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Abstract

Today is the era of ubiquitous mobile computing, heralded by the massive proliferation of

GPS-enabled smartphones. The smartphone combined with cheap network bandwidth has

seen map-based services become an essential part of daily life for many people. The key

to many of these map-based services is to efficiently locate the nearest points of interest

(POIs) through the road network. For example, a ride-hailing application locates the

nearest drivers to a user’s location by their road network travel time.

Consequently, POI search in road networks has recently become a popular area of

scientific endeavor. However, we find that heuristics used to guide POI search have not

been carefully considered. We first revisit a simple Euclidean heuristic in a thorough ex-

perimental investigation into the state-of-the-art for the road network k Nearest Neighbor

(kNN) query. To our surprise, with a simple improvement, we find this long-forgotten

heuristic outperforms the state-of-the-art. Moreover, we find that the Euclidean heuris-

tic can even replace and improve some of the more complex dedicated heuristics used by

state-of-the-art techniques (namely the G-tree and Distance Browsing techniques).

This surprising observation forms the thread we weave through our study. We identify

the simple Euclidean heuristic as an example of a broader family of decoupled heuristics

that use a separate technique to compute network distances. This paradigm has several

underrated benefits, for example being able to easily leverage 60-years of research into

network distance computation. We confirm that Euclidean distance is a less effective

heuristic in certain scenarios (like travel time), making its superior performance on kNN

queries in that setting even more remarkable. Motivated by this, we propose alternative

decoupled heuristics based on landmarks and techniques to overcome the challenges in

using them efficiently, to further improve kNN querying.

We show that the decoupled heuristic paradigm has broad applications in POI search

by creating a framework to answer spatial keyword queries. In doing so, we can overcome
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the disadvantages experienced by all other techniques for road network spatial keyword

queries from the use of keyword aggregation. We also show that, while the paradigm itself

is simple, it can incorporate more complex heuristics. This is demonstrated through our

more sophisticated heuristic for efficient Aggregate kNN querying, which exhibits different

properties to regular kNN queries due to the presence of multiple query locations. Across

the board, our techniques are orders of magnitude faster than the state-of-the-art on a

vast majority of experimental settings and real-world datasets. Ultimately, we provide

strong evidence for a better direction in heuristic development for POI search.
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Chapter 1

Introduction

Research is to see what everybody else has seen and to think what

nobody else has thought.

Albert Szent-Gyorgyi

We are in the age of ubiquitous mobile computing, heralded by the massive proliferation

of GPS-enabled devices. According to market research, over 3 billion smartphones were in

use by the end of 2018 [New18]. This omnipresence of smartphones combined with cheap

network data has driven a surge in the adoption of map-based services in day-to-day life.

For example, according to Pew Research, 90% of smartphone users in the US utilize map

applications such as Google Maps [And16]. These map-based services perform a wide

range of roles in our daily activities, such as getting us from point A to B, helping us find

the nearest Thai restaurant, or hailing a ride-sharing vehicle. Consequently, the efficiency,

quality, and capabilities of the algorithms and data structures that enable, and support

map-based services have been an important area of scientific research.

The key to many map-based services lies in issuing queries related to the road network.

For example, an on-demand transport app, like the one shown in Figure 1.1, needs to locate

the nearest drivers to a user’s location by the estimated time of arrival. This, in turn,

depends on the travel time of the fastest road network route from each available driver. To

solve these problems algorithmically, the road network is most commonly represented as

a graph like the example depicted in Figure 1.2. We define the road network graph more

formally shortly, but using the graph representation of a road network allows the fastest

route and its travel time to be computed through graph algorithms such as Dijkstra’s

famous shortest path algorithm [Dij59].
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2 Road Network: A Formal Definition

Figure 1.1: Uber: An On-Demand Ride-Hailing Application

These shortest path queries have received a significant amount of attention, with 60-

years of research resulting in an array of increasingly advanced techniques. More recently,

the problem of finding points of interest (POIs) in the road network has spawned a wide va-

riety of new queries, which have not received nearly as much attention. These queries have

arisen specifically to meet the needs of map-based services, such as on-demand transport,

which cannot be met by traditional Euclidean POI search methods.

Given the incredible growth in demand for map-based services and the huge throughput

required to meet it, any new technique must be as efficient as possible. We model the road

network as a graph and provide an overarching formal definition in Section 1.1. In Section

1.2, we describe the challenges faced in pursuing this goal and briefly introduce some

popular POI search queries. In Section 1.3, we introduce the key insights that form the

backbone of our hypotheses. Section 1.4 presents the main contributions made by this

thesis to POI search. Lastly, Section 1.5 outlines the thesis organization.

1.1 Road Network: A Formal Definition

We use the definition of a road network as a connected undirected graph G = (V,E), where

V is a set of vertices and E is a set of edges. Vertices in V generally represent real-world

intersections and the edges in E represent the road segments connecting vertices. Each
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s

t

(a) Vertices Visited by Dijkstra
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(b) POIs by Euclidean vs. Network Distance

Figure 1.2: Example Road Network Graph

edge (u, v) ∈ E, where u, v ∈ V are adjacent vertices, is also associated with a weight

w(u, v) ∈ R>0 representing the length of the road segment between its endpoints. In fact,

this “length” may not represent physical distance at all but could be one of a multitude

of highly useful metrics, e.g., the time taken to traverse the edge or the toll cost. This

model allows the application of graph algorithms to solve real-world user queries, such

as using Dijkstra’s algorithm [Dij59] to answer shortest path queries. The shortest path

P (u, v) between vertices u, v ∈ V represents the sequences of edges connecting u and

v with the minimum sum of weights. The shortest path distance, or network distance,

d(u, v) represents the sum of the weights of the edges in the shortest path P (u, v). Figure

1.2 depicts two sample road networks. In the case of Figure 1.2(a), there are 24 vertices

indicated by the circles and 28 bi-directional edges indicated by straight lines connecting

the circles. Note that a single line represents a bi-directional edge, i.e., implying both

(u, v) and (v, u). We will use this definition of road networks throughout our study.

1.2 Motivations

Let us consider, for the moment, the shortest path distance query. This query computes

the network distance between a source vertex s and destination vertex t in a graph G with

s, t ∈ V . That is, it computes the minimum sum of weights over all sequences of edges in

G connecting s and t. This sequence is also known as the shortest path. One approach is

to simply use Dijkstra’s classic algorithm, which will compute a result in O(n log n) time

(where n = |V |). However, this involves visiting every vertex that is closer to the source

than the destination, resulting in unacceptable response times of up to tens of seconds

3



4 Motivations

[Wu+12]. Let us consider the example road network in Figure 1.2(a). Assuming unit

edge-weights, using Dijkstra’s search to find the shortest path from vertex s to vertex t

involves visiting at least the green (solid colored) vertices, and potentially all the orange

(vertical striped) vertices as well, before the search can terminate. In contrast, if we

pre-compute the distance between every pair of vertices in the road network in an offline

pre-processing phase, the online query can be answered in O(1) time. But this entails the

creation of an index typically requiring O(n2 log n) pre-processing time and O(n2) space.

To put this into perspective, for the continental US road network where the number of

vertices n is 24 million1, this is estimated to consume 1.2 petabytes in storage [Bas+15]

and take 45 days to compute using a parallelized algorithm on a server with 48 cores

[Del+11]. The challenge faced by researchers following Dijkstra has been to develop an

indexing method with the ideal compromise between these two extremes, minimizing both

pre-processing cost and query time.

Naturally, this indexing dilemma is similarly faced by POI search techniques in road

networks as they also involve computing network distances to POIs like ride-sharing vehi-

cles or bottle shops. In fact, searching for POIs involves additional challenges. Not only

must we compute the network distance to target POIs efficiently, but we must also only

do so to the POIs that are actual results, potentially among thousands of non-result POIs.

For example, it is easy to imagine multiple target vertices in Figure 1.2(a) resulting in

even greater numbers of vertices being visited. To avoid this problem, applications may

consider using POI search techniques in Euclidean space such as R-trees [Gut84]. How-

ever, Euclidean distance (i.e., “as the crow flies”) cannot support other metrics like travel

time, which is a more accurate measure of a POI’s proximity to a user. Let us demon-

strate using Figure 1.2(b). Assume the edge-weights for this example road network are

physical distance and are drawn to scale. Imagine vertices o1 and o2 are gas stations near

a user at vertex q. o2 is closest by Euclidean distance (dotted lines with arrows). However,

by network distance (thick edges) o1 is clearly closer. While Euclidean distance may be

sufficient for some applications, in an age where users are demanding greater accuracy

from a crowded marketplace and in extremely time-sensitive applications like on-demand

transportation where time costs money, this is simply not possible. Moreover, POI search

in road networks is a relatively new area of research and has not received the same amount

1According to datasets provided by the 9th DIMACS Challenge found at http://www.dis.uniroma1.

it/%7Echallenge9/, which are based on data collected by the U.S. Census Bureau
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Introduction 5

of attention as shortest path computation. Hence these increasingly important queries are

the subject of our research.

1.2.1 Types of POI Search Queries on Road Networks

In this section, we describe three prominent types of POI search queries that we study in

this thesis and highlight their importance in the context of map-based services.

kNN Queries on Road Networks

A k Nearest Neighbor (kNN) query returns the k nearest objects (POIs) to a query location

by network distance. For example, a user may wish to find the nearest Thai restaurants or

a ride-hailing app may want to locate the nearest driver to the user’s location. Formally,

given a query vertex q and a set of object vertices O ⊆ V , a kNN query retrieves the set

of k objects in O closest to q by their network distances. Figure 1.3 shows our running

example road network with four object vertices o1 to o4 with thick borders. Assuming

unit edge-weights, a 2-NN query issued from query vertex q would retrieve o4 and o2 with

network distances 2 and 3, respectively.

q o1

o2

o4

o3

Figure 1.3: k-Nearest Neighbors on a Road Network

Spatial Keyword Queries on Road Networks

POIs are often associated with rich textual descriptions. In this setting, users want to

locate POIs by their textual similarity to their desired keywords as well as the spatial

proximity to their location. To meet this need, a Boolean kNN (BkNN) query retrieves

5



6 Key Insights

the nearest POIs by network distance whose keywords satisfy some Boolean logic, e.g.,

POIs that contain all query keywords in conjunctive BkNN queries. On the other hand,

users may be willing trade-off proximity for similarity (and vice versa). This scenario is

handled by top-k spatial keyword queries, which retrieve POIs ranked by a score that

combines their network distance and textual similarity. In this way, a user can choose

a less relevant POI to their desired keywords if it is close enough to their location. For

example, a user may search for a POI that matches keywords “Thai, restaurant, delivery”,

but may be willing to compromise on keyword “delivery” if the restaurant is close enough

to travel to.

Aggregate kNN Queries on Road Networks

While the queries described so far involved one user at a single location, POI search is not

necessarily limited to this setting. Aggregate k Nearest Neighbor (AkNN) queries involve

multiple users at different locations and retrieve POIs by their aggregate distance. This

distance is computed by aggregating the network distances to the POI from each user

according to some aggregate function. For example, a group of friends may wish to locate

the pub that minimizes the maximum travel time for the group. Specifically, given a set

of query vertices Q ∈ V , a set of object vertices O ∈ V , and an aggregate function agg, an

AkNN query retrieves the k objects in O which minimize the aggregate network distance

from each query vertex q ∈ Q to the object according to function agg.

1.3 Key Insights

Let us frame finding POIs as a heuristic search problem. Then, our goal is to search

the road network graph for POIs matching the user’s query, e.g., the nearest by network

distance to the user’s location. There are two factors that affect the performance of this

search. First, it is affected by the efficiency of computing network distances to POIs

that we find. Second, it depends on the efficiency of the heuristic, i.e., the ability of

the heuristic to find POIs that are actual results and avoid those that are not. These

two factors combine to give the overall performance. Clearly, an inaccurate heuristic

has a compound effect on overall performance, as it results in wasted network distance

computations. We observe that past work on POI search has not considered the interplay
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Introduction 7

between these factors in-depth. In particular, we find that heuristic efficiency has not

been thoroughly considered or investigated. For example, G-tree [Zho+15; Zho+13], one

of the state-of-the-art techniques to answer kNN queries, proposed a novel and interesting

heuristic using the minimum distance to subgraphs in its road network index without

comparing the effectiveness against simpler heuristics. Motivated by this observation, the

focus of our study is to first understand heuristic efficiency in POI search and then to

develop better heuristics for popular POI search queries.

A better understanding of heuristic performance leads us to a second key insight.

One strategy to solve POI search problems is to decouple the heuristic from network

distance computation. As it turns out, even using this strategy with simple heuristics like

Euclidean distance often outperforms more complex state-of-the-art heuristics (as detailed

in Chapter 3). Decoupling network distance computation also enables us to leverage

the 60-years of shortest path research that has produced exceedingly fast techniques.

Moreover, the effectiveness of these decoupled heuristics has a greater likelihood of passing

the test of time as any future improvements to network distance computation can be easily

incorporated. We show that this simple paradigm forms a viable and effective platform to

develop new indexing and query processing techniques to efficiently answer a wide variety

of POI search queries. Moreover, this is achieved in a manner where heuristic efficiency

can be quantitatively studied, as we show in our experimental comparisons.

1.4 Contributions

We now outline the contributions made by this thesis to several types of important POI

search queries including the associated research outputs in terms of publications.

1.4.1 k Nearest Neighbor Queries

In our review of past work on k Nearest Neighbor (kNN) queries on road networks, we

found that the efficacy of a long-forgotten technique [Pap+03] using a simple decoupled

POI search heuristic using Euclidean distance had never been properly investigated. Mo-

tivated further by other discrepancies and gaps in past experimental comparisons, we

present an in-depth experimental comparison of state-of-the-art kNN techniques. While

making numerous improvements, we implemented all methods from scratch to obtain as

7



8 Contributions

fair a comparison as possible. To our surprise, the neglected technique based on a simple

Euclidean heuristic outperformed the state-of-the-art on most experimental settings. The

overarching implication of this result, and the driving force behind this thesis, is that

existing heuristics are not as effective as they could be. We also observed the drastic

effect implementation in main memory has on query performance. We demonstrate how

a bad implementation can make it impossible to determine which heuristics work better.

In response, we provide guidelines for future implementers to avoid common pitfalls and

produce more reliable experimental results. In fact, these observations apply to all query

processing techniques, not just POI search. This work [ACT16b] has been peer-reviewed

and published in the Proceedings of the VLDB Endowment (PVLDB) 2016. An extended

version [ACT16a] with additional experiments and full documentation of our improvements

made to each method has been uploaded to arXiv. An extended abstract based on the

PVLDB paper, written from the perspective of the AI heuristic search community, was

published in the Annual Symposium on Combinatorial Search (SoCS) 2018 [ACT18].

We identify the simple Euclidean heuristic mentioned above as part of a broader class

of decoupled heuristics, which use a heuristic to retrieve candidate POIs and another

technique to compute their network distances. In the case of the neglected technique,

Euclidean distance is used as a lower-bound network distance to retrieve candidate objects

until all kNNs are found. One of the reasons its performance was so surprising is because

Euclidean distance is not an accurate lower-bound for network distance, e.g., when travel

time is concerned [GH05]. To improve on this, we propose a different heuristic using tighter

lower-bounds based on landmarks and POI candidate generation using a partitioning of

the road network. In our extensive experiments we show that the proposed heuristic

outperforms the Euclidean method both in terms of traditional query performance and

heuristic efficiency. This research was peer-reviewed and appeared in the International

Conference on Database Systems for Advanced Applications (DASFAA) 2017 [AC17].

1.4.2 Spatial Keyword Queries

As discussed earlier, POIs are often associated with rich textual descriptions. Spatial key-

word queries search for POIs by considering both spatial proximity and textual relevance

to a set of keywords specified by the user. We observe that all existing spatial keyword

8
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query techniques on road networks use a keyword aggregation strategy that is disadvan-

tageous on road networks. Inspired by the decoupled heuristic paradigm, we present a

flexible framework using a keyword separation approach combined with a novel heap data

structure that delays and avoids expensive operations. We also propose new techniques

including a new data structure to ease the impractical pre-processing costs normally asso-

ciated with keyword separation, resulting in an index that is viable and even lightweight.

Our query algorithms are up to two orders of magnitude more efficient than the state-of-

the-art. Our in-depth experimental investigation shows that this is true for various spatial

keyword queries, parameter settings, and real-world road network and keyword datasets.

This work has been accepted for publication in IEEE Transactions on Knowledge and

Data Engineering (TKDE) 2019 [ACK19].

1.4.3 Aggregate k Nearest Neighbor Queries

Aggregate k Nearest Neighbor (AkNN) queries retrieve POIs by aggregating the network

distances from a group of users according to some aggregate function. Naturally, kNN

query results will be in the vicinity of the single user’s location and expansion-based

heuristics like the one we propose in Chapter 4 are highly effective based on this intuition.

However, this assumption is not necessarily true for AkNN query results due to multiple

users being present. The results are unlikely to be in the vicinity of any single user,

and a hierarchical approach is more intuitive. We propose a decoupled heuristic based on

hierarchically traversing subgraphs of the road network by accurate landmark-based lower-

bounds to efficiently answer AkNN queries. Moreover, we observe an interesting property

of our COLT data structure for convexity-preserving aggregate functions that allows us

to significantly improve heuristic efficiency and consider fewer candidates. The result is

an orders of magnitude improvement in both query performance and heuristic efficiency,

as demonstrated in our detailed experimental investigation. In the wider context of the

decoupled heuristic paradigm, we show that it is possible to further improve POI search

by incorporating more sophisticated heuristics in the simple paradigm, like the one we

propose.

9



10 Thesis Organization

1.5 Thesis Organization

The organization of the remainder of this thesis is outlined below.

• Chapter 2 reviews the literature related to road network algorithms, including

shortest path computation and POI search.

• Chapter 3 covers our experimental investigation into state-of-the-art k Nearest

Neighbor query techniques on road networks [ACT16b; ACT16a].

• Chapter 4 presents an improved heuristic to find kNN results based on landmark

lower-bounds [AC17], directly influenced by our surprising findings regarding decou-

pled heuristics in Chapter 3.

• Chapter 5 describes our flexible K-SPIN framework [ACK19] which leverages the

decoupled heuristic paradigm and an improved indexing strategy for keywords to

efficiently answer various spatial-keyword queries on road networks.

• Chapter 6 presents a more sophisticated decoupled heuristic to answer aggregate

kNN queries using a novel data structure for efficient hierarchical traversal of the

road network graph [AC].

• Chapter 7 summarizes our findings, provides the overarching conclusions of our

work, and some potential directions for future research.

10



Chapter 2

Literature Review

The quest for certainty blocks the search for meaning. Uncertainty

is the very condition to impel man to unfold his powers.

Erich Fromm

In this chapter, we review the existing work in the literature that is most relevant to our

study. Specifically, we first provide a brief overview of the developments in shortest path

computation in Section 2.1, where road network indexing techniques originated. Then in

Sections 2.2 to 2.4, we describe techniques related to each query we study in this work,

as introduced in Section 1.2.1. Finally, we briefly survey some of the other types of POI

search queries in Section 2.5.

2.1 Shortest Path Computation on Road Networks

Computing shortest paths in graphs is a fundamental problem closely related to point of

interest (POI) search in road networks. It all began with the development of Dijkstra’s

algorithm [Dij59] to answer single source shortest path (SSSP) queries. An SSSP query

finds shortest paths to all vertices in the graph G from a source vertex q. The algorithm

works by using a priority queue to store vertices “seen” so far, with the queue element

key being a tentative network distance from the source q. This queue initially contains

the query vertex q with a key of 0. In each iteration the vertex u with the smallest key

is dequeued first, with the key value necessarily being the network distance to u. Now

this distance from q to u is used to “relax” the neighboring vertices of u. That is, if a

neighbor vertex v is in the queue then its key is updated if the distance to v through u

is smaller than the current key. If v is not in queue, then a new element for v is inserted

11



12 Shortest Path Computation on Road Networks

with the distance from q to v through u. Queue elements are also associated with the

predecessor vertex used to compute the tentative network distance, in order to retrieve

the shortest path. But predecessor vertices can be omitted if we are only interested in

computing network distances.

In the context of map-based services and road networks, we are more interested in the

point-to-point (P2P) shortest path query. A P2P query involves computing the shortest

path from a source vertex to a single destination vertex, e.g., to find the shortest route

from our home to our favorite restaurant. Dijkstra’s algorithm is adapted for this problem

by simply terminating when the target vertex is dequeued. However, as discussed in

Section 1.2, this involves visiting every vertex that is closer to the source than the target.

This still leads to a very large search space (as described earlier using Figure 1.2(a)).

Moreover, this search space increases rapidly as the source and target become further

apart. Consequently, the worst-case query time is O(|V | log |V |), depending on the type

of priority queue used and since typically |E| = O(|V |) in road networks. Modifications

have been proposed to reduce the search space, for example, bi-directional Dijkstra’s

search [Poh71] that simultaneously searches forward from the source and backward from

the target (but on the reversed version of the graph) or A* Search [HNR68] which uses

Euclidean distance to prune vertices that cannot be on the shortest path.

2.1.1 Road Network Properties and the Indexing Trade-Off

Even with improvements to the search space, Dijkstra’s algorithm is not efficient enough

for real-world P2P shortest path queries for use in map-based services. For example,

a user is unlikely to tolerate tens of seconds to get a route as reported by Wu et al.

[Wu+12]. Moreover, it is a generalized graph algorithm, not taking advantage of the

unique properties of road networks compared to other graphs. For example, there is a

natural embedding of vertices in Euclidean space, as each vertex corresponds to a real-

world location. Other examples include near-planarity as tunnels and overpasses are not

common and a small average degree as most road intersections tend do have 4 or fewer

outward edges. As a result, road network indexes that exploit such properties have been

created to answer shortest path and other queries more efficiently. The essential idea

is to use some property to create a “summarized” data structure (an index) that can
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be interrogated more efficiently to answer queries. Thus, an index trades offline pre-

processing space and time for faster online query processing. However, this idea is not

without its drawbacks and introduces new challenges in finding an ideal trade-off.

A particularly interesting example is the use of the “path coherence” property in the

Spatially Induced Linkage Cognizance (SILC) index by Sankaranarayanan et al. [SAS05],

which is among the fastest shortest path query techniques [Wu+12]. This technique ex-

ploits the idea that traveling from a source location to any location among a group of

destination locations near each other, will involve traversing much of the same paths. Un-

fortunately, SILC exemplified the potential disadvantages of the indexing trade-off, with

massive pre-processing costs in terms of both time and space. Due to this cost, the SILC

index has never been built for road networks with more than 1 million vertices [SSA08],

which eliminates the possibility of using it on continental sized road networks. Path Co-

herent Pairs Decomposition (PCPD) [SSA09] was an evolution of the SILC index with

O(n) space cost (versus O(n1.5) for SILC). However, in reality, PCPD possessed an even

larger index than SILC in practice due to the presence of hidden constants based on in-

consistent assumptions on road networks [Wu+12]. We will discuss SILC in greater depth

in Section 2.2 as it was later extended to answer kNN queries. In any case, SILC and

PCPD serve to highlight the key challenges involved in creating road network indexes for

map-based services.

2.1.2 Road Network Indexing Techniques

Numerous other road network indexes have been proposed over the last three decades.

However, no method has been able to achieve a trade-off that minimizes the pre-processing

cost while maximizing the query performance [Bas+15]. Among current state-of-the-art

techniques, Contraction Hierarchies (CH) [Gei+08] remains extremely popular. CH works

by first imposing a total order on vertices in the road network graph G based on some

heuristic measuring “importance”. Each vertex is “contracted” one-by-one in order of

increasing importance. Contracting a vertex first involves temporarily removing the vertex

from the graph. Then virtual edges or shortcuts are inserted between the neighbors of the

removed vertex if a shortest path between them passed through the removed vertex. For

example, in Figure 2.1, let us assume the vertices are numbered in order of increasing

importance. v1, v2, v3, and v4 are iteratively contracted without adding shortcuts as no

13



14 Shortest Path Computation on Road Networks

shortest paths go through them. Next, v5 is contracted but the shortest path from v6 to

v9 passes through v5, resulting in the addition of a shortcut between v6 and v9 (indicated

by the blue dashed line). Note this shortcut will have weight equal to the shortest path

distance through v5. Geisberger et al. propose several heuristics for ordering vertices to

reduce the number of shortcuts added. One example is that vertices with high degree

are likely to be involved in a larger number of shortest paths, and therefore are more

important. Afterwards, the P2P query algorithm on the CH index proceeds in a similar

manner to bi-directional Dijkstra’s search, except the search only expands to vertices of

higher importance vertices. The presence of shortcuts preserves the correctness, while the

search space is significantly reduced. CH performs extremely well on real-world datasets

in experiments, however, does not provide any worst-case complexity guarantees. Arterial

Hierarchies (AH) [Zhu+13] was proposed as an improvement on CH while providing worst-

case complexity guarantees on the query time, although does not significantly improve on

CH in practice.

v3
v2

v1

v4

v5

v6

v7

v8

v9

Figure 2.1: Contraction Hierarchies: Road Network Augments by Shortcuts

Transit Node Routing (TNR) [Bas+07] is an alternative index that significantly im-

proves on CH query time at the expense of higher pre-processing cost. TNR works by

creating a distance table based on a special property of road networks. When traveling

from one location to another location that is further away, we tend to leave and enter via

the same vertices. For example, the shortest path when traveling to the city may always

involve taking a certain motorway entrance when departing from a suburb, irrespective of

the starting point within that suburb. TNR exploits this property by imposing a grid on

the road network. For each grid cell, TNR identifies the set of all “access node” vertices,

which are the vertices through which any shortest path leaving the grid cell passes through.

Interestingly, the number of access nodes tends to remain constant, approximately 10 ac-

cording to Wu et al. [Wu+12], regardless of the granularity of the grid. Since the number
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of access nodes is a small constant, it is feasible to pre-compute the distances between the

access nodes from one cell to each access node of every other cell. Now, network distance

queries can be answered by finding the pair of access nodes in the cells containing the

source and destination vertex which give the smallest distance overall. When the source

and destination are not in the same grid cell, TNR essentially provides constant time

querying. However, when the source and destination are in the same grid cell, the query

reverts to Dijkstra’s algorithm. The justification for this is that since the cell is small,

Dijkstra’s search would be limited to a small search space. However, a finer granularity

with a smaller search space results in higher space consumption and pre-processing time

due to the increased number of cells, even if the number of access nodes per cell remains

relatively constant. Thus, while TNR provided exceptional query times for longer shortest

paths, it is not the ideal technique.

Some of the most recent methods have been from the 2-Hop Labeling (also known as

Hub Labeling) family of techniques [Abr+11; Aki+14; Jia+14; DGW13; Ouy+18]. In a 2-

hop labeling index, each vertex u is associated with a label. The label consists of a set of hub

vertices to which network distances from u are known. Given any two vertices, there exists

a common hub, such that the hub lies on the shortest path between the two vertices. The

minimum number of hubs has been shown to be relatively small in practice, resulting in

extremely fast network distance queries [Abr+11]. However, identifying fewer hub vertices

typically requires an all-pairs shortest path computation. The pre-processing time is so

high that most approaches [Abr+11; DGW13] rely on parallel processing to be practicable

for application on continental-sized road networks. In addition, although the number of

hubs is relatively small, multiplying by the total number of vertices results in significantly

larger index sizes [Bas+15]. Akiba et al. [Aki+14] eliminated the need for parallelization by

employing pruned labeling [AIY13]. This approach significantly reduced the pre-processing

time for even continental road networks, at the expense of higher numbers of hubs in labels

and, as a result, larger indexes overall. Hub Label Compression [DGW13] on the other

hand reduces the index size by avoiding redundancy between labels of different vertices.

However, this comes at the expense of pre-processing time and query performance. Ouyang

et al. [Ouy+18] propose a labeling approach that incorporates ideas from hierarchical

indexes like CH to improve query time with comparable pre-processing costs. The myriad
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of relative advantages and disadvantages in all these types of techniques further underline

the challenges of road network indexing.

The type of road network indexing techniques discussed so far, while originating in

shortest path computation, are still highly relevant for answering other types of queries

efficiently. Efficiency is particularly important for POI search as they, unlike P2P queries,

do not specify a target. Any mistake in identifying a target results in additional work

to compute unnecessary shortest paths. This inefficiency is naturally compounded by

any inefficiency in computing the paths themselves. Furthermore, it is not always easy

to adapt or transfer road network indexing techniques to POI search queries. For ex-

ample, Contraction Hierarchies (CH) described earlier is efficient due to its bi-directional

search. But bi-directional search assumes the target is known, which is not true for POI

search. Consequently, using road network indexes like CH for POI search requires careful

thought, especially when it comes to answering them efficiently, as exemplified by Liao

et al. [Lia+15] for CH.

2.2 kNN Queries on Road Networks

First formally defined by Papadias et al. [Pap+03], the kNN query is among the first

POI search queries on road networks. In this section we give an overview of various

kNN techniques. Techniques are sorted into one of three categories, which we present in

chronological order. Initially techniques did not involve any indexing of the road network.

Subsequent techniques created a single index incorporating road network and object set

(POI) information. Finally, state-of-the-art techniques use decoupled indexing that sepa-

rates the road network from the object set. Several techniques will be described in greater

detail in Chapter 3 as part of our experimental investigation into POI search.

2.2.1 Index-Free kNN Techniques

Papadias et al. [Pap+03] introduced the first road network kNN techniques, namely Incre-

mental Network Expansion (INE) and Incremental Euclidean Restriction (IER). Neither

of these techniques in their original form involves indexing the road network. INE is an

extension of Dijkstra’s algorithm with a different termination condition. When an object
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is dequeued by INE it is added to the result set and when k objects are dequeued the algo-

rithm terminates. IER, on the other hand, retrieves Euclidean Nearest Neighbors (NNs)

as potential candidates for the network distance kNNs. Papadias et al. use Dijkstra’s algo-

rithm to compute the network distance to each candidate, thus not requiring any indexing

of the road network. The candidate set is iteratively refined until it cannot be improved

further. While these two techniques did not require any pre-processing, as discussed in

Section 2.1, indexing allows significant gains to be made in query performance and this

direction was taken by subsequent work. Moreover, using Dijkstra’s algorithm with IER

when other faster network distance techniques were available is a curiosity that turns out

to have significant implications for POI search, as we investigate in Chapter 3.

2.2.2 Single Index kNN Techniques

The first techniques that followed INE and IER attempted to use the foreknowledge of O,

the set of objects (POIs), and the road network graph G in a pre-processing step to create

a single index that would aid subsequent online query processing. The first such example,

Voronoi-based Network Nearest Neighbor (VN3) [KS04], computes the network equivalent

of a Voronoi diagram [OBS00] for a given object set to partition all road network vertices

based on its first nearest neighbor (NN). By pre-computing distances between borders of

adjacent Voronoi partitions, VN3 answers queries using the fact the next NN must be in a

Voronoi partition adjacent to the Voronoi partitions of currently found NNs. However, this

technique suffered from significant pre-processing overhead, especially when objects were

sparse. As partitions are not based on minimizing the number of borders, this leads to

the computation of many border-to-border distances, increasing indexing time and space

cost.

Several other techniques were proposed that pre-computed NNs for some or all vertices

in the road network. Distance Indexing [HLL06] pre-computed the NNs for all vertices

and used a compression scheme to reduce the space cost by a factor of 10. Even with such

a reduction, the quadratic space complexity still represented too huge an index cost to be

practicable on larger datasets. UNICONS [CC05] and Islands [HJŠ05] used a parameter

m to limit the number of NNs that were pre-computed for each vertex, but this results in

severely degraded performance when k > m. Nearest Descendant [HLX06] on the other

hand only pre-computes the first NN for each vertex but this is still a significant space
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overhead as there may be many object sets. For example, a different object set may exist

for hospitals, each type of restaurant, hotels, and so on.

The common thread through the techniques discussed in this section is that kNN

queries are answered by first creating a single index by processing both the road network

and an object set together. This is highly disadvantageous as it will not scale well with

greater numbers of object sets. The index space and time cost for each object set will be

a function of |V | even though the cardinality of the object set is generally much smaller

than the number of road network vertices (|V | � |O|). Moreover, we must also reprocess

the entire road network for any change to an object set, which may occur frequently,

e.g., when a new restaurant is opened, or a shop goes out of business. As a result, these

methods are unlikely to be useful in practice, and the current state-of-the-art has moved

towards decoupled indexes, as we discuss next.

2.2.3 Decoupled Index kNN Techniques

To rectify the disadvantages of creating a single index, the latest techniques decouple

indexing the road network from indexing the object set. Thus, the typically far more

expensive pre-processing of the road network need only occur once. One of the first

methods to attempt this was Distance Browsing (DisBrw) [SSA08] utilizing the SILC

shortest path index [SAS05] introduced earlier in Section 2.1. SILC first computes the

shortest path tree for each road network vertex s. Each neighbor of s is assigned a color.

Then every vertex v in the graph is assigned the color corresponding to the neighbor

of s on the shortest path from s to v, i.e., the “first move”. Figure 3.1 illustrates this

for vertex v6. As identified by Sankaranarayanan et al., due to the principle of spatial

coherence, this coloring scheme will create large contiguous regions that can be indexed

by a region quadtree to significantly reduce space cost. Answering shortest path queries

is a simple matter of iteratively accessing quadtrees to determine the next vertex in the

shortest path to a target. DisBrw stores additional information in each quadtree block

to compute a minimum and maximum distance for the whole block. By building an

additional quadtree for the object set (using the Euclidean coordinates of the objects), it

can be intersected with the colored quadtree to visit the most promising regions first and

prune regions that cannot contain objects. However, DisBrw still suffers from the same
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huge pre-processing costs of SILC, in terms of both size and space, making it impractical

on large road networks.

v1
v3 v4

v10
v2 v8

v12

v9

v5
v7 v11

v6

Figure 3.1: SILC: Coloring Scheme and Quadtree for v6 (repeated from page 35)

Lee et al. propose Route Overlay and Association Directory (ROAD) [LLZ09; Lee+12]

to address the weaknesses of INE by creating an index that allows “skipping” of regions

that do not contain objects. This involves partitioning the road network into a hierarchy

of subgraphs or Rnets to a parameterized depth l, as shown with the solid and broken-line

containers in Figure 3.2 for depth l = 3. For each subgraph, shortcut edges are computed

from every border vertex to every other border vertex. Lastly, given an object set, an

Association Directory is built indicating whether an Rnet contains objects or not. Then

kNN queries can be answered by using an algorithm similar to INE. Whenever the search

encounters an Rnet border, ROAD will bypass the largest possible Rnet not associated with

any object, using the shortcuts to preserve shortest path distances. Of course, if no Rnet

at any level of the hierarchy can be bypassed, then the original edges of the vertex are used

to visit adjacent vertices in exactly the same way as INE. In that case, the Rnet checking

is an unnecessary overhead. Hence, ROAD’s superiority over INE greatly depends on the

time saved bypassing Rnets versus the overhead added by traversing shortcuts, which can

be quite small for dense objects sets.

G-tree [Zho+13; Zho+15] is a road network index that partitions the road network

G in a similar way to ROAD. However, unlike ROAD, which terminates partitioning at

a certain depth, G-tree stops partitioning when a subgraph contains a certain number

of vertices. Figure 3.3 shows the hierarchical partitioning of the road network G0 into

G-tree’s subgraphs. The key difference between G-tree and ROAD is G-tree’s use of a

distance matrix. In non-leaf nodes the matrix stores the distance from every subgraph

border to every other border (like ROAD’s shortcuts), while in leaf nodes the matrix
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Figure 3.2: ROAD (repeated from page 36)

stores the distance from every subgraph vertex to every border. The subgraph hierarchy

and distance matrices provide a mechanism for network distances to be assembled using a

dynamic programming algorithm. Moreover, it is also possible to compute a lower-bound

network distance to a subgraph at any level of the hierarchy by computing the distance to

the closest border. Finding kNNs involves traversing the G-tree hierarchy by computing

minimum network distances to the subgraphs which contain objects until reaching a leaf

node where the distance to the object can be computed. This is aided by a secondary index

called an Occurrence List which indicates the subgraphs that contain objects, similar to

ROAD’s Association Directory. Heuristically speaking, G-tree uses the closest border of

a subgraph in the hierarchy to guide the search towards kNNs. It is worth noting that,

unlike decoupled heuristics, this heuristic is dedicated and can only be used in the G-tree

index. But objects may occur quite far from this border, thus it may not always be an

accurate heuristic. Nonetheless, G-tree is shown to outperform all other kNN techniques

that preceded it and incur reasonable pre-processing costs [Zho+13]. Recently, Li et al.

[LCW19] proposed an optimized G*-tree index that improves on the original G-tree by

better handling queries for vertices that are close in the road network but distant in the

G-tree hierarchy.

Decoupled indexing has become the benchmark for kNN query processing. However,

while the pre-processing advantages are obvious, this has naturally come with a cost.

This is particularly true in the case of search heuristics, which is highly relevant to our

study. For example, in the case of G-tree, the minimum network distance to a border of a

subgraph is used to determine whether that subgraph looks promising or not. But since

the partitioning only depends on the road network, it is blind to the presence or location
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Figure 3.3: G-tree (repeated from page 38)

of objects within the subgraph. While Occurrence Lists help determine the presence or

absence of objects, objects may still be quite far from the nearest border of the subgraph

used to guide the search. This is the trade-off that has resulted from decoupled indexing in

that it is more difficult to incorporate object information to help guide kNN search. Liao

et al. [Lia+15] attempted to remedy this by re-processing the Contraction Hierarchy road

network index based on the object set. But this has the same drawbacks as single index

techniques and is not a scalable solution when there are many object sets. Therefore, this

dilemma warrants further study.

2.3 Spatial Keyword Queries on Road Networks

Spatial keyword queries, also known as spatio-textual queries, involve combining textual

similarity and spatial proximity to find objects (POIs). Compared to kNN queries, they

involve finding the nearest and relevant objects, where relevance is measured by the sim-

ilarity of keywords associated with the object to some input keywords specified by the

user. This is advantageous in cases where it is laborious to sanitize and categorize ob-

jects into object sets as required by kNN querying. For example, we do not need to

create and maintain different object sets for restaurants and vegetarian restaurants. In-

stead, we simply associate objects with keywords “restaurant” and “vegetarian” where

applicable. Moreover, relevance is a relative measure, allowing ranking based on partially

matching keywords. Several types of spatial keyword queries have been widely studied

using Euclidean distance as the metric for spatial proximity [CJW09; WCJ12; Che+13;

ZCT14], which as we have discussed is a less accurate and less flexible metric. In road
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networks, where spatial keyword query techniques are few and far between, indexing key-

word datasets is more challenging. We now describe the relevant techniques for each type

of spatial keyword query.

Top-k Queries. Spatial keyword top-k queries in road networks retrieve objects

by ranking them based on a score that combines an object’s network distance from the

query location and the textual similarity of its keywords to the query keywords. Textual

similarity is usually computed by adopting methods for textual relevance from text mining,

such as cosine similarity [ZM06]. Rocha-Junior and Nørv̊ag [RN12] first adapted Dijkstra’s

algorithm and the previously described ROAD index to answer top-k queries. In this

instance, ROAD Rnets are used to compute textual relevance for all objects contained

within the Rnet. During top-k search, a maximum score is computed for any object

within the Rnet and Rnets that cannot improve the result set are bypassed in a similar

manner to kNN querying. The disadvantage is that, since the maximum score is based

on aggregated keyword occurrences, the score for an Rnet may not be very accurate and

result in fewer bypasses, especially at higher levels.

Zhong et al. [Zho+13] also adapted the G-tree index to answer spatial keyword top-k

queries. Both ROAD and G-tree involve hierarchically partitioning the road network. For

example, Figure 5.1 shows a simplified single level partitioning of an example road network

into 4 subgraphs indicated by the dotted containers. The road network includes several

objects and their associated keywords. The approach by both ROAD and G-tree for

incorporating textual information into their road network indexes involves combining the

occurrences of keywords for entire subgraphs. Then these aggregated keyword occurrences

are used to determine the maximum textual relevance for the whole subgraph. Like with

ROAD’s Rnets, top-k queries using G-tree can be answered by only visiting the subgraphs

in the hierarchy that are promising and may indeed improve the results. The difference

between ROAD and G-tree is largely the way the subgraph hierarchy is stored and accessed.

G-tree offers better cache performance and, as a result, better query times compared to

ROAD, as we verify in Chapter 3. However, in addition to the heuristic problems discussed

in the previous section involving unreliable minimum network distances to subgraphs, both

techniques will also suffer heuristic inefficiency from combining keyword occurrences due to

the resulting inflation of top-k scores. In fact, the inefficiency is costlier on road networks
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due to the high cost of network distance computation compared to similar approaches in

Euclidean space, as we detail in Chapter 5.
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Figure 5.1: Road Network and Objects with Textual Information (repeated from page 91)

Boolean kNN Queries. FS-FBS [JFW15] is a Boolean kNN query technique improv-

ing on earlier approximate techniques [Qia+13] by providing exact results. FS-FBS uses

a 2-hop labeling index described in Section 2.1.2 and its inverse, a backward label index.

Recall that, in 2-hop labeling, each vertex has a label with a set of hub vertices and their

distances to the vertex. Given any two vertices, it is guaranteed that they have a common

hub that appears on the shortest path between them, hence allowing fast computation of

the network distance between the two vertices by finding the common hub. A backward

label for hub vertex h is the list of vertices for which h is in their label. For frequent

keywords, FS-FBS employs a hierarchy of bit-array hashes to indicate the presence of key-

words in the reverse label. During querying FS-FBS uses the hierarchy to narrow down

on the nearest vertices containing relevant keywords. For infrequent keywords, FS-FBS

simply computes network distances to all vertices containing the infrequent keyword. This

is problematic because it is difficult to decide how to differentiate between frequent and

infrequent keywords. While a metric is suggested, it is still necessary to verify the best

performing frequency experimentally. Moreover, inverted lists for infrequent keywords,

which are more common according to Zipf’s law [ZM06], cannot be accessed by FS-FBS in

order. Thus, it is not possible to terminate without evaluating the entire list. As the hi-

erarchical hashing scheme is a keyword aggregation approach, the occurrence of collisions

results in FS-FBS similarly suffering from the same drawbacks as G-tree and ROAD.
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2.4 Aggregate kNN Queries on Road Networks

Aggregate kNN (AkNN) queries were first described in the context of Euclidean space by

Papadias et al. [Pap+04]. On road networks, these queries have not received a signifi-

cant amount of attention and by extension neither have the heuristics used to search for

AkNNs. The few techniques that have been proposed have been heavily influenced by

early approaches to answer kNN queries, which have long been superseded by new kNN

techniques and, as we elaborate, may not be suitable for AkNN search anyway. Here we

briefly describe the current state-of-the-art for AkNN queries on road networks.

Yiu et al. adapted INE and IER, previously described in Section 2.2, to solve AkNN

queries on road networks [YMP05]. Their IER-based technique involved traversing the

R-tree index, containing the objects, in a top-down manner. This traversal was guided

by computing a lower-bound aggregate distance for all objects contained within an R-

tree node. The lower-bound is computed using the minimum Euclidean distance from

each query location to the R-tree node’s Minimum Bounding Rectangle (MBR). Now

the branches with the most promising R-tree nodes can be searched first, while those

that cannot contain results are pruned. Similar to IER on kNN queries, the lower-bound

becomes inaccurate when non-physical distance edge-weights are considered, and this error

is only compounded by the aggregate function.

Ioup et al. [Iou+07] proposed to improve query efficiency by only providing approx-

imate AkNN results. Their M-tree indexes transform the road network into higher di-

mensional space where AkNNs can be retrieved approximately in a similar manner to the

RNE index proposed by Shahabi et al. [SKS03]. VN3 has also been adapted for the AkNN

problem [Zhu+10]. However, the use of network Voronoi diagrams is less suitable for the

AkNN problem than the kNN problem, because result objects are unlikely to be close to

any single query vertex when there are multiple query vertices potentially separated by

large distances. Moreover, like its kNN counterpart, it suffers from high pre-processing

costs.

A recent study by Yao et al. generalized the AkNN problem by proposing Flexible

Aggregate Nearest Neighbor (FANN) queries [Yao+18]. FANN queries additionally specify

a parameter φ. This parameter is used to define the proportion of query vertices for which

the aggregate distance must be minimized. For example, perhaps it is sufficient to return
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objects that minimize the aggregate distance for 10% (φ = 0.1) of the query locations. To

solve this generalized problem, techniques based on INE and IER are similarly proposed,

experiencing the same benefits and drawbacks as we have discussed in-depth in the context

of kNN querying.

2.5 Other POI Queries

The types of POI search queries we have described so far have covered the most studied

settings, i.e., queries based purely on network distance (kNNs), then queries incorporating

keywords and lastly queries incorporating multiple user locations. Beyond these, other

queries have been proposed which vary the setting in some way. For example, some

variations involving making the setting more dynamic. While in this study we focus on

the major settings discussed so far, we give an overview of the types of variations that

exist for the interested reader.

Dynamic POI search has many different interpretations. One example is to consider

the objects as moving as described by Shahabi et al. [SKS03], who also identified the

inadequacy of Euclidean k Nearest Neighbors for POI search. Their technique, Road

Network Embedding (RNE) [SKS03], was the first work to propose a solution to the

kNN problem specifically for road networks and moving objects. It proposes a better

approximation of kNNs in road networks than Euclidean kNNs by pre-computing certain

shortest path distances and then retrieving kNNs in higher dimensional space. Li et al.

[Li+18] go further by using a lazy update approach combined with GPU-based processing

to accelerate both updates and queries. Cao et al. [Cao+18] incorporate moving objects

by answering snapshot kNN queries and utilize hierarchical grids to limit the search space.

Another variation is when we consider the query vertex to be moving. Given a path

P , this might involve computing the kNNs for the entire path, i.e., all possible kNNs for

all intervals on path P . Cho and Chung [CC05] use pre-computed lists of objects and

an INE-like algorithm to answer such queries. On the other hand, Chen et al. [Che+09]

consider a single set of kNNs for the whole path P , rather than multiple sets of kNNs for

each possible interval on the path.
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When it comes to dynamic queries, the possible variations are endless. LARC [Zhe+16]

is an adaptation of FS-FBS for continuous Boolean kNN spatial keyword queries. Moura-

tidis et al. [Mou+06] consider both the object and the query location as moving. More-

over, variations can also involve more complex indexing techniques such as the Contrac-

tion Hierarchy-based technique proposed by Luo et al. [Luo+18] to answer dynamic kNN

queries while providing a parameter that can trade query time for update time depend-

ing on which is more frequent. In their follow-up work, Luo et al. [Luo+19] considered

efficiently and concurrently executing kNN queries and updates to indexes in a multi-core

setting. On the other hand, He et al. [He+19] consider how to maintain the “correctness”

of kNN results as the positions of moving objects are updated.

The variations we have discussed so far have involved some change to the assumptions

about the objects or query vertex. However, this may also apply to the road network.

One example is to consider the road network as time-dependent [DBS10], which involves

representing the edge-weight as a time-varying function that, for example, has different

travel times for peak versus off-peak times of the day. This scenario requires the static

indexing techniques discussed in 2.1.2 to be adapted, which is not always trivial to ac-

complish, as Li et al. [LWZ19] found when adapting hub labeling for the time-dependent

case. Dynamic road networks, on the other hand, incorporate real-time updates to the

edge weights based on events like accidents or roadwork. This setting was considered by

Delling and Werneck [DW15] in a technique that bypasses subgraphs in a similar manner

to ROAD while offering fast updates to the road network index for edge-weight changes.

In Section 2.3, we discussed combining textual information with spatial proximity

to retrieve POIs. [Zha+17] extend this concept by also considering social information

such as check-ins on social media. This representation can then be used, for example,

to answer reverse top-k queries that identify the nearest and most influential customers

of a particular restaurant. Zhao et al. [Zha+18] then consider why not queries in the

same setting to identify the reasons and generate the queries that would retrieve missing

objects from top-k results. Guo et al. [Guo+19] similarly extend the group or aggregate

nearest neighbor query discussed earlier in Section 2.4 by adding a social dimension, to

find relevant POIs to groups of users that are more socially connected.

Queries related POIs are not necessarily limited to search. Yawalkar and Ran [YR19]

attempt to find routes that visit as many of a given set of POIs as possible. Ridesharing
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vehicles are an important example of moving POIs often represented on road networks, and

Cheng et al. [CXC17] consider the utility maximization problem in this setting. Here the

set of vehicles and users is known, and the goal is to maximize the utilization of available

capacity for ridesharing. Both problems are shown to be NP-hard [YR19; CXC17].
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Chapter 3

An Experimental Journey Into

kNN Queries on Road Networks

Truth is stranger than fiction, but it is because Fiction is obliged to

stick to possibilities; Truth isn’t.

Oscar Wilde

In this chapter we present our experimental investigation into the state-of-the-art for

kNN query techniques on road networks. Notably, we investigate a simple Euclidean

heuristic that has never been properly compared, finding that through a simple improve-

ment it is often the best performing technique, even when compared to more complex

heuristics. In addition, we thoroughly document our entire journey and the other many

insights we gleaned in the process. The work in this chapter was published in [ACT16b;

ACT16a].

3.1 Overview

Market research company Newzoo reports that there were 3 billion smartphones in use

at the end of 2018, with that number expected to increase to 3.8 billion by 2021. Due

to this surge in the adoption of smartphones and other GPS-enabled devices, and cheap

wireless network bandwidth, map-based services have become ubiquitous. Accordingly,

90% of these smartphone users have reported using a map application such as Google Maps

[And16]. Finding nearby facilities (e.g., restaurants, ATMs) are among the most popular

queries issued on maps. Due to their popularity and importance, k nearest neighbor (kNN)
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queries, which find the k closest points of interest (objects) to a given query location, have

been extensively studied in the recent past.

While related to the shortest path problem in many ways, the kNN problem on road

networks introduces new challenges. Since the total number of objects is usually much

larger than k it is not efficient to compute the shortest paths (or network distances)

to all objects to determine which are kNNs. The challenge is to not only ignore the

objects that cannot be kNNs but also the road network vertices that are not associated

with objects. Recently, there has been a large body of work to answer kNN queries

on road networks. Some of the most notable algorithms include Incremental Network

Expansion (INE) [Pap+03], Incremental Euclidean Restriction (IER) [Pap+03], Distance

Browsing [SSA08], Route Overlay and Association Directory (ROAD) [LLZ09; Lee+12],

and G-tree [Zho+15; Zho+13]. In this chapter, we conduct a thorough experimental

evaluation of these algorithms.

3.1.1 Motivation

We identify several important observations of the state-of-the-art for kNN queries that

motivated us to conduct this study, as follows.

1. Neglected Competitor. IER [Pap+03] was among the first kNN algorithms on road

networks. It has often been the worst performing method and as a result, is no longer

included in comparisons. The basic idea of IER is to compute shortest path distances

using Dijkstra’s algorithm to the closest objects in terms of Euclidean distance. Although

many significantly faster shortest path algorithms have been proposed in recent years, sur-

prisingly, IER has never been compared against other kNN methods using any algorithm

other than Dijkstra. To ascertain the true performance of IER it must be integrated with

state-of-the-art shortest path algorithms.

2. Discrepancies in Existing Results. We note several discrepancies in the experi-

mental results reported in some of the most notable papers on this topic. ROAD is seen

to perform significantly worse than Distance Browsing and INE in [Zho+15]. But accord-

ing to Lee et al. [Lee+12], ROAD is experimentally superior to both Distance Browsing

and INE. The results in both [Lee+12] and [Zho+15] show Distance Browsing has worse

performance than INE. In contrast, Distance Browsing is shown to be more efficient than

INE in [SSA08]. These contradictions identify the need for reproducibility.
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3. Implementation Does Matter. Similar to a recent study [ŠJ14], we observe that

simple implementation choices can significantly affect algorithm performance. For exam-

ple, G-tree utilizes distance matrices that can be implemented using either hash-tables

or arrays and, on the surface, both seem reasonable choices. However, the array imple-

mentation, in fact, performs more than an order of magnitude faster than the hash-table

implementation. We show that this is due to data locality in G-tree’s index and its im-

pact on cache performance. In short, seemingly innocuous choices can drastically change

experimental outcomes. We also believe discrepancies reported above may well be due to

different choices made by the implementers. Thus, it is critical to provide a fair comparison

of existing kNN algorithms using careful in-memory implementations.

4. Overlooked Evaluation Measures/Settings. All methods we study here decouple

the road network index from that of the set of objects, i.e., one index is created for the road

network and another to store the set of objects. Although existing studies evaluate the road

network indexes, no study evaluates the behavior of each individual object index. The

construction time and storage cost for these object indexes may be critical information

for developers when choosing methods, especially for object sets that change regularly.

Additionally, kNN queries have not been investigated for travel time graphs (only travel

distance), which is also a common scenario in practice. Finally, the more recent techniques

(G-tree and ROAD) did not include comparisons for real-world POIs.

3.1.2 Contributions

Below we summarize our contributions.

1. Revived IER: We investigate IER with several efficient shortest path techniques for

the first time (see Section 3.5). We show that the performance of IER is significantly

improved when better shortest path algorithms are used. This occurs to the point that

IER is the best performing method in most settings, including travel time road networks

where Euclidean distance is a less effective lower bound.

2. Highly Optimized Algorithms Open-Sourced: We present efficient implemen-

tations of five of the most notable methods (IER, INE, Distance Browsing, ROAD, and

G-tree). First, we have carefully implemented each method for efficient performance in

main memory as described in Appendix A. Second, we thoroughly checked each algo-

rithm and made various improvements that are applicable in any setting, as documented
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in Appendix B. The source code and scripts to run experiments have been released as

open-source [Abe16], making our best effort to ensure it is modular and re-usable.

3. Reproducibility Study: With efficient implementations of each algorithm, we repeat

many experiments from past studies on many of the same datasets in Section 3.6. Our

results provide a deeper understanding of the state-of-the-art with new insights into the

weaknesses and strengths of each technique. We also show that there is room to improve

kNN search heuristics by demonstrating that G-tree can be made more efficient by using

a simple Euclidean distance heuristic compare to its own more complex heuristic. This

gives us thought to reconsider POI search heuristics in general, and a pathway to develop

better heuristics.

4. Extended Experiments and Analysis: Our comprehensive experimental study in

Section 3.6 extends beyond past studies by 1) comparing object indexes for the first time;

2) revealing new trends by comparing G-tree with another advanced method (ROAD) on

larger datasets for the first time; 3) evaluating all methods (including ROAD and G-tree)

on real-world POIs; and 4) evaluating applicable methods on travel time road networks.

5. Guidance on Main-Memory Implementations: In Appendix A, we also demon-

strate how simple choices can severely impact algorithm performance. We share an in-

depth case study to give insights into the relationship between algorithms and in-memory

performance with respect to data locality and cache efficiency. Additionally, we highlight

the main choices involved and illustrate them through examples and experimental re-

sults, to provide hints to future implementers. Significantly, these insights are potentially

applicable to any problem, not just those we study here.

Additionally, Section 3.2 defines the problem and scope of our study. Section 3.3 and

3.4 describes the algorithms evaluated and datasets used, respectively. Finally, Section

3.9 summarizes our findings.

3.2 Background

3.2.1 Problem Definition

We use the definition of a road network as an undirected graph G = (V,E) and network

distance as introduced in Section 1.1. For conceptual simplicity, similar to the existing

studies [Zho+15; SSA08], we assume that objects (i.e., POIs) and the query locations are
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located on vertices in V . Given a query vertex q and a set of object vertices O, a kNN

query retrieves the k closest objects in O based on their network distances from q.

3.2.2 Scope

We separate existing kNN techniques into two broad categories based on the indexing

they use: 1) blended indexing; and 2) decoupled indexing. Techniques that use blended

indexing [KS04; HLL06; CC05] create a single index to store the objects as well the road

network. For example, VN3 [KS04] is a notable technique that uses a network Voronoi dia-

gram based on the set of objects to partition the network. In contrast, decoupled indexing

techniques [Pap+03; Lee+12; Zho+15; SSA08] use two separate indexes for the object set

and road network, which is more practical and has several advantages as explained below.

First, a real-world kNN query may be applied to one of many object sets, e.g., return

the k closest restaurants or locate the nearest parking space. Blended indexing must

repeatedly index the road network for each type of object, entailing huge space and pre-

processing time overheads. But decoupled indexing requires only one road network index

regardless of the number of object sets, resulting in lower storage and pre-processing

cost. Second, if there is any change in an object set, blended indexing must update the

whole index and reprocess the entire road network, whereas decoupled techniques need

only update the object index. For example, the network-based Voronoi diagram must be

updated resulting in expensive re-computations [KS04]. Conversely, in decoupled indexing,

the object indexes (e.g., R-tree) are typically much cheaper to update. The problem is

more serious for object sets that change often, e.g., if the objects are the nearest available

parking spaces.

Due to these advantages, all recent kNN techniques use decoupled indexing. In this

study, we focus on the most notable kNN algorithms that employ decoupled indexing.

These algorithms either employ an expansion-based method or a heuristic best-first search

(BFS). The expansion-based methods encounter kNNs in network distance order. Heuristic

BFS methods instead employ heuristics to evaluate the most promising kNN candidates,

not necessarily in network distance order, potentially terminating sooner. We study the

five most notable methods which include two expansion-based methods, INE [Pap+03]

and ROAD [Lee+12], and three heuristic BFS methods, IER [Pap+03], Distance Browsing

(DisBrw) [SSA08] and G-tree [Zho+15].
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Given the rapid growth in smartphones and the corresponding widespread use of map-

based services, applications must employ fast in-memory query processing to meet the

high query workload. In-memory processing has become viable due to the increases in

main-memory capacities and its affordability. Thus, we limit our study to in-memory

query processing but reflect on this choice in Appendix A.

3.3 Methods

We now describe the main ideas behind each method evaluated by our study. These

techniques were briefly introduced in Section 2.2, but we provide detailed descriptions

here to help readers better understand how they work and interpret the insights from our

experimental investigation. Note that some methods propose a road network index and a

kNN query algorithm to use it. In some cases, such as G-tree, we refer to both the index

and kNN algorithm by the same name.

3.3.1 Incremental Network Expansion

Incremental Network Expansion (INE) [Pap+03] is a method derived from Dijkstra’s al-

gorithm. As with Dijkstra, INE maintains a priority queue of the vertices seen so far,

initialized with the query vertex q with a key of zero. The search is expanded to the

nearest of these vertices v (i.e., the vertex in the queue with minimum key). If v ∈ O then

it is added to the result set as one of the kNNs and if v is the kth object then the search

is terminated. Otherwise, the edges of v are used to relax the distances to its neighbors

and the expansion continues. As in Dijkstra’s algorithm, relaxation involves updating the

minimum network distances to the neighbors of v using the network distance through v.

Like Dijkstra, INE has the same disadvantage, in that it must visit every vertex that is

closer than the kth object. Naturally, this inefficiency will worsen when objects are sparse

and the kth object is found further away, due to the increased search space.

3.3.2 Incremental Euclidean Restriction

Incremental Euclidean Restriction (IER) [Pap+03] uses Euclidean distance as a heuristic

to retrieve candidates from O, as it is a lower bound on network distance for road networks

with travel distance edge weights. First, IER retrieves the Euclidean kNNs, e.g., using an
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R-tree [Gut84]. It then computes the network distance to each of these k objects using

another technique (such as Dijkstra’s algorithm) and sorts them in network distance order.

This set becomes the candidate kNNs and the network distance to the furthest candidate,

denoted as Dk, is an upper bound on the distance to the true kth nearest neighbor. Now,

IER retrieves the next Euclidean nearest neighbor (NN) p. If the Euclidean distance to p

is dE(q, p) and dE(q, p) ≥ Dk, then p cannot be a better candidate by network distance

than any current candidate. This is because dE(q, p) represents a lower bound on network

distance, which is true when edge weights are physical distance (it can also be adapted for

other edge weights as well). Moreover, since it is the nearest Euclidean NN, the search can

also be terminated. However, if dE(q, p) < Dk then p may be a better candidate. In this

case, IER computes the network distance d(q, p). If d(q, p) < DK , p is inserted into the

candidate set (removing the furthest candidate and updating Dk). This continues until the

search is terminated or there are no Euclidean NNs left. Papadias et al. used Dijkstra’s

algorithm to compute network distances. As a result, IER was significantly outperformed

by INE in [Pap+03] because the repeated invocation of Dijkstra’s algorithm must revisit

the same vertices each time.

3.3.3 Distance Browsing

Distance Browsing (DisBrw) [SSA08] uses the Spatially Induced Linkage Cognizance (SILC)

index proposed in [SAS05] to answer kNN queries. [SAS05] proposed an incremental kNN

algorithm, which DisBrw improves upon by making fewer priority queue insertions.

SILC Index. We first introduce the SILC index used by DisBrw. For a vertex s ∈ V ,

SILC pre-computes the shortest paths from s to all other vertices. SILC assigns each

adjacent vertex of s a unique color. Then, each vertex u ∈ V is assigned the same color

as the adjacent vertex v that is passed through in the shortest path from s to u. Figure

3.1 shows the coloring of the vertices for the vertex s = v6 where each adjacent vertex of

v6 is assigned a unique color and the other vertices are colored accordingly. For example,

the vertices v9 to v12 have the same color as v8 (blue vertical stripes) because the shortest

path from v6 to each of these vertices passes through v8 (for this example assume unit

edge weights).

Observe that the vertices close to each other have the same color resulting in several

contiguous regions of the same color. These regions are indexed by a region quadtree
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Figure 3.1: SILC Index: Coloring Scheme and Quadtree for v6

[Sam05] to reduce the storage space. The color of a vertex can be determined by locating

the region in the quadtree that contains it. SILC applies the coloring scheme and creates

a quadtree for each vertex of the road network. This requires O(|V |1.5) space in total and,

due to the all-pairs shortest path computation, O(|V |2 log |V |) pre-processing time.

To compute the shortest path from s to t, SILC uses the quadtree of s to identify the

color of t. The color of t determines the first vertex v on the shortest path from s to t. To

determine the next vertex on the shortest path, this procedure is repeated on the quadtree

of v. For example, in Figure 3.1, the first vertex on the shortest path from v6 to v12 is v8

because v12 has the same color as v8. The color of v12 is found by locating the quadtree

block containing v12. The shortest path can be computed in O(m log |V |) where m is the

number of edges on the shortest path [SSA08].

kNN Algorithm. To enable kNN search, DisBrw stores additional information in

each quadtree. For each vertex v contained in a quadtree block b, it computes the ratio

of the Euclidean and network distances between the quadtree owner s and v. It then

stores the minimum and maximum ratios, λ− and λ+ respectively, with b. Now, given

any vertex t, DisBrw computes a distance interval [δ−, δ+] by multiplying the Euclidean

distance from s to t by the λ− and λ+ values of the block containing t. This interval

defines a lower and upper bound on the network distance from s to t and can be used to

prune objects that cannot be kNNs. The interval is refined by obtaining the next vertex

u in the shortest path from s to t (as described earlier), computing an interval for u to

t, and then adding the known distance from s to u to the new interval. By refining the

interval, it eventually converges to the network distance.

DisBrw used an Object Hierarchy in [SSA08] to avoid computing distance intervals

for all objects. The basic idea was to compute distance intervals for regions containing
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objects, then visit the most promising regions (and recursively sub-regions) first. We found

this method did not use the SILC index to its full potential. Instead we retrieve Euclidean

NNs as candidate objects for which intervals are then computed. Otherwise, the DisBrw

kNN algorithm proceeds exactly as in [SSA08]. We refer the readers to Section 3.5.2 for

full details and experimental comparisons with the original method.

3.3.4 Route Overlay & Association Directory

The search space of INE can be considerably large depending on the distance to the kth

object. Route Overlay and Association Directory (ROAD) [LLZ09; Lee+12] attempts

to remedy this by bypassing regions that do not contain objects by using search space

pruning.

An Rnet is a partition of the road network G=(V,E), with every edge in E belonging

to at least one Rnet. Thus, an Rnet R represents a set of edges ER ⊆ E. VR is the set of

vertices that are associated with edges in ER. To create Rnets, ROAD partitions the road

network G into f ≥ 2 Rnets, recursively partitioning resulting Rnets until a hierarchy of

l > 1 levels is formed (with G being the root at level 0). Figure 3.2 shows Rnets (for l=2)

for the graph in our running example. The enclosing boxes and ovals represent the set

VR of each Rnet. Specifically, R1={v1, · · · , v7} and R2={v6, · · · , v12} are the child Rnets

of the root G. Each of R1 and R2 are further divided into Rnets, e.g., R1 is divided into

R1a={v1, v2, v3, v4} and R1b={v4, v5, v6, v7}.

v1
v3 v4 v7

v10
v2

R1R1a

R2

R1b

R2a

R2bv6
v8

v12

v11

v9

v5

Figure 3.2: Route Overlay and Association Directory Index

For an Rnet R, a vertex b ∈ VR with an adjacent edge (b, v) /∈ ER is defined as a

border of R. For instance, v4 is a border of R1b but v5 is not. These borders form the

set BR ⊆ VR, e.g., the border set of R1b consists of v4, v6 and v7. ROAD computes the
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network distance between every pair of borders bi, bj ∈ BR in each Rnet and stores each

as the shortcut S(bi, bj). Now any shortest path between two vertices s, t /∈ VR involving

a vertex u ∈ VR must enter R through a border b ∈ BR and leave through a border

b′ ∈ BR. So if a search reaches a border b ∈ BR the shortcuts associated with b, S(b, b′) ∀

b′ ∈ BR, can be traversed to bypass the Rnet R while preserving network distances. For

example, in Figure 3.2, the borders of R1b are v4, v6 and v7 (the colored vertices) and

ROAD precomputes the shortcuts between all these borders. Suppose the query vertex is

v1 and the search has reached the vertex v4. If it is known that R1b does not contain any

object, the algorithm can bypass R1b by quickly expanding the search to other borders

of R1b without the need to access any non-border vertex of R1b. For example, using the

shortcut between v4 and v7, the algorithm can compute the distance between v1 to v7

without exploring any vertex in R1b.

Since child Rnets are contained by their parent Rnet, a border b of an Rnet must be

a border of some child Rnet at each lower level. For example, v6 in Figure 3.2 is a border

for R1b and its parent R1. This allows the shortcuts to be computed in a bottom-up

manner, where shortcuts at level i are computed using those of level i+1, greatly reducing

pre-computation cost. Only leaf Rnets require Dijkstra searches on the original graph G.

ROAD uses a Route Overlay index and an Association Directory to efficiently compute

kNNs. Recall that a vertex v may be a border of more than one Rnet. The Route Overlay

index stores, for each vertex v, the Rnets for which it is a border along with the shortcut

trees of v. The Association Directory provides a means to check whether a given Rnet

or vertex contains an object or not. The kNN algorithm proceeds incrementally from

the query vertex q in a similar fashion to INE. However, when ROAD expands to a new

vertex v, instead of inspecting its neighbors, it consults the Route Overlay and Association

Directory to find the highest level Rnet associated with it that does not contain any object.

ROAD then relaxes all the shortcuts in this Rnet in a similar way to edges in INE, to

bypass it. Of course, when v is not a border of any Rnet or if all Rnets associated with v

contain an object, it relaxes the edges of v exactly as in INE. The search terminates when

k objects have been found or there are no further vertices to expand.
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3.3.5 G-tree

G-tree [Zho+13; Zho+15] also employs graph partitioning to create a tree index that

can be used to efficiently compute network distances through a hierarchy of subgraphs.

The partitioning occurs in a similar way to that of ROAD where the input graph G

is partitioned into f ≥ 2 subgraphs. Each subgraph is recursively partitioned until it

contains no more than τ ≥ 1 vertices. For any subgraph Gi, Vi ⊆ V is defined as the set

of road network vertices contained within it. Any vertex b ∈ Vi with an edge (b, v) where

v /∈ Vi is defined as a border of Gi and all such vertices form the set of borders Bi. Figure

3.3 shows an example where the colored vertices v5 and v6 are borders for the subgraph

G1={v1, · · · , v6}.

v1
v3 v4

v10
v2 v8

v12

v9

v5

v7

v11

v6

G1

G0

G2

G1A

G1B

G2A
G2B

Figure 3.3: G-tree

The partitioned subgraphs naturally form a tree hierarchy with each node in the G-

tree associated with one subgraph. Note that we use node to refer to the G-tree node

while vertex refers to road network vertices. Notably, a non-leaf node Gi does not need to

store subgraph vertices, but only the set of borders Bi and a distance matrix. For non-leaf

nodes, the distance matrix stores the network distance from each child node border to all

other child node borders. For leaf nodes, it stores the network distance between each of

its borders and the vertices contained in it.

Similar to the bottom-up computation of shortcuts in ROAD, the distance matrix of

nodes at tree level i can be efficiently computed by reducing the graph to only consist of

borders at level i+1 using the distance matrices of that level. Only leaf nodes require a

Dijkstra’s search on the original graph. Given a planar graph and optimal partitioning

method, G-tree is a height-balanced tree with a space complexity of O(|V | log |V |). The
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similarities with ROAD are clear. One major difference is that G-tree uses its border-to-

border distance matrices to “assemble” shortest path distances by the path through the

G-tree hierarchy. We refer the reader to the original paper [Zho+15] for the details of the

assembly method.

Another key difference is the kNN algorithm. To support efficient kNN queries, G-tree

introduces the Occurrence List. Given an object set O, the Occurrence List of a G-tree

node Gi lists its children that contain objects, allowing empty nodes to be pruned. The

kNN algorithm begins from the leaf node that contains q, using a Dijkstra-like search

to retrieve leaf objects. However, we found this leaf search could be further optimized

and detail our improved leaf search algorithm in Appendix B.2.1. The algorithm then

incrementally traverses the G-tree hierarchy from the source leaf. Elements (nodes or

objects) are inserted into a priority queue using their network distances from q. The

network distance to a G-tree node is computed using the assembly method by finding its

nearest border to q. Queue elements are dequeued in a loop. If the dequeued element is a

node, its Occurrence List is used to insert its children (nodes or object vertices) back into

the priority queue. If the dequeued element is a vertex, it is guaranteed to be the next

nearest object. The search terminates when k objects are dequeued.

A useful property of assembling distances is that, given a path through the G-tree

hierarchy, distances can be materialized for already visited G-tree nodes. For example,

given a query vertex q and two kNN objects in the same leaf node, after locating one of

them, the distances to the borders of this leaf need not be recomputed.

3.4 Datasets

Here we describe the datasets used to supply the road network G=(V,E) and set of object

vertices O ⊆ V for kNN querying.

3.4.1 Real Road Networks

We study kNN queries on 10 real-world road network graphs as listed in Table 3.1. These

were created for the 9th DIMACS Challenge [Pat06] from data publicly released by the US

Census Bureau. Each network covers all types of roads, including local roads, and contains

real edge weights for travel distances and travel times (both are used in our experiments).
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We also conduct in-depth studies for the United States (US) and North-West US (NW)

road networks. The US dataset, covering the entire continental United States, is the largest

with 24 million vertices. The NW road network (with 1 million vertices), covering Oregon

and Washington, represents queries limited to a region or smaller country. Notably, this is

the first time DisBrw has been evaluated on a network with more than 500, 000 vertices,

previously not possible due to its high pre-processing cost (in both space and time).

Name Region # Vertices # Edges

DE Delaware 48,812 119,004

VT Vermont 95,672 209,288

ME Maine 187,315 412,352

CO Colorado 435,666 1,042,400

NW North-West US 1,089,933 2,545,844

CA California & Nevada 1,890,815 4,630,444

E Eastern US 3,598,623 8,708,058

W Western US 6,262,104 15,119,284

C Central US 14,081,816 33,866,826

US United States 23,947,347 57,708,624

Table 3.1: Real-World Road Network Datasets

3.4.2 Real and Synthetic Object Sets

We create object sets based on both real-world points of interest (POIs) and synthetic

methods as described below.

Real-World POI Sets. We created 8 real-world object sets (listed in Table 3.2)

using data extracted from OpenStreetMap (OSM) [Ope] for locations of real-world POIs

in the United States. Each object set is associated with one type of POI, e.g., all fast

food outlets. POIs were mapped to road network vertices on both the US and NW road

networks using their coordinates. While real POIs can be obtained freely from OSM, it is

not a propriety system. As a result, the data quality can vary, e.g., the largest object sets

in OSM may not be representative of the true largest object sets and the completeness of

POI data may vary between regions. So, in addition to real-world object sets, we generate

synthetic sets to make generalizable and repeatable observations for all road networks.

Uniform Object Sets. A uniform object set is generated by selecting uniformly

random vertices from the road network. As these objects are randomly selected road

network vertices, they are likely to simulate real POIs, e.g., areas with more vertices have

more POIs (e.g., cities) while those with fewer roads have less (e.g., rural areas). The
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Object Set
United States North-West US

Size Density Size Density

Schools 160,525 0.007 4,441 0.004

Parks 69,338 0.003 5,098 0.005

Fast Food 25,069 0.001 1,328 0.001

Post Offices 21,319 0.0009 1,403 0.001

Hospitals 11,417 0.0005 258 0.0002

Hotels 8,742 0.0004 460 0.0004

Universities 3,954 0.0002 95 0.00009

Courthouses 2,161 0.00009 49 0.00005

Table 3.2: Real-World Object Sets

density of objects sets d is varied from 0.0001 to 1, where d is the ratio of the number of

objects |O| to the number of vertices |V | in the road network. High densities can simulate

larger object sets which are common occurrences, e.g., ATM machines, parking spaces.

Low densities correspond to the sparsely located POIs, e.g., post offices or restaurants in a

specific chain. By decreasing the density, we can simulate more difficult queries, as fewer

objects imply longer distances and therefore larger search spaces. Uniform objects were

used to evaluate G-tree in [Zho+13; Zho+15].

Clustered Object Sets. While some POIs may be uniformly distributed other types,

such as fast food outlets, occur in clusters. To create such clustered object sets, given a

number of clusters |C|, we select |C| central vertices uniformly at random (as above). For

each central vertex, we select several vertices (up to a maximum cluster size Cmax) in its

vicinity, by expanding outwards from it. This distribution was used to evaluate ROAD

in [Lee+12].

Minimum Object Distance Sets. The worst-case kNN query occurs when the

query location is remote. To simulate this, we create minimum distance object sets as

follows. We choose an approximate center vertex vc by using the nearest vertex to the

Euclidean center of the road network. We find the furthest vertex vf from vc and set

Dmax as the network distance from vc to vf . For an object set Ri, i ∈ [1,m], we choose

|O| objects such that the network distance from vc to each object in Ri is at least Dmax
2m−i+1 .

For example, for m=5, the set R1 contains objects within the range (Dmax32 , Dmax]. Thus,

we investigate the effect of increasing minimum object distance by comparing query time

on Ri with increasing i.
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3.5 IER Revisited

Network distance computation is a critical part of Incremental Euclidean Restriction

(IER). However, to the best of our knowledge, all existing studies [Pap+03; SSA08; LLZ09;

Lee+12] employ Dijkstra’s algorithm to compute network distances. Dijkstra’s algorithm

is not only slow, but it must also revisit the same vertices for subsequent network distance

computations. Even if Dijkstra’s algorithm is suspended and resumed for subsequent Eu-

clidean NN candidates, this is necessarily no better than INE, which uses Dijkstra-like

expansion until all kNNs are found.

To understand the true potential of IER, we combined it with several fast techniques.

Pruned Highway Labeling [Aki+14] is amongst the fastest techniques. It boasts fast con-

struction times despite being a labeling method but has similarly large index sizes. The

G-tree assembly-based method mentioned earlier can also compute network distances. No-

tably, in a similar manner to G-tree’s kNN search, the “materialization” property can be

used to optimize repeated network distance queries from the same source (as in IER).

The Dijkstra-like leaf-search can also be suspended and resumed. This is doubly advan-

tageous for IER, as it becomes more robust to “false hits” (Euclidean NNs that are not

real kNNs), especially if they are in the vicinity of a real kNN. We refer to this version of

G-tree as MGtree. Finally, we combined IER with Contraction Hierarchies (CH) [Gei+08]

and Transit Node Routing (TNR) [Bas+07] using implementations made available by a

recent experimental paper [Wu+12]. We use a grid size of 128 for TNR as in [Wu+12].

We compare the performance of IER using each method in Figure 3.4 for travel distance

edge-weights. These queries are run on a road network dataset representing the North

West United States (NW) using the same environment and default parameters as in other

experiments in this chapter (as detailed in Section 3.6.1). PHL is the consistent winner,

being 4 orders of magnitude faster than Dijkstra and an order of magnitude better than

the next fastest method at its peak. G-tree, assisted by materialization, is the next

best method. All methods converge with increasing density, as the search space becomes

smaller. Note that CH is the technique used to answer local queries in TNR, which

explains why TNR and CH are so similar for high densities as the distances are too small

to use TNR’s access node vertices (described briefly in Section 2.1.2). At lower densities

in Figure 3.4(b), access nodes are used more often, leading to a larger speed up. The
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superiority of G-tree and PHL is also seen to be true irrespective of the dataset size in

Figure 3.4(c). Note that the PHL index was too large to fit into memory for the largest

dataset, the continental US, due to the lack of hierarchies in travel distance graphs, but

we do include PHL for the travel time version of the US dataset as we explain below.

Nonetheless, given these results we include the two fastest versions of IER, i.e., PHL and

MGtree, in our main experiments.
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Figure 3.4: IER Variants on Travel Distance (NW, d=0.001, k=10, uniform objects)

3.5.1 IER on Travel Time Road Networks

IER can also be adapted for use on road networks with travel-time edge-weights (and by

extension any type of edge-weight). IER uses Euclidean distance as a lower bound on

the network distance between two points for travel distance edge weights. This can easily

be extended for other edge weights. Let wi (respectively, di) represent the edge weight

(respectively, Euclidean length) of an edge ei. We compute S = max∀ei∈E(di/wi). For

example, if wi represents travel time, S corresponds to the maximum speed on any edge

in the network. Let dE(p, q) be the Euclidean distance between two points p and q. It is

easy to see that dE(p, q)/S is a lower bound on the network distance between p and q, e.g.,

the time it takes to travel the Euclidean distance at the maximum possible speed. Thus,

we compute S for the network and use the new lower bound in IER. Naturally, we can

expect this lower-bound to be looser compared to the actual travel time due to using the

fastest speed on the whole network. Landmarks are known to provide better lower bounds

on travel time graphs [GH05]. However, using them to incrementally retrieve candidates,

like how Euclidean candidates can be retrieved from an R-tree, is a difficult problem that

we address in Chapter 4.
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In Figure 3.5 we again compare IER with different network distance techniques on the

NW road network dataset but with travel-time edge-weights. Note that the performance

of shortest path techniques are known to vary between travel distance and travel time

graphs. For example, CH and TNR have been seen to perform 5−20× worse on travel

distances [Bau+10]. This is because travel distances do not display hierarchies as promi-

nently as travel times. For example, highways may not always provide the shortest travel

distance, but generally, provide faster travel time. Methods that rely on these properties,

such as CH, PHL, and TNR, are more effective when they are present (as in travel time

graphs). For example, when hierarchies are present it is easier to distinguish between more

important and less important vertices in CH or PHL and the number of access nodes is

lower in TNR. This is particularly useful in the case of PHL, as now the index can be

constructed for the largest datasets, and query performance for these datasets are reported

in Figure 3.5(c).
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Figure 3.5: IER Variants on Travel Time (NW, d=0.001, k=10, uniform objects)

All methods perform worse at high densities as IER encounters more false hits as the

Euclidean-based lower bound is looser. Interestingly, CH and TNR query times do not

change significantly from the travel distance case for lower densities, unlike MGtree. As

mentioned before, despite the greater number of false hits, both these methods are faster on

travel time graphs. As a result, TNR performs better than MGtree on travel times for low

densities. In fact, all methods perform better on density 0.0001 than density 0.001 because

there are fewer objects and therefore a lower likelihood of having similar lower-bounds,

leading to fewer false hits. MGtree’s performance degrades by the smallest amount on high

densities, as its optimized repeated computations make it more robust to the increase in

false hits. If TNR were to be combined with MGtree to answer local queries (rather

than CH), it may be a better option on NW than just MGtree. Regardless of this, PHL
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performs significantly better than TNR across the board. Additionally, we also compare

IER methods for increasing network size |V | in Figure 3.5(c). The most noteworthy

observation is that TNR deteriorates more rapidly than other methods because, for the

same grid size, TNR answers fewer queries using access nodes with increasing |V |. With

increasing |V |, grid cells contain more vertices, and as a result distances to more kNNs

must be computed using the slower local method.

3.5.2 Distance Browsing via Euclidean NN

We also see an opportunity to apply the Euclidean distance heuristic to the competing

method, DisBrw. Rather than using SILC shortest paths to improve IER, this is akin

to incorporating IER’s Euclidean distance heuristic to improve the original DisBrw kNN

search algorithm. The Object Hierarchy is a key component of DisBrw. It is most easily

represented by a quadtree containing all objects from the object set. DisBrw visits the

most promising branches of this quadtree first, by computing distance intervals to child

blocks (i.e., Object Hierarchy nodes). As described in [SSA08], DisBrw retrieves all leaf

blocks from the SILC quadtree of the query vertex intersecting with that Object Hierarchy

node. It uses these blocks to compute lower and upper bounds on the distance from the

query vertex to any object in that node. But computing intersections is not a trivial

expense. In the worst-case, all SILC quadtree leaf blocks must be retrieved. Furthermore,

many of the same intersections must be recomputed whilst traversing down the hierarchy.

This implies a trade-off between the ability to prune regions using the hierarchy and the

height of the hierarchy. A larger height improves performance on very high densities but

penalizes lower densities. We observed that very shallow Object Hierarchies (with leaf

capacities of 500 objects) provided the best overall performance.

To overcome this, we propose a variant of DisBrw that eliminates computing inter-

sections called DB-ENN presented in Algorithm 1. Essentially, we replace the Object

Hierarchy with Euclidean NNs to generate candidates (recall that Euclidean distances are

already used to compute distance ratios [SSA08]). We first retrieve Euclidean kNNs using

an R-tree as the initial candidates and then suspend the search (i.e., we keep the priority

queue E used by the Euclidean kNN search). Now we compute distance intervals for each

candidate and insert these candidates into queues Q and L, setting Dk as the largest upper

bound. DisBrw proceeds as before, except before dequeuing an element from Q, we check
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if Front(E) < Front(Q). If true, there may be a closer Euclidean NN, so we retrieve the

next Euclidean NN from E. This object is handled in the same way as an object in a leaf

node of the Object Hierarchy (i.e., potentially inserted into Q and L).

Algorithm 1 Alternative SILC-based kNN query algorithm using Euclidean NNs

1: function GetKNNByENNSILC(vq, k, SILC,Rt)
2: Input: SILC is SILC quadtree for vq and Rt is R-tree for object set
3: Initialize min priority queue Q and max priority queue L
4: Initialize min priority queue E for Rtree NN search and set Dk ←∞
5: K ← GetEuclideanKNN s(E,Rt, k)
6: for each object vo ∈ K do
7: ProcessCandidate(Q,L, vo, 0, Dk)) . Dk will be set if k ≤ |O|
8: while Q 6= φ or E 6= φ do
9: if Front(E) < Front(Q) then

10: (e,LBe)← GetNextEuclideanNN (E)
11: ProcessCandidate(Q,L, e,LBe, Dk))
12: else
13: ([e,UBe, vn, d],LBe)← Dequeue(Q)
14: if UBe ≥ Dk then
15: break
16: else
17: if UBe > Front(Q) or (UBe = Front(Q) and UBe 6= LBe) then
18: if UBe ≤ Dk and Contains(L, e) then
19: Delete(L, e)

20: (vn, d,LBe,UBe)← Refine(vn, d,LBe,UBe)
21: if UBe ≤ Dk then
22: UpdateL(L, e,UBe, Dk)

23: if LBe ≤ Dk then
24: Enqueue(Q, ([e,UBe, vn, d],LBe))

25: else . e dropped implicitly, no further refinement needed

26: Populate(R,L) . Dequeue from L to populate R so results are in distance order
27: return R
28: function ProcessCandidate(Q,L, o,LBo, Dk)
29: (vn, d,LBo,UBo)← Refine(vq, 0,LBo, inf)
30: if LBo < Dk then
31: Enqueue(Q, ([o,UBo, vn, d],LBo))
32: if UBo < Dk then
33: UpdateL(L, o,UBo, Dk)

We compare DisBrw (improved as in Appendix B.1) to DB-ENN in Figure 3.6. DB-

ENN’s improvement increases with higher density and smaller k as this is when the over-

head from the Object Hierarchy is highest. The improvement peaks at 1 order of mag-

nitude. Since this suggests that Object Hierarchies do not use the SILC index to its full

potential, and the Euclidean heuristic is more effective, we use DB-ENN in our experiments

instead of the original DisBrw algorithm.
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Figure 3.6: DisBrw vs. DB-ENN (NW, d=0.001, k=10)

3.6 Experiments

3.6.1 Experimental Setting

Environment. We conducted experiments on a 3.2GHz Intel Core i5-4570 CPU and

32GB RAM running 64-bit Linux (kernel 4.2). Our program was compiled with g++ 5.2

using the O3 flag, and all query algorithms use a single thread. To ensure fairness, we used

the same subroutines for common tasks between the algorithms whenever possible. We

implemented INE, IER, G-tree, and ROAD from scratch. We obtained the authors’ code

for G-tree, which we used to further improve our implementation, e.g., by selecting the

better option when our choices disagreed with the authors’ choice of data structures. For

Distance Browsing, we partly based our SILC index on open-source code from [Wu+12],

but being a shortest path study this implementation did not support kNN queries. As a

result, we implemented the kNN algorithms ourselves from scratch, modifying the index

to support them, taking the opportunity to make significant improvements (as discussed

in Section 3.5, Appendix B and Appendix A). We used a highly efficient open-source

implementation of PHL made available by its authors [Aki+14]. All source code and

scripts to generate datasets, run experiments, and draw figures have been released as

open-source [Abe16] for readers to reproduce our results or re-use in future studies.

Index Parameters. The performance of the G-tree and ROAD indexes are highly

dependent on the choice of leaf capacity τ (G-tree), hierarchy levels l (ROAD) and fanout

f (both) [Zho+15; Lee+12; LLZ09]. We experimentally confirmed trends observed in

those studies and computed parameters for new datasets. As such, we use fanout f=4 for
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both methods. For G-tree we set τ to 64 (DE), 128 (VT, ME, CO), 256 (NW, CA, E), and

512 (W, C, US). For ROAD, we set l to 7 (DE), 8 (VT, ME), 9 (CO, NW), 10 (CA, E) and

11 (W, C, US). We chose values of l for ROAD in accordance with the results reported

in [LLZ09] that show query performance of ROAD improves for larger l. Specifically, for

each dataset, we increased l until either the query performance did not improve or further

partitioning was not possible due to too few vertices in the leaf levels.

Query Variables. Table 3.3 shows the range of each variable used in our experiments

(defaults in bold). Similar to past studies [Zho+15], we vary k from 1 to 50 with a default

of 10. We used 8 real-world object sets as discussed Section 3.4. We vary uniform object

set density d from 0.0001 to 1 where d=|O|/|V | with a default value of 0.001. We choose

this default density as it closely matches the typical density for real-world object sets as

shown in Table 3.2. Furthermore, this density creates a large enough search space to reveal

interesting performance trends for methods. We vary over 10 real road networks (listed

in Table 3.1) with median-sized NW and largest US road networks as defaults. We use

distance edge weights in Section 3.7 for comparison with past studies, especially because

IER and DisBrw were developed for such graphs. But we repeat experiments on travel

times later in Section 3.8 for completeness.

Parameter Values

Road Networks DE, VT, ME, CO, NW, CA, E, W, C, US

k 1, 5, 10, 25, 50

Density (d) 1, 0.1, 0.01, 0.001, 0.0001

Synthetic POIs uniform, clustered, min. obj. distance

Real POIs Refer to Table 3.2

Table 3.3: kNN Experimental Parameters (Defaults in Bold)

Query and Object Sets (Section 3.4.2). All query times are averaged over 10,000

queries. For real-world object sets, we tested each set with 10,000 random query vertices.

For uniform and clustered object sets, we generate 50 different sets for each density and

number of clusters, respectively, combined with 200 random query vertices. For minimum

distance object sets, we generated 50 sets for each distance set Ri with i ∈ [1,m]. We also

chose 200 random query vertices with distances from the center vertex in range [0, Dmax2m )

(i.e., vertices closer than R1) for use with all sets. We use m=6 for NW and m=8 for US

to ensure there were enough objects in each set to satisfy the default density 0.001.
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3.7 Travel Distance Experiments

We first conduct our experiments on travel distance road networks, as in past studies, for

the state-of-the-art techniques. However, we repeat these experiments for the travel time

case in section 3.8.

3.7.1 Road Network Index Pre-Processing Cost

Here we measure the construction time and size of the index used by each technique for

all road networks in Table 3.1.

Index Size. Figure 3.7(a) shows the index size for each algorithm. INE only uses

the original graph data structure, so its size can be seen as the lower bound on space.

DisBrw could only be built for the first 5 road networks before exceeding our memory

capacity. This is not surprising given the O(|V |1.5) storage complexity. However, in our

implementation, we were able to build DisBrw for an index with 1 million vertices (NW)

consuming 17GB. PHL also exhibits large indexes, however, it can still be built for all but

the 2 largest datasets. We note that PHL experiences larger indexes on travel distance

graphs because they do not exhibit prominent hierarchies needed for effective pruning (on

travel time graphs we were able to build PHL for all indexes). G-tree consumed less space

than ROAD. For example, for the US dataset G-tree used 2.9GB compared to ROAD’s

4.4GB. As explained in past studies [Zho+15], ROAD’s Route Overlay contains significant

redundancy as multiple shortcut trees repeatedly store a subset of the Rnet hierarchy.
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Figure 3.7: Pre-Processing Cost vs. Road Network Size |V |

Construction Time. Figure 3.7(b) compares the construction time of each index for

increasing network sizes. DisBrw again stands out as its index (SILC [SAS05]) requires
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an all-pairs shortest path computation. However, the computation of each SILC quadtree

is independent and can be easily parallelized. We observed a speed-up factor of very close

to 4× with our quad-core CPU using OpenMP. Note that other methods cannot be so

easily parallelized. Despite this DisBrw still required 9 hours on NW, while parallelization

is useful it does not change the asymptotic behavior. PHL takes longer than G-tree and

ROAD but surprisingly not significantly so, thanks to pruned labeling [Aki+14]. IER’s

index performance depends on the network distance method it employs (i.e., G-tree or

PHL).

Recall that both ROAD and G-tree must partition the road network. Since the net-

work partitioning problem is known to be NP-complete, ROAD and G-tree both employ

heuristic algorithms. As both methods require the same type of partitioning, we use the

same multilevel graph partitioning algorithm [KK98] used in G-tree. This method uses

a much faster variant of the Kernighan-Lin algorithm recommended in ROAD [Lee+12].

Consequently, we are able to evaluate ROAD for much larger datasets for the first time,

with ROAD being constructed in less than one hour for even the largest dataset (US)

containing 24 million vertices. The construction time of ROAD is comparable to G-tree,

because both use the same partitioning method, and employ bottom-up methods to com-

pute shortcuts and distance matrices, respectively.

We remark that, while most existing studies have focused on improving query process-

ing time, there is a need to develop algorithms and indexes providing comparable efficiency

with a focus on reducing memory usage and construction time.

3.7.2 Query Performance

We investigated kNN query performance over several variables: road network size, k, den-

sity, object distance, clusters, and real-world POIs. Implementations have been optimized

according to Appendix A. We have applied numerous improvements to each algorithm, as

detailed in Section 3.5 and Appendix B. IER network distances are computed using both

PHL [Aki+14] (when its index fits in memory) and G-tree with materialization (shown as

IER-PHL and IER-Gt, respectively).
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Varying Network Size

Figure 3.8(a) shows query times with increasing numbers of road network vertices |V | for

all 10 road networks in Table 3.1 on uniform objects. We observe the consistent superiority

of IER-based methods. Figure 3.8(a) clearly shows the reduced applicability of DisBrw.

Even though its performance is close to ROAD, its large index size makes it applicable to

only the first 5 datasets.
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Figure 3.8: Effect of Road Network Size |V | (d=0.001,k=10)

Surprisingly G-tree’s advantage over ROAD decreases with increasing network size

|V |. Recall that ROAD can be seen as an optimization on INE, where the expansion

can bypass object-less regions (i.e., Rnets). Thus, ROAD’s relative improvement over

INE depends on the time saved bypassing Rnets versus additional time spent descending

shortcut trees. In general, given the same density, we can expect a region of similar size to

contain the same number of objects irrespective of the network size |V |. This explains why

INE remains relatively unaffected by |V |. It also means that regions without objects are

similarly sized. Although Rnets may grow, the size of the Rnets we do bypass also grows,

so ROAD bypasses similar numbers of vertices. So, the time saved bypassing regions does

not increase greatly. Hence, ROAD’s query time with increasing |V | mainly depends on

the depth of shortcut trees. But the depth is bounded by l, which we know does not

increase greatly, and as a result, ROAD scales extremely well with increasing |V |.

G-tree’s non-materialized distance computation cost is a function of the number of

borders of G-tree nodes (i.e., subgraphs) involved in the tree path to another node or

object. With increasing network size, a G-tree node at the same depth has more borders

and the path cost is consequently higher. Thus, we see G-tree “catch-up” to ROAD on
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the US dataset. These trends are demonstrated in 3.8(b). G-tree’s path cost (in border-

to-border computations) increases while the number of vertices ROAD bypasses remains

stable with increasing |V | (note these are not directly comparable).

Varying k

Figures 3.9(a) and 3.9(b) show the results for varying k for the NW and US datasets, re-

spectively, on uniform objects. Significantly, IER-PHL is 5× faster than any other method

on NW. While PHL could not be constructed for the US dataset for travel distances, IER-

Gt takes its place as the fastest method, being twice as fast as G-tree. Interestingly, this

is despite both using the same index, also materializing intermediate results, and IER-Gt

having the additional overhead of retrieving Euclidean NNs. So, this is really an exami-

nation of heuristics used by G-tree. Essentially G-tree visits the closest subgraph (i.e., by

one of its borders) while IER-Gt visits the subgraph with the next Euclidean NN. IER-Gt

can perform better because its heuristic incorporates an estimate on distances to objects

within subgraphs while G-tree does not. Each time G-tree visits a subgraph not containing

a kNN it pays a penalty in the cost of non-materialized distance computations. We have

seen this cost increases with network size, which explains why the improvement of IER-Gt

is greater on the US than on NW. This is verified in Figure 3.8(b), which shows IER-Gt

involves fewer computations than G-tree and the gap increases with network size.
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Figure 3.9: Effect of k (d=0.001,uniform objects)

We observe that G-tree outperforms ROAD, DisBrw, and INE on NW, with a trend

similar to previous studies [Zho+15]. INE is the slowest as it visits many vertices. For

k = 1 the ROAD, DisBrw and G-tree methods are indistinguishable as a small area is
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likely to contain the 1NN. ROAD and DisBrw scale very similarly with k. G-tree scales

better than both, at its peak nearly an order of magnitude better than ROAD and DisBrw.

As more objects are located, more paths in the G-tree hierarchy are traversed, allowing

greater numbers of subsequent traversals to be materialized. As explained in Section 3.7.2,

we again see G-tree’s relative improvement over ROAD decrease in Figure 3.9(b) for the

larger US dataset.

Varying Density

We evaluate performance for varying uniform object densities in Figure 3.10. With in-

creasing density, the average distance between objects decreases and in general query times

are lower. The rate of improvement for heuristic-based methods (DisBrw, G-tree, IER) is

slower because they are less able to distinguish better candidates. For IER this means more

false hits, explaining why IER-PHL’s query times increase (slightly) as it has no means

to re-use previous computations like IER-Gt does. The rate of improvement is higher

for expansion-based methods as their search spaces become smaller. ROAD falls behind

INE beyond density 0.01 indicating the tipping point at which the time spent traversing

shortcut trees exceeds the time saved bypassing Rnets (if any). The query times plateau

at high densities on the US dataset for ROAD and INE because it is dominated by the

bit-array initialization cost (refer to Appendix A.3). G-tree performs well at high densities

as more kNNs are found in the source leaf node. In this case, it reverts to a Dijkstra-like

search (which we improved as in Appendix B.2.1) providing comparable performance to

INE and ROAD on NW. G-tree exceeds them on the US as a bit-array is not required due

to G-tree’s leaf search being limited to at most τ vertices.
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Figure 3.10: Effect of Density (k=10,uniform objects)
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Varying Clusters

In this section, we evaluate performance on clustered object sets proposed in Section 3.4.2.

Figure 3.11 shows the query time with increasing numbers of clusters and varying k. Clus-

ter size is at most 5 in both cases. Figure 3.11(b) uses an object density of 0.001. As

the number of clusters increases the average distance between objects decreases leading to

faster queries. This is analogous to increasing density, thus showing the same trend as for

uniform objects. IER-PHL’s superiority is again apparent. One difference to uniform ob-

jects is IER-based methods find it more difficult to differentiate between candidates as the

number of clusters increases, and query times increase (but not significantly). Similarly, in

Figure 3.11(b), as k increases, IER-PHL visits more clusters, causing its performance lead

to be slightly smaller than for uniform objects. IER-Gt on the other hand is more robust

to this, as it is able to materialize most results. G-tree again performs better than DisBrw

and ROAD. Due to clustering, objects in the same cluster will likely be in the same G-tree

leaf node. After finding the first object, G-tree can quickly retrieve other objects without

recomputing distances to the leaf node, thus remaining relatively constant.
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Figure 3.11: Effect of Clustered Objects (NW,|C|=0.001,k=10,clustered objects)

Varying Minimum Object Distance

Each set Ri in Figure 3.12 represents an exponentially increasing network distance to

the closest object with increasing i, as described in Section 3.4.2. For the smallest sets,

objects still tend to be found further away, as there are fewer closer vertices. However, as

distance increases further, we see the effect of “remoteness”. INE scales badly due to the

increasing search space. IER-based methods scale poorly as the Euclidean lower bounds
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become less accurate with increasing network distance. This is particularly noticeable

in Figure 3.12(b) as G-tree eventually overtakes IER-Gt on the US. But IER-PHL still

outperforms all methods on NW. DisBrw performs poorly for a similar reason, making

many interval refinements. G-tree scales extremely well in both cases, as more paths

are visited through the G-tree hierarchy and more computations can be materialized for

subsequent traversals.
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Figure 3.12: Effect of Minimum Object Distance (d=0.001,k=10,distance-based objects)

Real-World Object Sets

Varying Object Sets. In Figures 3.13 and 3.13, we show query times of each tech-

nique on typical real-world object sets from Table 3.2. These are ordered by decreasing

size, which is analogous to decreasing density, showing the same trend as in Figure 3.10.

Schools represent the largest object set and all methods are extremely fast as seen for high

density. A more typically searched POI, like hospitals, are less numerous and show the

differences between methods more clearly. Regardless, IER-PHL on NW and IER-Gt on

the US consistently and significantly outperform other methods on most real-world object

sets. Also note query times for G-tree are higher on the US than NW for the same sets,

confirming our observations in Section 3.7.1.

Varying k. Figure 3.15 shows the behavior of two typically searched POIs, fast food

outlets and hospitals, on the NW dataset. Hospitals display a trend similar to that of

uniform objects for increasing k, as they tend to be sparse. IER-PHL is again significantly

faster than G-tree. Although still fastest, IER-PHL has marginally lower performance for

fast food outlets as these tend to appear in clusters where Euclidean distance is less able to
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Figure 3.13: Varying Real-World Object Sets on NW Road Network (NW,k=10)
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Figure 3.14: Varying Real-World Object Sets on US Road Network (US,k=10)

distinguish better candidates, similar to synthetic clusters in Figure 3.11(b). Thus, trends

observed for equivalent synthetic object sets in previous experiments are also observed for

real-world POIs.
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Figure 3.15: Varying k for Real-World Objects (NW)

Original Settings

A recent experimental comparison [Zho+15] used a higher default density of d=0.01. While

we choose a more typical default density, we reproduce results using d=0.01 in Figure 3.16
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for varying k and network size. Note that we use the smaller Colorado dataset in Fig-

ure 3.16(a) for direct comparison with [Zho+15]. First, all methods compared in [Zho+15]

now answer queries in less than 1ms. While our CPU is faster, it cannot account for such

a large difference. This suggests our implementations are indeed efficient. Second, most

methods are difficult to differentiate, as such a high density implies a very small search

space (i.e., queries are “easy” for all methods).

100

101

102

103

 1  5  10  25  50

Q
ue

ry
 T

im
e 

(µ
s)

k

INE
ROAD
Gtree

IER-Gt
IER-PHL

DisBrw

(a) Varying k

101

102

103

105 106 107

Q
ue

ry
 T

im
e 

(µ
s)

Number of Vertices

INE
ROAD
Gtree

IER-Gt
IER-PHL

DisBrw

(b) Varying |V |

Figure 3.16: Default Settings from [Zho+13] (CO,d=0.01,k=10,uniform objects)

3.7.3 Object Set Index Pre-Processing Cost

The original ROAD paper [Lee+12] included the pre-processing cost for a single fixed

object set in its road network index statistics. But there may be many object sets (e.g.,

one for each type of restaurant) or objects may need frequent updating (e.g., hotels with

vacancies). Thus, we are interested in the performance of individual object indexes over

varying size (i.e., density). We evaluate 3 object indexes on the US dataset, namely: R-

trees used by IER, Association Directories used by ROAD and Occurrence Lists used by

G-tree. Note that in our study DisBrw also uses R-trees (see Section 3.5.2).

Index Size. In practice, object indexes for all object sets would be constructed offline,

loaded into memory and the appropriate one injected at query time. We investigate the

index sizes (in KB) in Figure 3.17(a) to gauge what effect each density has on the total

size. The size of the input object set used by INE is the lower bound storage cost. ROAD’s

object index is smaller than G-tree’s because it need only store whether an Rnet contains

an object or not, which is easily done in a low memory bit-array. G-tree’s object index

must additionally store the child nodes containing objects. Both indexes must however
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store the actual objects, which gradually dominates the index size with increasing density.

Note that we chose R-tree parameters (e.g., node capacity) for best performance. As a

result, R-trees fall behind after density 0.01, but this can be remedied by increasing the

node capacity at the expense of Euclidean kNN performance. We note that object indexes

are much smaller than road network indexes, as they are simpler data structures, and

real-world object sets with high densities are less frequent.
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Figure 3.17: Object Indexes for US (uniform objects)

Construction Time. Figure 3.17(b) similarly shows the object index construction

times. Again, they are all constructed much faster than road network indexes, due to being

simpler data structures. The ROAD and G-tree object indexes incur the largest build

time due to bottom-up propagation of the presence of objects through their respective

hierarchies. However, the R-trees used by IER are significantly faster to build. As R-trees

support updates, this suggests the possibility of use in real-time settings.

3.8 Travel Time Experiments

kNNs may just as commonly be required in terms of travel time. In this section, we

reproduce query results on road networks with travel time edge weights. Notably, the

state-of-the-art techniques have never previously been compared in this setting. Note that

we do not test DisBrw on travel times, as the additional information (i.e., distance ratios)

stored in the SILC index relies heavily on Euclidean distance, making it more complex to

adapt than IER and likely to perform significantly slower than on travel distances.
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3.8.1 Road Network Pre-Processing and Space

Figure 3.18 shows the index construction time and index size for the travel time edge weight

versions of the road networks in Table 3.1. The key difference to travel distances is that

PHL is constructed faster (in fact faster than the other methods) and uses significantly less

memory allowing it to be constructed for all datasets up to and including the US dataset

with 24 million vertices. Travel time graphs display better hierarchies, allowing for more

effective pruning, leading to smaller label sizes on average. Note we do not need to repeat

object index comparisons for travel times as they will be the same as for travel distances.

For example, the same partitioning of the road network is used to construct a G-tree

(respectively, ROAD) index in either case, which means Occurrence Lists (respectively,

Association Directories) will be identical to the travel distance versions.
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Figure 3.18: Pre-Processing Cost vs. Road Network Size |V |

3.8.2 Query Performance

We now present results for query performance on travel time road networks. We note

that overall, sometimes surprisingly, many of the trends observed for travel distances are

similarly observed for travel times.

Varying Network Size

Similar to the travel distance case, G-tree is seen to degrade with increasing |V | in Figure

3.19 as before. However, we were also able to construct the PHL index for all datasets, due

to the previously described presence of hierarchies in travel time road networks, allowing
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us to compare IER-PHL for even the continental US dataset. More surprisingly, IER-

PHL outperforms all other techniques on all datasets in Figure 3.19. This is despite the

Euclidean lower bound being much looser on travel times (as described in Section 3.5.1).
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Varying k

In general, we can expect IER-based methods to experience more false hits due to the looser

lower bound on travel times. This explains why IER-Gt is now outperformed by G-tree in

Figure 3.20. But the penalty paid by IER in false hits is not enough to stop IER-PHL still

significantly outperforming all other methods, remaining the fastest in most situations. In

fact, the margin of improvement achieved by IER-PHL over the other techniques remains

similar to travel distances. This is due to the increased cost of false hits being partly offset

by the reduced label sizes for PHL, which makes network distance queries faster.
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Figure 3.20: Effect of k (d=0.001,uniform objects)
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Varying Density, Clusters and Minimum Object Distance

There are a few notable situations where looser lower bounds aggravate cases where Eu-

clidean distance was already less effective on travel distances. For example, IER was

already less able to distinguish better candidates with increasing density, and as a result,

IER-PHL degrades faster on travel times in Figure 3.21. However, we note that a density

of 1, where every vertex has an object is not a realistic real-world scenario, and in such

cases, INE is the optimal method to use anyway. This is similarly observed for increasing

numbers of clusters in Figure 3.22 and increasing network distance in Figure 3.23 as the

lower-bounding error introduced by Euclidean distance worsens.
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Figure 3.21: Effect of Density (k=10,uniform objects)
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Figure 3.22: Effect of Clustered Objects (NW,|C|=0.001,k=10,clustered objects)
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Figure 3.23: Effect of Minimum Object Distance (d=0.001,k=10,distance-based objects)

Real-World Object Sets

We repeat the experiments for real-world object sets in Figures 3.24, 3.25 and 3.26. All

observations we have made so far are similarly observed here. For example, we observe

the same trends for increasing real-world object set size in Figure 3.24 as for increasing

object density. We also observe that G-tree again performs worse on the US dataset than

on NW. One major difference is that IER-PHL is included in comparisons for the US

dataset in Figure 3.25, since its index can be constructed for all datasets. This offsets

the degraded performance of IER-Gt. The sparse object set (Hospitals) and the clustered

object set (Fast Food) again show similar trends, with IER having degraded performance

on the clustered object set as it is less able to distinguish candidates. Again, this effect is

aggravated for travel times.
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Figure 3.24: Varying Real-World Object Sets on NW Road Network (NW,k=10)
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Figure 3.25: Varying Real-World Object Sets on US Road Network (US,k=10)
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Figure 3.26: Varying k for Real-World Objects (NW)
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3.9 Summary

We have presented an extensive experimental study for the kNN problem on road networks,

settling unanswered questions by evaluating object indexes, travel time graphs and real-

world POIs. We verify that G-tree generally outperforms INE, DisBrw and ROAD, but the

relative improvement is much smaller and at times reversed, demonstrating the impact of

implementation efficiency. Table 3.4 provides the ranking of the algorithms under different

criteria.

Criteria INE G-tree ROAD IER DisBrw
Query Performance

Default Settings 5th 2nd =3rd 1st =3rd
Small k 5th =3rd =3rd 1st 2nd
Large k 5th 2nd 3rd 1st 4th
Low Density 5th 2nd =3rd 1st =3rd
High Density 1st 3rd 2nd 4th 5th
Small Networks 5th 2nd =3rd 1st =3rd
Large Networks 4th =3rd 2nd 1st N/A

Network and Object Index Pre-Processing
Time (Network) 1st 3rd 2nd 4th 5th
Time (Objects) 1st 5th 4th =2nd =2nd
Space (Network) 1st 2nd 3rd 4th 5th
Space (Objects) 1st 5th 2nd =3rd =3rd

Table 3.4: Ranking of kNN Algorithms Under Different Criteria

Our most significant conclusions are regarding IER, which we investigated with fast

network distance techniques for the first time. IER-PHL significantly outperformed every

competitor in all but a few cases, even on travel time graphs where Euclidean distance is

less effective. IER provides a flexible framework that can be combined with the fastest

shortest path technique allowed by the users’ memory capacity and must be included in

future comparisons. Additionally, on travel distances, we saw that IER-Gt often outper-

formed the original G-tree kNN algorithm despite using the same index. We even see that

this observation can be generalized further as we also improved DisBrw using Euclidean

distance.

3.9.1 To Blend or Not to Blend

Our results for IER-Gt and DisBrw show that Euclidean distance is a better heuristic

than those proposed in the original works. In the case of G-tree, the original G-tree kNN

algorithm searches its hierarchy by visiting G-tree nodes in the hierarchy closest to the

query vertex. The distance to a G-tree node is determined by computing the distance to
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the nearest border vertex of the associated subgraph. Thus, there is no object specific

information involved in this part of the kNN search. In fact, the only information used

to guide the search unique to the object set is the indication of whether the subgraph

contains an object or not (via the Occurrence List object index). On the other hand,

using G-tree in the IER algorithm can be thought of as guiding the search through the G-

tree hierarchy by using the minimum Euclidean distance to an object. Our results suggest

that even though Euclidean distance underestimates network distance, this object specific

information is more accurate than using the network distance to the nearest border, which

may be very far from the actual object contained in the subgraph.

Now, generally, this identifies significant room for improvement in kNN search heuris-

tics, if such a simple heuristic like Euclidean distance not known to be particularly accurate

outperforms state-of-the-art heuristics. More specifically, given the comparison between

searching the G-tree hierarchy using the original heuristic and Euclidean distance in the

previous paragraph, it suggests that the object index component of decoupled indexes

need to incorporate more information specific to the object set. In Section 3.2.2, we

compared the relative advantages of decoupled indexing (like the use of the G-tree road

network index with the Occurrence List object index) and often prohibitive disadvantages

of blended indexing. The significant pre-processing benefits of decoupled indexes are hard

to ignore, especially given the increasingly large road network datasets used today. But it

appears the process of decoupling and the resulting performance increases from advances

in computing network distance has led to a devaluing of incorporating object set specific

information into the object indexes. In blended indexing, this happened naturally, as each

index was constructed for a specific object set. We use this insight as a motivating fac-

tor for the direction of our subsequent work, starting with improving heuristics for kNN

search in Chapter 4. That is, to incorporate more object set specific information into

object indexes while preserving the pre-processing benefits of decoupled indexing.

65



Chapter 4

Landmark-Based Strategies for

kNN Search Heuristics

The whole art of war consists of guessing at what is on the other

side of the hill.

Duke of Wellington

We identified the unexpected impressive query performance of a simple Euclidean

heuristic compared to state-of-the-art techniques in Chapter 3. Remarkably, this was true

even on travel-time road networks. However, from studies on the shortest path problem,

Euclidean distance is known to be a less effective heuristic on road networks with travel-

time edge-weights. In this chapter, we use our earlier insight into the effectiveness of

the Euclidean distance decoupled heuristic to develop new heuristics that further improve

kNN querying. The research in this chapter appeared in [AC17].

4.1 Overview

As described earlier, a k Nearest Neighbor (kNN) query finds the k closest POIs (objects)

to a query location by their network distance. But computing network distances to all of

the potentially thousands of objects, only to report a few, is infeasible in the context of real-

time map-based services. Recall from Chapter 3 that Incremental Euclidean Restriction

(IER) [Pap+03] is a kNN technique that uses a simple Euclidean distance heuristic to

avoid having to compute network distances to all objects. IER retrieves Euclidean kNNs

as candidates and computes network distances to each one using a shortest path algorithm
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(e.g., Dijkstra). The kth furthest candidate implies an upper bound network distance to

the real kth NN. IER then iteratively retrieves further Euclidean NNs as candidates,

computes network distances to each candidate and updates the k best candidates if closer

POIs are found. Since Euclidean distance is a lower bound on network distance, IER

terminates when the distance to the next Euclidean NN is larger than the network distance

to the kth candidate, as the candidate set cannot be improved.

Our improvement of IER using faster network distance techniques and subsequent

experimental comparisons to the state-of-the-art in Chapter 3, showed that this approach

is an unexpectedly effective heuristic compared to the state-of-the-art. This was especially

true in the case of road networks with travel distance edge-weights. However, while it may

have outperformed existing techniques, Euclidean distance is only a “good” heuristic when

it is a tight lower-bound on network distance. For example, the Euclidean heuristic only

provides a loose lower-bound in travel-time road networks. As we discuss next, using

alternative lower-bounding heuristics with tighter lower-bounds is a challenge in itself.

4.1.1 Motivations & Contributions

Euclidean distance is a lower-bound on the road network distance when edge weights in

the road network are physical distances. It can also be made into a lower-bound for

other metrics. For example, for travel time edge weights, we can divide the Euclidean

distance by the maximum speed over all edges to obtain a minimum possible travel time

as shown in Section 3.5.1. This however has a negative impact on kNN querying by (1)

making Euclidean NN candidates less likely to be true kNN results and (2) taking longer

to terminate candidate generation as the lower-bounds are looser compared to network

distance. This results in wasteful network distance computations to “false hit” candidates

that are not real kNNs. This was evident as IER’s advantage was smaller in several travel

time experiments in Section 3.8.

Landmark Lower Bounds (LLBs) are an alternative lower-bounding method based on

pre-computed network distances to landmark vertices and the triangle inequality. LLBs

were used by Goldberg and Harrelson [GH05] to significantly improve A* search due to the

tighter lower-bounds provided than Euclidean distance. Naturally, as the shortest path

problem is closely related to the kNN problem, this raises the question of whether these

landmark lower bounds can be used to similarly improve IER’s kNN query performance.
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Until our study, the answer to this question has been “no”. As we elaborate next, this is

because using LLBs efficiently is not a trivial task.

Incrementally retrieving the candidate with the smallest Euclidean distance is effi-

ciently achieved using a Euclidean NN search algorithm on an R-tree. By “incrementally”

we mean by computing only a small number of lower-bounds to determine the next Eu-

clidean candidate. However, an analogous and efficient method to incrementally retrieve

candidates by their LLBs has never been proposed. Consequently, all past attempts to

use LLBs for kNN querying [Kri+07; Kri+08] have resorted to computing LLBs for all

POIs. By sorting all LLBs, the object with the smallest LLB can be found. But this is

neither efficient as it is required for every new query, nor is it practicable as most POI

sets number in the thousands, e.g., the 25,000 fast food outlets in the US (Table 3.2).

Figure 4.1 demonstrates the magnitude of this problem for kNN queries on the US

travel time road network. Figure 4.1(a) shows that fewer false hits are encountered when

using landmark lower-bounds. However, Figure 4.1(b) suggests that this does not trans-

late into improved query time when all LLBs are being computed. In fact, increasing

object density (i.e., the ratio of POIs to vertices) requires more LLB computations result-

ing in increasingly poorer performance. This clearly demonstrates our argument, in that

(1) LLB-based methods provide better lower bounds as evident from the fewer false hits

and (2) LLB-based methods perform very poorly without the ability to retrieve candi-

dates incrementally. We propose methods that remedy (2) such that we can, finally, take

advantage of (1).
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Figure 4.1: Euclidean kNN vs. Landmark kNN Querying (US,k=10,uniform objects)
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We identify IER, more generally, as an example of a decoupled heuristic. The heuristic

is decoupled in the sense that retrieving candidate objects is independent of computing

network distances. In this chapter, we propose new decoupled heuristics that effectively

utilize landmark lower bounds to efficiently answer kNN queries. Specifically:

• We propose the object-first strategy to incrementally retrieve candidates. We revisit

a neglected data structure, the Network Voronoi Diagram (NVD), and use it to

retrieve objects which may be the next candidate to which we compute LLBs. We

then utilize a useful property of NVDs to avoid computing LLBs to other objects.

This approach is extremely efficient for kNN querying, significantly outperforming

competing methods on running time and heuristic performance.

• We also propose the lower-bound first strategy. This approach searches a list of

sorted distances to find the LLB belonging to the next candidate. In the process,

we propose a new index, Object Lists (OL), with very low pre-processing time and

index size in theory and practice. This approach demonstrates the difficulties in

using LLBs but is efficient in some scenarios.

• We empirically verify that LLBs produce more accurate kNN candidates than Eu-

clidean distance on a variety of experimental settings, to the best of our knowledge,

for the first time. Moreover, our study of “false hits” (i.e., candidates that are not real

kNNs) in addition to running time verifies the improvements made by our techniques

in a machine-independent manner. Conclusions based on this metric are applicable

irrespective of the experimental environment or network distance technique used.

4.2 Preliminaries

We utilize the common definition of the road network graph G = (V,E), shortest path

and network distance as described in Section 1.1. As in Chapter 3 and other studies we

consider POIs (objects) and query points located on vertices in V . Similarly, given a query

vertex q and a set of object vertices O, a kNN query retrieves the k closest objects in O

based on their network distances from q in G.
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4.2.1 Landmark Lower Bounds

To compute a Landmark Lower Bound (LLB) between two vertices, firstly a pre-processing

phase is conducted offline where a set of m landmark vertices L = {l1, . . . , lm} ⊆ V is

selected. Then from each landmark li ∈ L the distances to all vertices in V are computed.

Now given any source vertex q and destination vertex o, we can compute a lower bound

LBli(q, o) on the network distance d(q, o) using the distances to landmark li and the

triangle inequality as defined in (4.1). We obtain the “tightest” lower bound (i.e., closest

to d(q, o)) by choosing the maximum lower bound LBmax(q, o) over all m landmarks as

defined in (4.2).

LBli(q, o) = |d(li, q)− d(li, o)| ≤ d(q, o) (4.1)

LBmax(q, o) = max
li∈L

(|d(li, q)− d(li, o)|) (4.2)

4.2.2 ALT Index

LLBs were first applied to road networks by Goldberg and Harrelson [GH05] in their

ALT technique. The ALT index simply stores, for each li in the set of m landmarks, the

distance d(li, vj) from li to every vertex vj ∈ V . This can be visualized as an array of

distances for each vertex as shown in Figure 4.2. ALT takes O(m|V |) space and given the

set of m landmarks vertices can be constructed in O(m|V | log |V |) time using Dijkstra’s

algorithm.

d(l1,v1) d(l2,v1) … d(lm,v1) 

d(l1,v2) d(l2,v2) … d(lm,v2) 

d(l1,v|v| ) d(l2,v|v| ) … d(lm,v|v| ) 

⁞ 

v1 

v2 

v|v| 

Figure 4.2: Vertex-Landmark Distances in ALT Index
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Two considerations arising from LLBs are (a) the vertices to select as landmarks and

(b) the number of landmarks. For example, increasing the number of landmarks tends

to increase LBmax, as the probability of finding a “good” landmark increases. But this

entails higher space cost (as there will be additional columns in Figure 4.2) and find-

ing the tightest lower-bound over all landmarks also becomes more expensive. Choosing

landmarks suitable for kNN querying is a challenging problem, as we elaborate in Section

4.3.1.

In practice, it is more beneficial to store the distances in arrays as shown in Figure

4.2 rather than the transpose. That is, have an array for each vertex with distances

to landmarks rather than the other way around. Then LBmax(q, o) can be efficiently

computed by iterating over the lists for q and o. Since accessed values will be sequential

memory, this leads to better CPU cache utilization and faster computation. Also note

that (4.1) and (4.2) apply to undirected graphs, but the idea can easily be extended to

directed graphs by computing and storing distances to and from landmarks.

4.2.3 Multi-Step kNN Algorithm

Incremental Euclidean Restriction (IER) [Pap+03] is an instance of the multi-step kNN

algorithm first described by Seidl and Kriegel [SK98] as in Algorithm 2. This decou-

pled heuristic algorithm generalizes IER to consider any lower-bounding heuristic, such

as LLBs. We refer to kNN algorithms using this paradigm with other heuristics as Incre-

mental Lower Bound Restriction (ILBR).

Algorithm 2 Multi-Step kNN algorithm by Seidl and Kriegel [SK98]

1: function GetKNNsByILBR(k, q, V )
2: PQ ← φ . Queue of objects in ascending lower-bound distance from q
3: R← φ . Max priority queue containing k best candidates
4: Dk ←∞ . Network distance to kth candidate in R
5: while MinKey(PQ) ¡ Dk do
6: c← Extract-Min(PQ)
7: Compute network distance d(q, c)
8: if d(q, c) < Dk then
9: Insert(R, c, d(q, c)) . Update R and Dk if needed

10: return R

Algorithm 2 iteratively retrieves the candidate object with the smallest lower-bound

distance from minimum priority queue PQ. The true network distance from query vertex

q to the extracted candidate c is computed using another technique. Then c is inserted

into the result set R if it improves it. Dk records the network distance to the current k-th
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furthest candidate in R (initially infinity). When the next smallest lower-bound (e.g.,

at the front of PQ) is larger than Dk, R can no longer be improved, and the algorithm

terminates.

For IER, PQ is the priority queue maintained by the Euclidean NN search on an R-

tree indexing all objects in O. This algorithm avoids computing Euclidean distances to

all objects by using minimum bounding rectangles to avoid R-tree nodes. However, there

is no efficient analogous method for LLBs. In past studies [Kri+07; Kri+08], LBmax in

(4.2) is computed for all objects. Each object is inserted into PQ by its LBmax value in

order to find the object with minimum LBmax. This is neither efficient nor practicable,

as it is required every time a query is issued and there may also be many objects.

4.3 Techniques

In this section we propose two approaches to solve the problem of incrementally retrieving

candidate objects for use by Algorithm 2 and avoid the previously mentioned problems

of using LLBs. We first attempt a “lower-bound first” by introducing the Object Lists

index based on ALT that searches for the next best lower-bound (and associated object) in

Section 4.3.1. Then in Section 4.3.2, we propose an “object first” approach which searches

for the best object to which we compute a lower-bound.

4.3.1 Object Lists

For an object set O, we create an index consisting of a set of Object Lists (OL), one for

each landmark li ∈ L. The list OLi contains an element for every object o ∈ O, with

each element containing o and its distance from the landmark d(li, o). The list is sorted

on distances d(li, o). Figure 4.3 illustrates a set of unsorted Object Lists. An OL index

is pre-computed offline since object sets are known before query time (e.g., the set of all

restaurants). It can be efficiently constructed using an ALT index shared between all

object sets, in O(m|O|) time and space, which is linear to the input.

OL-Based Candidate Generation for kNN Queries

To generate candidates for kNN querying using OL, we must find the object p ∈ O with

the smallest LBmax(q, o) as defined by (4.3). Then, p can be returned as a candidate to
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o1,d(l1,o1) o2,d(l1,o2) … o|O|,d(l1,o|O|) o1,d(l1,o1) o2,d(l1,o2) … o|O|,d(l1,o|O|) 

o1,d(l2,o1) o2,d(l2,o2) … o|O|,d(l2,o|O|) o1,d(l2,o1) o2,d(l2,o2) … o|O|,d(l2,o|O|) 

o1,d(lm,o1) o2,d(lm,o2) … o|O|,d(lm,o|O|) o1,d(lm,o1) o2,d(lm,o2) … o|O|,d(lm,o|O|) 

⁞ 

OL1 

OL2 

OLm 

Figure 4.3: Unsorted Object Lists for m Landmarks

ILBR (Algorithm 2). Rather than computing LLBs for all objects to find p, we attempt

to do this more optimistically and compute fewer LLBs in the process.

p = min
p∈O

(max
li∈L

(|d(li, q)− d(li, p)|)) (4.3)

In Algorithm 3, given a query vertex q and a landmark vertex lq, we use the object list

OLq of lq to populate and refine a set of potential candidates until we find object p that

minimizes (4.3). We will elaborate on choosing lq shortly but consider lq to be the nearest

landmark to q for now.

Algorithm 3 Retrieve object with minimum lower-bound using Object Lists

1: function Extract-Min-OL(q, lq, d(lq, q),PQ, RPq, LPq)
2: if OLq positions RPq and LPq are not set then
3: pos← OLq.F indClosest(d(lq, q))
4: p← OLq[pos].obj, RPq ← pos+ 1, LPq ← pos− 1
5: PQ.Enqueue(p,ALT.ComputeLBMax(q, p))

6: while LBlq(q, p) < PQ.T op() for p at RPq or LPq do
7: p← object at RPq or LPq with smaller LBlq
8: PQ.Enqueue(p,ALT.ComputeLBMax(q, p))
9: Increment RPq or decrement LPq based on choice at Line 7

10: return oc ← PQ.Dequeue()

The first potential candidate is the object c with the minimum lower-bound for the

given landmark lq. The lower-bound LBlq(q, o) for every object o ∈ O is defined by (4.1),

i.e., |d(lq, q) − d(lq, o)|. But for each query, d(lq, q) is constant as the query vertex stays

the same. Thus, this is a single-variable absolute value function of the form f(x) = |C−x|
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where x ∈ {d(lq, o)|o ∈ O}. This means the domain of x is stored in the object list OLq

of landmark lq in increasing order.

Single-variable absolute value functions are convex and minimized at the vertex at

x = C. Thus, the minimum value over the domain of x is given by x closest to constant

C. This is also the minimum lower-bound for landmark lq and can be found by searching

OLq for d(lq, c) closest to d(lq, q) for some object c ∈ O. Since OLq is sorted this can

be achieved efficiently using a modified binary search in log |O| time (line 3 in Algorithm

3). The object c corresponding to the distance d(lq, c) closest to d(lq, q) is the object

which minimizes LBlq(q, o). While c may not be unique, any object with the minimum

lower-bound will suffice. However, c may not minimize (4.3) and we must search further

to ensure p is found, as we show next.

Example 1. Figure 4.4 depicts OLq for a set of 7 objects o1, ..., o7 with distances from a

landmark lq. Let us say d(lq, q) = 4, then the binary search will find the element at index 3

(shaded) as closest to 4. Therefore c = o5 minimizes (4.1) with LBlq(q, o5) = |4− 4| = 0.

(o6,1) (o2,2) (o4,3) (o5,4) (o7,7) (o1,8) (o3,9)(o6,1) (o2,2) (o4,3) (o5,4) (o7,7) (o1,8) (o3,9)OLq

0 1 2 3 4 5 60 1 2 3 4 5 6Index

Figure 4.4: Example Object List OLq for Landmark lq

Now object c is inserted into a minimum priority queue PQ keyed by LBmax(q, c)

computed using the ALT index [GH05] as described in Section 4.2.2. We use the ALT-

based lower-bound for c as it may provide a tighter lower-bound than LBlq(q, c). More

importantly, it helps us determine how far we must search the object list OLq to find the

object p which minimizes (4.3). To formalize this search, we propose Lemma 1:

Lemma 1. Given an object c and a landmark lq, any other object p ∈ O with LBlq(q, p) <

LBmax(q, c) may also have LBmax(q, p) < LBmax(q, c).

Proof. Lemma 1 is trivially true when LBmax(q, p) = LBlq(q, p), i.e., when lq gives the

tightest lower-bound for p.

Now object cnext with the next smallest lower bound by lq is immediately to the left

or right of object c found earlier by binary search on OLq (line 4 in Algorithm 3). If
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LBlq(q, cnext) < Top(PQ) then by Lemma 1, cnext may have smaller LBmax than any

object in PQ. While LBlq(q, cnext) < Top(PQ), we search left or right from p. When an

object satisfies the condition, we compute LBmax and insert it into PQ. When neither

the next left nor right object satisfies the condition, the algorithm terminates, and the

top element in PQ is returned as the object that minimizes (4.3). This is correct as any

object further left or right must have LBlq(q, cnext) ≥ Top(PQ) and cannot satisfy Lemma

1. Furthermore, by saving PQ and the indices in OLq of the last left and right elements

evaluated so far, we can incrementally retrieve the object with the next smallest LBmax.

Example 2. Continuing Example 1, let us say LBmax(q, o5) = 2 and hence Top(PQ) = 2

after inserting o5. In Figure 4.4, the objects to the left and right of o5 are o4 and o7,

with lower bounds LBlq(q, o4) = |4− 3| = 1 and LBlq(q, o7) = |4− 7| = 3 respectively. By

Lemma 1, o4 may have a lower LBmax so we compute LBmax(q, o4) and insert it into PQ.

Let us say we still have Top(PQ) = 2 after inserting o4. For the next element to the left,

o2, we have LBlq(q, o2) = |4− 2| = 2. In that case, neither lower bounds for the object to

the left or right is less than Top(PQ) and therefore cannot improve on the objects in PQ

and the search terminates.

Difficulty in Choosing an Object List

In the above, we used the object list of the landmark lq closest to the query vertex q to

increase the probability of objects being further from lq than q. Then we have d(lq, q) <

d(lq, o) for a greater number of objects and hence produce higher lower-bounds by (4.1).

This scenario is illustrated in Figure 4.5(a), which shows the landmark distances for query

vertex q, the 1NN object o and two landmarks l1 and l2. The lower-bound distances using

each landmark are LBl1(q, o) = |10 − 10| = 0 and LBl2(q, o) = |12 − 5| = 7. Landmark

l2 gives a better lower-bound for o than l1 as it is closer to q. In this way, we expect to

benefit from having to only search a single object list OLq with lower-bounds closer to

their LBmax on average and hence find p in (4.3) sooner.

This principle holds for smaller datasets where the ratio of landmarks to objects is

lower, as confirmed in practice by our experimental investigation (Section 4.4). However,

when dataset size increases in either (a) the number of road network vertices |V | or (b)

the number of objects |O|, it becomes less likely to be true. Recall that the number of

landmarks m is fixed so in both cases the likelihood of finding a landmark that is closer
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87

(b) Far Landmark

Figure 4.5: Effect of Landmark Location on Lower-Bounds

to the query location than to other objects decreases. This disadvantageous scenario is

illustrated in Figure 4.5(b). All three objects are closer to l1 than q and o3 gives the

smallest lower-bound LBl1(q, o3) = |10 − 10| = 0 even though it is the furthest object

from q (assume objects are embedded in the Euclidean plane relative to their network

distance from q). Next, we propose a technique that is far less beholden to the density of

landmarks.

Extending to Moving Objects

Thus far, we have considered static objects, but some object sets may be considered to be

moving, e.g., taxis. Since we have assumed that objects occur on road network vertices, we

shall consider objects moving from one vertex to another. Such vertices are often not very

far apart, especially in real-world maps like OpenStreetMap [Ope] which use additional

vertices between intersections to capture properties such as road curvature. When an

object p moves, the landmark distances for p will be invalidated in each OL. Handling

this scenario is a simple matter of looking up the landmark distance in ALT for the new

vertex associated with p, achieved in O(1) per landmark. This update may affect the

ordering of each landmark’s OL, but since at most only one list element is out of order,

each OL can be re-ordered in at most O(|O|) time.

4.3.2 Network Voronoi Diagrams and Landmarks

We propose another approach to efficiently generate candidates through the novel combi-

nation of LLBs and a Network Voronoi Diagram (NVD) [OBS00]. As we describe next,

candidates are generated in an “object-first” manner using NVDs, which is more suitable
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for kNN queries, and are even capable of tightening lower-bounds above and beyond those

provided by ALT.

We first define the Voronoi node set Vns(oi) of oi by (4.4), which identifies the vertices

in V for which oi is the first nearest neighbor by their network distances to oi. This is the

key difference to the Euclidean Voronoi diagram, in that generator oi occurs on the road

network and distances are computed by shortest paths.

Vns(oi) = {v|v ∈ V, d(v, oi) ≤ d(v, oj)∀oj ∈ O \ oi} (4.4)

For any edge (u, v) where u ∈ Vns(oi) and v ∈ Vns(oj), then Vns(oi) and Vns(oj) are

adjacent. The Network Voronoi Diagram for object set O is the collection of Voronoi node

sets for all objects in O. Figure 4.6 shows an example NVD for a graph with unit edge

weights and four objects. Each Voronoi node set is surrounded by a dotted container and

arrows indicate adjacency.

o1

o2

o4

o3

Vns(o2)

Vns(o4)

Vns(o3)

Vns(o1)

Figure 4.6: Network Voronoi Diagram

Pre-Processing Algorithm and Time Complexity: An NVD can be computed

optimally in O(|V | log |V |) time [EH00] using simultaneous Dijkstra’s searches from all

objects using a single priority queue. When a vertex vd inserted by the search from oi

is dequeued and vd is not assigned to a Voronoi node set, it is assigned to Vns(oi). This

is correct as vd is the minimum element in the queue and so cannot be closer to another

object. However, if vd is assigned to another Voronoi node set Vns(oj), then Vns(oj) is

added to the list of adjacent sets for Vns(oi) (the search from oj creates the reciprocal
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entry). The search from oi is pruned at vd, i.e., neighbor vertices are not inserted into the

queue as they cannot belong to Vns(oi).

Index Size: A simple method to store NVDs saves the nearest object for every vertex

in V , taking O(|V |) space. However, NVDs can be compressed by storing the geometric

area of the Voronoi node sets in a quadtree [DS12; SSA08]. As road networks are generally

near-planar each set is likely to be contiguous, and quadtree cells with objects from the

same set can be merged, reducing the space cost. Given a query vertex q, its Voronoi

node set can be determined by a point location query on the quadtree using its Euclidean

coordinates.

Revisiting NVD Adjacency: NVD were previously used to answer kNN queries by

VN3 [KS04]. VN3 uses an NVD to partition the road network. For each partition (i.e.,

Voronoi node set), the distances from its border vertices to each of its contained vertices

is pre-computed and stored. Using the observation that the next NN is contained in a

Voronoi node set adjacent to the sets of NNs found so far, VN3 uses border-to-border

and border-to-vertex distances to compute network distances to all adjacent objects and

determine the next NN. VN3 has long since been replaced by far more flexible and efficient

techniques, some of which we described in Chapter 3.

However, the observation about adjacent Voronoi node sets containing the next NN

was discarded along with VN3 due to the cumbersome pre-computation of distances which

ultimately did not achieve efficient querying. As we detail next, this observation is still

quite useful and can be relaxed to consider the next candidate NN rather than the next

NN. In turn, this allows us to incrementally retrieve candidates by landmark lower-bounds

(LLBs) and terminate without retrieving all objects. By combining NVDs with landmarks,

we can significantly improve candidate generation for kNN querying, breathing new life

into an old idea.

NVD-Based Candidate Generation for kNN Queries

We describe how to retrieve the best candidate using NVDs in Algorithm 4. By their

definition, an NVD can quickly return the 1NN by looking up the Voronoi node set (and

hence the associated object) containing the query vertex. If k > 1, Algorithm 4 returns

the next candidate by first retrieving the adjacent Voronoi node sets of the last candidate

object. Note that in the first call to Algorithm 4 the last candidate is the 1NN. Each
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adjacent set generates a new potential candidate, to which we compute its LBmax by (4.2)

using the ALT index and insert it into priority queue PQ. We use hash-table or bit-array

H to avoid repeated computations for previously evaluated adjacent Voronoi node sets.

Once all adjacent sets are processed in this way, we return the element in PQ with the

minimum LBmax as the next candidate.

Algorithm 4 Retrieve object with minimum lower-bound using an NVD

1: function Extract-Min-NVD(q, olast,PQ, H)
2: for each Vns(p) adjacent to Vns(olast) do
3: if !H.contains(Vns(p)) then
4: PQ.Enqueue(p,ALT.ComputeLBMax(q, p))
5: H.insert(Vns(p))

6: return oc ← PQ.Dequeue()

Figure 4.7 shows a simplified NVD, assume the dotted containers capture the Voronoi

node sets of each object and when containers share an edge, they are adjacent. So, for

query vertex q in the figure, we can retrieve the 1NN o1 as q is contained in Vns(o1). Then

the adjacent Voronoi node sets of Vns(o1) (lightly shaded) are used to retrieve potential

candidates, which are inserted into PQ by their LBmax values. Let us say the candidate

with the minimum key is now o7, then o7 would be returned by the algorithm. In the next

call to the algorithm, the Voronoi node sets adjacent to Vns(o7) would be retrieved and,

for sets not already evaluated, new potential candidates inserted into PQ.

o1

q

o2

o3

o4

o5 o6

o7

o8

o9

o10Vns(o1)

Vns(o3)

Vns(o4)

Vns(o2)

Vns(o5) Vns(o6)

Vns(o10)
Vns(o7)

Vns(o8)

Vns(o9)

vx

Figure 4.7: Network Voronoi Diagram Query

Recall that ILBR (Section 4.2.3) terminates when the network distance to the kth can-

didate is less than the lower bound distance to the next candidate. We propose Theorem

1 to show that Algorithm 4 is correct when this occurs.
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Theorem 1. When ILBR terminates the following are true (1) priority queue PQ does

not contain any objects with a distance smaller than the kth candidate (2) no object outside

of the Voronoi node sets visited so far (i.e., objects in PQ or returned as candidates) have

distance smaller than the kth candidate.

Proof. Let Dk be the network distance to the kth candidate. We prove each case of

Theorem 1 individually as follows:

Case 1: When ILBR terminates we have Dk ≤ Top(PQ). We also have Top(PQ) ≤

d(q, c) for any object c in PQ as they are inserted using a lower bound distance and PQ

is a minimum priority queue. Thus, we also have Dk ≤ d(q, c) and no object c in PQ has

a network distance smaller than the kth candidate.

Case 2: Let C ⊆ O be the set of objects inserted into PQ and let S = {Vns(o)|o ∈ C}

be the set of associated Voronoi node sets. We prove Case 2 by contradiction in a similar

but simpler manner to [KS04]. Let us assume there exists an object pk /∈ C such that

d(q, pk) < Dk. Algorithm 4 inserts objects into PQ from adjacent Voronoi node sets

beginning with the set containing q, thus all Voronoi node sets in S are adjacent to at least

one other set in S. So, the shortest path P (q, pk) must pass through some Voronoi node

set Vns(x) ∈ S since pk /∈ C. Thus P (q, pk) must contain at least one vertex vx ∈ Vns(x),

as illustrated in Figure 4.7 with x = o2 and pk = o8. By the definition of an NVD we have

d(vx, x) ≤ d(vx, pk) as all vertices in Vns(x) are closer to x than any other object. Adding

d(q, vx) to both sides results in d(q, vx) + d(vx, x) ≤ d(q, vx) + d(vx, pk). This simplifies to

d(q, x) ≤ d(q, pk) as vx is on the shortest path P (q, pk) and d(q, x) ≤ d(q, vx) + d(vx, x).

Since x is in PQ, we have Top(PQ) ≤ d(q, x), so we must have Dk ≤ d(q, x). This implies

Dk ≤ d(q, pk), contradicting our assumption.

NVD-Based Landmark Lower-Bounds

An added advantage of using NVDs is that we can compute a landmark lower-bound (LLB)

using only the NVD. This allows us to either (a) avoid using the ALT index altogether

or better yet (b) use both to obtain a tighter lower-bound by choosing the maximum of

the NVD-based lower-bound (NVD-LLB) and ALT-based lower-bound (ALT-LLB). First,

to enable NVD-LLBs, during NVD pre-processing we also compute the network distances

between adjacent objects. Alternatively, an upper-bound between adjacent objects will

also suffice. In fact, during NVD construction, we naturally compute an upper bound
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distance between objects of adjacent Voronoi node sets when parallel Dijkstra’s searches

meet. Simply saving the smallest such upper-bound as searches meet comes at no addi-

tional pre-processing overhead. This is an upper bound and not an exact distance because

searches are pruned (e.g., shorter paths may exist through other adjacent Voronoi node

sets).

Now to compute the NVD-LLB we can use the objects themselves as landmarks and

then apply the triangle inequality. During querying, we naturally compute the network dis-

tance from q to the last candidate object, which is an input to Algorithm 4. For example, in

Figure 4.8, let o2 be the last candidate returned with network distance d(q, o2). While eval-

uating the adjacent set Vns(o8), we use the pre-computed upper bound distance UB(o2, o8)

between o2 and o8 to compute a lower bound LBnvd(q, o8) = d(q, o2) − UB(o2, o8). Note

that we do not use the absolute value due to the upper bound. In Algorithm 4, we insert

o8 into Q keyed by LBnvd(q, o8) if LBnvd(q, o8) > LBmax(q, o8). The new lower bound

may be tighter than the one computed using ALT, especially when objects are further

away from q and comes at a cheap pre-processing and query time cost.

o1
q

o2

o7

o8

Vns(o1)

Vns(o2)

Vns(o7)

Vns(o8)

d(q,o2)

UB(o2,o8)

Figure 4.8: NVD-Based LLBs

Extending to Moving Objects

Extending NVDs for moving objects is more complicated than Object Lists. Any change

to a single object may potentially invalidate the entire NVD, so updating the NVD may

require it to be reconstructed from scratch in O(|V | log |V |) time. Unlike OLs, this is

dependent on the size of the road network (in vertices |V |), making it significantly more

costly. This suggests that OLs are more suitable for object sets involving moving objects.
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We verify this experimentally in Section 4.4.2 in terms of indexing construction time.

Note that a more optimistic approach than complete re-computation to update NVDs is

described in Section 5.6.2 and is potentially applicable here.

4.4 Experiments

4.4.1 Experimental Settings

Environment: All experiments were run on a 3.2GHz Intel Core i5-4570 CPU with 32GB

RAM running 64-bit Linux (kernel 4.2). All code was written in single-threaded C++ and

compiled using g++ 5.2 with the O3 flag. We implemented ILBR, ALT and the candidate

generation techniques ourselves. We re-used the implementations of existing techniques,

experimental scripts, and datasets from our work in Chapter 3. All queries were executed

in-memory for fast performance.

Datasets: We use 10 travel time road networks as listed in Table 3.1 with the largest

dataset, for the continental US, the default. We use a combination of synthetic and real

object sets as described in Section 3.4.2. We choose synthetic objects uniformly at random

based on density d where d=|O|/|V | and the 8 real POI sets listed in Table 3.2 used in

the experiments of Chapter 3.

Parameters: We vary object set density from 0.0001 to 1 and k from 1 to 50. We use

the same default parameters as in Table 3.6.1 with default density d = 0.001 and k = 10.

We generate 25 uniform object sets and execute methods for 200 randomly selected query

vertices, averaging running time over 5000 queries.

Techniques: Like IER, ILBR uses a different road network index to compute network

distances. We combine ILBR with Pruned Highway Labeling (PHL) [Aki+14] as it is one

of the fastest techniques. We use an ALT [GH05] index with 16 random landmarks to

compute lower bounds and construct Object Lists. Finally, we compare our techniques

against the current fastest state-of-the-art technique, IER (similarly using PHL) as per

our insights from Chapter 3. For real-world object sets we also compare against two other

prominent techniques G-tree [Zho+15] and INE [Pap+03] for comparison with Chapter 3.
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4.4.2 Index Performance

Table 4.1 details the index pre-processing time and space costs. PHL is the road network

index employed by ILBR and IER. While PHL is faster to construct for travel time road

networks, G-tree consumes less space making it more suitable when there is limited mem-

ory. The index size of ALT is small, but this is dependent on m, the number of landmarks

used (16 in our case). It can be reduced by using fewer landmarks at the expense of looser

lower bounds. We also observe the performance of object indexes used by ILBR (Object

Lists and Network Voronoi Diagrams) and IER (R-trees) for the default density d = 0.001.

Object Lists and R-trees are fast to construct, and their index sizes are small. However,

since the space cost is a function of object set size, we expect it to increase with density.

NVDs take longer and occupy more space as the time and space complexity are functions

of |V |. But both costs are still significantly smaller than road network indexes making it

feasible to compute an NVD for each object set. Although not shown in the results in

Table 4.1, using the compression scheme described in Section 4.3.2 to store NVDs in a

quadtree significantly reduces the space cost, for example, by 70% from 92MB to 28MB

for the US object set with negligible impact on query performance.

Road Network PHL G-tree
ALT OL NVD R-tree

(m=16) (d=0.1%) (d=0.1%) (d=0.1%)

NW
Time 16s 47s 2s 0.8ms 264ms 0.2MS

Space 325MB 104MB 67MB 136KB 4.2MB 44KB

US
Time 30m 71m 60s 15ms 12s 4ms

Space 15.8GB 2.9GB 1.43GB 1.8MB 92MB 0.9MB

Table 4.1: Road Network and Object Index Statistics

4.4.3 Query Performance

We evaluate the query performance of each technique on two metrics, namely running

time and false hits per query. A false hit occurs when a candidate NN is not a real kNN.

The greater the number of false hits, the more unnecessary network distance computations

ILBR must perform. Thus, false hits are an indication of a heuristic’s performance irre-

spective of the experimental setting (disk-based or main memory) or the network distance

technique used. We refer to the two ILBR methods as NVD-X and OL-X as variants

employing Network Voronoi Diagrams and Object Lists respectively (and X is the road

network index used).
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Effect of Network Size: Figure 4.9 shows query performance as the number of

road network vertices |V | increases. In Figure 4.9(a), NVD-PHL is consistently the best

performing method and is 2-3× faster than IER-PHL. OL-PHL is comparable to NVD-

PHL for the first few datasets after which its advantage over IER-PHL narrows until being

on par with it for the largest dataset. With increasing |V |, the total number of objects

increases for the same density causing Object Lists to become larger. For example, we

might expect there to be more fast food outlets in larger regions. OL is susceptible

to objects that appear close when they are similar distances from the landmark as the

query vertex. When |V | increases, landmarks become more distant from query vertices on

average (as the number of landmarks m is constant), so the probability of such objects

appearing increases. While these are only potential candidates and are not reflected in

false hits, OL must still compute their LBmax values. This is evident in Figure 4.9(b) as

the number of false hits for OL is still lower than Euclidean distance.
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Figure 4.9: Effect of Road Network Size |V | (d=0.001,k=10,uniform objects)

Effect of k: Figure 4.10 shows the query performance with increasing k. For k = 1,

NVD-based methods are essentially optimal as only a single look-up operation is needed.

NVD-PHL once again outperforms all other methods, being at least 2-3× faster than IER-

PHL over all k, again showing that it is possible to efficiently use landmarks for kNNs.

Landmarks display significant improvement on false hits over Euclidean distance in Figure

4.10(b). But earlier trends are also seen here and OL-PHL’s query time does not improve

on IER-PHL. NVDs incur noticeably fewer false hits than OL-PHL despite both using

LLBs, which indicates that the improvement of lower bounds using NVD-based LLBs is

working.
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Figure 4.10: Effect of k (US,d=0.001,uniform objects)

Effect of Density: We observe query performance with increasing object set density

in Figure 4.11. As density increases, the average distance between objects decreases. This

makes kNNs appear closer to the query vertex and they should be easier to find. IER-PHL

is an exception, as objects become closer and more numerous, they become more difficult

to differentiate using Euclidean distance. NVD-PHL shows this problem can be remedied

using landmarks as it is an order of magnitude better than IER-PHL in Figure 4.11(a).

OL-PHL, on the other hand, degrades with increasing density to the point that its running

time is an order of magnitude worse than IER-PHL. With more objects, more of them will

produce inaccurate lower bounds similar to the scenario depicted in Figure 4.5(b), making

distant objects appear close to the query vertex. NVD-PHL does not suffer from this as

using adjacent Voronoi node sets acts as a filter avoiding objects that “seem” close by

inaccurate lower bounds. As a result, NVD-PHL experiences far fewer false hits in Figure

4.11(b).
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Figure 4.11: Effect of Density (US,k=10,uniform objects)
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Lower Bounds Computed: Figure 4.11(b) showed that with increasing density, OL

experiences fewer false hits than Euclidean distance even at its worst. This suggests that

the poor running time of OL for high densities in Figure 4.11(a) is not caused by ILBR

making additional network distance computations due to false hits. In fact, it is due to

the number of lower bounds computed by OL, which increases with density, as illustrated

in Figure 4.12(a). NVD computes very few lower bounds thanks to its filtering property.

The final evidence of this is the behavior of OL on the two datasets in Figure 4.12. The

US road network with 24 million vertices requires more lower-bounds to be computed than

the smaller NW dataset with 1 million vertices. The US has more objects for the same

density, resulting in a larger Object List and hence a larger search space to find the best

object. We note, however, that computing all lower bounds would require significantly

more computations than OL. While OL is a substantial improvement, its utility is still

dependent on the number of objects.
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Figure 4.12: Number of Lower Bounds Computed (US,d=0.001,k=10,uniform objects)

Real-World Object Sets: We verify our observations on real-world POIs in Figure

4.13 with increasing object set sizes from left to right. Trends seen in previous figures

are also observed for real-world POIs. NVD-PHL is the overall best performing method,

while OL-PHL is competitive except on larger object sets like parks and schools. For the

smallest object sets like courts, IER-PHL remains competitive as there are so few objects

that Euclidean distance has a smaller probability of making a false hit. A more typical

object set such as fast food outlets demonstrates the significant superiority of NVD-PHL.
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Figure 4.13: Varying Real-World Object Sets (US,k=10)

4.5 Summary

In this chapter, we present two techniques to efficiently use landmark-based lower bounds

as the decoupled heuristic in the ILBR kNN algorithm. We empirically compare the

heuristic performance of landmark lower bounds (LLBs) and Euclidean distance on kNN

search for the first time. In doing so, we show that both of our LLB-based methods

significantly improve on the number of false hits (by up to an order of magnitude) incurred

in candidate generation than the Euclidean distance heuristic used by IER.

In our experimental investigation on travel time road networks, the Object List tech-

nique illustrates the difficulties in using landmarks but outperforms IER for smaller

datasets. However, the technique employing a Network Voronoi Diagram outperforms

IER by at least 2-3× on query time across all datasets and parameters. Thus, we show

that it is indeed possible to use landmark-based lower bounds to improve kNN search.

Moreover, we provide further evidence for the effectiveness of decoupled heuristics in POI

search, which we first observed in Chapter 3. In addition, our novel combination of NVDs

and LLBs proves extremely useful as a versatile and efficient heuristic for other POI search

queries as we demonstrate next in Chapter 5.
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Chapter 5

Spatial Keyword Querying by

Keyword Separation

Divide each difficulty into as many parts as is feasible and necessary

to resolve it.

Rene Descartes

In this chapter, we present our K-SPIN framework to answer spatial keyword queries

on road networks. Building on the insights gained in Chapters 3 and 4, we find new

insights specific to the spatial keyword problem and propose novel techniques to answer

a range of spatio-textual queries efficiently. This chapter is based on work published in

[ACK19].

5.1 Overview

Finding the nearest relevant points of interest (POIs) to a user’s location is among the

most popular queries in map-based services [CJ16]. These POIs are often associated with

rich textual descriptions in addition to their spatial locations. Consider the example road

network in Figure 5.1 with unit edge weights and eight objects (POIs) each associated with

a set of keywords. A spatial keyword query retrieves objects that are close to the query

location (e.g., in terms of travel time over the road network) and are textually relevant.

The following two types of spatial keyword queries have been studied on road networks.
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Boolean kNN Query [JFW15]. Given a set of query keywords, a Boolean kNN (BkNN)

query returns the k objects closest to the query location among those that satisfy the key-

word criteria. The criteria may be disjunctive (contain any query keyword) or conjunctive

(contain all query keywords). For example, a user may want to find the closest object that

contains either “restaurant” or “takeaway”. In Figure 5.1, the answer is o8 because no

object closer to query location q contains either “restaurant” or “takeaway”. Another user

may wish to find the closest POI containing both “Thai” and “restaurant”. In Figure 5.1,

the result would then be o6.

Top-k Spatial Keyword Query [RN12; Zho+15]. A top-k spatial keyword query

returns k objects with the best scores. The score of an object is computed using a function

combining the object’s network distance from q and the relevance of the object’s textual

description with the query keywords. Section 5.2 provides a formal description.

20 billion Google searches with a location component are performed every quarter

(including 13.9 billion from mobile devices) [Ste15]. This translates to ≈2500 spatial key-

word queries per second on average. Using network distance affords greater accuracy and

flexibility (e.g., using travel-time rather than the distance “as-the-crow-flies”). However,

efficiently indexing road networks and keyword information to meet such high throughput

demands is a challenging problem. Moreover, the indexing strategy used by current road

network spatial keyword techniques, called keyword aggregation, leaves substantial room

for improvement.

5.1.1 Motivation

Keyword aggregation is the idea of summarizing keyword occurrences over geographical

regions. Spatial keyword queries are then answered by searching the most promising

regions first while pruning regions that cannot contain results. This technique is used

extensively by spatial keyword query techniques in Euclidean space [CJW09; WCJ12;

Che+13; ZCT14]. Notably, all existing techniques for road networks also use the idea of

keyword aggregation. The disadvantage of keyword aggregation is the generation of many

false positives. Whenever a candidate is encountered, its distance from the query must

be computed to confirm if it is relevant or not. Computing distance in Euclidean space

is a quick arithmetic operation, but in road networks computing distance is a complex

graph operation and far more expensive. Consequently, the penalty paid for incurring
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false positives in road networks is significantly higher than in Euclidean space. So, while

keyword aggregation is useful for Euclidean space, it is far less effective for road networks.

We illustrate this problem in an example using a state-of-the-art spatial keyword technique

for road networks [Zho+15].

Consider again the objects and road network with unit edge weights shown in Fig-

ure 5.1. The existing techniques first groups objects, e.g., G-tree [Zho+15] may form four

groups G1, G2, G3, and G4 (shown by rectangles with broken lines). Keywords are then

aggregated by creating a pseudo-document for each group that is the union of keyword

occurrences over all the contained objects. For example, G1’s pseudo-document contains

keywords “Italian”, “restaurant”, “takeaway”, “Thai”, and “grocer” each with one occur-

rence in the group. Note that the frequency of each keyword in the new pseudo-document

is the sum of frequencies over all objects contained in the group. Consider a Boolean 1NN

query to find the closest object with keywords “Thai” and “restaurant”. The group G4

can be pruned, as its pseudo-document does not contain “restaurant”. The other three

groups may contain the result. The algorithm computes minimum network distances to

each group (e.g., the network distance from q to the closest border vertex in the group).

These groups are inserted into a priority queue so that they can be accessed in ascending

order of their minimum network distances from q (e.g., G1, G2, and then G3). When G1 is

accessed, the algorithm prunes both o1 and o2 because neither object contains both query

keywords. The algorithm then accesses G2 and prunes the objects o3 and o4. But object

o5 contains both query keywords, so the algorithm computes its network distance from q.

The algorithm can terminate if the minimum network distance of the next entry in the

queue is greater than the network distance from q to o5. However, since the minimum

network distance of G3 is smaller, the algorithm accesses G3 and computes the network

distances from q to o6 and o7 and determines o6 to be the closest object satisfying the

keyword criteria. Therefore, o6 is returned as the result since the queue is empty.

In the above, costly minimum network distances needed to be computed to groups even

when 1) a group does not contain any objects satisfying the keyword criteria (e.g., G1)

because the aggregated group appeared to contain such an object; or 2) the relevant object

in the group is actually quite far from the query and is not a result (e.g., o5 in G2) because

it appeared to be close as the query was close to the aggregated group. Furthermore, when

a group is accessed, the algorithm needs to compute network distances from q to all objects
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Figure 5.1: Example Road Network and Objects with Textual Information

satisfying the criteria in the group even if they are not results (e.g., o7 in G3). Similar

issues are faced in top-k queries because network distances must be computed to groups

(and objects within) that have low textual similarity (e.g., G1 and its objects) or large

network distance (e.g., o5 and o7). Moreover, while we use a simple example here for easier

exposition, keyword aggregation is hierarchical and that exacerbates these problems. It is

important to note that these problems arise from the hierarchical aggregation of objects

and their constituent keywords. They cannot be solved in straight-forward ways due to the

permanent loss of discriminating information that results from aggregation. We confirm

this difficulty by attempting to improve G-tree in Section 5.7.4. The other road network

techniques (described in Section 2.3) use similar ideas and face similar problems. Due to

the similar partitioning scheme, ROAD [RN12] experiences the same exact problematic

scenarios that G-tree does as presented above. Similarly, the bit-arrays used by FS-

FBS [JFW15] aggregate keyword occurrences due to the use of hashing and the resulting

collisions lead to false positives and wasted network distance computations.

Spatial Proximity: Utility of Network Distance

While we have identified the weaknesses of network distance-based spatial keyword query

techniques, a vast majority of other techniques [CJW09; WCJ12; Che+13; ZCT14] use

Euclidean distance as the measure for spatial proximity. In previous chapters, the utility of

using network distance was obvious. For example, the application of kNN queries in time-

sensitive tasks like finding the nearest drivers for a ride-hailing app requires the highest

possible accuracy. However, in the context of spatial keyword queries, we are essentially

trading spatial proximity for textual relevance (and vice versa). Naturally, this begs the
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question of whether such a high level of accuracy for spatial proximity is even required in

practice by most users for such spatial keyword queries. To the best of our knowledge, no

user study has been conducted to determine what level of accuracy is preferred by users

in the context of spatial keyword queries. The decreased accuracy of Euclidean distance

comes with the benefit of cheaper computation than network distance computation. Our

goal of closing this gap by improving the query performance of using network distance

will make it a more palatable choice when high accuracy for spatial proximity is necessary.

Moreover, once top-k results are retrieved, users are likely to compute the shortest path

to it before commencing their travel. In most existing techniques, like G-tree [Zho+15],

computing network distance allows inexpensive retrieval of the shortest path itself. These

added benefits extend beyond the higher accuracy and versatility afforded by using network

distance and makes improving query performance an especially worthwhile goal for spatial

keyword queries in road networks.

5.1.2 Contributions

We present the Keyword Separated Indexing (K-SPIN) framework. K-SPIN employs the

idea of creating a separate index for each keyword. However, as we detail next, doing this

without incurring prohibitive pre-processing cost is challenging. Here we describe how

K-SPIN overcomes the problems in our motivating example and our solutions for reducing

pre-processing costs.

Efficient Querying: Separate keyword indexes allow us to obtain an on-demand inverted

heap for each keyword filled with candidate objects specifically relevant to that keyword.

Each candidate object in the heap is ranked by lower-bound network distance between it

and the query. We then use these heaps to avoid false positives and reduce unnecessary

network distance computations during spatial keyword query processing. We explain our

method using the running example in Figure 5.1.

For the Boolean 1NN query to find the POI containing “Thai” and “restaurant”, our

algorithm creates an on-demand inverted heap for a single keyword. We obtain a heap for

the least frequent keyword as it contains fewer objects. Using the heap for “Thai” (e.g., o2,

o6, o5, and then o7), the first object o2 is pruned because it does not satisfy the keyword

criteria. When o6 is accessed, its exact network distance is computed as it contains both

query keywords. If the network distance of o6 is smaller than the lower-bound distance
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of the next object (i.e., o5), the algorithm terminates reporting o6 as the result. The use

of a cheap lower-bound heuristic avoids or delays computing expensive network distances

to candidate objects (e.g., we avoid it for o2, o5, and o7). Notably, this approach avoids

generating false positive groups (e.g., G1 in keyword aggregated indexing). In Section 5.5

we describe how heaps need only be populated partially and maintained in an iterative lazy

manner, thus avoiding computing lower-bounds to all objects that contain the keyword.

Other spatial keyword queries also benefit from inverted heaps. For example, we propose

the idea of a pseudo lower-bound to retrieve more relevant candidates for top-k queries in

Section 5.4.2.

This translates into significantly better query throughput (the number of queries pro-

cessed per second) for K-SPIN based techniques in practice, as summarized in Table 5.1.

Note that FS-FBS cannot be constructed on this dataset due to prohibitive pre-processing

cost, but on smaller datasets, FS-FBS performs worse than our method K-SPIN (Sec-

tion 5.7). We even show that K-SPIN is able to use G-tree’s road network index more

efficiently than G-tree’s own query algorithm, confirming the reduction in false positives

(Section 5.7.4).

Lightweight Separated Index: Creating a separate index for each keyword involves

processing the objects and road network repeatedly. At first glance, doing this on road

networks appears untenable. Nevertheless, every cloud has a silver lining. We make several

smart, yet simple, observations (Section 5.6), which K-SPIN exploits to make the pre-

processing more than viable, even lightweight. For example, we observe that the number

of objects associated with a keyword is predictably small for most keywords in datasets

that follow Zipf’s law. Exploiting the nature of K-SPIN, we leverage this observation

to significantly reduce construction time with theoretical and experimental justification.

We also introduce a novel data structure, the ρ-Approximate Voronoi Diagram, to reduce

the index size by over an order of magnitude. K-SPIN is applicable on even continental

scale datasets, occupying less than 600MB and built in under 2 hours for the entire US

road network dataset. These come at a small and theoretically bounded penalty in query

performance and we still return exact query results.

Flexibility: As the lightweight keyword indexes are decoupled from the network dis-

tance index, K-SPIN can be combined with any network distance technique. This enables

significant performance gains, e.g., the K-SPIN variant using Pruned Highway Labeling
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(PHL) [Aki+14] in Table 5.1. Even the variant with the smallest memory footprint using

Contraction Hierarchies (CH) [Gei+08] is much faster than the state-of-the-art in Table

5.1. Moreover, K-SPIN can be integrated into any system already processing road net-

work queries and any future improved network distance technique can be plugged into the

framework. This versatility of K-SPIN is unique among spatio-textual techniques.

Technique
Index Size
(GB)

Queries/second

Top-k BkNN

K-SPIN [Our Method] + CH [Gei+08] 0.6 + 0.6 865 1021

K-SPIN [Our Method] + PHL [Aki+14] 0.6 + 15.8 3942 9869

Spatial Keyword G-tree [Zho+15] 2.7 266 178

ROAD [Lee+12] 4.5 83 7

FS-FBS [JFW15] Dataset too large to build index

Table 5.1: Comparison of index size and throughput (# of queries processed per second)
on US road network dataset

5.2 Preliminaries

Road Network: The definition of the road network was provided in Section 1.1. Similar

to previous chapters and almost all related studies (e.g., [JFW15; Zho+15]), we consider

query locations and POIs occurring on vertices to make exposition simpler. As queries

are graph operations, this does not change the asymptotic behavior. K-SPIN can easily

be extended for other cases, e.g., POIs on edges would still be generated as candidates in

on-demand inverted heaps.

Objects and Textual Information: The road network is also associated with a set of

object vertices O ⊆ V (i.e., POIs). Each object o ∈ O contains a set of keywords known

as the document, doc(o), of object o. Each keyword t ∈ doc(o) is drawn from a corpus of

keywords W . For simplicity, we shall refer to t ∈ doc(o) as t ∈ o when the context is clear.

We note that a keyword t may occur multiple times in doc(o), the number of occurrences

is denoted as its frequency ft,o. Finally, the inverted list inv(t) for keyword t is the set of

objects whose document contains t. Next, we formally state our problem definitions.

Boolean kNN Queries: A Boolean k Nearest Neighbor (BkNN) query takes the form

(q, k, ψ, op), where q is the query vertex, k is the number of results, ψ is a set of query

keywords, and op specifies a logical operand (∧ or ∨) [JFW15]. The result of this query

is the k nearest objects by their network distance to q, which satisfy the criteria. In

the conjunctive case (∧), the result objects must contain all query keywords; and in the
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disjunctive case (∨), they contain at least one keyword from ψ. We remark that our

proposed framework can be used to handle a combination of ∧ and ∨ operators, e.g., find

k closest POIs that contain “Thai” and (“takeaway” or “restaurant”).

Top-k Spatial Keyword Queries: A top-k query is of the form (q, k, ψ), where q is

the query vertex, k is the number of results, and ψ is a set of query keywords. The result

is the set of k objects with the smallest scores. The score of each object is computed

by combining its network distance from q and its textual relevance. We employ weighted

distance [Wu+11; RN12] to compute the spatio-textual score for object o, as below.

ST (q, o) =
d(q, o)

TR(ψ, o)
(5.1)

Here, d(q, o) is the network distance from q to o and TR(ψ, o) is the textual relevance.

We adopt cosine similarity [ZM06] for computing TR(ψ, o).

TR(ψ, o) =

∑
t∈ψ(wt,o·wt,ψ)√∑

t∈o(wt,o)
2·
∑

t∈ψ(wt,ψ)2
(5.2)

In (5.2) above, wt,o = 1 + ln(ft,o) with ft,o being the frequency of keyword t in the

document of o. Also, wt,ψ = ln(1 + |O|
|inv(t)|), where |O| is the total number of objects

and |inv(t)| is the size of the inverted list of t (i.e., the number of objects that contain

t in their documents). While we do not dwell on the specifics of the textual relevance

computation, wt,o represents a measure of the term frequency (TF), and wt,ψ represents

the inverse document frequency (IDF).

As derived in past work [ZM06], (5.2) can be re-written in terms of impacts, or λt,x =

wt,x√∑
t∈x(wt,x)

2
, as below.

TR(ψ, o) =
∑
t∈ψ

[λt,ψ · λt,o] (5.3)

It is important to note that the object impact values λt,o do not depend on the query

and can be pre-computed offline. We emphasize that our indexing algorithms can support

other textual relevance methods, such as language models, BM25, and other TF×IDF for-

mulations, e.g., in [ZM06]. Similarly, our techniques are orthogonal to the scoring method

and can be applied when weighted sum [Che+13] is used to combine d(q, o) and TR(ψ, o)

in (5.1) instead of weighted distance, which we use as the example in our experiments.
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5.3 K-SPIN: Framework Overview

Figure 5.2 depicts the modules that compose the K-SPIN framework. Here we briefly

describe each module and how they interact before delving deeper into the design of

specific modules in subsequent sections.

1. Lower Bounding Module. This module computes a lower-bound network distance

between any two vertices using selected heuristics. For example, a lower-bound can be

obtained using landmarks as in the ALT [GH05] index. ALT pre-computes network dis-

tances between some chosen landmark vertices and all vertices in the graph then uses the

triangular inequality to obtain a lower-bound network distance between any two vertices.

In fact, multiple heuristics can be considered to allow the module to return the tightest

lower-bound network distance overall. Depending on the application and indexes avail-

able, the module may use more or fewer lower-bound heuristics. We combine K-SPIN

with ALT as it provides effective lower-bounds on road networks for POI search, as we

demonstrated in Chapter 4.
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Figure 5.2: Keyword Separated Indexing (K-SPIN) Framework

2. Network Distance Module. This module is employed to compute the exact net-

work distance between any two given vertices. As stated in Section 5.1, this module can

use any existing technique to compute the network distance. The system administrator

may choose a technique based on its efficiency and/or index size or may simply choose

the techniques already being used by the system to answer other queries. In Section 5.7,

we show the effect of choosing three different network distance techniques namely Con-

traction Hierarchies [Gei+08], G-tree [Zho+13], and Pruned Highway Labeling [Aki+14].
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This module is the bottleneck as network distance computations are the most expensive

operation performed for an object.

3. Heap Generator. The Heap Generator is responsible for creating and maintaining

the on-demand inverted heaps. An on-demand inverted heap for a particular keyword t

satisfies the following property at any point in time (i.e., when the heap is first created

and whenever a heap element is extracted).

Property 1. Given the current top object o in inverted heap H for keyword t and its

lower-bound distance LB(q, o) from query vertex q; any object ot containing t, not yet

extracted from H, has network distance d(q, ot) ≥ LB(q, o).

Property 1 allows our query algorithms to access objects associated with a particular

keyword t in order of their lower-bound network distances from q. To efficiently create

and maintain an inverted heap, the Heap Generator utilizes a Keyword Separated Index

that indexes inv(t) for each keyword t in corpus W where inv(t) is the set of all objects

associated with t. For example, for keyword “Thai” in Figure 5.1, inv(“Thai”) consists

of o2, o5, o6, and o7. The inverted heap HThai allows access to these objects in ascending

order of their lower-bounds, e.g., (o2, 1), (o6, 2), (o5, 4), and then (o7, 5). Property 1 allows

the heap to be populated lazily, i.e., objects are added incrementally such that the property

is met. For example, heap HThai may initially contain only (o2, 1) and (o7, 5) to satisfy

Property 1. When (o2, 1) is extracted, the object (o6, 2) may be inserted in the heap to

ensure it satisfies Property 1. We present our Heap Generator algorithm and Keyword

Separated Index data structure in Sections 5.5 and 5.6, respectively.

4. Query Processor. The Query Processor contains algorithms to answer various spatial

keyword queries. Algorithms use on-demand inverted heaps to retrieve relevant candidate

objects. The challenge lies in deciding which heap to use and how to filter poor candidates

using an effective lower-bound score. Hence, the efficiency of the Query Processor is critical

in avoiding the false positive problems of existing methods described in Section 5.1. The

Query Processor uses the Network Distance Module to compute the network distances

between the query vertex and the filtered candidate objects. The network distance module,

in turn, employs some Road Network Index that can answer network distance queries. Our

query algorithms are detailed in Section 5.4.
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5.4 The Query Processor Module

We first describe the algorithms for Boolean kNN queries in Section 5.4.1, demonstrating

how inverted heaps are used. Section 5.4.2 details our top-k algorithm where we intro-

duce the idea of a pseudo lower-bound utilizing a subtle insight to retrieve more relevant

candidates and thereby terminate quicker.

5.4.1 Boolean kNN Query Processing

Boolean kNN (BkNN) queries retrieve the k nearest objects to q whose associated keywords

satisfy some criteria with the set of query keywords ψ. In disjunctive queries, reported

objects contain at least one keyword in ψ and in conjunctive queries reported objects

contain all keywords in ψ.

Disjunctive Boolean kNN Queries

Algorithm 5 begins by initializing an on-demand inverted heap Hi for each keyword ti

(line 2). Recall that the Heap Generator ensures each heap Hi satisfies Property 1. Thus

we access objects from each heap in order of minimum lower-bound distance from q.

Priority queue PQ is used to choose the heap with the smallest minimum lower-bound

distance. PQ is first initialized by inserting the lower-bound distance of the top object in

each heap Hi (lines 3 and 4). The top element in PQ is extracted (line 6) to identify the

heap Hs whose top object has the smallest lower-bound distance. Candidate object c is

then extracted from Hs (line 7) and LazyReheap is called (line 8) to ensure Hs continues

to satisfy Property 1 (detailed in Section 5.6). c is ignored if it has been extracted from

another heap Hi, otherwise network distance d(q, c) is computed (line 11). The set of

k best candidates L seen so far is updated if c improves on it and Dk is also updated

if it changes (line 13). Dk corresponds to the distance of the kth closest object in L

that satisfies the keyword criteria. An element for Hs is re-inserted into PQ with its

new minimum lower-bound after c is extracted (line 9) to ensure PQ always chooses the

heap whose top element has the smallest lower-bound distance. The algorithm terminates

when PQ is empty or the next candidate object has a lower-bound distance greater than

or equal to Dk (line 5).
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Algorithm 5 Query Processor module to answer disjunctive BkNN queries

1: function GetDisjunctiveBkNNs(k, q, ψ)
2: Create on-demand inverted heap Hi for each keyword ti ∈ ψ
3: Initialize minimum priority queue PQ and set Dk ←∞
4: Insert minimum lower-bound distance for each Hi into PQ
5: while !Empty(PQ) and MinKey(PQ) < Dk do
6: Hs ← Extract-Min(PQ)
7: LB(q, c)← MinKey(Hs) , c← Extract-Min(Hs)
8: Call LazyReheap(Hs) to ensure Prop. 1 (see Section 5.6)
9: Insert(PQ,[ts,MinKey(Hs)])

10: if c not already evaluated then
11: Compute network distance d(q, c)
12: if d(q, c) < Dk then
13: Insert(L, [c, d(q, c)]) and update L and Dk if needed

14: return L

Example 3. Consider a disjunctive B1NN query from vertex q in Figure 5.1 with query

keywords “Thai” and “restaurant”. On-demand inverted heaps are generated for each

keyword, e.g., HThai={(o2, 1), (o6, 2)} and Hrest.={(o1, 2), (o6, 2)}. Each heap’s minimum

lower-bound is inserted into the priority queue, so PQ={(Thai, 1), (rest., 2)}. The top ele-

ment Thai from PQ is extracted, identifying HThai. Now the top candidate object o2 is ex-

tracted from inverted heap HThai. Naturally, o2 satisfies the disjunctive criteria, so its net-

work distance is computed, added to the result set L and Dk is set to d(q, o2)=2. LazyRe-

heap is called to ensure HThai satisfies Property 1, e.g., HThai={(o6, 2), (o7, 4)}. Thai is

reinserted into PQ with the minimum lower-bound in HThai, so PQ={(Thai, 2), (rest., 2)}.

L cannot be improved as MINKEY(PQ) is equal to Dk and Algorithm 5 terminates.

Conjunctive Boolean kNN Queries

We also exploit keyword separation to create an algorithm to answer conjunctive BkNN

queries in Algorithm 6. First, the algorithm initializes a heap Hl related to the least

frequent keyword tl, i.e., the keyword with the smallest inverted list (the size of each

inverted list is easily stored in the keyword index). This uses the intuition that the least

frequent keyword can be considered the bottleneck for conjunctive queries. Furthermore,

with lower frequencies, the average distance between candidates increases, making it easier

to distinguish them by their lower-bound distances as the error is less likely to create false

positives. The algorithm iteratively accesses objects from Hl. If the accessed object c

contains all query keywords, its network distance is computed and c is added to L if it

99



100 The Query Processor Module

improves on the best k candidates seen so far. Dk is updated if it changes. If the object c

does not contain all query keywords, it is ignored. The algorithm continues to iteratively

extract objects from Hl until either Hl becomes empty or LB(q, c) ≥ Dk.

Algorithm 6 Query Processor module to answer conjunctive BkNN queries

1: function GetConjunctiveBkNNs(k, q, ψ)
2: Create on-demand inverted heap Hl for least freq. keyword tl ∈ ψ and set Dk ←∞
3: while !Empty(Hl) and MinKey(Hl) < Dk do
4: LB(q, c)← MinKey(Hl), c← Extract-Min(Hl)
5: Call LazyReheap(Hl) to ensure Prop. 1 (see Section 5.6)
6: Compute network distance d(q, c)
7: if d(q, c) < Dk then
8: Insert(L, [c, d(q, c)]) and update L and Dk if needed

9: return L

Example 4. Consider a conjunctive B1NN query from vertex q in Figure 5.1 with query

keywords t1 “Thai” and t2 “grocer”. “grocer”, occurring once, is the least frequent keyword

so an on-demand inverted heap H2 is generated for t2. The algorithm then extracts the

top candidate object in H2. This object is o2, after verifying o2 contains the other keyword

“Thai”, the network distance to it is computed, added to the result set L and Dk is set to

d(q, o2)=2. Since H2 is now empty, the algorithm terminates.

5.4.2 Top-k Query Processing

We propose a novel top-k query algorithm to retrieve the k objects with the best spatio-

textual scores by (5.1). Our algorithm computes the top-k objects by utilizing, for each

inverted heap, a pseudo lower-bound score on only some of the unseen objects in the heap.

The algorithm still computes correct results even though the pseudo lower-bound score is

not a valid lower-bound score for all unseen objects in the heap. Next, we first describe

how to compute a valid lower-bound score on all unseen objects.

Valid Lower-Bound Score on All Unseen Objects: Consider a top-k query for three

keywords “Italian”, “restaurant”, and “takeaway”. Let TRmax(ψ, P ) be the maximum

possible textual relevance for query keywords ψ with any object in set P . For simplicity,

assume that textual similarity TR(ψ, o) is the number of query keywords present in the

object o, so TRmax(ψ, P ) = 3 in this example. Figure 5.3 shows the three inverted heaps

H1, H2, andH3 created for this query with objects from our running example in Figure 5.1.

Since we do not know the textual similarity of unseen objects in any heap Hi, a lower-

bound score for all unseen objects in Hi can be computed using the maximum textual
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similarity and minimum lower-bound distance in the heap as STall(ψ,Hi) = MinKey(Hi)
TRmax(ψ,P ) .

For example, the best possible score for any unseen object in H1 is LB(q,o1)
3 = 2.7

3 = 0.9,

H2 is 2.4
3 = 0.8, and H3 is 1.8

3 = 0.6. But, as we explain next, it is possible to obtain a

pseudo lower-bound score tighter than this without losing any top-k results.

H1 H2 H3
Italian restaurant takeway

 

(o5,2.5)

(o1,2.7)

(o6,2.4)

 

(o5,2.5)

(o1,2.7)

(o8,1.8)

 

(o1,2.7)

Figure 5.3: Computing Pseudo Lower-Bounds on Inverted Heaps

A Key Insight: Heap H3 in Figure 5.3 has the smallest lower-bound distance and its

top element is object o8. Since the lower-bound distance LB(q, o8) = 1.8 is smaller than

the lower-bound distance of H1 (i.e., LB(q, o1) = 2.7), this implies that either o8 has been

extracted from H1 or o8 does not contain the keyword “Italian”. For the same reason,

o8 has either been extracted from H2 or does not contain the keyword “restaurant”. In

other words, either o8 has already been processed by the algorithm (i.e., extracted from

another heap) or o8 only contains the keyword “takeaway”. Similarly for heap H2, top

element o6 has either been extracted from H1 or contains only the keywords “restaurant”

and “takeaway” at best (o6 may contain “takeaway” because o6 may still be in H3 as it

has a smaller top lower-bound distance).

Pseudo Lower-Bound Score: Using the insight above, we compute a pseudo lower-

bound score that is a lower-bound score on a subset of the objects in the inverted heap and

hence is tighter than the valid lower-bound score. Let MinKey(Hj) be the minimum lower-

bound network distance for an element in heapHj . IfHj has become empty, MinKey(Hj)

is assumed to be infinite. The pseudo lower-bound score for a heap Hi is computed by

assuming that every unseen object in Hi contains a keyword tj only if MinKey(Hi) ≥

MinKey(Hj) where tj is the query keyword associated with heap Hj . We next describe

the algorithm to compute pseudo lower-bound scores.

Algorithm 7 computes the pseudo lower-bound score for inverted heap Hi denoted by

STpLB(Hi). First, it computes a pseudo textual relevance TRp(ψ,Hi) following (5.3) by
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considering only the keywords that satisfy the condition described above (lines 4-5). Note

that we use the real maximum impact λtj ,max of tj in any object, which can be cheaply

computed offline for all keywords. The pseudo lower-bound score is computed using the

pseudo textual relevance TRp(ψ,Hi) and then returned (line 6).

Algorithm 7 Compute pseudo lower-bound score for inverted heap Hi
1: function PseudoLB(ψ,Hi)
2: TRp(ψ,Hi)← 0
3: for each keyword tj ∈ ψ do
4: if MinKey(Hi)≥MinKey(Hj) then
5: TRp(ψ,Hi)← TRp(ψ,Hi) + λtj ,ψ × λtj ,max
6: return STpLB(Hi)← MinKey(Hi)

TRp(ψ,Hi)

Example 5. Consider again the example in Figure 5.3. The pseudo lower-bound score

of H2 is computed assuming that all unseen objects in H2 can only include two keywords

“restaurant” and “takeaway”, i.e., TRp(ψ,H2) = 2 and STpLB(H2) = 2.4
2 = 1.2. Simi-

larly, H3 includes only the keyword “takeaway” and STpLB(H3) = 1.8
1 = 1.8. H1 includes

all three keywords and STpLB(H1) = 2.7
3 = 0.9. Note that pseudo lower-bound scores are

not valid lower-bound scores, e.g., the spatio-textual score of o1 in H2 is d(q,o1)
TR(ψ,o1)

= 3
3 = 1

which is smaller than the pseudo lower-bound STpLB(H2) = 1.2.

Next, we show how the Query Processor can use pseudo lower-bounds to answer top-k

queries instead of valid lower-bounds. We then prove that it still computes correct results

and elaborate on why the pseudo lower-bound score is useful.

Query Processor: The top-k algorithm (Algorithm 8) is quite similar to the algorithm

for computing disjunctive BkNN queries. The main difference is that pseudo lower-bound

scores of heaps are used in PQ (see line 4) to access the heap with the best candidate

object. If the extracted candidate object c has not already been processed, a lower-bound

score is cheaply computed using its actual textual relevance and lower-bound network

distance (line 10), i.e., LB(q,c)
TR(ψ,c) . If this lower-bound score is smaller than Dk, then its

actual score is computed using its exact network distance d(q, c) (lines 11 and 12). If its

actual score is smaller than Dk, the result list L and Dk are updated accordingly (line 14).

The algorithm terminates when PQ is empty or the top of PQ, representing the smallest

pseudo lower-bound score of any heap, is greater than or equal to Dk as L can no longer

be improved.
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Algorithm 8 Query Processor module to answer top-k queries

1: function GetTopKObjects(q, k, ψ)
2: Create on-demand inverted heap Hi for each keyword ti ∈ ψ
3: Initialize minimum priority queue PQ and set Dk ←∞
4: Insert pseudo lower-bound score for each Hi into PQ
5: while !Empty(PQ) and Top(PQ) < Dk do
6: n← Extract-Min(PQ)
7: LB(q, c)← MinKey(Hn) , c← Extract-Min(Hn)
8: LazyReheap(Hn)
9: Insert(PQ,[n,PseudoLB(ψ,Hn)])

10: if c not already processed or LB(q,c)
TR(ψ,c) ≤ Dk then

11: Compute network distance d(q, c)

12: ST (q, c)← d(q,c)
TR(ψ,c) . Compute actual score

13: if ST (q, c) < Dk then
14: Insert(L, (c, ST (q, c))), update L and Dk if needed

15: return L

Example 6. Consider a top-1 query for our running example in Figure 5.1 and Fig-

ure 5.3 with keywords “Italian”, “restaurant”, and “takeaway”. If the heaps are accessed

considering the actual lower-bounds, o1 (which is the result) will be the last accessed object.

However, our algorithm accesses the heaps based on their pseudo lower-bound scores and

H1 has smaller pseudo lower-bound scores than the other two heaps (as seen in Example 5).

Thus H1 is accessed first. So Algorithm 8 extracts candidate o1, computes its spatio-textual

score d(q,o1)
TR(ψ,o1)

= 1, re-inserts an element into PQ for H1 with its new MINKEY (i.e.,

infinity as H1 is now empty). After updating the result set with o1, the algorithm then

terminates because the next best pseudo lower-bound score in PQ is STpLB(H2) = 1.2

which is higher than the score of the current top-1 object o1.

Implementation Notes: While the same candidate may be extracted from multiple

heaps (i.e., when associated with multiple query keywords), these can be ignored by using

a hash-table or bit-array to track evaluated candidates. In any case, this only entails a

small query overhead as the lower-bound computation is cheap and the heap only contains

a small number of objects (due to being lazily populated) resulting in a small update cost.

Also note that query impacts λt,ψ need only be computed once for the query and TR(ψ, c)

need only be computed once for each candidate.

Benefits of Pseudo Lower-Bound Scores: We propose Lemma 2 to show that a

pseudo lower-bound score is never worse than the valid lower-bound score for all unseen

objects.
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Lemma 2. For any heap Hi, the pseudo lower-bound is always greater than or equal to

the valid lower-bound for all unseen objects in Hi, i.e., STpLB(ψ,Hi) ≥ STall(ψ,Hi).

Proof. Since STpLB(ψ,Hi) = MinKey(Hi)
TRp(ψ,Hi) and STall(ψ,Hi) = MinKey(Hi)

TRmax(ψ,P ) , it suffices to

show that TRp(ψ,Hi) ≤ TRmax(ψ, P ). The maximum possible textual relevance for any

object in set P can be computed by TRmax(ψ, P ) =
∑

t∈ψ λt,ψ × λt,max where λt,max is

maximum impact of keyword t in any object. By Algorithm 7, we have TRp(ψ,Hi) =∑
tj∈ψ λtj ,ψ × λtj ,max[MinKey(Hi) ≥ MinKey(Hj)] where tj is the keyword associated

with heap Hj . Clearly the maximum value of TRp(ψ,Hi) is TRmax(ψ, P ), occurring

when condition [MinKey(Hi) ≥ MinKey(Hj)] evaluates to true for all heaps Hj . Thus

TRp(ψ,Hi) ≤ TRmax(ψ, P ), thereby completing the proof.

From Lemma 2, it can be seen that the textual relevance used for a pseudo lower-

bound depends on the condition [MinKey(Hi) ≥MinKey(Hj)] over all j. This condition

is likely to result in decreasing textual relevance for each subsequent heap in descending

order of their MinKey values. This entails increasing pseudo lower-bounds, which in

turn allows Algorithm 8 to avoid accessing heaps and terminate sooner. Conversely, the

pseudo lower-bound assigns higher textual relevance to larger MinKey values. This allows

Algorithm 8 to access more promising candidates, e.g., those that are far from q but

contain all keywords and have high textual relevance. Furthermore, K-SPIN is likely

to filter out any bad candidates using their actual textual relevance without computing

expensive network distances. Pseudo lower-bounds can be applied to any textual model

that computes similarity per query keyword, as many popular methods do, including

language models, TF×IDF, and BM25.

Proof of Correctness: As stated earlier, pseudo lower-bound scores are not valid lower-

bounds, e.g., STpLB(H2) = 1.2 is higher than the score of o1 (1) which is also present in

H2. While it may seem like this can lead to missing objects, the algorithm still produces

correct results, e.g., because o1 is also present in H1 and its score cannot be better than

STpLB(H1). We propose Lemma 3 to express this formally.

Lemma 3. When Algorithm 8 terminates, every object o that has not been seen has

ST (q, o) ≥ Dk.

Proof. The algorithm terminates when Top(PQ) ≥ Dk. This implies that, for every

heap Hi, STpLB(Hi) ≥ Dk when the algorithm terminates. Let Hmax be the heap with
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the largest MinKey. Next, we show that ST (q, o) ≥ STpLB(Hmax) which implies that

ST (q, o) ≥ Dk for every unseen object o.

Recall that ST (q, o) = d(q,o)
TR(ψ,o) and STpLB(Hmax) = MinKey(Hmax)

TRp(ψ,Hmax) . Since Hmax is the

heap with the largest MinKey, Algorithm 7 (lines 4-5) computes TRp(ψ,Hmax) assuming

it contains all query keywords. Therefore, TR(ψ, o) ≤ TRp(ψ,Hmax). Furthermore, since

o has not been seen by Algorithm 8, LB(q, o) ≥MinKey(Hmax) otherwise it would have

been extracted from at least one heap Hi. Thus, d(q, o) ≥ MinKey(Hmax). Hence,

ST (q, o) ≥ STpLB(Hmax).

5.5 Heap Generator Module

A Heap Generator creates an on-demand inverted heap for query keyword t. This inverted

heap satisfies Property 1, i.e., allows access to objects containing keyword t in ascending

order of their lower-bound network distances from query location q. A simple approach

to ensure Property 1 is to insert all objects from the inverted list of t (i.e., inv(t)) in

the heap with their lower-bound distances. However, this is not feasible as it would

be required for every query. In this section we describe a Heap Generator based on

the Network Voronoi Diagram (NVD) [KS04] that instead allows inverted heaps to be

populated lazily. However NVDs possess high pre-processing costs, which we describe

below before proposing a solution (with low pre-processing cost) in Section 5.6.

Network Voronoi Diagrams: Given a set of objects inv(t) containing keyword t, an

NVD is a disjoint partitioning of the road network vertices V for each object in inv(t). A

partition for object oi is the Voronoi node set V ns(oi) ⊆ V which contains every vertex

for which oi is its closest object by network distance. After computing all Voronoi node

sets, the NVD stores the nearest object oi for every vertex in V .

Figure 5.4(a) shows the NVD for the set of objects containing keyword “Thai” from our

running example. The shaded containers indicate the vertices belonging to each Voronoi

node set. Note that the NVD does not depend on the query vertex q. Two Voronoi node

sets V ns(oi) and V ns(oj) are considered adjacent if there is an edge (u, v) ∈ E connecting

u ∈ V ns(oi) and v ∈ V ns(oj). For simplicity, we also say that oi and oj are adjacent. So,
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in Figure 5.4(a), o2 and o5 are adjacent as there is a graph edge connecting the shaded

containers. Similarly, o2 and o6 are also adjacent.

o5o2

o7q
o6

(a) NVD for “Thai” in Fig. 5.1

o5o2

o7
q

o6

(b) Adjacency Graph for Fig. 5.4(a)

Figure 5.4: Example Network Voronoi Diagram

NVD-Based kNN Algorithms The 1NN of a query vertex can be found using an NVD

as it stores the nearest object oi for each vertex, e.g., o2 is the 1NN of q in Figure 5.4(b) as q

is in its Voronoi node set (shaded container). Kolahdouzan and Shahabi [KS04] presented

a useful property to find kNNs.

Property 2. k-th nearest object of q must be an object adjacent (in the NVD) to the first

k−1 nearest objects of q.

For example, the 2nd NN of q must be among the objects adjacent to o2 (i.e., o5 and

o6). This is because the shortest path from q to the 2nd NN must leave V ns(o2) and

enter one of the adjacent Voronoi node sets. Existing techniques, such as VN3 [KS04] and

the NVD-based decoupled heuristic we proposed in Chapter 4, exploit this property to

incrementally answer kNN queries.

Heap Generation via NVD: Property 2 can also be used to create and lazily maintain

an on-demand inverted heap for any keyword t. Specifically, a heap can be initialized

by inserting 1NN of q obtained from the NVD. Then, whenever an object o is extracted,

the adjacent objects of o in the NVD are inserted into the heap with their lower-bound

network distances.

When an NVD is computed, we also create an adjacency graph representing the re-

lationships between objects that are adjacent to each other. Each node in the adjacency

graph is an object oi and an edge between two nodes oi and oj is created if oi and oj

are adjacent in the NVD. Figure 5.4(b) shows an adjacency graph for the NVD shown in

Figure 5.4(a).
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Algorithm 9 describes how to maintain an inverted heap H. After the heap is initial-

ized with the 1NN as described earlier, LazyReheap is called whenever an object oc is

extracted from H. Then the adjacent objects of oc that were not previously inserted are

now inserted in H with their lower-bound network distances using the NVD’s adjacency

graph.

Algorithm 9 Lazily maintain inverted heap H to satisfy Property 1

1: function LazyReheap(H, q, oc)
2: for each oa adjacent to oc in adjacency graph do
3: if oa has not been inserted into H then
4: Compute lower-bound network distance LB(q, oa)
5: H.Insert(oa, LB(q, oa))
6: Mark oa as “inserted” into H

Limitations: While NVDs allow efficient creation and maintenance of on-demand in-

verted heaps, it comes at the expense of higher pre-processing cost. This is exacerbated

by building an NVD for each keyword t. An NVD takes O(|V |log|V |) time and O(|V |)

space [EH00] and building one for each keyword multiplies them by |W |. For example, |V |

is 24 million and |W | is 106, 000 for the US road network dataset and, even with existing

optimizations, the resulting index requires 3-days to build and occupies 90GB of memory!

Updating NVDs when an object is added/deleted or changed also comes at a sizable cost.

Next, we make several important observations and propose a space-efficient NVD with

significantly reduced pre-processing and update costs.

5.5.1 Query Processor Complexity

Based on this heap generator module, we may now derive expressions for query time.

We perform our analysis for BkNN queries, but a similar analysis can be performed for

top-k queries. For a BkNN query, let us say the loop in Algorithm 5 runs for κ ≥ k

iterations. The value of κ depends on the efficiency of the candidate generation heuristic.

The inverted heap H contains at most |O| objects, thus extracting from a binary heap

implementation takes O(log |O|) time. For an NVD graph with maximum degree ∆,

LazyReHeap computes a lower-bound for each adjacent object and inserts them into heap

H at cost O(log |O|). Using the ALT index to compute a lower-bound takes O(m) time

where m is a small constant (typically 16) and in practice ∆ is also a small constant both

in our experiments and past studies [KS04]. Lastly, a single network distance computation
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is performed per iteration with time, denoted by O(NDIST ), depending on the technique

used. This operation tends to dominate the iteration’s cost, e.g., a Contraction Hierarchies

query takes O(log2 n log2D) time [Abr+10]. So the total query time is O(κm∆ log |O| +

κNDIST ) for a BkNN query. Top-k queries have an additional small constant time cost

per iteration to compute textual relevance. The smallest possible value of κ is k for a

perfect heuristic and in practice κ is a small constant multiple of k, at most 3k for BkNN

and 5k for top-k queries over all settings in our experiments.

5.6 Keyword Separated Index

Keyword separation has led to the higher pre-processing cost described above, but a

remedy can also be found in keyword separation. Inspired by several simple but smart

observations, we propose a novel space-efficient NVD. The resulting Keyword Separated

Index is not only viable but also lightweight.

Observation 1: Most keywords have small inverted lists and this is consistent for any

Zipfian dataset. Keywords in real-world datasets are known to follow Zipf’s law [JFW15].

Let frequency ft be the size of a keyword t’s inverted list and rt be the rank of t by its

frequency in corpus W . Zipf’s law states ft ∝ 1
rtα

with α ≈ 1. In simple terms, classic

Zipf’s law suggests keyword t with rank rt occurs 1
rt

as often as the most frequent keyword.

We can predict the frequency of any keyword using the theoretical basis of Zipf’s law.

For example, we can predict that 80% of keywords have a frequency of fmax
0.2|W | or less,

where fmax is the maximum frequency of a keyword and |W | is the number of keywords.

This predicted 80-th percentile frequency is less than or equal to 5 for all datasets listed

in Table 5.2 and closely matches the real values. On reflection, this is not surprising as

Zipfian distributions follow a harmonic progression, i.e., are “long-tailed”.

K-SPIN can exploit this observation to avoid creating indexes for a vast majority of

keywords while only paying a small penalty in query performance. If the number of objects

in the inverted list inv(t) of keyword t is at most a small constant ρ, we do not create

an NVD at all. For queries involving such keywords, we simply need to initialize the

inverted heap with all objects in inv(t), which is at worst only ρ objects and in K-SPIN

only costs a cheap lower-bound computation anyway. Using ρ = 5, indexes for over 80%

of keywords are avoided, substantially reducing pre-processing cost. Moreover, given the
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long tail Zipfian distributions, such a ρ will scale slowly for increasing keyword dataset

size.

Observation 2a: While the size of an NVD is O(|V |), the adjacency graph takes

O(|inv(t)|) space where |inv(t)| ≤ |V | is the total number of objects containing keyword

t. In general, the average degree in NVD adjacency graphs is a small constant, e.g., 6 as

shown in [KS04] over several real-world road networks. Therefore, the adjacency graph’s

size is linear to the number of objects and is independent of |V |. In short, we only need

the small adjacency graph to maintain the heap and not the large NVD, the latter being

the bottleneck for space usage.

Observation 2b: K-SPIN does not actually require an NVD to provide the exact 1NN

of q when initializing an inverted heap. The heap would still satisfy Property 1 if we

initialize it with ρ ≥ 1 candidate objects as long as the 1NN of q is among the ρ objects,

as proven in Theorem 2.

Theorem 2. An inverted heap H initialized as above and maintained by Algorithm 9

satisfies Property 1. Specifically, let oc be the current top object in H with lower-bound

network distance LB(q, oc). Every object ox that is not yet extracted from H has network

distance d(q, ox) ≥ LB(q, oc).

Proof. We prove Theorem 2 for each possible case:

At Initialization: Let o1 be the 1NN of q. At initialization, the heap contains up to ρ

objects including o1. Since o1 is the 1NN, d(q, o1) ≤ d(q, ox). And since o1 is in the heap,

it is obvious that LB(q, oc) ≤ LB(q, o1) ≤ d(q, o1) ≤ d(q, ox) (note that o1 and oc could

be the same object).

General Case: If ox is in the heap then clearly, we have LB(q, oc) ≤ LB(q, ox) ≤ d(q, ox).

If ox is not in the heap, this means ox is not adjacent to any object that has been extracted

from H (or it would have been inserted it into the heap by Algorithm 9). Therefore, as

observed in [KS04], there exists at least one object oy in the heap such that d(q, oy) ≤

d(q, ox). Since oc is the top object in the heap we must have LB(q, oc) ≤ LB(q, oy), which

implies LB(q, oc) ≤ LB(q, oy) ≤ d(q, oy) ≤ d(q, ox).

Observation 3: Separated indexing means that building NVDs are independent op-

erations. As an added benefit of the K-SPIN framework, NVD construction is easily

parallelized on all available cores to further reduce the construction time.
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5.6.1 ρ-Approximate Network Voronoi Diagram

Observations 2a and 2b suggest that an exact NVD is not necessary to initialize or maintain

inverted heaps. We propose the ρ-Approximate NVD, defined below, to take advantage of

these observations while significantly reducing index size. Furthermore, due to the nature

of K-SPIN, it still returns exact query results.

Definition 1. A ρ-Approximate Network Voronoi Diagram allows retrieving, for every

vertex v ∈ V , up to ρ objects such that one of these ρ objects is the 1NN of v.

Constructing ρ-Approximate NVDs: We first compute an exact NVD inO(|V | log |V |)

time if there more than ρ objects. We then store a ρ-Approximate NVD in a quadtree

as follows. The root node of the quadtree is a minimum bounding box of all vertices in

the road network. Each node is recursively divided into four children until all the vertices

contained in the node belong to at most ρ different Voronoi node sets. To simplify the

explanation, assume that each object o ∈ O has a unique color and an NVD is represented

by assigning each vertex v ∈ V the same color as the color of its nearest object (see Fig-

ure 5.5). The ρ-Approximate quadtree continues dividing nodes into four children until

the node contains at most ρ different colors. Figure 5.5(a) shows a 4-Approximate NVD

indexed using a quadtree. After each iteration only the ρ-Approximate NVD is kept (the

exact NVD is not kept). If there are fewer than ρ objects, the exact NVD does not need

to be computed at all, which is quite beneficial as per Observation 1.

(a) 4-approximate Quadtree (b) Region Quadtree (shown to depth 4)

Figure 5.5: ρ-Approximate Network Voronoi Diagram
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The ρ-Approximate NVD indexed using a quadtree significantly reduces space usage

compared to an exact NVD indexed using standard techniques such as a region quadtree.

By relaxing the need to distinguish the boundaries of different Voronoi node sets, the

ρ-Approximate NVD is able to reduce the height of the required quadtree as shown in

Figure 5.5(a). On the other hand, an exact NVD’s region quadtree continues dividing

nodes into four children until the node contains exactly one color, i.e., ρ = 1. This results

in a deeper tree and hence significantly higher space usage. For example, in Figure 5.5(b)

the exact NVD’s region quadtree is shown only up to a depth of 4 and there are still quite

a few nodes that contain more than 1 color. Voronoi node sets exhibit spatial coherence

[SAS05], forming largely contiguous regions. This property combined with Observation 2a,

the number of adjacent Voronoi node sets being a small constant, suggests ρ-Approximate

NVDs will be quite effective even for small values of ρ.

Experimental Index Size and Time: Figure 5.6(a) shows the effect of ρ from 1 to 11

on pre-processing of the Florida road network with 1 million vertices. Observation 2a+b

result in an index that is 18 times smaller for ρ = 5 than exact NVDs indexed by region

quadtrees (i.e., ρ = 1) as shown in the bar plots (refer to the left-hand y-scale). The effect

of Observation 1 is seen in the index time line-plot (refer to the right-hand y-scale), with

a substantial reduction in construction time with increasing ρ. Florida is used as exact

indexes (ρ=1) cannot be constructed on larger datasets.
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Figure 5.6: Effect of ρ on ρ-Approximate NVDs for Florida (# of terms=2,k=10)

Heap Initialization and Query Penalty Guarantee: The penalty paid for the

approximation is during the heap initialization, when a point location query is issued on

a ρ-Approximate NVD quadtree to find the cell containing q. Since the cell contains at
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most ρ colors, the Heap Generator computes the lower-bound network distances to at

most ρ objects (the 1NN is among them) and inserts these in the heap. In the worst-case,

when lower-bounds of the ρ− 1 objects are smaller than the lower-bound of the 1NN, the

algorithm needs to compute network distances to these ρ−1 objects. Thus, the worst-case

penalty is ρ−1 network distance computations. However, in practice, these (at most) ρ−1

objects are very likely to be adjacent objects to 1NN of q and thus would normally be

evaluated as candidates anyway. This is verified in Figure 5.6(b) as query time does not

vary for different ρ.

Space Complexity Theory vs. Practice: Approximate NVDs can alternatively be

stored in R-trees. In this case, the leaf nodes of the R-tree contain the Minimum-Bounding

Rectangle (MBRs) covering each Voronoi node set. However, R-trees cannot provide the ρ

guarantee on the number of 1NN candidates as more than ρMBRs may overlap and contain

the query vertex q. On the other hand, R-trees can provide a worst-case space complexity.

If |inv(t)| is the number of objects indexed by the NVD for keyword t, then there will be

|inv(t)| such MBRs, so the total space complexity for all keywords is O(
∑

t∈W |inv(t)|).

In other words, the space cost is linear in the total number of keyword occurrences, which

is the space cost of the input keyword dataset.

Figure 5.7(a) shows the comparison of index size for a number of real-world road

network datasets (Table 5.2), with the number of keyword occurrences increasing from

left to right. As expected, the index size of Approximate NVDs stored in R-trees increases

linearly with the number of keyword occurrences. Remarkably, storing in quadtrees also

displays comparable and linearly increasing index size. While it remains to be seen whether

quadtrees also theoretically take space linear in the number of keyword occurrences (the

input), we see that this is true in practice on real datasets. So R-trees provide a worst-

case guarantee on index size, while ρ-Approximate NVDs stored in quadtrees provide a

guarantee on the number of 1NN candidates. Given the candidate guarantee, slightly

faster construction and flexibility offered by ρ, we choose quadtrees in our experiments

and represent them as Morton lists [Sam05] which display better locality of reference.

Parallelized NVD Construction: Figure 5.7(b) exhibits significant speed-up using

multi-core processing, with NVD construction time reduced by a factor of 12.5 with 16-

cores. Efficiency ( T1
p∗Tp where Tp is the time for p cores) barely drops below 80%, suggesting
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Figure 5.7: ρ-Approximate NVD Indexing for Florida (# of terms=2,k=10)

serial parts of NVD construction are not significant and corroborating Observation 3. We

parallelize NVD construction over all available cores in subsequent experiments.

5.6.2 Handling Updates

Our ρ-Approximate NVD index (called APX-NVD hereafter) can handle various types of

object and keyword updates. Both insertion and deletion of either objects or keywords are

ultimately handled in the same way, i.e., by adding/deleting objects to/from the APX-

NVD of the affected keyword(s). For example, to incorporate a new object o with keyword

set ψ, o is added to the NVD of each keyword t ∈ ψ. Similarly, adding/deleting a keyword

t to/from an existing object o involves adding/deleting o to/from the NVD for t. In

this section, we present techniques to support these basic operations efficiently using lazy

updates. Generally adding/deleting an object involves full or part re-computation of the

NVD, which is a relatively expensive operation, e.g., requiring up to 1 second per NVD

on the Florida dataset. We delay this re-computation by allowing a certain threshold of

lazy updates to the APX-NVD while still supporting exact querying and amortizing the

re-computation cost over multiple updates.

Object Deletion: Deleting object o from an APX-NVD is handled simply by marking

o as deleted. If an extracted object is marked as deleted, the Heap Generator does not

return it to the Query Processor. Its adjacent objects are still added to the heap as usual.

Object Insertion: Inserting an object o is more complicated and requires knowing the

objects that might be affected by inserting o. We define affected set A(o) as the objects

whose Voronoi node sets may change when o is added to the NVD.
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A previous study [KS04] reported that the affected set of o consists of the 1NN and

its adjacent objects. However, we observe that this is not correct. Consider the example

of Figure 5.8(a) where a new object o5 is added. The shaded containers show the Voronoi

node sets of the objects before o5 is inserted. The 1NN of o5 is the object o3 and the only

adjacent object of o3 is o2. However, the newly inserted object o5 will become the 1NN of

vertex q, which means the Voronoi node set of o4 is also affected even though it is not an

adjacent object of o3 (the 1NN of the newly inserted object). In the example, the Voronoi

node sets of objects o2, o3, and o4 are affected by the insertion of o5. We now describe

how to determine a correct affected set of inserted object o.

o4o1

o3

q

o2

o5

(a) o2, o3, and o4 are affected

o4o1

o3

q

o2

o5

o5

o5

(b) Adjacency Graph after insertion

Figure 5.8: Updating APX-NVD after inserting o5

Let MaxRadius(p) of an object p be the maximum network distance between p and a

vertex v in its Voronoi node set, i.e., MaxRadius(p) = arg maxv∈V ns(p) d(p, v). Theorem

3 identifies a condition to construct the affected set.

Theorem 3. An object p is not in the affected set A(o) of o if d(o, p) ≥ 2×MaxRadius(p).

Proof. We prove this by contradiction. Assume there exists a vertex v ∈ V ns(p) for which

o is the new 1NN. Since d(o, p) ≥ 2×MaxRadius(p) and d(p, v) ≤MaxRadius(p), we have

d(o, p) ≥ 2×d(p, v). Subtracting d(p, v) on both sides gives, d(o, p)−d(p, v) ≥ d(p, v). By

triangular inequality, d(o, p)− d(p, v) ≤ d(v, o). Therefore, d(v, o) ≥ d(p, v) and o cannot

be the 1NN of v which contradicts the assumption.

This theorem is used to compute the affected set of o as follows. First, we find the

1NN p of o and initialize the affected set A(o) with p. Then, we conduct a breadth-first

search (BFS) on the adjacency graph from p. For any expanded object oe, if it satisfies the

condition in Theorem 3, it is pruned (i.e., the BFS is not expanded from oe). Otherwise,

it is included in the affected set. Note that A(o) may contain some objects that are not

affected, but this does not affect correctness.
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MaxRadius(p) for every object p can be computed essentially for free during NVD

construction. Storing these values incur a small storage overhead linear to the input

O(|inv(t)|) (the size of the inverted list for the indexed keyword t). Also d(o, p) can

be conveniently computed using the Network Distance Module already available in the

K-SPIN framework.

Once the affected set is computed, we perform lazy insertion of object o. Rather than

inserting o into the quadtree, we insert o in the adjacency graph. Specifically, we add o

to the node of each object in its affected set. For the example of Figure 5.8, we add o5 to

the nodes of o2, o3, and o4 as shown in Figure 5.8(b). The nodes of the adjacency graphs

are now assumed to contain one or more objects, e.g., the Heap Generator initializes the

heap by inserting the 1NN of q and all the objects stored in the node. In the example, q

is located in the Voronoi node set of o4. Since o5 was also added to the node of o4, the

heap is initialized with both o4 and o5.

Figure 5.9 shows the effect of our proposed techniques to handle updates. Specifi-

cally, we chose three keywords distributed in the lower, middle and higher thirds of the

frequency distributions and the corresponding APX-NVDs are called large, medium and

small, respectively. For each NVD, we insert x% of the total objects in it using lazy up-

dates and study the effect of lazy updates on the query processing time in Figure 5.9(a).

As expected, the processing time has increased but the results are still impressive. In

Figure 5.9(b), we report the average time per insertion as well as the total time to rebuild

the NVD after the lazy updates. The lazy update cost is only 1ms even when 5% objects

are inserted in the large NVD and the cost to rebuild NVDs is under one second. Lazy

updates allow the system to continue processing incoming queries while a new APX-NVD

may be built in parallel.

Non-NVD Updates: It is possible that an NVD does not exist when inserting an

object or adding a keyword to an existing object. This may occur when a keyword is new,

or there are fewer than ρ objects in a keyword’s inverted list. However, we do not need to

construct a new APX-NVD until there are at least ρ objects plus the additional threshold

for lazy updates. For deletion, however, if an APX-NVD is no longer required because

there are fewer than ρ objects, then NVD updates are unnecessary, and the objects only

need to be removed from the inverted list. Handling updates in the road networks (e.g., a

new edge, or a deleted edge) is much more complicated and may invalidate NVDs as well
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Figure 5.9: Handling Updates on Florida Road Network

as the network distance module. This is a challenge for all existing techniques including

shortest path algorithms and requires further research. We remark that such updates

occur less frequently.

5.6.3 Improved Pre-Processing Scalability

The ideas proposed in Sections 5.6.1 and 5.6.2 combine in an elegant way to address the

pre-processing woes described in Section 5.5. Utilizing ρ-Approximate NVDs instead of

exact NVDs reduce the space requirement by more than an order of magnitude. Exploiting

the Zipfian nature of keywords to eliminate keyword indexes for a vast majority of them

substantially reduces the construction time. For example, the 90GB index size and 3-day

build time for exact NVDs for the US road network dataset are reduced dramatically

to 584MB and 1.5 hours, respectively. Additionally, updating approximate NVDs for

changes to objects is considerably cheaper. Finally, these benefits incur only a small

bounded penalty in query performance while still returning exact results.

5.7 Experiment Results

5.7.1 Experimental Setting

Competing Methods: We compare three variants of K-SPIN. All variants use our ρ-

Approximate Network Voronoi Diagram (Section 5.6.1) for the Keyword Separated Index

and the ALT index [GH05] for the Lower Bounding Module. ALT computes lower-bound

network distances between any two vertices using pre-computed distances to “landmark”

vertices and the triangle inequality. The variants differ in their Network Distance Module.
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KS-CH employs Contraction Hierarchies (CH) [Gei+08], KS-GT uses G-tree [Zho+15] and

KS-PHL utilizes Pruned Highway Labeling (PHL) [Aki+14]. Each index offers a different

trade-off between pre-processing cost and query performance. Generally speaking, PHL

offers fast queries at the expense of high space cost, while CH offers considerably less space

cost but relatively slower queries.

K-SPIN answers both top-k and BkNN queries (Section 5.4) and returns exact results.

We compare with state-of-the-art top-k techniques ROAD [RN12] and G-tree [Zho+15],

and BkNN technique FS-FBS [JFW15]. We also adapt G-tree to answer BkNN queries.

We exclude network expansion methods as past results [JFW15] (that we verified) showed

them to be orders of magnitude slower. Note that G-tree can also answer network distance

queries.

We re-used the code for G-tree and ROAD from our implementations for the exper-

iments in Chapter 3. We modified this code for spatial keywords and implemented the

query algorithms. The code for PHL and FS-FBS was obtained from the authors. The

parameters for the G-tree, FS-FBS and ROAD indexes were chosen as in past studies

[Zho+15; Lee+12; JFW15] for best query performance with practicable index construc-

tion.

Environment: We conduct experiments on a Linux (64-bit) dedicated Amazon Web

Services c4.8xlarge instance with two Intel Xeon E5-2666v3 2.9GHz 10-core CPUs and

60GB DDR4-1866 memory. All code was written in C++ and compiled by g++ v5.4

with O3 flag. Query algorithms use a single thread. All experiments were conducted

using memory-resident indexes. This setting is preferred given the high query throughput

demands and viable given the affordability of RAM. This was very apparent when a disk-

based variant of FS-FBS performed slower than Dijkstra’s algorithm using only the input

graph in memory [JFW15].

Datasets: We used five real-world road network graphs as listed in Table 5.2. The DE

(Delaware), ME (Maine), FL (Florida), E (Eastern United States), and US (United States)

datasets were created for the 9th DIMACS Challenge [Pat06] and used widely in recent

studies [Zho+15; Wu+12] and in our experiments in Chapters 3 and 4. We extracted

points of interest (POIs) and their descriptors from OpenStreetMap (OSM) [Ope]. Each

POI was mapped to the closest road network vertex and keywords were extracted from

its descriptors. Table 5.2 lists the statistics for the keyword dataset of each road network,
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where |O| is the number of object vertices (POIs), |W | is the number of unique keywords,

and |doc(V )| is the number of keyword occurrences in all objects.

Region |V | |E| |O| |doc(V )| |W |
DE 48,812 119,004 2,369 9,539 2,103

ME 187,315 412,352 7,827 38,590 5,289

FL 1,070,376 2,687,902 48,560 265,769 17,628

E 3,598,623 8,708,058 111,085 725,944 33084

US 23,947,347 57,708,624 688,918 3,517,112 106,559

Table 5.2: Real-World Road Network and Keyword Datasets

Query Parameters: We investigate the effect of varying (a) the number of results k,

(b) the number query keywords, (c) size of the dataset, and (d) the frequency of the query

keywords. Table 5.3 lists the parameter values with defaults in bold. We create a set of

query keyword vectors by first choosing several popular search terms including “hotel”,

“restaurant”, “supermarket”, “bank”, and “school”. For each term, we select an object o

that contains the keyword. We select further keywords associated with o to create query

keyword vectors of length 1 to 6. This ensures that combinations of query keywords are

correlated because they exist for a real-world object and is similar to the process used

in a recent spatial keyword experimental study [Che+13]. We repeat this until we have

selected 10 objects for each of the five terms, generating a total of 50 vectors for each

length. Each vector is combined with 100 uniformly selected query vertices for a total of

5,000 queries over which we report the average query time. The query time for K-SPIN

includes the creation and maintenance of the on-demand inverted heaps.

Parameter Values

Road Networks DE, ME, FL, E, US

Number of Results (k) 1, 5, 10, 25, 50

Number of Terms 1, 2, 3, 4, 5, 6

Table 5.3: Spatial Keyword Experimental Parameters (Defaults in Bold)

5.7.2 Query Performance

Top-k Queries

For increasing k (Figure 5.10(a)) and numbers of query keywords (Figure 5.10(b)) on the

US dataset, both K-SPIN methods significantly outperform the next best competitor by at

least several times on all settings. KS-PHL, in particular performs, up to several orders of
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magnitude faster, demonstrating the advantages of K-SPIN’s modular nature by allowing

the faster network distance technique, PHL, to be used. While the performance gap

between KS-CH over G-tree is consistent in Figure 5.10(b), the performance gap between

KS-PHL and other methods decreases with additional keywords. PHL is a significantly

faster network distance method than CH. As a result, with increasing keywords, the cost

of maintaining additional inverted heaps takes a bigger proportion of the query time in

KS-PHL. However, in real terms, both KS-PHL and KS-CH are increasing by the same

margin despite appearing otherwise due to the logarithmic scale, thus KS-PHL will never

“catch-up” to KS-CH. Note that all K-SPIN query times in all experiments include the

cost of lazy heap initialization and maintenance (described in Algorithm 9 and in Section

5.6).
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Figure 5.10: Top-k Queries (US,# of terms=2,k=10)

Boolean kNN Queries

Boolean kNN Disjunctive Queries: Figure 5.11 shows the query performance for

disjunctive BkNN queries. KS-PHL again significantly outperforms the other techniques

irrespective of k or the number of keywords. Interestingly, KS-CH does not improve over

G-tree as significantly as for top-k queries in some cases, e.g., for k = 50 in Figure 5.11(a).

The reason for this is two-fold. First, disjunctive queries are easier to answer, in a sense,

than top-k and conjunctive queries because the criteria only require an object to have

any single query keyword. Thus, in general, we can expect result objects to be found

closer to the query location, which means they appear in nearby G-tree nodes that are

less costly to evaluate. This also explains why G-tree improves marginally with increasing
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query keywords (objects are easier to match). Second, G-tree is able to re-use intermediate

network distance computations, hence scales efficiently for increasing k because many of

them can be re-used. However, we note that a similar strategy has been applied to Dijkstra-

based hierarchical methods in the past [Kno+07] by saving and re-using the forward search

between network distance computations which may also be applied to CH. Nonetheless,

we note that KS-CH uses less memory than G-tree but is still able to match or beat its

performance on disjunctive queries without this improvement. FS-FBS is not shown, as

it cannot be built for the large US dataset.
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Figure 5.11: Disjunctive BkNN (US,# of terms=2,k=10)

Boolean kNN Conjunctive Queries: Figure 5.12 depicts performance on conjunctive

BkNN queries. The advantage of K-SPIN methods over G-tree is even more pronounced

than disjunctive queries, e.g., with several times to orders of magnitude improvement for

varying k in Figure 5.12(a). Keyword aggregation used by G-tree is more susceptible to

false positives for conjunctive queries as the hierarchy must be evaluated deeper before

false positives can be identified. K-SPIN, on the other hand, can quickly eliminate objects

not satisfying the criteria, avoiding computation of expensive network distances. We also

see that increasing query keywords results in improving query times for K-SPIN methods

in Figure 5.12(b). With additional keywords, fewer objects match the conjunctive criteria.

Consequently, the least frequent keyword is more likely to have an even lower frequency.

This gives K-SPIN an advantage as it has to consider fewer candidates (i.e., only those

that contain the least frequent keyword), explaining the observed improvement.
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Figure 5.12: Conjunctive BkNN (US,# of terms=2,k=10)

Varying Road Network

Figures 5.13(a) and 5.13(b) depicts the query time of each technique for top-k queries

and disjunctive BkNN queries, respectively, for varying road network size. The number

of vertices in the network increases from left to right. First, KS-PHL significantly outper-

forms the other techniques on all datasets for both types of queries. Second, we generally

see that the performance improvement of K-SPIN techniques over competing methods

increases with dataset size. This shows keyword separation scales better with dataset size

as the occurrence of false positives is reduced. This can be explained by the fact that, in

a bigger graph, higher levels of the G-tree and ROAD hierarchies aggregate more keyword

occurrences. This results in degraded pruning power and hence more false positives and

redundant network distance computations in G-tree and ROAD.
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Varying Keyword Frequency

Figure 5.14 illustrates the effect of increasing keyword frequency. We express frequency

in terms of keyword object density |inv(t)|/|V |, where |inv(t)| is the number of objects

which contain keyword t and |V | is the total number of vertices in the road network. Each

tic on the x-axis represents a “bucket” of keywords in the density range greater than or

equal to the current tic but less than the next tic (the last tick includes keywords of all

densities larger than 0.01). We execute single-keyword BkNN queries to isolate the impact

of frequency. Once again, K-SPIN outperforms G-tree, with KS-PHL more than an order

of magnitude faster. KS-CH improvement over G-tree is smaller as only a single query

keyword is involved, allowing G-tree to avoid the false positive problems seen earlier with

the more realistic multi-keyword disjunctive BkNN and top-k queries.

101

102

103

104

0.00001 0.0001 0.001 0.01

Q
ue

ry
 T

im
e 

(µ
s)

Keyword Density

KS-PHL
KS-CH

Gtree

Figure 5.14: Varying Frequency BkNN (US,# of terms=1,k=10)

5.7.3 Index Performance

Figure 5.15 shows the size of each index. “Input” is the input graph and keyword dataset.

Contraction Hierarchies entails the smallest footprint out of all indexes at 2.6GB compared

to 2.8GB for G-tree on the largest dataset (US). KS-PHL entails an index size of 17.9GB

compared to 4.5GB for ROAD for the US. The FS-FBS index could only be constructed

for the two smallest datasets. The 2-hop labeling index used to build the FS-FBS index

requires a vertex order. As described in the original study [JFW15], we tested several

vertex orders generated by Contraction Hierarchies [Gei+08] (including reverse order),

but could not build an index for FL in less than 24-hours, not to mention the prohibitive

scaling of index size. Unlike K-SPIN, FS-FBS does not provide an easy way to replace the

road network index used. Apart from FS-FBS, the pre-processing time of each technique
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in Figure 5.16 is comparable. K-SPIN received a useful speed-up from parallelization

(Section 5.6.1), while other techniques cannot be as easily parallelized.
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Figure 5.16: Pre-Processing Time

5.7.4 Heuristic False Positive Performance

In Section 5.1, we presented examples of how existing spatial keyword algorithms that

use keyword aggregation, like G-tree, incur costly additional work due to false positive

candidates. Thus far, we have shown empirical evidence that shows K-SPIN outperforms

its keyword aggregation counterparts, often quite significantly. To give further credence

to our claim that K-SPIN does indeed reduce the occurrence of false positives, we present

a deep-dive experimental comparison using the G-tree index.

We use the G-tree index as the network distance module in K-SPIN (referred to as

KS-GT). So KS-GT and G-tree’s spatial keyword query algorithms use the same underly-

ing road network index (G-tree) to compute network distances. This occurs in exactly the

same manner, e.g., already computed partial network distances are re-used for later com-

putations, described as materialization by Zhong et al. [Zho+15]. As a result, we perform
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an apples-to-apples comparison and thus obtain a truer understanding of the reduction

in false positives achieved by K-SPIN. Before presenting our findings, we first describe

how to apply keyword separation principles to G-tree’s spatial keyword query algorithms

using.

Applying Keyword Separation Principles to G-tree

Given the disadvantages of keyword aggregation and advantages of keyword separation

described so far, two pertinent follow-up questions may arise: (1) can principles of keyword

separation be applied to existing spatial keyword algorithms and (2) does applying such

principles mitigate the drawbacks of keyword aggregation discussed earlier. We answer

(2) in the subsequent section (the short answer being “no”), but first, describe how an

answer to (1) can be implemented for the top-k query algorithm proposed by Zhong et al.

[Zho+15] using the G-tree index.

As described in Section 3.3.5, G-tree is a tree data structure where each tree node

represents a road network subgraph. Starting with the entire road network as the root,

each child node is a partitioning of the parent node’s subgraph as illustrated earlier in

Figure 3.3. G-tree’s top-k algorithm finds candidates by traversing this subgraph hierarchy

up from the leaf node containing the query and down towards other leaf nodes containing

objects. Each tree node is associated with an occurrence list, which lists all child nodes

with an object. Occurrence lists can then be used to avoid searching G-tree nodes (i.e.,

subgraphs) without objects. In the case of top-k queries, the set of objects consists of all

vertices that contain a keyword. Thus, each tree node’s occurrence list indicates which

child nodes contain an object with any keyword. Note that this is in addition to the

pseudo-document associated with each tree node, which contains all the keywords present

in the subgraph, as usual for the keyword aggregation approach. By using an occurrence

list, child nodes without objects can be pruned immediately without consulting their

pseudo-documents.

We observe that keyword separation principles can be applied to occurrence lists.

Rather than building one occurrence list for a tree node, build a separate occurrence

list for each keyword in the tree node’s pseudo-document. Now G-tree’s top-k algorithm

can be modified to prune child nodes that do not contain objects with any of the query
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keywords. Note that we use this optimized version of G-tree spatial keyword algorithms

in all previous experiments.

Query Time and Network Distance Cost

Figure 5.17 displays the query time of KS-GT, optimized G-tree described above (Gtree-

Opt), and G-tree’s original top-k query. Additionally, we compare methods in terms

of matrix operations in Figure 5.18. Computing network distance using G-tree involves

determining the tree path between source and destination vertices in the G-tree hierarchy.

Given this path, distances are computed to each border associated with a tree node on the

path by looking up and summing distance matrix elements (described briefly in Section

3.3.5 and in detail by Zhong et al. [Zho+15]). We term this look-up and sum as a machine-

independent matrix operation that accurately captures how costly the network distance

was to compute. Most importantly, if fewer false positives occur there will be fewer matrix

operations.
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Figure 5.17: Top-k Query Time (US,# of terms=2,k=10)

In Figure 5.17, we see that Gtree-Opt marginally improves on the original G-tree

top-k query algorithm in terms of query time. However, in Figure 5.18 we see little

to no improvement in terms of matrix operations. This suggests that the query time

improvement is entirely from avoiding pseudo-document look-ups rather than incurring

fewer false positives. Identical numbers of matrix operations show that the hierarchy

is still being evaluated to the same depth to overcome the effect of aggregation. These

observations strongly evince that problems arising from keyword aggregation cannot be

easily solved in existing techniques.
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Figure 5.18: Top-k Matrix Operations (US,# of terms=2,k=10)

In Figure 5.17, KS-GT consistently outperforms G-tree by up to an order of magnitude

in terms of query time. This is despite KS-GT query time including extra overheads, e.g.,

computing lower-bounds and initializing/maintaining inverted heaps. The even greater

improvement on matrix operations in Figure 5.18 removes any doubt. The improvement

in matrix operations directly shows that K-SPIN utilizes the G-tree index more efficiently,

i.e., due to fewer false positives. We cannot apply further keyword separation to G-

tree itself due to the permanent loss of discriminating information without reversing the

keyword aggregation itself. K-SPIN in fact achieves this, but in a simple and versatile

manner.

5.8 Summary

Keyword separation is a viable alternative to keyword aggregation, as evident in the

significant improvement in query performance of K-SPIN over competing methods. Fur-

thermore, we show that this does not need to come at a prohibitive pre-processing cost,

as shown by the substantial reduction in keyword index size and pre-processing time. In

fact, utilizing the long-tail of Zipfian distributions and ρ-Approximate NVDs are useful

techniques on their own. Ultimately, K-SPIN provides an efficient and versatile framework

for spatial keyword query processing, in addition to the provision for dynamic updates and

parallelized index building. Moreover, these achievements further advocate the usefulness

of decoupled heuristics, particularly given the huge improvement in utilization of the G-

tree road network index by K-SPIN compared to G-tree’s own more complex dedicated

heuristics.
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Chapter 6

Efficient Hierarchical Traversal for

Aggregate kNN Queries

The whole is greater than the sum of its parts.

Aristotle

The queries we have focused on so far involved a single query vertex. However, other

POI search problems such as Aggregate kNN (AkNN) queries involve multiple query loca-

tions. As a result, the intuitions behind our highly successful heuristics for earlier queries

are not necessarily applicable to AkNN queries. As we discuss next, we propose techniques

to efficiently answer AkNN queries based on a more appropriate intuition for such queries.

Moreover, in the context of the decoupled heuristic paradigm, we show that it is capable

of incorporating more sophisticated heuristics to solve varying POI search problems.

6.1 Overview

In the age of ubiquitous mobile computing, finding the nearest relevant points-of-interest

(POIs) through the road network is an increasingly important problem. Compared to

retrieving POIs in Euclidean space (i.e., “as the crow flies”), using the road network

distance computed by graph algorithms enables more accurate metrics for proximity, such

as travel time. This is highly useful in popular map-based services like ride-sharing apps,

where inaccuracy equals lost profit.

The key to POI search in road networks is in developing heuristics to retrieve POIs

that are most promising. The vast majority of related work has focused on finding POIs
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by their network distance from a single user’s location, such as k Nearest Neighbor (kNN)

queries studied in Chapters 3 and 4, which retrieve the k POIs with minimum road network

distances. However, POI search is not necessarily limited to this scenario. For example,

Aggregate kNN queries [YMP05] retrieve POIs by an aggregate network distance from

multiple users’ locations.

Heuristics to answer AkNN queries have largely been borrowed from kNN techniques

[YMP05; Zhu+10; Yao+18], which is problematic in a number of ways. First, intuitions

to find kNNs do not necessarily translate to AkNNs. For example, our highly efficient

kNN heuristic in Chapter 4 based on NVDs uses a recurrence rule stating that the k-th

nearest POI must be adjacent to the k − 1 nearest POIs. The rule is exploited by storing

the 1st nearest POI of every query location and the adjacency relationships between POIs.

However, AkNN queries involve retrieving POIs by an aggregate distance that summarizes

network distances from multiple query locations according to some function. Thus, the

1st nearest POI is unlikely to be close to all query locations, so the recurrence rule is no

longer true and cannot be applied, rendering the heuristic unsuitable.

A more appropriate heuristic to find AkNNs is to conduct a hierarchical search on

the road network. Yiu et al. [YMP05] search an R-tree [Gut84] containing the POIs in

a top-down manner according to a Euclidean distance heuristic, similar to the IER kNN

technique [Pap+03]. When constructed, the R-tree recursively divides POIs into subsets

by Minimum Bounding Rectangles (MBRs). During the search, a lower-bound aggregate

distance for all POIs in a child R-tree node is computed using the Euclidean distances to

its MBR. Now the most promising tree branches can be visited to pinpoint result POIs.

However, this is not ideal for road networks as Euclidean distance is only a loose lower-

bound especially on metrics like travel time, making the heuristic less efficient. Moreover,

the inefficiency is exacerbated for AkNNs as the error will also be aggregated.

Landmark Lower-Bounds (LLBs) are a more accurate alternative to Euclidean dis-

tance [GH05]. They involve pre-computing and storing certain distances to landmarks in

the road network, which can then be used to compute a lower-bound between any two

locations using the triangle inequality. However, there is no hierarchical data structure to

compute minimum LLBs to groups of POIs in the same way as R-trees using Euclidean

distance.
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While these diverse factors are challenging, in this chapter, we propose techniques to

overcome them simultaneously. First, we present hierarchical data structures, SL-Trees

and COLT (Section 6.3). These add significantly more landmarks than previous methods,

while still keeping the data structures reasonably small in theory (Section 6.5) and prac-

tice. COLT, the main index used for querying, is particularly light-weight. It is also the

first index to support hierarchical traversal of the road network to locate POIs by landmark

lower-bounds. Utilizing COLT and part of the SL-Tree, we propose a heuristic search algo-

rithm to efficiently answer AkNN queries (Section 6.4). Our algorithm is particularly adept

at AkNN queries due to a unique property of COLT for convexity-preserving aggregate

functions. Finally, our detailed experimental investigation on real-world datasets shows

our techniques achieve orders of magnitude improvement in query time over competing

methods (Section 6.6). We also verify the improvement in terms of machine independent

heuristic efficiency.

6.2 Preliminaries

Road Network: Similar to previous chapters, we use the same definition of a road

network as outlined in Section 1.1 and consider query locations and objects (POIs) to be

located on road network vertices for simpler exposition.

Aggregate k Nearest Neighbor (AkNN) Queries: Given a set of query vertices

Q ∈ V , a set of object vertices O ∈ V , and an aggregation function agg, an AkNN query

retrieves the k objects in O with minimum aggregate distances from set Q. Aggregate

distance dagg(Q, o) to object o is computed by aggregating the network distances to o from

each query vertex q ∈ Q by function agg (e.g., their sum). These are also known as Group

kNN queries [Pap+04].

Landmark Lower-Bounds (LLBs): We refer the reader to Section 4.2 for a description

of Landmark Lower-Bounds and the ALT index that can be used to produce them.

6.2.1 Lower-Bound Aggregate Distances

Yiu et al. [YMP05] described how to compute a lower-bound on the exact aggregate

distance for object o using lower-bound network distances to o from each query vertex

qi ∈ Q, as in Lemma 4 below.
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Lemma 4. Given a monotone aggregate function agg and lower-bound distances LB(qi, o)

from each query vertex qi ∈ Q to object o, the aggregation of the lower-bound distances gives

a lower-bound on the exact aggregate distance. That is, LBagg(Q, o) = agg(LB(qi, o), · · · ,

LB(q|Q|, o)) ≤ dagg(Q, o).

Lemma 4 was shown to be true by Yiu et al. [YMP05] due to the monotonicity of

the aggregate function. Notably, their technique used Euclidean distance as the example

lower-bound on network distance similar to IER.

6.3 Data Structures

We describe our data structures to index the road network and object set, respectively, to

be utilized for hierarchical graph traversal and ultimately locate AkNN objects.

Road Network Index: We first introduce the Subgraph-Landmark Tree (SL-Tree)

to index the road network. The SL-Tree is a supporting index that we use to construct

our object index efficiently. Each node in the SL-Tree represents a subgraph of the road

network with the root being G. G is recursively partitioned into b disjoint subgraphs of

equal size, stopping when a subgraph has no more than α vertices. Figure 6.1(a) shows

such a partitioning for b = 2 and α = 6 with the corresponding SL-tree shown in Figure

6.1(b). Note that we refer to tree nodes and road network vertices.

S0

S1
S2

S2A

S2B

S1A

S1B

l2

l1 o1

o2

o3

o4

o5

(a) SL-Tree Subgraph Partitions

S0

S1

S1A S1B

S2

S2A S2B

l1 

l2 

vS1,1,d(l1,vS1,1) vS1,2,d(l1,vS1,2) … vS1,1,d(l1,vS1,1) vS1,2,d(l1,vS1,2) … 

vS1,1,d(l2,vS1,1) vS1,2,d(l2,vS1,2) … vS1,1,d(l2,vS1,1) vS1,2,d(l2,vS1,2) … 

(b) SL-Tree Node Hierarchy

Figure 6.1: Subgraph Landmark Tree (SL-Tree)

For each node nT , we select m of its vertices as local landmarks, e.g., l1 and l2 for

m = 2 for S1 in Figure 6.1(a) (landmarks for other nodes are omitted for clarity). We then

compute distances from each landmark li to every vertex in nT ’s subgraph using Dijkstra’s
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search, which are stored in distance list DLi. Figure 6.1(b) shows the distance lists for the

landmarks of S1 (those for other nodes are again omitted). Note that subgraphs are stored

implicitly by mapping road network vertices to SL-Tree leaf nodes, and any partitioning

scheme can be used, e.g., [KK98].

Object Index: The SL-Tree can then be used to efficiently construct our object index,

the Compacted Object-Landmark Tree (COLT). COLT is a carefully compacted version

of the SL-Tree for object set O. Compaction ensures that there are m local landmarks

for every λ objects, to increase the likelihood of finding a tighter lower-bound for more

objects. Note that the SL-Tree is shared between the construction of all COLT indexes,

i.e., for many different object sets.

Given SL-Tree T , COLT index C is constructed by visiting nodes in T in a top-down

manner and creating corresponding nodes in C. Let nT be the currently visited node in

T (initially the root). A corresponding node nC is created in C for nT . Let λ ≥ α be the

maximum number of objects in a leaf node for COLT. If nT contains more than λ objects,

the search expands to its children. Otherwise, the search is stopped at nC , which becomes

a leaf-node of COLT. For the new leaf nC , an Object Distance List ODLi is created in nC

for each landmark li in nT . These are simply the distance lists of nT , except with only

the distances for object vertices in O. Any interior nodes with only one child are merged

with the child (keeping the child’s landmarks, which are more local). Figure 6.2(a) shows

a COLT index for λ = 2 constructed from the SL-tree in Figure 6.1(b) based on the 5

object vertices in Figure 6.1(a). Note that S1A and S1B were removed as the search was

pruned at S1 due to its number of objects (the ODLs of other nodes are not shown for

clarity).

S0

S1 S2

S2A S2B
l1 

l2 

o1,1 o2,3o1,1 o2,3

o2,1 o1,4o2,1 o1,4

(a) COLT Hierarchy

q

l1

l2

LB(q,o)

d(l1,q)max(l1)

Child

Parent

omax

(b) COLT Lower-Bounds

Figure 6.2: COLT Index
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Each object distance list ODLi of leaf node nleaf in C is sorted on distance. In non-leaf

nodes nC , we only store the minimum distance minnC ,li and maximum distance maxnC ,li)

to any object in the node from each of its landmarks li. These can be computed using

distance lists in corresponding SL-Tree nodes. Next, we use this information to compute

lower-bounds to nodes and traverse the hierarchy.

6.3.1 Lower-Bound Heuristic for Graph Traversal

Mouratidis et al. [Mou+15] proposed computing a lower-bound distance for a group of

vertices in a social graph using landmarks similar to the use of the triangle inequality in

(4.1) from Section 4.2.1. A similar idea can be considered to compute a lower-bound for

all objects contained within a node nC in COLT index C using (6.1) for one landmark

li ∈ nC . (6.2) gives the best lower-bound over all m landmarks of nC .

LBli(nC , q) =


d(li, q)−maxnC ,li if d(li, q) ≥ maxnC ,li

minnC ,li − d(li, q) if d(li, q) ≤ minnC ,li

0 else

(6.1)

LBmax(nC , q) = max
li∈nC

(LBli(nC , q)) (6.2)

minnC ,li and maxnC ,li for nC are already available in COLT. However, for non-root

nodes, d(li, q) in (6.1) is only available if li and q are in the same subgraph. Pre-computing

this distance for all V and landmarks is infeasible given the space implications. The COLT

index must be kept compact, because unlike the single set of users indexed by Mouratidis

et al. [Mou+15], there are potentially thousands of object sets each requiring a COLT

index. Alternatively, computing d(li, q) on the fly using another technique is expensive

and may be wasteful if the node does not contain results. Interestingly, (6.1) still holds if

we replace the distances with lower-bound LB(li, q) and upper bound UB(li, q), as in (6.3).

The distance lists of the root or lowest common ancestor SL-Tree node can be conveniently

used to compute LB(li, q) and UB(li, q) by (4.1) and its upper-bound equivalent (by

adding rather than subtracting distances), respectively. Choosing the tightest over all

landmarks of nC gives an inexpensive and accurate bound, as previously mentioned, for
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even a small number of landmarks.

LBli(nC , q) =


LB(li, q)−maxnC ,li if LB(li, q) ≥ maxnC ,li

minnC ,li − UB(li, q) if UB(li, q) ≤ minnC ,li

0 else

(6.3)

Landmark Choices: Additional landmarks closer to the objects naturally improves the

tightness of produced lower-bounds. Past work has shown that landmarks on the fringe of

the graph also give better lower-bounds [GW05]. Inspired by this, we choose landmarks

from border vertices of subgraphs. We partition the borders of the SL-Tree node into m

slices around the Euclidean center of the subgraph. We choose 1 border as a landmark

from each slice. If a slice has no borders, we choose the slice vertex furthest from the

Euclidean center. If a slice has no vertices, we randomly choose a subgraph vertex to

ensure m landmarks.

Effective Lower-Bounds: The accuracy of COLT’s inexpensive lower-bounds increases

as we delve deeper into the hierarchy. In Figure 6.2(a), let us say we use l1 and its

maximum object distance to compute a lower-bound for the child node. At the lower

level, we may use the child’s landmarks like l2, which are local to the objects and more

likely to produce a better lower-bound. This lets us differentiate tree branches and pinpoint

the most promising candidates. Next, we utilize this as a decoupled heuristic for AkNN

querying.

6.3.2 Extending to Moving Objects

We now briefly describe how COLT can incorporate updates for moving objects, such as

taxis, as they move from vertex to vertex in the road network. The simple approach is

to reconstruct the whole COLT index, which we show is still fast both in theory (Section

6.5) and practice (Section 6.6). However, COLT can be updated more efficiently through

a careful approach. Given an object p that has moved, its distance in the ODLs of its leaf

node will no longer be accurate. These values can be updated using the distance lists in

the equivalent SL-Tree node with a single O(1) lookup for each ODL. Since the elements

corresponding to p may now be out of order in the ODLs, these can be sorted by simply

finding the element’s correct position in worst-case O(λ) time for each ODL. Lastly, the
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maximum and minimum values of each ancestor node from the leaf node in COLT contain-

ing p must also be updated. Doing so may involve iterating over the landmark distances

to every object contained within each ancestor node containing p. However, this can be

avoided by also storing the objects associated with the minimum and maximum distances

for each landmark (achievable for free during pre-processing). Given a landmark l for an

ancestor node nA of p, if d(l, p) is smaller than the minimum distance minnA,l (respec-

tively greater than the maximum distance maxnA,l), then minnA,l (respectively maxnA,l)

can safely be updated. If d(l, p) is greater than minnA,l and smaller than maxnA,l), no

update is necessary if p is not associated with minnA,l or maxnA,l. Otherwise, minnA,l

(respectively maxnA,l) must be re-computed by iterating over all objects contained in node

nA. This process is repeated for each non-root ancestor node nA of object p.

6.4 Query Algorithm for AkNN Search

We have already seen the effectiveness of decoupled heuristics on POI search in previ-

ous chapters. Accordingly, we develop a decoupled heuristic that traverses COLT in a

hierarchical manner to pinpoint and retrieve the best AkNN candidate objects by their

lower-bound aggregate distances. Interestingly, COLT considers fewer AkNN candidates

to find the object with the minimum lower-bound using a novel property of COLT’s Object

Distance Lists (ODLs).

6.4.1 Object Distance Lists and Convexity

From Section 4.2.1, (4.1) can be expressed as an absolute value function of form f(x) =

|C−x| for some landmark l. Here, C is the constant distance d(l, q) between the landmark

l and the query point q, and x is a variable distance d(l, o) depending on the object o ∈ O.

Since absolute-value functions are convex, f(x) is minimized for x closest to C. This

property is useful to find the minimum lower-bound in an Object Distance List ODL for

the landmark l for a single query vertex q. Since ODL essentially stores the domain of

x for all objects in the node, the minimum lower-bound for the landmark l can be found

by searching ODL for d(l, c) closest to d(l, q) for some object c ∈ ODL. Since ODL is

sorted, this is possible using a modified binary search, similar to Object Lists in Section

4.3.1, in only O(log λ) time.
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Finding the minimum lower-bound aggregate distance is complicated by the presence of

multiple query locations qi ∈ Q. As described in Lemma 4 in Section 6.2.1, the aggregation

of lower-bound distances from each query vertex qi is a lower-bound on the aggregation

of exact network distances for monotonic functions [YMP05]. Therefore, the function to

minimize becomes f(x) = agg(|C1 − x|, · · · , |Cn − x|) for a monotonic aggregate function

agg where Ci is d(l, qi) for the given landmark l and a query qi ∈ Q. At first glance,

this might suggest we need to search ODL for multiple values (i.e., once for each Ci) to

find the object with minimum aggregate lower-bound. Surprisingly, it is not necessary

for aggregate functions that preserve convexity. Moreover, we find that the most widely

used functions [Pap+05], max and sum, do preserve convexity. [BV04] prove convexity

preservation for a range of functions.

Specifically, once the minima x∗ of the function f(x) is found, iteratively retrieving the

object that gives the next smallest lower-bound simply requires, due to the convexity of

the function, checking the element to the right or left of x∗ in ODL. However, unlike the

single query case, finding the minima of f(x) is not obvious for aggregate kNN queries.

Below, we show how to find minima for two common aggregate functions, max and sum.

Lemma 5. Consider the aggregate function defined by the sum of a set of absolute func-

tions f(x) = sum(|C1 − x|, · · · , |Cn − x|). The minima x∗ of f(x) is the median value of

the constants C1, ..., Cn.

Proof. Let constants be sorted such that C1 ≤ C2 ≤ ... ≤ Cn. Let x∗ be the median of

these constants. We show that f(x∗) ≤ f(x′) for all x′. Let d = |x∗ − x′|. Without loss

of generality, assume x′ < x∗. For each Ck < x∗, the difference between |Ck − x∗| and

|Ck − x′| is at most d, i.e., |Ck − x∗| − |Ck − x′| ≤ d. On the other hand, for each Cj ≥ x∗,

the difference between |Cj − x′| and |Cj − x∗| is exactly d, i.e., |Cj − x′| − |Cj − x∗| = d.

Since x∗ is median of the constants, the number of constants Cj ≥ x∗ is at least dn2 e. In

other words, for at least half of the constants, |Ci− x′| − |Ci− x∗| = d and for each of the

remaining constants, |Ci − x∗| − |Ci − x′| ≤ d. Thus, f(x∗) ≤ f(x′).

Lemma 6. Consider the aggregate function defined by the maximum of a set of absolute

functions f(x) = max(|C1− x|, · · · , |Cn − x|). The minima x∗ of f(x) is Cmin+Cmax
2 , i.e.,

the average of the minimum and maximum constants.
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Proof. For sorted constants, let C1 = Cmin and Cn = Cmax. Note that f(x) = max(|C1−

x|, · · · , |Cn − x|) = max(|C1 − x|, |Cn − x|). Thus, the minimum value of f(x) is C1+Cn
2 ,

i.e., minima x∗ of f(x) is Cmin+Cmax
2 .

Of the commonly used aggregate functions in previous studies, only the min function

does not preserve convexity. Since the resulting function is not convex, we are not able to

find a minimizing value in ODLs in the same manner as for the sum and max functions.

However, to solve AkNN queries for the min function, we may simply use non-aggregate

kNN queries for each query vertex in Q, and then merge the results with minimum dis-

tances to any query vertex. In Section 7.2.3, we provide some preliminary experimental

results for kNN queries utilizing COLT compared to existing kNN techniques, which can

be used to infer AkNN query performance for the min function.

6.4.2 Query Processing

Algorithm 10 uses hierarchical graph traversal on the COLT index to guide us towards

ODLs most likely to contain AkNN results. The algorithm maintains a priority queue

PQ containing objects and COLT nodes keyed by their aggregate lower-bound distances

from Q. The loop iteratively extracts the minimum lower-bound queue element. If an

object is extracted, its exact aggregate distance is computed and the result set R and

Dk, the distance to the k-th nearest candidate, is updated (lines 7-10). If a non-leaf

node is extracted then an aggregate lower-bound score is computed according to (6.3)

and (6.2) for each of its child nodes (lines 12-14). If it is a leaf-node, it is initialized if

encountered for the first time (lines 16-21). A landmark is chosen to determine the object

list to process, the constants in the absolute value functions are computed, and a binary

search is performed to find the minimizing list index given by Lemma 5 or 6. Pointers RP

and LP are initialized to the index of minimizing value. Then objects are retrieved from

the list using RetrieveObjectsOL and, if the list is not completely searched, the node

is re-inserted into PQ with minimum lower-bound computed by RP or LP . We set c.l

(line 17) to the landmark furthest from the query vertices (on average) by a lower-bound

computed using the SL-Tree and (4.1), to obtain tighter lower-bounds similar to fringe

landmarks in Section 6.3.1. Line 29 computes the maximum (best) lower-bound aggregate

distance for object p using available network distances for any landmark (e.g., landmarks

in the root SL-Tree node or c.l in the leaf).
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Algorithm 10 Answer AkNN queries using hierarchical travel of COLT index

1: function GetAkNNsByCOLT(k,Q, agg, COLT, SLTree)
2: PQ ← φ . Priority queue keyed by lower-bound distance
3: R← φ . Max priority queue containing k best candidates
4: Insert(PQ, COLT.root, 0) , Dk ←∞
5: while MinKey(PQ) < Dk and PQ not empty do
6: c← Extract-Min(PQ)
7: if c is an object then
8: Compute agg. dist dagg(Q, c) using d(qi, c)∀qi ∈ Q
9: if dagg(Q, c) < Dk then

10: Insert(R, c, dagg(Q, c)) . Check/update R and Dk

11: else if c is a non-leaf node, i.e., with no ODL then
12: for each child node e of c do
13: Compute lower-bound LBagg(Q, e) for e by (6.2)
14: Insert(PQ, e, LBagg(Q, e))

15: else if c is a leaf node then
16: if c not seen before then
17: Set c.l to furthest landmark by LLB from Q
18: Compute network distances d(q, c.l)∀q ∈ Q
19: Initialize array c.d[] using query distances to c.l
20: Binary search c.l’s ODL for minima of f(x)
21: Initialize c.RP/c.LP to index of minima

22: RetrieveObjectsOL(PQ, Q, c)
23: Set best lower-bound LBagg(Q, c) using c.RP/c.LP
24: Insert(PQ, c, LBagg(Q, c))

25: return R
26: function RetrieveObjectsOL(PQ, Q, c)
27: while LBagg,c.l(Q, p) < PQ.T op() for p at c.RP/c.LP do
28: p← object at c.RP or c.LP with smaller LBagg,c.l

29: Insert(PQ, p, LBagg,max(Q, p))
30: Increment c.RP or decrement c.LP used at Line 28
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6.5 Complexity Analysis

COLT is converted from the SL-Tree, which is a complete b-ary tree. There are at most

O(|O|) leaf nodes in COLT. Even though COLT may be unbalanced (as the SL-tree struc-

ture is fixed), since we merge nodes with only one child, the total number of nodes will

be the same as a complete b-ary tree, i.e., O(|O|). However, COLT’s space complexity is

dominated by the m object distance lists stored in each leaf node, resulting in O(m|O|)

total space. We remark that m is a small constant. Due to similar reasoning, the average

depth in COLT will be O(log |O|). Given the top-down conversion and O(1) look-ups of

SL-Tree vertex distances lists as hash-tables, propagating objects to build object distance

lists and computing required values takes O(|O| log |O|) time. Sorting all object distances

lists takes O(|O|λ log λ) time where λ is a small constant. Thus, the total time complexity

is O(|O| log |O|). We remark that only the root of the SL-Tree is required for querying,

requiring O(m|V |) space and O(|V | log |V |) time to build similar to the ALT index [GH05].

6.6 Experiments

6.6.1 Experimental Settings

Environment: We conduct experiments on a Linux (64-bit) Amazon Web Services

r5a.2xlarge instance with eight AMD EPYC 2.5GHz CPU cores and 64GB of memory.

All code was written in single-threaded C++ and compiled by g++ v5.4 with O3 flag. All

experiments were conducted using memory-resident indexes for fast query processing.

Datasets: We use the real road network graph for the continental United States with

23, 947, 347 vertices and 57, 708, 624 travel time edge weights as listed in Table 3.1. We

also use the 8 real POI sets for the US listed in Table 3.2. For sensitivity analysis, we

generate synthetic POI sets chosen uniformly at random for density d where d=|O|/|V |

as in previous chapters.

Parameters: We use parameter A to define a connected subgraph of G with A% of

the total vertices |V |. Query vertices are then chosen uniformly at random from the A%

subgraph. Similar to past studies [YMP05], this represents how “local” a group of query

locations are. We test the sensitivity of techniques to varying numbers of results k, density

d, query vertices |Q|, and subgraph percentages A. We also test two popular aggregate
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functions max and sum. Parameter values are listed in Table 6.1 with defaults in bold if

applicable. We report query time over 500 queries, e.g., with 10 synthetic object sets and

50 uniformly random query vertex sets.

Parameter Values

k 1, 5, 10, 25, 50

d 1, 0.1, 0.01, 0.001, 0.0001

A (%) 1, 5, 15, 50, 100

|Q| 2, 4, 8, 16, 32

Aggregate Functions max , sum

Table 6.1: AkNN Experimental Parameters (Defaults in Bold)

Techniques: We compare our algorithm against the Incremental Euclidean Restriction

(IER) AkNN algorithm proposed by [YMP05]. We also use their concurrent expansion

approach to adapt our highly efficient kNN heuristic based on Network Voronoi Diagrams

(NVDs) from Section 4.3.2 to answer AkNN queries. Each technique uses Pruned Highway

Labeling (PHL) [Aki+14] implemented by its authors to compute network distance. This

ensures a level playing field, and as PHL is one of the fastest techniques, it will better

show the differences in overheads. Nonetheless, we also compare algorithms on heuristic

performance in terms of “false positives”, which is independent of the network distance

technique. SL-Trees and COLT use branch factor b = 4, maximum object distance list

size λ = 128 (which is also α) and m = 4 landmarks per node for ideal performance vs.

index size. NVD uses the ALT index [GH05] with m = 16 random landmarks to compute

LLBs, which we also use as it is essentially the root of an SL-Tree.

6.6.2 Real-World Query Performance

Figure 6.3 depicts query time on real-world POI datasets, with the number of objects

increasing from left to right. COLT significantly outperforms the other methods across

the board, with up to two orders of magnitude improvement. COLT tends to improve

more on larger POI sets, where it is more difficult to distinguish between objects. Next,

our sensitivity analysis delves deeper into this and other nuances of query performance for

varying parameters (Section 6.6.1).
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Figure 6.3: Varying Real-World Object Sets (US,k=10,|Q|=8,A=15%,max)

6.6.3 Sensitivity Analysis

Effect of d: The trend seen for real-world POIs is confirmed by using increasing object

density d in Figure 6.4(a). Both IER and NVD scales poorly with increasing d. With

more objects, NVD-PHL must expand more adjacent objects to find a common candi-

date for the same query vertices. While IER-PHL finds it harder to distinguish objects

using its less accurate Euclidean lower-bound. In contrast, COLT’s tighter lower bounds

and hierarchical traversal is more effective in pruning subgraphs and pinpointing likely

candidates.

Effect of k: COLT significantly outperforms the other methods for varying k in Figure

6.4(b). NVD-PHL and IER-PHL query times do not vary significantly compared to COLT

(note the logarithmic scale). This suggests the same amount of work is done irrespective

of k, and strongly implies the competing techniques cannot effectively identify good can-

didates and terminate quickly. For example, NVD-PHL expands so many candidates to

find the first AkNN, that subsequent candidates have already been encountered.

Effect of |Q|: We investigate query time as the number of query vertices increases in

Figure 6.5(a). Increasing query vertices involves computing additional lower-bounds and

network distances to candidates, thus query time increases for all methods. However,

COLT scales better because it conducts a single binary search on its object distance lists

irrespective of the number of query vertices. On the other hand, NVDs require additional

concurrent expansions as AkNN results are less likely to be close to any one query vertex.

Effect of A: Recall that A is the percentage of graph vertices in a subgraph from which

we choose query vertices. With increasing A query vertices become further apart, e.g.,
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Figure 6.4: max Function Performance (US,k=10,|Q|=8,A=15%,uniform objects)

to represent an AkNN query by a logistics company placing depots nation-wide. For

A = 1%, NVD-PHL performance is relatively close to COLT in Figure 6.5(b). For NVDs,

this scenario is similar to kNN queries where it excels, in that more query vertices share

the same 1NN and concurrent expansions overlap. IER does not benefit from this as its

lower-bounds are still inaccurate. In a sense, queries become “harder” with increasing A

and COLT scales extremely well in that case.
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Figure 6.5: max Function Performance (US,k=10,|Q|=8,A=15%,uniform objects)

Effect of Aggregate Function: We evaluate another popular aggregate function, sum,

in Figure 6.6. In absolute terms, both IER and COLT have higher query times for sum

than max. This is because sum also sums the error of the lower-bound. The detrimental

effect is amplified by the use of hierarchies by IER and COLT, explaining the relative

improvement of NVD-PHL. However, COLT is more robust to this than IER as its lower-

bounds are tighter and still significantly outperforms both methods.
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Heuristic Efficiency: In addition to query time, we also measure the efficiency of the

heuristics in Figure 6.7 using machine independent metrics. Figure 6.7(a) shows the num-

ber of network distances computed to non-results. The poor query time performance

of IER is explained by the significantly higher (and costly) network distances computed.

However, NVDs do not compute much more network distances than COLT. As both meth-

ods use landmark lower-bounds (LLBs), that are more accurate than IER’s Euclidean

distance, they both avoid computing network distances. The poor query time of NVDs

can be explained by Figure 6.7(b), which shows NVDs computing a significantly higher

number of LLBs than COLT. This confirms expansion in NVDs encounters a significantly

higher number of objects than COLT’s hierarchical search.
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6.6.4 Pre-Processing Costs

Table 6.2 details the road network pre-processing costs in terms of time and space. As

expected, SL-Tree has higher pre-processing than ALT. However, the space cost is not

significantly higher. The indexing time is still comparable to PHL, which has one of

the fastest pre-processing times for high-performance indexes [Aki+14]. Moreover, the

SL-Tree is discarded after COLT construction and only its root node is kept for query

processing, which has the same index size as ALT.

ALT (m=16) SL-Tree (m=4) PHL

Time 71s 25m 25m

Space 1.43GB 4.6GB 15.8GB

Table 6.2: Road Network Index Statistics (US)

Table 6.3 lists the pre-processing costs for object indexes used by each technique for

default density 0.001 × |V |. Note that object indexes are constructed for each object set

(e.g., the set of restaurants). COLT is significantly smaller and faster to construct than

NVDs and is comparable to R-trees as both have space complexity linear to the input.

Note that the NVD index has been compressed using merged quadtrees [DS12; SSA08],

which only store the geometric area of Voronoi node sets.

COLT (m=4) NVD R-tree

Time 63ms 11s 6ms

Space 0.9MB 28MB 0.9MB

Table 6.3: Object Index Statistics (US,uniform objects,d=0.001)

6.7 Summary

COLT elegantly combines several properties that benefit AkNN search. First, AkNN

queries involve multiple query locations. This means result objects are likely to be found

further from all query vertices, which is easier to locate using the hierarchical subgraph

traversal in COLT. Second, COLT can compute better and inexpensive lower-bounds using

localized landmarks at each level of the hierarchy. Combined with its novel property for

convexity preserving aggregate functions, we can retrieve more promising candidates and

terminate search sooner. This is demonstrated in our experiments with COLT significantly

outperforming competing techniques on AkNN queries. Moreover, the data structures used
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for querying are light-weight in both theory and practice. These results contribute to the

main hypothesis of this study by showing an additional POI search query for which a

decoupled heuristic is still the most effective technique by a wide margin. Furthermore, it

shows that decoupled heuristics can increasingly be more sophisticated to better capture

the intuitions for different POI search queries.
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Chapter 7

Final Remarks

Never measure the height of a mountain until you have reached the

top. Then you will see how low it was.

Dag Hammarskjöld

At a time where smartphones are omnipresent and backed by cheap network band-

width, point of interest (POI) search is a highly relevant problem. Given the surge in

demand for map-based services, such as ride-hailing applications, users are increasingly

demanding greater accuracy and capabilities from these services. Consequently, many of

these map-based services employ indexing methods and query processing algorithms to

find POIs through the road network. While closely related to the shortest path problem

in road networks, POI search has not received nearly as much attention.

In this thesis, we study heuristics used to guide searches towards the POIs we are

most interested in (and by extension, avoid those we are not interested in). We find that a

simple paradigm to solve POI search problems using decoupled heuristics has been highly

underrated. This approach involves retrieving likely candidate POIs according to some

heuristic and then computing their shortest paths using another technique. By proposing

new techniques employing this paradigm, we show that it is demonstrably effective on a

wide range of POI search problems. Moreover, we show that our techniques significantly

improve on the state-of-the-art in practice on real-world datasets and under many exper-

imental settings. In the process, we also make several useful ancillary contributions. We

summarize the main contributions and conclusions of this thesis as follows.
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7.1 Main Outcomes

Our thorough experimental investigation (Chapter 3) into the state-of-the-art for the kNN

problem on road network provides a much clearer picture of the relative advantages and

disadvantages of the most advanced existing techniques. Our key insight, and the linchpin

of our subsequent hypotheses, is the performance of the neglected decoupled heuristic

based on Euclidean distance. We show that this heuristic, through a simple improvement,

is actually the best performing method on almost all settings. This is even true in cases

where it is expected to perform extremely poorly, such as travel time. As it turns out,

this remarkable observation has far reaching consequences for other POI search problems

and the overall effectiveness of the decoupled heuristic paradigm.

While Euclidean distance was effective compared to other techniques in Chapter 3,

we observe that there is still room for improvement in Chapter 4. This is especially true

for road networks with travel-time edge-weights, where Euclidean distance can only be

used to form a loose lower-bounding heuristic on travel time. We revive a long-discarded

data structure, the Network Voronoi Diagram (NVD), and re-purpose it through a novel

observation on its heuristic capabilities when combined with Landmark Lower-Bounds

(LLBs), which are more accurate than Euclidean distance lower-bounds. In the process,

we overcome several technical challenges faced by previous studies that made it difficult

to take advantage of LLBs in a scalable manner. Our technique significantly improves

on the Euclidean heuristic in terms of running time. We verify that the improvement is

also significant in terms of false positive candidates generated. This machine-independent

metric directly shows that we improve heuristic efficiency.

In Chapter 5, we identify a flaw in existing approaches to solve spatial keyword prob-

lems on road networks, due to the use of keyword aggregation. We propose the use of

an alternative keyword separation approach, which is capable of employing decoupled

heuristics. Our flexible and extensible framework, named K-SPIN, exhibits significant

improvement in query time and heuristic efficiency over existing techniques. Keyword

separation has dire implications for pre-processing cost, which perhaps explains why it

has never previously been used. However, by making smart observations, we propose

techniques to significantly reduce the pre-processing cost, to the point that our framework

is light-weight for even continent sized road network datasets. Our novel observation on
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Zipfian distributions and new ρ-Approximate Network Voronoi Diagram are contributions

that may find applications in other problems related to spatial keyword queries and POI

search. Moreover, applying our NVD-based heuristic from Chapter 4 demonstrates its

utility to POI search problems in general.

In Chapter 6, we observe that the intuition that makes our heuristics proposed in

Chapter 4 highly effective is not necessarily true for other types of POI search queries,

such as Aggregate k Nearest Neighbor (AkNN) queries. A hierarchical approach seems

more appropriate, but we also observe that no solutions exist to do this efficiently. In

response, we propose the SL-Tree and COLT indexes to enable efficient hierarchical graph

traversal. Based on COLT, we propose a more sophisticated decoupled heuristic that

quickly and efficiently homes in on likely AkNN candidates wherever they may be located.

Furthermore, our novel observation on convexity-preserving aggregate functions reduces

the number of candidates we must consider. In terms of the overarching message of

this thesis, our results strengthen the case regarding the effectiveness of the decoupled

heuristic by showing that it can successfully incorporate more complex heuristics to answer

POI search problems. Moreover, our light-weight COLT index can be applied to other

hierarchical graph search problems, which we leave as future work.

We have demonstrated our significant query processing improvements on a wide range

of POI search problems using real-world datasets, numerous varying and realistic settings,

and highly efficient implementations. In the process, we made critical observations regard-

ing the drastic impact of implementation on experimental performance. Consequently, we

provide case studies and advice in Appendix A to guide future researchers towards efficient

implementations. Although this is provided in the context of kNN queries, our insights

are applicable to the implementation of any algorithm. Moreover, our implementations

have already been released as open-source [Abe16] or will be released shortly, for other re-

searchers to reproduce our results or to use in future studies. Our experimental framework

has already been used by several noteworthy works [Yao+18; Sha+16; Xu+18; Luo+18].

7.2 Directions for Future Work

Our overarching contribution has been to demonstrate the effectiveness of decoupled

heuristics. The strong performance of the techniques we propose in this study indicates
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a potential better direction for POI search algorithms. The low-hanging fruit here is to

see whether existing decoupled heuristics, such as the simple Euclidean heuristic, can be

applied to other POI search problems. In fact, our insight into the Euclidean distance

heuristic has already influenced work on Flexible Aggregate Nearest Neighbor queries

[Yao+18] and kNN queries on navigation meshes [ZTH18]. However, if the goal is to

improve query performance generally, one option is to develop faster network distance

techniques. Given the decoupling of network distance computation, any of our techniques

will benefit from such advances. The other, perhaps more interesting, option is to de-

velop new more sophisticated decoupled heuristics in the same vein as our COLT index.

Nonetheless, in this section, we discuss several concrete paths for future work.

7.2.1 More Diverse Settings

We have investigated the “purest” POI search queries, such as kNN or spatial keyword

queries, which are the relatively well-studied POI search queries for road networks. There is

a plethora of variations on these settings (as surveyed in Section 2.5) for which decoupled

heuristics may be effective and could be investigated. For example, one variation is to

retrieve objects when they are moving [Luo+18]. Or perhaps the objective could be to,

instead, retrieve objects near a query location that is moving along a path [Che+09].

While we have studied static road networks, accuracy can be improved by considering

road networks that change due to various factors. One way is to consider edge-weights

as time-varying functions [DBS10] and retrieve points of interest for the current (or a

future) time to capture factors like peak hour traffic. Another approach is to consider

edge-weights as real-time values to incorporate live events such as accidents [DW15]. The

variations are endless and many of these settings have not been well studied.

7.2.2 Theoretical Candidate Guarantees

While we have shown that our heuristics are efficient in practice, it has not yet been

possible to provide theoretical guarantees on the number of candidates generated. For

example, in Section 5.5.1 we derive an expression for the query complexity in terms of

a variable κ, which indicates the maximum number of candidates retrieved. While we

obtain experimental results for real-world datasets showing the maximum value of κ is a

small constant in practice, it is not immediately clear whether this can also be proven true
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in theory. In fact, to the best of our knowledge, no other work has been able to provide

meaningful guarantees in the context of POI search in road networks. Thus, theoretical

guarantees on heuristic efficiency remains an open problem.

7.2.3 Further Application of COLT

In Chapter 6, we presented the COLT index to enable efficient hierarchical traversal of

a graph by an accurate lower-bound to find POI search candidates. Our technique was

particularly adept at answering AkNN queries, especially due to an interesting property

it displayed for convexity-preserving aggregate functions. For comparison against COLT,

we adapted our NVD-based heuristic from Chapter 4, to demonstrate that a different type

of heuristic was required for AkNN queries. Specifically, the intuition that made NVDs

exceptional at kNN queries, that the next nearest object is among the current nearest

objects, is not necessarily true for AkNNs. In contrast, the hierarchical search using the

COLT index is more suitable for AkNN search, as verified in our experimental analysis.

However, it would be interesting to see if the converse is also true, i.e., a hierarchical

approach is less effective on kNN queries. If true, as a follow-up to that, it would be

interesting to also see if there is a way to use COLT efficiently for kNN querying. Figure

7.1 shows some initial experimental results for varying k, with COLT-PHL using the same

top-down hierarchical search described in Chapter 6 to answer kNN queries. While NVD-

PHL is still the most efficient heuristic on both query time and false positives, COLT has

made noticeable improvement on OL-PHL. It would be interesting to see if a bottom-

up algorithm, rather than the top-down search suitable for AkNN queries, would further

reduce this gap.
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[ŠJ14] Darius Šidlauskas and Christian S. Jensen. “Spatial Joins in Main Memory:

Implementation Matters!” In: PVLDB 8.1 (2014), pp. 97–100.

[SK98] Thomas Seidl and Hans-Peter Kriegel. “Optimal Multi-step K-nearest Neigh-

bor Search”. In: SIGMOD. 1998, pp. 154–165.

[SKS03] Cyrus Shahabi, MohammadR. Kolahdouzan, and Mehdi Sharifzadeh. “A Road

Network Embedding Technique for K-Nearest Neighbor Search in Moving Ob-

ject Databases”. In: GeoInformatica 7.3 (2003), pp. 255–273.

[SSA08] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. “Scalable Net-

work Distance Browsing in Spatial Databases”. In: SIGMOD. 2008, pp. 43–

54.

[SSA09] Jagan Sankaranarayanan, Hanan Samet, and Houman Alborzi. “Path Oracles

for Spatial Networks”. In: PVLDB 2.1 (2009), pp. 1210–1221.

[Ste15] Greg Sterling. Data Suggest Local-Intent Queries Nearing Half of All US

Search Volume. 2015. url: https://web.archive.org/web/20180410190608/

http : / / screenwerk . com / 2015 / 05 / 11 / data - suggest - that - local -

intent-queries-nearly-half-of-all-search-volume (visited on 01/19/2019).

[WCJ12] Dingming Wu, Gao Cong, and Christian S. Jensen. “A Framework for Efficient

Spatial Web Object Retrieval”. In: VLDB J. 21.6 (2012), pp. 797–822.

[Wu+11] Dingming Wu, Man Lung Yiu, Christian S. Jensen, and Gao Cong. “Efficient

Continuously Moving Top-k Spatial Keyword Query Processing”. In: ICDE.

2011, pp. 541–552.

[Wu+12] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen Zhu,

and Shuigeng Zhou. “Shortest Path and Distance Queries on Road Networks:

An Experimental Evaluation”. In: PVLDB 5.5 (2012), pp. 406–417.

[Xu+18] Yixin Xu, Jianzhong Qi, Renata Borovica-Gajic, and Lars Kulik. “Finding

All Nearest Neighbors with a Single Graph Traversal”. In: DASFAA. 2018,

pp. 221–238.

[Yao+18] Bin Yao, Zhongpu Chen, Xiaofeng Gao, Shuo Shang, Shuai Ma, and Minyi

Guo. “Flexible Aggregate Nearest Neighbor Queries in Road Networks”. In:

ICDE. 2018, pp. 761–772.

157

https://web.archive.org/web/20180410190608/http://screenwerk.com/2015/05/11/data-suggest-that-local-intent-queries-nearly-half-of-all-search-volume
https://web.archive.org/web/20180410190608/http://screenwerk.com/2015/05/11/data-suggest-that-local-intent-queries-nearly-half-of-all-search-volume
https://web.archive.org/web/20180410190608/http://screenwerk.com/2015/05/11/data-suggest-that-local-intent-queries-nearly-half-of-all-search-volume


158 References

[YMP05] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. “Aggregate Nearest

Neighbor Queries in Road Networks”. In: IEEE Trans. Knowl. Data Eng. 17.6

(2005), pp. 820–833.

[YR19] Pranali Yawalkar and Sayan Ran. “Route Recommendations on Road Net-

works for Arbitrary User Preference Functions”. In: ICDE. 2019, pp. 602–

613.

[ZCT14] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan. “Processing Spatial

Keyword Query As a Top-k Aggregation Query”. In: SIGIR. 2014, pp. 355–

364.

[Zha+17] J. Zhao, Y. Gao, G. Chen, C. S. Jensen, R. Chen, and D. Cai. “Reverse Top-k

Geo-Social Keyword Queries in Road Networks”. In: ICDE. 2017, pp. 387–

398.

[Zha+18] J. Zhao, Y. Gao, G. Chen, and R. Chen. “Why-Not Questions on Top-k Geo-

Social Keyword Queries in Road Networks”. In: ICDE. 2018, pp. 965–976.

[Zhe+16] Bolong Zheng, Kai Zheng, Xiaokui Xiao, Han Su, Hongzhi Yin, Xiaofang Zhou,

and Guohui Li. “Keyword-aware continuous kNN query on road networks”.

In: ICDE. 2016, pp. 871–882.

[Zho+13] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. “G-tree: An

Efficient Index for KNN Search on Road Networks”. In: CIKM. 2013, pp. 39–

48.

[Zho+15] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, Lizhu Zhou, and Zhiguo Gong.

“G-Tree: An Efficient and Scalable Index for Spatial Search on Road Net-

works”. In: IEEE Trans. Knowl. Data Eng. 27.8 (2015), pp. 2175–2189.

[Zhu+10] Liang Zhu, Yinan Jing, Weiwei Sun, Dingding Mao, and Peng Liu. “Voronoi-

based Aggregate Nearest Neighbor Query Processing in Road Networks”. In:

GIS. 2010, pp. 518–521.

[Zhu+13] Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and

Shuigeng Zhou. “Shortest Path and Distance Queries on Road Networks: To-

wards Bridging Theory and Practice”. In: SIGMOD. 2013, pp. 857–868.

158



References 159

[ZM06] Justin Zobel and Alistair Moffat. “Inverted Files for Text Search Engines”.

In: ACM Comput. Surv. 38.2 (2006).

[ZTH18] Shizhe Zhao, David Taniar, and Daniel Damir Harabor. “Fast k-Nearest Neigh-

bor on a Navigation Mesh”. In: SoCS. 2018, pp. 124–132.

159



Appendix A

Implementation in Main Memory

During our experimental investigation into the state-of-the-art of kNN queries, detailed

in Chapter 3, we encountered some discrepancies in our results when different implemen-

tation choices were made. In this appendix, we describe our journey towards efficient

implementations of kNN query algorithms and provide guidelines for future implementers

to avoid common pitfalls. Notably, our findings are not limited to POI search queries but

applicable to all in-memory query processing algorithms. The insights described in this

appendix were published in [ACT16b; ACT16a].

A.1 Overview

Given the affordability of memory, the capacities available and the demand for high per-

formance map-based services, memory-resident query processing is a realistic and often

necessary requirement. However, we have seen in-memory implementation efficiency can

affect performance to the point that algorithmic efficiency becomes irrelevant [ŠJ14]. Perti-

nently for us, in this study, it can potentially make some heuristics look better than others

purely due to different implementations. First, this identifies the need to understand how

this can happen so that guidelines for efficient implementation may be developed. Second,

it implies that some algorithms may possess intrinsic qualities that make them superior

in-memory. The utility of the latter cannot be ignored. We first illustrate both points

using a case study and then outline typical choices and our approach to settle them.
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A.2 Case Study: G-tree Distance Matrices

G-tree’s distance matrices store certain pre-computed graph distances (between borders

of subgraphs), allowing “assembly” of longer distances in a piece-wise manner. We first

describe the G-tree assembly method below, then show how the implementation of distance

matrices can significantly impact its performance.

Every G-tree node has a set of borders. From our running example in Figure 3.3, v5

and v6 are borders of G1. Each non-leaf node also has a set of children, for example, G1A

and G1B are the children of G1. These, in turn, have their own borders, which we refer to

as “child borders” of G1. A distance matrix stores the distances from every child border to

every other child border. For example, for G1, its child borders are v2, v3, v4, v5, v6, and its

distance matrix is shown in Figure A.1(a). But recall that a border of a G-tree node must

necessarily be a border of a child node, e.g., the borders of G1, v5 and v6, are also borders

of G1B. This means the distance matrix of G1 repeatedly stores some border-to-border

distances already in the distance matrix of G1B, a redundancy that can become quite large

for bigger graphs. To avoid this repetition and utilize, in general, O(1) random retrievals,

a practitioner may choose to implement the distance matrix as a hash-table. This has the

added benefit of being able to retrieve distances for any two arbitrary borders.

v 2 v 3 v 4 v 5 v 6

v 2

v 3

v 4

v 5

v 6

G1A G1B

G
1
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1
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(a) G1

v 5 v 6 v 7 v 8

v 5

v 6

v 7

v 8

G1 G2

G
2

G
1

(b) G0

Figure A.1: Distance Matrices

Given a source vertex s and target t, G-tree’s assembly method first determines the

tree path through the G-tree hierarchy. This is a sequence of G-tree nodes starting from
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162 Case Study: G-tree Distance Matrices

the leaf node containing s through its immediate parent and each successive parent node

up to the least common ancestor (LCA) node. From the LCA, the path traces through

successive child nodes until reaching the leaf node containing t. The assembly method

then computes the distances from all borders from the ith node in the path, Gi, to all

borders in i+1th node, Gi+1. These two nodes are necessarily either both children of

the LCA or have a parent-child relationship. In either case, the parent node’s distance

matrix contains values for all border-to-border distances. Assuming we have computed all

distances from s to the borders of Gi, we compute the distances to the borders of Gi+1

by iterating over each border of Gi and computing the minimum distance through them

to each border of Gi+1.

From our running example in Figure 3.3, let v1 be the source and v12 be the target.

In this case the beginning of the tree path will contain the child node G1A and then its

parent node G1. Assume we have computed the distances to the borders of G1A (easily

done by using the distance matrix of leaf node G1A, which stores leaf vertex to leaf border

distances). Now we compute the distance to each border of G1 from v1, by finding the

minimum distance through one of G1A’s borders. To do this, for each of G1A’s borders,

we iterate over G1’s borders, retrieving distance matrix values for each pair (updating the

minimum when a smaller distance is found). This is shown by the shaded cells in Figure

A.1(a). Similarly, G1 and its sibling G2 are the next nodes in the tree path, and we again

retrieve distance matrix values by iterating over two lists of borders. These values are

retrieved from the matrix of the LCA node, G0, and the values accessed are shaded in

Figure A.1(b).

As we are iterating over lists (i.e., arrays) of borders, the distance matrix does not need

to be accessed in an arbitrary order, as we observed in the G-tree authors’ implementation.

This is made possible by grouping the borders of child nodes as shown in Figure A.1 and

storing the starting index for each child’s borders. Additionally, we create an offset array

indicating the position of the nodes’ own borders in its distance matrix. For example, the

offset array for G1 indicates its borders (v5 and v6) are at the 3rd and 4th index of each row

in its distance matrix shown in Figure A.1(a). While Figure A.1 shows the distance matrix

as a 2D array, it is best implemented as a 1D array. This and the previously described

access method, allow all shaded values to be accessed from sequential memory locations,

thus displaying excellent spatial locality. This is shown in Figure A.1 as the shaded cells
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are either contiguous or very close to being so. Spatial locality makes the code cache-

friendly, allowing the CPU to easily predict and pre-fetch data that will be read next into

the CPU cache. Otherwise, the data would need to be retrieved from memory, which is

20−200× slower than CPU cache (depending on the level). This effect is amplified in real

road networks as they contain significantly larger numbers of borders per node.

We compare three implementations of distance matrices, including the 1D array de-

scribed above and two types of hash-tables: chained hashing [Cor+01] (STL unordered map);

and quadratic probing [Cor+01] (Google dense hash map). In Figure A.2, chained hashing

is a staggering 30 times slower than the array. While quadratic probing is an improvement,

it is still an order of magnitude slower. Had we used either of the hash-table types, we

would have unfairly concluded that G-tree was the worst performing algorithm.
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Figure A.2: Distance Matrix Variants (NW,d=0.001,k=10)

We investigate the cache efficiency of each implementation in CPU cache misses at each

level in billions in Table A.1 (also showing INS, the number of instructions in billions) using

perf hardware profiling of 250,000 varied queries on NW. Chained hashing uses indirection

to access data, resulting in poor locality and the highest number of cache misses. Quadratic

probing improves locality at the expense of more costly collision resolution, hence it uses

more instructions than chained hashing. However, it cannot achieve better locality than

storing data in an array sorted in the order it will be accessed. This ordering means

the next value we retrieve from the array is far more likely to be in some level of cache.

Unsurprisingly, it suffers from the fewest cache misses. This is a unique strength of G-

tree’s distance matrices and shows, while in-memory implementation is challenging, it is

still possible to design algorithms that work well.
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Distance Matrix INS
Cache Misses (Data)

L1 L2 L3

Chained Hashing 953 B 28.8 B 20.5 B 13 B

Quadratic Probing 1482 B 11.2 B 7.5 B 5.3 B

Array 151 B 1.5 B 0.4 B 0.3 B

Table A.1: Hardware Profiling: 250,000 Queries on NW Dataset

A.3 Guidelines for Implementation Choices

In-memory implementation requires careful consideration, or experimental outcomes can

be drastically affected as seen with G-tree’s distance matrices and in [ŠJ14]. Many choices

are quite simple, but their simplicity can lead to them being overlooked. Here we outline

several choices and options to deal with them to assist future implementers. To illustrate

the impact of these choices we progressively improve a first-cut in-memory implementation

of INE. Each plot line in Figure A.3 shows the effect of one improved choice. Each roughly

halves the query time, with the final implementation of INE being 6−7× faster.
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Figure A.3: Successive INE Improvement (NW,d=0.001,k=10)

1. Priority Queues. All methods in our study employ priority queues. In particular, INE

and ROAD involve many queue operations and thus rely on their efficient implementation.

Binary heaps are most commonly used, but we must choose whether to allow duplicate

vertices in the queue or not. Without duplicates, the queue is smaller and queue operations

involve less work. But this means the heap index of each vertex must be looked up

to update keys, e.g., through a hash-table. On degree-bounded graphs, such as road

networks, the number of duplicates is small, and removing them is simply not worth the

lost locality and increased processing time incurred with hash-tables. As a result, we see a
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2× improvement when INE is implemented without decreasing keys (see PQueue in Figure

A.3). Note that we use this binary heap for all methods.

2. Settled Vertex Container. Recall INE and ROAD must track vertices that have

been dequeued from their priority queues (i.e., settled). The scalable choice is to store ver-

tices in a hash-table as they are settled. However, we observe an almost 2× improvement,

as shown by Settled in Figure A.3 by using a bit-array instead. This is despite the need

to allocate memory for |V | vertices for each query. The bit-array has the added benefit

of occupying 32× less space than an integer array, thus fitting more data in cache lines.

This does add a constant pre-allocation overhead for each query, which is proportionally

higher for small search spaces (i.e., for high density). But the trade-off is worth it due to

the significant benefit on larger search spaces (i.e., low density).

3. Graph Representation. A disk-optimized graph data structure was proposed for

INE in [Pap+03]. In main memory, we may choose to replace it with an array of graph

vertex objects, with each object containing an adjacency list array. However, by combining

all adjacency lists into a single array we can obtain another 2× speed-up (refer to Graph

in Figure A.3). First, we assign numbers to vertices from 0 to |V |−1. An edges array

stores the adjacency list of each vertex consecutively in this order. The vertices array

stores the starting index of each vertex’s adjacency list in edges, also in order. Now for

any vertex u, we can find the beginning of its adjacency list in edges using vertices[u]

and its end using vertices[u+1]. This contiguity increases the likelihood of a cache hit

during expansion. We similarly store ROAD’s shortcuts in a global shortcut array, with

each shortcut tree node storing an offset to this array. The principle demonstrated here

is that the data structures recommended by past studies cannot be used verbatim. It is

necessary to replace IO-oriented data structures recommended in the originally disk-based

DisBrw and ROAD with in-memory performance in mind, e.g., we replaced the B+-trees

with sorted arrays.

4. Language. C++ allows more low-level tuning, such as specifying the layout of data in

memory for cache benefits, making it preferable in high-performance applications. Imple-

menters may consider other languages such as Java for its portability and design features.

But when we implemented INE with all aforementioned improvements in Java (Oracle

JDK 7), we found it was at least 2× slower than the equivalent C++ implementation.

One possible reason is that Java does not guarantee contiguity in memory for collections
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of objects. Also, the same objects take up more space in Java. Both factors lead to lower

cache utilization, which may penalize methods that are better able to exploit it.

A.4 Summary

We investigated the effect of implementation choices using G-tree’s distance matrices and

data structures in INE. By investigating simple choices, we show that even small improve-

ments in cache-friendliness can significantly improve algorithm performance. As such,

there is a need to pay careful attention when implementing and designing algorithms for

main memory. Furthermore, our insights are applicable to any technique not just those

we study. In our setting, this is another factor to be wary of in the development efficient

heuristics for POI search.
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Appendix B

Improved kNN Algorithms

Our goal in Chapter 3, in comparing the state-of-the-art for the kNN problem, was to

ascertain the true performance of each technique. To this end, we carefully inspected

and applied numerous optimizations to each existing technique to ensure they performed

as efficiently as possible. In contrast to implementation issues in Appendix A, these

algorithmic improvements are applicable in any setting (in-memory or otherwise). In this

appendix, we describe all modifications including pseudocode and, for major changes,

experiments to demonstrate the margin of improvement. The improvements outlined in

this appendix appeared in [ACT16b; ACT16a].

B.1 Distance Browsing

We have made several major changes to the DisBrw algorithm proposed in [SSA08]. Here

we discuss several minor optimizations, correction of edge cases, and major improvements

to DisBrw. Note that we propose an alternative algorithm to use the SILC index in Section

3.5.2 but describe these improvements to the original DisBrw algorithm for completeness.

The updated pseudocode from [SSA08] is shown in Algorithm 11. Please refer to Section

3.3.3 and [SSA08; SAS05] for a detailed description of the algorithm and definition of

subroutines.

One of the main improvements of DisBrw over the SILC kNN algorithm proposed

in [SAS05] was the pruning of inserts by computing an upper bound Dk for the kth

object. However, for any encountered object, DisBrw would still compute a distance

interval (necessarily involving an O(log V ) operation), before the insertion of that object
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could be pruned. Since DisBrw already uses Euclidean distance to compute intervals for

Object Hierarchy nodes, we additionally compute the Euclidean distance as a cheaper

O(1) initial lower bound for newly encountered objects (as in line 25). Thus, we are able

to prune the insertion of many encountered objects, which cannot be better candidates,

without computing distance intervals. Samet et al. [SSA08] also omitted computation of

distance interval upper bounds for Object Hierarchy nodes. However, this is only a small

additional expense when computing lower bounds. Instead, we compute upper bounds for

nodes and use them to compute Dk sooner. Our Object Hierarchies also store the number

of objects contained in each node (a simple additional pre-processing step in object index

construction), which allows us to update Dk as shown in line 39. In this way, we also

prune the insertion of nodes and avoid needless lower bound evaluations to prune objects

in regions that cannot contain objects.

The DisBrw algorithm of [SSA08] does not handle several minor but possible edge-case

scenarios, which we have corrected in Algorithm 11, as follows:

• In the original DisBrw algorithm, the if condition at line 12 was UBe ≥ Front(Q),

i.e., test if the upper bound of the dequeued element (UBe) is greater than or equal

to the next smallest lower bound in Q (Front(Q)). If true, DisBrw attempts to

refine the bounds for e and re-insert it into Q. However, if the interval for e is fully

refined (i.e., LBe = UBe) but we still have UBe = Front(Q), then we re-insert e

into Q only to dequeue it and immediately re-insert it, leading to an infinite loop.

Therefore, we change the condition at line 12 to UBe > Front(Q). The second part

of the condition ensures that objects with the same upper bound are refined further,

otherwise elements may be out of order in L.

• Let x be the object associated with Dk. Consider the scenario where x is at the front

of Q (i.e., has the smallest lower bound) with LBx < UBx. Now when x is dequeued,

if UBx > Front(Q) it will be refined. If Front(Q) is associated with another object

p, then p may be a kNN (as LBp = Front(Q) and before refinement UBx = Dk, so

LBp < UBx). If x is refined such that we then have LBx = UBx = Dk (i.e., UBx

did not change), by the original algorithm, x will not be re-inserted into Q because

the if condition at line 19 was LBe < Dk. However, when p is dequeued next, we

may have UBp < Front(Q) (as the next smallest lower bound is unknown). Then p
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is dropped implicitly, potentially losing a correct kNN. This means when LBe = Dk

it must still be inserted into Q, to ensure x is the last element dequeued before

termination, and we change line 19 in the algorithm accordingly.

• We check L contains the dequeued object e before deleting it (line 13). If there are

objects with the same upper bound as Dk, then e may not be in L.

B.1.1 Exploiting Vertices with Outdegree ≤ 2

Real road network graphs consist of large numbers of degree-2 and degree-1 vertices.

Generally, 30% of vertices have degree-2 for road networks in Table 3.1, e.g., on the

US dataset 30.3% of vertices (another 19.9% have degree-1). These may exist to capture

details such as varying speed limits or curvature. Not considering this can have a significant

impact on computing shortest paths, and we demonstrate the potential improvement on

DisBrw.

SILC uses the quadtrees and coloring scheme described in Section 3.3.3 to iteratively

compute the vertices in a shortest path, at a cost of O(log |V |) for each vertex. We use

chain to refer to a path consisting only of vertices with degree-2 or less, e.g., a section

of motorway with no exits. Let v be the current vertex in the shortest path from s to t

and u be the previous vertex in the shortest path. If v is on a chain, we do not need to

consult the quadtree because the next vertex in the shortest path must be the neighbor

of v that is not u. This saves O(log |V |) for each degree-2 vertex in the shortest path. In

fact, if target t is not on the chain, we can directly “jump” to the last vertex in the chain

saving several O(log |V |) lookups. This observation can be easily exploited by storing the

two ends of the chain for each vertex with degree less than 2.

This optimization can significantly improve DisBrw query times. We refer to this

version as OptDisBrw. For our default NW dataset this results in a 30% improvement as

in Figure B.1, coinciding with the number of degree-2 vertices quoted above.

However, some road networks have an even larger proportion of degree-2 vertices, such

as the highway road network for North America used in past studies [LLZ09; Lee+12;

SSA08] with 175, 813 vertices [Li05], 95% of which are degree-2. In this case, OptDisBrw

is up to an order of magnitude faster than DisBrw as shown in Figure B.2, as the average

chain length is significantly higher resulting in longer jumps. Accordingly, future work
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Algorithm 11 Improved version of DisBrw kNN algorithm by Samet et al. [SSA08]

1: function GetKNNByDisBrw(vq, k, SILC,OH)
2: Input: SILC is SILC quadtree for vq and OH is Object Hierarchy for object set
3: Initialize min priority queue Q and max priority queue L
4: Set upper bound on the kth neighbor Dk ←∞
5: Enqueue(Q, ([OH.Root, 0, , ], 0))
6: Note: Q elements also stores upper bound UBe and (for objects) vn the next inter-

mediary vertex in the shortest path from vq and d the distance to vn from vq
7: while Q 6= φ do
8: ([e,UBe, vn, d],LBe)← Dequeue(Q)
9: if UBe ≥ Dk then

10: break
11: else if IsObject(e) then
12: if UBe > Front(Q) or (UBe = Front(Q) and UBe 6= LBe) then
13: if UBe ≤ Dk and Contains(L, e) then
14: Delete(L, e)

15: (vn, d,LBe,UBe)← Refine(vn, d,LBe,UBe)
16: Note: Refine tightens bounds, and updates the next vertex and its distance

(this only involves one binary search on the Morton List for current vn)
17: if UBe ≤ Dk then
18: Enqueue(L, [e,UBe)]) and update L and Dk if needed

19: if LBe ≤ Dk then
20: Enqueue(Q, ([e,UBe, vn, d],LBe))

21: else . e dropped implicitly, no further refinement needed

22: else . Note: e must be an Object Hierarchy node
23: if IsLeaf(e) then
24: for each object vo ∈ e do
25: LBo ← EuclideanDistance(vq, vo)
26: if LBo < Dk then
27: (vn, d,LBo,UBo)← Refine(vq, 0,LBo, inf) . Initial vn is vq with d=0
28: if LBo < Dk then
29: Enqueue(Q, ([o,UBo, vq, 0],LBo))
30: if UBo < Dk then
31: Enqueue(L, [e,UBe)]) and update L and Dk if needed

32: else
33: for each child node c ∈ e do
34: if NumObjects(c) > 0 then
35: (LB c,UB c)← ComputeInterval(LBe,UBe)
36: if LB c < Dk then
37: Enqueue(Q, ([c,UB c, , ],LB c))
38: if NumObjects(c) >= k and UB c < Dk then
39: Dk ← UB c

40: Populate(R,L) . Deqeue from L to populate R so results are in distance order
41: return R
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Figure B.1: Deg-2 Optimization (NW,d=0.001,k=10)

must keep degree-2 vertices in mind for potential optimizations. Given these results, we

use chain optimized refinement for DisBrw in our experiments.
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Figure B.2: Deg-2 Optimization (NA-HWY,d=0.001,k=10)

B.2 G-tree

The G-tree kNN algorithm is largely unchanged from the more recent G-tree study

[Zho+15], except for an improved leaf search algorithm we describe in Appendix B.2.1

below. Algorithm 12 includes an additional guard condition at line 10 as the UpdateT

subroutine does not guarantee that Q will not be empty (i.e., when the new Tn’s only

child with an occurrence is the previous Tn, which we do not re-insert). Similar to how

Association Directories are used by ROAD, we make a small modification to the algorithm

to accept an Occurrence List OL rather than the set of objects O. The original algorithm

implies that OL must be constructed for each query, which is not a trivial cost (as we
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verify in Section 3.7.3) or how it would be used in practice. Note that again node refers to

G-tree nodes and vertex refers to road network vertices. Please refer to Section 3.3.5 and

[Zho+15] for descriptions of the data structures and explanation of the main algorithm.

Algorithm 12 Modified version of G-tree kNN algorithm by Zhong et al. [Zho+15]

1: function GetKNNByGtree(vq, k,Gt,OL)
2: Input: Gt is a G-tree and OL is an Occurrence List for an object set
3: Initialize min priority queue Q and R← φ
4: if |OL(Leaf(vq))| > 0 then
5: R← R ∪GtreeLeafSearch(vq, k, OL,Q, leaf(vq))

6: Tn ← Leaf(vq) and set Tmin for Tn
7: while |R| < k and (Q 6= φ or Tn 6= Gt.Root) do
8: if Q = φ then
9: UpdateT (Tn, Tmin, OL,Q

10: if Q 6= φ then
11: (e, d)← Dequeue(Q)
12: if d > Tmin then
13: UpdateT (Tn, Tmin, OL,Q)
14: Enqueue(Q, (e, d))
15: else if e is a vertex then
16: R← R ∪ e
17: else if e is a node then
18: for each node or vertex c ∈ OL(e) do
19: Enqueue(Q,SPDist(vq, c))

20: return R
21: function UpdateT(Tn, Tmin, OL,Q)
22: Tn← Tn.father and update Tmin for Tn
23: for each node c ∈ OL(Tn) do
24: Skip loop if c is previous Tn
25: Enqueue(Q,SPDist(vq, c))

B.2.1 G-tree Leaf Search Improvement

We note that G-tree’s query performance plateaus and sometimes increases for very high

densities. Given a query vertex vq, let Gq be the leaf subgraph containing vq. Now the

network distance to any object in Gq is the minimum of two possible shortest paths (a) one

consisting of only vertices withinGq; and (b) one that leaves and re-entersGq through some

of its borders. To ensure correctness, the original G-tree algorithm performs Dijkstra’s

search limited to Gq until all objects are found, capturing network distances of type (a).

For each object found it then computes network distances for type (b) paths by using the

distance matrix to compare distances through borders. Recall that a leaf node contains

at most τ vertices (e.g. τ=256 for NW and τ=512 for US datasets as in Table 3.1). For
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objects with density d there are on average d×τ objects in each leaf node. If d × τ > k,

G-tree computes distances of each type for more objects than necessary. The penalty is

worse with increasing τ and decreasing k. INE cannot be applied to Gq because the kNNs

within it may not be the global kNNs and some objects within Gq may be closer through

paths that travel outside it.

We modify Dijkstra’s search within Gq to capture paths of both types as shown in

Algorithm 13. Let L be the priority queue used by this search. Our search continues

until the first k leaf objects are settled (i.e. dequeued from L). Until the first border is

settled, all settled objects are kNNs (like INE). This is correct as, without a closer border,

no objects can have a shortest path that leaves Gq. But any subsequent object may not

be a kNN, so we instead insert them into the priority queue Q used by the main G-tree

algorithm. To ensure the distances consider paths that leave Gq, whenever we settle a

border vb we insert every other unsettled border v′b of Gq into L. The distance to v′b from

vq can be computed with the distance matrix.

Algorithm 13 Improved leaf-search subroutine for G-tree kNN algorithm

1: function GtreeLeafSearch(vq, k, OL,Q,R,Gq)
2: Input: Q: queue used by Algorithm 12, Gq leaf node containing vq
3: Initialize min priority queue L
4: Enqueue(L, (vq, 0)), targetsFound ← 0, borderFound ← false
5: while L 6= φ and |R| < k and < k do
6: (ve, d)← Dequeue(L)
7: if not IsV isited(ve) then
8: if ve ∈ OL(Gq) then
9: targetsFound++

10: if not border found then
11: R← R ∪ ve
12: else
13: Enqueue(Q, (ve, d))

14: borderFound ← RelaxLeafV ertex(ve, d, L,Gq))
15: IsV isited(ve)← true

16: return R
17: function RelaxLeafVertex(ve, d, L,Gq)
18: for each vertex va ∈ AdjacencyList(ve) do
19: if not IsV isited(va) and va ∈ Gq then
20: Enqueue(L, (va, d+ w(ve, va)))

21: if ve ∈ Borders(Gq) then
22: for each border vb ∈ Borders(Gq) do
23: if not IsV isited(vb) then
24: Enqueue(L, (vb, d+Gq.DistMatrix(ve, vb)))

25: return true
26: return false
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In Figure B.3 we see a significant speed-up for k = 10 and over an order of magnitude

improvement for k = 1 on both datasets for the highest density. The improvement is even

noticeable at lower densities for k = 1 on NW and both k on the US dataset as the leaf still

contains far more objects than k. Note that this improvement is also applicable to other

object distributions with the same density as leaf nodes will contain the same number of

objects, on average.
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Figure B.3: Improved G-tree Leaf Search (k=10)

B.3 ROAD

The kNN search (Algorithm 14) and supporting algorithm (Algorithm 15) using the ROAD

index are largely unchanged from [LLZ09]. We simplify these for the scenario where objects

occur on vertices. In addition, we made a minor improvement by preventing unnecessary

priority queue inserts for Rnet borders that have already been visited (see line 12 of

Algorithm 15). The original algorithm re-inserts all borders into the priority queue Q, but

then discards each of them immediately after dequeuing (as they are “visited”). This can

be particularly expensive for larger Rnets (as they tend to have more borders). Refer to

Section 3.3.4 and [LLZ09] for detailed descriptions and explanations of the main algorithm.
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Algorithm 14 Modified version of ROAD kNN algorithm by Lee et al. [LLZ09]

1: function GetKNNByROAD(vq, k, RO,AD)
2: Input: RO is a Route Overlay, AD is an Association Directory for an object set
3: Initialize min priority queue Q and R← φ
4: Enqueue(Q, (vq, 0))
5: while Q 6= φ and |R| < k do
6: (ve, d)← Dequeue(Q)
7: if not IsV isited(ve) then
8: if IsObject(AD, ve) then
9: R← R ∪ ve

10: RelaxShortcuts(Q,RO,AD, ve)
11: IsV isited(ve)← true

12: return R

Algorithm 15 Modified algorithm to relax shortcuts in ROAD based on [LLZ09]

1: function RelaxShortcuts(ve, d,Q,RO,AD)
2: Input: Q queue used by Algorithm 14
3: Initialize stack S
4: T ← RO.GetShortcutTree(ve)
5: Push(S, T.Root)
6: while S 6= φ do
7: n← Pop(S)
8: if ¬IsLeaf(n) then
9: for each R ∈ Rnets(n) do

10: if ¬HasObject(AD,R) then . Then this Rnet can be bypassed
11: for each shortcut S(ve, vb) ∈ R do
12: if ¬IsV isited(vb) then
13: Enqueue(Q, (vb, d+ |S(ve, vb)|))
14: else
15: for each child tree node c of n do
16: Push(S, c)

17: else
18: R← Rnets(n) . Leaves have only one Rnet
19: for each edge e(ve, va) ∈ R do
20: if ¬IsV isited(va) then
21: Enqueue(Q, (va, d+ w(ve, va)))

22: return
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