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Abstract

3D reconstruction is one of the important research problems in com-

puter vision and robotics. When combined with camera motion track-

ing, reconstruction allows a robot to navigate the world and perform

meaningful actions. This thesis focuses on improving the quality of

reconstruction using techniques from geometry as well as machine

learning.

Firstly, a novel object based SLAM system equipped with a recog-

nizer, that can detect duplicate structures in a scene is presented.

The detected objects are added as first order entities onto the SLAM

map, and are used to simultaneously refine the accuracy of the recog-

nized objects, the remaining landmarks, and the camera pose.

Secondly, depth perception is tackled using a modern approach where

a convolutional neural network is used to generate a depth map from

a single colour image. The close relationship shared between depths,

surface normals and surface curvature is used to jointly improve the

accuracy of all three tasks.

Thirdly, a probabilistic depth fusion pipeline is presented. The scale

invariant formulation used within the framework allows fusion of depth

maps obtained from different modalities in disparate scales.

This thesis also investigates the problem of leveraging machine learn-



ing techniques to compliment the well known optimization strategies

used in geometry. Depth, optical flow and the confidence in optical

flow generated from a neural network are used in a re-weighted least

squares solver in order to compute the camera pose. The complete

pipeline is implemented in Tensorflow and is finetuned end-to-end,

creating a feedback loop where the pose information has a direct in-

fluence on optical flow and depth. The depth and motion predictions

generated using this framework achieve state-of-the-art results on in-

door and outdoor benchmarks.

Finally, this thesis addresses the important issue of real-time depth

prediction on a mobile platform. A novel knowledge transfer strategy

is used to compress the state-of-the-depth prediction pipeline into a

much smaller network architecture. Although the accuracy reduces

to a certain extent , the depth predictions generated from the smaller

model are still able to have a noticeable impact on the output of a

SLAM system.
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CHAPTER 1

Introduction

1.1 3D Reconstruction using RGB images

Since the inception of artificial intelligence, one of the key research areas tackled

by the computer vision and the robotics community is the problem of making a

robot understand and interact with the world around it. Among our five senses

sight, hearing, taste, touch and smell, it can be argued that vision provides us with

the most amount of information. During the evolution process the creatures who

could distinguish between the presence of light and its absence had a significant

advantage and hence a higher rate of survival. This light sensor ameliorated over

millions of years to develop into the complex organ which we now call the eyes.

In the case of a robot/computer the functionality of the eye is replicated using

a camera. A camera or more specifically an RGB camera provides a 2D-image

which encapsulates both the appearance information (colour and lighting) and

the geometric information (distance from a point to the camera) about a scene.

The process of recreating the 3D structure of the world by using one or more of

these 2D RGB images is called 3D Reconstruction.
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1.2. Potential Applications

3D reconstruction is inherently coupled with another problem commonly referred

to as localization or camera tracking, the technique of determining the location of

the robot within the operating environment that the robot is trying to reconstruct.

Solving these two problems jointly is known as Structure from Motion (SfM)

and incrementally performing SfM in a real-time fashion is called Simultaneous

Localization and Mapping (SLAM). While humans often refer to things in the

world as objects, a robot sees it as a point cloud or a depth map.

The reconstruction process is generally performed using geometric techniques

where correspondences are established across different viewpoints allowing the

robot to perform triangulation. The number/density of the candidates used gives

rise to three different variants: sparse (≈ 1 − 3% of all available points) , dense

(uses all available points) and semi-dense (compromise between the previous two

variants). Since the resurgence of Artificial Neural Networks (ANNs) and the

availability of large datasets researchers have investigated the possibility of pre-

dicting structure by employing machine learning. One of the key benefits of the

latter approach is the ability to predict the structure of a scene by using a single

view.

In this thesis, I investigate how to apply techniques from geometry and machine

learning in order to perform 3D reconstruction using a single RGB camera. After

obtaining an initial estimate of the structure, the methods that could be applied

to refine the three dimensional representation of the world and perform additional

tasks such as object discovery and estimating camera motion by leveraging the

constructed 3D depth map are also explored.

1.2 Potential Applications

Advancements in robotics have revolutionised the way we interact with the envi-

ronment. An industry that was launched to replicate the dull, dirty and dangerous

2



Chapter 1. Introduction

Figure 1.1: Applications of this research are aimed to further enhance the develop-
ments in self-driving car technology, space exploration, environmental conservation etc.
Left : Tesla Model S equipped with a multitude of vision and range sensors supports
self-driving functionality. Center : NASA Curiosity space rover for unmanned space
exploration on Mars. Right : COTSbot, A robot capable of automatically detecting
Crown-Of-Thorns Starfish which destroy the coral reef and injecting it with a chemical
solution.

tasks that humans do has now well and truly surpassed human level performance

in an array of challenging problems including object recognition. However, one

of the key technologies that enable a robot to perform meaningful actions is the

knowledge about the 3D structure of a scene.

3D reconstruction when coupled with camera motion tracking act as a powerful

navigation tool. Although driver-less cars come to immediate attention when

we think of robotic navigation, the applications extend to search and rescue

operations, space exploration, environmental conservation (terminating crown-

of-thorns starfish that destroy the great barrier reef) etc. The necessity of main-

taining a consistent three dimensional representation of the world (map) in all

of the aforementioned scenarios is vital not only to avoid obstacles but also to

revisit a previously visited location in the most time efficient manner.

Reconstruction plays a vital role in vision based robotic control or visual servoing.

Typically, a robot moves to a target position based on the information it sees to

perform a grasping or a manipulation task. Perceiving the distance to the object

as well as its physical dimensions becomes crucial in-order to efficiently complete

the task. In a similar vein, 3D reconstruction plays a key role in aiding the

visually impaired community, where assistive robots help with avoiding obstacles

3



1.3. The Challenges of Reconstruction

during navigation.

Applications also extend to augmented and mixed reality, where virtual content

is fused with that of the real world. Dedicated hardware such as the Microsoft

HoloLens leverage the techniques of tracking and mapping in order to create a

convincing illusion that the virtual objects are indeed real.

1.3 The Challenges of Reconstruction

Given a 3D scene, the process of obtaining a 2D image is generally straightfor-

ward. However, the inverse problem which revolves around recovering the struc-

ture from one or more images is much more challenging. Whether reconstruction

is performed using traditional geometric methods or using machine learning, com-

plications arise along the pipeline.

1.3.1 Problems with geometry based approaches

The most crucial step of a reconstruction pipeline is finding correspondences. If

sparse features are used to represent landmarks, keypoints are detected and their

respective feature descriptors need to be computed which could then be used

to find matches. However, sparse keypoint based approaches suffer a great deal

from motion blur during rapid camera motion. The features detected and their

respective descriptors vary considerably, if the obtained images are blurred, which

makes the task of establishing correspondences much difficult. Although the

problem could be alleviated to a certain degree using multi-scale image pyramids,

the end result is not as accurate as that of a denser counterpart.

Given an initial estimate of the camera pose between two images, it is possible

4



Chapter 1. Introduction

to directly work on the images and minimize a photometric cost between the

images. As more images that share the same viewpoint are taken into account

when optimizing the cost function, an accurate representation of the world can be

realised. The main limitation of this approach is the amount of time consumed,

in order to achieve real-time performances dedicated hardware in the form of a

GPU is needed.

It is common practise to assume the brightness of a particular point/object re-

mains constant across multiple views when performing reconstruction. In order

for this assumption to be valid, the operating environment needs to be static

with no dynamic lighting and the surfaces need to be Lambertion (the apparent

brightness remains the same regardless of the observation angle). However, in a

dynamic environment the appearance of the world changes (for e.g due to change

of day and night), objects that were visible at a certain point in time could be-

come occluded due to dynamic objects and makes the reconstruction problem

much more challenging.

1.3.2 Problems with machine learning approaches

Data-driven machine learning approaches aim to learn a non-linear mapping from

RGB imagery to a representation of the structure of a scene. Supervised learning

techniques rely on datasets of labelled data. A typical training example for depth-

map prediction is an RGB image and its corresponding depth image which could

be obtained from a sensor such as a Microsoft Kinect or a LIDAR. Although

large datasets such as NYUv2 [140], KITTI [63] exist, there is a lack of labelled

data for challenging environments such as underwater and underground mines.

A direct consequence of having insufficient training data is over-fitting, where the

machine learns well to model the training data but does not generalise well to

test cases.
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1.3. The Challenges of Reconstruction

Convolutional Neural Network (CNN) models that achieve state-of-the-art per-

formances consist of millions of parameters to tune (for e.g DenseNet [90] contains

≈ 25 million parameters). Large models consume a lot of memory as the activa-

tions and the gradients required for back-propagation need to be held in memory

at a single point in time during training. Training a model is also a time con-

suming process and could range from a few hours to a few days. Reconstruction

process is generally also constrained by run time; however, achieving real-time

performance while maintaining a high accuracy is still a challenge.

A large proportion of neural architectures (VGG [174], ResNet [90], DenseNet

[90]) were initially built to solve image classification problems. Although these

models have been successfully adapted to perform pixel-wise segmentation tasks,

the loss of spatial information during the downsampling process (pooling opera-

tions) greatly affect the performance of geometry related problems such as depth

or surface normal prediction.

Finally, the techniques/intuitions that are proven to work using traditional meth-

ods can not also be directly applied to machine learning approaches. For exam-

ple, when estimating optical flow (the pattern of apparent motion between two

images) it is easier to estimate smaller motions using traditional methods. How-

ever, this is generally not the case using machine learning approaches as shown

in FlowNet[92].

6



Chapter 1. Introduction

1.4 Contributions

This thesis is largely centred around the reconstruction problem and the methods

which could be applied to refine structure of a scene. We begin with a novel

geometry based technique by taking a step in the direction of object based SLAM.

The main goal was to exploit the duplicate structures that are present in a scene

in order to reconstruct an accurate representation of the world while improving

the camera pose. The duplicate objects are detected during run-time as opposed

to previous work that use a pre-populated object database. Furthermore, we

demonstrate that the detected objects which are added as first-order entities in

to the map can be leveraged during the map optimization process to refine both

the 3D position of the landmarks and the camera poses. Chapter 4 provides a

detailed analysis including synthetic and real-world experiments.

In Chapter 5, we look at improving the performance of depth predictions gen-

erated from a neural network using the knowledge of related information. More

concretely, we demonstrate that by predicting surface normals and surface curva-

ture in tandem with the depths while preserving the model capacity, the accuracy

of all three predictions can be improved. This work also features the first CNN

to predict surface curvature from a single RGB image.

The 3D structure of a scene is often obtained from one of three different modes:

a dedicated sensor (e.g Microsoft Kinect, Velodyne LIDAR), a SLAM system or

as a prediction generated from a convolutional neural network. All three modes

have their pros and cons, sensors are the most accurate but can contain missing

data. In addition, these sensors are generally expensive compared to a monocular

camera. Sparse SLAM systems despite being fast generate sparse maps which

are in arbitrary scales. Although a neural network produces a dense output, the

accuracy of the depth values are lower compared to the previous two modalities.

In Chapter 6, we present an approach that can be used to combine these different

modes of inputs probabilistically using the confidence estimate of each modality

7



1.4. Contributions

generated from a neural network. Our framework allows fusion of depth maps

in arbitrary scales (for e.g a SLAM depth map with a depth prediction from a

CNN) and runs at frame rate on a workstation GPU.

As we will see throughout the course of the thesis, CNNs have been enormously

successful at tasks that benefit from feature extraction (classification, semantic

segmentation, depth prediction, optical flow prediction etc.). On the other hand,

computer vision and robotics researchers have successfully tackled motion esti-

mation using techniques from geometry. In an effort to harness the useful aspects

of both machine learning and geometry in Chapter 7, we train a neural network

that predicts depth, optical flow and the confidence of optical flow given an im-

age pair and use this information in a weighted least squares (WLS) optimisation

pipeline in order to generate the motion parameters governing the camera mo-

tion. Since, the entire pipeline is implemented in Tensorflow[1], it allows us to

reap the benefits of geometrically meaningful loss signals during training.

It can be argued that the most important aspect of any robotic framework should

be the ability to execute the designated task in real-time. This is predominantly

due to the fact that the applications (e.g human-robot interaction, navigation)

that rely on these frameworks need to react to the changes in the environment in

a timely manner. Furthermore, robotics frameworks are deployed in challenging

conditions such as mines and underwater where its extremely difficult to set

up desktop workstations. Due to these reasons, in Chapter 8 we explore the

possibility of performing depth prediction at frame rate on a resource constrained

mobile platform (NVIDIA-TX2). Our approach aims to condense the knowledge

of a large, slow CNN model capable of making state-of-the-art depth predictions

in to a much smaller and faster CNN model while minimizing the loss in accuracy.

In both Chapters 7 and 8 we show that through the use of depth predictions made

in metric scale, we can produce more accurate visual odometry with considerably

smaller scale drift.
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Chapter 1. Introduction

1.4.1 Collaborative Research

In addition to the research conducted by myself, a number of successful collab-

orative partnerships were formed during the course of the PhD. This facilitated

the investigation of a range of research problems within a span of 3 years. Collab-

orative work was conducted with Andrew Spek (Monash University) and Saroj

Weerasekera (University of Adelaide). Both universities are part of the Australian

Centre of Excellence for Robotic Vision and work on similar research themes.

Collaboration with Andrew took place within the research group itself due to

common interests and related research experiences. As I had previous experience

in machine learning, and Andrew had previously worked with low cost depth sen-

sors. Chapters 5, 7 and 8 are drawn from the publications authored with Andrew

Spek. Since Andrew and I are equal first authors in each of these publications,

the corresponding chapters include a percentage breakdown describing the contri-

butions I have personally made for the production of the particular work, based

on mutual agreement.

Collaboration with Saroj eventuated from a conversation between the respective

supervisors (Prof. Tom Drummond and Prof. Ian Reid), as both research groups

were interested in constructing a dense depth map from a sparse SLAM map.

Chapter 6 expands upon the findings of the joint publication [200] of which I was

the second author.
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1.5. Publications

1.5 Publications

The main chapters of this thesis are based on the following peer-reviewed or

currently under review (as indicated) articles :

• MO-SLAM: Multi Object SLAM with Run-Time Object Discov-

ery through Duplicates [38]

T.Dharmasiri, V.Lui & T.Drummond. In International Conference on

Intelligent Robots and Systems (IROS) , September 2016

• Joint Prediction of Depths, Normals and Surface Curvature from

RGB Images using CNNs [39]

T.Dharmasiri*, A.Spek* & T.Drummond. In International Conference

on Intelligent Robots and Systems (IROS) , September 2017

• Just-in-Time Reconstruction: Inpainting Sparse Maps using Sin-

gle View Depth Predictors as Priors [200]

C.Weerasekera, T.Dharmasiri, R.Garg, T.Drummond & I. Reid. In In-

ternational Conference on Robotics and Automation (ICRA) , May 2018

• ENG: End-to-end Neural Geometry for Robust Depth and Pose

Estimation using Convolutional Neural Networks [40]

T.Dharmasiri* , A.Spek* & T.Drummond. Submitted to Asian Confer-

ence on Computer Vision (ACCV)

• CReaM: Condensed Real-time Models for Depth Prediction using

CNNs [177]

A.Spek*, T.Dharmasiri* & T.Drummond. In International Conference

on Intelligent Robots and Systems (IROS), October 2018

* indicates equal contribution.
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1.6 Thesis Layout

A review of existing works in the literature on 3D reconstruction and machine

learning for computer vision tasks is given in Chapter 2. The mathematical frame-

work used throughout the thesis as well as an introduction to the fundamentals

of convolutional neural networks is provided in Chapter 3.

The primary contributions as outlined in the above introduction will be expanded

in chapters 4 to 8. Chapter 4 describes MO-SLAM, a multi-object visual SLAM

system. Chapter 5 presents the multi task learning framework, which learns

depths, surface normals and surface curvature in parallel. Chapter 6 describes

sparse depth map inpainting. A learning framework which predicts depth,optical

flow and ultimately the relative camera pose is described in Chapter 7. Chapter

8 presents the CNN that estimates depth in real-time on an NVIDIA-TX2.

Chapter 9 concludes the thesis and provides a summary of the contributions as

well as a discussion on future directions.
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CHAPTER 2

Background

This chapter describes the previous work undertaken in the areas relevant to this

thesis including reconstruction, camera tracking, predicting structural informa-

tion using a neural network.

2.1 Geometry based 3D Reconstruction and Camera

Localization

A three dimensional understanding of the environment is vital for robot naviga-

tion. Creating a model of the world synthetically using computer aided design

software is time consuming and involves a lot of human intervention. Further-

more, a synthetic model can fail to represent the intricate details of the real world

objects. Due to these reasons it is generally desirable to acquire data through

a sensor and then process this data as it arrives in order to recreate a model of

the world. This section aims to summarise the 3D reconstruction and camera

tracking techniques in the literature that use geometry as the driving force.
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Chapter 2. Background

Reconstruction approaches can be divided into two main categories; active and

passive methods. Active techniques use sensors that can capture range infor-

mation (for e.g structured light cameras, laser scanners). In contrast, passive

approaches do not directly observe 3D information, instead use images created

by light falling on a light sensitive surface to perform reconstruction. These ap-

proaches can also be subdivided based on the density of the reconstructed point

cloud as mentioned in the introduction. Reconstruction and localization is often

tackled as a joint problem, where the robot builds a map of the world while si-

multaneously deducing its own location within that map. The main motivation

behind solving these two tasks in tandem is due to the dependency of one aspect

on the other. More concretely, in order to perform reliable mapping the robot

needs to accurately localise itself, however, accurate localisation requires a good

map.

2.1.1 Active Sensors

Active sensors, in addition to observing light (visible or other forms) also emit

light. The commonly used active sensors are structured light cameras, time-

of-flight cameras and scanning LIDAR(Light Detection And Ranging or Laser

Imaging, Detection And Ranging) systems.

Structured Light Cameras such as the Microsoft Kinect (v1) and the Asus

Xtion have been popular among the robotic vision researchers as they are available

at a relatively low price compared to a LIDAR, and are capable of providing range

information at 30 frames per second. The cameras are equipped with an infrared

light projector and a sensor. The IR emitter projects a known infrared light

pattern sequentially which can get deformed by the structures and objects present

in the scene. The IR sensor which is horizontally displaced from the location of

the projector observes the light pattern and uses this information to produce a

depth map of the scene. Additionally, these sensor systems typically have a colour

camera, which opened up the way for RGB-D reconstruction approaches.

13



2.1. Geometry based 3D Reconstruction and Camera Localization

Henry et al. constructed a dense tracking and mapping system which incorpo-

rated RGB features for the map initialisation process [81]. However, the main lim-

itation of this approach was the time taken to generate coloured surface patches

(surfels). The surfel generation process took approximately 6 seconds per frame,

hence the framework was incapable of targeting real-time applications. Kinect-

Fusion [143] by Newcombe et al. was the pioneering work to integrate multiple

frames of depth data captured from a Microsoft Kinect into a global surface

model. They exploited the highly parallelisable nature of the problem to create

an efficient GPGPU (General Purpose Graphics Processing Units) implementa-

tion which performs real-time tracking and mapping. An incremental 3D map of

the scene was constructed using the volumetric truncated singed distance function

(tsdf) [85] while performing iterative closest point (ICP) [10] based camera pose

estimation. Whelan et al. later extended this approach to work in arbitrarily

large environments [201]. KinectFusion and its extensions such as [22, 145, 14]

were constructed by assuming the scene was static (i.e did not contain any mov-

ing objects). This assumption was relaxed in DynamicFusion [142], a framework

capable of reconstructing non-rigidly deforming scenes in real-time. However,

it remains as an open problem to extend this to large scale environments [15].

In a robotics context, Huang et al. performed visual odometry by installing an

RGB-D camera on a micro air vehicle [89].

A time-of-flight (ToF) camera is another form of an active sensor which

measures the distance to landmarks in the world by measuring the flight time of

a light ray from the emitter/projector to the target surface and back to the sensor.

The operating environment is typically illuminated with an intensity modulated,

periodic infrared light. The distances to the landmarks in the environment from

the sensor causes a time-shift in the optical signal which is equivalent to a phase

shift in the periodic signal that is detected. The time shift (time to travel twice

the distance) can then be used to compute the distance to the landmarks [170].

Similar to structured light cameras, researchers have explored the possibility of

using time-of-flight sensors for odometry and reconstruction. Despite working
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Chapter 2. Background

poorly in direct sun light conditions a Microsoft Kinect v2 (ToF) was success-

fully employed in [13] to perform mapping in coastal areas and to monitor macro

algae. May et al. presented a 3D mapping framework that used a single ToF

camera [132]. Their approach consisted of a novel calibration method to reduce

measurement errors, followed by a filtering approach to remove outliers. The

accuracy of the map was further refined by detecting surface normals using prin-

cipal component analysis and subsequently shifting related pixels towards the

detected normals. A feature based 3D SLAM system was proposed in [83] where

SURF features [8] were extracted from the range image and were used as visual

landmarks. Although the goal of their approach was to use a single sensor in

the form of ToF camera, a more robust approach would have been to extract

features from a colour image and combine that with depth estimates from the

ToF sensor. Castaeda et al. performed this exact process in [19] and obtained

improved performance over using high resolution time-of-flight images alone.

A ToF camera counterpart of KinectFusion was proposed by Wasenmller et al. to

address the problems that arise when performing dense RGB-D SLAM using ToF

cameras [198]. The same authors also presented an excellent comparison between

Kinect v1 and Kinect v2 in [199]. The most notable findings are stated here for

the benefit of the reader. Unlike the Kinect v1, they observed a strong correlation

between temperature and depth accuracy for Kinect v2 (only producing reliable

estimates after ≈ 25 mins of usage). Furthermore, they observed a higher preci-

sion for the depths produced by a Kinect v1. However, the accuracy of Kinect v1

degraded with distance while that of v2 was constant (-18 mm). Kinect v1 also

also exhibited a striped pattern which is harder to compensate for. All things

considered, they recommended the more accurate v2 sensor for SLAM applica-

tions while highlighting the necessity for pre-processing to overcome the lower

precision.

LIDAR Scanners also work on the time-of-flight principle. However, a LIDAR

uses a fine laser beam and needs to scan (for e.g by using a rotating mirror) in

order to sense multiple 3D points of a scene. In contrast, the emitter of a ToF
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2.1. Geometry based 3D Reconstruction and Camera Localization

camera illuminates the entire scene by diverging light, allowing the camera to

capture the scene in one attempt.

Combining multiple range images using the standard ICP algorithm can often

be challenging due to a few reasons. Since every individual point on a single

scan is not measured at the same point in time, the output could potentially

be distorted when the scanner moves during scanning. Furthermore, the spacing

between the scan lines tends to vary rapidly as the distance increases rendering

it difficult to establish correspondences. To address these issues, a novel oct-tree

based matching heuristic was proposed by Nüchter et al. in [149] to improve the

accuracy of ICP. In order to compensate for the motion of the range scanner, Hong

et al. proposed to estimate the velocity of the scanner over the ICP iterations [84].

Gressin et al. also suggested improvements to ICP through the use of geometrical

low-level features which describe the local shape around a 3D LIDAR point [69].

From a reconstruction point of view, LIDAR scans were used in [11, 151, 192, 46]

for mapping buildings. Grant et al. demonstrated real-time LIDAR point cloud

registration by employing a novel plane finding algorithm in a plane based frame

to frame registration regime. Visual and LIDAR odometry were combined in

the work of Zhang et al. [207]. Incorporating the two approaches allowed them

to address the limitations of both aspects as the former handles rapid motions

while the latter prevents drift. A LIDAR SLAM system was used in [153] to

perform autonomous navigation in a range of different environments with varying

characteristics.

2.1.2 Passive Sensors

Image based methods do not directly capture range data, however the geometry

is encapsulated in the pixel intensities. The two commonly used image capturing

sensors are stereo camera rigs and monocular cameras. Since the research
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that use each of these sensors have a lot of underlying image processing techniques

in common, the related work will be discussed jointly in this section. The liter-

ature presented will be organised based on the three different variants (sparse,

semi-dense and dense) corresponding to the density of the reconstructed map.

Sparse tracking and mapping frameworks use approximately 1-3% of all

available data allowing these systems to perform reliable localization and recon-

struction at frame rate even on resource scarce platforms such as the onboard

computer of a drone. One of the important steps of a typical sparse visual SLAM

or SfM pipeline is to establish correspondences between two or more views which

can then be used to solve for the relative camera pose.

First, distinct image features (generally corners) are extracted using a feature

detector. Harris and Stephens proposed a corner detector [76] based on the eigen-

values of the structure tensor (derived from the image derivatives for each pixel)

where two large eigenvalues indicate a corner, single large eigenvalue indicates

an edge and two small eigenvalues denote a flat region. The authors proposed

to use the difference of the determinant of the structure tensor and the square

of the trace (multiplied by a constant) as the corner detection criteria. A better

detection criteria in the form of examining the minimum eigenvalue was proposed

by Shi and Thomasi in [172]. The Smallest Univalue Segment Assimilating Nu-

cleus (SUSAN) feature detector by Smith and Brady [176] proposed to compare

all pixels inside a circle centred around a nucleus (centre pixel) and when the

number of pixels with the intensity similar to that of the nucleus was minimum

it was determined to be a corner. An efficient variant of this, called the Features

from Accelerated Segment Test (FAST) was proposed by Rosten and Drummond

in [164] where the centre pixel was compared against pixels on a ring of radius 3.

The process was further sped up by employing a machine learning technique to

determine the optimal order of pixels on the ring to be considered.

Once the features are detected, the next step of the pipeline focuses on establish-

ing correspondences by finding matching pairs of keypoints across views. Due to
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this reason, a method to distinguish a keypoint from one another was required

and a class of algorithms called feature descriptors were invented. A feature

descriptor encodes the appearance information of the image patch surrounding

each keypoint either as a vector of binary or floating point values. Scale Invari-

ant Feature Transform (SIFT) by Lowe [126] proposed to employ a 128 value

descriptor corresponding to a histogram of gradients in the 8 compass directions

for a 4×4 block of 4×4 cells each. While SIFT features led to superior matching

performance, the limitation was the computational cost. To address this, Bay

et al. proposed Speeded up Robust Features (SURF) which followed a similar

descriptor generation regime to SIFT [8], but the descriptor was based on the

sum of Haar-wavelet [73] responses. The authors claimed to match the perfor-

mance of SIFT while being more computationally efficient as Haar-wavelets can

be computed using integral images.

Researchers started moving towards binary feature descriptors to further reduce

the computational cost associated with computing the descriptors. Furthermore,

matching binary descriptors using Hamming distance is a relatively inexpensive

operation compared to matching floating point descriptors. Calonder et al. in-

troduced Binary Robust Independent Elementary Features (BRIEF) [16], where

the appearance information was encoded as a 256 bit string of intensity com-

parisons. The matching performance using BRIEF descriptors was superior to

that of SURF on most datasets while giving an approximately 30 fold increase in

feature computation. However, BRIEF descriptors were not rotational invariant

and required the two images to be oriented in the same direction. Rublee et al.

relaxed this assumption in Oriented fast and Rotated Brief (ORB) descriptors

[165] where FAST keypoints were detected followed by computing a dominant

orientation for each keypoint. The ORB descriptors were then aligned with the

computed orientation.

Once the correspondences are established the initial relative pose between the two

frames is commonly computed using the eight point algorithm [77], or a variant

of the five point algorithm [147, 180, 128]. The inlier matches between the two
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frames can then be used to perform triangulation, resulting in a 3D reconstruction

of the world. The aforementioned steps lay a foundation for simultaneously esti-

mating the camera motion while mapping the world as new images of the scene

become available. Furthermore, the constraints provided by the novel views are

then used to refine the reconstructed map and the camera pose in a process known

as bundle adjustment [189].

Davison proposed the first real-time monocular camera driven SLAM system [32]

by employing a Kalman filter. This work was later extended by Davison et al. in

MonoSLAM [33]. Concurrently, a particle filter based alternative was proposed

by Eade and Drummond [43]. All of the above works advocated for an active

search approach to look for new landmarks. Klein and Murray [105] tackled the

SLAM problem by using two separate threads running in Parallel for Tracking

and Mapping (PTAM). This allowed their framework to track the camera in

real-time, while performing expensive tasks such as global bundle adjustment

in the background. Their system was very robust and was catered to indoor

workspace environments while targeting the application domain of augmented

reality. Improvements for SLAM systems were suggested in the form of a novel

optimisation framework by Strasdat et al. [181] in Double Window Optimisation

(DWO). Forster et al. proposed a pixel intensity based VO pipeline dubbed

SVO which targeted micro aerial vehicles [56] where feature points were used

during tracking, mapping on the other hand was done by directly working on

the image intensities. Direct Sparse Odometry (DSO) by Engel et al. also used

image intensities in a sparse framework [47]. However, DSO was fully direct (both

tracking and mapping) and incorporated geometric and photometric calibration

to enhance the accuracy of the pose estimate. ORB-SLAM by Mur-Artal et al.

proposed to use a consistent representation of ORB features throughout multiple

threads (Tracking, Mapping and Loop Closing) [138]. They later extended the

framework to be compatible with stereo cameras and active sensors in [139],

achieving state-of-the-art performance on indoor [182] and outdoor [63] odometry

datasets.
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Semi-dense and Dense Approaches

Although the sparse map generated from the previous approaches is sufficient to

perform reliable tracking and mapping in most scenarios, having a denser repre-

sentation allows the robot to be resilient to fast motions and perform meaningful

tasks such as manipulation. Denser approaches have gained popularity due to

these reasons and increase in computational power (Moore’s Law) has enabled

researchers to increase the density of the reconstructed map. The denser ap-

proaches work directly on pixel intensities as opposed to extracting features.

Large-Scale Direct Monocular SLAM (LSD-SLAM) by Engel et al. proposed a

semi-dense SLAM system where the camera pose was estimated by performing

image alignment in a coarse to fine manner [48]. From a mapping point of view,

all points in a region with a significant intensity gradient were incorporated into

the depth map. Every incoming frame was either chosen as a key-frame or was

used to update the depth map of the current key-frame. The map was optimised

using the optimisation package g2o [110]. The authors later proposed a version

of LSD-SLAM catered towards stereo cameras [49].

Fully dense approaches use every pixel available in the image for both tracking

and reconstruction. While this process is computationally expensive Newcombe

et al. in Dense Tracking and Mapping (DTAM) [144] used a GPU to perform the

two tasks simultaneously in real-time. Inverse depth maps [26] from a multitude

of images were combined into a cost volume. Individual depths of a particular

key-frame were then computed by finding the depth that resulted in the smallest

photometric error when that point was projected on to the neighbouring frames.

Although it is challenging to perform dense tracking and mapping on a CPU,

DPPTAM by Concha and Civera [29] achieved this through the use of a novel 3D

superpixel estimation approach.
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2.2 Computer Vision and Machine Learning

Availability of large datasets [167, 63, 140] and relatively cheap high performance

computational resources in the form of General Purpose GPUs have allowed re-

searchers to solve computer vision problems using machine learning. Two of the

most commonly tackled problems are classification and segmentation. While the

former revolves around predicting a single meaningful label given an RGB image,

the latter extends this task to predicting a label at every pixel. Although the field

of computer vision using machine learning was dominated by these two problems

initially, within a span of few years, the techniques have been adapted to solve a

range of tasks.

It is worth mentioning that even though the terms machine learning and deep

learning are used interchangeably in the literature, truly they have two distinct

definitions. Machine learning is the process of enabling a robot/computer to self-

learn a task without being explicitly programmed to follow a set of instructions.

Deep Learning on the other hand is performing machine learning using deep

neural network architectures. Deep in this case refers to the number of layers in

the network. It has been shown that networks with more number of layers (deep)

generally outperform networks with fewer layers (shallow) hence shallow learning

is a rarely used term.

Convolutional Neural Networks (CNNs/ConvNets) have been very effectively ap-

plied to a range of robotic vision tasks including grasp pose detection [159, 71],

image classification [107, 79], semantic segmentation [125], depth estimation [44,

122, 171, 114], surface normal estimation [194, 5, 44]. While the main emphasis

of this thesis is on predicting structural information and refining these estimates,

for completion, a short account on approaches that leverage machine learning

techniques to solve other vision problems is provided next.
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2.2.1 Classification and Segmentation

Recognising objects of importance purely using visual data is one of the greatest

assets of any living creature with a visual system. Although humans use vision

for a range of intelligent tasks such as reading, driving and medical analysis,

even in the case of animals object recognition can become the difference between

hunting and being hunted. While using vision for survival is not a concern for

machines, replicating the useful aspects of human vision using robotic vision can

help humanity in a multitude of ways. Vision based recognition in particular has

applications in navigation (recognising pedestrians, other vehicles), biomedical

imaging (anomaly detection) and surveillance (face detection).

Classification is the problem of assigning a semantically meaningful label to an

image. Segmentation is an extension of this where a label is assigned for every

pixel of the input. Data-driven approaches have been far more superior at this

task compared to heuristic based approaches. Since real-life data that belong to

a particular class is highly diverse, constructing a model that encapsulates all the

properties using traditional approaches can be extremely difficult. For example,

the examples of the class ‘car’ can vary vastly based on the colour, the make and

model etc. Machine learning approaches aim to learn a generalised representation

based on the training examples provided.

The learning approaches can be split into three main subtypes based on the use

of training data and the amount of supervision provided during training. Data-

driven supervised training approaches [174, 79, 90] have access to labelled ground

truth data enabling the system to compute an error between the prediction and

the label. Unsupervised training approaches [115, 211, 117] on the other hand,

use unlabelled data during training and focus on learning a set of attributes that

distinctly differentiates one set of examples from another. The third technique

is semi-supervised training [72, 146, 213] which aims to combine the benefits of

both supervised and unsupervised training regimes.
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Prior to the resurgence of the convolutional neural networks, object recognition

was tackled using a range of techniques including SVMs [41, 17], decision trees [64,

173], conditional random fields [156, 109] and boosting [193]. Since the machine

learnt models presented in this thesis have been implemented using convolutional

neural networks, the remainder of this subsection focuses on the CNN based

classification and segmentation methods.

Artificial neural network research can be dated back to the early 1940s [134].

From a computer vision point of view, a majority of the earlier works focused

on hand written character recognition [34, 116]. In the latter of these works Le

Cun et al. demonstrated the capability of the back propagation algorithm to

train neural networks with real images. Despite not being a convolutional neural

network, the trained model demonstrated impressive results on unseen data.

Until recently, the main limitation of the CNNs had been the large computational

cost associated with processing high resolution images. Krizhevsky et al. [107]

proposed to address this issue by using an efficient implementation of 2D con-

volution on a GPU. Not only, it scaled down the training time from weeks to a

few days, but their framework also managed to outperform previous approaches

on the Imagenet Large Scale Visual Recognition Competition (ILSVRC) [167] by

approximately 10 per cent. Concurrently, Szegedy et al. [186] and Simonyan et

al. [174] made similar architectural improvements by constructing deeper neu-

ral networks with smaller convolutional filters. The former of these two works,

GoogLeNet [186] leveraged inception modules. Each inception module consisted

of filters with different receptive field sizes (typically 1×1, 3×3, 5×5) that were

applied on the same input layer. The activations produced by each filter were

then combined and served as the input to the subsequent layer. VGGNet [174] on

the other hand constitutes only of 3×3 filters and fully-connected layers. Their

network contained more than 130 million parameters and took 2-3 weeks to train.

Next generation of classification architectures focused on reducing the number

of trainable parameters while maintaining the depth of network. ResNet [79] by
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He et al. took a big leap in this direction by incorporating skip connections and

batch normalization into the network. In contrast to VGG [140], ResNet [79] had

fewer parameters despite being eight times as deep. ResNet [79] achieved a 3.57%

error rate on the ImageNet test set surpassing human level performance. The skip

connections of ResNet [79] were additive where the activations of one layer were

added on to another. An alternative approach was proposed by Huang et al.

[90] in DenseNets where the activations from different layers were concatenated.

DenseNets [90] contained even fewer parameters and performed competitively

with ResNet [79] on the ImageNet [167] dataset.

As mentioned previously, segmentation is the task of performing classification

on a per-pixel basis. A segmentation framework should not only recognise the

correct class label but must also determine the location for each label. This is

specially important for a range of tasks including navigation and medical anomaly

detection. For example, in addition to detecting a pedestrian it is important for

a self-driving vehicle to know where the pedestrian is. Failing to perform either

of these tasks correctly could have catastrophic ramifications. Computer vision

researchers have investigated the possibility of porting over some of the techniques

used in classification architectures to segmentation.

Fully Convolutional Networks (FCN) by Long et al. [125] introduced the first seg-

mentation architecture which takes an arbitrary sized input image and produce a

labelled image of the same resolution by modifying the classification architectures

[174, 107, 186] into fully convolutional variants. They also used skip connections

to re-introduce the fine appearance information to the deeper layers. Chen et al.

[23] used a three pronged approach to tackle the segmentation problem. They

incorporated atrous convolutions where the values of a kernel were spaced out

based on a “dilation factor”. This feature allows to arbitrarily increase the field

of view while preserving the model parameters and the amount of computations.

Secondly, they performed spatial pyramidal pooling to explicitly enforce the net-

work to use convolutional features from different spatial scales. Lastly, through

the use of a fully-connected Conditional Random Field (CRF) the model was

24



Chapter 2. Background

forced to allocate similar labels for pixels with similar colour and position. More

recently, Lin et al. proposed to predict high resolution segmentation outputs us-

ing long-range residual connections in RefineNet [121]. In a similar vein, Zhao et

al. generated high quality predictions through the use of global pyramid pooling

[210]. They achieved state-of-the-art results on a multitude of datasets including

PASCAL VOC 2012 [50] and Cityscapes [30].

2.2.2 Predicting Depths from RGB images

Humans are capable of understanding the structure of a scene by merely looking at

the environment. This allows us to perform complex tasks such as playing sports.

For example, in a game of cricket or baseball it is important to understand when

the ball is travelling towards you, and the direction the bat needs to angled in

order to hit the ball away. All of these tasks are done by observing the visual

cues. This presents an important research problem, can a robot be trained to

infer the surface quantities (depth, surface normals, surface curvature) purely

from a colour image?

Depth information can be obtained from colour images using structure from mo-

tion or SLAM algorithms as discussed previously. Monocular SLAM in particular

has two limitations. Firstly, the reconstruction is only accurate up to scale. Sec-

ondly, in order to initialise the map a second image which captures the scene from

a slightly different viewpoint is required. Both of these issues can be addressed

using machine learning approaches. Furthermore, in a robotic context going from

data to information as efficiently as possible is vital, and predicting quantities

from a single image is a step in that direction.

One of the earliest works to predict depth from a single image [136] was the

one dimensional depth prediction framework of Michels et al. They targeted the

problem of obstacle avoidance for a remote controlled car driven at high speeds.
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A supervised learning approach was taken to predict relative depths of obstacles

using columns of a particular image as the input. An extension to this approach

was later proposed by the co-authors to learn the depth map for the entire image

[171]. They presented a Markov Random Fields (MRFs) based technique to use

image cues at multiple spatial scales to model the depths as well as the interaction

between these depths at multiple scales. Hane et al. proposed to employ a data

driven surface normal classifier as a regularisation term of the energy formulation,

in order to extract a depth map from unary potentials for different labels [75].

Ladicky et al. used semantic labels to improve the accuracy of depth prediction

[112]. However, the features used in their approach were hand-crafted. This work

also introduced a threshold based metric to evaluate the performance of single

image depth prediction which reports the percentage of predicted depth values

that are within a range (δ) of the ground truth values. Since then, it has been

commonly used to benchmark the accuracy of depth prediction platforms.

Eigen, Puhrsch and Fergus in [45] introduced the first single image depth predic-

tion framework that used a convolutional neural network. This system employed

two stacks of networks (coarse and fine). The coarse-scale network was largely

based on the AlexNet [107] architecture which included two fully connected layers

enabling the network to gain a global understanding. The coarse level prediction

was then refined by the fine-scale network. Eigen and Fergus later extended this

platform to predict depths, surface normals and semantic labels simultaneously

in [44]. Predicting all three tasks in a joint framework improved the accuracy of

each individual task showcasing the benefits of sharing different feature represen-

tations of the same input.

Liu et al. [122] proposed to combine graphical models in the form of a Conditional

Random Field (CRF) with a CNN to improve the accuracy of monocular depth

estimation. More recently, Laina et al. [114] proposed to use a fully convolutional

residual architecture [79] combined with up-project blocks to achieve superior

performance over previous methods. They also found that using a reverse Huber

loss improved the accuracy of the predicted depths compared to using an L2
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loss to train the network. While most of these methods demonstrated impressive

results, explicit notion of geometry was not used during any stage of the pipeline.

More concretely, the depth prediction problem was tackled purely from a machine

learning perspective, largely treating it as a segmentation problem. This opened

up the way for geometry based depth prediction approaches.

In one of the earliest works to predict depth using the knowledge of geometry in an

unsupervised fashion, Garg et al. used the photometric difference between a stereo

image pair, where the target image was synthesized using the predicted disparity

and the known baseline [62]. Their work was largely motivated by the resource

(human) intensive nature of capturing ground truth depth data. Despite using a

pure unsupervised loss, they managed to achieve comparable performance to the

state-of-the-are supervised methods at the time. A limitation of this approach

was the not fully differentiable image formation process, in order to overcome this

problem they used a Taylor series approximation to linearise the loss criterion.

Left-right consistency was explicitly enforced in the unsupervised framework of

Goddard et al. [67] which used a Siamese style network architecture.

While unsupervised training regimes have the advantage of being able to pro-

vide a training signal even under the absence of the ground-truth data, if the

ground truth labels are available it is beneficial to incorporate this information

during training. To this end, Kuznietsov et al. [111] proposed a semi-supervised

depth prediction pipeline. This platform proved to be far superior compared to

approaches that purely used a supervised training loss or an unsupervised loss in

the form of an image reconstruction cost function. Since the ground truth data

obtained from a LIDAR is highly sparse, the image reconstruction loss plays an

important role by providing a training signal for the points that have a missing

label. On the other hand, through the use of a supervised loss, it is possible to

establish a notion of metric depths. Thus, the two approaches compliment each

other well, and when combined together provide a stronger training signal.

27



2.2. Computer Vision and Machine Learning

2.2.3 Uncertainty Prediction

Neural networks are employed to predict a range of tasks expanding beyond the

classification and segmentation tasks that have been discussed so far. Although

most of these models are deployed in a constrained environment, the end goal is to

use the trained models in the real world interacting with humans or possibly other

machines. As the stakes get higher, it becomes important to have a fail safe plan.

If the neural network model can inform when its uncertain about a prediction,

this information can then be used to take an appropriate action depending on the

scenario. The two types of uncertainties that mainly concern us are: epistemic

and aleatoric uncertainties [36]. The former explains the uncertainty in the model

parameters while the latter explains the uncertainties that are agnostic to changes

in input and the uncertainties that varies with the input. A few notable research

papers under this topic are described below. I would also like to refer the reader

to the PhD thesis of Yarin Gal for a more thorough treatment of ‘Uncertainty in

Deep Learning’ [58].

Denker and LeCun [35] were one of the earliest to explore the idea of a Bayesian

Neural Network (a network that is capable of modelling uncertainty), in which

they demonstrated that it’s possible to learn a probability distribution over the

output values. More concretely, they showed that a confidence interval could

be assigned to both the weights and the outputs of the network. Recently, [59]

showed that dropout can be used to model the uncertainty of neural network.

Kendall and Gal [101] explored the problem of understanding the uncertainties

needed for computer vision applications. They demonstrated that uncertainty

associated with model parameters and inherent noisy measurements can be both

learned using a Bayesian neural network approach. However, using the learnt un-

certainties to further refine the depth estimates is relatively less explored problem.

Finally, Kendall et al. [102] used the knowledge of uncertainty in a multi-task

learning platform where the contribution of different losses were weighted using

task dependant uncertainty.
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2.2.4 Real-time Predictions and Mobile Platforms

The target platform for a vast majority of the neural network models trained to

perform segmentation is a conventional desktop computer with a graphics card.

Despite achieving state of the art performances, these models can often consume

tens of seconds to produce an output. Consequently, on a mobile framework with

much less compute, the inference phase can be as long as half an hour. However,

real-time frameworks are of paramount importance in a robotics context, where

the ultimate goal is to create an environment where robots and humans can

interact seamlessly. All things considered, a compromise has to be made between

accuracy and runtime and the research summarised below strive towards achieving

that goal.

Redmon et al. proposed a real time object detection framework called YOLO

to simultaneously predict a bounding box and the associated class probability

[160]. MobileNets by Howard et al. specifically targetted mobile platforms [88].

They used depth-wise separable convolutions as well as two hyperparameters to

choose the width and the resolution of each layer. MobileNets achieved similar

performance to that of VGG16 [174] despite having the number of parameters

reduced by a factor of 32. ICNet [209] tackled the problem of real-time semantic

segmentation by using a cascaded input of varying image resolutions. A learnable

fusion layer integrates the feature stacks learnt at different resolutions. Their

system runs at 30fps on a TitanX GPU, while slightly outperforming deeper

segmentation frameworks such as FCN [125].
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CHAPTER 3

Preliminaries

With the primary goal of making the thesis as self-contained as possible, this

chapter introduces the mathematical concepts used throughout the document as

well as a brief introduction to Convolutional Neural Networks (CNNs). Firstly,

the notation used to represent points as well camera pose is introduced. Secondly,

a short account on rigid-body transformations and camera projection is included.

Subsequently, a summary of various layers of a convolution neural network is pre-

sented. Finally, the chapter is concluded with an outline of the software packages

used to conduct the experiments described in the thesis.

3.1 Mathematical Notation

3.1.1 Points and Vectors

A vector is represented as a lower case boldface character : v. An n-dimensional

point in Euclidean space is represented as a vector in Rn. For example a vector
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y

x z

Figure 3.1: Representing a point in 3D. The point marked with the yellow dot has
the coordinates (2,1,3)

in R3 can be represented as x =
(
x y z

)T

A 3D point can also be represented using homogeneous coordinates x̃ =
(
x̃ ỹ z̃ w̃

)T
,

where vectors that differ by a scale factor are considered to be equivalent.

A homogeneous vector x̃ can be converted back into its’ inhomogeneous repre-

sentation x by dividing all elements in the vector by the last element.

x̃ =
(
x̃ ỹ z̃ w̃

)T
= w̃

(
x y z 1

)T
(3.1)

The vector
(
x y z 1

)T
is called the augmented vector. Homogeneous points

with a last element of zero represent points at infinity and are called ideal points.

Points are defined with respect to a coordinate system as shown in Figure 3.1.

Having defined a representation for 3D points, we can now examine how a point

or a collection of points can be transformed.
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3.2 Transformations

A 3D point defined with respect to a coordinate frame can be transformed to

another coordinate frame using a 4×4 motion matrix (T ) as follows :


x′

y′

z′

1

 = T


x

y

z

1

 , where T =

(
R t

01×3 1

)
(3.2)

In this thesis, we are primarily concerned with rigid body transformations that

preserve angles and distances. Rigid body transformations are also known as

Euclidean transformations and can be represented using a combination of a 3×3

rotation matrix (R) and a 3×1 translation vector (t). The rotation matrix is

orthonormal where the |R| = 1 and the columns are orthogonal to each other.

As a consequence of these two conditions we can observe that RTR = I where I

is the 3× 3 identity matrix.

Throughout the remainder of this thesis transformation matrices as well as its

constituent matrices are expressed to reflect the direction of the transformation.

More concretely, a transformation matrix is expressed as T←−
ba

, its rotational com-

ponent as R←−
ba

and the translational vector as t←−
ba

. Where a and b are two coordi-

nate frames and the direction of the motion is given by the direction of the arrow

←−. Hence, a transformation from frame a to c via frame b can be expressed as

follows :

T←−ca = T←−
cb
T←−
ba

(3.3)
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3.3 Lie Groups

A Lie group is a smooth differential manifold which simultaneously has a group

structure consistent with its manifold structure. Different Lie groups are used

throughout this thesis to represent transformations in 3D. In particular, this sub-

section focuses on the two Lie groups SO(3) and SE(3) which represent rotations

in 3D and rigid transformations in 3D respectively.

We introduce Lie groups by first introducing the concept of a group.

A group is a set G with an operation ◦ : G × G→ G which exhibits the following

properties:

• Closure : g1 ◦ g2 ∈ G ∀ g1,g2 ∈ G
• Associativity : (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) ∈ G ∀ g1,g2,g3 ∈ G
• Identity : ∃I ∈ G : I ◦ g = g ◦ I = g ∀g ∈ G
• Inverse : ∃g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = I ∀g ∈ G

A matrix representation of a group G can be defined as follows, if there exists an

injective function:

ρ : G→ GL(n)

such that ρ(g1◦g2) = ρ(g1)ρ(g2), ∀ g1,g2 ∈ G. Studying the matrix representation

of a group provides a lot of insight into the group structure as the group can be

analysed closely by examining the properties of the matrix group.
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3.3.1 Rotations in 3D space, SO(3)

Rotations in 3D space form a group known as Special Orthogonal group SO(3).

Special in this case refers to the set of matrices with a determinant 1, orthogonal

corresponds to real matrices whose inverse is the same as the transpose and finally

3 denotes R3. These properties are summarised below:

R ∈ SO(3) (3.4)

det(R) = 1 (3.5)

R−1 = RT (3.6)

When studying Lie groups, for a majority of the tasks, it is sufficient to consider

an infinitesimal transformation around the identity compared to considering the

group as a whole. Finite transformations can then be realised through the re-

peated application of the infinitesimal transformations. The tangent space around

the identity is also known as the corresponding Lie algebra of the Lie Group. A

basis of the Lie algebra so(3) can be derived as follows:

The rotations about the x,y,z by an angle ψ1,ψ2,ψ3 respectively is given by:

R(ψ1) =

1 0 0

0 cos(ψ1) −sin(ψ1)

0 sin(ψ1) cos(ψ1)



R(ψ2) =

 cos(ψ2) 0 sin(ψ2)

0 1 0

−sin(ψ2) 0 cos(ψ2)

 ,
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R(ψ3) =

cos(ψ3) −sin(ψ3) 0

sin(ψ3) cos(ψ3) 0

0 0 1



The generators can then be obtained by applying Gk = dR(ψk)
dψk

∣∣∣
ψk=0

k ∈ 1,2,3

G1 =

 0 0 0

0 0 −1

0 1 0

 G2 =

 0 0 1

0 0 0

−1 0 0

 G3 =

 0 −1 0

1 0 0

0 0 0

 (3.7)

3.3.2 Rigid Transformations in 3D space, SE(3)

A rigid transformation (T ) can be separated into a translation vector and rotation

matrix as shown below:

R ∈ SO(3), t ∈ R3 (3.8)

T =

(
R t

01×3 1

)
∈ SE(3) (3.9)

The generators of the lie algebra se(3) can be obtained by taking the derivative
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of each dimension evaluated at the identity.

G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



G4 =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


(3.10)

3.3.3 The Exponential and Logarithmic Map

Given a Lie group G with the Lie algebra g, the exponential map takes the

elements in the algebra to that in the group.

exp : g→ G (3.11)

The inverse operation which takes the members in the group to elements in the

lie algebra is given by the logarithmic map.

ln : G→ g (3.12)
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3.4 Camera Projection

Projecting a landmark in the world on to the image plane is an important step

in a SLAM pipeline. The pinhole camera model as shown in Figure 3.2 can be

considered as one of the simplest projection models. This lensless model creates

an image by allowing light to pass through a pinhole sized aperture in an otherwise

light-proof box.

Assuming the camera pose is known, a landmark in the world can be projected

on to an image as follows:

λuλv
λ

 = KT


x

y

z

1

 (3.13)

λuλv
λ

 =

fx 0 cx

0 fy cy

0 0 1


R00 R01 R02 tx

R10 R11 R22 ty

R20 R21 R22 tz



x

y

z

1

 (3.14)

where K and T denote the camera intrinsic matrix and the camera pose respec-

tively.

3.4.1 Optical Distortion

Optical distortion causes straight lines in a scene to appear as curved after projec-

tion (Figure 3.3). The three most common distortion patterns are radially sym-

metric due to the symmetry of the photographic lens. Barrel distortion causes
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y

x z

Figure 3.2: Pinhole camera model. Left : An illustration of a 3D landmark being
projected on to an image using the pinhole camera model. Note that the projected
image is inverted. Right : An upright image can be obtained by having a virtual image
plane in front of the camera. The principal point is denoted by (cx, cy). The focal
length (f) is the distance between the optical center of the camera and the principal
point.

straight lines to curve inwards in a shape of a barrel, pincushion distortion ex-

hibits the opposite where straight lines are curved outwards from the center and

finally, moustache distortion exhibits a combination of the former two.

Figure 3.3: Forms of optical distortion a: undistorted image, b: barrel distortion, c:
pincushion distortion, d: moustache distortion.
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The authors of the KITTI[63], NYUv2 [140] and TUM [182] datasets use the

lens distortion model given in the equation system 3.15 to rectify the datasets.

The rectified images are used as inputs to the CNNs described in this thesis. For

MO-SLAM we only use the first radial distortion coefficient as our cameras do

not exhibit tangential distortion.

x
′

y′

z′

 =

R00 R01 R02 tx

R10 R11 R22 ty

R20 R21 R22 tz



x

y

z

1


x′′ =

x′

z′

y′′ =
y′

z′

u = fx(x
′′(1 + k1r

2 + k2r
4 + k3r

6) + 2p1x
′′y′′ + p2(r

2 + 2x′2) + cx

v = fy(y
′′(1 + k1r

2 + k2r
4 + k3r

6) + p1(r
2 + 2y′′2) + 2p2x

′′y′′) + cy

(3.15)

where r2 = x′′2 + y′′2 is the squared radial distance of the normalised camera

coordinates. k1, k2, k3 are the radial distortion coefficients. p1 and p2 are tangen-

tial distortion coefficients. u, v are the rectified image coordinates. Matlab and

OpenCV provide toolboxes to obtain the camera calibration parameters.

3.5 Convolutional Neural Networks (CNNs)

CNNs were originally employed to perform image classification and segmentation

tasks as seen in the previous chapter and have since been extended to predict a

range of quantities including depth, surface normals and curvature. CNNs are

highly desired for these problems due to their capability of extracting image fea-
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tures which are invariant to rotation, scale, lighting conditions etc. While the end

goal is to find a non-linear mapping from the colour image to the expected output

(class label, per-pixel depth), predicting surface quantities is more challenging as

the variants of the same input could lead to multiple outputs as shown in Figure

3.4. This section aims to introduce the typical layers that can be found in a CNN,

as well as the hyperparameters used during training.

Figure 3.4: A typical image classification network would predict “car” as the label for
all three images, however a depth prediction network needs to predict radically different
values for the pixels that belong to the dynamic car object as it is moving forward. The
images are taken from the KITTI dataset.

3.5.1 Layers of a Convolutional Neural Network

Layers of a typical CNN can be loosely categorised into 5 types : feature extrac-

tion, activation, normalisation, sub-sampling and up-sampling. These layers are

extensively used in the neural network architectures constructed in chapters 5,7

and 8.

Feature Extraction Layers

The primary goal of a feature extraction layer is to extract meaningful information

from a high dimensional input such as an image, a video etc. Feature extraction

is generally performed using a series of learnable convolutional filters. The height
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and width of each filter and the number of convolutional filters are architecture

specific hyperparameters.

Figure 3.5: A convolutional layer (purple) is applied on an input (green) producing an
output tensor (orange). Darker colours indicate slices of respective tensors. Dimensions
of each tensor are indicated on top.

A convolutional layer is a stack of convolutional filters each with the same

height and width and act as the the building block of a CNN. Applying a con-

volutional layer on an input image yields an output tensor as shown in Figure

3.5. This output tensor serves as the input to the next set of convolutional filters

and this process is repeated to extract a hierarchy of features. Figure 3.6 shows
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a numerical example of applying a convolutional filter to an input.

Figure 3.6: This example shows how to compute a single entry of output. This is
achieved by computing the dot product of the green tiles and the purple tiles and
adding the intermediate results {3× 1 + 2× 1}+ {1× 1 + 3× 2}+ {1× 1 + 3× 2} = 19

Fully Connected Layers are predominantly used in classification networks to

perform feature extraction due to their unique characteristic of being able to see

the entire image in its field view. More concretely, each weight of a fully connected

layer is connected to every activation of the previous layer. This allows the

network to obtain a global understanding of the scene. However, fully connected

layers are expensive in terms of memory consumption and are generally applied
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on a low resolution (spatial) input.

Activation Layers

Activation layers or non-linear layers are generally applied after a convolutional

layer. Primary goal of an activation layer is to introduce non linearity into the

CNN architecture. Although convolutional layers perform remarkably well at

extracting features, convolution itself is a linear operation. Activation layers play

a crucial role in achieving the end-goal of finding a non-linear mapping from the

input images to the desired outputs. The most commonly used activation layers

are summarised below.

• Rectified Linear Unit (ReLU)

y = max(0, x) (3.16)

• Sigmoid

y =
ex

ex + 1
(3.17)

• Hyperbolic tangent

y =
ex − e−x

ex + e−x
(3.18)

Normalisation Layers

Feature normalisation is applied at various parts of a neural network in order to

improve the performance and stability of the network. The input image itself

is generally normalised by subtracting the dataset mean. In addition to this,

the input can be also divided by the dataset standard deviation. The Batch
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Normalisation [93] layer was invented to perform this process at every layer.

Ioffe and Szegedy in [93] showed batch normalisation allows a network to be

trained faster and more accurately. Additionally, it provides regularisation to the

network and facilitates the use of larger learning rates.

Sub-sampling Layers

As performing repeated computations purely on features that are of the initial

input resolution becomes expensive and memory intensive, it is a common practice

to reduce the spatial dimensions progressively. This is generally achieved through

the use of pooling layers (max and average) as shown in Figure 3.7 or strided

convolutional layers.

Figure 3.7: Left : 4×4 input image, Center : output after applying a 2×2 max-
pooling operation with a stride of 2, Right : output after applying a 2×2 average
pooling operation with a stride of 2.

Pooling layers do not contain any learnable weights and are applied on every

feature map along the depth dimension, this preserves the number of feature

maps along this channel, while reducing the spatial dimensions based on the

pooling factor. Given a pooling window, a max-pool layer extracts the largest

value (the most dominant feature), while an average-pool layer provides the mean
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of the values (smaller values are not completely neglected).

Alternatively, a set of feature maps can be downsampled using a strided con-

volutional layer. The downsampling factor is determined by the stride and this

approach has the added benefit of using learnable weights to summarise the in-

formation. However, strided convolutional operations are slightly expensive com-

pared to pooling operations. In practice, both approaches are used at different

stages of a neural network depending on the architectural requirements.

Up-sampling Layers

Segmentation networks in contrast to classification networks require an up-sampling

stream inside the CNN, to recover the spatial information lost during the down

sampling process as the final output is typically predicted for each pixel.

Figure 3.8: An example of 2×2 unpooling which increases the spatial resolution
along the height and width dimension by a factor of 2. In this case, the input values
are copied on to the top right position and the intermediate values are filled with
zeros. Alternatively, these intermediate values can be filled using a ‘tiling’ approach by
assigning the input value to all 4 positions in the 2×2 window.

The most commonly used upsampling techniques are unpooling, deconvolution

and interpolation (bilinear, nearest-neighbour). Similar to the pooling layers,
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unpooling layers also do not contain any trainable weights. Based on the upsam-

pling factor the input value is copied across to the output feature map as shown

in Figure 3.8.

Figure 3.9: During the pooling stage in addition to the pooled output an additional
map corresponding the locations of the maximum (switch variables) is created. These
outputs can then be used during the unpooling stage to place the unpooled values to
the corresponding locations.

Zeiler et al. in [206] proposed a modified variant where the locations of the

maximum values (“switches”) are stored during pooling and these switches are

passed on to the unpooling layer as an additional input as shown in Figure 3.9.

Another popular upsampling technique is deconvolution. Despite the name, a

deconvolutional layer truely performs transposed convolution. While the input

stride of a convolutional layer corresponds to the downsampling factor, the out-

put stride of a deconvolutional layer gives the upsampling factor. This can be

explained best using a numerical example as shown in Figure 3.10.

Although information lost during pooling (max or average) is not fully recover-

able, upsampling layers aim to reconstruct an approximate representation. Some

of the finer details lost during the down-sampling process is generally introduced
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Figure 3.10: Top: The output of a deconvolution operation when a 3×3 filter is
applied on a 3×3 input. The output stride is 2 along each dimension. Bottom:
Demonstrates a step by step breakdown of the deconvolution operation. The filter is
multiplied by the value highlighted in green and the intermediate results are summed
to obtain the final output

back in to the upsampling stream using one or more skip connections. As sug-

gested by its name a skip connection provides a direction connection from a

particular layer to another layer by skipping over the intermediate connections

as shown in Figure 3.11 . For example, activations of a layer in the encoder stage

(downsampling stream) can be passed on as an additional input to a layer in the

upsampling stream (decoder stage).

Figure 3.11: This diagram shows a high level overview of a CNN (used for depth
prediction). Red arrows indicate skip connections which allow for the activations of the
layers in the encoder stage to be passed on as additional inputs to layers in the decoder
stage.
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3.6 Training Convolutional Neural Networks

The training phase of a convolutional neural network focuses on learning a set

of weights and biases, that when combined together gives a non-linear mapping

from a set of inputs to the desired output.

3.6.1 Initialisation

The initial state of the neural network or the initial values of the weights and

biases can be set randomly (random initialisation) or to that of an already trained

network (pre-trained weights). Commonly used random initialisation techniques

are Gaussian, Glorot[66] and He[78]. Random initialisation allows each learnable

parameter to have a different starting point. The primary reason behind this is to

ensure that all the weights contribute slightly differently to achieve the end-goal

which allows the weights to be updated differently in order to extract unique

features.

Alternatively, a neural network can be initialised using pre-trained weights. How-

ever, this requires the network that needs to be trained to have the same architec-

ture as that of the already trained network. Partial initialisation is also possible

if the two networks are not identical in terms of the architecture but have some

layers in common. In this case, these common layers can be initialised using pre-

trained weights, while the remainder of the network is initialised using random

weights.

3.6.2 Loss criterion and Back-propagation

The parameters (weights,biases etc.) of a neural network are optimized using

one or more loss functions. For example, under a supervised training scheme
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the cost is computed by comparing how well the predicted quantities match the

ground truth labels as shown in Equation 3.19 and training the neural network

is largely centered around minimising this loss function. Variants of the gradient

descent algorithm are used to perform this optimization process. The crux of the

algorithm is centered around taking small steps proportional to the negative of

the gradient.

L (θ) = ||Prediction−Ground Truth||2, (3.19)

where θ represents the learnable parameters of the neural network.

Figure 3.12: During the forward propagation step an RGB image is given as the input
to the neural network, activations of each layer are passed as inputs to the following
layer ultimately resulting in a prediction at the end. The error/loss can then be obtained
by finding the difference between the neural network prediction and the ground truth
labels. During the back propagation step, the gradients can be computed with respect
to the error by applying the chain rule as shown.

Once the loss is computed for each neuron of the output layer, the required

change in weights in order to minimize this loss can be computed using the back-

propagation algorithm which uses the chain rule to propagate the gradients as

shown in Figure 3.12. The weights are updated by taking a small step propor-

tional to the negative of the gradient as shown in Equation 3.20, hence this step
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is commonly known as gradient descent.

θ(t+ 1) = θ(t)− λ · dL
dθ

, (3.20)

where θ(t) represents the current estimate of weight values, λ is the learning rate,
dL
dθ

is the partial derivate of the weights with respect to the loss and θ(t + 1) is

the updated set of weights.

The length of the step taken in the direction of the negative gradient is governed

by a hyperparameter called the learning rate. A larger learning rate can result in

overshooting during gradient descent and can often cause the network to diverge.

On the other hand, a smaller learning rate causes slower convergence. In practice,

the optimal learning rate is found by trial and error.

During training, it is possible for the network to get stuck in a local minima

exhibiting an oscillatory behaviour. One way to overcome this issue is through the

use of the momentum method [155] which slightly changes the update equation

as follows :

θ(t+ 1) = θ(t)− λ · dL
dθ

+ µ(θ(t)− θ(t− 1)), 0 ≤ µ < 1 (3.21)

The momentum value (µ) allows the network to take larger steps towards the

direction of the global minimum ensuring faster convergence.

3.6.3 Regularisation of CNNs

The primary goal behind regularisation is to prevent over-fitting which in turn

allows the network to learn a more generalised non linear mapping from the input
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data to the output. Over-fitting can be observed during training if the training

loss continues to decrease, while the validation loss increases. The harmful effects

of over-fitting can be mitigated through the use of regularisation techniques such

as dropout[179] and weight decay[108].

Dropout layers function asymmetrically during the training and inference phases.

At training time, the activations of the layer preceding the dropout layer are

randomly set to zero with a probability of p. During test time p is set zero i.e all

of the activations are passed on to the next layer unscathed. During training the

neurons of a particular layer can no longer rely on the full set of activations from

the previous layer and must learn to perform something useful on their own or in

collaboration with a small subset of activations. This forces the network to learn

more generalised representations compared to learning features that are specific

for the training set.

Building deeper and wider models which in turn increases the number of learnable

parameters (weights and biases) generally leads to increase in accuracy. However,

this also causes the network to over-fit more easily due to the large number of

free parameters present. Weight decay can be used to constrain such a network.

This prevents the weights from growing too large too quickly. More concretely,

for each weight (w) of the network an additional term γw2

2
is added to the cost

function, where γ is the magnitude of the damping factor. This is also known as

L2 regularisation. Alternatively, the weight penalty can be L1 (γ|w|), however,

this generally provides inferior performance compared to L2.

3.7 Software

The platforms and the software libraries used throughout this thesis are listed

below.

• TooN (Tom’s Object-Oriented Numerics) is a templated library for matrix
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and vector operations such as matrix and vector multiplications. TooN also

provides wrappers to LAPACK (linear algebra package) library for per-

forming matrix decompositions. Further, TooN provides matrices that are

parametrized as Lie groups. Available at: https://github.com/edrosten/

TooN.

• libCVD (Cambridge Vision Dynamics) is a high performance C++ based

library for computer vision and image processing. Available at: https:

//github.com/edrosten/libcvd.

• OpenCV (Open Computer Vision) an application programming interface

(API) for real-time computer vision. Written in C++ with python wrap-

pers. Available at: https://github.com/Itseez/opencv.

• Blender (Blender Foundation) an open-source 3D computer graphics frame-

work which was used to render 3D models of synthetic scenes. Available

at: https://www.blender.org/

• Caffe (University of California, Berkely) q C++ based deep learning frame-

work. Contains a vast array of layers used in Convolutional Neural Net-

works. Available at: http://caffe.berkeleyvision.org/

• Tensorflow (Google Brain) a python based deep learning framework. Allows

rapid prototyping and supports automatic differentiation. Tensorflow is also

bundled with Tensorboard which is a great visualisation tool to monitor the

training process in real-time. Available at: https://www.tensorflow.org

• Matlab (Mathworks) is a numerical computing platform. This software plat-

form was heavily used throughout the thesis for a range of tasks including

rapid prototyping of ideas, pre-processing of datasets and to visualise out-

puts. Available at: https://au.mathworks.com/products/matlab.html
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CHAPTER 4

Structure Refinement Using Multiple Objects

4.1 Introduction

Recovering the scene structure and the camera pose from two or more views

of the same scene, and jointly improving the reconstructed scene as well as the

parameters governing the camera motion is a well studied problem in robotics.

This chapter takes this problem one step further by introducing objects, where

the accuracy of all three aspects (structure, camera pose and objects) are refined

in the context of a SLAM system. Due to the use of multiple objects in a SLAM

framework, this approach is called MO-SLAM (Multi-Object SLAM).

In this chapter, the reconstruction problem and the subsequent structure refine-

ment component is tackled using a pure geometry based approach, where a SLAM

system is used to construct a map of the environment and to track the camera

position. Visual SLAM systems are an attractive choice for real-time robotics

due to the ubiquitous nature of standard commodity cameras as well as due to

the existence of faster sparse SLAM variants which can track and map at frame

rate. A SLAM system provides a robot with two key pieces of information, a

53



4.1. Introduction

map of the environment surrounding the robot and the location of the robot with

respect to that environment in real-time. However, in order to interact with the

entities that are present in the environment, it becomes necessary for the robot to

gain an understanding of the higher order semantics. In a nutshell, visual SLAM

grants a robot the ability to perceive and navigate while semantics allow it to

interact with the environment.

The word semantics has been used broadly in the field, specially with the recent

advancements in machine learning which look at segmenting the scene based on a

class label. In this chapter, the semantic aspect is looked at from a slightly differ-

ent angle where the map points that belong to an object are given a unique label.

More concretely, different objects are labelled in the form of Object1, Object2

etc. rather than saying“Chair, Telephone or Book”. Due to the presence of an

appearance profile associated with each object, a CNN based image recognition

approach can later be utilised to give a meaningful class label (For e.g Object1

→ chair, Object2 → book). The primary motivation behind this approach is to

avoid the use of a pre-populated object database and to advocate the use of unsu-

pervised object discovery. It should be noted that this framework is not intended

to replace existing approaches that use an object database, we envision the tech-

niques introduced in this chapter to complement such methods, as MO-SLAM

can learn new objects during run-time.

4.1.1 Contributions

In this chapter we make the following contributions:

• A novel and efficient method to cluster subsets of the point cloud from a 3D

map, and to convert these clusters into first-order entities in the 3D map.

• A tight feedback loop where additional constraints generated from convert-

ing points into first-order entities are used to improve the accuracy of the

54



Chapter 4. Structure Refinement Using Multiple Objects

visual SLAM system and to combat scale drift.

4.1.2 Related Work

Online Object Discovery Unsupervised object discovery has been a popular

research topic in the recent past [175, 3, 68], with many of these systems attempt-

ing to discover the existence of objects from a set of training images. Karpathy

et al. used 3D meshes to generate object hypothesis [99]. After segmenting the

scene into mesh segments, they compute an objectness score based on shape pa-

rameters. Cho et al. suggested a threefold approach to tackle the problem of

detecting duplicates in an online detection pipeline [24]. Starting off with feature

matching, they used a multi-layer growing algorithm to increase the matches to

an object correspondence network. Similarly, Liu and Liu used feature based vi-

sual word matching followed by a greedy randomized adaptive search procedure

to detect common object patterns from a single view [124]. In [196] Wang et al.

proposed to discover duplicate images within 2 billion images using a framework

which combines global and local features. Global features are used to detect

exact and global duplicates while local image descriptors are needed to handle

variations such as transformations and crops. However, as all of these systems

lack any 3D information they cannot distinguish between multiple instances of an

object but merely different views. Therefore, to achieve true duplicate discovery,

a platform that feeds in structural information is required.

Structure From Motion with Duplicates Reconstructing scenes containing

symmetrical and/or duplicate structures have been first explored by the SfM com-

munity. Roberts et al. proposed to use an expectation-maximization algorithm

in tandem with a sampling technique that incorporates geometric, photometric

and time-based cues to find correspondences between duplicate objects in a large,

unordered set of images [162]. They eliminated erroneous matches by looking for

missing correspondences across triplet of images. Jiang et al. proposed a similar

approach in [98] where they searched for missing correspondences in the whole
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scene by reprojecting 3D points into images instead of local regions. In [28] Cohen

et al. showed that feature matches between symmetrical structures in the scene

can be used to impose additional constraints during the reconstruction process.

Similarly, we use duplicate objects to impose additional constraints on the map.

Finally, Wilson and Snavely proposed to disambiguate the scene by computing a

bipartite local clustering coefficient for point tracks(set of matches across multiple

images) [202].

Combining SLAM and Semantics Associating object labels with features

in the map was successfully demonstrated by Castle et al. [20] and Civera et

al. [27]. Although the former was restricted to planar objects, both of these

systems used a set of object models constructed using feature descriptors during

an offline stage which were recognised and registered to the map during run time.

Bao et al. [6] proposed a semantic SfM system that was able to jointly estimate

the camera poses, 3D landmarks and object labels by using both geometric and

semantic properties. However, a processing time of 20 minutes per image pair

rendered their system infeasible for real-time operation. More recently, Pillai et

al. [154] developed an object recognition system which was built on top of ORB-

SLAM [138], a state-of-the-art SLAM system and was able to recognise objects

from multiple view points robustly. Despite using ORB-SLAM to improve the

performance of their object detection module, they did not incorporate these

objects as additional constraints to optimize the map.

Further, there are systems which use RGB-D data[169, 168, 130, 25, 133] to

incorporate semantics into SLAM. The SLAM++ [169] system replaces the 3D

model of an object built during run-time with an offline-generated 3D model of

the object and shows how it improves the accuracy of the map, whereas the dense

planar SLAM system [168] models the world as a set of dense 3D planes. The

work of Ma and Sibley [130] discovers objects by first initializing the system with

a view of the scene without objects, and then comparing a virtual scene created

by this initial view with the current view to look for inconsistencies introduced by

an object. In contrast, our work does not require an initialization without objects
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present in the scene. Choudhary et al. [25] proposed to discover objects using a

segmentation strategy on the depth map, and then using the discovered objects

to improve the map. However, they assume that the scene does not contain

duplicate objects whereas our system discovers objects by detecting the existence

of duplicate objects in the scene.

4.2 System Overview

MO-SLAM consists of three threads running in parallel (see Figure 4.1). Similar

to conventional visual SLAM systems, there is a tracking thread which estimates

the pose of the camera for every incoming video frame, and a mapping thread

which optimizes the map as the camera explores the environment. The difference

between MO-SLAM and conventional visual SLAM systems is the addition of

a recognition thread that is responsible for detecting duplicate objects in the

environment.

The tracking thread estimates the pose of the camera for every incoming frame.

The pose is initialised by performing sparse model-based image alignment [55]

between the current frame and the previous frame, where the model is generated

from landmarks that have been observed by the previous frame. The pose is

then refined by minimizing the re-projection error of nearby landmarks into the

current frame in a coarse-to-fine manner [105].

The recognition thread detects landmarks that belong to duplicate objects in the

map. For every new keyframe, the recognition thread determines a set of existing

keyframes that are similar in appearance to the new keyframe. Each of these

existing keyframes is processed to determine if the existing and new keyframe are

observing duplicate instances of the same object type. These duplicate instances

are then added to the map as first order entities (see Section 4.3.2).
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Finally, the mapping thread optimises the map by minimising the re-projection

error of landmarks into cameras in a bundle adjustment framework. In contrast

to conventional visual SLAM systems, our bundle adjustment framework treats

landmarks belonging to objects as first-order entities, thus allowing us to impose

additional constraints in our bundle adjustment formulation (see Section 4.3.5).

It is worth mentioning throughout the remainder of the chapter, we use the

following camera projection function which models radial distortion [37]:

ẑ(Ti,p) =

[
cx

cy

]
+

[
fx 0

0 fy

][
y1
y3
y2
y3

]
(1 + k1r

2) (4.1)

where y = Ti · p. Further, k1 is the distortion parameter, r = ||y||, fx, fy are the

focal lengths in the x and y directions, whereas cx, cy are the principal offsets.

Landmarks p are represented using a global coordinate system where the first

keyframe of the SLAM system is chosen as the global reference.

4.2.1 Duplicate Objects

A duplicate object O is defined as a set of landmarks that can be clustered into

different instances I1, I2, · · · In where n ≥ 2. There is a rigid body transformation

(SE(3)) from the landmarks of the first instance I1 to the landmarks of every

other instance Ij of the object. In order to distinguish a transformation between

duplicate landmarks and a regular transformation, the notation Em←−
j1

is used. This

denotes the transformation between the duplicate landmarks of instance I1 and

Ij of the object Om. This results in the following constraint between duplicate

landmarks:

pmIj = Em←−
j1
· pmI1 ∀j ∈ 2, · · ·n, (4.2)

where pmIj represents the landmarks belonging to instance Ij and pmI1 represents

the landmarks belonging to instance I1 of object Om. We assign a reference

keyframe to every instance of the duplicate object. This reference keyframe is
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Figure 4.1: A flowchart of MO-SLAM. Note how information from the object
database is integrated as part of the map, and then used to optimize the map.
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Object Database

Object 1 Object 2 Object m
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Instance 1

Instance 2

Instance n
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Instance 1
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Instance 1

Instance 2 Instance n

Figure 4.2: The representation of the object database. The database consists of
different objects, where there are at least two instances for each object in the database.

chosen as the keyframe which contains the most number of landmarks belonging

to that instance. Further, duplicate objects and their instances are stored in an

object database as illustrated in Figure 4.2.

4.3 Multi-Object SLAM

4.3.1 Visual SLAM Details

The goal of this subsection is to provide an outline of the sparse SLAM sys-

tem used in this chapter which was constructed by burrowing elements from the

frameworks of [55, 105, 127]. Similar to conventional visual SLAM systems, the

map is initialised from two views that are selected by the user through an iterative

5-point algorithm with RANSAC [127].

Subsequently, for every incoming video frame, an image pyramid is constructed
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containing 5 levels with a scale factor of
√

2 to provide the system with some

degree of robustness towards motion blur and variation in scale. FAST keypoints

[164] are detected for each level. In addition, a quad tree is used [135] to ensure

a uniform distribution of measurements across the image.

The camera’s pose is initialised by performing sparse model-based image align-

ment between the previous frame and the current frame using a fast variant of

the inverse compositional method [129]. The pose is then refined by minimizing

the re-projection error of nearby landmarks into the current frame in a coarse-

to-fine manner, where the coarse stage uses keypoints from the top two levels of

the image pyramid, and the fine stage uses all the available keypoints.

If a new keyframe is added to the map, new landmarks are added to the map

by performing an epipolar line search on an existing keyframe that is closest to

the new keyframe. If the best point found using epipolar line search has an error

smaller than a certain threshold, we triangulate the point from the two views and

add the new landmark to the map. Finally, for every measurement in the new

keyframe, ORB descriptors [165] are computed and added to a vocabulary tree

[60]. Further, for every new landmark and every existing landmark that has been

updated with an additional measurement, the landmark is assigned an ORB de-

scriptor from one of its observations. In order to achieve this, Hamming distance

is computed between the descriptors corresponding to different measurements of

the same landmark, these distances are then sorted and the observation with

the ORB descriptor that has the minimum median distance to the other ORB

descriptors of the landmark’s observations is chosen. Finally, the map is opti-

mized using both local and global bundle adjustment. In all threads, the Tukey

re-weighting function [91] is used to ensure that the system is robust to outliers.
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Instance #1 Instance #2

SE(3) transformation

Figure 4.3: Registration of Instances. Every 3D point has a corresponding 2D
point with an associated feature descriptor.This ensures a matching pair of keypoints
also has a matching pair of 3D points in the world. Two instances of an object are
registered if there exists a valid 3D to 3D rigid body transformation from the map
points of one instance to that of the other.

4.3.2 Duplicate Object Detection

For every new keyframe Cn, the recognition thread attempts to find a set of

existing keyframes {C|C ∈ C1 · · ·Cn−1} that is similar in appearance. For this

purpose, a vocabulary tree of ORB descriptors [60] is used as a pre-filter. The

list of keyframes returned by the vocabulary tree is pruned into a smaller set by

discarding keyframes that have a non-trivial overlap on the scene with the current

keyframe.

Feature matching is then performed between the current keyframe and the re-

maining candidate keyframes. The keyframe that has the highest number of

matches with the current keyframe is chosen as the best candidate. The 3D

landmarks corresponding to the feature matches (between the current and the

best candidate keyframe) are then used to form putative 3D-3D correspondences.

The Hamming distance between the median ORB descriptors of every putative
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3D-3D correspondence is computed to filter out outliers. If there are insufficient

correspondences, the recognition thread stops processing the current keyframe

and awaits the next new keyframe. Otherwise, the correspondences form a set of

landmarks between two candidate instances Ij and Ik, i.e.
{
MIj ↔MIk

}
.

The closed-form solution of Horn et al. [87] is employed in a hypothesize-and-test

RANSAC [54] framework to initialize the pose Em←−
kj

from the landmarks observed

by the current keyframe Cn to the candidate keyframe Ci. Using the constraint

from duplicate landmarks in Equation 4.2, we refine the pose Em←−
kj

by minimizing

the re-projection error of landmarks pIj belonging to instance Ij (current) into

the keyframe in which the landmarks in instance Ik (candidate) are observed:∑
pIj∈MIj

(zki − ẑki(Tk, E
m←−
kj
,pIj)) (4.3)

4.3.3 Active Search

Using the refined pose Em←−
kj

, we attempt to obtain more duplicate landmarks be-

tween the two instances Ij and Ik. Landmarks observed by keyframes near the

keyframe observing the landmarks in instance Ij are projected into the keyframes

observing the landmarks in instance Ik to generate the predictions ẑki. We form

a window around each prediction ẑki. For every existing measurement in the

keyframe Ck that lies in the window, a ZMSSD (zero-mean sum squared differ-

ence) comparison is performed between the patch centered around the source

measurement zji and the patch centered around the existing measurement zki in

keyframe Ck. Similar to [105],the change in viewpoint is modelled by performing

an affine warp A on the patch for the measurement zji. If the best match zbest
ji

found has a ZMSSD score lower than a certain threshold, sub-pixel refinement is

performed on the best match. Finally, the landmark pIk is added to instance Ik

and the landmark pIj corresponding to the best match zbest
ji is added to instance

Ij.
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4.3.4 Registration of Duplicates to Database

The pipeline is now ready to convert the duplicate landmarks into first-order

entities in the map. If there are no existing objects in the database, the two sets

of landmarks are registered in the database as instances I1 and I2 of the duplicate

object O1 (see Figure 4.3). For every subsequent successful search of duplicate

instances Ij and Ik, the object database is updated as follows:

• Firstly, we need to determine if both set of landmarks Mj and Mk

belong to existing instances of a duplicate object. This is done by

re-projecting the landmarks belonging to the set Mj to the landmarks in

the set Mk using the transformations that have already been registered in

the object database. If the re-projection error of the best transformation is

lower than a certain threshold, the landmarks in Mj and Mk are allocated

to the two instances corresponding to this transformation.

• If the first case is not satisfied, the next criterion is to determine if any

single set of landmarks (Mj or Mk) belongs to an existing instance

of a duplicate object. In order to do this, for each set Mj and Mk,

the number of landmarks that have already been registered to an existing

instance in the database is measured. A new instance is only created if one

set has no points belonging to an existing instance and the other set has a

high percentage of points belonging to an existing instance.

• If none of the above two conditions are satisfied, the landmarks do not

belong to any existing instances in the database. Thus, a new du-

plicate object O is initialised and its two instances from the two sets of

landmarks.
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Figure 4.4: Flowchart of the recognition thread. Putative 3D-3D correspon-
dences are used to compute a rigid body transformation, which are then used to either
initialize or update the object database.
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4.3.5 Optimization of Map with Objects

The map optimization thread is responsible for optimizing the camera poses and

landmark positions in order to reduce error accumulation while the live camera

explores the operating environment. The optimization is performed in a bundle

adjustment framework where the re-projection errors of landmarks into cameras

is minimized. In contrast to standard bundle adjustment frameworks, in MO-

SLAM the constraints provided by duplicate objects are also incorporated into

the bundle adjustment process. This establishes a tighter feedback loop where the

knowledge of objects is used to refine structure and vice versa. More concretely,

the following error function is minimised

χ2 =
∑
zi,k

(zi,k − ẑ(Ti, E
m←−
j1
,pk)) (4.4)

over all measurements zi,k. In addition to the camera pose Ti and the landmark

pk, the prediction ẑ of the landmark re-projection into camera Ci is now also a

function of the rigid body transformations between duplicate landmarks Em←−
j1
∀j.

Using the constraint in Equation 4.2, the re-projected landmark y in Equation

4.1 can now be formulated as

y(Ti, E
m←−
j1
,pk) =

{
Ti · Em←−

j1
· pk if pk ≡ duplicate

Ti · pk otherwise
(4.5)

Equation 4.5 demonstrates how to enforce duplicate landmarks as rigid first-order

entities in the map through the transformation Em←−
j1

. From here on, bundle adjust-

ment proceeds normally. At every iteration, the update to the parameter vector

X = [T1, · · · , Tn, E1←−
j1
, · · · , Em←−

j1
,p1, · · · ,pk]T is computed using the Levenberg-

Marquardt algorithm:

∆X = (JTJ + ΛI)−1JTe, (4.6)

where J is a Jacobian matrix with respect to the parameter vector X, e is the

error vector, and Λ is the regularization term. The Jacobian corresponding to
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a measurement is computed by deriving the error vector with respect to the pa-

rameter vector X and can be obtained as a closed-form solution. Further, as

the measurements are assumed to be independent, the standard Schur’s comple-

ment trick [189] can be applied, where the landmark parameters p1, · · · ,pk are

marginalized so that the updates to the camera parameters can be computed first,

followed by back-substitution to compute updates to the landmark parameters.

P0 P1 P2 P3 P4 P5

C0 C1 C2 C3

z0,0

z0,1

z1,1

z1,2

z1,3
z2,2

z2,3
z2,4

z2,5

z3,3

z3,4

z3,5

C0 C1 C2 C3 P1 P3P2 P4

z1,0
z0,2

Figure 4.5: Map Optimization. Left: Graphical example of a simple map. Center:
The Jacobian matrix J. Right: The Hessian matrix JTJ . Best viewed in colour.

Figure 4.5 provides an illustration of the Jacobian matrix J and the matrix JTJ

using the bundle adjustment formulation of MO-SLAM for a simple map with

4 cameras C0 − C4, 6 landmarks p0 − p5, and 14 measurements. There is one

object with three instances, with each instance consisting of landmarks p0, p3

and p5. Further, landmark p3 belongs to the primary instance. The center of

Figure 4.5 shows the structure of the Jacobian matrix, where shaded boxes show

non-zero values. The boxes shaded in red are the additional constraints provided

by duplicate landmarks. This results in the matrix JTJ on the right of Figure

4.5, where the top left block matrix now has off-diagonal values as well.

4.4 Experimental Results

In this section, the performance of MO-SLAM is evaluated with experiments on

synthetic and real data. For all the experiments, the same set of parameters are
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used and the results are obtained from an Intel i7, 3.4GHz machine. Firstly, we

compare the performance of our bundle adjustment formulation which incorpo-

rates constraints from duplicate landmarks with conventional bundle adjustment

(see Section 4.4.1). Next, we evaluate the performance of MO-SLAM with and

without duplicate object detection on a real image sequence in Section 4.4.2.

Finally, we provide some qualitative results of our system in Section 4.4.3.

4.4.1 Synthetic Experiments

Figure 4.6: Front view of synthetic point cloud dataset. The two instances of
object O1 are shown in blue, and the three instances of object O2 are shown in green.
Best viewed in colour.

In this experiment, we generate a synthetic point cloud (see Figure 4.6) which

consists of 20 keyframes and 610 landmarks. There are two duplicate object types

in the dataset. Object O1 (blue points) has two instances, with each instance

consisting of 50 landmarks. Object O2 (green points) has three instances, with

each instance also consisting of 50 landmarks. We assume an image resolution

of 640 × 480 pixels, focal length of f = 600 pixels, and principal point offsets of

u0 = 320 and v0 = 240 pixels. We also assume Gaussian noise of δ ∼ N(0, σ) is

added to the image measurements.

We compare the performance between standard bundle adjustment (BA) and the

bundle adjustment framework of MO-SLAM (with additional constraints from

duplicate landmarks) against increasing Gaussian noise. More concretely, the

root-mean-squared-errors (RMSE) were computed for translation (trmse), rotation
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Figure 4.7: Results for synthetic point cloud experiment.

(rrmse), and landmark positions (Prmse) for both versions of BA. The result of this

experiment is shown in Figure 4.7. Here, it can be seen that the performance of

our BA degrades at a lower rate with increasing noise compared to standard BA.

Hence, the additional constraints from duplicate landmarks help to improve the

robustness of BA. In terms of timing, our BA is only slightly more expensive,

taking an average of 125ms compared to the 118ms taken by standard BA. The

increase in timing is due to the fact that there are 3 extra camera poses in our

BA incorporating the rigid body transformations from the primary instance of

each object to their duplicate instances.
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4.4.2 Real Image Experiment

Figure 4.8: Setup for real data experiment. The camera is mounted on a rail to
generate an image sequence with a trajectory along the x-axis.

The performance of MO-SLAM was further evaluated using a real image sequence.

The experimental setup is shown in Figure 4.8. A Logitech C920 webcam was

mounted onto a 2m steel rail that is rigidly clamped on a workbench. An image

sequence with 1032 images is then captured by sliding the camera along the rail.

The image sequence consists of two objects with duplicates: a Netrunner box

with three instances and a Kinect box with two instances.

MO-SLAM was executed on the image sequence twice, once using standard BA

at the back-end and once using our proposed BA method. For both runs, the

system was initialized from the same two views and the recognition thread was

enabled. Firstly, we compare the absolute poses of the keyframes obtained in

both runs with the ground truth trajectory as shown on the left of Figure 4.10.

The top figure shows that both bundle adjustment methods produce trajectories

similar to the ground truth. However, if we zoom in closely as shown in the
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Figure 4.9: Map for real image experiment. A close-up view of the duplicate
landmarks for the second instance of the Netrunner box is shown.

bottom figure we can see that our proposed BA method drifts at a lower rate

compared to standard BA.

Next, we compare the scale drift of using MO-SLAM with standard BA and our

proposed BA method. For this, we measured the pose of the camera at locations of

0.5, 1, 1.5, and 1.8m along the rail. We then compute the ratio of the translation

norm at 1, 1.5 and 1.8m relative to the translation norm at 0.5m. This is then

compared against the expected translation norm ratios to provide an estimate of

scale drift, as shown on the right of Figure 4.10. Similar to the trajectory plot, we

see that both standard BA and our proposed BA method exhibit an increasing

drift with the length of the trajectory. However, scale drift increases at a lower

rate for our BA method.

We also compare the accuracy of the landmarks found as duplicates using stan-
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Figure 4.10: Comparison between standard BA and our BA for real image
experiment. Left: Comparing camera trajectories with ground truth. A zoomed in
version (in the y and z axis) is shown at the bottom. Right: Comparing the scale
drift.

dard BA and our BA method. As only the front faces of the objects are seen

in the image sequence, a plane was fitted on to the landmarks found as dupli-

cates for every instance of every object found using RANSAC. In order to ensure

fairness, the same error threshold is used for both methods to classify if a point

is an inlier or an outlier. The point-to-plane distance error for every duplicate

landmark for that instance is then computed. Standard BA produces a point-

to-plane RMSE of 0.0964 and 0.0141 for the Netrunner box and the Kinect box

respectively, whereas our BA produces RMSE values of 0.0230 and 0.0111. The

error distribution for both methods are shown in Figure 4.11. Here, it can be

seen that both methods produce landmarks that have reasonably small values.

However, by zooming in on the error distributions it can be observed that the

error distributions for the landmarks of our proposed BA method (bottom row

of Figure 4.11) have a smaller tail. This is because our proposed BA method

enforces these landmarks as first-order entities in the map. Hence, it refines du-

plicate landmarks with additional constraints, and removes any landmarks that

do not obey the data association (the rigid-body transformation between the two

duplicate instances) formed by this additional constraint.
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Figure 4.11: Point-to-plane error distribution. Top: Standard BA results. Bot-
tom: Our BA results. Left: Error distribution for object 1 in the scene. Right: Error
distribution for object 2 in the scene. Notice how our proposed BA has a smaller tail
compared to Standard BA.

Figure 4.12 provides an illustration of the computational cost of the recognition

thread. Here, it can be seen that most of the time the recognition thread incurs

a trivial computational cost. However, if duplicate instances of an object are

found, the recognition thread requires approximately 200-300ms to process the

keyframe. Since the recognition thread runs in parallel to the other threads

while also maintaining an queue for new key-frames, objects are generally added

seamlessly on to the map. Finally, the map of the scene for this experiment is

shown in Figure 4.9, where the coordinate frames denote the keyframes (red=x-

axis, green=y-axis, and blue=z-axis). Normal landmarks are shown as black
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Figure 4.12: Timing results from recognition thread. Increase in computational
cost occurs when duplicate instances of an object are found.

points whereas duplicate landmarks are coloured.

4.4.3 Qualitative Results and Limitations

Some qualitative results of MO-SLAM working in a typical lab environment are

shown in Figure 4.13. A video that demonstrates the real-time performance(∼30Hz)

of MO-SLAM can be found under https://youtu.be/UDrr2xGReLM.

The current limitations of our system are:

• As MO-SLAM requires duplicate instances of an object for recognition, if

part of an object is observed in one instance and occluded in the other,

those points will not be added to the object.

• In addition to this if there are not any duplicate objects in the scene, MO-

SLAM would behave similar to a standard SLAM system and would not

have any notion of objects. In the future work subsection I propose two

alternative strategies that could be explored to address this problem.

• If two man-made objects always appear together in such way that in every
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Figure 4.13: Qualitative results The top part of figure shows the reconstruction and
recognition results from MO-SLAM for a scene with four instances of a single object, in
this case an “ACRV book” (highlighted as red points). The bottom figure the results
of MO-SLAM for a scene with four objects (ACRV book, keyboard, telephone, lab
manual), where there are two instances of every object

instance these objects are observed they exhibit the same relative position-

ing and orientation, these two separate objects will be recognised as one

object. This can be explained best using an example; If every instance of a

photocopier in an office environment has a fire extinguisher adjacent to it

where the relative position and orientation are identical across all instances,

MO-SLAM would recognise the photocopier and the fire extinguisher as one

single object. A large database of objects with associated labels or a CNN

based object classifier can play an important role in this scenario and aid
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MO-SLAM to distinguish between the two objects.

4.5 Future Directions

Figure 4.14: Key-point Classification using a Convolutional Neural Network
All the key-points belonging to the same object are given a one colour. Background
key-points are shown in white.

I envision two straightforward extensions of this work. Firstly, a CNN can be

incorporated into the recognition thread to perform key-point classification as

shown in Figure 4.14. This particular CNN was trained on images patches cen-

tered around FAST [164] key points and was constructed as a proof of concept

to demonstrate a neural network model is able to classify key points. This allows

the framework to perform supervised object recognition in addition to unsuper-

vised object discovery using duplicate objects. Currently the bundle adjustment

framework of MO-SLAM only uses multi-view constraints and the additional con-

straints from duplicate objects therefore if a CNN was to be connected, this needs

to be extended to leverage the information obtained from the CNN.
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Figure 4.15: Learning objects through change detection in a dynamic en-
vironments The top figure shows the state of the map when the Kinect Box is first
observed. When the same area is observed at a later time, we can see that the Kinect
Box has undergone a rotation around the x-axis, The previous map points have now
been erased from the map as they are no longer part of the scene.

The current semantic SLAM framework learns object through duplicate detection.

This framework can also be extended to learn objects if they have undergone a

change since their last seen state. The same core principles of online object

discovery through duplicates that were discussed earlier can be applied to this

problem as well. If we observe that an object has moved, it is possible to treat it

as a pseudo duplicate instance of the object until that object is no longer observed

in the location where it was first seen. Qualitatively I have made progress on this

area as shown in Figure 4.15 where a set of key points that was observed at a

particular point in time was observed later at a different location. This allows

the framework to create a duplicate object since the two set of landmarks are

unique. However, unlike in the previous scenarios the system is able to correctly

identify the landmarks that belong to the first instance of the object no longer

re-project on to the live view of the camera. This in turn allows the framework

to remove those landmarks from the map.
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4.6 Summary

In this chapter I have presented MO-SLAM, a real-time, semantic visual SLAM

system which does not require a pre-generated database of objects. Instead, the

objects are discovered during run-time using duplicate instances of objects that

are present in the scene. Furthermore, these duplicate objects provide additional

constraints for optimizing the map, which not only improves the accuracy of the

landmarks and the camera poses, but also improves the output of the recognizer

by removing erroneous map points that are wrongly classified as belonging to an

object. MO-SLAM was evaluated extensively using both synthetic and real data

experiments, in order to verify its effectiveness and real-time capabilities.

The final section of the chapter suggested two potential extensions of this work

which focused on additional ways of finding objects. Firstly, through the use of a

CNN or alternatively in a dynamic environment, using the knowledge of moved

landmarks to create new objects.

MO-SLAM plays an important role in thesis and demonstrates that the classical

structure and motion pipelines can be improved by purely using geometry based

techniques in a day and age that is heavily dominated by deep learning.
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CHAPTER 5

Joint Prediction of Structural Information from

RGB Images using CNNs

5.1 Introduction

In the previous chapter, the scene reconstruction and the subsequent refinement

problem was tackled purely from a geometric point of view using a SLAM sys-

tem. In this chapter, a slightly different approach is taken where a single neural

network is used to predict depths, surface normals and surface curvature from

a colour image. Since neural network based depth prediction features heavily

throughout the remainder of the thesis, it was important to develop an intuition

about CNNs that predict structural quantities and this work takes a step in that

direction. Furthermore, one of the luxuries of training a network to predict struc-

tural quantities as opposed to semantic labels is having the advantage of applying

the concepts learnt from conventional geometry into the training regime, and one

of the aims of this chapter is to exploit the close relationship that depths share

with surface normals and curvature.

While predicting depth directly from a colour image using learning based ap-
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proaches have gained popularity recently due to the resurgence of CNNs, a rela-

tively less explored problem is predicting extremely related structural quantities

in the form depths, surface normals and surface curvature. The closest work to

this line of research is the framework by Eigen et al. [44] in which he explored

the possibility of predicting depths, surface normals and semantic labels. The

main focus of the work presented in this chapter is to showcase that predicting

closely related structural quantities as shown in Figure 5.1 while maintaining

a fixed model capacity leads to superior performance. In particular, this work

demonstrates predicting surface curvature in contrast to semantic labels along

side surface normals and depths has a greater influence on the latter two tasks.

Figure 5.1: Given a surface S, n is a unit normal vector to the surface at point p,
and κ1 and κ2 denote the two principal curvatures. The work presented in this chapter
aims to predict the depth (which can then be used to reconstruct the surface S given
the camera parameters), the surface normal n and the two principal curvatures κ1 and
κ2 for each pixel given a colour image.

Surface Curvature is an important geometric surface feature, that indicates the

rate at which the direction of the normals change on the surface at any particular

point. It has been shown to be particularly useful for the task of segmentation on

range image and 3D data [9, 42, 4, 118]. A key challenge in accurately estimating

surface curvature is its sensitivity to noise in the input data, as it is a second

order surface derivative, it is affected quadratically by noise. Previous works have

shown that neural networks can be used to provide accurate geometric estimates
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from just a single RGB image [44, 122, 171, 114], including estimating depth

and normals. In this work, we extend our network to estimate principal surface

curvatures as well as depth and normals and demonstrate that we can accurately

perform this task.

Figure 5.2: A selection of curvature predictions made by our system. The left
column shows the corresponding RGB image from the NYUv2 test dataset which was
used as the only source of information to estimate curvature. The middle column shows
the ground truth curvature computed using the depth data and the right image shows
the prediction of our network. The Positive curvatures are shown in blue, Negatives in
red, Saddles in green and Planes in white.

Contrary to the popular belief that hand-engineered features are inferior com-

pared to learnt features, we argue that well designed features combined with ma-
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chine learnt representations provide improved performance. It should be stressed

that the features designed are not hand calculated, but rather predicted by the

network itself as part of the inference pipeline. More concretely, the network is

informed that in order to accurately estimate a single quantity such as depth,

normals or curvature the network should learn an internal representation of the

other two quantities. This is demonstrated by estimating surface curvature, sur-

face normals and depth in a multi task learning framework which gives us superior

results compared to training them as individual tasks. A two-stage learning pro-

cess is employed where coarse level predictions of all three quantities are used as

feature maps for the finer layers.

Our work is similar to [44] in that sense, as Eigen et al. also estimated three quan-

tities (depth, surface normals and semantic labels) using a single network. How-

ever, there are two main differences between our approach and theirs. Firstly, the

three quantities we estimate are more tightly coupled at a primitive level whereas

the semantic labels, although clearly related, should be considered a higher or-

der quantity. Secondly, the knowledge of semantic labels are not explicitly made

available to the depths and surface normal prediction layers in [44], whereas in our

approach all three (depths,normals,curvature) coarse level predictions are passed

on as additional feature maps to the second stage of the prediction pipeline. As

it can be seen in the results section (5.6), passing the coarse level estimates of

a viewpoint invariant quantity in the form of surface curvature has a positive

influence on the other two tasks. The predictions generated from this framework

can be applied to robotic applications that revolve around segmentation tasks

such as the Amazon Picking Challenge.
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5.1.1 Contributions

The main contributions of this work are as follows:

• A novel technique to estimate surface curvature of objects using purely RGB

images in a joint neural network framework which predicts depth, surface

normals and curvature.

• Demonstrate that joint training can improve the accuracy of all three tasks

while keeping the model capacity fixed.

Since the publication corresponding to this chapter [39] has two authors with

equal contribution (myself and Andrew Spek), the relative contribution I have

personally made based on mutual agreement is shown below:

• Conception of Idea (50%)

• Network architecture design (90%)

• Loss/Objective function design (60%)

• Coding the network (99%)

• Training data creation (30%)

• Testing and evaluation (50%)

The main body of the chapter is largely based on the contents of the publication

[39] and is expected to appear in a similar form in Andrew’s thesis.

5.2 Related Work

Since prior work on depth prediction was discussed extensively in chapter 2 under

section 2.2.2, this section summarises the work related to the other two tasks

(surface normal and curvature).
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Surface Normal Prediction

A surface normal is a vector that is perpendicular to a point on a surface. In

computer vision and robotics, surface normals are largely used for segmentation

and plane-fitting. Generally, surface normals are computed (e.g using least square

approaches [80, 131]) from a range image. Since a representation of the surface

itself can be successfully predicted as a 2D depth image, a natural extension would

be to examine the viability of inferring surface normals from colour images.

Data driven single image surface normal estimation was first tackled by Fouhey et

al. in [57]. They used a SVM based detector followed by an iterative optimization

scheme to extract geometrically informative primitives. Ladicky et al. proposed

to use image cues of pixel-wise and segment based methods to generate a feature

representation that can estimate surface normals in a boosting framework [113].

A ConvNet approach to estimating surface normals in global and local scales

while incorporating numerous constraints such as room layout and edge labels

was taken by Wang et al. [194]. Recently, Bansal et al. [5] showed that by

combining hierarchy of features from different levels of activations in a skip-

network architecture that you could generate much finer predictions for surface

normals achieving state of the art results.

Surface Curvature Estimation

Surface curvature estimation is a well explored topic in robotics and computer

vision. It has been shown to be useful for object segmentation [9, 42, 118, 4]

in depth scans and RGB-D imagery. There are several popular approaches to

estimating the surface curvature. One technique is to simply twice-differentiate

the surface [9, 4], but this can lead to a high sensitivity to noise in the data and

generally requires removal or rejection of surface outliers. Another technique is

to estimate the surface curvature from a locally connected surface mesh based

on the change in adjacent facet normal angles [118, 166, 70]. This method is

predominantly used for computer graphics and low-noise data as it operates on a
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small neighbourhood of facets. Yet another technique is to use locally fit surface

quadrics and directly extract the principal curvatures from their parametrisation

[42, 137], which has been shown to be robust to noisy data and fast enough to

be computed in real-time [178]. In this work, we use the approach proposed in

[178], to compute surface curvature and surface normals from the training data

sourced from the NYUv2 dataset [140] as they have shown it performs well on

range image data of the type present in the dataset.

Learning Multiple Tasks

In one of the earliest works in this area Caruana et al. showed in [18] that by

learning related tasks in parallel, the performance of all tasks could be improved,

which is consistent with our findings. Multiple tasks were learned in the form

of material classification and defect detection in railway fasteners in [65] where

they used Deep CNN based multi task learning for railway track inspection.

They were able to show the adaptability of the multi task learning platform by

using different training batch sizes (due to availability of data). In our case,

all three tasks were trained with the same batch size as training data for the

derived quantities (normals and curvature) were computed from depth. Multi

task learning algorithms were also used to perform head pose estimation [203],

web search ranking [21], face verification [195] etc. Li et al. in their work Learning

Without Forgetting [120] demonstrated that in the presence of a model trained

on one task, it can be fine-tuned to perform better on a new task while not

hindering the performance of the previous task by only using training data of the

new task. However, as we have access to training data for all three tasks we train

the prediction stacks jointly in order to achieve superior performance compared

to fine-tuning.
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Figure 5.3: Visual Representation of Model Architecture

The functionalities of the different components of the model can be divided into

3 main categories: feature extraction, the incorporation of global context, and

prediction . The first set of convolutional filters labelled VGG16 [174] in Figure

5.3 facilitate generic image feature extraction and are pre-trained on the Ima-

geNet [167] dataset. This is followed by 2 fully connected layers (FC) where each

activation is connected to one another allowing the network to have the entire

image in its field of view. The 1-dimensional output of the second fully con-

nected layer is then reshaped into a stack of 2D activations. These activations

are concatenated with raw image features and passed on to three separate stacks

of convolutional filters corresponding to the three tasks. Each stack is followed

by a dedicated solver responsible for computing the error between the coarse level

predictions (depths,normals and curvature) and the corresponding ground truth.
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The coarse predictions are once again combined with raw image features, how-

ever these features are extracted by performing pooling with a smaller strider on

the activations of the convolution layers. This allows the network to regain some

of the finer details lost during the sub sampling operations. The concatenated

features are then passed on to the fine level prediction stacks culminating with

an additional set of 3 solvers.

It is worth mentioning that all the convolutional layers in the coarse and fine

level prediction stacks perform 5x5 convolutions with a stride of 1 and a pad of 2.

Therefore, the input resolution at the beginning of the feature stack is preserved

at the end of the feature stack. There is an explicit up-sampling layer which up

samples the coarse level prediction from 74x55 resolution to 147x109 and this

is maintained throughout the final convolutional stack. Although the overall

architecture is as explained above, in order to make sure the model capacity is

kept constant and the contribution of each new task is indeed improving the

performance of the previous tasks, several changes are made during training as

explained in section 5.5.3 .

5.4 Tasks

5.4.1 Terminology

Throughout the remainder of the chapter, the following notation is used to refer

to the predicted and ground truth quantities for depths, surface normals and

surface curvature.

• Depths : Ground truth depth map is represented as D∗ (each pixel contains

a depth value in meters, missing depth values are represented with a zero).

Predicted depth map is given by D.
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• Normals : Ground truth surface normal map (N∗) contains a unit normal

vector (n∗) at each of the pixels with a valid depth value. The corresponding

predicted surface normal map (N) contains a unit normal vector (n) at all

pixel locations.

• Curvatures: Ground truth surface curvature map (C∗) contains values of

principal curvatures κ∗1 and κ∗2 for each pixel in m−1 denoting the inverse of

the radius of curvature. Predicted surface curvature map is given by (C)

5.4.2 Depth

Similar to the previous approaches [44, 45] depth is estimated at two scales.

While experiments were conducted to predict depth at more scales, the increase

in performance was minimal compared to the increase in model capacity. The

network is trained to predict the natural logarithm of depth using a fully super-

vised learning regime. Supervision is provided by employing an Euclidean loss

term where the coarse and fine predictions of the neural network are compared

against the logarithm of the ground truth depth. Two additional loss functions

are employed similar to [44], in order to enforce the depth errors in a local region

to follow a consistent structure. The full loss criterion is shown below :

L(D,D∗) =
1

n

n∑
i=1

d2i −
1

2n2

(
n∑
i=1

di

)2

+
1

n

n∑
i=1

(
(∇xdi)

2 + (∇ydi)
2
)

(5.1)

where di is the ith pixel difference between the predicted log depth ln(D) and

ground truth log depth ln(D∗) for the valid pixels n (pixels that contain non-

zero depth values in the raw depth data). The second term computes a scale

invariant error which measures the relationship between the ground truth and

the predicted depth map irrespective of the absolute global scale [45]. The third

loss term enforces a constraint on the local structure of the predicted depth map.
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∇xdi is the horizontal image gradient of the difference and ∇ydi is it’s vertical

counterpart.

5.4.3 Surface Normals

The ground truth normals are computed using different techniques in the litera-

ture. In this work, the normals are computed by first fitting a quadric patch to

a set of nearby points in the point cloud. This gives a more accurate represen-

tation of the surface compared to merely fitting planar regions, while not adding

an extra time complexity as the normals are computed as part of the curvature

computation pipeline [178].

In order to train the the surface normal prediction layers, a pixel wise Euclidean

loss is used along the three channels corresponding to the three unit vectors i, j, k.

This loss term is then coupled with the difference in angle between the predicted

normal and the ground truth.

L(N,N∗) = − 1

n

n∑
i=1

ni · ni
∗ +

1

n

n∑
i=1

3∑
j=1

(ncj − nc∗j)2, (5.2)

where n and n∗ are the predicted and ground truth unit normal maps respectively,

ncj ∈ n and nc∗j ∈ n∗ are the three components of each of the normals. n denote

the valid pixels.

While the two terms effectively aim to achieve the same goal, using a combination

not only provided faster convergence compared to using a single loss term but

also improved the accuracy of the predictions.
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5.4.4 Surface Curvature

The method described in [178] is used to compute an estimate of the principal

surface curvatures, which is computed from a locally fit parabolic quadric. We

use a sparsely sampled circular patch of radius 18 pixels, to fit a quadric at each

point and extract the local principal curvature values. The principal curvatures

κ1, κ2 are limited to the range {−100, 100} in order to avoid the estimation of

implausible curvatures, effectively limiting the minimum detectable radius of cur-

vature to be 1cm aligning with the precision of the system [103] at the distances

present in the training data. This provides a dense estimate of curvature for every

point (640x480), which we then bicubicly downsample to 120x160 to generate the

LMDBs that can be used in the training of our network. We attempt to estimate

principal curvatures directly as opposed to Gaussian or mean curvature, as we

found principal curvatures to provide improved performance during training.

We employed a Euclidean loss criterion with depth based weighting to predict

surface curvature. Due to the inherent sensor noise, the computed principal

curvatures which are used as the ground truth tend to have a large uncertainty

beyond a certain distance threshold. To prevent the network from learning these

rather uncertain values the following loss function is used.

L(C,C∗) =
1

n

n∑
i=1

(κ1i − κ∗1i)2 + (κ2i − κ∗2i)2

(1 +D∗i )
2

(5.3)

where κ1i and κ2i are the predicted principal curvatures and κ∗1i and κ∗2i are their

corresponding ground truth values while D∗i represents the depth in meters for

the ith pixel.
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5.5 Training

The raw depth data distribution given by the NYUv2 dataset [140] is used for

training based on the official train and test scene split (that is 249 training scenes

and 219 test scenes).

5.5.1 Data Generation

Training dataset is augmented by performing flips, translations, rotations and

variations on the colour channels. The same transformation is applied to the

RGB input, ground truth depth, surface curvature and surface normals in order

to obtain consistent training data. Unlike some notable previous approaches [44],

we use the raw depths directly without any post processing to fill holes or smooth

surfaces. Raw depths are also used to calculate the surface normals and surface

curvature providing a stronger link between the three ground truth sources.

As described in Section 5.4.4 we use the method described in [178] to produce

training data for surface normals and surface curvature. Their approach was

specifically targeted for noisy data such as that from a Microsoft Kinect and

produces good estimates for both surface normals and principal curvatures. The

network was conditioned not to predict values of vastly different magnitudes by

scaling the ground truth curvature values by a factor of 0.1 producing a similar

range of values to that of the depths. This conditioning resulted in qualitatively

and quantitatively superior predictions. The scaling was reversed when the final

predictions were made for both principal curvatures κ1 and κ2 by multiplying

each value by 10.
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5.5. Training

5.5.2 Hyperparameters and Weight Initialisation

We use Nesterovs accelerated gradient [141] as the optimizer with a base learn-

ing rate of 0.1, a momentum of 0.95 and train for 50 epochs using an NVIDIA

GeForce GTX 1080. Weights of the convolutional layers corresponding to feature

extraction were initialized using the VGG model [174] pretrained on ILSVRC

[167] image data. We also experimented with initializing the feature extraction

layers with the VGG weights of [44] and found no change in performance. All

the convolutional layers corresponding to depth, normals, curvature estimation

and the fully connected layers were randomly initialized using the MSRA weight

initialization scheme [78] which converged much faster compared to initializing

the filters from a Gaussian distribution with zero mean and 0.01 standard de-

viation. Whenever the training loss plateaued (approximately every 10 epochs)

we halved the learning rate and continued training. Caffe [97] was used as the

learning framework and all the experiments were carried out using a mini batch

size of 16.

5.5.3 Training Separate Models With Equal Model Capacity

We train several models with equivalent model capacity to estimate quantities

both separately and jointly. We do this to demonstrate that the improved es-

timates for normals and depths are not the result of increased model capacity,

but more likely due to the inclusion of derived features as tasks to the network.

Explicitly we train 5 models, depth only (D), normals only (N), curvature only

(C), depth+normals (D+N), depth+normals+curvature (D+N+C), all while

maintaining a constant model capacity for each task. In a jointly trained model,

the output corresponding to a particular task is indicated in subscript form. For

example Ours(D+N+C)depths denote the depth performance of the network that

was jointly trained on all three tasks and Ours(D+N)normals indicate the per-

formance of surface normals produced by the network that was jointly trained to
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Original Coarse Level -  Prediction + Solver

Alternative Coarse Level -  Prediction + Solver

Figure 5.4: A closer look at the coarse level of the architecture for different
tasks. Top: When all three tasks are trained jointly, there is a solver at the end of
the coarse level feature stacks for all three tasks and the coarse feature maps are passed
on to final level after being concatenated together. Bottom: When only a single task
is trained(in this case depth) there is a single solver at the end of coarse level and the
other two stacks now provide additional feature maps which can trained by the final
level solver(not shown in the figure).

estimate depths and surface normals.
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When a single quantity (depths only or normals only) is trained the coarse level

convolutional layers corresponding to the other tasks are left in place. Since a

dedicated solver is not attached to these stacks, they function as generic convo-

lutional layers which are trained by the solvers of the fine level feature stacks.

Figure 5.4 illustrates this idea diagrammatically, in which we are looking at the

coarse prediction section of the model. When all three tasks are trained jointly,

there is a solver attached at the end of each prediction stack. Simultaneously,

we pass the coarse level predictions to the next stage (fine level) to be refined

further.

In a scenario, where there is only one training task, the solver corresponding to

the training task is kept intact while the other solvers are removed. However, the

feature maps of the other stacks are still present and now act as additional weights

which are trained using the fine scale solver. This allows the model capacity to

be preserved as the number of feature maps are kept constant regardless of the

task/tasks that is been trained while greatly influencing what is being learnt by

the feature maps through the use of additional tasks.

5.6 Experiments and Results

In this section the performance of the framework is evaluated across the three

tasks. For each task the predictions are evaluated against the corresponding

ground truths, qualitative comparisons are also made to show the improvement

of the proposed approach over the previous state-of-the art neural network based

depths and surface normal prediction frameworks. Finally, a segmentation ex-

ample is presented to showcase how this work could be applied in a real life

scenario.
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5.6.1 Depth

The depth predictions are evaluated using the proposed metrics of [44] and [112].

These metrics are listed below and will be used throughout the remainder of the

thesis to evaluate depths.

RMSlin :

√√√√ 1

n

n∑
i=1

‖Di −D∗i ‖
2 (5.4)

Relabs :
1

n

n∑
i=1

|Di −D∗i |
D∗i

(5.5)

RMSlog :

√√√√ 1

n

n∑
i=1

‖ln(Di)− ln(D∗i )‖
2 (5.6)

% of points with in δ :
n∑
i=1

max

(
Di

D∗i
,
D∗i
Di

)
< δ, δ = 1.25 (5.7)

where Di is the predicted depth of the ith pixel and D∗i is the corresponding

ground truth depth.

The first three metrics correspond to errors therefore smaller numbers indicate

better performance. The final metric is a measurement of the accuracy of the

predictions or the number of inliers, and larger numbers indicate better perfor-

mance.

The predicted depth maps are upsampled by a factor of 4 to match the image

resolution of 640x480 and are evaluated against the official ground truth depth

maps including the filled in areas but limited to the region where there is a

valid depth map projection. In Table 5.1 the results are organised based on the

metrics mentioned earlier. These results are further sub divided based on the

type of neural network employed to generate the predictions. More concretely,
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Depth Prediction

Type Method RMSlin(m) RMSlogln(m) Relabs δ δ2 δ3

si
n

gl
e

Liu [122] 0.824 - 0.230 61.4% 88.3% 97.2%
Eigen [45] 0.877 0.283 0.214 61.4% 88.8% 97.2%
Ours(D) 0.646 0.216 0.156 76.5% 94.9% 98.7%

Laina [114] 0.573 0.195 0.127 81.1% 95.3% 98.8%

jo
in

t

Eigen(Alex) [44] 0.753 0.255 0.198 69.7% 91.2% 97.7%
Ours(D+N)depths 0.642 0.215 0.156 76.6% 94.9% 98.8%
Eigen(VGG) [44] 0.641 0.214 0.158 76.9% 95.0% 98.8%

Ours(D+N+C)depths 0.624 0.212 0.156 77.6% 95.3% 98.9%

Table 5.1: Depth prediction Metrics: the middle three columns indicate errors (lower
better) from ground truth, the final three columns indicate the percentage of points
within δn (higher better) of the ground truth (δ = 1.25). The bold values indicate the
best performing method of each type (single,joint).

the network variants that predict a single quantity are shown under the single

tab and the variants that predict multiple quantities are shown under the joint

tab.

Overall, the results validate the initial hypothesis of learning extremely related

structural quantities improves the performance of one another. In order to dissect

these results further, we can begin by comparing the performance of Ours(D) and

Ours(D+N)depths. The only difference between these two variants is the former es-

timates purely depth and the latter predicts depths and normals jointly. Although

not overly large, the improvement in performance across all metrics suggest that

learning normals in tandem with depths indeed improves the performance of

depths. Next let us divert the attention to Ours(D+N)depths and Eigen(VGG) [44]

models, where Eigen(VGG) was trained to predict three tasks (depths,normals

and semantic labels). The change in performance between Ours(D+N)depths and

Eigen(VGG) [44], albeit being very minimal shows learning three tasks is better

compared to learning depths and surface normals. However changing the third

task from semantic labels to curvature (Eigen(VGG) → Ours(D+N+C)depths)

results in a significant improvement where the RMSE was reduced by 0.02 as

opposed to a reduction by 0.004. This demonstrates the importance of surface

curvature for depth estimation. Both semantic labels and surface curvature are
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Figure 5.5: Demonstrates the qualitative improvement of our approach for
depth estimation. Top: RGB image 1st row: Eigen’s Prediction 2nd row: Our
Prediction Bottom: Ground Truth

similar in certain ways in that they are both view point invariant quantities.

However, surface curvature is more tightly coupled with the other structural

quantities compared to semantic labels. The approaches that predict depth alone

as a single task are included for completeness. Although we outperform all the

methods except [11] which uses the much more powerful ResNet[20] architecture,

it is important to stress the contribution of the work presented in this chapter

is to demonstrate that given the same architecture, learning related quantities is
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more beneficial over learning a single quantity.

5.6.2 Surface Normals

The metrics used to evaluate the predicted surface normals were introduced in

[57] by Fouhey et al..

Mean Angular Error =
1

n

n∑
i=1

cos−1(ni · n∗i ) (5.8)

Median Angular Error = median(cos−1(ni · n∗i )) (5.9)

% of points with in t◦ :
n∑
i=1

cos−1(ni · n∗i ) < t◦, t ∈ 11.25◦, 22.5◦, 30◦ (5.10)

where Ni is the predicted surface normal of the ith pixel and N∗i is the corre-

sponding ground truth depth.

Similar to [44, 5], the predicted surface normals are evaluated against the ground

truth surface normals provided by Ladicky et al. [113]. During evaluation the

regions corresponding to the missing depth values are masked out since the ground

truth normals can not be accurately computed on those areas. These results are

summarised in Table 5.2.

Similar to depths, predicted normals also gained an increase in accuracy when

the network was trained in a multi task platform. Although, having merely

depths in parallel did not make a noticeable change, extending the network to

learn all three tasks resulted in a significant improvement. This is primarily

due to passing the knowledge of the coarse curvatures as an additional feature

map for fine level surface normal prediction. When compared with frameworks

that predict surface normals as a stand-alone task, our approach outperforms all
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Surface Normal Prediction

Angular Error Within t◦

Type Method Mean Median ≤ 11.25◦ ≤ 22.5◦ ≤ 30◦

si
n
gl

e

Ladicky [113] 35.3 31.2 16.4 % 36.6% 48.2%
Wang [194] 26.9 14.8 42.0% 61.2% 68.2%

Ours (Normals) 21.1 13.5 43.6% 66.6% 75.4%
Bansal et al [5] 19.8 12.0 47.9 % 70.0 % 77.8 %

jo
in

t

Eigen(Alex) [44] 23.7 15.5 39.2 % 62.0 % 71.1%
Ours(D+N)normals 21.1 13.6 43.6% 66.5% 75.4%
Eigen(VGG) [44] 20.9 13.2 44.4% 67.2% 75.9%

Ours(D+N+C)normals 20.6 13.0 44.9% 67.7% 76.3%

Table 5.2: The mean, median angular error and the percentage of points with an
angular error less than a threshold (t◦) for several normal estimation approaches eval-
uated against the ground surface normals provided by Ladicky et al. [113]. Lower
numbers are better for the first two columns and higher numbers are better for the last
three columns.

previous approaches barring that of Bansal et al. Quantitatively we approach

the performance of Bansal et al. [5] who used a skip architecture with a larger

model capacity compared to ours, although arguably qualitatively both [44] and

our approach outperform their predictions as shown in Figure 5.6.

5.6.3 Surface Curvature

Since our approach is the first piece of work to demonstrate surface curvature

prediction from a neural network, a set of metrics had to defined first as shown

below prior to evaluating the performance of the curvature predictions.

RMSκ1 :

√√√√ 1

n

n∑
i=1

‖κ1 − κ∗1‖
2 RMSκ2 :

√√√√ 1

n

n∑
i=1

‖κ2 − κ∗2‖
2 (5.11)
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Figure 5.6: Demonstrates the qualitative improvement of our approach for
normal estimation. Top: RGB image 1st row: Bansal [5], 2nd row: Eigen [44], 3rd

row: Our Prediction Bottom: Ground Truth [178]. The missing areas in the ground
truth normals coincide with those in the raw depth images.

let Predmean =
κ1 + κ2

2
,GTmean =

κ∗1 + κ∗2
2

Median error = median(||Predmean −GTmean)||2) (5.12)
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% of points within σ(m−1) :
n∑
i=1

||Predmean−GTmean)||2 < σ, σ ∈ 0.25, 0.5, 1(m−1)

(5.13)

Principal Curvature Predictions

RMS (m−1) Median (m−1) Within σt
Method [178] κ1 κ2 planar non-planar σ1 σ2 σ3

Eigen(computed from depths) [44] 5.56 7.50 3.86 1.44 25.7% 33.9% 43.5%
Ours (computed from depths) 6.03 6.50 4.23 1.38 26.9% 34.9% 44.2%

Ours (C) 3.41 5.17 1.984 0.184 52.6% 63.2% 73.2%
Ours (D+N+C) 2.81 4.47 1.634 0.085 63.1% 72.7% 80.3%

Table 5.3: The table shows the RMS error of estimating the principal surface curva-
tures (κ1, κ2), the median error for planar and non-planar regions and the percentage
of curvatures values that are within a threshold σ1 = 0.25m−1, σ2 = 0.5m−1, σ3 =
1m−1. The first two approaches do not explicitly predict curvature and are computed
from the predicted depths.

Due to the lack of true ground truth surface curvatures, the curvature maps gen-

erated using the method of [178] are adopted as ad hoc ground truth data. We

evaluate the predictions made by our network against the curvature values com-

puted from the predicted depths produced by our own network and the network

of [44]. The RMS error for each of the principal curvatures (κ1, κ2) is computed

along with the median error of the mean curvature(κ1+κ2
2

) across two categories,

planar and non-planar regions. The planar surfaces are defined to be surfaces

with a radius of curvature greater than 1 meter. As expected predicted curva-

tures clearly outperform the computed curvatures from depths. Furthermore, the

predicted curvatures using the joint model which learned surface normals and

depths in parallel provide better performance.

Figure 5.7 is included as a reference to show how the metrics in Table 5.3 translate

into visual appearance.
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Figure 5.7: Demonstrates the qualitative improvement of our approach for
surface curvature estimation. Top: RGB image 1st row: Computed surface cur-
vature based on Eigen’s [44] depth prediction 2nd row: Prediction of our system
Bottom: Ground Truth computed from raw depth data

5.6.4 Applications of This Work

As a purely qualitative demonstration of our approach, a simple scene segmenta-

tion example was designed by combining information from the colour, depth and

curvature of selected scenes. The segmentation is generated by combining the

gradients of colour and depth, and curvature values. This border function b(u, v)

can be expressed as

b(u, v) = wI · ∇I(u, v) + wd · ∇D(u, v) + wc · C(u, v), (5.14)

102



Chapter 5. Joint Prediction of Structural Information from RGB Images using CNNs

where ∇I(u, v) is the the magnitude of the image intensity gradient, ∇D(u, v)

is the magnitude of the depth gradient and C(u, v) is the curvature value at the

point u, v. That is

∇I(u, v) =

√
∂I(u, v)

∂u

2

+
∂I(u, v)

∂v

2

, (5.15)

and

∇D(u, v) =

√
∂D(u, v)

∂u

2

+
∂D(u, v)

∂v

2

. (5.16)

The final segmentation is then generated by applying a simple threshold on this

border function. That is a pixel is considered a border (B(u, v)) if it satisfies the

condition

B(u, v) =

1 if b(u, v) ≥ δthresh

0 otherwise
(5.17)

We compare the performance of this segmentation method using the ground truth

quantities and the predictions (depths and curvature) generated by our network

as shown in Figure 5.8. The results are not intended to be treated as state of the

art segmentations, but are included to demonstrate a possible future extension

of this work and also to illustrate that the information from the network can be

used to perform similar tasks.

5.7 Generalisation to newer architectures

VGG [174] was one of the state-of-the-art neural network architectures at the

time of publishing the conference paper corresponding to this chapter, however,

superior architectures have emerged since then. Therefore, an experiment was
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Figure 5.8: Demonstrates a basic segmentation algorithm, that uses colour, depth
and curvature to generate a border function. The rows of the figure are, top to bot-
tom: Input colour image, Input ground truth depth, Segmentation From GT data,
Segmentation from Predicted Data. The key contribution of the depth and curvature
to the segmentations, are on the depth boundaries and wall edges that are difficult to
differentiate from colour alone.

designed to verify the generality of the approach on newer architectures by repli-

cating the algorithm using DenseNet [90]. The results of this experiment are

tabulated in Table 5.4. While there is a clear increase in performance due to

the architectural improvements, the most notable result is the performance gain

achieved by training depths, surface normals and surface curvatures jointly as

opposed to training depths alone and thus validating our approach on multiple

architectures.
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Depth Prediction using DenseNet [90]

Method RMSlin RMSlog Relabs δ δ2 δ3

Depth (single) 0.555 0.176 0.119 85.5% 97.0% 99.2%
Depth (joint with normals+curvatures) 0.513 0.170 0.118 86.3% 97.2% 99.2%

Table 5.4: A comparison of depth prediction performance when trained jointly and
as a single task using the DenseNet [90] architecture.

Figure 5.9: Predictions made by the joint framework using the DenseNet architecture.
In row order the images show the colour image, predicted depth maps, predicted surface
normals and finally the surface curvatures.

5.8 Summary

In this chapter we have presented a multi task learning platform capable of pre-

dicting depths, surface normals and surface curvatures purely from an RGB im-

age. We show that carefully chosen handcrafted feature representations can out-

perform the machine learnt features, provided they are closely related to the

prediction task. This shows that network guidance is a useful aspect and should
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not be completely ignored when training neural networks. Extensive experiments

were conducted by keeping the model capacity of the architecture fixed while

gradually increasing the number of prediction tasks to verify the effectiveness of

our hypothesis.

Furthermore, the approach was tested on two different neural network architec-

tures in order to demonstrate the concepts presented are invariant to architectural

changes. Finally, as a practical robotic application, the predicted quantities were

combined to perform scene segmentation.
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CHAPTER 6

Sparse Depth Map Inpainting using CNNs

6.1 Introduction

Perceiving depth and understanding the underlying geometry of the world is cru-

cial in order to develop fully autonomous robots which can navigate and interact

with the environment. This is largely facilitated by three common approaches.

Creating a map of the world using a Simultaneous, Localization and Mapping

System (SLAM) as seen in Chapter 4, using the approach discussed in Chapter 5

where a Convolutional Neural Network (CNN) was employed to predict the depth

given an RGB image and finally by using a sensor which is capable of capturing

range information (e.g Microsoft Kinect, LIDAR).

Each modality offers a unique set of advantages over the others. Sparse SLAM

systems are highly desirable for mapping large scale environments or for relocal-

ising the camera after failing to track, as it is much more efficient to manage

sparse point clouds. Image driven depth prediction CNNs are capable of predict-

ing depths from a single colour image even when the scene is texture less. Finally,

active sensors are capable of providing metric depths and are the most accurate
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modality. However, there are few drawbacks. Sparse SLAM systems and LIDARs

both produce sparse depth maps as shown in Figure 6.1, the depth maps produced

from a Kinect can contain missing areas and the depth predictions produced from

a neural network albeit being dense are generally less accurate compared to all

other modalities. Active sensors are generally more expensive and less ubiquitous

compared to image driven approaches (SLAM or CNN-based) and might be less

desirable for some scenarios.

Figure 6.1: Depth maps from different modalities each with different amounts of
sparsity. Image pair a shows the depth map produced from a Microsoft Kinect and the
corresponding rgb image, b shows the output of a SLAM map and the corresponding
rgb image, finally c shows the output of a LIDAR and the associated rgb image.

Due to these inherent limitations of all of the above approaches, it is becoming

increasingly common to use a combination of the methods to create a better

3D representation of the world. However, this fusion process is non-trivial as

the SLAM system is generally in an arbitrary scale, while the predictions of the

CNN or the range data from the sensors are in metric scale. Furthermore, even

the performance of learning approaches suffer if the images fed at test time have

radically different focal lengths and it is a common practice to generate a separate

depth estimation model for indoors and outdoors. Having a representation of

confidence for each modality can be of great benefit during the fusion process, as

the confidences can then be used to fuse the depth maps probabilistically.
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6.1.1 Contributions

The publication [200] corresponding to this chapter was produced in collaboration

with Saroj Weerasekera who is part of the computer vision and machine learning

group of University of Adelaide led by Prof. Ian Reid.

I was the second author of this publication and the relative contributions I have

made is as follows:

• Conception of Idea(50%)

• Network architecture design (50%)

• Loss/Objective function design (30%)

• Coding the network (40%)

• Training data creation (50%)

• Testing and evaluation (50%)

In the context of the thesis, this chapter aims to bridge some of the concepts

presented in Chapters 4 and 5 by combining sparse SLAM maps with depth

predictions using CNNs.

The main contributions of this work are:

• A real-time framework that is capable of generating a dense reconstruction

of a scene given a sparse depth map and a neural network that generates

an estimate of the scene depth.

• A novel CRF formulation which allows the fusion of depth maps in different

scales.
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6.2 Related Work

The closest work to the approach proposed in this chapter is that of Fácil et

al. [51], in which they proposed to fuse multi-view depth obtained using LSD-

SLAM [48] with the predicted depth maps of Eigen et al. [44]. Their approach

was largely motivated by the fact that multi-view depth estimation methods

exhibit small errors compared to CNN based methods for areas with large image

gradients, while this relationship is reversed for areas with low image gradients.

The experiments conducted in Chapters 4 (SLAM depths) and 5 (CNN depths)

also support these findings. The main difference between their algorithm and

ours is they fuse the depth maps based on a product of four pre-defined weighting

factors as opposed to ours where the two depth maps are fused probabilistically

based on learned confidences. Fertsl et al. were able to fuse depths captured from

two different sensors [52]. A time of flight tensor which operates at a large frame

rate albeit with a low lateral resolution, was combined with the output of a stereo

sensor which has a relatively large lateral resolution. They employed a primal-

dual optimisation scheme to perform the fusion process. On a similar note [123]

Liu et al. demonstrated fusion of depth map obtained from an IR based depth

sensor and a stereo rig. Contrary to all these works, we propose a scale-invariant

approach allowing us to fuse depth maps in radically different scales. I would

like mention since publishing the conference paper corresponding to this chapter,

several works have emerged in this field [208, 94, 96], further highlighting the

importance of this research problem.

Non-learning based depth map completion methods (as demonstrated in the

NYUv2 dataset[140]) draw from image processing approaches [119, 188]. The

former technique by Levin et al. was initially applied to colourise monochro-

matic images given a greyscale image with colour scribbles. This was achieved

by imposing constraints such as neighbouring pixels should have similar colours

if the corresponding pixels have similar intensities. Sparse or semi-dense depth

map densification can also be performed using an approach akin to this provided
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that there’s a corresponding colour image. Missing depth values can then be ap-

proximated based on the neighbouring depths by using the colour information as

a guide. In a similar vein, Tomasi and Manduchi proposed bilateral filtering [188]

an approach that combined domain filtering which enforces geometric closeness

with range filtering which focuses on photometric similarity. When applied to

depth densification, this forces nearby pixel values as well as pixels with similar

colours to have similar depth values. However, both of these approaches suffer

when there are large areas of missing data in the depth image as shown in Figure

6.2.

Figure 6.2: In column order, a: RGB image, b : ground truth depth map (with
missing values), c: densified depth map using [119], d: densified depth map using [188]

Krähenbühl et al. [106] proposed to employ a fully connected CRF model to fuse

class labels with image data to obtain a refined set of class labels. However, these

CRFs ignore the arbitrary scale, varied irregular sparsity and/or uncertainty at

which visual SLAM maps are created. Moreover, they are also very restrictive,

relying on handcrafted priors that link image colours and textures to depths.

6.3 Method

6.3.1 Problem Definition and Terminology

The proposed framework aims to infer over a fully connected learnable CRF

in order to densify/inpaint a sparse map with P points that has been aligned
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with a single RGB image I with N pixels and represented as a partial log-depth

map ys = [ys1, .., y
s
N ] = ln(ds) = [ln(ds1), .., ln(dsN)], where dsi is the depth of

pixel i, with valid depths only at the projected pixel locations. Assuming that

cs = [cs1, .., c
s
N ], 0 ≤ csi ≤ 1, ∀i is the confidence associated with the map estimated

by a probabilistic SLAM approach or learned using a neural network trained to

predict map confidence from input data, the end goal is to infer the dense log-

depth map y = [y1, .., yN ] = ln(d) = [ln(d1), .., ln(dN)]

We also assume that for this inpainting task we are given a dense single view

depth prediction network and a data-driven depth confidence prediction network

(will be discussed in Section 6.3.4). We denote the log-depths regressed by the

depth prediction network to be yp = [yp1, .., y
p
N ] = ln(dp) = [ln(dp1), .., ln(dpN)],

and respective confidence maps to be cp = [cp1, .., c
p
N ], 0 ≤ cpi ≤ 1.

The inpainted dense depth map produced by our framework using a sparse SLAM

depth map is by default in the arbitrary scale of the SLAM system. Alternatively,

the dense depth map can also be produced in metric scale as explained in Section

6.4.

6.3.2 Sparse Depth Map Inpainting

In order to inpaint the sparse depth map as described above we propose to min-

imize the following CRF energy with respect to y:

E(y) = αEu(y,y
s, cs,b) + βEfc(y,y

p, cp) + γElc(y,y
p, cp) (6.1)

where b is binary mask denoting pixels with valid sparse depths.

Eu is the unary term generating the log depths for image I to be consistent
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with the sparse map, Efc is a fully-connected pairwise term and Elc is a locally

connected pairwise term, both penalizing incorrect pairwise depth relationships

(depth ratios as scale invariant measures) of the inferred dense log depth map

using the single view depth predictions as the learned priors. In a general form,

multiple sparse and dense depth maps obtained at arbitrary scale from various

sources can be used in our framework, replacing the CNN-based single view depth

prediction, and simply minimizing the sum of the pairwise and fully connected

terms described above. The tunable parameters (α, β, γ) > 0 signify the relative

importance of each term. A detailed description of each CRF term, the motivation

behind using them and relations of these to existing frameworks are described in

the following subsections.

Nodes of CRF

Figure 6.3: Given a sparse depth map ys where gray pixels indicate missing values,
the unary term aims to pull the dense prediction y to be consistent with the sparse
depth value ys. The term is only computed on the pixels with a valid sparse value
given by the binary mask b where black indicates missing values. The term is weighted
by the learned confidence map cs.

The unary term in the CRF pulls the inferred depth map to be consistent with

the sparse map obtained via SLAM or a sensor. Inspired by [112, 45, 44], we use

squared natural log-depth differences for every point on the sparse map as the

unary potentials of our CRF:

113



6.3. Method

Eu(y) =
1

|b|

N∑
i

bic
s
i (yi − ysi )2 (6.2)

Each term in Eu is weighted by the learned confidence of map accuracy csi .

Edges of fully connected CRF model

As the end goal is to inpaint sparse maps of arbitrary scale we aimed to design

a learnable prior which is insensitive to the scale of the scene. For this purpose,

we propose the pairwise potentials of our fully connected CRF to be:

Efc(y) =
1

2N

∑
i,j

cpij
(
(yj − yi)− (ypj − y

p
i )
)2

(6.3)

where cpij are the learnable parameters of the CRF which aims to approximate

the confidence of the log of depth-ratio ln(dpj/d
p
i ) = ypj − ypi of the single view

depth predictions for any two points i and j learned in a data driven fashion.

This is expressed graphically in Figure 6.4

Figure 6.4: The fully connected term aims to enforce the ratio of the inferred depths
of two points to be same as that of the single view depth prediction network. cpij is
approximated by the product cpi c

p
j .

Pairwise terms of our fully connected CRF can be best interpreted as the terms
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which enforce scale-invariant ordinal relationships of the inferred depths of two

points to be same as that of the single view depth prediction network. The

intuition behind using this fully connected CRF is that depth ratios of two points

in a scene are invariant to the scale of the scene. Any other scale invariant

function f(di, dj) may be used without loss of generality in our framework in

place of ln(dj/di).

The fully connected pairwise CRF defined in Equation 6.3 is however intractable

in its most generic form, as the number of learnable parameters cpij,∀(i, j) grows

quadratically with the number of pixels in the image. Approximations are gener-

ally used to model cpij in parametric form for reducing the number of independent

learnable parameters and for efficient inference. The most common practice is

to model cpij as the sum of Gaussian Radial Basis Function (RBF) kernels each

having two learnable parameters, which are mean and variance. For example, [7]

and [106] define cpij in the form of Gaussian RBF kernels that are a function of

the distance between pixel i and j and the colour difference between those pixels.

These CRF models allow for fast inference but are very restrictive.

In this work, we propose a different relaxation where cpij = cpi c
p
j which allows for

efficient inference, while having many more learnable parameters for expressive-

ness. The intuition is that the accuracy of the pairwise term is limited by the

least confident depth value forming the ratio, and thus the overall confidence can

be approximately expressed as a product of individual ones. This simple approx-

imation significantly reduces the number of parameters to learn, and also allows

for tractable inference as the fully connected term in Equation 6.3 (and thereby

its gradient) can now be re-written in an alternative form that allows for linear

time computation:

Efc(y) =
1

N

N∑
j

cpj

N∑
i

cpi (yi − y
p
i )

2 − 1

N

( N∑
i

cpi (yi − y
p
i )
)2

(6.4)
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Local Grid Connected Edges of CRF

Additionally, we define a grid connected term of the CRF to give more importance

to the local structures learned by the single view depth predictor:

Elc(y) =
∑
i,k

cpi c
p
k

(
(yk − yi)− (ypk − y

p
i )
)2

(6.5)

where k ∈ {+u(i),+v(i)} denotes pixel locations to the right of and below the

pixel i in the image plane as shown in Figure 6.5. This enforces the solution

to trust pairwise relations in yp around a local neighbourhood for each pixel i,

and is thus helpful for providing local support for the unary term where depth

information is absent. The end-effect of Elc is similar to a data-driven local

smoothing as shown in Figure 6.6, where information obtained from the local

pairwise depth relationships of the depth predictions (yp) are used to “smooth

over” the areas where the sparse map’s points are fused in the solution, while

still anchoring the solution onto the sparse map. We only consider a 4-connected

graph for the locally connected pairwise term (Elc) as the fully connected term

(Efc) already encompasses the full pairwise connectivity graph.

We denote the set of pixels in the neighbourhood of i as N (i). Additional model

expressibility can be added to our locally connected pairwise terms by increasing

the size of N (i). One way of achieving this is through the introduction of a

multiplicative pairwise pixel-distance based Gaussian RBF kernel with tunable

variance to the terms in Equation 6.5 such that nearby pairwise depth ratio

inconsistencies are penalized more strongly than those further apart.

6.3.3 Inference Method

The inference objective is to find minyE(y). For ease of expression we can re-

write (6.1) in the following form:
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Figure 6.5: The locally connected term similar to the fully connected term enforces
the ratio of the inferred depths of two points to be same as that of the single view
depth prediction network. However, the main goal of the Elc term is to highlight the
importance of the local structures. Therefore, for each pixel the influence of Elc limited
to a neighboured given by k ∈ {+u(i),+v(i)} denoting the pixels to the right and
directly below.

Figure 6.6: Qualitative ablation of the impact of data-driven smoothing as defined
by our local CRF pairwise terms Elc, and the impact of incorporating confidences
into the energy. In column order 1st: RGB Image, 2nd: Dense depth prediction of
Eigen [44] (metric scale), 3rd: Sparse depth map of [138] (arbitrary scale), 4th: Our
reconstruction with learned confidences but without Elc, 5th: Our reconstruction with
Elc but without learned confidences, 6th: Our final reconstruction with both Elc and
learned confidences.

E(y) = yTAy − 2(yTAsys + yTApyp) + ysTAsys + ypTApyp (6.6)

where A = (As + Ap) is a N × N symmetric positive (semi-) definite matrix.

As is a diagonal matrix with entries Asii = αcsi ,∀i, while Ap is a dense N × N
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symmetric positive (semi-) definite matrix with entries as follows:

Apii = cpi

( β
N

∑N
j,j 6=ic

p
j + γ

∑
j∈N (i)c

p
j

)
Apij = −cpi

( β
N
cpj + γcpj

)
Apij = −cpi

( β
N
cpj

)
∀i

∀i, j ∈ N (i)

∀i, j 6= i, j 6∈ N (i)

(6.7)

Differentiating Equation 6.6 with respect to y and then setting the resulting

expression to 0 we obtain:

Ay = Asys + Apyp (6.8)

Algorithm 6.1 Conjugate gradient method for solving for the optimal log depth
map for an image I

1: Initialize:
y0 = 0
r0 = Asys + Apyp − Ay0

p0 = r0
k = 0

2: while ||rk|| < ε do

3: ak =
rTk rk

pT
kApk

4: yk+1 = yk + akpk
5: rk+1 = rk − akApk

6: βk =
rTk+1rk+1

rTk rk

7: pk+1 = rk+1 + βkpk
8: k = k+1

9: y = yk+1

To solve for y in Equation 6.8 we use the iterative conjugate gradient method

as shown in Algorithm 6.1. For the algorithm it is not necessary to explicitly

construct the matrices As and Ap, instead we can simply evaluate the gradients

Asys and Apyp at the start, and Apk at each iteration-step. Note that computing

Apyp and Apk require O(N2) operations, however based on the simplified form of

Equation 6.4, a linear time expression for gradient computation can be derived.
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To further accelerate the process we implement the algorithm to run on the GPU,

where per pixel operations are parallelized. In practice, the solution converges

rapidly to within a desired threshold in n� N iterations.

Note that for the system of linear equations to have a unique solution, i.e. non-

zero determinant for A, α should be non-zero. Intuitively, it means that at least

one input depth map must contribute to the absolute scale of the fused depth

map, else infinite solutions exist where the fused depth map is correct up-to-scale.

Also, to prevent a potential condition number of infinity due to diagonal entries

in A being equal to 0, we add a small epsilon to cd.

6.3.4 Learning to Predict Confidence Weights

The goal here is to learn separate CNN models that can model the conditional

error distributions of the sparse depth map ys and the depth prediction generated

from a CNN yp, and predict cs and cp respectively, given the respective depth

maps and the image I as input. Since the training setup and network architecture

is almost identical for the two cases, for brevity we focus on the training procedure

for predicting cs, and mention the differences.

The inputs to the CNN model are ys and I. The RGB image is first passed

through a (9x9 kernel size) convolutional layer with 127 output feature maps.

The output feature maps are then concatenated with the input log-depth map

and passed through 6 more (5x5 kernel size) convolution layers with each having

128 output feature maps, except for the last layer which regresses the confidence

map. All layers are followed by ReLU activation functions, except the output

layer which we leave as linear. At test time the predicted values are clipped

between 0 and 1 inclusive.

The irregular sparsity structure in ys poses a difficulty to the learning process,
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as the network has an additional task of learning which points in the input depth

map are valid. This demands higher model capacity. One way to facilitate the

learning process is to explicitly model the network to be invariant to the sparsity

of the data, for instance by performing masked convolutions at each layer [190]

which require significant computation overhead.

Concatenate

Depth Estimation 
CNN (Eigen et al.)

Delaunay 
Triangulation

Confidence 
Prediction of 

(CNN) 

x Elementwise Multiplication

Confidence 
Prediction

Solver

Confidence  
Prediction of 

(CNN) 

Confidence 
Prediction

Solver

x

Figure 6.7: The top figure shows the training pipeline. In the bottom figure we
show that by performing element-wise multiplication between ĉsi (the confidence map
corresponding to the Delaunay triangulated depth map) and bs (the binary mask of ys)
we can obtain cs (the confidence map of the sparse depth map).

We believe that a more efficient way to facilitate learning with a small network

is to densify the data itself before feeding it into the convolutional layers based

on some assumption about the data. Here we opted to perform Delaunay tri-

angulation on the 2D image coordinates corresponding to valid points on the

depth map, followed by barycentric-coordinate-based linear interpolation (in in-

verse depth space) to fill the triangles with log depth values. The latter can be

efficiently carried out on the GPU. This densification method is motivated by the

fact that most regions in a depth map are typically piecewise-planar. Doing so

also enhances errors in the sparse log depth map that otherwise would have been

difficult for the network to pick up.
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The training loss Ls for predicting cs is defined as follows:

Ls =
1

|bs||bgt|

N∑
i

bsi b
gt
i (ĉsi − ĉs∗i )2 (6.9)

where ĉs is the predicted confidence map for Delaunay triangulated depth map,

bs and bgt are binary vectors indicating the values for which the sparse depth

map and the ground truth depth map are non-zero respectively. Since confidence

of a depth value is inversely proportional to its error (and in the more general

case scale-invariant error) we define cs∗
i as follows:

ĉs∗i = bsi b
gt
i e
−λs|Esi | (6.10)

where λs > 0 is a tunable parameter controlling the contrast of cs, and Es
i is the

scale-invariant error for a depth value in pixel i defined as:

Es
i = (αs + βs)bsi b

gt
i (ysi − y

gt
i )− βs

|bs||bgt|

N∑
j

bsjb
gt
j (ysj − y

gt
j )

+ γs
∑
j∈N (i)

bsi b
s
jb
s
jb
gt
j

(
(ysj − ysi )− (ygtj − y

gt
i )
) (6.11)

where ygt represents the groundtruth log-depth map. The parameters (αs, βs) >

0 can be set based on the amount of scale-invariance we require Es
i to be (αs = 0

for full-scale-invariance in the case of ys, as it is in a random scale), and γs > 0

determines whether the network should emphasize more on learning confidences

in local pairwise connectivity.

In order to get cs from the network output ĉs (which is now the predicted con-

fidence map corresponding to the triangulated dense log depth map), we simply

perform an element-wise multiplication of the network output with bs. The ran-

dom variability in map scale of ys also poses a difficulty to the learning process,

and as a solution to this we scale each triangulated dense log depth map so that

its mean is equal to the mean of the ground-truth log depths in the entire train

set, before passing it into the network.
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For training, we use the Caffe [97] framework. Training was performed with a

batch size of 16, a learning rate of 1e−2, momentum of 0.9 using SGD as the

optimizer on a NVIDIA GTX 1080 Ti GPU.

6.4 Results

This section provides a summary of the quantitative and qualitative results of the

proposed framework for different experimental settings on NYU Depth v2 [140]

and KITTI [63] datasets. For all indoor experiments the network proposed in

Eigen et al. [44] is used as the virtual depth sensor and for the outdoor experi-

ments the neural network of Garg et al.[62] is used to generate depth predictions.

The baselines chosen for comparison are predominantly image inpainting meth-

ods as depth map completion approaches were not openly available at the time

of writing conference paper corresponding to this chapter.

We first demonstrate the performance of sparse depth map densification for ORB-

SLAM depth maps. For this experiment, we use the train/test split specified in

[44], however our train and test sets are a fraction of the original dataset as the

sequences that ORB-SLAM [138] failed to track on were removed. Since the

original ORB-SLAM depth maps are in arbitrary scales for different sequences,

the scale invariant error employed by Ummenhofer et al. [191] and Eigen et al.[45]

as shown in Equation 6.12 is used as the metric to evaluate the depths maps.

Scale-Invariant Error(D,D∗) =

√√√√ 1

n

∑
i

d2i −
1

n2

(∑
i

di

)2

, (6.12)

where di is the difference in predicted log depth (D) and ground truth log depth

(D∗) for the valid pixels n (pixels that contain non-zero depth values in the raw

depth data)
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Method Scale Invariant Error

Sparse Map ([138]) 0.492
Cross-bilateral Filter[188] 0.491

Colorization [119] 0.372
Depth Map Prediction ([44]) 0.159

Ours 0.144

Table 6.1: Quantitative results of inpainting ORB-SLAM maps on the NYU[140]
dataset.

Quantitative results of the experiment are summarized in Table 6.1. The error

reported for the ORB-SLAM[138] sparse depth maps is computed only on the

points visible in the map and does not precisely correspond to that of denser

error measures. However, the large error provides a strong indication that these

ORB-SLAM maps contain gross outliers. While the raw image based inpainting

techniques of [188] and [119] demonstrate improvement over the sparse depth

maps alone, the neural network depth prediction of Eigen et al. significantly

reduces the scale invariant error by decoding the structural information efficiently

from raw image data. We demonstrate that the scale invariant error of the sparse

depth map can be further improved by fusing the sparse depth map with that of

the neural network using the learned confidences.

In Table 6.2, we provide an ablation study justifying importance of confidence

estimation. Incorporating confidences of both the sparse depth map and the single

view depth predictor is important for obtaining more accurate reconstructions.

Excluding the predicted confidences of either the sparse map or the dense depth

predictor (or both) degrades the accuracy of the final depth map.

Figure 6.8 shows the sensitivity of the reconstruction as we vary the strength of

the fully connected and the local grid connected terms of the CRF. It is evident

that both the terms contribute to the performance in this case.

Qualitative results of ORB-SLAM densification are shown in Figure 6.9. Dense
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Learned Confidence Scale Invariant Error
Sparse Map CNN Prediction

x x 0.150
x X 0.149
X x 0.145
X X 0.144

Table 6.2: An ablation of the effects of incorporating learned pointwise confidences
of the sparse map and predicted depth map.

Figure 6.8: plots showing the scale invariant error (on vertical axis) of our reconstruc-
tions on NYU dataset as we change the hyperparameters (on horizontal axis): β (left)
and γ of our CRF, with α = 10. Black curve at the bottom in each plot represents best
reconstruction error against varied fully connected terms strength and locally connected
terms strength respectively

predictions generated from the CNN of Eigen et al. [44] are often inaccurate at

the edges as well as at regions which are further away from the camera. Our

confidence prediction networks help to reduce most of the depth errors and gross

outliers from making into the fused result by predicting the confidences of the

input depth data (even for the sparse ORB-SLAM depth maps which are at

arbitrary scale). An added advantage of our approach is the ability to generate

the fused result to be closer to metric scale if needed. This can be achieved by

simply using yp in the unary terms, and ys in the fully-connected term of our

energy formulation (instead of the other way around), and re-tune the hyper-

parameters α, β, and γ.
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Figure 6.9: ORB-SLAM inpainting results for some of the images in the NYU test set.
In column order: (1) RGB image, (2) Depth map prediction ([44]), (3) ORB-SLAM
depth map, (4) Predicted confidences using our method for depth predictions (red
implies higher confidence), (5) Predicted confidence using our method for the sparse
map, (6) Ours, (7) Ground truth.

6.4.1 Inpainting Sparse Depth Maps from Depth Sensor

We also evaluate our method for inpainting sparse sensory data captured in indoor

and outdoor environments. We found that for this task using the unary and local

pairwise terms were sufficient to generate an accurate fused result. This is because

unlike the ORB-SLAM maps, the sensory data is largely accurate with little to

no outliers, and thus does not require a fully-connected pairwise neighbourhood

of learned depth relationships to rectify the existing sensor data. Hence, we can

fill-in the missing depth values based on the local depth relationships of the single

view depth predictions (only the local pairwise weight γ need to be tuned on a

validation set for a fixed α).

We first evaluate our method for inpainting Kinect depth maps on our NYU test

subset, again using the network in [45] as the virtual depth sensor. To quanti-

tatively evaluate the results, while respecting the structured sparsity pattern, we

introduce a synthetic version of the NYU test set where a random rectangular

125



6.4. Results

Table 6.3: Inpainting results on the NYU dataset for Kinect depth maps which are
further sparsified by removing random crops. The results are evaluated against the
original (downsampled) Kinect depth maps, on a subset of [44]’s test split (the same
subset used for the ORB-SLAM inpainting experiments). Note that it is a common
practice in the literature to evaluate against the original depth resolution of 640x480.
However we performed inpainting at the resolution of 147x109 to increase efficiency and
for real-time performance, and therefore did our evaluation against 147x109 resolution
Kinect depth maps, downsampled using the nearest neighbour method. The random
crops which are of size 50x50 were removed from the downsampled Kinect depth maps.

Method
lower better higher better

RMSlin RMSln Relabs δ δ2 δ3

Eigenvgg [44] 0.679 0.217 0.155 74.0% 95.2% 99.0%
Cross-bilateral filter [188] 0.249 0.077 0.023 97.5% 99.3% 99.8%

Colorization [119] 0.200 0.059 0.019 98.4% 99.7% 99.9%
Ours 0.169 0.047 0.018 99.1% 99.9% 100.0%

region is cropped from the Kinect depth map to be labelled missing and then

inpainted using the rest of the visible depth map. These results are tabulated in

Table 6.3. The neural network prediction of Eigen et al. is chosen as the baseline

for this scenario. Both the colorization[119] and the cross-bilateral filtering ap-

proach [188] use the neural network prediction as well as the Kinect depth (after

the removal of the random crop) as the inputs and improve upon the stand-alone

neural network prediction. As we use the knowledge of the confidence of the

neural network prediction in to account in our approach, we are able to generate

more accurate reconstructions.

Figure 6.10 shows the qualitative comparison of the results of our learnable con-

fidence based inpainting with that of the baselines. It is clear that the proposed

method produce more realistic depth maps as opposed to the mostly piecewise

constant and inaccurate depth maps of the competing approaches.

Next we evaluate our method for inpainting sparse LIDAR maps in the KITTI

dataset. To facilitate quantitative evaluation we remove 2/3rd of the map points

(respecting the sparsity structure of the LIDAR data) and evaluate the inpainted

results against the removed points. Quantitative results on the test set are shown
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Figure 6.10: Comparison of methods for inpainting Kinect depth maps from the NYU
test set with randomly removed data. In column order, 1st: RGB image, 2nd: Kinect
depth map with randomly removed data, 3rd: Inpainted depth map using cross-bilateral
filtering, 4th: Inpainted depth map using Colorization, 5th: Our reconstruction result,
6th: Raw Kinect depth map.

in Table 6.4 where our inpainting method improves greatly over the baseline CNN

predictions of [62].

Qualitative examples of LIDAR inpainting are shown in Figure 6.11 where we

can observe sharper object boundaries in our inpainted result, in comparison to

the blurred object boundaries in the predicted depth map due to the loss in

resolution that very deep feed forward CNNs suffer from. Most other errors in

scene structure in the depth predictions have also been corrected in our fused

result.

127



6.4. Results

Table 6.4: Inpainting results on the KITTI dataset for LIDAR depth maps which
are further sparsified by randomly removing a 2/3rd of its points. The results are
evaluated against the original (downsampled) sparse LIDAR depth maps, in a subset of
[45]’s test split. Note that it is a common practice in the literature to evaluate against
the original depth resolution of 1242x375 within a masked pixel region of [44:1196,
153:370] (with 0-based indexing). However we performed inpainting at the resolution
of 608x160 to increase efficiency and for real-time performance, and therefore did our
evaluation against 608x160 resolution LIDAR depth maps, downsampled using the
nearest neighbour method, within a masked pixel region of [21:585, 65:157]

Method
lower better higher better

RMSlin RMSln Relabs δ δ2 δ3

Garg et al. [62] 5.555 0.285 0.180 69.2% 90.3% 96.5%
Cross-bilateral filter [188] 3.854 0.195 0.113 85.3% 95.5% 98.3%

Colorization [119] 1.956 0.104 0.048 96.5% 98.9% 99.5%
Ours 1.838 0.092 0.032 96.9% 99.0% 99.6%

Figure 6.11: Inpainting LIDAR depth maps. In column order, 1st: RGB image,
2nd: Depth predictions [62], 3rd: Predicted confidences using our method for depth
predictions (red denotes higher confidence), 4th: LIDAR depth map 5th: Our output

6.4.2 Latency

All experiments were conducted on a machine with an NVIDIA GTX 980 GPU

and Intel i7 4790 CPU. ORB-SLAM inpainting as well as Kinect depth map

inpainting on the NYU dataset can be performed at approximately 30ms at

147×109 image resolution, which is the same resolution as the predicted depth

map by [45]. However, if these tasks are performed at the full image resolution
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of 640x480 by upsampling the depth predictions, the inference time increases to

≈ 200ms. Inference time for LIDAR depth map inpainting on the KITTI dataset

is ≈ 100ms, if the reconstruction is performed at the same resolution as that

of predicted depth map by Garg et al.[62] of 608×160. Total overhead time for

neural network depth and confidence predictions is ≈ 50ms for both datasets.

6.4.3 Additional Qualitative results

Figure 6.12: Comparison of our method against baselines for inpainting LIDAR depth
maps in the KITTI dataset. In column order: (1) RGB image, (2) LIDAR depth map
(3) Depth map prediction ([62]), (4) Cross-bilateral filter, (5) Colorization, (6) Our
reconstruction result.
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Figure 6.13: Comparison of our method against baselines for inpainting ORB-SLAM
depth maps in the NYU dataset. In column order: (1) RGB image, (2) ORB-SLAM
depth map, (3) Depth map prediction ([44]), (4) Cross-bilateral filter, (5) Colorization,
(6) Our reconstruction result.
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6.5 Summary

In this chapter, we presented a framework that can be used to generate a dense

reconstruction of a scene on demand given a sparse depth map as well as a

CNN capable of predicting a depth map from a single image. This approach

is particularly useful during large-scale mapping as well as during relocalization

where it’s inefficient to store detailed information about the map and all the

corresponding images.

We modelled the task as inference over a novel fully connected CRF model, with

nodes anchoring the solution to the sparse map and the scale-invariant edges

enforcing pairwise depth relationship information based on depth predictions of

a deep neural network, given the live RGB image. The CRF model was also

parametrised by the point-wise confidences of both the sparse map and the dense

depth prediction. These confidences were predicted using CNNs, given the depth

maps and the live RGB image as the input. This form of probabilistic data fusion

allowed the solution to be less sensitive to the presence of erroneous depths, and

a simple relaxation of the pairwise confidence weight enabled efficient inference

of the solution. We applied our method to perform real-time image-guided in-

painting of sparse maps obtained from three different sources: a sparse monocular

SLAM framework, Kinect and LIDAR.
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CHAPTER 7

Depth and Relative-Pose Estimation using

CNNs

7.1 Introduction

The previous two chapters were largely centred around manipulating the depth

prediction from a neural network in order to perform a range of tasks includ-

ing predicting correlated information and denisifying sparse depth maps. In this

chapter, the tracking and mapping problem is revisited from a different perspec-

tive where a CNN is once again used as the workhorse of the framework. However,

instead of replacing every component of the SLAM pipeline with CNNs, this work

demonstrates it’s better to use CNNs for tasks that greatly benefit from feature

extraction (depth and optical flow estimation), while using geometry for tasks its

proven to work well (motion estimation given the depths and flow)

In this work, we draw from both machine learning approaches as well as SfM

techniques to create a unified framework which is capable of predicting the depth

of a scene and the motion parameters governing the camera motion between an

image pair. We construct our framework incrementally where the network is first
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trained to predict depths given a single colour image. Then a colour image pair

as well as their associated depth predictions are provided to a flow estimation

network which produces an optical flow map along with an estimated measure

of confidence in x and y motion. Finally, the pose estimation block utilises the

outputs of the previous networks to estimate a motion vector corresponding to the

logarithm of the Special Euclidean Transformation SE(3) in R3, which describes

the relative camera motion from the first image to the second.

7.2 Contributions

The work presented in this chapter was done in collaboration with Andrew Spek

and the relative contributions were equal in all areas. The main body of the

chapter is largely based on the contents of the submitted work [40] and is expected

to appear in a similar form in Andrew’s thesis.

The main contributions are summarised below:

• We present a unified framework which predicts depth, optical flow, flow

confidences and relative camera pose.

• We present the first approach to use a neural network to predict the full

information matrix which represents the confidence of the optical flow esti-

mate.

• We achieve state-of-the-art results for single image depth prediction on both

NYUv2 (indoor) and KITTI (outdoor) datasets.

• We outperform previous camera motion prediction frameworks on both

TUM and KITTI datasets.

• We actively combat scale drift using the knowledge of metric depths and

subsequently produce more accurate visual odometry estimates.
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7.3 Related Work

The existing works in the literature that are related to the ideas presented in this

chapter, specially in the areas of optical flow prediction and pose estimation using

neural networks are summarised below. Previous depth prediction approaches

were discussed in the background chapter and can be found in Section 2.2.2

7.3.1 Optical Flow Prediction

Optical flow estimation is the process of computing the apparent motion field of

objects in a scene caused by the relative motion between the camera and the scene

itself. Popular computational approaches are based on a variational formulation

and an associated energy minimisation problem led by the pioneering work of

Horn and Schunck [86]. A range of modifications have been proposed since then

in the works of [185, 183]. An alternative approach is to predict the motion field

using a CNN given an image pair.

An early work in optical flow prediction using CNNs was FlowNet [53]. This was

later extended by Ilg et al. to FlowNet 2.0 [92] which included stacked FlowNets

[53] as well as warping layers. Ranjan and Black proposed a spatial pyramid

based optical flow prediction network [158]. More recently, Sun et al. proposed a

framework which uses the principles from geometry based flow estimation tech-

niques such as image pyramid, warping and cost volumes in [184]. As our end goal

revolves around predicting camera pose, it becomes necessary to isolate the flow

that was caused purely from camera motion. In order to achieve this we extend

upon these previous works to predict both the optical flow and the associated

information matrix of the flow. Although not in a CNN context [197] showed the

usefulness of estimating flow and uncertainty.
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7.3.2 Pose Estimation

CNNs have been successfully used to estimate various components of a Structure

from Motion pipeline. Earlier works focused on learning discriminative image

based features suitable for ego-motion estimation [2, 95]. Yi et al.[204] showed a

full feature detection framework can be implemented using deep neural networks.

Rad and Lepetit in BB8[157] showed the pose of objects can be predicted even

under partial occlusion and highlighted the increased difficulty of predicting 3D

quantities over 2D quantities. Kendall and Cipolla demonstrated that camera

pose prediction from a single image catered for relocalization scenarios [100].

However, all of the above works lack a representation of structure as they do

not explicitly predict depths. The work presented in this chapter is more closely

related to that of Zhou et al. [212] and Ummenhofer et al. [191] and their frame-

works SfM-Learner and DeMoN. Both of these approaches also predict a single

confidence map in contrast to ours which estimates the confidence in x and y

directions separately. Since our framework predicts metric depths in comparison

to theirs, we are able to produce far more accurate visual odometry and combat

against scale drift. CNN SLAM by Tateno et al. [187] incorporated depth pre-

dictions of [114] into a SLAM framework. Our method performs competitively

with CNN-SLAM as well as ORB-SLAM[139] and LSD-SLAM[48] despite solely

computing sequential frame-to-frame alignments, whereas the SLAM approaches

have the added advantage of performing loop closures and local/global bundle

adjustments.
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7.4 Method

7.4.1 Network Architecture

The overall architecture consists of 3 subnetworks in the form of a depth, flow and

camera pose network. A large percentage of the model capacity is invested into

the depth prediction component for two reasons. Firstly, the output of the depth

network also serves as an additional input to the other subsystems. Secondly,

we wanted to achieve superior depths for indoor and outdoor environments using

a common architecture. In order to provide an overall understanding of the

data flow, a high level diagram of the network is shown in Figure 7.1. Expanded

architectures for each of the subnetworks is included in the respective subsections.

Pose Prediction
Block

Depth Estimation 
Network 

(DepthNet)

Depth Estimation 
Network 

(DepthNet)

Concatenate

Shared
Weights RGB 

Predicted Quantities 

Flow Flow 
Confidence 

Depth Pose 

Depths
(predicted)

Input RGBs

Flow and Confidence

Flow Estimation 
Network

Figure 7.1: Overview of our system full pipeline. Please note that we use the notation←−
ij to indicate from j to i

7.4.2 Depth Prediction

The depth prediction network consists of a feature encoder module followed by a

decoder. The encoder network is largely based on the DenseNet161 architecture
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described in [90]. In particular we use the variant pre-trained on ImageNet [167]

and slightly increase the receptive field of the pooling layers. As the original

input is down-sampled 4 times by the encoder, during the decoding stage the

feature maps are up-sampled back 4 times to make the model fully convolutional.

We employ skip connections in order to re-introduce the finer details lost during

pooling. Since the first down-sampling operation is done at a very early stage

of the pipeline and closely resemble the image features, these activations are not

reused inside the decoder. Up-project blocks are used to perform up-sampling

in our network, which provide better depth maps compared to de-convolutional

layers as shown in [114].
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Figure 7.2: The depth estimation uses an architectural combination of the powerful
classification network ’DenseNet-161’ described in [90] and the ’Up-project’ style blocks
proposed in [114].

Due to the availability of dense ground truth data for indoor datasets (e.g NYUv2

[140], RGB-D[182]) this network can be directly utilised to perform supervised

learning. Unfortunately, the ground truth data for the outdoor datasets (KITTI)

are much sparser and meant we had to incorporate a semi-supervised learning

approach in order to provide a strong training signal. Therefore, during training

on KITTI, we use a Siamese version of the depth network with complete weight-

sharing, and enforce photometric consistency between the left-right image pairs

through an additional loss function. This is similar to the previous approaches

[62, 111] and is only required during the training stage, during inference only a
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single input image is required to perform depth estimation using our network.

7.4.3 Flow Prediction

Flow Estimation Network

Input Depths
(predicted)

ConfidenceX ConfidenceY

Optical Flow Estimate

Input RGBs

Flow Deconv Block

Flow Deconv
BlockFlow Conv Block

Flow Conv
Block

3x3 Conv 3x3 Conv
(stride 2)

4x4 Deconv
(stride 2)

'Leaky' ReLU
Shared
Weights

Upsample
(2x)

ConcatenateWarp
ConcatenateRGB 

Skip-connections

Flow
Flow 

Confidence Depth 

Predicted Quantities 

Figure 7.3: The flow network has 3 streams where all the layers except the first layer
have shared weights.

The flow network has three streams. The first stream takes the left image and

its’ predicted depth map as the input, the second stream receives the right image

and the corresponding predicted depth map and finally, the third stream receives

both the left and right images and their associated depth predictions. Barring the

first layer, all other layers of each stream share their weights. During the decoder

stage the predicted flow is used to perform warp concatenations, where the right

images activations are warped and concatenated with that of the left image. Since

we are estimating optical flow in a coarse to fine manner, where the latter layers

compute a residual to be added to the initial flow estimate, warp-concatenations

help to capture the small displacements more effectively.
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The output of the flow subnetwork is an estimation of the optical flow along with

the associated confidences given an image pair. These outputs combined with

predicted depths allow us to predict the camera pose. As part of the ablation

studies we integrated the flow predictions of [92] with our depths, however, the

main limitation of their approach was the lack of a mechanism to filter out the

dynamic objects which are abundant in outdoor environments. This was solved

by estimating confidence, specifically the information matrix in addition to the

optical flow. More concretely, for each pixel our flow network predicts 5 quantities,

the optical flow F = [∆u,∆v]T in the x and y direction, and the quantities α̂, γ̂

and β̂, which are required to compute the information matrix (I) or the inverse

of the covariance matrix as shown below.

I =

[
Cx Cxy

Cxy Cy

]
, Cx = eα̂, Cy = eγ̂, Cxy = e

γ̂+α̂
2 tanh(β̂). (7.1)

This parametrisation guarantees I is positive-definite and can be used to parametrise

any 2× 2 information matrix. We found that the gradients are much more stable

compared to predicting the information matrix directly as the determinant of the

matrix is always greater than zero since tanh(β̂) = ±1 only when β̂ → ±∞.

7.4.4 Pose Estimation

We take two approaches to pose estimation, as shown in Figure 7.4, an iterative

and a fully-connected(FC). This contrasts the ability of a neural network to esti-

mate using the available information, and the simplicity of a standard computer

vision approach using the available predicted quantities. We use FC layers to

provide the network with as wide a receptive field as possible, to compare more

equivalently against using the inferred quantities in the iterative approach.
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Pose Estimation Block (FC)
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Figure 7.4: We detail the two approaches we took to estimating the relative pose
alignment between adjacent frames (best viewed in colour). Top-Left shows the iterative
approach we took, that incorporates a re-weighted least-squares solver (RWLS) into a
pose estimation loop. Details in Section 7.4.4. Top-Right shows our fully-connected
(FC) approach, which incorporates a succession of 3× 3 strided convolutions, followed
by several FC layers. Detailed in Section 7.4.4. Bottom we include a summary of the
information in the figure

Iterative

This approach uses a more conventional method for computing relative pose es-

timates where the predicted depth, optical flow and the confidences are used in

an iterative formulation. We describe this process in a step by step manner.

The predicted flow Fpred←−21 generated by the neural network in pixel coordinates

can be used to obtain the predicted flow F←−
21

in normalised camera coordinates

as follows:

F←−
21

=

(
1
fx
1
fy

)
� Fpred←−21 (7.2)
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Given an initial estimate of the relative transformation between the two frames

and the depth map of the first frame, an estimate of the optical flow F+
←−
21

(ui) can

also be computed in normalised camera coordinates :

F+
←−
21

(ui) =

(
1
fx
1
fy

)
� (π(KT←−

21
xi)− π(KTinitxi)) (7.3)

where ui =
[
x y

]T
i

is the ith pixel coordinate, x ∈ P1 is the ith inverse

depth coordinate x =
[
u v 1 q

]T
of an ordered point cloud (P1). π(x) =

((x0/x2), (x1/x2))
T is a normalisation function where x ∈ R3, K is the camera in-

trinsic matrix. Tinit ∈ SE(3) is a constant denoting the identity, and T←−
21
∈ SE(3)

represents the current estimate of the transformation from frame 1 to 2. Note

that at the the start of the first iteration, T←−
21

= Tinit. With the predicted and

estimated optical flow defined in normalised camera coordinates as above, the

loss criterion we attempt to minimize iteratively can now be expressed as:

e =
N∑
i=1

rTi Iiri where ri = (F+
←−
21

(ui)− F←−
21

(ui)) (7.4)

Ii is the information matrix of the ith pixel. To simplify the mathematics we

can represent the transformation using a matrix exponential as T←−
21

= e
∑6
j=0 αjGj ,

where αj ∈ ξ←−
21

is the jth component of the motion vector ξ←−
21
∈ R6, which is a

member of the Lie-algebra se3, and Gj is the generator matrix corresponding to

the relevant motion parameter. We can now differentiate the residual function

with respect to the motion parameters to generate the following Jacobian

Ji =

[
q 0 − uq − uv u2 + 1 − v
0 q − vq − v2 − 1 uv u

]
, (7.5)

where Ji is the ith Jacobian, which can be stacked to form a larger Jacobian
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matrix J =
[
JT1 , J

T
2 , . . . , J

T
N

]T
, additionally the residual vectors can be stacked

r =
[
rT1 , r

T
2 , . . . , r

T
N

]T
. This allows us to iteratively reduce the loss function e

using a standard Gauss-Newton approach given by

β =
(
JTWJ

)−1
JTWr, (7.6)

where β is the additive update to the motion parameters ξ←−
21

, and W is a block

diagonal weight matrix consisting of individual Wi = W(ui) weight matrices for

each pixel of the image. The elements of the Wi matrix are given below:

Wi =
m2

m2 + rTi Iiri

[
CX(ui) CXY (ui)

CXY (ui) CY (ui)

]
, (7.7)

where m is a constant that is computed from the residual ri (Equation 7.4), to

be the mean residual magnitude of a single image. This pipeline is implemented

in Tensorflow [1] and allows us to train the network end to end.

Fully-Connected

Similar to Zhou et al.[212] and Ummenhofer et al. [191] we also constructed

a fully connected layer based pose estimation network. This network utilises 3

stacked fully connected layers and uses the same inputs as our iterative method.

While we outperform the pose estimation benchmarks of [212] and [191] using

this network the iterative network is our recommended approach due to its close

resemblance to conventional geometry based techniques.
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7.4.5 Loss Functions

Depth Losses

For supervised training on indoor and outdoor datasets we use a reverse Huber

loss function [114] defined by

LB(Di, D
∗
i ) =

|Di −D∗i | |Di −D∗i | < c,

((Di −D∗i )2 + c2)/2c |Di −D∗i | > c,
(7.8)

where c = 1
5
max(Di −D∗i ), and Di = D(ui) and D∗i = D∗(ui) represent the ith

predicted and the ground truth depth respectively. For the KITTI dataset we

employed an additional photometric loss during training as the ground truth is

highly sparse. This unsupervised loss term enforces left-right consistency between

stereo pairs, defined by

LC =
1

n

n∑
i=1

|IL(ui)− IR(π(KT←−
RL
π−1(DL

i ,ui))|

+
1

n

n∑
i=1

|IR(ui)− IL(π(KT←−
LR
π−1(DR

i ,ui))|,
(7.9)

where IL and IR are the left and right images and DL
i and DR

i are their corre-

sponding depth maps, π−1(D,u) = DK−1(u) is the transformation from pixel

to camera coordinates, and T←−
RL
∈ SE(3) and T←−

LR
∈ SE(3) define the relative

transformation matrices from left-to-right and right-to-left respectively. In this

case the rotation is assumed to be the identity and the matrices purely translate

in the x-direction. Additionally, we use a smoothness term defined by

LS =
1

n

n∑
i=1

(|∇xDi|+ |∇yDi|) , (7.10)
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where ∇x and ∇y are the horizontal and vertical gradients of the predicted depth.

This provides qualitatively better depths as well as faster convergence. The com-

plete loss function used to train KITTI depths is given by

Lss = λ1LB + λ2LC + λ3LS, λ1 = 2, λ2 = 1 , λ3 = e−4 , (7.11)

where LB and LS are computed on both left and right images separately.

Flow Loss

The probability distribution of a multivariate Gaussian in 2D can be defined as

follows.

p(x|µ,I) =
|I | 12
2π

e−
1
2
(x−µ)TI(x−µ), (7.12)

where I = Σ−1 is the information matrix or inverse covariance matrix Σ−1. The

flow loss LF criterion can now be defined by

LF =
1

2
((F←−

21
− F∗←−

21
)TI(F←−

21
− F∗←−

21
)− log(|I |)), (7.13)

where F←−
21

is the predicted flow, and F∗←−
21

is the ground truth flow. This optimises

by maximising the log-likelihood of the probability distribution over the residual

flow error.

Pose Loss

Given two input images I1, I2, the predicted depth map D1 of I1 and the predicted

relative pose ξ←−
21
∈ R6 the unsupervised loss LU and pose loss LP can be defined
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as

LU =
1

n

n∑
i=1

|I1(ui)− I2(π(KT←−
21
π−1(D1,ui))|, and (7.14)

LP = ||ξ←−
21
− loge(T

∗←−
21

)||2 = ||ξ←−
21
− ξ∗←−

21
)||2, (7.15)

where loge(T) maps a transformation T from the Lie-group SE(3) to the Lie-

algebra se3, such that loge(T) ∈ R6 can be represented by its constituent motion

parameters, and ξ∗←−
21

is the ground truth relative pose parameters.

7.4.6 Training Regime

We train our network end-to-end on NYUv2 [140], TUM[182] and KITTI[63]

datasets. We use the standard test/train split for NYUv2 and KITTI and define

our scene split for TUM. It is worth mentioning that the amount of training data

we used is radically reduced compared to [212] and [191]. More concretely, for

NYUv2 we use ≈ 3% of the full dataset, for KITTI ≈ 25%. We use the Adam

optimiser [104] with an initial learning rate of 1e-4 for all experiments and chose

Tensorflow [1] as the learning framework and train using an NVIDIA-DGX1. The

full training schedule for each of the subnets is given below.

Depth Training

All of the DenseNet-161 layers [90] of the depth nets are initialised using Imagenet[167]

pretrained weights. Remainder of the layers are initialised using MSRC[78] ini-

tialisation. NYUv2[140] and TUM[182] models are trained purely using the su-

pervised loss term. The network is regularized using a weight decay of 1e−4

through out training and the learning rate schedule is shown below :
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Figure 7.5: Learning rate schedule for NYUv2[140] depth training

Out of ≈ 400,0000 images in the NYU dataset, only 12,000 are used during train-

ing. We perform data augmentation 4 times (a total training set of 48000 images)

using colour shifts, random crops and left-right flips. Although, data augmenta-

tion can be implemented during training we noticed a considerable speed up by

performing this step in an offline stage. The training images and the correspond-

ing ground truth are downsampled by a factor of 2. Each training batch contains

8 images and we use 4 GPUs, resulting in a overall batch size of 32. In terms of

training speed we observe on average 19.3 examples/sec or 0.415 sec/batch.

For the KITTI dataset we use 10,000 training images. Out of the training images

that were defined in [45] we further prune our training set to exclude any images

that are part of the odometry test set. We adopt a learning rate schedule which

spans for half the duration of the NYU. This is primarily to avoid over fitting as

we are now working with a comparatively small training dataset.
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Optical Flow Training

In order to compute the ground truth optical flow image, for the NYUv2 [140]

dataset we first compute the camera pose using the Iterative Closest Point (ICP)

algorithm which can then be used with the ground truth depth map to compute

optical flow. This process is slightly simplified for the TUM[182] dataset as the

ground truth pose is provided. The network is then trained using the optical flow

loss criterion.

Figure 7.6: Learning rate schedule for optical flow training

All the layers of the flow network are initialised using the MSRC [78] initialisation

and the learning rate schedule is shown in Figure 7.6. As it can be seen, the

training duration is much smaller compared to the depth network training as the

primary objective at this stage is to obtain a crude representation for both optical

flow and the information matrix. Complete end-to-end fine tuning happens when

the network is trained using the pose loss criterion.
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Pose Training

We optimize the full network end-to-end using the pose loss and demonstrate

that the state-of-the art depths can be further improved using the knowledge of

pose. The network is trained for 20,000 iterations with an initial learning rate of

1e−5 which is halved at the half-way point.

7.5 Results

In this section we summarise the single-image depth prediction and relative pose

estimation performance of our system on several popular machine learning and

SLAM datasets. The effect of using alternative optical flow estimates from [92]

and [161] in our pose estimation pipeline is also investigated as an ablation study.

A video demonstration of the full pipeline can be found under https://youtu.

be/JPOEGRzo5kw. This video was awarded the best technical demonstration at

the annual Symposium of the Australian Centre of Excellence of Robotic Vision

in 2018.

7.5.1 Depth Estimation

The performance of the single-image depth estimation subnet across the datasets

NYUv2[140], RGB-D[182] and KITTI[63] are tabulated in Tables 7.1, 7.3 and 7.2

respectively. Once again the standard metrics defined in Section 5.6.1 are used

to evaluate the predictions.

We train Ours(baseline) model to showcase the improvement we get by purely

using the depth loss. This is then extended to use the full end-to-end training

loss (depth + flow + pose losses) in the Ours(full) model which demonstrates a

148

https://youtu.be/JPOEGRzo5kw
https://youtu.be/JPOEGRzo5kw


Chapter 7. Depth and Relative-Pose Estimation using CNNs

consistent improvement across all datasets. Most notably in Tables 7.2 and 7.3

for which ground truth pose data was available for training. This validates our

approach for improving single image depth estimation performance, and demon-

strates a network can be improved by enforcing more geometric priors on the

loss functions. We would like to mention that the improvement we gain from

Ours(baseline) to Ours(full) is purely due to the novel combined loss terms as

the flow and pose sub networks do not increase the model capacity of the depth

subnet itself.

Table 7.1: The performance of several approaches evaluated on single-image depth
estimation using the standard test set of NYUv2[140] proposed in [44]

Method
lower better higher better

RMSlin RMSln Relabs δ δ2 δ3

Eigenvgg [44] 0.641 0.214 0.16 76.9% 95.0% 98.8%
Laina et al.[114] 0.573 0.195 0.13 81.1% 95.3% 98.8%

Kendall et al. [101] 0.506 - 0.110 81.7% 95.9% 98.9%

Ours (baseline) 0.487 0.164 0.113 86.7% 97.7% 99.4%
Ours (full) 0.478 0.161 0.111 87.2% 97.8% 99.5%

Table 7.2: The performance of previous state-of-the-art approaches evaluated on the
standard test set of the KITTI dataset [63]

Cap Method
lower better higher better

RMSlin RMSln Relabs δ δ2 δ3

0-80m

SFM-learner[212] 6.856 0.283 0.208 67.8% 88.5% 95.7%
Godard et al.[67] 4.935 0.206 0.141 86.1% 94.9% 97.6%

Kuznietsov et al. [111] 4.621 0.189 0.113 86.2% 96.0% 98.6%
Ours (baseline) 4.394 0.178 0.095 89.4% 96.6% 98.6%

Ours (full) 4.301 0.173 0.096 89.5% 96.8% 98.7%

0-50m

SFM-learner[212] 5.181 0.264 0.201 69.6% 90.0% 96.6%
Garg et al. [62] 5.104 0.273 0.169 74.0% 90.4% 96.2%

Godard et al. [67] 3.729 0.194 0.108 87.3% 95.4% 97.9%
Kuznietsov et al.[111] 3.518 0.179 0.108 87.5% 96.4% 98.8%

Ours(baseline) 3.359 0.168 0.092 90.5% 97.0% 98.8%
Ours(full) 3.284 0.164 0.092 90.6% 97.1% 98.9%

Additionally we include qualitative results for NYUv2[140] and KITTI[63] in Fig-

ures 7.7 and 7.8 respectively. Each of which illustrates a noticeable improvement

over previous methods. We also demonstrate that the improvement is beyond

the numbers, as our approach generates more convincing depths even when the
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Input RGB Eigen Laina Ours Groundtruth

0.910 1.233 0.756

0.621 0.434 0.501

0.272 0.270 0.233

1.411 1.441 0.796

Figure 7.7: Resulting single image depth estimation for several approaches and ours
against the ground truth on the dataset NYUv2[140]. The RMSE for each prediction
is included.

Table 7.3: The performance of previous state-of-the-art approaches on a randomly
selected subset of the frames from the RGB-D dataset [182]. We post separate entries
for DeMoN(est) and DeMoN(gt), former is scaled by the estimated scale of their system,
while the latter is scaled by the median ground-truth depth

Method
lower better higher better

RMSlin RMSlog Relabs δ δ2 δ3

Laina et al.[114] 1.275 0.481 0.189 75.3% 89.1% 91.8%
DeMoN(est)[191] 2.980 0.910 1.413 21.0% 36.6% 48.9%
DeMoN(gt)[191] 1.584 0.555 0.301 52.7% 70.7% 80.7%

Ours(baseline) 1.068 0.353 0.128 86.9% 92.2% 93.5%
Ours(full) 0.996 0.329 0.108 90.3% 93.6% 94.5%

RMSE may be higher, as is the case in the second row of Figure 7.7, where [114]

computes a lower RMSE. More impressive still are the results in Figure 7.8, where

we compare against previous approaches that are both trained on much larger
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Figure 7.8: The resulting single image depth estimation for several approaches includ-
ing SfM-Learner[212], Godard[67] and Ours against a ground truth filled using [119] on
the test set of the KITTI dataset [63]. We include the RMSE values for each methods
prediction. Filled depths are included for visualisation purposes during evaluation the
predictions are evaluated against the sparse Velodyne ground truth data.

training sets than our own and still show noticeable qualitative and quantitative

improvements.

7.5.2 Pose Estimation

To demonstrate the ability of the framework to perform accurate relative pose es-

timation, we compare our approach on several unseen sequences from the datasets

for which ground-truth poses were available. To quantitatively evaluate the tra-

jectories we use the Absolute Trajectory Error (ATE) and the Relative Pose Error

(RPE) as proposed in [182]. To mitigate the effect of scale-drift on these quanti-

ties all poses are scaled to the ground-truth associated poses during evaluation.

By using both metrics it provides an estimate of the consistency of each pose

estimation approach. We summarise the results of this quantitative analysis for

KITTI[63] in Table 7.4 and for RGB-D[182] in Table 7.5. We include compar-

isons of the performance against other state-of-the-art pose estimation networks
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namely SFM-Learner[212] and DeMoN[191]. Additionally we include results from

current state-of-the-art SLAM systems (ORB-SLAM2[139] and LSD-SLAM[48]).

SFM
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Figure 7.9: Top the scaled and aligned trajectories for SFM-Learner [212], ORB-
SLAM2 [138] (with and without loop-closure) and Ours respectively. Bottom box-plots
of the relative pose scaling required to bring the predicted translation to the same
magnitude as the ground-truth pose

In Table 7.4 we demonstrate a noticeable improvement over SfM-Learner on both

sequences in all metrics. We evaluate SfM-Learner on its frame-to-frame tracking

performance for adjacent frames (SFM-Learner(1)) and separations of 5 frames

(SFM-Learner(5)), as they train their approach to estimate frame gap of this

length. Even with the massive reduction in accumulation error expected by taking

larger frame gaps (demonstrated in reduced ATE) our system still produces more

accurate pose estimates.

We show the resulting scaled trajectories of sequence 09 in Figure 7.9, as well as

the relative scaling of each trajectories poses in a box-plot. The spread of scales

present for SFM-Learner indicates scale is essentially ignored by their system,

with scale drifts ranging across a full log scale, while ORB-SLAM and our ap-

proach are barely visible at this scale. Another thing to note is that our scale is

centered around 1.0, as we estimate scale directly by estimating metric depths.

This seems to provide a strong benefit in terms of reducing scale-drift and we

believe makes our system more usable in practice. Another qualitative result
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Figure 7.10: Trajectories of Our method in both configurations, as well as the re-
sulting trajectories of ORB-SLAM(full) [138] and SfM-Learner [212]. We demonstrate
comparative quality to ORB-SLAM, and significantly out perform SfM-Learner

is shown in Figure 7.10 demonstrating the performance of our approach against

competing methods on sequence 10 of the KITTI dataset.

In Table 7.5, we show a significant improvement in performance against exist-

ing machine learning approaches across several sequences from the TUM RGB-D

dataset[182]. The corresponding qualitative results are shown in Figure 7.11. We

evaluate against DeMoN[191] in two ways, frame-to-frame (DeMoN(1)) and we

again try to provide the same advantage to DeMoN as SfM-Learner by using

wider baselines, which they claim improves their depth estimations[191], using a

frame gap of 10 (DeMoN(10)). It can be observed that even with the massive re-

duction in accumulation error over our frame-to-frame approach, we still manage

to significantly outperform their approach in ATE, even surpassing LSD-SLAM
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Table 7.4: Performance of several approaches evaluated on two sequences of the KITTI
dataset [63]. SfM-Learner(1) and SfM-Learner(5) indicates the different frame gaps
used to construct the trajectories. The results are separated by SLAM and machine
learning approaches. We highlight the strongest results in bold

Sequence 09 10

Method ATE(m) RPE(m) RPE(°) ATE(m) RPE(m) RPE(°)

ORB-SLAM(no-loop) 57.57 0.040 0.103 8.090 0.033 0.105
ORB-SLAM(full) 9.104 0.056 0.084 7.349 0.031 0.100

SfM-learner(5) 58.31 0.077 0.803 31.75 0.069 1.242
SfM-learner(1) 81.09 0.050 0.976 75.89 0.045 1.599

Ours(fully connected) 41.50 0.087 0.387 29.29 0.081 0.486
Ours(iterative) 7.89 0.039 0.123 9.274 0.056 0.190

on the sequence fr1-xyz. ORB-SLAM is still the clear winner, as they massively

benefit from the ability to perform local bundle-adjustments on the sequences

used, which are short trajectories of small scenes. We include an example of

a frame from the sequence fr3-walk-xyz in Figure 7.12, which shows this scene

is not static, but our system has the ability to deal with this through the flow

confidence estimates, discussed in Section 7.5.3.

Table 7.5: Performance of pose estimation on several sequences from the RGB-D
dataset [182]. DeMoN(1) and DeMoN(10) indicates the trajectories were constructed
with a frame gap of 1 and 10 respectively. Both [138] and [48] fail to track on fr2-360-hs.
The results are separated by SLAM and machine learning approaches. We highlight
the strongest results in bold

Sequence fr1-xyz fr2-360-hs fr3-walk-xyz

Method
ATE RPE RPE ATE RPE RPE ATE RPE RPE
(m) (m) (°) (m) (m) (°) (m) (m) (°)

LSD-SLAM 0.090 - - - - - 0.124 - -
ORB-SLAM 0.009 0.007 0.645 - - - 0.012 0.013 0.694

DeMoN(10) 0.178 0.021 1.193 0.601 0.035 2.243 0.265 0.049 1.447
DeMoN(1) 0.183 0.037 3.612 0.669 0.032 3.233 0.279 0.040 3.174

Ours(fully connected) 0.169 0.028 1.887 0.883 0.030 1.799 0.268 0.044 1.698
Ours(iterative) 0.071 0.024 1.237 0.461 0.020 0.736 0.240 0.026 0.811
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Figure 7.11: Trajectories of Our method against ORB-SLAM [138] and DeMoN(10)
[191], for the evaluated sequenced from the RGB-D dataset [182]. We demonstrate
a marked improvement upon DeMoN which, although being given a slight advantage
in some respects by widening the baseline and reducing accumulated pose error, still
performs poorly. However against ORB-SLAM, both methods come up a little short,
as ORB-SLAM is able to perform local bundle-adjustments across multiple keyframes,
which greatly reduces the overall error.
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7.5.3 Ablation Experiments

The first set of ablation experiments were designed to verify the performance

improvements we achieve (specially for depth prediction) are due to the use of

novel loss functions and not merely due to using a better architecture. To this

end, we replaced the architecture of our depth estimation network using that of

Kuznietsov et al. [111]. As it can be seen below by using the full training loss we

are able to improve the accuracy of the depth estimation results indicating the

generality of the approach.

Dataset
NYU[140] TUM[182] KITTI [63]

Baseline Full Baseline Full Baseline Full

M
et

ri
c RMSE(m) 0.536 0.525 1.096 1.015 3.518 3.425

< δ (=1.25) 82.5 82.8 79.9 81.1 87.5 89.5
< δ2 96.3 96.7 90.4 91.8 96.4 96.9
< δ2 99.2 99.3 93.8 94.6 98.8 98.8

In order to examine the contribution of using each component of our pose esti-

mation network, we compare the pose estimates under various configurations on

sequences 09 and 10 of the KITTI odometry dataset[63], summarised in Table

7.6. We examine the relative improvement of iterating on our pose estimation

till convergence (ours(iterative)), against a single weighted-least-squares iteration

(ours(single)), which demonstrates iterating has a significantly positive effect.

We demonstrate the improved utility of our flows by replacing our flow estimates

with other state-of-the-art flow estimation methods from [92] and [161] in our

pose estimation pipeline, and consistently demonstrate an improvement using

our approach. We show the result of optimising with and without our estimated

confidences, demonstrating quantitatively how important they are to pose esti-

mation accuracy, with significant reductions across all metrics.

We also demonstrate qualitatively one of the ways in which estimating confidence

improves our pose estimation in Figures 7.12 and 7.13. This shows that our system
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Table 7.6: Results of pose estimation on KITTI[63] with various components of the
network removed or replaced. We highlight the strongest results in bold

Sequence 09 10

Method ATE(m) RPE(m) RPE(°) ATE(m) RPE(m) RPE(°)

Ours(noconf) 53.40 0.356 0.931 58.50 0.308 1.058
Ours(noconf,iterative) 33.18 0.248 0.421 35.87 0.280 0.803

Flownet2.0[92] 29.64 0.349 0.838 51.90 0.222 0.954
Flownet2.0(iterative)[92] 24.61 0.185 0.400 22.61 0.142 0.484

EpicFlow[161] 119.0 0.566 0.931 20.98 0.199 0.853
EpicFlow(iterative)[161] 59.79 0.379 0.459 14.80 0.154 0.581

Ours(single) 20.89 0.064 0.183 9.5903 0.060 0.194
Ours(iterative) 7.89 0.039 0.123 9.274 0.056 0.190

Figure 7.12: For a frame pair (Ii and Ij) from the sequence fr3-walk-xyz , F←−
ji

is the

estimated optical flow from Ii to Ij , and Cx and Cy are the estimated flow confidences
in the x and y direction respectively

Figure 7.13: A selection of optical flow predictions made by our framework on the
KITTI dataset[63]. Dynamic objects and the objects that do not appear in both frames
due to large camera motion have low confidence

has learned the confidence of moving objects is lower than its surroundings and the

confidences of edges are higher, helping our system focus on salient information

during optimisation in an approach similar to [48].
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7.6 Summary

In this chapter, we have presented the first piece of work that performs least

squares based pose estimation inside a neural network using predicted depths

and optical flow. Our approach is also the first to use a neural network to predict

the full information matrix which represents the confidence of our optical flow

estimate. The proposed formulation is fully differentiable and is trained end-to-

end.

The importance of incorporating techniques from geometry into the machine

learning pipeline, particularly when predicting structural quantities is highlighted

in this chapter. To support this argument we generate poses using two different

methods. Firstly, using a fully connected layer and next by employing a least

squares solver to compute the camera pose given the predicted depths, optical

flow and the confidences in x and y directions. The experimental results validate

the initial hypothesis demonstrating the superiority of the computed poses (using

the predicted quantities) over the predicted poses. To recapitulate, we advocate

for a hybrid approach where a CNN is used for tasks that benefit from feature

extraction, while conventional geometry is used for motion estimation given the

predicted quantities.

The main limitation of the framework is the time taken to infer the depths taking

approximately 200ms per frame and this issue is addressed in the next chapter.
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CHAPTER 8

Real-time Depth Prediction on Mobile

Frameworks

8.1 Introduction

All of the depth prediction pipelines presented thus far in this thesis despite being

accurate and temporally consistent, pose a challenge to real-time robotics in that

the prediction time ranges from 5-10 frames per second on a workstation GPU.

Unfortunately, this also means these large networks are virtually inoperative on

resource constrained mobile environments. However, the importance of real-time

frameworks for the field of robotics cannot be overstated. A vast majority of

tasks performed by a robot (autonomous vehicle navigation, visual servoing, and

object detection) require it to interact with other robots or humans and respond

to actions of one another. Due to this very reason, the low latency aspect which

stipulates coherency becomes a prerequisite for robotic systems. While building

a real-time system on a modern computer can be challenging as it stands, doing

so on a mobile platform with less than one tenth of the compute is extremely

difficult. However, these mobile platforms are much more appealing for real life

scenarios as they consume less power and are compact in nature compared to the
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desktop workstation counterparts.

A.

B.

C. D.

Figure 8.1: Demonstrates the model running on the NVIDIA-TX2 developatment
board (shown in green square D.) in real-time. A. The colour image, B. The jet
coloured groundtruth depth image from a the Kinect C. The predicted depth from the
colour input image.

An area of research that has been quite popular within the robotics community

is the application of machine learning to robotics problems. Neural Networks

are being applied with resounding success to solve many problems and have now

surpassed human level performance on tasks such as image recognition or even

complex strategy games such as Go, a task once thought too challenging for

a machine. We take a step towards combining real-time robotics and machine

learning on a resource constrained mobile platform. More concretely, we present

the first piece of work that performs single image depth prediction which runs

at 30fps on a NVIDIA-TX2 or at over 300fps on an NVIDIA-GTX1080Ti. Our

depth prediction framework not only runs at frame rate on an NVIDIA-TX2 but

also outperforms denser architectures such as [45] despite the latter being able to
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see the whole image in its field of view using stacked fully-connected layers.

Model compression is the concept of replicating the performance of a larger model

or an ensemble of large models using a smaller network. Common model reduction

techniques mainly focus on the architectural aspect and consist of techniques such

as quantization of weights, curtailing the depth etc. In this work, the emphasis

is predominantly on a training regime which tries to replicate the latent space of

the deep model. This allows us to achieve superior performance over randomly

initialised models of equivalent size, while training both models to convergence.

8.2 Contributions

The work presented in this chapter was done in collaboration with Andrew Spek.

The contribution I have made personally based on mutual agreement is given

below:

• Conception of Idea (20%)

• Network architecture design (50%)

• Loss/Objective function design (50%)

• Coding the network (50%)

• Training data creation (50%)

• Testing and evaluation (50%)

The following bullet points provide a summary of the contributions made in this

chapter in-order to build dense real-time structure prediction frameworks:

• Present the first piece of work which performs depth prediction at frame-

rate on a mobile platform in the form of an NVIDIA-TX2, while outper-

forming model architectures which have more than 30 times the number of
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parameters as ours.

• We present an analysis of the system with extensive experiments to show

how different loss functions play a vital role when learning the underlying

latent representation, while not compromising the training time.

• Real-time depth prediction enables us to readily integrate the predicted

depths with ORB-SLAM2 [139] in order to perform tracking and mapping

on mobile platforms, while significantly reducing scale-drift.

The main body of the chapter is largely based on the contents of the joint publi-

cation [177] and is expected to appear in a similar form in Andrew’s thesis.

8.3 Related Work

In addition to the material presented in the computer vision and machine learning

section of the background chapter, related research for this chapter include the

work undertaken in the field of model compression/distillation.

The machine learning community has investigated the problem of model com-

pression or emulating the performance of a larger network. Hinton et al. in

[82] introduced a concept called distillation which aimed to replicate the class

probabilities of a larger model using a smaller model. Since we are tackling

a regression problem (compared to a classification problem), training a smaller

network to replicate the prediction layer of a larger model becomes strictly subop-

timal compared to training directly on the ground truth since there is no notion

of class probability. Inspired by this however, we introduce a tensor loss where

we aim to mimic the latent space or the embedding of the penultimate layer of

the larger model. Initial results presented here indicate having the supervised

tensor loss gives inferior results compared to learning the penultimate layer in

an unsupervised manner. Similar to [82], Bucila et al. showed that it is possible

to replicate the performance of an ensemble of classifiers using a single model
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[12]. Their method relied on generating synthetic data using an ensemble of net-

works and training the smaller network on this synthetic data. Finally, Han et

al. demonstrated model weight compression through the use of quantization and

Huffman coding in [74] for image classification.

8.4 Proposed Framework

This section aims to provide a step by step breakdown of the proposed framework.

We begin by presenting the model architecture implemented, followed by the

different loss terms employed. Next we introduce the datasets that were used

during training. Finally, this section is concluded with an account of the training

regime that was used to train various models.

8.4.1 Model Architecture

Our model design is inspired by ENet [152] and ERFNet [163], which have tar-

geted mobile frameworks as the deployment environment, while achieving a decent

trade-off between performance and speed for the task of semantic segmentation.

ENet [152] demonstrated the ability to run at near real-time (≈10fps) performing

a dense semantic segmentation task on an NVIDIA-TX1. However, in this work

we aimed for a much larger frame rate, to allow for every frame to have a depth es-

timate in real-time. Our target hardware platform was the NVIDIA-TX2, which

has ≈30% more compute power over the previous NVIDIA-TX1. We use the

NVIDIA supported TensorRT framework [150] in order to accelerate inference

of our models. However, this restricted the available layers to those supported

by the framework, which at the time of implementation did not support dilated

convolutions [205]. Taking these factors into consideration and after a number of

attempts, we decided on the architecture defined in Table 8.1 to provide the best

compromise between runtime and accuracy.
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Model Architecture Breakdown

Layer Type Resolution(in, out) Channels (in, out)

E

Downsample (2×2) 320×240, 160×120 3, 16
Downsample (2×2) 160×120, 80×60 16, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64

Downsample (2×2) 80×60, 40×30 64, 128
Non-btl ND (3×5) 40×30, 40×30 128, 128
Non-btl ND (3×5) 40×30, 40×30 128, 128
Non-btl ND (3×7) 40×30, 40×30 128, 128

D

Deconv (4×4) 40×30, 80×60 128, 64
Non-btl 1D (3×3) 80×60, 80×60 64, 64

Deconv (4×4) 80×60, 160×120 64, 64
Non-btl 1D (3×3) 160×120, 160×120 64, 64

Deconv (4×4) 160×120, 320×240 64, 64

P Conv 2D (3×3) 320×240, 320×240 64, 1

Table 8.1: A summary of the architecture implemented given an input resolution
of 320×240, which is used for both [140] and [182]. The left column refers to the
broad section of the network as shown in Figure 8.2, E: Encoder, D: Decoder and
P: Predictor, where the predictor layer is the layer that can be transplanted from the
supervisor network.

Encoder Decoder Solver
Input

(RGB Image)
Output

(prediction)

Downsample 2x Non-btl 1D - 3x3 Non-btl 1D - 3xN Deconv 2x Conv 2D 3x3

Figure 8.2: The model architecture for our real-time depth estimation network. This
network is constructed from mostly Non-bottleneck blocks (Non-btl in figure), which
are a series or residual type blocks shown in Figure 8.3. Downsample, Conv 2D and
Deconv are all standard operations.
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8.4.2 Loss Functions and the Knowledge Transfer Process

Non-btl 1D - 3x3 

3x1
Conv

1x3
Conv

Batch
Norm

ReLU

3x1
Conv

1x3
Conv

Batch
Norm

Input
Tensor

Output
Tensor

3x1
Conv

1x3
Conv

Batch
Norm

ReLU

Nx1
Conv

1xN
Conv

Batch
Norm

Input
Tensor

Output
Tensor

Non-btl 1D - 3xN

Figure 8.3: Shows the submodules of the Non-bottleneck 1D blocks. ”Non-bottleneck”
refers to the channel count which remains unchanged when passing through this layer.
The Nx1, 1xN, 3x1 and 1x3 Conv operations are standard asymmetrical convolutions
where N is chosen. In practice we used two Non-btl ND - 3x5 blocks followed by one
Non-btl ND - 3x7 blocks, in an attempt to increase the receptive field as much as
possible. The plus indicates the addition of the two sets of activations, followed by
ReLU activation.

The most commonly used loss function when performing regression is the L2

distance between the prediction and the ground truth as shown below.

Ld =
1

N

N∑
i=0

||Di −D∗i ||2 =
1

N

N∑
i=0

||dpi||2 (8.1)

where Di represents the predicted depth map and D∗i represents the ground truth

depth map obtained from a Kinect or a Velodyne LIDAR. Additionally, we define

the distance between the ith predicted and ground-truth depth to be dpi, shown

in Figure 8.4, where the super script c and b are used to denote the error from

the condensed and large network predictions respectively.

We choose this as a starting point to train our condensed networks defined in

Table 8.1. The random models trained using this formulation are referred to as

R models throughout the remainder of the chapter. Note that since there are no

existing networks which share the same architecture as the condensed network,

all the weights were initialized using MSRA initialization [78].

Upon training the randomly initialized model using the Euclidean loss defined in

Equation 8.1, the next stage focused on improving the accuracy. Since making the
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Deep
Decoder

ND - Manifold 
Embedding

Condensed
Real-time Model

Large
Supervisor Model

c

c

c

Deep
Encoder

Fast
Encoder

Prediction
Layer

Fast
Decoder

Shared
Weights

Figure 8.4: This demonstrates the concept behind our training regimes we use to
perform model compression through knowledge transfer. The initial strategy was to
minimise the difference (dti) between the intermediate activations (also referred to as
the tensor loss) produced as input to the prediction layer by the network. The other
approach involves transplanting of the prediction layer from the large network onto the
condensed network. We also examine a combination of both approaches. In practice the
transplant alone is both more effective and much faster to train, although all knowledge
transfer approaches improve the performance over random.

model deeper was not an option as this would compromise the capability of the

system to predict at 30fps, we use different loss functions similar to Kuznietsov

et al. [111] to improve the accuracy. Another important factor that was taken

into consideration was the availability of larger models that achieve state-of-the-

art results when performing depth prediction as demonstrated in the previous

chapter. This inspired us to create architectures that could learn from a bigger

model in a knowledge-transfer fashion.

The main goal was to leverage the predictive capability of a state of the art

depth estimation network [40] and attempt to transfer the useful knowledge to

the condensed counterpart as demonstrated by Hinton et al [82]. This creates a

performance cap that is the performance of the larger network, but the intuition

was that the performance could potentially be improved over the random vari-

ant(R) to be usable in robotics. We designed our condensed network around the

idea that the final layer of the large depth estimator could be transplanted on to
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our condensed network as shown in Figure 8.4.

The first set of models focused on replicating the activations of the penultimate

layer of the larger/deeper network using the smaller/shallower network. The

network was trained using the tensor loss function as given in Equation 8.2. This

is a supervised loss where we attempt to enforce the tensors of large and condensed

model to match.

Lt =
1

N

N∑
i=0

||Ti − T ∗i ||2 =
1

N

N∑
i=0

||dti||2 (8.2)

Ti represents a tensor corresponding to the activations of the penultimate layer

of the condensed network and T ∗i represents that of the deeper network.

After training till convergence using the tensor loss, the final layer is freed and

the network is fine tuned using the depth loss. This model is denoted as T in the

results section.

We also propose an alternative loss where the penultimate layers are trained in

an unsupervised manner in which we transplant the final/prediction layer of the

larger model on to a randomly initialized condensed model. The network is then

trained using Equation 8.1 to provide useful activations for the prediction layer.

The transplanted model (TR) updates all the layers barring the prediction layer.

Finally, we train the T+TR model which uses a combination of the tensor loss

and the transplanted solver. Under this formulation the network is trained for

approximately 20 epochs using the tensor loss followed by the transplantation of

the prediction layer. This transplanted network is then further fine-tuned using

the depth loss for another 5 epochs.
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8.5 Results

We evaluate the output of the proposed networks on both indoor (NYUv2 [140])

and outdoor (KITTI [63]) datasets. In addition to the qualitative and quantitative

comparisons, the usefulness of our approach to practical robotic applications is

demonstrated through a mapping and navigation scenario.

8.5.1 Depth Evaluation

The depths are evaluated using the same set of metrics defined in Chapter 5.

NYUv2 [140]

Method RMSlin RMSlog Relabs δ δ2 δ3

Liu [122] 0.824 - 0.230 61.4% 88.3% 97.2%
Eigenalex [44] 0.753 0.255 0.198 69.7% 91.2% 97.7%
Eigenvgg [44] 0.641 0.214 0.158 76.9% 95.0% 98.8%
Laina [114] 0.573 0.195 0.127 81.1% 95.3% 98.8%

Baseline [40] 0.480 0.111 0.161 87.2% 97.8% 99.5%

Real-time Networks

Ours (R) 0.765 0.277 0.216 64.4% 89.3% 97.1%
Ours (T) 0.713 0.261 0.204 68.5% 90.9% 97.5%

Ours (T+TR) 0.715 0.262 0.205 68.3% 90.8% 97.5%
Ours (TR) 0.687 0.251 0.190 70.4% 91.7% 97.7%

Table 8.2: The metrics are explained in Subsection 8.5.1. Lower numbers are better
for the first three columns as these represent errors and higher number are better for
the last three columns as they represent percentage of inliers.

We tabulate the results for the NYUv2 dataset in Table 8.2 and for KITTI in

8.3. Additionally some qualitative results from the NYUv2, RGB-D and KITTI

datasets are included in Figures 8.5 and 8.6. From the numerical results in both
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Network Input Groundtruth Depth Predicted Depth

Figure 8.5: Qualitative results on the indoor datasets. All the images are from the
test sets, and are not present in the training data.

tables we observed a consistent behaviour for both datasets with the following

trend:

Random < Tensorloss < Transplanted

The fact that the random model is clearly inferior compared to all other variants

highlights the importance of knowledge transferring process particularly when

using condensed networks. Next we examine the contributions of the tensor loss

model (T) and the transplanted model (TR) closely. As it can be seen in Figure

8.7 the tensor angles highly correlate with that of the supervisor network when
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Groundtruth Depth

Stereo Depth Computed Using SGM

Predicted Depth

Network Input 

Figure 8.6: Qualitative results on the outdoor KITTI dataset

0-50m KITTI [63]

Method RMSlin RMSlog Relabs δ δ2 δ3

Zhou [212] 5.181 0.264 0.201 69.6% 90.0% 96.6%
Garg [62] 5.104 0.273 0.169 74.0% 90.4% 96.2%

Goddard [67] 4.471 0.232 0.140 81.8% 93.1% 96.9%
Kuznietsov [111] 3.518 0.179 0.108 87.5% 96.4% 0.98.8%

Baseline [40] 3.359 0.168 0.092 90.5% 97.0% 98.8%

Real-time Networks

Ours(R) 4.530 0.234 0.147 80.3% 93.3% 97.3%
Ours(T) 4.434 0.228 0.139 81.7% 93.7% 97.5%

Ours(T+TR) 4.426 0.225 0.140 81.7% 93.8% 97.6%
Ours(TR) 4.363 0.224 0.156 81.8% 94.0% 97.7%

Table 8.3: Results of evaluating KITTI dataset, using the same metrics as defined in
Subsection 8.5.1 and Table 8.2
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trained using the tensor loss. However, the magnitude of the activations correlate

less strongly, which appears to negatively effect the quality of the reconstruction.

Another noteworthy observation is that the angle negatively correlates to the

depth error, that is the most aligned tensors have the least error, and this is

flipped between the T and TR. There seems to be some resemblance to the

‘uncanny valley’ concept in this case where the small network initially gets better

and better at emulating the penultimate activations but ultimately falls short of

perfectly reproducing the tensors and gets stuck in a suboptimal minima. On the

other hand, the less restricted TR network is free to navigate to a minima that

exploits as much of the information it can from the transplanted last layer.

Transplanted
Network

Tensor Supervised
Network

Randomly Initialised
Network

Tensor Angle Correlation

Depth Error

1.317 0.605 0.773

Tensor Magnitude VisualisationNetwork Input

Groundtruth Depth

Supervisor
Network

HighLow 

0.503

Figure 8.7: We demonstrate the relationship between the tensors produced with the
three different training approaches. The first row shows the RGB input, the ground-
truth depths, and the magnitude of the tensors for the last layer of the large network we
use to transfer knowledge from. The second row shows the tensor magnitude images for
each network, which are a visualisation of the norm of the tensor value. The third row
shows the angle correlation, which is the degree to which the direction of the tensors
agree. The final row shows the magnitude of the depth error between the prediction
and ground truth. We include the RMS error in meters for each of the predictions
below their respective columns.
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8.5.2 Pose Estimation

As an application of our work, we evaluate the camera pose produced by an off-

the-shelf SLAM system (ORB-SLAM2 [139]) using the depths inferred by our

real-time network. We compare the resulting poses against the ground-truth

pose data available on a select number of KITTI datasets. These results are

summarised in Table 8.4 where the performance of the original SLAM system

[139] in the mono and stereo configurations are compared against the trajectories

obtained using our predicted depths as the input.

KITTI Odometry Absolute Trajectory Error (m)

Ours Mono Stereo
Sequence Predicted Depths ORB-SLAM [138] ORB-SLAM [139]

Seq00 4.23 6.62 1.3
Seq05 2.01 8.23 0.8
Seq07 1.15 3.36 0.5

Table 8.4: Pose estimation evaluation on KITTI sequences, measuring the ATE as
defined in [182].

Additionally, in Figure 8.9 we show a qualitative comparison of trajectory accu-

racy using our predicted depths compared to using purely monocular data against

the ground-truth trajectory. Again we compute these trajectories using the pop-

ular ORB-SLAM2 system [139]. This demonstrates that by using our predicted

depths the system outperforms the monocular only approach, even when includ-

ing the bundle-adjustment and loop-closure present for both approaches.

In an attempt to show a concrete example of what this system can contribute to an

off-the-shelf SLAM approach, we demonstrate in Figure 8.8 the reduction in scale-

drift given the same SLAM configuration, using our predicted depths as opposed

to using the the colour data alone. This establishes a practical application given

that our approach can also infer at over 70FPS as shown in Table 8.5.
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Monocular Only
After Loop-closureBefore Loop-closure

Using Depth Predictions
After Loop-closureBefore Loop-closure

Figure 8.8: Demonstrates the amount to which the scale-drift can be reduced using our
approach. The first row shows the performance of standard monocular ORB-SLAM2
[139] on sequence 00 of KITTI-odometry [63]. Before loop-closure a very pronounced
level of scale-drift is present. In contrast when we provide our estimated depths, the
scale drift is almost completely removed, and the difference before and after loop-closure
is barely visible.
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Ground Truth

Monocular
Ours (predicted depths)

Figure 8.9: Demonstrates the improvement to the trajectory produced using our
predicted depths from colour vs using colour images alone as input to the off the shelf
SLAM system [139] for seq00 of KITTI-odometry [63].

Average FPS over 50 runs (Min, Max)

Resolution GTX1080Ti TX2

640×480 105.96 (100.82, 107.92) 7.68 (7.50, 7.71)
320×240 † 312.29 (295.25, 320.00) 30.03 (27.76, 30.37)
640×192 ‡ 214.75 (202.76, 221.58) 19.08 (18.23, 19.21)

320×96 473.09 (439.01, 498.73) 70.95 (65.54, 72.63)

Table 8.5: Depth Prediction - Real-time Performance FPS Speed comparisons for
different output resolutions, on each device. The configurations marked with † and
‡ are the typical output resolutions of the state-of-the-art networks for indoor and
outdoor datasets respectively.

8.5.3 Speed and Computation Performance

We include the timing information for our approach in Table 8.5. This shows

that at the typical operating resolutions we can infer at real-time on the NVIDIA-

TX2. Despite the predictions of KITTI being generated at a resolution of 320×96,

the accuracy of these predictions are adequate enough to dramatically improve

the quality of the SLAM map and reduce the scale-drift in tracking as shown
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in Figure 8.8. A video demonstration of the framework can be found under

https://youtu.be/Kc3Tbf3X7Cw.

8.6 Summary

The accuracy of a CNN and its model capacity often exhibit a direct correla-

tion, where a significant reduction in model capacity typically results in vastly

inferior predictions. In this chapter, we have demonstrated with examples that

a system with a reduced model capacity can provide good enough depths to im-

prove the accuracy of a standard monocular SLAM system, and disambiguate the

scale without calibration. In addition, the predicted depth maps generated by

the condensed network outperform those of the previous works [62, 67, 44] with

much larger model capacities. This shows these compressed models can be taken

well into the realms of real-time performance on low-power hardware without

sacrificing much performance.
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CHAPTER 9

Conclusion

In this thesis, we have tackled the problem of recovering 3D structural information

from one or more colour images. Techniques from classical geometry as well as

deep learning were employed to develop novel frameworks capable of predicting

structure and motion parameters.

9.1 Summary of Contributions

• A real-time, multi-object visual SLAM system (MO-SLAM) capable of dis-

covering duplicate objects present in a scene was presented in Chapter 4.

The duplicate objects are then added on to the SLAM map as first order

entities. The additional constraints given by the objects can then be used

during bundle adjustment to improve the accuracy of the landmarks and the

camera poses as well as the output of the recognizer, by removing erroneous

map points that were wrongly classified as belonging to an object.

• A multi task learning platform was used to predict depths, surface normals
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and surface curvatures in tandem purely from colour images. Extensive

experiments were conducted by keeping the model capacity of the archi-

tecture fixed, while gradually increasing the number of prediction tasks in

order to demonstrate that learning closely related structural information

can enhance the performance of all three tasks (Chapter 5).

• An efficient technique to create a dense depth map in real time given a

sparse SLAM map or sparse sensory data. For this task, it is assumed a

CNN capable of predicting depth from a single colour image is available

(which can be trained using the approaches given in Chapters 5,7,8). A

smaller CNN was trained to learn the confidence of the sparse SLAM map

as well as that of the CNN that predicts depth. Sparse depth map inpaint-

ing was achieved by minimizing a CRF energy term. Nodes of the CRF

anchors the solution to the sparse map, while the scale-invariant edges en-

force pairwise depth relationships based on the learnt depth predictions and

the confidences (Chapter 6).

• A novel framework which predicts depth, optical flow, the flow confidences

and the relative camera motion given an image pair. This work also features

the first approach to use a neural network to predict the full information

matrix which represents the confidence of the optical flow estimate. The

predictions generated from the depth subnetwork achieve state-of-the-art

performance on both indoor and outdoor test benchmarks. The relative

camera poses produced from our framework outperform that of previous

motion prediction approaches, while performing competitively with SLAM

approaches (ORB-SLAM [139], LSD-SLAM[48], CNN-SLAM [187]) that

perform local/global bundle adjustment and loop closures (Chapter 7).

• The first piece of work which performs depth prediction at frame-rate on an

NVIDIA-TX2. Due to the lack of pretrained models for the novel smaller

architecture, different loss functions were investigated with extensive ex-

periments in order to transfer the knowledge of the state-of-the-art depth
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estimation network into the smaller network. In addition to the experiments

that quantify CNN based depth predictions, a practical SLAM example was

designed to show the efficacy of the predicted depth maps generated from

the condensed model (Chapter 8)

• Using depth map predictions to actively combat scale-drift when performing

visual odometry (Chapters 7 and 8)

9.2 Future Work

The work presented in this thesis can be extended not only to improve the recon-

struction problem, but also to tackle closely related areas such as place recogni-

tion.

• MO-SLAM can be coupled with a CNN-based semantic segmentation sys-

tem to allow the framework to perform both supervised and unsupervised

discovery. Furthermore, novel objects can be discovered in an unsuper-

vised manner in dynamic environments by treating the set of points that

moved together as a pseudo duplicate object. As I mentioned in Section

4.5, progress has been made on both fronts and I envision these additions

will improve the utility of MO-SLAM.

• Similar to predicting a 2D Gaussian corresponding to the optical flow and

the flow confidences as shown in Chapter 7, confidence estimation networks

(depth) introduced in Chapter 6 can be improved by learning to predict a

1D Gaussian, where the mean represents the depth and the sigma represents

the uncertainty of the estimate[101]. This should ultimately lead to more

robust fusion and sparse depth map inpainting.

• Chapter 8 presented a model compression technique to condense the knowl-
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edge of a large CNN into a smaller network. This work is currently being

extended to create a joint network capable of predicting depth and semantic

information in real-time on a mobile framework.

• Recognizing a place previously visited is an important feature in any nav-

igation system. While appearance based methods [148, 31, 61] success-

fully tackle this problem in most cases, if the environment has drastically

changed since the first time the robot has seen a particular place, most of

these approaches fail to correctly identify the two locations to be the same.

The same place can appear different due to changes in season, weather or

time of the day (for e.g midday vs midnight). However, place recognition

under challenging environmental conditions is specially important for long-

term tracking and mapping systems. We believe the approach presented

in Chapter 7 can be useful in this scenario. Firstly, the depth and optical

flow subnetworks need to be fine-tuned in order to be able to predict depth

and flow under different conditions. The predicted information can then be

used to obtain a crude estimate of the relative camera pose.
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