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Abstract

This thesis investigates the flow-induced vibration of a sphere over a wide range of
flow and vibration parameters. In particular, different modes of sphere vibration were
studied numerically for both elastically mounted and tethered cases. In addition, the
effects of sphere transverse rotation on the vortex-induced vibration were investigated
over a broad range of rotation rates. Consequently, this thesis consists of three main
sections. The first section, using simultaneous displacement, force measurements and
wake characteristics, investigates the response of an elastically mounted sphere for the
classic case where the motion of the sphere is restricted to move in a direction transverse
to the freestream. The second section extends this study by investigating effects of the
transverse rotation on the vortex-induced vibration of a sphere. Finally, the third section
investigates the characteristics of different modes of sphere vibration using a tethered
sphere.
Despite the large volume of research has been conducted on FIV, most of these studies

were based on two-dimensional bodies like cylinders. Comparatively a fewer studies
have been conducted with three-dimensional bodies. Therefore, this study is aimed to
enhance the understanding of an intrinsically three-dimensional body, especially under
forced rotation, which will enhance our understanding of flow-induced vibration for more
complex cases. A non-deformable mesh was chosen for the simulations by modelling the
flow in a non-inertial reference frame, attached to the centre of the sphere. Two new
Fluid-Structure Interaction (FSI) solvers were implemented in OpenFOAM to efficiently
solve the coupled fluid-structure systems for elastically mounted and tethered cases.
Two sets of simulations were conducted by fixing the Reynolds number at Re = 300

and 800 with an elastically mounted sphere. A periodic Vortex-Induced Vibration (VIV)
response was observed over mode I and II regimes. In contrast to previous experimental
observations, the amplitude of mode II was similar to that of mode I for low Reynolds
numbers. Two trails of interlaced hairpin loops were observed in the wake. At higher
reduced velocities, at Re = 300 the sphere vibrated with a small amplitude, while mode
IV type intermittent bursts of vibration were identified at Re = 800. The effect of
Reynolds number on flow-induced vibration is found to be significant in the laminar
regime.
The effects of sphere transverse rotation on VIV is investigated at Re = 300 for

rotation rates α ∈ [0, 2.5]. Under forced rotation, the sphere oscillated about a new
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time-mean position. Rotation also resulted in a decreased oscillation amplitude and a
narrowed synchronisation range. VIV was suppressed completely for higher rotation
rates (α > 1.3). The symmetric wake observed for zero-rotation case deflected to the
advancing side under rotation,s as a result of the Magnus effect. This symmetry breaking
appears to be associated with the reduction in the observed amplitude response and the
narrowing of the synchronisation range.
Three sets of simulations were conducted at Re = 500, 1200, and 2000 with a tethered

sphere. Similar to the elastically mounted sphere, a periodic VIV response was observed
at the modes I and II regimes. As the Reynolds number increased, the response ampli-
tude increased, especially over the mode II regime, and the sphere response was closer
to previous experimental observations. Similar to the Re = 800 case with an elastically
mounted sphere, the sphere showed mode IV type intermittent bursts beyond the mode
II regime, without an intervening mode III, for all three Reynolds numbers considered.
However, mode III was observed for a very heavy tethered sphere. Mode III, which
can be categorised as movement induced vibration, appears to occur due to the high
inertia of the system. It can also be identified as a weak response that is sensitive to
the parameter values and disturbances. The low-frequency modes III and IV responses
seem to originate from the wake pattern found for the static sphere.
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Nomenclatura

English Symbols

A Sphere response amplitude

ac Acceleration of the sphere in Cartesian coordinates, ac = Mas

as Acceleration of the sphere in spherical coordinates

A∗ Non-dimensional sphere response amplitude, A∗ = A/D

A∗x Non-dimensional sphere response amplitude in the streamwise direction, A∗x =
√

2Xrms/D

A∗y Non-dimensional sphere response amplitude in the lateral direction, A∗y =
√

2Yrms/D

A∗z Non-dimensional sphere response amplitude in the transverse direction, A∗z =
√

2Zrms/D

B Buoyancy force, B = 4
3π(D/2)3ρ(1−m∗)g

c Structural damping constant

C Companion matrix

Cd Time-averaged drag coefficient

C l Time-averaged lift coefficient

Ca Added mass coefficient, Ca = 0.5 for a sphere

Cd Drag coefficient, Cd = 2Fd/(ρU
2S)

Cly Lift coefficient in the y direction, Cly = 2Fly/(ρU
2S)

Clz Lift coefficient in the z direction, Clz = 2Flz/(ρU
2S)

Cl Lift coefficient

Csp Number of cells in the sphere boundary

D Diameter of the sphere
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er Unit vector in the radial direction

eφ Unit vector in the polar direction

eθ Unit vector in the azimuthal direction

f Sphere response frequency

fl Flow-induced integrated vector force acting on the sphere due to the pressure
and viscous shear forces

f∗ Frequency ratio, f∗ = f/fn

Fd Drag force (force in the x direction)

fn Natural frequency of the system

Fp Potential force component

Ft Total fluid forces acting on the sphere, Ft = Fp + Fv

Fv Vortex force component

Fly Lift force in the y direction

Flz Lift force in the z direction

Fl Lift force

fs Vortex shedding frequency

fvo Static body vortex shedding frequency

Fr Froude number, Fr = U/
√
gD

G Mapping between xi and xi+1, xi+1 = Gxi

g Gravitational acceleration

I Inertia of the tethered sphere at the base of the tether, I = m(D2/10 + L2)

i Unit vector in the x direction

j Unit vector in the y direction

k Spring constant

K Matrix created with the vectors of flow field, K = (x1 x2, . . . ,xm−1)

k Unit vector in the z direction
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KM Koopman mode

L Tether length

l∗ Non-dimensional tether length, l∗ = L/D

M Mapping of the spherical coordinate system (er eθ eφ) to the Cartesian coordi-
nate system (i j k)

m Mass of the sphere

m∗ Mass ratio of the sphere, m∗ = m/mf ≡ ρs/ρ

m∗crit Critical mass ratio

M−1 Inverse of the mapping M

mf Mass of fluid displaced by the sphere

Nr Number of nodes in the radial direction of a square frustum

P Fluid pressure

p Kinematics fluid pressure, p = P/ρ

rs Position of the sphere in spherical coordinates

Re Reynolds Number, Re = UD/ν

S Reference surface area, S = π(D/2)2

Sn Non-dimensional natural frequency, Sn = fnD/U

St Strouhal number, St = fvoD/U

T Tension of the tether

t Time

Tc Period of the sphere oscillation, Tc = 1/f

U Free-stream velocity of the flow

u Fluid velocity vector

U∗ Reduced velocity, U∗ = U/fnD

v̂i Rescaled ith Ritz vector, v̂i = Kẑi

ẑi Scaled version of zi, ẑi = βizi, where βi is the ith element of the vector β

xix



vc Velocity of the sphere in Cartesian coordinates, vc = Mvs

vi ith Koopman mode (or ith Ritz vector)

vs Velocity of the sphere in spherical coordinates

X Sphere displacement in the x direction

x Streamwise direction

xi ith flow field vector

Y Sphere displacement in the y direction

y Lateral direction

ÿs Acceleration vector of the solid

ẏs Velocity vector of the solid

ys Displacement vector of the solid

Z Sphere displacement in the z direction

z Transverse direction

zi ith eigenvector of C

Z Matrix of Ritz vectors, Z = (z1 z2, . . . , zm−1)

Zmax Maximum sphere displacement in the z direction

Zrms Root mean square value of the sphere displacement in the z direction

Greek Symbols

α Rotation rate (speed of the sphere surface normalized by the free stream veloc-
ity), α = ωD/2U

δl Cell thickness of the sphere boundary

δt Time step

γ Relaxation parameter

λA Periodicity of the sphere displacement, λA =
√

2Zrms/Zmax

µ Dynamic viscosity

ν Kinematic viscosity, ν = µ/ρ
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ω Angular velocity of the sphere

φ Tether angle from z direction (polar angle)

φt The phase between the sphere displacement and the total force

φv The phase between the sphere displacement and the vortex force

ψ 4/(3Fr2)

ρ Density of the fluid

ρs Density of the sphere

τ Non-dimensional time, τ = tU/D

θ Tether angle from x-z plan (azimuthal angle)

ζ Damping ratio, ζ = c/(2
√
mk)

β Z−1e1, where e1 = (1 0 0 . . . 0)

η Outward unit normal vector

ω̇ Angular acceleration vector of the sphere, ω̇ = as/L

ω Angular velocity vector of the sphere

φ̈ Second derivative of φ w.r.t. time

φ̇ First derivative of φ w.r.t. time

θ̈ Second derivative of θ w.r.t. time

θ̇ First derivative of θ w.r.t. time

θl Time-averaged layover angle

∇· Divergence operator

∇ Gradient operator

∇2 Laplacian operator

λi ith eigenvalue of C (or ith Ritz value)

θl Layover angle (the angle of the tether to the lateral direction)
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It is better to conquer yourself than
to win a thousand battles. Then the
victory is yours. It cannot be taken
from you, not by angels or by
demons, heaven or hell.

Lord Buddha

1. Introduction

Fluids and structures are everywhere, so the interaction between them can be expected
to occur any time somewhere in the world, even at the time I am writing this thesis.
We all have witnessed Fluid-Structure Interaction (FSI) at least once, for example,
oscillation of long flag poles, chimney stacks and wire cables. Although FSI seems to be
gentle and harmless in some situations, it can result in fatigue structural damage. The
collapsing of the Tacoma Narrows Bridge in 1940 as a result of large-scale oscillations
caused by natural winds is one of the most renowned examples of damage due to induced
oscillations. FSI is of practical significance for many Engineering fields. Therefore, it
has been an important research topic in fluid dynamics for many years.
Flow-induced vibration (FIV) of a structure is one of the most important types of

fluid-structure interaction problems. It is a vibration phenomenon of solid structures
induced by the flow of the surrounding fluid. When a fluid flows past a bluff solid
structure, a large amplitude fluctuation pressure force can develop near the rear of the
structure, which leads to the formation of a wake with alternately shedding vortices.
FIV is primarily excited by the wake formed behind the structure. Vortex-induced
vibration, or (VIV), is a category of FIV, occurring through the synchronisation of
structural vibration with the wake unreadiness. In particular, a structure experiences
large amplitude VIV for the cases where the vortex shedding frequency is locked-in
to the natural frequency of the system. VIV occurs only in a discrete range of flow
speeds, and the amplitudes are limited to the order of magnitude of one characteristic
length (i.e. the diameter of the sphere). This is a self-limited vibration state that can
be sustained over a lengthy period. Galloping is another category of FIV, occurring
through the aerodynamic instabilities under certain conditions of the fluid-structure
system. Galloping can arise for any light-weight structure exposed to a flow. A variety of
structures are potentially unstable owing to aerodynamic galloping. In contrast to VIV,
galloping occurs for all flow speeds past a critical value and it is not self-limited, with a
much larger amplitude developing. Both VIV and galloping can cause fatigue damage
or failure of a structure and therefore they are crucial considerations for the design of
many engineering systems. Some examples are bridges, chimney stacks, aircraft, ground
vehicles, submarines, tethered structures and offshore structures. Hence, it is important
to have a better understanding of FIV and the methods of controlling it.
The most popular geometries used for fundamental FSI studies are cylinders and
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spheres. In the case of flow past a circular (or square) cylinder, a huge volume of
research has been undertaken, due to its intrinsic engineering importance and due to
the simplicity of setting up such arrangements both experimentally and computationally.
In contrast, comparatively fewer studies have been conducted on the flow past a sphere
(or spheroid). Thus, the wake of a sphere is less well understood, compared with the
wake of a cylinder. However, versatile applications exist on FIV of a sphere, for example,
tethered bodies such as buoys, underwater mines, tethered balloons, and towed objects
behind vessels.
Key features of FIV of a sphere were initially revealed through the series of exper-

imental investigations conducted by Williamson & Govardhan (1997); Govardhan &
Williamson (1997); Jauvtis et al. (2001) and Govardhan & Williamson (2005) using
tethered and elastically-mounted spheres. The sphere was also found to show a VIV
behaviour with a large oscillation amplitude, similar that found for a cylinder. The
reduced velocity, U∗ ≡ UD/fn, which is a non-dimensionalisation of the upstream ve-
locity, U , based on the natural frequency of the system, fn, was identified to be more
suitable than the Reynolds number for FIV of a sphere; here, D is the diameter of the
sphere. The nature of FIV of a sphere was significantly different to that of a cylinder,
as their wake patterns are different. Four distinct modes of sphere vibrations (named
as modes I-IV) were identified with varying characteristics in terms of sphere oscillation
amplitude and phase, and wake structures.
The first two modes (modes I and II) were identified as vortex-induced vibration

responses as the sphere vibration was synchronised with both vortex shedding frequency
and the natural frequency of the system. The sphere response amplitude is found to
vary smoothly, as the vibration transitions from mode I to mode II. These two modes
were observed in the range of 5 . U∗ . 10 for a variety of mass ratios (≡ density
ratio of the sphere and fluid). Govardhan & Williamson (2005) observed a reduction
in the vibration amplitude and narrowing of the synchronisation regime as the mass
ratio increased. Mode I is found to be more robust as it is a consequence of natural
resonance. Most of the previous FIV studies of a sphere were experimental and those
studies were performed in the turbulence regime due to the experimental limitations.
Only a few computational studies were reported on FIV of a sphere over the modes
I and II regimes, and their findings in the laminar regime slightly deviated from the
experimental observations. Therefore, this computational study is focused on enhancing
the understanding of modes I and II, especially the effect of Reynolds number over the
range Re = [300, 2000] using both elastically-mounted and tethered spheres.
As the reduced velocity increased beyond the mode II regime, after a de-synchronisation

regime, the sphere again showed another periodic vibration state for U∗ ∈ [20, 40] (Jau-
vtis et al. 2001). This was designated as mode III. It was an unexpected finding and was
difficult to explain from the classic lock-in theories, as the vortex shedding frequency
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was three to eight times higher than the sphere vibration frequency. Even though mode
III is not a VIV response, Govardhan & Williamson (2005) argued that it is indeed a
Movement-induced vibration response. Mode III was only found for heavy spheres, and
as a consequence, the sphere vibration frequency was identical to the system’s natural
frequency. Jauvtis et al. (2001) found an intermittent bursts of vibration for U∗ > 100,
and this state was named as mode IV. In this mode, the maximum oscillation amplitude
was found to show a linearly increasing trend as the reduced velocity increased. Mode
IV cannot be considered a movement induced vibration as it shows similarities to the
galloping behaviour. The low-frequency vibration modes III and IV are less examined
and their nature is not well understood. Hence, this study also aims to extend the
understanding of mode III and IV regimes.
Effects of sphere rotation on its flight have been investigated for centuries. Benjamin

Robinson and Heinrich Gustav Magnus were the first to observe a transverse force
applied on the sphere when it propagates with a transverse rotation. This phenomenon
is known as Magnus effect. Magnus identified that the rotational motion of the sphere is
responsible for this transverse force (Magnus force). It was found that the magnitude of
the Magnus force increases with the rotation rate. Moreover, in the laminar regime, the
flow underwent a series of different transitions between steadiness and unsteadiness as
the rotation rate was increased. Interestingly, the flow past a rotating sphere has many
practical applications. In sports such as cricket, football, tennis, and netball, where the
trajectory of the ball depends on the transverse rotation of the ball Goff & Carré (2010).
Engineering applications can be found in particle transport processes (Torobin & Gauvin
1960; White & Schulz 1977), combustion systems (Pearlman & Sohrab 1997; Dgheim
et al. 2012), and saltation of particles White & Schulz (1977), where the particles are
modelled as rotating spheres. However, the influence of transverse rotation on the flow-
induced vibration was not examined until the very recent experimental study of Sareen
et al. (2018a) from our group. They observed a reduction in the oscillation amplitude
and narrowing of the synchronisation regime as the rotation rate increased over the
modes I and II regimes for turbulence flows. However, there is much more to explore
on the effect of forced rotation on VIV of a sphere, especially the wake structures and
force measurements. The present study also aims to reinforce the knowledge on the
competition between the Magnus effect and the vortex-induced vibration of a sphere in
the laminar regime, numerically.
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1.1. STRUCTURE OF THE THESIS

1.1. Structure of the thesis

Apart from the Introduction, there are six chapters in this thesis. Each chapter begins
with a brief introduction of the content and ends with a brief summary highlighting the
key discussion and findings. The thesis is structured as follows:

Chapter 2: A brief review of the literature is presented illustrating the current state
of the knowledge of vortex-induced vibration of a sphere, highlighting the key finding
and disclosing the gaps and unanswered areas.

Chapter 3: The numerical methodology is presented discussing the problems formu-
lation, numerical approach and validation studies.

Chapter 4: The results of the flow-induced vibration of an elastically-mounted sphere
is presented. The effect of Reynolds number on FIV of a sphere is discussed analyzing
the sphere response amplitude, force measurements and wake structures.

Chapter 5: Effects of the sphere transverse rotation on the vortex-induced vibration
of an elastically-mounted sphere are presented by discussing the sphere response, forces
exerted on the sphere and vortical wake structures.

Chapter 6: Flow-induced vibration of a tethered sphere is investigated and the
results are compared with previous experimental studies. A detailed discussion on dif-
ferent modes of sphere vibration is also provided.

Chapter 7: A comprehensive conclusion of the thesis is given summarising the key
findings of the previous chapters. Future works are also discussed at the end of the
chapter.
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I have never met a man so ignorant
that I couldn’t learn something from
him.

Galileo Galilei

2. Literature Review

A huge amount of research has been undertaken over past decades advancing the knowl-
edge of Flow-Induced Vibration (FIV) of structures, as it is practically important to a
variety of Engineering fields. Due to the complexity and non-linearity of FIV problems,
it is impossible to find an analytical solution. Therefore, fundamentals of FIV have
been disclosed extensively through experimental and numerical studies with generic
bluff bodies. The textbooks by Blevins (1977) and Naudascher & Rockwell (2005)
and the comprehensive reviews of Bearman (1984); Parkinson (1989); Sarpkaya (2004);
Williamson & Govardhan (2004, 2008); Wu et al. (2012) provide a detailed introduction
to the field. Most FIV studies have been based on cylindrical structures, although spher-
ical bodies are equally important. This chapter presents a brief review of the literature
on the state of art of flow-induced vibration of spheres, describing the fundamentals
and related topics to the research presented in this thesis. Vortex-induced vibration
(VIV) of the generic three-dimensional bluff body, the sphere, will be examined and
discussed in detail to explore the fundamentals of the field. In addition, the current
state of knowledge on the effects of transverse rotation on a bluff body in a uniform
fluid flow is also presented.
Prior to investigating the interaction of the fluid flow and the sphere, it is essential to

understand the nature of the problem for the case when the sphere is held stationary.
The chapter begins by reviewing the flow past a stationary sphere in § 2.1, including
discussions on different flow regimes, fundamental aspects of vortex shedding and fluid
forces exerted on the sphere. Following this, § 2.2 presents studies on effects of transverse
rotation of the sphere describing the forces applied on it and wake patterns as a function
of Reynolds number and rate of rotation. The current state of knowledge on flow-induced
vibration of a sphere is presented in § 2.3. This section mainly deals with the sphere
responses (i.e. the amplitude, frequency and phase responses), force measurements
and wake structures of elastically-mounted and tethered spheres under various flow
conditions. In addition, previously identified different modes of sphere vibration are
also discussed. Next, the current state of limited knowledge built on the combined
effect of constant rotation and vortex-induced vibration is discussed in § 2.4. Finally, a
summary of the chapter and research questions are given in § 2.5.
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2.1. FLOW PAST A STATIONARY SPHERE

(a) (b)

Figure 2.1.: Streamlines of Axisymmetric steady flow; (a) Creeping flow, Re < 24,
visualized at Re = 10 and (b) Separated axisymmetric steady flow, 25 < Re < 210,
visualized at Re = 100.

2.1. Flow past a stationary sphere

The Reynolds number, Re, which measures the ratio of inertial to viscous forces, is the
key non-dimensional parameter governing the flow state. For fluid-structure interaction
of a sphere, the Reynolds number is generally defined as

Re =
UD

ν
,

where U is the free-stream velocity of the fluid, D is the diameter of the sphere, and ν is
the kinematic viscosity of the fluid. In general, but not exclusively, experimental studies
have been conducted for higher Reynolds numbers while numerical studies have tended
to focus on lower Reynolds numbers. Results from both approaches are presented here.
The flow of a viscous fluid past a stationary isolated sphere is considered first, as

it provides a baseline study for wake states. Several notable research studies have
been conducted previously at various Reynolds numbers. Flow transitions have been
mapped depending on the structure of the wake as a function of Reynolds number. In
this section, we present some results from relevant studies according to the flow regimes
in detail.

2.1.1. Axisymmertic steady flow

When a sphere is placed in a steady flow at low Reynolds numbers, the fluid creeps
smoothly around the sphere surface without separating from it, as shown in figure 2.1
(a). In addition, the flow streamlines appear identical upstream and downstream of the
sphere. Creeping flows are also known as Stoke flows. For Re < 1, the advective inertial
forces are smaller and negligible compared to the viscous forces. Therefore, the complex
Navier-Stokes equations can be approximated by a set of linear equations as proposed
by Stokes (1851). This enables one to obtain an analytical solution and calculate the
forces applied on the sphere. However, as the Reynolds number increased, the inertial
effect cannot be neglected and the full Navier-Stokes equations need to be considered.
Taneda (1956) photographically studied the wake produced by a sphere moving in

a tank of water at Reynolds number between 5 and 300. He observed that as Re was
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2.1. FLOW PAST A STATIONARY SPHERE

increased from 5, the flow that was initially attached to the sphere started to separate
at Re ≈ 24, creating a recirculation bubble behind the sphere near the stagnation
point. This first flow transition to separated flow was also observed by Dennis & Walker
(1971) semi-analytically, and by Masliyah & Epstein (1970); Johnson & Patel (1999)
numerically. The recirculation bubble behind the sphere take a ‘toroidal’ form which is
axisymmetric with respect to the streamwise centreline of the sphere, and the flow has a
fixed separation line encircling the sphere (see figure 2.1 (b)). As the Reynolds number
increased, Taneda observed that the size of the recirculation bubble grows at a rate close
to the logarithmic of Reynolds number, and become more and more elongated in the
streamwise direction. Johnson & Patel (1999) found that this toroidal vortex behind
the sphere was balanced by the viscous forces, as opposed to radial pressure gradients.
As the Reynolds number increases close to 130, Taneda observed a faint periodic pul-

sative motion with a very long period occurring at the rear of the vortex ring. However,
the flow was perfectly laminar until Re = 200. Magarvey & Bishop (1961) studied
falling droplets of an immiscible fluid in a number of different liquid-liquid systems and
reported a closed recirculation region immediately behind the sphere. They observed
a tail lift by the passing drop with a single thread and categorized this axisymmetric
regime as a single threaded wake. This regime was found to be continued until the
Reynolds number reach approximately 210.
The drag coefficient is found to be approximately inversely proportional to the Reynolds

number up to Re = 100 (Kawaguti 1955; Masliyah & Epstein 1970). Over the range of
Re ∈ (20, 210), Jones et al. (2008) observed that the drag coefficient, Cd = Fd

1
2
ρU2(π(D/2)2)

,
dropped from 2.7 to 0.7 with an exponentially decreasing trend, resembling the results
of Tabata & Itakura (1998) and Clift et al. (2005), where Fd is the drag force and ρ is
the density of the fluid.

2.1.2. Non-axisymmetric steady flow

As the Reynolds number increased further, the flow loses it axisymmetry and undergoes
a transition. The flow does remain steady despite the transition, as first observed by
Magarvey & Bishop (1961). Past research studies found that this transition occurs at
Re ≈ 210 (Magarvey & Bishop 1961; Magarvey & MacLatchy 1965; Johnson & Patel
1999; Natarajan & Acrivos 1993; Tomboulides et al. 1993; Wu & Faeth 1993; Thompson
et al. 2001). The stability analysis of Natarajan & Acrivos (1993) referred to this
transition as a regular bifurcation, due to the fact that the flow remains steady. This
bifurcation was found to be supercritical by the computational study of Thompson et al.
(2001) using the Landau model.
The nature of the flow in this regime consists of an interesting wake configuration

of twin vortex trails. They are equal in strength and opposite in sign. Magarvey &
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2.1. FLOW PAST A STATIONARY SPHERE

(c)

(a)

(d)

(b)

Figure 2.2.: Streamlines coloured by the intensity of rotation of the flow ((a) and (c)) and
the flow visualization by Johnson & Patel (1999) ((b) and (d)) of the planar-symmetric
steady flow, 210 < Re < 270, visualized at Re = 250: (a) and (b) in the plane of
symmetry, (c) and (d) in the plan perpendicular to the plane of symmetry, which passes
through the centre of the sphere.

Bishop (1961) referred to this spectacular structure observed behind the falling droplets
for 210 < Re < 270 as a double threaded wake. These vortex trails (or vortex tubes) are
oriented in the streamwise direction with an offset from the streamwise centreline (see
figure 2.2 (a) and (b)). Even though the flow no longer possesses axial symmetry, the
flow exhibits planar symmetry with respect to a plane passing through the streamwise
centreline of the sphere as shown in figure 2.2 (c) and (d). The orientation of the plane
is arbitrary and will only depend on random external influences, such as perturbation
due to model support in an experimental situation, or boundary conditions or grid
asymmetry in numerical simulations.
Johnson & Patel (1999), who studied flow past a sphere for Reynolds number up to

300 by both experiments and numerical simulations, found that the regular transition
is associated with an azimuthal instability of the low-pressure core of the pre-transition
toroidal vortex. They argued that this instability grows, as the viscous effect of the
toroidal vortex becomes less important. Based on that, they proposed a mechanism
to describe this regular transition, which can be described as follows. The azimuthal
pressure gradient resulting from the instability distorts the axisymmetric toroidal vor-
tex. As figure 2.2 (a) shows, the toroidal vortex appears to be tilted and its size is
clearly not constant in the azimuthal direction. Additionally, the toroidal core is been
opened up, allowing entrainment and release of fluid. The release of wake fluid oc-
curs through two trails, in agreement with the double threaded twin trails observed in
previous experimental studies.
As the flow loses its axial symmetry, the sphere experiences a lateral (lift) force, Fl,

which was not found for axisymmetric flows. Magarvey & MacLatchy (1965) observed
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2.1. FLOW PAST A STATIONARY SPHERE

the presence of this force by noting a deviation of the flight of the liquid drops from the
vertical lines. More recently, the presence of a lateral force has been verified by several
numerical simulations. Gushchin et al. (2002) performed direct numerical simulations
and found a finite value for the lift force at Re = 210.5 although this lift force was zero
for Re = 210. Consistently, Johnson & Patel (1999) observed a lift force as soon as the
flow entered this regime. Moreover, they found that the lift force grew quickly within
a couple of Reynolds numbers and showed an increasing trend toward the end of the
regime at Re ≈ 270.

2.1.3. Unsteady flow

2.1.3.1. Planar-symmetric unsteady flow

Simulations of Thompson et al. (2001) noted that toward the end of the steady regime,
the trails of the twin vortex tubes described above kink together several diameters
down-stream of the sphere. The trails have come closer together at a point, before mov-
ing apart again. This kinking was more prominent as the Reynolds number increased
and showed a possibility of shedding a vortex and a transition to an unsteady wake.
In experiments, the twin vortex trails were found to show an unsteady undulation of
long wavelength, as the Reynolds number increase closer to the transition (Magarvey
& Bishop 1961; Sakamoto & Haniu 1990; Ormières & Provansal 1999; Schouveiler &
Provansal 2002). This pre-transitional unsteadiness of the wake only lasts for a narrow
range of Reynolds numbers, and later leads to a three-dimensional pattern of periodic
vortex shedding.
Various experimental and numerical investigations have observed that the flow tran-

sition to unsteadiness occurs in the range of 270 < Re < 300. The experimental study
of Magarvey & Bishop (1961) found that the wake becomes unsteady and consists of
series of interconnected vortex loops above Re = 290. However, the experimental study
of Sakamoto & Haniu (1990) on flow past a sphere observed an unsteady wake beyond
Re = 300, while Wu & Faeth (1993) reported vortex shedding over Re = 280. The
stability analysis of Natarajan & Acrivos (1993) predicted a value of Re ≈ 277 for the
transition, while Ghidersa & Dušek (2000) and Thompson et al. (2001) predicted it
occurs approximately at Re = 272 using the Landau model. The stability analyses in-
dicated that the Hopf bifurcation is also supercritical, similar to the normal bifurcation
(Natarajan & Acrivos 1993; Thompson et al. 2001; Schouveiler & Provansal 2002).
The transition from a steady flow to a time-periodic flow is the most important transi-

tion in the sphere wake with respect to the flow-induced vibration. After this transition,
the onset of laminar vortex shedding occurs. Several experimental and computational
studies reported shedding of time-periodic vortex loops behind the sphere, as shown in
figure 2.3. This periodic shedding induces a periodic force on the sphere. The transverse
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2.1. FLOW PAST A STATIONARY SPHERE

(a)

(b) (c)

Figure 2.3.: Unsteady wake behind the sphere; (a) dye visualization of Leweke et al.
(1999) at Re = 320, (b) schemetics of the wake observed by Achenbach (1974), and (c)
vortical structures of Johnson & Patel (1999) at Re = 300.

component of the force is directly responsible for the excitation of sphere vibration when
it was mounted with elastic supports or using a tether.
The structure and the orientation of the vortices shed behind the sphere show dif-

ferences to those behind a cylinder, which is the 2D counterpart of the sphere. As
the sphere is the most fundamental 3D shape, a vortex sheds like a hairpin, which
is indeed three–dimensional. In addition, these vortex loops are interconnected and
oriented in the streamwise direction, in contrast to the transversely oriented vortices
of the wake behind a cylinder. Figure 2.3 (b) shows the schematic of this 3D wake
formation observed by Achenbach (1974) from two directions perpendicular to one an-
other. The diagram shows the directions and circulations of the flow using arrows.
Although the flow is unsteady, it shows a symmetry with respect to a plane similar
to the double-threaded steady wake, as shown in the figure. This planar symmetry of
the wake has been observed by many researchers, and Mittal (1999), who developed an
accurate Fourier–Chebyshev spectral collocation method to study flow past spheroids,
found that the symmetry plane remained fixed, and the orientation of the plane was
arbitrary.
For a sphere that is held rigidly fixed in a uniform flow, many experimental studies

reported one-sided vortex shedding behind the body (Achenbach 1974; Sakamoto &
Haniu 1990; Leweke et al. 1999; Ormières & Provansal 1999); an example of this is
shown in figure 2.3 (a). Consistently, numerical studies of Tomboulides et al. (1993)
and Johnson & Patel (1999) on flow past a rigidly mounted sphere observed that vortices
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2.1. FLOW PAST A STATIONARY SPHERE

only shed from one side of the sphere, although a two-sided vortex structure was observed
a couple of diameters downstream (see figure 2.3 (c)). However, in contrast to this one-
sided wake configuration of a flow past a solid sphere, the wake behind freely falling
drops, studied by Magarvey & Bishop (1961); Magarvey & MacLatchy (1965), were two-
sided. As a liquid drop has the freedom to move sideways as it descends, vortex loops
were shed from opposite sides of the drop. This indicates that if a degree of freedom is
given to a rigidly mounted sphere in a uniform flow, it may excite vibration vigorously.
When the sphere is held fixed, Mittal (1999) and Johnson & Patel (1999) found that

the vortex shedding induces a lift force on the sphere. The orientation of the lift force
was lined up with the plane of symmetry of the wake. Mittal (1999) noted that the lift
force was about an order of magnitude smaller than the drag force. Despite the fact
that the size of the lift force was smaller, it was highly periodic as the vortex shedding
was periodic. Moreover, Johnson & Patel (1999) reported that the lift force fluctuated
with a magnitude one order higher than that of the drag force. These observations also
lead to a prediction of vortex-induced vibration of a free sphere.
Sakamoto & Haniu (1990) calculated the vortex shedding frequency based on the fluc-

tuating velocity detected by a hot-wire probe mounted in the wake behind the sphere.
The frequency of the vortex shedding, fvo, can be expressed as a non-dimensional quan-
tity, called Strouhal number, St = fvoD/U . Sakamoto & Haniu observed that St was
scattered with an increasing trend from St ≈ 0.15 to ≈ 0.17, as the Reynolds number
increased until the symmetry of the flow loses around Re ≈ 420. However, the numeri-
cally calculated values for the St based on lift and drag forces were slightly lower than
the experimental values; both Johnson & Patel (1999) and Tomboulides et al. (1993)
found that St ≈ 0.137 at Re = 300.

2.1.3.2. Irregular unsteady flow

Magarvey & Bishop (1961) and Sakamoto & Haniu (1990) observed that the regular
vortex shedding described above began to be generated irregularly and the shedding
direction oscillated intermittently from left to right beyond Re ≈ 420, as shown in
figure 2.4. Sakamoto & Haniu (1990) observed a transition region for a narrow range
of Reynolds number (420 < Re < 480), for which both regular and irregular vortex
shedding occurred intermittently. After this range, vortex shedding was always irregular
in its strength and frequency. Sakamoto & Haniu proposed that this irregularity of the
vortex formation was perhaps due to the supply, storage, and emission of energy within
the vortex formation region becoming imbalanced. They found that the vortex shedding
frequency increased linearly with increasing Reynolds number in this regime as well.
In line with experimental findings, the numerical studies of Mittal (1999); Tomboulides

& Orszag (2000); Mittal et al. (2002) also observed this breakdown of planar symmetry
of the wake. The investigation of Mittal et al. (2002) of the irregular regime quanti-
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(a) (b)

(c)

Figure 2.4.: Irregular wake behind the sphere; (a) a schematics of the wake observed
by Sakamoto & Haniu (1990), (b) the dye visualization of the wake by Sakamoto &
Haniu (1995) at Re = 650, (c) the iso-surface of the streamwise vorticity observed by
Tomboulides & Orszag (2000) in two planes perpendicular to each other at Re = 500.

tatively showed that the shedding was not completely random and that there was a
preferred azimuthal orientation. However, there was a significant cycle-to-cycle varia-
tion in the orientation of the loops about this preferred orientation. Their observations
led to a conclusion that the wake was most likely to be planar symmetric in the time-
averaged sense. They also found that as the Reynolds number increased, the preference
for any particular orientation diminished. This may be mainly due to the wake becoming
chaotic at higher Reynolds numbers, as described in the next section.

2.1.3.3. Chaotic flow

When the Reynolds number exceeds approximately 800, the hairpin vortices begin to
change from the laminar to turbulent structures. Figure 2.5 (a) shows the chaotic
wake observed by Sakamoto & Haniu (1990, 1995) at Re = 1350. As can be seen,
the flow separates from the sphere surface and forms a vortex tube which extends
for a couple of diameters. Further downstream, the wake consists of several small
vortex loops showing the effect of turbulence. The numerical studies of Tomboulides &
Orszag (2000) and Mittal et al. (2002) also reported a similar observation, as shown in
figure 2.5 (c). Although the wake is distorted, hairpin loops were clearly recognizable
up to supercritical Reynolds numbers (Re ≈ 3.7 × 105), as shown in the schematic of
figure 2.5 (b) (Taneda 1978; Sakamoto & Haniu 1990, 1995; Mittal et al. 2002). For
3.8 × 105 < Re < 106, the experimental study of Taneda (1978) found that the wake
behind the sphere consisted of a pair of streamwise line vortices. He also found that for
all Reynolds numbers ranging from 400 to 106, the sphere wake was not axisymmetric,
which showed an evidence of randomly oriented side force applying on the sphere.
In this section, we discuss the literature on flow past a rigid and stationary sphere.

14



2.1. FLOW PAST A STATIONARY SPHERE

(a) (b)

(c)

Figure 2.5.: Chaotic wake behind the sphere; (a) the dye visualization of the wake by
Sakamoto & Haniu (1995) at Re = 1350, (a) the schematics of the wake observed by
Sakamoto & Haniu (1990), and (c) the iso-contours of azimuthal vorticity observed by
Tomboulides & Orszag (2000) at Re = 1000.

As the Reynolds number increases from zero, the flow undergoes several transitions.
Flow regimes have been identified primarily according to the wake characteristics. In
summary, the flow that was attached to the surface of the sphere at low Reynolds
numbers separates and forms an axisymmetric wake, with a toroidal vortex core behind
the sphere, as Re reaches ≈ 24. Later, this toroidal core deforms and creates a double
threaded wake behind the sphere at a Reynolds number of ≈ 210. This steady regime
continues until Re ≈ 270. Then, the flow becomes unsteady with the onset of vortex
shedding. Vortex loops are oriented in the streamwise direction and planar symmetric
with respect to a plane, similar to the double-threaded wake. As the Reynolds number
reaches ≈ 420, the symmetry of the flow is lost and vortex loops shed irregularly. The
flow becomes chaotic as the laminar hairpin structures become turbulent for Re > 800.
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Figure 2.6.: Schematic of the Magnus effect of a rotating sphere.

2.2. Flow past a rotating sphere

Although there are impressive engineering and sports applications of flows past rotating
spheres as mentioned in chapter 1, only a few studies have been conducted on the effect
of rotation on the flow. One contributing factor is that there are inherent difficulties in
measuring forces and satisfactorily limiting flow contamination from mounts in exper-
imental studies, whilst numerical models require substantially increased resolution to
capture the thin boundary layer. Thus, the characteristics of the flow past a rotating
sphere are less well understood compared with those for a stationary sphere. However,
studies are needed to further understand the characteristics of the flow and widen the
applications. In this section, we present the current knowledge on the forces and wakes
of rotating spheres.

2.2.1. Flow past a transversely rotating sphere

Early research studies carried out by Benjamin Robin (1707–1751) observed that the
flight of solid balls underwent an unexpected drift when fired from smooth-bore guns.
With his ballistic experiments, he confidently concluded that this drift was due to the
whirling motion of the bullets (Robin 1972; Johnson 1986). About a century later, in
laboratory experiments, Heinrich Gustav Magnus (1802-1870) proved that the rotational
motion of the solid was responsible for the transverse force that deflected the flight path
(Magnus 1853). Hence, later this phenomenon was named the Magnus effect, although
sometimes it is also referred to as the Robin-Magnus effect. Figure 2.6 displays this
phenomenon of wake deflection leading to a transverse force (Magnus force) on a solid
sphere. The sphere surface motion is in the flow direction on the retreating side of the
sphere and opposite towards the advancing side. This causes deflection of the fluid flow
on the advancing side, and hence induces a force on the retreating side, as shown in
figure 2.6.
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When a rigidly mounted sphere is undergoing a forced rotation, in addition to the
Reynolds number, the parameter called the rotation rate is also required to fully describe
the nature of the problem. For a transversely rotating sphere, the non-dimensional
rotation rate, α, can be defined as the maximum speed of the surface of the sphere
normalised by the freestream speed (α = ωD/2U , where ω is the angular velocity of
the sphere). In this section, first, we will review the literature on the effects of rotation
on the lift and drag forces induced on the sphere, and later, we will discuss the issues
of transverse rotation on the flow.

2.2.1.1. Effects of rotation on the lift and drag forces

Effects of particle rotation on fluid forces have been investigated both experimentally
and numerically, as well as theoretically. The early research study of Rubinow & Keller
(1961) derived an expression for the lift force acting on a transversely rotating sphere
for the Stokes regime (Re ≤ 1 and α = ω D/2U ≤ 0.01), based on the Stokes and
Oseen approximation. They found that the drag force was not affected by the sphere
rotation and the lift coefficient, Cl = Fl

1
2
ρU2(π(D/2)2)

, could be expressed as Cl = 2α.
The computational study of You et al. (2003) investigated the effect of rotation at low
Reynolds numbers (Re < 64.5) and high rotation rates (α < 5). At Re = 0.5, they
observed that Cl increased linearly with increasing α, supporting Rubinow & Keller
formula. In addition, they found that the lift coefficient decreased with decreasing
rotation rate or increasing Reynolds number.
At moderate Reynolds numbers, several notable studies have focused on deriving an

expression for the lift and drag forces (Oesterlé & Dinh 1998; Kurose & Komori 1999;
You et al. 2003; Niazmand & Renksizbulut 2003). The experimental study of Oesterlé
& Dinh (1998) proposed an empirical correlation to estimate the lift coefficient from
the rotation rate and Reynolds number, Cl ≈ 0.45 + (2α− 0.45)e(−0.075 α

0.4Re0.7), in the
parameter ranges, 1 < α < 6 and 10 < Re < 140. Their results seem to indicate that the
influence of rotation rate on lift force is negligible for Re > 100. In their conclusion, they
stated that empirical values of forces are not very accurate and numerical simulations
are essential for further validations. The force coefficients calculated by the numerical
study of You et al. (2003) were slightly different to those of Oesterlé & Dinh (1998),
although the trend lines were similar.
The problem of rotating spherical particles in a linear shear flow has also received

attention in the literature. Salem & Oesterle (1998) numerically investigated the effects
of both sphere rotation and the shear rate for Re < 40. For low Reynolds numbers, they
found that the drag force was slightly affected by the shear rate, but was not altered
by the rotation rate, consistent with the observation of Rubinow & Keller (1961). For
higher Reynolds numbers, they did not compute the forces; however, they proposed
an expression for the torques exerted on a rotating particle in a shear flow for the
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angular speed range, −2 < ω < 2. Kurose & Komori (1999) also conducted a similar
investigation for a wide range of Reynolds numbers, 1 < Re < 500, different shear rates,
and rotation rates ranging from 0 to 0.25. They observed a slight increment in the drag
force as the rotation rate increased at a fixed Reynolds number, and this effect was more
noticeable for Re > 200. Furthermore, the lift coefficient in a uniform unsheared flow
appeared to increase with increasing rotation rate. However, they found that the lift
coefficient tended to approach a constant value for Re > 200 for a given rotational rate.
Niazmand & Renksizbulut (2003) numerically studied the effect of sphere rotation on

the uniform flow up to Re = 300 over the rotation rate range, 0 < α < 1. Their results
of lift coefficient were in a good agreement with Kurose & Komori (1999). They also
reported that Cl increased with rotation rate monotonically. Based on their result, they
found that the relationship, Cl = 0.11(1 +α)3.6, holds for the lift coefficient. At a given
rotation rate, as the Reynolds number increased, they observed that Cl increases and
then becomes constant, consistent with the results of Oesterlé & Dinh (1998); Kurose
& Komori (1999) and You et al. (2003).
In more recent studies, Giacobello et al. (2009) and Kim (2009) investigated the

flow past a transversely rotating sphere at Re = 100, 250, 300, for 0 ≤ α ≤ 1 and
0 ≤ α ≤ 1.2, respectively. Their studies revealed that both drag and lift coefficients
increased with the rotation rate for all three Reynolds numbers considered. The force
coefficients they calculated were also in good agreement with Kurose & Komori (1999)
and Niazmand & Renksizbulut (2003). Dobson et al. (2014) studied the flow at those
Reynolds numbers over the rotation rates 1.25 ≤ α ≤ 3. They reported that both lift
and drag force coefficients slightly decreased as α increased beyond 2.
A number of experimental studies concerning the forces acting on a rotating sphere at

high Reynolds numbers have been reported. Barkla & Auchterlonie (1971) conducted
experiments on the lift and drag forces of a rotating sphere in the Reynolds number
range, 1500 < Re < 3000, and found that the lift coefficient is proportional to the
rotation rate for the range, 2 < α < 4 (Cl = (0.16 ± 0.04)α). Tsuji et al. (1985)
estimated Cl on a rotating sphere by studying the trajectories of the sphere impinging
on an inclined plate. They also found a linear relationship between the lift coefficient
and the rotation rate, Cl = (0.4 ± 0.1)α, for 550 < Re < 1600 and α < 0.7. The
dependency of lift coefficient on the Reynolds number was found to become small for
higher Reynolds numbers.
In some specific conditions, a rotating sphere is found experience a lift force in the

direction opposite to that predicted by the Magnus effect. This is known as the inverse
Magnus effect (Maccoll 1928; Davies 1949; Taneda 1957; Tanaka et al. 1990; Aoki et al.
2003; Muto & Oshima 2012; Kim et al. 2014). This counterintuitive phenomenon only
occurs around the critical Reynolds numbers and low rotation rates. In the critical flow
regime, Muto & Oshima (2012) observed that the lift coefficient became negative at
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a relatively low rotational speed and then changed to positive as the rotational speed
increased. Moreover, they revealed that only in the critical flow regime showed a trace
of inverse Magnus effect, while both subcritical and supercritical flow regimes followed
the regular Magnus effect. The numerical investigation of Kim et al. (2014) was focused
on elucidating when and why the inverse Magnus effect occurs. They identified that
the inverse Magnus effect is caused by the difference in the boundary-layer growth and
separation along the advancing and retreating sphere surfaces. They also propose a
model to predict when the inverse Magnus effect can occur, so that one can avoid it.

2.2.1.2. Effect of rotation on the flow

As described earlier, when the sphere is under a forced rotation, a deflection of the wake
to the advancing side of the sphere was observed. Even though most studies on flow
past a rotating sphere were focused on force measurements, a couple of studies were
dedicated to examining the wake as well (Salem & Oesterle 1998; Niazmand & Renk-
sizbulut 2003; Kim 2009; Giacobello et al. 2009; Poon et al. 2010, 2013, 2014; Dobson
et al. 2014). This section presents findings of these studies organized according to the
different flow regimes that were discussed in § 2.1 for a non-rotating sphere.

Effect of sphere rotation on the axisymmetric and steady flow

The study of Salem & Oesterle (1998) on the axisymmetric flow regime of a stationary
sphere found that the toroidal vortex behind the sphere disappears in case of sphere ro-
tation. Moreover, they observed only one stagnation point, which was displaced slightly
away from the sphere surface due to the thin rotating fluid layer created near the sphere
surface, as a result of the no-slip condition. With the presence of a sphere rotation, Ni-
azmand & Renksizbulut (2003) also reported a similar observation of a deflected wake
to the advancing side, as shown in figure 2.7. Although the flow lost it axisymmetry,
it posed a symmetry with respect to the plane transverse to the axis of rotation which
goes through the centre of the sphere, resembling the planar-symmetric steady wake
of a stationary sphere. As shown in figure 2.7, a small recirculation zone is present
behind the sphere at low rotation rates. The size of the circulation zone is small when
compared to the case of zero-rotation, and it becomes smaller and eventually disappears
as the rotation rate increased. Both Niazmand & Renksizbulut (2003) and Kim (2009)
reported that this circulation zone was completely absent for α ≥ 0.5 at Re = 100.
Introduction of the sphere rotation forces the wake to form a double-threaded wake

structure, similar to that of a stationary sphere above the regular transition (210 <

Re < 270). Giacobello et al. (2009) observed that the uniformly developed shroud
envelope for the zero-rotation case, distorts with the presence of rotation, causing it
to grow over the advancing side and to diminish over the retreating side of the sphere
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Figure 2.7.: Streamline showing the loss of axisymmetry of the flow when the sphere
is under a force rotation at Re = 100 and α = 0.25 from Niazmand & Renksizbulut
(2003).

α = 0

α = 0.05

α = 0.1

α = 0.3

α = 1

Figure 2.8.: Wake structure observed by Giacobello et al. (2009) at Re = 100 at different
rotation rates. As a rotation is imposed on the sphere, the axisymmetric wake transits
to a double threaded steady wake.
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α = 0

α = 0.1

α = 0.25

α = 0.4

α = 0.6
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Figure 2.9.: Wake structure observed by Kim (2009) at Re = 250 for different rotation
rates. The wake undergoes a series of transitions between steadiness and unsteadiness
with increasing rotation rate.

as shown in figure 2.8. As the rotation rate increased, the double-threaded structure
became stronger and elongated in the streamwise direction, indicating an increase in
their rotational strength (Giacobello et al. 2009; Kim 2009).

Effect of sphere rotation on the planar-symmetric and steady flow

The studies of Giacobello et al. (2009) and Kim (2009) at Re = 250, representing the
planar-symmetric and steady regime of the wake of a stationary sphere (210 < Re <

270), have observed a series of wake transitions between steadiness and unsteadiness,
as shown in figure 2.9. They reported that the twin vortex trails observed for the
zero-rotation case became stronger with the introduction of sphere rotation, as for the
Re = 100 case. When the rotation rate reached approximately 0.1, the flow underwent
a transition to an unsteady wake. As the rotation rate increased further, the onset
of vortex shedding occurred in the form of hairpin loops similar to those observed for
a stationary sphere above the Hopf bifurcation (270 < Re < 420). Vortex loops were
shed from one side of the sphere and they were planar-symmetric with respect to a plane
orthogonal to the axis of sphere rotation. However, the flow was unsteady only for a
narrow range of rotation rates. At higher rotation rates, 0.4 < α ≤ 1, vortex shedding
was completely suppressed and flow returned back to the double-threaded steady wake.
As the rotation rate passed the unity, the flow again transited to an unsteady wake

(Kim 2009; Dobson et al. 2014). However, the vortical structure was recognizably
dissimilar from the regular vortex shedding of a sphere, as shown in the figure 2.9 at
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α = 1.2. In addition, the vortex shedding frequency was more than double the regular
shedding frequency. By analysing the streamlines and particle traces, Kim claimed that
this secondary vortex shedding observed at higher rotation rates was due to the roll-up
of vorticity along the shear-layer separating from the advancing side of the sphere. This
regime is known as shear-layer instability regime.
The computational study of Dobson et al. (2014) examined the nature of the wake at

higher rotation rates, 1.25 < α < 3. At Re = 250 and α = 2, they observed a double
threaded wake near the sphere while the wake further downstream was unsteady with
vortex loops. It was identified as a shear layer instability, although the vortex formation
frequency was halved compared to that of the shear-layer instability regime. Moreover,
oscillation magnitudes of the force coefficients were decaying, indicating a possibility
of a steady wake at the asymptotic state. Therefore, their claim on the extension of
shear-layer instability regime to larger rotation rates is debatable. As the rotation rate
increased further, Dobson et al. (2014) reported that the flow entered into a different
regime beyond the shear-layer instability regime. They named it the separatrix regime
as they found an existence of a separatrix at 0.2D from the sphere, which isolates the
free stream flow from the surface driven boundary layer due to the sphere rotation. In
this regime, they observed a double threaded wake structure which oscillates slightly as
it convects downstream.

Effect of sphere rotation on the unsteady flow

To investigate the effect of rotation on the unsteady vortex shedding regime, 270 < Re <

420 , both Giacobello et al. (2009) and Kim (2009) chose a Reynolds number of 300, as
did Niazmand & Renksizbulut (2003). At Re = 300, as the rotation rate increased from
zero, vortex shedding continued. All three studies reported that the shedding frequency
increased linearly with increasing rotation rate. This unsteady vortex shedding was
identical to that observed at Re = 250 and low rotation rates. As the rotation rate
increased, a series of transitions between steadiness and unsteadiness was found to
occur, similar to the Re = 250 case, following the same order. The flow became steady
with a double-threaded wake around α = 0.4. As the rotation rate increased beyond
0.8, the flow entered into the shear-layer instability regime, with one-sided loops. Kim
(2009) found that this unsteadiness persisted until α = 1.2. The wake in the shear-
layer instability regime also maintained a planar symmetry. The symmetry breaking
perturbation test of Giacobello et al. (2009) revealed that this plane of symmetry was
physical. Dobson et al. (2014) reported that the flow switched into the separatrix regime
after the shear-layer instability regime for α > 2.
The investigation of Poon et al. (2014) on flow past a rotating sphere in the Reynolds

number range, 500 < Re < 1000, and for rotation rates, 0 < α < 1.2, revealed a
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α

Figure 2.10.: Different flow regimes of a transversely rotating sphere generated by Poon
et al. (2014) with the results of Giacobello et al. (2009) and Kim (2009); � steady flow;
+ oscillation vortex thread; N vortex shedding; © shear layer instability; 5 turbulent
flow with laminar boundary layer; � shear layer stable foci.

new flow regime, namely the shear layer stable foci regime. This name is given as they
observed a stable focus near the onset of shear layer instability that resulted in a highly
unsteady flow. A summary of flow regimes mapped by Poon et al. (2014) together with
the results of Giacobello et al. (2009) and Kim (2009) according to the Reynolds number
and the rotation rate is shown in figure 2.10. As shown in the figure, the shear layer
stable foci regime was observed at Re = 500 and α = 1, and also for 640 < Re < 1000

and α ≥ 0.8. They found that the stable focus became more pronounced as the rotation
rate increased. Poon et al. also studied the nature of the flow at Re = 500 and 1000 for
increasing rotation rate. At Re = 500 and zero rotation, vortices were shed from the
sphere in random directions as discussed in § 2.1.3.2. The introduction of transverse
rotation regulated the vortex shedding process, where the vortex loops rolled up to the
advancing side of the sphere, being orthogonal to the streamwise direction. However,
they found that the flow became chaotic as it entered the shear layer stable foci regime.
A similar observation was found at Re = 1000 as well.

2.2.2. Flow past a streamwise rotating sphere

Compared with the flow past a sphere rotating in the transverse direction, even less
research has been carried out on spheres rotating in other directions. Kim & Choi (2002)
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investigated the characteristics of the flow past a sphere rotating in the streamwise
direction at Re = 100, 250 and 300 for 0 ≤ α ≤ 1. Perhaps not surprisingly, the time-
averaged lift force vanished with streamwise rotation at Re = 250 and 300, which was,
of course, non-zero under zero rotation. The drag force increased with rotation rate,
similar to the case with transverse rotation. They observed that the wake structures
behind the sphere were modified significantly with rotation and the flow became frozen
at some rotation rates. Poon et al. (2010) and Poon et al. (2013) studied the effect of
the rotating axis angle at Re = 100, 250 and 300 for 0 ≤ α ≤ 1. They found that the
wake structure strongly depended on the rotation rate and the axis angle at Re = 250

and 300, while the flow was always steady at Re = 100.
In this section, we have reviewed the findings on flow past a rotating sphere. As a

transverse rotation is imposed on the sphere, a lift force is found to be applied on the
retreating side of the sphere, deflecting the wake to the advancing side. Several studies
were focused on deriving an expression for the Magnus force in terms of the Reynolds
number and rotation rate. The lift force is found increase and then approach a constant
value with increasing rotation rate, as well as with increasing Reynolds number. The
drag force is also found to increase with increasing rotation rate beyond the Stokes
regime. Wake structures behind the sphere have been greatly influenced by the sphere
rotation. Three new wake regimes, namely, shear layer instability regime, separatrix
regime and shear layer stable foci regime, have been discovered. Wake structure of
the flow strongly depends on Reynolds number and the rotation rate, as shown in
figure 2.10 by the parameter map generated by Poon et al. (2014) together with the
results of Giacobello et al. (2009) and Kim (2009).
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Figure 2.11.: Schematics of flow-induced vibration for (a) an elastically-mounted sphere
and (b) a tethered sphere. Note that U is the free-stream velocity, m and D are the
mass and the diameter of the sphere, respectively, c is the structural damping, k is
the spring constant, Fly is the lift force in y direction, Fd is the drag force, B is the
buoyancy force, L is the tether length and T is the tension of the tether.

2.3. Flow-induced vibration of a sphere

As § 2.1 discussed, the fluctuating pressures generated by vortex shedding exerts fluc-
tuating force components on the sphere. Both lift and drag forces fluctuate at the
vortex-shedding frequency (Johnson & Patel 1999). If the sphere is flexible, elastically-
mounted or supported with a tether as shown in figure 2.11, then these fluctuating forces
can excite the body to vibrate. The vibration that occurs through the synchronization
of the structural response with the wake unsteadiness is known as Vortex-Induced Vibra-
tion, or VIV. This occurs when the vortex shedding frequency, fs, is close enough to the
natural frequency of the system, fn. In addition to VIV, structural vibration can also
be excited due to the intrinsically unstable nature of the system, like movement-induced
vibration or galloping.
The field of FIV has been continuously developing over the last few decades through

experimental and computational studies. However, the majority of them were based on
cylindrical structures, albeit that the FIV of spherical structures is equally important.
As the sphere wake differs from the cylinder wake, the nature of FIV of spherical bodies
diverges from that of cylindrical bodies. In this section, we will discuss the current
state of art of FIV of a sphere, highlighting the major findings including similarities and
dissimilarities of FIV of a circular cylinder.
The majority of early studies of tethered spheres have concerned the effect of surface

waves on tethered buoyant spheres. For an example, the investigation of Harleman &
Shapiro (1960) and Shi-Igai & Kono (1969) employed ‘Morison’s equation’ and empir-
ically obtained drag and inertial coefficients to predict the flow-induced vibration of
the sphere as a forced vibration problem. The coupling of wave motion and the sphere
dynamics yielded a complicated equation for which the underlying physics is difficult
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to understand. Gottlieb (1997) investigated the response of a non-linear small-body
ocean-mooring system excited by finite-amplitude waves and restrained by a massless
elastic tether. He determined the stability of periodic motion numerically using Flo-
quet analysis and found that the bifurcation structure includes ultra-subhamonic and
quasi-periodic responses. The hydrodynamic dissipation mechanism was found to con-
trol stability thresholds, whereas the convective nonlinearity governed the evolution to
chaotic system response.

2.3.1. Sphere response

Vortex-induced vibration of a tethered sphere in a uniform flow was first studied by
Williamson & Govardhan (1997) and Govardhan & Williamson (1997) experimentally.
They discovered that a tethered sphere vibrates vigorously at a saturation amplitude
of close to two diameters peak-to-peak. The transverse oscillation frequency was half
that of the streamwise oscillation frequency, despite the fact that the natural frequency
of a tethered body is independent of the direction. This led the sphere to follow a
path in the shape of a ‘figure eight’, with streamwise amplitude of 0.4 diameters. The
streamwise amplitude was found to decrease with the increasing mass ratio, resulting
in the typical sphere trajectory changing from a ‘figure eight’ to a ‘crescent’ shape
(Govardhan & Williamson 1997, 2005; Jauvtis et al. 2001). Moreover, the streamwise
amplitude was negligibly small for m∗ > 6. Govardhan & Williamson (1997) observed
an excellent collapse of data over a range of different mass ratios (the density ratio
between the sphere and fluid, m∗) and tether length ratios (the ratio between tether
length and the sphere diameter, l∗) when plotting the sphere response amplitude versus
reduced velocity, U∗ = U/(fnD), rather than versus Reynolds number. This is not quite
surprising as the structural vibration is closely related to the system’s natural frequency
and past VIV studies have also used it.
Govardhan & Williamson (1997) observed a local peak in the amplitude response

curve when the r.m.s. value of the amplitude was used instead of the maximum ampli-
tude. This peak appeared around U∗ ∼ 6. It was further found that the sphere vibration
frequency, f , matched the system’s natural frequency, fn, and the vortex shedding fre-
quency of the static sphere, fvo. Indeed, this is a vortex-induced vibration response
caused by resonance and is known as mode I vibration. After mode I, as the reduced ve-
locity was increased, Jauvtis et al. (2001) and Govardhan & Williamson (2005) observed
another periodic VIV response known as mode II vibration. The amplitude of mode
II was about twice that of mode I. The transition between these two modes was quite
clear from the amplitude response curve which has a local peak at mode I, for very light
tethered bodies (m∗ < 1), as shown in figure 2.12 (a). However, for elastically-mounted
higher-mass-ratio spheres and heavy tethered spheres, the transition between modes I
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Figure 2.12.: Variation of sphere response amplitudes, A∗, over the modes I and II
regimes for (a) a light sphere of m∗ = 0.8 and (b) a heavy sphere of m∗ = 2.8 by Jauvtis
et al. (2001). The sphere response amplitude varies smoothly from mode I to mode II.
At mode I, a local peak in the amplitude response curve appears only for light tethered
spheres (m∗ < 1).

and II was more continuous in the amplitude response curve as shown in figure 2.12 (b).
For the VIV of a cylinder, two or three distinct branches have been observed in the

vibration amplitude response curve A∗(U∗) depending on the combined mass-damping
parameter, m∗ζ, where ζ is the damping ratio. For high values of m∗ζ, Feng (1968)
observed two branches in the response curve, namely the initial and lower branches.
He found that the transition between these two branches was hysteretic. Khalak &
Williamson (1999) observed another branch in the response curve that lies in between
these two branches with low m∗ζ, namely the upper branch. The amplitude they ob-
served on the upper branch was much higher than on the initial and lower branches.
Moreover, they showed that the transition between the initial and upper branches was
hysteretic and the transition between upper and lower involved intermittent switching.
One major dissimilarity of VIV of a sphere and a cylinder is that the response ampli-
tude transits smoothly from mode I to mode II for a sphere, while the amplitude jumps
suddenly from one branch to another for a cylinder.
The experimental study of Govardhan & Williamson (2005) investigated modes I

and II vibration states extensively using both elastically-mounted and tethered spheres.
They identified that mode II was also a VIV response for which the sphere vibrates in
synchrony with the vortex shedding. To study the difference between modes I and II,
Govardhan & Williamson (2005) plotted the sphere response amplitude as a function
of (U∗/f∗)St ≡ fs/fvo, where f∗ = fs/fn and St = fvoD/U . For small-mass-ratio
tethered spheres, the response amplitude was found clustered around (U∗/f∗)St = 1

and 1.6 in mode I and mode II, respectively, showing a clear transition. However,
for higher-mass-ratio spheres, the response curve was smooth when plotted against
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Figure 2.13.: Synchronized response regime from Govardhan & Williamson (2005) for
increasing amplitude plots: (m∗ + Ca)ζ = 0.333, 0.290, 0.261, 0.190, 0.151, 0.029;
m∗ = 198.4, 156.6, 60.6, 53.6, 27.5, 2.8, where Ca is the added mass coefficient.

(U∗/f∗)St.
Govardhan & Williamson identified a maximum saturated response of around 0.9

diameters from their Griffin plot (the plot of peak amplitude response as a function of
the mass–damping, (m∗ + Ca)ζ, where Ca is the added mass coefficient). Moreover,
they showed that the sphere response was reasonably independent of the Reynolds
number from 2000 to 12000. Both mass and structural damping have direct influences
on VIV. Govardhan & Williamson reported that when the mass ratio and mass-damping
parameter systematically decreased then the synchronization regime widened, while the
response amplitude increased, as shown in figure 2.13. Nevertheless, they mentioned
that the body response for a tethered sphere (xy motion) and a hydroelastic sphere
(y-only) compares well for similar mass-damping parameters.
Jauvtis et al. (2001) experimentally found another periodic large amplitude vibration

state beyond mode II regime, with heavy spheres of mass ratios, m∗ = 28, 80 and 940. It
was an unexpected finding which appeared in the reduced velocity range, 20 < U∗ < 40,
and was named mode III (see figure 2.14). For a tethered sphere, mode III appeared
after a desynchronization region, but for an elastically-mounted one degree of freedom
sphere, transition from mode II to mode III was continuous (Govardhan & Williamson
2005). It was difficult to explain the cause of mode III using classic lock-in theories,
since the principal vortex shedding frequency was found to be 3 to 8 times higher
than the sphere vibration frequency. In addition, such a vibration state has not been
found for a cylinder. Later, Govardhan & Williamson (2005) classified mode III as a
Movement-Induced Excitation. However, the nature of mode III vibration state has
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Figure 2.14.: Amplitude, A∗, and frequency, f∗, responses over a large range of U∗,
showing the very broad regime of periodic mode III oscillations (20 < U∗ < 40) from
Jauvtis et al. (2001); • m∗ = 80 (12 in× 12 in wind tunnel); © m∗ = 80 (18 in× 18 in
wind tunnel); and � m∗ = 940 (18 in× 18 in wind tunnel).
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not been examined in details and further investigations are required to enhance the
understanding of this mode.
Subsequently, Jauvtis et al. (2001) found another vibration state after mode III for

U∗ > 100 with a sphere of m∗ = 80, which is known as mode IV. In this mode,
the sphere showed intermittent bursts of vibrations, in contrast to periodic vibrations
for the first three modes. Despite being an aperiodic vibration, interestingly, the main
frequency component was close to the natural frequency of the system. Moreover, it was
observed that the response amplitude increased with increasing reduced velocity. Even
less attention was given to mode IV and the mechanism responsible for this galloping
type intermittent vibration state still remains unknown to the research community.
Hout et al. (2010) identified three bifurcation regions for the VIV of a heavy (m∗ =

7.87) tethered sphere in the reduced velocity range, 2.8 ≤ U∗ ≤ 31. The sphere remained
stationary in the first regime while it showed large amplitude periodic oscillations in the
second regime, similar to modes I and II observed by Jauvtis et al. (2001) and Govardhan
& Williamson (2005). In the third bifurcation regime, the sphere showed less periodic
and smaller amplitude vibrations. For VIV of a cylinder, it has been discovered that a
critical mass ratio, m∗crit, exists, below which a large amplitude response will persist up
to infinite reduced velocity (Govardhan & Williamson 2000, 2002). Using the effective
added mass, Govardhan & Williamson (2005) estimated that m∗crit is approximately
0.6 for a sphere. Eshbal et al. (2012) investigated the VIV of a light tethered sphere
with m∗ = 0.392 < m∗crit, for the Reynolds number range, 430 ≤ Re ≤ 1925. As U∗

increased, they observed a continuously increasing trend in the r.m.s. amplitudes after
the first bifurcation, as expected.
Coulombe-Pontbriand & Nahon (2009) investigated the dynamics of spherical aero-

stat on a single tether in the supercritical Reynolds number range (Re > 3.7 × 105).
Their experiments demonstrated that a tethered sphere in a turbulent flow will strongly
oscillate. The amplitude of the transverse oscillation was found to increase with the
increasing U∗ ∈ [5, 40] but was independent of the tether length. They also performed
numerical simulations based on a prior model created by Lambert (2002), and found a
good agreement between numerical and experimental results.
Mi & Gottlieb (2015) derived a Lagrangian-based model to estimate both structural

and aeroelastic parameters, of lighter-than-air spheres, via asymptotic analysis of in-
ternal resonance conditions between the transverse wake frequency and its structural
counterpart. Validation of the model was demonstrated by comparison of results with
those of Govardhan & Williamson (1997) and Coulombe-Pontbriand & Nahon (2009).
Mi & Gottlieb (2016) derived a nonlinear initial boundary value problem for a planar
multi-tethered spherical aerostat system and observed superharmonic periodic, period-
doubled, quasiperiodic and chaotic-like frequency responses. Mi & Gottlieb (2017) im-
proved the model developed by Mi & Gottlieb (2015) to the multi-tether framework
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Figure 2.15.: The VIV response observed by Behara et al. (2011) at Re = 300 with a
3 DOF elastically-mounted sphere. Two distinct sphere vibration modes (hairpin and
spiral) appear at the same reduced velocities; � hairpin mode; � and © spiral mode
obtained for increasing and decreasing U∗, respectively.

incorporating the rotational degrees-of-freedom to describe complete rigid-body dynam-
ics.
Recently, a few computational studies have also reported VIV of a sphere at low

Reynolds numbers (Pregnalato 2003; Provansal et al. 2003; Lee et al. 2008, 2013; Be-
hara et al. 2011; Behara & Sotiropoulos 2016). The combined numerical and experiment
studies of Lee et al. (2008, 2013) investigated the VIV of a neutrally buoyant (m∗ = 1)
tethered sphere, which may be considered as locally planar for small vibration ampli-
tudes relative to the tether length. Neutral buoyancy was chosen to eliminate the effect
of gravity. They found seven different broad and relatively distinct sphere oscillation
and wake states over the Reynolds number range, 50 < Re < 12000. Provansal et al.
(2003) examined the trajectories of a heavy (m∗ = 2.433) tethered sphere and found a
periodic VIV response. Hysteresis was observed in the transition to synchronized vibra-
tion. They reported that the trajectory of the sphere could be elliptic, quasi-circular,
or even straight (planar), depending on the initial conditions. However, this study was
limited to the reduced velocity range, 0 < U∗ < 5. Pregnalato’s (2003) investigation
of VIV of a tethered sphere at Reynolds number 500 observed modes II-IV vibrations
characterised by Jauvtis et al. (2001). Two different mass ratios (m∗ = 0.8 and 0.082)
were used in this study. For m∗ = 0.8, mode II was observed in the reduced velocity
range, 5 < U∗ < 10, while modes III and IV appeared for U∗ > 10. However„ for
m∗ = 0.082, mode IV vibration did not appear in the reduced-velocity range studied
(0 < U∗ < 20) which led to a suspicion of the existence of a critical mass.
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The computational study of Behara et al. (2011) investigated VIV of an elastically-
mounted sphere with 3 DOF at Reynolds number Re = 300 and reduced mass, mr = 2

(m∗ = 3.8197). Over the reduced velocity range, 4 ≤ U∗ ≤ 9, they observed two distinct
sphere vibration modes at the same reduced velocities, each corresponding to a distinct
type of wake structure, namely hairpin and spiralmodes, as shown in figure 2.15. For the
hairpin mode, the sphere vibrated in a linear path in the transverse plane, while for the
spiral mode the sphere moved on a circular orbit. Furthermore, for the spiral mode, they
observed hysteresis in the response amplitude at the beginning of the synchronization
regime. More recently, Behara & Sotiropoulos (2016) extended this study by expanding
the U∗ range and increasing the Reynolds number up to 1000 at U∗ = 9. They identified
that the hairpin mode is unstable and merges with the spiral mode at U∗ = 9. Moreover,
the sphere response was found to be strongly dependent on the Reynolds number.

2.3.2. Force measurements

Williamson & Govardhan (1997) and Govardhan & Williamson (1997) reported that
the sphere oscillation increased the drag force and the tether angle by the order of 100%

over that predicted using the drag measurement of a stationary sphere by Wieselsberger
(1922). Consistently, Coulombe-Pontbriand & Nahon also found that there was a sub-
stantial increment in the drag coefficient in their study of a spherical aerostat due to
the balloon’s large oscillations, surface roughness, and wind turbulence. The numerical
study of Behara et al. (2011) also reported an increment in the drag force as the sphere
began to vibrate. Similar to their amplitude response curve, two branches were found
in the plot of drag coefficient which corresponds to hairpin and spiral modes. In each
case, the drag coefficient increased as soon as the sphere began to vibrate and that
increment decreased with increasing U∗. Moreover, the spiral mode showed hysteresis
at the beginning of the transition to VIV.
To examine the difference between modes I and II, Govardhan & Williamson (2005)

studied the variation of fluid force as the sphere transitioned from mode I to mode
II. The total fluid force, Ft, acting on the body can be conveniently be split into two
components, a ‘potential force’ component (Fp) related to the potential added mass
and a ‘vortex force’ component (Fv) related to the dynamic vorticity (Lighthill 1986).
For a cylinder, Govardhan & Williamson (2000) observed a shift in the total phase, φt
(the phase between the sphere displacement and the total force), or the vortex phase, φv
(the phase between the sphere displacement and the vortex force), as the vibration state
transitions from one branch to another. Analogously, Govardhan & Williamson (2005)
showed that vortex phase was approximately 90◦ higher for mode II compared to mode
I, while the total phase remains almost constant over both modes I and II regimes, as
shown in figure 2.16. Hout et al. (2010) also found that phase at which vortices were
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Figure 2.16.: Force and phase angle variation with U∗: (a) total force; (b)vortex force
from Govardhan & Williamson (2005). The � symbols on the plots indicate locations
in the heart of mode I and mode II regimes, outside the transition region between the
two modes (m∗ = 31, (m∗ + Ca)ζ = 0.15).

shed increased with increasing U∗ in the second bifurcation region of periodic vibration.

2.3.3. Wake structures

Govardhan & Williamson (2005) observed a chain of two-sided hairpin vortex loops in
the wake for both modes I and II with the aid of digital particle image velocimetry
(DPIV), as shown in figure 2.17. They observed a development of a vortex ring at the
head of the vortex loop, due to the pinching off and vortex reconnection of the two
sides of the loop. Moreover, they claimed that it presumably resembles the 2P mode of
counter-rotating vortex pair formation in the case of the vibrating cylinder observed in
the upper and lower branches (Williamson & Roshko 1988). Govardhan & Williamson
reported that the sphere vibration locks the vortex formation in a particular preferred
orientation, maintaining a planar symmetry with the (horizontal) plane containing the
principal body displacement, unlike the azimuthal wandering of the wake structures
behind static spheres (observed for Re > 420, as discussed in § 2.1.3).
As discussed in § 2.3.2, Govardhan & Williamson (2005) found that the vortex phase

increased as the sphere transit from mode I to mode II. Consistently, they observed
that the timing of vortex shedding relative to the sphere motion changed once it passed
from mode I to mode II. Similarly, Hout et al. (2010) observed that the place where the
vortex pinch-off occurs depends on the reduced velocity. They reported that increasing
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Figure 2.17.: Three-dimensional patio-temporal reconstruction of the sphere wake
from the measured time sequence of streamwise vorticity at mode I by Govardhan &
Williamson (2005).

(a) (b)

Figure 2.18.: Instantaneous wake structures observed by Behara et al. (2011) (a) spiral
mode and (b) hairpin mode at U∗ = 7, Re = 300, mr = 2.

or decreasing U∗ caused earlier or later pinch-off relative to the location it occurred at
the peak amplitude of region II, respectively.
Hout et al. (2010) also discovered shedding of hairpin vortices on alternating sides

of the sphere having horizontal plane of symmetry. They characterized the near wake
spatial-temporal vortex pattern by a saw-tooth of counter-rotating vortices. As dis-
cussed earlier, when the sphere is mounted with elastic supports in all three spatial
directions, Behara et al. (2011); Behara & Sotiropoulos (2016) observed that the sphere
can also move in a circular trajectory in addition to the linear trajectory. In this case,
they observed a counter-rotating streamwise spiralling wake behind the sphere which
led to calling it the spiral mode, see figure 2.18 (a). In the other case, where the sphere
moved in a linear path, they observed regularized two-sided hairpin loops, as shown in
figure 2.18 (b). Behara & Sotiropoulos (2016) reported that the spiral mode they ob-
served at U∗ = 9 and Re = 300 and 400, transitioned to the hairpin mode at Re = 500

and continued up to Re = 1000.
The experimental study of Brücker (1999) examined freely rising air bubbles in water

and found three different types of bubble motion; spiralling, zigzagging, and rocking,
during their rise. Their results showed that zigzagging motion was coupled to a gen-
eration of two-sided hairpin loops, while the spiraling bubble created a twisted pair of
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streamwise vortices that were wound like a helix, resembling the spiral wake observed
by Behara et al. (2011); Behara & Sotiropoulos (2016). Horowitz & Williamson (2010)
experimentally studied the dynamics and vortex formation modes of spheres rising or
falling freely through a fluid. They found that falling spheres (m∗ > 1) always moved
without vibration. A rising sphere was found to vibrate only if its mass ratio was below
a critical value (0.4 for the range, 260 < Re < 1550 and 0.6 for Re > 1550). They did
not observe a helical or spiral trajectory. They reported that wakes comprised single-
sided and double-sided periodic sequences of vortex rings, named as R and 2R modes.
In addition, in the zigzag regime, they discovered a new 4R mode, in which four vortex
rings are created per cycle of oscillation.
This section was devoted to the discussion of the literature on the flow-induced vibra-

tion of a sphere. In summary, four different sphere vibration modes, modes I-IV, were
identified based on the sphere response, forces applied on it and wake characteristics.
Mode I, is the resonance state. A sphere shows mode II type vibration after mode I with
comparatively larger amplitudes. The transition between mode I and II is continuous,
and both modes I and II are highly periodic vortex-induced vibrations. Mode III is also
periodic and has observed in the reduced velocity range, 20 < U∗ < 40. In contrast
to the first three modes, mode IV is an intermittent burst of vibration and has been
observed for U∗ > 100. Two-sided hairpin type wakes were observed for both modes I
and II. For mode III, long vortex loop structures were observed in the wake. The last
two vibration modes that occur at low frequencies have not been well examined and
more research is needed.
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2.4. Effect of the body rotation on the VIV

VIV of a rotating cylinder

Even though the body rotation directly influences the forces exerted on it and the
wake structure, as discussed in § 2.2, the effects of solid rotation on VIV has not been
examined up until very recently. The computational studies of Bourguet & Jacono
(2014) and Zhao et al. (2014) were the first investigations on flow-induced vibration of
a rotating cylinder, conduced at Re = 100 and Re = 150, respectively. Both of these
studies observed that the peak oscillation amplitude increased and the synchronization
regime, defined as the reduced velocity range where large vibrations close to the natural
frequency are observed, widened as the rotation rate increased. Bourguet & Jacono
(2014) found that the synchronization regime narrowed beyond α = 3.5 and vibration
was completely suppressed for α ≥ 4. They also discovered two new vortex shedding
patterns; T + S (a triplet with a single vortex per cycle) and U pattern (transverse
undulation of the spanwise vorticity layers without vortex detachment). Zhao et al.
(2014) reported that when a two degree of freedom is given to the cylinder, its responses
at α = 0.5 and 1 were significantly different from that at α = 0.
The experimental study of Seyed-Aghazadeh & Modarres-Sadeghi (2015) on VIV of

a rotating cylinder (350 ≤ Re ≤ 1000) also revealed that the synchronization regime
became narrower at high rotation rates, and oscillations suppressed beyond α = 2.4.
However, they reported that the rotation of the cylinder does not show a significant
influence on the response amplitude, in contrast to the results of Bourguet & Jacono
(2014) and Zhao et al. (2014). More recently, Wong et al. (2017) conducted experiments
to investigate the characteristics of FIV of a transversely rotating circular cylinder over
the Reynolds number range, 1100 < Re < 6300. They also observed a significant struc-
tural vibration up to α = 3.5. They reported that the oscillation amplitude increased
with the rotation rate for α ≤ 2 prior to a sharp decreasing trend for higher α values. In-
terestingly, α ≈ 2 corresponds to the rotation rate beyond which vortex shedding ceases
for a static cylinder (Mittal & Kumar 2003; Kang et al. 1999). However, Bourguet &
Jacono (2014) reported an increasing trend of amplitudes even beyond α = 2. Zhao
et al. (2018) experimentally studied the in-line FIV of a rotating circular cylinder and
found VIV synchronisation and rotation-induced galloping responses. The amplitude in
the VIV synchronisation region was found to increase up to∼ 0.5D, while it could grow
up to 1.56D in the rotation-induced galloping region.

VIV of a rotating sphere

The experimental study of Sareen et al. (2018a), published recently, is the only in-
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Figure 2.19.: The sphere response amplitude, A∗, as a function of reduced velocity, U∗,
for different rotation rates, α, from Sareen et al. (2018a). The sphere response amplitude
decreases and the synchronisation regime narrows with the increasing rotation rate.

vestigation on the effect of sphere rotation on VIV, to the author’s knowledge. They
examined the cross-flow VIV of a transversely rotating sphere over the reduced velocity
range, 0 < U∗ < 18, corresponding to a Reynolds number range of 5 000 < Re < 30 000,
and for rotation rates of 0 < α < 7.5. The vibration amplitude exhibited a monoton-
ically and gradually decreasing trend as the imposed rotation rate was increased from
0 to 6, beyond which the body vibration was insignificant, as shown in figure 2.19.
Moreover, Sareen et al. found that the synchronisation regime narrowed as the rotation
rate increased, leading the peak saturation amplitude to occur at a progressively lower
reduced velocity. Indeed, these are in contrast with the observations for the VIV of a ro-
tating cylinder, for which the oscillation amplitude increased and syncronisation regime
broadened initially with increasing α before the suppression of VIV by narrowing the
synchronization regime (Bourguet & Jacono 2014; Zhao et al. 2014; Wong et al. 2017).
Sareen et al. (2018a) reported that the imposed rotation not only reduced vibration
amplitudes, but also made the body vibration less periodic.
The range of reduced velocity chosen for Sareen et al. study covers both modes I

and II regimes for a zero-rotation sphere. They reported that both modes I and II type
vibration persisted even under the influence of imposed sphere rotation. The variation
of the vortex phase was similar to that of the zero-rotation case, where φv increased
gradually from low values in mode I to almost 180◦ as the system underwent a continuous
transition to mode II.
Sareen et al. (2018a) visualized the flow behind the sphere using both Hydrogen-
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α = 6

α = 2.5

α = 1

α = 0

Figure 2.20.: Equatorial near-wake vorticity maps obtained from phase–averaged PIV
at U∗ = 6 by Sareen et al. (2018a). Panels (a,c,e,g) show images corresponding to when
the sphere is at its lowest position, and (b,d,f,h) when it is at its highest position.

bubble visualisation and particle image velocimetry (PIV) performed in the equatorial
plane (see figure 2.20). They observed that the mean wake deflected toward the advanc-
ing side of the sphere with increasing rotation rate due to the Magnus effect. Conse-
quently, large-scale one-sided vortex shedding occurred at higher rotation rates. They
claimed that the lack of an oscillating force acting on the sphere led to near–suppression
of the VIV.
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2.5. Chapter summary and research questions

The preceding review of the literature indicates the limited knowledge built on the
flow-induced vibration of a sphere. In contrast to the FIV of a cylinder, only a few
investigations was devoted to exploring the fundamentals of FIV of a sphere. Moreover,
the majority of these studies were experimental studies, conducted at higher Reynolds
numbers. A couple of computational studies investigated the characteristics of FIV of a
sphere. Nevertheless, there exist limitations to those studies, and some questions remain
unanswered. A summary of the literature is listed below by highlighting the gaps in
knowledge and stating the proposed research questions to answer them.

1. The experimental studies of Govardhan & Williamson (1997); Williamson & Go-
vardhan (1997); Jauvtis et al. (2001); Govardhan & Williamson (2005) on the
flow-induced vibration of a sphere identified four different vibration modes (modes
I-IV), based on the characteristics of the flow and sphere response. The first two
modes (observed over U∗ ∼ 5 − 10) are self-limited vortex-induced vibration re-
sponses. Mode III is also a self-limited vibration state but not a VIV, as the vortex
shedding frequency is 3 ∼ 8 times higher than the sphere vibration frequency. In
contrast to the first three modes, mode IV (observed for U∗ > 100) is not a self-
limited vibration state. Modes I and II have been developed more attention in
the literature. Govardhan & Williamson (2005) revealed that the effect of the
Reynolds number is negligible over the range, 2000 < Re < 12000, while the im-
pact of the mass ratio is significant over the range 0.1 < m∗ < 1000 in modes I and
II regimes. The majority of studies were based on tethered spheres, albeit there are
some dissimilarities between VIV of a tethered sphere and an elastically-mounted
sphere. Behara et al. (2011); Behara & Sotiropoulos (2016) have conducted the
only computational studies on VIV of an elastically-mounted sphere (with 3 DOF )
in the laminar regime. There were substantial differences between their amplitude
response curve to that of the experiments at higher Reynolds numbers. Moreover,
only the modes I and II regimes were considered in these studies, and the effect of
Reynolds number on VIV was not well examined. Therefore, the first question for
research is: How does the flow-induced vibration of an elastically-mounted sphere
over the reduced velocity range 3 ≤ U∗ ≤ 100 at low Reynolds numbers differ from
the experimental studies at higher Reynolds numbers?

2. Despite the fact that sphere rotation greatly influences the forces applied on it and
the wake, the consequences of sphere rotation on the VIV has not been examined
until the very recent experimental study of Sareen et al. (2018a). They explored
the effect of sphere rotation over the modes I and II regimes, corresponding to
the Reynolds numbers 5000 < Re < 3000, for 0 < α < 7.5. They observed
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a decrement in the amplitude and narrowing of the synchronization regime as
the rotation rate increased. Moreover, oscillations were insignificant for α > 6.
However, the nature of the problem at low Reynolds numbers is not known yet. In
the laminar regime, for the non-VIV sphere, it was found that the flow undergoes
a couple of transitions between the steadiness and the unsteadiness as the rotation
rate increased. As a result, the behaviour of the sphere at low Reynolds numbers
may be different from that observed in experiments, as was found for the VIV of
a cylinder. Therefore, the second question for research is: What are the effects
of imposed transverse rotation on the vortex-induced vibration of an elastically-
mounted sphere over the rotation rates, 0 < α < 2.5 at low Reynolds numbers?

3. Mode III, which was named as a movement-induced vibration by Govardhan &
Williamson (2005), and an intermittent burst of mode IV vibration states observed
at low frequencies are difficult to explain by the classic lock-in theories. Moreover,
their nature is not well understood. Pregnalato (2003) undertook the only com-
putational study devoted to the VIV of a tethered sphere in the laminar regime.
However, due to the computational constraints, insufficient investigation has been
reported on the low-frequency regimes. Therefore, to enhance the understanding
of modes of sphere vibration, the third question for research is: What is the nature
of the flow-induced vibration of a tethered sphere over the Reynolds number range,
500 < Re < 2000?

Numerical investigations are required to answer these research questions and broaden
the understanding of flow-induced vibration of a sphere. Initially, the flow-induced
vibration of an elastically mounted sphere will be investigated. Then, the effect of the
imposed transverse rotation of the sphere on VIV will be examined. Finally, the flow-
induced vibration of a tethered sphere will be studied to enhance the knowledge on
different modes of sphere vibration. Prior to the discussion of results, the numerical
approach will be presented in chapter 3.
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If you want your children to be
intelligent, read them fairy tales. If
you want them to be more intelligent,
read them more fairy tales.

Albert Einstein

3. Numerical Methodology

This chapter presents a basic overview of the numerical methods used for the simulations
conducted for this thesis. The overview given here is not exhaustive, and it should be
noted that the main focus of the thesis was not the development of computational
methods, but the fluid mechanics of flow-induced vibration.
The widely used open-source computational fluid dynamics (CFD) package Open-

FOAM (https://openfoam.org) was utilised for the numerical simulations. The chapter
begins with a brief overview of OpenFOAM in § 3.1 including topics on setting up a
case in OpenFOAM, discretization of the fluid dynamics equations and the algorithm
used by the fluid solver for non-FIV simulations. With this established, the numeri-
cal approach used for FIV of an elastically-mounted body is described in § 3.2. Here,
the newly developed fluid-structure solver in the case of an elastically-mounted body is
discussed in detail. Following this, the numerical approach used for a tethered sphere
is presented in § 3.3, detailing the FSI solver developed to treat a tethered body, and
the methods of calculating the natural frequency of the system and the reduced veloc-
ity. § 3.4 provides a brief introduction to the dynamic mode decomposition technique,
which is later used to analyse the wake undergoing different vibration modes. Grid and
domain details are presented in § 3.5, which describes the grid generation process and
boundary conditions. Finally, the results from a series of validation studies are given in
§ 3.6. Results confirming the accuracy of the solutions achieved in both space and time
are presented. These tests provide confidence in the predictions of this thesis.

3.1. Simulations in OpenFOAM

OpenFOAM is an open-source CFD package released by OpenCFD Ltd and distributed
freely via https://www.openfoam.com for Linux operating systems. OpenFOAM has
the facility of performing simulations on multiple processors in parallel. In the present
study, simulations were performed in parallel on the Magnus supercomputer at the
Pawsey supercomputing centre though computer-time allocation merit grants n67 and
d71.
OpenFOAM is a framework for developing application executables that use packaged

functionality contained within a collection of approximately 100 C+ libraries (The-
OpenFOAM-Foundation 2018). OpenFOAM comes with approximately 250 pre-built
applications that fall into solver and utility categories. Solvers are designed to solve a
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specific problem in continuum mechanics while utilities are designed to perform tasks
that involve data manipulation. OpenFOAM solvers are capable of handling a wide
range of problems in fluid dynamics. Users can develop new solvers, utilities and libraries
with some pre-requisite knowledge of the underlying method, physics and programming
techniques involved.
OpenFOAM comes with both pre- and post-processing environments. The interface

to the pre- and post-processing are themselves OpenFOAM utilities, thereby ensuring
consistent data handling across all environments. OpenFOAM has limited graphical
interface. Therefore the utility paraFoam provides possibilities of visualizing the grid
and the obtained results by connecting to the data analysis and visualization application
ParaVIEW.

3.1.1. File structure of an OpenFOAM case

Typically, an OpenFOAM case contains mainly three types of directories, namely the
constant directory, the system directory and time directories, as shown in figure 3.1.
Only a brief description of the file system is given below, and readers are referred to the
OpenFOAM user guide (The-OpenFOAM-Foundation 2018) for more details.

The constant directory

The constant directory contains the full description of the case grid in a subdirec-
tory called polyMesh. The constant directory also contains the files specifying physical
and turbulent properties for the application concerned, e.g. the file transportProperties
which contains the transport properties. Since only the laminar condition is considered
for the present simulations, the value of the kinematic viscosity of the fluid was the only
content of the transportProperties file.

The system directory

The system directory contains the files associated with the control parameters and
solution procedures. It should contain at least the controlDict, fvSchemes and fvSolu-
tion files. The controlDict file specifies the control parameters including the start/end
time, the time step and parameters for data output. The fvSchemes determines the dis-
cretization schemes used in the solution, while the fvSolution determines the equation
solver algorithms, tolerances and other algorithm controls. The discretization schemes
and the equation solver algorithms used for the present simulations are discussed in
detail in § 3.1.4 and § 3.1.5, respective.
The files: decomposeParDict, forceCoeffs and mapFields were also used for the present

simulations. The decomposeParDict file determines the parameters for decomposing the
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Figure 3.1.: The file system of an OpenFOAM case. Reproduced from (The-
OpenFOAM-Foundation 2018, fig 4.1, section 4.1) and modified.

grid into separate domains to run the case in parallel on multiple processors. The force-
Coeffs file determines the parameters required to calculate force measurements and force
coefficients. Once forceCoeffs is included in the controlDict file, as shown in appendix A,
OpenFOAM writes the forces and force coefficients to a file in a directory called post-
Processing. The mapFields file was used when it required to map the field data from a
coarse grid to a finer grid.

The time directories

A case directory contains individual files for each time instance. The name of each
time directory is based on the simulated time at which the data is written, e.g. for
the initial time t = 0, the time directory is named as ‘0’. A time directory contains
individual files of data for particular fields, e.g. velocity and pressure fields. The field

45



3.1. SIMULATIONS IN OPENFOAM

data can either be initial values and boundary conditions prescribed by the user, or
results written to a file by OpenFOAM. It is always required to initialize the fields even
when the solution does not strictly require it, as in steady-state problems.

3.1.2. Governing equations

The numerical approach for any computational study strictly depends on the assump-
tions made. There are three main assumptions made regarding the fluid in the systems
considered in this thesis.
First, the fluid is assumed to be a continuum. This assumption makes it possible

to consider a fluid as a collection of infinitesimal control volumes, which are small
in comparison to the characteristic length scale of the system, but large in compari-
son to the molecular length scale. In those control-volume elements, macroscopic (ob-
served/measurable) properties such as density, pressure, temperature, and bulk velocity
are taken to be well-defined. This assumption only becomes invalid for supersonic flows,
or molecular flows on the nano-scale level.
Second, the fluid is assumed to be incompressible: i.e. the fluid cannot be compressed

with the application of an external pressure. With this assumption, the material deriva-
tive of the density vanishes, as does the divergence of the fluid velocity. It is typically
valid for flows where the Mach number, Ma, which is the ratio between the velocity of
the flow and the velocity of sound in the fluid, is smaller than ∼ 0.3, since the effect
is proportional to Ma2. This condition is applicable in the many current engineering
applications, especially to those in water. Also, the fluid is assumed to be isothermal,
so that (temperature-induced) density gradients play no part in the flow dynamics.
Third, the fluid is assumed to be Newtonian. This means that the viscous stresses

arising from its flow, at every point, are linearly proportional to the local strain rate.
This proportionality constant is the dynamic viscosity, µ, of the fluid. Sir Isaac Newton
showed that many familiar fluids such as water and air have this property.
The equations that govern the bahaviour of such a Newtonian fluid with the incom-

pressibility constraint are the Navier-Stokes equations,

∂u
∂t

= −(u ·∇)u − 1

ρ
∇P +

µ

ρ
∇2u, (3.1)

and the continuity equation,
∇ · u = 0. (3.2)

Here, u = u(x,y,z,t) is the velocity vector of the fluid at a given location and at a given
time, P is the pressure, ρ is the fluid density, assumed constant. Given constant density,
it is usual to eliminate explicit reference to the density by introducing the kinematic
pressure p = P/ρ, and the kinematic viscosity ν = µ/ρ. Equation 3.1 gives the rate of
change of the momentum (per unit mass) of the fluid flow. The terms on the right of
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this equation account for the effects of convection, pressure, and diffusion on momentum
transport.
OpenFoam facilitates simulations in the dimensional form. For the present direct

numerical simulations, the only fluid property that is required to be specified is the
kinematic viscosity, ν, which can be obtained by ν = UD/Re, where U is the freestream
velocity.

3.1.3. The fluid solver for non-VIV simulations

OpenFOAM has a wide range of standard solvers designed for applications in different
categories of continuum mechanics. Flow in the laminar regime has been considered
for the thesis. The pre-built icoFoam solver is considered to be appropriate for the
present simulations, as it is a transient solver for the incompressible, laminar flow of
Newtonian fluids. The icoFoam solver was implemented according to the PISO (Pressure
Implicit with Splitting of Operator) algorithm introduced by Issa (1986). This algorithm
approximates the spatially and temporally discretized fluid equations with an order of
accuracy O(δt2), with δt the time step. The widely used PISO algorithm is generally
stable and relatively easy to implement.
The PISO algorithm integrates the Navier-Stokes equations forward in time using a

predictor step followed by several corrector steps. In the predictor step, the discretized
momentum equation (we will refer to this as the velocity equation) is solved implicitly
for a new velocity field with the previous pressure and velocity fields. An equation is
derived combining the discretized continuity equation and momentum equations (we
will refer to this as the pressure equation). In the corrector step, a velocity field and a
pressure field are found that are able to satisfy both the continuity and the momentum
equations. This is done by first solving the above-mentioned pressure equation for the
pressure (with the velocity found in the predictor step or the previous corrector step),
and then solving the momentum equation for the velocity. At the end of the time step,
the velocity and the pressure fields found from the last corrector step are taken as the
new velocity and pressure fields. Appendix B describes the PISO algorithm used in the
icoFoam solver in more detail, while appendix C shows the actual icoFoam.C file used
to compile the icoFoam solver. Issa (1986) shows that this algorithm needs, at least,
two corrector steps to achieve the desired accuracy. He showed that with two corrector
steps, the velocity and pressure can be approximated to orders of accuracy O(δt4) and
O(δt3), respectively. Adding another corrector step would increase the accuracy of the
approximations, but it will unnecessarily increase the computational time, because the
order of accuracy of the algorithm is only O(δt2). Therefore, we used only two corrector
steps in all of our simulations.
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3.1.4. Numerical discretization

OpenFOAM is developed based on finite-volume method (FVM), similar to many com-
putational fluid dynamics packages, as this method is easy to formulate. The finite-
volume method is a numerical technique that transforms the partial differential equa-
tions into a system of discrete algebraic equations, analogous to the finite-difference
(FD) and finite-element (FE) methods. The finite-volume method relies on a control
volume approach. In general, the finite-volume approach is based on conservation of
some quantity, i.e., what goes into the control volume through the sides accumulates
in the control volume. In this method, the governing equations are integrated over all
finite volumes of the computational domain.
The finite-volume method requires a spatial domain to discretize, breaking it into a

number of cells or control volumes. The cells are contiguous, i.e. they do not overlap
and they completely fill the domain. Dependent variables are principally stored at cell
centroids, although they may be stored in cell faces or vertices. In OpenFOAM, there
is no limitation on the number of faces that bound a cell, nor any restriction on the
alignment of faces. This kind of grid setup is often referred to as an arbitrarily unstruc-
tured grid. Thus, it provides considerable freedom in grid generation and manipulation,
especially when the geometry is complex or changes over time.
OpenFOAM offers the freedom of choosing appropriate discretization schemes from

a wide selection, for each and every term in the governing equations. This is done
through the fvSchemes file in the system directory. Equations 3.1 and 3.2 were spatially
and temporally discretized using different schemes, as tabulated in table 3.1. The time-
derivative term, ∂u/∂t, was discretized based on the backward Euler approach, which is
implicit and second order accurate. The gradient (∇) and Laplacian (∇2) operators were
discretized by the second-order Gauss scheme using linear interpolation. The divergence
(∇·) operator was also discretized similarly but with the Gamma= 0.5 interpolation
scheme. To calculate the surface normals for the Laplacian, a blend of the corrected
(which is unbounded, second-order and conservative) and uncorrected (bounded, first-
order and non-conservative) schemes were used with a blend factor of 0.5.

3.1.5. Solution and algorithm controls

The velocity equation mentioned in the predictor step was solved using a Preconditioned
(Bi-) Conjugate Gradient (PBiCG) iterative method preconditioned with a Diagonal
Incomplete-Lower-Upper (DILU) decomposition. The pressure equation defined in a
corrector step was solved using a Preconditioned Conjugate Gradient (PCG) iterative
method preconditioned with the Diagonal Incomplete Cholesky (DIC) decomposition. It
is possible to use the simpler Conjugate Gradient method with the DIC preconditioner
for the pressure equation (see the equation B.5), since the Laplacian operator yields
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Terms and operators Numerical schemes Interpolation

Divergence Gauss Gamma V 0.5

Gradient Gauss linear

Laplacian Gauss linear

Interpolation linear

Surface normal gradient limited 0.5

Time derivative Backward Euler

Table 3.1.: Numerical schemes used in the discretization.

a symmetric and positive definite matrix when discretized. However, the discretized
velocity equation will not be symmetric due to the nonlinear convection term, thus
dictating the use of the Bi-conjugate gradient method with the DILU preconditioner.
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Figure 3.2.: The fixed frame Ir (e1, e2, e3) and the moving frame Cr (i, j, k). The fluid
body was modeled in the moving reference frame Cr, which is attached to the centre of
the sphere, rather than the absolute reference frame Ir.

3.2. Numerical approach: FIV of an elastically-mounted
sphere

In flow-induced vibration problems, the solid body has the freedom of moving in response
to the forces acting on it. To account for the motion of the solid, a dynamic grid
technique or immersed boundary method can be used. OpenFOAM facilitates solving
fluid-structure interaction problems though dynamic grid techniques, in which the grid
is deformed according to the solid motion during each time step. Ding et al. (2013);
Habchi et al. (2013); Wu et al. (2014) provide some examples of researches who utilised
OpenFOAM based in those techniques for FIV problems. Nevertheless, these dynamic
grid techniques or immersed boundary methods are computationally expensive, given a
fixed geometry.
A single-body FIV problem, such as the present cases, can be solved efficiently without

using a dynamic grid technique. Instead of deforming the grid, the coupled solid motion
and fluid equations can be solved in a body-fixed reference frame with a non-deformable
grid, as used by Blackburn & Henderson (1996); Leontini et al. (2006a,b, 2013). This
technique is considerably more efficient than a dynamic grid technique. Therefore, a
new solver was developed to solve the coupled FSI system for an elastically-mounted
sphere. The FSI system and the FSI solver are discussed in detail in the following two
subsections.

3.2.1. Governing equations

To avoid mesh deformation, the fluid flow was modelled in the moving reference frame at-
tached to the centre of the sphere (see figure 3.2). This is a non-inertial reference frame,
since it accelerates according to the motion of the sphere. Therefore, (momentum)
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Navier-Stokes equations given in equation 3.1 need to be adjusted accordingly. This
can be done by adding the acceleration of the frame, which is indeed the acceleration of
the sphere, to the momentum equations, as a source term. For an elastically-mounted
rigid-body, the motion of the solid body was assumed to behave as a spring-mass-damper
system, while the fluid was assumed incompressible and viscous.
The coupled fluid-solid system can be described by the Navier-Stokes equations given

by equations (3.3), and the continuity equation given by (3.4), together with the gov-
erning equation for the motion of the sphere by equation (3.5):

∂u

∂t
+ (u · ∇)u = −∇p + ν ∇2u − ÿs, (3.3)

∇ · u = 0, (3.4)

m ÿs + c ẏs + k ys = fl. (3.5)

Here, ys, ẏs, and ÿs are the sphere displacement, velocity, and acceleration vectors,
respectively. In addition, m is the mass of the sphere, c is the damping constant, k is
the structural spring constant, and fl is the flow-induced integrated vector force acting
on the sphere due to kinematic pressure and viscous shear forces acting on the body
surface.

3.2.2. The fluid-structure solver

A new solver (named vivIcoFoam) was created to solve the fluid-structure coupled sys-
tem defined by the equations (3.3) - (3.5) for laminar flows. This solver is based on the
pre-built OpenFOAM solver, icoFoam, that we discussed in § 3.1.3. In this solver, the
coupled fluid-structure system is solved using a predictor-corrector iterative method,
which predicts the solid motion and corrects it in several corrector iterations. At the
end of each iteration, the fluid equations given in equation (3.3 and 3.4) are solved with
the predicted or subsequently corrected solid acceleration, and the fluid forces induced
on the solid are calculated. Details of the predictor and corrector iterations at the
(n+ 1)th time step are as follows.

The predictor iteration: Initially, the sphere acceleration, ÿs, is predicted explic-
itly using the third-order polynomial extrapolation

ÿ
(n+1)
s = 3 ẏ

(n)
s − 3 ẏ

(n−1)
s + ẏ

(n−2)
s . (3.6)

Then, the sphere velocity, ẏs, and displacement, ys, are estimated by integrating the
predicted ÿs and estimated ẏs by a third-order Adams-Moulton method by

ẏ
(n+1)
s = ẏ

(n)
s +

δt

12

(
5 ÿ

(n+1)
s + 8 ÿ

(n)
s − ÿ

(n−1)
s

)
(3.7)
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and
y
(n+1)
s = y

(n)
s +

δt

12

(
5 ẏ

(n+1)
s + 8 ẏ

(n)
s − ẏ

(n−1)
s

)
, (3.8)

respectively, where δt is the time step. Finally, the fluid equations are solved with the
predicted ÿs, and the fluid force exerted on the sphere is calculated for the coming
corrector iteration.

A corrector iteration: Initially, the corrected value of ÿs is calculated by solving
the solid motion equation (3.5) with the values of ys, ẏs, and fl calculated in the
predictor or the previous corrector iteration by

ÿ
(n+1)
s = − c

m
ẏ
(n+1)
s − k

m
y
(n+1)
s +

1

m
f
(n+1)
l . (3.9)

Then, the corrected values of ẏs and ys are updated using equations (3.7) and (3.8)
with the corrected ÿs. Finally, the fluid equations are solved with the corrected ÿs,
and the fluid force exerted on the sphere is calculated. Several corrector steps are
performed until the magnitudes of the fluid force and the solid acceleration converge
to within a prescribed error bound, typically ε = 0.001. This value was chosen for
simulations since it was found that further decreasing ε does not increase the accuracy
of the solution. Tests were performed to ensure that the chosen bound was sufficient to
provide converged flow solutions. Typically, the FSI solver required 3 corrector steps.
In most cases the number of corrector steps was less than 10, with the upper limit set
to 15.
The temporal accuracy of the overall FSI solver is second-order, although the solution

process for the solid motion is third-order accurate. This is because the PISO algorithm
itself is of second-order accuracy. It is recalled that the fluid domain was modelled in
a moving frame-of-reference. This motion is acknowledged through the outer domain
velocity boundary conditions (except the outlet boundary). In this thesis, all the outer
boundaries, except the outlet where a pressure condition is enforced, have a velocity
condition prescribed on them. Once the predictor-corrector iterative process has com-
pleted, the velocity at the inlet boundaries is updated according to the velocity of the
solid, ẏs, before proceeding to the next time step.

Implementation of vivIcoFoam solver in OpenFOAM

The web page, https://openfoamwiki.net/index.php, describes how to develop a new
OpenFOAM solver, by providing an example of ‘how to add temperature to icoFoam’.
The vivIcoFoam solver was implemented in OpenFOAM following those steps. Ap-
pendix D describes the steps of developing the vivIcoFoam solver in more detail, while
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appendix E shows the vivIcoFoam.C file and header files used to compile the solver.
Therefore, only a brief overview of the solver is given below.
This solver was developed such that it can be used for both 2D simulations (such as

cylindrical bodies) and 3D simulations. In addition, the solid motion can be restricted
to the lift direction or can be allowed to move in all three directions. The solid motion
parameters and other algorithm control settings should be prescribed in the solidMo-
tionData file, which is in the system directory of a case, (see appendix F for a sample
of this file). The solver calculates the mass of the solid, m, the damping constant,
c, and the spring constant, k, according to the values given for the non-dimensional
parameters: mass ratio m∗, damping ratio ζ, and reduced velocity U∗, by

m =
4

3
ρπ(D/2)3m∗,

c = 4πmζ/U∗

and
k = 4π2m/(U∗)2.

This solver is designed to be used for a rectangular fluid domain. The solver reads
the names of the boundary patches from the boundaryToUpdate file in the constant
directory. A sample of this file can be found in appendix F. This file also declares
the type of the simulation, i.e. 2D or 3D, to recognize the inlet patches that need to
be updated. The solver updates the velocity of the inlet boundaries and the pressure
gradient of the solid boundary at the end of each time step, as detailed in § 3.5.1. The
solver writes the solid motion data (displacement, velocity and acceleration of the solid)
together with the force coefficients to a csv file in the case directory. The name of this
file has the time-tag appended, at which the simulation is started, for example if it was
started from t = 0 then the name of the data file is solidDisplacmentData-0.csv.
Only the asymptotic state of a simulation was used for the analyses presented in this

thesis. Sometimes, simulations need a long time to reach the asymptotic state. However,
there is a run-time limitation of a maximum of 1 day on the Magnus supercomputer.
Therefore, in such a case, it is required to restart from the previously stopped time.
In these circumstances, the vivIcoFoam solver writes the necessary solid-motion data
of the last three time steps to an OpenFOAM file called lastMotionData in the system
directory (a sample of this file also given in appendix F). The solver updates this file at
the time it writes the results for the fluid to a time directory.
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x - freestream direction
θ - tether angle from xz plan
φ - tether angle from z direction
Fd - drag force
Fly - lift force in the y direction
Flz - lift force in the z direction
B - buoyancy force
T - tension of the tether
L - tether length

Figure 3.3.: Schematic of the tethered sphere. Two coordinate systems were used
to model the system; Cartesian coordinate, < i, j, k >, and spherical coordinates,
< er, eθ, eφ >.

3.3. Numerical approach: FIV of a tethered sphere

3.3.1. Problem formulation

Figure 3.3 shows a schematic of the system, which is simply a tethered sphere in a
uniform flow field. The tether was assumed to be massless. This is compatible with
experimental studies that choose a tether whose mass is negligible compared to the
mass of the sphere (Govardhan & Williamson 1997, 2005; Williamson & Govardhan
1997). Moreover, the tether was assumed to be rigid and inextensible, i.e. there was
no radial movement along the tether axis. This assumption is found to be justified, as
experimentally, there appeared to be very little movement in the radial direction. This
assumption restricts the motion of the sphere to a spherical manifold whose radius is
the tether length. Moreover, with this holonomic constraint, the number of equations
required to describe the sphere dynamics reduces to two, even though the sphere has
three degrees of freedom. Moreover, the tethered sphere undergoes pure rotation around
the base point of the tether. Therefore, a 3D Rotation Group SO(3) can also be used
to obtain the equations of motion of the sphere, as used by Rajamuni et al. (2014).
However, for simplicity, Newtonian Mechanics principles were used here, as described
below.
To derive the equations of motion of the sphere, a spherical coordinate system was

employed with unit vectors, er, eθ, and eφ, as shown in figure 3.3. However, the Navier-
Stokes equations were derived with a Cartesian coordinate system with unit vectors i, j,
k in the x, y, and z directions, respectively. The mapping between these two coordinate
systems is bijective and can be elaborated with parameters, θ ∈ [0, 2π) and φ ∈ [0, π]

as:
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M :




er

eθ

eφ


 =




cos θ sinφ sin θ sinφ cosφ

− sin θ cos θ 0

cos θ cosφ sin θ cosφ − sinφ







i

j

k


 , (3.10)

M−1 :




i

j

k


 =




cos θ sinφ − sin θ cos θ cosφ

sin θ sinφ cos θ sin θ cosφ

cosφ 0 − sinφ







er

eθ

eφ


 , (3.11)

where θ is the angle of tether to the xz plane and φ is the angle of the tether to the
z direction. In spherical coordinates, the position of the sphere, rs, can be expressed
as rs = L er, where L is the length from bottom of the tether to the centre of the
sphere. Then, the velocity, vs, and the acceleration, as, of the sphere can be obtained
by differentiating the position and the velocity of the sphere w.r.t. time, as given in
equations (3.12) and (3.13), respectively.

vs = L
(
θ̇ sinφ eθ + φ̇ eφ

)
. (3.12)

as = L
(
−(θ̇2 sin2 φ+ φ̇2) er + (θ̈ sinφ+ 2θ̇φ̇ cosφ) eθ + (−θ̇2 sinφ cosφ+ φ̈) eφ

)
. (3.13)

Forces acting on the sphere are of three types: a structural force T (the tension in
the tether); a buoyancy force, B; and the fluid forces Fd, Fly and Flz, which denote the
components in the streamwise (x), lateral (y) and transverse (z) directions, respectively
(see figure 3.3). In spherical coordinates, the summation of all forces can be written as:

∑
F = (Fd cos θ sinφ+ (Fly +B) sin θ sinφ+ Flz cosφ− T ) er

− (Fd sin θ − (Fly +B) cos θ) eθ

+ (Fd cos θ cosφ+ (Fly +B) sin θ cosφ− Flz sinφ) eφ. (3.14)

Once the sphere acceleration and forces acting on it are known, the equations of
motion can be easily obtained by the angular momentum balance, that is Iω̇ =

∑
rs×F ,

where I = m(D2/10+L2) is the inertia of the sphere at the base of the tether, ω̇ = as/L

is the angular acceleration of the sphere and m and D are the mass and diameter of the
sphere, respectively. The component equations are

m(D2/10 + L2)(θ̈ sinφ+ 2θ̇φ̇ cosφ) = −L (Fd sin θ − (Fly +B) cos θ) (3.15)
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and

m(D2/10+L2)(φ̈− θ̇2 sinφ cosφ) = L (Fd cos θ cosφ+ (Fly +B) sin θ cosφ− Flz sinφ) . (3.16)

The above two dynamics equations can be converted into a matrix form by rearranging
the terms as


θ̈

φ̈

0

 =
L

m
(

D2

10
+ L

)

− sin θ/ sinφ cos θ/ sinφ 0

cos θ cosφ sin θ cosφ − sinφ

0 0 0




Fd

Fly +B

Flz

+


−2θ̇φ̇ cotφ

θ̇2 sinφ cosφ

0

 . (3.17)

At this point, it is important to note that there is a singularity associated with φ = 0.
However, it is not a problem for the current simulations, since φ can never be 0 because
the buoyancy force is much higher than the fluid forces and therefore, the tether can
never be aligned to the transverse direction (z direction).
The Newtonian fluid is assumed incompressible and viscous, and modelled in a Carte-

sian coordinate system whose origin is the centre of the sphere. As discussed in § 3.2
this is a non-inertial reference frame. Therefore, the acceleration of the frame (as, given
in equation 3.13) should be included in the momentum equation. However, since this
equation is in spherical coordinates, it is necessary to first convert it into Cartesian
coordinates, which can be easily done by the mapping, M , given in equation (3.10). Let
ac is the acceleration of the frame once it is converted into Cartesian coordinates, then

ac = Mas. (3.18)

Finally, the coupled fluid-solid system can be described by the fluid equations given
in (3.19) and (3.20) and the sphere motion equations given in (3.17) together with
equations (3.10), (3.13), and (3.18):

∂u

∂t
= −(u · ∇)u − ∇p + ν ∇2u − ac, (3.19)

∇ · u = 0. (3.20)

As a reminder, here p is the kinematic pressure, i.e., the static pressure divided by the
density.

3.3.2. FSI solver for a tethered sphere

As described above, a new fully coupled solver (named tetheredVivIcoFoam) was de-
veloped, based on the pre-built icoFoam solver for laminar flows, to solve the coupled
fluid-solid system defined by equations (3.17)-(3.2) for a tethered sphere. Similar to
the solver we previously developed for the FIV of an elastically-mounted solid body in
§ 3.2, this solver employs a predictor-corrector iterative method. The solid motion was
first predicted explicitly in the predictor iteration and then corrected as necessary with
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several corrector iterations. Once the solid motion is obtained (from the predictor or a
corrector iteration), the Navier-Stokes equations were solved using the PISO algorithm
by treating the acceleration of the frame as a source term. This iterative process for the
(n+ 1)th time step can be elaborated as follows:

The predictor iteration: Initially, the angular accelerations of the sphere, (θ̈ φ̈)T ,
are predicted explicitly using a third-order polynomial interpolation by


θ̈
φ̈




(n+1)

= 3


θ̈
φ̈




(n)

− 3


θ̈
φ̈




(n−1)

+


θ̈
φ̈




(n−2)

. (3.21)

Then, the angular velocities, (θ̇ φ̇)T , and tether angles, (θ φ)T , are estimated using
a third-order Adams-Moulton method, by integrating the angular accelerations and
angular velocities to obtain


θ̇
φ̇




(n+1)

=


θ̇
φ̇




(n)

+
δt

12


5


θ̈
φ̈




(n+1)

+ 8


θ̈
φ̈




(n)

−


θ̈
φ̈




(n−1)
 (3.22)

and

θ
φ




(n+1)

=


θ
φ




(n)

+
δt

12


5


θ̇
φ̇




(n+1)

+ 8


θ̇
φ̇




(n)

−


θ̇
φ̇




(n−1)
 , (3.23)

respectively. Then, the acceleration of the sphere, a(n+1)
s , is obtained by equation (3.13)

and converted it into Cartesian coordinates, a(n+1)
c , using the mapping given in equation

(3.10). At the end of the predictor step, the Navier-Stokes equations given in equations
(3.19) and (3.20) are solved with the predicted a(n+1)

c and the forces exerted on the
sphere, (Fd Fly Flz)

(n+1), are calculated.

A corrector iteration: Initially, angular accelerations of the sphere, (θ̈ φ̈)T , are
corrected by equation (3.17) with the values obtains for θ, φ, θ̇, φ̇, Fd, Fly and Flz at
the predictor iteration (or at the last corrector iteration). Then, the corrected angular
accelerations are relaxed to improve the convergence characteristics by


θ̈
φ̈




(n+1)′

=


θ̈
φ̈




(n+1)∗

+ γ




θ̈
φ̈




(n+1)∗∗

−


θ̈
φ̈




(n+1)∗
 , (3.24)

where γ is the relaxation parameter, and ∗ and ∗∗ represents the angular accelerations
calculated in the previous and the current iterations, respectively. The method becomes
unstable, especially for small mass ratio spheres in the absence of any relaxation. The
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convergence of the method can be improved by the choice of γ, depending on the pa-
rameter combination. Once the angular accelerations are corrected and relaxed, the
angular velocities and tether angles are calculated, similar to the predictor step. With
these newly calculated values, the sphere acceleration (in Cartesian coordinates) is cal-
culated and the Navier-Stokes equations are solved. Finally, the fluid forces exerted on
the sphere are calculated to use in the next corrector iteration. This iterative process
is terminated once the magnitude of the fluid forces and sphere angular accelerations
are converged within the given tolerance limit, ε = 0.001. This value was chosen for
simulations since it was found that further decreasing ε did not increase the accuracy
of the solution.
As described in the previous section, the fluid flow is modelled in the moving frame

which is attached to the centre of the sphere. This motion is acknowledged through the
outer domain velocity boundary conditions (expect the outlet boundary). Similar to the
elastically mounted case, all the outer boundaries, except the outlet where a pressure
condition is enforced, have velocity prescribed on them. Once the predictor-corrector
iterative process is completed, the velocity boundary conditions are updated according
to the sphere velocity, vc = Mvs.

3.3.3. The natural frequency

As discussed in § 2.3, the reduced velocity, U∗ = U/(fnD), is identified as a suitable
parameter for FIV problems, as it is a function of the system’s natural frequency. In
experiments, a range of reduced velocity is obtained by increasing the flow velocity, U .
Since the Reynolds number is also a function of the flow velocity, it is impractical to
increase the reduced velocity by fixing the Reynolds number. This is an undesirable
side-effect that appears in experiments. However, when performing simulations, it is
desirable to fixed the Reynolds number at a suitable value. This limits the number of
varying parameters for each set of simulations. Moreover, if the Reynolds number is
increased then the laminar flow transitions to turbulence by introducing small scales
of motion. To accurately predict these small scales, a finer mesh density is required.
However, this increases the computational cost considerably.
Williamson & Govardhan (1997) obtained an expression for the non-dimensional nat-

ural frequency of the tethered sphere system as

Sn ≈
(

1

2π

)
1

Fr
√
l∗

√
1−m∗
Ca +m∗

, (3.25)

where Ca is the added mass coefficient (0.5 for a sphere). The mass ratio, m∗, and the
tether length ratio, l∗ = L/D, are desired to be kept constant for a particular set of
simulations. Therefore, it is possible to obtain a range of natural frequencies (reciprocal
of the reduced velocity) by varying the Froude number, Fr, numerically. The Froude
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number is a non-dimensional number defined as the ratio of the flow inertia to the
gravitational force (Fr = U/

√
gD, where g is the gravitational force). Furthermore,

it is conceivably possible to investigate numerically as U∗ → ∞, whereas the reduced
velocity range is limited experimentally to the flow velocity accessible in the flow facility.
For this thesis, three sets of simulations were performed by fixing the Reynolds number
at Re = 500, 1200 and 2000 with a tethered sphere. Studying the cases for the Reynolds
numbers Re = 1200 and 2000, which are closer to the experimental studies of Govardhan
& Williamson (1997); Williamson & Govardhan (1997); Jauvtis et al. (2001); Govardhan
& Williamson (2005) provide additional insight into those studies, while the case of
Re = 500 will provide an understanding of the problem in the laminar regime.

3.3.4. Calculation of the reduced velocity

To obtain a range of reduced velocities, it is required to calculate the natural frequency
of the tethered system accurately, which is the focus of this section.
Let (X, Y, Z)T be the position of the sphere in Cartesian coordinates. Then, the

equation of motion of the tethered sphere can be obtained by the linear momentum
balance (see figure 3.3) as

m




Ẍ

Ÿ

Z̈


 =




Fd

Fly +B

Flz


− T




sinφ cos θ

sinφ sin θ

cosφ


 . (3.26)

However, (sinφ cos θ, sinφ sin θ, cosφ)T is the unit vector along the tether, er, and can
be expressed as (X,Y, Z)T /L. Hence, the equations of motion can be rearranged into

m




Ẍ

Ÿ

Z̈


+

T

L




X

Y

Z


 =




Fd

Fly +B

Flz


 . (3.27)

From these equations, it is clear that the natural frequency of the system is identical in
all three directions and is given by

fn =
1

2π

√
T

mL
. (3.28)

This can be written in the non-dimensional form as

Sn =
fnD

U
=

1

2π

√
D2T

U2mL
. (3.29)

Since the sphere is assumed to have no motion in the direction of the tether, the tension
of the tether can be obtained simply from the force balance as

T =
√
F 2
d + (Fly +B)2 + F 2

lz, (3.30)
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assuming the centrifugal force is negligible, consistent with a large tether length ratio.
With this expression for T , equation (3.29) can be written in the non-dimensional form
as

Sn =
1

2π

√√√√
√
C2
d + {Cly + (1−m∗)ψ}2 + C2

lz

(4/3)(m∗ + Ca)l∗
, (3.31)

where ψ = 4/(3Fr2). For a stationary sphere, the time-averaged lateral (y) and trans-
verse (z) forces are negligible compared to the drag force. Moreover, (1−m∗)ψ is much
greater then Cly over the entire reduced velocity range investigated for the mass ratios
of interest in this study (m∗ = 0.8 and 80). Hence, 3.31 can be simplified to

Sn ≈
1

2π

√√√√
√
C2
d + {(1−m∗)ψ}2

(4/3)(m∗ + Ca)l∗
. (3.32)

The reduced velocity, U∗, is defined as the inverse of the natural frequency, Sn, leading
to

U∗ = 2π

√√√√ (4/3)(m∗ + Ca)l
∗

√
C2
d + {(1−m∗)ψ}2

. (3.33)

For all of the numerical results presented in chapter 6, equation 3.33 has been used
to calculate the reduced velocity. A range of U∗ is obtained by varying ψ. In experi-
ments, since the gravitational acceleration is constant, Cd is negligible compared to the
buoyancy force component therefore Sn given in equation 3.25 is valid. In contrast, in
this numerical study, the buoyancy term is of the same order of magnitude as the drag
coefficient for higher reduced velocities. Therefore, it is required to use equation 3.33
instead of equation 3.25.
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3.4. Dynamic mode decomposition

Dynamic mode decomposition (DMD) is also used as part of the analysis to characterise
the wake behind the sphere. DMD is a numerical procedure introduced by Schmid &
Sesterhenn (2008) for extracting the dynamic periodic features of a flow. This method
involves spectral analysis of Koopman operator. For a given sequence of time-resolved
flow field measurements, in this thesis, the case consisting of a set of velocity fields at
fixed time increments, DMD computes a set of approximations to the Koopman modes,
also called Ritz vectors, with associated eigenvalues, called Ritz values. Ritz vectors
are the eigenfunctions of the Koopman operator, each of which is associated with a
fixed oscillation frequency specified by the argument of the associated eigenvalue. A
Koopman mode may grow or decay exponentially in time, according to the magnitude
of the corresponding eigenvalue. In particular, this analysis is useful to extract the
dominant frequencies belonging to the sequence of fields and the corresponding periodic
spatially-varying modes, which may be localised in different regions of space. The
approach used in the thesis closely follows that of Rowley et al. (2009); Schmid (2010,
2011), so only a very brief outline is given here.
Let x1, x2, . . . , xm represent a set of column vectors of the field data (e.g. velocity

field), collected at equal time intervals δt. It is assumed to have a linear mapping, G,
that connects the flow field xi to the subsequent flow field xi+1, i.e.

xi+1 = Gxi. (3.34)

This mapping is also considered to remain constant over the duration of sampling pe-
riod. Following the Krylov technique, in particular, the Arnoldi approach, xm can be
expressed as a linearly independent combination of previous snapshots, i.e.

Gxm−1 ≡ xm = c1x1 + c2x2 + . . .+ cm−1xm−1 ≡Kc, (3.35)

where K = (x1 x2 . . . xm−1) and c = (c1 c2 . . . cm−1)
T . This leads to the following

matrix equation

GK ≡
(
x2 x3 . . . xm

)
=
(
x1 x2 . . . xm−1

)




0 0 . . . 0 c1

1 0 . . . 0 c2

0 1 . . . 0 c3
...

. . .
...

0 0 . . . 1 cm−1




≡KC.

(3.36)

The matrix C is called the Companion matrix, which is the equivalent low dimensional
representation of the field data. Since the vectors x1, . . . , xm are known, the coeffi-
cients, c1, . . . , cm−1 can be easily obtained by the QR factorization or Singular Value
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Decomposition. Let zi and λi be the ith eigenvector and eigenvalue of C, respectively.
Then, the Koopman modes (Ritz vectors) of the data set can be obtained by

vi = Kzi, (3.37)

and the Ritz values are directly the eigenvalues of the Companion matrix. Note that
both the Ritz vectors and values consist of complex conjugate pairs.
The field at any discrete time tk can be reconstructed using the Ritz vectors and

values. However, the Ritz vectors should be obtained from the properly re-scaled eigen-
values for the reconstructions. Let ẑi = βizi be the scaled version of zi using the ith

element of the vector β = Z−1e1, where Z = [z1 z2 . . . zm−1] and e1 = (1 0 . . . 0)T .
If v̂i = Kẑi is the scaled Ritz vector, then the field at any discrete time tk can be
reconstructed by

xk =

m−1∑

i=1

λki v̂i. (3.38)

If the sequence of fields is strictly periodic, so that xm = x1 , then the above expansion
is equivalent to a Fourier decomposition.
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x
y

z

(a) (b)

(c) (d)

Figure 3.4.: The hexahedral grid computational domain: (a) isometric view; (b) cubic
block placed around the sphere, which was decomposed into 6 square frustums; (c)
isometric view of the grid in a square frustums near the sphere surface; and (d) grid
near the sphere surface in x-y plane.

3.5. Grid and domain details

A cubical domain with a side length of 100D was chosen for the fluid flow with the
sphere (of diameter D = 1 m) at its centre. A hexahedral grid was generated using
Ansys-ICEM-CFD for the fluid domain. The grid was saved in the Fluent format as
a .msh file, after specifying the boundary conditions. Then, it was converted to the
OpenFOAM format using the OpenFOAM utility called fluentMeshToFaom. Figure 3.4
shows a typical grid used for simulations presented in this thesis. A cubic block with a
side length of 5D was placed around the sphere to achieve greater resolution near the
sphere (see figure 3.4 (b)). This cube was first decomposed into six square frustums. The
grid was concentrated toward the sphere surface by assigning exponentially distributed
grid points in the radial direction of each square frustum (see figure 3.4 (c) and (d)).
Uniformly distributed grid points were assigned in the other two directions of each square
frustum. A large number of grid points were assigned in the downstream direction to
reasonably resolve the wake structures.
Five successively finer grids were constructed to analyse the dependency of the com-

puted solution on the grid refinement (see § 3.6). The first four grids were generated by
fixing the number of cells in the sphere boundary, Csp = 7350, as shown in table 3.2.
Grid 1 contains w 0.79 million cells whose cell thickness at the sphere boundary, δl, is
0.011D. Grid 2 was created by decreasing δl to 0.004D. This yielded w 1.25 million
cells, with approximately 10-16 cells within the boundary layer before flow separation.
This grid is fine enough for the studies presented in this thesis. However, a few more
grids were generated to confirm that the solution is insensitive to further refinement
of the grid. Grid 3 was generated by decreasing δl further down to 0.002D, but with
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Grid Csp Nr δl No. cells

Grid 1 7 350 70 0.011D 0.79× 106

Grid 2 7 350 100 0.004D 1.25× 106

Grid 3 7 350 100 0.002D 1.25× 106

Grid 4 7 350 200 0.002D 1.96× 106

Grid 5 18 150 100 0.004D 2.57× 106

Table 3.2.: Details of the computational grids: Csp is the number of cells in the sphere
surface, Nr is the number of nodes in the radial direction of a square frustum and δl is
the minimum thickness of the cells (in the radial direction) at the sphere boundary in
each grid.

same number of cells as Grid 2 to obtain more concentration toward the sphere bound-
ary. Grid 4 was generated by doubling the number of nodes in the radial direction of
a square frustum, Nr, with the same δl as Grid 3 (see table 3.2). This increased the
number of cells to w 1.96 million. Finally, to analyse the effect of grid refinement in
the tangential direction, Grid 5 was generated by increasing the number of cells in the
sphere boundary, Csp, to 18 150 with δl = 0.004D, which is same δl as Grid 2.

3.5.1. Boundary conditions

The cubical fluid domain has two types of outer boundaries: inlet and outlet. Five
faces of the cube were treated as inlets and the velocity was prescribed on them. For
an FIV simulation, which uses either the vivIcoFoam or tetheredVivIcoFoam solvers, the
motion of the reference frame was taken into account through these inlets by updating
the frame velocity at each time step, as described in § 3.2 and § 3.3. The remaining face
of the cube is the outlet over which a zero pressure is imposed. The inner boundary
(sphere boundary) is treated as a wall and assumed to have no-slip and no-penetration
boundary conditions. The flow is assumed in the x direction with an upstream velocity
of U = 1m/s; the boundary conditions for pressure and velocity at each boundary are
tabulated in table 3.3.
For the results presented in chapter 5 with a transversely rotating sphere, a rotating

wall velocity is prescribed on the sphere boundary using the rotatingWallVelocity utility.
When the sphere is under a forced rotation, the normal pressure gradient at the sphere
surface is in general non-zero. Therefore, it was calculated by taking the inner product
of the momentum equation 3.3 (or 3.19 for a tethered sphere) and the outward unit
normal vector, η, as follows

∇p · η =
(
−(u · ∇)u + ν∇2u − ÿs

)
· η. (3.39)
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Boundary Velocity, u Pressure, p

Inlet u = (U 0 0)− ẏs ∇p · η = 0

Sphere u = (0 0 0) ∇p · η = 0

Outlet ∇u · η = 0 p = 0

Table 3.3.: Boundary conditions: U is the upstream velocity; η is the outward normal
vector at a corresponding boundary; and ẏs is the velocity of the sphere.

The FSI solver (vivIcoFoam or tetheredVivIcoFoam) calculates the normal pressure gra-
dient at the sphere surface, after finding the acceleration of the solid body by the
predictor or a corrector iteration, and updated before the fluid equations are solved.
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Re = 300

Study Cd C l St

Present study 0.665 0.070 0.137

Constantinescu & Squires (2000) 0.665 0.065 0.136

Giacobello et al. (2009) 0.658 0.067 0.134

Johnson & Patel (1999) 0.656 0.069 0.137

Kim et al. (2001) 0.657 0.067 0.137

Kim (2009) 0.658 0.067 0.134

Poon et al. (2010) 0.658 0.067 0.134

Table 3.4.: Comparison of computed time-averaged drag coefficient, Cd, time-averaged
lift coefficient, Cl, and Strouhal number, St, at Re = 300 with other numerical studies.

3.6. Numerical sensitivity and validation studies

3.6.1. Validation studies

3.6.1.1. Flow past a stationary sphere

The flow past a rigidly mounted sphere was investigated at Re = 300, 500 and 1000. The
computed values for the time-averaged drag and lift coefficients, Cd and C l, respectively,
and the Strouhal number, St, are listed in tables 3.4-3.6. As the lift coefficient is
negligible at Re = 1000, a secondary Strouhal number is calculated instead of C l. As
can be seen, the present results closely match values calculated in other studies (Clift
et al. 2005; Giacobello et al. 2009; Johnson & Patel 1999; Kim et al. 2001; Kim 2009;
Morsi & Alexander 1972; Mittal 1999; Poon et al. 2009, 2010, 2014; Roos & Willmarth
1971; Sakamoto & Haniu 1990; Tomboulides & Orszag 2000).

3.6.1.2. Flow past a transversely rotating sphere

Flow past a rigidly mounted and transversely rotating sphere was studied at Re = 300

for the rotation rate of 0 ≤ α ≤ 3. The time-averaged drag coefficient, Cd, showed an
increasing trend with α up to α ≈ 1.75 and then a decreasing trend. The time-averaged
lift coefficient, C l, increased with increasing α and became flat for α ≥ 1.25. The values
calculated for both Cd and C l were in good agreement with the results in the literature
(Giacobello et al. 2009; Kim 2009; Poon et al. 2010; Dobson et al. 2014), see section 3.1 of
chapter 5 for more detail. The flow underwent a series of transitions between ‘steadiness’
and the ‘unsteadiness’, as the rotation rate was increased. The wake structures observed
at low rotation rates matched well with other research studies. However, our results at
higher rotation rate were slightly different from others. The reason for that is discussed
in detail in section 3.1 of chapter 5, together with some plots of the wake.
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Re = 500

Study Cd C l St

Present 0.57 0.06 0.18

Clift et al. (2005) 0.56 -

Morsi & Alexander (1972) 0.55 -

Mittal (1999) 0.57 - -

Poon et al. (2014) 0.56 0.05 0.15

Roos & Willmarth (1971) 0.547 - -

Sakamoto & Haniu (1990) - - 0.18

Tomboulides & Orszag (2000) - - 0.167

Table 3.5.: Comparison of computed time-averaged drag coefficient, Cd, time-averaged
lift coefficient, Cl, and Strouhal number, St, at Re = 500 with other studies.

Re = 1000

Study Cd St-1 St-2

Present 0.49 0.19 0.33

Morsi & Alexander (1972) 0.46 - -

Poon et al. (2014) 0.46 0.185 0.33

Poon et al. (2009) 0.46 0.2 0.34

Roos & Willmarth (1971) 0.472,
0.483

- -

Sakamoto & Haniu (1990) - 0.2 -

Tomboulides & Orszag (2000) - 0.2 0.35

Table 3.6.: Comparison of computed time-averaged drag coefficient, Cd, and Strouhal
numbers, St-1 and St-2, at Re = 1000 with other studies.

3.6.1.3. FIV of an elastically-mounted sphere

To validate the vivIcoFoam solver developed for FIV simulations, a set of simulations
were conducted on VIV of a circular cylinder with parameters chosen from Leontini
et al. (2006b). As section 3.2 of chapter 4 and section 3.2 of chapter 5 describe, the
results computed for the maximum amplitude, the peak lift coefficient, frequency ratio,
and the averaged phase angle are in a good agreement with Leontini et al. (2006b). This
study provides confidence in the new solver.
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3.6.2. Grid-independence analysis

3.6.2.1. FIV of an elastically-mounted sphere

To study the sensitivity of the solution to grid refinement, two grid independence anal-
yses were conducted at Re = 300 and U∗ = 7, and Re = 800 and U∗ = 6, as described
in section 3.3 of chapter 4. In both of these cases, a large amplitude VIV response was
observed. The results obtained for the r.m.s. value of the response amplitude, time-
averaged drag coefficient, the r.m.s. values of the fluctuating components of the drag
and lift coefficients and the frequency ratio were in a good agreement for grids 2, 3 and
5 (see section 3.3 of chapter 4 for more detail). Therefore, grid 2, being the smallest
grid, was used to obtain the results presented in chapter 4.
Grid 2 was used for the study presented in chapter 5 as well. To verify this grid is fine

enough to resolve the flow in FIV simulations of transversely rotating spheres, a grid
sensitivity analysis was performed at Re = 300, α = 1.5 and U∗ = 6 as well. In this
case, the flow was steady. Therefore, the time-averaged sphere position, time-averaged
drag and lift coefficients were calculated. As table 2 of chapter 5 shows, the results
obtained for grids 2, 3 and 5 agree well with each other (see section 3.3 of chapter 5).
This provides an additional validation on grid refinement.

3.6.2.2. FIV of a tethered sphere

The sensitivity of the solution to the spatial resolution was investigated at Re = 1200

and m∗ = 0.8 for U∗ = 6.5 and 9. These two reduced velocities were chosen to represent
modes I and II states, respectively. The r.m.s. of the response amplitude, A∗, the
time-averaged drag coefficient, Cd, the Strouhal number, St, and the frequency ratio,
f∗ = f/fn, were calculated with each grid, and the results are tabulated in table 3.7.
As can be seen, the results match reasonably well with each other for all five grids at
both reduced velocities, as a result of employing finer grids in each case. The percentage
error difference of all of the quantities for the different grids is at most 3%. Grid 3 was
chosen for the simulations, as it is concentrated nodes toward the sphere and better
captured the boundary layers.

3.6.3. Time step dependence

To achieve temporal accuracy and numerical stability, the Courant condition needs to
be satisfied, i.e. the time step, δt, should be selected such that the Courant number is
less than unity. The Courant number is defined for one cell as

Co =
δt|u|
δx

, (3.40)

where |u| is the magnitude of the velocity through that cell and δx is the cell size in the
direction of the velocity. The smallest cell thickness of the grid is 0.002D for a cell at
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U∗ = 6.5 U∗ = 9

Grid A∗ Cd St f∗ A∗ Cd St f∗

Grid 1 0.56 0.73 0.15 0.96 0.83 0.83 0.12 1.05

Grid 2 0.57 0.73 0.15 0.96 0.83 0.81 0.12 1.05

Grid 3 0.57 0.73 0.15 0.96 0.83 0.82 0.12 1.05

Grid 4 0.58 0.73 0.15 0.96 0.83 0.82 0.12 1.05

Grid 5 0.57 0.73 0.15 0.96 0.81 0.81 0.12 1.05

Table 3.7.: The sensitivity of the spatial resolution of the flow parameters of vortex-
induced vibration of a tethered sphere at Re = 1200 and m∗ = 0.8 for U∗ = 6.5 (mode
I) and 9 (mode II). The oscillation amplitude of the sphere, A∗, the time-mean drag
Cd, Strouhal number, St, and the ratio of vortex shedding frequency to the natural
frequency, f∗ = f/fn, are listed.

(α,U∗) = (0, 7) (α,U∗) = (1.5, 6)

Time step A∗ Cd Cd,rms Cl,rms f/fn Y /D Cd C l

0.005D/U 0.37 0.80 0.05 0.11 0.93 0.14 1.04 0.60

0.0025D/U 0.38 0.80 0.05 0.11 0.93 0.14 1.05 0.60

Table 3.8.: The sensitivity of the temporal resolution of the flow parameters of vortex-
induced vibration of a rotating sphere at (α,U∗) = (0, 7) and (1.5, 6), Re = 300 and
m∗ = 2.865. The oscillation amplitude of the sphere, A∗, the time-mean sphere dis-
placement, Y /D, the time-mean drag and lift coefficients, Cd and C l, the r.m.s. values
of fluctuation component of the drag and lift coefficients, Cd,rms and Cl,rms, and the
ratio of vortex shedding frequency to the natural frequency, f/fn, are listed.
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the sphere surface. Thus, the time step should be less than 0.002D/|u|, to satisfy the
Courant condition for the entire grid. As the cell velocities at the sphere boundary are
≪ U , δt = 0.005D/U was used as the time step for the majority of simulations. To
verify this chosen time step is small enough for the simulations, two sets of simulations
were conducted at (α,U∗) = (0, 7) and (1.5, 6), Re = 300 and m∗ = 2.865 by halving
the time step, as shown in table 3.8. The results obtained for δt = 0.0025D/U do not
significantly vary from the values calculated for δt = 0.005D/U , providing a validation
of the temporal accuracy.

3.7. Summary

In this chapter, we demonstrate the numerical methodology used for the results pre-
sented in this thesis. In summary, the CFD package OpenFOAM was utilised for the
simulations. It was identified that solving the fully coupled fluid-structure system with a
non-deformable mesh is more computationally efficient than using a dynamic grid tech-
nique or immersed boundary method. Therefore, two new fluid-structure interaction
solvers were developed for the FIV problems, depending on the mounting method of
the solid body (with elastic supports or using a tether). Five finer grids were generated
using the Ansys ICEM CFD package and converted to the OpenFOAM format. Results
were found to be independent of the grids. The values calculated for the time-mean
drag and lift coefficients, and the Strouhal number, for the non-FIV simulations agreed
well with the results of previous studies. In addition, the new solvers were validated for
use with the FIV simulations.

70



3.7. SUMMARY

————————————————–

71





Be the change that you wish to see in
the world.

Mahatma Gandhi

4. Flow-induced vibration of an
elastically-mounted sphere

In the field of flow-induced vibration, a concrete understanding has been developing
on spherical bodies. The contribution of the experimental studies conducted at greater
Reynolds numbers is considerably higher compared to the numerical studies focused
on low Reynolds numbers. As a result, there exist a lot of unanswered FIV prob-
lems associated with low Reynolds number flows, especially with elastically-mounted
spheres. The experimental study of Govardhan & Williamson (2005) revealed that
the effect of Reynolds number on the FIV of a sphere was negligible over the range
2000 < Re < 12000. However, the sphere responses observed by the computational
studies of Behara et al. (2011) and Behara & Sotiropoulos (2016) at Re = 300 were
significantly different from the experimental observations of Govardhan & Williamson
(1997); Williamson & Govardhan (1997); Jauvtis et al. (2001); Govardhan & Williamson
(2005). In addition, the majority of studies were based on a tethered sphere, although
there are some dissimilarities between the FIV of a tethered sphere and an elastically-
mounted sphere. Thus, to enhance the knowledge of FIV, this chapter presents the
investigation of flow-induced vibration of a sphere mounted with elastic supports in
a direction transverse to the free stream. The content of the chapter is the following
Journal of Fluid Mechanics article reproduced with the permission

Rajamuni, M. M., Thompson, M.C. & Hourigan, K. 2018 Transverse
flow-induced vibrations of a sphere. Journal of Fluid Mechanics 837, 931–966.

We found that the characteristics of the FIV of a sphere are highly dependent on
the Reynolds number, as well as the reduced velocity, with the two sets of simulations
conducted at Re = 300 and 800 over the reduced velocity ranges 3.5 ≤ U∗ ≤ 100 and
3 ≤ U∗ ≤ 50, respectively. Over the modes I and II ranges, the sphere showed a periodic
vibration response at each Reynolds number. Here, the sphere response amplitude in-
creased and the synchronization regime widened as the Reynolds number increased from
300 to 800. The sphere response at Re = 800 was more similar to that observed in the
experimental studies. The sphere response at higher reduced velocities was completely
different at these two Reynolds numbers. The sphere showed intermittent bursts of vi-
bration at Re = 800 for U∗ > 14, while it vibrated with a small amplitude at Re = 300
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over the ranges, 13 ≤ U∗ ≤ 16 and 26 ≤ U∗ ≤ 100 through a new time-mean position.
This indicates that the effect of Reynolds number is even higher in the low frequencies.
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Flow-induced vibration of an elastically mounted sphere was investigated computati-
onally for the classic case where the sphere motion was constrained to move in
a direction transverse to the free stream. This study, therefore, provides additional
insight into, and comparison with, corresponding experimental studies of transverse
motion, and distinction from numerical and experimental studies with specific
constraints such as tethering (Williamson & Govardhan, J. Fluids Struct., vol. 11,
1997, pp. 293–305) or motion in all three directions (Behara et al., J. Fluid Mech.,
vol. 686, 2011, pp. 426–450). Two sets of simulations were conducted by fixing the
Reynolds number at Re= 300 or 800 over the reduced velocity ranges 3.56U∗6 100
and 3 6 U∗ 6 50 respectively. The reduced mass of the sphere was kept constant at
mr = 1.5 for both sets. The flow satisfied the incompressible Navier–Stokes equations,
while the coupled sphere motion was modelled by a spring–mass–damper system,
with damping set to zero. The sphere showed a highly periodic large-amplitude
vortex-induced vibration response over a lower reduced velocity range at both
Reynolds numbers considered. This response was designated as branch A, rather
than the initial/upper or mode I/II branch, in order to allow it to be discussed
independently from the observed experimental response at higher Reynolds numbers
which shows both similarities and differences. At Re = 300, it occurred over the
range 5.56U∗6 10, with a maximum oscillation amplitude of ≈0.4D. On increasing
the Reynolds number to 800, this branch widened to cover the range 4.5 6 U∗ 6 13
and the oscillation amplitude increased (maximum amplitude ≈0.6D). In terms of
wake dynamics, within this response branch, two streets of interlaced hairpin-type
vortex loops were formed behind the sphere. The upper and lower sets of vortex
loops were disconnected, as were their accompanying tails. The wake maintained
symmetry relative to the plane defined by the streamwise and sphere motion directions.
The topology of this wake structure was analogous to that seen experimentally at
higher Reynolds numbers by Govardhan & Williamson (J. Fluid Mech., vol. 531,
2005, pp. 11–47). At even higher reduced velocities, the sphere showed distinct
oscillatory behaviour at both Reynolds numbers examined. At Re = 300, small but
non-negligible oscillations were found to occur (amplitude of ≈0.05D) within the
reduced velocity ranges 13 6 U∗ 6 16 and 26 6 U∗ 6 100, named branch B and
branch C respectively. Moreover, within these reduced velocity ranges, the centre of
motion of the sphere shifted from its static position. In contrast, at Re = 800, the
sphere showed an aperiodic intermittent mode IV vibration state immediately beyond
branch A, for U∗> 14. This vibration state was designated as the intermittent branch.
Interestingly, the dominant frequency of the sphere vibration was close to the natural

† Email address for correspondence: methma.rajamuni@monash.edu
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frequency of the system, as observed by Jauvtis et al. (J. Fluids Struct., vol. 15(3),
2001, pp. 555–563) in higher-mass-ratio higher-Reynolds-number experiments. The
oscillation amplitude increased as the reduced velocity increased and reached a value
of ≈0.9D at U∗ = 50. The wake was irregular, with multiple vortex shedding cycles
during each cycle of sphere oscillation.

Key words: aerodynamics, computational methods, flow–structure interactions

1. Introduction
Over many years, considerable research effort has been directed to examining the

nature of fluid–structure interaction (FSI). This is due to its practical importance to
many fields where coupled interactions between a fluid flow and solid-body motion
can occur. One of the most crucial phenomena associated with FSI is flow-induced
vibration (FIV), which is the oscillatory response of a coupled fluid–structure system
due to fluid forcing. Vortex-induced vibration, or VIV, is a category of FIV, occurring
through the synchronization of structural vibration with wake unsteadiness, typically
vortex shedding. Fatigue damage, or even catastrophic structural failure, can result
from FIV. Thus, for structural design, it is always important to consider such possible
resonant interactions. Aircraft, marine vessels, submarines, ground vehicles, chimneys
and bridges are good examples of relevant engineering systems. Fundamental
understanding of VIV has been revealed through experimental and numerical
research studies for generically shaped bodies, with major findings summarized
in, e.g., Parkinson (1989), Sarpkaya (2004), Williamson & Govardhan (2004, 2008)
and Wu, Ge & Hong (2012). While most research conducted has been based on
cylindrical structures, especially circular cylinders, numerous applications involve
three-dimensional body shapes, including spherical bodies.

Key features of VIV of a sphere were revealed through experiments by Williamson
& Govardhan (1997). They found that a tethered sphere oscillates strongly at a
transverse saturation amplitude of close to two diameters peak to peak. In line
with previous studies of VIV of a circular cylinder, they recognized that plotting
the amplitude response versus the reduced velocity, U∗ = U/fnD, where U is the
free-stream velocity, fn is the natural frequency of the system and D is the sphere
diameter, was more suitable for interpreting and classifying the behaviour than
using the amplitude response versus the Reynolds number. They observed that the
transverse oscillation is dominant compared with the streamwise oscillation and that
the streamwise oscillation frequency is twice that of the transverse oscillation. They
also observed that there were two different modes of oscillation, namely modes I and
II. Both two modes appeared within the reduced velocity range U∗ ∼ 5–10, and the
body oscillation frequency, f , was close to the static body vortex shedding frequency,
fvo ( fvo/f ∼ 1); this clearly indicated that these vibrations were induced from vortex
shedding behind the sphere. However, there was no clear boundary between mode I
and mode II in the amplitude response diagram of VIV of a sphere, contrary to the
amplitude response of a cylinder, which has distinct initial, upper and lower branches.
Later, the question of how mode II differed from mode I was answered by Govardhan
& Williamson (2005) by examining the vortex phase, φvo. The vortex phase is the
phase difference between the vortex force on the sphere and the sphere displacement.
They found that there was approximately a 90◦ phase shift between modes I and II.
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In addition to the first two modes of vibration observed with light spheres (m∗< 1,
where m∗ is the density ratio between solid and fluid) by Williamson & Govardhan
(1997), Jauvtis, Govardhan & Williamson (2001) found that there existed another
mode of vibration (mode III) which appeared within the reduced velocity range
U∗ ∼ 20–40 for heavy (tethered) spheres (m∗ � 1). For mode III vibration, it was
found that the principal vortex shedding frequency was three to eight times higher
than the sphere vibration frequency. Therefore, they stressed that this vibration
phenomenon was difficult to explain by classical ‘lock-in’ theories. Later, Govardhan
& Williamson (2005) argued that, in the absence of any body vibration in mode III,
there would be no fluid forcing at the natural frequency of the system. However,
if the body were to be perturbed, it could generate a self-sustaining vortex force
that could amplify, leading to body vibrations of large amplitudes. They categorized
mode III as ‘movement-induced excitation’ (Naudascher & Rockwell 2012). Jauvtis
et al. (2001) also observed another mode of regular vibration, mode IV, as the
reduced velocity was further increased to the range U∗ > 100. In this mode, the
sphere oscillation frequency was not regular and periodic as it was in the first three
modes, but, interestingly, the main frequency component was very close to the natural
frequency.

Govardhan & Williamson (2005) used digital particle image velocimetry (DPIV)
to observe the formation of a chain of hairpin-type vortex loops on both sides of
the wake behind the sphere for both modes I and II. Furthermore, they observed
a change in the timing of vortex shedding relative to body motion once it passed
from mode I to II, consistent with their observation of a change of vortex phase
between these modes. They identified that for a sphere undergoing VIV, there was a
preferred orientation of the loops to maintain a symmetry with the plane containing
the principal transverse vibrations. For mode III vibrations, they observed a two-sided
chain of trailing vortex pairs locked to the body oscillation frequency. In related
work, Brücker (1999) investigated the nature of freely rising air bubbles in water.
The bubbles showed spiralling, zigzagging and rocking motions during their rise
in water according to the diameters of the bubbles. For a zigzagging bubble, an
alternate oppositely oriented hairpin-type wake structure was observed, similar to the
observation of Govardhan & Williamson (2005) for mode I and II vibrations. For a
spiralling bubble, a steady wake was observed, which wound in a helical path.

Pregnalato (2003) numerically investigated the FIV of a tethered sphere at a
Reynolds number of 500 for two mass ratios, m∗ = 0.082 and m∗ = 0.8. He
observed three modes of vibration, corresponding to the last three modes of vibration
characterized by Jauvtis et al. (2001). In the study of Pregnalato (2003), the sphere
exhibited mode II vibration in the reduced velocity range U∗ = 5–10, and mode III
vibration for U∗ > 10 for both mass ratios. Mode II and III vibrations were highly
sinusoidal, similarly to the experimental studies. He observed mode IV vibration with
the higher mass ratio, m∗=0.8, sphere. However, for the low mass ratio, mode IV was
not observed, regardless of the reduced velocity. Recently, Lee, Hourigan & Thompson
(2013) studied VIV of a neutrally buoyant (m∗ = 1) tethered sphere constrained to
move on a spherical surface, which may be considered as locally planar for small
vibration amplitudes relative to the tether length. This was a combined numerical
and experimental study, covering the Reynolds number range Re = 50–12 000. They
distinguished seven broad and relatively distinct sphere oscillation regimes and
characteristic wake structures.

Behara, Borazjani & Sotiropoulos (2011) investigated VIV of a sphere through
numerical simulations. As distinct from the current study, the sphere was mounted
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on elastic supports, allowing movement in all three spatial directions, with the
Reynolds number set to Re = 300, reduced mass mr = 2, for the reduced velocity
range U∗ = 4–9. They observed two distinct branches of the response curve in the
synchronization regime, each corresponding to a distinct type of wake structure,
identified as hairpin and spiral vortices. The oscillation amplitude was lower in
the hairpin branch compared with the spiral branch. When the wake was in the
hairpin shedding mode, the sphere moved along a linear path in the transverse
plane, while when spiral vortices were being shed, the sphere vibrated on a circular
orbit. Furthermore, under VIV on the spiral mode branch, they observed hysteresis
in the response amplitude at the beginning of the synchronization regime. More
recently, Behara & Sotiropoulos (2016) extended this numerical study by expanding
the reduced velocity range to U∗ = 0–13. They observed that the lock-in regime was
U∗ = 5.8–12.2 for the spiral mode and U∗ = 4.8–8 for the hairpin mode. The hairpin
mode was found to become unstable and merge with the response curve of the spiral
mode at U∗ = 9. They also studied the effect of Reynolds number on VIV at a
fixed reduced velocity, U∗= 9. They found that the synchronized oscillation persisted
up to Re = 1000, although the sphere trajectory and wake structures were strongly
dependent on the Reynolds number. The spiral wake observed at Re= 300 underwent
a transition to a hairpin wake in the Reynolds number range Re = 500–600. During
this transition, the sphere trajectories on the transverse plane changed from circular
to elliptic orbits.

In many previous studies of a tethered sphere wake (Williamson & Govardhan
1997; Pregnalato 2003; Govardhan & Williamson 2005), researchers have observed
that the transverse oscillation was of higher amplitude than the streamwise oscillation.
Even though computational studies have been reported previously on VIV of a
sphere allowed to move in all three spatial directions (Behara et al. 2011; Behara &
Sotiropoulos 2016), surprisingly little effort appears to have been directed towards
simulating the reference case of VIV of a sphere free to move only in the transverse
direction. Therefore, this is the case considered in the present study. To gain a better
insight, two different Reynolds numbers were chosen for this investigation, namely
Re= 300 and 800. The Reynolds number of 300 was chosen because a static sphere
experiences unsteady vortex shedding at Re= 300, and, in previous numerical studies,
Behara et al. (2011) and Behara & Sotiropoulos (2016) observed large-amplitude
vibrations at this Reynolds number. The Reynolds number of 800 was chosen since
both a static and a tethered sphere show irregular vortex shedding at this Reynolds
number (e.g. see Lee et al. 2013). Moreover, simulations at Re = 800 enable more
relevant comparison with experimental studies conduced at higher Reynolds numbers.
A mass ratio of m∗ = 2.685 was chosen for this study, which is equivalent to a
reduced mass of mr = 1.5. This is representative of the lower end of mass ratios
that have been used for cylinder and sphere VIV experiments in water (e.g. Carberry,
Sheridan & Rockwell 2001; Williamson & Govardhan 2004; Govardhan & Williamson
2005; Wong et al. 2017; Sareen et al. 2018). Wide ranges of reduced velocity were
considered to improve the understanding of FIV. In particular, U∗= 3.5–100 and 3–50
were chosen at Re = 300 and 800 respectively. Finally, very long integration times
were used to gain a better understanding of the asymptotic system response, as it
was observed that some non-asymptotic states can be maintained for significant times
and yet may eventually evolve to different final states.

The structure of the paper is organized as follows: the numerical methods used
are presented in § 2; verification and validation of the numerical method and
implementation are presented in § 3; the predicted FIVs of a sphere at Re = 300
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are discussed in § 4; effects of Reynolds number on FIV of a sphere are discussed
in § 5 with results obtained at Re= 800, including comparisons with previous work;
concluding remarks are made in § 6.

2. Numerical approach
The numerical method employed in this study is based on the open-source CFD

package OpenFOAM. This package is capable of handling a wide range of flows.
It also comes with a built-in dynamic mesh technique that enables the solution of
FSI problems (as Ding, Bernitsas & Kim (2013), Habchi et al. (2013) and Wu,
Bernitsas & Maki (2014) used in their studies). Dynamic mesh techniques are
generally expensive since the mesh is deformed according to the solid-body motion
during each time step. However, for VIV of a single body, the efficiency of solving
the coupled fluid–solid system can be improved by choosing a non-deformable
moving mesh, as adopted by Blackburn & Henderson (1996), Leontini et al. (2006a),
Leontini, Thompson & Hourigan (2006b) and Leontini, Lo Jacono & Thompson
(2013). Therefore, instead of using the built-in dynamic mesh technique, a new
solver was developed to treat the coupled fluid–solid system with a non-deformable
mesh. This approach is considerably more efficient than the dynamic mesh technique.
The FSI system and the FSI solver are discussed in detail in the following two
subsections.

2.1. Governing equations
Fluid flow was modelled in the moving reference frame attached to the centre of
the sphere. This is a non-inertial frame since it accelerates according to the sphere
motion. Thus, the fluid momentum equations need to be adjusted accordingly. This
can be achieved by adding the acceleration of the sphere to the momentum equation
on the right-hand side, acting as a fictitious force in the opposite direction. The fluid is
assumed to be incompressible and viscous, while the motion of the sphere is assumed
to behave as a spring–mass–damper system. The coupled fluid–solid system can be
described by the Navier–Stokes equations, given by (2.1) and (2.2), together with the
governing motion of the sphere, given by (2.3),

∂u
∂t
+ (u · ∇)u=−

1
ρ
∇p+∇ · (ν∇u)− ÿs, (2.1)

∇ · u= 0, (2.2)
m ÿs + c ẏs + k ys = f l. (2.3)

Here, u= u(x, y, z, t) is the velocity vector field in the moving frame, p is the scalar
pressure field, ρ is the fluid density, ν is the kinematic viscosity, and ys, ẏs and ÿs are
the sphere displacement, velocity and acceleration vectors respectively. In addition, m
is the mass of the sphere, c is the damping constant, k is the structural spring constant
and f l is the flow-induced integrated vector force acting on the sphere due to pressure
and viscous shear forces acting on the body surface.

2.2. The fluid–structure solver
A new fully coupled FSI solver (named vivicoFoam) was developed, based on the
‘icoFoam’ solver for laminar flows, to solve the coupled fluid–solid system defined
by (2.1)–(2.3). This solver employs a predictor–corrector iterative method, which
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predicts the solid motion explicitly in the first iteration and then corrects it as
necessary through several corrector iterations. Once an approximation to the solid
motion is known (from the predictor or a previous corrector step), the Navier–Stokes
equations are solved using the PISO algorithm (introduced by Issa 1986). The details
of the predictor and corrector iterations at the (n+ 1)th time step are as follows.

In the predictor iteration, initially, the sphere acceleration, ÿs, is predicted explicitly
using stored accelerations at previous time steps, based on third-order polynomial
extrapolation,

ÿ(n+1)
s = 3 ÿ(n)s − 3 ÿ(n−1)

s + ÿ(n−2)
s . (2.4)

Once the sphere acceleration, ÿs, is known, the Navier–Stokes equations can be
solved. However, before proceeding to solve these equations, the sphere velocity, ẏs,
and displacement, ys, are estimated by integrating the predicted ÿs and estimated ẏs
by a third-order Adams–Moulton method by

ẏ(n+1)
s = ẏ(n)s +

δt
12
(5 ÿ(n+1)

s + 8 ÿ(n)s − ÿ(n−1)
s ) (2.5)

and

y(n+1)
s = y(n)s +

δt
12
(5 ẏ(n+1)

s + 8 ẏ(n)s − ẏ(n−1)
s ) (2.6)

respectively, where δt is the time step. At the end of the predictor step, the Navier–
Stokes equations are solved with the predicted ÿs, and the fluid force exerted on the
sphere is calculated for the following corrector iteration.

In the corrector iteration, ÿs is corrected with the values of ys, ẏs and f l calculated
in the predictor or the previous corrector step by

ÿ(n+1)
s =−

c
m

ẏ(n+1)
s −

k
m

y(n+1)
s +

1
m

f (n+1)
l . (2.7)

Then, the correct values of ẏs and ys are updated using (2.5) and (2.6) with the
corrected ÿs. Subsequently, the Navier–Stokes equations are solved with the corrected
ÿs, and the fluid force exerted on the sphere is calculated. Several corrector steps are
performed until the magnitudes of the fluid force and the solid acceleration converge
to within given error bounds.

It should be recalled that the fluid domain is modelled in a moving frame of
reference. The motion of this reference frame is acknowledged through the outer
domain velocity boundary conditions (except for the outlet boundary). In this study,
all of the outer boundaries except for the outlet have velocities prescribed on them.
Once the predictor–corrector iterative process is completed, the velocity boundary
conditions are updated according to the sphere velocity, ẏs, before proceeding to the
next time step.

2.3. Mesh and domain details
A uniform flow in the x direction with magnitude U past an elastically mounted sphere
of diameter D, restricted to translate in the y axis, was simulated numerically using
the newly built FSI solver described above. As shown in figure 1, a cubic domain
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– free-stream velocity
– fluid velocity vector
– fluid pressure
– outward unit normal vector
– sphere diameter
– sphere velocity vector

– spring constant

FIGURE 1. (Colour online) Schematic of the computational domain and boundary
conditions.

with a side length of 100D was chosen for the computational domain with the sphere
at its centre. In this study, the sphere motion was assumed to behave as a spring–mass
system with zero damping constant to obtain the highest vibration amplitude. In the
FSI solver, ys, ẏs, ÿs and f l were treated as vectors with zero x and z components since
the sphere motion was restricted to the y direction. At the inlet and sphere boundaries,
a Dirichlet boundary condition was prescribed for the velocity, while a zero-gradient
Neumann boundary condition was prescribed for the pressure, as shown in figure 1.
At the sphere surface, no-slip and no-penetration boundary conditions were applied.
At the outlet boundary, the pressure was set to zero while the velocity was prescribed
as zero gradient in the surface normal direction.

A block-structured grid was generated using Ansys-ICEM-CFD for the fluid domain,
as shown in figure 2. A cubic block, with a side length of 5D, was placed around the
sphere and was decomposed into six square frustums, as shown in figure 2(b). In each
square frustum, exponentially distributed nodes were assigned in the radial direction to
achieve high concentration near the sphere surface (see figure 2c). In order to resolve
the wake structures behind the sphere, a large number of grid points were assigned
in the downstream direction. To examine the sensitivity of the computed solutions to
grid refinement (see the next section), four successively finer grids were employed.
The first three grids were generated by keeping the number of cells at the sphere
surface, N, constant. Grid 1 employed '0.79 million cells. In grid 1, the minimum
cell thickness in the radial direction from the sphere surface, δl, was 0.011D. The
second grid (grid 2) was generated by decreasing δl to 0.004D. This yielded '1.25
million cells, with approximately 10–16 cells within the boundary layer before flow
separation. This was sufficient to resolve the flow in the near wake. However, a third
grid (grid 3) was generated by further decreasing δl to 0.002D with the same number
of cells as grid 2, to determine the effect of δl on the solution. Finally, grid 4 was
generated by increasing the number of cells at the sphere surface with δl = 0.004D
to observe the effect of cell thickness in the tangential direction on the solution. This
yielded '2.57 million cells. The time step, δt, used for each grid was 0.005D/U.
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x

y

z

(a) (b)

(c)

FIGURE 2. (Colour online) The unstructured-grid computational domain: (a) isometric
view; (b) the cubic block placed around the sphere, which was decomposed into six square
frustums; (c) grid near the sphere surface at the x–y plane.

Study Cd Cl St

Present study 0.665 0.070 0.137
Poon et al. (2010) 0.658 0.067 0.134
Giacobello, Ooi & Balachandar (2009) 0.658 0.067 0.134
Kim (2009) 0.658 0.067 0.134
Kim, Kim & Choi (2001) 0.657 0.067 0.137
Constantinescu & Squires (2000) 0.665 0.065 0.136
Johnson & Patel (1999) 0.656 0.069 0.137

TABLE 1. Comparison of computed time-averaged drag coefficient, Cd, time-averaged
lift coefficient, Cl, and Strouhal number, St, at Re= 300 with other numerical studies.

3. Numerical sensitivity and validation studies

This section presents verification and validation studies. The first study aims to
verify that the computational domain and mesh are adequate to capture the flow
behind a stationary sphere at Re = 300 and validates against previous predictions.
The second study is undertaken to validate the newly developed FSI solver for VIV
studies. Finally, a mesh resolution study for the VIV of a sphere is also presented at
the end of this section.

3.1. Rigid sphere
Flow past a rigidly mounted sphere was modelled using the non-VIV solver
(which formed the basis of the VIV solver) at Re = 300. Calculated values for
the time-averaged drag coefficient, Cd, time-averaged lift coefficient, Cl, and Strouhal
number, St, are compared with other studies in table 1. The present results are in
close agreement with literature values, generally falling within the narrow ranges of
values from accepted benchmark studies (Johnson & Patel 1999; Constantinescu &
Squires 2000; Kim et al. 2001; Giacobello et al. 2009; Kim 2009; Poon et al. 2010).
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FIGURE 3. (Colour online) Response of an elastically mounted cylinder as a function
of reduced velocity: Re = 200, m∗ = 10, ζ = 0.01. (a) Maximum oscillation amplitude,
A∗max; (b) peak lift coefficient, C′l,max; (c) frequency ratio, f ∗= f /fn; (d) average phase angle
between lift force and cylinder displacement, φ.

3.2. Vortex-induced vibration of a circular cylinder
To validate the new solver developed for general FSI problems, a set of simulations
was conducted on the FIV of a circular cylinder with parameters chosen from Leontini
et al. (2006b). The mass ratio was set to m∗ = 10 and the damping ratio to ζ =

0.01. (In this case, the cylinder displacement was modelled by a spring–mass–damper
system.) The Reynolds number was Re = 200 and the reduced velocity range was
3 6 U∗ 6 7.5. Figure 3 compares current predictions for the maximum oscillation
amplitude, A∗max, the peak lift coefficient, C′l,max, the frequency ratio, f ∗ = f /fn, and
the average phase angle between the lift force and the cylinder displacement, φ, with
results from Leontini et al. (2006b); the results obtained are almost identical, with
minor differences probably attributable to a slightly different blockage ratio, mesh
resolution and/or convergence of the predictor–corrector iteration steps. This study
provides confidence in the new solver.

3.3. Resolution study
All FSI simulations reported in this work were carried out on grid 2. To demonstrate
that this grid was sufficient to resolve the flow in FSI simulations, grid sensitivity
analysis was performed for the vibrating sphere case for the following two sets
of parameters: Re = 300 and U∗ = 7, and Re = 800 and U∗ = 6, with a sphere
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Re Grid δl N A∗ Cd C′d,rms C′l,rms f /fn

300 grid 1 (0.79 million cells) 0.011D 7 350 0.38 0.81 0.05 0.11 0.93
300 grid 2 (1.25 million cells) 0.004D 7 350 0.37 0.80 0.05 0.11 0.93
300 grid 3 (1.25 million cells) 0.002D 7 350 0.37 0.80 0.05 0.10 0.93
300 grid 4 (2.57 million cells) 0.004D 18 150 0.37 0.80 0.05 0.10 0.93
800 grid 1 (0.79 million cells) 0.011D 7 350 0.52 0.76 0.12 0.31 0.93
800 grid 2 (1.25 million cells) 0.004D 7 350 0.52 0.75 0.12 0.31 0.93
800 grid 3 (1.25 million cells) 0.002D 7 350 0.52 0.75 0.12 0.31 0.93
800 grid 4 (2.57 million cells) 0.004D 18 150 0.51 0.75 0.12 0.32 0.92

TABLE 2. The sensitivity of the spatial resolution of the flow parameters of VIV of a
sphere at Re= 300 and U∗= 7, and Re= 800 and U∗= 6 (m∗= 2.865 in each case). Here,
δl is the minimum thickness of the cells (in the radial direction) on the sphere surface
in each grid and N is the number of cells on the sphere surface. The root mean square
(r.m.s.) value of the sphere oscillation amplitude, A∗, the time-averaged drag coefficient,
Cd, the r.m.s. values of the fluctuation components of the drag and lift coefficients, Cd,rms
and Cl,rms, and the ratio of the vortex shedding frequency to the natural frequency, f /fn,
are listed.

of m∗ = 2.865. These U∗ values were chosen because the sphere showed periodic
oscillation with a large amplitude near these values. Table 2 compares the effect of
grid refinement on the results for the r.m.s. value of the sphere oscillation amplitude,
A∗, the force coefficients (time-averaged drag coefficient, Cd, r.m.s. values of the
fluctuation components of the drag and lift coefficients, C′d,rms and C′l,rms) and the
frequency ratio, f ∗ = f /fn. It is noted that for this set of variables, there is less than
a 3 % variation in the predictions between grids 1 and 2 over all variables for both
Re = 300 and 800. Moreover, the results obtained from grids 2–4 are in a good
agreement with one another. This suggests that further decrease of δl or increase
of N will only affect the predictions weakly. Thus, this observation leads to the
conclusion that grid 2 is sufficient for the VIV simulations, and, therefore, this grid
was used to obtain all subsequently presented results.

4. Flow-induced vibration of a sphere at Re = 300

This section documents and discusses the results obtained for the flow past an
elastically mounted sphere allowed to oscillate only along the y direction at a
Reynolds number of Re = 300 and reduced mass of mr = 1.5 (corresponding to a
mass ratio of m∗ = 2.865) over the reduced velocity range 3.5 6 U∗ 6 100. The
Reynolds number of the flow was prescribed through the kinematic viscosity in (2.1)
(ν =DU/Re) and the reduced velocity was prescribed through the spring constant in
the solid motion equation (k= 4mπ2/U∗2).

4.1. Sphere response
Figure 4 shows characteristics of the VIV response of the sphere in the reduced
velocity range 3.56U∗6100 in terms of sphere oscillation amplitude, A∗=

√
2 Yrms/D,

mean displacement of the sphere, Y/D, and frequency ratio, f ∗ = f /fn, where
Y = ys · (0 1 0) is the displacement of the sphere in the y direction, f is the oscillation
frequency of the sphere and fn is the natural frequency of the system calculated
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FIGURE 4. Response of an elastically mounted (on the y axis) sphere as a function of the
reduced velocity, U∗ (calculated without the added-mass effect), at Re= 300, m∗ = 2.865;
panels (a,c,e) show the results for U∗ = 3.5–100 while (b,d, f ) show enlarged views for
U∗ = 3.5–30: (a,b) sphere oscillation amplitude, A∗, (c,d) time-averaged non-dimensional
sphere displacement, Y/D, (e, f ) oscillation frequency normalized by the system natural
frequency, f ∗ = f /fn. The letters (A, B, C, D, E and F) in (a) mark specific points along
the response curve at which the time history of the sphere displacement is displayed in
figure 5.

without the added-mass effect. As can be seen from figure 4(a,b), the sphere oscillated
significantly, with a maximum oscillation amplitude of approximately 0.4D, in the
reduced velocity range 5.5 6 U∗ 6 10. Within this range, the sphere oscillation
frequency was locked in with the vortex shedding frequency and close to the static
body vortex shedding frequency, fvo. Moreover, the sphere oscillation frequency was
synchronized with the natural frequency of the system (figure 4e, f ), confirming that
this is a VIV response. This vibration state was designated as branch A.

Figure 4(c,d) displays the variation of the mean position of the sphere with
reduced velocity. In the range 3.5 6 U∗ 6 5, where oscillations were very small,
the mean position of the sphere was shifted away from its initial position by a
small amount. This is consistent with the asymmetric wake of a stationary sphere
at Re = 300 (e.g. Johnson & Patel 1999; Leweke et al. 1999; Ghidsera & Dusek
2000; Thompson, Leweke & Provansal 2001). Furthermore, in this reduced velocity
range, the mean displacement of the sphere, Y/D, increased as the reduced velocity,
U∗, increased. However, once the sphere began to oscillate in the reduced velocity
range 5.5 6 U∗ 6 10, it oscillated symmetrically about its initial position, yielding a
zero time-mean displacement (see figure 4c,d). Moreover, the oscillations observed
in branch A were purely sinusoidal, with zero offset (as the time history of sphere
displacement, Y/D, shows in figure 5(a) at U∗ = 7), suggesting that the wake was
symmetrical in the oscillation plane.
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FIGURE 5. Time history of sphere displacement, Y/D, against non-dimensional time, τ =
tU/D: (a) case A at U∗ = 7, (b) case B at U∗ = 10.5, (c) case C at U∗ = 15, (d) case D
at U∗ = 20, (e) case E at U∗ = 28 and ( f ) case F at U∗ = 75. See figure 4(a,b) for the
locations of the points A–F along the sphere response curve.

The time history diagrams in figure 5 show that it takes many oscillation periods
to reach the asymptotic system state. For example, in case A, the sphere began to
oscillate at τ ' 60, with the oscillation amplitude reaching its final value at τ '
150, where τ = t U/D is the non-dimensional time. In some cases (see below), the
oscillation response can maintain a semi-stable state for many periods prior to relaxing
towards the long-time asymptotic state. Hence, care is needed to ensure that the flow
is integrated forward in time for long enough to reach the representative long-time
system state.

In contrast to the sinusoidal responses observed for U∗ 6 10, quite different
responses were observed for the reduced velocities U∗ > 10. Furthermore, for each
U∗ > 10 case, varying sphere responses were observed at different time instances.
Time histories of the sphere displacement at the points B, C, D, E and F (marked in
figure 4(a,b) at U∗ = 10.5, 15, 20, 28 and 75) are shown in figure 5(b), (c), (d), (e)
and ( f ) respectively. Within the range U∗ ∈ [10.5–40], initially, the sphere oscillated
with a maximum amplitude of approximately 0.15D, but later the oscillation amplitude
decreased greatly. Therefore, all of these cases required simulations over extended
times until the solution became stable. In these cases, the time-mean position of the
sphere moved away from its initial position by a considerable amount. In addition,
over the initial evolution, the oscillation amplitude and the mean position of the
sphere varied with the simulation time. Over that initial period, the oscillations were
considerably weaker than the purely sinusoidal oscillations observed in branch A.

In the ranges U∗ ∈ [13–16] and [26–100], the oscillation amplitude decreased to
≈0.05D and 0.015D respectively after reaching the asymptotic state; see figure 5(c,e).
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However, these vibrations were notably periodic. In particular, the response range
13 6 U∗ 6 16 is designated branch B and the range 26 6 U∗ 6 100 is designated
branch C. The sphere oscillation frequencies in both branches were locked in with
the vortex shedding frequency. It is not clear that either of these two branches is
directly analogous to the response branches observed in higher-Reynolds-number
experiments. The sphere oscillation frequency for branch B was approximately equal
to the system natural frequency, fn; see figure 4(e, f ). However, for branch C, the
sphere oscillation frequency was not close to the natural frequency of the system, but
was close to half of the static body vortex shedding frequency.

Weak initial oscillations in the reduced velocity ranges U∗ ∈ [10.5–12] and U∗ ∈
[17–25] eventually faded away, as shown in figures 5(b,d), leading to a minimally
oscillatory final state. The reduced velocity ranges U∗ ∈[3.5–5], [10.5–12] and [17–25]
are desynchronization regimes where no significant sphere oscillations were observed
(points B and D marked in figure 4a,b). In those three ranges, except for a few cases,
sphere oscillations were observed with a very small amplitude (6 0.005D), and the
sphere oscillation frequency was equal to the static body vortex shedding frequency,
fvo, as shown in figure 4(e, f ).

In both branches B and C, the time-mean displacement of the sphere increased as
the reduced velocity increased (see figure 4c,d). However, there was not any clear
pattern in the mean displacement over the reduced velocity ranges U∗ ∈ [10.5–12]
and [17–25], where no oscillations were observed. When the reduced velocity was
increased further from 30 to 100, the sphere shifted away from its initial position by
a substantial margin and oscillated periodically with an amplitude of approximately
0.05D about its new time-mean position, as shown in the time history of sphere
displacement at U∗ = 75 in figure 5( f ). Moreover, in this regime, the sphere showed
a secondary frequency besides the main frequency, as shown in 5( f ) in the zoomed-in
view. For U∗> 30, the time-mean displacement of the sphere increased as the reduced
velocity increased. At U∗ = 100, the time-mean position of the sphere migrated to
∼ 5D away from its initial position (see figure 4c,e).

4.1.1. Comparison with other research studies
Behara & Sotiropoulos (2016) studied VIV of a sphere that was allowed to move in

all three spatial directions for the same Reynolds number with a sphere with a reduced
mass of mr = 2. They observed two different hysteretic VIV responses, with different
possible states observable at the same reduced velocity. In one case, the sphere moved
in a linear path in the transverse plane (xz plane) with hairpin-type vortex loops shed
behind the sphere. In the other case, the sphere moved in a circular orbit with spiral
vortices observed in the wake. Figure 6 compares the amplitude response observed
with a sphere of reduced mass mr=2 for branch A with that of Behara & Sotiropoulos
(2016) for their response branch corresponding to linear oscillations for the reduced
velocity range 3.5<U∗ < 10. Here, the sphere response amplitude is observed to be
higher when motion is restricted to one DOF (degree of freedom). For the 3-DOF
movement, the three orthogonal springs may affect the motion slightly differently from
restricted 1-DOF motion aligned with the springs; hence, it is not clear how these two
problems exactly relate to each other despite the observed linear motion in a plane
in both cases. Despite this, the general amplitude response and lock-in range agree
reasonably well, while noting a shift to a slightly higher lock-in range for the current
simulations.

The sphere response curves observed for the reduced masses mr = 1.5 and 2
almost lie on top of each other (compare the response curves in figures 4a and 6).
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FIGURE 6. (Colour online) Comparison of VIV response for a sphere free to move only
in the transverse direction (y only),u, and free to move in all three spatial directions by
Behara & Sotiropoulos (2016) when the sphere is moving in a linear path in the transverse
plane (xz plane), q (orange), at a Reynolds number of Re = 300 and a mass ratio of
m∗ = 3.8197 (mr = 2).
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FIGURE 7. Variation of the sphere response amplitude at various mass ratios, at Re= 300
and U∗ = 6.5.

This demonstrates that a small variation in mass ratio does not significantly affect
the amplitude response. This was further investigated by varying the mass ratio of
the sphere from 1.2 to 10 at a fixed reduced velocity of U∗ = 6.5, where the peak
response occurred (see figure 7). The variation of the sphere response amplitude
with mass ratio was less than 2 %. This verifies that there is no significant effect
of mass ratio on the sphere peak response amplitude over this mass ratio range,
consistent with previous experimental findings for VIV of low-mass-damped spheres
and cylinders (Griffin 1980; Govardhan & Williamson 2006).

The highly periodic and large-amplitude vibration observed in branch A resembles
the vibration observed over a similar reduced velocity range by Govardhan &
Williamson (2005) in their experimental study on tethered spheres at much higher
Reynolds numbers. They found that the oscillations of a tethered sphere (xy motion)
and a hydroelastic sphere (y only) compared well for similar mass damping parameters.
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In this velocity range, they observed two district modes of vibration (modes I and II).
In contrast to the clearly distinguishable mode transitions of a circular cylinder, there
was a smooth transition between modes I and II for a sphere. These two modes were
only clearly distinguishable from the amplitude response curve for spheres with small
mass ratios (Jauvtis et al. 2001, figure 2). It was even harder to distinguish them
from the amplitude response for hydroelastic spheres (Govardhan & Williamson 2005,
figure 2b). At Re = 300, the amplitude response variation is not indicative of two
different vibration modes.

For mode I, Govardhan & Williamson (2005) observed an oscillation amplitude of
≈0.4D for a sphere of mass ratio m∗ = 2.83 in 2-DOF motion (xy motion); this is
similar to the current observations for m∗ = 2.865 and with 1-DOF motion in the
y direction. However, they observed an oscillation amplitude of ≈0.8D for mode II
which was not the case in this study. Indeed, for both modes I and II, they observed
that the oscillating frequency of the sphere was close to the natural frequency of the
system, consistent with the low-Reynolds-number behaviour here. However, it would
be misleading to claim a strong analogy between modes I and II, and branch A, at
this low Reynolds number.

4.2. Force measurements
This section presents the pressure and viscous force components acting on the sphere
in the x, y and z directions. Figure 8 shows the variation with U∗ of the mean drag
coefficient, Cd (the force coefficient in the x direction), the mean lift coefficients in
the y and z directions, Cly and Clz respectively, the mean total lift coefficient, Cl =√

C
2
ly +C

2
lz, and the mean angle of lift, θ , where θ = arctan(Clz/Cly) is the angle

between the force coefficients in the y and z directions.
In the reduced velocity range 3.5 6 U∗ 6 5, both Cd and Cly were constant,

consistent with negligible sphere oscillation. Indeed, these values were identical
with the corresponding force coefficients of a rigidly mounted sphere at the same
Reynolds number. The non-zero mean displacement of the sphere in this reduced
velocity range is attributable to the non-zero mean lift. As expected, there was no
force component in the z direction over this U∗ range. Figure 9 shows the variation
of the r.m.s. values of the force coefficients in the x, y and z directions, Cd,rms,
Cly,rms and Clz,rms respectively, with the reduced velocity. Over this range, there were
negligible fluctuations of forces in any direction. Therefore, in this non-resonance U∗

range, the sphere effectively behaved like a rigidly mounted sphere with no significant
oscillatory motion, as discussed previously.

As the sphere began to oscillate at U∗=5.5, the mean drag coefficient, Cd, suddenly
increased by ≈30 % (see figure 8a,b) from its pre-oscillatory value. Over the reduced
velocity range U∗ ∈ [5.5–10], Cd decreased gradually as U∗ increased, returning to the
non-oscillatory value at the end of the range. A similar behaviour of Cd was reported
by Behara et al. (2011) in their study of VIV of a sphere in 3-DOF. In this velocity
range, the mean lift coefficient in the y direction, Cly, dropped to zero, as shown in
figure 8(c,d). This is consistent with symmetric sphere oscillations observed through
its initial position in this regime. However, within this U∗ range, the forces in the x
and y directions fluctuated with large amplitudes, as shown in figure 9(a–d) by the
r.m.s. values of the fluctuation amplitudes of the force coefficients. This is evidence
of the enhancement of sphere oscillations in this regime (branch A). As can be seen
from figure 9(a–d), the r.m.s. values of the drag coefficient and the lift coefficient in
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FIGURE 8. Variation of the force coefficients with the reduced velocity; panels (a,c,e,g,i)
show the results for U∗ ∈ [3.5–100] and (b,d, f,h,j) show enlarged views for U∗ ∈ [3.5–25]:
(a,b) mean drag coefficient, Cd, (c,d) mean lift coefficient in the y direction, Cly, (e, f )

mean lift coefficient in the z direction, Clz, (g,h) mean lift coefficient, Cl=

√
C

2
ly +C

2
lz, and

(i,j) mean lift angle, θ , where θ = arctan(Clz/Cly) is the angle between the lift coefficients
in the y and z directions.

the y direction (C′d,rms and C′ly,rms respectively) increased suddenly at U∗ = 5.5 and
then gradually decreased to zero as U∗ increased to 10. The analytical solution of
the governing motion equation of the sphere (2.3) subjected to a periodic input force
shows that the sphere oscillation amplitude is proportional to the fluctuation amplitude
of the force, C′ly, and is inversely proportional to the spring constant, k= 4mπ2/U∗2.
Therefore, the sphere oscillation amplitude, A∗, is proportional to C′ly × U∗2. The
exponentially decaying C′ly, as shown in figure 9(c,d) for increasing U∗, leads to the
amplitude response profile shown in figure 4(a,b), whereby there is a sharp drop of
the maximum oscillation amplitude.
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FIGURE 9. Variation of the r.m.s. values of the fluctuation components of the force
coefficients with the reduced velocity; panels (a,c,e) show the results for U∗ = 3.5–100
and (b,d, f ) show enlarged views for U∗ = 3.5–25: (a,b) r.m.s. of drag coefficient, C′d,rms,
(c,d) r.m.s. of lift coefficient in the y direction, C′ly,rms, (e, f ) r.m.s. of lift coefficient in the
z direction, C′lz,rms.

For the case of U∗ 6 10, there was no force component in the z direction, as
expected. However, as U∗ increased beyond 10, surprisingly, a force component in
the z direction was found, indicating that the wake loses mirror symmetry in this
range. Figure 10 shows the time histories of the force coefficients in the y and z
directions at the points A–F marked in figure 4(a,b). As can be seen, for cases B–E
(in the reduced velocity range U∗ ∈ [10.5–40]), a force component in the z direction
appears gradually with simulation time. The y and z components of the forces are
of the same order of magnitude (see figure 8c–f ). Therefore, the influence of the z
component of the force is not negligible in this case. If the sphere were to be allowed
to move in both the y and z directions, it might well orbit with an elliptical trajectory.
For these reduced velocities, initially, forces in the y direction were irregular, with a
large oscillation amplitude. However, as the simulation time progressed, forces in the
y direction were attenuated and the oscillating amplitudes decreased. The behaviour
of the forces is consistent with the behaviour of the sphere displacement. The sphere
oscillation amplitude decreased as the fluctuation amplitude of the force in the y
direction decreased. Hence, there was a small oscillation amplitude for vibration
branches B and C. However, the force component in the z direction diminished with
increasing U∗ for U∗ > 26, in terms of both the mean and the fluctuating amplitude
(see figures 8e, f and 9e, f ). The mean lift force in the y direction approached that of
a stationary sphere with increasing U∗ for U∗ > 26.

As figure 8(c,d) shows, the lift force in the y direction was not zero in the vibration
branches B (13 6 U∗ 6 16) and C (26 6 U∗ 6 100). This non-zero lift force moved
the sphere away from its initial position, whereupon vibration in branches B and
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FIGURE 10. (Colour online) Time history of the force coefficients in the y and z directions
(Cly and Clz respectively); Cly is shown with the orange colour (light) curves while Clz is
shown with the black colour (dark) curves; τ = tU/D is the non-dimensional time: (a)
case A at U∗= 7, (b) case B at U∗= 10.5, (c) case C at U∗= 15, (d) case D at U∗= 20,
(e) case E at U∗ = 28 and ( f ) case F at U∗ = 75. See figure 4 for the locations of the
points A–F on the sphere response curve.

C occurred about this modified position. This may be another reason for the small
amplitude of vibrations for these branches. As U∗ increased from 26 to 100, the mean
displacement of the sphere increased greatly, attaining a value of 5D at U∗ = 100.
However, the mean lift force in the y direction increased only to the stationary
sphere value. Therefore, the increase in the mean displacement of the sphere can be
considered to be due to the effective decrease of the stiffness of the spring as the
reduced velocity is increased.

For U∗ > 10, even though the individual mean lift coefficients in the y and
z directions varied with the reduced velocity, the mean value of the total lift

coefficient, Cl =

√
C

2
ly +C

2
lz, interestingly remained constant and equal to that of

a stationary sphere (see figure 8g,h). This indicates that except for branch A, where
large-amplitude vibrations were observed, the time-mean of the total lift force was
essentially identical to its non-VIV value. The variation of the mean lift angle with the
reduced velocity is shown in figure 8(i,j), where the angle of lift, θ , is arctan(Clz/Cly).
The mean angle was almost 0◦ for U∗ 6 10. It was approximately −45◦ within the
first desynchronization regime and in branch B, and approximately −90◦ in the
second desynchronization regime. At the beginning of branch C, the mean lift angle
was approximately −45◦, and it approached 0◦ as the reduced velocity increased,
which is consistent with the variation of Clz for branch C.
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FIGURE 11. (Colour online) Variation of the total phase, Ctotal, and vortex phase, Cvortex,
with U∗; (b) and (d) show the zoomed-in view for small U∗.

4.2.1. Phase between sphere displacement and forces
As Govardhan & Williamson (2005) discussed, the total fluid force in the y

direction, Ftotal, can be split into a potential force component, Fpotential = −mA ÿ(t),
which arises due to the potential added-mass force, and a vortex force component,
Fvortex, which is due to the dynamics of vorticity. This recognizes the fact that a flow
solution can be constructed as a sum of a potential flow field plus a velocity field
associated with vorticity in the flow (see, e.g., Lighthill 1986). Here, mA is the added
mass due to the motion of the sphere. Therefore, the vortex force can be computed
from

Fvortex = Ftotal − Fpotential. (4.1)

Normalization of all forces by 0.5ρU2πD2/4 gives

Cvortex =Ctotal −Cpotential. (4.2)

Govardhan & Williamson (2005) observed a shift in vortex phase, φvortex, of 90◦
in the transition between mode I and mode II. The total phase, φtotal, only increased
slightly over the same U∗ range, but it increased towards 180◦ at the reduced velocity
close to the peak amplitude of the mode II range (Govardhan & Williamson 1997,
2005; Jauvtis et al. 2001; Sareen et al. 2018). Those experiments also show that
there is no desynchronized region between modes I and II for small-mass-ratio
1-DOF hydroelastic systems, although this is the case for light (m∗ < 1) tethered
sphere systems. Figure 11 shows the variation of the total phase and vortex phase
with the reduced velocity. As can be seen from figure 11(d), over branch A, the
vortex force gradually increased from 0◦ to 180◦ while the total phase stayed at 0◦.
Therefore, at the beginning of branch A, the force/displacement phasing is consistent
with mode I. The increase in total phase does not occur over the range covered by
this branch, but instead occurs in branch B; however, this is not to conclude that
branch B is analogous to the experimental mode II.

Figure 12 shows the variation of sphere displacement, total force, Ctotal, and vortex
force, Cvortex, for two periods for branch A at the reduced velocities U∗ = 5 and
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FIGURE 12. (Colour online) Relationship between the total force in the y direction, Ctotal,
and the vortex force in the y direction, Cvortex, in branch A: (a) at U∗= 5.5 (mode I) and
(b) at U∗ = 7 (mode II).

7 respectively. As can be seen, the sphere vibration frequency was locked in with
Ctotal as well as with Cvortex. As mentioned earlier, there is approximately 180◦ phase
difference between Cvortex and Y towards the end of branch A.

As the reduced velocity increased, for branches B and C, φvortex stayed at ∼180◦
(see figure 11). However, φtotal suddenly shifted from 0◦ to 180◦ within branch B.
Indeed, from this point of view, branch B shows some similarities to mode II for light
tethered systems, especially as the oscillation frequency follows a (1/2)fvo variation
– see figures 4 and 7 of Govardhan & Williamson (2005). Interestingly, branch C
also follows this variation but with a difference in vortex and total phase of 180◦.
On the other hand, mode III, observed in high-mass-ratio higher-Reynolds-number
experiments (Jauvtis et al. 2001), is locked to the natural frequency of the system,
with each oscillation period corresponding to 3–8 vortex shedding periods (Govardhan
& Williamson 2005). This is certainly not the case for branch C here, where
oscillation occurs at close to the subharmonic of the non-VIV vortex shedding
frequency. Thus, branch C and mode III do not appear to be related.

4.3. Wake structures
Vortical structures in the wake are depicted using isosurfaces of the second invariant
of the velocity tensor (known as the Q-criterion; see Hunt, Wray & Moin 1988). As
figure 13 shows, for branch A, two regular streets of hairpin vortices form the wake.
This structure resembles those in the wake observed by Govardhan & Williamson
(2005) for their mode I and II vibrations using DPIV to extract the vorticity field. The
wake also appears identical to the hairpin-type wake observed by Behara et al. (2011)
for VIV of a sphere with 3-DOF at Re = 300; the current study extends the range
of reduced velocity considered by an order of magnitude as well as extending the
length of the simulations, leading to different evolved states in some cases. The wake
observed for a rigidly mounted sphere (shown in figure 14) is modified considerably
under vibration of the sphere. Vortex loops are stretched towards positive and negative
y directions as the sphere vibrates. In particular, a vortex loop sheds in the positive y
direction as the sphere moves to the negative y direction. The evolution of the wake
for branch A (U∗= 7) over one cycle is shown in figure 15. As can be seen, a vortex
loop initiated from the outside sheds like a hairpin and ends from the inside. As a loop
is shed, three tails form, one from the tip and two from the sides. Later, these three
tails interconnect by creating two small loops. However, as the vortex loop moves
further, the connection from the tip disappears and the tail forms a ‘U’-shape. The
direction of the tail is the same as the direction of the streamlines upstream. The wake

94



Flow-induced vibration of a sphere 951

x

x

y

x

y

x

y

z

x

z

Branch A

Branch B

Branch C

(a)

(b)

(c)

FIGURE 13. Instantaneous wake structures visualized by the Q-criterion (Q = 0.001) of
branch A (at U∗ = 7), branch B (at U∗ = 15) and branch C (at U∗ = 75) vibrations.
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FIGURE 14. Instantaneous wake structures for a rigidly mounted sphere at Re= 300.

is symmetric in the xy plane (see also figure 13, branch A in xz plane). The upper
and lower vortex streets are equal in strength as the sphere oscillation is symmetric
through its initial position.

As figure 13 shows, the wake observed for vibration branch B is quite different.
This wake resembles more closely that of a rigidly mounted sphere than the wake
for branch A. The orientation of the wake is no longer aligned with the xy plane, as
also indicated by the non-zero lift angle shown in figure 9. A lift angle of θ ≈ 50◦
was found for branch B, and thus the wake for branch B is rotated by an angle of
≈50◦. In contrast to the wake for branch A, the loops in the wake for this branch are
interconnected and asymmetric.

The wake structures observed in vibration branch C (see figure 13) again more
closely resemble the wake structures observed for a rigidly mounted sphere than the
wake for branch A. However, the loops are elongated along the x axis, and the non-
dimensional shedding frequency is lower than for those structures in branches A and B.
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FIGURE 15. Evolution of vortical wake structures behind the sphere with time for the
maximum response case of U∗= 7. (a) The first half of the cycle with the sphere moving
downwards, and (b) the second half of the cycle with the sphere moving upwards.
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FIGURE 16. Instantaneous wake structures in the xy plane in the desynchronization
regimes showing rotation of the wake alignment relative to the oscillation direction: (a)
at U∗ = 4 ∈ [3.5–5], (b) at U∗ = 10.5 ∈ [10.5–12], (c) at U∗ = 20 ∈ [17–25].

It should be recalled that in this branch, the oscillation frequency is half of the normal
shedding frequency. In contrast to the vortical wake structures for branch B, the wake
for branch C at higher U∗ values has the same orientation as for branch A and is
symmetric through the xy plane. This is reflected by the lift angle again decreasing at
higher reduced velocities. However, the loops are oriented more towards the negative
y direction, due to the non-zero lift force in the y direction.

Figure 16 shows the wake structures observed in the desynchronization regimes
where the sphere does not vibrate significantly. In each of these regimes, the wake
structures strongly resemble those observed for a rigidly mounted sphere. However,
their orientations are different. In the first desynchronization regime, U∗ ∈ [3.5–5],
the orientation of the wake is identical to that of the wake of a rigidly mounted
sphere. However, in the second and third desynchronization regimes (U∗ ∈ [10.5–12]
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and [17–25]), the wake has been rotated by angles of ≈ 50◦ and 90◦; again, this is
consistent with the observed lift angle variation.

Overall, the wake structures observed in branch A are similar to those observed by
Govardhan & Williamson (2005) for their mode I and II vibrations and Behara et al.
(2011) for the hairpin response branch. However, the wake structures observed for
branches B and C for the reduced velocity ranges U∗ ∈ [13–16] and [26–100], where
the sphere oscillated with a small oscillation amplitude, are different from the wake
structures for branch A as well as from the wake structures observed by Govardhan
& Williamson (2005) for mode III. This also explains why the vibrations observed in
branches B and C are different from the large oscillation amplitudes reported in the
experimental studies.

5. Flow-induced vibration of a sphere at Re = 800
The investigation of FIV of a sphere was extended by increasing the Reynolds

number to Re = 800. At Re = 300, even though higher reduced velocities were
considered, the low-frequency vibration regimes observed by experimental studies
with tethered spheres (mode III and IV vibrations investigated by Jauvtis et al. (2001))
were not able to be reproduced. Govardhan & Williamson (2005) explained that mode
III vibration response occurs for the normalized velocity regime (U∗/f ∗)S= fvo/f = 3
to 8, where S is the Strouhal number. Furthermore, mode IV vibration appeared after
mode III for (U∗/f ∗)S approximately greater than 19. However, at Re = 300, the
highest normalized velocity, (U∗/f ∗)S, that could be attained was 2 since f ≈ (1/2)fvo
for higher reduced velocities (U∗ > 26). Therefore, to investigate the low-frequency
regime and the effect of the Reynolds number in the laminar regime, the Reynolds
number of the flow was increased to Re = 800. The mass ratio used was again
m∗ = 2.865. Similarly to the Re = 300 case, the sphere was restricted to move only
in the y direction.

5.1. Sphere response at Re= 800
Figure 17 shows the characteristics of the FIV response of the sphere at Re=800 over
the reduced velocity range 36U∗6 50 in terms of the sphere response amplitude, A∗,
the time-mean displacement of the sphere, Y/D, and the frequency ratio, f ∗ = f /fn.
Similarly to the Re= 300 case, the sphere suddenly began to oscillate as the reduced
velocity increased to a value of 4.5. The sphere vibration amplitude maintained a bell-
shaped curve with a highest oscillation amplitude of ≈ 0.6D until U∗= 13. Then, the
oscillation amplitude increased as the reduced velocity increased from U∗= 14 to 50,
yielding an amplitude of approximately 0.9D at U∗ = 50.

Within the reduced velocity range U∗ = 4.5–13, the sphere vibrated periodically
about its initial position (Y/D= 0 in this velocity regime; see figure 17b). Moreover,
the amplitude response varied smoothly within this reduced velocity range. The
sphere vibration frequency was synchronized with the vortex shedding frequency.
Furthermore, it was identical to the natural frequency of the system ( f ∗ = f /fn = 1;
see figure 17c). Thus, these are indeed VIVs. This reduced velocity range can be
identified as branch A introduced for the simulations at Re= 300. Moreover, branch
A shows some aspects of behaviour similar to those seen in mode I and II vibrations
observed in previous experimental studies. This will be elaborated later in the section
discussing force measurements.

In contrast to the smooth amplitude response curve for U∗ = 4.5–13, the measured
r.m.s. amplitudes were scattered, with an overall increasing trend for U∗ > 14.

97



954 M. M. Rajamuni, M. C. Thompson and K. Hourigan

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15

Branch A

Intermittent branch

20 25 30 35 40 45 50

 0.5

1.0

1.5

2.0

 0.5

 0

 –0.5

0.6

0.9

0.3

1.2(a)

(b)

(c)

FIGURE 17. Response of an elastically mounted (on y only) sphere as a function of
the reduced velocity, U∗, at Re = 800 and m∗ = 2.865: (a) sphere oscillation amplitude,
A∗ =

√
2Yrms/D, (b) time-averaged non-dimensional sphere displacement, Y/D, (c) sphere

oscillation frequency normalized by the system natural frequency, f ∗ = f /fn.

This scatter is presumably due to insufficient sampling times for the amplitude signal.
Moreover, for reduced velocities U∗ > 14, the sphere oscillations were not periodic
as at lower reduced velocities. The periodicity of the amplitude response (Govardhan
& Williamson 2005) is defined as λA =

√
2Yrms/Ymax, where Ymax is the maximum

oscillation amplitude observed at each U∗. According to this definition, the periodicity
takes values between 0 and 1, with λA = 1 for purely sinusoidal signals. Figure 18
shows the variation of the periodicity of the sphere response with the reduced velocity.
As can be seen from figure 18(b), for U∗= 4.5–11.5, the sphere response was purely
sinusoidal. However, as U∗ was increased beyond 12, the sinusoidal nature of the
signal decreased and the periodicity of the response dropped dramatically to a value
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FIGURE 18. Variation of the sphere response amplitude and the periodicity of the
response, λA =

√
2Yrms/Ymax, with the reduced velocity, U∗.

of ≈ 0.5 at U∗= 14. For U∗> 14, the sphere response was highly aperiodic. However,
the periodicity of the response remained close to 0.5, although showing a slightly
decreasing trend as the reduced velocity increased from U∗ = 14. In this regime,
the periodicity was also scattered, similarly to the amplitude response. Furthermore,
the time-mean position of the sphere was scattered around the initial position of the
sphere. These observations indicate that the sphere oscillation response was chaotic
for U∗ > 14. However, in this regime, the main oscillation frequency component
of the sphere was close to the natural frequency of the system, albeit it was not
synchronized with the main vortex shedding frequency (see figures 17c and 19).
Thus, the vibration state in the intermittent branch is not VIV.

The vibrations observed in the intermittent branch resembled the mode IV vibration
discovered by Jauvtis et al. (2001) with a tethered sphere of m∗= 80 for U∗> 100 in
wind-tunnel experiments. Even through Jauvtis et al. observed mode IV vibration with
a high-mass-ratio sphere for very large reduced velocities (U∗ > 100), surprisingly, a
very similar response was observed with a small-mass-ratio sphere and for quite low
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FIGURE 19. (Colour online) Comparison of the dominant sphere oscillation frequency
with the dominant vortex shedding frequency and the natural frequency of the system in
branch A and the intermittent branch.

reduced velocities (U∗ 6 14) at Re = 800. This may be an effect of zero structural
damping, and it seems possible that an increased damping may reduce or even
suppress these randomly induced vibrations.

The sphere response at Re= 800 was much closer to that observed in experimental
studies than the response at Re= 300. However, at Re= 800, intermittent vibrations
(mode IV) were observed directly after the initial vibration response branch without
an intervening range of mode III vibration. Again, this may be due to the effect of
(zero) damping ratio, mass ratio or even Reynolds number.

Govardhan & Williamson (2005) recognized that the streamwise vortex pair of a
sphere creates a lift force analogous to aircraft trailing vortices. As the direction of
the streamwise vortices switches according to the two-sided hairpin structures behind
the sphere, it creates a periodic lift force that leads to vibration of the sphere and
synchronization. Hence, VIV of a sphere (or other such three-dimensional bodies)
can occur due to the streamwise trailing vortex pair formed behind it. According to
Govardhan & Williamson (2005), all of the first three modes of vibrations (modes I,
II and III) occur due to the synchronization of sphere displacement with the vortex
force (or streamwise vortex structures). Govardhan & Williamson showed that the
sphere vibration phase aligns with the vortex force in mode I and lags in phase with
the vortex force in mode II. Moreover, they observed multiple vortex loops shed
per sphere vibration cycle in mode III. The mode III vibration state was identified
as moment-induced vibration. It is possible that this state may not appear at low
Reynolds numbers, or that it requires a higher mass ratio or a non-zero damping to
stabilize it. This is difficult to investigate in a numerical parameter study because
increase in the mass ratio requires considerably longer integration times to reach an
asymptotic state.

The recent experimental study of Sareen et al. (2018) investigated the effect of
sphere rotation on VIV of a sphere that is free to oscillate in the cross-flow direction.
The amplitude responses of the sphere at Reynolds numbers of 300 and 800 are
compared with the experimental results of Sareen et al. (2018) for the case of a
sphere with zero rotation in figure 20. At this point, it worth mentioning that there
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FIGURE 20. Effect of the Reynolds number on the sphere response amplitude:u at Re=
300, @ at Re = 800, A experimental results from Sareen et al. (2018) with no sphere
rotation, for which the Reynolds number varies between Re' 5 000 and 30 000 over this
U∗ range. (For the latter study, m∗= 14.2 and the mass damping parameter m∗ζ = 0.0207.)

is a slight difference between our numerical study and previous experimental studies.
In this study, the Reynolds number of the flow was kept constant while varying the
spring constant to vary the reduced velocity. However, in experimental studies, the
reduced velocity is generally varied by adjusting the flow velocity. Thus, the Reynolds
number also varies with the reduced velocity. The Reynolds number in the study by
Sareen et al. (2018) was varied between 5 000 and 30 000. As can be seen from
figure 20, at low reduced velocities (U∗ 6 17), the peak sphere response amplitude
increases with increasing Reynolds number. The shape of the amplitude response
curves varies successively from Re = 300 to 800 to higher Reynolds numbers. In
particular, as the Reynolds number is increased, the transition from mode I to mode
II in this branch is relatively clear even at Re = 800. At Re = 300, there is no
indication of mode II response before reaching the end of the branch.

Comparison of the amplitude responses for Reynolds numbers of 800 and 300
shows a higher response amplitude at Re= 800 at each reduced velocity. In addition,
the range of reduced velocities that show large-amplitude periodic vibration (branch A)
is widened as the Reynolds number is increased from Re= 300 to 800. Moreover, at
higher reduced velocities, the sphere response shows aperiodic intermittent vibrations
(mode IV) at Re= 800, while it shows periodic vibrations with a very small amplitude
at Re= 300. Unsurprisingly, these observations show the strong effect of the Reynolds
number on FIV.

5.2. Force measurements at Re= 800
At the beginning of branch A (4.56U∗6 13), where the sphere vibrations are purely
sinusoidal, the force components were also sinusoidal, as shown in figure 21(a)
at U∗ = 6. Not only the transverse force component in the y direction but also
the streamwise force component fluctuated with a significant oscillation amplitude.
Moreover, the frequency of the streamwise force was twice the transverse frequency.
Therefore, if the sphere were allowed to move in the streamwise direction, it would
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FIGURE 21. (Colour online) The time histories of the drag and lift (in the y and z
directions) force coefficients, Cd, Cly and Clz respectively, in branch A (a,b) and the
intermittent branch (c,d) for 20 cycles of sphere vibration: (a) U∗ = 6, (b) U∗ = 12, (c)
U∗ = 30 and (d) U∗ = 46.
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FIGURE 22. Variation of the total and vortex phases (φtotal and φvortex) with U∗ at Re=800
over branch A.

show streamwise vibration with a small oscillation amplitude, as reported in
Govardhan & Williamson (2005). In this regime, the force in the z direction oscillated
with a negligible amplitude compared with the force in the y direction. Towards the
end of this reduced velocity range, the drag and lift forces in the y direction were
less sinusoidal, yet still showed a strong periodic component, as shown in figure 21(b)
at U∗ = 12.

In branch A, the displacement signal of the sphere was locked to both the total and
the vortex force signals (see figures 23 and 24). Figure 22 shows the variation of the
total phase, φtotal, and the vortex phase, φvortex, with the reduced velocity up to U∗=20.
The vortex phase rises up to 180◦ over the first part of branch A, consistent with the
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FIGURE 23. (Colour online) The relationship between the total force in the y direction,
Ctotal, and the vortex force in the y direction, Cvortex, in branch A: (a) at U∗ = 5 and (b)
at U∗ = 12.
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FIGURE 24. (Colour online) Power spectrum of the sphere response, Y/D, total force,
Ctotal, and vortex force, Cvortex, in branch A: (a) at U∗ = 5 and (b) at 12.

mode I behaviour seen in experiments (see figure 23a). The total phase rises towards
180◦ towards the end of the branch, which is also seen experimentally in the mode II
region (also see figure 23b). For low-mass-ratio tethered spheres, there is also distinct
change in the frequency response across the mode I to mode II transition (Govardhan
& Williamson 2005), clearly seen for m∗ = 0.76, that is not seen here. It is not clear
whether this is masked by the higher mass ratio of these simulations, which would
mean that any frequency jump would be smaller.

Figure 25 displays the drag and lift (in the y and z directions) force coefficients
in terms of time-mean values and r.m.s. of the fluctuating components. Similarly
to the Re = 300 case, the time-mean drag force coefficient suddenly increases by
≈60 % from its pre-oscillatory value as soon as branch A vibration starts at U∗= 4.5
(see figure 25a). This increment decreases with the reduced velocity in the branch
A regime and returns to the pre-oscillatory value at the end of the range. Similarly
to Cd, the fluctuation amplitudes of both the drag force and the lift force in the y
direction show sudden jumps at the beginning of branch A, and then that increment
decreases with increasing U∗ over branch A (see figure 25b,d). These observations
are consistent with the Re = 300 case as well as with the experimental study of
Sareen et al. (2018).

In branch A, Cly,rms decreases rapidly as the reduced velocity increases. However,
as U∗ passes beyond 11.5, Cly,rms begins to increase again and asymptotes to a value
of 0.06 at the end of the range. Simultaneously, Clz,rms also begins to increase towards
the end of branch A and reaches a value of ≈ 0.06. These observations again show a
smooth transition between branch A and the intermittent branch.
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FIGURE 25. Variation of the time-mean force coefficients (a,c,e) and the r.m.s. of the
fluctuation components of the force coefficients (b,d, f ) in the x, y and z directions with
the reduced velocity, U∗, at Re= 800. The drag force is measured in the x direction and
the lift forces are measured in the y and z directions.

5.2.1. Intermittent branch
For the intermittent branch (U∗ > 14), no significant variation was observed for

either the time-mean or the fluctuation force components with the reduced velocity.
The mean drag coefficient, Cd, was flat at the pre-oscillatory value, while Cly and
Clz were almost zero, as for branch A (see figure 25). All three force components
showed a small fluctuation over the intermittent branch. In particular, Cd,rms was
≈ 0.02, while both Cly,rms and Clz,rms were ≈0.06. The time histories of the forces
in the intermittent branch for approximately 20 sphere oscillation cycles are shown
in figures 21(c) and 21(d) at U∗ = 30 and 46 respectively. As can be seen, the
forces were neither periodic nor locked in with the sphere vibration. Therefore, the
intermittent vibration branch (mode IV) cannot be described by the classic lock-in
theory, but nevertheless represents a response of substantial magnitude. Again, this
intermittent response may be enhanced by the zero damping applied to the current
set of simulations.

5.3. Wake structures at Re= 800
As Sakamoto & Haniu (1990) also found, the wake observed for a stationary sphere
at Re = 800 was irregular in strength and frequency (see figure 26). The wake
became regular as soon as the sphere began to vibrate at U∗ = 4.5. For branch A,
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FIGURE 26. Instantaneous wake structure of a stationary sphere at Re= 800.

x

z

x

y

FIGURE 27. Instantaneous wake structure in branch A (depicted at U∗ = 6) at Re= 800.

similarly to the Re = 300 case, the wake was formed with two streets of equal
strength vortex loops, as shown in figure 27 at U∗ = 6. The vortical structures were
clearly two-sided hairpin loops near the sphere. However, as they moved downstream,
the hairpin structures transformed into rings. Similarly to the Re = 300 case, a tail
was attached to each vortex loop. The vortex loops were slightly twisted in the z
direction; this may be due to the small-amplitude periodic force observed to occur in
the z direction in this regime. The sphere response and force measurements showed
a smooth transition between branch A and the intermittent branch, as discussed in
the previous two sections. However, the vortex structures were regular and the vortex
shedding frequency was locked in with the sphere vibration frequency until the end
of branch A.

In the intermittent branch (mode IV), where the sphere showed intermittent
vibration, the wake was irregular in strength and frequency. Several vortex loops
were observed during an oscillation cycle. Figure 28 shows wake structures, at five
consecutive times during a cycle, observed at U∗ = 30, for which the sphere vibrated
with a large amplitude. In particular, the top wake structure in figure 28 was captured
when the sphere was at its lowest point, while the last structure was captured when
the sphere next returned to its lowest point. As can be seen, the sphere vibration was
not locked in with the vortex shedding. For the intermittent branch, the vortex loop
formation appeared to be chaotic, as was the sphere response.

6. Conclusions

The VIV of a sphere restricted to move in a transverse direction (y direction)
was studied numerically at Re = 300 and 800 over the reduced velocity ranges
U∗ ∈ [3.5–100] and [3–50] respectively for a sphere of mass ratio m∗ = 2.865.
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FIGURE 28. Instantaneous wake structures characteristic of the intermittent branch
(depicted at U∗= 30) and at Re= 800 for a sphere starting at its lowest point and moving
upwards over four consecutive steps.

It was found that the effect of varying Reynolds number on FIV was significant,
with the higher-Reynolds-number simulations showing more similarities with typical
higher-Reynolds-number experimental responses.

At Re = 300, highly periodic and large-amplitude sphere vibration was observed
within the reduced velocity range U∗ ∈ [5.5–10]. The sphere response amplitude curve,
A∗–U∗, was approximately bell-shaped with a maximum oscillation amplitude of 0.4D.
Over this range, the sphere oscillated at the natural frequency of the system, which
also corresponded to the vortex shedding frequency, indicative of VIV. This large-
amplitude VIV response was named branch A. This branch showed some similarity
to the mode I state observed by Govardhan & Williamson (2005), at least in terms of
the jump in vortex phase over the initial part of the branch. The response curve was
also similar to that observed by Behara et al. (2011) in their numerical investigation of
3-DOF sphere VIV at the same Reynolds number and similar mass ratio (m∗=3.8197)
in the reduced velocity range U∗ ∈ [4–9]. Indeed, the effect of mass ratio on VIV
response amplitude was found to be negligible (less than 2 %) for the range 1.2 6
m∗6 10. On increasing the Reynolds number to 800, a similar resonant response was
observed within a wider reduced velocity range, U∗ ∈ [4.5–13], but with an increased
maximum amplitude of ∼0.6D. Compared with the case of Re = 300, the sphere
response amplitude was substantially higher and the synchronization regime was wider.
Towards maximal response, the total phase also increased, consistent with the switch
to mode II observed in experiments. However, no detectable jump in the frequency
response was observed across the branch, as observed in low-mass-ratio experiments,
where there is a distinct change in the frequency response at the transition.

At both Re=300 and 800, within branch A, a lift coefficient with a large fluctuation
amplitude was observed in the direction of sphere motion. The fluctuating lift and
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drag coefficients both decreased with increasing reduced velocity. The magnitude
of the mean drag coefficient also displayed the same trend as the fluctuating drag
coefficient. Two streets of hairpin-type vortex loops were shed behind the sphere as
it oscillated, with tails attached to each loop oriented in the streamline direction. This
wake structure strongly resembled that observed by Govardhan & Williamson (2005)
for mode I and II vibrations, as well as the hairpin-type wake observed by Behara
et al. (2011).

As the reduced velocity was increased beyond the branch A regime, the sphere
response was highly dependent on the Reynolds number. For Re = 300, over the
reduced velocity ranges U∗ ∈ [13–16] and [26–100], the sphere vibrated at only
a small amplitude (one order of magnitude less than seen in branch A). These
states were named branches B and C respectively. In branch B, the sphere vibrated
periodically at the system frequency. However, its time-mean position moved away
from its initial position as a result of the non-zero mean lift force in the y direction
due to wake asymmetry. The alignment of the total lift was found to vary from the y
direction by ∼50◦ as the sphere vibration changed from branch A to branch B. This
was matched by a change in the orientation of the vortical structures in the wake.
The branch B wake resembled that of a rigidly mounted sphere with interconnected
vortex loops. Based on these observations, branch B appears to be different from
mode II observed in experimental studies, although there do seem to be similarities
to the mode II oscillation.

For branch C, the sphere response was also periodic. However, besides the dominant
frequency, the response showed an overlaid long-period oscillation. The dominant
sphere vibration frequency was synchronized with the vortex shedding frequency.
However, it was not close to the natural frequency of the system, as it was for
branches A and B, but instead close to half of the vortex shedding frequency for a
stationary sphere. The sphere oscillated about a mean position shifted from its branch
A position. The shift increased as the reduced velocity was increased, reaching a
value of 5D at U∗ = 100. Physically, this shift can be associated with the reduction
of spring stiffness as the reduced velocity is increased. A hairpin-type wake was
observed for branch C as well. However, the vortex loops were more stretched in
the streamwise direction due to the low frequency of shedding. Moreover, the vortex
loops were one-sided.

At Re=800, the sphere was found to vibrate intermittently over the reduced velocity
range U∗ ∈ [14–50] immediately after branch A. This vibration state was named the
intermittent branch. Even though the sphere response was aperiodic, interestingly,
its main vibration frequency component was close to the natural frequency of the
system. However, it was not locked in with the vortex shedding frequency, indicating
a non-VIV response. The measured r.m.s. sphere response amplitudes were scattered,
but with a linear increasing trend over this reduced velocity range. This sphere
response resembles the aperiodic mode IV vibration discovered by Jauvtis et al.
(2001) at higher reduced velocities for a heavy sphere (U∗> 100 and m∗= 80). There
was no sign of mode III occurring prior to the onset of the mode IV vibrations
found in previous experimental studies. This may be an effect of the zero-damping
ratio, possibly coupled with the lower mass ratio/Reynolds number. In the intermittent
branch regime, the time-mean drag coefficient was flat at the pre-oscillatory value
while the time-mean lift coefficient was almost zero. A small fluctuation was observed
in the lift coefficients for the y and z directions and for the drag coefficient. In the
wake, multiple vortices were shed during each sphere oscillation cycle. Moreover, the
vortex shedding was irregular in strength and frequency, as for a stationary sphere
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at Re = 800. Therefore, the generation of this aperiodic vibration appeared to be
a random process made possible by the large difference between the system and
shedding frequencies.

With these observations, we can conclude that the characteristics of FIV of a sphere
are highly dependent on the Reynolds number, particularly at high reduced velocities.
At the higher Reynolds number studied of Re = 800, the initial oscillatory response
branch bore a much stronger similarity to the response observed in the experimental
studies of Sareen et al. (2018) for a low-mass-damped 1-DOF elastically mounted
sphere, but at Reynolds numbers more than an order of magnitude greater. The non-
occurrence of mode III oscillations is puzzling, but the zero-system damping may
contribute to this. It would be interesting to see how increased damping and mass
ratio affect the response in the corresponding reduced velocity range.
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I’ve learned that people will forget
what you said, people will forget
what you did, but people will never
forget how you made them feel.

Maya Angelou

5. Flow-induced vibration of a rotating
sphere

The rotational motion of a bluff body has a significant impact on the forces applied on
it and the wake behind the body, as detailed in § 2.2. In particular, when a solid body
is under a transverse rotation, it experiences a lift force (Magnus force) as the wake
behind it is deflected to the advancing side due to the body rotation. Although, the
Magnus effect was an interesting research topic for centuries, the nature of the vortex-
induced vibration of a rotating body is less understood. Only a number of studies
have been focused on VIV of a rotating body, and the recent experimental study of
Sareen et al. (2018a) is the only investigation conducted based on a spherical body.
Therefore, to enhance the understanding of the correlation between the Magnus effect
caused by the sphere rotation and the vortex-induced vibration, a set of simulations was
conducted at Re = 300 with a sphere of mass ratio m∗ = 2.865 over the rotation rates
0 ≤ α ≤ 2.5. The reduced velocity range 3.5 ≤ U∗ ≤ 11 was chosen for the study as the
sphere showed a periodic VIV response within this range for the zero-rotation case, as
described in chapter 4. The content of the chapter is the following article published in
the Journal of Fluid Mechanics that reproduced with the permission

Rajamuni, M. M., Thompson, M.C. & Hourigan, K. 2018 Vortex-induced
vibration of a transversely rotating sphere. Journal of Fluid Mechanics 847 , 786–820.

We found that there is a significant effect of sphere rotation on the vortex-induced
vibration. Although the sphere showed synchronized vibrations under a forced rota-
tion, the time-mean position of the sphere was shifted away from the initial position;
this was more prominent with increasing U∗ as well as with increasing α. The sphere
response amplitude was found to decrease globally with increasing rotation rate. In
addition, the range of reduced velocities at which the sphere showed synchronized vi-
bration narrowed with increasing α. Importantly, the vortex-induced vibrations were
completely suppressed for α > 1.3 due to the suppression of vortex shedding, as a result
of symmetry breaking of the wake behind the sphere introduced by the Magnus effect.
The response amplitude was found to increase with the increasing Reynolds number,
indicating that VIV can persist even at higher rotation rates at higher Reynolds number
flows, as observed by Sareen et al. (2018a).
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The effects of transverse rotation on the vortex-induced vibration (VIV) of a sphere
in a uniform flow are investigated numerically. The one degree-of-freedom sphere
motion is constrained to the cross-stream direction, with the rotation axis orthogonal
to flow and vibration directions. For the current simulations, the Reynolds number
of the flow, Re = UD/ν, and the mass ratio of the sphere, m∗ = ρs/ρf , were fixed
at 300 and 2.865, respectively, while the reduced velocity of the flow was varied
over the range 3.5 6 U∗ (≡U/( fnD)) 6 11, where, U is the upstream velocity of
the flow, D is the sphere diameter, ν is the fluid viscosity, fn is the system natural
frequency and ρs and ρf are solid and fluid densities, respectively. The effect of
sphere rotation on VIV was studied over a wide range of non-dimensional rotation
rates: 0 6 α (≡ ωD/(2U)) 6 2.5, with ω the angular velocity. The flow satisfied
the incompressible Navier–Stokes equations while the coupled sphere motion was
modelled by a spring–mass–damper system, under zero damping. For zero rotation,
the sphere oscillated symmetrically through its initial position with a maximum
amplitude of approximately 0.4 diameters. Under forced rotation, it oscillated about
a new time-mean position. Rotation also resulted in a decreased oscillation amplitude
and a narrowed synchronisation range. VIV was suppressed completely for α > 1.3.
Within the U∗ synchronisation range for each rotation rate, the drag force coefficient
increased while the lift force coefficient decreased from their respective pre-oscillatory
values. The increment of the drag force coefficient and the decrement of the lift force
coefficient reduced with increasing reduced velocity as well as with increasing rotation
rate. In terms of wake dynamics, in the synchronisation range at zero rotation, two
equal-strength trails of interlaced hairpin-type vortex loops were formed behind
the sphere. Under rotation, the streamwise vorticity trail on the advancing side of
the sphere became stronger than the trail in the retreating side, consistent with
wake deflection due to the Magnus effect. This symmetry breaking appears to be
associated with the reduction in the observed amplitude response and the narrowing
of the synchronisation range. In terms of variation with Reynolds number, the sphere
oscillation amplitude was found to increase over the range Re∈ [300, 1200] at U∗= 6
for each of α= 0.15, 0.75 and 1.5. The VIV response depends strongly on Reynolds
number, with predictions indicating that VIV will persist for higher rotation rates at
higher Reynolds numbers.

Key words: aerodynamics, flow–structure interactions
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1. Introduction
A vast amount of research has been dedicated to the understanding of fluid–structure

interaction (FSI) because of its practical significance in many fields. For example,
fluid flow can induce structural vibration as a result of the formation of alternately
shedding vortices into the wake, which is known as flow-induced vibration. If the
vibration triggers resonance, then the structure may suffer fatigue or even catastrophic
failure. Vortex-induced vibration or VIV is a periodic flow-induced vibration state.
VIV can be identified with vibrations that occur through the synchronisation of
the structural response with the wake unsteadiness (i.e. vortex shedding) when the
frequency is close to the system’s natural frequency. The occurrence of VIV can
be found for structures such as bridges, chimney stacks, cables, air planes, ground
vehicles, submarines and marine vessels, when there is a relative motion between
the fluid and the solid structure. Therefore, it is important to study the nature of
vortex-induced vibration and its mechanisms as a means for its control.

The fundamentals of VIV have been studied substantially through experimental and
numerical research studies focusing on basic geometries, many of which are discussed
in the comprehensive reviews of Bearman (1984), Parkinson (1989), Sarpkaya (2004),
Williamson & Govardhan (2004, 2008) and Wu, Ge & Hong (2012). Most of
these studies were based on cylindrical structures due to their intrinsic engineering
importance and due to the simplicity of setting up such models, both experimentally
and computationally. For VIV of a cylinder, three distinct branches (initial, upper
and lower) have been observed in the vibration amplitude response curve A∗(U∗),
where A∗ is the non-dimensional vibration amplitude and U∗ is the reduced velocity.
Govardhan & Williamson (2000) revealed that the first transition involved a jump
in the ‘vortex phase’, related to the changing dynamics of vortex forcing in the
transition between 2S and 2P shedding wake modes; the second transition involved a
jump in the ‘total phase’.

Compared to VIV of a cylinder, fewer studies have been devoted to developing
an understanding of VIV of a sphere, despite the fact that there is an abundance of
applications involving spherical bodies. For example, tethered bodies such as buoys,
underwater mines, tethered balloons and towed objects behind vessels. A series of
experimental studies conducted by Govardhan & Williamson (1997), Williamson
& Govardhan (1997), Jauvtis, Govardhan & Williamson (2001) and Govardhan &
Williamson (2005) using tethered spheres subject to one or two degrees of freedom
(DOF) motion revealed that a sphere also showed a VIV behaviour with a large
oscillation amplitude, similar to that of a cylinder. Furthermore, they observed four
different modes of vibrations (named modes I–IV) with varying characteristics in
terms of sphere oscillation amplitude and phase, and wake structures. The first
two modes of oscillation appeared within the reduced-velocity range 5 . U∗ . 10.
For these two modes, the body oscillation frequency, f , was close to the natural
vortex-shedding frequency, fvor, and the system’s natural frequency, fn; this indeed
suggested that these two modes of vibration were vortex-induced vibration. A similar
observation was reported over the reduced velocity range, 3.U∗. 14 by Hout, Katz
& Greenblatt (2013) and Krakovich, Eshbal & Hout (2013) in their investigations of
VIV of a tethered sphere. The sphere response amplitude smoothly transitioned from
mode I to mode II, in contrast to the VIV response of a cylinder, which displays
discontinuous branches in the amplitude response curve. Govardhan & Williamson
(2005) identified that there was a smooth ∼90◦ phase difference in vortex phase (the
phase between the vortex force and the sphere displacement) between mode I and
mode II. In these two modes, they found that two-sided hairpin-type vortex loops
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were shedding into the wake as the sphere vibrated. Moreover, there was a change
in timing of vortex shedding relative to the sphere motion once it passed from mode
I to mode II, which was consistent with their observation of the change in vortex
phase.

Following the mode II vibration as the reduced velocity was increased, Jauvtis
et al. (2001) observed mode III vibration began at a reduced velocity U∗ ∼ 20–40
with heavy spheres of m∗ = 80 and 940. In contrast to modes I and II, the principal
vortex-shedding frequency for mode III vibration was three to eight times higher than
the sphere vibration frequency (Jauvtis et al. 2001). Therefore, mode III vibration was
difficult to explain by classical lock-in theories. However, Govardhan & Williamson
(2005) argued that if the body were to be perturbed, it could generate a self-sustaining
vortex force that could be sustained over multiple shedding cycles, leading to body
vibrations of large amplitudes. They categorised mode III as movement-induced
excitation (Naudascher & Rockwell 2012). In this mode of vibration, Govardhan &
Williamson (2005) observed that there is an underlying streamwise vortex structure,
which is synchronised with the sphere vibration frequency, enabling highly periodic
vibration. Consistently, they observed long vortex-loop structures. Subsequently,
Jauvtis et al. (2001) observed mode IV vibration, at very high reduced velocities
(U∗ > 100). In this mode, the sphere oscillation frequency was not periodic as it was
in the first three modes, but interestingly, the vibration frequency was very close to
the natural frequency of the system.

Apart from those experimental studies, a few numerical studies have also been
reported on VIV of a sphere. Pregnalato (2003) investigated the VIV of a tethered
sphere at the Reynolds number 500 with two different mass ratios (m∗ = 0.8, and
0.082). In that numerical study, he observed modes II–IV vibrations that had been
observed in the experimental studies of Jauvtis et al. (2001). In the higher mass-ratio
case, mode II appeared in the reduced-velocity range, U∗ ≈ 5–10, while modes III
and IV appeared for U∗ > 10. However, for the lower mass-ratio case, mode IV
vibration did not appear in the reduced-velocity range studied (U∗= 0–20). Therefore,
he suspected that there exists a critical mass for mode IV VIV of a sphere to occur.
More recently, Lee, Thompson & Hourigan (2008) and Lee, Hourigan & Thompson
(2013) investigated the VIV of a neutrally buoyant (m∗ = 1) tethered sphere, which
was constrained to move on a spherical surface. This was a combined numerical and
experimental study that covered the Reynolds number range Re = 50–12 000. They
found there to be seven different broad and relatively distinct sphere oscillation and
wake states.

Behara, Borazjani & Sotiropoulos (2011) investigated VIV of a sphere allowing 3
DOF movement at a Reynolds number of 300 and reduced mass of 2, for the reduced-
velocity range 4 6 U∗ 6 9. In their study, the sphere showed two different amplitude
responses, corresponding to two different wake states at the same reduced velocity.
In one case, the sphere moved in a circular orbit with a spiral-type wake shedding
behind the sphere. In the other case, the sphere vibrated in a plane with hairpin-
type vortex loops shedding behind the sphere. They observed two different amplitude
response curves corresponding to each case. The sphere oscillation amplitude was
smaller when it moved in a circular orbit compared to the planar state. In addition,
they observed hysteresis in the response when the sphere was moving in a circular
orbit at the beginning of the synchronisation regime. This study was extended by
Behara & Sotiropoulos (2016) by expanding the reduced-velocity range to 06U∗613,
and by varying the Reynolds number of the flow from Re= 300 to 1000 for one fixed
reduced-velocity case (U∗= 9). It was found that the sphere trajectories were strongly
dependent on the Reynolds number.
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The effect of the rotational motion on bluff bodies has been investigated for
centuries. Early research studies carried out by Robins in the eighteenth century
(Robins 1972) and Magnus in the nineteenth century (Magnus 1853) revealed that
a bluff body experiences a lift force (‘Magnus force’) when it propagates with a
transverse rotation. Later in the twentieth century, researchers investigated the effect
of the rotation rate, α = ωD/2U, of a sphere on the drag and lift forces (Fd and
Fl), where ω is the angular speed of the sphere, D is the diameter of the sphere
and U is the free-stream velocity of the flow. Rubinow & Keller (1961) derived an
expression for the lift force acting on a transversely rotating sphere for the Stokes
regime (Re 6 1 and α 6 0.01). They found that the drag force was independent of
the rotation rate and that the lift coefficient, Cl = Fl/(0.5ρf Uπ(D/2)2), could be
expressed as 2α. Kurose & Komori (1999) considered the flow regimes 16 Re6 500
and 06 α6 0.25, and found that both drag and lift forces increased with the rotation
rate.

In more recent studies, the effects of transverse rotation on the forces and wake
structures behind a sphere were investigated by Giacobello, Ooi & Balachandar
(2009) for rotation rates, α 6 1, by Kim (2009) for α 6 1.2 and by Dobson, Ooi &
Poon (2014) for 1.25 6 α 6 3. All three studies were conducted at Re = 100, 250
and 300. At Re = 100, they found that the axisymmetric flow present for no sphere
rotation became planar symmetric with a double-threaded wake in the presence of
rotation up to α = 3. At Re= 250 and 300, the flow underwent a series of different
transitions between ‘steadiness’ and ‘unsteadiness’ as the rotation rate was increased.
Kim (2009) claimed that the unsteady vortex shedding observed at higher rotation
rates (at Re = 250 and α = 1.2, and at Re = 300 and α = 1–1.2) was due to the
shear-layer instability of the flow. Dobson et al. (2014) observed that when α > 2,
the flow entered a regime different to the shear-layer instability regime; this was
named the separatrix regime. Their studies also revealed that the drag force increased
up to α ≈ 2 and then decreased, while the lift coefficient increased up to α ≈ 1.25
and then became constant. Poon et al. (2014) studied the unsteadiness of the flow at
Re= 500 and 1000 for 0 6 α 6 1.2 and revealed a new flow regime, the shear-layer
stable foci regime, at higher values of α.

A recent experimental study on the flow-induced vibration of an elastically mounted
rotating cylinder by Seyed-Aghazadeh & Modarres-Sadeghi (2015) revealed that the
synchronisation regime became narrower at higher rotation rates, and oscillations
ceased beyond α = 2.4. They varied the rotation rate from 0 to 2.6 in the Reynolds
number range 350 6 Re 6 1000. It was observed that cylinder rotation does not
significantly influence the oscillation amplitude. As the rotation rate increased at
a constant reduced velocity, the vortex-shedding pattern changed from 2S to 2P.
Bourguet & Jacono (2014) numerically investigated flow-induced vibration of a
transversely rotating cylinder at Re = 100. They observed that the peak oscillation
amplitude increased with the reduced velocity up to α=3.75. Moreover, the maximum
amplitude response of a rotating cylinder was three times higher than the non-rotating
case. They also observed that the reduced-velocity range over which the cylinder
showed synchronised vibration (synchronisation regime) broadened up to α= 3.5, and
then narrowed. Vibration was completely suppressed for α = 4. They observed two
new vortex-shedding patterns at high rotation rates; a T + S pattern (a triplet with
a single vortex per cycle) and the U pattern (transverse undulation of the spanwise
vorticity layers without vortex detachment).

Despite the fact that rotation greatly influences the oscillatory motion of a sphere,
to the authors’ knowledge, no experimental or numerical studies have been yet
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reported for the flow-induced vibration of a rotating sphere. Therefore, in the present
work, the effects of transverse rotation on the vortex-induced vibration of a sphere
are investigated by examining the sphere displacement, forces exerted on the sphere
and wake structures behind the sphere at Re= 300, for rotation rate 0 6 α 6 2.5 and
reduced-velocity range 3.5 6 U∗ 6 11. In addition to that, the effects of Reynolds
number on VIV of a rotating sphere are investigated over the Reynolds number
range, 300 6 Re 6 1200 at the rotation rates α = 0.15, 0.75 and 1.5 and U∗ = 6. The
structure of this paper is as follows: the next section describes the numerical methods
used; the following section presents validation studies performed; the results section
presents the sphere response to VIV, reports on the forces exerted on the sphere and
documents the wake structures; the effects of Reynolds number on VIV of a rotating
sphere are presented in the next section; followed by concluding remarks.

2. Numerical methods
In this study, the widely used open-source computational fluid dynamics (CFD)

package OpenFOAM was utilised for the numerical simulations. OpenFOAM enables
the solution of a variety of flows including compressible, incompressible, turbulent
and multiphase flows. It also facilitates the solution of FSI problems through dynamic
grid techniques (Jasak & Tukovic 2010). However, those dynamic grid techniques are
highly time consuming due to the deformation of the grid at each time step, which
adds a considerable overhead. Therefore, a non-deformable grid was used in this study
to improve the efficiency of the solution process. Blackburn & Henderson (1996) and
Leontini et al. (2006a) also used a non-deformable grid by modelling fluid flow in a
body-fixed frame. This approach is far more efficient than a dynamic grid technique.
In this section, first, the FSI system and FSI solver are discussed in detail in the
following two subsections; second, the computational details are provided.

2.1. Governing equations
The Newtonian fluid is assumed incompressible and viscous, and modelled in a body-
fixed reference frame that is attached to the centre of the sphere. This is a non-inertial
reference frame, since the sphere is allowed to move according to the fluid forces
acting on it. Therefore, the momentum equation should be corrected to include a
term accounting for the acceleration of the frame, which is just the acceleration of
the sphere as represented by the last term in (2.1) below. The sphere is assumed to
behave as a spring–mass–damper system. Thus, the fluid–solid coupled system can be
described by the Navier–Stokes equations, given in (2.1) and (2.2), with the dynamic
motion of the sphere described by (2.3):

∂u
∂t
=−(u · ∇)u−

1
ρ
∇p+∇ · ν∇u− ÿs, (2.1)

∇ · u= 0, (2.2)
mÿs + cẏs + kys = f l, (2.3)

where u= u (x, y, z, t) is the velocity vector field, p is the scalar pressure field, ρ is
the fluid density, ν is the kinematic viscosity, ys, ẏs and ÿs are the sphere displacement,
velocity and acceleration vectors, respectively, m is the mass of the sphere, c is the
damping constant, k is the structural spring constant and f l is the flow-induced vector
force acting on the sphere due to pressure and viscous shear forces.

119



Vortex-induced vibration of a rotating sphere 791

2.2. The fluid–structure solver
Within the OpenFOAM framework, a new solver (named ‘vivicoFoam’) was developed
to solve the fluid–structure coupled system defined by (2.1)–(2.3) for laminar flows.
The details of this solver are provided in Rajamuni, Thompson & Hourigan (2018),
so only brief details are provided here.

The solver is based on the pressure implicit splitting of operators (PISO) algorithm
for solving the unsteady incompressible Navier–Stokes equations (Issa 1986). Within
this framework, the coupled fluid–structure system is treated using a third-order
predictor–corrector method as described in Rajamuni et al. (2018). The flow and
structure equations are thus solved in a strongly coupled manner, with convergence
determined when the magnitudes of the fluid force and solid acceleration converge to
within a prescribed error bound, typically ε = 0.001. Tests were performed to ensure
that the chosen bound was sufficient to provide converged flow solutions. Typically,
the FSI solver required 3 corrector steps. In most cases the number of corrector steps
was less than 10 with the upper limit set to 15.

It should be noted that this FSI solver is overall second order in temporal accuracy,
despite the fact that the above mentioned FSI algorithm is third-order time accurate.
This is because the PISO algorithm itself is of second-order accuracy. It is recalled
that the fluid domain was modelled in a moving frame of reference. The motion of
this reference frame was taken into the account by adjusting the velocity boundary
conditions at the outer domain (except the outlet boundary). In this study, all the
outer boundaries except the outlet are treated as defined velocity boundaries. Once the
predictor–corrector iterative process is completed, the velocity at these inlet boundaries
is updated according to the sphere velocity, before proceeding to the next time step.

2.3. Computational details
A uniform flow past a sphere forced to rotate and mounted with elastic supports in
the transverse direction was investigated using the FSI solver. As shown in figure 1,
the flow is in the x direction, and the sphere is restricted to translate only in the
y direction while it rotates about the −z direction with an angular velocity of ω.
A cube of 100D was chosen for the fluid domain with the sphere at its centre. In
this study, the sphere is assumed to translate as a spring–mass system without any
damping to obtain the highest vibration amplitude. Moreover, in the FSI solver, ys,
ẏs, ÿs and f l are treated as vectors with zero x and z components, since the sphere
translation is restricted to the y direction only. At the inlet boundaries, a Dirichlet
boundary condition was prescribed for the velocity, while a zero-gradient Neumann
boundary condition was prescribed for the pressure, as shown in figure 1. At the
sphere surface, no-slip and no-penetration boundary conditions were applied using a
rotating wall velocity. A Neumann boundary condition was prescribed for the pressure
at the sphere surface. However, the normal pressure gradient at the sphere surface is
in general non-zero due to the rotation of the sphere. Therefore, it was calculated by
taking the inner product of momentum equation (2.1) and the outward unit normal
vector, η, as follows:

∇p · η= (−(u · ∇)u+∇ · ν∇u− ÿs) · η. (2.4)

At the outlet boundary, the pressure was set to zero while the velocity was prescribed
as zero gradient in the normal direction.

Figure 2 displays the unstructured grid used for the fluid domain. To achieve high
concentration near the sphere, a cube of 5D was placed around the sphere. This cube

120



792 M. M. Rajamuni, M. C. Thompson and K. Hourigan

x

y

k

k

z

100D

100D

100D

wall velocity,
origin – (0 0 0)
axis – (0 0 –1)

angular
velocity –    ,

U – freestream velocity
u – fluid velocity vector
p – fluid pressure

D – sphere diameter
– outward unit normal vector

– sphere velocity vector
– sphere angular velocity

k – spring constant

FIGURE 1. (Colour online) Schematic of the computational domain and
boundary conditions.
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FIGURE 2. (Colour online) The unstructured-grid computational domain: (a) isometric
view; (b) the cubic block placed around the sphere, which was decomposed into six square
frustums; (c) grid near the sphere surface at xy plane.

was decomposed into six square frustum-shaped blocks, as shown in figure 2(b). The
grid was compressed near the sphere surface by selecting an exponentially distributed
cell thickness in the radial direction in each square frustum (see figure 2c). A large
number of grid points was assigned in the downstream direction to resolve the wake
structures. Four finer grids were generated to assess the grid independence analysis
(refer to the next section for more details). To optimise the grid generation process,
initially, the number of cells on the surface of the sphere, N, was kept constant
at 7350. This grid (grid 1) comprised '0.79 million cells with a minimum cell
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thickness in the radial direction from the sphere surface, δl, of 0.011D. The second
grid was generated by decreasing δl to 0.004D. This yielded '1.25 million cells,
with approximately 10–16 cells within the boundary layer. This grid is sufficient to
resolve the flow in the near wake. However, two more grids were generated to ensure
that the solution was grid independent. In the third grid, δl was further decreased
to 0.002D by choosing the same number of cells as grid 2. Finally, the fourth grid
was generated by increasing N to 18 150 by choosing the same δl as grid 2 to
observe the effect of cell thickness in the tangential direction on the solution. The
non-dimensional time step, δτ = δtU/D, used with each grid for all the analyses
was 0.005.

3. Numerical sensitivity and validation studies
This section presents two validation studies. The first study aims to display

the ability of capturing important physics of the flow past a rigidly mounted and
transversely rotating sphere at Reynolds number 300. The second study demonstrates
the validation of the newly built FSI solver for vortex-induced vibration studies.
Finally, grid independence analyses performed for vortex-induced vibration of a
sphere are presented.

3.1. Transversely rotating rigid sphere
Flow past a rigidly mounted and transversely rotating (in the −z direction) sphere was
investigated at Re= 300 for the rotation rates 0 6 α6 3. The computed values of the
time-mean drag coefficient, Cd, and the time-mean lift coefficient, Cl, are compared
with other studies in figures 3(a) and 3(b), respectively. The present results agree well
with the results in the literature (Giacobello et al. 2009; Kim 2009; Poon et al. 2010;
Dobson et al. 2014). The time-mean lift coefficient increased with increasing α but
levelled off at higher rotation rates. The drag coefficient increased with α up to α ≈
1.75 and then decreased.

The flow underwent a series of transitions between ‘steadiness’ and ‘unsteadiness’
as the rotation rate increased from 0, as shown in table 1. From α = 0 to 0.3, the
flow was unsteady with vortex shedding. Moreover, the shedding frequency increased
as the rotation rate increased. For α = 0.4, the flow became steady with a double-
threaded wake structure. As α increased further, the flow remained steady until α= 2
with a double-threaded wake, except for α = 1.25, where the flow was unstable due
to the shear-layer instability, as discussed by Kim (2009). For α ∈ [2.25, 3], the flow
became unstable again, but with an asymmetric wake structure having no symmetry
at all. Figures 4 and 5 show comparisons of wake structures observed in the present
study with Giacobello et al. (2009) and Dobson et al. (2014) at five rotation rates.
The wake structures observed at low rotation rates (α ∈ [0, 0.6]) match well with other
research studies; for example, for α = 0, 0.3 and 0.5. At higher rotation rates, for
example, for α=1 and 1.5, the wake structures observed at the initial stage are similar
to those observed by Giacobello et al. (2009) and Dobson et al. (2014). However, for
very long simulation times, the initially unsteady flow became steady with a double-
threaded wake structure.

3.2. Validation: VIV of a cylinder
A series of simulations was conducted with a rigidly mounted cylinder (non-rotating)
to validate the numerical solver developed for the FSI problems by selecting the
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FIGURE 3. (Colour online) Comparison with other numerical studies of computed
time-mean drag coefficient, Cd, and time-mean lift coefficient, Cl, for flow past a rigidly
mounted and transversely rotating sphere at Re= 300 for 0 6 α 6 3.

α Nature of the flow Wake structure

[0, 0.3] Unsteady Vortex shedding
[0.4, 1] Steady Double-threaded wake
1.25 Unsteady Shear-layer instability
[1.5, 2] Steady Double-threaded wake
[2.25, 3] Unsteady Asymmetric

TABLE 1. Comparison of the nature of the flow with the rotation rate of flow past a
transversely rotating sphere.

study by Leontini, Thompson & Hourigan (2006b) as the base case. The mass
ratio, damping constant and the Reynolds number of the flow were fixed at m∗ = 10,
ζ = 0.01 and Re= 200, respectively, while varying the reduced velocity from U∗= 3.5
to 7.1. The oscillation amplitude of the cylinder, A∗, the fluctuation amplitude
of the lift coefficient, C′l, the frequency ratio of cylinder vibration to the natural
frequency of the system, f ∗ = f /fn, and the average phase angle between lift force
and cylinder vibration, φ, were calculated and compared with Leontini et al. (2006b).
The percentage difference calculated for A∗, C′l, f ∗, and φ are −8 %, −8 %, 1.8 %
and 3.6 %, respectively, compared to the results of Leontini et al. This study provides
validation for the new solver.

3.3. Resolution studies
All FSI simulations reported in the next section have been carried out on grid 2. To
verify that this grid is fine enough to resolve the flow for FSI simulations, two grid
sensitivity analyses were performed; one analysis for the vibrating sphere cases for
the parameters, α = 0 and U∗ = 7; a second analysis for the higher rotation rates
for the parameters α = 1.5 and U∗ = 6. Both analyses were performed at Re = 300
and m∗ = 2.865 (or mr = 1.5). For the first analysis, U∗ = 7 was chosen because
the sphere showed a maximum oscillation around this value. Table 2 compares the
effect of grid refinement for both analyses. In the first analysis (α = 0 and U∗ = 7),
the sphere underwent synchronised vibrations. Therefore, the results were tabulated
for the sphere oscillation amplitude, A∗, force coefficients (time-mean drag coefficient,
Cd, root-mean-square (r.m.s.) values of the fluctuation components of drag and lift
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at

at

FIGURE 4. Wake structures of a rigidly mounted and transversely rotating sphere for
α = 0, 0.3, 0.5 and 1. Light grey structures are the results of Giacobello et al. (2009);
dark structures are the results of the present study identified using the method of Jeong
& Hussain (1995) at λ2 =−5× 10−4. For α= 1, the wake structure varied with the time.
Initially, the flow was unsteady as shown at τ = 40, but for longer simulation time, the
flow became stable with a double-threaded wake structure, as shown at τ = 400, where
τ = tU/D is the non-dimensional time.

coefficients, Cd,rms and Cl,rms), and frequency ratio, f ∗ = f /fn. In the second analysis
(α = 1.5 and U∗ = 6), the flow was steady and the sphere moved to a new position
and remained with no vibration. Therefore, the time-mean sphere displacement, Y/D,
time-mean drag and lift coefficients Cd, and Cl were calculated. It is noted that there is
less than 1 % variation in the results between grid 1 and grid 2 for both analyses. The
results obtained for grids 2–4 agree well with each other. Therefore, for the Reynolds
number and rotation rate range of interest, decreasing δl or increasing N further has
a negligible effect on the results. Thus, we can conclude that grid 2 is sufficient
for all VIV simulations at Re = 300, and therefore, this grid was used to obtain all
subsequently presented results. As pointed out above, the non-dimensional time step
used in these resolution studies and all the other simulations is δτ = 0.005. It was
verified that reducing the time step by a factor of two, resulted in a less than 1 %
change to the key convergence measures discussed above.

4. Effects of transverse rotation on VIV of a sphere

This section presents and discusses the results obtained for flow past an elastically
mounted sphere (allowed to translate only in the y direction) forced to rotate about the
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at

at

FIGURE 5. (Colour online) Comparison of wake structures of a rigidly mounted and
transversely rotating sphere for α = 1.5 with Dobson et al. (2014) (the dark structure).
The light structures are the results of the present study.

(α,U∗)= (0, 7) (α,U∗)= (1.5, 6)

Grid δl N A∗ Cd Cd,rms Cl,rms f /fn Y/D Cd Cl

1 0.011D 7 350 0.38 0.81 0.05 0.11 0.93 0.15 1.04 0.61
2 0.004D 7 350 0.37 0.80 0.05 0.11 0.93 0.14 1.04 0.60
3 0.002D 7 350 0.37 0.80 0.05 0.10 0.93 0.14 1.04 0.60
4 0.002D 18 150 0.37 0.80 0.05 0.10 0.93 0.14 1.04 0.60

TABLE 2. The sensitivity of the spatial resolution of the flow parameters of vortex-induced
vibration of a rotating sphere at (α, U∗)= (0, 7) and (1.5, 6), Re= 300 and m∗ = 2.865
(mr = 1.5). δl is the minimum thickness of the cells (in the radial direction) at the sphere
surface in each grid and N is the number of cells on the sphere surface. The oscillation
amplitude of the sphere, A∗, the time-mean sphere displacement, Y/D, the time-mean drag
and lift coefficients, Cd and Cl, the r.m.s. values of fluctuation component of the drag and
lift coefficients, Cd,rms and Cl,rms, and the ratio of vortex-shedding frequency to the natural
frequency, f /fn, are listed.

−z direction at the Reynolds number Re= 300 and the reduced mass mr= 1.5 (which
is equivalent to the mass ratio m∗=2.865) for rotation rates 06α62.5 and a reduced-
velocity range 3.5 6 U∗ 6 11. Non-rotating VIV studies, especially the many studies
of circular cylinders but also spheres, show that the amplitude response is not a very
strong function of mass ratio, but rather a function of the mass-damping ratio (m∗ζ ),
as discussed in the introduction. The choice of a relatively small mass ratio of m∗ '
2.9 was chosen to ensure a strong VIV response at the Reynolds number made for
the first part of this study. While a significantly larger mass ratio may enable modes
III and IV to be investigated, this would increase the computational cost significantly,
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because a sphere with much higher inertia requires considerably more time to reach
an asymptotic oscillatory state. The chosen mass ratio is slightly lower than used
by Behara et al. (2011) of mr = 2 for their 3-DOF non-rotating sphere VIV studies;
however, comparisons of current results with theirs for the same setup (3-DOF VIV)
and parameters (Re= 300, mr= 2), show a comparable amplitude response curve, and
also confirm the relative insensitivity to mass ratio, as discussed in Rajamuni et al.
(2018).

The non-dimensional rotation rate, α, was prescribed through setting the angular
velocity of the sphere, ω, so that (α = ωD/(2U)). This prescribed the velocity
boundary condition on the sphere surface, while the reduced velocity was prescribed
through setting the spring constant in the solid motion equation by k= 4mπ2/U∗2.

The results are presented in the following three subsections. Initially, the sphere
response is discussed with its time-mean position, oscillation amplitude and the
frequency of oscillation. Then, the forces exerted on the sphere are given in terms
of time-mean values and fluctuation amplitudes. Finally, the behaviour of the flow is
analysed through the wake structures observed behind the sphere.

4.1. Sphere response

Figure 6 shows the variation of time-mean position of the sphere, Y/D, with the
reduced velocity at each rotation rate, where Y = ys · (0 1 0) is the displacement
of the sphere in the y direction. As can be seen, Y increased monotonically with
increasing reduced velocity for each α, except α = 0. This is because of the lower
effective stiffness of springs at higher reduced velocities. At each reduced velocity, the
time-mean position of the sphere, Y , increased with the rotation rate up to α = 1, as
expected from the Magnus force applied on the sphere, and this was more prominent
as the reduced velocity increased. However, as α increased from 1 to 2.5, Y did not
increase further; instead it slightly decreased (see the curves with hollow symbols for
α= 1.5, 2 and 2.5 in figure 6). At a fixed reduced velocity, the variation of Y with α
agrees well with the trend of the lift coefficient calculated for the transversely rotating
and rigidly mounted sphere (see figure 3b). The time-mean position of the sphere
can be estimated as Y/D = 3ClU∗2/(16m∗π2) from the time-mean lift coefficient,
Cl, calculated for the transversely rotating and rigidly mounted sphere at each α by
considering the time-mean form of the solid motion equation (2.3). The dotted lines
in figure 6 represent the estimated Y/D at each α. However, the actual values of
Y/D slightly differ from the estimated values for some ranges of U∗ at some rotation
rates, especially for α = 0. The reason for this deviation is explained later in § 4.2.

Figure 7 displays the effects of transverse rotation on the characteristics of the
vortex-induced vibration of a sphere with the oscillation amplitude, A∗ =

√
2Yrms/D,

and the frequency ratio, f ∗ = f /fn, over the reduced-velocity range 3.5 6 U∗ 6 11 for
α = 0–2.5, where f is the frequency of the sphere vibration and fn is the mechanical
natural frequency of the system in the medium without the added-mass contribution.
For the non-rotating case (α = 0), the sphere showed a relatively large oscillation
amplitude (A∗'0.4D) from U∗=5.5 to 10 (see the curve with black dots in figure 7a).
In this case, at these reduced velocities, the time-mean position of the sphere deviated
from the estimated values calculated with the lift force of a rigidly mounted sphere,
and remained at its initial position (Y = 0 for α = 0 and U∗ ∈ [5.5, 10], see figure 6).
Thus, those oscillations were symmetric through the initial position of the sphere.
Furthermore, as can been seen from figure 7(b), at those reduced velocities, the
frequencies of the sphere displacement and vortex shedding were synchronised and
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FIGURE 6. (Colour online) Variation of the time-mean position of the sphere, Y/D, with
the reduced velocity, U∗, at each rotation rate: the dotted lines represent the estimated
time-mean position of the sphere according to the time-mean lift force, Cl, calculated for
a rigidly mounted sphere at each rotation rate (Y/D= 3ClU∗2/(16m∗π2)).

close to the natural frequency of the system ( f ∗ ' 1), indicating that these are
vortex-induced vibration responses.

For α = 0, the sphere began to show large amplitude vibrations suddenly as the
reduced velocity increased from 5 to 5.5. A similar observation was reported by
Behara et al. (2011) and Behara & Sotiropoulos (2016) in their studies on the
vortex-induced vibration of a sphere with 3 DOF. The shape of the response curve
for α = 0 strongly resembles the response curves that they observed. In addition, the
response curve for α = 0 shows similarities to modes I and II vibration observed by
experimental studies on tethered spheres by Govardhan & Williamson (1997), Jauvtis
et al. (2001) and Govardhan & Williamson (2005). This will be further discussed in
the force measurements section.

Interestingly, the sphere response was modified greatly when subjected to a forced
rotation. Similar to the non-rotating case, significant vibrations were observed for
the rotating cases up to the rotation rate α = 1. Importantly, the response amplitude
decreased with the increasing rotation rate up to α = 1, and it was suppressed
for α > 1.5, as shown in figure 7(a). Figure 7(b) shows that for all the cases for
which the sphere vibrated significantly, the vibration frequency was locked in to the
vortex-shedding frequency and was close to the system’s natural frequency; this again
confirms that all of these responses are vortex-induced vibration responses.

The sphere response was further investigated in the range, α = [1, 1.5] at the
reduced velocity, U∗ = 6 which is close to the maximum response. As can be seen
from figure 8, the sphere showed synchronised vibrations up to α = 1.3. The sphere
response amplitude decreased rapidly for small α but was nearly flat in the range,
α ∈ [1, 1.3] and VIV was completely suppressed for α > 1.4. The time-mean position
of the sphere, Y/D, shifted away from its initial position with increasing rotation
rate up to α = 1.3, and for α > 1.4 the time-mean position of the sphere returned
back towards the initial position of the sphere for increasing α. The cutoff α for the
occurrence of VIV is likely to depend on the Reynolds number, so this cutoff was
not further refined over a range of U∗.
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FIGURE 7. (Colour online) The sphere response: (a) the variation of the maximum
oscillation amplitude, A∗, with the reduced velocity, U∗, at each rotation rate; and (b) the
frequency ratio f ∗ = f /fn for rotation rates and reduced velocities at which the sphere
showed a vibrational response.

The amplitude responses appear as approximately bell-shaped curves for each α for
α 6 1 (see figure 7a). Similar to the non-rotating case, the synchronised vibrations
began suddenly for α6 0.2. Moreover, the synchronised vibrations ended suddenly for
α= 0.15 and 0.2. In contrast to lower rotation rates, for higher rotation rates (α> 0.3),
the synchronised vibrations appeared and disappeared more gradually at both ends of
the synchronised U∗ range. The synchronisation regime, which is the reduced-velocity
range over which the sphere showed synchronised vibrations, varied with rotation rate.
For α= 0.1, the synchronisation regime widened to U∗= 5–11. However, it generally
narrowed as α increased from 0.1, and yielded a narrow synchronisation regime of
U∗ = 5–6.5 for α = 1. In addition, the synchronisation regime mostly shifted to the
left (to lower reduced velocities) as the rotation rate increased.

Panels 9(a) and 9(b) show the variation of the maximum oscillation amplitude of
the sphere, A∗max, and of the reduced velocity, U∗, at which the maximum oscillation
amplitude was observed with the rotation rate, respectively. As can be seen, the
maximum oscillation amplitude decreased gradually with increasing rotation rate.
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FIGURE 8. Variation of the oscillation amplitude, A∗, and the time-mean position, Y/D,
of the sphere with the rotation rate, α, at the reduced velocity U∗ = 6.
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FIGURE 9. Variations of (a) the maximum oscillation amplitude of the sphere, A∗max, and
(b) the reduced velocity at which the sphere showed a maximum oscillation amplitude
with the rotation rate, α.

The reduced velocity at which the sphere showed a maximum oscillation amplitude
shifted to lower values as α increased from 0 to 0.3. However, it increased and then
decreased, as α increased from 0.3 to 1 (see figure 9b).

The time history of the sphere displacement is shown in figure 10(a) for α = 0.15
and in figure 10(b) for α= 0.5, for five different reduced velocities. At each rotation
rate, the sphere vibrated (approximately) sinusoidally in the asymptotic state when
in the synchronisation regime. Beyond the synchronisation regime at higher reduced
velocities, the sphere initially vibrated significantly, but later, the vibration amplitude
decreased substantially (see the time history at U∗ = 8.5 and 9.5 in figure 10a).
Moreover, in some cases, the sphere response just beyond the synchronisation regime
consisted of two frequencies, as shown in figure 10(a) for α = 0.15 and U∗ = 8.5.
In this case, the dominant frequency is the natural frequency of the system and the
secondary frequency corresponds to the vortex-shedding frequency.
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FIGURE 10. (Colour online) Time history of the sphere response (a) for α = 0.15 and
U∗ = 3.5, 5, 7.5, 8.5 and 9.5; (b) for α = 0.5 and U∗ = 3.5, 5, 6, 7.5 and 10.

For α 6 0.3, small-scale vibrations were observed outside the synchronisation
regimes, as shown in figure 10(a) for α = 0.15. Interestingly, for α = 0.4, 0.5 and
0.75, the vibrations were suppressed outside the synchronisation regime, as shown
in figure 10(b) for α = 0.5. However, for α = 1, outside the synchronisation regime,
the sphere vibrated with a very small amplitude (� 0.001D) and a high frequency
(see figure 7b). In this case, the wake frequency for a non-VIV rotating sphere is
approximately a factor of three higher than at lower rotation rates, because the rapid
rotation leads to a shear-layer shedding mode. The sphere responses were flat without
any oscillations in the steady state for α = 1.5 and 2 for all the reduced velocities
considered. However, for α = 2.5, the sphere oscillated with a small amplitude for
all the reduced velocities. As discussed in § 3.1, when the sphere is rigidly mounted
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FIGURE 11. (Colour online) The variation sphere response amplitude with reduced
velocity at each rotation rate: (a) present results of this numerical study at Re = 300,
(b) results of the experimental study of Sareen et al. (2018) over the Reynolds number
range, Re= 5000–30 000.

and with a forced transverse rotation, the flow was unsteady with vortex shedding
behind the sphere for α 6 0.3; was steady for 0.4 6 α 6 2, and was unsteady with
an irregular wake for α = 2.5. Therefore, our observation of the sphere response
outside the synchronisation regimes for α6 0.75, and the sphere response for α> 1.4
are consistent with the observation of flow past a rigidly mounted and transversely
rotating sphere.

As can be seen from figure 7(b), for the cases where the sphere showed small-
scale vibrations outside the synchronisation regime (α= 0, 0.1, 0.15, 0.2, 0.3 and 1),
the vibration frequency of the sphere linearly increased with the reduced velocity.
Moreover, the frequency increased with increasing rotation rate. This is consistent with
the observation of an increasing vortex-shedding frequency with the rotation rate when
the flow is unsteady for a rigidly mounted sphere (Kim 2009).

Bourguet & Jacono (2014) studied the effects of transverse rotation on flow-induced
vibration of a cylinder at Re = 100 for the rotation rates α ∈ [0, 4] in the
reduced-velocity range 0 6 U∗ 6 32. They observed that when the cylinder was
subjected to a forced rotation, it moved to a new position and showed synchronised
vibration through this new position for a range of reduced velocities, similar to our
observation with a rotating sphere. However, contrary to the decrease in the vibration
amplitude we observed for a sphere, they observed an increase in the vibration
amplitude for a cylinder with increasing rotation rate, which is also seen in much
higher Reynolds number experiments (Wong et al. 2017). Moreover, for a rotating
cylinder, the synchronisation regime expanded for higher reduced velocities up to
α = 3.5, and then narrowed, whereas for a rotating sphere it was wider for α = 0.1
and then mostly narrowed as α increased. Interestingly, synchronised vibrations were
suppressed for higher rotation rates for both the sphere (for α > 1.3) and the cylinder
(for α = 4).

More recently, Sareen et al. (2018) investigated the effect of transverse rotation
on vortex-induced vibration of a sphere experimentally. They varied the rotation rate
over α ∈ [0, 7.5] and the reduced velocity over U∗ ∈ [3, 18], which corresponds to the
Reynolds number range, Re ∈ [5000, 30 000]. Figure 11 compares our observations
of the sphere response amplitude with their observations. Despite the significant
difference in Reynolds number, consistent with our predictions, they observed
a decrease in the maximum sphere response amplitude and a narrowing of the
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FIGURE 12. (Colour online) Variation of the time-mean (a) drag force coefficient, Cd,
and (b) lift force coefficient in the y direction, Cly, with the reduced velocity, U∗, at each
rotation rate.

synchronisation regime as the rotation rate increased. However, vortex-induced
vibration persisted until α= 4 at the higher Reynolds numbers. At the lower Reynolds
number (Re= 300), the highest rotation rate that showed synchronised vibration was
α = 1.3.

4.2. Force measurements

Figure 12 shows plots of the variation of the time-mean drag and lift coefficients, Cd

and Cl, respectively, as functions of the reduced velocity at each rotation rate. The lift
coefficient in the z direction was negligible compared to the lift coefficient in the y
direction, Cly, for all the cases except α = 0 and U∗ ∈ [10.5, 11]. Therefore, Cl = Cly

except for α=0 and U∗ ∈ [10.5,11]. Outside the synchronisation regimes, both Cd and
Cl were constant, having the values calculated for a rigidly mounted sphere at each α.
However, both Cd and Cl varied significantly from the values for a rigidly mounted
sphere at the reduced velocities for which the sphere showed synchronised vibrations.
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FIGURE 13. (Colour online) Variation of the r.m.s. value of the time-mean lift force
coefficient in the y direction over the reduced velocity, U∗, at each rotation rate.

This is consistent with the fact that the time-mean sphere displacement differed from
the estimated values based on the lift force of a rigidly mounted rotating sphere in the
synchronisation regimes as shown in figure 6 (see § 4.1). At a given reduced velocity,
the lift force increased with increasing rotation rate up to α = 1, and then decreased,
similar to the variation of Y/D with α.

For the non-rotating case (α = 0), the time-mean lift coefficient dropped down to
zero during the synchronisation regime (see the curve with black dots in figure 12b).
This is consistent with the synchronised vibrations of the sphere being symmetric
about the initial position of the sphere for α = 0. For the rotating cases, in the
synchronisation regimes, Cl decreased from the non-oscillatory value, and the
decrement reduced, with the increasing α. A similar trend was observed in Cl

by Bourguet & Jacono (2014) for a rotating cylinder as well.
In the synchronisation regimes, the time-mean drag force, Cd, increased from its

pre-oscillatory value at each rotation rate. There was a sudden increment at the
beginning of the synchronisation regime up to α = 0.2. For α = 0, Cd decreased
throughout the synchronisation range, asymptoting to its pre-oscillatory value at the
end of the range. For α = 0.1, 0.15 and 0.2, Cd increased slightly, then decreased
during the synchronisation regimes and reached the pre-oscillatory value at the end
of the regimes. For 0.3 6 α 6 1, Cd increased and decreased gradually, similar to
the gradual increase and decrease of the vibration amplitude of the sphere at these
rotation rates.

Figure 13 shows the variation of the r.m.s. value of the fluctuation component
of the lift force coefficient, C′l, with the reduced velocity, at each rotation rate.
Similar to the time-mean components of the forces, the fluctuation components of
the forces were also modified in the synchronisation regime at each rotation rate. For
α 6 0.2, C′l increased suddenly from 0 to a value of '0.22 at the beginning of the
synchronisation regime. Thereafter, C′l decreased within the synchronisation range and
returned to its original value at the end of the range. For 0.3 6 α 6 1, C′l increased
and then decreased gradually over the synchronisation range. The pattern of variation
of C′l closely matches the pattern of amplitude response (both C′l and A∗ increased
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suddenly for α 6 0.2 and increased gradually for 0.3 6 α 6 1). Also, C′l decreased as
the rotation rate increased, similar to the trend of A∗ with α.

As discussed by Govardhan & Williamson (2005), the fluid force in the y direction,
Ftotal, can be split into a potential force component, Fpotential =−mAÿ(t), which arises
due to the potential added-mass force, and a vortex force component, Fvortex, from the
presence and dynamics of vorticity. This recognises the fact that a flow solution can
be constructed as a sum of a potential flow field plus a velocity field associated with
vorticity in the flow (e.g. see Lighthill 1986). Here, mA is the added mass due to the
acceleration of the sphere. Therefore, the vortex force can be computed from

Fvortex = Ftotal − Fpotential. (4.1)

Normalising all forces by 0.5ρU2πD2/4 gives,

Cvortex =Ctotal −Cpotential. (4.2)

The phase between the sphere displacement and Ctotal is defined as the total phase,
φtotal, while the phase between sphere displacement and Cvortex is defined as the vortex
phase, φvortex.

Govardhan & Williamson (2005) observed two distinct modes of vibration (modes
I and II) for a non-rotating sphere in the reduced-velocity range U∗ ∼ 5–10. In their
study, mode I occurred at the beginning of the synchronisation regime and it smoothly
transitioned into mode II as the reduced velocity was increased. They observed that
φvortex increased by ∼90◦ as the sphere vibration transitioned from mode I to mode II.
Moreover, they observed little variation in φtotal as the mode transitioned from mode I
to mode II. Under sphere rotation, a similar behaviour might be expected. Figure 14
shows a comparison of sphere displacement, Y/D, Ctotal and Cvortex for two cycles of
sphere oscillation for α = 0, 0.3 and 0.75 at the beginning of the synchronisation
regime (a,c,e) and towards the end of the synchronisation regime (b,d, f ). The sphere
vibration frequency was locked in to both Ctotal and Cvortex, and was phase aligned
with Ctotal throughout the synchronisation regime at each α. Moreover, at the beginning
of the synchronisation regime, the sphere vibration frequency was phase aligned with
Cvortex. However, it showed a 180◦ phase difference with Cvortex towards the end of
the regime. Nonetheless, under the conditions of zero damping and near sinusoidal
forcing, it is not clear this can be taken as an indication of an analogous transition
from mode I to mode II.

4.3. Wake structures
Vortical structures in the wake are depicted using iso-surfaces of the second invariant
of the velocity field (known as the Q-criterion, see Hunt, Wray & Moin (1988) for
more details). Figure 15 displays the wake structure observed in the synchronisation
regime of the non-rotating case (at U∗= 6). As can be seen, two regular symmetrical
streets of hairpin vortices form the wake, consistent with the mode I and II wake
structure observed by Govardhan & Williamson (2005) in their experimental study of
vortex-induced vibration of a tethered sphere. This wake structure was also observed
by Behara et al. (2011) for VIV of a sphere with 3 DOF at Re = 300, when the
sphere was undergoing planar oscillations. The vortex streets in the advancing and
the retreating sides of the sphere were equal in strength, and the sphere oscillation is
symmetric through its initial position.
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FIGURE 14. (Colour online) Relationship between the time-mean displacement of the
sphere, Y/D, the total force in the y direction, Ctotal, and the vortex force in the y direction,
Cvortex, at α = 0, 0.3 and 0.75: (a,c,e) at mode I, and (b,d,f ) at mode II.
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FIGURE 15. (Colour online) Instantaneous wake structures visualised by the Q criterion
(Q= 0.001) in the synchronisation regime of the non-rotating case at U∗ = 6.

As discussed in § 3.1, the wake structure of a flow past a rigidly mounted sphere
was modified when a rotation was imposed on the sphere. Similarly, various wake
structures were observed for an elastically mounted sphere at different rotation rates
and at different reduced velocities. Figure 16 shows the wake structures observed at
the reduced velocity, U∗ = 6, at each rotation rate. As a rotation was imposed on
the sphere, the wake was deflected to the advancing side (the negative y direction).
Moreover, this deflection was more prominent as the rotation rate increased (see
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FIGURE 16. (Colour online) Instantaneous wake structures of vortex-induced vibration
of a transversely rotating sphere at reduced velocity U∗ = 6 at each rotation rate. The
sphere showed synchronised vibrations up to α = 1, and all the synchronisation regimes
contained U∗ = 6. Therefore, the wake structures given for 0 6 α 6 1 are those in the
synchronisation regimes at those rotation rates. The Reynolds number of the flow is
Re= 300.

figure 16). This is consistent with the lift force applied on the sphere on the retreating
side (the positive y direction) due to the Magnus effect.

The wake deflection was quantified by observing the change of the shear strain rate
along the sphere surface based on the time-mean velocity field. The wake deflection
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TABLE 3. Comparison of the phase-averaged wake deflection angle, Dθ , with the
rotation rate, α.

angle, Dθ , was defined as the angle at which the shear strain rate in the tangential
direction, εθ , on the sphere surface at the xy plane was zero (Dθ = θ |εθ=0). This
parameter (εθ ) can be calculated by taking the derivative of tangential velocity, uθ ,
in the radial direction, d(uθ)/dr. Therefore, the wake deflection angle, Dθ , was the
angle, θ , at which d(uθ)/dr= 0. The variation of the phase-averaged wake deflection
angle, Dθ , with the rotation rate is tabulated in table 3. As can be seen, Dθ increased
with the rotation rate. This quantifies the observations from visualisations that the
deflection was more prominent at higher rotation rates.

The equal strength vortex streets at zero rotation, became unequal as the sphere
rotation rate was increased (see figure 16). The vortex street on the advancing side
became stronger than the one in the retreating side with increasing rotation rate. The
vortex street on the retreating side was greatly weakened for α= 0.75, and had largely
disappeared for α ∈ [1, 1.3]. This difference in the strength of the vortex streets, which
affects the oscillatory forces on the sphere, is consistent with the decrease in the
oscillation amplitude as the sphere rotation rate increased.

When the sphere was subjected to a rotation, there was a significant variation in
the structure of the wake in the synchronisation regime. The vortex loops on the
advancing side were closely spaced hairpin loops. However, the vortex loops on the
retreating side deviated from the hairpin type as the rotation rate increased. Moreover,
for 0.3 6 α 6 1.3, the vortex loops on the retreating side near the sphere were
attached to the vortex loops on the advancing side that were shed in the previous
cycle. However, they separated later as they moved further downstream.

Figures 17 and 18 show the evolution of wakes in the synchronisation regimes (at
U∗=6) over a cycle of sphere oscillation for the rotation rates α=0, 0.2, 0.5 and 1. A
vortex loop is shed from the retreating side of the sphere as the sphere moved from its
apex to its nadir at both α= 0 and 0.2 (see figure 17). Another loop is shed from the
advancing side half a cycle later. For α= 0, the vortex loops were disconnected from
each other and formed with a tail. The tail was co-directional with the streamlines
upstream. As the loops moved away from the sphere, their shapes changed from a
hairpin to a ring shape. In addition to that, the vortex loops on the advancing and
the retreating sides are mirror images (with a 180◦ phase delay) consistent with the
symmetric sphere oscillation. However, for α = 0.2, in line with the non-zero time-
mean lift force applied on the sphere on the retreating side (y direction), a vortex
loop on the retreating side is shed weakly compared to the one on the advancing side.
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FIGURE 17. (Colour online) Evolution of wake structures for one cycle of sphere
oscillation in the synchronisation regimes (at U∗= 6) for the rotation rates α= 0 and 0.2.
The first column displays the position of the sphere by a red ‘bullseye’ on a cosine wave
for one period, while the second and third columns show the instantaneous wake structures
observed at each of these positions of the sphere for α = 0 and 0.2, respectively.

Moreover, the wake was deflected to the advancing side, and the vortex street on the
advancing side was stronger. For α=0.5, a vortex loop on the retreating side was shed
far more weakly and appeared only when the sphere was near its nadir (see figure 18).
A vortex loop on the advancing side was also modified compared to that at α= 0 and
its tail had almost disappeared.

On increasing α toward one, vortex loops shed from the retreating side were
weak, with the standard sphere wake with long interlacing vortex loops replaced by
a different wake structure, with closely spaced loops originating from the boundary
layer/shear layer separating from the sphere. This wake structure resembled the wake
structure observed by Giacobello et al. (2009) and Kim (2009) for the flow past
a transversely rotating sphere at Re = 300 and α = 1. Kim (2009) argued that this
unsteadiness was due to the instability of the shear layer caused by rapid rotation. For
flow past a transversely rotating rigid sphere at these parameters, we also observed
a similar wake structure but only in the initial stage of the simulation as discussed
in § 3.1; however, the shedding faded away for long simulation times, and the flow
became steady asymptotically. Despite this, when the sphere was allowed to translate
in the y direction, the sphere maintained a small amplitude vibration over a narrow
reduced velocity range, even after long integration times.

The wake at α = 1 and U∗ = 6 shows vortex loops or hairpins, but the wake
frequency is approximately a factor of three higher. Thus at U∗ = 6, approximately
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FIGURE 18. (Colour online) Evolution of the wake structures for one cycle of the sphere
oscillation in the synchronisation regimes (at U∗= 6) for the rotation rates α= 0.5 and 1.
The first column displays the position of the sphere by a red ‘bullseye’ on a cosine wave
for one period, while the second and third columns show the instantaneous wake structures
observed at each of these positions of the sphere for α = 0.5 and 1 respectively.

three vortex loops are shed per system oscillation period. However, the shed loops
are not identical in the size, nor are they exactly locked to have three shedding
periods per vibration period. In this case, the near wake oscillates with the body
oscillation at a frequency close to that of a non-vibrating sphere at a lower rotation
rate. One possible interpretation is that the natural vortex-shedding instability of the
wake, which is suppressed by the development of the shear-layer instability, is still
receptive, so that if the sphere is allowed to oscillate at that frequency, that shedding
mode can reappear and sustain the oscillation. This study at α = 1 was expanded
to lower reduced velocities. At U∗ = 2, where the system frequency matches the
shear-layer mode shedding frequency, the body vibration is minimal even through the
wake is strongly periodic. In this case, it appears that the timing of the formation
and shedding of shear-layer vortices does not lead to positive energy transfer from
the fluid to the body, so that large amplitude oscillations do not occur.

A steady wake was observed at the rotation rates α= 1.5 and 2 for all the reduced
velocities considered, as shown in figure 16 at U∗ = 6. This confirms that the sphere
vibrations were completely suppressed for α > 1.3. For α = 2.5, an unsteady and
asymmetric wake was observed for all the reduced velocities considered, with a
structure shown in figure 16 at U∗ = 6. Even though the flow was unsteady with
vortex shedding at this rotation rate, no significant sphere vibration was observed.
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FIGURE 19. (Colour online) Instantaneous wake structures in the xz plane for a
transversely rotating sphere at U∗ = 6 for the rotation rates α = 0, 0.3, 0.5, 1 and 2.

Figure 19 shows the wake structures in the xz plane at U∗= 6 for the rotation rates
α= 0.1, 0.3, 1, 2 and 2.5. As can be seen, all the structures observed for α6 2 were
mirror symmetric about the xy plane, except the wake at α = 2.5.

As discussed in § 3.1, the flow past a transversely rotating rigid sphere showed
unsteady vortex shedding for α ∈ [0, 0.3], and a double-threaded wake for α ∈ [0.4, 2].
When the sphere was allowed to oscillate in the y direction, the sphere showed
synchronised vibrations for α61.3. At these rotation rates, outside the synchronisation
regimes, a few different wake structures were observed, depending on the rotation rate.
These different wake states are depicted in figure 20, together with a contour map
summarising the oscillation amplitude as a function of U∗ and α. The contour map
shows the reduction of the oscillation amplitude and narrowing of the synchronisation
regime as the rotation rate is increased. Outside the synchronisation regime, for
α ∈ [0, 0.3], unsteady vortex shedding was observed, while for α ∈ [0.4, 0.75], a
steady and a double-threaded wake was found to occur; both states are consistent
with rigid sphere wakes at the same rotation rates. However, for α = 1, outside the
synchronisation regime, an unsteady wake was observed (see figure 20). This wake
resembled the wake observed in the initial evolution stage for a rigidly mounted
sphere at the same rotation rate, for which the unsteady wake observed in the initial
stage transformed into a steady wake in the asymptotic stage. However, given the
possibility to oscillate, albeit at very small amplitude, the unsteadiness of the wake
persisted.

5. The effect of Reynolds number on VIV of a rotating sphere
The effect of Reynolds number on vortex-induced vibration of a rotating sphere

was investigated at three rotation rates, α= 0.15, 0.75 and 1.5, by fixing the reduced
velocity at U∗ = 6. These three rotation rates were chosen because at α = 0.15 and
0.75, the sphere showed synchronised vibration, whilst at α= 1.5, the flow was steady
and no sphere vibration was found, but noting that this was not the case in higher
Reynolds number experiments (Sareen et al. 2018). In addition to that, for flow past

140



812 M. M. Rajamuni, M. C. Thompson and K. Hourigan

0.5

0

1.0

1.5

2.0

2.5

0.05

0.10

0.15

0.20

 0.25

0.30

0.35

2 4 6 8 10 12 14 16

Oscillation amplitude

0.2

0.35
0.3

0.12
0.09

0.06

0.03

FIGURE 20. (Colour online) Contour plot of the sphere oscillation amplitude, A∗, as a
function of the reduced velocity, U∗, and rotation rate, α. The non-synchronisation regime
is divided into five regimes according to wake structures.

a rotating sphere, at Re=300, the wake was unsteady with vortex shedding at α=0.15
while the flow was steady at α = 0.75. In this investigation, the Reynolds number of
the flow was varied from 300 to 1200 while keeping the mass ratio of the sphere
fixed at m∗ = 2.865.

5.1. Mean displacement, amplitude and forces
Figure 21 shows the variation of the sphere response amplitude with Reynolds number
for α= 0.15, 0.75 and 1.5 at U∗ = 6. At α= 0.15 and Re= 300, the sphere vibrated
synchronously with the vortex-shedding frequency with an amplitude of ≈ 0.3D. As
can be seen from figure 21, at α= 0.15, the sphere response amplitude increased with
increasing Reynolds number and reached a value of ≈ 0.5D at Re = 1200. At each
of these Reynolds numbers, the sphere vibration was highly sinusoidal. This suggests
that even for the non-rotating case, the sphere response amplitude will increase with
increasing Reynolds number, which is consistent with the large amplitude response
observed in non-rotating sphere VIV experiments (e.g. Govardhan & Williamson 1997,
2005, Jauvtis et al. 2001).

Similar to the case of α= 0.15, at α= 0.75, the sphere vibration amplitude showed
an increasing trend with increasing Reynolds number. However, a slight decrement in
A∗ was observed from Re = 550 to 600. The sphere vibration was purely sinusoidal
up to Re= 500. For Re > 550, even though the sphere response was periodic, it was
less sinusoidal. The periodicity of a signal was defined as λA =

√
2Yrms/Ymax (Jauvtis

et al. 2001), where Ymax is the highest sphere amplitude recorded. According to this
definition, λA can take values from 0 to 1, with λA= 1 for a purely sinusoidal signal.
Figure 22 shows the variation of periodicity of the sphere response with Reynolds
number for α = 0.15, 0.75 and 1.5. As can be seen, at α = 0.75, the periodicity of
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FIGURE 21. (Colour online) Effect of Reynolds number on the sphere response amplitude
at the rotation rates, α = 0.15, 0.75 and 1.5 at U∗ = 6.
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FIGURE 22. (Colour online) Variation of the periodicity of sphere response, λA, with
Reynolds number at α = 0.15, 0.75 and 1.5 for U∗ = 6.

the signal starts to drop for Re greater than 550. Moreover, λA drops to ≈ 0.85 and
remains there for Re > 600.

At α = 1.5 and Re = 300, the flow was steady with no sphere vibration. This
behaviour continued at Re = 350, as well. However, as the Reynolds number was
increased from 400, the sphere started to show synchronised vibration again. The
sphere response amplitude increased with the increasing Reynolds number and reached
a value of ≈ 0.25D at Re = 1200. The sphere response was periodic, but was less
sinusoidal. The periodicity of the sphere response showed a slight increasing trend
with Reynolds number, with values around 0.8 (see figure 22).
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FIGURE 23. (Colour online) Effect of Reynolds number on (a) time-mean position of
the sphere, (b) time-mean lift coefficient, (c) frequency ratio and (d) time-mean drag
coefficient, at the rotation rates α = 0.15, 0.75 and 1.5.

At each of the rotation rates and Reynolds numbers considered, the sphere vibration
frequency was locked in with the frequency of the lift force (reflecting the vortex
shedding). Moreover, the sphere vibration frequency was close to the system’s natural
frequency ( f ∗≈ 1, see figure 23c). Therefore, these vibration states are vortex-induced
vibration. From these observations, we can expect that the VIV will occur for even
higher rotation rates for higher Reynolds number flows.

Figure 23 shows the variation of the time-mean sphere displacement, the time-mean
drag and lift coefficients, and the frequency ratio with Reynolds number for α= 0.15,
0.75 and 1.5. As can be seen, at α= 0.15, the time-mean position of the sphere, Y/D,
remained almost fixed for all Reynolds numbers considered. However, at α= 0.75 and
1.5, Y/D decreased with increasing Reynolds number. The time-mean lift coefficient
showed an identical trend with the time-mean sphere displacement for all three
rotation rates (see figure 23b). At α= 0.15, the time-mean drag coefficient decreased
up to Re= 600, and for higher Reynolds numbers it was almost flat (see figure 23d).
For both α = 0.75 and 1.5, Cd decreased with increasing Reynolds number.

5.2. Effect on wake structures
The vortical structure of the wake was observed using the Q-criterion with a value of
Q= 0.01. Figure 24 shows the wake structures observed at α= 0.15 for Re= 700 and
1200; at α= 0.75 for Re= 500, 900 and 1200; and at α= 1.5 for Re= 900 and 1200.
At α= 0.15, two streets of hairpin-type vortex loops were observed at each Reynolds
number. However, as the Reynolds number increased, the shape of the vortex loops
were modified slightly (e.g. see the difference between the wakes at Re = 700 and
1200 in figure 24 at α = 0.15). The vortex-shedding frequencies were locked in with
the sphere vibrations.

143



Vortex-induced vibration of a rotating sphere 815

x

y

FIGURE 24. (Colour online) Effect of Reynolds number on the wake structures (depicted
with Q= 0.01) at the rotation rates α = 0.15, 0.75 and 1.5. The reduced velocity of the
flow is U∗ = 6 for each case.

As a general comment on these simulations, we would certainly not claim that
for the higher Reynolds number cases the chaotic wake structures are fully resolved
downstream from the near wake. The main aim of this set of simulations was to
properly resolve the near wake through increased spatial resolution, which, together
with the larger-scale wake structures, should mainly control the VIV response of
the sphere. Further spatial resolution studies were undertaken to confirm that the
VIV response was well converged at the highest Reynolds number (Re = 1200) and
highest rotation rate (α = 1.5) considered (see the table 4). As can be seen, there is
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Grid A∗ Cd Cd,rms Cl,rms f /fn

1 0.26 0.85 0.28 0.30 0.94
2 0.26 0.86 0.27 0.31 0.93
3 0.26 0.85 0.28 0.32 0.93
4 0.26 0.85 0.27 0.31 0.93

TABLE 4. The sensitivity of the spatial resolution of the flow parameters of vortex-induced
vibration of a rotating sphere at (α, U∗)= (1.5, 6) and Re= 1200 and m∗ = 2.865 (mr =

1.5). The oscillation amplitude of the sphere, A∗, the time-mean drag coefficient, Cd, the
r.m.s. values of fluctuation component of the drag and lift coefficients, Cd,rms and Cl,rms,
and the ratio of vortex-shedding frequency to the natural frequency, f /fn, are listed.

less than 2 % variation in the amplitude, drag and frequency ratio for the different
grids. Thus, grid 2 could be used; however, it was decided to use grid 3 for the
higher Reynolds number simulations presented in this section since this grid is more
compressed toward the sphere surface.

As discussed above, at α = 0.75, the sphere vibration was purely sinusoidal for
Re ∈ [300, 500]. In this Reynolds number range, two-sided hairpin-type vortex loops
were observed, as shown at Re= 500. Compared to the wake at Re= 300 shown in
figure 16, the wake deflection is smaller and the vortex loops on the retreating side are
comparatively stronger at Re=500. This can be attributed to the reduction of the mean
lift force at higher Reynolds numbers. In the Reynolds number range, Re∈ [550,1200],
the sphere vibration was less sinusoidal (λA ≈ 0.8). Indeed, in this range, the wake
showed a more turbulent behaviour with shedding of multiple vortex structures per
sphere oscillation cycle. However, the dominant vortex-shedding frequency was still
synchronised with the sphere vibration frequency (see figure 24 wake for Re = 900
and 1200 at α = 0.75).

At α= 1.5, the sphere showed synchronised vibrations for Re∈ [400, 1200]. In this
Reynolds number range, the sphere vibrations were less sinusoidal. Therefore, similar
to α = 0.75 at higher Reynolds numbers, multiple vortical structures were shed over
a sphere vibration cycle, showing chaotic behaviour. Figure 25 shows the evolution
of wake structures over a cycle of sphere vibration in five steps for α = 1.5 and
Re= 1200. Even though multiple vortical structures were shed per sphere oscillation
cycle, vortex loops were two sided. In particular, vortex loops were shed from the
positive y direction as the sphere moved from its apex to its nadir, and vortex loops
were shed from the negative y direction as the sphere moved from its nadir to its apex.
Therefore, the dominant vortex shedding frequency was locked in with the sphere
vibration frequency.

6. Conclusions
The effects of forced rotation on transverse vortex-induced vibration of a sphere was

investigated numerically at Reynolds number 300 with a sphere of mass ratio 2.865
(corresponding to a reduced mass of 1.5). The correlation between the Magnus effect
caused by the sphere rotation and the vortex-induced vibration has been analysed over
the reduced-velocity range U∗ ∈ [3.5, 11] and rotation rates α ∈ [0, 2.5]. The principal
findings of this work can be summarised as follows.

Reduction of the sphere response amplitude with forced rotation. The sphere was
found to vibrate, synchronising with the vortex-shedding frequency even subject
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FIGURE 25. (Colour online) Evolution of the wake at α = 1.5, Re = 1200 and U∗ = 6
for a cycle of sphere vibration. The left column shows the sphere position in the cycle
with a red ‘bullseye’ on a cosine wave and the right column shows the wake structures
observed at corresponding sphere positions.

to an imposed forced rotation. However, the sphere shifted to a new time-mean
position for all rotation cases due to the Magnus force generated by the rotation. The
sphere showed highly periodic VIV, not only for α < 0.4, but also for 0.4 6 α 6 1.3,
i.e. over a range of rotation rates where no vortex shedding was found for a rigidly
mounted rotating sphere (at this Reynolds number). Interestingly, the sphere response
amplitude, which was ≈ 0.4D for the zero rotation case, decreased as the rotation
rate increased, and VIV was completely suppressed beyond α = 1.3. Simultaneously,
the synchronisation range narrowed and moved mostly towards lower values of U∗
with increasing rotation rate.

Force coefficients highly modulated in the synchronisation regime. The time-mean lift
and drag coefficients were highly modulated as the sphere experienced synchronised
vibration. In particular, the time-mean drag force increased while the time-mean
lift force decreased from its pre-oscillatory value in the synchronisation regime at
each rotation rate. The analysis of phases between sphere displacement and vortex
force revealed that, regardless of the rotation rate, the sphere showed similarities to
mode I initially and then mode II vibrations identified through total and vortex phase
variations.

Symmetry breaking of the wake under forced rotation. In the synchronisation regime
of the zero rotation case, two trails of two-sided hairpin loops formed in the wake.
Moreover, the vortex trails on the advancing and retreating sides were equal in
strength as the sphere oscillation was symmetric about its initial position. These
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wake states strongly resemble those of a tethered sphere observed experimentally
by Govardhan & Williamson (2005) at much higher Re, for both modes I and II.
As a rotation was imposed on the sphere, the wake deflected to the advancing side
(−y direction); this was more prominent as the rotation rate increased. With the
symmetry breaking of the wake introduced by the Magnus effect, the vortex loops
in the vorticity trail from the advancing side became stronger than the vortex loops
in the trail from the retreating side. This unevenness of the wake, which affects the
oscillatory forces on the sphere, is consistent with the reduction in the amplitude
response and narrowing of the synchronisation range at higher rotation rates.

The response amplitude increased significantly as Reynolds number was increased.
The effect of Reynolds number on VIV of a rotating sphere was investigated at
U∗ = 6, by increasing Reynolds number incrementally up to Re = 1200. As the
Reynolds number was increased, the sphere started to show synchronised vibration
at higher rotation rates even when there was no VIV at Re = 300. In addition, the
sphere response amplitude increased generally with the increasing Reynolds number.
Therefore, at higher Reynolds numbers, VIV persists for even higher rotation rates
and displays a large amplitude response, consistent with experimental studies by
Sareen et al. (2018).

Based on the above observations, we can draw the following conclusions:
vortex-induced vibration persists for a sphere at small rotation rates, but the
mitigation/suppression of vortex shedding caused by the Magnus effect as the rotation
rate is increased does in fact lead to increased suppression of VIV at higher rotation
rates. Moreover, spanning the laminar regime and beyond, the effect of Reynolds
number on the VIV response of a rotating sphere is significant.

In terms of future work, it seems worth expanding this study further into the fully
turbulent regime where most experiments are conducted. It would also be interesting
to examine the response of a heavier sphere at higher reduced velocities, where modes
III and IV are observed to occur.
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It is better to be hated for what you
are than to be loved for what you are
not.

Andre Gide

6. Vortex dynamics and vibration modes
of a tethered sphere

Tethered spheres have been extensively used for flow-induced vibration problems of a
sphere from the beginning. However, the knowledge of the flow-induced vibration of
a tethered sphere at low Reynolds numbers is still lacking in several aspects. As dis-
cussed in chapter 4, we observed that the response of an elastically-mounted sphere is
highly dependent on the Reynolds number over the range 300 ≤ Re ≤ 800. Neverthe-
less, Govardhan & Williamson (2005) found that FIV was independent of the Reynolds
number over the range 2000 < Re < 12000. Therefore, this computational study fo-
cuses on the nature of FIV of a tethered sphere at low to intermediate Reynolds numbers
(500 ≤ Re ≤ 2000) with the intention of filling the gap in knowledge. In addition, this
chapter gives special attention to the mode III and IV regimes, as the current knowl-
edge on the appearance and characterisation of the modes III and IV vibration states
is limited.
The numerical method described in § 3.3 was used for the results presented in this

chapter. The tetheredVivIcoFoam solver detailed in § 3.3.2 was utilized for the simula-
tions and the calculation of the reduced velocity, as described in § 3.3.4. The chapter
begins with a discussion of the results of flow-induced vibration response of a tethered
sphere in § 6.1, in terms of the amplitude, periodicity and frequency of the sphere re-
sponse. The sphere response over the modes I and II ranges are discussed in detail in
§ 6.2, highlighting the effect of Reynolds number, effect of mass ratio, nature of the wake
structures and robustness of the vibration at modes I and II. Following this, results on
mode III observed with a heavy sphere are presented in § 6.3. Next, the findings of
intermittent burst of vibrations at mode IV are detailed in § 6.4. Finally, the chapter
ends with a brief summary and concluding remarks in § 6.5.
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Figure 6.1.: Comparison of the sphere response amplitude, A∗z, at Re = 1200 and 2000

with the experimental results of Jauvtis et al. (2001) at higher and varying Reynolds
numbers with a sphere of mass ratio, m∗ = 0.8 over the reduced velocity range, U∗ =

[3, 14]. Consistent with their observations, the first two modes of sphere vibration states
were observed.

6.1. FIV response of a tethered sphere

6.1.1. Comparison with other research studies

The flow past a tethered sphere of mass ratio, m∗ = 0.8, with a tether length of l∗ = 10

was investigated by fixing the Reynolds number at a particular value. The sphere
showed large amplitude modes I and II vibration states at the larger Reynolds numbers
investigated, similar to the observation of previous experimental studies. Figure 6.1
compares our results of the sphere vibration amplitude, A∗z =

√
2Zrms/D, at Re = 1200

and 2000 with the experimental results of Jauvtis et al. (2001) conducted with a sphere
of the same mass ratio, where Z is the sphere displacement in the z direction. As can
be seen, the present results match reasonably well with Jauvtis et al. Recall that in
the experiments, the Reynolds number was not fixed and varied approximately between
2000 and 14 000. Consistent with their observations, the sphere response amplitudes at
modes I and II were approximately 0.5D and 0.85D, respectively.
In particular, at this mass ratio, Jauvtis et al. (2001) observed two peaks in the

amplitude response curve, corresponding to modes I and II. In contrast, at Re = 1200,
the sphere response amplitude varied smoothly from mode I to mode II without a dip as
seen in most of the amplitude response curves of tethered spheres (Jauvtis et al. (2001)
and Govardhan & Williamson (2005)). However, once the Reynolds number is increased
to 2000, the response curve formed a small peak for mode I as observed by Jauvtis et al.
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(2001). Therefore, if the Reynolds number is further increased, this local peak at mode I
is expected to become more prominent. At Re = 1200, the highest vibration amplitude
occurred around U∗ = 8.5, and the vibration amplitude decreased beyond this point in
contrast to the observation of Jauvtis et al. of almost constant amplitude at larger U∗

values. However, as the Reynolds number is increased to 2000, the response amplitudes
were higher than at Re = 1200. Moreover, the response curve was closer to their
response curve. Again, if the Reynolds number is further increased, the response curve
at mode II is also anticipated to become more similar to the response curve of Jauvtis
et al. observed at higher and varying Reynolds numbers. These observations show
that there is a considerable effect of Reynolds number on the sphere response in this
Reynolds number range. Rajamuni et al. (2018a) (chapter 4) also showed that there is
a substantial effect of the Reynolds number on flow-induced vibration of an elastically
mounted sphere with 1 DOF in the laminar regime.
Compared to the observation of Jauvtis et al. (2001), the predicted response curves

look slightly shifted to the left. However, the response that was predicted at U∗ = 4 is
not a periodic response as in mode I, albeit the shedding frequency is locked in to the
oscillation frequency. Similar to the results of Jauvtis et al., we also expected mode I
to occur around U∗ = 5 as the static vortex shedding frequency is fvo ≈ 0.2. Therefore,
at U∗ = 4, the sphere may be in transition from no oscillation to VIV. Nonetheless,
we observed mode I vibration at a slightly lower reduced velocity compared to that
observed by Jauvtis et al. (2001). This difference may be due to the effect of Reynolds
number. Note that for the predictions, the Reynolds number was fixed whereas it was
allowed to vary with U∗ in the experiments.

6.1.2. Nature of the sphere response

To explore the effect of Reynolds number in the laminar regime, another set of simula-
tions was conducted at Re = 500 with the same mass ratio and tether length. Figure 6.2
(a) shows a comparison of the sphere response amplitude of Re = 500, 1200 and 2000 for
the reduced velocity range, U∗ = [3, 32]. As can be seen, the sphere response amplitude
increased globally as the Reynolds number increased over U∗ ∈ [4.5, 16]. As discussed
earlier, it showed periodic mode I and II vibrations over U∗ ≈ [4.5, 7] and [8, 16], respec-
tively, at Re = 1200 and 2000. At Re = 500, a periodic vibration response was found
over U∗ = [4.5, 12]. The response curve took a bell shape with a maximum amplitude
of ≈ 0.45D. At this Reynolds number, modes I and II were not able to be distinguished
clearly from the amplitude response curve alone. Govardhan & Williamson (2005) found
that mode I occurred around (U∗/f∗)St = 1 while mode II occurred in the range of
(U∗/f∗)St ≈ [1.4, 2]. However, if the amplitude is plotted against (U∗/f∗)St, both
modes I and II responses became clear, even at Re = 500, from the range of (U∗/f∗)St
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Figure 6.2.: The sphere response curves at Re = 500, 1200 and 2000 of a tethered sphere
of m∗ = 0.8: (a) the normalised amplitude, A∗z, against the reduced velocity, U∗; and
(b) plotted against the normalized velocity, (U∗/f∗)St.

(see figure 6.2 (b)).
Similar to the Re = 500 case, as discussed in chapter 4, we observed bell shaped

response curves at Re = 300 and 800 with an elastically mounted sphere which were
named ‘Branch A’. Moreover, the maximum amplitudes we observed at those Reynolds
numbers were ≈ 0.4D and 0.6D, respectively. This observation leads to the conclusion
that a sphere displays a trend of increasing amplitude globally over U∗ ≈ [4, 16], as the
Reynolds number increased from 300 to 2000, regardless of whether it was an elastically
mounted or a tethered sphere.
For U∗ > 16, the sphere showed an aperiodic response for all three Reynolds numbers.

Although the amplitudes were scattered, they showed initially an increasing trend and
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then levelling off around 0.8D as the reduced velocity increased to 34. We observed
a similar behaviour at Re = 800 with an elastically mounted sphere for U∗ > 13, but
with a purely increasing trend up to U∗ = 50 (Rajamuni et al. 2018a). As we claimed
in chapter 4 or Rajamuni et al. (2018a), this intermittent burst of vibration strongly
resembles mode IV vibration discovered by Jauvtis et al. (2001) with a heavy sphere of
m∗ = 80 for U∗ > 100. This begs the question of ‘why mode IV is observed just after
mode II without an intervening mode III?’. A discussion of this is given in section 6.3.
Williamson & Govardhan (1997) and Govardhan & Williamson (2005) identified that

the motion of a tethered sphere is principally in the transverse direction. Consistently,
we also observed large amplitude vibrations in the transverse (z) direction compared
to the streamwise (x) and lateral (y) directions (see figure 6.3 (a) and 6.4 (a)). For
modes I and II regimes, the sphere showed a negligible amplitude in the lateral direction
while displaying a small amplitude of ≈ 0.08D in the streamwise direction, as shown
in figure 6.3 (a) at Re = 1200. This is consistent with the observation of Williamson
& Govardhan (1997) with a sphere of m∗ = 0.73 and tether length ratios, l∗ = 8.9 and
3.8.
The periodicity of the sphere vibration, λA, is defined as

√
2Zrms/Zmax, where Zmax

is the maximum amplitude observed at each U∗. According to this definition, λA take
values from 0 to 1, with λA = 1 representing the most periodic response. For both modes
I and II, the sphere vibrations were highly periodic. However, it was more periodic at
the peak of mode II compared with the response at mode I (see figure 6.3 (b) and
figures 6.5 (a) and (c)). For both modes I and II, the sphere vibrated in synchrony
with the vortex shedding frequency, fs, and was close to the system’s natural frequency,
as expected (see figure 6.3 (c)). Govardhan & Williamson (1997, 2005) observed for
light spheres (m∗ < 1) across the mode II regime and above that, the dynamic vortex
shedding frequency remained between the static body vortex shedding frequency, fvo,
and the natural frequency of the system.
As the sphere response curve for Re = 500 deviated from the response curve observed

at higher Reynolds numbers over the modes I and II regimes (U∗ = [4.5, 12]), a negli-
gible amplitude was observed in both the streamwise (x) and lateral (y) directions (see
figure 6.4 (a)). Vibrations in the transverse (z) directions were highly periodic as in the
peak of mode II (figure 6.4 (b)). This is indeed a VIV response (f = fs = fn ). From
these observations, we can predict that the response of a tethered sphere collapses well
with the response of an elastically mounted sphere of 1 DOF for low Reynolds numbers
over the modes I and II regimes.
As the reduced velocity increased beyond U∗ = 12 (beyond the mode II regime), the

periodicity of the sphere response gradually decreased at Re = 1200 and reached a value
of ≈ 0.5 for the mode IV regime (see figure 6.3 (b)). A similar behaviour was observed
at Re = 500 as well. However, as U∗ was increased, mode IV appeared quickly after
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Figure 6.3.: The flow-induced vibration response of a tethered sphere at Re = 1200 over
the reduced velocity range, U∗ = [3, 32]: (a) sphere vibration amplitudes A∗x, A∗y and
A∗z in the streamwise, lateral and transverse directions, respectively; (b) the periodicity
of the sphere vibration, λA =

√
2Zrms/Zmax; and (c) frequency ratio, f∗ = f/fn.
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Figure 6.5.: Time histories (first column) and sphere trajectories in the x–z plane
(second column) at Re = 1200, where τ = tU/D is the non-dimensional time and Tc is
the period. (a) and (b) at U∗ = 5.5 (mode I), (c) and (d) at U∗ = 9 (mode II), and (e)
and (f) at U∗ = 27.4 (mode IV).

the periodic vibrations and the periodicity of the response was even lower. The sphere
vibration was intermittent in mode IV, as shown in figure 6.5 (e) at U∗ = 27.4 and it
followed a irregular trajectory without a clear pattern as shown in figure 6.5 (f). As λA
decreased, the sphere displacement in the streamwise and the lateral directions became
slightly more significant. The streamwise amplitude was almost a constant value of
≈ 0.3D at Re = 1200 and ≈ 0.2D at Re = 500 over mode IV. The lateral amplitude
showed a linearly increasing trend as the reduced velocity increased beyond 16 and
was almost half the transverse amplitude at the highest reduced velocity considered
(U∗ = 32) at both Reynolds numbers. This shows that the randomness of the signal
increases with increasing reduced velocity.
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Figure 6.6.: Variation of the time-averaged drag coefficient, Cd with the reduced velocity
at Re = 500, 1200 and 2000. The horizontal grey lines show Cd calculated with a
stationary sphere at Re = 500 (dotted line) and Re = 1200 (solid line).

6.1.3. The drag coefficient

Figure 6.6 displays the time-averaged drag coefficient, Cd, as a function of the reduced
velocity for all three Reynolds numbers considered. An increment in Cd is observed
when it vibrated periodically, as found in previous experimental and numerical studies
(Williamson & Govardhan 1997; Gottlieb 1997; Behara et al. 2011). At Re = 500, as
the sphere began to vibrate at U∗ = 4.5, an ∼ 33% increment of Cd was observed from
the value for a stationary sphere. Similar to the observation of Rajamuni et al. (2018a)
for their Branch A, this increment then decreased over the synchronization regime.
However, they observed a sharp turn at the beginning of the range, while we observed a
smooth turn. At both Re = 1200 and 2000, Cd showed another jump at the beginning
of mode II, as Govardhan & Williamson (1997) observed. The increments of Cd were
∼ 60% and ∼ 100% at modes I and II, respectively. In the mode IV regime, even larger
amplitude vibrations are observed, whereas the drag coefficient hardly changed at all.
This is because mode IV is not a VIV response, as discussed in section 6.4.

6.1.4. The layover angle

The time-averaged layover angle, θl, is defined as the angle of the tether to the lateral
direction (vertical). An exponentially increasing trend of θl with a slight variation in
mode II was observed for all of the Reynolds numbers considered (see figure 6.7). Since
the lift force is comparatively small, the layover angle can be estimated from the non-
dimensional drag and buoyancy forces as

tan(θl) =
Cd

(1−m∗)ψ
.
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Figure 6.7.: The time-mean layover angle, θl (angle of tether from the y direction) as a
function of reduced velocity. The dotted lines represent the estimated θl from the drag
coefficient at each Reynolds number.

As can be seen in figure 6.7, the calculated θl is coincident with the estimated values.
Note that even though Cd is constant over the mode IV regime, tan(θl) increases; this
is because ψ = 4/(3Fr2) is not constant in this numerical study.
From the findings of this study and previous experimental and numerical studies, a

brief discussion of the different modes of sphere vibrations is provided in the following
three sections.
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6.2. Modes I and II

Modes I and II are the only vortex induced vibration responses observed for a sphere out
of the four vibration modes found. Mode I response is due to a natural resonance, where
the vibration of the sphere is excited when the natural frequency of the system, fn, is
close to the stationary body (non-VIV) vortex shedding frequency. For example, at
Re = 1200, the vortex shedding frequency of a stationary sphere, fvo, is approximately
0.2, which means that the natural oscillation frequency and the stationary body vortex
shedding frequency coincide at U∗ = 5. As a result of this, mode I was observed close
to U∗ = 5 (see figure 6.3 (a)).
In almost all of the VIV studies, the sphere showed large amplitude periodic vibrations

even after the resonance range, and this is known as mode II vibration state. As the
sphere is allowed to translate freely, a reduction is observed in the vortex shedding
frequency from the value for a static sphere. In this manner, the dynamic shedding
frequency deviated from the static shedding frequency and synchronized with the natural
frequency (see figure 6.3 (c) and 6.4 (c)). As a result, the sphere showed large amplitude
vibration (mode II) after the resonance state.
The mode II response was observed beyond the mode I regime as the reduced velocity

was increased. The sphere response amplitude varied smoothly as the vibration state
transitioned from mode I to mode II, in contrast with distinct branches observed in
the amplitude response curve of an elastically mounted cylinder (1 DOF ). The sphere
response curve showed a small local peak in mode I for light tethered spheres (m∗ < 1);
for example, the observations of Williamson & Govardhan (1997) at m∗ = 0.729 with
both l∗ = 3.83 and 8.93 and m∗ = 0.082 with l∗ = 9.28, Govardhan & Williamson
(1997) at m∗ = 0.26, and Jauvtis et al. (2001) at m∗ = 0.8, can be given. However, the
local peak in mode I is obscured for heavy spheres (m∗ > 1), especially for elastically
mounted spheres as discussed by Govardhan & Williamson (2005). The range of U∗

values varies for different modes; mode I is observed for a very short range (within ∼ 1–
2 U∗) compared with mode II. This is expected as mode I is the result of resonance.
The difference between modes I and II was studied by Govardhan & Williamson

(2005) by analysing the phase between sphere oscillation and the fluid forces acting on
the sphere. Lighthill (1986) showed that the total fluid force, Ft, can conveniently be
split into two components, a ‘potential force’ component (Fp) related to the potential
added mass and a ‘vortex force’ component (Fv) related to the dynamic vorticity. For a
cylinder, Govardhan & Williamson (2000) found a shift in the total phase, φt (the phase
between the sphere displacement and the total force), or the vortex phase, φv (the phase
between the sphere displacement and the vortex force), as the vibration state transitions
from one branch to another. Analogously, Govardhan & Williamson (2005) observed a
shift in the vortex phase, while the total phase remains almost constant, as the sphere
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Figure 6.8.: Variation of the total phase, φt, and vortex phase, φv, over modes I and II
regimes ((c) and (d)). The first column is for Re = 500 and the second column is for
Re = 1200. The last row shows that the frequency ratio crosses the f∗ = 1 line as the
vortex phase shifts from 0◦ to 180◦.

transitions from mode I to mode II. In a similar fashion, we found that the vortex phase
shifted from 0◦ to 180◦ as the vibration state transitioned from mode I to mode II, while
the total phase remained at ≈ 0◦, as shown in figure 6.8 (c) and (d) for Re = 500 and
1200, respectively.
For an elastically mounted cylinder, Govardhan & Williamson (2000) argued that a

sudden shift in total or vortex phase can be expected as the body oscillation frequency
passes the natural frequency of the system (or the frequency ratio crosses the f∗ = 1

line). Consistent with this argument, we observed that the shift in φv occurs as the
frequency ratio crosses the f∗ = 1 line (see figure 6.8 (e) and (f)). In addition to this,
they discussed that for a purely sinusoidal response with zero damping ratio, the total
or vortex force can only be either phase aligned or be 180◦ out of phase with the body
vibration. That discussion related to an elastically mounted cylinder. The motion of
a tethered sphere has no damping effect (see equation 3.27). Therefore, if the sphere
response is periodic, we can predict that φt and φv can be either 0◦ or 180◦ in a similar
way. Consistently, we observed that φt and φv was mostly either 0◦ or 180◦.
The response amplitude of mode II was found to be higher than the amplitude of
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Figure 6.9.: The amplitude response curves at different Reynolds number at the modes
I and II regimes: . at Re = 300 of Rajamuni et al. (2018a) with an elastically mounted
sphere of m∗ = 2.865; � at Re = 500; � at Re = 800 of Rajamuni et al. (2018a) with
an elastically mounted sphere of m∗ = 2.865; • at Re = 1200; and × at Re = 2000.

mode I (for some cases, approximately twice the amplitude of mode I) by experimental
studies at higher Reynolds numbers. We also observed a similar behaviour at Re = 1200

and 2000. However, for Re < 1000, the amplitude of mode II was observed to be similar
to that of mode I (present results at Re = 500 and Rajamuni et al. (2018a) at Re = 300

and 800). Therefore, the effect of Reynolds number on the amplitude of mode II is not
negligible in the laminar regime.

6.2.1. Effect of Reynolds number

Govardhan & Williamson (2005) showed that the effect of Reynolds number is negligible
for the VIV of a sphere over a range of Re ∈ [2000, 12000] with help of the Griffin plot
and the tether length ratio. However, the effect of Reynolds number is significant over
Re ∈ [300, 2000]. Figure 6.9 plots the sphere predicted responses together with the
results of Rajamuni et al. (2018a) with elastically mounted spheres at five different
Reynolds numbers over modes I and II regimes. As can be seen, the response amplitude
increases globally with the Reynolds number. This effect is more significant over the
mode II regime than the mode I regime. In addition, the mode II regime widened as
the Reynolds number increased in this range. Mode II appears to be more sensitive to
the Reynolds number.

6.2.2. Effect of mass ratio

Govardhan & Williamson (2005) studied the effect of mass ratio on the sphere re-
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sponse and found that the response amplitude increased and the synchronization regime
widened as the mass ratio decreased over the range m∗ ∈ [2.8, 198.4]. For light spheres
(m∗ < 1), once the sphere reached its maximum amplitude (in mode II) by diverging
from the usual decreasing trend, a levelling-off trend was observed in experiments. For
example, Williamson & Govardhan (1997) at m∗ = 0.729, Govardhan & Williamson
(2005) at m∗ = 0.45, and Jauvtis et al. (2001) at m∗ = 0.8. However, in this numerical
study, we observed a decreasing trend of amplitude after the maximum amplitude at
m∗ = 0.8. This difference with the experiments is most probably due to the effect of
Reynolds number. We showed that the effect of Reynolds number is higher in the mode
II regime. Therefore, if Re was increased further, there is an expectation that there will
be a levelling-off trend toward the end of mode II. In addition, for light spheres and
mode II, the shedding frequency was slightly higher than the natural frequency of the
system.

6.2.3. Wake structure

The vortical structures of the wake were visualised with an iso-surface of the Q criterion
(the second invariant of the velocity tensor) introduced by Hunt et al. (1988). The
wake structures observed in modes I and II regimes are shown in figure 6.10. As can
be seen, at Re = 500, two trails of hairpin vortices form the wake in both modes I and
II regimes. These wake structures strongly resemble the wakes observed by Govardhan
& Williamson (2005) for modes I and II, and by Rajamuni et al. (2018a) for their
Branch A. Two hairpin loops were shed per sphere oscillation cycle and these loops
were disconnected and two-sided. Furthermore, each vortex loop was accompanied by a
tail. These hairpin loops were symmetric through the x–z plan as expected. Govardhan
& Williamson (2005) explained that the two streamwise vortex loops associated with
the orientation of the hairpin loops create a lift force similar to the vertical lift force
associated with aircraft trailing ‘tip vortices’. As the hairpin loops are two sided, the
lift force is periodic and hence the sphere is excited to vibrate.
As the Reynolds number is increased, small-scale structures begin to appear in the

wake. In mode I, the underlying wake structure was only slightly modified, continuing to
show two strong hairpin loops per oscillation cycle, along with smaller scale structures.
However, in mode II, the wake was modified further. Multiple loops were observed
per oscillation cycle in the higher Reynolds number cases. Moreover, those loops were
mostly connected with each other.

6.2.4. Dynamic Mode Decomposition (DMD)

For further examination of the wake, and to identify the dominant wake modes, DMD
was performed based on the methods presented in § 3.4. The nature of the wake of mode
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Figure 6.10.: Wake structures in modes I and II at Re = 500, 1200, and 2000 visualized
with iso-surface of Q at 0.01. Flow from left to right.
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Figure 6.11.: Results of DMD analysis of 2D velocity field over 10 oscillation cycles of
Mode I at Re = 500; (a) plot of eigenvalues of the Companion matrix; (b) frequency
spectrum; (c)-(f) Dynamic modes, KM , (visualized by vorticity field) correspond to
frequencies, f0, f1, 2f1, and 3f1, respectively; (g) Actual vorticity field; (h)-(j) recon-
struction of vorticity field using allKMs, the dominantKM (f0+f1), and the dominant
KM and its higher order harmonics (f0 +f1 + 2f1 + 3f1 + 4f1 + 5f1 + 6f1), respectively.

I (U∗ = 5.5) was studied at Re = 500 using the 2D velocity field (on x-z plane) over
10 oscillation cycles with 23 snapshots per cycle. As figure 6.11 (a) shows, the plot of
eigenvalues of the Companion matrix, C lies in a unit circle, indicating a periodic wake.
Moreover, the frequency, f1, of the dynamic mode with the highest magnitude was
identical to the oscillation frequency of the sphere, as expected. The sphere oscillation
was not purely sinusoidal in this case; therefore, the frequency spectrum contained
other frequencies besides the dominant frequency and its higher order harmonics (see
figure 6.11 (b)). The vorticity field was used to visualize the Koopman modes,KMs, and
to compare the reconstruction using these modes with the actual field (see figure 6.11
(c)–(j)). The reconstruction with all modes, shown in (h), is identical to the actual
field shown in (g), providing some validation to the analysis. The dominant KM has
captured the main features of the field (see figure 6.11 (i)). Moreover, when its higher
order harmonics are also used it looks much closer to the actual field – compare (j) and
(g).
The DMD analysis of 2D velocity field of mode II (U∗ = 9) at Re = 1200 over 24

oscillation cycles with 48 snapshots per cycle was performed and results are presented
in figure 6.12. The plot of eigenvalues of the Companion matrix provides evidence of
a highly periodic wake. The sphere oscillation is purely sinusoidal in mode II. Inferred
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Figure 6.12.: Results of DMD analysis of 2D velocity field over 24 oscillation cycles of
Mode II at Re = 1200; (a) plot of eigenvalues of the Companion matrix; (b) frequency
spectrum; (c)-(f) Dynamic modes, KM , (visualized by vorticity field) correspond to
frequencies, f0, f1, 2f1, and 3f1, respectively; (g) actual vorticity field; (h)-(j) recon-
struction of vorticity field using all of the KMs, only the dominant KM (f0 + f1) and
the dominantKM and its higher order harmonics (f0+f1+2f1+3f1+4f1), respectively.

from this, the frequency spectrum in mode II for Re = 500 contained only the dominant
frequency and its higher-order harmonics, as shown in figure 6.13 (b). However, as
Re was increased to 1200, the frequency spectrum was dense with other frequencies,
showing the effect of Reynolds number (see figure 6.12 (b)). Nevertheless, the underlying
streamwise vortex structure observed for with the dominantKM (see figure 6.12 (i)) was
synchronized with the sphere oscillation, so the sphere showed large amplitude mode II
vibrations. This was also clearly visible from the iso-surfaces of the Q when 3D velocity
fields were used for the analysis as shown in figure 6.14 for both modes I and II.

6.2.5. Robustness of modes I and II

Earlier, we showed that mode II is quite sensitive to the Reynolds number for Re ∈
[300, 2000]. In addition, mode II also appears sensitive to disturbances and other factors.
For example, the experimental study of Sareen et al. (2018a) and the computational
study of Rajamuni et al. (2018b) found that the mode II response weakens if even
weak rotation (in the transverse direction) is imposed on the sphere. In particular,
they observed a considerable reduction in the maximum oscillation amplitude and a
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Figure 6.13.: Results of DMD analysis of 2D velocity field over 10 oscillation cycles of
Mode II at Re = 500; (a) plot of eigenvalues of the Companion matrix; (b) frequency
spectrum; (c)-(f) Dynamic modes, KM , (visualized by vorticity field) correspond to
frequencies, f0, f1, 2f1, and 3f1, respectively; (g) Actual vorticity field; (h)-(j) recon-
struction of vorticity field using allKMs, the dominantKM (f0+f1), and the dominant
KM and its higher order harmonics (f0 + f1 + 2f1 + 3f1 + 4f1 + 5f1), respectively.
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Figure 6.14.: Iso-surfaces of the wake at modes I and II reconstructed from all of the
KMs (first row) and with only the dominant KM (second row). The dominant KM
has captured the main feature of the flow.

narrowing of the synchronization regime. Furthermore, Sareen et al. (2018b) identified
that the proximity of the sphere to the free surface greatly influences mode II. From
these observations, we can conclude that mode I is more robust than mode II. Perhaps
this is unsurprising as mode I is the primary resonant response.
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6.3. Mode III

After the mode II regime, Jauvtis et al. (2001) discovered another periodic vibration
state, namely mode III. It was an unexpected finding that was first observed with a
sphere of m∗ = 28 with water channel experiments. To study this mode further, they
performed a set of wind tunnel experiments with a tethered sphere of m∗ = 80 for a
wide range of U∗. Mode III was found to occur after a desynchronization regime for a
broad range of U∗ from 20 to 40. They repeated this set of experiments with a larger
tunnel to check whether it was an experimental artifact. Mode III was evident even with
the larger tunnel. In addition to that, it was observed with a sphere of m∗ = 940. The
sphere response was remarkably periodic and the vibration amplitudes were almost the
same as for mode II. Not only tethered spheres, but also elastically mounted spheres,
showed mode III vibrations, but without a desynchronization regime; for example, this
was found by Govardhan & Williamson (2005) withm∗ = 53.7 and Sareen et al. (2018a)
with m∗ = 14.2.
As a consequence of the high mass ratio in previous experiments, the oscillation

frequency of mode III was identical to the system’s natural frequency. Nevertheless, it
was difficult to explain the existence of mode III, since the principal vortex shedding
frequency is 3 to 8 times higher than the oscillation frequency. Govardhan & Williamson
(2005) observed multiple small-scale structures in the wake of mode III. There was no
clear association between vortex shedding and full or half wave-length of the sphere
vibration.
Mode III is not possible to explain with the classic lock-in theories and such a vibration

state does not exist for the case of cylinder free vibration. Govardhan & Williamson
(2005) argued that the flow must create a forcing on the body at this low frequency,
sufficient to deliver a net energy transfer to the body motion. They measured the
streamwise vorticity using DPIV and found a two-sided chain of trailing vortex pairs
that is locked-in with the sphere frequency. With this observation, they claimed that
there is a net positive energy transfer in the vibration over a cycle, enabling the highly
periodic mode III. A tethered or an elastically mounted sphere is intrinsically unstable.
Govardhan & Williamson (2005) argued that if the sphere is perturbed in the transverse
direction, it can generate a self-sustaining vortex force to enhance the body vibration,
to possibly a large amplitude. In the mode III regime, the sphere is highly likely to
be perturbed as its wake is naturally responsive to low-frequency disturbances (Brücker
2001). Hence, Govardhan & Williamson (2005) concluded that mode III is an example
of ‘Movement induced vibration’, categorized by Naudascher & Rockwell (2012).
Compared to the first two vibration modes, mode III has been little examined; only a

couple of studies have reported it, and its nature is not well understood yet. Therefore,
further investigation is presented in this chapter. We attempt to enhance the under-
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Figure 6.15.: The sphere response atm∗ = 80, U∗ = 30 and Re = 1200: (a) time history;
(b) sphere displacement together with total and vortex force coefficients, Ct and Cv,
respectively; (c) and (d) trajectory of the sphere in y-z and x-z planes, respectively, at
the asymptotic state.

standing of mode III, through some previous experimental observations together with
selected simulations.
We observed that the mode III state appears only with heavy spheres. In particular,

Jauvtis et al. (2001) found mode III for spheres ofm∗ = 28, 80 and 940, while Govardhan
& Williamson (2005) observed it for spheres of m∗ = 11.7, 31.1, 53.7 and 75, and
Sareen et al. (2018a) for a sphere of m∗ = 14.2. From this, we can hypothesis that
mode III arises only for high inertia systems (heavy spheres). We intended to check
this hypothesis with a sphere of higher mass ratio. Unfortunately, simulations are very
costly for higher mass ratio cases, since it takes a very long time to reach the asymptotic
state. Therefore, only a couple of runs were feasible.

6.3.1. Present results at mode III

At m∗ = 0.8 and Re = 1200, intermittent mode IV vibrations were observed for U∗ ∈
[16, 32] just after mode II, without a trace of mode III. To study the possibility of mode
III being excited, we performed a simulation with a sphere of m∗ = 80 at U∗ = 30 and
Re = 1200. This U∗ was chosen since mode III emerged predominantly for the reduced
velocity range, U∗ ∈ [20, 40], in earlier experimental studies. Figure 6.15 (a) shows the
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Figure 6.16.: Wake observed in mode III (Re = 1200, m∗ = 80, l∗ = 10 and U∗ = 30)
visualised with iso-surface of Q = 0.001. Flow from left to right.

time history of the sphere displacement in this case. As can be seen, the sphere vibration
has become fairly periodic from intermittent vibration as the mass ratio increased to 80.
The sphere response amplitude converged to a value of ≈ 0.5D after a long transient
period. The sphere vibration is highly periodic. Moreover, its frequency coincides with
the system’s natural frequency, as expected at this high mass ratio. However, neither
the total nor vortex forces were periodic, and those forces were small in magnitude with
a high frequency (see figure 6.15 (b)). As seen in previous experimental studies, the
vortex shedding frequency was higher than the sphere frequency; for this case, it was
approximately six times higher. Thus, this is essentially a mode III response. Figure 6.16
shows the wake structure observed. Figures 6.15 (c) and (d) show the sphere trajectory
in y–z and x–z planes. Its displacement in the streamwise (x) and lateral (y) directions
were negligible compared to the displacement in the transverse (z) direction. However,
the streamwise frequency is the same as the transverse frequency, in contrast to modes
I and II, for which the streamwise frequency is double the transverse frequency.

6.3.1.1. Dynamic Mode Decomposition

The wake of mode III was investigated with DMD using the velocity field over 10 sphere
oscillation cycles, with 48 snapshots per cycles. As figure 6.17 (a) shows, eigenvalues of
the Companion matrix lie mainly on the unit circle, indicating a strong periodicity of the
wake. Additionally, the dominant frequency of the wake, identified from the frequency
spectrum shown in figure 6.17 (b), f1 = 0.0335, is identical to the sphere oscillation
frequency. Even though a number of small loops were shed per oscillation cycle, the
wake displays a long wavelength structure in the downstream direction corresponding
to the sphere oscillation. Figure 6.18 (a) and (b) show the iso-surfaces of Q of the
reconstructed field with all of the KMs and only the dominant KM pair, respectively.
The reconstruction with only the dominantKM pair consists of long vortical structures,
similar to the observation of Govardhan & Williamson (2005). These long structures
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Figure 6.17.: Results of DMD analysis of 2D velocity field over 10 oscillation cycles of
Mode III at Re = 1200; (a) plot of eigenvalues of the Companion matrix; (b) frequency
spectrum; (c) and (d) Dynamic modes, KM , (visualized by vorticity field) correspond to
frequencies, f0 and f1, respectively; (e) Actual vorticity field; (f) and (g) reconstruction
of vorticity field using all KMs and the dominant KM (f0 + f1), respectively.
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Figure 6.18.: Iso-surface of Q at mode III; (a) using all KMs and (b) only the dominant
KM conjugate pair.

were also visible in the 2D vorticity field (see figure 6.17 (d)). The frequency spectrum
was dense with several frequencies, showing the effect of Reynolds number.

6.3.1.2. Response at higher reduced velocities

To compare with the results of Jauvtis et al. (2001) at higher U∗ values, two more
simulations were performed at U∗ = 70 and 150. After mode III, they have observed a
desynchronization regime for the U∗ range of ≈ [40, 100] and then mode IV vibration
for U∗ > 100 with a sphere of m∗ = 80. Consistent with their results, we observed a
small-scale vibration at U∗ = 70 and mode IV at U∗ = 150 (see figure 6.19).
As the mass ratio increased from 0.8 to 80, mode III vibration was predicted before
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Figure 6.19.: The sphere response at m∗ = 80 and Re = 1200. (a) Comparison of the
response amplitudes for m∗ = 80 calculated for U∗ = 30, 70, and 150 denoted by � with
the amplitude of m∗ = 0.8 denoted by •. The dotted line shows the expected response
amplitude curve for m∗ = 80. (b), (c) and (d) show the time histories at m∗ = 80 for
U∗ = 30, 70, and 150, respectively.

mode IV and the ranges of these modes match well with the experimental result of
Jauvtis et al. (2001). From these observations it is evident that mode III is essentially
a moment-induced vibration, as Govardhan & Williamson (2005) explained. The self-
excitation initiated by the sphere wake pattern in this low frequency regime becomes
regular most likely as a result of the high inertia of the system. If the mass ratio is too
small then the sphere motion may not become regular and will show random vibration
(mode IV), as observed atm∗ = 0.8. The mode III state can be identified as an unstable
state that can only appear for high inertia spheres. Moreover, mode III appears quite
sensitive to disturbances. For example, Sareen et al. (2018a) observed a mode III type
of response for U∗ > 14 for an elastically mounted sphere with zero-rotation. However,
when a rotation was imposed on the sphere, mode III was no longer observed. Mode
III seems weaker than mode II. As a result, we can conclude that mode III is likely to
be disappear if a continual disturbance is applied on the system.
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Figure 6.20.: Sphere trajectories in mode IV and Re = 1200. First row in y-z plane and
second row in x-z plane at U∗ = 13.9, 17.7, 22.2, 27.3, and 32.

6.4. Mode IV

Jauvtis et al. (2001) observed intermittent bursts of large amplitude vibration (mode
IV) after the mode III regime with a sphere of m∗ = 80 for U∗ > 100. The periodicity
of mode IV was found to be λA = 0.5 compared to the highly periodic first three modes
(λA = 1). They found that the sphere vibration frequency remained very close to the
system’s natural frequency throughout the range of velocity up to at least U∗ = 300.
Jauvtis et al. argued that mode IV cannot be a VIV response as the vortex shedding
frequency is much higher than the sphere frequency and there is no correlation between
those two frequencies.
Rajamuni et al. (2018a) also observed mode IV type aperiodic vibration in their

numerical study at Re = 800, and called it the Intermittent Branch. It was observed
immediately following their periodic Branch A for U∗ > 14 up to U∗ = 50 with a sphere
of m∗ = 2.685. In mode IV, Rajamuni et al. found that the r.m.s. of the oscillation
amplitude linearly increased with increasing U∗, similar to the observation of Jauvtis
et al. (2001). It was quite surprising how can a small-mass-ratio sphere could show mode
IV response for relatively low reduced velocities. Rajamuni et al. (2018a) conjectured
that it may be an effect of zero structural damping. Moreover, they argued that an
increased damping may reduce or even suppress these intermittent vibrations.
Mode IV type intermittent response was observed in this numerical study with a

tethered sphere of m∗ = 0.8 at all three Reynolds numbers considered. In particular,
the sphere showed mode IV at Re = 500 for U∗ > 14 and at Re = 1200 for U∗ > 16. For
this mass ratio, mode IV appeared immediately after mode II without an intervening
mode III, as Rajamuni et al. (2018a) observed with an elastically mounted sphere.
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Figure 6.21.: Wake structure observed in mode IV (Re = 1200, m∗ = 0.8, l∗ = 10, and
U∗ = 30) visualised with iso-surfaces at Q = 0.001. Flow from left to right.

Figure 6.20 shows the trajectories of the sphere at five different U∗ values in both x–z
and y–z planes at Re = 1200. In contrast to the first three modes, the sphere showed
significant motion in the streamwise and the lateral directions as well. As can be seen,
the regularized trajectory observed at U∗ = 13.9 (mode II) became irregular as the
sphere transitioned to mode IV. Moreover, the sphere followed a random trajectory
with a large amplitude in the transverse (z) direction. However, the dominant sphere
oscillation frequency was close to the system’s natural frequency. In this mode, no
increment was found in the time-mean drag coefficient (figure 6.6) and the fluctuation
force components were small in magnitude. There was no correlation between forces
and the sphere vibration. In addition, the wake was irregular in strength and frequency
with several vortex loops formed per oscillation cycle (see figure 6.21).
For a static sphere, Brücker (2001) measured broad low frequencies for the streamwise

vortex formation. Therefore, the motion of the sphere seems to originate from the wake
pattern of the sphere even in the mode IV regime. The sphere is likely to exhibit a
random motion than rather a periodic motion at this higher reduced velocities since
the flow speed is comparatively higher. As discussed in the previous section, when the
mass ratio increased from 0.8 to 80, mode III appeared before mode IV. Here, we can
see that the inertia of the sphere plays a major roll in this low frequency regime. When
the inertia is high, then it tends to show mode III characteristics before mode IV, but
when it is low, it shows mode IV behaviour.
For light spheres, modes III or IV were not observed experimentally due to experimen-

tal limitations (Jauvtis et al. (2001)). The maximum U∗ considered in those experiments
was U∗ ≈ 20. They observed mode II with a constant amplitude up to the highest U∗

value they considered. Mode II might be continued even for larger U∗ values. Since
mode IV is a irregular motion, it is likely to appear for light spheres in the turbulent
regime.
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6.5. Summary

Compared to cylindrical bodies, only a few studies have focused on investigating the
flow-induced vibration of spherical bodies. Therefore, this numerical study aims to
further enhance knowledge of FIV of tethered spheres, with special attention on the
different modes of sphere vibration discovered in previous experimental studies. Three
sets of simulations were conducted for a tethered sphere of mass ratio m∗ = 0.8 and
length ratio l∗ = 10 by fixing the Reynolds number at Re = 500, 1200 and 2000. The
sphere response was investigated over the reduced velocity range U∗ ∈ [3, 32]. The
major findings of this study can be summarised as follows.

The effect of Reynolds number on the mode I and II responses is substantial. The
sphere showed periodic mode I and II vortex-induced vibration responses at each Reynolds
number. For Re = 500, by deviating from the previous experimental studies, the
sphere showed a constant amplitude of ≈ 0.45D over both modes I and II regimes
(U∗ = [4.5, 12]). The sphere response amplitude increased as the Reynolds number
was increased, especially in the mode II regime. Moreover, the amplitude response
curve showed a clear transition between modes I and II for both Re = 1200 and 2000.
The sphere response was closer to that seen in previous experimental studies as the
Reynolds number was increased. As expected, the resonance response (mode I) ap-
peared near the normalized velocity (U∗/f∗)St = 1, while mode II appeared in the
range (U∗/f∗)St ∈ [1.4, 2.4] for each Reynolds number, which is consistent with the
(experimental) findings of Govardhan & Williamson (2005). The current predictions
and the results of Rajamuni et al. (2018a) for their branch A at Re = 300 and 800, ob-
served with an elastically mounted sphere, led to the conclusion that the sphere response
amplitude increases globally with the Reynolds number over the range Re = [300, 2000]

in modes I and II regimes. Moreover, the effect of Reynolds number is greater on mode
II than mode I. The mode I response appears more robust than the mode II response,
as it corresponds to the natural resonance. Two-sided hairpin loops were observed in
the wake of these two modes. Moreover, two loops were shed on opposite sides of the
sphere per oscillation cycle. However, for Re = 1200 and 2000, in mode II multiple
loops were observed over an oscillation cycle.

The mode III response is excited under the condition of high inertia of the system.
At each Reynolds number, as the reduced velocity was increased, the sphere switched
to a mode IV-type irregular response immediately after the periodic mode II response
without passing through an intervening mode III regime. In previous experimental
studies, mode III has only been found for heavy spheres. Therefore, a few simulations
were conducted by increasing the mass ratio of the sphere to m∗ = 80 at Re = 1200,
for further investigation. At U∗ = 30, on increasing the mass ratio from 0.8 to 80,
the random motion of the sphere became fairly periodic, consistent with a mode III
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response. In the wake, multiple vortex loops were observed per oscillation cycle as
seen in previous experiments. Govardhan & Williamson (2005) argued that mode III
is a movement induced vibration which is excited as a result of the initial perturbation
of the sphere occurring due to its wake pattern. We found that the sphere can only
have a sustainable periodic motion if it has enough inertia, in this low-frequency range.
Finally, mode III can be identified as an unstable vibration state that is only excited
for large-mass-ratio spheres.
The sphere motion is irregular in mode IV. A tethered sphere of m∗ = 0.8 showed

mode IV oscillations for U∗ > 14 for Re = 500 and for U∗ > 16 for the other two
Reynolds numbers. The motion of the sphere was highly irregular in this mode. Inter-
estingly, the sphere motion was mainly in the transverse direction. However, its motion
was non-negligible in the other two directions. The r.m.s of the transverse amplitude
showed an increasing and then levelling-off trend, as the reduced velocity was increased
over the mode IV regime. For m∗ = 80, mode IV was found to occur after mode III for
very large reduced velocities (U∗ = 150), consistent with observation of Jauvtis et al.
(2001). The onset of mode IV shifts to higher U∗ values as the mass ratio is increased.
The irregularity of the motion in mode IV is presumably a result of the considerable
difference between the wake forcing frequency and the natural system frequency.
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If you judge people, you have no time
to love them.

Mother Teresa

7. Conclusions and future scopes of
research

7.1. Conclusions

In this thesis, we have examined the nature of the flow-induced vibration of a sphere.
The dynamic behaviour of the sphere, forces applied on it and the wake structures
behind the body were investigated for both elastically-mounted and tethered spheres.
In addition, the effects of imposed transverse rotation on the flow-induced vibration of
a sphere were also studied. The main findings of the thesis are summarised below.

FIV of an elastically-mounted sphere

First, we explored the FIV of an elastically-mounted sphere for the classic case, where
the sphere motion was constrained to move in a direction transverse to the freestream.
Numerical simulations were conducted at Reynolds numbers 300 and 800 over the re-
duced velocity ranges 3.5 ≤ U∗ ≤ 100 and 3 ≤ U∗ ≤ 50, respectively, with a sphere of
mass ratio m∗ = 3.865.
A highly periodic vortex-induced vibration response (named as Branch A) was ob-

served at lower reduced velocities. At Re = 300, the sphere vibrated with a maximum
amplitude of 0.4D over the reduced velocity range 5.5 ≤ U∗ ≤ 10. The amplitude re-
sponse curve, A∗−U∗, for Branch A was approximately bell-shaped with a single peak,
similar to the response curve of Behara et al. (2011) and Behara & Sotiropoulos (2016)
with a 3−DOF sphere. This response curve did not exhibit a clear partition between
modes I and II. Nevertheless, we observed that the vortex phase switches from v 0◦ to
v 180◦, indicating a partition of Branch A into modes I and II.
On increasing the Reynolds number to 800, the response amplitude of the Branch A

increased substantially (maximum amplitude v 0.6D). Moreover, the response curve
showed more similarities to that observed in experimental studies at higher and varying
Reynolds numbers in the modes I and II regimes. Compared to the Re = 300 case,
the range of reduced velocities that showed synchronised vibrations was also widened
at Re = 800.
In one oscillation cycle, two hairpin loops were shed into the wake from the oppo-

site side of the sphere, creating two trails of vortex loops behind the sphere. These
vortex trails were of equal strength, as the sphere oscillation was symmetric about its
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initial position. This wake structure strongly resembles that observed by Govardhan
& Williamson (2005) for mode I and II vibrations and hairpin type wakes observed by
Behara et al. (2011).
At higher reduced velocities, the sphere response at Re = 800 was entirely different

from that atRe = 300. AtRe = 800, the sphere showed intermittent bursts of vibrations
for U∗ > 16. This aperiodic response was named the Intermittent Branch, and it
strongly resembles the mode IV vibration state identified by the experimental study of
Jauvtis et al. (2001) with a higher mass ratio sphere for very high reduced velocities
(U∗ > 100). At Re = 300, the sphere showed small scale vibrations through a new
time-mean position over the ranges U∗ ∈ [13, 16] and [26, 100], which were named
as Branch B and C, respectively. These observations led to the conclusion of that the
flow-induced vibration of a sphere is strongly dependent on the Reynolds number in the
range of 300 ≤ Re ≤ 800, especially at higher reduced velocities.

Effects of transverse rotation of VIV

Secondly, we explored the nature of the vortex-induced vibration response Branch
A, when the sphere is under a forced rotation in the transverse direction. A Reynolds
number of 300 was chosen for this study. Numerical simulations were conducted over
the reduced velocity range 3.5 ≤ U∗ ≤ 11 and rotation rates 0 ≤ α ≤ 2.5, to study the
correlation between the Magnus effect caused by the sphere rotation and the vortex-
induced vibration.
The sphere showed vortex induced vibration response even under a forced rotation.

However, it vibrated through a new time-mean position with a smaller amplitude, com-
pared with the zero-rotation case. Interestingly, the sphere response amplitude de-
creased with increasing rotation rate, and the VIV was completely suppressed beyond
α = 1.3. Concurrently, the synchronisation regime narrowed, and mostly moved toward
lower U∗ values, with increasing rotation rate. This indicates that the sphere rotation
has a comparatively larger impact on mode II than on mode I.
When a rotation was imposed on the sphere, the wake deflected to the advancing side

due to the Magnus effect; this was more prominent as the rotation rate increased. With
this symmetry breaking of the wake, the vortex loops in the trail from the advancing
side were stronger than the loops in the trail from the retreating side. This unevenness
of the wake, which affects the oscillatory forces applied on the sphere, appeared to be
associated with the reduction of the sphere amplitude at higher rotation rates. From
these observations, we can conclude that vortex-induced vibration can only persist at
small rotation rates, and the dominating Magnus effect at higher rotating rates cause
suppression of VIV, as a result of the suppression of vortex shedding.
The effects of Reynolds number on the VIV of a rotating sphere was studied at the

reduced velocity of 6, over the Reynolds number range 300 ≤ Re ≤ 1200. The sphere
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response amplitude increased significantly as the Reynolds number was increased at all
three rotation rates considered. Thus, at higher Reynolds numbers, VIV will persist
for even higher rotation rates with a larger amplitude. With this observation, we can
conclude that the VIV of a sphere is strongly dependent on the rotation rate, reduced
velocity and Reynolds number, which span the laminar regime and beyond.

Vibration modes of a tethered sphere

Finally, we studied the flow-induced vibration of a tethered sphere. Three sets of
numerical simulations were conducted at Re = 500, 1200, and 2000 with a sphere of
mass ratio 0.8 and a tether length ratio of 10 to enhance the understanding of different
modes of sphere vibration.
The sphere showed periodic modes I and II VIV responses at each Reynolds number.

The amplitude response curve at Re = 500 looked similar to that observed with an
elastically-mounted sphere in the first study at Re = 300, but with slightly higher am-
plitudes (maximum amplitude of v 0.45D). The sphere response amplitude increased
progressively with increasing Reynolds number, especially in the mode II regime. More-
over, at higher Reynolds numbers, the sphere response curves were closer to those seen
in previous experimental studies. The mode I response appeared to be more robust
than the mode II response, as it corresponds to the natural resonance. Together with
the results from the first study, we can conclude that in mode I and II regimes, the
sphere response amplitude increases globally with the Reynolds number over the range
300 ≤ Re ≤ 2000, regardless of the mounting method of the sphere. Moreover, the effect
of Reynolds number is greater on mode II than mode I.
A mode III type response was not observed with this small mass ratio sphere. In pre-

vious experimental studies, mode III has only appeared with a heavy sphere. Therefore,
a few simulations were conducted by increasing the mass ratio to 80 at Re = 1200. At
U∗ = 30, the sphere showed periodic mode III response when m∗ = 80, which was mode
IV type aperiodic response with m∗ = 0.8. For mode III, the wake showed a strong
synchrony with the sphere oscillation even though multiple vortex loops were observed
per oscillation cycle, as seen in previous experimental studies. Therefore, mode III can
be identified as an unstable vibration state that is only excited for high inertia systems.
For m∗ = 0.8, as U∗ increased beyond the periodic mode II regime, the sphere showed

mode IV type intermittent bursts of vibration at all three Reynolds numbers, similar
to that seen in Re = 800 in our first study. In this mode, the motion of the sphere was
highly irregular. But, the sphere motion was mainly in the transverse direction. For
m∗ = 80, mode IV was found to occur after mode III for very large reduced velocities,
consistent with the observation of Jauvtis et al. (2001). Thus, we can conclude that the
onset of mode IV shifts to higher U∗ values as the mass ratio is increased.
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7.2. Future scopes of research

This thesis examined the nature of flow-induced vibration of a sphere by varying the
parameters such as Reynolds number, reduced velocity, mass ratio and the rotation rate
over wide ranges in the parameter space. However, there remains scope for future work
as listed below:

1. Flow past a stationary sphere becomes unsteady with the onset of vortex shedding
beyond Re ' 270. The smallest Reynolds number used in FIV problems of a
sphere is 300. It will be interesting to know the lowest Reynolds number of the
flow at which a sphere will be excited to vibrate.

2. Only a few FIV problems of the sphere have been conducted with elastically
mounted spheres, and most of these studies constrained the sphere motion to
lie in the transverse direction. Behara et al. (2011) and Behara & Sotiropoulos
(2016) conducted the only studies on the VIV of a sphere with 3−DOF motion.
They have observed two distinct sphere responses at the same reduced velocities
at Re = 300. The majority of the results they presented are at Re = 300 by
varying U∗ in the modes I and II regimes. Therefore, it will be interesting to
investigate the nature of flow-induced vibration response with a 3−DOF sphere
at higher Reynolds numbers over a broad range of reduced velocities. In addition,
one can also explore the nature of flow-induced vibration when the sphere motion
is restricted to lie in the streamwise direction.

3. The effects of mass ratio on the flow induced vibration response of a sphere over
low to intermediate Reynolds number range have been less examined. Therefore,
the study of FIV of a sphere can be extended by broadening the mass ratio to
higher values.

4. FIV problems of the sphere at higher Reynolds numbers (Re > 2000) have only
been studied experimentally. The numerical study of FIV of a sphere with elastic
support or supported with a tether can be extended to higher Reynolds number
flows by introducing turbulent modelling.

5. The flow-induced vibration of a sphere close to the free surface will be another
interesting research study which has more practical applications.

6. We examined the effect of sphere rotation on vortex-induced vibration of a sphere
atRe = 300. In this case, VIV was found to suppressed beyond α = 1.3. Moreover,
we found that the effect of the Reynolds number is significant over the range
spanning from low to moderate Reynolds numbers. Therefore, it will be interesting
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to investigate the effects of rotational motion of the sphere on the FIV at higher
Reynolds numbers.

7. The vortex-induced vibration of a rotating sphere was studied for the classic case,
where the sphere motion is restricted in the transverse direction. It will be inter-
esting to study the nature of the problem when the sphere is allowed to move in
all three directions.

8. We investigated the effect of imposed transverse rotation on VIV of a sphere. It
will be interesting to investigate the effect of the streamwise rotation on VIV of a
sphere.

9. The effect of sphere rotation has only been investigated over the modes I and II
regimes. This study can also extend to higher reduced velocities, which the sphere
exhibit modes III and IV type vibrations.
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A. Samples of OpenFOAM controlDict
and forceCoeffs files

An OpenFOAM controlDict file

File: /home/rajamunr/Sphere/free-su…2000/h2/u50/system/controlDict Page 1 of 1

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.3.1 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object controlDict;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application icoFoam;

startFrom startTime;

startTime 150;

stopAt endTime;

endTime 2000;

deltaT 0.005;

writeControl runTime;

writeInterval 10;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable false;

functions
{

#include "forceCoeffs"
}

// ************************************************************************* //
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An OpenFOAM forceCoeffs file

File: /home/rajamunr/Sphere/free-su…2000/h2/u50/system/forceCoe�s Page 1 of 1

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.3.1 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object forceCoeffs;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
forces
{

type forces;
functionObjectLibs ( "libforces.so" );
outputControl timeStep;
outputInterval 1;
patches ( "SPHERE.*" );
pName p;
UName U;
rhoName rhoInf;
log true;
CofR (0 0 0);
rhoInf 1000;

}

forceCoeffs
{

type forceCoeffs;
functionObjectLibs ( "libforces.so" );
outputControl timeStep;
outputInterval 1;

patches ( "SPHERE.*" );
pName p;
UName U;
rhoName rhoInf;
log true;

liftDir (0 1 0);
dragDir (1 0 0);
CofR (0 0 0);
pitchAxis (0 1 0);

magUInf 1.00;
rhoInf 1000;
lRef 1; // Dimeter of the sphere
Aref 0.78539816339; // frontal area

}

//***************************************************************************//
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B. PISO algorithm used in icoFoam
solver

This algorithm states the steps of solving Navier-Stokes equations for the time step
(n+ 1) with the values of u and p at previous time step (n) for two corrector steps.
Let the superscripts ∗,∗∗,∗∗∗ denote intermediate field values obtained during the spit-

ting process. A semi discrete form of the momentum equation 3.1 can be given as

u∗ − un

∆t
= −A′u∗ +H ′(u∗)−∇pn, (B.1)

where −A′u∗ and H ′(u∗) represents the diagonal and non-diagonal elements of dis-
cretized convection and diffusion terms, respectively. This equation can rearranges as,

Au∗ = H(u∗)−∇pn, (B.2)

with A = 1/∆t+A′ and H(u∗) = H ′(u∗) + un/∆t.

Predictor step: Solve the momentum equation given in B.2 for the first intermediate
value of the velocity field (u∗) with previous values of pressure (pn ) and velocity (un).
This u∗ in general will not satisfy the zero divergence condition (given in 3.2).

First corrector step: A new velocity field (u∗∗) together with a corresponding new
pressure field (p∗) are now considered such that the zero-divergence condition

∇ · u∗∗ = 0 (B.3)

is met. For this, the momentum equation B.2 is taken as

Au∗∗ = H(u∗)−∇p∗. (B.4)

Here, non-diagonal terms of the convection and diffusion terms have treated explicitly
(H(u∗)); we will see the reason shortly. Equation B.4 and B.3 are used to derive the
pressure equation

∇
(
∇p∗

A

)
= ∇ ·

(
H(u∗)
A

)
. (B.5)

Then the pressure equation is solved for p∗ with velocity field found in the predictor
step (u∗), and afterwards equation B.4 is solved for u∗∗.
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Second corrector step: A new velocity field (u∗∗∗) together with its corresponding
new pressure field (p∗∗) are formulated such that the zero-divergence condition

∇ · u∗∗∗ = 0. (B.6)

The momentum equation B.2 is taken as semi explicit form as

Au∗∗∗ = H(u∗∗)−∇p∗∗, (B.7)

The corresponding pressure equation is therefore

∇
(
∇p∗∗

A

)
= ∇ ·

(
H(u∗∗)
A

)
(B.8)

Solving equation B.8, p∗∗ can be found. Then u∗∗∗ can be found from equation B.7.
Finally, take u∗∗∗ as un+1 and p∗∗ as pn+1.
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C. The OpenFOAM icoFoam.C file

File: /home/rajamunr/OpenFOAM/OpenF…compressible/icoFoam/icoFoam.C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
icoFoam

Description
Transient solver for incompressible, laminar flow of Newtonian fluids.

\*---------------------------------------------------------------------------*/

#include "fvCFD.H"
#include "pisoControl.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"

pisoControl piso(mesh);

#include "createFields.H"
#include "initContinuityErrs.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.loop())
{

Info<< "Time = " << runTime.timeName() << nl << endl;

#include "CourantNo.H"

// Momentum predictor

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi, U)
- fvm::laplacian(nu, U)

);
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if (piso.momentumPredictor())
{

solve(UEqn == -fvc::grad(p));
}

// --- PISO loop
while (piso.correct())
{

volScalarField rAU(1.0/UEqn.A());

volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn.H();
surfaceScalarField phiHbyA
(

"phiHbyA",
(fvc::interpolate(HbyA) & mesh.Sf())

+ fvc::interpolate(rAU)*fvc::ddtCorr(U, phi)
);

adjustPhi(phiHbyA, U, p);

// Non-orthogonal pressure corrector loop
while (piso.correctNonOrthogonal())
{

// Pressure corrector

fvScalarMatrix pEqn
(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)
);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve(mesh.solver(p.select(piso.finalInnerIter())));

if (piso.finalNonOrthogonalIter())
{

phi = phiHbyA - pEqn.flux();
}

}

#include "continuityErrs.H"

U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Info<< "End\n" << endl;

return 0;
}

// ************************************************************************* //
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D. vivIcoFoam algorithm

The steps of ‘vivIcoFoam’ algorithm, which solves fluid-solid coupled system (Navier-
Stokes equations, 3.3 and 3.4 together with the solid motion equation, 3.5) are given
below for the time step (n+ 1) with the values of u, p, ys, ẏs, and ÿs at the previous
time steps, n, n− 1 and n− 2.

Step 01: Initializations.
Read the solidMotionData file in the system directory and the boundarytToUpdate file
in the constant directory of the case. Declare variables, and perform initializations re-
quired to update the boundary conditions and to write the output data. Calculate the
dimensional parameters of the solid motion equation given in equation 3.5 according to
the user defined non-dimensional parameters.

Step 02a: Predict the solid acceleration, ÿs.
Predict the solid acceleration, ÿ(n+1)

s , using a polynomial extrapolation as shown in
equation 3.6. Then, estimate the solid velocity, ẏ(n+1)

s , and displacement, y(n+1)
s , using

equations 3.7 and 3.8, respectively.

Step 02b: Correct the solid acceleration, ÿs.
Correct the value of ÿ(n+1)

s by solving the equation 3.9. Then, update the values of
ẏ
(n+1)
s and y(n+1)

s using equations 3.7 and 3.8, respectively.

Step 03: Solve fluid equations using PISO algorithm.
PISO algorithm discussed in Appendix B was modified to solve Navier-Stokes equations
3.3 and 3.4. Each form of momentum equations in PISO algorithm in Appendix B,
needs to include the solid acceleration term in the right. Thus, equation B.2, B.4, and
B.7 become;

Au∗ = H(u∗)−∇pn + ÿ
(n+1)
s , (D.1)

Au∗∗ = H(u∗)−∇p∗ + ÿ
(n+1)
s , (D.2)

and
Au∗∗∗ = H(u∗∗)−∇p∗∗ + ÿ

(n+1)
s , (D.3)

201



respectively. Due to the new term in the momentum equation, pressure equation also
needs to modify accordingly. Thus, equation B.5 and B.8 become

∇
(
∇p∗

A

)
= ∇ ·

(
H(u∗) + ÿ

(n+1)
s

A

)
(D.4)

and

∇
(
∇p∗∗

A

)
= ∇ ·

(
H(u∗∗) + ÿ

(n+1)
s

A

)
. (D.5)

Step 04: Calculate the new forces exerted on the sphere.
With un+1 and pn+1 found from the PISO algorithm, calculate fluid forces exerted on
the sphere, f (n+1)

l .

Step 05: Iterate step 02b to step 04 until fluid forces and solid velocity
converge.
Proceed to the next iteration (to step 02b) with the newly calculated fluid forces, f (n+1)

l .
When it completed step 04, calculate the relative errors of fluid forces (e(i+1)

f ) and solid
acceleration (e(i+1)

s ) at (i+ 1)th iteration by,

e
(i+1)
f =

|f (i)
l − f

(i+1)
l |

|f (i+1)
l |

(D.6)

and

e(i+1)
s =

|ÿ(i)s − ÿ(i+1)
s |

|ÿ(i+1)
s |

. (D.7)

Brake the iterative loop if both e(i+1)
f and e(i+1)

s are less than the desired error tol-
erance. If none of the convergence criteria is met, then continue until it reaches the
maximum number of iterations.

Step 06: Update the boundary conditions, write motion data to a file and
proceed to the next time step.
Once the iterative process is over, update the boundary conditions and write the solid
motion data (ys, ẏs and ÿs) and force coefficients in all three direction to a csv file
called solidMotionData-0.csv. Then, proceed to the next time step.
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E. Files used to compile the vivIcoFoam
solver

vivicoFoam.C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
vivicoFoam

Description
Transient solver for incompressible, laminar flow of Newtonian fluids interact 

with an elastically-mounted solid body. This is a modification of icoFoam solver 
developed for flow-induced vibration problems. 

To calculate the dynamics of the solid motion, necessary parameters (mass, 
spring constant, and damping constant) are calculated according to the mass ratio, 
damping ratio and reduced velocity. Those are needed to be given in a dictionary 
called solidMotionData inside the system folder. 

The solidMotionData dictionary contains the data about the solid motion and 
numerical methods.

Example
\verbatim
massRatio 2; // m* value
zeta 0; // damping ratio
reducedVelocity 6; // U* = 5.2
D 1; // Diameter of the sphere
CS 2; // 2 for cylinder and 3 for sphere 
L 1; // If a cylinder, Length of the cylinder
Uinf 1; // Upstream velocity
dispFreedom 2; // 1 for restrict on transverse direction
numericalODEMethod 1; // Numerical method of solving solid motion: 1-

backward Eular, 2-trapezoidal, 3-impson's
coupleIterate 15; // How many iterations for coupled system.
rho 1000; // fluid density 
stopcriterion 0.001; // tolerence to stop the iterative method
underRelaxationPara 1; // 1- for no under relaxation
\verbatim

Boundary condition can be applied according to the motion restriction (1D-
transverse direction, 2D or 3D). In the constant directory, the 
'boundaryToUpdate' dictionary provides the patch names which needs to be updated 
in each time step. For a 2D mesh 'type' can be 1,2, or 3: 1- inlet only, 2: inlet, 
top an bottom, 3- inlet, top, bottom, front, and back patches. The patch names 
should match with your other dictionaries.

Example 
\verbatim
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type  1; // 0 for no, 1 for inlet only, 2 for 2D, 3 for 3D
patch1  inlet;
patch2  top;
patch3  bottom;
patch4  front;
patch5  back;
patch6  outlet;
patch7  hole; // the patch7 should be the solid 
\endverbatim

\*---------------------------------------------------------------------------*/

#include "fvCFD.H"
#include "IOmanip.H"
#include "forces.H" // To calculate the forces on solid
#include "fixedGradientFvPatchFields.H" // To get the pressure gradient at solid
#include <iostream>
#include <fstream>

int main(int argc, char *argv[])
{

argList args(argc, argv);
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "readsolidMotionData.H" // Read the solid motion data

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;
#include "initializeToSolidMotion.H"// Initializations for ode solver
#include "initilizeToWrite.H" // Initialize to write data

while (runTime.loop())
{

#include "initilizeToUpdateBC.H"
#include "readPISOControls.H"
#include "CourantNo.H"

Info<< "Time = " << runTime.timeName() << nl << endl;

// **********************************************************************//

scalar ite_ = 0;
for (int iterate=0; iterate<maxIte_; iterate++) 
{

#include "SolveODE.H"

// Change to the synchronized mode once the solid started to vibrate
if (mag(s0next_) > 0.001 && synchronized_== false) 
{

synchronized_ = true;
}

// Update the acceleration BC of the frame and higher order BC of p
#include "UpdateAccelarationBC.H"
#include "ChangePressureBConSphere.H"

fvVectorMatrix UEqn // Solve fluid equations
(

fvm::ddt(U)
+ fvm::div(phi, U)
- fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p) - ddy); // ddy- frame acceleration 

// PISO loop
for (int corr=0; corr<nCorr; corr++) 
{

volScalarField rAU(1.0/UEqn.A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn.H();
surfaceScalarField fphi = fvc::interpolate(rAU*ddy) & mesh.Sf(); 

// Surface scalar field of ddy
surfaceScalarField phiHbyA
( 
"phiHbyA",
 (fvc::interpolate(HbyA) & mesh.Sf())
+ fvc::interpolate(rAU)*fvc::ddtCorr(U, phi)
- fphi  // Frame acceleration
);
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adjustPhi(phiHbyA, U, p);

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{

fvScalarMatrix pEqn
(
fvm::laplacian(rAU, p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();

if (nonOrth == nNonOrthCorr)
{

phi = phiHbyA - pEqn.flux(); 
}

}

#include "continuityErrs.H"
U = HbyA - rAU*fvc::grad(p) - rAU*ddy;
U.correctBoundaryConditions();

}

#include "readforcedict.H" // To calculate forces on solid surface

forces f("forces", U.db(), forceCoeffsDict.subDict("forces"));
f.calcForcesMoment();
liftforce_ = (f.forceEff() & liftDir_); 
totalforce_ = f.forceEff();

 fCoeall_ = totalforce_/(0.5*rho_*Uinf_*Uinf_*Aref_);

if (dispFreedom_ == 1 || runTime.timeOutputValue() < 5) 
{

totalforce_ =liftforce_*liftDir_;
}
FlNext_ = totalforce_;
Info << " Calculated fluid forces " << FlNext_ << nl << endl;

// Termination of the FSI iterative process
if (iterate !=0)
{

Abserror_ = mag(Flold_ - FlNext_);
Relerror_ = Abserror_/mag(FlNext_);
Abserrors2_ = mag(s2next_ - s2old_) ;
Relerrors2_ = Abserrors2_/mag(s2next_);

// Write convergence errors to a file for 
debugging

#include "writeConvergenceError.H"

if (runTime.outputTime())
{

#include "writeLastMotionData.H"
}

// Terminate if the the error is less than the tolerance limit 

if ((Relerror_ < Fepsi_ ) && (Relerrors2_ < Fepsi_ ))
{ 

ite_ = iterate;
break;

}

// Terminate if the relative error of forces do not change
if (iterate >1)
{

errorratio_ = Abserror_/Abserrorold_;
if (errorratio_ <= 1+0.25 && errorratio_ >= 1-0.25 && 

Abserror_< 5 )
{

++errorcon_;
}
if (errorcon_>=5)
{

errorcon_=0;
ite_ = iterate;
break;

}
}

}
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 // Terminate if driven oscillation or no-oscillation mode
if (iterate == 0 && (mode_==2 || mode_ ==3 )) 
{

ite_ = iterate;
break;

}
 // Terminate if the solid has not synchronized
if (synchronized_ == false && iterate == 1 ) 
{

ite_ = iterate;
break;

}

 // Save motion data for the calculations of the next iteration
Flold_ = FlNext_; 
s2old_ = s2next_;
Abserrorold_ = Abserror_;
ite_ = iterate;

 }

// Save the solid motion data for next time step
s2last2_ = s2last_;  
s2last_ = s2now_;

 s2now_ = s2next_; 
s1last_ = s1now_;

 s1now_ = s1next_;
s0last_ = s0now_;

 s0now_ = s0next_;

#include "writeSolidDis.H" // Write the solid displacement data to a file
#include "updateBC.H" // Update BC at inlet boundaries 

runTime.write();
 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;}

Info<< "End\n" << endl;
return 0;

}

// ************************************************************************* //
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createFields.H

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties
(

IOobject
(

"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE
)

);

dimensionedScalar nu
(

transportProperties.lookup("nu")
);

Info<< "Reading field p\n" << endl;
volScalarField p
(

IOobject
(

"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

Info<< "Reading field U\n" << endl;
volVectorField U
(

IOobject
(

"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

// The accelaration of the reference, ddy
volVectorField ddy
(

IOobject
(

"ddy",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

# include "createPhi.H"

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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readsolidMotionData.H
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "Reading solid motion data \n" << endl;

IOdictionary solidMotionData
(

IOobject
(

"solidMotionData",
runTime.system(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE

)
);

scalar massRatio_; // Mass ration 
scalar zeta_; // Zeta
scalar Ustar_; // U* without added mass effect
scalar D_; // Diameter of the sphere or cylinder
scalar CS_; // Sphere or sylinder; 2-cylinder, 3-sphere
scalar Uinf_; // Free stream velocity of the fluid
scalar dispFreedom_; // DOF of solid; defalt 3D, set 1 for 1D
scalar maxIte_; // Maximum number of iterations of FSI solver
scalar IntegrationMethod_; // Integration method of ODE solver; default 3rd 

order AM
scalar rho_; // Fluid density
scalar Fepsi_; // Error tolerance 
scalar alpha_; // Under relaxation parameter
scalar mode_; // Vibration mode; 1- elastically mounted, 2-

driven oscillation, 3- no oscillation
scalar ymax_; // In driven oscillation, maximum amplitude
scalar yfrequency_; // In driven oscillation, frequency

solidMotionData.lookup("massRatio") >> massRatio_;
solidMotionData.lookup("zeta") >> zeta_;
solidMotionData.lookup("reducedVelocity") >> Ustar_;
solidMotionData.lookup("D") >> D_;
solidMotionData.lookup("CS") >> CS_;
solidMotionData.lookup("Uinf") >> Uinf_;
solidMotionData.lookup("dispFreedom") >> dispFreedom_;
solidMotionData.lookup("maxNoOfIterations") >> maxIte_;
solidMotionData.lookup("IntegrationMethod") >> IntegrationMethod_;
solidMotionData.lookup("rho") >> rho_;
solidMotionData.lookup("stopcriterion") >> Fepsi_;
solidMotionData.lookup("underRelaxationPara") >> alpha_;
solidMotionData.lookup("osillationMode") >> mode_;
solidMotionData.lookup("maximumDispalcement") >> ymax_;
solidMotionData.lookup("osillationFrequency") >> yfrequency_;

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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initilizeToUpdateBC.H

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// initialisation to update the boundary conditions

scalar mType_; 

IOdictionary boundaryToUpdate
(

IOobject
(

"boundaryToUpdate",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE

)
);

boundaryToUpdate.lookup("type") >> mType_;

word patch1_; // inlet
word patch2_; // top 
word patch3_; // bottom
word patch4_; // front 
word patch5_; // back
word patch6_; // outlet
word patch7_; // solid
boundaryToUpdate.lookup("patch1") >> patch1_;
boundaryToUpdate.lookup("patch2") >> patch2_;
boundaryToUpdate.lookup("patch3") >> patch3_;
boundaryToUpdate.lookup("patch4") >> patch4_;
boundaryToUpdate.lookup("patch5") >> patch5_;
boundaryToUpdate.lookup("patch6") >> patch6_;
boundaryToUpdate.lookup("patch7") >> patch7_;  
label patchID1_ = mesh.boundaryMesh().findPatchID(patch1_);
label patchID2_ = mesh.boundaryMesh().findPatchID(patch2_);
label patchID3_ = mesh.boundaryMesh().findPatchID(patch3_);
label patchID4_ = mesh.boundaryMesh().findPatchID(patch4_);
label patchID5_ = mesh.boundaryMesh().findPatchID(patch5_);
label patchID6_ = mesh.boundaryMesh().findPatchID(patch6_);
label patchID7_ = mesh.boundaryMesh().findPatchID(patch7_);

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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SolveODE.H

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam::ODESystem

Description
solve the solid motion by Backward Eular, or Trapezoidal Method, or 
two-step simpson's methos.

\*---------------------------------------------------------------------------*/

#ifndef SolveODE_H
#define SolveODE_H

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

scalar massf_ = 0; // Mass of the fluid

// Create the ODE system
if (CS_ != 2 && CS_ !=3 )
{

Info << "\n Error: The shape of the solid is undifined. \n Plese set the 
value of CS in the system dictionary, solidMotionData directory to 2 for a 
cylinder and 3 for a sphere \n";
}

// Claculate the mass of the fluid according to the shape of the solid 
if (CS_ == 2) // cylinder
{

scalar L_(readScalar(solidMotionData.lookup("L")));
massf_ = rho_*constant::mathematical::pi*pow(D_/2.0,2)*L_; 

}
if (CS_ == 3) // Sphere
{

massf_ = rho_*(4.0/3.0)*constant::mathematical::pi*pow(D_/2.0,3); 
}

scalar m_ = massRatio_*massf_;
// Structural damping constant

scalar c_ = 4.0*constant::mathematical::pi*m_*zeta_*1.0/Ustar_;
// Structural spring constant 

scalar k_ = 4.0*pow(constant::mathematical::pi,2)*m_*pow(1.0/Ustar_,2); 
scalar deltat = runTime.deltaTValue();
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scalar t = runTime.timeOutputValue();

for (int i=0; i<3; i++)
{

if (dispFreedom_ != 1 || (dispFreedom_ == 1 && i==1))
{

if (mode_ == 1) // Elastically mounted sphere/cylinder
{
 // The predictor step

if (iterate == 0) 
{

s2next_[i] = 3.0*s2now_[i] - 3.0*s2last_[i] + 
s2last2_[i]; 

}
 // The foifirst corrector step

if (iterate == 1) 
{

s2next_[i] = -(k_/m_)*s0next_[i] - (c_/m_)*s1next_
[i] + (1.0/m_)*FlNext_[i];

}
 // The other corrector steps with under relaxation
if (iterate != 0 && iterate != 1) 
{

s2next_[i] = -(k_/m_)*s0next_[i] - (c_/m_)*s1next_
[i] + (1.0/m_)*FlNext_[i]; 

s2next_[i] = s2old_[i] + alpha_*(s2next_[i] -s2old_
[i]); 

}

 // dThe default integration method is 3rd order Adams Moulton 
s1next_[i] = s1now_[i] + deltat*(5.0*s2next_[i] + 

8.0*s2now_[i] - s2last_[i])/12.0;
s0next_[i] = s0now_[i] + deltat*(5.0*s1next_[i] + 

8.0*s1now_[i] - s1last_[i])/12.0;

if (IntegrationMethod_ == 2) // Backward Eular
{

s1next_[i] = s1now_[i] + deltat*s2next_
[i];

s0next_[i] = s0now_[i] + deltat*s1next_[i];
}

if (IntegrationMethod_ == 3) // Trapizoidal rule
{

s1next_[i] = s1now_[i] + deltat*(s2next_[i] + 
s2now_[i])/2.0;

s0next_[i] = s0now_[i] + deltat*(s1next_[i] + 
s1now_[i])/2.0;

}
}

if (mode_ == 2) // Driven osillation
{

s0next_[i] = ymax_*Foam::cos
(2.0*constant::mathematical::pi*yfrequency_*t);

s1next_[i] = -
ymax_*2.0*constant::mathematical::pi*yfrequency_*Foam::sin
(2.0*constant::mathematical::pi*yfrequency_*t);

s2next_[i] = -ymax_*pow
(2.0*constant::mathematical::pi*yfrequency_,2)*Foam::cos
(2.0*constant::mathematical::pi*yfrequency_*t);

}
if (mode_ == 3) // No osillation
{

s0next_[i] = 0.0;
s1next_[i] = 0.0;

s2next_[i] = 0.0;
}

} 
}

#endif

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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UpdateAccelarationBC.H

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

if ( patchID1_ == -1 || patchID2_ == -1 ||patchID3_ == -1 || patchID4_ == -1 || 
patchID5_ == -1 || patchID6_ == -1 || patchID7_ == -1)
{

FatalError << "patch not found!" << exit(FatalError);
}

ddy.boundaryField()[patchID1_] == s2next_;
ddy.boundaryField()[patchID2_] == s2next_;
ddy.boundaryField()[patchID3_] == s2next_;
ddy.boundaryField()[patchID4_] == s2next_;
ddy.boundaryField()[patchID5_] == s2next_;
ddy.boundaryField()[patchID6_] == s2next_;
ddy.boundaryField()[patchID7_] == s2next_;
ddy = dimensionedVector("myddy", dimAcceleration, s2next_);

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ChangePressureBConSphere.H

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Initialize to update pressure gradient at solid boundary  

if ( p.boundaryField()[patchID7_].type() == 
fixedGradientFvPatchVectorField::typeName )
{

fixedGradientFvPatchScalarField& Upatch7_ = 
refCast<fixedGradientFvPatchScalarField>(p.boundaryField()[patchID7_]);

 // Calculate the pressure gradient at solid boundary based on the velocity
surfaceVectorField pgrad_(fvc::interpolate(-ddy + fvc::laplacian(nu, U) - 

fvc:: iv(phi,U)));
vectorField pgradSolid_ = pgrad_.boundaryField()[patchID7_];
vectorField n = mesh.boundary()[patchID7_].nf();
scalarField NormalpgradSolid_ = pgradSolid_ & n;
Upatch7_.gradient() = NormalpgradSolid_;

}

// Calculate the pressure gradient at the inlet boundary 
surfaceVectorField pgradall_(fvc::interpolate(fvc::laplacian(nu, U) - fvc::div

(phi,U)));

// Initialize to update pressure gradient at inlet boundary  
if ( p.boundaryField()[patchID1_].type() == 
fixedGradientFvPatchVectorField::typeName )
{

fixedGradientFvPatchScalarField& Upatch1_ = 
refCast<fixedGradientFvPatchScalarField>(p.boundaryField()[patchID1_]);
vectorField pgradinlet_ = pgradall_.boundaryField()[patchID1_];
vectorField ninlet = mesh.boundary()[patchID1_].nf();
scalarField Normalpgradinlet_ = pgradinlet_ & ninlet;
Upatch1_.gradient() = Normalpgradinlet_; //- update the pressure gradient

}

// Initialize to update pressure gradient at the top boundary  
if ( p.boundaryField()[patchID2_].type() == 
fixedGradientFvPatchVectorField::typeName )
{

fixedGradientFvPatchScalarField& Upatch2_ = 
refCast<fixedGradientFvPatchScalarField>(p.boundaryField()[patchID2_]);
vectorField pgradtop_ = pgradall_.boundaryField()[patchID2_];
vectorField ntop = mesh.boundary()[patchID2_].nf();
scalarField Normalpgradtop_ = pgradtop_ & ntop;
Upatch2_.gradient() = Normalpgradtop_; //- update the pressure gradient

}
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// Initialize to update pressure gradient at the bottom boundary  
if ( p.boundaryField()[patchID3_].type() == 
fixedGradientFvPatchVectorField::typeName )
{

fixedGradientFvPatchScalarField& Upatch3_ = 
refCast<fixedGradientFvPatchScalarField>(p.boundaryField()[patchID3_]);
vectorField pgradbottom_ = pgradall_.boundaryField()[patchID3_];
vectorField nbottom = mesh.boundary()[patchID3_].nf();
scalarField Normalpgradbottom_ = pgradbottom_ & nbottom;
Upatch3_.gradient() = Normalpgradbottom_; //- update the pressure gradient

}
// Initialize to update pressure gradient at the front boundary  

if ( mType_ == 3 && p.boundaryField()[patchID4_].type() == 
fixedGradientFvPatchVectorField::typeName )
{

fixedGradientFvPatchScalarField& Upatch4_ = 
refCast<fixedGradientFvPatchScalarField>(p.boundaryField()[patchID4_]);
vectorField pgradfront_ = pgradall_.boundaryField()[patchID4_];
vectorField nfront = mesh.boundary()[patchID4_].nf();
scalarField Normalpgradfront_ = pgradfront_ & nfront;

Upatch4_.gradient() = Normalpgradfront_; //- update the pressure gradient
}

// Initialize to update pressure gradient at the back boundary  
if ( mType_ == 3 && p.boundaryField()[patchID5_].type() == 
fixedGradientFvPatchVectorField::typeName )
{

fixedGradientFvPatchScalarField& Upatch5_ = 
refCast<fixedGradientFvPatchScalarField>(p.boundaryField()[patchID5_]);
vectorField pgradback_ = pgradall_.boundaryField()[patchID5_];
vectorField nback = mesh.boundary()[patchID5_].nf();
scalarField Normalpgradback_ = pgradback_ & nback;
Upatch5_.gradient() = Normalpgradback_; //- update the pressure gradient

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

readforcedict.H

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
// Initialize for force calculationse

vector liftDir_;
scalar liftforce_;
vector totalforce_;
scalar magUInf_;
scalar Aref_;

IOdictionary forceCoeffsDict
(

IOobject
(

"forceCoeffs",
runTime.system(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE,

 true

)
);

forceCoeffsDict.subDict("forceCoeffs").lookup("liftDir") >> liftDir_;
forceCoeffsDict.subDict("forceCoeffs").lookup("Aref") >> Aref_;

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
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writeConvergenceError.H
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
// Data on the current processor

scalar Af = Abserror_;
scalar Rf = Relerror_;
scalar As2 = Abserrors2_;
scalar Rs2 = Relerrors2_;

// Sync data to the master (in this, I will get the max)
reduce(Af, maxOp<scalar>());
reduce(Rf, maxOp<scalar>());
reduce(As2, maxOp<scalar>());
reduce(Rs2, maxOp<scalar>());

// We will now get the master to write to the file 

if (Pstream::master())
{

OFstream& errorFile = *errorPtr;
errorFile

<< runTime.timeName() << " , "<< iterate <<" , "<< Af <<" , "<< Rf << " , 
"<< As2 << " , "<< Rs2 << endl;
}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

writeLastMotionData.H

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

IOdictionary lastMotionDict
(IOobject
("lastMotionData",

runTime.system(),
runTime)

);
lastMotionDict.add<vector>("s0now", s0next_);
lastMotionDict.add<vector>("s0last", s0now_);
lastMotionDict.add<vector>("s1now", s1next_);
lastMotionDict.add<vector>("s1last", s1now_);
lastMotionDict.add<vector>("s2now", s2next_);
lastMotionDict.add<vector>("s2last", s2now_);
lastMotionDict.add<vector>("s2last2", s2last_);

static_cast<regIOobject*>(&lastMotionDict)->write();

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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writeSolidDis.H
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Data on the current processor
vector s0 = s0next_;
vector s1 = s1next_;
vector s2 = s2next_;
scalar iter = ite_;
vector fl = fCoeall_;

// Sync data to the master (in this, I will get the max)
reduce(s0, maxOp<vector>());
reduce(s1, maxOp<vector>());
reduce(s2, maxOp<vector>());
reduce(iter, maxOp<scalar>());
reduce(fl, maxOp<vector>());

// Write solid displacement, solid velocity, solid acceleration, number of 
iterations, and fluid forces

if (Pstream::master())
{

OFstream& myOutFile = *myOutFilePtr;
myOutFile

<< runTime.timeName() << " , "<< s0[0]<<" , "<< s0[1] <<" , "<< s0[2] 
<< " , "<< s1[0] << " , "<< s1[1] << " , "<< s1[2] << " , "<< s2[0]<< " , "<< s2
[1]<< " , "<< s2[2] << " , " << iter << " , "<< fl[0]<< " , "<< fl[1]<< " , "<< fl
[2] << endl; 

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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F. Additional files required for a FIV
simulation

system/solidMotionaData

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.3.1 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object solidMotionData;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

massRatio  3.8197; // Mass ratio, m*
zeta  0.0; // Damping ratio
reducedVelocity 3.5; // Reduced velocity, U* w/o added mass 
D 1; // Diameter of the sphere
CS 3; // Cylinder/Sphere, 2- cylinder and 3- sphere 
L 1; // If a cylinder, Length of the cylinder
Uinf 1; // Upstream velocity
rho 1000; // Fluid density 
dispFreedom 1; // 1- restrict motion on the lift direction. 
maxNoOfIterations 50; // Maximun number of iterations
stopcriterion 0.001; // Tolarence to stop the iterative process
underRelaxationPara 1; // Under relaxation, 1- no under relaxation
osillationMode 3; // 1-elastically mounted, 2-force diven, 3- no 
osillation
maximumDispalcement 0.4; // Maximum dispacement, if forced oscillation
osillationFrequency 0.195; // Osillation frequency, if forced oscillation
IntegrationMethod 1; // Integration method used. Defaul- Adams Moulton, 2- 
Backward Eular, 3- Trapizoidal rule.

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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system/lastMotionaData
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.3.1 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object lastMotionData;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

s0now ( 0 0.113035 0 );

s0last ( 0 0.1131 0 );

s1now ( 0 -0.0129737 0 );

s1last ( 0 -0.012904 0 );

s2now ( 0 -0.0138929 0 );

s2last ( 0 -0.0139706 0 );

s2last2 ( 0 -0.0140492 0 );

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

constant/boundaryToUpdate
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.3.1 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object boundaryToUpdate;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

type 3; // 0- no, 1- inlet only, 2- 2D (inlet, top, bottom), 3- 3D 
(first 5 patches)

patch1 INFLOW;
patch2 TOP;
patch3 BOTTOM;
patch4 FRONT;
patch5 BACK;
patch6 OUTFLOW;
patch7 SPHERE; // The patch7 should be the solid (cylinder/sphere)

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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