTAATATAGCACTCCTAATTCATAACGCTACAAATCGAATTCCCGCGG

CCGCC 

IGR-1021 

 

CACTAGTGATTATCCTGCAAATTGGCGTACTATACTGTCTTAAACGACTTATAAGCG

CGTTTCAGCTTGTGCAGGTAAAAACCTAGAATATTGTGAAGACATAAGGTGCACAT

AGTGCAAAAAATTAAAAATAAGACGCCAACTACGTTGTTTTCTTGCTGTTTAATCT

GCACAGATGAAGATAACTGAATGCCTTCTTTCTTCTAGTTTCTACAGGAATTCGCGC

AATCGAATTC 

CCGCGGCCGCC 

 

IGR-1047 

 

GGCCGCGGGAATTCGATTGCGCGAATTCCTGTAGAATAGAAGAAAGAAGCTATTGT

ATTTGCTTTCGCCAATCTGCAGATTAAAAGGTAAGGATTACTTAATGTATCGGCGT

CTTATGTTCAATTTTTTGCAGTATATAGATACTGTATGTCTTTACAAAACTTCATCT

ACATCTAGATTTTTATCTAAATAAGCTGAACGCGCTTATAAAGCGTTACAAGACGT

CAAAAAATGCCAATACTCGACAGAGATAGTAAAAGACTAGCTAACTCGGGGATTCT

TTGTCTTTTTTTCTGCTTAGTAAATTTCTTAAACATTTGCAGCGTAGGTTAGTTGCA

ATCACTAGTGAATTCGCG 

 

* insert in pGEMTeasy in bold 
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Appendix Chapter 6

Table D.1: Proportion of genes annotated to Biological Process Gene Ontology (with
over 100 genes) terms with overlapping segments.

GO term Description Proportion

GO:0020033 Antigenic Variation 0.01
GO:0006468 Protein Phosphorylation 0.60
GO:0006412 Translation 0.60
GO:0006810 Transport 0.59
GO:0008152 Metabolic process 0.79
GO:0006355 Regulation of Transcription DNA-templated 0.59
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Table D.2: Genome data summary.

Species

Preferred

Hosts

Assembly

Version Description

GC

con-

tent

Reference

Plasmodium

falciparum

Homo

sapiens

V3 22.9Mb across

14

chromosomes

0.190 Gardner et al.

2002. Nature

Plasmodium

reichenowi

Pan

troglodytes

September

2013

21.4Mb across

14

chromosomes

0.184 Unpublished

Plasmodium

gallinaceum1

Gallus

sp.

September

2013

21.6Mb across

4996 contigs

Unpublished
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Table D.3: Genome content distance matrix produced by progressiveMauve.

Pf Pr Pg

Pf 0.000

Pr 0.230 0.000

Pg 0.636 0.621 0.000
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Table D.4: Number of nucleotides covered by three way alignments across LCBs of
different minimum lengths.

Minimum Size Pf Pr Pg

100 4,082,818 4,082,692 3,972,363

200 3,677,293 3,677,681 3,572,734

300 3,320,095 3,320,956 3,221,897

400 2,976,512 2,977,592 2,884,842

500 2,643,857 2,645,655 2,560,179
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Table D.5: Individual segment class summary characteristics as estimated from the Bayesian segmentation model

Class
ID

Mixture
Propor-
tion

Conservation
Level

Proportion
Pg-specific
changes

Proportion
Pf-specific
changes

Proportion
Pr-specific
changes

Proportion
all three
species
change

Pf/Pr
percent
identity

Pf/Pg
percent
identity

Pr/Pg
percent
identity

Pf- GC
level

0 0.004 0.784 0.114 0.038 0.047 0.016 0.898 0.831 0.822 0.111
1 0.158 0.780 0.209 0.005 0.005 0.003 0.988 0.784 0.784 0.209
2 0.113 0.663 0.318 0.007 0.007 0.005 0.981 0.670 0.670 0.197
3 0.126 0.854 0.135 0.004 0.004 0.002 0.989 0.858 0.858 0.220
4 0.050 0.662 0.307 0.011 0.012 0.008 0.969 0.674 0.673 0.122
5 0.075 0.785 0.201 0.005 0.005 0.004 0.985 0.790 0.790 0.283
6 0.042 0.824 0.141 0.013 0.013 0.008 0.965 0.837 0.837 0.267
7 0.015 0.672 0.226 0.040 0.042 0.019 0.898 0.714 0.713 0.032
8 0.104 0.804 0.180 0.006 0.006 0.004 0.984 0.810 0.810 0.305
9 0.073 0.612 0.353 0.012 0.012 0.011 0.965 0.624 0.624 0.257
10 0.063 0.679 0.299 0.008 0.007 0.007 0.978 0.687 0.687 0.282
11 0.005 0.524 0.440 0.011 0.012 0.012 0.964 0.537 0.536 0.197
12 0.077 0.859 0.128 0.005 0.005 0.003 0.987 0.864 0.863 0.303
13 0.001 0.506 0.106 0.143 0.161 0.084 0.611 0.666 0.649 0.272
14 0.007 0.590 0.294 0.042 0.041 0.033 0.884 0.631 0.632 0.309
15 0.033 0.606 0.335 0.019 0.020 0.019 0.942 0.627 0.625 0.195
16 0.002 0.475 0.189 0.133 0.124 0.080 0.664 0.598 0.608 0.219
17 0.051 0.747 0.221 0.012 0.011 0.009 0.968 0.758 0.759 0.208

Mixture Proportions: proportion of segments belong to each segment class; Conservation levels: alignment columns where all species are
same; Pg-specific changes: alignment coloumns where human (Pf) and chimp (Pr) are same and jungle fowl (Pg) is different; Pf/Pr
percent identity: Conservation levels + Pg specific changes;
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Table D.6: Posterior probability distribution of mutation for each segment class and
codon position

Class ID Codon position Q1 Median Q3

0 First 0.009 0.064 0.196

0 Second 0.009 0.064 0.196

0 Third 0.090 0.215 0.394

1 First 0.169 0.173 0.177

1 Second 0.106 0.109 0.113

1 Third 0.352 0.357 0.362

2 First 0.338 0.347 0.355

2 Second 0.239 0.247 0.255

2 Third 0.447 0.456 0.465

3 First 0.075 0.077 0.079

3 Second 0.034 0.035 0.037

3 Third 0.289 0.293 0.297

4 First 0.337 0.379 0.422

4 Second 0.214 0.250 0.289

4 Third 0.383 0.426 0.469

5 First 0.155 0.160 0.165

5 Second 0.083 0.086 0.090

5 Third 0.408 0.414 0.421

6 First 0.094 0.098 0.102

6 Second 0.037 0.040 0.043

6 Third 0.383 0.390 0.396

7 First 0.326 0.454 0.586

7 Second 0.276 0.399 0.531

7 Third 0.195 0.307 0.436

8 First 0.110 0.114 0.119

Continued on next page
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Table D.6 – Continued from previous page

Class ID Codon position Q1 Median Q3

8 Second 0.046 0.049 0.052

8 Third 0.417 0.423 0.430

9 First 0.395 0.410 0.424

9 Second 0.295 0.308 0.322

9 Third 0.521 0.535 0.550

10 First 0.298 0.308 0.319

10 Second 0.204 0.213 0.223

10 Third 0.501 0.513 0.525

11 First 0.298 0.411 0.530

11 Second 0.249 0.357 0.476

11 Third 0.524 0.643 0.751

12 First 0.049 0.051 0.053

12 Second 0.015 0.016 0.017

12 Third 0.334 0.338 0.342

13 First 0.037 0.092 0.181

13 Second 0.000 0.011 0.059

13 Third 0.408 0.533 0.654

14 First 0.239 0.290 0.344

14 Second 0.236 0.286 0.340

14 Third 0.516 0.574 0.630

15 First 0.402 0.431 0.460

15 Second 0.291 0.318 0.345

15 Third 0.482 0.511 0.540

16 First 0.485 0.615 0.735

16 Second 0.363 0.491 0.620

16 Third 0.522 0.651 0.766

Continued on next page
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Table D.6 – Continued from previous page

Class ID Codon position Q1 Median Q3

17 First 0.213 0.220 0.227

17 Second 0.123 0.129 0.135

17 Third 0.397 0.405 0.414
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Table D.7: Count of unique GO terms for genes with mapping segments and genes
without mapping segments. Total count, GO terms that are associated with genes
that have mapping segments and genes that do not have mapping segments (shared),
GO terms that are associated exclusively with genes that have no mapping segments
(missing) are also displayed.

BP CC MF Total

Number of genes

With Segments 534 237 640 1411 2370

Without Segments 346 174 347 867 2173

Total GO terms 634 289 749 1672 4543

Shared GO Terms 246 122 238 606 –

Missing GO Terms 100 52 109 261 –
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Table D.8: Spearman rank correlation ρ values and associated p-values for each of
the Biological Process GO terms with > 100 associated genes.

GO Description rho pvalue

0006355 Regulation Of Transcription,

DNA-templated

0.6677 0.003165

0006468 Protein Phosphorylation 0.2838 0.2529

0006464 Cellular Protein Modification

Process

0.1662 0.5085

0006412 Translation 0.1187 0.6384

0006508 Proteolysis 0.1187 0.6384

0007018 Microtubule-based Movement 0.01548 0.9541

0006457 Protein Folding -0.07327 0.767

0006886 Intracellular Protein Transport -0.2281 0.3567

0006810 Transport -0.2549 0.302

0055114 Oxidation-reduction Process -0.2652 0.2825

0008152 Metabolic Process -0.2693 0.2749

0006511 Ubiquitin-dependent Protein

Catabolic Process

-0.3395 0.1655

0006260 DNA Replication -0.3725 0.1263

222

0006355
0006468
0006464
0006412
0006508
0007018
0006457
0006886
0006810
0055114
0008152
0006511
0006260


Table D.9: Tally of genes with overlapping segments across the four categories of
transcription genes.

classes found total

I. General Transcription Factors 33 56

II. Chromatin-related Factors 40 63

III. Specific Trancription Factors 48 73

IV.TAP partners 7 10
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Table D.10: Spearman rank correlation ρ values and associated p-values for each of
four categories of genes that control transcription in Pf.

class rho pvalue

I. General Transcription Factors -0.2343 0.348

II. Chromatin-related Factors -0.3602 0.1401

III. Specific Trancription Factors 0.5562 0.01767

IV.TAP partners 0.06295 0.7986

224


	Copyright Notice
	Abstract
	Acknowledgement
	The List of Publications
	1 Introduction
	2 Literature Review: Part 1
	2.1 Introduction
	2.2 Some Background to Genetics
	2.3 Statistical Methods
	2.4 Introduction to Bayesian Inference
	2.5 A Markov Chain
	2.6 The changept model

	Literature Review: Part 2
	3 Drosophila 3 UTRs Are More Complex than Protein-Coding Sequences
	4 Genome-wide Identification of ncRNAs using a Bayesian Segmentation Approach
	4.1 Abstract
	4.2 Introduction
	4.3 Results
	4.4 Discussion
	4.5 Methods
	4.6 Data access
	4.7 Acknowledgements

	5 Discovery of Putative Small Non-Coding RNAs from the Obligate Intracellular Bacterium Wolbachia Pipientis
	6 Host-Generalism in Blood Parasites: a Case for Reversible Host-Specialization
	6.1 Introduction
	6.2 Results
	6.3 Conclusion
	6.4 Methods

	7 Summary, Conclusions and Future Work
	A Appendix Chapter 3 
	B Appendix Chapter 4 
	C Appendix Chapter 5 
	D Appendix Chapter 6 



