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“In the creation of the heavens and of the earth, and in the alternation of night and day,

are signs for people who know.”

Ayat 90, Surah Ali-Imraan, Holy Quran



STATIC SPHERICALLY SYMMETRIC ELECTROVAC

BRANS-DICKE SPACETIMES

by Maya Watanabe

Abstract

We investigate the stability of static spherically symmetric electrovac BD spacetimes

under an electrostatic perturbation by a point charge. The field equations are integrated

directly, and we are able to give, for the first time, a solution describing a general static

spherically symmetric charged Brans-Dicke (CBD) spacetimes that is reducible to all

known BD spacetimes. We find there are nine classes of independent solutions. We are

able to give the physical interpretation of the parameters contained within the metric

and shed light on not only the CBD spacetimes but the BD spacetimes as well.

We investigate the stability of the CBD spacetimes by electrostatically perturbing it with

a point charge. By extending a method first introduced by [1] we are able to convert

the partial differential equation on the electrostatic potential generated by the point

charge into a solvable ordinary differential equation. In this way we are able to give an

exact, closed-form solution for the electrostatic potential generated by a point charge

in a CBD spacetime. We introduce a boundary condition, based on Gauss’ divergence

theorem, that enables us to determine the constants of integration such that the solution

is representative of a single charge.

Furthermore, we introduce a method by which the CBD metric can be converted from

isotropic to Schwarzschild-type coordinates. In Schwarzschild-type coordinates we find

that the CBD Class I solution (also referred to as the Brans-Dicke Reissner-Nordström

or BDRN solution) exhibits an extra S2 singularity in addition to the generalized inner

and outer “horizons”. This additional singularity and the behaviour of the electrostatic

potential is investigated by graphically representing in isotropic and Schwarzschild-type

coordinates the equipotential surfaces generated by the perturbing charge in the four

backgrounds (BDRN, Brans-Dicke, Reissner-Nordström and Schwarzschild), alongside

Copson’s perturbed Schwarzschild solution of [1].

We find that all nine classes of the formal, generalized CBD solution are stable under

electrostatic perturbations.
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Chapter 1

Introduction

This chapter introduces the key topics and concepts that are required to gain an ap-

preciation for the basis of this research. We begin with an introduction to scalar-tensor

theory as an alternate theory to general relativity in Section 1.1. We give a brief history

of scalar-tensor theory in regards to its synthesis and the motivation that led to the

Brans-Dicke theory. The scope and applicability of scalar-tensor theories, ranging from

explaining cosmological phenomena to creating unification theories such as string the-

ory, are discussed with particular attention paid to recent developments in Section 1.2.

In Section 1.3, we discuss our choice for investigating the stability of static spherically

symmetric electrovac Brans-Dicke spacetimes and give a brief history of the development

of charged Brans-Dicke spacetimes up to the present. In Section 1.4, perturbation the-

ory and its history is discussed in the context of a “test” perturbing charge with some

references made to Regge-Wheeler type perturbations. In Section 1.5, we give a brief

overview of the astrophysical investigations that are of interest, such as the possibility

of charged Brans-Dicke black holes and wormholes. Lastly, in Section 1.6 we conclude

by briefly summarizing the key features of the research that makes up this thesis.

1



Introduction 2

1.1 Brans-Dicke Theory

General relativity (GR) is one of the most well known and elegant theories to appear in

the scientific world. Its elegance lies not only in its simplicity but also in its ability to

withstand obvservational tests including, but not limited to, the precession of Mercury,

gravitational lensing and gravitational redshift. However, in recent years it is becoming

ever more evident that GR is not without its limitations. Its inability to reconcile with

quantum mechanics has been a long standing problem and with the current acceleration

of the universe being all but confirmed [2], it seems necessary to modify GR somewhat

to accomodate these phenomena. One such alternate theory to GR is the scalar tensor

theory (STT).

Scalar tensor theory can be traced back to Jordan [3] who coupled a scalar field to the

Ricci scalar of the general Lagrangian as follows

LJ =
√−g

[
ϕγJ

(
R− ωJ

1

ϕ2
J

gµν∂µϕJ∂νϕJ

)
+ Lmatter(ϕJ ,Ψ)

]
, (1.1)

where ϕJ is Jordan’s scalar field, γ and ω are constants (the meanings of which will be

made apparent later) and Ψ represents the matter fields (see [4]). Scalar tensor theories

are classified by the presence of the nonminimal coupling term (the first term inside the

square brackets of the RHS of Eq.(1.1)). The four dimensional scalar field, ϕJ , enabled

Jordan to describe the gravitational “constant” as being dependent on spacetime, a

consequence that was in agreement with an earlier conjecture by Dirac [5]. However a

consequence of coupling the scalar field to the matter term (the third term on the RHS

of Eq.(1.1) is that the weak equivalence principle (WEP) is violated.

The WEP states that a gravitational acceleration at a given point is independent of

mass [6]. A consequence of WEP violation is that gravitational acceleration would

be dependent on the velocity of the body under consideration and thus, for example, a

spinning body would have a smaller acceleration in a gravitational field than its identical

non-spinning counterpart. Like Einstein before them, Brans and Dicke found WEP

violation unappealing. To reconcile the issue they decoupled the scalar field from the

matter part [7], [8] to produce the following Lagrangian which did not violate WEP

LBD =
√−g

[
ϕR− ω 1

ϕ
gµν∂µϕ∂νϕ+ Lmatter(Ψ)

]
. (1.2)

(for a more thorough history on the motivation behind their modification see [6]). We

point out that the scalar field has γ = 1 dependency as a direct consequence of decoupling

the matter part of the Lagrangian from the scalar field and ω is the only parameter in
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Brans-Dicke (BD) theory (we omit a factor of 16π that appeared in the original BD

theory [7] for aesthetic purposes).

A quick comparison with the Einstein-Hilbert term of GR reveals that, like Jordan’s

general STT, Brans-Dicke theory also possesses a spacetime dependent gravitational

“constant” which is characterized by the scalar field and is called the effective gravita-

tional constant, Geff .

Interestingly it was not the nonminimal coupling term that was, and still is, the centre of

discussion regarding the the BD theory but the dimensionless coupling parameter ω. The

sign of ω determines the type of energy that a normal field will possess: that is a positive

ω corresponds to a normal field possessing positive energy and a negative ω corresponds

to a “ghost” field possessing negative energy. At the time of the formulation of the

theory, negative energy was deemed physically unacceptable as it appeared to violate

the weak energy condition. However, we know now that there are instances where a

negative ω need not violate the weak energy condition. Due to the presence of the

nonminimal coupling term in the Lagrangian the dominating energy density may still

be positive. This is the case where the scalar field arises from the size of compactified

internal space in Kaluza-Klein (KK) theory. The Kaluza-Klein theory, a predecessor to

STT and string theory, describes a five-dimensional spacetime to which GR is applied.

Four of the spatial dimensions extend to infinity and make up the world as we see it,

however one dimension is assumed to be “compactified” to a circle so small that no

phenomena can detect it. The scalar field that arises in this compactified region is a

ghost field. However, the overall system remains positive, due to the presence of the

nonminimal coupling term, see [4].

Another example where ghost fields do not imply physical inconsistencies is in the case

of dilatons in string theory. String theory, which has gained particular momentum shows

that a kind of second-rank tensor or “closed string” behaves like the spacetime metric

at low-energies. Additionally, interaction among strings occurs in a fashion similar to

the way gravitons are proposed to interact with each other in GR. A companion to

the graviton in STT is a scalar field called the “dilaton”, see [4]. Although the dilaton

possesses a negative value for ω, the overall positivity of the physical mode is assured

as it is easy to restrict other parameters in order for the “diagnolized” scalar field to

be a nonghost field. One last example is in brane theory where in order to exist in a

negative-tension brane (which is required to solve the hierarchy problem), ω must be

negative but larger than −3
2 which again does not violate the positivity condition as the

“diagnolized” scalar field can still be expressed as a nonghost field. Even the extreme

circumstance where ω = 0 need not be eliminated from consideration [4].
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Moreover, even if the overall energy were to be negative we now know that this is not

the impasse it once appeared to be. There are several instances where negative energy

has been theorized to exist such as squeezed light states [9], the Casimir effect [10] and

moving boundaries [11]. While for the above theories researchers have only been able

to measure the indirect effects of negative energy, it may be possible to detect them

directly using atomic spins [12]. Another famous example of negative energy is the

Hawking prediction that black holes evaporate by emitting radiation [13] which would

manifest as an absorption of negative energy. Lastly, in [14], the authors found that in

order for a wormhole to be traversable, it is in fact necessary for the wormhole throat

to possess negative energy.

What about observtional constraints on ω? From the relativistic perihelion rotation

rate of Mercury, Brans and Dicke were able to place the acceptable value of the coupling

parameter at ω ' 6. This was in stark contrast to obvervational data that placed the

value at ω ≥ 1000 from the Shapiro time-delay measurement of the Viking Project of the

1970s. Even when the possible oblateness of the sun was taken into consideration, the

observational constraints did not place ω anywhere in the vicinity of the value proposed

by Brans and Dicke. The Cassini-Huygen’s data of 2003 places the current accepted

value of the coupling parameter at ω ≥ 40000. However even this problem can also be

resolved if one recognizes that if the force range of the scalar force is smaller than the

size of the solar system, and consequently no longer affects the perihelion advance of

Mercury, then the observational constraints are irrelevant [4]. Thus there is no reason

why any range on ω should be dismissed as unphysical without considering the physics

of every proposed model of the STT.

1.2 Scalar Tensor Theories of Gravitation

There are several applications of STT that are outside of the scope the research included

herein. In this section we have included only those investigations that are pertinent to

the theme of this thesis.

There is no doubt that one of the reasons scalar tensor theory in general has enjoyed

a renewed interest recently is due its broad range of applicability. Scalar tensor theo-

ries, and its most simple prototype, the BD theory, has the ability to model quantum

phenomena such as Higgs bosons and dilatons, and cosmological phenomena such as

the cosmological constant and the continued acceleration of the present universe, using

for example inflatons. A consequence of this applicability hints at the possibility of a

unified field theory.



Introduction 5

Among these unification attempts has been string theory. In this theory, the graviton

which has played a major role in unifying gravitation with quantum physics has a scalar

companion called the dilaton. String theory predicts that the coupling parameter will

be ω = −1 which, as we saw from our discussion in the previous Section, is not unac-

ceptable. We point out that like most other unification theories, string theory allows

the scalar field to couple directly to matter, in contrast to the BD theory, and as such,

the WEP is inevitably violated. There are physical instances however that suggest that

the Equivalence Principle (EP) (one of the central pillars of GR) may still be observed

even when the WEP is not. Of course the implications upon GR if the WEP is found

to be unnecessary is still huge [15] but out of the scope of this thesis as we focus our

attention on the WEP preserving BD theory.

Another prediction of string theory is the appearance of a nonlinear structure called

the “brane” (which is a nomenclature of “membrane”) [16], [17], [18]. The brane is

essentially a boundary layer upon which the ends of open strings can “stand”. Although

at first glance, branes appear to only affect physics at a quantum level, it actually has

implications even on a cosmological level, namely that we are living in a 3 dimensional

hypersurface in a higher dimensional spacetime called a brane world. One type of scalar

field in a brane world appears to be related to the “distance” between two branes and

is thus referred to as a “radion”. This massless scalar field would also appear in our

four-dimensional world. It can be shown that the BD model can also accomodate branes

when restrictions are placed upon the coupling parameter [19]. It follows from brane

theory that we must live in a negative-tension brane and thus the constraint on the

coupling parameter is −3
2 < ω < 0.

Another strength of STT over GR is the ability to accomodate the acceleration of the

universe and the emergence of a nonzero cosmological constant [2], [20], [21], [22]. The

expansion of the universe can be addressed by STT in several different ways; including

through the existence of dark energy and quintessence.

We first look at the cosmological constant as a scalar field. Discussion regarding the

cosmological constant, Λ, has been reignited since Einstein’s famous “blunder” and

since Hubble’s discovery that the universe is expanding. Observational data from type

Ia supernovae [2], data from high-redshift supernovae [23], the large-scale structure of

galaxies [24], the number of galaxies [25] and gravitational lensing of distant objects

[26] all suggest a nonzero cosmological constant. Most recently, data from the Planck

mission of 2015 suggests strongly that the cosmological constant is indeed nonzero [27].

Shortly after the big bang, it is widely accepted that the universe experienced a very

rapid expansion called an “inflation period”. This exponential inflation can be attributed

to Λ. This inflation period was orginally attributed to vacuum energy [28], [29], [30].
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However “new inflation” models attribute the inflation to classical scalar fields such as

those seen in STT and BD thoery. One of the greatest drawbacks of the original “old

inflation” models with a true constant is that the inflation never ends, a result which

is completely unrealistic. After the inflationary phase, the expansion that we see today

must set in. Therefore a smooth transition must occur between these two phases. This

is referred to as the “graceful exit”. “New inflation” has a way of avoiding this graceful

exit problem by adjusting the parameters of the effective potential. La and Steinhardt

[31] introduced a new method by which the graceful exit problem could be avoided

as an extension of the old inflation model that did away with the need to “fine tune”

parameters.

One benefit of STT is the ability to either include or disclude Λ as required. Berman

and Som [32] were able to show that the exponential inflation phase is possible in BD

cosmology with both positive pressure and density, but for which the violated energy

condition (p = −ρ) did not hold in the absence of Λ. They then included the cosmological

constant into their theory and arrived at the same conclusion [33]. More recently they

found a solution for exponential inflation in a generalized BD model with a varying

coupling parameter [34]. They were able to show that the negativity of cosmic pressure

implied an accelerated expansion of the universe even with a negative cosmological

constant.

We now turn our attention to different candidates for the scalar field Λ. It is widely ac-

cepted that most of the matter density of the universe can be attributed to dark matter.

However to reconcile with the accelerated expansion of the universe and from observa-

tional data [35], we know that another as-of-yet unknown and unclumpy component of

energy must exist as well, such as the cosmological constant or a spatially uniform scalar

field. This is called “dark energy”. One of the requirements on dark energy is that it

must possess negative pressure. As such it could replace the cosmological constant in

discussions regarding the rate of expansion.

Another candidate for the cosmological constant is quintessence. Quintessence is often

referred to as a decaying cosmological constant but is also used to imply a fifth element

of the universe, representing an unclumpy distribution with negative pressure [36], [37].

The drawback of quintessence is the need for some fine tuning of the parameters con-

tained within. Also, the universe as we know it today would not have evolved naturally

from the quintessence model. If we instead consider our universe to be a brane world,

we can do away with the need for fine tuning and perhaps arrive at a more compatible

version of quintessence. This is indeed the case where quintessence in a brane world can

meet crucial criteria for a physically realistic cosmological model such as nucleosynthesis

and matter dominance.
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If one is to assume a zero cosmological constant then some other mechanism must be

introduced to account for the accelerated expansion of the universe. One such mechanism

is the inclusion of a new massless scalar field called the “inflaton”. In some theories the

inflaton behaves similarly to a dilaton whilst in others it behaves like the scalar field of

older STT theories (see [6] and the references given within).

Lastly, we look at how STT reconciles with quantum theories. The investigations into

quantum scalar fields are very different to those that drive research in scalar fields of

macroscopic theories however there are certain forms of the quantum formalism that are

similar to classical scalar fields. The most obvious example of this is the aforementioned

scalar field called the “dilaton” that arises naturally from discussions regarding string

theory. Another example, is the famous Higgs boson or “God particle” from which

subatomic particles are endowed with mass. With the recent discovery of the Higgs

boson [38] it is not surprising that STT has received yet another boost. There are

some key aspects of the Higgs mechanism that we must point out: namely that the

gravitational scalar field φ couples to the matter directly at the level of the Lagrangian

in violation of the WEP (and in contrast to the BD model). Also, the scalar field

representative of matter, Φ, is massless and no kinetic term is produced, thus the second

term of the Lagrangian also appears differently to that of the BD model Eq.1.2.

We point out that in 2005, Brans posed the question as to why no fundamental scalar

field has been observed as of yet [6] in spite of the fact that they have been speculated

so widely. We feel he will be happy to know that a scalar field has finally been found!

1.3 Static Spherically Symmetric Electrovac Brans-Dicke

Spacetimes

The strength of STT, and BD theory in particular, has been illustrated in the preceed-

ing section and it is therefore self explainatory why further investigations are warranted.

Here we give our motivations for studying in great detail, a specific class of BD space-

times viz. the static spherically symmetric electrovac Brans-Dicke spacetimes.

There is strong reason to believe that a static black hole resulting from the gravitational

collapse of a massive object, can be described by its mass and charge alone as the other

characteristics are “radiated away” during the collapsing process [39]. It seems physically

relevant therefore to study static electrovac BD spacetimes as opposed to vacuum BD

spacetimes.
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The first attempt to add charge to the standard vacuum BD model can be attributed

to Mahanta [40] who found an approximate solution describing a static spherically sym-

metric metric due to a point charged mass in BD theory in 1972. We point out that

the constants of integration contained therein were determined using the weak field ap-

proximation like that of the original BD theory [7]. This was quickly followed up by an

exact solution by Buchdahl [41] who found ten classes of charged BD (CBD) solutions of

which “at least five” were physically acceptable. One of these five classes of physically

acceptable solutions reduced to the BD Branch I solution, while his Class IIIa solution

“resembled” the BD Branch II solution. He was not concerned that his solution was

unable to recover the other BD classes as he claimed that the other BD Classes could

be excluded on the basis that the parameters (Λ and C) in those spacetimes were not

real.

Also in 1972, Luke and Szamozi [42] found an exact solution by integrating the field

equations directly, that described a charged BD spacetime. The solution could be clas-

sified into four branches depending on the sign of the parameter B (> 0, < 0,= 0,=∞).

They were however, unable to give an expression for the constant of integration B as

they assumed the only way to do so was by implementing the weak field approximation,

a procedure for which they could find no justification. As a result they were only able

to give the limit for B when the charge was allowed to vanish, and found that it was a

function of the mass of the particle B = G0M
2c2

. The BD solutions were not recoverable

even with B = G0M
2c2

. The only degeneracy they were able to achieve was to the Reissner-

Nordström solution when the parameter g0 = 0, which corresponds to a constant scalar

field.

A short while later, Raychaudri et al [43], independently of work done previously by

Buchdahl, also found a solution for a static, spherically symmetric electrovac BD space-

time. Their solution coincided with that of Buchdahl except for the fact that they were

able to find that there were only five independent classes in lieu of Buchdahl’s ten.

Singh and Rai [44] found a solution for a static axially symmetric electrovac BD space-

time for three types of electromagnetic fields (azimuthal, radial and longitudinal). Mean-

while, Reddy et al [45], [46] were able to find a solution for a static, spherically symmetric

electrovac BD spacetime that was conformally flat. This was, by their own admission,

astrophysically interesting though unrealistic.

In an extension of the work done in [46] and [45], Van den Bergh looked for the same type

of solution for a static spherically symmetric electrovac BD spacetime which was not

conformally flat. He limited his investigations to those where he thought the coupling

parameter was indicative of “positive energy density”, that is ω > −3
2 . He found three

classes of solutions depending on the sign of the integration constant λ (= 0, < 0, > 0),
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although like Luke and Szamosi before him, he was unable to explain the physical

meaning of the integration constant. Unfortunately, the final form of the solutions were

tediously complicated. He was however able to point out that in order for the effective

gravitational “constant” to be non negative at infinity, the conformally flat solution of

[46] is only valid for ω < −3
2 .

Around the same time that static, spherically symmetric electrovac BD spacetimes were

being conceived by the likes of [40], [41], and [42], study into a new class of scalar-tensor

theories was underway. Based on previous work by Bergmann [47] and Wagoner [48],

Nordtvedt [49] proposed a class of STT similar to the BD theory where the coupling

parameter ω was allowed to be an arbitrary function of the scalar field,φ, such that ω(φ).

Of course, the BD theory was a subclass of this more general theory. These types of

scalar tensor theories are known as the Bergmann-Wagoner-Nordtvedt (BWN) theory.

A special class of the BWN theory was proposed by Barker where the gravitational

“constant” G was allowed to be independent of time [50].

Van den Bergh, using the method by [44] was able to find a solution to the BWN field

equations for a stationary, axially symmetric electrovac spacetime. As an extension

of this, Singh and Singh [51], were able to integrate the BWN field equations directly

using the method introduced in [42] to give closed form solutions describing static,

spherically symmetric, electrovac BWN spacetimes. More specifically their solutions

were representative of the Barker and Schwinger theories.

Bronnikov [52] studied the stability of a class of BWN spacetimes in the context of

non-trivial black holes with particular attention paid to BD spacetimes. He was able to

find a class of electrovac BD spacetimes where the coupling parameter was constrained

to ω < −3
2 . He did not give the degeneracy of his solution but we find it to degenerate

to a limiting case of the BD Class III solution.

To the best of our knowledge, to date there has been no success in finding a solution

for the BD field equations that describe a static, spherically symmetric, electrovac BD

spacetime that degenerates to the four known BD spacetimes of [8] in the absence of

an electromagnetic potential. All the previous investigations referred to above, have

covered only a subset of the detailed solution presented in this thesis.

1.4 Perturbation Theory

If an electromagnetic test charge is dropped into a static BD black hole there are two

possible outcomes: 1. the electromagnetic field of the perturbing charge creates a suffi-

ciently large stress energy that destroys the horizon or makes it singular; 2. the horizon
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is not destroyed [53], [54], [55], [56]. If the former outcome is true then there can exist

no BD black holes in nature since, even if one were formed, a charged particle at some

point in time would enter it and destroy it. Thus a very basic test for the stability of a

gravitating theory is by an electromagnetic perturbation (note that the same principle

applies to scalar field perturbations, see for example [57], [39], [58], [59], [60]).

The electromagnetic perturbation in the context of this thesis refers to a “test” charge,

where the effects of the charge are sufficiently small such that the background metric

is unaffected by the presence of the perturbing charge. This is in contrast to gravita-

tional Regge-Wheeler type perturbations where the electromagnetic potential alters the

geometry of the background space as it couples directly to the metric [61]. Unless other-

wise stated, in this thesis, a perturbing charge shall refer to a “test” charge. There are

some instances where reference will be made to relevant Regge-Wheeler type perturbing

massive electric charges and these shall be made explicit.

The study of electromagnetic perturbations date as far back as 1927 when Whittaker

[62] found a multipole expansion solution describing the electric potential generated by a

static perturbing charge in quasi-uniform and Schwarzschild spacetimes. For the former

he was able to find an exact, closed-form solution (also known as an “algebraic” or

“analytic” solution), while for the latter he was only able to find a multipole expansion

solution (also referred to as “series expansion” solutions).

Shortly after, using a different method altogether, Copson [1] was able to find closed-

form solutions for the electric potential generated by a static perturbing charge in both

the quasi-uniform and Schwarzschild spacetimes, the former agreeing with the results

of Whittaker. Copson used Hadamard’s theory of “elementary” solutions (referred to

in subsequent literature as “fundamental solutions”) to find the first few terms of the

fundamental solution. From the form of the first few terms, Copson found that he

could use a substitution by which to convert the partial differential equation on the

electrostatic potential into a solvable ordinary differential equation (the details of this

method are given in the Introduction of Chapter 2). He was able to solve this ordinary

differential equation to give a closed-form solution for the electrostatic potential. He

plotted the equipotential surfaces of his solution in isotropic coordinates and found

no anomalies. The constant of integration was chosen such that the resulting potential

would be symmetrical in the radial coordinate r and the location of the perturbing charge

b. This choice resulted in his solution being different to that of Whittaker when the exact

solution was expanded in series form and a term by term comparison was made. Copson

found that his solution contained an extra leading term while the remaining infinitely

many terms were exactly the same! The physical implication of this extra term would

not be made clear until nearly half a century later.
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In the meantime, independently of the work done by [62], the electric potential of a

static perturbing charge in a Schwarzschild spacetime was rederived by Cohen and Wald

[53] and Hanni and Ruffini [63] who also used a multipole expansion method. Cohen

and Wald and Hanni and Ruffini, found that when the charge was lowered into the

Schwarzschild black hole, the electrostatic field remained well behaved and the multipole

moments, except for the monopole, faded away. Both studies concluded that a Reissner-

Nordström black hole was produced although it later came to light that this was not

strictly true (see Introduction of Chapter 3). Hanni and Ruffini [63] plotted the electric

field lines of the perturbing charge for decreasing values of the radial coordinate to gain

an appreciation for the evolution of the charge as it is “lowered” into the Schwarzschild

black hole. Both Hanni and Ruffini and Cohen and Wald implemented the boundary

conditions that the electrostatic potential of the perturbing charge must be well behaved

even as the charge approaches the horizon and that the flux through a surface enclosing

the hole, but not the point charge, must be zero.

In a series of papers, Bicak et al [64] perturbed a Schwarzschild spacetime by electro-

magnetic charges dynamically also by using multipole expansions. Their solution at the

static limit coincided with those found by [53] and [63] in that all multipole moments

faded away leaving only a monopole which could be interpreted as representative of a

Reissner-Nordström black hole.

Not long after, Linet [65] revisited Copson’s earlier work [1] and using Gauss’ theorem

at infinity, found that the electrostatic potential of Copson’s solution contained more

than one source. This second source was attributed to a second charge located in the

region not covered by the isotropic coordinates. We point out briefly that in isotropic

coordinates the spherical surface at r = B is not a horizon but rather a surface of

inversion where the interior region is identical to the exterior under an inverse transfor-

mation. Thus the isotropic coordinate system contains two copies of the region exterior

to the horizon in Schwarzschild-type coordinates while the region inside the horizon of

the Scharzschild coordinates is completely excised from the isotropic coordinates (the

details of this are given in Chapter 2). As Copson placed only one perturbing charge

outside the surface of inversion (and indeed only one charge appears in his oringal plot),

Linet found that there must exist a second charge lying within the surface of r = B, the

region not covered by the isotropic coordinates. He went on to correct Copson’s solution

such that it would be representative of a single charge perturbation and to convert it

into the usual Schwarzschild coordinates. The ammended solution was now in agreement

with multipole expansions of [53], [63], and [62]. Harpaz [66] was able to graphically

represent the solutions and showed that the electric field lines were comparable with

those plotted in [63].
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The extra charge that Copson inadvertantly introduced into his solution was a result of

his choice of boundary condition. By requiring only that the solution be symmetrical in

terms of the radial coordinate and the location of the charge, he was unable to ensure

that the resulting solution was representative of a single perturbing charge. The Copson-

Hadamard method in finding a closed-form solution itself was still valid and Linet et al.

used it to find closed-form solutions describing the electric potential of a point charge

in a Reissner-Nordström spacetime and in a BD spacetime. It turned out that the form

of the partial differential equation on the electrostatic potential of the point charge in

the Reissner-Nordström spacetime was identical to that of the Schwarzschild spacetime

and hence the solution could be derived trivially from the Schwarzschild solution.

The partial differential equation on the electrostatic potential of a point charge in a

BD spacetime of course was different, but Linet was able to find a substitution that

allowed him to convert it into a solvable form. He was therefore able to find a closed-

form solution for the electrostatic potential of a point charge in a Class I BD spacetime.

The only boundary condition he placed was the boundary condition at infinity, which

was insufficient in determening the constants of integration, as will be made clear in

Chapter 2. Linet determined the constants of integration by looking at the first few

terms of a multipole expansion. There is thus an obvious need to address this boundary

condition problem and to introduce a method by which the constants of integration

can be found directly and without looking at multipole expansion solutions, so that the

resulting solution is truly representative of a single perturbing charge.

Adding to the growing body of literature, Molnar [67] found a Green’s function and

multipole expansion to describe the electrostatic potential generated by a point charge

in a Schwarzschild spacetime and found that his solution was in agreement with that

found earlier in [65]. In later research [68] he was further able to prove that the solution

of [67] (and [65]) was indeed unique.

In [69], Linet attempted to extend the Copson-Hadamard method to Schwarzschild

black holes in higher dimensions with little success. He used several different forms

of the substitution in an attempt to convert the governing partial differential equation

on the electrostatic potential and scalar field into solvable form but was able to find a

closed-form solution only for the electrostatic potential and scalar field generated by a

point source in spacetimes with non-degenerate horizons.

We now turn our attention to a few pertinent gravitational Regge-Wheeler type pertur-

bations that have been made in the same field of research. In the following studies the

charge is linearly perturbed directly to the background metric in the fashion of [61].
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In [64], Bicak electromagnetically perturbed an extreme Reissner-Nordström spacetime

using the Regge-Wheeler type perturbation and multipole expansion method. In a

following paper they was able to find a multipole expansion solution for the magnetic

field of a perturbing current loop of a Reissner-Nordström black hole [70]. They went

on to numerically calculate the magentic lines force and plot them graphically.

In a similiar manner Bronnikov [52], perturbed the electrovac BD spacetime he derived

under the restriction ω < −3
2 , with a time varying electric charge but focused on the

infalling times and finiteness of the horizons in an attempt to ascertain the possibility

of BWN and BD black holes. He found that his class of electrovac BD spacetime was

stable under electrodynamic perturbations. The results of his investigations into the

possibility of BD black holes are discussed in the next section.

Another question that is posed when discussing electrostatic perturbations is how the

perturbing charge is able to be held in place without succumbing to the force acting

upon it by the gravitating field of the spacetime. This so-called “equilibrium” problem

has been a long standing one with several attempts at finding a model where equilibrium

is achieved between two charged and/or gravitating objects [71], [72]. Essentially, the

issue has revolved around finding a scenario where the electromagnetic field generated

by either one, or both objects balances out the attractive force of the gravitational field

produced by either one, or both, of them.

Alekseev and Belinski [73] were able to find an exact closed-form solution representing a

Reissner-Nordström black hole in equilibrium with a Reissner-Nordström naked singu-

larity. This was plotted graphically by Pizzi [74] and Paolino et al [75] for three different

scenarios: where the two bodies had the same charges, different charges and when one

was neutral.

In a series of papers, Bini et al [76], [77], using gravitational Regge-Wheeler type pertur-

bations, were able to represent in closed-form a solution for a charged massive particle

at rest in a Reissner-Nordström spacetime. They extended this study in [78] by repre-

senting the results of [76] and [77] graphically and found that their solution coincided

with the Alekseev and Belinski in the Regge-Wheeler gauge. An attempt to find a cor-

responding equilibrium solution for the Schwarzschild spacetime resulted in the need to

introduce a strut [76] to prevent the massive charge from “falling” into the Schwarzschild

black hole due to gravitational attraction.

In the context of investigating the stability of a background spacetime, it has been

argued that electrostatic perturbations need not necessarily be physical, that is, equilib-

rium need not necessarily be reached between the perturbing charge and the gravitating

singularity. Perhaps this is why there have been, to date, only a few attempts to explain
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how the electric perturbing charge can remain static in the presence of an attractive

gravitational field. Certainly no attempts have been made with respect to static spher-

ically symmetric electrovac BD background spacetimes. There is no doubt that finding

a method by which the perturbing charge can be held static would be very interesting.

In Chapter 2 and 3, we provide the mechanism whereby the perturbing electric charge

is held static by the charge distribution inside the outer “horizon”.

1.5 Astrophysical Interests

The search for BD black holes was initiated by Campanelli and Lousto [79] who studied

whether black holes would arise in the BD theory of gravity as they would in GR. The

authors first converted the BD metric from isotropic to Schwarzschild-type coordinates

to give the following

ds2 = −c2A(rs)
m0+1dt2 +A(rs)

n0−1dr2s +A(rs)
n0r2dΩ2,

where

A(rs) = 1− 2
r0
r
, (1.3)

and Ω2 = dθ2 + sin2 θdφ2.

They found that the leading terms of the Kretschmann scalar invariant is regular ev-

erywhere if n0 ≤ −1 and also when m0 = n0 = 0; the former corresponds to the

coupling constant being ω < 0 while the latter being simply the conditions underwhich

the Schwarzschild black hole solution is recovered. By studying the Killing vectors and

the outgoing radial null geodesics when n0 ≤ −1 he found that the outer “horizon”

r = 2r0 would represent an event horizon whenever m0−n0 + 1 > 0, which corresponds

to ω < −3/2.

Interestingly, it was not until two decades later that a closer look at the Campanelli-

Lousto findings by Vanzo et al [80] revealed that the BD spacetime was representative

not of a black hole but, according to the values of a parameter, of a wormhole or naked

singularity. Taking a closer look at the horizon and in particular the areal radius revealed

that when n0 ≥ 0 a bundle of radial outgoing null rays would experience an “hourglass”

effect, where expansion of the cross-sectional area of the bundle would be positive up

to rmin, where it vanishes, before becoming positive again. This effect is illustracted

graphically in their paper. From this it can be inferred that the horizon r = rmin is
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an apparent horizon of a wormhole. For all n0 < 0 they found that the areal radius is

always increasing, indicative of a spacetime with a naked singularity.

Their findings were in agreement with those found earlier by Agnese and LaCamera [81]

in 1995 who found that the BD spacetimes gave rise to either a naked singularity or a

wormhole depending on a parameter. Additionally they found that two-way traversable

wormholes were possible when ω > −3
2 and two-way traversable wormholes were possible

for ω < −2. After the Agnese-LaCamera paper, investigations into BD black holes

expanded exponentially. We give here only an outline of the relevant papers.

In 1997, Nandi et al [82] found that of the four BD classes of solutions, three gave

rise to wormholes. They were able to show that two-way traversable wormholes were

permitted not just for negative values of the coupling parameter as stated by Agnese and

LaCamera but were possible for any arbitrary positive value for ω. The authors quickly

ammended their work in 1998, in [83] where they clarified that in fact, in the Jordan

frame wormholes can exist in the very narrow interval of the coupling parameter that is

−3
2 < ω < −4

3 . Additionally they showed that due to the radial tidal acceleration being

infinite at the throat of the wormhole, the wormhole was not traversable. In the Einstein

frame, they concluded that wormholes do not exist at all unless energy conditions are

violated.

However this would lead to some controversy. Bloomfield [84] did not agree that the weak

field approximation would permit the range on the coupling parameter as given in [83] for

which they claimed wormholes would be permissible in the Jordan frame. Besides having

an issue with the weak field approximation being applied to the strong field wormhole

phenomena under question at all, he found that the weak field approximation would allow

wormholes only when ω < −2 as originally stated in [81]. Moreover, he found that the

radial tidal acceleration was not infinite at the throat either. He agreed that wormholes

were not permissible in the Einstein frame, but by a different reasoning, that the energy

condition requires ω > −3
2 which is excluded from the weak field approximation.

In a response to Bloomfields critiques, Nandi [85] clarified that the form of the weak

field approximation implemented in [85] was a misprint, missing an exponent of two.

Thus the range −3
2 < ω < −4

3 was still applicable and representative of wormholes. He

conceded however that the radial tidal acceleration was indeed finite and this implied

that the wormholes were now traversable.

In a final reply, Bloomfield [84] was not convinced that the weak field approximation

could permit the range −3
2 < ω < −4

3 and showed that the behaviour of the redshift

function Φ (related to the metric coefficient g00) of [83] was in contradiction to the

redshift of the BD Class I which it supposedly represented.
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There was no conclusion to this controversy except that Nandi would return to discuss

wormholes in general STT later [86].

Research into BD black holes and wormholes continued and in 2002 He and Liu [87]

claimed to have found two new traversable wormhole solutions in vacuum BD theory.

Like Agnese and LaCamera before them one of these was permitted for the range ω < −2

and the other when −2 < ω ≤ 0. Unfortunately, it was only a short while later that

Bhadra et al [88] found that these solutions were not new but in fact just the BD Class

I and II solutions in a different conformal gauge. Bhadra et al extended their study

into BD wormholes in [89] and found that of the different classes of BD solutions, BD

Class I solution allowed wormholes when ω < −3
2 and excluding ω = 2 and BD Class

II solutions allowed wormholes when −2 < ω < −3
2 . For the radius of the wormhole

throat to be large enough for travel, they found that ω had to be very large and of the

order consistent with obversational findings ' 40, 000. Additionally for the acceleration

experienced by the traveller at the throat of the hole to be of a physically acceptable

level, the mass of the wormhole would have to be M > 4×1012M�. The journey time to

cross a wormhole of that size would be extremely long and thus the authors found that

though the wormhole may be traversable, they were not suitable for interstellar travel.

Bhadra et al then went on to study the possibility of BD black holes in [90]. They

first concluded that of the four branches of BD solutions only two were independent

(we discuss in Chapter 4 that this is not, in fact, the case). By matching interior to

exterior scalar fields they found that Brans Class I solutions could represent an exterior

metric for a nonsingular massive object when −2 < ω < −(2 + 1√
3
). To understand the

BD Class I spacetime they looked at the curvature invariants in the same manner as

Campanelli and Lousto [79] before them. They found that when ω was negative then an

outgoing null surface representative of an event horizon is possible. This range included

that of their interior and exterior matching condition of −2 < ω < −(2 + 1√
3
). It is

thus somewhat surprising that they concluded that BD black holes were not possible

as the small negative range for ω was in contradiction with observational data. They

also concluded that the Class IV solution does not act as an exterior metric for any

reasonable gravitating object (the reason for this is made clear in Chapter 4).

Study into a nonsingular BD black hole was conducted by Ismailov et al [91] and Bhat-

tacharya et al [92] who both showed that the range on the coupling parameter that gives

rise to a wormhole in the BD Class I spacetime given in [83] could be revised to represent

a singularity free wormhole in the BD Class II spacetime when −2 < ω < −3
2 . Thus the

problem of having a singularity within the wormhole could be avoided.

Interestingly, and as a concluding remark, we turn our attention to a study by Boisseau

and Linet [93], where a wormhole spacetime (as given by Morris and Thorne in [14]) in
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n-dimensions was electrostatically perturbed. The closed-form solution describing the

electrostatic potential generated by the perturbing charge was found using the Copson-

Hadamard method.

1.6 Summary

In the preceeding sections we have made it explicitly clear why scalar tensor theories and

BD theory in particular, are worthy of investigation. There is an obvious paucity within

the litarature regarding solutions describing a static spherically symmetric electrovac

BD spacetime which is reducible to the four known BD Classes of solutions.

The aim of this thesis is to investigate the stability of static spherically symmetric

electrovac BD spacetimes by subjecting them to an electrostatic perturbing point charge

and to address the inconsistencies and incompleteness of the literature. We outline the

structure of our research as it appears in this thesis below.

In Chapter 2, we integrate the BD field equations directly, to find a class of static

spherically symmetric electrovac BD spacetimes that is reducible to the BD Class I and

Reissner-Nordström spacetimes which we term the BD Reissner-Nordström (BDRN)

spacetime. As we have integrated the field equations directly we are able to give an

interpretation on the physical meaning behind the constants of integration for the first

time. As such we are able to shed light, not only on the BDRN spacetime but the

BD spacetime as well. From the discussion in Section 1.5 there are some instances

where the implementation of the weak field approximation is warranted however there

is no a priori reason why it must be implemented. Thus we give the restrictions on the

parameters if the weak field approximation is implemented, but emphasize that we have

not implemented it in the derivation of the BDRN solution.

Closed-form solutions have clear advantages over multipole expansion solutions in that

they are exact solutions, therefore in Chapter 2, we implement the Copson-Hadamard

method to find a closed-form solution describing the electrostatic potential generated by

the perturbing charge. As discussed in Section 1.4, the Copson-Hadamard substitution

term which converts the partial differential equation on the electrostatic potential into

a solvable ordinary differential equation, was found case-by-case and by looking to the

first few terms of the series solution for inspiration. In this Chapter, we introduce a

method by which one can decipher the exact form of the requisite substitution from the

background metric alone. This does away with the need to “guess” at the form of the

substitution term.
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Additionally, in Chapter 2 we address the issue of a suitable boundary condition. As

outlined in Section 1.4, the lack of an appropriate boundary condition led Copson to

erroneously add an extra charge into his solution. Further study into exact, closed-form

solutions were unable to produce a boundary condition that would resolve the issue once

and for all. We introduce in this Chapter a boundary condition that is necessary and

sufficient and ensures that the resulting solution is representative of a single perturbing

charge. The boundary condition is based on Gauss’ divergence theorem and states that

an integration over any simply connected annular domain not containing the perturbing

charge must be exactly equal to zero even if that region contains a horizon or surface

of inversion. Correspondingly, an integration over a region containing the perturbing

charge must be exactly 4πε0 where ε0 is the magnitude of the charge at the singular

point r = b. Another way of interpreting this boundary condition is that the net electric

flux over any bounded region not containing the perturbing charge must be exactly zero.

With the ansatz on the Copson-Hadamard method and this sufficient boundary condition

we are able to find an exact, closed-form solution describing the electrostatic potential

generated by a perturbing charge in a BDRN spacetime. We find that the BDRN

spacetime is stable under such electromagnetic perturbations.

While the isotropic coordinates are sufficient in most investigations regarding the exterior

of the surface of inversion B, to understand a spacetime in its entirety, it is necessary

to extend the region inside the surface of r = B. This can only be done by recasting a

metric into the usual Schwarzschild-type coordinates.

In Chapter 3, we investigate the BDRN spacetime further by including the region not

covered by the isotropic coordinates. This is done by introducing a transformation

equation by which the metric can be converted into Schwarzschild-type coordinates. We

convert the BDRN metric into Schwarzschild-type coordinates and astonishingly we find

that the singularity one would expect to see at the origin as a point singularity, in the

BDRN spacetime appears as an S2 surface at r0. This S2 surface is in addition to the

two known surfaces; the generalization of the inner and outer “horizons”. The behavior

of this additional singularity and the conditions underwhich it manifests are investigated

and detailed.

Using the transformation equation we are also able to convert the electrostatic potential

of a point charge derived in Chapter 1 into Schwarzschild-type coordinates. We find

that in both coordinate systems our solution on the electrostatic potential generated

by the perturbing charge is well behaved even when the charge is placed at the surface

of inversion or outer “horizon”. In this way we are able to prove that the boundary

condition outlined in [53] is satisfied. An interesting discovery is that the electrostatic

potential generated by an electrostatic perturbing charge placed at the horizon in a
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BDRN spacetime is independent of the angle θ and is only a function of the radial

coordinate rs. This can be interpreted using the Schwarzchild-type coordinates and is

as follows: the surface of rs = const inside the horizon of the uncharged spacetimes

(BD and Schwarzschild) and the region in between the two “horizons” of the charged

spacetimes r− < rs < r+ (where r− refers to the inner “horizon” and r+ refers to the

outer “horizon”) are spacelike surfaces. In these regions the radial coordinate and time

coordinate become timelike and spacelike respectively. Thus when the perturbing charge

is placed on this spacelike surface of rs = r+ the charge is immediately distributed evenly

across the entire surface of rs = r+ and is no longer dependent on the angle θ. This is in

agreement with results found earlier when the Schwarzschild spacetime was perturbed

electrostatically in [63].

To illustrate the differences between the isotropic and Schwarzschild-type coordinates,

and to gain a greater understanding of the behaviour of the electrostatic potential in the

BDRN, BD, Reissner-Nordström and Schwarzschild spacetimes, we graphically plot the

equipotential surfaces in isotropic and Schwarzschild-type coordinates. Additionally we

plot the equipotential surfaces generated by the perturbing charges of Copson’s solution

of [1] to illustrate the delicacy of choosing the right boundary conditions and prove

that our boundary condition is indeed sufficient. We apply the boundary condition of

[53] and find that the electrostatic potential of Copson’s solution is also well behaved

when the perturbing charge is allowed to approach the horizon and we thus show that

the boundary condition though necessary, is insufficient in ensuring that the solution is

representative of a single charge.

Furthermore, we find that in Schwarzschild-type coordinates from the region interior to

the outer “horizon” we are able to prove that the static perturbing charge scenario is

physical, in that equilibrium is achieved. We show that the charge configuration within

the horizons of the BDRN, BD, Reissner-Nordström and Schwarzschild spacetimes allows

the charge to remain static outside the horizon without the need for struts or strings.

This is true even for the uncharged BD and Schwarzschild spacetimes. The region inside

the horizon in these spacetimes takes on a dipole like configuration. The effect of this

dipole is that a negative charge is induced at the horizon near the perturbing (negative)

charge. A positive charge is induced at the other end of the horizon and the net charge

over the entire surface of the horizon is maintained at zero, ie. the ingoing electric flux

is equivalent to the outgoing electric flux. In the BDRN and Reissner-Nordström space-

times, as the background is electromagntically charged itself, in order for the perturbing

charge to be held in equilibrium, in addition to this dipole configuration, an image

charge to the perturbing charge appears within the inner “horizon”. As the perturbing

charge is brought closer to the outer “horizon”, the image charge approaches the inner
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“horizon”. The effect is the same; the perturbing charge is able to be held static outisde

the “horizon”.

From the investigations it is evident that the BDRN spacetime proves to be very inter-

esting as it is stable under electromagnetic perturbations and is able to hold a perturbing

charge in equilibrium, we find it pertinent to study such static spherically symmetric

electrovac BD spacetimes further.

In Chapter 4, we extend our study of static spherically symmetric electrovac BD space-

times to include the entire class of solutions. We integrate the BD field equations for an

electrovac spacetime and apply only the boundary condition at infinity. By applying no

further restrictions or assumptions on the parameters we are able to find a general class

of charged Brans-Dicke (CBD) spacetimes.

The spacetimes are classified according to three conditions and are thus divided into

nine independent classes. The nine classes are classified as follows: the roman numeral

(I, II and III/IV) represent respectively when the parameter ab is > 0, < 0 or = 0.

The superscript +,− and 0 represent respectively when the parameter κ is > 0, < 0 or

= 0. This gives a total of nine classes viz. CBDI+, CBDI−, CBDI0, CBDII+, CBDII−,

CBDII0, CBDIII/IV+, CBDIII/IV−, and CBDIII/IV0.

We are able to prove that the BD Class III and IV are the inverse tranform of one

another which we refer to as the BD Class III/IV solutions, and in contradiction to [90],

we find that of the four BD classes of solutions, three are independent. We find that

of the nine classes of CBD solutions, three reduce down to the three independent BD

solutions, that is the CBDI+ reduces to the BD Class I, CBDII+ reduces to the BD

Class II, and the CBDIII/IV+ reduces to the CBD Class III/IV solutions.

In this way, we are able to, for the first time give a general solution representative

of a charged BD spacetime that reduces to the known BD solutions. As mentioned

previously, there is no a priori reason why the weak field approximation must be upheld

however we find that the weak field approximation allows one to understand the physical

interpretation of the spacetime parameters. We give the restrictions on the parameters

should one wish to implement the weak field approximation.

The investigation into these nine classes of solutions would be incomplete if we did not

study them in the Schwarzschild-type coordinates and include the region not covered

by the isotropic coordinates. We therefore introduce a generalized form of the trans-

formation equation of Chapter 2 that enables us to do so. We are able to express the

CBD metric in Schwarzschild-type coordinates and show the degeneracy of the solutions

involved. The issue of the parameter range on ω for the three Classes of the BD solution
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is put to rest with final and definitive ranges on ω allowed in each Class. Addition-

ally we give the degeneracy of the CBD solution to the BD and Reissner-Nordström

and Schwarzschild spacetimes but also to more exotic spacetimes such as the extreme

Reissner-Nordström spacetime where q = m and Reissner-Nordström-type spacetimes

where q > m.

We are able to show that the physical implication of the parameter ab being > 0, < 0 or

= 0 is the following: when ab > 0, representing the Class I spacetimes, m > q where m

and q are non-negative real constants and are identified, respectively, as mass measured

in conventional units (kg) and charge measured in electrostatic units (e.s.u). When

ab < 0, representing the Class II spacetimes, m < q and is of interest in the particle

physics gauge. Lastly, when ab = 0, representing the Class III/IV spacetimes, m = q

and represents the extreme case.

In order to understand the astrophysical implications of the CBD solution we look to

the curvature invariants in the same method as Campanelli and Lousto [79] and Bhadra

and Sarkar [90]. We find that only the CBDII− spacetime possesses a nonsingular

horizon when ω < −2 and thus may allow black holes or wormholes when the weak

field approximation is not upheld. An investigation into the behaviour of the horizon in

this nonsingular spacetime is warranted to determine the nature of the spacetime but

is left for following paper. Moreover, we are able to show that the CBDIII/IV+ and

CBDIII/IV− spacetimes possess naked singularities.

Finally we electrostatically perturb the generalized CBD spacetime using the Copson-

Hadamard ansatz introduced in Chapter 2. We find that this method is successful in

converting the partial differential equation on the electrostatic potential generated by

a point charge in a CBD spacetime into a solvable ordinary differential equation. The

boundary condition introduced in Chapter 2 is applied to determine the constants of

integration and we find that the boundary condition is robust and proves to be necessary

and sufficient. In this way, we are able to solve this differential equation to find an exact

closed-form solution on the electrostatic potential. We find the solution can be succinctly

expressed using a single function Π(σ) (where σ is a function of the coordinates r and

θ). We are able to show that the general CBD spacetime is stable under electrostatic

perturbations.
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Chapter 2

Electrostatic Potential of a Point

Charge in a Brans-Dicke

Reissner-Nordström Field

The historical context and literature regarding electrovac BD spacetimes has been dis-

cussed in Chapter 1, thus we will not reiterate it here. Instead we will go straight into

the details of the most pertinent studies on perturbation theory.

In 1927, Whittaker [62] studied the effect of gravitation on electromagnetic phenom-

ena according to general relativity. He discussed two kinds of gravitational fields: the

Schwarzschild spacetime and a quasi-uniform field, where the gravitational force is uni-

form in the vicinity of the origin.

Using a series expansion method, he was able to find an exact solution to the partial

differential equation on the electrostatic potential generated by a single electron in a

quasi-uniform field. He was was unable to find an exact solution for an electron in a

Schwarzschild spacetime and instead gave an infinite series solution to the phenomenon.

In 1928, Copson [1] approached the topic from a completely different angle. Using

Hadamard’s theory of “elementary solutions” [94] (referred to in subsequent literature

as “fundamental solutions”) he was able to construct an exact solution to a charge placed

in both a quasi-uniform field and a Schwarzschild spacetime, the former of which agreed

with the solution given earlier by [62] in isotropic coordinates.

Copson used Hadamard’s formula to find the first order term of the elementary solution

from which recurrent terms of higher order can be found using the recurrence relations

of Hadamard’s original theory. Copson’s great contribution however was doing away

23



Electrostatic Potential of a Point Charge in a BDRN Field 24

with the need for recurrence relations, and applying the process by which they were

obtained instead. By looking at the first three terms of the elementary solution, Copson

was able to postulate the form of a substitution that would allow him to rewrite the

partial differential equation on the electrostatic potential u(r) in terms of an entirely

new parameter F (γ) where

u(r) =
r

(r + 1)2
F (γ) (2.1)

and

γ(r, θ) =
Γ(r, θ)

r2 − 1
(2.2)

and Γ(r, θ) is the square of the distance of the charge to the origin. The result of the

substitution was a solvable ordinary differential equation on F (γ).

By solving for F (γ) and substituting the solution back into Eq.(2.1) he was able to obtain

a closed-form solution for the electrostatic potential generated by a charge placed in a

Schwarzschild spacetime. The last step was to choose the integration constants of u(r).

Copson chose the integration constants such that the solution would be symmetrical

in terms of r and the location of the perturbing charge r = b, θ = 0. He plotted the

equipotential surfaces generated by the point charge in isotropic coordinates but plotted

only the region exterior to the surface of inversion. As a result there appeared only

a single charge at r = b as expected. He noted however, that there exists an image

to the charge at b inside the surface of inversion as a consequence of the coordinate

system. Most interestingly, a term by term comparison with Whittaker’s series expansion

solution for a charge placed in a Schwarzschild spacetime resulted in the appearance of

an additional leading order term, while all the following terms were in agreement to

infinity.

It was not until some fifty years later that the meaning of this additional term was

understood. In 1976, Linet [65] revisited Copson’s solution for a single charge residing

in a Schwarzschild spacetime. By applying Gauss’ law at infinity, Linet was able to

prove that the spacetime contained more than one charge and that the additional term

that arose in Copson’s original paper was precisely this second charge. As Copson had

placed only one charge outside the horizon at b (and it was clear from his equipotential

surface plots that this was indeed the case) it was postulated that this second charge

lay within the surface of inversion (and outside of the region covered by the isotropic

coordinates).

In the meantime, Cohen and Wald [53] and Hanni and Ruffini [63] had, independently

of the work done previously by Whittaker, also derived a multipole expansion solution
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for a charge placed in a Schwarzschild field and it is to their work that Linet compared

his solution. When this additional charge was eliminated, Linet found that Copson’s

solution agreed with the series expansion solutions of [53] and [63] and naturally also

[62].

Linet also managed to devise a transformation formula by which he was able to convert

Copson’s solution from isotropic coordinates into Schwarzschild coordinates.

In [95], Linet and co-authors found that a simple redefinition of the radial coordinate

could recast the partial differential equation on the electrostatic potential generated by

a charge placed in a Reissner-Nordström spacetime into a form identical to that of a

charge placed in a Schwarzschild spacetime. As this partial differential equation was

already solved in [1] and ammended by [65], the solution was immediately recoverable.

In [96], Linet and co-authors studied the electrostatic potential generated by a point

charge in a Brans-Dicke spacetime. As Copson had before them, they postulated the

form of a substitution that would convert the partial differential equation on the elec-

trostatic potential into a solvable ordinary differential equation on a new variable. They

were successful in converting the partial differential equation into a solvable form in

terms of a new variable F (γ) and were able to solve for F (γ). Substituting this back

into the original substitution equation the authors were able to find a closed-form so-

lution for the electrostatic potential in terms of integration constants. The integration

constants were chosen by conducting multipole expansions.

In [69], Linet used the Copson-Hadamard method to try to find a substitution that would

convert the electrostatic potential generated by a point charge at rest in a Schwarzschild

black hole in higher dimensions. He tried three different forms of the substitution but

was unable to find a closed-form solution which would be the analogue of the ones al-

ready known in the Schwarzschild, Reissner-Nordström and Brans-Dicke spacetimes. He

was however successful in finding a closed-form expresion for the electrostatic potential

and static scalar field for a point source in a Reissner-Nordström black hole in four

dimensions.

The choice of boundary conditions and consequently integration constants, proves to be

crucial in deriving an accurate solution. It was evident that Copson’s original choice

of integration constants, chosen such that the solution would be symmetrical in terms

of the radial coordinate r and the location of the charge b, resulted in the appearance

of an additional charge inside the surface of inversion (the area not covered by the

isotropic coordinates). Even a plot of the spacetime was not enough to identify the

appearance of this additional charge. Although a term by term comparison with known

multipole expansion solutions correctly exposed a discrepancy of the closed-form solution



Electrostatic Potential of a Point Charge in a BDRN Field 26

to multipole expansion solutions, the meaning behind this discrepancy was only made

clear when Gauss’ law at infinity was applied.

The accuracy and physical meaning of the final solution hinges on ones choice of bound-

ary condition and perhaps it was for this reason that the authors of [96] used a complex

but thorough multipole expansion method to determine the choice of integration con-

stants.

In this paper we address several key areas of research that are lacking when it comes to

closed-form solutions to electrostatic perturbations before extending our work to more

general spacetimes.

Firstly, we find that although the Copson-Hadamard method is robust, it has the draw-

back that one must postulate the form of the substitution used which converts the partial

differential equation on the electrostatic potential V (r, θ) into a solvable form in terms

of a new variable F (γ), in a case-by-case manner by looking at series solutions. We

introduce an ansatz that allows one to find the requisite substitution from the back-

ground metric itself without having to look to the infinite series solution for inspiration.

Using our method one can find the form of V (r, θ) in terms of F (γ) and γ itself from

the coefficients of the background metric.

Secondly, we find that after the ordinary differential equation on F (γ) has been solved

to give us a closed-form solution for V (r, θ) there still lies the problem of choosing appro-

priate boundary conditions and integration constants such that the resulting solution is

actually representative of a single charge. We introduce a method based on Gauss’ law

which is both necessary and sufficient in ensuring that the final solution represents the

electrostatic potential generated by a single charge placed in the background of one’s

choice and that does away with the need to look at multipole expansions.

In the first part of this paper, we construct the Brans-Dicke Reissner-Nordström back-

ground metric by integrating the electrovac BD field equations directly. We choose the

integration constants such that the final solution reduces to the Brans-Dicke Class I

and Reissner-Nordström spacetimes. It is for this reason that we label this spacetime

the Brans-Dicke Reissner-Nordström (BDRN) spacetime. We give the spacetime metric

in its most general form before applying the weak field approximation to gain insight

into the integration constants and to give them a more concrete physical interpreta-

tion. In the second part of the paper we electrostatically perturb the BDRN spacetime

and develop a method based on the Copson-Hadamard method by which we can find

a closed-form solution for the electrostatic potential generated by a perturbing charge.

We find that the BDRN spacetime is stable under electrostatic perturbations.
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static field of an electric point charge placed outside its surface of inversion. We treat the static electric

point charge as a linear perturbation on the Brans-Dicke Reissner-Nordström background. We develop a

method based upon the Copson method to convert the governing Maxwell equation on the electrostatic

potential generated by the static electric point charge into a solvable linear second-order ordinary

differential equation. We obtain a closed-form fundamental solution of the curved-space Laplace equation

arising from the background metric, which is shown to be regular everywhere except at the point charge

and its image point inside the surface of inversion. We also develop a method that demonstrates that the

solution does not contain any other charge that may creep into the region that lies beyond the surface of

inversion and which is not covered by the isotropic coordinates. The Brans-Dicke Reissner-Nordström

spacetime therefore is linearly stable under electrostatic perturbations. This stability result includes the

three degenerate cases of the fundamental solution that correspond to the Brans Type 1, the Reissner-

Nordström and the Schwarzschild background spacetimes.
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I. INTRODUCTION

The effect of gravitation on electromagnetic phenomena
is of great interest due to its applications in both particle and
astrophysics. To the astrophysicist, such study sheds light on
phenomena occurring around black holes and other strong
gravitational sources. Of particular interest to the authors
of this paper are the closed-form fundamental solutions for
electric potential that can be found for these situations. Such
solutions, when they exist, are particularly interesting as
they provide the basis for research on, amongst others,
particle self-interaction (e.g. Refs. [1–4]) and electromag-
netic phenomena around wormholes (e.g. Refs. [5–8]).
See also Refs. [9–11]. This paper investigates the stability
of a class of electrovac Brans-Dicke spacetimes linearly
perturbed by a static electric point charge.

In 1927, Whittaker [12] investigated electric phenomena
in gravitational fields including the study of the electro-
static potential generated by a static electric point charge
in a Schwarzschild and a quasiuniform gravitational
background. Using the method of separation of variables,
he was able to find an infinite-series solution describing the
former and a closed-form solution for the latter.

Shortly thereafter, in 1928, Copson [13] used Hadamard’s
[14] theory of ‘‘elementary solutions’’ (referred to in recent
literature as fundamental solutions) of partial differential
equations to not only reproduceWhittaker’s original expres-
sion for the quasiuniform field but to go on and derive an
exact closed-form expression for the potential generated by
a static electric point charge in a Schwarzschild spacetime
written in isotropic coordinates. Copson noted that his result

differed from Whittaker’s infinite-series solution by a
zeroth-order term (see Sec. VI for further discussion on
Whittaker’s and Copson’s solutions).
Independently, in the 1970s Cohen and Wald [15] and

Hanni and Ruffini [16] used the method of separation of
variables to express the electrostatic potential generated by a
static electric point charge in a Schwarzschild background
as an infinite series which concurred with Whittaker’s
earlier result.
Copson’s result was ammended by Linet [17] who applied

the boundary condition at infinity and an asymptotic expan-
sion of Copson’s solution to prove that it was for not one but
two charges, the second residing within the horizon. Linet
resolved this issue by excising the second charge, his result
coinciding with those found using multipole expansions
by Cohen and Wald [15], Hanni and Ruffini [16] and
Whittaker [18]. Linet was also able to transform Copson’s
fundamental solution from isotropic coordinates into the
usual Schwarzschild coordinates.
Using the Copson-Hadamard method Linet went on to

derive expressions for the potential of a static electric point
charge in the Reissner-Nordström field with Leaute [19]
and in a Brans-Dicke-Schwarzschild field with Teyssandier
[20]. Copson revisited his method of solution in 1978 [21],
developing a closed-form solution for the potential gener-
ated by a static electric point charge (what he terms an
‘‘electron’’) in a Reissner-Nordström background field. His
result again differed to that obtained by Leaute and Linet
[19] due to a different choice of boundary conditions,
which will be discussed in Sec. VI.
The Copson method for solving for the electric potential

involves identifying a new independent variable that con-
verts the governing Maxwell equation into a linear second-
order ordinary differential equation. Linet and co-authors
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adopted the form of Copson’s independent variable to
consider the Reissner-Nordström and Brans-Dicke-
Schwarzschild cases and were able to find the correspond-
ing governing equations for the above-mentioned cases
as second-order ordinary differential equations (see also
Ref. [22]). The results obtained by these authors were on a
case-by-case basis. Here we introduce a method by which
one is able to extract the form of the new independent
variable and obtain the general second-order ordinary
differential equation for all the electrovac spherically
symmetric Brans-type solutions which are reducible to
the Schwarzschild and Reissner-Nordström black hole
solutions in the Einstein theory.

As Copson’s method involves solving a linear second-
order ordinary differential equation which would naturally
produce two linearly independent solutions, it is necessary
to impose appropriate boundary conditions that would allow
one to determine the relationship between the two constant
coefficients of the general solution. As mentioned earlier, it
was due to a different choice of boundary condition that
Copson’s result differed from that found by Linet and co-
authors, and thus it is clear to see how the interpretation of
the solution hinges upon the choice of boundary condition.
As a result of his choice of boundary conditions Copson’s
solution exhibited two charges, which was in contradiction
to Hadamard’s theory of ‘‘elementary’’ solutions that stip-
ulates that there must exist only one singular point. Here we
impose a boundary condition such that a Gauss’ law-type
integral over any closed surface in space not enclosing the
perturbing charge must vanish even if that region contains a
surface of inversion, which exists in all Brans Type I solu-
tions which are reducible to the Schwarzschild and
Reissner-Nordström black hole cases (see Theorem 1 in
Sec. II). This boundary condition proves to be sufficient in
determining the relationship between the constant coeffi-
cients such that they are in agreement with known multipole
solutions found using the method of separation of variables
[15,16,18] and those found using Hadamard’s definition of
‘‘elementary’’ solutions [17,19,20].

In Sec. II we give a detailed overview of the Brans-
Dicke Reissner-Nordström background which is the exact
solution for the gravitational field generated by a point
charge in a scalar-tensor field. The general Brans-Dicke
electrovac solution has six constants of integration, two of
which can be determined by scaling the coordinates r and t.
Luke and Szamosi [23] showed that the remaining four
constants of integration can be constrained such that the
solution reduces to the Reissner-Nordström solution in
Einstein’s theory. The salient feature of these Brans-
Dicke metrics is that in isotropic coordinates a surface of
inversion separates the solution into two regions. This
results in a double covering of the spacetime region cor-
responding to the exterior of a nonrotating black hole in
general relativity. It is also important to detail the choice of
constants and their subsequent physical interpretations

as this will influence our choice of boundary condition
(see Appendix A for more details). As demonstrated by
Arnowitt, Deser and Misner (ADM) [24,25], the interpreta-
tions of the source terms of a spherically symmetric
spacetime in isotropic coordinates requires careful analysis.
The results in this section, together with the analysis in
Appendix A, extend some of the results in Refs. [24,25]
done using the ADM technique on Schwarzschild and
Reissner-Nordström spacetimes. We also state the appropri-
ate choice of parameter values for the static spherically
symmetric Brans-Dicke electrovac solutions as required by
the weak-field approximation. We briefly discuss observa-
tional constraints on ! as this is of particular interest due to
the fact that scalar fields and the variable cosmological
‘‘constant’’ have become two of the most popular candidates
for dark energy [26–30].
In Sec. III, we briefly outline Hadamard’s theory of

fundamental solutions of curved-space Laplace equations
containing first-order terms. In Sec. IV we extend Copson’s
method to find the first four terms of the fundamental
solution describing the potential generated by a static
electric point charge placed outside the surface of inversion
in a Brans-Dicke Reissner-Nordström background. We
then develop a method of identifying the new independent
variable using the Brans-Dicke field equations as outlined
in Appendix A.
In Sec. V, we solve the linear second-order differential

equation to give us a closed-form solution, which can be
used to construct the fundamental solution that represents
the electric potential generated by a point charge residing
outside the surface of inversion in a Brans-Dicke Reissner-
Nordstöm spacetime. It is important to note that due to the
nature of the background metric in isotropic coordinates,
the region interior to the surface of inversion is an exact
copy of the exterior. Therefore the closed-form solution
obtained has an additional singular point at the inversion
point of the perturbing static electric point charge.
In Sec. VI, we introduce a boundary condition that will

allow one to determine the relationship between the two
constant coefficients and essentially eliminate the singularity
that creeps into the spacetime region that lies beyond the
inversion surface and which is not covered by the isotropic
coordinates. Hence we obtain a process to derive the funda-
mental solution for a class of curved-spaceLaplace equations
containing first-order terms, thus making it unnecessary to
compare with multipole expansion solutions.
Lastly, in Sec. VII we show how our method also yields

the fundamental solutions of the three known cases
(Schwarzschild, Reissner-Nordström, Brans-Dicke Type I),
which are summarized in Table I.
In Appendix A, details of how the scalar field, themetric

functions and the electrostatic potential are all essentially
a combination of the metric variable r2�e�þ� are dis-
cussed. Appendix A also outlines how the Brans-Dicke
Reissner-Nordström background metric can be determined.
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The surface integral inner boundary condition is outlined in
Appendix B for the Brans-Dicke Reissner-Nordström
background.

II. SCALAR-TENSOR FIELD THEORY

The field equations in the Brans-Dicke theory are

Rab�1

2
gabR¼ 8�Tab

c4�
þ 1

�
ðra@b��gabh�Þ

þ !

�2

�
@a�@b��1

2
gabg

cd@c�@d�

�
; (1)

h� ¼ 8�T

ð2!þ 3Þc4 ; (2)

where

h� :¼ rbðgab@a�Þ ¼ 1ffiffiffiffiffiffiffi�g
p @bð ffiffiffiffiffiffiffi�g

p
gab@a�Þ (3)

and h is the scalar wave operator.
Here the notations have their usual meaning. The con-

tribution of the electromagnetic field, encoded in the
Faraday tensor Fab, to the energy-momentum tensor is

Tab ¼ FacF
c
b �

1

4
gabFcdF

cd; Ta
a ¼ 0; (4)

where Fab satisfies the source-free Maxwell equations

rbF
ab ¼ 0; r½cFab� ¼ 0: (5)

Following the method of Luke and Szamozi [23] while
at the same time conforming to the choice of boundary
conditions in Brans [31] [see Eqs. (19)–(24)] one can verify
that an electrically charged Brans-Dicke field that reduces
to the Reisnner-Nordström solution in isotropic coordi-
nates when the long-range field equals the reciprocal of
the gravitational constant, i.e. � ¼ ðG0Þ�1, can be sum-
marized as follows (see Appendix A for a brief derivation).
Theorem 1.—A static spherically symmetric electrically

charged Brans-Dicke Reissner-Nordström (BDRN) solu-
tion of Eqs. (1), (2), and (5) in isotropic coordinates
ðt; r; �; �Þ is given by the line element

ds2 ¼ �c2e2�ðrÞdt2 þ e2�ðrÞ½dr2 þ r2ðd�2 þ sin �d�2Þ�;
(6)

where the static electric potential V0ðrÞ, the Faraday tensor
Fab and the corresponding energy-momentum tensor
Ta
b are

V0ðrÞ ¼ Q
Z r

1
e�ðrÞ��ðrÞ

r2
dr; (7)

Fab ¼ �cV 0
0ðrÞ

0 1 0 0

�1 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; (8)

TABLE I. The four cases and their solutions for the electrostatic potential generated by a charged particle at r ¼ b where k ¼ Cþ2
2� .
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Ta
b ¼ � e4�ðrÞQ2

2r4

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
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1
CCCCCA: (9)

The reduced long-range scalar field wave equation
derived from Eq. (1) is

½r2 exp ð��ðrÞ þ �ðrÞÞV 0
0ðrÞ�0 ¼ 0: (10)

The metric functions e2�ðrÞ and e2�ðrÞ are

e2�ðrÞ ¼ e2�0 j r�B
rþB j

2
�

ðp2þ � p2�j r�B
rþB j

Cþ2
� Þ2 ; (11)

e2�ðrÞ ¼ e2�0

�
1þ B

r

�
4
��������r� B

rþ B

��������
2ð��C�1

� Þ

�
�
p2þ � p2�

��������r� B

rþ B

��������
Cþ2
�

�
2
; (12)

and the long-range scalar field �ðrÞ is

� ¼ �0

��������r� B

rþ B

��������
C
�

: (13)

The functions V0ðrÞ, e2�ðrÞ, e2�ðrÞ and �ðrÞ are defined for
all non-negative r except at r ¼ B. The boundary values
e�0 and e�0 can be rescaled to unity by scaling the t and r
coordinates, respectively. The nine parameters Q, B, p2þ,
p2�, �,C,�0, e

2�0 and e2�0 in Eqs. (11)–(13) are related via

4�2 ¼ ð2!þ 3ÞC2 þ ðCþ 2Þ2; ! � � 3

2
; (14)

B ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B � q2B

q
; (15)

mB :¼ 2M

c2�0

e�0�

Cþ 2
; qB ¼ 2

ffiffiffiffiffiffiffi
4�

�0

s
Q

c2
e�0�

Cþ 2
; (16)

p2� ¼ mB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B � q2B

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B � q2B

q ; (17)

p2þ � p2� ¼ 1; (18)

where M and Q are non-negative real constants and are
identified, respectively, as mass measured in conventional
units (kg) and charge measured in electrostatic units (e.s.u),

which has the dimensions of ½mass�12½length�32½time��1. Here
! is the coupling constant that couples the scalar field to
matter, while c is the speed of light in a vacuum.

Taking into account Eqs. (14)–(16), there remain only
four essential parameters in the BDRN solution. We adopt
the independent parameter set M, Q, C, �0.

(1) The choice of the physical parameters of mass, M,
and charge, Q, in the characterization of the BDRN
metric is natural.

(2) As opposite charges neutralize one another, in most
astrophysical applications it is reasonable to assume

M � ffiffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
Q � 0, and hence the parameter B in

Eq. (15) is non-negative.
(3) �0 is the value of the long-range scalar field at

spatial infinity. It has the dimensions of ½mass��
½length��3½time�2.

(4) The parameter C is dimensionless and relates to the
local strength of the long-range scalar field �ðrÞ.
Equation (14) gives �2 as a quadratic expression in
C with the discriminant � ¼ �ð2!þ 3Þ. Thus

when !>� 3
2 , C is real and

ffiffiffiffiffiffiffiffiffiffi
2!þ3
2!þ4

q
< j�j<1.

Constraining the BDRN solutions to conform with
the weak-field approximation (see Ref. [32]), we
expand the metric functions and the scalar field,
Eqs. (11)–(13), to the order of 1=r, and obtain the
following restrictions on the parameters:

�0 ¼ �0 ¼ 0; (19)

�0 ¼ 1

G0

�
2!þ 4

2!þ 3

�
; (20)

� ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!þ 3

2!þ 4

s
; (21)

C ffi � 1

!þ 2
; (22)

mB ffi M

c4�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!þ 4

2!þ 3

s
; (23)

qB ffi
ffiffiffiffiffiffiffi
4�

�0

s
Q

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!þ 4

2!þ 3

s
; (24)

whereG0 is defined as the gravitational constant (for
the BDRN spacetimes), while G denotes Newton’s
universal constant of gravity (see Case 2 and Case 3
below).

(5) Observational constraints put even stronger require-
ments on the values of!. The latest results obtained
from the Cassini-Huygen experiment [33] put the
value of ! at over 40 000. The coupling constant !
represents the strength of the coupling between the
scalar field and the gravitational field. Therefore its
value is of great importance in any discussion
regarding (a) the existence and properties of
Brans-Dicke black holes and (b) candidates for
dark energy.

(6) When an inversion is applied, that is, transforming

from r to r� ¼ B2

r , the region B< r <1 is mapped
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one-to-one onto the region 0< r < B. Under such a
reflection at the sphere of rBDRN ¼ B, the functions

V0ðrÞ, e2�ðrÞ, �ðrÞ and the line element (6) remain

invariant while the metric function e2�ðrÞ is trans-

formed into e2�ðr�Þ ¼ r4

B4 e
2�ðrÞ and the flat 3-metric

d‘2 :¼ ½dr2 þ r2ðd�2 þ sin 2�d�2Þ� is mapped

conformally onto the flat metric dð‘�Þ2 ¼ r4

B4 d‘2.

Therefore the spherical surface at rBDRN :¼ B ¼ 1
2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
B � q2B

q
is an inversion surface in the sense that

the BDRN solution in isotropic coordinates is
invariant under the geometric inversion transforma-
tions rðr�Þ ¼ B2. The two copies of the BDRN
spacetime—one exterior to and the other interior to
the inversion surface—are identical. At the spherical
surface of inversion rBDRN ¼ B, the line element (6)
is singular. It is the inaccessible boundary of the two
identical copies of the BDRN spacetime in isotropic
coordinates. Throughout this article we use the
exterior copy where B < r <1, unless stated other-
wise. This will have important consequences (see
below) on how to interpret the Copson-Hadamard
method [13] in the construction of the fundamental
solution to the Laplace equation of a perturbed elec-
trostatic potential in a BDRN background solution.

(7) An investigation by Ref. [34] found that Brans Type I
solutions may represent an external gravitational
field for nonsingular spherically symmetric matter
sources. They concluded, however, that Brans-Dicke
black holes cannot exist, as a condition equivalent to
Eq. (22) (that is, theweak-field approximation) would
require that �2>!>�ð2þ 1ffiffi

3
p Þ, a requirement

which clearly violates observational constraints [33].
By choosing various combinations of the four indepen-

dent parameters M, Q, C and �0 to vanish, we obtain the
following limiting solutions.

Case 1 Brans Type I (BS) metric in isotropic coordinates.
By setting the charge parameter Q to zero, it
implies that B ¼ mB

2 ¼ M
2c2�0

, p2þ ¼ 1 and p2� ¼
0. We recover the Brans Type I metric [31] of the
Brans-Dicke theory,

�ðrÞ ¼ �0

��������r� B

rþ B

��������
C
�

; (25)

e2�ðrÞ ¼ e2�0

��������r� B

rþ B

��������
2
�

; (26)

e2�ðrÞ ¼ e2�0

�
1þ B

r

�
4
��������r� B

rþ B

��������
2ð��C�1

� Þ
; (27)

where B < r <1 and the inversion spherical
surface is at rBS ¼ B ¼ M

2c2�0
and is a curvature

singularity.

Case 2 Reissner-Nordström (RN) metric in isotropic
coordinates.
By setting the parameters C ¼ �0 ¼ �0 ¼ 0, it

implies that �2 ¼ 1, �0 ¼ ðGÞ�1, B ¼ 1
2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 � q2
p

, p2þ¼mþ
ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p and p2� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p ,

where m :¼ GM
c2

and q :¼
ffiffiffiffiffiffiffi
4�G

p
Q

c2
are, respectively,

the mass and the electric charge measured in
gravitational units. The metric functions reduce
to the usual Reissner-Nordström solution in iso-
tropic coordinates,

e2�ðrÞ ¼

�
r�

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

�
2
�
rþ

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

�
2

ðrþ m�q
2 Þ2ðrþ mþq

2 Þ2 ; (28)

e2�ðrÞ ¼ ðrþ m�q
2 Þ2ðrþ mþq

2 Þ2
r4

; (29)

where 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

p
< r <1, and the inversion

spherical surface is at rHþ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

p
, which

is also the outer event horizon of the RN space-
time in isotropic coordinates.
The Reisnner-Nordström metric in isotropic
coordinates was first derived in the form given
in Eqs. (28) and (29) above using the ADM
technique (see Refs. [24,25]).

Case 3 Schwarzschild (S) metric in isotropic coordinates.
By setting the parameters Q ¼ C ¼ �0 ¼ �0 ¼
0, it implies that �2 ¼ 1, �0 ¼ ðGÞ�1, B ¼ m

2 ¼
GM
2c2

, p2þ ¼ 1 and p2� ¼ 0, where m ¼ GM
c2

is the

mass in gravitational units. The metric functions
reduce to the well-known Schwarzschild solution
in isotropic coordinates,

e2�ðrÞ ¼
�
1� m

2r

1þ m
2r

�
2
; e2�ðrÞ ¼

�
1þm

2r

�
4
; (30)

where 1
2m< r <1 and the inversion spherical

surface is at rH ¼ 1
2m, which is also the event

horizon of the Schwarzschild spacetime in iso-
tropic coordinates.

III. ELECTROSTATICS AND THE
HADAMARD METHOD

We now consider the electrostatic potential due to a
‘‘small’’ static electric charge �	0ðj	0j � mBÞ situated
outside the spherical surface of inversion B.
We let Vðr; �;�Þ denote the linearly perturbated electro-

static potential so that the perturbed Faraday tensor Fab

takes the form

F0i ¼ �Fi0 ¼ �c@iVðr; �; �Þ; Fij ¼ 0;

i; j ¼ 1; 2; 3 . . . : (31)
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The perturbed Maxwell equations r½aFbc� ¼ 0 are

automatically satisfied by Eq. (31).
Without loss of generality, the perturbed Maxwell

equations due to a single electrostatic charge yield

1ffiffiffiffiffiffiffi�g
p @bð ffiffiffiffiffiffiffi�g

p
FabÞ ¼ J0; (32)

which implies

r2Vðr; �;�Þ � ð�0ðrÞ � �0ðrÞÞ @Vðr; �; �Þ
@r

(33)

¼ ce2ð�ðrÞþ�ðrÞÞJ0; (34)

where the current density J0 ¼ � 4�	0
cr2

e�2�ðrÞ�3�
ðr�
bÞ
ðcos �� cos �0Þ. Here �ðrÞ and �ðrÞ are given by

Eqs. (11) and (2), respectively, and r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2

is the three-dimensional Euclidean-space Laplacian with
x ¼ r sin � cos�, y ¼ r sin � sin� and z ¼ r cos�. Note
that @r ¼ x

r @x þ y
r @y þ z

r @z. We define

�ðr; �Þ ¼ r2 þ b2 � 2br cos �; (35)

which is equal to the square of the ‘‘radial’’ distance from
the charged particle at z ¼ b.

A brief overview of Hadamard’s theory of fundamental
solutions [14] is necessary to fully understand Copson’s
construction [13,21]. We adapt Hadamard’s result that
includes Eq. (33) as a particular case as follows.

Theorem 2 (Hadamard’s Theorem).—Consider a
second-order linear partial differential equation of the form

=ðuÞ ¼ X3
i;j¼1


ij @2u

@xi@xj
þX3

i¼1

hðrÞ x
i

r

@u

@xi
¼ 0; (36)

where 
ij is the Kronecker tensor and hðrÞ is a differ-
entiable function of r ¼ 
ijx

ixj. The fundamental solution

of Eq. (36) is continuous and differentiable everywhere
except at the singular point ðr; �; �Þ ¼ ðb; �0; �0Þ and can
be written as

u ¼ Uðr; �; �Þ
�

1
2

; (37)

where � is given by Eq. (35) and the function Uðr; �; �Þ
is real analytic everywhere in the domain of definition of
Eq. (36), including the singular point ðr; �; �Þ ¼
ðb; �0; �0Þ. UðrÞ is expandable as a convergent power
series in � such that

Uðr; �;�Þ ¼ U0ðrÞ þU1ðrÞ�þU2ðrÞ�2 þ 	 	 	 ; (38)

where Un is given by the recurrent formula

UnðrÞ ¼ U0

4ðn� 1
2Þs

Z s

0

sn�1

U0

=ðUn�1Þds;

n ¼ 1; 2; 3 	 	 	 ;
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2 � 2rb cos �

p
;

(39)

and

U0ðrÞ ¼ exp

�
�

Z r

b
hðrÞdr

�
: (40)

In the case of the BDRN metric, the coefficient hðrÞ in
Eqs. (36) and (40) is given by

hðrÞ ¼ ��0ðrÞ þ �0ðrÞ: (41)

IV. EXTENSION OF THE COPSON
CONSTRUCTION

Equation (33) for the BDRN metric can be expressed in
the form

r2V þ 2B

r2 � B2

�
2k

�
��ðrÞ
�ðrÞ

�
þ B

r

�
@V

@r
¼ ce2ð�ðrÞþ�ðrÞÞJ0;

(42)

where

k ¼ Cþ 2

2�
; �ðrÞ ¼ p2þ � p2�

�
r� B

rþ B

�
2k
; (43)

��ðrÞ ¼ �p2þ � p2�
�
r� B

rþ B

�
2k
: (44)

Instead of using the formal expression in Eq. (39), we
follow Copson [13] by substituting Eq. (38) into Eq. (42).
After some algebra we obtain the first four terms of the
recurrent series of the Brans-Dicke Reissner-Nordström
metric,

U0ðrÞ ¼ r

b

�0

�ðrÞ
ðr� BÞk�1

2

ðrþ BÞkþ1
2

ðbþ BÞkþ1
2

ðb� BÞk�1
2

; (45)

U1ðrÞ ¼
3B2ð1þ 4

3 ð1� k2ÞÞ
2ðr2 � B2Þðb2 � B2ÞU0; (46)

U2ðrÞ ¼
B2ð�5þ 4

3 ð1� k2ÞÞ
4ðr2 � B2Þðb2 � B2ÞU1; (47)

U3ðrÞ ¼
B2ð�7þ 4

3 ð1� k2ÞÞ
10ðr2 � B2Þðb2 � B2ÞU2; (48)

where �0 ¼ �ðbÞ. See Table I for the three degenerate
cases.
We introduce the method by which the substitution can

be determined for any background with a line element of
the form given by Eq. (6), which satisfies the Brans-Dicke
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electrovac field equations (see Appendix A for the govern-
ing equations). Like Copson, from the first few terms given
above we find that the ratio of the (nþ 1)th term to the nth
term of the power series (39) is proportional to

B2

b2 � B2

�

r2 � B2
; (49)

where r2 � B2 is proportional to�r2e�þ� [see Eq. (A8) in
Appendix A].

Furthermore, the first term of the infinite series, U0

�1=2 ,

given by Eq. (40) is proportional to

e
1
2ð���Þ

�1=2
¼ 1

�1=2
ffiffiffiffi
�

p
re�

; (50)

where

�ðr; �Þ ¼ B2

b2 � B2

�ðr; �Þ
�r2e�ðrÞþ�ðrÞ : (51)

Now we introduce a new dependent variable Fð�Þ such
that the perturbed electrostatic potential takes the form

Vðr; �; �Þ ¼ Fð�Þffiffiffiffi
�

p
re�ðrÞ

: (52)

For the Brans-Dicke Reissner-Nordström background,
Eqs. (52) and (51), become, respectively,

Vðr; �Þ ¼ r�0

�ðrÞðrþ BÞ2
�
r� B

rþ B

�
k�1

Fð�Þ; (53)

�ðr; �Þ ¼ B2

b2 � B2

�ðr; �Þ
r2 � B2

: (54)

Substituting Eqs. (53) and (54) into Eq. (42) gives us a
second-order linear differential equation in Fð�Þ,

�ð�þ 1ÞF00ð�Þ þ 3

2
ð2�þ 1ÞF0ð�Þ þ ð1� k2ÞFð�Þ ¼ 0:

(55)

We have allowed the right-hand side of the above equation
to vanish as we are only interested in regions away from the
point source where the right-hand side of Eq. (55) is zero.
We later use our boundary condition to verify that the
delta-function source term is satisfied and to also deter-
mine the constants of integration of the solution to Eq. (55).

V. FUNDAMENTAL SOLUTIONS

Equation (55) can be solved if we transform the
independent variable � as

� ¼ sinh 2 �

2
; (56)

which implies

�þ 1 ¼ cosh 2 �

2
; (57)

and we write the dependent variable Fð�Þ as
Fð�Þ ¼ �ð�Þ: (58)

By using Eqs. (56) and (58), Eq. (55) can be written in
terms of the new variables as follows:

�00ð�Þ þ 2 coth ��0ð�Þ þ ð1� k2Þ�ð�Þ ¼ 0; (59)

which has the closed-form solution (see Ref. [35])

�ð�Þ ¼ k

sinh �
ðŴ1e

k� � Ŵ2e
�k� Þ; (60)

where Ŵ1 and Ŵ2 are integration constants. The solution in
terms of � is therefore

Fð�Þ ¼ k

2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p ½Ŵ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ ffiffiffiffi
�

p Þ2k

� Ŵ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p � ffiffiffiffi
�

p Þ2k�: (61)

Substituting Eq. (61) into Eq. (53) gives the electrostatic
potential Vðr; �Þ as follows:

Vðr;�Þ¼ k

2�ðrÞ ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffi
�þ1

p r

ðrþBÞ2
�
r�B

rþB

�
k�1

�½Ŵ1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
�þ1

p þ ffiffiffiffi
�

p Þ2k� Ŵ2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
�þ1

p � ffiffiffiffi
�

p Þ2k�:
(62)

Consider the inversion point of the static electric point

charge ð0; 0; ðb�ÞÞ, where ðb�Þ ¼ B2

b . Let

�� ¼ B2

B2 � ðb�Þ2
� � ðr; �Þ
B2 � r2

; (63)

�� ¼ r2 þ ðb�Þ2 � 2ðb�Þr cos�: (64)

Thus �� is equal to the square of the ‘‘radial’’ distance
from the inversion point at z ¼ ðb�Þ. It is straightforward to
verify that

�þ 1 ¼ � � : (65)

The electrostatic potential Vðr; �Þ in Eq. (62) is therefore
singular at the point charge z ¼ b and also at its inversion
point z ¼ ðb�Þ. One can also verify that as the field point r
approaches the inversion surface r ¼ B, the potential
approaches a finite limit value provided that C>�2.
Finally, to determine the fundamental solution for the

electrostatic potential, which allows only one free parame-
ter to arise from the presence of the perturbing electrostatic
charge, it is necessary to establish the relationship between
the two arbitrary constants in Eq. (62).
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VI. DETERMINATION OF INTEGRATION
CONSTANTS

In 1927, Whittaker, using the method of separation of
variables in the usual Schwarzschild coordinates, found the
solution expressing the electrostatic potential of a charge in
a Schwarzschild background as an infinite series [12]. His
result was later confirmed by Cohen and Wald [15] in 1971
and Hanni and Ruffini [16] in 1973. A commonality of
these works is the use of a boundary condition stating that a
charge should not arise inside the horizon as a result of the
presence of the perturbing electric charge situated outside
the horizon.

This boundary condition was not implemented by
Copson in his determination of integration constants in
Refs. [13,21] due to the fact that the region inside the
horizon is excised in the isotropic coordinates. Instead,
Copson chose values for the integration constants such
that the overall solution would be symmetric in interchang-
ing the position of the field point r with the position of the
perturbing charge b. As a result, his solution, as he pointed
out himself, was in contradiction toWhittaker’s solution by
the existence of a nonvanishing zero-order term. Linet
[17], using the boundary condition at infinity and Gauss’
theorem, found that this second charge—which was nec-
essarily excised—gave a result which was in accordance to
those given by Refs. [12,15,16].

In Ref. [20], Linet and Teyssandier found a single closed-
form solution describing the electrostatic potential gener-
ated by a perturbing charge in a Brans-Dicke background.
They expressed the fundamental solution as a sum of this
solution and Legendre functions before performing a
multipole expansion and writing the fundamental solution
completely in terms of Legendre functions. By expressing
the solution as a multipole expansion they were then able to
impose boundary conditions at infinity to get a meaningful
solution upon which Gauss’ theorem could then be
implemented to yield their final closed-form solution.

Here we introduce a method of determining the integra-
tion constants of Eq. (62) which does not require one to
expand the closed-form solution into an infinite series
and which is even more stringent than those set by
Refs. [12,15,36]. We impose the condition that any inte-
gration over a closed spatial region not containing the
perturbing charge must be exactly zero even if that area
contains a surface of inversion. Naturally, an integration
over an area containing the perturbing charged particle
must therefore equal exactly 4�	, where 	 is the charge
of the particle. From Appendix B we know that for the
Brans-Dicke Reissner-Nordström background, the gener-
alized Gauss’s theorem can be written as the following:

Z
<
J0d� ¼

Z 2�

0

Z �

��
�ðrÞ2ðrþ BÞ2

�
r� B

rþ B

���C�2
�

� @VðrÞ
@r

sin �d�d�: (66)

Here, < is a region of three-dimensional space residing
in a hypersurface and @< is its closed two-dimensional
boundary. Again, d� is an element of spatial proper volume
in <. In order to integrate the above we convert Eq. (62)

into a function of sinh � where � ¼ sinh 2 �
2 . We find that

the only term that requires integration is the term contain-
ing the integration constants, the integral of which is

Z �

��

Ŵ1e
k� � Ŵ2e

�k�

sinh �
sin�d�

¼ 2brB2½ðbþ BÞ2k � ðb� BÞ2k�
kðb2 � B2Þk�1ðr2 � b2Þk�1

� ½Ŵ1ðrþ BÞ2k � Ŵ2ðr� BÞ2k� (67)

for B< r < b and

Z �

��

Ŵ1e
k� � Ŵ2e

�k�

sinh �
sin�d�

¼ 2brB2½ðrþ BÞ2k � ðr� BÞ2k�
kðb2 � B2Þk�1ðr2 � b2Þk�1

� ½Ŵ1ðbþ BÞ2k � Ŵ2ðb� BÞ2k� (68)

for B< b< r.
When we insert Eq. (67) into Eq. (66) it is fairly

straightforward to see that for the electrostatic potential
to vanish for the region not containing a charge the
integration constants must be chosen as the following:

Ŵ1 ¼ p2þŴ; (69)

Ŵ2 ¼ p2�Ŵ; (70)

where Ŵ is a constant yet to be determined.
By inserting Eq. (68) into Eq. (66) and under the

condition that for this region (B< b< r), Eq. (66) must

equal �4�	0, we can quickly solve for Ŵ, giving

Ŵ ¼ bBðb2 � B2Þk�1
ffiffiffiffiffiffi
�0

p
	0

k½p2þðbþ BÞ2k � p2�ðb� BÞ2k� : (71)

VII. DEGENERATE CASES

The relationship between the four cases and the process
by which one reduces to the other is made obvious in
Table I. It is straightforward to convert the equations in
the Reissner-Nordström and Schwarzschild spacetimes
into their more familiar form when one conducts the trans-
formations given in Sec. II of this paper. When the trans-
formations are made we find that the solutions are in
agreement with the closed-form solutions given by Linet
[17], Leaute and Linet [19] and Linet and Teyssandier [20],
and with the multipole expansions given by Hanni and
Ruffini [16] and Cohen and Wald [15].
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VIII. CONCLUSION

In this paper we have established an ansatz to solve the
perturbed Maxwell equations due to an electrostatic charge
in a Brans-type spacetime in isotropic coordinates which is
reducible to the Schwarzschild and Reissner-Nordström
black hole solutions by extending Copson’s method. As
Copson’s solution is based on Hadamard’s theory of fun-
damental solutions of general Laplace equations it would
be interesting to see whether Hadamard’s infinite series
converges to give Copson’s closed-form result.

By finding the coefficients to U0; U1; U2; . . . through
the direct substitution of Hadamard’s infinite series into
the field equations one is able to compare them with the
coefficients given in this paper using Copson’s method.

In a separate paper, a formal proof of Hadamard’s
fundamental solution equation (36) is given. We find that
Copson’s results in Ref. [13] are in fact exactly equal to
those found using Hadamard’s method and go on to inves-
tigate how the Hadamard method relates to the results
obtained by Linet in Ref. [22]. We also find that the
discrepancy between Copson and Hadamard and those
from the literature—including Whittaker, Hanni and
Ruffini, and Cohen and Wald—lies in the domain of defi-
nition of fundamental solutions in the presence of a surface
of inversion when considering the situation in isotropic
coordinates.

Furthermore, we investigate the scope of applicability of
Hadamard’s theorem, including its application to more
general scalar-tensor-vector theories and fðRÞ theory and
in particular to other branches of the Brans-Dicke theory
such as the Barker and Schwinger cases (see also
Ref. [37]). For detailed discussions on the scope of appli-
cability of the Copson method in higher dimensions see
Ref. [22].

In a separate paper, we convert the results given in this
paper from isotropic coordinates to the usual Schwarzschild
coordinates using Linet’s transformation (outlined in
Ref. [17]) and plot equipotential surfaces in both coordinate
systems. As alluded to in Item 7 of Sec. II, Ref. [34] found
that Brans-Dicke black holes cannot exist if the weak-field
approximation is to be upheld. In our next paper we
postulate that the weak-field approximation need not be
satisfied [38–41]. Thus we find it worthwhile to plot the
results of this paper in the usual coordinates to gain better
insight into the behavior of the scalar field inside the horizon
and thereby shed light on the physical possibility of
Brans-Dicke black holes.
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APPENDIX A: BRANS-DICKE REISSNER-
NORDSTRÖM BACKGROUND

The Brans-Dicke electrovac equations (1), (2), and (5)
arising from the static spherically symmetric line element
(6) in isotropic coordinates can be simplified when the
following substitutions are introduced:

~AðrÞ :¼ �ðrÞ þ 1

2
½ln�ðrÞ�; (A1)

~BðrÞ :¼ �ðrÞ þ 1

2
½ln�ðrÞ�: (A2)

The electrovac equations [e2�Gt
t, e

2�Gr
r and e

2�ðGr
r þG�

�Þ]
from Eq. (1) can then be written as

2 ~B00ðrÞ þ ~B0ðrÞ2 þ 4

r
~B0ðrÞ þ 4�Q2e�2 ~BðrÞ

c4

þ 2!þ 3

4
ð½ln�ðrÞ�0Þ2 ¼ 0; (A3)

~B0ðrÞ2 þ 2 ~A0ðrÞ ~B0ðrÞ þ 2

r
ð ~A0ðrÞ þ ~B0ðrÞÞ þ 4�Q2e�2 ~BðrÞ

c4

� 2!þ 3

4
ð½ln�ðrÞ�0Þ2 ¼ 0; (A4)

~A00ðrÞ þ ~B00ðrÞ þ ðð ~AðrÞ þ ~BÞ0Þ2 þ 3

r
ð ~A0ðrÞ þ ~B0ðrÞÞ ¼ 0:

(A5)

The above three equations are not linearly independent,
but instead are related via the following:

� ~A0ðrÞe2�Gt
t þ

�
d

dr
þ

�
~A0ðrÞ þ 2 ~B0ðrÞ þ 4

r

��
e2�Gr

r

� 2

�
~B0ðrÞ þ 1

r

�
e2�ðGr

r þG�
�Þ ¼ 0: (A6)

We point out here that the integrations below are carried
out formally without taking into account the signature or

actual boundary values of ~Ab, ~Bb, ~A0
b þ ~B0

b, �b and �0
b,

where the former are the corresponding values of ~AðrÞ,
~BðrÞ, ~AðrÞ0 þ ~BðrÞ0,�ðrÞ and�ðrÞ0 at the boundary point at
infinity.
Equation (A5) can be expressed as a Cauchy-Euler

equation,

ðe ~AðrÞþ ~BðrÞÞ00 þ 3

r
ðe ~AðrÞþ ~BðrÞÞ0 ¼ 0; (A7)

which can be solved to give

e
~AðrÞþ ~BðrÞ ¼ e

~Abþ ~Bb

�
1� "2B2

r2

�
; (A8)

ELECTROSTATIC POTENTIAL OF A POINT CHARGE IN . . . PHYSICAL REVIEW D 88, 045007 (2013)

045007-9

Electrostatic Potential of a Point Charge in a BDRN Field 35



and

lim
r!1r

3ð ~A0ðrÞ þ ~B0ðrÞÞ ¼ 2"2B2; (A9)

"2 2 f�1;þ1g: (A10)

The reduced long-range scalar field wave equation

Eq. (10) can be written in terms of ~A and ~B as

�
r2e

~Aþ ~B�0ðrÞ
�

�0 ¼ 0: (A11)

By integrating Eq. (A11) twice from r to infinity we obtain

� ¼ �0

�
r� "B

rþ "B

� C
"�
; (A12)

where

�2 ¼ "2

4
ðð2!þ 3ÞC2 þ ðCþ 2Þ2Þ> 0: (A13)

We rewrite the modified field equation (A4) in the
following form:

~A0ðrÞ2 ¼ ð ~Aþ ~BÞ0
�
~A0 þ ~B0 þ 2

r

�
þ 4�Q2e�2 ~BðrÞ

c4

� 2!þ 3

4
ð½ln�ðrÞ�0Þ2: (A14)

Using Eqs. (A8) and (A12), after some algebra we obtain
a first-order second-degree separable differential equation,

�
d

dr
ðe� ~AðrÞÞ

�
2 ¼ 4�Q2e�2ð ~Abþ ~BbÞ

c4ðr2�"2B2Þ2

�
��

c4B2e2ð ~Abþ ~BbÞðCþ2Þ2
4�Q2�2

�
e�2 ~AðrÞ þ1

�
:

(A15)

Since e
~Ab ¼ ffiffiffiffiffiffi

�0

p
e�b and e

~Bb ¼ ffiffiffiffiffiffi
�0

p
e�b the solution to

this equation gives

e��ðrÞ ¼ e��b

�
r� "B

rþ "B

� C
2"�

�
p2þ

�
r� "B

rþ "B

�Cþ2
2"�

� p2�
�
r� "B

rþ "B

�� C
2"�

�
; (A16)

where pþ and p� are given in Eq. (17),

e�ðrÞ ¼ e�b

�
1þ "B2

r2

��
r� "B

rþ "B

�� C
2"�

�
p2þ

�
r� "B

rþ "B

�Cþ2
2"�

� p2�
�
r� "B

rþ "B

�� C
2"�

�
: (A17)

When "2 ¼ þ1 the above coincides with the BDRNmetric
given in Theorem 1 in Sec. II above. The solutions corre-
sponding to the Brans Type II, Type III and IV solutions are
given by setting, respectively, 	2 ¼ �1 and taking the limit

when 	 ! 0 (using L’Hopital’s rule) in Eqs. (A12), (A16),
and (A17).

APPENDIX B: GAUSS’ THEOREM

In order to determine the integration constants in
Eq. (62) we use Gauss’s theorem, a brief overview of which
is given here. Let< be a region of three-dimensional space
residing in a hypersurface % and let @< be its closed two-
dimensional boundary. Gauss’ theorem states that for the
electric field Ea (and indeed for any given vector field;
see Wald Ref. [42])

Z
<
raE

ad� ¼
Z
@<

Ea 	 nadS; (B1)

where d� is an element of spatial proper volume in<, na is
the outward-facing unit vector orthogonal to the closed
two-dimensional boundary @< and dS is the usual surface
element dS ¼ r2 sin �d�d�.
We know that the electric field is related to the Faraday

tensor by the following:

Ea ¼ Fabnb: (B2)

Using the above and Eq. (31) we find that the electric field
is indeed equal to the gradient of the electrostatic potential
Vðr; �; �Þ and therefore the right-hand side of Eq. (B1) can
be written as

Z
d<

Ea 	 nadS ¼
Z
d<

rV 	 n̂dS: (B3)

FromMaxwell’s equations the left-hand side of Eq. (B1)
can be written as

R
< J0d�, where

J0 ¼ � 4�	0
cr2

e�2�ðrÞ�3�
ðr� bÞ
ðcos�� cos�0Þ (B4)

is the charge density.
It follows that for the region B< b< r containing the

point charge �	0 positioned at r ¼ b, � ¼ 0 the left-hand
side of Eq. (B1) becomes �4�	0 and for any region not
containing the charge, i.e. B< r < b, and the left-hand
side vanishes.
For the Brans-Dicke Reisnner-Nordström spacetime—

as na is orthogonal to @<—the only term that remains is
the r term and Eq. (B1) becomes

Z
<
J0d� ¼ �ðrÞ2ðrþ BÞ2

�
r� B

rþ B

�
1�2k

�
Z 2�

0

Z �

��

@Vðr; �Þ
@r

sin �d�d�: (B5)

The left-hand side of Eq. (B5) is determined by whether
or not the region < contains the singular point at r ¼ b.
In particular, for the purposes of this investigation the
theorem determines the choice of integration constants in
Vðr; �Þ, as can be seen in the main section of this article.
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Concluding Remarks

After the publication of the above paper, it was brought to our attention by Professor

Robert Wald that although we claimed that we were considering an electromagnetic

pertubation of the Einstein-Maxwell equations of the BDRN space-time, this was not

strictly true. Professor Wald correctly pointed out that an electromagnetic perturba-

tion however small, would necessarily interact with the background space-time via the

energy-momentum tensor thereby producing changes to the background metric. The

changes would be of the same order as the initial perturbation. Of course, in the ab-

sence of a background charge (the Schwarzschild and Brans-Dicke space-times), the

electromagnetic perturbation considered in the above paper is in its most complete form

as it does not interact with or affect the background metric via the energy-momentum

tensor. In the presence of a background charge (the BDRN and Reisnner-Nordström

space-times) the investigations of the above paper can instead be considered to be that of

a “model system” whose behaviour is presumably very similar to the actual point charge

perturbation solution. A complete investigation of the effect that the electromagnetic

pertubation has on the background space, including its contribution to the gravitational

field, is conducted by Moncrief in [97] for the Reissner-Nordström background. From

the results of the aforementioned paper, it is evidently clear that to consider the per-

turbation of the BDRN background in its entirety, as opposed to the “model system“

studied here, would be extremely complex. Additionally, we do not believe that the

results would be significantly different to those found here and feel satisfied to continue

to use this “model system” in future investigations.
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Chapter 3

Analysis of the Equipotential

Surfaces in Isotropic and

Schwarzschild-type Coordinates

As a natural progression of the research conducting in the first paper, we proceed to

analysing the electrostatic potential by studying the equipotential surfaces generated

by a point charge in a Brans-Dicke Reissner-Nordström (BDRN) space-time in both

isotropic and Schwarzschild-type coordinates.

In the pioneering work of [1], Copson plotted the equipotential surfaces generated by

a single “electron” residing in a Schwarzschild space-time. The equipotential surfaces

were plotted only for the region exterior to the surface of inversion. From his plots,

Copson was able to detect the presence of the inversion point inside the surface of

inversion, however he was unable to detect the presence of the additional charge that

was inadvertantly placed inside the region not covered by the isotropic coordinates.

The electrostatic potential was amended in [65] to be representative of a single perturbing

charge in a Schwarzschild spacetime however the equipotential surfaces generated by this

single charge solution was not plotted. Subsequent research into the topic of electrostatic

perturbations of various spacetimes such as [95] and [96] also did not include such plots.

It was not until 2007, that Harpaz [66] plotted the electric field lines generated by the

perturbing charge solution of [65] and proved that they were comparable to the electric

field lines generated from the multipole expansion solution of [63].

In fact, one of the few papers to include a pictoral representation of a small electrostatic

perturbation was [63] who plotted the electric lines of force for a static charged particle

outside the horizon of a Schwarzschild black hole in Schwarzschild coordinates. The

40
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lines of force were plotted for three different values of the radial coordinate r and it was

found that as the charge “approached” the horizon, the behaviour of the force lines came

to mimic the field lines of a Reissner-Nordström black hole. In fact, the authors of [63]

were able to show that when the charge was allowed to get sufficiently close to the event

horizon of the Schwarzschild black hole, the charge became evenly distributed over the

Schwarzschild surface generating, in a smooth manner, the monopole field characteristic

of a Reissner-Nordström black hole.

Similar results were obtained earlier by [53] where a multipole expansion solution was

found describing the electrostatic potential generated by a perturbing charge in a Schwarzschild

spacetime. This solution was found by implementing a boundary condition stating that

the electrostatic potential must be well behaved when the charge is situated at the hori-

zon of the Schwarzschild black hole. They found that their multipole expansion solution

was regular and to the order of e
r , thus concluding, like [63] that a Reissner-Nordström

black hole is produced when a charge approaches the horizon.

Black hole uniqueness theories of the early 70s, and in particular those theories devised in

[98], [99] and [100], showed that an isolated black hole cannot possess an electromagnetic

field unless it is endowed with an electric charge. Furthermore, as the perturbing charges

described in the papers above are “test” charges, and are not coupled directly to the

metric, the metric describing the Schwarzschild spacetime metric does not convert to

that of the Reissner-Nordström spacetime simply by the presence of a perturbing charge

at the horizon. When the point charge approaches the horizon it creates instead, a

linearly perturbed Schwarzschild spacetime.

In the case of “test” perturbing charges (as opposed to gravitational Regge-Wheeler type

perturbations), investigations into the mechanism by which the charge is able to remain

static outside the outer “horizon” of a background space are scarce. By graphically

representing the equipotential surfaces arising from the exact closed-form electrostatic

potential solution of [101] for an electrostatic point charge in a BDRN spacetime we are

able to find a mechanism by which the perturbing charge can remain static outside the

outer “horizon”.

In this paper we extend the work done in [101] by first converting the electrostatic

potential generated by a point charge in a BDRN spacetime into a simple form in terms

of a single parameter Π(ς). We do so by introducing a new variable σ(r, θ) which is the

ratio of the distance of a field point from the charge at b to the distance of a field point

from the image charge at b∗.

We go on to plot the equipotential surfaces generated by a charged particle at rest in

BDRN, Brans-Dicke, Reissner-Nordström and Schwarzschild space-times respectively in
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isotropic coordinates. We find that the equipotential surfaces arising from the electro-

static potential generated by a point charge in BDRN and Brans-Dicke spacetimes are

difficult to distinguish qualitatively. Likewise, the equipotential surfaces of the Reissner-

Nordström and Schwarzschild spacetimes are qualitatively similar. Additionally we find

that in the presence of a scalar field the equipotential surfaces are able to cross the sur-

face of inversion seamlessly while in the absence of a scalar field they do not. Copson’s

solution of [1] is also plotted in isotropic coordinates for the entire region 0 < r < ∞.

We find that the region exterior to but in the vicinity of the surface of inversion, i.e the

region plotted by Copson in [1], is qualitatively the same as the single charge solution.

The difference between Copson’s solution and the single charge solution is only apparent

when one looks at the entire spacetime from 0 < r <∞. This is done by looking at the

region (0 < r < B) which is isomorphic to the region outside the surface of inversion

(B < r < ∞). The sphere of r = B is essentially a snapshot of the entire spacetime in

a bounded region and is a useful feature of the isotropic coordinates.

As a point of interest, and to ascertain whether the boundary condition of [53] is upheld,

we allow the perturbing electrostatic charge to approach the surface of inversion (r = B)

from above. We find that the electrostatic potential generated by a point charge at the

surface of inversion is well behaved and finite in requirement of the boundary condition

of [53]. Interestingly, we find that the electrostatic potential is independent of angle θ.

We are unable to explain this phenomenon and find it necessary to convert the solutions

to Schwarzschild-type coordinates for further explaination.

We do this by introducing a generalized transformation formula by which one is able

to convert the isotropic coordinates into Schwarzschild-type coordinates. We convert

the BDRN metric into Schwarzschild-type coordinates and find that in addition to the

usual two S2 singularities which are the generalization of the inner (r−) and outer (r+)

“horizons”, there exists a third S2 singularity at

r0 =
r+r−(r

1
k
−1

+ − r
1
k
−1
− )

r
1
k
+ − r

1
k
−

. (3.1)

We find that this singularity is the singularity one would expect to find at the location

of the origin as a point singularity.

The conditions under which r0 appears as a point singularity is when k = 1 and/or when

Q = 0. Thus this singularity appears as a point singularity in the Brans-Dicke spacetime

when Q = 0, the Reissner-Nordström spacetime when k = 1 and the Schwarzschild

spacetime when Q = 0 and k = 1.
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In order to understand this S2 singularity better and in order to understand the be-

haviour of the equipotential surfaces of the perturbing electrostatic charge we convert

the electrostatic potential of [101] into Schwarzschild-type coordinates.

As before, we are able to write the potential in terms of a single function Πs(rs, θ)

by introducing a function σs(rs, θ) which is simply the function σ(r, θ) converted into

Schwarzschild-type coordinates.

In order to compare with the boundary condition of [53], the perturbing charge is allowed

to approach the outer “horizon” r+. The electrostatic potential remains well behaved

even when the perturbing charge is at r+ and the boundary condition of [53] is upheld. As

before, the electrostatic potential generated by a charge at r+ is found to be independent

of the angle θ. We can interpret this as follows: in the region r− ≤ rs ≤ r+ the timelike

coordinate becomes spacelike and the radial coordinate becomes timelike, thus surfaces

of rs = const are spacelike surfaces. When the charge approaches the spacelike surface of

r+ the charge is distributed evenly across the entire surface and is thus independent of the

angle θ. This is in agreement with [63] who also found that the charge gets distributed

evenly across the entire surface when it approaches the horizon of a Schwarzschild black

hole.

In the BDRN and Reissner-Nordström spacetimes the radial and time coordinates return

to their usual physical interpretation in the region 0 < rs < r−. Thus within this region

an image b∗s to the charge placed at bs appears. When the charge at bs approaches r+,

the image charge b∗s approaches r− from below. The image charge is also distributed

evenly across the inner horizon when b∗s = r−.

We plot the equipotential surfaces of the electrostatic potential generated by a perturb-

ing charge in a BDRN, Brans-Dicke, Reissner-Nordström and Schwarzschild spacetimes

alongside Copson’s “symmetrical boundary condition” solution of [1] in Schwarzschild-

type coordinates first for a perturbing charge placed in the vicinity of the outer horizon

and next for a charge placed far from the outer horizon.

When the perturbing charge is situated in the vicinity of the outer “horizon” of the

BDRN and Reissner-Nordström spacetimes one can identify the presence of the image

charge within the inner “horizon” r−. When the perturbing charge is taken far from

the outer “horizon”, the image charge approaches the singularity. For the Reissner-

Nordström this causes the charge distribution within the inner horizon to resemble that

of the Brans-Dicke and Schwarzschild spacetimes. The charge distribution within the

horizons of a Brans-Dicke and Schwarzschild spacetime is dipole in nature. From the

boundary condition implemented in [101], the net charge of the region is zero.
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We plot also Copson’s solution of [1] and find that the equipotential surfaces inside the

horizon is not completely dipole in nature. When the charge is taken far away from the

horizon the equipotential surfaces inside the horizon is representative of a single charge

located at the singularity and it is clear to see that Copson’s solution contains an extra

charge there.

Lastly, we allow the perturbing charge of Copson’s solution of [1] to approach the hori-

zon r+ in a Schwarzschild-type coordinates to compare with the boundary condition of

[53]. When the perturbing charge is placed at the horizon the electrostatic potential

of Copson’s solution proves to be well behaved and is also to the order of c
r . Thus the

boundary condition of [53] is necessary though insufficient in ensuring that the resulting

potential is representative of that generated by a single perturbing charge.
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Electrostatic potential of a point charge in a Brans-Dicke Reissner-Nordström field. II.
Analysis of the equipotential surfaces in isotropic and Schwarzschild-type coordinates

M. Watanabe∗ and A. W. C. Lun†

Monash Centre for Astrophysics
School of Mathematical Sciences, Monash University

Wellington Rd, Melbourne 3800, Australia

In [1] we modeled a single perturbative electrostatic point charge placed outside the surface of
inversion in a Brans-Dicke Reissner-Nordström (BDRN) spacetime in isotropic coordinates using a
boundary condition, based on Gauss’ divergence theorem, regarding the presence or absence of net
electric flux. In Part I of this paper, we complete our investigation by plotting the equipotential
surfaces of the exact perturbative electrostatic potential. We find that in isotropic coordinates the
electrostatic potentials of the BDRN and Brans-Dicke backgrounds are difficult to distinguish qual-
itatively and the equipotential surfaces are able to cross the surface of inversion seamlessly. The
electrostatic potentials of the Reissner-Nordström and Schwarzschild spacetimes are also difficult to
distinguish qualitatively. Unlike the BDRN and Brans-Dicke spacetimes, however, the equipotential
surfaces do not cross the surface of inversion (see Fig.(1)). In the absence of more information
it is difficult to explain this phenomenon and why a model of a static perturbative, electrostatic
point charge is physically reasonable. In addition to the above, we also plot Copson’s symmetrical
boundary condition solution [2] which models two charges, to illustrate the importance of choosing
appropriate boundary solutions. In Part II, we introduce a general coordinate transformation equa-
tion that converts the isotropic coordinates into the Schwarzschild-type coordinates such that the
BDRN metric is transformed into Schwarzschild-type coordinates. We show that in addition to the
two S2 singularities that arise from the generalization of the inner and outer “horizons”, there ex-
ists a third singular S2 surface in the BDRN background that replaces the singularity at the origin.
Finally, we use the transformation equation to convert the exact perturbative electrostatic poten-
tials into Schwarzschild-type coordinates. We plot the equipotential surfaces in Schwarzschild-type
coordinates.

PACS numbers:

I. INTRODUCTION

We recently established an ansatz to solve the per-
turbed Maxwell equations due to an electrostatic charge
in a class of Brans-type spacetimes in isotropic coor-
dinates, which is reducible to the Brans-Dicke Class I,
Reissner-Nordström and Schwarzschild black hole solu-
tions [1]. The Brans-Dicke Reissner-Nordström (BDRN)
background was perturbed by a small electrostatic charge
placed outside the surface of inversion in isotropic co-
ordinates. By extending a method first developed by
Copson in [2], we were able to derive a closed-form so-
lution perturbed electrostatic potential and found that
the BDRN spacetime was stable under electromagnetic
perturbations.

The study of the electromagnetic perturbations of elec-
trovac or vacuum spacetimes can be traced back to
1927, when Whittaker [3] used the separation of vari-
ables method to express the electric potential generated
by a point charge in a Schwarzschild and quasi-uniform
field. This was expanded on by Copson [2] who found

∗

a closed-form expression describing the electric potential
generated by a point charge in the quasi-uniform and
Schwarzschild backgrounds using Hadamard’s [4] theory
of elementary solutions. Copson went on to plot the
equipotential surfaces generated by the point charge in
isotropic coordinates for the region outside the surface of
inversion.

The electrostatic potential generated by a point charge
was reestablished for the Schwarzschild background inde-
pendently by Cohen and Wald [5] and Hanni and Ruffini
[6] who also used the method of separation of variables.

A short while later, Linet [7] found that Copson’s origi-
nal [2] solution did not contain just one perturbing charge
outside the surface of inversion r = B but also another
implicit image charge inside the surface of r = B, the re-
gion not covered by the isotropic coordinates. It was for
this reason that the second charge did not appear in Cop-
son’s original plot of equipotential surfaces. Linet was
able to find this additional charge by applying Gauss’ law
at infinity, thereby correcting Copson’s original bound-
ary condition of demanding symmetry between the radial
coordinate r and the location of the charge r = b. His so-
lution agreed with known multipole expansion solutions
given by [5] and [6]. We find that the important differ-
ence between Copson’s result and the results found by [3]
lies in whether or not there is net electric flux over any
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closed oriented surface containing the surface of inversion
but excluding the perturbing charge.

Linet and co-authors went on to find closed-form ex-
pressions for the electrostatic potential generated by a
point charge placed in a Reissner-Nordström [8] and
a Brans-Dicke Class I [9] using the Copson-Hadamard
method. In 1978, Copson revisited the issue, finding a
closed-form expression describing the electrostatic po-
tential generated by a charged particle in a Reissner-
Nordström background [10]. However, as Copson used
the same boundary condition as before, by the same rea-
soning this solution also contained an image charge inside
the surface of r = B. The Copson-Hadamard method to
find a closed-form solution describing the electrostatic
potential of a perturbing point charge was extended to
higher dimensions in [11]. In 2007, [12] plotted the elec-
tric field lines of the electrostatic potential solution of [7]
for different locations of the point charge to simulate the
motion of an accelerating particle. He found that when
the charge is brought close to the horizon, the field lines
are comparable to that of [6].

Meanwhile in [13], the authors studied the electrostatic
perturbation of the Schwarzschild spacetime using hyper-
geometric functions and investigated the fields of not just
a point charges but also of current loops, charged rings
and magnetic dipoles. In two following papers they ex-
tended their perturbation work to Reissner-Nordström
[14] and Kerr black holes [15] and plotted the magnetic
field lines generated by the perturbing phenomena.

The perturbed Schwarzschild spacetime was revisited
in [16] who used Green’s function and multipole expan-
sions to express the electrostatic potential generated by
a point charge and in [17] found that the electrostatic
potential of a perturbed Schwarzschild spacetime was in-
deed unique.

In a pivotal paper by Regge and Wheeler [18] the au-
thors developed a perturbation method by which the
background metric is perturbed directly. This would lead
to several investigations into assorted perturbations of
various black hole spacetimes (see for example [19], [20],
[21]). Although Regge-Wheeler type perturbations are
outside of the scope of this paper as we look at small
perturbations by a “test” charge which do not effect the
spacetime curvature of the background metric, we point
out a few interesting papers that are relevant to our re-
search insofar as they study and plot the electromagnetic
perturbation of charged spacetimes.

In 2007, Bini et al [22], [23], found an expression
for the electric potential generated by a charged mas-
sive particle at rest in a Reissner-Nordström field using
the Regge-Wheeler gauge perturbation method and went
on to numerically plot the electric force lines in [24].
Paolino et al studied the electric force lines of a dou-
ble Reissner-Nordström exact solution in [25] while in
[26] they plotted the electric force lines of a two body
equilibrium model proposed earlier by [27]. Lastly, [28]
and [29] found that all linear perturbations of an extreme
Reissner-Nordström black hole have long term instability.

We point out that the perturbed Maxwell equa-
tions under consideration in [1] did not include the ef-
fect the perturbing electromagnetic charge would have
on the gravitational field of the BDRN and Reissner-
Nordström background space-times. As such we can-
not consider it a perturbation in its most complete form
but rather a “model system” whereby the perturbing
charge does not produce cross-terms in the Maxwell equa-
tion via the energy-momentum tensor. A full consider-
ation of the perturbation would be extremely complex
(see [30] for a full consideration of the perturbation of
the Reissner-Nordström space-time) and the results of
a full consideration would not be significantly different
to those found in [1]. Thus we continue to use this
“model system” when investigating the perturbation of
the BDRN and Reissner-Nordström background space-
times in this paper. The perturbation of the Brans-Dicke
and Schwarzschild space-times considered in [1] on the
other hand, are complete as these backgrounds are un-
charged and the perturbing charge does not interact with
the gravitational field via the energy-momentum tensor.

The structure of this paper is as follows;

In Section II, we give a brief overview of the salient
features of the BDRN metric in isotropic coordinates.
Throughout the investigations of this paper and [1] we
have not implemented the weak field approximation.
However, as a point of interest, we include in this sec-
tion how the weak field limit can be achieved by placing
certain restrictions on the parameters of the background
metric.

In Section III, we rewrite the closed-form solution
describing the electrostatic potential generated by a
point charge situated outside the surface of inversion in
isotropic coordinates of [1] in a succinct form using a sin-
gle function Π(ς). We go on to plot all the BDRN closed-
form perturbed electrostatic potentials found in Paper
1, and the three degenerate solutions (BD, Reissner-
Nordström and Schwarzschild) in isotropic coordinates.
In [1], we used the generalized Gauss divergence theorem
to prove that there exists only one charge at z = b. Its
image exists at z = B2/b within the surface of inversion.
Both of these charges are clearly visible in all four back-
grounds spacetimes. However, the presence of the scalar
field in the BDRN and BD backgrounds causes the poten-
tial to cross the surface of inversion in a smooth manner.
The Reissner-Nordström and Schwarzschild cases, on the
other hand, do not display any crossing over at the sur-
face of inversion and the region exterior and interior to
the surface of inversion exist as two distinct regions. In
addition to the four backgrounds, we also plot Copson’s
solution [2] and show that in isotropic coordinates, by
looking at the region exterior to the surface of inversion
alone, it is difficult to detect the existence of a second
charge residing within the region excised by the isotropic
coordinates. Thus Copson’s solution exterior to the sur-
face of inversion in isotropic coordinates is qualitatively
the same as Linet’s modified solution in [7]. However, in
the manner of [7], when one looks at the entire spacetime
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to infinity, that is, the refraction of the exterior solution
inside the sphere of r = B, then one can immediately
recognize that the solution differs to the single charge so-
lution of [7]. Thus the difference between Linet’s [7] so-
lution and Copson’s [2] solution only becomes apparent
when one either looks at the entire spacetime to infinity
in isotropic coordinates, or if one includes the region ex-
cised by the isotropic coordinates, that is, the region in-
terior to the surface of r = B. This is achieved by using
a transformation formula to convert the solutions from
isotropic coordinates to Schwarzschild-type coordinates
which contains the complete information of the space-
time.

In Section IV, we introduce a method by which to con-
vert the Brans-Dicke Reissner-Nordstöm (BDRN) metric
from isotropic coordinates to the usual Schwarzschild-
type coordinates. The transformation equation de-
vised (Eq.47) is of a general form and can be ap-
plied, by an appropriate choice of constants, to all
four background metrics (BDRN, Brans-Dicke, Reissner-
Nordstöm and Schwarszschild). We give the BDRN met-
ric in Schwarzschild-type coordinates initially in a nota-
tion similar to that used by Campanelli and Lousto [31]
before giving in its usual notation in Theorem 1. The
BDRN metric and its degenerate spacetime metrics are
given in Table I. Upon converting the BDRN metric from
isotropic to the usual Schwarzschild-type coordinates, we
discover the existence of a S2 singularity in addition to
the usual inner and outer “horizons”. The additional
S2 singularity is studied in some detail and we find the
conditions under which this S2 singularity appears as a
point singularity at the origin and find that these coincide
with the precise conditions underwhich the BDRN re-
duces to the BD, Reissner-Nordström and Schwarzschild
backgrounds and it is thus that the degenerate cases do
not possess this unusual singularity.

In Section V, we introduce in Theorem 2, the method
by which the transformation equation is used to con-
vert the four closed-form solutions given in [1] into
Schwarzschild-type coordinates and present our results
in Table.II. As was the case when in isotropic coordi-
nates, the solution can be written in terms of a single
parameter Πs(ς). We also give Copson’s [2] solution
in Schwarzschild-type coordinates which is in agreement
with that found earlier by [7]. Furthermore, we allow the
perturbing electrostatic charge to approach the horizon
to study how the Copson’s [2] electric potential solution
behaves in this limit. We find that like the ammended
single charge solution of [7], the electrostatic potential
generated by the perturbing charges of Copson’s solu-
tion is also well behaved when the external perturbing
charge is brought to the horizon. Thus it is clear that
the boundary condition of [5] though necessary, is in-
sufficient in ensuring that the electrostatic potential is
representative of a single charge perturbation.

In Section VI, we plot our closed-form solutions in
Schwarzschild-type coordinates. We find that in doing
so we shed some light on the effect the additional S2 sin-

gularity of the BDRN background has on the perturbed
electrostatic potential. In particular, we find that the
electrostatic potential exhibits no irregular behavior at
the inner and outer “horizons” and shows singular behav-
ior only at the location of the additional S2 singularity.
As was the case in the isotropic coordinates, the pres-
ence of the scalar field allows the electrostatic potential
to cross over smoothly from the exterior to the interior
of the BDRN and BD “horizons”. One must tread care-
fully when discussing the region in between the two “hori-
zons” of the BDRN and Reissner-Nordström spacetimes
(r− < rs < r+) and the region interior to the “horizon”
(rs < r+) in the Brans-Dicke and Schwarzschild space-
times as it is here that the physical interpretation of the
rs coordinate as being spacelike breaks down, however,
we include this region in all our plots to show that, if
only mathematically, we are able to plot the electrostatic
potential for the entire spacetime and give the charge
distribution inside the outer “horizon”.

Lastly, we plot Copson’s solution in Schwarzschild
coordinates (first given by [7]). We find that in
Schwarzschild coordinates Copson’s solution does differ
slightly from our perturbed Schwarzschild solution. How-
ever, the difference is subtle which only emphasizes the
importance of using appropriate boundary conditions.
We find the boundary condition introduced in [1] proves
to be necessary and sufficient in ensuring that the solu-
tion is representative of a single perturbing charge. We
note that the presence of the image charge Copson placed
inadvertantly inside the surface r = B does not cause
Copson’s solution to transition to a Reissner-Nordström
solution.

We point out that in order to differentiate the scalar
field from the coordinate φ, we denote the scalar field here
using ϕ(r) instead of φ(r) which was used throughout [1].

Part I

II. ISOTROPIC COORDINATES

In Paper 1, we considered a solution to the field equa-
tions in the Brans-Dicke scalar tensor theory

Rab −
1

2
gabR =

8πTab
c4ϕ

+
1

ϕ
(∇a∂bϕ− gab�ϕ)

+
ω

ϕ2
(∂aϕ∂bϕ−

1

2
gabg

cd∂cϕ∂dϕ),(1)

�ϕ =
8πT

(2ω + 3)c4
, (2)

where

�ϕ := ∇b(gab∂aϕ) =
1√−g ∂b(

√−ggab∂aϕ) (3)

and � is the scalar wave operator. Here the notations
have their usual meaning. We further assume the energy-
momentum tensor arising from the contribution of the
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electromagnetic field encoded in the Faraday tensor Fab
is

Tab = FacF
c
b −

1

4
gabFcdF

cd , T aa = 0, (4)

where Fab satisfies the source-free Maxwell equations

∇bF ab = 0 , ∇[cFab] = 0. (5)

The metric describing the BDRN background in
isotropic coordinates was given in [1] as

ds2 = −c2e2α(r)dt2 + e2β(r)[dr2 + r2(dθ2 + sin2 θdφ2)],(6)

where the metric functions e2α(r) and e2β(r) are

e2α(r) =
e2α0

∣∣∣ r−Br+B

∣∣∣
2
λ

(
p2

+ − p2
−

∣∣∣ r−Br+B

∣∣∣
C+2
λ

)2 , (7)

e2β(r) = e2β0

(
1 +

B

r

)4 ∣∣∣∣
r −B
r +B

∣∣∣∣
2(λ−C−1

λ )

×
(
p2

+ − p2
−

∣∣∣∣
r −B
r +B

∣∣∣∣
C+2
λ

)2

, (8)

the long range scalar field ϕ(r) is

ϕ = ϕ0

∣∣∣∣
r −B
r +B

∣∣∣∣
C
λ

, (9)

the static electric potential V0(r), the Faraday tensor Fab
and the corresponding energy-momentum tensor T ab are:

V0(r) = Q

∫ r

∞

eα(r)−β(r)

r2
dr, (10)

Fab = −cV ′0(r)




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 , (11)

T ab = −e
4β(r)Q2

2r4




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (12)

In order to ensure that the above metric is real for all
values of r we use the following convention for the r−B

r+B

terms that appear in the metric coefficients e2α and e2β :

(
r −B
r +B

)2α

=

((
r −B
r +B

)2
)α

. (13)

For the sake of simplicity we write the above as | r−Br+B |2α
but point out that taking the modulus alone is insufficient
in ensuring the BDRN metric is real.

The functions V0(r), e2α(r), e2β(r) and ϕ(r) are defined
for all non-negative r except at r = B. The nine parame-
ters Q,B, p2

+, p
2
−, λ, C, ϕ0, e

2α0 and e2β0 in equations (7)
to (12) are related via the following

4λ2 = (2ω + 3)C2 + (C + 2)2 > 0, (14)

B =

√
m2
B − q2

B

2
, (15)

mB :=
m

c2ϕ0

(
1

eβ0

2λ

C + 2

)
, (16)

qB :=

√
4π

ϕ0

q

c2

(
1

eβ0

2λ

C + 2

)
, (17)

ϕ0 =
1

Geff

(
2ω + 4

2ω + 3

)
, (18)

p2
± =

mB ±
√
m2
B − q2

B

2
√
m2
B − q2

B

, (19)

p2
+ − p2

− = 1, (20)

where m and q are non-negative real constants and
are identified, respectively, as mass measured in con-
ventional units (kg) and charge measured in elec-
trostatic units (e.s.u), which has the dimensions of

[mass]
1
2 [length]

3
2 [time]−1. Here ω is the coupling con-

stant that couples the scalar field to matter, while c is
the speed of light in a vacuum. In scalar tensor theo-
ries, the gravitational constant G0 that appears in the
Einstein-Hilbert term of the standard theory is replaced
by Geff which is related to the strength of the scalar field
as given above.

Taking into account equations (14) to (20), there are
six essential parameters in the BDRN solution. We adopt
the independent parameter set α0, β0,m, q, C, ϕ0. From
Eq.(14), for the BDRN metric to be well defined, we fur-
ther require

ω ≥ −3

2
. (21)

A. Weak Field Approximation

Although there is no a priori reason why the weak
field approximation must be upheld for the phenom-
ena discussed here (see [32]), we give below the re-
strictions on the six parameters of the BDRN solution
α0, β0,m0, q0, C, φ0 such that the BDRN spacetimes are
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in agreement with weak field approximations should one
wish to implement it:

α0 = β0 = 0, (22)

ϕ0 =
1

G0

(
2ω + 4

2ω + 3

)
, (23)

C

λ
∼= −2√

(2ω + 4)(2ω + 3)(1− q2B
m2
B

, (24)

mB
∼= m

c2ϕ0

√
2ω + 3

2ω + 4
, (25)

qB ∼=
√

4π

ϕ0

q0

c2
. (26)

Here G0 is the Newtonian gravitational constant. When
the weak field approximation is implemented there
remain only 4 parameters in the BDRN solution:
m0, q0, ω, ϕ0. Note that the coupling constant ω replaces
C (and thus λ). Here m0 and q0 are the Newtonian mass
and charge measured in [kg] and e.s.u, respectively.

We also point out an error in [1] where there is a fac-

tor of
√

2ω+4
2ω+3 that should not appear in Eq.(24) of [1].

With this ammendment Eq.(24) of [1] coincides with (26)
above.

III. ELECTROSTATIC POTENTIAL AND
EQUIPOTENTIAL SURFACES IN ISOTROPIC

COORDINATES

In [1], we considered the electrostatic potential V (r, θ)
due to a “small” perturbative static electric charge
−ε0 (|ε0| � qB < mB) situated outside the spherical
surface of inversion B along the azimuthal axis at z = b
in the BDRN background.

We found that the potential V (r, θ) can be written as
the following

V (r, θ) =
ε0r

η(r)(r2 −B2)

[
r −B
r +B

]k
bB

η(b)(b2 −B2)

[
b−B
b+B

]k

×p
2
+(
√
γ + 1 +

√
γ)2k − p2

−(
√
γ + 1−√γ)2k

2
√
γ
√
γ + 1

(27)

where

η(ς) = p2
+ − p2

−

∣∣∣∣
ς −B
ς +B

∣∣∣∣
2k

, (28)

is a dimensionless function and

γ(r, θ) =
B2

b2 −B2

Γ(r, θ)

r2 −B2
, (29)

where

Γ(r, θ) = r2 + b2 − 2brcosθ. (30)
Thus γ(r, θ) is proportional to the square of the “ra-

dial” distance from the charged particle at z = b. Using
the same notation as [1]

k =
C + 2

2λ
. (31)

The electrostatic potential satisfies a boundary condi-
tion based on Gauss’ theorem, that any integration over a
simply connected annular domain bounded by the surface
of inversion r = B and does not contain the perturbing
charge must be exactly zero Additionally, an integration
over a region containing the perturbing charge must be
exactly 4πε0 where ε0 is the magnitude of the perturbing
charge.

We begin by first showing that the closed-form electric
potential V (r, θ) in isotropic coordinates due to a point
electrostatic charge at (r, θ) = (b, 0), given in Eq.(27),
can be expressed succinctly in terms of the function

Π : ς 7→ ς

η(ς)(ς2 −B2)

(
ς −B
ς +B

)k
, (32)

such that

V (r, θ) =
ε0
2

Π(b)Π(r)

Π(σ(r, θ))
, (33)

where the composite function

Π(σ(r, θ)) = (Π ◦ σ)(r, θ), (34)

and

σ(r, θ) = b

(
(r2 + B4

b2 − 2B2r
b cos θ)

(r2 + b2 − 2br cos θ)

) 1
2

. (35)

=
bΓ∗(r, θ)
Γ(r, θ)

(36)

where

Γ∗(r, θ) = r2 +
B4

b2
− 2

B2

b
rcosθ, (37)

is the square of the distance from the inversion point at

z = b∗ = B2

b .
From Eq.(35), it is straightforward to show that

σ2(r, θ)−B2 =
(b2 −B2)(r2 −B2)

(r2 + b2 − 2br cos θ)
(38)

=
(b2 −B2)(r2 −B2)

Γ(r, θ)
=

B2

γ(r, θ)
. (39)

Rearranging terms we have

γ(r, θ) =
B2

σ2(r, θ)−B2
(40)

γ(r, θ) + 1 =
σ2(r, θ)

σ2(r, θ)−B2
. (41)

Substituting Eqs.(40) and (41) into Eq.(32), and after
some algebra, we obtain
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(e) Copson Solution

FIG. 1: A plot of the electrostatic potential generated by a point charge of magnitude 1 situated at b = 5 outside
the surface of inversion in isotropic coordinates. For all backgrounds B = 4 and is denoted by a dashed red line. For

the BDRN and Reissner-Nordström backgrounds mB = 9 and q =
√

17 while for the BD and Schwarzschild
backgrounds mB = 8. For the BDRN and Brans-Dicke cases, k = 0.95 and for the Reissner-Nordström and

Schwarzschild backgrounds k = 1. The plot shows the presence of two charges, one at r = b and the other at its

counterpart within the surface of inversion at r = B2

b . Copson’s solution is also given for a point charge at b = 5 in a
Schwarzschild background where mB = 8. We point out that the equipotential surfaces around the origin of the

isotropic coordinates is of decreasing order where at the origin (the counterpart to spatial infinity) the equipotential
“surface” is zero. This is in contrast to the equipotential surfaces around the perturbing charge at b which are of

increasing order, rising to a peak at b.

Π(σ(r, θ)) =

√
γ(γ + 1)

B(p2
+(
√
γ + 1 +

√
γ)

C+2
λ − p2

−(
√
γ + 1−√γ)

C+2
λ )

. (42)

Hence we verify that Eq.(33) and Eq.(27) are indeed
equivalent.

If we allow the perturbing charge to approach the sur-
face of inversion, that is b → B, the electrostatic poten-
tial becomes the following

V (r, θ) =
ε0
2

Π(r)

=
ε0
2

r

η(r)(r2 −B2)

(
r −B
r +B

)k
. (43)

From this we are able to ascertain that the electrostatic

potential is well behaved at the surface of inversion as
required by the boundary conditions in [5].

Interestingly, we find that the electrostatic potential
of the perturbing charge when at the surface of inver-
sion is independent of the angle θ. The reason for this
will become clear when we convert the potential into
Schwarzschild-type coordinates.
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A. Copson’s Solution in Isotropic coordinates

In [2], Copson found a closed-form solution for the elec-
trostatic potential generated by a point charge or “elec-
tron” in a Schwarzschild background space. The integra-
tion constants were chosen such that the potential would
be symmetrical in the radial coordinate r and in the po-
sition of the point charge at r = b. Using the notation of
this paper where the surface of inversion of the spacetime
is located at r = B (and not scaled to unity as in [2]) we
rewrite Copson’s solution as the following

V c(r, θ) =
ebr

(b+B)2(r +B)2

[
σ2(r, θ) +B2

σ(r, θ)

]
, (44)

where σ(r, θ) is given by Eq.(35). It is straightforward
to verify that V c(r, θ) is symmetrical in r and b. If we
choose the magnitude of the point charge at r = b to be
ε0 = 2e then we are able to compare Copson’s solution
with the single charge solution given in Eq.34 by setting
p2
− = 0, p2

+ = 1, k = 1, C = 0 and λ = 1 (see also [7])

V (r, θ) =
ε0br

2(b+B)2(r +B)2

[
(σ(r, θ) +B)2

σ(r, θ)

]
. (45)

As pointed out in [7], Copson’s solution Eq.(44) differs
from the single charge solution in that there is an addi-
tional potential due to a charge of the following magni-
tude

V ∗(r, θ) = − ε0bBr

(b+B)2(r +B)2
. (46)

As Copson only placed a single charge outside the sur-
face of r = B, this additional charge must reside in the
interior of the spherical surface of r = B and hence in
the region not covered by the isotropic coordinates.

B. Equipotential Surface Plots in Isotropic
Coordinates

We turn to plotting the solution Eq. (33) in all four
backgrounds (BDRN, Brans-Dicke, Reissner-Nordström
and Schwarzschild). In order to allow some comparison
between the four backgrounds, we fix the surface of in-
version at the same value for B = 4 for all four back-
grounds. We choose mB = 9 and q =

√
17 for the BDRN

and Reissner-Nordström backgrounds such that B = 4.
Likewise, we allow mB = 8 for the Brans-Dicke and
Schwarzschild backgrounds, such that B = 4. For the
BDRN and Brans-Dicke backgrounds we set k = 0.95
and as always k = 1 for the Reissner-Nordström and
Schwarzschild backgrounds. The point charge of magni-
tude ε0 = 1 is placed at b = 5 and the corresponding

inversion point b∗ = B2

b = 16
5 .

From the contour diagrams of Fig.(1), it is immediately
obvious that there exists two charges, one at the location
of the charge at b = 5 and the other at its inversion point

inside the surface of inversion at b∗ = B2

b = 16
5 . Of great

interest, however, is the fact that there are no discernible
differences between the BDRN and Brans-Dicke back-
grounds, and similarly between the Reissner-Nordström
and Schwarzschild backgrounds. It is clear then that the
presence or absence of charge in the background met-
ric itself does not affect the perturbative electrostatic
potential exterior to the surface of inversion (compare
Fig.(1a) with Fig.(1c) and Fig.(1b) with Fig.(1d)). In
Section VI, where we plot the electrostatic potential in
Schwarzschild-type coordinates, we find that the differ-
ences between the charged and uncharged spacetimes
manifests only in the region excised by the isotropic
coordinates. The presence of the scalar field however,
does affect the electrostatic potential and the BDRN
and Brans-Dicke backgrounds are clearly distinguishable
from their scalar-field-free counterparts, i.e the Reissner-
Nordström and Schwarzschild backgrounds. Most no-
tably, the equipotential surfaces smoothly cross the sur-
face of inversion in the presence of a scalar field almost
as if the surface of inversion does not exist, while in the
absence of a scalar field, the electrostatic potential does
not cross the surface of inversion.

Although the interior of Copson’s two-charge solution
of Eq.(44) (see Fig.(1e)) differs quite significantly from
the interior of the single charge solution of Eq.(45), the
exterior solution on the other hand, exhibits no qualita-
tive difference, except for a slightly weaker electrostatic
potential displayed by Copson’s solution in comparison
to the single charge solution. From the electrostatic po-
tential exterior to but near the surface of inversion one
would be unable to discern that this is a two charge solu-
tion. It is only when one takes a look at the entire space-
time stretching from the surface of inversion to infinity
that the difference becomes clear. This can be seen from
the region (0 < r < B) which is isomorphic to the region
from the surface of inversion to infinity (B < r < ∞).
The sphere of radius r = B is essentially a refraction
of the unbounded region lying exterior to the surface of
r = B and thus provides a snapshot of the entire space-
time in a bounded region.

In [2], Copson chose the values for the integration con-
stant such that the solution would be symmetric in the
radial coordinate r and the location of the perturbing
point charge b in isotropic coordinates. When Copson
compared his result term by term to the known multipole
expansion solution of [33] he found that his series solution
differed in the appearance of an “additional” term. It was
not until several years later that [7] applied Gauss’ law at
infinity and found that this “additional” term was in fact
an implicit image charge that appeared as a direct result
of Copson’s “symmetrical” boundary condition. Thus it
is straightforward to see how by looking at the snapshot
of the entire spacetime, ie. the region inside the sphere
of radius r = B, one is able to recognize that Copson’s
solution Fig.(1e) differs from the single charge solution
of Fig.(1d).

We find that the boundary condition introduced in [1]
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is necessary and sufficient to achieve a stable, linearized,
perturbative electrostatic potential that models a single
charge perturbation of a BDRN background. An inap-
propriate choice of boundary condition can result in the
appearance of an additional charge, as was the case in
Copson’s solution, however the actual physical manisfes-
tation of this deviation may not be obvious at all. Thus
while plots may be useful to gain an immediate physical
understanding of a background they cannot be relied on
in the absence of robust boundary conditions. See also
[5] for a proper choice of boundary condition when using
a series solution.

Part II

IV. COORDINATE TRANSFORMATION

To transform the BDRN metric (Eqs.(6), (7), (8)) into
Schwarzschild-type coordinates, where the r coordinate
will be subscripted with an s, we introduce the following
transformation equation

rs =

(
r +

B2

r

)
+mB . (47)

From Eq.(47), it is straightforward to show that

(
r −B
r +B

)2

=
sgn(rs − r+)

sgn(rs − r−)
, (48)

where we define

r± = mB ±
√
m2
B − q2

B (49)

and

sgn(ς − r±)α = signum(ς − r±)|ς − r±|α (50)

where

signum(x) =




−1 if x < 0
0 if x = 0
1 if x > 0

(51)

For convenience we let

A(rs) =
sgn(rs − r+)

sgn(rs − r−)
. (52)

From Eq.(28) and using Eq.(47) we are able to rewrite
η(ς) in terms of rs as

ηs(ς) = p2
+ − p2

−

[
sgn(ς − r+)

sgn(ς − r−)

]k
. (53)

Using the transformation equation Eq.(47) we are able
to write the BDRN metric in Schwarzschild-type coordi-
nates in a form that generalizes the Brans-Dicke solution

in Schwarzschild-type coordinates given by Campanelli
and Lousto [31] as

ds2 = −c
2A(rs)

m0+1

ηs(rs)2
dt2 + ηs(rs)

2A(rs)
n0−1dr2

s

+ηs(rs)
2A(rs)

n0sgn(rs − r−)2dΩ2, (54)

where

dΩ2 = (dθ2 + sin2 θdϕ2), (55)

is the metric of the unit 2-sphere and

m0 =
1

λ
− 1, (56)

and

n0 =
λ− C − 1

λ
. (57)

The scalar field is given by

ϕ(rs) = ϕ0A(rs)
− C

2λ . (58)

Here the parameters ϕ0, B, mB , and qB all maintain
their values as given in Eqs. (14) to (20).

As in Eq.(13) for the isotropic coordinates, it is nec-
essary to implement certain conventions to ensure that
the BDRN metric (and all its denegerate metrics) are
real for all values of rs. In isotropic coordinates the

factor
(
r−B
r+B

)
appears everywhere as

(
r−B
r+B

)2

and thus

the isotropic coordinate is real and regular for all val-
ues of r as long as one upholds the convention Eq.(13).
In Schwarzschild-type coordinates, from Eq. (48) the

corresponding rs−r+
rs−r− factor that appears in the metric

coefficients of the BDRN spacetime does not have the
advantage of appearing raised to the power of 2. One
finds that for the region lying between the two “hori-
zons” as r− < rs < r+ it follows that rs − r+ < 0 and

thus
(
rs−r+
rs−r−

)α
β

is complex for all α ∈ R and β 6= 1. Simi-

larly for the region inside the inner “horizon” where both

rs− r+ < 0 and rs− r− < 0, again
(
rs−r+
rs−r−

)α
β

is complex

for all α ∈ R and β 6= 1. It is therefore necessary to
implement the sgn convention used in Eq.(48) above to
ensure that the metric is real for all values of rs.

The exterior region of the Schwarzschild-type coordi-
nate, where r+ < rs < ∞, is doubly covered by the
isotropic coodinate such that in
Region 1: by the inverse transformation

r =
1

2

(
rs −mB +

√
(rs − r−) (rs − r+)

)
, (59)

B =

√
m2
B − q2

B

2
< r <∞;

Region 2: by the inverse transformation:
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Brans-Dicke-Reissner-Norström Brans-Dicke Reissner-Norström Schwarzschild
C and λ C ∈ R and λ2 > 0 C ∈ R and λ2 > 0 C = 0, λ = 1 C = 0, λ = 1

Q Q 6= 0 Q = 0 Q 6= 0 Q = 0

Σ(rs)
sgn(rs−r−)

C+2
λ

ρ2s(rs)

(
sgn(rs−r+)

sgn(rs−r−)

) 1
λ

(1− 2mB
rs

)
1
λ (1− 2mB

rs
+

q2B
r2s

) (1− 2mB
rs

)

Υ(rs)
ρ2s(rs)

sgn(rs−r+)
C+2
λ

(
sgn(rs−r+)

sgn(rs−r−)

) 1
λ 1

(1− 2mB
rs

)
C+1
λ

1

(1− 2mB
rs

+
q2
B
r2s

)

1

(1− 2mB
rs

)

Λ2(rs)
ρ2s(rs)

sgn(rs−r+)
C+2
λ

−2

(
sgn(rs−r−)

sgn(rs−r+)

)λ−1
λ

(rs)
2(1− 2mB

rs
)
λ−C−1

λ r2s r2s

ρ(rs) p2+sgn(rs − r−)
C+2
2λ − p2−sgn(rs − r+)

C+2
2λ ) r

C+2
2λ
s r+|rs − r−| − r−|rs − r+|) rs

ϕ(rs) ϕ0

(
sgn(rs−r+)

sgn(rs−r−)

) C
2λ

ϕ0

(
sgn(rs−r+)

sgn(rs−r−)

) C
2λ

ϕ0 ϕ0

TABLE I: The metric coefficients and scalar field of the BDRN, Brans-Dicke, Reissner-Nordström and Schwarzschild
spacetimes in Schwarzschild-type coordinates given by Eq.(62).

r =
1

2

(
rs −mB −

√
(rs − r−) (rs − r+)

)
, (60)

0 < r <

√
m2
B − q2

B

2
= B.

Points in Region 1 and Region 2 of the isotropic cood-
inate r are connected via the inversion map

ι : (r, θ, ϕ)↔
(
B2

r
, θ, ϕ

)
, (61)

where r = B is the surface of inversion.
For the region where the Schwarzschild-type coordi-

nate is r− < rs < r+, i.e. the spherical shell region
between the inner “horizon” and the outer “horizon”,
(rs − r−) (rs − r+) < 0, the inverse transformations (59)
and (60) are not defined and the isotropic coordinate r
is not a real coordinate.

For the region where the Schwarzschild-type coordi-
nate is 0 < rs < r−, i.e. the spherical region inside the
inner “horizon”, (rs − r−) (rs − r+) > 0, so that now
Region 1: the inverse transformation (59) gives

−B = −
√
m2
B − q2

B

2
< r < −mB − qB

2
;

and in
Region 2: the inverse transformation in (60) gives

−mB + qB
2

< r < −
√
m2
B − q2

B

2
= −B.

Hence when 0 < rs < r− , the isotropic coordinate
−mB+qB

2 < r < −mB−qB2 < 0. Since r is interpreted
as some form of radius of sphere , we can safely discard
this region.

We now describe the metric (54) in notation more fa-
miliar to readers as follows.

Theorem 1 The Brans-Dicke-Reissner-Norström
spacetime in Schwarzschild-type coordinates (t, rs, θ, ϕ)

is given by the metric

ds2 = −c2Σ (rs) dt
2+Υ (rs) dr

2
s+Λ2 (rs)

(
dθ2 + sin2 θdϕ2

)
.

(62)
The metric coefficients are

Σ (rs) =
sgn(rs − r−)

C+1
λ sgn(rs − r+)

1
λ

ρ2
s((rs)

, (63)

Υ (rs) =
ρ2
s (rs)

sgn (rs − r+)
C+1
λ sgn (rs − r−)

1
λ

, (64)

Λ2 (rs) =
ρ2
s (rs) sgn (rs − r−)

λ−1
λ

sgn (rs − r+)
C+1−λ

λ

, (65)

where

ρs (rs) = p2
+sgn (rs − r−)

C+2
2λ − p2

−sgn (rs − r+)
C+2
2λ .

(66)
The scalar field is

ϕ (rs) = ϕ0

(
sgn(rs − r+)

sgn(rs − r−)

) C
2λ

. (67)

The parameter λ is defined in terms of C and satisfies
the quadratic equations

4λ2 = (2ω + 3)C2 + (C + 2)
2

(68)

=
1

2
(ω + 2)C2 + C + 1. (69)

When the coupling constant ω is choosen such that

− 3

2
≤ ω <∞, (70)

then the parameter C ∈ R and λ2 ≥ 2ω+3
2(ω+2) .

For the BDRN solutions that conform to the weak field
approximations and with the coupling constant confined
to the range given in Eq.(70), we can, without loss of
generality, choose the following

λ ≥ 0, C ≤ 0,
C

λ
≤ 0, (71)
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FIG. 2: Plot of λ vs. C for all real values of λ and C

so that

λ =

√
1

2
(ω + 2)C2 + C + 2, (72)

and the scalar field satisfies the boundary conditions

lim
rs→∞

ϕ (rs) = ϕ0, lim
rs→r+

ϕ (rs) = 0. (73)

in the neighbourhood of C ∼= − 1
ω+2 and λ ∼=

√
2ω+3
2ω+4 .

The relationship between C and λ is given in Fig.(2) for
different values of ω.

Analysis of the BDRN spacetime

From Eqs.(62) to (65) one is able to identify three sin-
gular points where the metric (62) is not defined. The
three singularities arise when

1. The metric coefficient Σ(rs) = 0 and is located at

r+ = mB +
√
m2
B − q2

B .

2. The metric coefficient Σ(rs) = 0 and is located at

r− = mB +
√
m2
B − q2

B .

3. The metric coefficient Σ(rs)→∞ due to ρ(rs) = 0

and is located at r0 =
r+r−(r

1
k

−1

+ −r
1
k

−1

− )

r
1
k
+−r

1
k
−

.

From Eq.(94) it follows that the third singularity which
we shall subscript with a 0 is located at

r0 =
r+r−(r

1
k−1
+ − r

1
k−1
− )

r
1
k
+ − r

1
k
−

. (74)

The reason for subscripting with a zero is due to the
fact that this is the singularity that one would normally
expect to see located as a point singularity at rs = 0 (see
Eqs.(76) and (78) below). For the BDRN background we
find that it has shifted to the location given by Eq.(74)
and is no longer a point singularity, but a “horizon”.

The conditions under which the r0 singularity exists at
the origin (rs = 0) is given by

[r+][r−][r
1
k−1
− − r

1
k−1
+ ] = 0. (75)

which has two solutions, the first being

[r+][r−] = q2 = 0. (76)

When r+ 6= r− then q = 0 is a condition underwhich the
r0 singularity will exist at rs = 0.

The second solution is

(
r−
r+

) 1
k−1

= 1. (77)

For this to be satisfied, as r+ 6= r−, then

k ≡ 1. (78)

Thus we find that there are three situations where the
spherical singularity degenerates to a point singularity at
the origin:

1. In the uncharged case (q = 0) where k 6= 0, which
is equivalent to the Brans-Dicke background.

2. In the charged case (q 6= 0) where k = 1, which is
equivalent to the Reissner-Nordström background.

3. In the uncharged case (q = 0) and k = 1, which is
equivalent to the Schwarzschild background.

Since r− < r+ then 1
r+

< 1
r−

. Hence

r
1
k
+

r+
− r

1
k
−
r−

<
r

1
k
+ − r

1
k
−

r+
, (79)

which implies

r
1
k−1
+ − r

1
k−1
−

r
1
k
+ − r

1
k
−

<
1

r+
<

1

r−
. (80)

Multiplying the above inequality throughout by
[r+][r−] > 0 gives us

r0 :=
(r

1
k−1
+ − r

1
k−1
− )r−r+

r
1
k
+ − r

1
k
−

<
r−r+

r+
<
r−r+

r−
, (81)
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which is equivalent to

r0 < r− < r+, (82)

that is, the singularity at r0 is inside the inner “horizon”
and the outer “horizons”.

In addition, we find that if k > 1 then

1

k
− 1 < 0, (83)

and as r+ > r− therefore

r
1
k−1
+ < r

1
k−1
− . (84)

From the numerator of Eq.(74) this implies that when
k > 1, then r0 < 0. Similarly, when k < −1 then from the
denominator of Eq.(74) we find that r0 < 0. This means
that when k > 1 or k < −1 the additional spherical
singularity will have a negative radius. The condition
that the singularity will have a positive radius is when
−1 < k < 1. We point out that when −1 < k < 1, then
from Eq.(14), ω ≥ − 3

2 .

Degeneracy of the BDRN metric in
Schwarzschild-type coordinates

The degenerate cases of the BDRN spacetime de-
scribed by Eq.(54) can be quickly recovered in
Schwarzschild-type coordinates and are:

Case 1: Brans Type I (BD) metric in Schwarzschild-
type coordinates

The Brans-Dicke metric is recovered when q = 0 imply-
ing that B = mB

2 and thus that r+ = 2mB and r− = 0.
See Table I.

Case 2: Reissner-Nordström (RN) metric in
Schwarzschild-type coordinates

Setting the parameters as C = α0 = β0 = 0 implies

that λ = 1, ϕ0 = (G0)−1, B = 1
2

√
m2 − q2 where m :=

G0M
c2 and q :=

√
4πG0Q
c2 are respectively the mass and

the electric charge measured in gravitational units. The
inner and outer “horizons” exist at

r± = m±
√
m2 − q2, (85)

respectively. The full metric for the Reissner-Nordström
metric in Schwarzschild-type coordinates is given in Ta-
ble I.

Case 3: Schwarzschild (S) metric in Schwarzschild co-
ordinates

Setting the parameters as Q = C = α0 = β0 = 0 im-
plies that λ = 1, ϕ0 = (G0)−1, B = m

2 = GM
2c2 , r+ = 2mB

and r− = 0 where m = G0M
c2 is the mass in gravitational

units. The metric functions reduce to the well known
Schwarzschild solution in the usual coordinates

r+ = 2m, (86)

as expected. The full metric for the Schwarzschild metric
in Schwarzschild coordinates is given in Table I.

The additional S2 singularity and the “horizons” that
arise in the BDRN background in Schwarzschild-type
coordinates must be examined further to determine
whether or not they are true physical singularities or
anomolies of the coordinate system. To do so it is necces-
sary to look at the scalar invariant quantities arising from
the curvature tensor in a manner similar to that done by
Campanelli and Lousto in [31] and Bhadra and Sarkar
[34] for the Brans-Dicke background in Schwarzschild-
type coordinates. We will present our results in a forth-
coming paper [35].

V. ELECTROSTATIC POTENTIAL IN
SCHWARZSCHILD-TYPE COORDINATES

To transform the potential V (r, θ) from isotropic coor-
dinates (t, r, θ, φ) into the Schwarzschild-type coodinates
(t, rs, θ, φ), we generalize the transformation equation (9)

from above. The equation rs = (r+ B2

r ) +mB can be in-
terpreted as follows: Let (r, θ) be a point exterior to the

surface of inversion r = B. Then (B
2

r , θ) is the inversion
point of (r, θ) in the interior of the sphere r = B. Thus
the corresponding point (rs, θ) in the Schwarzschild-type
coordinate is the summation of the distance to the point

(r, θ), to the distance of its inversion point (B
2

r , θ) and
the distance to the point (mB , θ) in the isotropic coordi-
nates. We are then able to define

bs =

(
b+

B2

b

)
+mB , (87)

so that the position (bs, 0) of the electrostatic charge in
Schwarzschild-type coordinate is the summation of the
distance to the charge at (b, 0), to the distance to its

inversion point (B
2

b , 0) and the distance to the point
(mB , 0) in the isotropic coordinates. Now we define

σs =

(
σ +

B2

σ

)
+mB . (88)

Using σ = σ(r, θ) from Eq.(35), which is substituted
into equation (88), we get

σs −mB =
b2(r2 + B4

b2 − 2B2r
b cos θ) +B2Γ(r, θ)

b(Γ(r, θ)(r2 + B4

b2 − 2B2r
b cos θ))

1
2

, (89)

where, following the notation of [1], Γ(r, θ) = r2 + b2 −
2br cos θ is the square of the “radial” distance from the
charged particle at b.

By regrouping terms, the numerator N of Eq.(89) re-
duces to

N = br

((
r +

B2

r

)(
b+

B2

b

)
− 4B2 cos θ

)
; (90)

Similarly, by expanding and then regrouping terms, the
denominator D reduces to

Analysis of Equipotential Surfaces 55



12

Brans-Dicke-Reissner-Nordström Brans-Dicke Reissner-Nordström Schwarzschild

r+ mB +
√
m2
B − q2B 2mB mB +

√
m2
B − q2B 2m

r− mB −
√
m2
B − q2B 0 mB −

√
m2
B − q2B 0

Πs(ς)
[sgn(ς−r−)sgn(ς−r+)]

1
2
(k−1)

p2+sgn(ς−r−)k−p2−sgn(ς−r+)k
sgn(ς−r+)

1
2
(k−1)

ς
1
2
(k+1)

1
p2+sgn(ς−r−)−p2−sgn(ς−r+)

1
ς

TABLE II: The Brans-Dicke Reissner-Nordström, Brans-Dicke, Reissner-Nordström and Schwarzschild backgrounds
and their solutions for the electrostatic potential generated by a charged particle at rs = bs > r+ in

Schwarzschild-type coordinates. Referring to Eqs. (93), the potential is simply V (rs, θ) = εΠs(bs)Πs(rs)
2Πs(σs)

. Here, as

always, k = C+2
2λ and σ is given by Eq.(92).

D = br

((
r +

B2

r

)2

+

(
b+

B2

b

)2

− 2

(
r +

B2

r

)(
b+

B2

b

)
cos θ − 4B2 sin2 θ

) 1
2

. (91)

Using Eqs.(47) and (87), we obtain an explicit expression, in Schwarzschild-type coordinates, for σ(rs, θ)

σs(rs, θ) =
((rs −mB)(bs −mB)− 4B2 cos θ)

((rs −mB)2 + (bs −mB)2 − 4B2 − 2(rs −mB)(bs −mB) cos θ + 4B2 cos2 θ)
1
2

+mB . (92)

We can now transform Π(ς) from isotropic coordinates
into Schwarzschild-type coordinates. Using the definition
Eq.(32), Eq.(47), and Eq.(48) we have

Πs(ς) =
[sgn(ςs − r−)sgn(ςs − r+)]

1
2 (k−1)

ρ(ςs)

: = Πs(bs). (93)

and following Eq.(94) we have defined the following

ρs (ςs) = p2
+sgn (ςs − r−)

k − p2
−sgn (ςs − r+)

k
. (94)

Thus the electrostatic potential Eq.27) can be written

in Schwarzschild-type coordinates simply as

V (rs, θ) =
ε0
2

Πs(bs)Πs(rs)

Πs(σs(rs, θ))
(95)

where rs, bs and σs are given by Eqs.(47), (87) and (88)
respectively.

Theorem 2 Consider the BDRN metric (62) in
Schwarzschild-type coordinates (t, rs, θ, ϕ). The perturbed
electrostatic potential Vs(rs, θ) due to a point charge ε0 at
(rs, θ) = (bs, 0) exterior to r+ reduces to a single second
order linear partial differential equation:

L [Vs (rs, θ)] ≡




[sgn (rs − r+) sgn(rs − r−)] ∂
∂rs

(
∂
∂rs

)
+ 1

sin θ
∂
∂θ

(
sin θ ∂∂θ

)

+

(
2 (rs −mB)− (C+2)

√
m2
B−q2B

λ Ωs (rs)

)
∂
∂rS



Vs (rs, θ)

=
ε0[sgn (rs − r+) sgn(rs − r−)]

C+2
2λ δ (rs − bs) δ (θ)

ρ2
s (rs) sin θ

, (96)

where the functions

Ωs(rs) =
p2

+sgn(rs − r−)
C+2
2λ + p2

−sgn(rs − r+)
C+2
2λ

ρs(rs)
(97)

ρs(rs) = p2
+sgn(rs − r−)

C+2
2λ − p2

−sgn(rs − r+)
C+2
2λ .

The linear operator L [·] is elliptic when rsε(0, (rs)−) ∪ ((rs)+,∞) and hyperbolic when (rs)− < rs < (rs)+. The
electrostatic potential can be expressed explicitly in the form

Vs (rs, θ) =
ε0ρs (σs)

2ρs (bs) ρs (rs)

(
[sgn(σs(rs, θ)− r+)sgn(σs(rs, θ)− r−)]

[sgn(rs − r+)sgn(rs − r−)][sgn(bs − r+)sgn(bs − r−)]

) 1
2 (1−C+2

2λ )
, (98)
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where the function ρs(σs) = ρs◦ σs and

σs(rs, θ) = mB +
(rs −mB)(bs −mB)− 4B2 cos θ√

(rs − bs)2 − 4B2 + 2(rs −mB)(bs −mB)(1− cos θ) + 4B2 cos2 θ
. (99)

If we place the perturbing charge closer and closer to
the outer “horizon”, that is bs → r+, then the electro-
static potential becomes

V (r, θ) =
ε0
2

Πs(rs)

=
ε0

2ρs(rs)

(
1

sgn(rs − r−)sgn(rs − r+

) 1
2 (1−C+2

2λ )
.(100)

As before, we find that the perturbative electrostatic
potential is well behaved even when the perturbing
charge is brought to the outer “horizon”. Moreover,
the electrostatic potential generated by a perturbing
charge located at r+ is independent of the angle θ. In
Schwarzschild-type coordinates it is straightforward to
understand the reason for this; as the radial coordinate
becomes timelike and vice versa for the region between
the inner and outer “horizons” of a BDRN spacetime,
the r = const surfaces inside r− < rs < r+ are spacelike
surfaces. As such, when the charge is brought to r+ it is
immediately distributed evenly across the whole surface
of r+ and is therefore independent of the angle θ. This is

in agreement with [6] who found that the charge is evenly
distributed across the whole horizon of a Schwarzschild
black hole when a perturbing charge is brought to the
horizon.

When the perturbing charge approaches the outer
“horizon” bs = r+, its image point b∗s (which lies within
the inner “horizon” 0 ≤ b∗s ≤ r−) approaches the inner
“horizon” from below (see Fig.(4c)). When the image
point arrives at the inner “horizon” b∗s = r−, the charge
is evenly distributed across the entire surface of r−.

A. Copson’s Solution in Schwarzschild-type
Coordinates

Copson’s solution was first converted into
Schwarzschild-type coordinates in [7]. If we choose
the magnitude of the point charge ε0 to be related to the
magnitude of the point charge e given in [7] as ε0 = 2e
then we are able to express Copson’s solution in terms
of the notation used in this paper as the following

V cs (r, θ) =
((rs −mB)(bs −mB)−m2 cos θ)

2br((rs −mB)2 + (bs −mB)2 −m2 − 2(rs −mB)(bs −mB) cos θ +m2 cos2 θ)
1
2

. (101)

We point out that this differs from the single charge
solution given in [7] and this paper in the presence of an
additional charge of the following magnitude

V ∗(r, θ) = −ε0mB

2br
. (102)

B. Limits of Copson’s Schwarzschild Solution

The integration constants of the multipole expan-
sion solution of [5] describing a charge situated in a
Schwarzschild spacetime for the region rs < b was found
using the boundary condition that the electrostatic po-
tential must be well behaved at the horizon rs = 2m.

As the perturbing point charge at rs = bs is allowed to
slowly approach the horizon bs → r+ in the single charge
solution of the Schwarzschild spacetime [7] and [1] it is
straightforward to verify that the electrostatic potential

approaches the following

V (r, θ) =
ε0
2r
. (103)

This is in agreement with the result found by [5] and
the electrostatic potential proves to be well behaved at
the horizon. We point out that the electrostatic potential
Eq.(103) is not representative of a Reissner-Nordström
black hole as has already been proved by the theorems of
[36], [37] and [38].

Similarly Copson’s expression for the electostatic po-
tential Eq.(101) approaches the following when the per-
turbing charge is allowed to slowly approach the horizon:

V (r, θ) =
ε0
4r
. (104)

It is evident that Copson’s solution is also well be-
haved at the horizon thus a boundary condition stating
that the electrostatic potential must be well behaved at
the horizon is insufficient in ensuring the solution is rep-
resentative of a single charge (see also [5]).
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FIG. 3: A plot of the electrostatic potential generated by a point charge of magnitude 1 situated at b = 5 in
Brans-Dicke Reissner-Nordström, Brans-Dicke, Reissner-Nordström and Schwarzschild backgrounds. In all four
backgrounds, the outer “horizon” is located at r+ = 4 and is denoted by a dashed red line. For the BDRN and
Reissner-Nordström backgrounds mB = 3 and qB =

√
8. Thus for these two backgrounds, the outer “horizon” is

located at r+ = 4 and the inner “horizon” is at r− = 2 (also denoted by a dashed red line). The additional S2

singlarity in the BDRN background is located at r0 = 0.1833 and is denoted by a solid red line. For the Brans-Dicke
and Schwarzschild backgrounds mB = 2 and qB = 0 with the horizon located at r+ = 4. For the BDRN and

Brans-Dicke cases, k = 0.95, while for the Reissner-Nordström and Schwarzschild backgrounds k = 1. The Copson
two charge solution is also given with mB = 2 and qB = 0 as in the single charge solution of the Schwarzschild

background.

VI. EQUIPOTENTIAL SURFACES IN
SCHWARZSCHILD-TYPE COORDINATES

Using the results given in Table II, we are able to plot
the equipotential lines generated by a point charge lo-
cated at bs in the usual Schwarzshild type coordinates.

Very little can be said about the meaning of the equipo-
tential lines that appear in the region r− < rs < r+ as it
is here that the radial coordinate becomes timelike and
the time coordinate becomes spacelike for the BDRN and
Reissner-Nordström spacetimes. For the Brans-Dicke
and Schwarzschild spacetimes the radial coordinate is
timelike, and vice versa for the entire region within the
“horizon” 0 < rs < r+. It is for these reasons that
the physical interpretation of any phenomena occuring
within the outer “horizon” is not straightforward and
why this region is usual excised from any plots and dis-
cussion regarding the matter. We have chosen to retain

the complete information of the entire spacetime to prove
that, if only mathematically, the electrostatic potential
can be plotted for all values of rs.

As in the isotropic case, for the sake of continuity
we fix the location of the outer “horizon” at r+ = 4.
By setting mB = 3 and qB =

√
8 in the BDRN and

Reissner-Nordström backgrounds we ensure that r+ = 4
and r− = 2. For the BDRN and Brans-Dicke back-
grounds, in order for the additional singularity to possess
a positive radius the auxillary parameter k must satisfy
−1 < k < 1 and thus we choose k = 0.95. The additional
S2 singularity of the BDRN background is thus located
at r0 = 0.1833. For the Brans-Dicke and Schwarzschild
background we set mB = 2 and qB = 0, and it follows
that r+ = 4. In Fig.(3) we place the point charge of mag-
nitude ε = 1 just outside the outer “horizon” at b = 5 in
all four spacetimes. In Fig.(4) we place the point charge
of magnitude ε0 = 1 far from the “horizon” at b = 50.

One of the main efficacies of transforming the solu-
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FIG. 4: The equipotential lines describing the charge distribution inside the “horizon” of r+ in the Brans-Dicke
Reissner-Nordström, Brans-Dicke, Reissner-Nordström and Schwarzschild backgrounds generated by a perturbing

charge of magnitude ε0 = 1 which is situated at b = 50,far from the singularities. In all four backgrounds, the outer
“horizon” is located at r+ = 4 and is denoted by a dashed red line. For the BDRN and Reissner-Nordström

backgrounds mB = 3 and qB =
√

8. Thus for these two backgrounds, the outer “horizon” is located at r+ = 4 and
the inner “horizon” is at r− = 2 (also denoted by a dashed red line). The additional S2 singlarity of the BDRN
background is located at r0 = 0.1833 and is denoted by a solid red line. For the Brans-Dicke and Schwarzschild
backgrounds mB = 2 and qB = 0 with the “horizon” located at r+ = 4. For the BDRN and Brans-Dicke cases,

k = 0.95, while for the Reissner-Nordström and Schwarzschild backgrounds k = 1. The Copson two charge solution
is also given with mB = 2 and qB = 0 similar in the single charge solution of the Schwarzschild background.

tions to Schwarzschild-type coordinates is that now all
four backgrounds are distinctly different from one an-
other. As before, in the presence of a scalar field, it
appears that the electrostatic potential is able to cross
the outer “horizon” into the interior seamlessly. This is
in contrast to the Reissner-Nordström and Schwarzschild
spacetimes where the inner and outer regions are sepa-
rate and disconnected.

Another great advantage of the Schwarzschild-type co-
ordinates is that we are able to see how the perturbing
charge is held in place at b without the need for struts
or strings. This equilibrium is achieved in all four space-
times between the singularity and the perturbing charge.
We first outline the behaviour of the equipotential sur-
faces in all four backgrounds before giving the interpre-
tation of our results.

In the BDRN and Reissner-Nordström an image charge
appears inside the inner “horizon”, see Figs.(3a) and (3b)
alongside a dipole-like singularity. The location of the im-

age charge is proportional to the inverse of the distance
between the perturbing charge at b and the outer “hori-
zon”. Thus we can see that when the perturbing charge
is taken sufficiently far away from the outer “horizon”
r+, see Figs.(4a) and (4b), the image charge approaches
the singularity. From Figs.(4a) and (4b) one can see the
polarity of the dipole-like configuration of the region in-
side the inner “horizon”. As the perturbing charge at
b = 5 has positive sign, the area closest to the charge has
positive polarity. Naturally the other side of the dipole
is of negative sign.

In the Brans-Dicke and Schwarzschild backgrounds, al-
though the region inside r+ is where the physical mean-
ing of the radial and time coordinates are not upheld, one
can still detect the presence of a “dipole-like” singular-
ity, see Figs.(3c) and (3d). In the uncharged spacetimes,
however, an induced charge does not appear inside the
“horizon” as it does in the charged spacetimes.

This phenomena can be interpreted as follows: the
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presence of the perturbing charge at b causes the sin-
gularity to display dipole-like behaviour. As a result of
this dipole behaviour the charge configuration of the r+

“horizon” is altered such that a charge of like sign to the
perturbing charge is induced in the region of the “hori-
zon” close to the perturbing charge. A charge of opposite
sign is induced in the opposite side of the surface of r+.
The total charge of the “horizon” is maintained at zero
and the net ingoing electric flux is equal to the net out-
going electric flux.

Lastly we look at the Copson two charge solution
Fig.(3e). As would be expected, the region immediately
exterior to the horizon is indistinguishable from the sin-
gle charge solution Fig.(3d). While the electrostatic po-
tential at the singularity of the single charge solution
Fig.(3d) displays dipole behavior, the singularity of the
two charge solution Fig.(3e) appears to be a dipole solu-
tion in addition to a charged singularity at rs = 0 gen-
erating its own electrostatic potential. When the point
charge is placed far from the event horizon the effect
of the charge on the singularity is diminished and one
can see that there is indeed a charge at the location of
the singularity in Copson’s solution, see Fig.(4e). The
Schwarzschild spacetime perturbed by a charge placed
inside the horizon does not however, come to resemble
the Reissner-Nordström spacetime. It can only be as-
sumed that the perturbing charge is too small to change
the nature of the spacetime in any significant way.

VII. CONCLUSION

In this paper and in [1], although we have concentrated
only on the BDRN spacetime that reduces to the Brans
Class I and Reissner-Nordström backgrounds it is worth-
while to study the charged counterparts to the entire class
of solutions of [39]. In an extension of the work done in
this paper and of [1] we continue our study of an en-
tire class of charged Brans-Dicke (CBD) spacetimes that
reduce to the four known classes of the Brans-Dicke so-
lution when the charge vanishes. We go on to investigate
the stability of those charged background spacetimes to
electrostatic perturbations and discuss the possibility of
charged Brans-Dicke black holes.

In this paper, we have introduced a transformation
equation by which one is able to convert a Brans
Class I metric from isotropic coordinates to the usual
Schwarzschild-type coordinates. We discovered the pres-
ence of a S2 singularity in the BDRN background when
in the usual Schwarzschild-type coordinates in addition
to the usual inner and outer “horizons”. Further inves-
tigations into these three singularities is neccessary to
determine their true nature. A useful method to un-
derstand the behavior of a background is to look to the
curvature invariants of that spacetime [40]. In a follow-
up paper we use the invariants of the generalized CBD
background to discuss the nature of the CBD spacetimes
in a manner similar to that conducted by [31] and [34].

The study into Brans-Dicke wormholes has been car-
ried out quite thoroughly [41], [42], [43], [44], [45], [46].
As the BDRN spacetime is stable under electrostatic per-
turbations we find it worthwhile to investigate the possi-
bility of BDRN and indeed CBD wormholes by studying
the CBD metric in a way analogous to that first done by
[47]. We devise a method similar to the method devised
in this paper to convert the CBD metric in isotropic coor-
dinates to Morris-Thorne canonical form and discuss the
possibility of traversable wormholes in CBD spacetimes
in a separate paper.

In this paper we plotted the equipotential surfaces in
a manner similar to that done in [2]. Another interest-
ing physical phenomenon that would be worthwhile to
investigate is the electric lines of force as an extension of
work done by [6] and [24]. By plotting the force lines for
decreasing values of the radial coordinate one is able to
track the evolution of a point charge “falling” into the
CBD black hole.
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Chapter 4

On the Stability of Static

Spherically Symmetric Electrovac

Brans-Dicke Spacetimes

The electrostatic perturbation of the BDRN spacetime proves to be both interesting and

fruitful in explaining not only the stability of the BDRN spacetime but also in under-

standing the nature of the background space and in finding a mechanism by which the

charge distribution within the outer “horizon” of the background can hold an electric

charge static. For these reasons, and to address the paucity within the literature regard-

ing charged Brans-Dicke spacetimes (see Chapter 1), we find it pertinent to extend our

study to more generalized static spherically symmetric Brans-Dicke electrovac space-

times. As we have discussed at length the history of BD theory and static spherically

symmetric electrovac BD theory in Chapter 1, to avoid repetition, we delve immediately

into the most pertinent studies and discuss the key findings of our investigation.

In order to make a spacetime metric physically meaningful, it is imperative that the

parameters of the spacetime metric be endowed with some physical interpretation. In

the case of Luke and Szamosi [42], although the charged BD spacetime was derived

by a direct integration of the field equations, the parameters of the metric were left

undetermined. A result of this was that the authors were unable to obtain the degeneracy

of their solution to give the BD solutions. Even when they were able to “turn off” the

charge, they were unable to obtain the BD solutions. The only degeneracy they were able

to obtain was the Reissner-Nordström metric when the scalar field was made constant.

Although they were able to obtain four classes of solutions representing the charged

Brans-Dicke spacetime, their choice of the constants of integration inhibited them from

obtaining the full set of nine solutions that we are able to derive in our investigations.
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Luke and Szamosi were reluctant to implement the weak field approximation as they

found no justification in doing so and as a result were unable to determine their constants

of integration or give them any physical interpretation. We agree with their reasoning

for not implementing the weak field approximation. Indeed there is no a priori reason

to implement it in the context of the phenomena discussed here. However, we find that

we are able to gain great insight from the weak field approximation which enables us

to infer the physical interpretation of the parameters of the background metric. Thus

we use the weak field approximation, and the form of the parameters under the weak

field approximation, as tools to determine the physical interpretation of the parameters

in the general spacetime.

The CBD electrovac field equations arising from the static spherically symmetric elec-

trovac CBD spacetime are integrated directly to give for the first time a generalized

charged Brans-Dicke solution that reduces to the four known BD spacetimes. There are

a total of nine classes of solutions based upon the sign of the parameter ab and κ. The

sign of ab determines the class of solution where ab > 0, ab < 0 and ab = 0 correspond

to Class I, II and III/IV respectively. The sign of κ is denoted by a superscript to

the roman numeral such that κ > 0, κ < 0 and κ = 0 correspond to the superscripts

+,− and 0 respectively. The nine classes of solutions are thus CBDI+, CBDI−, CBDI0,

CBDII+, CBDII−, CBDII0, CBDIII/IV+, CBDIII/IV−, and CBDIII/IV0.

From the physical interpretations of the sign of ab we are able to infer the following:

CBD Class I solutions are representative of spatial singularities where the mass is larger

than the electromagnetic charge m > q. This is physically meaningful for cosmological

phenomena where the net charge of the universe must be zero. CBD Class II solutions

are representative of spacetimes singularities where the mass is smaller than the electro-

magnetic charge m < q. This may be interesting in the quantum field gauge where such

strongly charged particles are conceivable. CBD Class III/IV solutions are representative

of spatial singularities exhibiting extreme behaviour where the charge is exactly equal to

the charge m = q. The analogue to this is the extreme Reissner-Nordström black hole.

The ramifications of this interpretation on the classes of solution are apparent when we

discuss the degeneracy of the CBD spacetime metric.

The curvature invariants of the general CBD spacetime is investigated in the same

manner as Campanelli and Lousto [79] and Bhadra and Sarkar [90]. We find that the

only nonsingular spacetime that may give rise to black holes or wormholes is the CBDII−

Class of solutions when ω < −2. The analysis into the nature of the horizon in order

to determine whether the spacetime is representative of a black hole or a wormhole is

very delicate. Indeed, in the BD theory, the findings of Campanelli and Lousto in [79]

regarding the existence of BD black holes was not refuted until almost two decades later
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by [80] who found they were indicative of wormholes instead. For these reasons, we leave

the analysis of physical nature of the CBDII− spacetime with ω < −2 to a later paper.

We go on to electrostatically perturb the generalized CBD spacetime. Using the ansatz

developed in Chapter 2 we are able to find a general solution for the electrostatic poten-

tial generated by a point charge in a generalized CBD spacetime. The ansatz developed

in Chapter 2 proves to be robust and allows us to find the form of the substitution term

directly from the background generalized CBD metric. We also implement the boundary

condition introduced in Chapter 2 and find that it is necessary and sufficient in ensuring

that the electrostatic potential represents a single perturbing charge. We are thus able

to find an exact closed-form solution describing the electrostatic potential generated by

an electrostatic point charge in a general CBD spacetime. The solution can be divided

into nine cases, corresponding to the electrostatic perturbation of the nine classes of

CBD spacetimes, by making an appropriate choice on the parameter NXδ(r) where X

is I, II or III/IV and represents the class of solutions and δ ∈ {+,−, 0} represents the

sign of κ.

Lastly, along with a conclusion of the findings, we give the future investigations that

may be of astrophysical interest and importance.
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In Part I of this paper, we generalize the Brans-Dicke scalar-tensor theory to investigate static
spherically symmetric electrovac Brans-Dicke spacetimes in isotropic coordinates. We derive a gen-
eral charged Brans-Dicke (CBD) solution which can be divided into three classes of solutions: CBDI,
CBDII and CBDIII/IV solutions depending on the sign of the parameter ab. These can be further
divided into three branches of solutions each, depending on the sign of the auxillary parameter κ
to give a total of nine branches of solutions. Three of the nine solutions reduce to the three classes
of solutions of the Brans-Dicke spacetime. It is well known that Class III of the BD solutions is
simply the Class IV solution under an inverse transform thus we combine them into a single branch
denoted by III/IV. As there is no a priori reason to implement the weak field approximation we give
the CBD metric and its parameters in their most general form. We find, however, that the weak
field approximation is a useful tool in understanding the physical interpretation of the parameters
and give, in addition to the general form, the parameters as restricted by the weak field approx-
imation. We are thus able to interpret the CBD III/IV solutions as being that of extreme CBD
spacetimes as an analogue to extreme Reissner-Nordström black holes. In the absence of charge, a
subclass of the CBD III/IV solutions reduce to the BD III/IV solutions and we find that the BD
Class III/IV background contains a massless, scalar field generating singularity. As such, this sub-
class of CBDIII/IV solutions and consequently, the BDIII/IV solutions, degenerate to Minkowski
space in the absence of the scalar field. The curvature invariants are scrutinized to gain a better
understanding of the background metrics and we find that the CBDII− background may allow black
holes or wormholes when the coupling constant ω is restricted such that ω < −2. We find that
the CBDIII/IV backgrounds represent naked singularities. In Part II of this paper, we perturb the
CBD spacetime with a small electrostatic point charge using a method devised in [1] and find the
electrostatic potential generated by the perturbing charge placed outside the surface of inversion.
We use a boundary condition based on Gauss’ theory introduced in [1] to ensure that the solution
represents a single charge perturbation. We find that all nine classes of solutions are stable under
static electromagnetic perturbations.

PACS numbers:

I. INTRODUCTION

General relativity (GR) is one of the most well-known
physical theories due to both its beautiful nature and its
ability to withstand several observational tests including
but not limited to Mercury’s precession, gravitational
lensing and gravitational redshift. However GR is not
without its limitations; namely its inability to reconcile
with quantum mechanics and its inconsistency with the
current acceleration of the universe. It seems necces-
sary then to modify GR somewhat to overcome these
problems. One such modified theory is the scalar-tensor
theory, originally conceived by Jordan [2] who coupled a
scalar field to the Ricci scalar in the general Lagrangian.
This scalar-tensor theory was adopted and modified by
Brans and Dicke in 1961 [3] who decoupled the matter
part of the Lagrangian from the scalar field and ensured
that, unlike Jordan’s earlier model, the Weak Equiva-

lence Principle (WEP) would be upheld.

Scalar-tensor theories have gained particular momen-
tum as they are able to explain phenomena that have
been proposed and supported by more recent cosmologi-
cal observations including but not limited to the expan-
sion of the universe [4], [5], [6], [7], [8]. Another ad-
vantage of scalar-tensor theories is its diverse range of
applicability, spanning from cosmology to quantum field
theory. Cosmologically speaking, a prominent scalar field
is quintessence [9], [10], [11], [12], which is a candidate for
the missing energy component that must be added to the
baryonic and matter density in order for the universe to
reach critical density [13]. In quantum field theory, dila-
tons and the size of compactified internal space in string
theory and Kaluza-Klein (KK) theory can be identified
as scalar fields. Scalar fields also appear in brane theory
(see [14] for more details). Perhaps most intriguingly,
scalar-tensor theories have yet again entered the spot-
light with the recent discovery of the Higgs boson [15] and
the fact that the Higgs field can be expressed as a scalar
field. Mass arises in the Higgs mechanism through the
coupling of the gravitational scalar field φ to the matter
scalar field Φ in the matter Lagrangian. Of course, cou-
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pling the gravitational scalar field to matter violates the
basic premise of the Brans-Dicke (BD) model discussed
earlier, and it then follows that the WEP is violated. For
a more comprehensive history of scalar-tensor theory see
[14], [16], [17].

Since the formulation of scalar-tensor theory in 1961,
the parameter range of the the coupling constant ω has
garnered great interest while at the same time been
the source of some controversy and disagreement. The
Shapiro time-delay measurements of the Viking Project
in the 1970s placed the constraint at ω & 1000 while
twenty years later that was revised from VLBI experi-
ments to ω & 3.6×103. The current accepted value for ω
lies at over 4×104 due to the Cassini-Huygen experiment
of 2003 [18].

In theoretical circles, the discussion regarding the pa-
rameter range ω continues in spite of the observational
findings and are largely unresolved even to this day. It
is the intention of this paper to shed some light on the
issue. While recent observations place the value of ω
at over 40000, this does not neccessarily eliminate other
possibilities for ω. In fact it is simple to see that if the
corresponding force-range of the scalar force is smaller
than the size of the solar system, and consequently no
longer affects the perihelion advance of Mercury, then
the observational constraints are irrelevant [14].

But what can be said about other restrictions on ω? It
would appear from the Lagrangian that negative values
for ω should immediately be eliminated from all discus-
sions as they appear to violate the weak energy condition.
However, even this is premature for two reasons:

• Due to the presence of the nonminimal coupling
term in the Lagrangian the dominating energy den-
sity may still be positive. This is the case where
the scalar field arises from the size of compactified
internal space in KK theory which has a negative
ω whilst still maintaining an overall positive en-
ergy due to the mixing interaction with the spinless
component of the metric field (the role played by
the nonminimal coupling term). This is also the
case with dilatons in string theory which possess a
negative value for ω. However the overall positiv-
ity of the physical mode is assured as it is easy to
restrict other parameters in order for the “diagno-
lized” scalar field to be a nonghost field. One last
example is in brane theory where in order to exist
in a negative-tension brane (which is required to
solve the hierarchy problem), ω must be negative
but larger than − 3

2 which again does not violate
the positivity condition as the “diagnolized” scalar
field can still be expressed as a nonghost field. Even
the extreme circumstance where ω = 0 need not be
eliminated from consideration [14].

• Negative energy is no longer the impasse it was once
perceived to be. There are several instances where
negative energy has been theorized to exist such as
squeezed light states [19], the Casimir effect [20]

and moving boundaries [21]. While for the above
theories researchers have only been able to measure
the indirect effects of negative energy, it may be
possible to detect them directly using atomic spins
[22]. Another famous example of negative energy is
the Hawking prediction that black holes evaporate
by emitting radiation [23] which would manifest as
an absorption of negative energy. Lastly, in [24],
the authors found that in order for a wormhole to
be traversable, it is in fact necessary for the worm-
hole throat to possess negative energy.

Another cause for debate regarding the parameter
range for ω has been the implementation of the weak
field approximation. In [3], Brans and Dicke applied the
weak field approximation which restricted the range of
ω to ω > − 3

2 . It is well known that the BD theory has
given rise to numerous studies into the possibility of the
existence of BD black holes [25], [26], [27] and wormholes
(see for example [28], [29], [30], [31], [32], [33]). The nec-
cessity of the implementation of the weak field approxi-
mation and its subsequent effect on the permissible range
of ω became the subject of some debate starting from the
late 1990s (see [30], [34], [30]). In [35], the authors imple-
mented a variation of the weak field approximation and
together with observational data ruled out the possibility
of BD black holes in all four cases of the BD spacetime.
However as pointed out in [36] there is no reason why the
weak field approximation must be upheld in the presence
of post-Newtonian compact objects with strong gravita-
tional fields.

The independency of the four classes of solutions in the
BD theory came under question in 2002, with the claim
that two new solutions of the BD theory were discovered
by [31]. This idea was challenged by Bhadra et. al [35]
who pointed out that the solutions in [31] were simply
limiting cases of the Brans Class I solution. Previously,
Bhadra et. al stated in [37] that Brans’ class III and IV
given in [3] were not independent. In [35] it was stated
that in fact of the four classes of solutions only Class I and
Class IV solutions were independent. We show that this
is not strictly true, and that while the Class III and IV
solutions are the same under an inverse transformation
and thus are denoted by III/IV throughout this paper,
Classes I and II are indeed independent. Thus there are
three independent classes of solution: I, II and III/IV.

In regards to charged BD theories, it was in 1972 that
the authors of [38] found an approximate solution de-
scribing a static spherically symmetric metric due to a
point charged mass in BD theory. This was followed
by an exact solution by [39] and independently by [40]
who were able to describe a gravitational field with a
charged mass point in Brans-Dicke theory that degener-
ated to the Brans-Dicke Class I and Reissner-Nordström
solutions. Later this work was extended by [41], [42],
[43], [44], [45]. In a previuos paper [1], we were able
to integrate the Einstein field equations arising from the
gravitational field generated by a charged mass point in
scalar-tensor theory. However, in [1], as is the case with
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the studies cited above, the solutions found only reduced
to one of the four classes of BD solutions (Class I) and
the Reissner-Nordström solution. In this paper we for-
mally integrate the Einstein field equations arising from a
scalar-tensor field with a gravitational field generated by
a charged mass point and are able to give a solution de-
scribing a static spherically symmetric charged BD back-
ground that reduces to all four of the BD solutions.

In Part I of this paper we give a detailed overview of the
static spherically symmetric Brans-Dicke electrovac (or
”Charged Brans-Dicke”) spacetime and the integration
constants that arise from integrating the field equations.
We find that the Charged Brans-Dicke (CBD) spacetime
gives rise to three independent solutions, CBD I, II and
III/IV, based on the sign of the constants of integration
ab. The general electrovac Brans-Dicke solution has six
constants of integration, two of which can be determined
by scaling the coordinates r and t. The solutions are
also in terms of two auxillary constants, N(r) and κ. We
place no restrictions on the integration constants other
than boundary conditions at infinity and find that the
three independent solutions can further be broken down
into three separate classes each depending on the sign
of the auxillary constant κ. Of the resulting nine cases,
denoted by superscripting Classes I, II and III/IV with
+,− or 0, only three reduce to a Brans-Dicke equivalent
(with Q = 0) to give the three independent Brans-Dicke
classes (I, II and III/IV). The remaining six cases only
exist when the point contains a charge but as we discover,
not necessarily a mass.

In Part II, we electrostatically perturb the CBD
spacetime in its most general form using the Copson-
Hadamard method developed in [1]. We apply the
boundary condition, also introduced in [1] to determine
our constants of integration such that the resultant so-
lution on the electrostatic potential generated by a per-
turbing point charge is representative of a single charge
perturbation as required. We find that all nine classes of
the CBD spacetime are stable under electrostatic pertur-
bations.

The structure of this paper is as follows: In Section
II we explain how the CBD spacetime metric is derived
directly from the BD field equations. One of the primary
benefits of using the choice of integration constants of
this paper and integrating the field equations directly is
that we are able to gain immediate insight into the phys-
ical meaning behind the constants of integration. Also
by placing no restrictions on the integration constants
we are able to give the solutions in their most general
form without the neccesity of making any assumptions
regarding the physical nature of the individual solutions.

In Section III, we investigate the weak field approxi-
mation and show how implementating it sheds light on
the physical interpretation of the background and in par-
ticular the meaning of the constants of integration. We
emphasize that there is no a priori reason why the weak
field approximation must be implemented on such post-
Newtonian phenomena [36]. The weak field approxima-

tion is simply a useful tool that allows one to better un-
derstand the spacetime and the physical meaning of the
integration constants.

In Section IV, we return to the most general form of
the CBD metric and briefly relate the constants of in-
tegration given in this paper to that of Brans and Dicke
[46], a more thorough comparison between the two is give
in Appendix B. We are thus able to classify the general-
ized CBD solution into three solutions based on the sign
of the parameters ab and κ.

In Section V, we formally give the representation of
the nine classes of solutions in Table I and II. We show
how the nine classes of the CBD spacetime degenerate to
known spacetimes and discuss the effect the electromag-
netic charge of the background space has on the perihe-
lion shift of Mercury and observational data.

In Section VI, as an extension of work done previously
in [47] we introduce a transformation equation by which
one is able to convert the CBD metric of Section II from
isotropic coordinates to the more familiar Schwarzschild-
type coordinates. In doing so, one is able to gain an
immediate appreciation for how the CBDI+ solution re-
duces to the known Brans-Dicke, Reissner-Nordström
and Schwarzschild solutions.

In Section V, we study the curvature invariants of the
CBD spacetime in isotropic coordinates and find that of
the nine backgrounds only the CBDII− spacetime with
ω < −2 possesses a nonsingular horizon and may give
rise to wormholes or black holes. The CBDIII/IV+ back-
ground is found to represent a naked singularity.

In Part II, we perturb the CBD background by placing
a point charge outside the surface of inversion. Following
a method developed in a previous paper [1], we are able to
derive and then solve the governing Maxwell equations to
give a closed-form solution for the electrostatic potential
generated by a point charge in the CBD spacetime in its
most general form. We make use of the same boundary
condition outlined in [1] to determine the constant coef-
ficients of the closed-form solution and in doing so also
eliminate the singularity that creeps into the spacetime
region that lies beyond the inversion surface and which
is not covered by the isotropic coordinates. We find that
the CBD spacetime is linearly stable under electrostatic
perturbations.

In Appendix A, we give a detailed overview of how the
CBD background metric is determined starting from the
transformation from the Jordan to the Einstein frame.
In Appendix B, we relate our notation to that given in
[3] and used in [1] and [47].

We point out that the perturbed Maxwell equations
considered in [1] did not include the effect the perturb-
ing electromagnetic charge would have on the gravita-
tional field of the BDRN and Reissner-Nordström back-
ground space-times. As such we cannot consider it a
perturbation in its most complete form but rather a
“model system” whereby the perturbing charge does not
produce cross-terms in the Maxwell equation via the
energy-momentum tensor. A full consideration of the
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perturbation would be extremely complex (see [48] for
a full consideration of the perturbation of the Reissner-
Nordström space-time) and the results of a full consider-
ation would not be significantly different to those found
in [1]. Thus we used this “model system” for the BDRN
and Reissner-Nordström space-times in [47] and will use
it in this paper. The perturbation of the Brans-Dicke
and Schwarzschild space-times considered in [1] on the
other hand, are complete as these backgrounds are un-
charged and the perturbing charge does not interact with
the gravitational field via the energy-momentum tensor.

Part I

II. STATIC SPHERICALLY SYMMETRIC
BRANS-DICKE ELECTROVAC SPACETIMES

Theorem: Consider the static spherically symmetric
spacetime metric

ds2 = −c2A (r) dt2 +B (r)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
.

(1)
in isotropic coordinates (t, r, θ.φ) . The electrovac Brans-
Dicke field equations in the Jordan frame are:

B (r)Gtt =
B′′ (r)
B

− 3B′ (r)2

4B2
+

2

r

B′ (r)
B

(2)

= − Q2

r4 ϕ (r)B (r)
− ϕ′′ (r)

ϕ
−
(

2

r
+
B′ (r)

2B

)
ϕ′ (r)
ϕ

−ω
2

ϕ′ (r)2

ϕ2
, (3)

B (r)Grr =
B′ (r)2

4B2
+
A′ (r)B′ (r)

2AB
+

1

r

(
A′ (r)
A

+
B′ (r)
B

)

= − Q2

r4ϕ (r)B (r)
−
(

2

r
+
A′ (r)

2A
+
B′ (r)
B

)
ϕ′ (r)
ϕ

+
ω

2

ϕ′ (r)2

ϕ2
, (4)

B (r)Gθθ =
A′′ (r)

2A
+
B′′ (r)

2B
− A′ (r)2

4A2
− B′ (r)2

2B2
(5)

+
1

2r

(
A′ (r)
A

+
B′ (r)
B

)
(6)

=
Q2

r4ϕ (r)B (r)
− ϕ′′ (r)

ϕ
−
(

1

r
+
A′ (r)

2A

)
ϕ′ (r)
ϕ

−ω
2

ϕ′ (r)2

ϕ2
; (7)

the scalar wave equation is

d
(
r2
√
A (r)B (r)ϕ′ (r)

)

dr
= 0, (8)

while the electrostatic force equation, which is obtained
from the Maxwell equations on the vector potential
−cV (r) dt, is

(
r2

√
B (r)

A (r)
V ′ (r)

)′
= 0. (9)

The solutions to equations (2) to (9), called the Static
Spherically Symmetric Charged Brans-Dicke (CBD) so-
lutions, are given formally by

ϕ (r) = ϕ0 exp

(
ϕ1

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))
, (10)

a, b ∈ R, if ab = 0⇒
{
a = 0, b 6= 0
b = 0, a 6= 0

ϕ0 > 0, ϕ1 ∈ R; (11)

A (r) =
ϕ0A0

ϕ (r)N2 (r)
, A0 > 0; (12)

=
A0

exp

(
ϕ1

2
√
ab

ln

(√
a
b r−1√
a
b r+1

))
N2 (r)

, (13)

B (r) =

(
ar2 − b

)2
N2 (r)

ϕ0A0r4ϕ (r)
(14)

=
a2
(
1− b

a
1
r2

)2
N2 (r)

ϕ2
0A0 exp

(
ϕ1

2
√
ab

ln

(√
a
b r−1√
a
b r+1

)) ; (15)

V ′ (r) =
c2Qϕ1√

4π

A0ϕ0

a
(
r2 − b

a

)
N2 (r)

, Q ∈ R; (16)

and

Q2A0ϕ0 + κ > 0. (17)

See Appendix A for details on the derivation of the
metric coefficients and in particular, refer to Eq. (144)
for an explanation on the condition Eq. (17).

Here c is the speed of light in vacuum and the function
N(r) is expressed as

N (r) : = p2+ exp

(
−ϕ1

√
κ

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))

−p2− exp

(
ϕ1
√
κ

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))
, (18)

The nine parameters
{
a, b, A0, ϕ1, ϕ2,mB , qB , p

2
−, p

2
+

}

that appear in the Eqs.(10)-(18) are are related via the
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following

4ab

ϕ2
1

= (m2
B − q2B)

(
(2ω + 3)c2ϕ0)

2mB

)2

, (19)

ϕ1

a
= −2mB

c2ϕ0

(
1

2ω + 3

)
, ) (20)

b

a
=

m2
B − q2B

4
, (21)

m =
m

c2ϕ0

1

eβ0

(
2
√
ab

ϕ1
√
κ

)
, (22)

q =

√
4π

ϕ0

q

c2
eβ0

(
2
√
ab

ϕ1
√
κ

)
, (23)

ϕ0 =
1

Geff

(
2ω + 4

2ω + 3

)
, (24)

p2± =
1

2

(√
1 +

Q2A0ϕ0

κ
± 1

)
, (25)

and

κ :=
4ab

ϕ2
0

− 2ω + 3

4
, Q2 :=

4πq2

c4ϕ2
1

(26)

Comments on Theorem 1:

1. The six real parameters

{a, b, ϕ1, Q} ∈ R, {ϕ0, A0} ∈ R+, (27)

are constants of integrations, where a, b, A0 arise
from boundary conditions on the tensor gravita-
tional field, Q arises from the static electric field
(more precisely, the vector electromagnetic poten-
tial), while ϕ1 and ϕ2 arise from the boundary con-
dition on the scalar field.

2. The parameters m and q are non-negative real con-
stants and are identified, respectively, as mass mea-
sured in convetional units (kg) and charge mea-
sured in electrosatic units (e.s.u), which has the

dimensions of [mass]
1
2 [length]

3
2 [time]−1.

3. The dimensionless real parameter

ω ∈ R. (28)

is the coupling constant, whose inverse measures
the strength of scalar field.

4. The three auxillary parameters
{
κ, p2+, p

2
−
}

(29)

defined in Eqs.(25) and (26) are given in terms of
the constants of integration (27) and the coupling
constant (28).

5. The positive constants ϕ0 and a have the di-
mension of [length]

−3
[time]

2
[mass]

1
, i.e., it has

the dimension of the reciprocal of the gravita-
tional constant; the constant b has the dimen-
sion of [length]

−1
[time]

2
[mass]

1
, the constant ϕ2

has the dimension of [length]
−2

[time]
2

[mass]
1
,

the constant Q =
√
4πq0
c2ϕ1

has dimension

[length]
3
2 [time]

−1
[mass]

− 1
2 = [charge]

1
[mass]

−1
,

and the constant A0 is dimensionless.

6. In scalar-tensor theories, the gravitational constant
G0 that appears in the Einstein-Hilbert term of the
standard theory is replaced by Geff which is re-
lated to the strength of the scalar field as given
above.

7. Under the scaling transformation of the coordinates
t and r :

t→ t′ = τ0t, r → r′ = ρ0r, (30)

where τ0 and ρ0 are arbitrary constants, the inte-
gration constants transform according to

A0 → A′0 = τ20A0, Q→ Q′ = τ−10 Q,

a → a′ =
τ0
ρ0
a, b→ b′ = τ0ρ0b, (31)

ϕ0 → ϕ′0 = ϕ0, ϕ1 → ϕ′1 = τ0ϕ1, (32)

while the products

ab → a′b′ = τ20 ab, (33)

b

a
→ b′

a′
= ρ20

b

a
. (34)

There are two degrees of freedom to fix two of the
four real parameters: {A0, a.b, ϕ2}; however the
scalar field and the vector field parameters ϕ1 and
the charge q0 are not affected by coordinate scaling
(30).

8. Under the inversion transformation

r → r∗ =

∣∣∣∣
b

a

∣∣∣∣
1

r
, (35)

the regions




(
0 < r <

√∣∣ b
a

∣∣
)
↔
(√∣∣ b

a

∣∣ < r∗ <∞
)

(√∣∣ b
a

∣∣ < r <∞
)
↔
(

0 < r∗ <
√∣∣ b

a

∣∣
) (36)
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are mapped one-to-one and onto from points out-

side the sphere of radius
√∣∣ b

a

∣∣ to points inside, and

vice versa. Under such a coordinate transformation
the flat 3-metric

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(37)

is mapped one-to-one and onto the conformally flat
3-metric

(
b

a

1

r2∗

)2 (
dr2∗ + r2∗

(
dθ2 + sin2 θdφ2

))
. (38)

III. WEAK FIELD APPROXIMATION

In the theorem outlined above we have given the CBD
solution formally in its most general form without placing
any restrictions on any of the six real constants of inte-
gration: {a, b, ϕ1, Q} ∈ R and without loss of generality
{ϕ0, A0} ∈ R+, except boundary conditions at spatial
infinity for the vanishing of the electrostatic force. Here
we implement the weak field approximation to see what
restrictions are placed upon these parameters when the
formal CBD solution is required to agree to the first or-
der with the weak field approximation. We point out
that there is no a priori reason why the weak field ap-
proximation needs to be applied to phenomena such as

that considered here [36], however we find the weak field
approximation a useful tool in interpretating the physical
meaning of the parameters.

The derivation of the weak field approximation is given
in detail in [3] and we give only the results here. The
linearized metric coefficients obtained from the weak field
approximation are

hij =
4

ϕ1c4

∫
Tij
r
d3x− 4

ϕ1c4

(
ω + 1

2ω + 3

)
ηij

∫
T

r
d3x.

(39)
For a static electrically charged point mass with mass M
and charge Q, series expansion to the first order of 1

r give

ϕ(r) = ϕ0

(
1 +

2m0

ϕ0c2
1

2ω + 3

1

r

)
, (40)

g00 = −1 +
2m0

ϕ0c2

(
1 +

1

2ω + 3

)
1

r
, (41)

g11 = 1 +
2m0

ϕ0c2

(
1− 1

2ω + 3

)
1

r
. (42)

We find that the charge Q only affects the metric at
order O

(
1
r2

)
and higher orders of 1

r , and thus the weak
field approximation remains unchanged to that given in
[3]. A series expansion of Eqs.(10), (12) to (14) in powers
of
(
ϕ1

ar

)
give

ϕ (r) = ϕ0

(
1− ϕ1

ar
+

1

2

(ϕ1

ar

)2
+O

(
1

r3

))
(43)

A (r) = A0




1−
(

2
√
κ+Q2ϕ0A0 − 1

)
ϕ1

ar

+ 1
2

(
4κ− 4

√
κ+Q2ϕ0A0 + 6Q2ϕ0A0 + 1

) (
ϕ2

ar

)2

+O
((

ϕ1

ar

)3)


 (44)

B (r) =
a2

ϕ2
0A0




1 +
(

2
√
κ+Q2ϕ0A0 + 1

)
ϕ1

ar

+ 1
2

(
1 + 4κ− 4ab

ϕ2
2

+ 4
√
κ+Q2ϕ0A0 + 2Q2ϕ0A0

) (
ϕ1

ar

)2

+O
((

ϕ1

ar

)3)


 (45)

Comparing CBD expansion equations (43) to (45) with
weak field approximation equations (40) to (42), we im-
mediately obtain

ϕ1

a
= − 2m0

ϕ0c2

(
1

2ω + 3

)
, (46)

A0 = 1, (47)

a2

ϕ2
0A0

= 1, (48)

and

√
k +Q2A0ϕ0 = −2ω + 3

2
. (49)

Substituting Eqs.(46), (48) and (26) into Eq.(49), after
some algebra, we find

b

a
=

1

4

(
m2

0

ϕ2
0c

4

(
2ω + 4

2ω + 3

)
− 4πq20
c4ϕ0

)
. (50)

Thus in the weak field approximation, the mass mB

and charge qB become respectively,
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mB
∼= m0

c2ϕ0

√
2ω + 4

2ω + 3
, (51)

qB ∼=
√

4π

ϕ0

q0
c2
, (52)

In the weak field approximation Geff approaches G0

and thus the parameter ϕ0 in the weak field limit becomes

ϕ0 =
1

G0

(
2ω + 4

2ω + 3

)
. (53)

Substiting Eq.(53) into Eq.(46) we have

ϕ1

a
= − 2mB√

(2ω + 3)(2ω + 4)
. (54)

In summary, the seven parameters
{a, b, ϕ0, ϕ1, A0,m0, q0} as restricted by the weak
field approximation are the following

A0 = 1, a2 = ϕ2
0, (55)

4ab

ϕ2
1

=
(2ω + 3) (2ω + 4)

4

(
1− q2B

m2
B

)
, (56)

b

a
=

m2
B − q2B

4
, (57)

ϕ1

a
= − 2m0√

(2ω + 3)(2ω + 4)
, (58)

ϕ0 =
1

G0

(
2ω + 4

2ω + 3

)
, (59)

mB
∼= m0

c2ϕ0

√
2ω + 4

2ω + 3
, (60)

(61)

qB ∼=
√

4π

ϕ0

q0
c2
. (62)

Thus there are remain only four parameters
{ω, ϕ0,m0, q0}. Here m0 and q0 are the Newtonian
mass and charge measured in (kg) and (e.s.u) respec-
tively.

IV. CLASSIFICATION OF CBD SPACETIMES

The form of the CBD spacetimes are determined by

(1) the exponents 2
√
ab

ϕ2
and 1

2 (1± 2
√
κ) that arise in the

product of the scalar field ϕ (r) and the function N2 (r) ,
viz. ϕ (r)N2 (r) given by Eqs. (10) and (18), and (2)
the auxillary constants p2± that are constrained by the
requirement Q2ϕ1A0 + κ > 0 given by Eq.(17). This is
because even though all the integration constants and the
coupling constants are real, ab and κ can take negrative
values, and hence

√
ab and

√
κ are purely imaginary. Un-

der such circumstances, it is necessary to examine their
effects on the formal CBD solution. From the complex
exponents 1

2 (1± 2
√
κ), we define the complex parameter

1

C
: = −1

2

(
1 + 2

√
κ
)

= −1

2

(
1 + 2

√
4ab

ϕ2
2

− 2ω + 3

4

)
, (63)

which we call the Brans-Dicke parameter (see [3], [46]
and for further discussion see Appendix B). Eqs.(161)
and (161) of Appendix B gives

1

C
+ 1 =

1

2

(
1− 2

√
κ
)

=
1

2

(
1− 2

√
4ab

ϕ2
2

− 2ω + 3

4

)
. (64)

The product of Eqs. (161) and (64) gives

1

C

(
1

C
+ 1

)
=

4ab

ϕ2
2

− ω + 2

2
. (65)

Re-arranging terms in Eq. (65), we obtain identities for
4ab
ϕ2

2
and κ as quadratic expressions of the Brans-Dicke

parameter 1
C :

4ab

ϕ2
2

≡ 1

C2
+

1

C
+
ω + 2

2
(66)

κ ≡
(

1

C
+

1

2

)2

. (67)

The discriminant of the quadratics expression (66) is

∆1 = −2ω − 3. (68)

Specifically, the classification and the representations of
the formal CBD solution, Eqs. (10) to (17), are based
upon three conditions:

Condition 1: the sign of the product of integration con-

stants 4ab
ϕ2

2
≡ 1

C2 + 1
C + ω+2

2 T 0 (note that the

exponent ϕ2

2
√
ab

=
(

4ab
ϕ2

2

)− 1
2

),
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The range of the coupling constant is dependent on the
sign of 4ab

ϕ2
2

and is the following

(1) When 4ab
ϕ2

2
> 0; the graph of the quadratic inequality

does not cut the horizontal axis and hence ∆1 < 0
implying that ω > − 3

2 ,

(2) When 4ab
ϕ2

2
< 0; the graph of the quadratic inequality

cuts the horizntal axis twice and hence ∆1 > 0
implying that ω < − 3

2 ,

(3) When 4ab
ϕ2

2
= 0; the graph of the quadratic inequal-

ity has either a pair of complex conjugate roots,
exactly one real root, or two real roots and hence

∆1 T 0 implying that ω ∈ R;

Condition 2: the sign of the auxillary parameter κ :=
4ab
ϕ2

2
− 2ω+3

4 =
(
1
C + 1

2

)2 T 0

Condition 3: Q2ϕ1A0 + κ > 0 (equivalently κ := 4ab
ϕ2

2
−

2ω+3
4 =

(
1
C + 1

2

)2
> −Q2ϕ1A0, where ϕ1A0 > 0).

The nine Classes of solutions are given in Table (I).

V. REPRESENTATION OF THE CBD
SPACETIMES

The CBD solutions can be classified according to the
signs of the parameters ab and κ.

The roman numerals I,II and III/IV are representa-
tive of the three class of solutions that can be catergo-
rized by the sign of ab and are respectively when ab is
> 0, < 0 and = 0. The Class III/IV solution is made up
of two subclasses, Class III where a = 0, b 6= 0 and Class
IV where a 6= b = o. It is easy to show that Class III
is equivalent to the Class IV solutions under an inverse
transformation and that the two solutions are not inde-
pendent. Thus without loss of generality we are able to
classify them together as Class III/IV.

The superscript to the roman numerals are represen-
tative of the sign of κ and are +,−, 0 for when κ is
> 0, < 0 and = 0 respectively. There are thus a total
of nine classes of solutions for the CBD spacetime, viz.
CBDI+, CBDI−, CBDI0, CBDII+, CBDII−, CBDII0,
CBDIII/IV+, CBDIII/IV−, CBDIII/IV0.

A. Degeneracy of the CBD solutions

The Degeneracy of the CBD solutions are given quickly
below:

• CBDI+: When qB = 0 and ϕ1 6= 0, the BD Class I
solution is recovered. When qB 6= 0 and ϕ1 = 0, the
Reissner-Nodrström solution is recovered. When
qB = 0 and ϕ1 = 0, the Schwarzschild solution is
recovered.

• CBDI− and CBDI0: From Condition 3 and
Eq.(26), qB 6= 0 and ϕ1 6= 0 respectively and thus
there are no degenerate solutions.

• CBDII+: When qB = 0, the BD Class II solution
is recovered. From Eq.(26) ϕ1 6= 0 and thus there
is no further degeneracy.

• CBDII−: When ϕ1 = 0, from Eq.(19) a
Reissner-Nordström-type spacetime is recovered
where mB < qB . From Condition 3, qB 6= 0 and
thus there is no further degeneracy.

• CBDII0: From Condition 3 and Eq.(26), qB 6= 0
and ϕ1 6= 0 respectively and thus there are no de-
generate solutions.

• CBDIII/IV+: When qB = 0, the BD Class III/IV
solution is recovered. When qB 6= 0 but ϕ1 = 0, a
massless Reissner-Nodrström solution is recovered
where mB = 0. When qB = 0 and scalar field
ϕ1 = 0, the solution reduces to Minkowski space.

• CBDIII/IV− and CBDIII/IV0: When ϕ1 = 0, an
extreme Reissner-Nodrström solution is recovered
where mB = qB . From Condition 3, qB 6= 0 and
thus there is no further degeneracy.

B. Perihelion Shift of Mercury

By implementing the weak field approximation we
are able to determine the parameterized post-Newtonian
(PPN) parameters β and γ for the CBD metric. By ex-
panding Eq.(12) to the second order and Eq. (14) to the
first order we obtain the following

β =
(ω + 2)

2 − 1
2Q

2ϕ0A0

(ω + 2)
2 , (69)

γ =
ω + 1

ω + 2
,

respectively. The relativistic rate of shift in the perhelion
of a planetary orbit is thus

(ω + 2)
2

(3ω + 4) + 2ω+3
4

Q2A0

Geff

3 (ω + 2)
3 ×value of general relativity

(70)
The rate of perihelion shift $ in seconds of arc per

century is

$ = 42.6”

(
1

3
(2 + 2γ − β) + 3× 10−4

J2
10−7

)
, (71)

where the solar quadrupole moment J2 is estimated to
be of the order ∼ 10−7. If we accept the value for γ a
priori from the Cassini experiments on the time delay of
light as γ− 1 = 2.3× 10−5, then one is able to determine
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a bound on β . The bound on β is thus estimated to be
β − 1 = (−4.1± 7.8)× 10−5 (see [14]).

Any realistic approximation for the value of the pa-
rameter Q, of Eq.(26), such that the overall charge of
the universe remains neutral would require Q to be very
small. As such the Q2 term of Eq.(70) is negligible and
the relativistic rate of shift in the perihelion as calculated
from the CBD background reduces to the known rate for
the BD background.

VI. TRANSFORMATION FROM ISOTROPIC
TO SCHWARZSCHILD-TYPE COORDINATES

In [25] the authors expressed the Brans-Dicke met-
ric in Schwarzschild-type coordinates as opposed to the
usual isotropic form given in [46]. The Schwarzschild
form lends itself readily to physical interpretation and
degenerates quickly to the Schwarzschild and Reissner-
Nordström solutions. The transformation equation

that will convert all nine CBD solutions from isotropic
into Schwarzschild-type coordinates (denoted by a sub-
scripted S) is found to be

rs =
ar2 − b

r


p2+

(√
a
b r − 1√
a
b r + 1

)−1
− p2−

(√
a
b r − 1√
a
b r + 1

)


(72)
after some algebra we find

(√
a
b r − 1√
a
b r + 1

)2

=

√
a
b rs − 4ap2+√
a
b rs − 4ap2−

. (73)

In the Schwarzschild-type coordinates the expressions
for p2± remain unchanged, howeverN(r) and ϕ(r) are now
expressed in terms of the Schwarzschild radial coordinate
rs as N(rs) and ϕ(rs) and are given in Table III.

The CBD metric in Schwarzschild-type coordinates is
thus

ds2 = −c2A (rs) dt
2 +B (rs) dr

2
s (74)

+B (rs)
b

a

(√
a

b
rs − 4ap2+

)(√
a

b
rs − 4ap2−

)[(
dθ2 + sin2 θdφ2

)]
, (75)

where the scalar field and metric coefficients are

ϕ (rs) = ϕ0 exp

(
ϕ1

4
√
ab

ln

(√
a
b rs − 4ap2+√
a
b rs − 4ap2−

))
,(76)

a, b ∈ R, if ab = 0⇒
{
a = 0, b 6= 0
b = 0, a 6= 0

ϕ0 > 0, ϕ1 ∈ R; (77)

A (rs) =
A0ϕ0

ϕ (rs)N2 (rs)
, A0 > 0;

=
A0

exp

(
ϕ1

4
√
ab

ln

(√
a
b rs−4ap2+√
a
b rs−4ap2−

))
N2 (rs)

, (78)

B (rs) =
N2 (rs)

A0ϕ0ϕ (rs)

=
N2 (rs)

ϕ2
0A0 exp

(
ϕ1

4
√
ab

ln

(√
a
b rs−4ap2+√
a
b rs−4ap2−

)) . (79)

The auxillary parameter N(rs) is

N (r) : = p2+ exp

(
−ϕ1

√
κ

4
√
ab

ln

(√
a
b rs − 4ap2+√
a
b rs − 4ap2−

))

−p2− exp

( √
κ

4
√
ab

ln

(√
a
b rs − 4ap2+√
a
b rs − 4ap2−

))
, (80)

while the parameters p2± and κ remain unchanged.

VII. INVARIANTS

It was demonstrated in [25] that the Brans Class I so-
lution of [3] can exhibit black hole behaviour for a certain
limited range of the solution parameters. However in [35]
the authors implemented an interior to exterior match-
ing criteria (a variant of the weak field approximation)
which restricted the coupling constant ω to a very nar-
row, negative range, −(2 + 1/

√
3) < ω < −2, which was

incompatible with observational data. As such they ruled
out the possibility of Brans Dicke black holes.

Earlier, [28] had shown independently of the work by
[25], that the BD spacetimes give rise to wormholes when
ω < −2 , or naked singularities when ω > −3/2.

Recently [49] revisited the solutions of [25] and was
able to confirm the findings of [28]. By studying the
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behaviour of the horizon of the nonsingular solutions of
[25], they found that the behaviour of the horizon was
indicative of a wormhole and not of a black hole.

It is pertinent then to study the behaviour of the elec-
trovac solutions for possible black hole and wormhole na-
ture and we do so by looking at the curvature invariants
of the metric in the same way as [25] and [35]. By study-
ing the curvature invariants of a metric one is able to
distinguish true spacetime singularities from coordinate
system pathologies.

For a spherically symmetric background, such as the
CBD background under discussion in this paper, the
complete set of invariants include only eight of the usual
sixteen invariants (see [50] and [51]). This is due to the
fact that the complex scalars vanish for spherically sym-
metric backgrounds. The remaining eight invariants are
defined as the following

R := Raa, (81)

R1 :=
1

4
Sab S

b
a, (82)

R2 := −1

8
Sab S

b
cS

c
a, (83)

R3 :=
1

16
Sab S

b
cS

c
dS

d
a , (84)

W :=
1

8
CabcdC

abcd, (85)

W1 :=
1

8
SabScdCacdb, (86)

W2 :=
1

16
SbcSefCabcdC

aefd, (87)

W3 :=
1

32
ScdSefCaghbCacdbCgefh, (88)

where R is the Ricci scalar, Rab is the Ricci tensor, Sab is
the trace-free Ricci tensor and Cabcd is the Weyl tensor.

For the sake of brevity we concentrate only on the Ricci
and Weyl scalars as these are two the fundamental invari-
ants with the remaining 6 invariants being contractions
of these.

The Ricci scalar R for the CBD metric is

R =
A0ϕ0ϕ(r)r4

2(ar2 − b)4N(r)2
[
16ab− (3 + 4κ)ϕ2

1)
]

(89)

The Weyl scalar W for the CBD metric is

W =
2

3

A0ϕ0ϕ(r)r6

(ar2 − b)8N(r)

[
(3N∗(r)−N(r)) rϕ2

1κ−
(

2ar2 +
((
ar2 − b

)2 − 4b2
)
N(r)

)
N∗(r)ϕ1

√
κ+ 4abrN2(r)

]
(90)

It is easy to see that in general, as pointed out by [35]
for the BD background, the curvature invariants diverge

when r →
√

b
a and the solution exhibits a naked singu-

larity. However, there are cases when κ 6= 0 that the
invariants do not diverge. These cases are discussed be-
low:

A. CBD I and II

Using Eq.(18) for κ 6= 0, from the denominator of the
Weyl scalar one can see that the Weyl scalar will not

diverge when

ϕ1

√
κ

ab
≥ 2. (91)

The Ricci scalar will also be non-singular under the
more stringent condition of

ϕ1

√
κ

ab
≥ 4. (92)

The only time that Eqs.(91) and (92) can be satisfied
is when the sign of κ and ab are the same and

κ

ab
> 0. (93)
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This corresponds to the CBDI+ and CBDII− back-
grounds only. Furthermore, using Eq.(93) we can rewrite
Eqs.(91) and (92) as the following

0 <
2√
κ
ab

≤ ϕ1, (94)

and

0 <
4√
κ
ab

≤ ϕ1. (95)

Thus we find that the only solution available is when
the weak field approximation is violated and ϕ1 is allowed
to be positive. From Eq.(58), ϕ1 can be positive when
ω < −2.

We find that this range on ω is only permitted in the
CBDII− spacetime and we find that nonsingular solu-
tions are available in the CBDII− spacetime when ω <
−2. The behaviour of the horizon in the CBD− space-
time with the coupling parameter restricted to ω < −2

must be studied further to determine whether the space-
time is representative of a black hole or a wormhole. We
leave this to a later paper.

B. CBD III/IV

As the CBDIII and CBDIV solutions are the inverse
transform of one another we give here the curvature in-
variants for the CBDIV solution only but point out that
the CBDIII invariants can be quickly recovered using
Eq.(72). The Ricci and Weyl scalars for the CBDIV
background when κ 6= 0 are respectively

R =
A0ϕ0ϕ(r)ωϕ2

1

a4r4N(r)2
, (96)

W =
2

3

(ϕ0A0ϕ(r))
2
r6

N(r)8a4r2

(
ϕ2
1

a2r4

(
2ω + 3

4

)(
rN2(r)− 3 (N∗(r))2

)
− 3ϕ1

ar2

√
−2ω + 3

4
N∗(r)N(r)

)2

. (97)

For the CBDIV+ and CBDIV+ backgrounds the invari-
ants diverge only at the location of the singularity at
r = 0. It is clear to see that there exists no other singular-
ity and no horizon in the CBDIII/IV+ and CBDIII/IV−

backgrounds and that r = 0 is a naked singularity.

Part II

Perturbing the CBD spacetime with a point charge

In a previous paper [1] we considered the electrostatic
field of an electric point charge placed outside the sur-
face of inversion in the CBDI+ or ”Brans-Dicke Reisnner-
Norström“ spacetime. We went on to introduce a method
based on the Copson-Hadamard method [52] by which we
were able to find a closed-form solution to the Maxwell
equation for the electrostatic potential generated by the
point charge.

Here we extend our method to the general form of the
CBD metric and perturb the CBD spacetime with an
electrostatic point charge. As before we consider the elec-
trostatic potential due to a “small” static electric charge
−ε0 situated outside the spherical surface of inversion√

b
a .

We let V (r, θ, φ) denote the linearly perturbated elec-
trostatic potential so that the perturbed Faraday tensor

Fab takes the form

F0i = −Fi0 = −c∂iV (r, θ, φ) (98)

Fij = 0 ; i, j = 1, 2, 3 · · · .

The perturbed Maxwell equations ∇[aFbc] = 0 is auto-
matically satisfied by Eq.(98).

As before, the perturbed Maxwell equations due to a
single electrostatic charge is

1√−g ∂b(
√−gF ab) = J0 (99)

which implies

∇2V (r, θ, φ)−
(

ln

√
A(r)

B(r)

)′
∂V (r, θ, φ)

∂r

= cA(r)B(r)J0 (100)

where the current density J0 = − 4πε0
cr2

1

A(r)B(r)
3
2
δ(r −

b0)δ(cos θ − cos θ0). Here A(r) and B(r) are given by

Eqs (12) and (15) respectively, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is

the 3-dimensional Euclidean space Laplacian with x =
r sin θ cosφ, y = r sin θ sinφ and z = r cos θ. Note that
∂r = x

r ∂x + y
r ∂y + z

r∂z. As in [1], we define

Γ(r, θ) = r2 + b20 − 2b0r cos θ (101)
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which is equal to the square of the “radial” distance from
the charged particle at z = b0.

Eq.(100) for the CBD spacetime in its general form is

∇2V + 2

(
N ′(r)
N(r)

+
ar

ar2 − b −
1

r

)
∂V

∂r
= cA(r)B(r)J0

(102)
In the CBD spacetime Eqs.(51) and (50) of [1] give us

the requisite form of the substitution that will convert
Eq.(102) into a solvable ordinary differential equation,
and are

V =

√
A0ϕ0r

N(r)(ar2 − b)F (γ), (103)

γ =
ab

ab20 − b
r2 + b20 − 2b0r cos θ

ar2 − b . (104)

Substituting Eqs.(103) and (104) into (102) gives us a
second order linear differential equation on F (γ).

γ(γ+ 1)F ′′(γ) +
3

2
(2γ+ 1)F ′(γ) +

(
1− ϕ2

1κ

4ab

)
F (γ) = 0.

This is the general form of Eq.(55) of [1] and can be
solved using the same method given therein, by trans-
forming the independent variable γ as

γ = sinh2 ζ

2
, (105)

such that the dependent variable is now F (γ) = Φ(ζ).
Using Eq. (105), one can rewrite Eq. (105) in terms

of the new variables as follows

Φ′′(ζ) + 2 coth ζ : Φ′(ζ) +

(
1− ϕ2

1κ

4ab

)
Φ(ζ) = 0 (106)

which has the closed-form solution (see [53])

Φ(ζ) =
ϕ1
√
κ

2
√
ab

Ŵ1e
ϕ1
√
κ

2
√
ab
ζ − Ŵ2e

−ϕ1
√
κ

2
√
ab
ζ

sinh ζ
(107)

where Ŵ1 and Ŵ2 are integration constants. The solution
in terms of γ is therefore

F (γ) =

ϕ1
√
κ

2
√
ab

2
√
γ
√
γ + 1

[Ŵ1(
√
γ + 1 +

√
γ)

ϕ1
√
κ√

ab

− Ŵ2(
√
γ + 1−√γ)

ϕ1
√
κ√

ab ]. (108)

Substituting Eq.(108) into Eq.(103) gives the electro-
static potential V (r, θ) as follows

V (r, θ) =

√
A0ϕ0

ϕ1
√
κ

2
√
ab

2N(r)(ar2 − b)√γ√γ + 1

×[Ŵ1(
√
γ + 1 +

√
γ)

ϕ1
√
κ√

ab

− Ŵ2(
√
γ + 1−√γ)

ϕ1
√
κ√

ab ]. (109)
Consider the inversion point of the static electric point

charge (0, 0, (b0∗)), where (b0∗) = b
ab0

. Let

γ∗ =
b
a

b
a − (b0∗)2

Γ ∗ (r, θ)
b
a − r2

(110)

Γ∗ = r2 + (b0∗)2 − 2(b0∗)r cos θ. (111)

Thus Γ∗ is equal to the square of the “radial” distance
from the inversion point at z = (b0∗). It is straightfor-
ward to verify that

γ + 1 = γ ∗ . (112)

The electrostatic potential V (r, θ) in Eq.(109) is there-
fore singular at the point charge z = b0 and also at its
inversion point z = (b0∗).

The integration constants can be determined using the
boundary condition introduced in [1]; any integration
over a closed spatial region not containing the perturbing
charge must be exactly zero even if that region contains a
surface of inversion, and conversely, an integretaion over
an area containing the perturbing charged particle must
equal exactly 4πε0 where ε0 is the charge of the particle.

∫

<
J0dυ =

∫ 2π

0

∫ π

−π

N(r)2(ar2 − b)
A0ϕ0

∂V (r)

∂r
sin θdθdφ.

(113)

Here, < is a region of 3-dimensional space residing in a
hypersurface and ∂< is its closed 2-dimensional bound-
ary. Again, dυ is an element of spatial proper volume in
<. In order to integrate the above we convert Eq. (109)

into a function of sinh ζ where γ = sinh2 ζ
2 . We find that

the only term that requires integration is the term con-
taining the integration constants, the integral of which
is
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∫ π

−π

Ŵ1 exp
(
ϕ1
√
κ

2
√
ab
ζ
)
− Ŵ2 exp

(
ϕ1
√
κ

2
√
ab
ζ
)

sinh ζ
sin θdθ

=
(ar2 − b)(ab20 − b)

2abb0r



(√

a
b bo − 1√
a
b bo − 1

)−ϕ1
√
κ

2
√
ab

−
(√

a
b bo − 1√
a
b bo − 1

)ϕ1
√
κ

2
√
ab





Ŵ1

(√
a
b r − 1√
a
b r − 1

)−ϕ1
√
κ

2
√
ab

− Ŵ2

(√
a
b r − 1√
a
b r − 1

)ϕ1
√
κ

2
√
ab


 (114)

for
√

b
a < r < b0, where k = ϕ1

√
κ

2
√
ab

and

∫ π

−π

Ŵ1 exp
(
ϕ1
√
κ

2
√
ab
ζ
)
− Ŵ2 exp

(
ϕ1
√
κ

2
√
ab
ζ
)

sinh ζ
sin θdθ

=
(ar2 − b)(ab20 − b)

2abb0r



(√

a
b r − 1√
a
b r − 1

)−ϕ1
√
κ

2
√
ab

−
(√

a
b r − 1√
a
b r − 1

)ϕ1
√
κ

2
√
ab





Ŵ1

(√
a
b bo − 1√
a
b bo − 1

)−ϕ1
√
κ

2
√
ab

− Ŵ2

(√
a
b bo − 1√
a
b bo − 1

)ϕ1
√
κ

2
√
ab


 (115)

(116)

for
√

b
a < b0 < r.

When we return Eq.(114) into Eq.(109) it is fairly
straightforward to see that for the electrostatic poten-
tial to vanish for the region not containing a charge the
integration constants must be chosen as the following

Ŵ1 = p2+Ŵ , (117)

Ŵ2 = −p2−Ŵ , (118)

where Ŵ is a constant yet to be determined.
By returning Eq.(115) into Eq.(109) and under the

condition that for this region

(√
b
a < b0 < r

)
Eq.(113)

must equal −4πε0 we can quickly solve for Ŵ giving

Ŵ =
2abb0

√
ϕ0A0ε0

ϕ1

√
k (ab20 − b)Nb

, (119)

where

Nb = p2+

(√
a
b bo − 1√
a
b bo − 1

)−ϕ1
√
κ

2
√
ab

+ p2−

(√
a
b bo − 1√
a
b bo − 1

)ϕ1
√
κ

2
√
ab

(120)

The electrostatic potential of a point charge ε0 residing
at b0 outside the surface of inversion in a CBD spacetime
is therefore

V (r, θ) =

√
A0ϕ0rε0

N(r)(ar2 − b)
b0

Nb(ab20 − b)

√
ab

2
√
γ
√
γ + 1

(
p2+(
√
γ + 1 +

√
γ)

ϕ1
√
κ

2
√
ab + p2−(

√
γ + 1−√γ)

ϕ1
√
κ

2
√
ab

)
,

where N(r) and p2± are given in Table II.

We are able to show, in a manner similar to that
demonstrated in [47], that the closed-form electric poten-
tial can be expressed succintly in terms of the function

Π : ς 7→ ς

(aς2 − b)Nχδ (r)
, δ ∈ {+,−, 0} , (121)

where χ is either I, II, or III/IV corresponding to the
three branches of the CBD solutions and the values for
Nχδ (r) for each branch of solutions are given in Table
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IV, such that

V (r, θ) =
A0ϕ0ε0

2

Π(b)Π(r)

Π(σ(r, θ))
, (122)

and the composite function is

Π(σ(r, θ)) = (Π ◦ σ)(r, θ). (123)

We define the new variable σ(r, θ) as the following

σ(r, θ) =

(
b20r

2 +
(
b
a

)2 − 2 bab0r cos θ)

(r2 + b2 − 2br cos θ)

) 1
2

. (124)

From Eq.(124), it is straightforward to show that

σ2(r, θ)−B2 =
(ab20 − b)(ar2 − b)

a2(r2 + b2 − 2br cos θ)
,

=
(ab20 − b)(ar2 − b)

a2Γ(r, θ)
=

b
a

γ(r, θ)
,(125)

where Γ(r, θ) is given in Eq.(101). Rearranging terms we
have

γ(r, θ) =
b
a

σ2(r, θ)− b
a

(126)

γ(r, θ) + 1 =
σ2(r, θ)

σ2(r, θ)− b
a

. (127)

Substituting Eqs. (126) and (127) into Eq. (123), and
after some algebra, we obtain Eq.(122).

VIII. CONCLUSION

In this paper we were able to describe the static spher-
ically symmetric charged Brans-Dicke spacetime in its
most general form, placing no restrictions on the con-
stants of integration except boundary conditions at in-
finity. In doing so we found that the CBD (and indeed
the BD) metric gives rise to three independent classes
of solutions, I, II and III/IV. In the absence of a charge
(Q = 0) the CBD I+, II+, III+/IV+ classes reduce to the
BD Classes I, II, and III/IV.

We found that the CBD Class I solutions represent the
case where mB > qB , the CBD Class II solutions repre-
sent the unusual case where qB > mB and the Class
III/IV solution represents an extreme CBD spacetime as
an analogy to extreme Reissner-Nordström black holes
where q = m. Interestingly, as an extension of our find-
ings on the CBD Class III/IV+ solution we can infer that
the BD Class III/IV solution contains no mass and in-
stead describes a spacetime with a massless, scalar field
generating singularity. By looking at the curvature in-
variants of the nine classes of solutions we find that the
CBDII− background may admit black hole or wormhole

nature when ω < −2. As there is no range of ω that must
be dismissed on grounds of being unphysical there is no
reason why the possibility of the existence of CBD or BD
black holes should be dismissed. Further investigations
are warranted and are left to a following paper.

All nine classes of solutions of the CBD spacetime
prove to be stable under small electrostatic perturba-
tions. This includes the CBDIII/IV or “extreme CBD”
spacetimes. Although the extreme Reissner-Nordström
black hole counterpart has been proven to be unstable
under linear perturbations by [54] and particularly elec-
tromagnetic perturbations by [55] we point out that these
studies were on electrodynamic perturbations and the
decay occured only at late times. It would be worth-
while to investigate the matter further by perturbing the
CBD spacetime with an electrodynamic charge by adding
a time dependent contribution to the charge density of
Eq.(100).
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X. APPENDIX A

The CBD field equations arising from the static, spher-
ically symmetric metric Eq.(1) in isotropic coordinates
can be simplified when the following substitutions are
introduced

A (r) =
A (r)

ϕ (r)
⇔ A (r) = ϕ (r)A (r) , (128)

B (r) =
B (r)

ϕ (r)
⇔ B (r) = ϕ (r)B (r) ; (129)

Lemma 1: The reduced field Eqs.(2), (4), (5), the scalar
field wave equation (8), in the Einstein frame are thus
simplified to

B (r)Gtt =
B′′ (r)
B − 3B′ (r)2

4B2 +
2B′ (r)
rB

= − 4πq20
c4r4B (r)

− 2ω + 3

4

(
(lnϕ (r))

′)2
,(130)

B (r)Grr =
1

4

(B′ (r)
B

)2

+
A′ (r)B′ (r)

2AB

+
1

r

(A′ (r)
A +

B′ (r)
B

)

= − 4πq20
c4r4B (r)

+
2ω + 3

4

(
(lnϕ (r))

′)2
,(131)
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B (r)Gθθ =
A′′ (r)

2A +
B′′ (r)

2B − A
′ (r)2

4A2

−B
′ (r)2

2B2 +
1

2r

(A′ (r)
A +

B′ (r)
B

)

=
4πq20

c4r4B (r)
− 2ω + 3

4

(
(lnϕ (r))

′)2
,(132)

and the scalar field satisfies
(
r2 (A (r)B (r))

1
2 (lnϕ (r))

′
)′

= 0. (133)

The reduced field equations (130), (131) and (132) are
linearly dependent, and satisfy the condition



(
d
dr + A′(r)

2A + 2
r

)
Eq.(131)

−A
′(r)
2A Eq.(130)− 2

(
B′(r)
2B + 1

r

)
Eq.(132)


 = 0.

(134)
Using Lemma 1 and introducing appropriate boundary

conditions at spatial infinity r → ∞ , the static spheri-
cally symmetric electrovac Brans-Dicke spacetimes met-
ric in isotropic coordinates is characterised by the non-

trivial Maxwell tensor component F01 = − cV
′
0e
A(r)−B(r)

r2

and the following system of three boundary-value or-

dinary differential equations on: (I) (A (r)B (r))
1
2 , (II)

lnϕ (r) , and (III) (A (r))
− 1

2 .
The sum of the modified reduced field equations

(131) and (132) yields a second order equation on

(A (r)B (r))
1
2 :

(
r3
(

(A (r)B (r))
1
2

)′)′
= 0, (135)

This can be integrated twice to give

r2 (A (r)B (r))
1
2 =

(
ar2 − b

)
; (136)

⇔ (A (r)B (r))
1
2 =

(
a− b

r2

)
,

where a and b are real arbitrary constants of integration.
However, because when a = b = 0, the metric becomes
singular we exclude the case when both the real constants
a and b vanish, ie.

ab = 0⇒




a = 0, b 6= 0

or
b = 0, a 6= 0

. (137)

The modified scalar field wave equation (133) can be
expressed as a total derviative

(
r2 (A (r)B (r))

1
2 (lnϕ (r))

′
)′

= 0. (138)

The formal solution of Eq. (138) can be expressed in
terms of Eq. (136) in the following form

(lnϕ (r))
′

=
ϕ1

b
(
a
b r

2 − 1
) , (139)

where the constant of integration ϕ1 is an arbitrary real
number. Integrating Eq. (139), the formal solution of
the scalar field is expressed as

ϕ (r) = ϕ0 exp

(
ϕ1

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))
, ϕ0 > 0,

(140)
where, without loss of generality, the constant of inte-
gration ϕ0 is real and positive. Since the product ab,

determined by boundary conditions, can be T 0, i.e.,

ab T 0, (141)

the terms
√
ab and

√
a
b can be either real or imaginary as

the function ϕ1

2
√
ab

ln

(√
a
b r−1√
a
b r+1

)
will always remain real,

and hence the scalar field ϕ (r) likewise will always re-
main real. In this sense, the solution (140) is said to be
formal.

Using Eq. (136) the modified reduced field equation
(131) can be rewritten in the form

(A′ (r)
2A

)2

=
ϕ2
1

b2
(
ar2

b − 1
)2
(

4πq20
c4ϕ2

1

A (r) +

(
4ab

ϕ2
1

− 2ω + 3

4

))
.

(142)
After some manipulation we are able to obtain a first

order second degree differential equation on
(

κ
Q2A(r)

) 1
2

d
dr

(
−
(

κ
Q2A(r)

) 1
2

)

√
1 + κ

Q2A(r)

=
d

dr

(
ϕ1
√
κ

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))

(143)

where

κ+Q2A0 > 0. (144)

where we have defined the auxillary constants as follows

κ : =
4ab

ϕ2
1

− 2ω + 3

4
, (145)

Q2 : =
4πq20
c4ϕ2

1

. (146)

Equation (143) can be solved to give, after some algebra,
the following

A (r) = A0



p2+ exp

(
−ϕ1

√
κ

2
√
ab

ln

(√
a
b r−1√
a
b r+1

))

+p2− exp

(
ϕ1
√
κ

2
√
ab

ln

(√
a
b r−1√
a
b r+1

))




2

,(147)

A0 : =
A0

ϕ0
> 0, (148)
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where the positive constant A0 > 0 is determined by the
boundary condition on A (r) and the auxillary constants
are

p2+ =
1

2

(√
1 +

A0ϕ0Q2

κ
± 1

)
. (149)

If we define

N (r) : = p2+ exp

(
−ϕ1

√
κ

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))
(150)

−p2− exp

(
ϕ1
√
κ

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))
, (151)

then we are able to give A (r) succinctly in the following
form

A (r) :=
A (r)

ϕ (r)
=

A0

exp

(
ϕ1

2
√
ab

ln

(√
a
b r−1√
a
b r+1

))
N2 (r)

.

(152)
The limit of N (r) when κ→ 0 is found to be

N (r) = 1−
√
A0ϕ0

(
Qϕ1

2
√
ab

ln

(√
a
b r − 1√
a
b r + 1

))
, κ = 0.

(153)
Substituting Eq.(152) into Eq.(136), we obtain the for-

mal expressions for the metric coefficient B (r)

B (r) :=
B (r)

ϕ (r)
=

a2

ϕ2
0A0

(
1− b

a
1
r2

)2
N2 (r)

exp

(
ϕ1

2
√
ab

ln

(√
a
b r−1√
a
b r+1

)) .

(154)
From the above and Eq. (9) the formal expression for
the electrostatic force field is thus

V ′ (r) =
c2Qϕ1√

4π

A0ϕ0

a
(
r2 − b

a

)
N2 (r)

. (155)

Appendix B

The constants of integration are related to the BD pa-
rameters given in [3] so that one may compare the CBD
solutions and their degenerate solutions to the known BD
solutions.

The metric coefficients A (r) and B (r) in equations
(12) and (14) have exponents

1

λ
:= − ϕ1

4
√
ab

(
1 + 2

√
κ
)
, (156)

which appear in the products ϕ (r)N2 (r) and ϕ(r)
N2(r) .

From the scalar field we can establish the following cor-
respondence

C

λ
:=

ϕ1

2
√
ab
. (157)

so that

C2

λ2
=

ϕ2
1

4ab
, (158)

By Eq. (156), the parameter

C =
ϕ1

2
√
ab
λ =

− ϕ1

2
√
ab

ϕ1

4
√
ab

( 1 + 2
√
κ)

= − 1

1
2

(
1 + 2

√
4b
a

(
a
ϕ1

)2
− 2ω+3

4

) (159)

Using Eqs.(156) and (159), we are able to prove the
identity

λ2 ≡ ω + 2

2
C2 + C + 1

=
2ω + 3

4
C2 +

(C + 2)
2

4
, (160)

which was first introduced in [3] and was extended to
other branches of solutions in [46]. Consider the recipro-
cal of Eq.(157):

4ab

ϕ2
1

=
λ2

C2
=

1

C2
+

1

C
+
ω + 2

2
, (161)

which is a quadratic equation in 1
C . Since

ab ∈ R, ϕ2
1 ≥ 0, (162)

we have

λ2

C2
=
ω + 2

2
+

1

C
+

1

C2
T 0, (163)

depending of the sign of the product ab T 0.

Additionally, the auxillary parameter k = C+2
2λ as used

in [1] and [47] is related to the present notation employed
in this paper via the following

k =
ϕ1
√
κ

2
√
ab
. (164)

The correspondence between the Brans-Dicke con-
stants [46] and the integration constants used here (CBD)
is given in Table IV:

Using Eq. (160), we have the auxillary constant

ϕ2
1κ

4ab
= 1− 2ω + 3

4

ϕ2
1

4ab

=
(C + 2)

2

λ2
. (165)

Note that the CBD constants of integration are real:
{a, b, ϕ1, Q} ∈ R, {ϕ0, A0} ∈ R+; while the Brans-
Dicke type parameters

{
e2α0 , e2β0 , B2, Q

}
∈ R, {φ0} ∈
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CBD Brans-Dicke Brans-Dicke CBD
a

√
φ0e

α0+β0 e2α0 A0

b
√
φ0e

α0+β0B2 e2β0 a2

ϕ0A0

A0 e2α0 B2 b
a

ϕ0 φ0 φ0 ϕ0

ϕ1
2C
λ

√
φ0Be

α0+β0 C −
ϕ1

2
√
ab

1
2

(
ϕ1±2

√
κ

2
√
ab

)

TABLE IV: Corrspondence between CBD integration
constants and Brans-Dicke constants

R+, {C} ∈ C, although C2

λ2 =
ϕ2

1

4ab ∈ R with λ2 =
ω+2
2 C2 + C + 1. By comparing the Brans-Dicke param-

eters with the CBD constants of integration we are able
to shed some light on the physical interpretation of the
former. We are able to extrapolate that the parameter

ϕ1

2
√
ab

=
C

λ
(166)

is the ratio of strength of the scalar field

ϕ1

2a
=

2BC

λ
(167)

to the strength of the gravitational field

√
b

a
= B. (168)

The auxillary parameter N(r) is related to the param-
eter η(r) of [1] and [47] via the following

N(r) := η(r)

(√
a
b r − 1√
a
b r + 1

)−ϕ1
√
κ

2
√
ab

, (169)

where η(r) can be expressed in the more generalized
notation used in this paper as

η(r) = p2+ − p2−

(√
a
b r − 1√
a
b r + 1

)ϕ1
√
κ√

ab

. (170)
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Chapter 5

Conclusion

The aim of this body of research was to study the stability of static spherically symmetric

electrovac BD spacetimes. We have been successful in giving, for the first time, a form

of the static, spherically symmetric electrovac BD spacetimes that is reducible to all

three independent classes of the BD spacetime as given in [8]. We have been able to

prove that a class of the CBD metric, the BDRN metric, is also reducible to the Reissner-

Nordström spacetime in the absence of a scalar field, and to the Schwarzschild spacetime

in the absence of both charge and scalar fields. We have paid particular attention to the

BDRN metric as it seems physically relevant in the context of its degeneracy.

To study the stability of the BDRN spacetime, and later the CBD spacetime, we elec-

trostatically perturbed it with a point charge. In order to find an exact, closed-form

solution we generalized a method introduced nearly a century ago by Copson by which

we were able to convert the partial differential equation on the electrostatic potential

into a solvable ordinary differential equation. Additionally, we introduced a bound-

ary condition that proved to be sufficient in ensuring that the resultant solution was

representative of a single perturbing charge. In this way we were able to find an ex-

act, closed-form solution for the electrostatic potential generated by a single perturbing

charge in a BDRN, and later CBD, spacetime. We found that the BDRN, and the CBD

spacetimes in general, are stable under electromagnetic perturbations.

Through the introduction of a transformation formula we were able to express the

BDRN, and later CBD, spacetime in Schwarzschild-type coordinates. In doing so we

discovered the presence of an additional S2 singularity which is the analogue of the

singularity at the origin for the Reissner-Nordström spacetime. This singularity is in

addition to the generalized inner and outer “horizons”. We find that, as expected, this

singularity does not manifest as an S2 singularity in the degenerate spacetimes due to

the range of the parameters and is thus unique to the BDRN spacetime.
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Through the graphical representation of the equipotential surfaces generated by the

perturbing point charge in the BDRN spacetime we were able to discover a mechanism by

which equilibrium can be achieved. In the uncharged BD and Schwarzschild spacetimes

the singularity exhibits dipole behaviour as a direct consequence of the presence of the

perturbing point charge. The interpretation of this dipole behavior is as follows: the

dipole nature of the singularity creates an induced charge on the outer “horizon” while

maintaining an overall zero charge and zero net electric flux.

In the charged spacetimes (BDRN and Reissner-Nordström) we find that in addition

to the dipole-like singularity there appears an image charge located inside the inner

“horizon”, r−. We can interpret the image charge thusly: an image charge within

the inner “horizon” of the BDRN and Reissner-Nordström backgrounds arises from the

interaction between the perturbing charge and the background charge.

We were able to show through the curvature invariants that only the CBDII− spacetime

permits black holes or wormholes when ω < −2, and it is worthwhile, and indeed,

pertinent to investigate whether it is representative of wormholes or black holes or both.

In regards to wormhole investigations, the CBD metric lends itself quickly to Morris-

Thorne canonical form [14] from which the redshift function Φ(R) and the shape function

b(R) can be determined, where R is the new radial coordinate and is related to r through

a transformation equation. From the shape and redshift functions one can find the min-

imum allowable radius Rmin which represents the wormhole throat. If the wormhole

Rmin is real and the redshift function is nonsingular for all Rmin < R and finite every-

where then it can be inferred that a two way traversable wormhole is possible. Of course

there are several other factors that must be considered also. First, the Weak Energy

Condition (WEC), must be violated for wormholes to exist [14]. The energy density of

the wormhole material, ρ(R) is given by

ρ(R) = (8πR−2)(
db

dR
. (5.1)

It is therefore a trivial matter to determine the condition upon the metric parameters

for which the energy density is negative. Although a wormhole may be theoretically

traversable this does not mean that it is suitable for interstellar (or time) travel. To

determine whether a wormhole is suitable for a human traveller several factors must be

taken into consideration. The tidal forces upon and the acceleration experienced by the

human traveller must be acceptable levels (around 1 Earth gravity) and finally for travel

through a wormhole to be practical the journey time should be of a reasonable length

(the acceptable range is around 1 year [89]). It would be interesting and meaningful

to study two way traversable CBD wormholes in this context. These conditions are

all fairly easy to verify in the manner already done by several researchers for the BD



Conclusion 89

spacetime, for example, [83], [90], and [91] (See Section 1.5 for a more comprehensive

literature review).

Of course if the possibility of CBD wormholes is established, the discussion can be taken

further and the amount of exotic matter required to produce the wormhole could be

investigated. As exotic matter seems troublesome, it can be understood that the less

one requires to build a wormhole the more physically viable a wormhole becomes [14]. In

order to limit the amount of exotic material required three scenarios that are proposed:

1. use exotic material throughout the wormhole, but require the density of it to fall

of drastically the further one moves away from the throat. 2. Use exotic material but

cut it off completely at a given radius. Or 3. Use exotic material for a tiny central

region around the throat. The energy density profiles for each of these three scenarios

are different and it would be meaningful to investigate whether any of them could give

rise to realistic CBD wormholes.

Of personal interest, and a direct extension of the research conducted in this thesis, would

be to study the stability of the wormhole to perturbations in the manner of Boisseau

and Linet [93]. A spacecraft traversing the wormhole can be considered a perturbation

of the wormhole and thus it would be pertinent to first determine the stability of the

spacetime to something smaller, such as an electrostatic charge!

There are other directions the research contained in this thesis could pursue. One such

avenue is to allow the perturbing charge to have time dependency such that the pertur-

bation would be electrodynamic. It would be straightforward to add time dependency to

the perturbing charge by adding a δ function on time to the right hand side of Eq.(34)

of Paper 1, Chapter 2. In this way, one could see how the electric potential of the

charge varies with time and how the equipotential surfaces behave inside the horizon

with the passage of time. We can investigate and extend to the CBD spacetime, the

results of [102] and [103] who found that linear electromagnetic perturbations of extreme

Reissner-Nordström black holes are unstable at late times.

Another natural step forward would be to extend the results of this research to Bergmann-

Wagoner-Nordtvedt (BWN) theory where the coupling parameter ω is allowed to be a

function of the scalar field ϕ. Closed-form solutions for the Barker and Schwinger sub-

cases of the static, spherically symmetric, electrovac BWN spacetime were found by

Singh and Singh [51] following the manner of Luke and Szamosi who found a subclass

of the electrovac BD spacetime [42]. However, their resulting metric, like Luke and

Szamosi’s, was incomplete in that they were unable to determine any physical interpre-

tation for the constants of integration. It is entirely possible that, like Luke and Szamosi,

who were only able to find four solutions of the CBD spacetime, Singh and Singh may

have unknowingly excluded several classes of solutions as well. It seems pertinent to
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replicate the study of the BWN theory following the procedure of this research where

the field equations are integrated directly without placing any restrictions or assump-

tions on the parameters except for boundary conditions at infinity. In this way, the full

class of solutions can be obtained. Of course there is no reason to restrict our investiga-

tion to the Barker and Schwinger subcases and a following investigation would involve

the generalized static spherically symmetric electrovac BWN spacetimes.

The CBD spacetime discussed throughout this body of research has been without the

presence of a cosmological constant. It is altogether possible to investigate charged

Brans-Dicke spacetimes with the addition of a cosmological constant in the Lagrangian

as given by Eq.(1.2) of Chapter 1. The BD field equations and the scalar field equation

are both supplemented by a term arising from Λ. A consequence of the addition of the

cosmological constant in the Lagrangian Eq.(1.2) is that the universe is now described as

being static [4]. Clearly this is not in agreement with obversational data. If one moves

from the Jordan frame to the Einstein frame however this inconsistency is removed and

the universe appears to be expanding as desired. Thus BD theory with the presence

of the cosmogical constant may still be physically interesting. It is intriguing to see

if the field equations with this extra term can be integrated in the way we were able

to demonstrate for the electrovac BD field equations in this thesis. Furthermore, if we

are able to find a solution for the field equations it would be fascinating to see how

the presence of the cosmological constant will affect the form of the partial differential

equation on the electrostatic potential of a perturbing charge and to see whether the

Copson-Hadarmard method developed in Chapter 2 may still be applicable.
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