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Abstract

Fluid-Structure Interaction (FSI) is central to several potential applications in engineering

and biology. Specific examples include, fluttering of aerofoils, energy harvesting using thin

piezoelectric plates, deformation of mitral valves in left ventricle, interaction of a blast

wave with human eye, microelectronics cooling using thin elastic plates etc. The simula-

tions of such problems are computationally challenging due to complex three-dimensional

moving solid boundaries in the fluid domain and large-scale flow-induced deformation of

the structure. In addition, geometric as well as material non-linearity and thickness of the

structure should be accounted for accurate modeling. In the present thesis, we test and

employ an in-house FSI solver to a thin, elastic plate undergoing large-scale deformation

in laminar flow. The solver couples a sharp-interface immersed boundary method for the

fluid dynamics with a finite-element method to treat the structural dynamics. The two

solvers are implicitly (two-way) coupled using a partitioned approach.

First, we test the FSI solver with the benchmark data and validate the flow and

structure solvers independently as well as module of large-scale flow-induced deforma-

tion. Although the flow solver has been extensively validated in the past, we carry out

additional validations in the present thesis. The lift and drag coefficients and vortices in

the wake of pulsatile flow past a circular cylinder placed in a channel are compared with

the published results. For the structural solver, deflection of a cantilever beam under

uniformly distributed impulse load is compared with the published results. In the present

thesis, we revisit the validation of a FSI benchmark problem in which a thin elastic plate

attached to a circular cylinder undergoes self-sustained oscillation. The difference in the

displacement of the plate as compared to benchmark data is around 1%. In addition,

we carry out the validation of a thin elastic plate attached to a square cylinder and the

comparisons of the plate displacement and its vibration frequency with benchmark data

are excellent.

Second, the response of an elastic splitter plate attached to a circular cylinder with

the laminar pulsatile flow is studied. The cylinder and flexible splitter plate are contained

within a narrow channel, and the Reynolds number is mostly restricted to Re = 100,

primarily covering the two-dimensional flow regime. A power spectrum analysis of the

time-varying plate displacement shows that the plate oscillates at more than a single
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frequency for pulsatile inflow, compared to a single frequency observed for steady inflow.

The multiple frequencies obtained for the former case can be explained by beating between

the applied and plate oscillatory signals. The plate attains a self-sustained time-periodic

oscillation with a plateau amplitude in the case of steady flow, while the superimposition

of pulsatile inflow with induced plate oscillation affects the plateau amplitude. Lock-in

of the plate oscillation with the pulsatile inflow occurs at a forcing frequency that is

twice of the plate natural frequency in a particular mode, and this mode depends on the

plate length. The plate displacement as well as pressure drag increases at the lock-in

condition. The percentage change in the maximum plate displacement, and skin-friction

and pressure drag coefficients on the plate, due to pulsatile inflow is quantified. The

non-linear dynamics of the plate and its coupling with the pulsatile inflow are briefly

discussed.

Third, we investigate the dynamics of an elastic thin splitter plate, attached to the

lee side of a rigid circular cylinder, subjected to a laminar free stream. We examine

a wide parameter space of mass ratio and bending stiffness of the plate. Numerical

simulations show that the plate dynamics depend on mass ratio and bending stiffness at

a given Reynolds number. The largest amplitude of the plate is found to be in the lock-in

condition at which the natural frequency of the plate in a given fluid matches with the

plate oscillation frequency. At lock-in, the natural frequency of the plate in a vacuum

is lower than the oscillation frequency and thereby exhibiting strong added mass effect.

These findings are consistent with those for classical vortex induced vibration of a rigid

cylinder at the low mass ratio. The flapping boundary obtained from the simulations

on mass ratio-reduced velocity plane is plotted and found to be consistent with previous

available theories and data. We plot oscillation amplitude on the flapping map in order to

show the lock-in condition and briefly discuss wake-structures and phase-plot in different

cases of mass ratio and bending stiffness.

Fourth, we study the role of plate thickness on flapping dynamics of a thin elastic plate.

Numerical simulations show that the plate dynamics depend on reduced velocity, bending

stiffness and mass ratio at a given Re. The flapping of the plate starts at critical reduced

velocity as well as mass ratio. The flapping boundary obtained from the simulations

is plotted on a mass ratio-reduced velocity plane and is compared with prediction of a

model. We show that the flapping boundary (or critical reduced velocity or mass ratio)

depends upon the thickness of the plate.

Fifth, we investigate the dynamics of an inverted plate kept behind the circular cylinder

in a uniform steady flow in an open domain. Numerical simulations suggest that the

deformation of the inverted flag depends on its position as shown in Fig. 6.6, density

ratio, and Young's modulus. The instability in the shear layer is completely taken place

at critical distance. Shedding vortex from circular cylinder fall on the tip of the plate
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which gives fluid force to the plate and consequently large plate deformation occurs.

Finally, we study augmentation of heat transfer by large-scale, flow-induced defor-

mation of two elastic plates mounted in a cross-flow configuration in a channel with

pulsating flow. The interaction between twin elastic plates, flow field, and temperature

field as function of distance between the plates are discussed. The interaction of wake

vortices between the deforming plates increases the mixing of the fluid in the channel

and thereby increase the convective heat transfer from the heated channel walls due to

reduction in thermal boundary layer thickness. The local Nusselt number increases by

order of magnitude at specific locations on the channel wall, explained by the interaction

of wake vortices with the wall. The numerical results show nearly 38% improvement of

time-averaged wall Nusselt number as compared to a channel without any bluff body.

The findings of the present thesis provide fundamental insights into the interaction

of an elastic plate with laminar flow in different configurations and will be useful for

designing several applications such as energy-harvesting devices, cooling microelectronics

by thin flexible plates and artificial valves for cardiovascular flows.
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Chapter 1

Introduction

Many interesting problems are associated with coupled motions of a structure with a

surrounding fluid. Modeling the coupled dynamics of the fluid and the structure is very

challenging. In most cases, especially with highly flexible structures, we deal with strongly

coupled systems in which neither fluid nor structure dynamics can be neglected, and to

understand the fluid effects on the structure and similarly the structural forces on the

fluid, we need to study the detailed interaction between the fluid and the structure by

solving their coupled behavior. In some cases, the interactions have significant effects

on the dynamics of the fluid as well as the structure and together determine the system

behavior. Essentially, when a fluid interacts with a structure, pressure forces act on the

structure causing a deformation. This deformation of the structure changes the kinematic

constraints in the flow field and thus, modifies the flow. Similarly, bodies moving in a

flow field impose time-dependent kinematic boundary conditions at their interface. This

interaction of a deformable or a moving structure with an associated flow field is called

fluid-structure interaction referred to as FSI, hereafter.

1.1 Applications of Fluid-Structure Interaction (FSI)

Strong coupling between fluid and structure is considered in almost all parts of nature and

in most engineering problems. Examples of fluid-structure interaction (FSI) problems are

categorized below :

• Engineering fields: Typical examples include the failure of the Tacoma Narrows

bridge because of large galloping responses in high winds, flow interaction with

flexible pipes causing garden-hose and fire-hose instabilities, and fluttering motion

in blades of aircrafts, wind turbines, helicopters and aeroelastic deformation (Rogers

et al. (2006); Gordnier (2009)), mechanical vibration (Terracol et al. (2005)).

• Energy harvesting: The FSI has numerous applications in engineering field such

1



as energy harvesting (Li and Lipson (2009), Shoele and Mittal (2014)),Tang et al.

(2009); Dunnmon et al. (2011) and microelectronics cooling.The thin flexible struc-

tures can be used as engineering application in energy-harvesting devices (Fig. 1.1,

1.2).

Figure 1.1: Schematic of the piezo-aeroelastic power harvester patch by Buffeting (Ros-
tami)

• Thermal augmentation: The response of an elastic plate subjected to a laminar fluid

flow also has important applications in thermal augmentation (Soti et al. (2015);

Joshi et al. (2015)) via elastic deformation.

Figure 1.2: Flow induced self excited wind power generator (Çevik et al. (2011))
.

• Bio-medical: FSI with large-scale flow-induced structure deformation has poten-

tial applications in complex biomedical, biological systems and blood transport by

heart valve of the human heart (Razzaq et al. (2010)). For instance, the non-linear

dynamic response of a soft structure subjected to pulsatile flow is useful for under-

standing cardiac hemodynamics ( Vigmostad et al. (2010); Choi et al. (2014); Mittal

et al. (2016); Shoele and Mittal (2014)).
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Figure 1.3: Schematic description of the heart functioning. Picture adapted from
www.texasheart.org. via.(Meschini et al. (2018))

.

The interaction between flexible arterial walls and blood flow and its relation to

the formation of aneurysms, beating patterns of healthy and diseased human heart

muscles, fluid dynamics within flexible heart valves (Fig. 1.3) and human snoring

(Tetlow and Lucey (2009)) are examples in this category.

• Bio-locomotion: wing fluttering (Tang et al. (2003)) and fish swimming (Liao et al.

(2003)) are the example of FSI in biological locomotion systems.

The FSI of an elastic plate attached to a circular cylinder has been studied extensively

numerically. The effects of pulsatile flow are more interesting when the vortex shedding

frequency and pulsatile flow frequency are close to the natural frequency of the structure,

also known as ‘lock-in,’ resulting in the large amplitude of vibrations. From the safety

point of view, an engineer tries to avoid lock-in from happening by keeping the system

natural frequency far from the vortex shedding frequency. On the other hand, the lock-in

is desired for the energy harvesting purpose because the energy output depends on the

vibration amplitude.

A relatively new study of an inverted plate dynamics kept behind a circular cylinder

is also promising. Vortex shedding from a circular cylinder affects the inverted plate

dynamics. As a result, plate vibrates with higher amplitude. The motion of the plate can

be used to harvest energy.

The FSI of the inverted elastic (Fig. 1.4)plate has numerous applications in engineer-

ing field such as energy harvesting (Beeby et al. (2006); Kim et al. (2013); Sader et al.
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(2016)), microelectronics cooling and biological systems. Leaf motion and the dynamics

of hair follicles are also the same configurations of an inverted plate. In conventional

plate configuration, leading is clamped and trailing edge is free, but inverted plate con-

figuration, it is reversed the clamped position from a leading edge to trailing edge which

completely changes the behavior of an inverted plate.

Figure 1.4: Harvesting ambient wind energy (Orrego et al. (2017))
.

The FSI of twin flexible structures in cross-flow can also be used for enhancing heat

transfer. The deformation of the structures promotes mixing in the fluid and thereby

improves heat transfer. One example of heat transfer enhancement via FID is shown in

Fig. 1.5. A flexible wing is mounted on a heated surface, and a pulsating flow is applied

at the inlet. The flexible wing undergoes periodic deformation cycles due to the pulsating

nature of the incoming flow. The up and down motion of the wing directs the flow towards

the heated surface which results in enhanced heat transfer as shown by the time-averaged

Nusselt number in Fig. 1.5.

Figure 1.5: Flexible wing mounted on a bottom of a rectangular channel (left side). The
bottom surface is heated and pulsating flow was incorporated. Thermal augmentation
achieved by improving the Nusselt number (right side)(Park et al. (2013)).

The application of twin like structures in cross-flow in the microchannel can also be

used for enhancing heat transfer. Microchannel with structure surface promotes mixing

inside the channel and thereby heat transfer enhancement occurs.
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1.2 Objectives of the present thesis

The primary focus of the present thesis is to investigate the coupled dynamics of flow-

induced flapping of an elastic plate and application of FSI to heat transfer systems.

The more specific objectives of the present thesis are given below:

• First, we investigate the effect of the pulsatile flow on the flow-induced deformation

of a thin, elastic structure of an inline flow configuration. To achieve this, the FSI

benchmark case proposed by Turek and Hron (2006) is extended to account for

the pulsatile inlet flow, and is used to investigate the coupling of the forcing flow

frequency as well as amplitude with the frequency of the oscillating plate.

• Second, we investigate the effect of the mass ratio (M) and bending stiffness (Kb) on

the flow-induced plate dynamics of an elastic plate attached to a cylinder in a free-

stream laminar flow with a high-fidelity numerical model. The plate dynamics are

implicitly coupled to an immersed-boundary method based flow solver. We consider

a wide range of M = [0.143, 20], Kb = [0.0008, 0.0435] and reduced velocity (UR)

= [2.562, 30.0], at Reynolds number (ReD) = 100, where Re is based on cylinder

diameter and mean velocity of inflow.

• Third, we investigate critical reduced velocity and critical mass ratio for plate flap-

ping. We also examine plate flapping for different thicknesses of the plate as flapping

dynamics is the function of critical reduced velocity and critical mass ratio of the

plate. We consider a wide range of M = [0.9, 19.5], Kb = [0.0009, 0.017] and UR

= [10, 40.0], at Reynolds number (ReL) = 100, where ReL is based on plate length

and mean velocity of inflow to identify flapping boundary.

• Fourth objective is to investigate an inverted elastic plate dynamics kept behind

circular cylinder with a specific gap. We investigate the effect of the gap between

the circular cylinder and inverted plate to obtain maximum plate deformation. We

also study the effect of mass and Young's modulus by keeping the fixed gap between

the circular cylinder and the inverted plate on the plate dynamics.

• Finally, we study the large flow-induced deformation of two thin, parallel, insulated

elastic plate in a channel with pulsating cross inflow. We also investigate the interac-

tion between twin elastic plates dynamics, flow field, and heat transfer enhancement

by varying distance between two plates.
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1.3 Organization of the thesis

The rest of the thesis is organized into eight chapters. Chapter 2 presents benchmarking

a fluid-Structure interaction solver. Chapter 3 reports the response of an elastic splitter

plate attached to a cylinder with the laminar pulsatile flow. Chapter 4 provides the flow

induced dynamics of elastic splitter plate. Chapter 5 presents the effect of the thickness

of an elastic plate on the flow-induced flapping of an elastic plate. Chapter 6 provides the

dynamics of an inverted elastic plate at the rear side of a cylinder. Chapter 7 presents

a numerical study of thermal augmentation by twin plates in a laminar channel flow.

Chapter 8 represents the conclusions and the future work.
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Chapter 2

Benchmarking a Fluid-Structure

Interaction Solver

An in-house fluid-structure interaction solver consists of a sharp-interface immersed bound-

ary method for the fluid dynamics solver and a finite-element method to treat the structural

dynamics solver. The structural solver is implicitly (two-way) coupled with the flow solver

using a partitioned approach. The large-scale flow-induced structural deformation can be

solved by FSI solver. The FSI solver was developed by Mittal and co-workers Zheng et al.

(2010); Mittal et al. (2008); Seo and Mittal (2011); Mittal et al. (2011), and later further

developed for large-scale flow-induced deformation by Bhardwaj and Mittal Bhardwaj and

Mittal (2012). Details of FSI solver and coupling between flow and structure solver are

discussed. Flow solver and structure solver have been validated independently. We per-

form flow solver validation against the pulsatile flow over cylinder and structure solver

validation using freely vibration a cantilever beam. Next, we validated the large-scale

flow-induced deformation module as part of the in-house fluid-structure interaction Solver

(FSI). We consider two cases to validate FSI solver – (a) an elastic plate attached behind

the circular cylinder (b) an elastic plate attached to the square cylinder. The comparison

between our results and published result are matching well.

2.1 Introduction

IBM was first introduced by Peskin (1972) for the simulation of fluid-structure interaction

of the blood flow in a beating human heart. The method is widely used to solve the

complex fluid problem. Based on a variety of methods for implementing a boundary

condition on an immersed surface, Immersed boundary methods can be classified broadly

two categories (Mittal and Iaccarino (2005)).

In the first category of methods continuous forcing term is added to the continuous

NavierStokes equations before discretization (Peskin (1972); Goldstein et al. (1993); Saiki
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and Biringen (1996)). Implementation of forcing term is easy and independent of the

spatial discretization, but it produces a diffuse boundary. The boundary condition on

the immersed surface is not satisfied precisely at its actual location but within a localized

region around the boundary. In the second category, the discrete forcing term is either

explicitly or implicitly applied to the discretized NavierStokes equations (Udaykumar et al.

(1999); Ye et al. (1999a); Fadlun et al. (2000); Kim et al. (2001); Gibou et al. (2002); You

et al. (2003); Balaras (2004); Marella et al. (2005); Ghias et al. (2007) and others.). In

this category, forcing scheme is very much dependent on the spatial discretization. In the

specific formulations, they allow for a sharp representation of the immersed boundary.

For moving boundary problems, IBM is generally known to suffer from the generation

of pressure oscillations on the surface of a moving immersed body (Lee et al. (2011); Seo

and Mittal (2011)). Lee et al. (2011) identified two sources of the pressure oscillations

in a discrete-forcing IBM. One source is related to the spatial discontinuity related to

fresh cells, which were previously inside an immersed body and became fluid cells due

to body motion. The other one is associated with the temporal discontinuity related to

dead cells, which were fluid cells and now turn into solid cells with body motion. Some

extrapolation techniques (Yang and Balaras (2006); Yang and Stern (2012)) and mass

source/sink methods (Seo and Mittal (2011), Lee and You (2013a)) are used to reduce

spurious force oscillations.

Yang and Balaras (2006) proposed a non-boundary-conforming formulation for simu-

lating moving boundaries on fixed Cartesian grids. The finite-difference solver for incom-

pressible NavierStokes equations is based on a second-order fractional step method on a

staggered grid. The velocity field at the grid points near the interface is reconstructed

using momentum forcing without smearing the sharp interface to satisfy the boundary

conditions on an arbitrary immersed interface. The concept of field-extension is also

introduced to treat the points emerging from a moving solid body to the fluid.

Kim et al. (2001) proposed an immersed-boundary method for simulating flows over

or inside complex geometries by introducing a mass source/sink as well as a momen-

tum forcing. They used a finite-volume approach on a staggered mesh together with

a fractional-step method. Both momentum forcing and mass source are applied on the

body surface or inside the body to satisfy the no-slip boundary condition on the immersed

boundary and also to satisfy the continuity for the cell containing the immersed boundary.

In the immersed-boundary method, the choice of an accurate interpolation scheme satis-

fying the no-slip condition on the immersed boundary is important because the grid lines

generally do not coincide with the immersed boundary. Therefore, a stable second-order

interpolation scheme for evaluating the momentum forcing on the body surface or inside

the body is proposed.

Yang et al. (2008) presented an embedded-boundary formulation that applies to fluid-
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structure interaction problems. The NavierStokes equations for incompressible flow are

solved on a fixed grid, and the body is tracked in a Lagrangian reference frame. A strong-

coupling scheme is presented, where the fluid and the structure are treated as elements of a

single dynamical system, and all of the governing equations are integrated simultaneously

and interactively in the time domain. The NavierStokes equations for incompressible

flow are solved on a Cartesian grid which is not aligned with the boundaries of a body

that undergoes large-angle/large-displacement rigid body motions through the fixed grid.

A strong-coupling scheme is adopted, where the fluid and the structure are treated as

elements of a single dynamical system, and all of the governing equations are integrated

simultaneously and interactively in the time domain. A demonstration of the accuracy

and efficiency of the method is given for a variety of fluid-structure interaction problems.

The formulation given by Mittal and co-workers (Mittal et al. (2008); Zheng et al.

(2010); Seo and Mittal (2011); Mittal et al. (2011)) is based on the calculation of the

variation on ghost-cells inside the body such that the boundary conditions are satis-

fied precisely on the immersed boundary. In their formulation, no ad-hoc constants and

momentum forcing terminals are employed in any of the fluid cells. Consequently, the

method results in a sharp representation of the immersed boundary. This implies that

the boundary conditions on the immersed boundary are imposed at the precise location

of the immersed body and there is no spurious spreading of the boundary forcing into

the fluid as what usually occurs with diffuse interface methods (Mittal and Iaccarino

(2005)). Unlike the ghost-fluid method (GFM) (Gibou et al., 2002), the interpolation

scheme used here stays well-conditioned in all cases, and there is no need to resort to

lower-order fixes for ill-conditioned situations. Furthermore, unlike GFM where interpo-

lations are performed along the Cartesian directions, the interpolation operators in the

current method are constructed in a direction normal to the immersed boundary, and this

significantly simplifies the implementation of the Neumann boundary conditions on the

immersed boundary. Finally, in comparison to the previous cut-cell based sharp interface

methods (Udaykumar et al., 1999) the current method provides the same spatial order

of accuracy but is easily extended to complex 3D geometries. Seo and Mittal (2011) sig-

nificantly improves the mass conservation and reduces spurious force oscillations with a

combination of a sharp-interface IBM and a cut-cell technique.

The FSI modeling with large-scale flow-induced structural deformation involves com-

plex 3D geometries, moving structural boundaries in the fluid domain, and geometric

and/or material nonlinearity of the structure. The coupling of the governing equations

of the fluid with those of the structure brings additional non-linearity to the governing

equations. In order to address these complexities, an in-house FSI solver is employed. The

solver is based on a sharp-interface immersed boundary method, in which the governing

equations of the flow domain are solved on a fixed Cartesian (Eulerian) grid while the
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movement of the immersed structure surfaces is tracked within a Lagrangian framework.

As reviewed by Mittal and Iaccarino (2005), the Immersed Boundary Method (IBM) is

designed to treat 3D moving boundaries but using a simple and efficient Cartesian grid.

Since the governing equations are solved on a body non-conformal Cartesian grid, there

is no need for remeshing to treat deforming or moving structure boundaries in the fluid

domain, provided spatial resolution is adequate. The FSI solver employed in the present

chapter was developed by Mittal and co-workers ( Mittal et al. (2008); Zheng et al. (2010);

Seo and Mittal (2011); Mittal et al. (2011)), and later further developed for large-scale

flow-induced deformation by Bhardwaj and Mittal (2012). Details of Ghost-Cell based

immersed boundary (IB) method, and fluid and structure solvers coupling are discussed

in section 2.2 and section 2.4.

2.2 Ghost-Cell based IB method

Ghost-cells based finite difference method, given by Mittal et al. (2008) and Bhardwaj and

Sharma (2017), will be described here in details. Consider a 3D unsteady incompressible

flow with constant properties which is governed by Navier-Stokes equation, written in

tensor notation as:
∂ui
∂xi

= 0, (2.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

)
, (2.2)

where i and j varies from 1 to 3. ui are the Cartesian velocity components, p is the pres-

sure and ρ and ν are fluid density and kinematic viscosity respectively. Above equations

can be solved by various methods. In Mittal et al. (2008) these equations were discretized

on a collocated grid where all variables are stored at cell centres. Apart from cell-centre

velocity ui, the face-centre velocities Ui are required in collocated grid formulation. Frac-

tional step method of Van Kan (1986) is used for time integration. In the first step,

momentum equation is solved for intermediate velocity U∗ using Adams-Bashforth and

Crank-Nicolson schemes for convective and diffusion terms respectively

u∗i − uni
∆t

+
1

2

(
3Cn

i − Cn−1
i

)
= −1

ρ

δpn

δxi
+

1

2
(D∗i +Dn

i ) , (2.3)

where Ci = δ
δxj

(Ujui) and Di = ν δ
δxj

(
δui
δxj

)
.

Note that both convective and diffusion term are discretized using a second order

central difference scheme. Fig. 2.1 shows a representative cell. Intermediate face-centre

velocities are obtained by averaging the intermediate cell-centre velocities as follows
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Figure 2.1: A representative cell.

ũi = u∗i + ∆t
1

ρ

(
δpn

δxi

)
cc

, (2.4)

Ũ1w = γwũ1P + (1− γw)ũ1W ; Ũ1e = γeũ1P + (1− γe)ũ1E, (2.5)

Ũ2s = γsũ2P + (1− γs)ũ2S; Ũ2n = γnũ2P + (1− γn)ũ2N , (2.6)

Ũ3b = γbũ3P + (1− γb)ũ3B; Ũ3t = γtũ3P + (1− γt)ũ3T , (2.7)

U∗i = Ũi −∆t
1

ρ

(
δpn

δxi

)
fc

, (2.8)

In eq. 2.5, 2.6 and 2.7 γw, γe, γs, γn, γb, and γt are the weights for linear interpolation at

west, east, south, north, bottom and top faces respectively. Also, ‘fc’ and ‘cc’ stands

for face-centre and cell-centre. Next, following Poisson equation is solved for pressure

correction
1

ρ

δ

δxi

(
δp′

δxi

)
=

1

∆t

δU∗i
δxi

, (2.9)

Again central difference scheme is used for discretization. Neumann boundary conditions

are applied for pressure correction at all boundaries. In third and final step, intermediate

velocity and pressure are updated as follows

pn+1 = pn + p′, (2.10)

un+1
i = u∗i −

∆t

ρ

(
δp′

δxi

)
cc

, (2.11)

Un+1
i = U∗i −

∆t

ρ

(
δp′

δxi

)
fc

, (2.12)
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Figure 2.2: Immersed boundary and labelling of computational cells (taken from (Mittal
et al., 2008)).

This completes the solution procedure for one-time step. IB can be represented by

verity of ways such as level set field and unstructured mesh. To account for the presence

of IB, proper boundary conditions should be applied at the location of IB.

Figure 2.3: Procedure for labelling the computational cells (taken from (Mittal et al.,
2008)).

For this purpose, computational cells are divided into following categories a) Fluid

cells, b) Solid cells and c) Ghost cells. Cells whose center lies outside the IB are labeled

as ‘fluid cells,’ and others are labeled as ‘solid cells.’ Further solid cells whose at least

one neighbor out of 6 (4 in 2D) is a fluid cell is relabelled as ‘ghost cell.’ Fig. 2.2 (taken

from (Mittal et al., 2008)) shows an IB in a Cartesian grid with different kind of cells. If

IB is represented using a level set field (signed distance function in particular), then fluid
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cells will have positive value of the level set field. For IB represented by an unstructured

mesh, a procedure was suggested in Mittal et al. (2008). As shown in Fig. 2.3 (taken from

(Mittal et al., 2008)), to determine whether a node is inside or outside the IB one finds a

surface element on the IB which is closest to the node and then takes the dot product of

two vectors p and n where p is a vector originating from the nearest surface element of

IB and pointing towards the node and n is the surface normal vector. If the dot product

is positive, then cell lies outside the IB and is labeled as fluid cell and vice-versa. Note

that for stationary IB this labeling needs to be done only once in the start of the solution

procedure, but for moving IB we need to repeat this labeling procedure after each time

step. Once all cells are labelled, next job is to find appropriate values of different variables

at the ghost cells such that boundary conditions are satisfied at the location of IB. For

this a normal is drawn on to the IB from ghost cell which cuts the IB at a point called

the ‘boundary intercept’ (BI) and extends into the fluid region up to a point called the

‘image point’ (IP). IP is chosen such that BI is midpoint of IP and ghost cell centre. After

determining the IP for a ghost cell, a trilinear (bilinear in 2D) interpolation is used to

interpolate the value of any variable, let us say φ, at IP. Any variable φ can be expressed

by the following expression in the neighbourhood of 8 (4 in 2D) cells which surrounds the

IP

φ(x, y, z) = c1xyz + c2xy + c3yz + c4xz + c5x+ c6y + c7z + c8, (2.13)

There are eight unknown coefficients in eq. 2.13 which can be determined by the fact that

φ is known at 8 neighbouring cells

φi = c1(xyz)i + c2(xy)i + c3(yz)i + c4(xz)i + c5xi + c6yi + c7zi + c8;∀i = 1, 2, ...8. (2.14)

Above equation can be written in matrix form as

{φ} = [V ]{c}, (2.15)

where V is the Vandermonde matrix given by

[V ] =


(xyz)1 (xy)1 (yz)1 (xz)1 x1 y1 z1 1

(xyz)2 (xy)2 (yz)2 (xz)2 x2 y2 z2 1
...

...
...

...
...

...
...

...

(xyz)8 (xy)8 (yz)8 (xz)8 x8 y8 z8 1

 (2.16)

Equation 2.15 gives the value of coefficients

{c} = [V ]−1{φ}, (2.17)
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After determining the coefficients, eq. 2.15 can be used to find the value of φ at IP as

φIP =
8∑
i=1

βiφi, (2.18)

In eq. 2.18 βi are function of coefficients ci and the coordinates of IP. As discussed in

Mittal et al. (2008), sometimes one cell out of 8 neighbours of IP can be the ghost cell

itself. In that situation the row corresponding to the ghost node in eq. 2.17 is replaced by

the boundary condition at BI. In the case when Neumann boundary condition is specified

at the immersed boundary, we need to find gradient of φ at BI as follows

∂φ

∂n

∣∣∣∣
BI

= (∇φ)BI ·~nBI

= c1(n1yz + n2xz + n3xy) + c2(n1z + n2x) + c3(n2z + n3y)

+ c4(n1z + n3x) + c5n1 + c6n2 + c7n3,

(2.19)

In eq. 2.19 n1, n2 and n3 are components of unit normal at BI. Also x, y and z are

coordinates of BI.

Now the value of φ is available at IP, a linear extrapolation is used along the normal

from ghost cell to IB to find the value of φ at ghost cell centre. For example, consider

the Dirichlet boundary condition for velocity at IB. Since BI is midway between IP and

ghost cell, we have

φBI =
1

2
(φIP + φGC) , (2.20)

In an implicit solution procedure all the neighbouring values of φ are not known hence

above equation is written as

φGC +
8∑
i=1

βiφi = 2φBI , (2.21)

For Neumann boundary condition for pressure on IB following central difference scheme

is used (
δφ

δn

)
BI

=
φIP − φGC

∆l
, (2.22)

Here ∆l is the distance between ghost cell centre and IP and n stands for normal direction.

Again above equation is written as

φGC −
8∑
i=1

βiφi = −∆l

(
δφ

δn

)
BI

, (2.23)

Equations 2.21 and 2.23 are solved with 2.3 and 2.9 for all fluid cells. When IB is moving

then so-called ‘fresh cells’ are being created in the fluid domain. Fresh cells are those cells

which were labeled as the solid cell in the previous time step but become a fluid cell for
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Figure 2.4: Moving IB and fresh cells treatment (taken from Mittal et al. (2008)).

the current time step due to the motion of IB. An example is shown in fig. 2.4 (taken from

Mittal et al. (2008)) for 2D problem. The problem is that values of flow variables, such as

velocities and pressure, are not available from previous time steps for fresh cells since these

were in the solid domain. A solution to this problem was proposed in Ye et al. (1999b).

During the solution procedure for next time step, intermediate velocities for fresh cells are

interpolated from their neighbouring cells using a similar trilinear interpolation procedure

that was used for ghost cells. As shown in fig. 2.4 (taken from Mittal et al. (2008)), a

normal is drawn to the IB from fresh cell center which cuts the IB at point called boundary

intercept ‘BI.’ Then image point ‘IP’ is found such that fresh cell lies midway between

IP and BI. 8 (4 in 2D) neighbours of IP are identified, among which one is the fresh cell

itself. Finally fresh cell intermediate velocities are interpolated from 7 neighbours of IP

(fresh cell is excluded) and BI. After obtaining the intermediate velocities and pressure,

pressure correction for fresh cells is obtained by solving pressure correction eq. 2.9 and

final velocity and pressure are obtained by eq. 2.10 to 2.12.

2.3 Structural dynamics solver

The governing equations for the structure, Navier equations (momentum balance equation

in Lagrangian form), are written as follows,

ρs
∂2di
∂t2

=
∂σij
∂xj

+ ρsfi (2.24)
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where i and j range from 1 to 3, ρs is the structure density, d i is the displacement

component in the i direction, t is the time, σij is the Cauchy stress tensor and f i is the

body force component in the i direction. The displacement vector d(x, t) describes the

motion of each point in the deformed solid as a function of space x and time t. The

deformation gradient tensor Fik can be defined in terms of the displacement gradient

tensor ∂di
∂xk

as follows:

Fik = δik +
∂di
∂xk

, (2.25)

where δik is the Kronecker delta, defined as follows,

δik =

{
1, i = k

0, i 6= k
(2.26)

The right Cauchy green tensor is defined in terms of the deformation gradient tensor as

follows:

Cij = FkiFkj (2.27)

The invariants of the right Cauchy green tensor are defined as follows:

I1 = λ1 + λ2 + λ3

I2 = λ1λ2 + λ2λ3 + λ3λ1

I3 = λ1λ2λ3

(2.28)

where λi are eigenvalues of the right Cauchy green tensor. In the present study, the

structure is considered as Saint Venant-Kirchhoff material which considers geometric non-

linearity for the large-scale deformation of a linear elastic material. The elasticity of the

material is characterized by the Young Modulus (E) and the Poisson ratio (νs). For

large deformations, the constitutive relation between the stress and the strain is based

on Green-Lagrangian strain tensor E and second Piola-Kirchhoff stress tensor S(E) as a

function of E. The second Piola-Kirchhoff stress tensor can be expressed in terms of the

Cauchy stress tensor σ as follows

S = JF−1σF−T, (2.29)

where J is the determinant of the deformation gradient tensor F. The Green-Lagrangian

strain tensor E is defined as

E =
1

2
(FTF− 1), (2.30)

The Navier equations are solved by Galerkin finite-element (FE) method for spatial

discretization, implemented in Tahoe, an open-source, Lagrangian, three-dimensional,

finite-element solver Tahoe (Tahoe). It yields the following system of ordinary differential

16



equations for the nodal displacement vector d, given by Hughes (1987),

M
••
dn+1 + C

•
dn+1 +Kdn+1 = Fn+1 (2.31)

where M is the lumped mass matrix, C is the damping matrix and K is the stiffness ma-

trix. For temporal discretization, Newark method is used, which is a family of integration

formulae that depends on two parameters β and γ Tahoe (Tahoe):

dn+1 = dn + ∆t
•
dn + ∆t2

2
{(1− 2β)

••
dn + 2β

••
dn+1}

•
dn+1 =

•
dn + ∆t{(1− γ)

••
dn + γ

••
dn+1}

(2.32)

With β = 0.25 and γ = 0.5, an unconditional stable and second order scheme results

which used trapezoidal rule. Since Newark method does not account for numerical damp-

ing, undesired or spurious high-frequency oscillations are not handled effectively by this

method ((Hughes, 1987), Negrut et al. (2007)). In the present paper, we employ Hilber-

Hughes-Taylor (HHT) time integration scheme (or α-method) developed by Hilber et al.

(1977) and this method accounts for the numerical damping with a parameter α in the

governing equation such that Tahoe (Tahoe),

M
••
dn+1 + (1 + α)C

•
dn+1 − αC

•
dn + dσ + (1 + α)Kdn+1 − αKdn = F (tn+α) (2.33)

tn+α = (1 + α)tn+1 = tn+1 + α∆t (2.34)

If α, β and γ are selected such that α ∈ [-1/3, 0], γ = (1 - 2α)/2 and β = (1 - α)2/4,

an unconditionally stable, second order accurate scheme results (Tahoe). Decreasing α

increases the amount of numerical damping and α = 0 corresponds to the Newark method.

In the present simulations, we use α = -0.30, β = 0.4225 and γ = 0.80, allowing for the

maximum numerical damping in the finite element model.

2.4 Fluid-structure interaction coupling

The incompressible flow solver (section 2.3) and structural solver (section 2.3.1) are cou-

pled using the implicit partitioned approach. Note that an in-house incompressible flow

solver Mittal et al. (2008) was coupled with the structural dynamics solver Tahoe (Tahoe)

by Bhardwaj and Mittal (2012) and we implement the implicit coupling reported in Bhard-

waj and Mittal (2012), in the present work. The solvers are coupled such that they ex-

change data at each time step (Fig. 6.1). The flow solution is marched by one time step

with the current deformed shape of the structure and the velocity of the fluid-structure

interface act as the boundary condition in the flow solver (Fig. 6.1).

17



Figure 2.5: Coupling of flow and structure solver

Boundary conditions

The boundary condition representing the continuity of velocity at the interface (or no slip

on the structure surface) is as follows,

ui,f =
•
di,s (2.35)

where subscripts f and s denote the fluid and structure, respectively. The pressure loading

on the structure surface exposed to the fluid domain is calculated using the interpolated

normal fluid pressure at the boundary intercept points via a trilinear interpolation (bilin-

ear interpolation for 2D), as described by Mittal et al. (2008). This boundary condition

represents continuity of the traction at the solid-fluid interface and is expressed as follows,

σij,fnj = σij,snj (2.36)

where nj is the local surface normal pointing outward from the surface. The structural

solver is marched by one-time step with the updated fluid dynamic forces. The conver-

gence is declared after the L2 norm of the displacement of the fluid-structure interface

reduces below a preset value Bhardwaj and Mittal (2012). In order to ensure the numer-

ical stability of the FSI solver at low structure-fluid density ratio, under-relaxation of the

displacement and the velocity of the fluid-structure interface is implemented, as discussed

by Bhardwaj and Mittal (2012). The details of in-house, validated FSI solver are given
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in Kundu et al. (2017), Garg et al. (2018) and Kumar Soti (2018).

2.5 Code validation

The flow solver has been extensively validated by Mittal et al. (2008) against several

benchmark problems, such as flow past a circular cylinder, sphere, airfoil, and a suddenly

accelerated circular cylinder and a normal plate. First, we validate structure solver. In

this section, additional qualitative and quantitative validations are also performed for

the flow past a circular cylinder with pulsatile inflow boundary condition applied at the

channel inlet. The large-scale flow-induced deformation module in the in-house FSI solver

was previously validated by Bhardwaj and Mittal (2012), and this is briefly described here

for completeness.

2.5.1 Pulsatile inflow past a stationary cylinder

Vortical wake structures for pulsatile flow past a circular cylinder placed in a channel are

qualitatively compared. This flow problem was considered previously by Al-Sumaily and

Thompson (2013). The computational domain is 23D × 4D, where D is the cylinder

diameter, and the center of the cylinder is positioned at (8D, 2D). A fully developed

pulsatile flow velocity profle given in Al-Sumaily and Thompson (2013) as flows,

u∗(t) = u∗0(1 + Asin(2πf ∗t∗)) (2.37)

Where u∗(t), u∗0, f ∗, t∗ are horizontal velocity component (m/s), horizontal fluid veloc-

ity at the inlet of the channel (m/s), pulsating frequency (Hz) and time (s). Note that A

is dimensionless oscillating amplitude of axial inlet velocity. The dimensionless mean ve-

locity in the channel of dimensionless height H is um. um and t can be expressed as um =

u∗(t)/u∗0 and t = t∗ u∗0/D∗. The length and velocity scale used for non-dimensionalization

are cylinder diameter (D∗) and mean velocity (u∗m), respectively. Note that the super-

script ∗ and subscript m denote dimensional variable and mean value, respectively.

Eq. (3.1)can be written as non-dimensionless from as

um = 1 + Asin(2πf ∗
tD∗

u∗
) (2.38)

A fully developed dimensionless pulsating flow velocity u(t) is applied at the inlet of the

channel and is expressed as follows Al-Sumaily and Thompson (2013),

u = 1 + Afsin(2πSt t) (2.39)
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Figure 2.6: Validation against the wake structure of Al-Sumaily and Thompson (2013) for
the pulsatile flow past a circular cylinder placed in a horizontal channel. Left: present wake
vorticity predictions, Right: vorticity fields from Al-Sumaily and Thompson (Adapted
with permission from Al-Sumaily and Thompson (2013)). In both cases St= 0.8, Re =
250 and Af =0.7.

where Af , St and t are the amplitude of the pulsatile inflow, Strouhal number and time

respectively. No-slip boundary conditions at the top and bottom walls, and an outflow

boundary condition at the right boundary are enforced for the simulation. The computed

vorticity contours obtained by using the same parameters in our FSI model (Stf = 0.8)
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Table 2.1: Comparison between flow quantities for steady flow past a circular cylinder at
Re = 100 with published data (Li et al. (2010); Behr et al. (1995))

Flow quantities Present work Li et al. (2010) Behr et al. (1995)
Maximum lift coefficient 0.3354 0.3630 0.3743
Average drag coefficient 1.3801 1.3415 1.3836

Strouhal number 0.1639 0.1678 0.1641

are plotted in the left column of Fig. 2.6.

These contours are compared with those of Al-Sumaily and Thompson (2013) plotted

in the right column of this figure, at a series of different time instances. A good agreement

in the vorticity field predictions is observed, notably, in terms of both vortex strength and

shape, thereby providing confidence in the implementation of oscillating flow boundary

conditions. Quantitatively the flow model is validated for predicting the flow past a

circular cylinder under steady flow and pulsatile flow with non-zero mean velocity (Li

et al. (2010); Behr et al. (1995)). The computational domain is 16D × 30.5D where D

is cylinder diameter, and the center of the cylinder is at (8D, 8D). The dimensionless

inflow velocity in the channel is expressed as,

u = 1 + Afsin(2πftt) (2.40)

where Af , ft and t are flow amplitude, frequency of the pulsatile inflow and time,

respectively. A good agreement is obtained for predictions of maximum lift coefficient,

average drag coefficient and Strouhal number for the steady flow (Af = 0), as given in

the Table 2.1.

Quantitatively the flow model is validated for predicting the flow past a circular cylin-

der under steady flow and pulsatile flow with non-zero mean velocity Li et al. (2010); Behr

et al. (1995). The computational domain is 16D × 30.5D where D is cylinder diameter,

and the center of the cylinder is at (8D, 8D). The dimensionless inflow velocity in the

channel is expressed as,

u = 1 + Afcos(2πftt) (2.41)

where Af , ft and t are flow amplitude, frequency of the pulsatile inflow and time,

respectively. A good agreement is obtained for predictions of maximum lift coefficient,

average drag coefficient and Strouhal number for the steady flow (Af = 0), as given in

the Table 2.1. Results for the pulsating flow past a stationary cylinder at Re = 100 were

compared with those of Li et al. (2010). The forcing frequency was taken as natural vortex

shedding frequency (ff = 0.1639). The first and second frequency of the lift coefficient

signals, obtained by FFT analysis, at different forcing amplitudes are given in Table 2.2.

The comparisons between the frequencies are good and validate our flow model.
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Table 2.2: Comparison of dominant frequencies in lift signals at different forcing amplitude
(Af ) for pulsatile flow past a circular cylinder at Re = 100 with those reported by Li et al.
(2010). All these frequencies are dimensionless.

cases Present work Li et al. (2010)
First frequency Second frequency First frequency Second frequency

Af = 0.05 0.1645 0.3215 0.1678 0.3357
Af = 0.08 0.1647 0.3312 0.1602 0.3281
Af = 0.1 0.1639 0.3279 0.1526 0.3204
Af = 0.4 0.1647 0.3246 0.1678 0.3357

2.5.2 Free vibration of a cantilever beam

We describe only one validation case here to demonstrate the nonlinear structural solver’s

accuracy. For this purpose, the dynamic vibration of a cantilever beam is considered.

As shown in Fig. 2.7, a cantilever beam under uniformly distributed impulse load is

analyzed using Tahoe solver. The material of the cantilever is assumed to be isotropic

and elastic with geometrical nonlinearity (i.e., large displacement) incorporated. The

parameter values in the setup are given in Fig. 2.7(a). Fig. 2.7(b) shows displacement of

cantilever beam D/L which is good agreement with Tian et al. (2010).

Figure 2.7: (a) Cantilever beam under an impulse load, where L=10 in., b = 1 in., E =
12000 lbf/in2, νs=0.2, ρs = 106 lbfs2/in4, and P = 2.85lbf/in2. (b) Comparison of the
time-varying vertical displacement of the free end, D/L with Tian et al. (2010)
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2.5.2.1 Structural grid size convergence study

We performed a structural grid convergence study with four different triangular finite

elements, under steady inflow for flow past an elastic splitter plate behind a cylinder. All

other simulation setup parameters are given in section 2.6.3.1 in the thesis. The finite

triangular elements are listed in Table 3.1. The tip deflection (Ytip) signals obtained from

the different triangular elements are compared in Fig. 2.9 showing the minor differences

observed in peak amplitude for the different sizes of finite element grids.

Figure 2.8: (A) Structural mesh immersed in non-uniform Cartesian grid in the computa-
tional domain. (B-E) Zoomed in view of the structural grid immersed in a uniform grid of
Cartesian mesh for different cases. Uniform grid is used in the region in which the plate
is expected to move and non-uniform grid stretching is used from this region to the wall.
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Figure 2.9: Structure Grid size convergence study: comparison of the time-varying cross-
stream displacement of the plate tip (Ytip). Note that Cartesian grid sizes are same for
each cases.

The errors with respect to finest finite triangular elements, are listed in Table 3.1.

Since the relative error for 2182 numbers of triangular finite element mesh, as shown in

Table 3.1, is one order of magnitude smaller. 2182 numbers of triangular finite element

mesh were selected for the simulations.

Table 2.3: Grid size convergence study. Error in the maximum plate tip deflection (Ytip)
for different grids with respect to the finest grid examined.

Cases triangular finite elements Ytip Relative error in Ytip
1 464 0.821 1.68 %
2 844 0.828 0.84%
3 1242 0.829 0.71%
4 2182 0.829 0.71%
5 2994 0.832 0.35%
6 4662 0.835 -
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2.5.3 Large-scale flow-induced deformation

In this section, we present validations for two cases of large-scale flow-induced deformation.

Two cases have been considered to validate FSI solver – (a) an elastic plate attached

behind the circular cylinder in section 2.5.3.1 and (b) an elastic plate attached to the

square cylinder in section 2.5.3.2

2.5.3.1 Splitter plate attached to a circular cylinder

The large-scale flow-induced deformation module as part of the in-house FSI code was

validated by Bhardwaj and Mittal (2012) against the FSI benchmark problem proposed

by Turek and Hron (2006). In this benchmark problem, a cylinder with a 3.5D × 0.2D

thin elastic plate with specified material properties attached at its rear is placed inside

a channel of width 4.1D, where D is the cylinder diameter (Fig. 2.10). The fluid is

taken to be Newtonian and incompressible. The plate is considered to consist of Saint

Venant-Kirchhoff material, which accounts for geometric nonlinearity for a linear elastic

material (Fung (1965)). Geometric nonlinearities is not a material type. St. Venant-

Kirchhoff model considers geometric nonlinearities. This model is more suitable for large

scale elastic structure deformation where linear elastic solid models fail to describe the

structure behavior. The boundary conditions for the benchmark problem are illustrated

in Fig. 2.10A. No-slip boundary conditions are applied at the channel walls and immersed

structure boundary. Zero Neumann boundary condition is applied for the velocity at the

channel outlet.

At the inlet, a fully developed, parabolic, steady velocity profile is applied, expressed

in dimensionless form as follows Turek and Hron (2006),

usteady = 6um(
y

H
)(1− y

H
) (2.42)

such that the dimensionless mean velocity in the channel of dimensionless height H is

um. The length and velocity scale used for non-dimensionalization are cylinder diameter

(D∗) and mean velocity (u∗m), respectively. The Height used for non-dimensionalization

is cylinder diameter (D∗). Here dimensionless height (H) is H∗/D∗. Note that the

superscript ∗ and subscript m denote dimensional variable and mean value, respectively.

The Reynolds number (Re) and dimensionless Young's modulus (E) are defined as follows,

Re =
ρ∗fU

∗
mD

∗

µ∗
(2.43)

E =
E∗

ρ∗fU
∗
m

2 (2.44)
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Figure 2.10: (A) Schematic of the computational domain with boundary conditions (BC)
considered for the FSI benchmark. The benchmark was first proposed by Turek and Hron
(2006) and later considered by Bhardwaj and Mittal (2012). In Ref. Bhardwaj and Mittal
(2012), the plate was considered with rounded corners (shown in the inset of Fig. 2.10A).
In the present case we consider that plate is reactangular shape. (B) Comparison of com-
puted time-variation of Ytip position with published results (C) Comparison of computed
time-variation of Xtip with the published results.

where ρ∗f , µ
∗, E∗ are dimensional fluid density, dynamic viscosity and Young's mod-
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ulus, respectively, and subscript f denotes fluid. The dimensionless structure density is

expressed as,

ρs =
ρ∗s
ρ∗f

(2.45)

where subscript s denotes structure.

Table 2.4: Comparison of results for different shapes of corner, mesh type of plate and
kinematic boundary condition.

Cases Mesh Type Ytip %error
Turek and Hron (2006) Body fitted 0.83 -

Bhardwaj and Mittal (2012) Quadrilateral 0.92 10.84
Single body circular corner of

free end of elastic plate ( circular section fixed)
Triangle 0.8976 8.14

Single body sharp corner of
free end of elastic plate ( circular section fixed)

Triangle 0.8373 0.89

Two body circular corner of
free end of elastic plate

Triangle 0.8946 7.78

Two body sharp corner of
free end of elastic plate

Triangle 0.8276 -0.29

Two body sharp corner of
free end of elastic plate (without shear force)

Triangle 0.845 1.81

Two body small circular corner of
free end of elastic plate

Triangle 0.85 2.41

Single body circular corner of
free end of elastic plate ( only surface node fixed)

Triangle 0.919 10.72

Two body circular corner of
free end of elastic plate

Quadrilateral 0.8955 7.89

Two body sharp corner of
free end of elastic plate

Quadrilateral 0.8210 1.08

In the FSI benchmark, the following values are considered for the simulation setup

Turek and Hron (2006): um = 1, D = 1, Re = 100, E = 1.4×103, ρs = 10. The Poissons

ratio is taken as 0.4 in the structural solver. The validation by Bhardwaj and Mittal

(2012) was conducted for the time-varying cross-stream position of the plate tip (Ytip)

and its oscillation frequency (Stp), after the plate has reached a self-sustained periodic

oscillatory state. In Ref. Bhardwaj and Mittal (2012), Stp was in excellent agreement

while the difference in Ytip was around 11%, as compared to the benchmark data of Turek

and Hron (2006). In the present chapter, we investigated the source of this difference and

it is attributed to the following factors. In Ref. Bhardwaj and Mittal (2012), the plate

was considered with rounded corners (shown in the inset of Fig. 2.10A) and the simulation

did not include the contribution of shear force in traction boundary condition at the fluid-
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structure interface. These factors contributed around 8% and 3% difference with respect

to the values of Turek and Hron (2006), respectively. Fig. 2.11 shows the different mesh

and shape of the plate. Three different kinds of mesh such as circular corner, sharp corner

and small circular corner of plate trailing edge shown in Fig. 2.11, are taken to perform

the simulation. Fig. 2.11A, B and C show one body configuration (cylinder and plate are

together one body), two body configuration (cylinder and plate are two separate bodies,

the plate is attached behind cylinder) with a sharp corner and two body configuration

with small corner respectively. Details of

Figure 2.11: Schematic of the different shape of a free end of the elastic plate and kinematic
boundary nodes as shown in the red mark : (a) circular corner (b) sharp corner (c) small
circular corner

corner effect of elastic plate, mesh type and % error with respect to Turek and Hron

(2006) benchmark problem, are given in Table 2.4. Two body sharp corner of free end

of triangular mesh elastic plate gives the lowest error (0.29 %) which is good agreement

with Turek and Hron (2006) result.

The natural frequencies (Stni) of the plate in first three modes calculated using the

modal analysis are also listed in Table 2.5. Using Euler-Bernoulli beam model, the natural

frequency (Stni) of the vibration of a cantilever beam in dimensionless form is given by

Furquan and Mittal (2015); Thomson (1996)

Stni =
ki

2

2π

√
EI

ρsAL4
(2.46)
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where EI is the dimensionless flexural rigidity of the beam, i = 1, 2, 3 represents

frequency modes of the plate and k is the respective constant for the modes. ρs, A and L

are dimensionless density, cross-sectional area and length of the plate respectively. The

values of k are 1.875, 4.694 and 7.855 for first, second and third mode of the natural

frequency, respectively.

Table 2.5: Simulation results for different cases considered for steady inflow. The Reynolds
number (Re), structure-fluid density ratio (ρs) and plate length (L) are varied. The
Young's Modulus and plate thickness are 1400 and 0.2, respectively, in all cases. The
natural frequencies of the plate in first three modes (Stni) calculated using eq. 3.2 are
also listed for all cases.

Cases Re ρs L Ytip Stp Stn1 Stn2 Stn3 Remarks
1 100 10 3.5 0.83 0.19 0.03 0.20 0.55 Ytip ∼= Stn2

2 200 10 3.5 0.89 0.20 0.03 0.20 0.55 Ytip ∼= Stn2

3 100 5 3.5 0.45 0.23 0.04 0.28 0.78 Ytip ∼= Stn2

4 100 10 1 0.37 0.35 0.38 2.40 6.71 Ytip ∼= Stn1

The time-varying Ytip and Xtip obtained in the revised simulation performed in the

present work are compared with the respective results in Refs. Turek and Hron (2006);

Bhardwaj and Mittal (2012)] and are Fig. 2.10B and Fig. 2.10C, respectively. The plate

displacement as well as frequency is in excellent agreement with the published results of

Turek and Hron (2006) in the present work. The computed values of Stp and Ytip are

listed in Table 2.5 along with the values reported in the published studies (Turek and

Hron (2006); Bhardwaj and Mittal (2012); Lee and You (2013b); Furquan and Mittal

(2015); Tian et al. (2010)).

2.5.3.2 Splitter plate attached to a square cylinder

We further validate the large-scale flow-induced deformation module against the bench-

mark problem, proposed by Wall and Ramm (1998). In this problem, a thin elastic splitter

plate is attached to a rigid square cylinder, as shown in Fig. 2.12(a). The reference length

is taken the side of the square cylinder, and reference velocity is taken as inlet velocity.

The Reynolds number based on these reference values is Re = 333. The material parame-

ters are taken as follows: Poisson ratio = 0.35, dimensionless Young's modulus E = 8.1 ×
105 and the solid to fluid density ratio, ρ = 84.7. The inlet flow conditions and boundary

conditions are illustrated in Fig. 2.12(a). A non-uniform Cartesian mesh same as earlier

validation has been taken for this simulation with non-dimensional time step ∆t = 7.5 ×
10−3. The plate reaches to a self-sustained periodic state, similar to the case of an elastic

plate attached to a circular cylinder as shown by the time history of the tip displacement

(Ytip) is plotted in Fig. 2.12(b).
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Figure 2.12: (a) Schematic of FSI benchmark problem for square cylinder with thin plate
(b) The tip displacement at steady state (c) The vorticity contours at three different
locations as shown in (b).

Table 2.6: Comparison between flow quantities for steady flow past a circular cylinder at
Re = 100 with published data Comparison of Ytip of plate deformation of various cases
for Square Cylinder-flag

Study fp Ytip
Present work 0.0637 0.97

Olivier et al. (2009) 0.0617 0.95
Habchi et al. (2013) 0.0634 1.02

Wall and Ramm (1998) 0.058 1.22

The computed plate frequency, as well as tip displacement along with published re-

sults, are listed in Table 2.6. We found an excellent agreement between the present and

published result, which validates present simulations. At the maximum tip displacement,

contours of vorticity are shown at different time instances in Fig. 2.12 (c). These time-

instances are shown by dots in Fig. 2.12(b). As noted from the vorticity field, vortices

shed alternatively at the top and bottom of the deforming plate.

30



2.6 Closure

The in-house fluid-structure interaction (FSI) solver is based on a sharp-interface im-

mersed boundary method. The flow solver is strongly-coupled with an open-source struc-

tural dynamic solver using a partitioned approach. In the present chapter, We have

validated flow solver and structure solver independently. We have performed flow solver

validation against the pulsatile flow over cylinder and structure solver validation using

freely vibration a cantilever beam. Then, we have validated the large-scale flow-induced

deformation module as part of the in-house fluid-structure interaction Solver (FSI). We

have considered two cases to validate FSI solver – (a) an elastic plate attached behind

the circular cylinder (b) an elastic plate attached to the square cylinder. The comparison

between our results from FSI solver and published result are good agreement, and we

have validated our solver. This solver is used to understand flow-induced dynamics and

FSI application which are described in subsequent chapter.
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Chapter 3

Response of an elastic splitter plate

attached to a cylinder to laminar

pulsatile Channel flow

The flow-induced deformation of a thin, elastic splitter plate attached to the rear of a

circular cylinder and subjected to laminar pulsatile inflow is investigated. The cylinder

and elastic splitter plate are contained within a narrow channel and the Reynolds number

(Re) is mostly restricted to Re = 100, primarily covering the two-dimensional flow regime.

An in-house fluid-structure interaction code is employed for simulations, which couples a

sharp-interface immersed boundary method for the fluid dynamics with a finite-element

method to treat the structural dynamics. The structural solver is implicitly (two-way)

coupled with the flow solver using a partitioned approach. This implicit coupling ensures

numerical stability at low structure-fluid density ratios. A power spectrum analysis of

the time-varying plate displacement shows that the plate oscillates at more than a single

frequency for pulsatile inflow, compared to a single frequency observed for steady inflow.

The multiple frequencies obtained for the former case can be explained by beating between

the applied and plate oscillatory signals. The plate attains a self-sustained time-periodic

oscillation with a plateau amplitude in the case of steady flow, while the superimposition

of pulsatile inflow with induced plate oscillation affects the plateau amplitude. Lock-in of

the plate oscillation with the pulsatile inflow occurs at a forcing frequency that is twice of

the plate natural frequency in a particular mode and this mode depends on the plate length.

The plate displacement as well as pressure drag increases at the lock-in condition. The

percentage change in the maximum plate displacement, and skin-friction and pressure drag

coefficients on the plate, due to pulsatile inflow is quantified. The non-linear dynamics of

the plate and its coupling with the pulsatile flow are briefly discussed.
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3.1 Introduction

Deforming thin structures are potentially useful for energy-harvesting devices, and recent

studies have demonstrated thermal augmentation via flow-induced deformation of thin

elastic plates (Soti et al. (2015); Joshi et al. (2015)). In the following sub-sections, we

review previous studies on flow past rigid as well as flexible structures

3.1.1 Studies on pulsatile inflow past a rigid cylinder

Through investigations of the effect of pulsatile inflow perturbations on flow past a sta-

tionary cylinder, previous numerical studies have shown lock-in behavior (also referred

to as phase-locking or synchronization), in which the vortex shedding frequency shifts

to be commensurate with the pulsatile forcing frequency at inflow (see review by Grif-

fin and Hall (1991)). Measurements of the flow past a circular cylinder (Barbi et al.

(1986); Armstrong et al. (1986)) showed that lock-in occurred for pulsatile frequencies

at approximately twice the vortex-shedding frequency. Meneghini and Bearman (1995)

plotted the lock-in range for different pulsatile frequencies and amplitudes. Guilmineau

and Queutey (2002) numerically studied the flow over an in-line oscillating cylinder with

20% oscillation amplitude of the cylinder diameter and for Reynolds number, Re = 185.

They showed that the shed vortices switch from one side of the cylinder to the other, as

the pulsatile flow frequency increases to a limiting value. Konstantinidis et al. (2003) con-

firmed the lock-in characteristics observed in previous measurements (Barbi et al. (1986);

Armstrong et al. (1986)), and showed that the wavelength of the vortex street varies

with the pulsatile flow frequency but the flow amplitude does not alter vortex spacing.

More recently Leontini et al. (2013) further quantified the lock-in behavior of a circular

cylinder undergoing forced streamwise oscillations as a function of forcing frequency and

amplitude, characterizing the wake response over a wide range of control parameters in

the two-dimensional laminar regime.

3.1.2 Studies on steady or pulsatile inflow past flexible thin

structures

In the context of steady inflow past flexible or elastic thin structures, previous studies

documented the effects of the material properties of the structure and flow conditions

on the response of the structure. While proposing a FSI benchmark for flow-induced

deformation of elastic thin structures, Turek and Hron (2006) showed that the flow past

an elastic splitter plate attached to lee side of a rigid cylinder in two-dimensional laminar

channel flow results in a self-sustained oscillation of the plate. Bhardwaj and Mittal (2012)

quantified the effect of Reynolds number, material properties and geometric non-linearity
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on the plate displacement as well as its frequency in the FSI benchmark proposed by Turek

and Hron (2006). They showed that the oscillation frequency of the plate varies linearly

with dilatational wave speed inside the plate (or its natural oscillation frequencies). Lee

and You (2013b) showed that the plate length influences vibration modes of the splitter

plate, and the plate displacement is a function of the Young's Modulus and its natural

frequencies. Furquan and Mittal (2015) investigated flow past two side-by-side square

cylinders with flexible splitter plates and observed lock-in for the plate frequency closer

to its first natural frequency. Shoele and Mittal (2016b) proposed stability curves for a

flexible plate in an inviscid channel flow and showed that the plate oscillation frequency

as well as its stability depends on the channel height. Shukla et al. (2013) experimentally

studied the effects of flexural rigidity as well as plate length on the response of the plate

in the wake of a circular cylinder and found that the plate displacement collapses on

a single curve for different cases of dimensionless bending stiffness. The FSI of elastic,

inextensible filaments attached to a cylinder was also reported in previous studies. Bagheri

et al. (2012) showed that a hinged flexible filament attached on a cylinder generates a

net lift force without increasing drag on it, due to symmetry-breaking instability of the

filament which oscillates in upper or lower part of the cylinder wake. Extending work

of Bagheri et al. (2012), Lācis et al. (2014) showed the symmetry-breaking instability

is similar to the instability of an inverted pendulum. Note that these studies considered

very low values of structure-fluid density ratio ((0.1)) as well as flexural rigidity ((0.001)−
(0.1)), which is two-three orders of magnitude lesser than the values used in the present

chapter. An attached filament on a cylinder also helps in reducing mean drag as well

as fluctuations of lift on the cylinder, as reported by Wu et al. (2014). Very few studies

are reported in the context of pulsatile inflow past flexible or elastic thin structures in

the literature. For instance, Razzaq et al. (2012) studied the FSI interaction of the

elastic walls of an aneurysm with an implanted stent structure subjected to pulsatile flow.

Habchi et al. (2013) studied twin elastic thin plates mounted in cross-flow configuration

at a distance and subjected to the pulsatile flow. They reported that the plates oscillate

in opposite-phase and in-phase for larger and smaller value of Young's modulus of the

plate, respectively.

3.1.3 Objectives of the present chapter

While the effect of the pulsatile flow on oscillating rigid structures is well-documented and

understood, previous reports (Razzaq et al. (2012); Habchi et al. (2013)) available for the

pulsatile inflow past flexible, deformable structures did not investigate the effects of forcing

frequency and flow amplitude. In addition, the response of the structure for different

material properties is poorly reported. The non-linear interaction of the pulsatile flow

with the moving structure leads to complex system behavior, such as lock-in and beating.
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Such effects have not been investigated to the best of our knowledge. The objective of

the present chapter is to investigate the effect of the pulsatile flow on the flow-induced

deformation of a thin, elastic structure for an inline flow configuration. To achieve this,

the FSI benchmark case proposed by Turek and Hron (2006) is extended to account for

the pulsatile inlet flow, and is used to investigate the coupling of the forcing flow frequency

as well as amplitude with the frequency of the oscillating plate. The FSI model employed

to tackle this problem is discussed in section 2.5.3 and results are presented in section

3.2.

3.2 Results and discussion

In this section, we investigate the effect of pulsatile inflow on the flow-induced defor-

mation and associated wake flow for the flow past a cylinder with a thin trailing elastic

plate attached (Fig. 2.10A). The boundary conditions are same as those described in

section 2.5.3.1 and are shown in Fig. 2.10A, except at the left channel boundary. A fully-

developed pulsatile inflow velocity at the left boundary is prescribed and is expressed in

non-dimensional form as follows,

upulsatile = usteady(1 +Ksin(2πStf t)) (3.1)

where usteady, Stf and t are dimensionless steady component of the velocity given by

eq. 2.42, Strouhal number and time, respectively. The parameters used for the non-

dimensionalization for eq. 3.1 are same as the ones used in section 3.1.2. The inflow

velocity in eq. 3.1 is superimposition of the steady inflow (usteady) and pulsatile inflow

(upulsatile), where K is a constant in range of [0, 1] and controls the fraction of the unsteady

component in the total inflow. A typical mesh used in the simulation in the present chapter

is shown in Fig. 3.1.

A non-uniform Cartesian grid with stretching is employed in the computational do-

main as shown in Fig. 3.1A. Zoomed-in views of the grid in the vicinity of the immersed

boundary and downstream are shown in Fig. 3.1B and 3.1C, respectively. A uniform

grid is used in the region in which the plate is expected to move and non-uniform grid

stretching is used from this region to the wall (Fig. 3.1B). In the present section, we use

the plate with rounded corners as shown in Fig. 3.1B. The remainder of this section is

organized as follows:

• First, grid convergence and domain independence studies are presented in sec-

tion 3.2.1.

• Second, the effect of plate length and structure-fluid density ratio is discussed on

the plate oscillation in case of steady state inflow in section 3.2.2.
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Figure 3.1: (A) Non-uniform Cartesian grid in the computational domain. (B) Zoomed
in view of the grid in the vicinity of the immersed boundary. Uniform grid is used in the
region in which the plate is expected to move and non-uniform grid stretching is used
from this region to the wall. The immersed boundary (fluid-structure interface) is shown
in red. (C) Zoomed in view of the grid in the downstream with grid stretching used away
from the tip of the plate.
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Table 3.1: Grid size convergence study. Error in the maximum plate tip deflection (Ytip)
for different grids with respect to the finest grid examined.

Cases Grid ∆xmin ∆ymin Relative error in Ytip with respect to case 3
1 256 × 160 0.03 0.020 -0.075 %
2 384 × 160 0.02 0.020 -0.002%
3 480 × 224 0.015 0.014 -

• Third, the effect of the pulsatile flow frequency (Stf ) on the flow-induced deforma-

tion and associated flow fields are compared in section 3.2.3. . The flow frequency

is varied between 0.1 and 1.0, while keeping the flow amplitude constant (K = 0.4).

• Fourth, the effect of the flow amplitude (K) on the plate dynamics and flow fields

are investigated in section 3.2.4. The flow amplitude (K) is varied between 0.0 and

1.0, while keeping the flow frequency constant (Stf = 0.4).

• Finally, a parameter map is presented in section 3.2.5 to specify the lock-in region

and plate response based on the data obtained from several simulation sequences.

3.2.1 Grid and domain size convergence study

We performed grid convergence study with three different non-uniform Cartesian grids,

256 × 160, 384 × 160 and 480 × 224, under pulsatile inflow (K = 0.4, Stf = 0.2) for flow

past an elastic splitter plate behind a cylinder. The time-step was set to ∆t = 0.01. All

other simulation setup parameters are given in section 2.5.3. The minimum grid sizes in

x and y direction, ∆xmin = 0.02 and ∆ymin = 0.02 respectively, are listed in Table 3.1.

The tip deflection (Ytip) signals obtained for the different grids are compared in Fig. 3.2A,

with the inset showing the minor differences observed in peak amplitude for the different

grids. The errors with respect to the finest grid are listed in 3.1. Since the relative error

for 384 × 160 grid, as shown in 3.1, is one order of magnitude smaller than that for 256

× 160 grid, the 384 × 160 grid (∆xmin = 0.02 and ∆ymin = 0.02) was selected for all

simulations presented in present chapter.

The domain independence study was conducted with four domains of sizes 20D ×
4.1D, 25D × 4.1D, 30D × 4.1D, 40D × 4.1D. The steady inflow was considered and

simulation parameters are given in section 3.2.2. The tip displacement (Ytip) signals

obtained from four different domains considered are compared in Fig. 3.2B. The inset

of Fig. 3.2B shows the minor differences observed in peak amplitude for the different

domains considered. The error with respect to the longest domain considered are listed

in Table 3.2. Since the error for 20D × 4.1D domain is lesser than 1%, this domain size

is considered for all simulations presented in this chapter.

38



Figure 3.2: (A) Grid size convergence study: comparison of the time-varying cross-stream
displacement of the plate tip (Ytip) as a function of grid resolution of the immersed bound-
ary method solver. (B) Domain size independence study: comparison of the time-varying
cross-stream displacement of the plate tip (Ytip) for different domains.
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Table 3.2: Domain size independence study. Error in the maximum plate tip deflection
(Ytip) for different domain sizes with respect to the longest domain size examined

Cases Domain size Relative error in Ytip with respect to case 4
1 20D × 4.1D 0.042%
2 25D × 4.1D 0.021%
3 30D × 4.1D 0.010%
4 40D × 4.1D -

3.2.2 Steady inflow

In this section, we investigate the effect of problem parameters on the plate oscillation

frequency in FSI benchmark described in section 2.5.3. We vary Reynolds number (Re),

structure-fluid density ratio (ρs) and plate length (L), keeping all other parameters same

in cases 2, 3 and 4 listed in Table 2.5, respectively. The maximum computed displacement

(Ytip) and oscillation frequency (Stp) in all cases are summarized in Table 2.5. The natural

frequencies (Stni) of the plate in first three modes calculated using the modal analysis

are also listed in Table 2.5. Using Euler-Bernoulli beam model, the natural frequency

(Stni) of the vibration of a cantilever beam in dimensionless form is given by Furquan

and Mittal (2015); Thomson (1996)

Stni =
ki

2

2π

√
EI

ρsAL4
(3.2)

where EI is the dimensionless flexural rigidity of the beam, i = 1, 2, 3 represents fre-

quency modes of the plate and k is the respective constant for the modes. ρs, A and L are

dimensionless density, cross-sectional area and length of the plate respectively. The values

of k are 1.875, 4.694 and 7.855 for first, second and third mode of the natural frequency,

respectively. In the FSI benchmark (case 1 in Table 2.5, L = 3.5D), the plate initially

exhibits small deformation and reaches a periodic self-sustained oscillation with a constant

amplitude, displaying a sinusoidal-like wave pattern of the time-varying displacement of

the tip of the plate Bhardwaj and Mittal (2012) (Fig. 2.10B). The superimposed shapes

of the deformed plate at different time instances are shown in Fig. 3.4A(left).

In this case, the plate oscillation frequency is close to the natural frequency in the

second mode (Stp ∼= Stn2, case 1 in Table 2.5). In cases 2 and 3 in Table 2.5, we vary

Re = 200 and ρs = 5, respectively, keeping all parameters same and the simulated plate

frequency Stp is again close to the second mode of the natural frequency (Stp ∼= Stn2).

In case 4, we vary plate length to L = D and the plate oscillates with the frequency close

to the first mode of natural frequency (Stp ∼= Stn1). The superimposed shapes of the

deformed plate at different time instances for this case are shown in Fig. 3.4B.

40



Figure 3.3: Vorticity contour for steady inflow at the inlet for different plate lengths.
(left) L = 3.5D (right)L = D. Other parameters used in both cases are E = 1400, Re =
100 and ρs = 10.

Figure 3.4: Superimposed deformed shapes of the plate at several time instances for the
plate length (left) and pressure contours (right) for steady inflow at the inlet for different
plate lengths. (A) L = 3.5D (B)L = D. Other parameters used in both cases are E =
1400, Re = 100 and ρs = 10.

Fluid-structure interaction of a cylinder with attached elastic splitter plate is a coupled

system. Vortex sheds from cylinder roll over the plate and sheds behind the tip of the plate

and plate oscillate in the case of the larger elastic plate, as shown in Fig. 3.3. For small

elastic splitter plate, vortex shedding behavior is different from the large elastic plate as

shown in Fig. 3.3 because vortex comes from the cylinder and falls at the tip of the plate.

Plate natural frequency depends on material properties. When Vortex shedding frequency

of the plate matches with plate natural frequency, lock-in occurs, and plate vibrates with
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a particular mode. Thus, the plates with length L = 3.5D and L = D oscillate with

second and first mode of the natural frequency, respectively. This can be explained by

the fact that the flow past cylinder creates regions wherein the pressure on one side of the

plate is greater than that on the other side. This pressure differential translates to non-

uniformly distributed load applied to the structure, which produces plate deformations

The pressure loading on the longer plate is non-uniformly distributed as compared to that

on the shorter plate. The non-uniform loading results in larger bending and consequently

the plate vibration is closer to that in the second mode. A qualitative comparison of the

pressure distribution at the instance of maximum plate deformation is shown in Fig. 3.4

(right column) and confirms this hypothesis. Note that these observations are consistent

with those given by Lee and You (2013b).

3.2.3 Effect of pulsatile inflow frequency

In this section, we discuss the effect of pulsatile inflow on the plate oscillation. In pulsatile

inflow case, the forcing frequency interacts with the natural oscillation frequency of the

plate, which results in beating and lock-in signals. The effect of the pulsatile inflow

frequency (Stf ) is studied by varying it within the range [0.0, 1.0], while keeping the flow

amplitude constant at K = 0.4. The time-varying tip displacement of the plate (Ytip) is

shown in the left column of Fig. 3.5 and Fig. 3.6 .

The power spectra of these signals are shown in the middle column, indicating the

dominant frequencies in the signals. Note that the difference in the applied flow fre-

quency (Stf ) and the oscillating plate frequency (Stn2) generates beating between these

frequencies, clearly evident in the tip displacement evolutions. For instance, at Stf = 0.1,

0.2 and 0.4, the plate oscillates with | Stf ± kStn2 | and kStn2 (k = integer), as shown

in the power spectra, plotted in middle column of Fig. 3.5. Lock-in (phase-locking, syn-

chronization) is a phenomenon in which the vortex shedding frequency of plate changes

(and locks) to match the natural frequency of plate. In the present case, vortex shedding

frequency of plate (Stv,p) is equal to plate oscillation frequency (Stp). The natural fre-

quency of the plate depends on material properties, and when the natural frequency of the

plate matches with plate vortex shedding frequency, lock-in occurs. Plate vibrates with

natural plate frequency. Here material properties are fixed (E = 1400 and ρ = 10) and

plate always oscillates in the second mode.When two frequency matches with each other,

only resonance occur, there is no change in frequency, and external frequency does not

play any role to trigger higher Structural natural frequencies. Lock-in condition occurs

with pulsatile flow for Stf = 0.4, for which Stf ∼ Stn2, which results in the largest plate

displacement . For the lower frequenciesStf = 0.1 - 0.5, the vorticity contours at the

instance of maximum plate deformation, plotted in the right column of Fig. 3.5 show that

the shear layers at the top and bottom of the plate roll up to form strong positive and
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Figure 3.5: Time-varying tip displacement varying with amplitude (K) and frequency
(Stf ). Note that K = 0, Stf = 0 corresponds to non-pulsatile flow. Power spectra of
Ytip displacement of elastic plate (middle figure). Vorticity distribution of pulsatile flow
(right).
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Figure 3.6: Continuation of Fig. 3.5
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negative vortices, resepctively. At higher frequencies (Stf > 0.5), the shear layer shows

the formation of the two or more smaller vortices of the same sign on each side of the

plate, showing the strong effect of pulsatile flow on the wake. We quantify the effect of

pulsatile flow in terms of the drag coefficients for the plate, defined as,

CDP =
2F ∗DP

ρ∗fU
∗
m

2D∗
(3.3)

CDS =
2F ∗DS

ρ∗fU
∗
m

2D∗
(3.4)

CD = CDP + CDS (3.5)

where CDP , CDS and CD are pressure, skin-friction and total drag coefficient of the

plate, respectively. F ∗DP and F ∗DS are the pressure and shear force per unit span-wise

length on the plate, respectively.

In order to quantify the influence of pulsatile inflow on the drag on the plate and

its components, we plot the time-variation of Ytip, CDP , CDS and CD for steady inflow

and two cases of pulsatile inflow in Fig. 3.7A and 3.7B, 3.7C, respectively. The vorticity

distribution at different time instances is shown in the insets. The plots of the pulsatile

inflow are presented for lock-in condition (K = 0.4, Stf = 0.4) in Fig. 3.7B. In Fig. 3.7A

for the steady inflow, the maximum pressure drag as well as skin friction drag occurs at the

maximum plate displacement (at t ∼ 186 and 189). The contribution of the skin-friction

drag in the total drag is around 13% at these instances. The maximum pressure drag is

attributed to blockage of the flow created by the deformed plate in the channel at the

instance of the maximum deformation. As expected, the total drag and its components

are the lowest at the instance of the mean position of the tip (t ∼ 187.5). In case of

the pulsatile inflow (Fig. 3.7B), the maximum pressure drag as well as skin friction drag

also occurs at the maximum plate displacement (at t ∼ 187.5 and 190). However, the

contribution of the skin friction drag in the total drag is 33%, around three times larger

than that in the case of the steady inflow in Fig. 3.7A. Interestingly, the skin friction drag

is negative at the instance of the mean position of the tip (t ∼ 189). This observation may

be attributed to the formation of shear layers along the plate length due to the pulsatile

inflow and is described as follows. As shown in the inset of Fig. 3.7B, at the instance of

the maximum tip displacement at t ∼ 187.5 (t ∼190), a shear layer of negative (positive)

vorticity at the top (bottom) of the plate roll up to form strong negative (positive) vortex

near the cylinder and another negative (positive) vortex which is about to shed in the

downstream. On the other hand, at the mean position of the tip (t ∼189), a shear layer

of positive vorticity dominates along the plate length, which corresponds to negative skin

friction drag at this instance.
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Figure 3.7: Comparison among time-varying displacement of the tip of the plate (Ytip),
pressure drag coefficient (CDP ), skin friction drag coefficient (CDS) and total drag coeffi-
cient (CD). (A) Steady inflow, K = 0.0, Stf = 0.0 (B) Pulsatile inflow, K = 0.4, Stf = 0.4,
(C) Pulsatile inflow, K = 0.4, Stf = 0.8. Vorticity distribution at different time-instances
is shown in insets and the vorticity scale is same as in Fig. 3.5 (third column).
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Figure 3.8: Percentage change in RMS values of deformation of plate (Ytip), pressure drag
coefficient (CDP ) and total drag coefficient (CD), relative to results for steady inflow, as a
function of pulsatile inflow amplitude (K). The inflow frequency was fixed at Stf = 0.4.
(B) Contribution of the RMS skin friction drag with respect to RMS total drag.
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Similarly, the time-variations of Ytip, CDP , CDS and CD at larger forcing frequency

(K = 0.4, Stf = 0.8) are plotted in Fig. 3.7C. Due to increased forcing frequency, the

tendency to roll the vortices over the plate as well as their strength decreases (as seen in

the insets in Fig. 3.7C) and it results in larger pressure perturbations near the structure.

Therefore, the maximum pressure drag at the instance of the maximum displacement at

Stf = 0.8 is around 50% larger than that in Stf = 0.4. To further quantify the effect of

the pulsatile flow frequency, it is useful to define the percentage change in a flow quantity

with respect to the steady inflow,

η =
ηpulsatile − ηsteady

ηsteady
× 100% (3.6)

where ηpulsatile and ηsteady are the flow quantities for the pulsatile and steady inflow,

respectively. Fig. 3.8A plots Ytip for RMS values of Ytip, CDP and CD as a function

of pulsatile flow frequency, Stf . ∆η for CDP,RMS and CD,RMS scales non-monotonically

with Ytip, RMS for Ytip [0.1, 0.5]. The total drag and pressure drag contribution show

a significant increase at the lock-in condition (Stf ∼ 2Stn2), due to a 16 % larger plate

displacement. Similarly, CDP , and CD show decrease of around 15-25% in Fig. 3.8A due

to decrease in RMS value of Ytip at Stf = 0.2 since Ytip shows a strong variation with

time due to the beating in the Fig. 3.5A (second row). At higher frequencies, Stf ∈
[0.6, 1.0], Ytip for CDP,RMS is significantly larger (∼25-40%) in Fig. 3.8A. As explained

earlier, this is due to the decrease in strength of the rolling vortices over the plate (see

insets of Fig. 3.7C) which results in larger pressure perturbations near the structure and

increases pressure drag. Thus, the pressure drag is larger for Stf ∈[0.6, 1.0] and the

total drag also shows similar characteristics except at Stf = 1.0. The total RMS drag

at Stf = 1.0 reaches to a value, comparable to that computed in the steady inflow case

and is around 10% larger due to increase in the shear drag on the plate, explained in the

following paragraph. The flow field at Stf = 1.0 becomes qualitatively similar to that in

the steady inflow case, due to the decaying strength of the rolling vortices at the top and

bottom of the plate. The vorticity field at the instance of the maximum displacement

shown in the inset of Fig. 3.5B (last row) is qualitatively similar to that for the steady

inflow, in the inset of Fig. 3.7A, except in close proximity to the surface of the plate. In

order to quantify the contribution of the skin-friction drag, we define percentage of the

skin-friction drag coefficient with respect to total drag coefficient ∆ψ, as follows,

∆ψ =
CDS,RMS

CD,RMS

× 100% (3.7)

As plotted in Fig. 3.8A, ∆ψ is more than 30% for Stf ∈ [0.2, 1.0]. The increase in the

skin-friction drag is attributed the formation of shear layers along the plate length due to

pulsatile inflow, as explained earlier (see insets of Figs. 3.7B and 3.7C). A slight dip in
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∆ψ at lock-in is explained by shedding of rolled vortices over the plate, which pushes the

shear layer along the plate length. Overall, the total drag is significantly larger (20%-50%)

for the pulsatile flow cases as compared to the steady inflow case for Stf ∈ [0.4, 1.0] and

K = 0.4.

3.2.4 Effect of pulsatile inflow amplitude

In this section, the effect of the forcing flow amplitude on the flow-induced deformation

of the splitter plate at constant pulsatile inflow frequency, Stf = 0.4, is examined. The

time-varying plate displacement (Ytip), power spectra of Ytip and vorticity contours at

instance of maximum Ytip are plotted in the left, middle and right columns of Fig. 3.9,

respectively. The flow amplitudes investigated are K ∈ [0.0, 1.0] and K = 0.0, Stf = 0.0

corresponds to the steady inflow at the inlet. Since Stf = 0.4 corresponds to the lock-in

frequency, as simulated in section 3.2.3, the beating is not observed in the simulated cases

shown in Fig. 3.9, in contrast to many of the cases examined in section 3.2.3. Indeed,

the power spectra of Ytip, plotted in Fig. 3.9, show lock-in at all flow amplitudes. The

vorticity contours are plotted in the right column of Fig. 3.9, showing that the vortices on

the top and bottom sides of cylinder surface roll up increasingly tightly and are clearly

identifiable as discrete entities as they move along the plate, as the forcing amplitude

increases.

As in section section 3.2.3, Fig. 3.10A shows the percentage change in various sys-

tem characteristics with respect to the steady inflow: the maximum plate deformation

(Ytip,RMS), total drag (CD,RMS) and pressure drag (CDP,RMS) for the flow amplitudes

tested for the lock-in condition. CD,RMS and CDP,RMS show almost a linear increase due

to increase in Ytip,RMS, implying increased blockage of the flow by the deformed plate in

the channel at the instance of the maximum deformation. The maximum percentage in-

crease in the total pressure drag (CD,RMS) is approximately 75% and the plate deformation

increases by 31%, both at K = 1. The contribution of the skin friction drag with respect

to total drag ( ∆ψ, (3.7)) with respect to flow amplitude K is plotted in Fig. 3.10B. In

general, we note a linear increase in ∆ψ with K and the largest value 50% occurs at K =

1. The increase in shear drag with flow amplitude is due to the increasing strength of the

rolling vortices and shear layers along the plate length. The vorticity signatures at the

instance of the maximum plate deformation, plotted in the insets of Fig. 3.9, verify this

hypothesis. Overall, the total drag is significantly larger (20% to 75%) for the pulsatile

flow cases as compared to the steady inflow case for K ∈[0.4, 1.0] and Stf = 0.4.
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Figure 3.9: Time-varying Y-displacement of the tip of the plate varying with amplitude
(K) for constant frequency Stf = 0.4. Note that K = 0, Stf = 0 corresponds to steady
flow at the inlet. Effect of amplitude on elastic plate (left figure). Power spectra of
Ytip displacement of elastic plate (middle figure). Vorticity distribution of pulsatile flow
(right).
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Figure 3.10: Percentage change in RMS values of deformation of plate (Ytip), pressure drag
coefficient (CDP ) and total drag coefficient (CD), relative to results for steady inflow, as a
function of pulsatile inflow amplitude (K). The inflow frequency was fixed at Stf = 0.4.
(B) Contribution of the RMS skin friction drag with respect to RMS total drag.
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3.2.5 Lock-in condition

As explained in section 3.1, in the absence of deformation of the splitter plate, lock-in

(phase-locking, synchronization) is a phenomenon in which the vortex shedding frequency

changes (and locks) to match the applied flow perturbation frequency. Extending this to

deformable plates, lock-in occurs if beating does not occur in the Ytip signal and the plate

frequency synchronizes to the forcing frequency. This situation leads to maximum plate

deformation. Fig. 3.11A summarizes the simulations performed, plotting beating and

lock-in cases as a function of forcing frequency ( Stf ) for different applied forcing flow

amplitudes (K). The natural frequencies of the plate for the first three modes (Stn1, Stn2

and Stn3) are also plotted. The lock-in occurs for the flow amplitude, K ≥ 0.4 and at a

forcing frequency, Stf = 0.4, twice of the splitter plate oscillation frequency as well as its

natural frequency in the second mode, i.e., Stf ∼= 2Stp ∼= 2Stn2. The natural frequencies

are calculated using eq. (3.2) and are listed for first three modes in Table 2.5). Note that

the simulations at Stf = 0.35 and 0.45 at different flow amplitudes show beating patterns.

In Fig. 3.11B, the increase in the plate displacement (Ytip) at lock-in is quantified by

plotting percentage change in it with respect to the steady inflow (eq. (3.7)) as a function

of the forcing flow amplitudes. ∆η for Ytip linearly increases with the flow amplitude

and reaches to around 35%, at K = 1, as plotted in Fig. 3.11B. Superimposed shapes of

the deformed plate at different time instances are shown in the inset of Fig. 3.11B for

a typical lock-in case. The effects of the lock-in on the plate motion are quantified by

comparing the phase plane plot of the trajectory of the plate tip (Xtip, Ytip) for the steady

inflow and pulsatile inflow ( Stf = 0.4, K = 0.4) in Fig. 3.12. Around 20 plate oscillation

cycles are plotted for both cases after plate reaches self-sustained oscillation with plateau

displacement. Results shows that the plate oscillates about a mean position in both cases

and Ytip is around 15% larger in pulsatile flow case due to lock-in condition. The influence

of lock-in on the associated wake structures is shown by qualitatively comparing vorticity

contours at different instances in a typical cycle in insets in Fig. 3.12. The right insets

for pulsatile inflow case show that the shear layers at the top and bottom of the plate

roll up to form strong positive and negative vortices at the instance of maximum plate

deformation. In order to quantify the effect of structure-fluid density ratio (ρs) on the

lock-in and beating conditions, we performed additional simulations by varying it to ρs

= 5 and keeping all other parameters same (E = 1400, Re = 100, L = 3.5D) in the cases

considered in section 3.2.3 and section 3.2.4. The beating and lock-in cases are plotted

in Fig. 3.13 for several values of forcing frequency (Stf ) and forcing amplitude (K).

The lock-in occurs for all flow amplitudes, K > 0 and at a forcing frequency, Stf = 0.46,

roughly twice of the natural frequency in the second mode ((3.2)), i.e., Stf ∼= Stp ∼= 2Stn2.

Superimposed shapes of the deformed plate at different time instances are shown in the

inset of Fig. 3.13A for a typical lock-in case.
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Figure 3.11: (A) Lock-in and beating plotted as a function of forcing amplitude (K) and
forcing frequency (Stf ). The first three modes of natural frequency of the plate (Stn1,
Stn2 and Stn3) are plotted as lines. The lock-in occurs if the forcing frequency is twice
of the second mode of natural frequency ( Stf ∼= Stp ∼= 2Stn2). (B) Percentage increase
in the tip displacement of the plate at lock-in condition with respect to steady inflow.
The maximum plate oscillation amplitude occurs at lock-in, when the forcing frequency
is twice the plate oscillation frequency. The different points (filled squares) correspond to
different forcing amplitudes. The inset shows superimposed deformed shapes of the plate
at several time instances for a typical lock-in case.
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Figure 3.12: Comparison between the phase plane plots of the trajectories of the plate
tip are for pulsatile and steady inflow. Around 20 plate oscillation cycles are plotted for
both cases, shown in the top inset. Insets on the left and right show the corresponding
vorticity contours at critical points in the cycle

Finally, we vary the plate length to L = D for plotting the lock-in and beating cases.

The other parameters are kept same as in sections 3.2.3 and 3.2.4 (E = 1400, ρs = 10).

The Reynolds number, Re = 200 is used in these simulations since the plate displacement

for L = D,Re = 100 is too small (on the order of 0.01) to evaluate the lock-in and

beating conditions. The lock-in and beating cases are plotted in Fig. 3.13B as function

of forcing frequency (Stf ) and forcing amplitude (K). The inset in the figure shows the

superimposed shapes of the deformed plate at different time instances. The lock-in occurs

for flow amplitude, K ≥ 0.2 and at a forcing frequency, Stf = 0.76, twice of the natural

frequency in the first mode ((3.2)) i.e., Stf ∼= Stp ∼= 2Stn1. Therefore, in all three cases

considered ( Fig. 3.11A, Fig. 3.13A and Fig. 3.13B), the lock-in occurs when the applied

oscillation frequency is around twice of the natural frequency in a particular mode. The

mode of the natural frequency depends on the plate length, as discussed in section 3.2.2.
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Figure 3.13: Lock-in and beating plotted as a function of forcing amplitude (K) and
forcing frequency (Stf ). (A) The structure-fluid density ratio is varied to ρs = 5. The twice
natural frequency is second mode (Stn2) is plotted as a broken line. The lock-in occurs if
the forcing frequency is twice of natural frequency in second mode (Stf ∼= Stp ∼= 2Stn2)
(B) The plate length is varied to, L = D. The second mode of natural frequency (Stn1)
is plotted as broken lines. The lock-in occurs if the forcing frequency is twice of natural
frequency in second mode (Stf ∼= Stp ∼= Stn1)
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3.3 Closure

The effect of the pulsatile inflow on the flow-induced deformation of an elastic plate in-

side a channel is simulated numerically by combining a sharp-interface immersed bound-

ary method flow solver and an open-source finite-element based structural solver. The

coupling is accomplished using an implicit iterative approach to improve the stability

properties of the combined solver. The plate exhibits small deformations initially, asymp-

toting to a periodic self-sustained oscillation at longer times for the steady inflow. In the

case of the pulsatile inflow, the plate experiences strong forcing from vortices that form

from the separating shear layers from the cylinder and subsequently advect downstream

over the surfaces of the plate. Despite the tendency of the vortices to form and shed

symmetrically because of the applied longitudinal forcing, the coupling with the allow-

able cross-stream oscillation mode of the plate leads to substantially increase cross-stream

oscillation amplitude relative to the unforced case in general. The maximum plate dis-

placement is observed when the applied oscillation frequency is twice the natural plate

oscillation frequency in a particular mode (Stf ∼= 2Stni), corresponding to the resonant

or lock-in case. The mode of the natural frequency depends upon the plate length. For

applied frequencies away from this condition, beating is observed due to the superposition

of the applied and natural oscillatory signals. The plate deformation response, and drag

of the plate and its components, are quantified for forcing flow amplitudes K ≤ 1, and for

forcing frequencies Stf ≤ 1. The total drag on the plate is found to be significantly larger

relative to the steady inflow, at forcing frequencies equal or larger than lock-in frequency,

at a given flow amplitude. For lock-in cases, the plate displacement, total drag, pressure

as well as skin friction drag increases with the forcing flow amplitude. The present chap-

ter provide fundamental insights into lock-in with pulsatile inflow of an elastic splitter

plate attached to a rigid circular cylinder in a rectangular channel. Elastic plate vibrates

with larger amplitude which could be useful to the design of piezoelectric beam for energy

harvesting and thermal augmentation applications.
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Chapter 4

Flow-induced Dynamics of an Elastic

Splitter Plate attached to a Cylinder

Subjected to Free-stream Flow

We investigate the flow-induced dynamics of an elastic splitter plate, attached to the rear

of a rigid circular cylinder, subjected to uniform laminar free-stream flow. An in-house

fluid-structure interaction solver is employed, which couples a sharp-interface immersed

boundary method for the fluid dynamics with a finite-element method to treat the structural

dynamics. An implicit partitioned approach is utilized to couple the fluid and structural

solvers. A rigid splitter plate suppresses the vortex shedding behind the cylinder. De-

pending on the plate and flow properties, vortex shedding can occur in case of a flexible

plate. We investigate a wide range of mass ratio and bending stiffness of the plate at a

cylinder Reynolds number of Re = 100. At a given Re, numerical simulations show that

the plate dynamics effectively depend on only those two parameters. The largest amplitude

of the plate is found to occur in the lock-in region, where the vortex shedding frequency

of the coupled fluid-structure system is close to the natural frequency of the splitter plate.

At lock-in, the oscillation frequency is lower than the natural frequency of the plate in

a vacuum and thereby exhibits a strong effective added-mass effect. These findings are

consistent with those for classical vortex-induced vibration of a rigid cylinder at a low

mass ratio. The flapping boundary obtained from the simulations is plotted on the mass-

ratio-reduced-velocity plane. In addition, we plot oscillation amplitude on this flapping

map in order to show the lock-in condition and to briefly discuss wake structures and

phase plots for different cases of mass ratio and bending stiffness. The present results

could be useful to the design of flexible plates that exhibit large oscillation amplitudes for

energy-harvesting applications.
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4.1 Introduction

The interaction of a fluid flow with a flexible structure may lead to large-scale flow-

induced vibration due to resonant forcing of the structure caused by periodic vortex

shedding. Several previous studies (Connell and Yue (2007); Deivasigamani et al. (2013);

Alben (2015); Akcabay and Young (2012); Gurugubelli et al. (2014); Liu et al. (2014))

have defined two important dimensionless parameters that govern the dynamics of the

plate–the bending stiffness (Kb) and the mass ratio (M). These are given by

Kb =
E∗

ρ∗fU
∗
∞

2

h∗3

12L∗3
, (4.1)

M =
ρ∗sh

∗

ρ∗fL
∗ , (4.2)

where the superscript ∗ denotes a dimensional variable. Here, E∗, ρ∗f , U
∗
∞, h∗, L∗, ρ∗s are

the Young's modulus of the plate, fluid density, free-stream velocity, plate thickness, plate

length and plate density, respectively. Note that Kb is defined per unit spanwise width

of the plate in eq. 4.1. Physically, Kb represents the ratio of restoring force produced by

stiffness and the loading on the structure by the fluid. The parameter M represents the

ratio of the density of the structure to that of the fluid, which is often referred to as the

mass ratio. In addition, the reduced velocity UR is another important parameter, defined

as ratio of the characteristic time scale of the structure to that of the fluid (Tang et al.

(2007)) and is given by

UR =

√
M

Kb

. (4.3)

The dynamics of a thin, flexible plate subjected to oscillations in a free-stream flow has

been reported in several studies. Watanabe et al. (2002) studied the flutter of a paper sheet

using an analytical method and reported high flutter modes at low M . Argentina and

Mahadevan (2005) proposed a critical speed for the onset of flapping and estimated the

flapping frequency based on scaling analysis. Tang et al. (2007) investigated the dynamics

of a flexible plate using the Euler-Bernoulli model coupled with an unsteady lumped-

vortex model. They investigated the flutter boundary and the post-critical behavior of

this fluid-structure system. They obtained the flutter boundary in the form of the critical

flow velocity versus the length of the flexible plate. They observed that the critical

flow velocity is sensitive to short plate lengths. Connell and Yue (2007) proposed a

regime map of flag flutter based on their FSI simulations. They proposed the following

three categories of plate dynamics: fixed-point stability, limit-cycle flapping, and chaotic

flapping. Fixed-point stability occurs when the flag aligns with the flow. As the flow

velocity is increased, limit-cycle flapping takes over, characterized by single-frequency
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repeating flag oscillations. Chaotic flapping occurs as the flow velocity is further increased.

A comprehensive review of such flapping states was provided by Shelley and Zhang (2011).

Lee et al. (2014) examined the flapping dynamics of a flexible flag in a uniform flow.

They found three different flapping states such as regular flapping, irregular flapping

and irregular flapping with violent snapping by varying M and Kb. Alben and Shelley

(2008) simulated the nonlinear dynamics of a flexible sheet in a 2D inviscid fluid. They

characterized the behavior of flapping flags at large amplitudes and over many flapping

periods, and demonstrated a transition from a periodic to a chaotic flapping as the bending

rigidity was decreased. They also found that the stability boundary of the flow-aligned

state for a flag within the two-dimensional parameter space of dimensionless flag inertia

and bending rigidity. Eloy et al. (2007) studied the linear stability of a flexible plate

immersed in an axial flow. The found that a finite-span plate is more stable than infinite-

span plate. Eloy et al. (2008) addressed the linear stability of rectangular plate in a

uniform flow and incompressible axial flow by varying aspect ratio. They identified critical

velocities for the instability transitions as a function of system parameters, showing good

agreement with their data. Akcabay and Young (2012) examined the dynamic response

and stability of piezoelectric beams in viscous and axial flows. They showed that a heavy

beam undergoes flutter in a light fluid when the fluid inertial forces are in the balance

with the solid elastic restoring forces, and for a light beam in a heavy fluid, flutter occurs

when the fluid inertial force dominates the solid inertial force. Tian (2013) studied the

hydrodynamic interaction between flag/flags and surrounding fluid. They found that the

sustained flapping in the convectively instable wake can be produced in nonzero mass but

the mass is unimportant condition for absolutely instable wake. The unsteady flapping

can occur with zero mass. Previous studies also addressed the flow-induced dynamics of an

elastic splitter plate attached to a cylinder. Turek and Hron (2006) showed self-sustained

oscillation of an elastic plate attached to a rigid cylinder in a confined channel. The

frequency scales as the dilatational wave speed inside the plate, as shown by Bhardwaj

and Mittal (2012). Using the same configuration of Turek and Hron (2006), Kundu et al.

(2017) studied the effect of Reynolds number and plate length on the flapping frequency.

They showed that the simulated frequency scales with the natural frequency of a vibrating

cantilevered plate (f ∗ni) in vacuum, i.e. obtained using the Euler-Bernoulli beam model,

and is given by Kundu et al. (2017); Thomson (1996) as

f ∗ni =
k2
i

2π

√
E∗I∗

ρ∗sA
∗L∗4

, (4.4)

where i = 1, 2, 3 represents the frequency modes of the plate, E∗I∗ is the dimensional

flexural rigidity of the beam and ki are the respective constants for the modes. The

values of k are 1.875, 4.694 and 7.855 for the first, second and third mode of the natural
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frequency, respectively. Also ρ∗s, A
∗, and L∗ are the structure density, cross-sectional area,

and length of the plate, respectively. Using eqs. 4.1 and 4.2, the non-dimensional form of

eq. 5.1 is expressed as follows

fni =
k2
i

2πL

√
Kb

M
. (4.5)

Note that the natural frequency of a cantilevered plate expressed by eq. 4.5 in the presence

of a fluid is modified due to the added-mass effect, especially at low M , and the is given

as follows Sader et al. (2016)

fni,AM =
k2
i

2πL

√
Kb

M + 1
, (4.6)

where subscript AM indicates added mass. This assumes a potential added mass co-

efficient of CA = 1. Shukla et al. (2013) experimentally showed that the amplitude of

the oscillation of a hinged splitter plate attached to a circular cylinder increases with

Reynolds number (ReD) based on the cylinder diameter and they reported a plateau os-

cillation amplitude at ReD > 4000. Recently, Furquan and Mittal (2015) numerically

studied two side-by-side flexible splitter plates attached to square cylinders. They ob-

served that lock-in occurs when the plate frequency is close to its natural frequency. Most

of the previous investigations (Connell and Yue (2007); Liu et al. (2014); Lee et al. (2014);

Xu et al. (2016); Shoele and Mittal (2016b)) ignored internal stresses in the plate. The

ratio of thickness to length, Kb and M were restricted to O(0.01), O(10−3) and O(1),

respectively. The objective of the present chapter is to investigate the effect of M and Kb

on the flow-induced plate dynamics of an elastic plate attached to a cylinder in a free-

stream laminar flow with a high-fidelity numerical model. We resolve the internal stresses

for an elastic plate of finite thickness and the plate dynamics is implicitly coupled to an

immersed-boundary-method based flow solver. We consider a wide range of M = [0.143,

20], Kb = [0.0008, 0.0435] and UR = [2.562, 30.3], at ReD = 100. The chapter is organized

as follows. We discuss the effect of M , Kb and UR on the fluid-induced deformation of the

plate in sections 4.2.1, 4.2.2 and 4.2.3, respectively. We show that the plate dynamics

only depends on M , Kb and UR in section 4.2.4. Finally, based on all simulation results,

we plot a flapping map in the 1/M–UR plane in section 4.2.5. Some additional numerical

simulation is performed to understand the effect of shape of bluff-body on flow-induced

deformation of an elastic plate, given in Appendix A. In this chapter, we choose circular

cylinder to study flow-induced dynamics of an elastic splitter plate.

4.1.1 Grid-size and domain-size independence study

As a precursor to the main study, we investigated grid convergence of uniform inflow past

a flexible splitter plate behind a cylinder in a nominally open domain for three different
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grids with sizes of 384 ×192, 481 × 256, and 512 × 256. Note that length of the splitter

plate is 4D. The time-step is set to ∆t = 0.01D/U∞. The minimum cell sizes in the

x and y directions are listed in Table 4.1. Neumann boundary conditions are applied

at the outlet and a uniform flow velocity set at the inlet. Free slip is applied at the

side boundaries. The tip deflection (Ytip) signals obtained for the grids are compared in

Fig. 4.1(a), with the inset showing the minor differences observed in peak amplitude for

the different grids. The errors relative to the finest grid are listed in Table 4.1. Since the

relative difference of the maximum tip displacement for the 384 × 192 grid, as shown in

Table 4.1, is less than one percent and is similar to the 481× 257 grid, the 384 × 192 grid

is selected for all the simulations in the present chapter.

Table 4.1: Variation in the maximum plate tip deflection for different grid sizes relative
to the finest grid.

Cases Grid points ∆xmin ∆ymin Relative error in the maximum Ytip from case 3

1 384 ×192 0.03 0.02 0.095%
2 481 ×257 0.02 0.02 0.082%
3 513 ×257 0.0154 0.1375 –

Three domains of sizes of 19.5D × 12D, 30D × 12D and 40D × 12D are used to

address domain independence. The tip displacement (Ytip) signals obtained from the

three different domains are compared in Fig. 4.1(b). The inset of Fig. 4.1(b) shows

the minor differences observed in peak amplitude for the different domains. The error

concerning the 19.5D × 12D domain is listed in Table 5.3 and is less than 2%. Therefore,

the 19.5D × 12D domain is subsequently used for all further simulations. In the present

chapter, a 384 × 192 non-uniform Cartesian grid with ∆xmin = 0.02 and ∆ymin = 0.02

is considered for open domain. High resolution of grid is incorporated into the region

where the plate movement is expected. For the structural solver, a total of 4662 finite

quadrilateral elements are used for the plate. The finite-element grid used to represent

the plate is shown in the inset of Fig. 4.2.

Table 4.2: Variation in the maximum plate tip deflection for different domain sizes relative
to the largest domain size.

Cases Domain size Relative error in maximum Ytip from case 3

1 19.5 ×12 0.14%
2 30 ×12 0.09%
3 40 ×12 –
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Figure 4.1: (a) Grid size convergence study: comparison of the time-varying cross-stream
displacement of the plate tip (Ytip) as a function of grid resolution used with the immersed
boundary method solver. (b) Domain size independence study: comparison of the time-
varying cross-stream displacement of the plate tip (Ytip) for three different domain sizes.
Note that length of the elastic splitter plate is 4D.

4.2 Results and Discussions

Numerical simulations are performed using the same parameters of the flexible splitter

plate as discussed in the previous section 2.5.3.1. The domain size is taken as follows:

S1 + S2 = 19.5D and S3 = 12.0D, as shown in Fig. 4.2(a).
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Figure 4.2: (a) Schematic of the computational domain with details of the boundary
conditions (BC). (b) Comparison of the tip displacement in the Y-direction of the thin
elastic splitter attached to the cylinder; previous validation was accomplished by Kundu
et al. (2017) against the benchmark results of Turek and Hron (2006) using an in-house
code.
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Table 4.3: Input parameters for the set of simulations studying the effect of mass ratio
(M) for fixed bending stiffness Kb.

Case number E h ρ M Kb UR
1 1400 0.2 2.5 0.143 0.022 2.562
2 1400 0.2 5.0 0.286 0.022 3.623
3 1400 0.2 7.5 0.429 0.022 4.437
4 1400 0.2 10.0 0.571 0.022 5.123
5 1400 0.2 15.0 0.857 0.022 6.275
6 1400 0.2 20.0 1.143 0.022 7.246
7 1400 0.2 25.0 1.429 0.022 8.101
8 1400 0.2 30.0 1.714 0.022 8.874
9 1400 0.2 35.0 2.000 0.022 9.585
10 1400 0.2 40.0 2.286 0.022 10.247
11 1400 0.2 45.0 2.571 0.022 10.869
12 1400 0.2 47.0 2.686 0.022 11.107
13 1400 0.2 48.0 2.743 0.022 11.225
14 1400 0.2 48.5 2.771 0.022 11.283
15 1400 0.2 49.0 2.800 0.022 11.341
16 1400 0.2 50.0 2.857 0.022 11.456
17 1400 0.2 60.0 3.429 0.022 12.550
18 1400 0.2 75.0 4.286 0.022 14.031
19 1400 0.2 90.0 5.143 0.022 15.370
20 1400 0.2 100.0 5.714 0.022 16.202
21 1400 0.2 125.0 7.143 0.022 18.114
22 1400 0.2 150.0 8.571 0.022 19.843
23 1400 0.2 200.0 11.429 0.022 22.913
24 1400 0.2 250.0 14.286 0.022 25.617
25 1400 0.2 300.0 17.142 0.022 28.062
26 1400 0.2 350.0 20.0 0.022 30.3109

Note again that we use an open domain instead of a channel. The dynamics of the

elastic plate as a function of a mass ratio (M), bending stiffness (Kb) and reduced velocity

(UR) of the plate are discussed. We vary M , Kb and UR in the ranges: [0.143, 14.286],

[0.0008, 0.0435] and [2.562, 30.0], respectively. The simulation cases are also given in

Table 4.3-4.6 and are shown in the Fig. 4.3 on the 1/M −UR plane. In this present study,

the response of plate oscillation is limit-cycle flapping. Symmetric plate displacement

is observed and vortex is shedding from tail of the plate. A von Kármán vortex street,

consisting of a continuous series of alternately signed vortices is observed. Same scenario

is observed in Connell and Yue (Connell and Yue, 2007).
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Table 4.4: Input parameters for the set of simulations studying the effect of bending
stiffness Kb for fixed M .

Case number E h ρ M Kb UR
26 50 0.2 10.0 0.571 0.0008 27.111
27 100 0.2 10.0 0.571 0.0016 19.170
28 150 0.2 10.0 0.571 0.0023 15.652
29 250 0.2 10.0 0.571 0.0039 12.124
30 350 0.2 10.0 0.571 0.0054 10.247
31 560 0.2 10.0 0.571 0.0087 8.101
32 700 0.2 10.0 0.571 0.0109 7.246
33 933 0.2 10.0 0.571 0.0145 6.276
4 1400 0.2 10.0 0.571 0.0218 5.123
34 1866 0.2 10.0 0.571 0.0290 4.438
35 2800 0.2 10.0 0.571 0.0435 3.623
36 196.00 0.20 48.0 2.743 0.0030 30.000
37 282.00 0.20 48.0 2.743 0.0044 25.011
38 441.00 0.20 48.0 2.743 0.0069 20.000
39 967.90 0.20 48.0 2.743 0.0150 13.500
40 783.00 0.20 48.0 2.743 0.0122 15.010
41 1128.00 0.20 48.0 2.743 0.0175 12.505
42 1277.68 0.20 48.0 2.743 0.0199 11.750
43 1400.00 0.20 48.0 2.743 0.0218 11.225
44 1764.00 0.20 48.0 2.743 0.0274 10.000
45 2177.78 0.20 48.0 2.743 0.0339 9.000
46 2756.25 0.20 48.0 2.743 0.0429 8.000
47 3133.00 0.20 48.0 2.743 0.0487 7.504
48 4150.00 0.20 48.0 2.743 0.0645 6.520
49 5750.00 0.20 48.0 2.743 0.0894 5.539

Table 4.5: Input parameters for the set of simulations studying the effect of Kb and M in
keeping the reduced velocity (UR) constant.

Case number E h ρ M Kb UR
50 175 0.2 1.25 0.071 0.0027 5.123
51 350 0.2 2.5 0.143 0.0054 5.123
52 700 0.2 5.0 0.286 0.011 5.123
4 1400 0.2 10.0 0.571 0.022 5.123
53 2100 0.2 15.0 0.857 0.033 5.123
54 2800 0.2 20.0 1.143 0.044 5.123
55 4200 0.2 30.0 1.714 0.065 5.123
56 5600 0.2 40.0 2.286 0.087 5.123
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Table 4.6: Input parameters for the set of simulations with fixed UR, Kb and M .

Case number E h ρ M Kb UR
57 175 0.4 5 0.571 0.022 5.123
58 716.8 0.25 8 0.571 0.022 5.123
4 1400 0.2 10 0.571 0.022 5.123
59 3318 0.15 13.33 0.571 0.022 5.123

Figure 4.3: Reduced velocity (UR) as a function of mass ratio (M). Triangles are the
simulation point for present chapter in an open domain.

4.2.1 Effect of mass ratio (M)

We discuss the effect of M on the elastic splitter plate displacement (Ytip), oscillation

frequency (fp) and wake structure, keeping Kb constant. Simulations are presented for M

= [0.143, 20] and Kb = 0.022, with simulation parameters given in Table 4.3 and plotted

in Fig. 4.3. Fig. 4.4(a) plots fp as a function of M . The natural frequencies of first three

modes are also plotted, without the added mass (fn2, eq. 4.5), and with the added mass

(fn2, AM , eq. 4.6), as a function of M in Fig. 4.4(a). It can be seen that fp decreases with

M due to the larger inertia of plate. At lower M (0.143 < M < 1.71), fp lies between

fn2,AM and fn2, and matches with the fn2, AM curve for 1.71 < M < 2.79. The fp curve
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Figure 4.4: Comparison of: (a) simulated plate oscillation frequency (fp) and plate natural
frequency fni and fni,AM without or with the added mass correction as a function of the
mass ratio M . Dotted and solid lines represents the fni and fni,AM variations, respectively.
Square symbols show results for simulated fp; (b) plate amplitude (Ytip), and frequency
ratios R1 and R2 without or with the added mass correction as a function of the mass
ratio M . Solid square, solid circle and triangle symbols show R1, R2 and Ytip variations,
respectively. Three simulations for M = 0.57, 2.74 and 5.71 are represented by vertical
dashed line. Note that Kb = 0.022 is fixed for all cases.
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Figure 4.5: Comparison of tip displacement Ytip (top row), power spectra (second row),
and phase-plane plots (third row) are for three different mass ratios. The superimposed
views of the deflection mode of the elastic splitter plate are shown in the bottom row.
These three cases belong to the dashed vertical line in Fig. 4.4(b). Note that for these
cases Kb = 0.022 is fixed, with the mass ratio (M) varied.
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Figure 4.6: Comparison of vorticity field at different time instances for three different
mass ratios. These three cases belong to the dashed vertical line in Fig. 4.4(b). The color
map range is [-1, 1]; the same as shown in Fig. 5.1.

starts to deviate from the fn2,AM curve to match the fn2 curve over the mass ratio

range 3.43 < M < 5.71. Also, fp is closer to fn2 or fn2, AM for M > 5.71. Fig. 4.4(b)

plots Ytip, and the frequency ratios R1 = fp/fni and R2 = fp/fni, AM as a function of M .

We also plot a solid red line to denote the resonance condition where R1 and R2 = 1.0.

Fig. 4.4(b) shows that Ytip increases with M for 0.285 < M < 2.74, reaching a maximum

at M = 2.74 and then decreases with M in the range 2.74 < M < 14.286. The frequency

ratios R2 and R1 increase and decrease, respectively, as M decreases. Fig. 4.4(b) shows

that large amplitude oscillation occurs for the cases where fp = fn2, AM , i.e. R2 is very

close to unity for 1.71 < M < 3.43 and it is called lock-in region. Lock-in occurs if the

vortex shedding or plate oscillation frequency is close to the natural frequency for any

mode, and then the plate oscillates with larger amplitude. We note that large amplitude
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Figure 4.7: Lift coefficient (CLP ) and phase difference (φ) are the function of the vertical
displacement of the tip for two different mass ratios. Note that Kb = 0.022 is fixed for
these cases. Black solid line and blue dotted line represents the lift coefficient and phase
difference respectively. The motion of vertical displacement of the tip is from point a to
point b and then point c, which is shown in red circle. Inset shows the corresponding
vorticity contours at the critical point of vertical displacement of the tip.
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oscillation occurs at M = 2.74, for which R2 = 1 and Ytip = 1.93. By contrast, R1

matches well with the line where R1 is close to unity for 4.1 < M < 5.9. In Fig. 4.4(b)

the plate deformation increases for 0.143 < M < 2.57, reaching a maximum at M = 2.74,

and then decreases with M . Ytip is significantly larger for 1.71 < M < 2.74 due to lock-

in with the added mass effect at which R2 coincides with the lock-in line. This can be

explained as follows. The lock-in occurs if the following three frequencies coincide: the

structural vibration frequency (fs), the vortex shedding frequency (fv) and the natural

frequency in a vacuum (fn) or f ∗ = fv/fn ≈ 1. This is valid for large mass ratio M =O

(100); however, for a lower mass ratio of M =O(10), f ∗ deviates from unity (Khalak

and Williamson (1997, 1999)). In the latter case, fs = fv = fn,AM , where fn,AM is the

natural frequency in a fluid including the potential added mass. Of course, this is true

for the high mass ratio case, noting that the added mass is then small enough to be

ignored. Similar charateristics are observed during vortex-induced vibration (VIV) of a

rigid cylinder (Khalak and Williamson (1997, 1999)).

Fig. 4.7 shows that the lift coefficient (CLP ) and phase difference (φ) are the function

of the vertical displacement of the tip of the plate for two different mass ratios. Note

that Kb = 0.022 is fixed for these cases. Black solid line and blue dotted line represents

the lift coefficient (CLP ) and phase difference (φ) respectively. The motion of vertical

displacement of the tip of the plate is from point (a) to point (b) and then point (c),

which are shown in the red circle. Inset shows the corresponding vorticity contours at

the critical point of vertical displacement of the tip. When plate motion is from point

(a) to point (b) in the case 13 (M = 2.74), the phase difference is constant and above

180◦. The motion of the plate and the force acting on the plate is the same phase, as a

result, maximum plate displacement is observed. Positive vortex (shown in the inset of

right side Fig. 4.7) is attached near the plate which creates low pressure and accelerates

the plate motion. On the other hand, in the case 16 (M = 2.857), the phase difference is

rapidly decreasing with plate deformation. The motion of plate and the force acting on the

plate is gradually changing to opposite phase which gives minimum plate displacement.

We plot three cases with mass ratios M = 0.57, 2.74 and 5.71 in Fig. 4.4. These are

represented by vertical dashed lines in Fig. 4.4(b). These cases are case 4, case 13 and

case 20 of Table 4.3, and are also shown in Fig. 4.3. Fig. 4.5 (first row) compares the

time-varying Ytip for mass ratios 0.57, 2.74 and 5.7, and the maximum plate amplitude

values recorded are 0.75, 1.93 and 0.48, respectively. These cases are shown in Fig. 4.3.

The heavier plate takes longer to reach a self-sustained periodic state due to the larger

inertia. Fig. 4.5 (second row) shows the FFT of Ytip for the three cases. The dominant

fp for mass ratios 0.57, 2.74 and 5.7 are 0.154, 0.079 and 0.061, respectively, which are

closer to fn2,AM of the plate as discussed earlier. Fig. 4.5 (second row) shows that the

plate with largest deformation for M = 2.74 vibrates with more than one frequency. One
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frequency component is closer to a dominant second mode, and other is a third harmonic

of the dominant frequency. The phase plots in the third row of Fig. 4.5 show the axial

Figure 4.8: Time varying lift coefficient of (a) the plate and (b) the cylinder for mass ratio
(M) = 2.74. FFT of lift coefficient is shown in (c) for the plate and (d) for the cylinder
for same mass ratio.

and lateral movement of the plate tip, which are larger for M = 2.74 than other mass

ratios because of lock-in. As a result, the phase plots are wider at M = 2.74. Snapshots

of the plate deformation shape over one cycle for the three cases are shown in Fig. 4.5

(fourth row). Flow over a rigid cylinder with an attached splitter plate (L/D = 3.5) is

stable and does not show any vortex shedding. Vortex shedding frequency is negligible.

Both Cylinder and plate lift frequency is zero. For the case of flow over a rigid cylinder

with an attached flexible splitter plate (L/D=3.5), vortex shedding frequency is equal to

plate oscillation frequency. Cylinder and plate lift frequency is equal to plate oscillation
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frequency. Fig. 4.8 and 4.9 shows the time-varying lift coefficient of plate and cylinder

and their FFT analysis. The magnitude of lift coefficient of the plate higher than the

cylinder for both case.

Figure 4.9: Time varying lift coefficient of (a) the plate and (b) the cylinder for mass ratio
(M) = 2.74. FFT of lift coefficient is shown in (c) for the plate and (d) for the cylinder
for same mass ratio.

The magnitude of lift coefficient of the plate for the case of mass ratio, M = 2.74

is higher than the case of mass ratio, M = 2.857 because of the higher amplitude of

Ytip of the plate. Fig. 4.8(c and d) show the FFT analysis of the plate and cylinder lift

coefficient signal. From the FFT analysis, it is observed that the lift signal has multiple

frequencies. One is the dominant frequency which is same as plate frequency, and other

frequencies are the odd harmonic of dominant frequency. The similar observation is

73



noticed in VIV of a cylinder. Fig. 4.6 depicts the instantaneous vorticity field around the

plate. Three different positions covering the maximum, minimum and central positions

at three different instances are plotted in Fig. 4.6. For Kb = 0.022 and M = 0.57 ,

the elastic splitter plate is in its self-sustained oscillation state and vortices are shedding

alternately (see the first column of Fig. 4.6). The vortex shedding flow pattern is a

typical 2S mode (one vortex sheds from each side of the plate in a cycle)(Govardhan and

Williamson (2000)). For Kb = 0.022 and M = 2.74 , the elastic plate bends to a greater

degree compared to the M = 0.57 plate. As a result, longer vortex shedding from the

elastic plate is observed, and it tends to be split into two small vortices, which are not

completely separated immediately but later separate into two individual vortices. This

vortex shedding flow pattern is typically similar to the 2P mode (two vortices shed from

each side of the plate each time) (Govardhan and Williamson (2000)). For Kb = 0.022 and

M = 5.7, two positive and two negative vortices are shedding alternatively. Therefore,

the vortex-shedding pattern depends on plate amplitude.

4.2.2 Effect of bending stiffness (Kb)

The effect of Kb on the flow-induced deformation of the elastic splitter plate is examined in

this section. We take Kb = [0.0008, 0.0435] keeping the mass ratio M = 0.571 constant,

as shown in the Fig. 4.3. The parameters of these simulation cases are also given in

Table 4.4. Note UR decreases with Kb. We plot fp and fni of first three modes with and

without added mass as a function of Kb in Fig. 4.10(a). The dotted and solid lines show

fni and fni,AM , respectively. The square symbols show the simulated fp values. These

values decrease with Kb up to Kb = 0.0016 and subsequently, they then generally increase

with Kb. Fig. 4.10(a) shows that a plate with a larger Kb > 0.004 oscillates with second

natural frequency; however, at low Kb = 0.0016, fp falls on the fn3,AM curve.

Fig. 4.10(b) shows that the plate deformation (Ytip), and frequency ratios R1 and R2,

as a function of Kb. Both R1 and R2 decrease with Kb. Fig. 4.10(b) shows that the plate

displacement is negligible at low Kb and plate displacement decreases with Kb. We also

plot the line where R1 = R2 = 1. Large amplitude occurs for the case fp ' fn2,AM at

Kb = 0.0023 in Fig. 4.10(b), i.e. a point close to the R1 = R2 = 1 line. At Kb = 0.0016,

the fp point lies on lock-in line (fp = fn2,AM) but plate displacement is not maximum due

to plate flexibility. Other points lie away from the lock-in line, so the plate displacement

is lower than at Kb = 0.0023.
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Figure 4.10: Comparison of: (a) simulated plate oscillation frequency (fp) and plate nat-
ural frequency fni and fni,AM without or with the added mass correction as a function
of the stiffness Kb. Dotted and solid lines represents the fni and fni,AM variations, re-
spectively. Square symbols show results for simulated fp; (b) plate amplitude (Ytip), and
frequency ratios R1 and R2 without or with the added mass correction as a function of
the stiffness Kb. Solid square, solid circle and triangle symbols show R1, R2 and Ytip
variations, respectively. Note that M = 0.57 is fixed for these cases.
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Figure 4.11: Comparison of tip displacement Ytip (top row), power spectra (second row),
and phase-plane plots (third row). Superimposed view of deflection mode of the splitter
plate (bottom row). Note that M = 0.038 and Stn2 = 0.195 are fixed for all cases but
Young’s modulus and the density ratio are different. These three cases belong to dashed
vertical line in Fig. 4.10(b).
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Figure 4.12: Vorticity field as a function of plate deformation for three different values of
Young’s modulus. The color map range is [-1, 1]; the same as shown in Fig. 5.1.

Fig. 4.11 shows Ytip, FFT, phase plots and the superimposed shapes of the elastic

splitter plate in the first, second, third and fourth rows, respectively. Here, Ytip decreases

with Kb. Fig. 4.11 (second row) shows that the plate with larger deformation at Kb

= 0.0023 (case 28) vibrates with more than one frequency. The dominant frequency is

closer to the second mode natural frequency and the other is the second harmonic of

the dominant frequency. Fig. 4.11 (second row) shows that the phase plot is wider at

Kb = 0.0023 because of the lock-in condition and large-amplitude periodic bending is

exhibited at Kb = 0.0023 rather than for other values shown in fourth row. Fig. 4.12

shows the vorticity field for three cases of bending stiffness. Alternative periodic vortex

shedding is observed in each case, and the vortex shedding pattern is 2S (Govardhan and

Williamson (2000)) for all the cases, but the transition from the 2P to 2S mode is observed

at Kb = 0.0023. The vortex structures become elongated at lower bending stiffness as

compared to those for high bending stiffness due to larger plate displacement.
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4.2.3 Effect of Kb and M in keeping the reduced velocity (UR)

constant

Figure 4.13: Comparison of: (a) simulated plate oscillation frequency (fp) and plate
natural frequency fni and fni,AM without or with the added mass correction as a function
of Kb/M ratio. Dotted and solid lines represent the fni and fni,AM variations, respectively.
Square symbols show results for simulated fp; (b) plate tip amplitude (Ytip) and frequency
ratio R1 and R2 with or with the added mass correction as function of Kb/M ratio. Solid
square, solid circle and triangle symbols show R1, R2 and Ytip variations, respectively.
Note that for these cases M and Kb vary but UR is fixed.
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Figure 4.14: Comparison of tip displacement Ytip (top row), power spectra (second row),
and phase-plane plots (third row). Superimposed views of deflection mode of the splitter
plate for M and Kb varying but with UR fixed at 5.123.

The effects of Kb and M in keeping the reduced velocity (UR) constant are discussed in

this section. The simulation cases are shown in the Fig. 4.3 on the 1/M − UR plane,

and are listed in Table 4.5. We select Kb and M such that UR is constant. The plate

oscillation frequency fp and plate natural frequency (fni) of first three modes with and

without added mass are plotted as a function of Kb or M in the Fig. 4.13(a). Fig. 4.13(a)

shows that fp lies in between fn2,AM and fn3,AM . At lower Kb or M , fp falls on the fn3,AM

curve. At higher values of Kb, fp increases with M and approaches the fn2,AM curve.

Fig. 4.13(b) shows Ytip, R1 and R2 as a function of Kb or M . Here, R1 increases but R2

decreases with Kb (or M). Also, R2 goes to a minimum at Kb = 0.033 (M = 0.857).

Both R1 and R2 are zero at Kb = 0.065 (M = 1.714) because plate displacement is zero.
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Fig. 4.13(b) shows that Ytip increases with Kb (M) and reaches a maximum at Kb = 0.033

(M = 0.857). Beyond this it decreases with Kb (M). We also plot R1 = R2 = 1 for

reference. The plate oscillates with larger displacement when the distance between the

lock-in line and the R2 line is a minimum.

4.2.4 Dependence of plate dynamics on Kb, UR and M

Finally, we demonstrate that the response of the plate only effectively depends on M , Kb

and UR at a given Re. Simulation cases are listed in Table 4.6, in which the thickness (h),

density ratio (ρ), and Young’s modulus (E) are adjusted in such a way that M , Kb and

UR are constant. Fig. 4.15 shows that (Ytip), the power spectra and the phase plots of the

tip displacement are almost identical for the same Kb, M and UR. Therefore, the plate

dynamics is essentially only a function of M , Kb and UR at a given Re.

Figure 4.15: Comparison of tip displacement Ytip (top row), FFT (second row), and phase-
plane plots (third row) for M , Kb, UR and L constant. The plate thickness (h), density
ratio (ρ), and Young’s modulus (E) are adjusted to achieve this. The values of M , Kb

and UR are given in Table 4.6.
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4.2.5 Flapping map

The flapping responses for different cases as a function of M and UR are plotted in

Fig. 5.12. We also plot magnitude of Ytip using a contour map for all cases. The baseline

case is at M = 0.571 and UR = 5.123, for which the material properties are the same

as the benchmark problem of Turek and Hron (2006). In this map, Kb = constant and

M = constant are represented by curved and vertical lines, respectively. A plot of UR

= constant is also shown in Fig. 5.12. For Kb = constant, Ytip increases with M for

0.285 < M < 2.74 and reaches maximum at M = 2.74 and UR = 11.225. Furthermore,

Ytip decreases with M for 2.74 < M < 11.4 and flapping stops at M = 20.0 and UR =

30.319 as shown in the figure. A similar trend for Ytip is noted at UR = constant. At M =

constant, Ytip decreases with increasing UR.

Figure 4.16: Parameter space map showing the flapping boundary as a function of the
reciprocal mass ratio (M) and the reduced velocity UR for the elastic splitter plate. Col-
ored square points show plate oscillation amplitude (Ytip), which is a function of M , Kb

and UR, as discussed in the text. Note that the present results are for an open domain.
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At lower UR, the plate displacement is also negligible. The horizontal dash-dot line

represents constant UR. On this line, Ytip increases with M to reach a maximum at M

= 0.857, it then decreases with M . For larger M and low UR, no flapping is observed.

Similarly, no flapping is noticed at lower UR and M . The flapping boundary is represented

by a black dash-dot line. Flapping is seen at moderate values of UR and M . At the critical

value of M = 2.74, a large Ytip amplitude is observed. Similar characteristics (Khalak

and Williamson (1999)) are observed for transverse oscillations of an elastically mounted

rigid cylinder. Inset of Fig. 5.12 shows the comparison Ytip with UR for two different

mass ratio. Inset of Fig. 5.12 shows that Ytip increases with UR, reaching a maximum and

then decreases with UR for M = 0.57. At lower UR, the plate displacement is negligible.

Similar trend is observed for M = 2.74 upto UR = 12.5. For UR > 12.5, Ytip increases

with increasing UR and flutter instability occurs. As a result, plate vibrate with large

amplitude.

4.3 Closure

We have employed a fluid-structure interaction (FSI) solver to simulate the dynamics of an

elastic splitter plate attached to a rigid circular cylinder that is subjected to laminar flow.

The FSI computational approach combines a sharp-interface immersed boundary method-

based flow solver and an open-source finite-element based structure solver. In the present

chapter, the effect of mass ratio (M) and bending stiffness (Kb) on the FSI response

were studied at Re = 100. Here, Re is the Reynolds number and is based on free-stream

velocity and cylinder diameter. We vary M , Kb and UR in the ranges [0.143, 20], [0.0008,

0.0435] and [2.562, 30.0], respectively, noting that these ranges cover a high amplitude

FSI response. The plate amplitude and oscillation frequency are found be a function of

M and Kb. The time-varying displacement of the tip of the plate, power spectra of the

displacement signal, phase plots of the plate tip displacement and the wake structure are

examined in order to quantify the results. The largest amplitude of the plate was found

to be for the lock-in condition at which the natural frequency of the plate in a given

fluid synchronizes with the oscillation frequency of the plate. At lock-in, the oscillation

frequency is lower than the natural frequency of the plate in a vacuum due to the influence

of the added mass. This behavior is consistent with the classical vortex-induced vibration

of a rigid cylinder at the low mass ratio. The plate exhibits a strong added mass effect

at lower mass ratios and lower bending stiffness. As M and Kb increase, the oscillation

frequency becomes closer to the natural frequency of the plate in a vacuum, showing the

expected diminishing added-mass effect. Importantly, we determined the approximate

flapping boundary on the 1/M − UR plane, together with the amplitude response. Thus,

the present results provide fundamental insights into flapping of an elastic splitter plate
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attached to a rigid circular cylinder, which could prove useful to the design of flexible

plates for energy harvesting and thermal augmentation applications.
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Chapter 5

Role of Plate Thickness in

Flow-Induced Dynamics of an Elastic

Plate Subjected to Free-stream Flow

We investigate the effect of plate thickness on the dynamics of an elastic plate subjected to

a laminar free stream. An in-house fluid-structure interaction solver is employed to un-

derstand the dynamics of the plate. We investigate the effect of thickness on the plate dy-

namics by taking a wide range of mass ratio and bending stiffness of the plate at Reynolds

number, Re = 100. Re is based on free-stream velocity and the length of the plate. The

plate dynamics depend on reduced velocity, bending stiffness and mass ratio at a given Re.

Plate flapping stats at critical reduced velocity and critical mass ratio. Critical reduced

velocity and critical mass ratio change with the thickness of the plate. The flapping bound-

ary obtained from the simulations is plotted on a mass ratio-reduced velocity plane. We

show the critical flapping boundary changes with plate thickness and briefly, discuss wake-

structures and phase-plots for different cases of mass ratio and bending stiffness. The

present results are useful to design elastic plates flapping condition in energy harvesting

applications.
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5.1 Introduction

The stability and nonlinear dynamics of a thin elastic flag/membrane have been inves-

tigated and found in many theoretical (Kornecki et al. (1976); Watanabe et al. (2002);

Theodorsen and Mutchler (1935); Argentina and Mahadevan (2005); Eloy et al. (2008)

), numerical ( Zhu and Peskin (2002); Connell and Yue (2007); Huang (1995)) and ex-

perimental studies (Zhang et al. (2000); Shelley et al. (2005)). Most of the experimental

studies have been carried out to investigate the flapping dynamics of a flag. In addition,

the effect of flag material properties like mass and bending rigidity, flag positioning have

also been examined. Theoretical and numerical studies have been accomplished for details

investigation of flapping dynamic. Watanabe et al. (2002) studied the flutter phenomena

of a sheet of paper numerically. They found potential flow analysis is convenient to in-

vestigate flutter behavior. Connell and Yue (2007) proposed a regime map of flag flutter

which arose from their fluid-structure direct simulations. Depending on the combined

effects of various factors such as mass ratio, Reynolds number and bending rigidity, flag

flutter dynamics may fall into three categories: fixed-point stability, limit-cycle flapping,

and chaotic flapping. Fixed-point stability is a region where the flag aligns with the

flow. As the flow velocity is increased, limit-cycle flapping takes over, characterized by

single-frequency repeating flag oscillations. Chaotic flapping occurs as the flow velocity

is further increased. Eloy et al. (2008) addressed the linear stability of rectangular plate

in uniform flow and incompressible axial flow by varying aspect ratio. Shoele and Mittal

(2016b) predicted the flexible-cantilever dynamic behavior in the mass ratio and reduced

velocity parameter space for length, L = 1 and Re = 100. The fluttering instability of

the flag gives in a periodic or chaotic motion of the system. The chaotic regime exhibits

multi-frequency, multi-amplitude, and irregular flapping behavior and violent snapping of

the flag also occurs (Michelin et al. (2008); Shelley and Zhang (2011); Tian et al. (2010)).

Several previous studies defined two important dimensionless parameters that govern

the dynamics of the plate - bending stiffness (Kb) and mass ratio (M) which is described

in chapter 4 and the critical mass ratio for the chaotic flapping found by a linear stability

analysis in Ref. Connell and Yue (2007) is given by,

Mcrit =
1.328ReL

−1/2 +Kbk
2

1− 0.65ReL
−1/2k − 0.5Kbk3

(5.1)

where ReL is Reynolds number (Re), based on the plate length and k indicates wave

number. The wave number is represented by k = 2π/λ with λ representing the wavelength.

The objective of the present chapter is to investigate the critical reduced velocity and

critical mass ratio for plate flapping. We also examine to identify critical reduced velocity

and critical mass ratio for plate flapping for different thickness of the plate. We consider
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a wide range of M = [0.9, 19.5], Kb = [0.0009, 0.017] and UR = [10, 40.0], at Re = 100.

The chapter is organized as follows. We discuss the effect of M , Kb and UR on the

fluid-induced deformation of the plate in sections 5.3.1, 5.3.2 and 5.3.3, respectively.

Finally, based on all simulations results, we plot a flapping map in 1/M-UR plane in

section 5.3.4.

5.2 Problem definition

We employed an in-house, validated FSI solver is described in chapter 2.

In this chapter, We also investigate the plate instability. Plate instability depends on

fluid loading and inertia effect on the plate. Different angle of attack of the plate is one of

most plate instability mechanism. Plate instability of the fluid-elastic plate system occurs

when the reduced velocity UR exceeds a threshold URc in particular mass ratio (M)and

UR < URc, the plate remains in a stable flat state.

In this chapter, we consider a thin, elastic plate with dimensions 1D × 0.06D is kept

inside an open domain, as shown in Fig. 5.1. The domain length and width are (S1 + S2)

and S3, respectively, where S1, S2 and S3 are 5L, 20L and 10D, respectively. The center of

the plate is at (S1, S3/2). The boundary conditions for the present chapter are illustrated

in Fig. 5.1.

Figure 5.1: Schematic of FSI benchmark problem for a thin elastic plate

The fluid is considered to be incompressible and Newtonian. Free slip boundary condi-
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tions are applied at the top and bottom of the domain. No-slip is applied at the immersed

structure boundary. Fully developed flow boundary condition (BC) is applied for the ve-

locity at the right side of the domain. At the inlet, uniform velocity is applied. The

following values are considered for the simulation setup U = 1, L = 1, Re = 100. The

time step for this unsteady simulation is set to ∆t = 0.01. The Poisson ratio is taken as

0.4 in the structural solver.

5.2.1 Grid-size and domain-size independence study

We investigate grid convergence study of uniform inflow past an elastic plate in the open

domain for three different grids with sizes of 360 ×160, 384 × 160, and 416 × 192. The

time-step was set to ∆t = 0.01. The minimum grid sizes in X and Y-direction are listed

in Table 5.1, The tip deflection (Ytip) signals obtained for the grids are compared in

Fig. 5.2(a), with the inset showing the minor differences observed in peak amplitude for

the different grids. The errors concerning the finest grid are listed in Table 5.1. Since

the relative error for 360 × 160 grid, as shown in Table 5.1, is one order of magnitude

smaller than for 384× 160, the 360 × 160 grid was selected for all the simulations in the

present chapter. Three domains of sizes for (changing domain length and keeping domain

height same), 25D × 10D, 30D × 10D and 40D × 10D are taken to address domain

independent study. The tip displacement (Ytip) signals obtained from three different

domains are compared in Fig. 5.2(b). The inset of Fig. 5.2(b) shows the minor differences

observed in peak amplitude for the different domain. The error concerning the 25D ×
10D domain is listed in Table 5.2 which is less than 2%.

Table 5.1: Error in the maximum plate tip deflection for different grids with respect to
the finest grid examined

Cases Grid points ∆xmin ∆ymin Relative error in maximum Ytip with respect to case 3

1 360 ×160 0.01 0.01 0.055%
2 384 ×160 0.0125 0.0125 0.062%
3 416 ×192 0.0075 0.0075 –

Table 5.2: Error in the maximum plate tip deflection for different domain sizes with
respect to the lower domain size

Cases Domain size Relative error in maximum Ytip with respect to case 3

1 25 ×10 0.016%
2 30 ×10 0.08%
3 40 ×10 –
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Figure 5.2: (a) Grid size convergence study: comparison of the time-varying cross-stream
displacement of the plate tip (Ytip) as a function of grid resolution of the immersed bound-
ary method solver. (b) Domain size independence study: comparison of the time-varying
cross-stream displacement of the plate tip (Ytip) for three different domains.
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Table 5.3: Error in the maximum plate tip deflection for different domain sizes with
respect to case 3

Cases Domain size Relative error in maximum Ytip with respect to case 3

1 25 ×10 0.093%
2 40 ×10 0.076%
3 40 ×20 –

We have done another domain independent study by changing the height and keeping

the domain length same. Three domains of sizes for, 25D × 10D, 40D × 10D and 40D ×
20D are taken to address domain independent study. The tip displacement (Ytip) signals

obtained from three different domains are compared in Fig. 5.2(c). The inset of Fig. 5.2(c)

shows the minor differences observed in peak amplitude for the different domain. The

error concerning the 25 D × 10D domain is listed in Table 5.3 which is less than 1%.

Therefore, 25D × 10D domain is taken for all the simulations. In the present chapter,

360 × 161 non-uniform Cartesian grid with ∆xmin = 0.01 and ∆ymin = 0.01 is considered

for open domain. High resolution of a grid is incorporated into the region where the

plate movement is expected. For the structural solver, a total of 568 finite quadrilateral

elements for the plate is taken. The finite-element grid of the plate is shown in the inset

of Fig. 5.1.

5.3 Results and Discussions

Numerical simulations were performed using the same parameters of the flexible plate as

discussed in previous section 5.2 and the domain size is taken as follows; S1 + S2 = 25L

and S3 = 10.0L, as shown in Fig. 5.1. The dynamics of the elastic plate as a function

of a mass ratio (M), bending stiffness (Kb) and reduced velocity (UR) of the plate are

discussed. We vary M , Kb and UR in range of [0.05, 19.5], [0.0009, 0.017] and [10, 40.0],

respectively.

5.3.1 Effect of reduced velocity (UR) keeping mass ratio (M)

constant

We discuss the effect of reduced velocity (UR) on the elastic plate displacement (Ytip),

oscillation fruency (fp) and wake structures, keeping mass ratio (M) constant. We present

simulations for two M = 1 and 10 with varying (UR). In order to quantify the plate

response, we plot data of two different mass ratio, M = 1.0 and 10 as represented in

Fig. 5.3 and Fig. 5.5. Fig. 5.3 (first row) shows that plate deformation increases with UR.
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Figure 5.3: Comparison of Ytip of the plate deformation, power spectra and phase plane
plot are for three different UR. Note that M = 1.0 is fixed for all cases.

Fig. 5.3 (second row) shows that plate deformation frequency slightly change with UR.

Fig. 5.3 (third row) shows that the the plate lateral deformation is higher at UR = 17.81

for M = 1.0. Plate lateral deformation is lower at UR = 33.33 for M = 1.0. Fig. 5.5

shows that the plate deformation is the function of UR and M . Fig. 5.5 (first row) shows

that plate deformation is negligible at UR = 20 for M = 10. Plate deformation increases

with UR and amplitude of the plate deformation is nearly constant. The decrease in plate

deformation frequency is not much in Fig. 5.5. Fig. 5.5 (second row) shows that the plate

deformation dominant frequency slightly changes with increasing UR.

91



Figure 5.4: Comparison of vorticity field at different time instances for three different UR.
Note that M = 1.0 is fixed for all cases.

Figure 5.5: Comparison of Ytip of the plate deformation, power spectra and phase plane
plot are for three different UR. Note that M = 10 is fixed for all cases.
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Fig. 5.5 (third row) shows that the plate lateral deformation increases with UR. So

the plate deformation starts on critical M for particular UR. Fig. 5.4 and Fig. 5.6 depicts

the instantaneous vorticity fields around the plate. Three different positions like max-

imum, minimum and central position 6L,5L) at three different instances are plotted in

Fig. 5.4 and 5.6. For M = 1, the elastic plate is in its self-sustained oscillations state and

vortices are shedding alternately (see in Fig. 5.4). For M = 10, the elastic plate is in its

self-sustained oscillation state and one small vortex rolls with another large vortex and

finally sheds alternately (see in Fig. 5.6). Vortex shedding pattern depends on the plate

deformation amplitude.

Figure 5.6: Comparison of vorticity field at different time instances for three different UR.
UR is function of Kb and M . Here M is fixed and UR changes with Kb. Color map range
is [-1, 1].

5.3.2 Effect of reduced velocity (UR) keeping bending stiffness

(Kb) constant

The effect of reduced velocity (UR) on the elastic plate displacement (Ytip), oscillation

fruency (fp) and wake structures, keeping Kb constant is discussed. We take three different

UR = 15, 20, 30 and keeping mass ratio Kb = 0.11 constant as shown in the Fig. 5.7. UR

increases with M as Kb fixed. Fig. 5.7 shows the Ytip, power spectra and phase plot of

the elastic plate in the first, second and third row, respectively. Ytip increases with UR

as well as M . Fig. 5.7 (first row) shows that plate deformation is negligible at UR = 15

for Kb = 0.011. Plate flapping observes at higher UR(> 15) for Kb = 0.011. So plate

flapping strongly depends on UR and critical M . Fig. 5.7 (second row) shows that plate

deformation decreases with UR. Fig. 5.7 (third row) shows that phase plot is wider at

higher UR (= 30) because of lock-in condition.
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Figure 5.7: Comparison of Ytip of the plate deformation, power spectra and phase plane
plot are for three different UR. Note that Kb is fixed for all cases.

Figure 5.8: Vorticity field of plate deformation at three different UR. Note that Kb is
fixed for all cases. Color map range is [-1, 1] .
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Fig. 5.8 shows the vorticity fields for three cases of UR. For lower UR, no flapping

steady state is observed. Vortex shedding is found at a higher UR. Vortex is becoming

elongated, and shedding occurs behind the plate.

5.3.3 Effect of Kb and M keeping reduced velocity (UR) constant

Figure 5.9: Comparison of plate deformation (Ytip), FFT and phase plane plot for keeping
M , Kb, UR and L constant. Thickness (h), density ratio (ρs), and Young's modulus (E)
are adjusted.

We also examine that the response of the plate depends on M , Kb and UR at a given Re.

Simulations are performed in which thickness (h), density ratio (ρ), and Young's modulus
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(E) are adjusted in such a way that M , Kb and UR are constant. (Ytip), FFT and the

phase plot of the plate are shown for same Kb, M and UR in Fig. 5.9 and Fig. 5.11.

Figure 5.10: Comparison of plate deformation (Ytip), FFT and phase plane plot for keeping
M , Kb, UR and L constant. Thickness (h), density ratio (ρs), and Young's modulus (E)
are adjusted.

Figure 5.11: Comparison of plate deformation (Ytip), FFT and phase plane plot for keeping
M , Kb, UR and L constant. Thickness( h), density ratio (ρs), and Young's modulus (E)
are adjusted.
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Two different UR are chosen to show the effect of thickness. For UR = 15 as shown in

Fig. 5.9 , plate amplitude increases with plate thickness (h) but plate frequency decreases

with thickness (h). As increase of thickness of plate, effective Reynolds number based

on obstacle of incoming flow is increased. The instability in the shear layer as well as

wake behind plate increases with thickness and acting fluid force on plate increases with

thickness which causes largest deformation. Fig. 5.10 shows that the vorticity field for

three cases. Three different vortex patterns are observed. For lower thickness (h), small

vortex are observed and vortex is becoming elongated with thickness (h) further. For

UR = 11 as shown in Fig. 5.11, plate displacement is zero for thickness (h) = 0.06 and

0.09 and regular flapping is observed at thickness (h) = 0.12. Different thicknesses have

different critical UR at which flapping start.

5.3.4 Flapping map

The flapping responses for thickness (h) = 0.06 as a function of M and UR are plotted in

Fig. 5.12. Green triangle and blue diamond symbols represent the regular flapping state

and steady state with no flapping shown in the Fig. 5.12, respectively. the plate flapping

is distinct boundary and it is function of critical M and UR.
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Figure 5.12: Flapping boundaries as a function of the mass ratio (M) and UR for the
elastic plate in a uniform free stream.
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We also plot flapping boundary (eq. 5.1) given by Connell and Yue (2007) and compare

with present simulation. We take k = π for the first fundamental mode (Jaiman et al.,

2014; Liu et al., 2014). Connell and Yue (2007) did not mention h. Very low bending

rigidity is used for their simulation. They mentioned Kb which is a function of L and

h. We have drawn a red line from eq. 5.1. Here ReL is based on the length of the plate

(L). In their study, They have chosen Re = 1000. In Our case, we used an analytical

expression, and we have chosen ReL = 100 which is based on the length of the plate (L).

It is observed that the plate oscillates at particular UR and critical M . The region for

higher UR and larger M is no flapping zone which is inconsistent with Connell and Yue

(2007) criteria. the plate oscillation does not follow Connell and Yue (2007) criteria for

plate flapping. They studied stability analysis by using potential flow theory and they

showed the destabilizing effect of higher mass ratio and Reynolds number. We use viscous

laminar flow and it might be reason for mismatch. For large M and low UR, No-flapping

is observed. Similarly, no flapping is noticed at lower UR and M . Flapping is observed at

the moderate value of UR and M .

5.3.5 Effect of the presence of circular cylinder and without the

presence of circular cylinder on plate deformation

Figure 5.13: Comparison of the effect of the presence of a circular cylinder and without
the presence of a circular cylinder on plate deformation.

98



The effect of the presence and absence of a circular cylinder on the elastic plate displace-

ment (Ytip) and wake structures, keeping Kb, UR and M constant is discussed. Plate

vibration is suppressed when the cylinder is placed in front of the elastic plate. Fig. 5.13

shows the plate deformation at two different UR in the presence and absence of a circular

cylinder. In the presence of a circular cylinder, the plate tip goes up and vibrates. No

flapping is observed. For the case of absence of circular cylinder, flapping is observed with

higher amplitude. Fig. 5.14 shows that the vorticity field for the presence and absence

of a circular cylinder on the plate deformation. Vortex patterns are different for the two

cases. Alternative periodic vortex shedding is observed in both cases and vortex shed-

ding pattern is 2S. Shed Vortices from the plate are elongated. Due to large shear layer

instability, larger Ytip of plate deformation occurs. Vortex formation length is higher for

plate attached to a circular cylinder. As bending rigidity is low, plate showing symmetry

breaking for the second case.

Figure 5.14: Comparison of the vorticity field of plate deformation for the presence of
circular cylinder and without the presence of a circular cylinder on plate deformation.
Color map range is [-1, 1] .

5.4 Closure

We have employed a fluid-structure interaction (FSI) solver to simulate the dynamics of

an elastic plate and subject to laminar flow. In the present chapter, the effect of mass
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ratio (M), bending stiffness (Kb) and reduced velocity UR were studied at Re = 100,

where Re is Reynolds number and is based on free-stream velocity and length of the

plate. We vary M , Kb and UR in range of [0.05, 19.5], [0.0009, 0.017] and [10, 40.0],

respectively. The plate amplitude and oscillation frequency are found to be a function of

M , Kb. We have plotted time-varying displacement of the tip of the plate, the FFT of the

displacement signal, phase-plot of the plate displacement and wake structures in order

to quantify the results. Plate flapping depends on critical reduced velocity and critical

mass ratio. Critical reduced velocity and critical mass ratio changes with the thickness of

the plate. Two types of flapping dynamics are observed: (a) fixed-point stability and (b)

limit-cycle flapping. We have plotted a flapping boundary using the data of simulations

on 1/M − UR plane. We have found that the critical flapping boundary changes with

plate thickness. The present results provide fundamental insights into the flapping of an

elastic plate and could be useful to design flexible plate in energy-harvesting and thermal

augmentation applications.
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Chapter 6

Flow-induced Dynamics of an

Inverted Elastic Plate Kept at Lee

Side of a Cylinder Subjected to

Free-stream Flow

We investigate the dynamics of an inverted elastic plate kept at the rear side of a circular

cylinder in a uniform steady flow in the open domain at Reynolds number, Re = 100.

Re is based on free-stream velocity and the cylinder diameter. In the present chapter,

we investigate the effect of an upstream circular cylinder on the dynamics of an inverted

elastic plate. The vortex interaction between an inverted plate and a circular cylinder is

identified. Inverted flag exhibits a small deformation as well as large deformation which

depends on its position and elasticity. The position of the plate affects its deformation

significantly, so the gap between the inverted plate and the cylinder is the key design

parameter for such flow-induced deformation of the inverted flag as energy harvesters.

6.1 Introduction

Flow-induced deformation of an elastic splitter plate with its leading edge clamped and

trailing edge free to vibrate have been extensively investigated through experiment (Zhang

et al. (2000); Shelley et al. (2005)), analytically (Kornecki et al. (1976); Watanabe et al.

(2002); Theodorsen and Mutchler (1935); Argentina and Mahadevan (2005); Eloy et al.

(2008) ) and numerically ( Zhu and Peskin (2002); Connell and Yue (2007)) in the recent

years. In conventional plate configuration, leading is clamped and trailing edge is free,

but inverted plate configuration, it is reversed and this plate configuration completely

changes the behavior of plate. The FSI studies of conventional flexible structures involving

large-scale flow-induced deformation by Kundu et al. (2017), Bhardwaj and Mittal (2012)
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and many others showed validations of their respective solvers against the benchmark

problem proposed by Turek and Hron (2006). Tian et al. (2010) studied the hydrodynamic

interaction between flexible and rigid bodies in tandem arrangement. They showed that

motion of flexible filament depend on gap between flexible and rigid bodies in tandem

arrangement. Tian et al. (2011) performed simulation to model fish swimming. In their

simulation, they kept an elastic filament behind the cylinder and they studied flapping

in the Krmn gait and the entrainment regions near a cylinder. The inverted flag was

recently introduced by Kim et al. (2013). In low stream velocity, inverted flag maintains

straight mode. However, with increase in the stream velocity inverted flag starts flapping

with large amplitude. Numerical studies have been done to investigate inverted flag

dynamics and flow physics of inverted flag varying bending rigidity and the Reynolds

number (Gilmanov et al. (2015); Ryu et al. (2015); Gurugubelli and Jaiman (2015)). Sader

et al. (2016) theoretically studied the flapping motion of the inverted flag. They found

flapping is function of aspect ratio. They investigated the divergence stability mechanism

independent of the added mass parameter. Shoele and Mittal (2016a) computationally

investigated on the energy harvesting performance of a piezoelectric inverted flag model

by varying an initial inclination angle.

In this chapter, the inverted elastic plate kept behind certain distance from a fixed

cylinder at the downstream is considered. The effect of the gap between the circular

cylinder and the inverted plate on vortex shedding and its deformation are studied.

6.2 Problem definition

A rectangular computational domain as shown in Fig. 6.1 has been considered in the

present computations. Computational model described in in Chapter 2 is employed. The

height and width of the domain are 12D and 19D, respectively. The gap between the

circular cylinder and the plate has been varied such as 1Dh, 2Dh and 3Dh. Dh is horizontal

distance and Dh is equal to D. The length of the plate has been fixed as L = 2D, and the

thickness of the plate has been kept as 0.02D. Here D is the diameter of the cylinder. Free

slip boundary conditions are applied to the channel walls and No-slip boundary condition

at immersed structure boundary.

At the inlet, uniform velocity is applied. In the present study, the following values

are considered for the simulation setup U = 1, D = 1, Re = 100, E = 1.4 × 103, ρs

= 10. Here, U , D, Re, E, ρs are uniform velocity of the fluid at inlet, diameter of the

cylinder, Reynolds number based on cylinder diameter and uniform flow at the inlet,

Young's modulus and structure to fluid density ratio, respectively. The Poisson's ratio is

taken as 0.4 in the structural solver.

The objectives of the present chapter are as follows:
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• To investigate the effect of the gap between the circular cylinder and an inverted

elastic plate on vortex shedding and find critical distance between the circular cylin-

der and the inverted elastic plate to obtain the maximum plate deformation.

• To study the effect of mass and Young's modulus of a flexible inverted plate keeping

the fixed gap between the circular cylinder and inverted plate on the plate dynamics.

Figure 6.1: Schematic of the computational domain with boundary conditions (BC).

6.3 Results and discussion

6.3.1 Effect of gap between the cylinder and inverted elastic

plate

The dynamics and deformation of the inverted elastic plate are related to vorticity struc-

ture around the plate. First, we study the dynamics of the single inverted elastic plate in

uniform flow in open domain. Tip of the plate (Ytip) displacement and vorticity field are

shown in Fig. 6.2. single inverted elastic plate deforms one direction and makes an angle.

The plate is nearly perpendicular to u-velocity. It does not regain its original position

shown in Fig. 6.2 (shown at the bottom) as plate restoring force is lower than fluid X-

direction force. Fig. 6.2 (top figure) shows the Ytip and Xtip displacement of the inverted

elastic plate. Ytip and Xtip displacement are very small and alternating vortex shedding

at steady state is observed. The inverted elastic plate dynamics has changed when a

circular cylinder is present in front of the inverted plate and a large plate displacement is

observed. The plate displacement is a function of the gap between the circular cylinder

and the inverted plate. To study the effect of gap on the plate dynamics, three different

cases are considered. Three different distances between the cylinder and the inverted plate
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such as 1Dh, 2Dh and 3Dh are considered to investigate the effect of the gap on vortex

shedding and the plate deformation. Three distinct plate flapping have been observed:

1) inverted limit cycle oscillation for gap 1Dh, 2) chaotic-flapping for the gap 2Dh and

3) deformed flapping for the gap 3Dh. Vorticity contour and Ytip plate displacement are

shown in Fig. (6.2- 6.6).

Figure 6.2: Ytip displacement of an inverted elastic plate in the top row. Alternating
vortex shedding is shown at middle and bottom row for two different time instances at
steady state.
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Fig. 6.3 shows the vorticity contour and the plate deformation for the 1Dh distance

Figure 6.3: Ytip displacement of an inverted elastic plate in the top row. Vorticity contour
at three different positions of Ytip of inverted plate. (a) vorticity contour at the maximum
tip position (b) middle vorticity contour at the central tip position (c) vorticity contour
at minimum tip position. Note that the distance between circular cylinder and inverted
plate is 1Dh.

between the cylinder and the inverted plate for flapping state. Fig. 6.3 (bottom three

row) shows a thick shear layers over the plate. Small shear layer instability is observed.

The inverted elastic plate acts like splitter plate which separates two shear layer. Vortex

is shedding from the clamped end of the plate.
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Figure 6.4: Ytip displacement of an inverted elastic plate in the top row. Vorticity contour
at three different positions of Ytip of inverted plate. (a) vorticity contour at point(a) (b)
middle vorticity contour at the central tip position (point (b)), (c) vorticity contour at
point (c). Note that the distance between circular cylinder and inverted plate is 2D.

We also plot time history of Ytip displacement of an inverted elastic plate at point c of

Fig. 6.4 for better understanding plate dynamics of inverted elastic plate. Fig. 6.5 shows

that Time history of Ytip displacement of an inverted elastic plate in the top row. Vorticity

contour and positions of Ytip of the inverted plate at different time instances (a-h). It is
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observed that Time history of Ytip displacement of an inverted elastic plate is dynamically

chaos from Fig. 6.5 (top). Vortex shedding behind the plate looks regular, but it depends

on plate position. Plate position depends on the timing of vortex shedding coming from

the circular cylinder. Fig. 6.5 a shows maximum displacement of the plate. Fig.6 a-h

shows that vortex shedding coming from the cylinder influences the plate deformation.

Figure 6.5: Time history of Ytip displacement of an inverted elastic plate in the top row.
Vorticity contour and positions of Ytip of inverted plate at different time instances (a-h)
Note that the distance between circular cylinder and inverted plate is 2Dh.

Fig. 6.3 (top row) shows self sustained periodic oscillation of the inverted plate. The

plate vibrates with one single dimensionless frequency of 0.128 and the plate amplitude

is 0.338D. The plate vibrates within cylinder diameter. For a cylinder without a down-

stream plate, one can expect vortex shedding eventually in the form of a natural
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Figure 6.6: Ytip displacement of an inverted elastic plate in the top row. Vorticity contour
at three different positions of Ytip of inverted plate. (a) vorticity contour at the maximum
tip position (b) middle vorticity contour at the central tip position (c) vorticity contour
at minimum tip position. Note that the distance between circular cylinder and inverted
plate is 3Dh.
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von-Kármán vortex street at Reynolds number, Re =100. In this case, wavy wake

structure is observed at the tailing edge of the plate. Fig. 6.4 shows the vorticity contour

and the plate deformation for the 2Dh distance between the circular cylinder. Chaotic

deflected-flapping state of inverted plate is observed in Fig. 6.4. The plate vibrates with

multiple dimensionless frequencies. The plate amplitude depends on vortex shedding from

circular cylinder. The instability in the shear layer is not completely taken place because

of gap. As a result, The inverted plate vibrates with different amplitude. The vortices

coming from cylinder shed in the gap which subsequently triggers the vibration of the

plate. An alternating vortex shedding is taking place from the cylinder. When vortices

shed at the tip of the plate, plate deformation occurs. Plate does not get sufficient time

to deform, alternate vortices coming from opposite side as a result chaotic deformation

happens. Fig. 6.6 shows the vorticity contour and the plate deformation for the 3Dh

distance between cylinder and the inverted plate for largely deformed-flapping state. The

plate vibrates with large amplitude. The instability in the shear layer is completely taken

place because of gap. Shedding vortex from circular cylinder fall on the tip of the plate

which gives fluid force to the plate. As a result, large plate deformation is observed.

Irregular and chaotic vortex shedding observed behind the inverted plate due to the

interaction of inverted plate deformation. The plate vibrates with multiple frequencies,

and the maximum plate amplitude is 1.73Dh (see Fig. 6.6).
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Figure 6.7: Effect of density ratio on Ytip displacement of an inverted plate behind the
cylinder. The distance between the cylinder and the inverted plate is G = 3.0Dh
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6.3.2 Effect of structure density

Fig. 6.7 shows the effect of density ratio on the Ytip of the inverted plate. Three different

mass ratio are considered for this study. The gap between the circular cylinder and plate

is fixed which is 3D. At higher density ratio (ρs = 25), the plate displacement is negligible.

At density ratio (ρs = 10 and 2.5), plate deformation is lager but at low density ratio,

plate reaches steady state quickly. Frequency of the plate displacement is nearly same

but amplitude is slightly small. There is no significant difference of plate displacement

for ρs = 10 and 2.5.

6.3.3 Effect of Young’s modulus

In this section, the effect of the structural Young's modulus on the flow-induced defor-

mation of the inverted elastic plate is examined (see Fig. 6.8).
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Figure 6.8: Effect of structural Young's Modulus on the Ytip displacement of an inverted
plate behind the cylinder. The distance between the cylinder and the inverted plate is
G = 3.0Dh

For this purpose, the different structural Young's modulus are considered keeping ρs

= 10 and other parameter constant. All simulations are performed in the same computa-

tional domain. For investigating the influence of the plate Young's modulus, four different

values of Young's modulus, ranging from E = 700 to E = 2800 are chosen in the present
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study. From the simulations, it is noticed that at Young's modulus E = 1400, large plate

amplitude deformation is observed. The plate amplitude decreases with increase E. At

low Young's modulus, the plate amplitude is low.

6.4 Closure

A FSI system consisting of a rigid circular cylinder and an inverted elastic plate placed

with a gap in the downstream has been investigated numerically by using an in-house

FSI solver based on sharp-interface immersed boundary method. The flow-induced defor-

mation of the inverted elastic plate kept behind circular cylinder is our interest of study

regarding the prospect of energy harvesting. Numerically, a significant increase in the

amplitude of the plate oscillations has been observed at the gap of 3Dh. The role played

by the gap in this study implies that a proper choice of the gap is mandatory to control the

maximum plate deformation for efficient energy harvesting. The present chapter provide

understanding of interaction of rigid cylinder and inverted elastic plate. Inverted elastic

plate vibrates with larger amplitude at at the gap of 3Dh between rigid cylinder and in-

verted elastic plate. Large amplitude of inverted elastic plate could be useful to the design

of piezoelectric beam for energy harvesting and thermal augmentation applications.
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Chapter 7

Thermal Augmentation by

Flow-induced Deformation of elastic

plates Subjected to Pulsatile

Laminar Channel Flow

We present heat transfer enhancement by flow-induced deformation of two thin parallel

elastic plates immersed in the rectangular heated channel. We employ an in-house, sharp-

interface Immersed Boundary Method (IBM) based flow and heat transfer, solver. The

solver is coupled with a finite element method based structural solver using an implicit

coupling. In the present chapter, the large flow-induced deformation of two thin parallel

insulated elastic plate in a channel with pulsating cross inflow is studied. The distance

between the two elastic plates vary with position to achieve optimum heat transfer from

the heated channel walls to the fluid. The interaction between twin elastic plate, flow field,

and temperature field are discussed. The interaction of wake vortices between twin plates

increases the mixing of the fluid in the channel and thereby the convective heat transfer

from the heated channel walls to the fluid, due to a reduction in thermal boundary layer

thickness. The numerical results show nearly 38% improvement of heat transfer efficiency

for twin plates in rectangular channel as compare to the simple rectangular channel.

7.1 Introduction

Fluid-structure interaction can be utilized for heat transfer enhancement. The heat trans-

fer enhancement techniques can be classified into two categories, namely: passive and

active.A brief introduction to recent developments in these categories is given in Bergles

(2011). In the context of passive techniques, heat transfer enhancement was demonstrated

via utilizing the flow past a bluff body in a channel with different geometries of shapes
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such as square cylinder (Dunne and Rannacher (2006)), wings, etc. and/or by changes

in the channel geometry (Beeby et al. (2006),Fiebig et al. (1989)), in their numerical

experiments, employed delta wings as vortex generators to increase heat transfer in a

rectangular channel flow. Several authors have demonstrated heat transfer enhancing

capabilities of different bluff bodies, like a rectangular cylinder, inclined square cylin-

der, and triangular cylinder, etc., inside the channel as vortex generators. Alternatively,

Wang and Chen (2002) used sinusoidal wavy channel geometry to increase heat trans-

fer. In the active techniques, The bluff bodies are oscillated to alter flow characteristics

and improve the heat transfer. Increasing the strength of vortices has a positive effect

on heat transfer. Transverse oscillations of a circular cylinder placed inside the channel

result in enhanced heat transfer as compared to the stationary cylinder. In all studies,

the heat transfer enhancement is accompanied by a cost in terms of more pressure drop.

Previous numerical studies showed that structure was set in motion by an external source

and motion of the flexible structures could be utilized as a heat transfer enhancement

technique. For instance, Fu and Yang (2001) showed that the swinging fins in a heated

channel enhance heat transfer which scales with the fin amplitude. Similarly, oscillating

fins improves heat transfer from a heat sink due to enhanced convective mixing (Yang

(2003)). Very few numerical studies which considered flow-induced deformation of the

structure were reported. For instance, Khanafer et al. (2010) simulated a heated flexible

cantilever attached to a square cylinder in a channel. However, the authors did not in-

vestigate thermal augmentation due to the motion of the cantilever. Habchi et al. (2013)

studied twin elastic thin plates mounted in cross-flow configuration at a distance and sub-

jected to the pulsatile flow. They reported that the plates oscillate in opposite-phase and

in-phase for larger and smaller value of Young's modulus of the plate, respectively. Very

recently, Shi et al. (2014) and Soti et al. (2015) demonstrated heat transfer enhancement

via large-scale flow-induced deformation in the FSI benchmarks proposed by Turek and

Hron (2006). These investigations, however, considered the flexible structure along the

flow and did not consider the cross-flow configuration of the mounting structure. It is

useful to examine cross-flow configuration of the mounting elastic structure to augment

heat transfer in a channel. Soti et al. (2015) also demonstrated that the vortices generated

due to the motion of the flexible plate drive higher sources of vorticity generated on the

channel walls out into the high velocity regions, which helps in the mixing of the fluid and

therby enhancing the heat transfer. Joshi et al. (2015) performed simulation of thin flex-

ible plate involving large-scale flow-induced deformation in a rectangular channel. They

found that thin flexible plate enhanced heat transfer at the channel walls by reducing

thermal boundary layer thickness.

In this chapter, We employ a state-of-the-art FSI solver (section 7.2) to investigate

thermal augmentation by using twin elastic plates mounted in a cross-channel flow. The
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effect of many parameters such as material properties, flow parameters and geometrical

configuration and convective heat transfer was not studied. The objectives of the present

chapter is to investigate effect of gap between twin elastic plate on thermal augmentation

in a channel with pulsating cross inflow. The interaction between twin elastic plates, flow

field, and heat transfer enhancement are quantified.

7.2 Computational model

The detailed description of the FSI solver is given in Chapter 2. The convective heat

transfer inside the fluid can be expressed by the following dimensionless energy equation:

∂T

∂t
+ vi

∂T

∂xi
=

1

Pe

∂2T

∂x2
j

, (7.1)

where Pe is Peclet number and T is dimensionless temperature, defined in terms of

dimensional temperature T ∗, reference wall temperature T ∗w and reference temperature

T ∗ref , as follows,

T =
T ∗ − T ∗ref
T ∗w − T ∗ref

, (7.2)

T ∗ref is taken as inlet temperature of the fluid in all simulations unless specified other-

wise. The heat transfer augmentation is characterized using instantaneous Nusselt num-

bers at the channel wall, which is defined as follows (Bejan (2004)):

Nu(x, t) =
4H

Tm − 1

∂T

∂y

∣∣∣∣
wall

, (7.3)

where 4H is the dimensionless hydraulic diameter of the channel.

The heat transfer enhancement is quantified using the instantaneous Nusselt number

given in eq. 7.3 with the definition of bulk mean temperature modified to (Guo and Sung,

1997)

Tm(x, t) =

∫ H
0
|u|Tdy∫ H

0
|u|dy

, (7.4)

where u stands for dimensionless axial velocity component. Time-averaged Nusselt

number (Nuavg) over one period of oscillation, τ , for time-periodic flow is expressed as:

Nuavg(x) =
1

τ

∫ t+τ

t

Nu(x, t)dt. (7.5)

Time- and space-averaged Nusselt number (Numean) over surface area A is defined as:
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Numean =
1

A

∫ ∫
A

Nuavg(x)dA. (7.6)

We define change of efficiency (ηh) for the heat transfer, defined as follows (Yang,

2003),

ηh =
Numean −Numean, channel

Numean, channel

× 100 (7.7)

7.3 Problem definition

We consider twin thin parallel elastic plates immersed in a 2-D incompressible, laminar

flow in the rectangular channel. The plates are fixed to the bottom wall, and the height

and width of the plate are H and 0.1H, respectively (Fig. 7.1A). The distance between

the twin plates is 2H. The rectangular channel height and width are 4H and 20H. First

elastic plate is placed in the rectangular channel at 4H distance from the inlet. At the top

and bottom of the domain, no-slip boundary conditions are applied. No-slip is applied at

the immersed structure boundary. Fully developed flow BC is applied for the velocity at

the outlet. At the inlet, the fully developed velocity is considered which is given by:

u = 4U
( y

4H

)(
1− y

4H

)(1− cos(2πft)
2

)
(7.8)

where U is the maximum inlet velocity at the center of the channel, 4H is channel

width, and f is inflow pulsation frequency. Zero Neumann boundary condition is applied

for pressure at all boundaries.

Figure 7.1: Schematic of computational domain with boundary conditions (BC) con-
sidered in the present chapter of two thin parallel elastic plate mounted in rectangular
channel

The thermal boundary conditions are shown in Fig. 7.1. The temperature is considered
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as uniform at the inlet. T0 = 0, is considered at the channel inlet. Tw = 1 is prescribed

at channel wall. The fluid-structure interface is insulated, and the channel walls are at

constant temperature (Tw = 1). At channel outlet, zero Neumann temperature boundary

condition is applied. The Reynolds number (based on maximum pulsation velocity U and

plate height H) is 100. The dimensionless Young's modulus, structure-fluid density ratio,

Poisson ratio, pulsatile frequency and Prandtl number are 1.0 × 103, 10, 0.45, 0.1 and 1

respectively.

7.4 Results and discussion

We investigate thermal augmentation by using twin elastic plates mounted in a cross-

channel flow. Here we consider pulsatile inflow instead of uniform flow. Plate deforms

downside of channel flow and cannot reach the original position, as shown in Fig. 7.2,

for uniform flow, but plate deforms both sides for pulsatile inflow. In our studies, we

are investigating flow-induced deformation, so all investigation based on flow-induced

deformation. It is a passive technique to enhance heat transfer by mixing fluid in the

channel. No external energy is required to move the plate. Forced oscillation for plate

movement requires external energy. So, we did not consider any forced oscillation to

improve heat transfer via fluid mixing.

Figure 7.2: Vorticity contour at two different time instance for elastic plate in a channel
with (a) pulsating cross inflow (left side (Fig. a1 and b1)) (b) without pulsating flow
(right side (Fig. a2 and b2)).

To demonstrate heat transfer enhancement via fluid-structure interaction, first, we

show Xtip and Ytip position of the plate with time for twin plates in a rectangular chan-

nel. The distance between two plates is 2H. Second, we plot vorticity contours and

temperature contours at three different time instances. Third, we compare instantaneous

Nusselt number at L = 5.16H and time-averaged Nusselt number with the channel and

single plate. Finally, effect of distance between two plates on heat transfer is discussed.

Fig. 7.3A shows time-varying Xtip signal with time for twin plates. The second plate oscil-

lates with higher amplitude than the first plate by 29 %. Both signals show self-sustained

117



periodic oscillation of the plates. The dominant frequency of both signals is the same flow

pulsation frequency. Fig. 7.4B shows the Ytip signal with time for twin plate. We plot the

phase-plot of the two plate and we observed that second plate Ytip displacement is higher

than the first plate. Fig. 7.4 shows vorticity contours (left column) and temperature

contours (right column) at three different time instances shown in Fig. 7.4A by vertical

line as well as three different positions. If the plates move in the backward X-direction,

strong negative vorticity generates and at the center position, strong positive vorticity

is observed behind the first elastic plates. For forward movement of the plates, positive

vorticity arises at the top of the second plate. The fluid mixing is more for the forward

movement of the plates as the thermal boundary thickness is lesser as compared to only

channel case (see temperature contours Fig. 7.4B).

Figure 7.3: Xtip and Ytip position of plate with time for twin plates at a rectangular
channel. The distance between two plate is 2H

Figure 7.4: (A) Vorticity contours and (B) Temperature contours at three different time
instances (a, b and c) shown in Fig. 7.3. The distance between two plates is 2H
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Figure 7.5: (A) Instantaneous Nusselt number at L = 5.16H (B) Time-averaged Nusselt
number for three different cases.

Fig. 7.5A shows time varying Nusselt number (Nu) at L = 5.16, mid position of two

plates and is compared with two different cases, only channel and channel with a single

plate. Nu is largest for twin elastic plates case than the only channel and channel with

a single plate. Fig. 7.5B shows time averaged Nusselt number (Nu) for three cases. It is

observed that Nu is highest at two specific location (L = 5 and L = 8) for twin plates.

Figure 7.6: Time averaged Nusselt number (Nu) for (A)rigid plate and(B) elastic plate.
Note that d denotes distance between twin elastic plates.
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Figure 7.7: Comparison of vorticity contours for different cases: (a) rectangular channel,
(b) single plate (c) twin plates, d = H (d) twin plates, d = 2H (e) twin plates, d = 3H
(f) twin plates, d = 4H (g) twin plates, d = 5H. Note that d denotes distance between
twin elastic plates.

Fig. 7.6A and B show Nu for rigid plate and elastic plate in rectangular channel. We

plot more cases of distance between the two plates. For rigid plate case, Nu is nearly 20

when distance between two plates are 2H. Peak of Nu decreases with distance of twin

plates. Fig. 7.6B shows the Nu for elastic plate in rectangular channel. Peak of Nu is

nearly 28 when distance between two plates is 3H and peak of Nu decreases with distance

of twin plates. A second peak is exists in down stream for d = 5H. Fig. 7.7 shows the

vorticity contours for the rigid (left) and elastic plates (right). Five different cases are

considered for twin plate both rigid as well as soft plates. The vorticity generated at the

first plate interacts with second plate top edge for rigid plate cases shown in Fig. 7.7(c-

g). For the case of the elastic plate in a channel, vorticity generated at the first plate

and moving back and forth due to pulsatile flow. The isotherms for all configurations at

steady state are plotted in Fig. 7.8, respectively. We note that the thermal boundary layer

thickness of the channel wall is larger in the channel and single plate case. The thermal

boundary layer thickness reduces as the strength of the vortices increases for twin plate

case. It is observed from Fig. 7.8 (fifth rows) that the thermal boundary layer thickness

is lowest because of the strong interaction of vortices. The interaction of wake vortices

between twin plates increases the mixing of the fluid in the channel. The motion of the
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plates improve convective mixing and heat transfer in bulk and near the walls by reducing

thermal boundary layer thickness and it also helps to improving Nusselt number at the

channel walls.

Figure 7.8: Comparison of temperature contours for for different cases: (a) rectangular
channel, (b) single plate (c) twin plates, d = H (d) twin plates, d = 2H (e) twin plates,
d = 3H (f) twin plates, d = 4H (g) twin plates, d = 5H. Note that d denotes distance
between twin elastic plates.

We also calculate mean Nusselt number (Numean) for the above cases. We observe that

the Numean is maximum for both rigid and elastic plate in a channel when the distance

between plates is 4H. We also calculate percent change of efficiency which is in Table 7.1

and Table 7.2 for rigid plates as well as elastic plates. We note that Numean and percent

change of efficiency are highest when the distance between plates is 4H.
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Table 7.1: Time-averaged Nusselt number (Numean) and % change of efficiency for elastic
plate

Configurations Distance Between twin plates Numean % change of efficiency
Channel - 9.36 -

Single Plate - 10.83 13.57%
Twin plate 1H 11.26 20.29 %
Twin plate 2H 12.68 35.47%
Twin plate 3H 11.54 23.29%
Twin plate 4H 12.93 38.14%
Twin plate 5H 12.81 36.85%
Twin plate 6H 12.04 28.63%

Table 7.2: Time-averaged Nusselt number (Numean) and % change of efficiency for rigid
plate

Configurations Distance Between twin plates Numean % change of efficiency
Channel - 9.36 -

Single Plate - 10.58 13.03%
Twin plate 1H 10.31 10.14
Twin plate 2H 10.35 10.57
Twin plate 3H 10.26 9.61
Twin plate 4H 11.67 24.67
Twin plate 5H 11.81 26.17
Twin plate 6H 10.65 13.78

7.5 Closure

We have investigated the thermal enhancement at the channel walls for two parallel elas-

tic plates vertically mounted in a rectangular channel subjected to pulsatile inflow with

respect to pulsatile channel flow without plate. The interaction of wake vortices between

twin plates increases the mixing of the fluid in the channel and thereby the convective

heat transfer from the heated channel walls to the fluid, due to a reduction in thermal

boundary layer thickness. The distance between two plates effects the heat transfer ef-

ficiency. The obtained results for two elastic plates of distance 4H gives the maximum

mean Nusselt number (Numean) and change of efficiency of heat transfer is nearly 38%.

Maximum time averaged Nusselt number Nu peak is observed at the mid point of twin

elastic plates. Highest peak of time averaged Nusselt number Nu is noticed for twin

elastic plate when the distance between two plates are 5H.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, an in-house fluid-structure interaction (FSI) solver has been benchmarked

and has been employed for simulating a thin, elastic plate undergoing large-scale defor-

mation in laminar flow. The solver couples a sharp-interface immersed boundary method

for the fluid dynamics with a finite-element method to treat the structural dynamics. The

two solvers are implicitly (two-way) coupled using a partitioned approach. The bench-

marking of the solvers is carried out as follows. We have tested the FSI solver with the

benchmark data and validate the flow and structure solvers independently as well as mod-

ule of large-scale flow-induced deformation. We have qualitatively compared vortices in

the wake of pulsatile flow past a circular cylinder in a channel with the published results

of Al-Sumaily and Thompson (2013). Quantitatively, the flow solver is validated for pre-

dicting the lift and drag coefficients for flow past a circular cylinder under steady flow

and pulsatile flow with non-zero mean velocity (Li et al. (2010); Behr et al. (1995)). For

the structural solver, deflection of a cantilever beam under uniformly distributed impulse

load is compared with the published results of Tian et al. (2010). The FSI solver was

validated against an benchmark problem in which a thin elastic splitter plate is attached

to (a) a square cylinder, and (b) a circular cylinder and in both the cases, the plate attains

self-sustained oscillation. The former was proposed by Turek and Hron (2006) and was

validated by Bhardwaj and Mittal (2012) using the in-house solver used in the present

thesis. In Ref. Bhardwaj and Mittal (2012), Stp was in excellent agreement while the

difference in Ytip was around 11%, as compared to the benchmark data of Turek and Hron

(2006). The results in the present thesis show reduction in the error of Ytip to around

1%. Overall, the Stp and Ytip are excellent agreement with published results for both FSI

benchmarks.

The effect of the pulsatile inflow on the flow-induced deformation of an elastic plate

inside a channel is simulated numerically. In the case of the pulsatile inflow, the plate
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experiences strong forcing from vortices that form from the separating shear layers from

the cylinder and subsequently advect downstream over the surfaces of the plate. Despite

the tendency of the vortices to form and shed symmetrically because of the applied longi-

tudinal forcing, the coupling with the allowable cross-stream oscillation mode of the plate

leads to substantially increased cross-stream oscillation amplitude relative to the unforced

case in general. The maximum plate displacement is observed when the applied oscilla-

tion frequency is twice the natural plate frequency in a particular mode (Stf ∼= 2Stni),

corresponding to the resonant or lock-in case. The mode of the natural frequency depends

upon the plate length. For applied frequencies away from this condition, beating is ob-

served due to the superposition of the applied and natural oscillatory signals. The plate

deformation response, and drag of the plate and its components, are quantified for forcing

flow amplitudes K ≤ 1, and for forcing frequencies, Stf ≤ 1. The total drag on the plate

is found to be significantly larger relative to the steady inflow, at forcing frequencies equal

or larger than lock-in frequency, at a given flow amplitude. For lock-in cases, the plate

displacement, total drag, pressure as well as skin friction drag increases with the forcing

flow amplitude.

The dynamics of an elastic splitter plate attached to a rigid circular cylinder and is

subjected to laminar flow has been studied. In this configuration, the effect of mass ratio

(M) and bending stiffness (Kb) are studied at Re = 100, where Re is Reynolds number

and is based on free-stream velocity and cylinder diameter. We vary M , Kb and UR in

range of [0.143, 20], [0.0008, 0.0435] and [2.562, 30.0], respectively. The plate amplitude

and oscillation frequency are found to be a function of M and Kb. We plot time-varying

displacement of the tip of the plate, FFT of the displacement signal, phase-plot of the plate

displacement and wake structures in order to quantify the results. The largest amplitude

of the plate is found to be in the lock-in condition at which the natural frequency of the

plate in a given fluid synchronizes itself with the oscillation frequency of the plate. At

lock-in, the oscillation frequency is lower than the natural frequency of the plate in a

vacuum due to added mass effect. These findings are consistent with those for classical

vortex-induced vibration of a rigid cylinder at the low mass ratio. The plate exhibits a

strong added mass effect at the lower mass ratio and lower bending stiffness. As M and

Kb increases, the oscillation frequency becomes closer to the natural frequency of the plate

in a vacuum, showing the diminishing added mass effect. We plot a flapping boundary

using the data of simulations on mass ratio-reduced velocity plane, and it is found to be

consistent with previous available theories and data.

The role of the plate thickness in determining flapping dynamics of an elastic thin

plate is numerically investigated. We vary mass ratio (M), bending stiffness (Kb) and

reduced velocity UR for different cases of plate thickness h at Re = 100, where Re is

Reynolds number and is based on free-stream velocity and length of the plate. The range
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of variation of M , Kb and UR are [0.05, 1.1], [0.0009, 0.017] and [10, 40.0], respectively.

The plate amplitude and oscillation frequency are found to be a function of M , Kb and

h. We plot time-varying displacement of the tip of the plate, FFT of the displacement

signal, phase-plot of the plate displacement and wake structures in order to quantify the

plate flapping dynamics. As a function of M and UR, two types of flapping are observed:

(a) fixed-point stability and (b) limit-cycle flapping. We plot the flapping boundary using

the data of simulations on 1/M − UR plane. The plate flapping occurs at a critical

UR and critical M . The plate flapping boundary changes with thickness of the plate

because critical UR and critical M change with the plate thickness. We tested another

configuration of a FSI system consisting of a rigid cylinder and a flexible inverted plate

placed with a gap in the downstream. A significant increase in the amplitude of the plate

oscillations has been observed at a critical gap.

Finally, we have investigated thermal enhancement at the walls of a heated channel

subjected to pulsatile inflow and two parallel elastic plates are vertically mounted in this

channel. The distance between two plates influences the heat transfer. The interaction be-

tween twin elastic plates, flow field, and temperature field as function of distance between

the plates are discussed. Numerical simulations show that the time- and space-averaged

Nusselt number (Numean) is maximum for two elastic plates of a distance 4H. In this

case, we have found nearly 38 % improvement in Numean with using twin elastic plates

respect to a channel without a bluff body. The maximum time averaged Nusselt number

Nu peak is observed at the midpoint of twin elastic plates in this case. The interaction

of wake vortices between the deforming plates increases the mixing of the fluid in the

channel and thereby increase the convective heat transfer from the heated channel walls

due to reduction in thermal boundary layer thickness.

The dynamics of an elastic plate under periodic fluid loading is useful for energy

harvesting. Energy harvesting depends on plate vibration amplitudes for the piezoelectric

plate and its increases with plate vibration amplitudes. When the piezoelectric elastic

plate placed in the wake of a bluff body, the maximum voltage from piezoelectric plates has

been found at lock-in condition where the periodic vortex shedding frequency of the plate

matches with the natural frequency of the plate (Akaydın et al., 2010). Plate oscillates

with maximum amplitude at lock-in condition. This condition is most important for

energy harvesting and also a design criterion for energy harvesting applications.

The findings of the present thesis provide fundamental insights into the interaction of

an elastic plate with laminar flow and useful for several applications such as designing

energy-harvesting devices, cooling microelectronics by thin flexible plates and cardiovas-

cular flows.
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8.2 Future work

The following research directions could be investigated in future:

• The in-house FSI solver can be further developed to tackle FSI of a thin elastic plate

together with VIV of the cylinder.

• The pitching and heaving of flapping plates for propulsion applications could be

explored.

• Flow-induced dynamics of an inverted elastic plate kept at the rear side of a cylinder

can be studied numerically to achieve heat transfer augmentation.

• Thermal augmentation by utilizing FSI of multiple plates can be investigated nu-

merically.
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Appendix A

Effect of shape of bluff-body on

flow-induced deformation of an

elastic Plate

Numerical simulations were performed using three different bluff body. The following

values are considered for the simulation setup: Um=1, D = 1, Re = 100, E = 175, ρs=10

where Um, L, Re E and ρs are mean velocity , plate length, Reynolds number based on

plate length and mean velocity of fluid, Young’s modulus and fluid to structure density

ratio, respectively. Dimensionless thickness of the plate is 0.2. The Poisson’s ratio is

taken as 0.4 in the structural solver.

Figure A.1: Computational domain for examining the effects of bluff body on the dynamics
of a flexible structure.
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The domain size is taken as follows; S1 + S2 = 25L and S3 = 10.0L, as shown in

Fig. A.1. Note that Fig. A.1 shows only plate configuration. The plate will be attached

to bluff bodies for other configuration. The leading edge of the plate is clamped, and

tailing is free. Force boundary condition is applied in the deformable plate surface. The

fluid is taken to be Newtonian and incompressible. The plate is considered to consist of

Saint Venant-Kirchhoff material, which accounts for geometric nonlinearity for a linear

elastic material. The boundary conditions for the present problem are illustrated in

Fig. A.1. Neumann boundary condition is applied at the top and bottom boundary of

the open domain. No-slip boundary condition is applied in immersed structure boundary.

Zero Neumann boundary condition is applied for the velocity at the channel outlet. At

the inlet, uniform velocity is applied.

Figure A.2: Vortical wake structures for flow past three different bluff body; (A) square
cylinder (B) circular cylinder (C) half circular cylinder. Color map range is [-1, 1].

Table A.1: Comparison of vortex shedding Strouhal number (Stf ) for different bodies

Case Re Stf
Plate 100 0

Circular cylinder 100 0.169
Half circular cylinder 100 0.198

Square circular cylinder 100 0.153

We compare vortex shedding Strouhal number (Stf ) and vortical wake structures for
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Figure A.3: Comparison of Ytip of the plate deformation, power spectra and phase plane
plot are for four different cases:(A) only plate (B) circular cylinder (C) square cylinder
(D) half circular cylinder D-shaped. Color map range is [-1, 1].
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flow past three different bluff body placed in a open domain shown in Fig. A.2.

Fig. A.2A is flow past square cylinder where vortex formation length is higher than

Fig. A.2B. Vortex formation length of half circular cylinder shown in Fig. A.2C is smaller

than other two cases. Periodic Von-karman vortex shedding are observed for three cases

but shedding vortices are smaller for half circular cylinder. We also examine vortex shed-

ding Strouhal number (Stf ) for three case which is shown in Table A.1. Stf is higher

for half circular cylinder and lower for square cylinder. No vortex shedding is observed

for the case of only plate. Now, we discuss flexible plate oscillation behind bluff bodies.

Shedding vortex coming from the bluff body gives the periodic force to the an elastic plate

attached behind the bluff body and elastic plate deformation occurs. The plate reaches

self-sustained periodic oscillation at steady state. The elastic plate oscillation responses

for four different cases are examined. Fig. A.3 shows the Ytip, power spectra, phase plot

and superimposed shapes of the elastic splitter plate in the first, second, and third row,

respectively for each case. No plate deformation is observed for the only plate shown in

Fig. A.3A. Fig. A.3D (second row) shows that plate with larger deformation for plate

behind half cylinder vibrates with a larger frequency than other cases. The dominant

frequency is closer to the vortex shedding frequency of respectively attached cylinder.

Fig. A.3D (third row) shows that the phase plot is larger for half cylinder case.

Figure A.4: Comparison of Ytip of the plate deformation for four different cases.

Fig. A.4 shows the comparison of Ytip of plate deformation signal. Ytip is higher for
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half

Table A.2: Comparison of flexible plate frequency and Ytip plate deformation

Case fp Ytip
Flexible Plate 0 0

Flexible Plate behind Circular cylinder 0.16 0.12
Flexible Plate behind Half circular cylinder 0.18 0.32

Flexible Plate behind Square circular cylinder 0.15 0.17

Figure A.5: Comparison of vorticity field for four different cases :(A) only plate and elastic
plate attached to (B) circular cylinder (C) square cylinder (D) half circular cylinder D-
shaped. Color map range is [-1, 1].

cylinder case shown in Fig. A.4. The details of plate oscillation frequency and ampli-

tude of Ytip of plate deformation for four different cases are shown in Table A.2. Fig. A.5
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shows that the vorticity field for four cases. Alternative periodic vortex shedding is ob-

served in the last three cases, and vortex shedding pattern is 2S for all the cases. Shed

Vortices from half circle D-shaped bluff body rolls on the tip of the flexible plate. As a

result, larger Ytip of plate deformation occurs. As vortex formation length is higher for

circular and rectangular cylinder, acting force on the flexible plate is lower than half circle

D-shaped bluff body case.

A.1 Closure

We employ a fluid-structure interaction (FSI) solver to simulate the dynamics of an elastic

plate attached behind the bluff body and is subjected to laminar flow. The FSI combines

a sharp interface immersed boundary method based flow solver and an open source finite-

element based structure solver. In the present chapter, the effect of the bluff body is

studied at Re = 100, where Re is Reynolds number and is based on free-stream velocity

and length of the plate. The oscillation amplitude and frequency of the plate tip were

examined as affected by the bluff body. The oscillation amplitude and frequency of the

plate tip are strongly affected by the vortex shedding coming from the bluff body. The

present results provide fundamental insights into the flapping of an elastic plate and

could be useful to design the elastic plate in energy-harvesting and thermal augmentation

applications.
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Appendix B

Non-dimensional form of 2-D

Navier-Stokes equations

The 2-D Navier-Stokes equations of dimensional form at the x-direction component:

ρ
(∂u∗x
∂t∗

+ u∗x
∂u∗x
∂x

+ u∗y
∂u∗x
∂y∗

)
= −∂p

∗

∂x∗
+ µ
(∂2u∗x
∂x∗2

+
∂2u∗x
∂y∗2

)
(B.1)

Assume no additional body forces. The components of the velocity field u∗ are denoted

by subscripts (x,y,z). The pressure is given by p∗ and ρ is the density.

First we divide by the density ρ in order to simplify the equation.

ρ
(∂u∗x
∂t∗

+ u∗x
∂u∗x
∂x

+ u∗y
∂u∗x
∂y∗

)
= −1

ρ

∂p∗

∂x∗
+ ν
(∂2u∗x
∂x∗2

+
∂2u∗x
∂y∗2

)
(B.2)

Now in order to obtain the non-dimensional equation we make the following substitu-

tions.

u∗x = uxu
∗
0

p∗ = pu∗0
2ρ

t∗ = tL/u∗0

x∗ = xL

y∗ = yL

z∗ = zL

u∗0 is reference velocity and L is reference length. Using the above substitutions we end

up with the following equation:

∂uxu
∗
0

∂tL/u∗0
+ uxu

∗
0

∂uxu
∗
0

∂xL
+ uyu

∗
0

∂uxu
∗
0

∂y∗L
= −1

ρ

∂pu∗0
2ρ

∂xL
+ ν
(∂2uxu

∗
0

∂x2L2
+
∂2uxu

∗
0

∂y2L2

)
(B.3)

We simplify above equation by dividing u∗0
2/L.
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∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

= −1

ρ

∂p

∂x
+ ν

1

u∗0L

(∂2ux
∂x2

+
∂2ux
∂y2

)
(B.4)

Here ν
u∗0L

is inverse Reynolds number ( 1
Re

).

∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

= −1

ρ

∂p

∂x
+

1

Re

(∂2ux
∂x2

+
∂2ux
∂y2

)
(B.5)

similarly we can get the y-direction component.

∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

= −1

ρ

∂p

∂x
+

1

Re

(∂2uy
∂x2

+
∂2uy
∂y2

)
(B.6)
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Appendix C

Non-dimensional form of Navier’s

Equations for structure

The governing equations for the structure, Navier equations (momentum balance equation

in Lagrangian form) in dimensional form, are written as follows,

ρs
∂2d∗i
∂t∗2

=
∂σ∗ij
∂x∗j

+ ρsf
∗
i (C.1)

where i and j range from 1 to 3, ρs is the structure density, d i is the displacement

component in the i direction, t is the time, σij is the stress tensor and f i is the body

force component in the i direction. The displacement vector d(x, t) describes the motion

of each point in the deformed solid as a function of space x and time t.

The second Piola-Kirchhoff stress tensor σij is related to the Green Lagrangian strain

tensor E :

σij = 2µsFE + λstr(E)F (C.2)

F is the deformation gradient tensor given by:

F∗ik = δik +
∂d∗i
∂x∗k

, (C.3)

The Green-Lagrangian strain tensor E is defined as

E =
1

2
(FTF− 1), (C.4)

here tr is the tensor trace, λs and µs are Lam constants which are characteristics of

the elastic material. They are related to the Young modulus (E∗) and Poissons coefficient

(νs) by:

λs =
νsE

∗

(1 + νs)(1− 2νs)
(C.5)
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and

µs =
E∗

2(1 + νs)
(C.6)

putting λs and µs in Eq.(C.7) which gives following equation:

σs =
E∗

(1 + νs)
FE +

νsE
∗

(1 + νs)(1− 2νs)
tr(E)F (C.7)

Now in order to obtain the non-dimensional equation, we make the following substi-

tutions.

d∗i = diL

t∗ = tL/u∗0

xj
∗ = xjL

h∗ = HL

u∗0 is reference velocity and L is reference length.

We simplify above equation by dividing ρs.

∂2d∗i
∂t∗2

=
1

ρs

∂σ∗ij
∂x∗j

+ f ∗i (C.8)

Using the above substitutions we end up with the following equation:

∂2diL

∂t∗2L/u∗0
2 =

1

ρs

∂σ∗ij
∂xjL

+ f ∗i (C.9)

∂2di
∂t∗2

=
L

u∗0
2ρs

∂σ∗ij
L∂xj

+
L

u∗0
2f
∗
i (C.10)

∂2di
∂t∗2

=
h∗

u∗0
2MρfL

∂σ∗ij
∂xj

+
L

u∗0
2f
∗
i (C.11)

Here FE and tr(E)F are dimensionless.

F ∗ik = δik +
∂d∗i
∂x∗k

, (C.12)

Fik = δik +
∂diL

∂xkL
, (C.13)

Fik = δik +
∂di
∂xk

, (C.14)

∂2di
∂t2

=
h∗

u∗0
2MρfL

∂

∂xj

( E∗

(1 + νs)
FE +

νsE
∗

(1 + νs)(1− 2νs)
tr(E)F

)
+

L

u∗0
2f
∗
i (C.15)

136



∂2di
∂t2

=
h∗

u∗0
2MρfL

E∗

(1 + νs)

∂

∂xj

(
FE
)

+
h∗

u∗0
2MρfL

νsE
∗

(1 + νs)(1− 2νs)

∂

∂xj

(
tr(E)F

)
(C.16)

+
L

u∗0
2f
∗
i (C.17)

∂2di
∂t2

=
E∗h∗3

12ρfu∗0
2L3Mh∗2

12L2

(1 + νs)

∂

∂xj

(
FE
)

+
E∗h∗3

12ρfu∗0
2L3Mh∗2

12L2νs
(1 + νs)(1− 2νs)

∂

∂xj

(
tr(E)F

)
+
L

u∗0
2f
∗
i

∂2di
∂t2

= Kb
12L2

Mh∗2(1 + νs)

∂

∂xj

(
FE
)

+Kb
12L2νs

Mh∗2(1 + νs)(1− 2νs)

∂

∂xj

(
tr(E)F

)
+

L

u∗0
2f
∗
i

(C.18)

∂2di
∂t2

=
12Kb

MH2

1

(1 + νs)

∂

∂xj

(
FE
)

+
12Kb

MH2

νs
(1 + νs)(1− 2νs)

∂

∂xj

(
tr(E)F

)
+

L

u∗0
2f
∗
i (C.19)

∂2di
∂t2

=
Kb12

MH2

1

(1 + νs)

∂

∂xj

(
FE
)

+
Kb12

MH2

νs
(1 + νs)(1− 2νs)

∂

∂xj

(
tr(E)F

)
+

L

u∗0
2f
∗
i (C.20)

∂2di
∂t2

= (
1

UR
2 )

12

H2

1

(1 + νs)

∂

∂xj

(
FE
)

+ (
1

UR
2 )

12

H2

νs
(1 + νs)(1− 2νs)

∂

∂xj

(
tr(E)F

)
+

L

u∗0
2f
∗
i

(C.21)

Here Kb = E∗

ρ∗fu
∗
0
2
h∗3

12L3 , M = ρsh∗

ρfL
, UR =

√
M
Kb

and Fi = L
u∗0

2f ∗i
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