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Abstract	

Development	of	Particle-based	Numerical	Manifold	Method	(PNMM)		
for	Dynamic	Rock	Fracturing	

A	thesis	submitted	for	the	degree	of	Doctor	of	Philosophy	

Xing	Li	

Department	of	Civil	Engineering	

Monash	University	

2017	

	

The	numerical	manifold	method	(NMM)	is	a	useful	tool	in	rock	mechanics	to	model	the	

continuous	and	discontinuous	behaviors	of	rock	materials	and	jointed	rock	masses	in	a	

unified	 framework.	 One	 of	 the	 main	 challenges	 in	 NMM	 is	 the	 complex	 geometrical	

operations	 between	 different	 types	 of	 polyhedrons	 in	 contact	 analysis.	 Attempting	 to	

tackle	this	 issue,	a	particle	manifold	method	(PMM)	was	developed	as	an	extension	by	

introducing	the	particle	concept	into	NMM��	

	

The	main	 contribution	 of	 this	 thesis	 is	 the	 development	 of	 a	 particle-based	 numerical	

manifold	method	 (PNMM)	 to	 simulate	 the	dynamic	 fracturing	of	 rock	materials	 under	

different	conditions.	The	proposed	method	is	modified	from	NMM	and	PMM.	The	most	

distinct	 characteristic	 of	 PNMM	 is	 the	 dual-level	 discretization.	 The	 first	 level	 of	

discretization	consists	of	manifold	elements	which	are	constructed	by	a	dual-layer-cover	

system	inherited	from	NMM.	Degrees	of	freedom	and	formulae	in	matrix	form	are	defined	

and	conducted	on	this	level	of	discretization.	Then,	particles	are	introduced	within	each	

manifold	 element	 as	 the	 second	 level	 of	 discretization.	 On	 particles,	 the	 material	

properties,	 body	 forces,	 and	 boundary	 conditions	 are	 defined.	 A	 particle	 integration	

scheme	is	proposed	to	derive	the	matrices	on	manifold	elements	from	the	parameters	on	

particles.	Links	and	pairs	of	contact	are	defined	on	the	level	of	particles	to	simulate	the	

initiation	and	propagation	of	fractures	and	the	contact	between	blocks	respectively.	The	

enrichment	function	in	XFEM	is	incorporated	around	the	tip	of	fracture.	Rate-dependent	

behaviors	of	rock	materials	are	taken	into	consideration	in	PNMM	by	incorporating	the	

Johnson-Holmquist-Beissel	 (JHB)	 model.	 Last,	 PNMM	 is	 implemented	 in	 programming	
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language	C++,	aided	by	several	commercial/free	software	and	third-party	 libraries.	The	

proposed	method	 is	 calibrated	by	modelling	 several	 fundamental	problems.	Results	of	

PNMM	are	verified	against	analytical	solutions	and	numerical	results	in	literature.		

	

The	capabilities	of	PNMM	are	further	examined	and	demonstrated	in	representative	cases	

of	dynamic	rock	fracturing.	A	numerical	study	of	the	rock	scratch	test	has	been	performed,	

illustrating	how	the	proposed	method	can	be	applied	to	the	analysis	of	engineering	cases	

involving	a	rock	cutting	process.	The	transition	of	failure	mode	from	ductile	to	brittle	in	

the	scratch	test	is	successfully	simulated,	and	a	corresponding	transitional	range	of	cutting	

depth	is	obtained.	The	effect	of	cutter	operational	parameters	 is	 investigated	from	the	

energy	point	of	view.	Some	advices	are	given	to	improve	the	efficiency	of	rock	cutting	in	

engineering	practice.	The	final	part	of	this	thesis	is	devoted	to	studying	the	spalling	failure	

on	both	experimental	and	engineering	scale.	The	spalling	process	and	fracturing	pattern	

of	rock	bars	under	different	loading	types	and	loading	rates,	as	well	as	a	plate	impact	test	

are	first	simulated.	Then,	a	numerical	study	of	the	spalling	and	rockburst	in	tunnels	that	

are	subjected	to	static	in-situ	stresses	and	a	far-field	dynamic	disturbance	is	performed.	

Simulation	results	lead	to	useful	insights	concerning	the	relationship	between	the	in-situ	

stress,	 dynamic	 disturbance,	 spalling	 fractures,	 and	 rockburst	 phenomenon.	 This	

simulation	shows	that	PNMM	is	capable	of	modelling	the	dynamic	failure	and	estimating	

the	safety	of	underground	openings	in	two	dimensions.	
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Chapter	1 Introduction	

1.1 Background	

Rock	mechanics	was	defined	by	the	US	National	Committee	on	Rock	Mechanics	in	1964	

and	subsequently	modified	in	1974:	“Rock	mechanics	is	the	theoretical	and	applied	science	

of	 the	 mechanical	 behavior	 of	 rock	 and	 rock	 masses;	 it	 is	 that	 branch	 of	 mechanics	

concerned	with	the	response	of	rock	and	rock	masses	to	the	force	fields	of	their	physical	

environment.”		

	

As	an	important	branch	of	rock	mechanics,	rock	dynamics	is	the	science	of	the	mechanical	

behavior	of	 rock	materials	 and	 rock	masses	under	dynamic	 loading	 conditions.	 Typical	

dynamic	 loads	 include	 earthquake,	 external	 impact	 and	 explosion-induced	 wave.	

Understanding	 the	 dynamic	 responses	 of	 both	 rock	 materials	 and	 rock	 masses	 is	 of	

significance	in	dealing	with	various	rock	engineering	problems,	such	as	rock	slope	stability	

analysis,	underground	excavation,	rock	blasting	and	protective	construction	design.	Two	

important	aspects	of	rock	dynamics	are	dynamic	failure	and	wave	propagation.		

	

Studying	 the	 dynamic	 failure	 of	 rock	 involves	 the	 topics	 of	 crack	 nucleation,	 fracture	

propagation,	rock	fragmentation	and	post-failure	behavior.	Typical	rock	experiments	and	

engineering	 issues	usually	 cover	one	or,	 in	most	 cases,	more	 topics	mentioned	above.	

Results	of	a	 series	of	experimental	 tests	 (Masuda	et	al.,	1987,	 Lajtai	et	al.,	1991)	have	

unveiled	 that	 the	 fracture	 pattern	 and	 mechanical	 properties	 of	 rock	 materials	 are	

affected	 by	 the	 dynamic	 strain	 rate.	 However,	 the	 underlying	mechanism	 of	 the	 rate	

dependent	 behavior	 is	 still	 unclear.	 Recently,	 the	 microstructure	 of	 rock	 material	 is	

considered	 as	 one	 of	 the	 influence	 factors	 leading	 to	 this	 phenomenon.	 When	 the	

mechanical	behavior	on	microscopic	scale	is	concerned,	analytical	methods	turn	out	to	be	

invalid	 due	 to	 the	 complex	 microstructure	 of	 rock	 materials	 (Figure	 1.1a),	 and	

experimental	approaches	will	be	limited	as	existing	facilities	are	not	sensitive	enough	to	

detect	the	failure	process	under	high	loading	rates.	Under	such	a	circumstance,	numerical	
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methods	could	be	a	promising	 tool	 to	study	 the	mechanism	of	dynamic	effect	on	rock	

materials	on	the	microscopic	scale.		

	

For	wave	propagation	 issues,	 the	prediction	of	wave	attenuation	across	 fractured	rock	

masses	 is	 significant	 in	 geophysics,	 seismic	 wave	 investigation	 and	 rock	 protective	

engineering.	 Theoretical	 models	 are	 generally	 able	 to	 analyze	 the	 wave	 propagation	

across	a	single	fracture	(Zhao	and	Cai,	2001,	Li	et	al.,	2011,	Zou,	2016)	or	a	set	of	parallel	

fractures	(Cai	and	Zhao,	2000,	Zhao	et	al.,	2006).	However,	the	distribution	of	rock	joints	

can	be	quite	 complex	 in	 practice	 as	 shown	 in	 Figure	 1.1b,	 and	 analytical	methods	 are	

difficult	to	be	applied	for	such	complex	geometry	conditions.	Again,	numerical	methods	

could	provide	promising	solutions	for	the	wave	attenuation	across	highly	fractured	rock	

masses.	

	

	

(a)	

	

(b)	

Figure	1.1	The	complex	structure	of	rock	at	both	micro	and	macro	scale:	(a)	Olivine	
inclusions	in	gabbro	(5x),	courtesy	of	Prof.	Bernardo	Cesare,	(b)	A	set	of	rock	joints	

	

Due	 to	 the	 complexity	 of	 both	 rock	materials	 and	 rock	 engineering	 problems,	 rock	 is	

difficult	 to	 be	 modelled	 by	 whatever	 numerical	 method,	 comparing	 with	 other	 solid	

materials.	 To	 gain	 better	 results,	 a	 large	 number	 of	 numerical	 models	 have	 been	

developed,	extended,	and	applied	in	this	field,	including	in-house	software,	commercial	

software,	and	open	source	code.	A	 list	of	representative	PhD	thesis	within	this	topic	 is	

summarized	in	Table	1.1.	
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Table	1.1.	A	list	of	representative	PhD	theses	within	the	topic	of	numerical	simulations	of	
rock	dynamics	

Year	 Author	 Model	 Title	 Institute	

2004	 H.Y.	Liu	 RFPA	
Numerical	modelling	of	the	rock	

fragmentation	process	by	mechanical	tools	

Lulea	University	of	

Technology	

2005	 Z.Z.	Liang	 RFPA	
Three	dimensional	numerical	modelling	of	

rock	failure	process	

Dalian	university	of	

technology	

2009	 Y.N.	Wang	 DEM	

Three-dimensional	rock-fall	analysis	with	

impact	fragmentation	and	fly-rock	

modeling	

The	University	of	

Texas	at	Austin	

2010	 X.M.	An	 NMM	
Extended	Numerical	Manifold	Method	for	

Engineering	Failure	Analysis	

Nanyang	

Technological	

University	

2010	 H.R.	Bao	 DDA	
Nodal	based	discontinuous	deformation	

analysis	

Nanyang	

Technological	

University	

2010	 S.	Levy	 FEM	
Exploring	the	physics	behind	dynamic	

fragmentation	through	parallel	simulations	

Ecole	Polytechnique	

Fédérale	de	

Lausanne	

2010	 R.	Resende	 DEM	

An	investigation	of	stress	wave	

propagation	through	rock	joints	and	rock	

masses	

Porto	University	

2010	 G.F.	Zhao	 DLSM	
Development	of	Micro-Macro	Continuum-

Discontinuum	Coupled	Numerical	method	

Ecole	Polytechnique	

Fédérale	de	

Lausanne	
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Considering	the	distinct	characteristics	of	rock	materials	and	rock	engineering	problems,	

an	ideal	numerical	method	for	rock	dynamics	needs	to	meet	following	requirements:	

• Able	to	simulate	the	macroscopic	behavior	of	rock	masses;	

• Able	to	represent	the	microstructure	of	rock	materials;	

• Able	to	capture	the	influence	of	microstructure	on	the	mechanical	properties	of	

rock	masses;	

• Able	to	simulate	the	nucleation	and	propagation	of	fractures;	

• Able	to	simulate	the	complete	detachment	of	intact	rock	masses;	

• Able	to	simulate	the	mechanical	behaviors	of	discrete	rock	masses	in	post-

failure	stage;	

• Able	to	simulate	the	contact	behavior	among	massive	discrete	rock	masses;	

• Parameters	at	both	macroscopic	and	microscopic	scale	can	be	experimentally	

measured	or	easily	determined.	

	

There	 is	no	 single	numerical	model	 that	 satisfies	 all	 of	 these	 requirements.	 Therefore,	

effort	is	still	needed	to	further	develop	existing	numerical	models.	

	

1.2 Objectives	

This	 thesis	 aims	 to	 develop	 a	 novel	 numerical	 model	 targeting	 at	 problems	 in	 rock	

dynamics,	 based	 on	 the	 existing	 numerical	 manifold	 method	 and	 recently	 proposed	

particle	manifold	method.	Comparing	with	the	well-known	numerical	manifold	method,	

the	 proposed	method	 simplifies	 the	 contact	 operation	 between	 blocks,	 improves	 the	

flexibility	 in	initiating	and	determining	the	propagation	path	of	fractures,	and	gains	the	

ability	 to	simulate	 the	heterogeneity	of	 rock	materials.	The	proposed	model	 reclarifies	

and	further	improves	several	aspects	of	the	recently	proposed	particle	manifold	method,	

including	 the	 adoption	 of	 high-order	 interpolation	 functions,	 the	 development	 of	 a	

particle	integration	scheme,	an	enrichment	function	around	fracture	tips,	the	failure	of	

links,	the	incorporation	of	a	rate-dependent	strength	model,	the	expanded	applications	

in	rock	dynamics,	and	others.	The	proposed	attempts	to	meet	all	the	requirements	of	an	

ideal	numerical	method	for	rock	dynamics,	as	listed	in	the	previous	section.	
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Probably	more	 important	 than	proposing	a	new	numerical	model	 is	 the	validation	and	

application	of	the	proposed	model.	Another	aim	of	this	thesis	is	to	utilize	the	proposed	

model	to	study	realistic	rock	dynamics	problems	at	both	laboratory	and	engineering	scale.	

In	 this	 thesis,	 the	 failure	 induced	 by	 rock	 blasting,	 the	 spalling	 of	 rock	materials,	 the	

rockburst	of	tunnels,	and	the	process	of	rock	scratching/cutting	are	numerically	studied	

using	 the	 proposed	model.	 Valuable	 and	 inspiring	 results	 that	 help	 to	 understand	 the	

behavior	of	rock	in	engineering	practice	are	obtained.	Simulation	results	are	compared	

with	theoretical	solution	and	other	numerical	results	 in	references	to	demonstrate	the	

proposed	model	as	a	promising	tool	for	modelling	rock	dynamics	problems.	

	

1.3 Structure	of	the	Thesis	

This	thesis	has	seven	chapters.	In	Chapter	1,	a	general	introduction	of	the	thesis	is	given,	

including	the	complexity	of	rock	materials	and	rock	engineering	problems,	requirements	

of	an	ideal	numerical	model	in	this	field,	and	the	objectives	of	this	thesis.		

	

Chapter	2	presents	a	review	of	existing	numerical	methods	that	are	widely	applied	in	rock	

mechanics.	The	numerical	methods	are	reviewed	in	three	categories:	continuous	methods,	

discontinuous	methods,	and	coupled	methods.	The	recent	developments	and	applications	

of	each	numerical	method	are	introduced	separately,	and	its	advantages	and	drawbacks	

are	 then	 discussed.	 Last,	 the	 characteristics	 of	 four	 typical	 numerical	 methods	 are	

compared	to	find	their	similarities	and	differences.		

	

Chapter	3	proposes	a	novel	numerical	model	for	rock	dynamics,	namely	the	particle-base	

numerical	manifold	method	(PNMM).	This	chapter	presents	the	conception,	formulations,	

basic	components,	and	the	implementation	of	PNMM	in	detail.	First,	the	dual-layer-cover	

system	and	dual-level	discretization	are	introduced	respectively	to	provide	the	foundation	

and	 character	 of	 PNMM.	 Then,	 necessary	mathematical	 formulae	 and	 their	 numerical	

implementation	 are	 given.	 The	 basic	 components,	 including	 particles,	 links,	 failure	

description,	 and	 contact	 accumulation,	 are	 introduced.	 The	 rate-dependent	 strength	

criterion	adopted	in	PNMM	is	given.	Last,	the	implementation	of	PNMM	is	summarized.	



Chapter	1.	Introduction	

	

6	

	

This	 chapter	 is	 based	 on	 a	 paper	 published	 in	 the	 journal	 International	 Journal	 of	

Geomechanics.	

	

Chapter	4	provides	several	numerical	examples	for	the	calibration	of	PNMM.	A	cantilever	

beam	 bending	 test	 is	 first	 performed	 to	 verify	 the	 elastic	 performance	 of	 PNMM.	 A	

Brazilian	disc	test	is	conducted	as	a	static	failure	issue.	Then,	two	examples	on	stress	wave	

propagation	are	given	to	validate	the	ability	of	PNMM	to	simulate	dynamic	issues.	Last,	

the	rate-dependent	failure	under	rock	blasting	is	simulated,	as	a	representative	issue	in	

rock	dynamics.	This	 chapter	 is	based	on	a	paper	published	 in	 the	 journal	 International	

Journal	 of	 Geomechanics	 and	 a	 conference	 paper	 presented	 at	 the	 2nd	 International	

Conference	on	Rock	Dynamics	and	Applications	(RocDyn-2).	

	

Chapter	 5	 presents	 a	 numerical	 study	 of	 rock	 scratching/cutting	 using	 PNMM.	 The	

scratching	processes	under	different	cutting	depths	are	first	simulated,	where	the	failure	

pattern	and	cutting	force	are	discussed.	Then,	the	effect	of	cutter	operational	parameters	

on	the	cutting	force	and	the	energy	consumed	by	the	cutter	is	studied.	Three	operation	

parameters	of	the	cutter	are	considered,	including	the	cutting	depth,	cutting	speed,	and	

cutter	rake	angle.	Accordingly,	advices	are	given	to	improve	the	efficiency	of	rock	cutting	

in	 engineering	 practice.	 This	 chapter	 is	 based	 on	 a	 paper	 accepted	 by	 the	 journal	

Tunnelling	and	Underground	Space	Technology.	

	

Chapter	6	presents	a	numerical	 study	of	 spalling	and	spalling-induced	 rockburst	under	

dynamic	disturbance	using	PNMM.	The	spalling	of	rock	bars	is	first	simulated.	The	spalling	

process	 and	 fracturing	 pattern	 under	 different	 loading	 types	 and	 loading	 rates	 are	

investigated	respectively.	Then,	the	spalling	in	plate	impact	tests	are	studied.	Two	types	

of	impactor	with	various	impact	speed	are	adopted.	Last,	simulations	of	the	rockburst	of	

a	rock	tunnel	under	static	in-situ	stresses	and	a	dynamic	disturbance	are	carried	out	to	

investigate	the	relationship	between	the	 in-situ	stresses,	dynamic	disturbance,	spalling	

fractures,	and	rockburst	phenomena.	This	chapter	is	based	on	a	paper	submitted	to	the	

journal	Tunnelling	and	Underground	Space	Technology.	
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Chapter	7	gives	a	brief	overview	of	the	contributions	and	findings	of	this	thesis,	as	well	as	

some	recommendations	for	future	work.	

	

Appendix	A	presents	an	algorithm	used	in	PNMM	for	the	generation	of	links.		

Appendix	B	gives	an	overview	of	the	code	developed	for	PNMM.		

Appendix	C	presents	the	source	code	of	an	algorithm	used	in	PNMM	for	the	generation	

of	blocks	and	new	manifold	elements.		

Appendix	 D	 is	 for	 the	 implementation	 of	matrices	 and	 block	matrices	 in	 PNMM.	 The	

source	code	is	given	in	detail.		

Appendix	E	 gives	 the	methods	and	source	code	of	 two	solvers	 to	 the	system	of	 linear	

equations.		

Appendix	F	provides	an	example	of	the	vtk	file	for	the	post-process	of	PNMM.	
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Chapter	2 	A	Review	of	Numerical	

Methods	for	Rock	Dynamics	

This	 chapter	 presents	 a	 review	 of	 several	 existing	 numerical	methods	 that	 are	widely	

applied	 in	 rock	mechanics.	The	numerical	methods	are	classified	 into	three	categories:	

continuous	 methods,	 discontinuous	 methods,	 and	 coupled	 methods.	 Continuous	

methods	 are	 suitable	 for	 those	 problems	 whose	 system	 is	 a	 continuum	 with	 infinite	

degree	 of	 freedoms.	 The	 behavior	 of	 such	 system	 is	 dominated	 by	 the	 governing	

differential	 equation	 of	 the	 problem	 and	 the	 continuity	 conditions	 at	 the	 interfaces	

between	adjacent	elements.	This	type	of	method	is	mostly	used	for	rock	masses	with	no	

fractures.	It	can	also	be	used	for	the	rock	mass	with	a	few	or	many	fractures,	the	behavior	

of	which	being	established	through	equivalent	properties.	Discrete	methods	are	for	those	

problems	whose	system	is	a	combination	of	a	finite	number	of	well-defined	components.	

Usually	there	is	no	need	to	discretize	such	a	system,	as	it	has	been	automatically	done.	

The	behavior	of	such	system	 is	dominated	by	 the	well-defined	 inter-relations	between	

adjacent	components.	This	type	of	method	is	most	suitable	for	moderately	fractured	rock	

masses	where	the	number	of	fractures	is	too	large	for	continuous	methods,	and/or	where	

large	displacements	of	individual	blocks	are	possible.	A	coupled	method,	in	most	cases,	is	

a	combination	of	one	continuous	method	and	one	discrete	method	implicitly	or	explicitly,	

aiming	to	combine	the	characteristics	of	both	methods.	The	development	and	application	

of	the	numerical	methods	belonging	to	each	category	is	first	introduced	separately.	Then	

the	 characteristics	 of	 several	 typical	 numerical	 methods	 are	 compared	 to	 find	 their	

advantages	and	disadvantages.		

	

2.1 Continuous	Methods	

2.1.1 Finite	Element	Method	
The	term	finite	element	method	(FEM)	was	first	used	by	Clough	(1960)	for	plane	stress	

problem,	henceforth	the	FEM	has	become	the	mainstream	numerical	tool	in	engineering	
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science.	Unfortunately,	the	FEM	has	not	been	vastly	adopted	in	rock	mechanics	and	rock	

engineering,	 as	 in	 many	 other	 fields.	 The	 major	 hindrance	 to	 its	 application	 on	 rock	

mechanics	 is	 the	 simulation	 of	 fracturing	 process.	 There	 are	 mainly	 three	 techniques	

dealing	 with	 the	 fracturing	 problem	 in	 FEM:	 the	 element	 degradation	 approach,	 the	

boundary	breaking	approach,	and	the	element	breaking	approach.	

	

The	element	degradation	approach	

The	element	degradation	approach	treats	the	rock	fracturing	process	as	a	sequence	of	

element	 failures.	 The	 most	 representative	 method	 adopting	 this	 approach	 is	 the	

continuum	damage	mechanics	(CDM).	The	CDM	is	firstly	used	for	brittle	fracturing	analysis	

(Bonora,	1997).	Further,	the	Weibull	distribution	is	introduced	into	CDM	to	represent	the	

heterogeneity	 and	 statistic	 failure	 criteria,	 and	 then	 the	 damage	 evolution	 and	 crack	

propagation	in	concrete	and	rock	are	simulated	(Prisco	and	Mazars,	1996,	Kuna-Ciskal	and	

Skrzypek,	2004).	Another	degradation	technique,	namely	the	crack	smeared	model	(CSM),	

is	realized	by	modelling	the	cracks	and	joints	on	equivalent	continuum	concepts	of	elastic	

degradation	and/or	softening	plasticity.	Due	to	its	computational	convenience,	the	CSM	

is	commonly	used	 in	concrete	 fracturing	under	high	strain	 rates	and	 failure	of	ceramic	

refectory	materials	 (Ali,	1996,	Andreev	and	Harmuth,	2003,	Tang	and	Tang,	2015).	The	

element	 degradation	 approach	 has	 been	 adopted	 in	many	 commercial	 FEM	 codes.	 In	

ABAQUS	(2017),	the	elements	whose	failure	criterion	is	locally	reached	are	removed	and	

visualized	as	a	crack.	In	ANSYS	(2017),	the	CSM	is	used	to	simulate	the	fracture	process	of	

concrete-like	 material.	 The	 advantage	 of	 the	 element	 degradation	 approach	 is	 that	

remeshing	is	not	required	in	its	calculation	process.	However,	this	method	fails	to	give	an	

explicit	description	of	the	fracture	surface,	and	its	simulation	result	depends	on	its	mesh	

size	and	orientation.	

	

The	 realistic	 failure	 process	 analysis	 (RFPA)	 is	 a	 representative	 model	 and	 software	

package	that	uses	the	CDM	technique.	RFPA	was	originally	proposed	by	Tang	(1997).	It	is	

a	development	of	FEM	especially	for	rock	mechanics	and	engineering,	based	on	damage	

mechanics	and	statistical	theory.	RFPA	is	able	to	simulate	the	whole	fracturing	process,	

including	the	initiation,	propagation	and	coalescence	of	cracks,	without	any	assumption	
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about	where	and	how	fractures	should	occur.	In	RFPA,	uniform	elements	with	the	same	

shape	 and	 size	 are	 adopted	 in	 both	 2D	 and	 3D	 conditions,	 and	 there	 is	 no	 geometric	

priority	in	any	orientation	(Tang	and	Kaiser,	1998).	The	elemental	mechanical	properties,	

including	the	uniaxial	impressive	strength,	the	elastic	modulus,	the	density	and	Poisson’s	

ratio,	 are	 assumed	 to	 follow	 a	 Weibull	 distribution	 (Figure	 2.1a).	 Such	 a	 statistical	

variability	 enables	 the	model	 to	 simulate	 the	non-linear	deformation	of	 a	quasi-brittle	

behavior	with	an	ideal	brittle	constitutive	law	at	the	locale	scale.	In	addition,	the	approach	

of	 damage	 mechanics	 is	 employed	 to	 model	 the	 mechanical	 behavior	 of	 meso-scale	

elements.	For	each	element,	 the	material	 is	assumed	to	be	 linear	elastic,	 isotropic	and	

damage-free	before	 loading.	The	Mohr-Coulomb	criterion	with	 tension	cut-off	and	 the	

maximum	tensile	stress	criterion	are	adopted	to	judge	whether	damage	or	failure	occurs	

in	the	element	(Zhu	et	al.,	2006).	When	the	element	meets	the	damage	criterion,	damage	

occurs	 in	 the	 element.	 For	 damaged	 elements,	 the	 stiffness	 is	 reduced	monotonically	

according	 to	 the	 elastic	 damage	model	 (Tang	 et	 al.,	 2007,	Wang	 et	 al.,	 2011a).	 Every	

damage	in	the	element	is	regarded	as	the	source	of	an	acoustic	event	as	the	failed	element	

must	release	its	elastic	energy	store	during	the	deformation.	By	recording	the	number	of	

damaged	elements	and	the	energy	they	released,	RFPA	is	able	to	simulate	the	acoustic	

emission	(AE)	activities,	including	the	AE	event	rate,	magnitude	and	location	(Figure	2.1).		

	

Since	2009,	RFPA	has	been	a	commercial	software	package	provided	by	Mechsoft	(RFPA,	

2017).	The	application	of	RFPA	includes	the	failure	process	of	underground	excavations	

(Zhu	et	al.,	2010,	Wang	et	al.,	2013,	Jia	and	Zhu,	2015),	tunnels	(Wang	et	al.,	2012),	the	

Brazilian	disc	specimens	(Zhu	and	Tang,	2006,	Wang	et	al.,	2014b,	Dai	et	al.,	2015,	Zhu	et	

al.,	 2015),	boreholes	 (Tang	et	al.,	 2017a),	 the	 temperature-induced	cracking	 (Yu	et	al.,	

2015),	fracturing	of	layered	materials	due	to	surface	cooling	(Tang	et	al.,	2017b)	and	many	

other	cases	(Wang	et	al.,	2011a,	Wang	et	al.,	2011b,	Wang	et	al.,	2014a).		

	

Modelling	results	in	these	papers	have	shown	the	outstanding	ability	of	RFPA	to	simulate	

the	 failure	 process	 of	 rock	 masses.	 However,	 in	 order	 to	 naturally	 simulate	 the	

heterogeneity	of	rock	masses	through	a	statistical	distribution,	elements	in	RFPA	need	to	

be	 very	 small	 in	 size	 and	 the	 distribution	 coefficient	 needs	 to	 be	 carefully	 decided.	
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Moreover,	 as	 an	 extension	 of	 FEM,	 RFPA	 is	 still	 based	 on	 small	 deformation	 analysis.	

Therefore,	 it	 is	 only	 able	 to	 simulate	 the	 initiation	 and	 propagation	 process	 of	 the	

fractures	in	rock	masses,	but	unable	to	simulate	the	large	displacement	of	fractured	rock	

blocks.	 To	 overcome	 this	 shortcoming,	 a	 coupled	 method	 of	 the	 RFPA	 and	 the	

discontinuous	deformation	analysis	has	been	proposed	as	the	discontinuous	deformation	

and	displacement	(DDD)	method	(Gong	and	Tang,	2017)	recently.	

	

	

	

(a)	

	

(b)	

	

(c)	

Figure	2.1	RFPA	results	of	fractures	in	a	cylindrical	specimen	with	two	pre-existing	flaws:	
(a)	3D	inhomogeneous	model;	(b)	fractures	evolution;	(c)	AE	distribution	(Wang	et	al.,	

2014a)	
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The	boundary	breaking	approach	

The	 boundary	 breaking	 approach	 represents	 the	 fracture	 process	 through	 separating	

adjacent	elements	and	inserting	interface	elements	along	their	element	boundaries.	The	

most	 successful	 development	 of	 this	 approach	 is	 the	 cohesive	 zone	 model	 (CZM)	

(Hillerborg	et	al.,	1976,	Belytschko	et	al.,	1976),	which	has	been	successfully	implemented	

to	 simulate	 the	 fracture	and	 fragmentation	 in	brittle	materials,	multiple	discrete	 crack	

propagation,	and	dynamic	crack	growth	(Figure	2.2)	in	ceramic	materials	(Camacho	and	

Ortiz,	1996,	Yang	and	Chen,	2005,	Zhou	and	Molinari,	2004,	Zhou	et	al.,	2005,	Molinari	et	

al.,	2007,	Levy	et	al.,	2010,	Yao	et	al.,	2015,	Vocialta	et	al.,	2017).	The	advantage	of	the	

boundary	breaking	approach	is	that	the	fracture	can	be	explicitly	described.	However,	a	

remeshing	 technique	 is	 required	 to	 eliminate	 the	 element	 dependence	 and	 stress	

singularity,	which	 could	be	difficult	 in	 implementation,	 increase	 the	 computation	 cost,	

and	accumulate	calculation	errors.	

	

	

(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	2.2	Borders	of	the	fragments	under	different	strain	rates	simulated	by	FEM	with	
cohesive	elements:	(a)	6	×	103	s-1;	(b)	1	×	104	s-1;	(c)	4	×	104	s-1;	(d)	4	×	104	s-1	(thin	plate)	

(Vocialta	et	al.,	2017)	
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The	element	breaking	approach	

The	element	breaking	approach	was	born	with	 the	development	of	 the	generalized	or	

extended	finite	element	methods	(GFEM/XFEM).	Both	GFEM	and	XFEM	are	based	on	the	

partition	of	unity	method	(PUM)	(Babuška	and	Melenk,	1997),	which	allows	for	addition	

of	a	priori	knowledge	about	the	solution	into	the	approximation	space	of	the	numerical	

solution.	In	fact,	GFEM	and	XFEM	use	exactly	the	same	method,	while	the	former	targets	

solving	 problems	 with	 complex	 geometry	 with	 less	 error	 and	 computer	 resources	

(Strouboulis	 et	 al.,	 2003,	 Strouboulis	 et	 al.,	 2007)	 and	 the	 latter	 targets	 treating	 crack	

propagation	problems	(Moës	et	al.,	1999,	Moës	and	Belytschko,	2002).	They	have	been	

regarded	 as	 an	 alias	 to	 each	 other	 in	 some	 literature	 (Garzon	 et	 al.,	 2014,	Gupta	 and	

Duarte,	2014).	In	this	thesis,	the	acronyms	GFEM	and	XFEM	will	be	used	interchangeably.	

		

XFEM	can	be	seen	as	a	development	to	the	standard	FEM.	In	FEM,	shape	functions	are	

pre-defined,	 depending	 on	 the	 type	 of	 elements	 only	 and	 not	 related	 to	 the	 specific	

problem.	 However,	 in	 XFEM,	 shape	 function	 spaces	 are	 locally	 enriched	 using	 the	

functions	 suitable	 to	 represent	 a	 priori	 known	 properties	 of	 the	 modelled	 problem.	

Specifically,	 in	 crack	 propagation	 problems,	 the	 Heaviside	 function	 and	 the	 near	 tip	

asymptotic	 functions	 are	 adopted	 to	 represent	 the	 jump	of	 displacement	 across	 crack	

surface	 and	 the	 singularity	 around	 the	 crack	 tip	 respectively.	 The	 XFEM	 elements	 are	

allowed	to	contain	one	or	more	cracks,	therefore	the	mesh	generation	can	be	quite	simple	

and	 any	 remeshing	 is	 unnecessary	 in	 XFEM.	 XFEM	 with	 higher	 orders	 have	 been	

developed	and	applied	to	crack	propagation	problems	(Stazi	et	al.,	2003,	Laborde	et	al.,	

2005,	Lan	et	al.,	2013,	Song	et	al.,	2015).	The	development	history	of	XFEM/GFEM	can	be	

found	in	(Belytschko	et	al.,	2009).	XFEM	has	become	a	standard	module	of	ABAQUS	since	

its	version	6.9	in	2009.	Unfortunately,	the	application	of	XFEM	in	rock	mechanics	is	very	

limited.	XFEM/GFEM	has	the	advantage	of	mesh	independency	in	dealing	with	weak	and	

strong	discontinuities.	Nevertheless,	this	method	also	suffers	from	its	disadvantages.	For	

example,	the	global	stiffness	matrix	can	become	singular	if	the	crack	truncates	a	very	small	

part	 of	 a	 finite	 element	 (Peters	 and	 Hackl,	 2005).	 XFEM	 also	 encounters	 ill-condition	

problems	when	using	higher	order	cover	functions	(Strouboulis	et	al.,	2007).	
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In	 summary,	FEM	 is	very	convenient	and	 flexible	 to	 treat	material	heterogeneity,	non-

linear	deformability,	complex	boundary	conditions,	in	situ	stresses	and	gravity.	However,	

the	 continuum	 assumption	 in	 FEM	 makes	 it	 unsuitable	 to	 deal	 with	 the	 complete	

detachment	 and	 large-scale	 fracture	 opening	 problems	 (Jing	 and	 Hudson,	 2002,	 Jing,	

2003),	which	are	the	most	concerned	issues	in	rock	mechanics.	

	

2.1.2 Finite	Difference	Method	and	Finite	Volume	Method	
The	finite	difference	method	(FDM)	(Narasimhan	and	Witherspoon,	1976)	is	one	of	the	

oldest	numerical	techniques	for	the	solution	of	sets	of	partial	differential	equations.	Its	

basic	concept	is	to	replace	the	partial	derivatives	of	the	objective	function	by	differences	

defined	over	 certain	 spatial	 intervals,	which	 yields	 a	 system	of	 algebraic	 simultaneous	

equations	of	the	objective	functions	at	a	grid	(mesh)	of	nodes	over	the	domain	of	interest.	

The	implementation	of	FDM	is	quite	simple	in	both	two-	and	three-dimensional	cases,	as	

no	local	trial	functions	are	employed	to	approximate	the	PDEs	in	the	neighborhoods	of	

the	sampling	points,	and	no	global	system	of	equations	in	matrix	form	needs	to	be	formed	

and	solved.	However,	 the	conventional	FDM	with	 regular	grid	 systems	suffers	 from	 its	

inflexibility	 in	 dealing	 with	 fractures,	 complex	 boundary	 conditions	 and	 material	

inhomogeneity.		

	

To	 overcome	 these	 shortcomings,	 the	 finite	 volume	method	 (FVM)	 is	 developed	 as	 a	

branch	of	FDM.	FVM	is	also	a	direct	approximation	of	the	partial	differential	equations	as	

FDM,	but	in	an	integral	sense.	A	FVM	model	can	be	easily	constructed	from	a	standard	

FEM	mesh	(Bailey	and	Cross,	1995),	and	FVM	is	as	flexible	as	FEM	in	handling	material	

inhomogeneity	 and	 mesh	 generation.	 Therefore,	 FVM	 is	 also	 regarded	 as	 a	 bridge	

between	 FDM	 and	 FEM	 (Selmin,	 1993).	 The	 continual	 improvement	 of	 FDM	 and	 FVM	

ensures	that	they	are	still	one	of	the	most	popular	numerical	methods	in	rock	mechanics.		

	

The	most	well-known	computer	software	using	the	FDM/FVM	approach	is	the	FLAC,	short	

for	Fast	Lagrangian	Analysis	of	Continua,	code	group	(FLAC,	2017).	FLAC2D	and	FLAC3D	

are	both	widely	used	for	the	stress	analysis	of	non-linear	rock	engineering	problems	in	

recent	years	(Shabanimashcool	and	Li,	2012,	Shabanimashcool	and	Li,	2013,	Wang	et	al.,	
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2013,	 Hasanpour	 et	 al.,	 2014,	 Kang	 et	 al.,	 2014,	 Li	 et	 al.,	 2014d,	 Nemcik	 et	 al.,	 2014,	

Resende	et	al.,	2014,	Chemenda,	2015,	Lin	et	al.,	2015,	Zhang	and	Goh,	2015,	Zhang	et	al.,	

2015a,	Zhao	et	al.,	2015).	An	example	of	the	progressive	failure	of	jointed	rock	slopes	with	

different	strength	reduction	factor	(SRF)	is	presented	in	Figure	2.3.	

	

	

Figure	2.3	A	study	of	the	progressive	failure	of	jointed	rock	slopes	using	FLAC3D:	(a)	τxz	at	
SRF	=	1.30;	(b)	τxz	at	SRF	=	1.45;	(c)	τxz	at	SRF	=	1.47;	(d)	failure	zone	at	SRF	=	1.30;	(e)	
failure	zone	at	SRF	=	1.45;	(f)	failure	zone	at	SRF	=	1.47;	(g)	weakening	index	at	SRF	=	

1.30;	(h)	weakening	index	at	SRF	=	1.45;	(i)	weakening	index	at	SRF	=	1.47	(Zhang	et	al.,	
2015a)	

	

The	primary	shortcoming	of	FDM	and	FVM	is	that	the	explicit	representation	of	fractures	

is	not	easy,	because	the	finite	difference	schemes	in	FDM	and	interpolations	in	FVM	both	

require	 the	 continuity	 of	 the	 functions	 between	 neighboring	 grid	 points.	 Although	 a	

special	fracture	element	has	been	established	for	FVM	(Caillabet	et	al.,	2000,	Granet	et	

al.,	2001),	it	is	still	not	a	straightforward	and	easy-to-implement	approach.	
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2.1.3 Boundary	Element	Method	
Different	from	FEM,	the	boundary	element	method	(BEM)	initially	seeks	a	weak	solution	

at	the	global	level	through	an	integral	statement.	Specifically,	BEM	uses	given	boundary	

conditions	 to	 fit	 boundary	 values	 into	 the	 integral	 equation,	 rather	 than	 values	

throughout	the	space	defined	by	a	partial	differential	equation.		

	

Notable	examples	of	BEM	application	in	the	field	of	rock	mechanics	include	the	stress	and	

deformation	 analysis	 of	 underground	 excavations	 (Beer	 and	 Poulsen,	 1994,	 Beer	 and	

Poulsen,	1995,	Cerrolaza	and	Garcia,	1997,	Pan	et	al.,	1998,	Shou,	2000,	Griffith	et	al.,	

2014,	Wu	et	 al.,	 2015)	 and	borehole	 tests	 for	 permeability	measurements	 (Lafhaj	 and	

Shahrour,	2000).	A	representative	BEM	code	is	FROCK,	developed	by	the	rock	mechanics	

group	at	MIT.	This	code	is	used	to	simulate	the	crack	propagation	resulting	from	quasi-

static	 loading	 as	 a	 quasi-static	 process,	 i.e.,	 dynamic	 effects	 are	 not	 taken	 into	

consideration.	A	recent	 improvement	of	FROCK	can	be	found	 in	 (Da	Silva	and	Einstein,	

2013).	

	

It	is	an	advantage	that	BEM	reduces	the	model	dimension	with	a	simpler	mesh	over	the	

model	 surface.	 However,	 BEM	 is	 not	 as	 efficient	 as	 volume-discretization	methods	 in	

dealing	with	material	heterogeneity,	non-linear	material	behaviors	and	damage	evolution	

process.	 In	 general,	 the	 BEM	 is	 more	 suitable	 for	 solving	 problems	 of	 fracturing	 in	

homogeneous	and	linearly	elastic	bodies.	

	

2.1.4 Meshless	Methods	
Meshfree	methods	are	a	large	family	of	numerical	methods.	Their	key	idea	is	to	provide	

accurate	 and	 stable	 numerical	 solutions	 for	 integral	 equations	 or	 partial	 differential	

equations	 with	 all	 kinds	 of	 possible	 boundary	 conditions	 using	 a	 set	 of	 arbitrarily	

distributed	nodes	or	particles	without	mesh	constraints.		

	

Major	advantages	of	meshfree	methods,	when	being	compared	with	mesh-base	methods,	

include:	(1)	accuracy	can	be	controlled	more	easily,	since	nodes	or	particles	can	be	locally	
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inserted	with	ease	(h-adaptivity)	if	needed;	(2)	problems	with	moving	discontinuities,	such	

as	crack	propagation,	shear	bands	and	phase	transformation,	can	be	easily	treated;	(3)	

large	deformations	can	be	easily	handled;	(4)	higher	order	shape	functions;	(5)	non-local	

interpolation	character;�and	(6)	no	mesh	alignment	sensitivity.	However,	disadvantages	

occur	at	the	same	time	in	meshfree	methods.	Shape	functions	in	meshfree	methods	are	

rational	 functions,	 thus	 a	 high-order	 integration	 scheme	 is	 required	 to	 ensure	 the	

accuracy.	Besides,	the	treatment	of	essential	boundary	conditions	is	not	straightforward	

since	the	shape	functions	are	not	interpolants.	And	coming	with	the	simplicity	in	no	mesh	

generation,	more	computational	effort	 is	needed	when	generating	the	shape	functions	

over	the	selected	node	or	particle	clusters.	In	general,	the	computational	cost	of	meshfree	

methods	 is	 believed	 to	 be	 higher	 than	 that	 of	 FEM	 (Nguyen	 et	 al.,	 2008).	 Some	 good	

reviews	for	meshfree	methods	can	be	found	in	(Belytschko	et	al.,	1996,	Li	and	Liu,	2002,	

Idelsohn	and	Onate,	2006,	Nguyen	et	al.,	2008).	

	

The	smoothed	particle	hydrodynamics	(SPH)	method	(Lucy,	1977,	Gingold	and	Monaghan,	

1977)	 is	 one	 of	 the	 oldest	 and	 most	 popular	 meshfree	 methods.	 SPH	 was	 originally	

proposed	 for	 astrophysics	 in	 three-dimensional	 open	 space,	 and	 shortly	 later	 its	

applications	 were	 extended	 to	 fluid	 and	 solid	 mechanics	 due	 to	 its	 simplicity	 and	

Lagrangian	nature.	In	SPH,	the	domain	is	discretized	by	particles	that	interact	with	each	

other	 through	 a	 kernel	 basis.	 The	 contact	 between	 two	 particles	 is	 automatically	

established	when	one	particle	comes	within	the	influence	domain	of	the	other.	Such	an	

influence	domain	is	defined	by	the	support	size	of	the	kernel	function.		

	

SPH	 has	 the	 advantage	 of	 robustly	 computing	material	 point	 history	 even	 at	 severely	

deformed	 configuration	 and	 still	 avoiding	 large	 computational	 cost	 of	 remeshing	 in	

Lagrangian	 framework	 or	 of	 calculating	 conventions	 in	 Eulerian	 framework.	 In	 the	

standard	SPH,	the	kernel	function	is	chosen	irrespective	of	the	material	properties	and	

therefore	 interactions	 between	 particles	 remain	 unaffected	 despite	material	 damage,	

causing	 difficulties	 in	 modelling	 localized	 crack	 path	 and/or	 clustered	 fragments	

formation	 after	 multiple	 crack-interactions.	 Many	 enriched	 and	 analytical	 kernel	

functions	have	been	proposed	 to	overcome	this	 shortcoming	 (Li	and	Liu,	2002).	 Latest	
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applications	of	SPH	covers	soil	mechanics	(Wang	and	Chan,	2014),	impact	dynamics	(Islam,	

2011,	Chakraborty	and	Shaw,	2013,	Bresciani	et	al.,	2016),	rock	failure	(Deb	and	Pramanik,	

2013)	 and	 rock	 blasting	 (Fakhimi	 and	 Lanari,	 2014).	 Recently,	 a	 novel	 general	 particle	

dynamics	(GPD)	method	 is	proposed	by	 incorporating	the	Mohr-Coulomb	criterion	and	

the	Weibull	statistical	approach	 into	SPH	to	simulate	the	progressive	failure	process	of	

rock	slopes	(Zhou	et	al.,	2015).	Some	reviews	of	SPH	can	be	found	in	(Liu	and	Liu,	2010,	

Monaghan,	2012).	An	example	of	the	simulated	projectile	impaction	is	given	in	Figure	2.4.	

	

	

Figure	2.4	A	study	of	projectile	impaction	using	SPH	(Bresciani	et	al.,	2016)	

	

2.2 Discontinuous	Methods		

The	term	discontinuous	method	here	indicates	the	discrete	element	methods	and	other	

discontinuous	methods.	The	discrete	element	methods	are	a	 large	 family	of	numerical	

methods.	The	distinct	element	method	(DEM)	is	a	class	of	discrete	element	methods	that	

use	an	explicit	time-domain	integration	scheme	to	solve	the	equations	of	motion	for	rigid	

or	deformable	discrete	bodies	with	deformable	contacts.	Since	DEM	is	almost	the	most	
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well-known	explicit	discrete	element	methods,	researchers	tend	to	use	the	term	DEM	and	

discrete	 element	 method	 interchangeably.	 On	 the	 other	 hand,	 the	 discontinuous	

deformation	analysis	(DDA)	method	is	the	most	famous	implicit	discrete	element	method.	

	

2.2.1 Discrete	Element	Method	
DEM	treats	the	simulated	material	as	an	assembly	of	separate	particles	or	blocks.		

	

Particle-base	DEM	

The	particle-based	DEM	is	mainly	adopted	to	simulate	the	granular	micro-structure	of	the	

material	 through	particles	with	 varying	diameters.	Adjacent	particles	 can	 contact	each	

other	through	bonds.	The	contact	is	typically	assigned	with	a	normal	and	shear	stiffness	

as	well	as	a	friction	coefficient.	Crack	nucleation	is	simulated	by	breaking	of	bonds	while	

fracture	propagation	is	obtained	by	coalescence	of	continuous	bond	breakages.	Blocks	of	

arbitrary	shapes	can	be	formed	as	a	result	of	the	simulated	fracturing	process	and	can	

subsequently	interact	with	each	other.		

	

Two	types	of	bonds	are	typically	used	in	the	particle-base	DEM:	the	contact	bond	and	the	

parallel	bond.	In	the	contact	bond	model,	an	elastic	spring	with	a	constant	normal	and	

shear	stiffness	functions	between	the	bonded	particles,	allowing	only	normal	and	shear	

forces	 to	be	 transmitted.	 In	 the	parallel	 bond	model,	 the	moment	 induced	by	particle	

rotation	 is	 resisted	 by	 a	 set	 of	 elastic	 springs	 uniformly	 distributed	 over	 a	 finite-sized	

section	 lying	 on	 the	 contact	 plane	 between	 the	 bonded	 particles.	 One	 of	 the	 major	

drawbacks	 of	 the	 bonded-particle	 model	 is	 that	 the	 straightforward	 adoption	 of	

circular/spherical	 particles	 cannot	 fully	 capture	 the	 behavior	 of	 complex-shaped	 and	

highly	 interlocked	 grain	 structures,	which	 is	 common	 in	 hard	 rocks.	 To	 overcome	 this	

limitation,	a	clustered	particle	model	(Potyondy	and	Cundall,	2004)	(Figure	2.5a)	and	later	

a	 clumped	 particle	model	 (Cho	 et	 al.,	 2007)	 (Figure	 2.5b)	 is	 proposed	 respectively.	 In	

clumped	particle	model,	a	group	of	particles	are	glued	together	to	behave	as	a	single	rigid	

body.	Clumped	particles	can	act	like	a	single	particle	that	has	an	irregular	shape	but	moves	

as	a	deformable	and	non-breakable	body.		
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Apart	from	sphere,	particles	 in	other	shapes	have	also	been	developed	to	 improve	the	

geometry	description	of	this	method,	including	ellipsoids	(Vu-Quoc	et	al.,	2000,	Yan	et	al.,	

2010,	Zheng	et	al.,	2013),	superquadrics	(Wellmann	and	Wriggers,	2012),	polyhedral	(Feng	

et	 al.,	 2012,	 Smeets	 et	 al.,	 2015)	 (Figure	 2.5c),	 and	 the	 combination	 of	 simple	 shape	

primitives,	e.g.,	spheres	(Lu	and	McDowell,	2007,	Ferellec	and	McDowell,	2010,	Fang	et	

al.,	 2015)	 and	 ellipsoids	 (John	 et	 al.,	 2009).	 Furthermore,	 Mollon	 and	 Zhao	 (2014)	

generated	three-dimensional	particles	with	realistically	complex	shapes.	A	recent	review	

of	the	particle-based	DEM	can	be	found	in	(Carmona	et	al.,	2014).	

	

The	granular	element	method	(GEM)	is	a	newborn	development	of	DEM	(Andrade	et	al.,	

2012).	 This	 method	 provides	 geometrical	 enhancements	 of	 grain	 shapes	 through	 the	

flexibility	of	non-uniform	rational	basis-splines.	Grain	geometrical	information	is	directly	

obtained	 from	advanced	experiments	using	visualization	 tools	 such	as	X-ray	computed	

tomography	(CT).	The	implementation	of	GEM	is	straightforward,	with	all	other	standard	

DEM	 procedure	 remaining	 intact,	 only	minimal	 changes	 are	 required	 to	 existing	 DEM	

codes.	Later,	GEM	is	extended	to	three-dimensional	cases	(Lim	and	Andrade,	2014),	and	

a	contact	dynamics	approach	 is	 integrated	 into	GEM	to	simulate	the	granular	systems,	

comprising	of	 rigid	or	highly	 stiff	 angular	particles,	 subjected	 to	quasi-static	or	 intense	

dynamic	 flow	 conditions	 (Lim	 et	 al.,	 2014).	 These	 improvements	 prove	 GEM	 as	 a	

promising	branch	of	DEM.		

	

Besides,	Tarokh	and	Fakhimi	(2014)	investigated	the	effect	of	particle	size	on	the	size	of	

fracture	process	zone.	Wiącek	and	Molenda	(2014)	investigated	the	effect	of	particle	size	

distribution	on	rock	behavior.	Ding	et	al.	(2014)	investigated	the	effect	of	model	scale	and	

particle	size	distribution	on	rock	behavior.	Lee	and	Hashash	(2015)	proposed	an	impulse-

based	DEM	(iDEM)	on	features	of	the	impulse-based	dynamic	simulation	to	reduce	the	

computation	cost.	Galouei	and	Fakhimi	 (2015)	 investigated	the	effect	of	specimen	size	

and	material	ductility	on	the	size	of	fracture	process	zone.	
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(a)	

	

(b)	

	

(c)	

Figure	2.5	Different	particle	models:	(a)	bonded-particle	model	(Potyondy	and	Cundall,	
2004);	(b)	clumped	particle	model	(Cho	et	al.,	2007);	(c)	arbitrary	polyhedral	model	

(Smeets	et	al.,	2015)	
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The	 particle	 flow	 code	 (PFC)	 is	 the	most	 widely	 used	 commercial	 particle-based	 DEM	

software,	its	most	recent	application	covers	the	simulation	of	rock	failure	(Whittles	et	al.,	

2006,	Sarfarazi	et	al.,	2014,	Sima	et	al.,	2014,	Yang	et	al.,	2014c,	Fan	et	al.,	2015,	Khazaei	

et	al.,	2015),	rock	blasting	(Fakhimi	and	Lanari,	2014),	rock	slope	(Wang	et	al.,	2003,	Lu	et	

al.,	 2014),	 underground	excavation	 (Li	 et	 al.,	 2014b),	 the	 split	Hopkinson	pressure	bar	

(SHPB)	test	(Li	et	al.,	2014c),	rock	cutting	(Wyk	et	al.,	2014,	He	and	Xu,	2015),	falling	rock	

(Bock	and	Prusek,	2015),	 geogrid	 stabilized	ballast	 (Ngo	et	al.,	 2014),	 rock	 compaction	

process	(Dattola	et	al.,	2014),	the	shear	behavior	of	rock	joints	(Bahaaddini	et	al.,	2015),	

transversely	isotropic	rock	(Park	and	Min,	2015),	and	other	engineering	situations	(Liu	et	

al.,	2014a).	Zhang	and	Wong	(2014)	reviewed	the	methods	of	choosing	an	appropriate	

loading	 rate	 and	 give	 recommended	 loading	 rates	 for	 uniaxial	 compressive	 tests	 and	

Brazilian	disk	tests	in	PFC.	

	

Yade	is	another	well-known	software	for	particle-based	DEM.	It	is	an	open	source	code	

with	an	active	community.	An	 increasing	number	of	 researchers	are	using	 this	code	to	

study	both	rock	mechanics	(Smilauer,	2010)	and	engineering	(Thoeni	et	al.,	2014,	Boon	et	

al.,	2015).		

	

Block-based	DEM	

The	 block-based	 DEM	 discretizes	 the	 computational	 domain	 into	 blocks	 using	 a	 finite	

number	of	 intersecting	discontinuities.	Each	block	is	 internally	subdivided	using	a	finite	

difference	(or	volume)	scheme	for	calculation	of	displacement,	strain	and	stress.	Model	

deformability	 is	 captured	 by	 an	 explicit	 large	 strain	 Lagrangian	 formulation.	 The	

mechanical	 interaction	 between	 blocks	 is	 characterized	 by	 compliant	 contacts	 using	 a	

finite	 stiffness	 together	with	 a	 tensile	 strength	 criterion	 in	 the	normal	 direction	 and	a	

tangential	stiffness	together	with	a	shear	strength	in	the	tangential	direction.	A	primary	

disadvantage	of	the	standard	block-based	DEM	is	that	rock	failure	can	only	be	captured	

either	in	terms	of	plastic	yielding	(e.g.,	Mohr-Coulomb	criterion	with	tension	cut-off)	or	

displacements	of	pre-existing	discontinuities.	Therefore,	new	discontinuities	could	not	be	

driven	within	 the	 continuum	portion	of	 the	model,	 so	 that	discrete	 fracturing	 through	

intact	rock	could	not	be	simulated	(Lisjak	and	Grasselli,	2014).	
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The	universal	distinct	element	code	(UDEC)	and	the	three-dimensional	distinct	element	

code	(3DEC)	are	the	most	representative	commercial	code	of	block-based	DEM	for	two-

dimensional	and	three-dimensional	problems	respectively.	They	have	been	widely	used	

to	simulate	the	wave	propagation	(Chen	and	Zhao,	1998,	Cai	and	Zhao,	2000,	Fan	et	al.,	

2004,	Zhao	et	al.,	2006,	Lei	et	al.,	2006,	Zhao	et	al.,	2008a,	Zhao	et	al.,	2008b,	Deng	et	al.,	

2012,	Zhu	et	al.,	2013),	rock	failure	(Kazerani	and	Zhao,	2010,	Gu	and	Ozbay,	2014)	(Figure	

2.6),	rock	fragmentation	(Gong	et	al.,	2005,	Gong	et	al.,	2006a),	stability	of	rock	slope	(Liu	

et	al.,	2014b,	Francioni	et	al.,	2014,	Gischig	et	al.,	2015),	underground	oil	storage	facility	

(Li	et	al.,	2014a),	and	underground	explosion	(Deng	et	al.,	2015).	In	addition	to	the	public	

DEM	 codes	 mentioned	 above,	 some	 researchers	 also	 developed	 in-house	 codes	 for	

specific	problems	(Wang,	2009,	Wang	and	Tonon,	2011,	Tang,	2013,	Jiang	et	al.,	2014b,	

Deng	et	al.,	2014).		

	

	

Figure	2.6	A	granite	failure	in	uniaxial	compression	test	simulated	by	UDEC	(Kazerani	and	
Zhao,	2010)	

	

In	 summary,	 a	 general	 difficulty	 in	 DEM	 simulation	 is	 the	 validation	 of	 micro-scale	

parameters.	These	parameters	cannot	be	measured	directly,	but	can	only	be	determined	

through	extensive	calibrations	based	on	experimentally	measured	macro-scale	properties	

(usually	 the	uniaxial	 compressive	 test	 simulation	 and	Brazilian	disk	 test	 simulation	 are	

adopted).	This	trial	and	error	procedure	can	be	complicated	and	tricky.	In	order	to	obtain	
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a	more	robust	micro-scale	contact	model,	many	improvements	to	the	model	(Jiao	et	al.,	

2004,	Kazerani	et	al.,	2012,	Kazerani,	2013,	Kazerani	and	Zhao,	2014,	Psakhie	et	al.,	2014)	

and	 the	calibration	procedure	 (Fakhimi	and	Villegas,	2007,	Ding	et	al.,	 2014)	has	been	

proposed.	

	

2.2.2 Discontinuous	Deformation	Analysis	
The	 discontinuous	 deformation	 analysis	 (DDA)	method	 is	 an	 implicit	 discrete	 element	

method	developed	for	the	modelling	of	the	static	and	dynamic	behaviors	of	discrete	block	

systems,	 originally	 proposed	 by	 Dr.	 Genhua	 Shi	 (Shi	 and	 Goodman,	 1985,	 Shi	 and	

Goodman,	1989).	DDA	has	been	an	open	source	project	written	by	Dr.	Shi	since	 it	was	

born.		

	

The	blocks	in	DDA	is	deformable	and	can	be	arbitrarily	shaped.	The	kinematic	constraints	

of	no	tension	and	no	penetration	between	blocks	can	be	imposed	by	a	number	of	methods,	

including	 the	 penalty	 method,	 the	 Lagrange	 multiplier	 method	 and	 the	 augmented	

Lagrangian	method.	The	frictional	behavior	along	block	interfaces	is	modelled	by	a	Mohr-

Coulomb	criterion.	Similar	to	FEM,	the	governing	equations	in	DDA	are	represented	by	a	

global	system	of	linear	equations	obtained	by	minimizing	the	total	potential	energy	of	the	

system.	 A	 global	 system	 of	 equations	 in	matrix	 form	 needs	 to	 be	 formed	 and	 solved.	

Displacements	and	strains	are	taken	as	variables	and	the	stiffness	matrix	of	the	model	is	

assembled	by	differentiating	several	energy	contributions,	including	block	strain	energies,	

contacts	between	blocks,	displacement	constraints	and	external	loads.	In	standard	DDA,	

each	block	is	simply	deformable	with	constant	strain	and	stress	fields.	Improved	models	

are	achieved	by	introducing	higher	order	strain	fields	or	by	subdividing	each	block	into	a	

set	of	simply	deformable	sub-blocks	(Lin	et	al.,	1996).		

	

DDA	has	been	widely	used	in	the	simulation	of	rock	sliding	(Hatzor	et	al.,	2004,	Wu	et	al.,	

2009,	Wu,	2010,	Ning	and	Zhao,	2013,	Yang	et	al.,	2014a,	Jiao	et	al.,	2014,	Zhang	et	al.,	

2015b),	rock	fracturing	(Kong	and	Liu,	2002,	Bao	and	Zhao,	2013,	Chen	et	al.,	2013,	Tian	

et	al.,	2014),	rock	blasting	(Mortazavi	and	Katsabanis,	2001,	Ning	et	al.,	2011a,	Ning	et	al.,	

2011b),	rock	fall	(Sasaki	et	al.,	2004,	Wu	et	al.,	2005),	wave	propagation	in	rock	masses	
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(Jiao	et	al.,	2007,	Gu	and	Zhao,	2009),	jointed	rock	masses	(Lin	et	al.,	1996,	Tsesarsky	and	

Talesnick,	2007,	He	and	Zhang,	2015)	(Figure	2.7),	temperature-induced	cracking	process	

(Jiao	et	al.,	2015b),	masonry	structures	(Kamai	and	Hatzor,	2008,	Jiang	et	al.,	2014a),	and	

the	response	of	rockbolt	(Nie	et	al.,	2014).		

	

Recent	developments	of	DDA	include	a	viscous	boundary	in	DDA	(Jiao	et	al.,	2007),	non-

reflecting	 boundaries	 (Fu	 et	 al.,	 2015),	 the	 implementation	 of	 augmented	 Lagrangian	

method	 (Bao	 et	 al.,	 2014),	 a	 rock	 bolt	 element	 in	 DDA	 (Nie	 et	 al.,	 2014),	 a	 contact	

constitutive	 model	 for	 rock	 fragmentation	 (Jiao	 et	 al.,	 2012),	 a	 vertex-vertex	 contact	

algorithm	(Fan	and	He,	2015),	an	edge-edge	contact	algorithm	(Zhang	et	al.,	2014b),	the	

coupled	NMM-DDA	method	(Miki	et	al.,	2010),	the	DDD	model	based	on	DDA	and	RFPA	

(Gong	and	Tang,	2017),	the	nodal-based	DDA		(Bao	and	Zhao,	2013,	Tian	et	al.,	2014),	a	

linear	complementarity	DDA	procedure	 that	avoids	artificial	parameters	 (Zheng	and	Li,	

2015),	a	failure	version	of	DDA	that	can	simulate	the	whole	process	of	rock	failure	(Zhu	et	

al.,	2014a,	Jiao	et	al.,	2015a),	and	a	coupled	hydro-mechanical	model	using	DDA	(Chen	et	

al.,	2013).	

	

	

	

(a)	

	

(b)	

Figure	2.7	A	study	of	arching	mechanism	to	underground	excavation	in	jointed	rock	mass	
using	DDA:	(a)	principal	stress	vector	after	excavation;	(b)	contour	of	minor	principle	

stress	(He	and	Zhang,	2015)	
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In	DDA,	the	equilibrium	condition	can	be	automatically	satisfied	for	quasi-static	problems,	

without	using	excessive	 iteration	 cycles	which	 is	 necessary	 in	DEM.	Benefited	 from	 its	

implicit	formulations,	large	time	step	can	be	adopted	in	DDA	without	inducing	numerical	

instability.	 Besides,	 closed-form	 integrations	 for	 the	 block	 stiffness	 matrices	 can	 be	

performed	 without	 the	 need	 of	 numerical	 integration	 techniques.	 These	 advantages	

distinguished	DDA	from	continuous	methods	and	DEM.	Therefore,	DDA	has	emerged	as	

an	attractive	model	for	rock	dynamics.	However,	three	drawbacks	are	still	restricting	the	

development	of	DDA.	First,	as	a	block-based	method,	the	contact	detection	between	a	

large	 number	 of	 arbitrarily	 shaped	 blocks	 can	 be	 complicated,	 especially	 in	 three-

dimensional	 cases.	 Second,	 the	 condition	 of	 no	 tension	 and	 no	 penetration	 between	

blocks	needs	to	be	examined	at	every	time	step,	after	calculating	the	displacements	of	

blocks.	If	the	condition	is	found	to	be	failed,	contacts	between	blocks	need	to	be	modified	

and	the	displacements	of	blocks	needs	to	be	re-calculated	until	the	condition	is	satisfied.	

This	 is	 the	 so-called	 “open-close	 iteration”	 procedure.	 As	 this	 procedure	 can	 be	 time-

consuming	or	even	endless	in	some	situations,	one	needs	to	change	the	determined	time	

step	 to	 get	 a	 better	 performance	 according	 to	 his	 experience.	 Last,	 in	 standard	 DDA,	

fractures	 cannot	 be	 driven	 into	 blocks	 so	 that	 discrete	 fracturing	 through	 intact	 rock	

cannot	be	simulated,	which	is	the	same	as	block-based	DEMs.	

	

2.2.3 Lattice	Model	
The	lattice	models	(LMs)	are	also	a	family	of	numerical	methods.	Their	common	concept	

is	based	on	the	atomic	lattice	models	originated	from	condensed	matter	physics.	In	these	

models,	material	is	represented	by	a	system	of	discrete	units	interacting	via	connecting	

elements.	These	discrete	units	are	much	coarser	than	atomic	ones	in	practice	and	may	

represent	 larger	 volumes	 of	 heterogeneities	 such	 as	 clusters	 of	 grains.	 LMs	 simulate	

fractures	by	either	simply	removing	connecting	elements	that	exceed	the	strength	limit	

or	successively	degrading	their	mechanical	properties	according	to	cohesive	laws.		

	

The	most	representative	method	in	this	family	 is	the	lattice	spring	model	(LSM).	 It	was	

originally	 developed	 by	Hrennikoff	 (1941)	 to	 solve	 continuum	elasticity	 problems.	 The	

classical	LSM	can	only	solve	the	problems	with	a	fixed	Poisson’s	ratio,	namely	1/3	in	two-
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dimensional	plane-stress	cases	and	1/4	in	three-dimensional	cases.	Due	to	this	limitation,	

LSM	 had	 stayed	 underdeveloped	 for	 a	 long	 time.	 Recently,	 due	 to	 its	 suitability	 for	

fracturing	 simulations	 of	 solids,	many	 researchers	 have	 renewed	 their	 interest	 in	 this	

method	(Darve	and	Nicot,	2005,	Holeček	and	Moravec,	2006,	Wang	et	al.,	2009,	Hahn	et	

al.,	2010,	Cui	et	al.,	2011,	Zhao	and	Zhao,	2012).	

	

The	distinct	lattice	spring	model	(DLSM)	(Zhao,	2010)	is	a	newly	developed	branch	of	LSM.	

In	 DLSM,	 the	 restriction	 on	 the	 Poisson’s	 ratio	 is	 successfully	 removed	 through	 a	

technique	to	evaluate	spring	deformations	using	the	local	strain	rather	than	the	particle	

displacements.	DLSM	has	been	applied	to	simulate	the	stress	wave	propagation	in	rock	

masses	(Zhu	et	al.,	2011,	Zhao,	2014b),	rock	fracturing	(Jiang	et	al.,	2017)	(Figure	2.8),	rock	

behaviors	 under	 different	 loading	 rates	 (Gong	 and	 Zhao,	 2014,	 Zhao	 et	 al.,	 2014a),	

response	of	impaction	(Zhao	et	al.,	2013b),	and	jointed	rock	masses	(Zhao,	2015).	Recent	

developments	of	DLSM	 include	coupling	with	NMM	to	simulate	 the	dynamic	 failure	of	

rock	masses	(Zhao	et	al.,	2012),	large	deformation	analysis	(Zhao,	2014a),	parallelization	

(Zhao	and	Khalili,	2012,	Zhao	et	al.,	2013a),	and	a	four-dimensional	LSM	(Zhao,	2017).		

	

	

(a)	

	

(b)	

Figure	2.8	Crack	propagation	on	PMMA	plates	simulated	by	DLSM:	(a)	homogeneous	
plates;	(b)	inhomogeneous	plates	
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2.3 Coupled	Methods	

The	 characteristics	 of	 a	 specific	 scientific	 or	 engineering	 issue	 should	 be	 taken	 into	

consideration	when	choosing	 from	continuous	and	discontinuous	methods.	 In	general,	

continuous	 methods	 are	 good	 at	 the	 stress	 analysis	 in	 pre-failure	 stage,	 whereas	

discontinuous	methods	are	good	at	the	motion	analysis	in	post-failure	stage.	Some	work	

has	also	been	done	to	avoid	the	disadvantages	of	each	type	by	combining	continuous	and	

discontinuous	methods.	This	 type	of	method	 is	called	 the	coupled	 (or	hybrid)	method.	

There	 are	 two	 ways	 to	 combine	 the	 continuous	 and	 discontinuous	 method.	 A	

straightforward	 way	 is	 to	 explicitly	 adopt	 two	 different	 numerical	 methods,	 one	

continuous	method	and	one	discontinuous	method	in	most	cases,	for	the	simulation.	Each	

numerical	method	is	applied	on	its	own	domain,	and	a	consistent	condition	is	imposed	on	

the	common	domain	to	connect	two	methods.	Another	way	is	to	implicitly	combine	the	

continuous	 and	 discontinuous	 method,	 developing	 a	 new	 method	 that	 presents	 the	

characteristics	of	both	methods.			

	

2.3.1 Numerical	Manifold	Method	
The	numerical	manifold	method	(NMM)	is	originally	proposed	by	Dr.	Genhua	Shi	through	

a	series	of	conference	papers	(Shi,	1991,	Shi,	1992,	Shi,	1995,	Shi,	1997).	NMM	provides	a	

framework	 to	unify	continuous	and	discrete	methods	by	 implicitly	combining	FEM	and	

DDA.	Two	cover	systems	are	adopted	in	NMM,	namely	the	mathematical	cover	and	the	

physical	 cover.	NMM	 is	derived	based	on	 the	 finite	cover	approximation	 theory	and	 is	

named	after	the	mathematical	notion	of	manifolds.	NMM	uses	truncated	discontinuous	

shape	 functions	 to	 simulate	 the	 fractures	 and	 treat	 the	 continuum	 bodies,	 fractured	

bodies,	 and	 assemblage	 of	 discrete	 blocks	 in	 a	 unified	 form.	 NMM	 allows	 arbitrary	

boundaries	 and	 internal	 physical	 features	 in	 the	 physical	 domain	 without	 meshes	

conforming	 to	 them.	 Therefore,	 the	 meshing	 task	 in	 NMM	 is	 greatly	 simplified	 and	

fracturing	process	can	be	modelled	without	remeshing.	NMM	simulates	fractures	simply	

by	splitting	physical	covers	 that	are	completely	separated	by	the	 fractures	 into	several	

separate	covers	and	assigning	each	cover	an	independent	local	function.	Complex	cracks	

with	arbitrary	number	of	branches	are	modelled	in	an	exactly	way	as	the	modelling	of	a	

single	crack.	NMM	implements	a	novel	simplex	integration	method	proposed	by	Dr.	Shi	
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for	 both	 NMM	 and	 DDA	 (Shi,	 1996).	 This	 integration	 method	 is	 able	 to	 conveniently	

evaluate	the	weak	form	integration	over	elements	intersected	by	internal	discontinuities	

and/or	external	 boundaries,	without	 the	need	of	 element	partitioning	 like	what	XFEM	

does.	Another	distinct	feature	of	NMM	is	that	the	frictional	contact	condition	between	

the	 two	sides	of	a	 crack	or	 two	discrete	blocks	 can	be	accurately	 satisfied,	due	 to	 the	

contact	logic	in	NMM.	

	

Ma	et	al.	(2010)	prove	that	FEM	is	a	special	case	of	NMM	when	following	conditions	are	

satisfied:	(1)	mathematical	covers	in	NMM	are	generated	from	a	finite	element	mesh;	(2)	

weight	functions	defined	on	mathematical	covers	are	finite	element	shape	functions;	(3)	

cover	 functions	 defined	 on	 physical	 covers	 are	 constants,	 and	 (4)	 physical	 features	

including	 internal	 discontinuities	 (e.g.,	 cracks	 and	 material	 interfaces)	 and	 external	

boundaries	do	not	intersect	manifold	elements.	Meanwhile,	as	NMM	is	developed	based	

on	DDA,	 it	 preserves	 all	 the	 characteristics	of	 discrete	element	modelling,	 such	as	 the	

kinematics	constraints	and	contact	detection	and	modelling.	The	number	of	degrees	of	

freedom	(DOFs)	in	NMM	is	usually	much	higher	than	that	of	DDA	as	there	are	more	than	

one	manifold	elements	in	each	block	in	most	cases.	The	benefit	at	this	cost	is	that	NMM	

provides	 a	more	 accurate	 displacement	 and	 stress	 field	 in	 blocks	 than	DAA.	 It	 can	 be	

concluded	 that	 if	 every	 discrete	 block	 is	 a	 single	 manifold	 element	 with	 linear	

displacement	field,	NMM	will	degenerate	into	DAA	exactly.	

	

In	 the	original	 version	of	NMM	developed	by	Dr.	 Shi,	 the	 simplest	 triangular	manifold	

element	with	constant	cover	function	is	adopted	for	two	dimensional	issues,	lacking	the	

criteria	for	crack	initiation	and	propagation.	Since	then,	various	developments	as	well	as	

applications	have	been	made	in	the	past	decades.	Shyu	and	Salami	(1995)	implemented	

quadrilateral	isoparametric	elements	in	NMM.	Chiou	et	al.	(2002)	studied	the	mixed	mode	

fracture	propagation	by	combining	NMM	with	the	virtual	crack	extension	method.	Cheng	

et	 al.	 (2002)	 incorporated	 Wilson	 elements	 into	 NMM	 to	 increase	 the	 accuracy	 of	

quadrilateral	covers.	Chen	et	al.	(1998)	proposed	NMM	with	high-order	cover	functions,	

and	 later	 Su	 et	 al.	 (2003)	 developed	 a	 subroutine	 in	 the	 commercial	 software	

Mathematica	to	derive	expressions	for	high-order	NMM	automatically.	Lin	et	al.	(2005)	
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developed	the	formulations	of	three	dimensional	NMM	with	high-order	cover	functions	

and	 proposed	 a	 fast	 simplex	 integration	 method	 based	 on	 special	 matrix	 operations,	

without	considering	the	linear	dependence	problem.	He	and	Ma	(2010)	proposed	a	three-

dimensional	NMM	based	on	tetrahedron	elements.	Terada	et	al.	(2003)	introduced	the	

finite	cover	method	as	an	alias	of	NMM.	Su	and	Xie	(2005)	proposed	an	Eulerian	NMM	for	

large	 deformation.	 Zhang	 et	 al.	 (2009)	 compared	 the	 accuracy	 of	 rectangular	 and	

triangular	 mathematical	 elements	 under	 different	 circumstances.	 An	 et	 al.	 (2011)	

investigated	the	 linear	dependence	problem	of	NMM	approximation	space	using	 finite	

element	covers	and	polynomial	local	functions	at	both	elemental	and	global	level.	For	the	

sake	of	fracture	simulation,	Li	and	Cheng	(2005)	developed	an	enriched	meshless	manifold	

method	for	two	dimensional	crack	modelling.	Ma	et	al.	(2009),	Zhang	et	al.	(2010),	and	An	

(2010)	 incorporated	 the	 enriched	 functions	 of	 XFEM/GFEM	 into	 standard	 NMM	 to	

simulate	complex	cracks.	

	

Recently,	 NMM	 has	 been	 greatly	 improved	 and	 widely	 applied.	 He	 et	 al.	 (2014)	

customized	a	hierarchical	contact	algorithm	for	NMM	in	three-dimension.	Cai	et	al.	(2013)	

proposed	a	generalized	and	efficient	covers	generation	procedure,	which	is	applicable	for	

dealing	with	interfaces,	inclusions,	and	discontinuities	with	complex	geometry.	Zheng	and	

Xu	(2014)	proposed	strategies	for	several	specific	issues	that	NMM	may	encounter	in	the	

simulation	of	crack	propagation,	including	the	rank	deficiency	induced	by	high-order	cover	

functions,	 the	 integrals	 with	 singularity	 of	 1/r,	 and	 kinked	 cracks.	 Yang	 et	 al.	 (2014b)	

refined	the	mathematical	covers	near	crack	tips.	Qu	et	al.	(2014)	proposed	an	explicit	time	

integration	algorithm	for	NMM.	Zhao	et	al.	(2014b)	improved	the	performance	of	NMM	

in	 the	 simulation	 of	 stress	 wave	 propagation	 in	 rock	 masses	 by	 incorporating	 the	

Newmark	system	equations,	edge-to-edge	contact	scheme,	and	non-reflection	boundary	

condition.	Wu	and	Fan	(2014)	developed	a	time-dependent	absorbing	boundary	condition	

for	 wave	 propagation	 problems.	 Wong	 and	 Wu	 implemented	 NMM	 and	 studied	 the	

process	of	rock	fracturing	in	many	different	circumstances	(Wu	et	al.,	2013,	Wu	and	Wong,	

2013a,	Wu	and	Wong,	2013b,	Wong	and	Wu,	2014,	Wu	and	Wong,	2014)	 (Figure	2.9).	

Ning	et	al.	(2011c),	Zheng	et	al.	(2014),	and	An	et	al.	(2014)	analyzed	the	stability	of	rock	

slopes	with	two-dimensional	NMM,	while	He	et	al.	(2013)	extended	the	analysis	to	three-

dimension	 (Figure	 2.10).	 Zhao	 et	 al.	 (2012)	 coupled	NMM	with	 DLSM	 to	 simulate	 the	
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dynamic	 failure	 of	 rock	 masses.	 Zhang	 et	 al.	 (2014a)	 study	 the	 thermo-mechanical	

behavior	 of	 fractures	 in	 planar	 solids.	 Chen	 and	 Li	 (2015)	 improved	 the	 generation	 of	

manifold	 elements	 to	 bypass	 the	 overlapping	 procedure	 of	 irregular	 and	 complicated	

physical	covers.	

	

	

Figure	2.9	Failure	of	Brazilian	tensile	disc	test	in	pre-fractured	specimen	simulated	by	2D	
NMM	(Wong	and	Wu,	2014)	

	

	

Figure	2.10	Road	protection	from	rock	slope	failure	simulated	by	3D	NMM	(He	et	al.,	
2013)	
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NMM	has	been	a	promising	numerical	method	for	rock	mechanics	in	recent	years,	due	to	

its	 great	 advantages	 in	 theory	 for	 continua-discontinua	 analysis.	 However,	 as	 a	 block-

based	model,	its	geometrical	and	topological	operations,	as	well	as	the	contact	detection	

and	 operation,	 could	 be	 quite	 complicated,	 especially	 in	 three-dimensional	 cases.	

Furthermore,	NMM	is	generally	suitable	for	the	analysis	at	macroscopic	scale,	but	not	at	

microscopic	scale.	

	

2.3.2 Finite-Discrete	Element	Method	
The	 finite-discrete	 element	method	 (FDEM),	 also	 known	as	 the	 coupled	 finite	discrete	

element	method,	is	another	continua-discontinua	method	for	rock	mechanics,	originally	

proposed	by	Munjiza	(2004).	FDEM	blends	FEM	with	DEM,	but	it	should	not	be	confused	

with	the	explicitly	coupled	FEM/DEM	method,	which	represents	the	far-field	and	near-

field	 through	FEM	and	DEM	respectively.	Two	representative	code	of	FDEM	are	ELFEN	

(Klerck,	2000)	and	Y-Geo	(Mahabadi	et	al.,	2012a).		

	

FDEM	discretize	the	simulation	domain	 into	blocks	as	a	DEM	first.	Then,	every	block	 is	

treated	 as	 a	 FEM	 domain	 and	 is	 further	 discretized	 using	 a	 finite	 element	 mesh.	 In	

calculation,	 the	DEM	 concept	 is	 used	 to	 detect	 contacts	 and	 to	 deal	with	 interactions	

between	blocks,	while	FEM	techniques	are	adopted	for	the	computation	of	internal	forces	

and	the	initiation	of	new	fractures.		

	

FDEM	allows	new	fractures	to	be	initiated	within	and	to	completely	cut	through	blocks.	

The	insertion	of	a	new	fracture	can	be	accomplished	using	two	algorithms,	namely	the	

intra-element	method	and	the	inter-element	method.	The	intra-element	insertion	drives	

a	new	fracture	along	its	direction	of	propagation	by	simply	splitting	the	finite	elements.	

In	this	case,	a	local	adaptive	remeshing	may	be	necessary	to	achieve	an	element	topology	

and	avoid	highly-skewed	sliver	elements	that	could	decrease	the	numerical	stability.	 In	

the	 inter-element	method,	 a	 new	 fracture	 is	 turned	 to	 the	 existing	 element	boundary	

most	favorably	oriented	with	respect	to	the	direction	of	propagation.		
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Recent	applications	of	FDEM	in	rock	mechanics	include	underground	excavation	(Lisjak	et	

al.,	 2015)	 (Figure	 2.11),	 the	 acoustic	 emission	 in	 brittle	 rocks	 (Lisjak	 et	 al.,	 2013),	 the	

simulation	 of	 the	 split	 Hopkinson	 pressure	 bar	 (Rougier	 et	 al.,	 2014),	 the	 failure	 of	

Brazilian	 disks	 (Mahabadi	 et	 al.,	 2010,	 Mahabadi	 et	 al.,	 2012b,	 Cai,	 2013),	 naturally	

fractured	pillars	(Elmo	and	Stead,	2010),	open	pit	slopes	(Vyazmensky	et	al.,	2010),	and	

underground	excavations	(Lisjak	et	al.,	2014).	

	

	

(a)	

	

(b)	

Figure	2.11	Fractures	around	a	circular	tunnel	simulated	by	FDEM:	(a)	contour	of	
maximum	principal	stress;	(b)	contour	of	displacement	(Lisjak	et	al.,	2015)	

	

A	major	drawback	of	FDEM	is	that	it	is	as	inflexible	as	FEM	in	dealing	with	cracks.	As	it	is	

usually	 impossible	 to	 predict	 the	 position	 of	 initiated	 fractures	 and	 their	 propagation	

directions	prior	to	the	simulation,	all	blocks	in	FDEM	need	to	be	decently	discretized.	This	

fact	leads	to	a	grand	number	of	finite	elements	in	most	cases.	Therefore,	FDEM	is	always	

computationally	 expensive,	 especially	 in	 the	 simulation	 of	 rock	 engineering	 issues.	

Besides,	a	group	of	micro	parameters	need	to	be	determined	in	FDEM	for	each	simulation,	

most	of	which	cannot	be	directly	measured	via	 laboratory	tests	and	therefore	must	be	

estimated	via	calibration	procedures	(Tatone	and	Grasselli,	2015).	
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2.4 Comparisons	and	Challenges	

The	FEM,	DEM	and	NMM	are	chosen	as	three	typical	numerical	methods	in	the	field	of	

rock	mechanics	 in	this	section,	due	to	their	wide	application.	Together	with	the	XFEM,	

these	four	models	are	compared	in	Table	2.1.		

	

Table	2.1	A	comparison	of	FEM,	XFEM,	DEM	and	NMM	for	their	performance	in	rock	
dynamics	

	 FEM	 XFEM	 DEM	 NMM	

Fundamental	
theory	

Principle	of	minimum	

potential	energy	

• Principle	of	
minimum	potential	

energy	

• Partition	of	unity	
• Fracture	

mechanics	

• Newton’s	second	
law	(on	particles)	

• Force-
displacement	law	

(at	contacts)	

• Principle	of	
minimum	potential	

energy	

• Partition	of	Unity	
• Mathematical	

manifold	

Basic	
component	 Finite	element	 Finite	element	 Particle/Block	 Manifold	Element	

Interpolating	
function	

Element	shape	

function	

• FEM	shape	

function	

• Heaviside	function	
• Asymptotic	near-

tip	functions	

None	

• Cover	function	
• Weight	function	

• Asymptotic	near-

tip	functions	

(optional)	

Numerical	
integration	 Gaussian	quadrature	

• Gaussian	
quadrature	

• Generation	of	
subdomains	along	

cracks	

None	

• Simplex	

integration	

• Gaussian	
quadrature	in	the	

subdomains	along	

cracks	

Fracture	
representation	

Element	separation	

(assisted	by	cohesive	

element	insertion)	or	

Element	degradation	

(implicit	

representation)	

Natural	and	explicit	

representation	

Bonds	breakage	and	

particles/blocks	

separation	

Natural	and	explicit	

representation	

Fracture	
propagation	

path	

Along	the	edge	of	

finite	elements	

(assisted	by	cohesive	

element)	or	along	the	

finite	elements	

(element	

degradation)	

Across	the	finite	

elements	

Along	the	edge	of	

adjacent	

particles/blocks	

Across	the	manifold	

elements	

Complete	
detachment	
simulation	

Not	easy	 Not	easy	 Natural	 Natural	



Chapter	2.	A	review	of	numerical	methods	for	rock	dynamics	

	

36	

	

Contact	pair	 Polygon-Polygon	 Polygon-Polygon	
Particle-Particle	/	

Polygon-Polygon	
Polygon-Polygon	

Contact	position	 On	contact	surface	 On	contact	surface	
On	contact	surface	

and	within	continua	
On	contact	surface	

Contact	
implementation	

• Contact	mechanics	

• Numerical	

constraint	

technique	(e.g.,	

penalty	method,	

Lagrange	

multiplier	method,	

augmented	

Lagrange	method)	

• Contact	mechanics	

• Numerical	

constraint	

technique	(e.g.,	

penalty	method,	

Lagrange	

multiplier	method,	

augmented	

Lagrange	method)	

• Two	parts	of	
contact	forces:	1)	

Grain-based	

portion	(particle	

overlap,	including	

normal	force,	

shear	force	and	

friction);	2)	

Cement-based	

portion	(parallel	

bond,	including	

normal	force,	

shear	force	and	

moment)	

• Microscopic	

parameters	must	

be	determined	

through	a	series	of	

validation	

procedure	to	

reproduce	typical	

macroscopic	

behavior	

• Normal	and	shear	

forces	

• Normal	contact	

stiffness	is	related	

to	the	Young’s	

modulus	of	blocks;	

Shear	contact	

stiffness	is	related	

to	the	normal	

stiffness	

• Open-close	
iteration	(a	trial-

and-error	

procedure	to	

ensure	the	non-

penetration	

condition)	

Trial-and-error	
procedure	 Unnecessary	 Unnecessary	

Essential	(to	

determine	micro	

parameters)	

Essential	(to	prevent	

block	penetration)	

Typical	code	
• Abaqus	
• ANSYS	

• Abaqus	
• Code	by	Dr.	Philip	

Moseley	

• PFC	
• UDEC	
• 3DEC	

• open-source	
project	by	Dr.	

Genhua	Shi	

	

Generally,	FEM	and	XFEM	are	not	flexible	enough	in	dealing	with	rock	masses	complete	

detachment	and	the	post-failure	behavior,	which	greatly	 limits	their	application	in	rock	

dynamics.	DEM	properly	simulates	the	microstructure	of	rock	materials	but	is	somewhat	

inefficient	to	simulate	the	macroscopic	behaviors	of	massive	rock	masses,	while	the	NMM	

has	 an	 opposite	 character.	 As	 for	 contact,	 DEM	 and	 NMM	 encounter	 quite	 different	

difficulties.	 Contact	 is	 the	 dominating	 force	 in	 DEM,	which	 is	 defined	 on	 each	 pair	 of	

neighboring	elements	(particle	or	block).	For	large	scale	analysis,	the	number	of	contact	

pairs	could	be	very	large.	In	NMM,	the	contact	is	only	defined	between	discrete	bodies,	

instead	of	it	basic	computational	components.	Therefore,	the	number	of	contact	pairs	in	

NMM	could	be	rapidly	reduced	when	comparing	to	DEM.	However,	since	NMM	is	a	block-
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based	method,	 the	 contact	 detection	 and	 operation	 is	 conducted	 on	 polygons,	 which	

could	be	complicated	and	time	consuming,	especially	in	three-dimensional	cases.		

	

In	conclusion,	NMM,	as	a	promising	numerical	method	for	rock	dynamics,	meets	following	

challenges:	

• Inefficient	to	simulate	the	microstructure	of	rock	materials;	

• Difficult	to	study	the	heterogeneity	of	rock	materials;	

• Inefficient	to	capture	mechanical	responses	at	microscopic	scale;	

• Contact	operation	could	be	simplified.	

	

The	 work	 in	 this	 thesis	 is	 inspired	 by	 limitations	 of	 existing	 numerical	 methods	 in	

simulating	 rock	materials	 and	 rock	 engineering	 problems,	 especially	 the	 challenges	 of	

NMM	listed	above.	The	aim	of	this	research	is	to	propose	a	novel	numerical	method	for	

rock	dynamics	based	on	NMM	by	overcoming	its	essential	disadvantages.	The	outcome	of	

this	thesis	is	to	provide	a	potentially	ideal	numerical	tool	for	rock	dynamics.	The	proposed	

method	is	supposed	to	meet	the	unique	requirements	raised	by	the	complexity	of	rock	

materials	and	rock	engineering	problems.	
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Chapter	3 Particle-based	Numerical	

Manifold	Method	(PNMM)	

PNMM	is	developed	from	the	Particle	Manifold	Method	(Sun	et	al.,	2013)	and	Numerical	

Manifold	Method	(Shi,	1991,	Ma	et	al.,	2010).	It	is	proposed	by	introducing	the	particle	

concept	 into	 NMM.	 The	 purpose	 of	 this	 development	 is	 primarily	 to	 simplify	 the	

geometrical	Boolean	operation	and	contact	operation	in	NMM.	Same	as	NMM,	PNMM	is	

inherently	 a	 continuum-discontinuum	 numerical	 model,	 providing	 a	 unified	 analysis	

framework	for	both	pre-	and	post-failure	behaviors.	PNMM	is	flexible	in	considering	the	

heterogeneity	of	rock	materials	and	simulating	the	initiation	and	propagation	of	fractures,	

which	separates	it	from	NMM.	PNMM	inherits	the	most	distinct	characteristics	of	NMM,	

i.e.,	the	mathematical	covers	and	physical	covers,	but	also	utilizes	a	group	of	particles	to	

form	an	extra	level	of	discretization.	

	

This	 chapter	 presents	 the	 conception,	 formulations,	 basic	 components,	 and	 the	

implementation	 of	 PNMM	 in	 detail.	 First,	 the	 dual-layer-cover	 system	 and	 dual-level	

discretization	 are	 introduced	 respectively	 to	 provide	 the	 foundation	 and	 character	 of	

PNMM.	Then,	the	necessary	mathematical	formulae	and	their	numerical	implementation	

are	given.	The	basic	components,	including	particles,	links,	failure	description,	and	contact	

accumulation,	are	introduced.	The	failure	criterion	adopted	in	PNMM	is	given.	Last,	the	

implementation	of	PNMM	is	summarized.		

	

This	 chapter	 is	 based	 on	 a	 paper	 published	 in	 the	 journal	 International	 Journal	 of	

Geomechanics:		

Li,	X.,	Zhang,	Q.	B.,	He,	L.,	Zhao,	J.,	2017.	Particle-Based	Numerical	Manifold	Method	

to	 Model	 Dynamic	 Fracture	 Process	 in	 Rock	 Blasting.	 International	 Journal	 of	

Geomechanics.	17	(5),	E4016014.	
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3.1 The	Dual-layer-cover	System	

The	most	distinct	characteristics	of	NMM	is	its	cover	system.	PNMM	adopts	a	same	dual-

cover	 system	as	NMM,	namely	 the	mathematical	 cover	 system	and	 the	physical	 cover	

system.		

	

The	 first	 layer	 is	 the	 mathematical	 cover	 system.	 It	 is	 independent	 of	 the	 shape	 of	

modelling	domains	but	has	to	cover	all	the	space	the	modelling	domain	may	occupy.	The	

mathematical	 cover	 system	 is	 usually	 generated	 from	 a	 uniform	 triangular	 or	

quadrangular	FEM	mesh,	from	which	the	finite	elements	that	share	a	same	node	form	a	

mathematical	 cover.	 It	 is	 common	 to	 find	 mathematical	 covers	 overlapped.	 The	

mathematical	 cover	 systems	with	different	 geometric	patterns	 can	be	generated	 from	

several	kinds	of	typical	FEM	mesh,	as	illustrated	in	Figure	3.1.	The	pattern	of	mathematical	

cover	system	is	supposed	to	have	a	slight	 influence	on	simulation	results	(Zhang	et	al.,	

2009).		

	

	

Figure	3.1	Typical	patterns	of	the	mathematical	cover	

	

The	second	 layer	 is	 the	physical	cover	system.	A	physical	cover	 is	 the	 intersection	of	a	

mathematical	cover	and	the	modeling	domain.	The	physical	cover	system	is	to	connect	

the	uniform	mathematical	cover	system	with	the	arbitrary	modeling	domain.	The	overlap	

of	neighboring	physical	covers	 is	called	a	manifold	element.	A	manifold	element	 is	the	

basic	computation	unit	in	both	NMM	and	PNMM.	
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Figure	3.2	The	mathematical	cover	(MC)	and	physical	cover	(PC)	around	a	branched	
crack	

	

An	 apparent	 advantage	 of	 the	 dual-layer-cover	 system	 is	 that	multiple	 cracks	 and	 the	

crack	with	complex	geometry	can	be	flexibly	handled.	Discontinuities	(e.g.,	cracks,	joints,	

material	interfaces,	holes)	within	the	modelling	domain	will	interact	with	mathematical	

covers	to	form	extra	physical	covers.	A	modelling	domain	that	contains	a	branched	crack	

is	taken	as	an	example	in	Figure	3.2.	Around	the	intersection	of	two	branches	of	the	crack,	

4	mathematical	 covers	 are	 separated	 into	12	physical	 covers.	 The	 common	domain	of	

these	12	physical	covers	will	generate	14	manifold	elements	in	total.	In	the	case	where	

the	branched	crack	does	not	exist,	only	9	manifold	elements	will	be	generated	in	the	same	

domain.	Obviously,	more	cracks	will	generate	more	physical	covers	and	therefore	more	
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manifold	elements.	By	increasing	the	number	of	manifold	elements,	on	which	the	DOFs	

are	defined,	PNMM	naturally	simulates	internal	discontinuities	in	a	similar	way	to	NMM.	

	

3.2 The	Dual-level	Discretization	

The	basic	idea	of	PNMM	is	to	represent	the	microstructure	of	rock	materials	with	a	group	

of	particles	and	to	simulate	the	macroscopic	behavior	of	rock	masses	through	polygonal	

elements.	 In	 a	 representative	 example	 shown	 in	 Figure	 3.3,	 a	 block	 of	 rock	 (modeling	

domain)	 is	 discretized	 into	 manifold	 elements	 in	 the	 first	 discretization.	 Then,	 in	 the	

second	discretization,	each	manifold	element	is	further	discretized	into	a	group	of	internal	

particles.		

	

	

Figure	3.3	The	dual-level	discretization	in	PNMM	

	

The	first	discretization	is	the	result	of	the	dual-layer-cover	system.	Manifold	elements	are	

generated	in	this	process.	This	discretization	reduces	the	infinite	DOF	of	a	continuum	to	

finite	DOFs	of	manifold	elements.	However,	 the	second	discretization	does	not	 further	

affect	the	number	of	DOF	of	the	model.	That	is	to	say,	the	DOFs	of	the	model	are	defined	

on	manifold	elements	rather	than	internal	particles.	In	calculation,	mechanical	responses	

of	manifold	elements	are	solved	prior	 to	particles.	Then,	 the	behavior	of	each	 internal	

particle	is	simply	derived	from	the	mechanical	fields	of	its	governing	element.	In	such	a	

way,	the	dual-level	discretization	enables	PNMM	to	simulate	the	microstructure	of	rock	

materials	without	rapidly	increasing	the	DOF	of	the	model.		
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The	generation	of	particles	is	conducted	in	each	polygonal	element.	For	regular-shaped	

elements	(e.g.,	squares,	rectangles,	equilateral	triangles,	and	isosceles	triangle),	particles	

can	 be	 distributed	 evenly.	 The	 number	 of	 particles	 is	 determined	 by	 the	 accuracy	

requirement,	represented	by	a	setting	parameter	given	by	the	user.	In	such	circumstance,	

the	area	of	each	particle	is	the	same	and	the	sum	of	their	areas	equals	the	area	of	the	

element.		

	

For	 general-shaped	 elements,	 an	 inner	 mesh	 needs	 to	 be	 generated	 in	 the	 second	

discretization.	This	procedure	is	efficiently	conducted	by	incorporating	the	computational	

geometry	algorithms	library	(CGAL).	CGAL	is	a	software	project	that	provides	easy	access	

to	efficient	and	reliable	geometric	algorithms	 in	 the	 form	of	a	C++	 library.	 It	 is	used	 in	

various	areas	needing	geometric	computation,	such	as	geographic	information	systems,	

computer	 aided	 design,	 molecular	 biology,	 medical	 imaging,	 computer	 graphics,	 and	

robotics.	The	2D	Triangulation	function	in	this	library	is	executed	by	PNMM.	The	adopted	

function	divides	a	polygonal	element	into	inner	triangular	elements,	without	the	need	of	

any	seed	point.	Then,	one	particle	is	generated	in	each	inner	element.	The	center	of	the	

particle	is	the	centroid	of	the	inner	element.	The	area	of	the	particle	is	equal	to	the	area	

of	the	inner	element.	In	such	a	way,	the	sum	of	particle	areas	remains	equal	to	the	area	

of	the	polygonal	element.		

	

In	both	schemes	for	the	generation	of	particles,	it	always	need	to	calculate	the	area	and	

centroid	of	a	polygon	in	variety	of	shapes.	This	is	conducted	by	a	subroutine	in	PNMM,	as	

follow	

	 ! =
1

2
%&'&() − %&()'&

+,)

&-.

,				with	 %+, '+ = %., '. 	 (1)	

	

12 =
1

6!
%& + %&() %&'&() − %&()'&

+,)

&-.

15 =
1

6!
'& + '&() %&'&() − %&()'&

+,)

&-.

	 (2)	

where	A	is	the	area	of	the	polygon,	n	is	the	number	of	vertices,	xi	and	yi	are	the	coordinates	

of	the	ith	vertex,	Cx	and	Cy	are	the	coordinates	of	the	centroid.	
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(a)	

	

(b)	

Figure	3.4	An	example	of	the	particles	in	PNMM:	(a)	a	slope;	(b)	an	enlarged	view	
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In	practice,	the	second	scheme	is	adopted	in	most	cases.	Therefore,	particles	in	PNMM	

are	usually	assigned	with	varying	diameters.	Due	to	the	limitation	of	geometry,	particles	

naturally	overlap	each	other	to	ensure	the	conservation	of	mass,	as	they	are	carrying	a	

realistic	density.	

	

A	 practical	 example	 of	 the	 dual-level	 discretization	 is	 shown	 in	 Figure	 3.4.	 The	

mathematical	cover	in	quadrangular	pattern	and	particles	discretization	of	a	rock	slope	is	

presented.	 The	 height	 of	 the	 slope	 is	 16	m,	 the	width	 of	 slope	 is	 10	m.	 The	 radius	 of	

particles	varies	from	0.0079	to	0.052	m.	

	

3.3 Formulation	Inherited	from	NMM	

PNMM	inherits	most	basic	formulae	from	NMM.		

	

3.3.1 Local	Approximation	
On	each	mathematical	cover	Mi,	a	cover	function	is	independently	defined,	representing	

the	local	approximation,	as	

	 6& = 7&8 % 9&8

+

8-)

= 79& 	 (3)	

where	ui	is	the	cover	function	on	the	ith	mathematical	cover,	n	is	the	number	of	DOFs,	T	

is	the	basis	of	the	cover	function,	and	di	is	the	vector	of	DOFs.	Although	a	constant	cover	

function	 is	 usually	 adopted	 in	 the	 standard	NMM,	 considering	 the	 fact	 that	 there	 are	

usually	 10
1
~10

3
	 particles	within	 a	mathematical	 cover	 in	 PNMM,	 the	 linear	 or	 quadric	

cover	 function	should	be	adopted.	 In	 two-dimensional	cases,	 they	can	be	expressed	 in	

matrix	form	respectively	as	
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The	primary	issue	when	using	higher	degree	polynomials	as	the	cover	function	is	the	rank	

deficiency	of	the	stiffness	matrix.	To	tackle	this	issue,	Lin	(2003)	has	suggested	to	exclude	

some	monomials	 from	the	complete	higher	degree	cover	 functions.	Recently,	An	et	al.	

(2011)	 proposed	 an	 approach	 to	 predict	 the	 rank	 deficiency	 and	 found	 that	 the	 rank	

deficiency	is	unrelated	to	the	nullity	of	the	stiffness	matrix.	Fan	et	al.	(2017)	proposed	a	

novel	NMM	with	derivative	DOFs	to	eliminate	the	linear	dependence.	Some	other	effort	

on	this	topic	can	also	be	found	in	(Ghasemzadeh	et	al.,	2014,	Zheng	and	Xu,	2014).	

		

Cover	functions	of	different	physical	covers	then	are	combined	together	to	form	the	local	

approximation	 for	 a	 manifold	 element.	 This	 combination	 is	 conducted	 by	 the	 weight	

function	φi,	which	satisfies	

	 ?& @
&

= 1			and			
?& @ ≥ 0,			∀@ ∈ H&
?& @ = 0,			∀@ ∉ H&

	 (6)	

where	Pi	is	the	ith	physical	cover.	The	term	weight	function	is	originally	used	by	Shi	(1992).	

However,	Lin	(2003)	reported	that	the	term	has	been	used	ambiguously	since	then,	and	

demonstrated	that	NMM	is	similar	to	meshless	methods	by	clarifying	the	weight	function	

from	 the	 partition	 of	 unity’s	 perspective.	 After	 that,	 this	 function	 is	 also	 called	 a	 PU	

function	in	some	literature	(Ma	et	al.,	2010).	

	

A	 convenient	 way	 for	 constructing	 the	 weight	 function	 is	 to	 use	 the	 element	 shape	

functions	 in	 FEM.	 Specifically,	 for	 the	mathematical	 cover	 in	 type	A	 and	 type	B,	 three	

weight	functions	on	a	triangular	physical	cover	is	the	FEM	shape	functions	in	a	triangular	

element,	which	can	be	expressed	as	
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where	xi	and	yi	are	the	coordinates	of	the	triangular	physical	cover,	and	Aij	is	the	minor	of	

matrix	Δ.	Hence,	we	have	
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and	
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For	 the	 type	 C	mathematical	 cover,	 four	weight	 functions	 on	 a	 quadrangular	 physical	

cover	is	the	FEM	shape	functions	in	a	quadrangular	element,	which	can	be	expressed	as	
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In	this	case,	we	have	
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Using	the	weight	function	to	combine	the	cover	functions	of	related	physical	covers,	the	

displacement	field	of	a	manifold	element	is	finally	taken	as,		
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	 6Q @ = ?& @ 6& @

R

&-)

= S& @ 9&

R

&-)

= SQ9Q 	 (13)	

where	m	indicates	the	number	of	physical	covers.		

	

3.3.2 Equations	in	Matrix	Form	
	

	

Figure	3.5	A	typical	continuum	problem,	subjected	to	Neumann	and	Dirichlet	boundaries	

	

The	governing	equation	for	the	displacement	field	of	the	continuum	illustrated	in	Figure	

3.5	is,	

	

∇U + V = WX

X = X

U ∙ Y = L

on	Γ[	

on	Γ\

	 (14)	

where	σ	is	the	Cauchy	stress	tensor,	b	is	the	body	force	per	unit	volume,	ρ	is	the	density,	

and	ü	is	the	acceleration	tensor.	

	

PNMM	has	the	same	theoretical	foundation	as	NMM.	The	linear	elastic	constitutive	model	

is	adopted	for	general	cases.	Coupling	the	governing	equation	with	constitutive	equations,	

strain-displacement	equations	and	the	space	discretization,	the	potential	energy	of	the	

continuum	can	be	obtained.	By	minimizing	the	potential	energy,	the	global	equation	in	

matrix	form	can	be	obtained	as	



Chapter	3.	Particle-based	numerical	manifold	method	(PNMM)	

	

49	

	

	 ]9 + ^_ = `	 (15)	

where	K	is	the	global	stiffness	matrix,	d	the	global	vector	of	unknowns,	M	the	global	mass	

matrix,	and	F	the	global	vector	of	equivalent	loads.	These	global	matrices	are	formed	by	

assembling	element	matrices.		

	

The	stiffness	matrix	for	manifold	element	e	is	

	 ]Q = aQ
=baQ:!

c
	 (16)	

The	elasticity	matrix	E	can	be	further	expressed	as	

	 b =
d.

1 − e.
>

1 e. 0

e. 1 0

0 0 1 − e. 2

	 (17)	

where	d. = d, e. = e	and	d. = d 1 − e> , e. = e 1 − e 		for	plane	stress	and	plane	

strain	case	respectively,	where	E	is	the	Young’s	modulus	and	ν	is	the	Poisson’s	ratio.	The	

manifold	element	strain	matrix	Be	is	assembled	from	the	physical	cover	strain	matrix	Bi	as	

follow		

	 aQ = a) … a+ 	 (18)	

where	n	is	the	number	of	physical	covers,	and	

	 a& = fS& = f ?&7 	 (19)	

where	L	is	the	differential	operator,	taking	the	following	form	

	 L ∙ =

N ∙

N%
N ∙

N'
N ∙

N'

N ∙

N%

	 (20)	

	

The	mass	matrix	for	manifold	element	e	is	
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	 ^Q = WSQ
=SQ:!

c
	 (21)	

where	

	 SQ = S) … S+ 	 (22)	

	

The	 element	 vector	 of	 equivalent	 loads	 is	 obtained	 from	 the	 Neumann	 boundary	

condition	and	body	force,		

	 hQ = SQ
=i + SQ

=j:!
c

	 (23)	

where	t	and	b	are	external	force	and	body	force	in	vector	form	respectively.		

	

Considering	that	the	unknowns	in	PNMM	are	usually	not	displacements,	and	the	union	of	

mathematical	 covers	 is	 not	 identical	 to	 the	modeling	 domain,	 the	 Dirichlet	 boundary	

condition	can	only	be	superimposed	in	a	weak	form,	using	the	penalty	method	

	 ]Q+= k SQ
=SQ:Γ

lm

,			hQ+= k SQ
=6:Γ

lm

	 (24)	

where	δ	is	the	penalty	number.		

	

After	 solving	 the	global	equation	Eq.15,	one	can	obtain	 the	displacement	 field	of	each	

manifold	 element	 through	 Eq.13.	 Then,	 the	 strain	 and	 stress	 field	 of	 each	 manifold	

element	can	be	obtained	as	

	 nQ = f6Q = aQ9Q 	 (25)	

and	

	 oQ = bnQ 	 (26)	
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The	mechanical	behavior	of	a	particle	is	determined	by	the	manifold	element	it	locates	in.	

According	to	the	mechanical	 fields	of	the	manifold	element	e,	 the	displacement,	strain	

and	stress	of	an	internal	particle	can	be	directly	obtained	as	

	 6& = 6Q @&
p ,			n& = nQ @&

p ,			q& = qQ @&
p
	 (27)	

where	 xc	 indicates	 the	 coordinates	 of	 the	 centroid	 of	 the	 particle.	 In	 PNMM,	 the	

mechanical	field	on	each	particle	is	assumed	to	be	constant.	

	

Although	most	 equations	 in	 PNMM	are	 the	 same	with	 those	 in	 NMM,	 they	 are	 quite	

different	 in	calculation.	 In	NMM,	 there	 is	only	one	discretization,	making	 the	manifold	

element	 as	 the	 only	 computation	 unit.	 The	 cover	 functions,	 weight	 function,	 DOFs,	

boundary	 conditions,	 body	 force,	 and	 material	 properties	 are	 all	 implemented	 on	

manifold	elements.	However,	 in	PNMM,	particles	form	a	second	level	of	discretization.	

The	cover	functions,	weight	function,	and	DOFs	are	still	defined	on	manifold	elements,	

whereas	 material	 properties,	 body	 force,	 and	 boundary	 conditions	 are	 defined	 on	

particles.	Particles	in	a	same	manifold	element	may	have	different	properties	and	carry	

different	conditions.	Parameters	defined	on	all	the	particles	in	a	manifold	element	will	be	

assembled	into	the	element	matrices	for	calculation.	

	

3.3.3 Dynamics	Scheme	
In	PNMM,	the	dynamic	analysis	is	performed	by	the	Newmark-β	method,	which	gives	a	

recurrence	 relation	of	displacements,	velocities	and	accelerations	between	 time	step	t	

and	t+∆t,	

	 Xr(∆r = Xr + Xr∆L +
1

2
− s ∆L>Xr + s∆L

>Xr(∆r	 (28)	

	 Xr(∆r = Xr + 1 − t ∆LXr + t∆LXr(∆r	 (29)	

where	Xr,	Xr	and	Xr	is	the	displacement,	velocity	and	acceleration	at	time	t	respectively,	

∆t	is	the	time	step,	and	α	and	β	are	parameters	determined	by	the	requirement	of	stability	

and	accuracy.	The	acceleration	at	time	t+∆t	can	be	solved	as	
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	 Xr(∆r =
1

s∆L>
Xr(∆r − Xr −

1

s∆L
Xr −

1

2s
− 1 Xr	 (30)	

	

Taking	 the	 relationship	 between	 system	 unknowns	 and	 dynamical	 variables	 into	

consideration,		

9 = S,)6, 9 = S,)6, 9 = S,)6	

the	equation	of	motion	can	be	expressed	in	a	recurrence	form,	

]r(∆r +
1

s∆L>
^r(∆r 9r(∆r

= hr(∆r + ^r(∆r

1

s∆L>
9r +

1

s∆L
9r +

1

2s
− 1 9r 	

(31)	

	

Combining	different	values	of	α	and	β,	different	time-domain	integration	formats	can	be	

obtained.	In	this	research,	the	average	acceleration	scenario	will	be	adopted	by	setting	

α=0.25	and	β=0.5.	

	

3.4 Particle	Integration	Scheme	

Although	 the	 mathematical	 covers	 in	 PNMM	 are	 formed	 by	 a	 uniform	 triangular	 or	

rectangular	 FEM	 mesh,	 manifold	 elements	 may	 have	 a	 general	 shape	 due	 to	 the	

intersection	with	 physical	 features,	 e.g.,	 discontinuities	 and	 boundaries.	 Therefore,	 an	

integration	 scheme	 over	 elements	 like	 that	 in	 FEM	 is	 inapplicable,	 and	 it	 will	 be	

inconvenient	 to	 subdivide	 each	 manifold	 element	 for	 the	 purpose	 of	 integration.	 A	

simplex	 integration	 scheme	 is	 developed	 in	 NMM,	 but	 it	 is	 limited	 to	 the	 cases	 of	

polynomial	 integrands.	 Moreover,	 mechanical	 properties,	 body	 forces,	 and	 boundary	

conditions	in	PNMM	are	all	defined	on	particles	rather	than	polygonal	elements.	Hence,	

the	quadrature	in	PNMM	has	to	be	conducted	on	particles.		

	

Considering	that	the	manifold	element	contains	a	collection	of	internal	particles	whose	

total	 area	 is	 the	 same	 as	 the	 element,	 these	 particles	 can	 be	 seen	 as	 a	 natural	
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discretization	of	the	element.	Assuming	that	the	integrand	is	constant	within	each	particle,	

which	is	consistent	with	the	assumption	of	constant	mechanical	field	on	each	particle,	a	

particle	integration	scheme	is	proposed	as	

	 u @ :!
c

= u @&
p ∙ !&

v

&-)

= w u @&
p ∙ x&

>

v

&-)

	 (32)	

where	p	is	the	number	of	particles,	the	coordinates	of	the	centroid	of	the	ith	particle,	Ai	

the	area	of	the	ith	particle	and	ri	the	radius	of	the	ith	particle.		

	

The	particle	 integration	 scheme	 is	 graphically	 illustrated	 in	 Figure	 3.6.	 For	 integration,	

particles	can	be	simply	regarded	as	the	collocation	of	a	group	of	numerical	 integration	

points.	The	weight	of	each	point	 is	 taken	as	 the	area	of	 the	particle,	which	 just	makes	

sense	as	particles	in	an	element	have	a	same	area	in	total	as	the	element	and	parameters	

are	defined	as	 scalars	on	each	particle.	 The	overlap	between	particles	has	no	physical	

meaning	and	will	not	affect	the	accuracy	of	the	integration.	It	should	be	noted	that	the	

particle	 integration	 scheme	 is	 a	 numerical	 integration	 technique,	 while	 the	 simplex	

integration	scheme	is	an	analytical	one.	

	

	

Figure	3.6	The	particle	integration	scheme	
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(a)	

	

(b)	

Figure	3.7	The	integration	domain	to	verify	the	accuracy	of	particle	integration	scheme:	
(a)	a	hexagonal	domain;	(b)	a	subdomain	of	the	hexagon	

	

	

(a)	

	

(b)	

Figure	3.8	Particles	in	the	integration	domain:	(a)	1,291	particles	in	the	hexagonal	
domain;	(b)	843	particles	in	the	subdomain	
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To	examine	the	accuracy	of	the	particle	integration	scheme,	two	numerical	examples	have	

been	conducted.	The	first	example	is	to	calculate	the	integration	over	a	hexagonal	domain,	

while	the	second	one	is	over	a	subdomain	of	the	hexagon,	as	shown	in	Figure	3.7.	For	the	

particle	 integration	 scheme,	 two	 integration	domains	 are	 approximated	by	 a	 group	of	

constant	particles,	as	shown	in	Figure	3.8.	Particles	here	only	represent	integration	points	

and	weights.	They	are	generated	in	the	way	as	described	previously.	Different	numbers	

of	particles	are	generated	for	the	integration	to	compare	its	influence	on	the	accuracy.	

	

A	 third-degree	 polynomial	 u %, ' 	and	 a	 trigonometric	 function	 y x, z 	in	 polar	

coordinate	system	are	chosen	as	the	integrand,	

	 u %, ' = %J + 'J + %>' + %'> + %> + '> + %' + % + ' + 1	 (33)	

	 y x, z = x cos
z

2
	 (34)	

	

From	the	results	listed	in	Table	3.1	and	the	error	analysis	shown	in	Figure	3.9,	one	is	able	

to	conclude	that	good	integration	results	can	be	obtained	when	there	are	enough	internal	

particles	(the	number	in	this	example	should	be	50~100),	and	increasing	the	number	of	

particles	will	improve	the	accuracy	of	the	quadrature	scheme.	

	

An	attractive	advantage	of	the	particle	integration	scheme	is	that	the	integration	domain	

can	 be	 either	 convex	 or	 concave	 polygons.	 Besides,	 it	 is	 theoretically	 suitable	 for	 any	

integrand,	including	polynomial,	exponential,	and	trigonometric	functions.	However,	it	is	

believed	that	the	accuracy	will	be	affected	by	the	size	distribution	as	well	as	the	position	

of	particles,	especially	when	the	number	of	particles	is	relatively	small.	

	

The	 calculation	process	of	 PNMM,	as	 illustrated	 in	 Figure	3.10,	 can	be	 summarized	 as	

follow:	

• Step	 1:	 Using	 the	 material	 properties,	 the	 body	 force,	 and	 the	 boundary	

conditions	 (both	 kinematics	 and	 loads)	 defined	on	particles,	 together	with	 the	
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cover	 functions,	 weight	 functions,	 and	 DOFs	 on	 manifold	 elements,	 element	

matrices	are	generated	on	each	manifold	element.	This	step	is	carried	out	by	the	

particle	integration	scheme.	

• Step	2:	Element	matrices	are	assembled,	and	the	global	matrices	are	generated.	

• Step	3:	The	global	equation	in	matrix	form	is	solved,	and	the	vector	of	unknowns	

on	each	manifold	element	is	obtained.	

• Step	4:	According	to	the	displacement,	stress,	and	strain	fields	of	each	manifold	

element,	mechanical	behaviors	of	particles	are	derived.	

	

Table	3.1	Integration	results	using	the	particle	integration	scheme	

Hexagonal	domain	

Particle	number	 u %, ' 	 y x, z 	

9	 3.54248	 1.23440	

46	 3.65263	 1.25359	

156	 3.67222	 1.26023	

331	 3.67689	 1.26088	

1291	 3.67965	 1.26161	

Analytical	result	 3.68061	 1.26188	

Subdomain	of	the	hexagon	

Particle	number	 u %, ' 	 y x, z 	

9	 3.00075	 1.08677	

33	 3.07521	 1.09146	

100	 3.09447	 1.09244	

209	 3.09924	 1.09259	

843	 3.10231	 1.09278	

Analytical	result	 3.10326	 1.09282	
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(a)	

	

(b)	

Figure	3.9	Integration	errors	using	the	particle	integration	scheme:	(a)	on	the	hexagonal	
domain;	(b)	on	the	subdomain	
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Figure	3.10	The	calculation	process	of	PNMM	

	

3.5 Links	and	Fractures	

Another	basic	component	 in	PNMM	is	the	 link.	A	 link	represents	the	continuous	status	

between	 particles.	 Links	 are	 also	 used	 to	 represent	 the	 initiation	 and	 propagation	 of	

fractures.	

	

3.5.1 Generation	of	Links	
A	link	 is	generated	between	two	particles	that	satisfy	following	three	conditions	at	the	

same	time:	

• Two	particles	are	next	to	each	other	geometrically;	

• Two	particles	belong	to	the	same	block/object;	

• There	are	no	micro/macro	fractures	between	two	particles.	

	

The	 Munjiza-NBS	 contact	 detection	 algorithm	 (Munjiza	 and	 Andrews,	 1998)	 is	

implemented	in	PNMM	for	the	generation	of	links.	The	algorithm	is	fast	in	performance	
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and	low	in	CPU	use.	For	a	two-dimensional	space	shown	in	Figure	3.11,	a	rectangle	space	

defined	by	[xmin,	ymin,	xmax,	ymax]	is	first	found	to	cover	all	the	particles.	Then,	the	rectangle	

space	is	divided	into	identical	cells	with	a	size	of	h,	the	total	number	of	cells	in	the	x	and	

y	direction	is	calculated	as	

	 ~ =
%R�2 − %R&+

ℎ
− 1	 (35)	

and	

	 Y =
'R�2 − 'R&+

ℎ
− 1	 (36)	

	

	

	

Figure	3.11	The	NBS	contact	detection	algorithm	in	two-dimensional	space	

	

The	cells	in	x	and	y	direction	is	indexed	from	0	~	m	and	0	~	n	respectively.	A	pair	of	indices	

in	the	x	and	y	direction	will	locate	a	specific	cell.	Then,	each	particle	is	orientated	in	a	cell	

with	the	index	of	(ix,	iy),	where	
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(a)	

	

(b)	

Figure	3.12	An	example	of	the	link	network	in	PNMM:	(a)	a	slope;	(b)	an	enlarged	view	
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	 Å2 = uÇÉÉx
% − %R&+

ℎ
	 (37)	

		 Å5 = uÇÉÉx
' − 'R&+

ℎ
	 (38)	

where	the	operator	uÇÉÉx ∙ 	is	to	calculate	the	largest	integral	value	that	is	not	greater	

than	a	number.	

	

For	a	particle	in	cell	(i,	i),	PNMM	checks	if	it	is	close	enough	to	another	particle	locating	in	

the	cell	(i-1,	i-1),	(i,	i-1),	(i+1,	i-1),	(i-1,	i),	and	(i,	i),	if	there	is	any	in	the	cell.	If	the	distance	

of	two	particles	is	equal	to	the	sum	of	their	radii,	a	link	will	be	generated	between	them.	

The	algorithm	for	the	generation	of	links	in	PNMM	is	summarized	in	Appendix	A.	

	

The	link	network	generated	for	the	same	example	in	Figure	3.4	is	illustrated	in	Figure	3.12.	

Particles	are	not	plotted	in	the	figure	for	the	sake	of	clarity.	Each	line	segment	represents	

a	link.		

	

It	should	be	noted	that	links	are	different	from	contacts	between	particles,	which	will	be	

presented	later.	Since	the	motion	of	particles	is	determined	by	the	displacement	field	of	

manifold	 elements	 they	 belong	 to,	 there	 is	 no	 additional	 force	 defined	 on	 the	 link.	

Specifically,	 the	 occurrence	 of	 links	 only	 represents	 the	 continuous	 status	 between	

particles	without	containing	any	other	physical	meaning.		

	

3.5.2 Failure	Description	
The	 failure	 description	 is	 crucial	 in	 dealing	 with	 the	 nucleation,	 propagation,	 and	

coalescence	 of	 cracks	 as	 well	 as	 the	 fragmentation	 of	 intact	 rock	masses.	 Particles	 in	

PNMM	 are	 supposed	 to	 be	 unbreakable,	 which	 means	 cracks	 cannot	 be	 driven	 into	

particles	and,	hence,	there	is	no	need	to	define	any	fracture	parameter	on	particles.		
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(a)	

	

(b)	

	

(c)	
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(d)	

Figure	3.13	Failure	description	in	PNMM:	(a)	Links	between	continuous	particles;	(b)	
Failed	links	simulate	micro	cracks;	(c)	Consecutive	failed	links	simulate	macro	fractures;	

(d)	Failed	links	separate	a	manifold	element	and	its	internal	particles	

	

A	link	is	the	basic	failure	unit	in	PNMM.	In	the	continuum	illustrated	in	Figure	3.13a,	each	

pair	of	adjacent	particles	in	a	continuum	is	connected	by	a	link	to	represent	the	continuity	

status.	The	failure	of	links	simulates	the	micro-crack	within	the	rock	(Figure	3.13b),	while	

consecutive	 failed	 links	 simulate	 the	 initiation	 and	 propagation	 of	 fractures	 on	

macroscopic	 level	 as	 illustrated	 in	 Figure	 3.13c.	 Adjacent	 particles	 without	 a	 link	 are	

regarded	as	a	pair	of	disconnected	particles.	After	breaking	one	or	more	links	in	a	manifold	

element,	 the	 topological	 relation	 between	 particles	 will	 be	 re-detected.	 And	 once	

disconnected	particles	separate	internal	particles	into	two	or	more	groups,	the	manifold	

element	 will	 be	 accordingly	 subdivided,	 representing	 that	 the	 macro	 fracture	 has	

propagated	 across	 the	 manifold	 element	 (Figure	 3.13d).	 Separate	 manifold	 elements	

continue	to	perform	as	common	elements	respectively	in	following	calculation	steps.	

	

As	particles	in	PNMM	are	currently	supposed	to	be	undeformable,	in	order	to	ensure	the	

deformability	of	the	rock	mass,	adjacent	particles	are	allowed	to	further	penetrate	into	or	

detach	from	each	other	without	breaking	their	links.	Instead,	the	failure	of	a	link	is	based	

on	the	average	stress	and/or	strain	of	the	two	particles	it	connects,	
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	 UÑ =
U) + U>
2

	 (39)	

	 ÖÑ =
Ö) + Ö>
2

	 (40)	

where	σl	and	εl	are	the	average	normal/shear	stress	and	strain	respectively,	σ1	and	ε1	are	

the	stress	and	strain	tensor	of	the	first	particle	respectively,	and	σ2	and	ε2	are	the	stress	

and	strain	tensor	of	the	second	particle	respectively.	For	simplicity,	we	hereafter	term	σl	

and	εl	the	link	stress	and	link	strain	respectively.	

	

The	 failure	criterion	 is	applied	on	 links,	 rather	 than	on	particles	or	manifold	elements.	

Once	 the	 failure	 criterion	 is	 met	 on	 a	 link,	 the	 link	 is	 supposed	 to	 be	 broken/failed.	

Different	 failure	criteria	 could	be	adopted	 in	PNMM.	Once	a	proper	 failure	criterion	 is	

chosen	(e.g.,	the	Mohr-Coulomb	criterion),	the	tensile	and	shear	cracks	could	be	easily	

identified	on	links.	As	PNMM	is	primarily	developed	for	rock	dynamics	in	this	research,	a	

rate-dependent	failure	model,	namely	the	Johnson-Holmquist-Beissel	model	is	adopted,	

whose	details	will	be	provided	later.	

	

As	can	be	seen	from	Figure	3.13c,	particles	in	the	manifold	element	containing	a	crack	tip	

still	constitute	only	one	manifold	element.	Such	a	manifold	element	has	no	more	DOFs	

than	a	normal	one.	Though	polynomial	cover	functions	are	able	to	approximate	smooth	

functions	well,	 they	 are	 unsuitable	 to	 capture	 the	 high	 gradient	 solutions	 for	 singular	

problems	around	the	crack	tip.	Hence,	a	cover	function	enrichment	scheme	is	adopted	to	

improve	the	computational	accuracy.	Inspired	by	XFEM	(Moës	et	al.,	1999)	and	NMM	(Ma	

et	al.,	2009,	Wu	and	Wong,	2013b),	 	 the	enrichment	based	on	the	following	four	basic	

functions	is	adopted	in	PNMM,	

Ü) Ü> ÜJ ÜP = x sin
z

2
x cos

z

2
x sin sin

z

2
x sin z cos

z

2
	 (41)	

The	enriched	cover	function	is	

	 6& = 7 à
9&
9â

= 79& 	 (42)	
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The	enriched	element	displacement	field	is	

	 6Q @ = ?& @ 6& @

R

&-)

= S& @ 9&

R

&-)

= SQ9Q 	 (43)	

Since	PNMM	naturally	simulates	the	surface	of	fractures	by	separating	manifold	elements	

as	shown	in	Figure	3.13d.	There	is	no	need	to	adopt	the	Heaviside	enrichment	of	XFEM	in	

the	 manifold	 elements	 along	 the	 surface	 of	 fractures.	 Therefore,	 only	 the	 manifold	

element	containing	a	fracture	tip	is	enriched,	as	illustrated	in	Figure	3.14.	

	

	

Figure	3.14	Enrichment	around	fracture	tips	

	

3.6 Particle	Contact	

The	detection	and	operation	of	 contact	 is	 concise	 in	PNMM.	Two	 types	of	 contact	are	

defined:	the	particle-particle	contact	and	particle-plane	contact,	as	shown	in	Figure	3.15.	

Particles	on	 the	surface	of	different	blocks	may	 form	a	pair	of	particle-particle	contact	

when	 they	 are	 adjacent	 to	 each	 other.	 The	 particle-plane	 contact	 is	 to	 simulate	 the	

interaction	between	deformable	bodies	and	rigid	static/moving	walls	or	infinite	planes.		

	

The	 detection	 criterion	 for	 the	 particle-particle	 and	 particle-plane	 contact	 can	 be	

respectively	expressed	as	
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(a)	

	

(b)	

Figure	3.15	Particle	contact	in	PNMM:	(a)	Particle-Particle	contact;	(b)	Particle-Plane	
contact	

	

	 ä − x& + x8 ≤ ∆	 (44)	

and	

	 ä − x ≤ ∆	 (45)	

where	Δ	is	the	contact	threshold.	

	

The	difference	between	a	pair	of	contact	and	a	link	is	that	there	is	no	force	defined	on	the	

link	whereas	the	contact	force	is	applied.	The	operation	of	contact	force	is	proposed	by	

Sun	 (2012).	 For	 the	 particle-particle	 contact,	 following	 components	 in	 matrix	 form	 is	

added	to	the	global	matrices	using	penalty	method	

	
]&&
Q += åç&

=ç&
]88
Q += åç8

=ç8
,			

]&8
Q −= åç&

=ç8

]8&
Q −= åç8

=ç&
,			

h&
Q+= å ä − é& − é8 ç&

=

h8
Q−= å ä − é& − é8 ç8

= 	 (46)	

where	p	is	the	contact	stiffness,	and	

	 ç& = è S ê + é&a
+ëí ê 	 (47)	

where	n	 is	 the	vector	of	contact	direction,	the	operator	 ·(c)	 is	 the	value	at	the	particle	

centroid,	and	Bnor
	is	the	normal	components	(first	two	rows)	of	the	element	strain	matrix.	

For	the	particle-plane	contact,	following	components	in	matrix	form	should	be	added	

	 ]&&
Q += åì&

=ì&,			h&
Q−= å ä − x ì& 	 (48)	
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Figure	3.16	From	particle-particle	contact	to	block-block	contact	

	

with	

	 ì& = è S ê − é&a
+ëí ê 	 (49)	

	

Comparing	with	the	block-block	contact	in	NMM,	contacts	in	PNMM	are	greatly	simplified	

in	both	detection	and	operation.	Although	the	direction	of	a	pair	of	contact	is	randomly	

determined	 by	 the	 position	 of	 two	 particles	 at	 particle	 scale.	 PNMM	accumulates	 the	

contact	 to	 simulate	 the	 complex	 block-block	 contact	 at	 macro-scale,	 as	 illustrated	 in	

Figure	 3.16.	 The	 contact	 force	 between	 blocks	 is	 the	 sum	 of	 contact	 forces	 between	

particles.	 Therefore,	 the	 effect	 of	 randomly	 distributed	 particles	 could	 be	 somewhat	

eliminated.	

	

3.7 Particles	in	PNMM	

The	 primary	 difference	 between	 PNMM	 and	 NMM	 is	 the	 introduction	 of	 particles.	

However,	particles	in	PNMM	are	based	on	a	quite	different	concept	when	compared	to	

other	particle-based	methods,	 e.g.,	 the	bonded-particle	model	 (Potyondy	and	Cundall,	

2004),	 the	 smoothed	 particle	 hydrodynamics	 (Liu	 and	 Liu,	 2010),	 and	 the	 reproducing	



Chapter	3.	Particle-based	numerical	manifold	method	(PNMM)	

	

68	

	

kernel	particle	method	(Liu	et	al.,	1995).	Therefore,	for	clarity,	a	summary	of	the	particle	

aspect	of	PNMM	is	provided	in	this	section.	

	

First,	particles	carry	parameters	and	assist	to	simulate	the	heterogeneity	of	rock	materials.	

In	 PNMM,	 particles	 are	 assigned	 individual	 parameters,	 including	material	 properties,	

body	forces,	and	boundary	conditions.	Considering	that	the	DOFs	are	defined	on	manifold	

elements	 instead	 of	 particles,	 the	 dimension	 of	 global	matrices	 is	 independent	 of	 the	

number	of	particles.	However,	on	the	other	hand,	numeric	values	of	global	matrices	are	

obtained	as	a	result	of	the	particle	integration	scheme,	which	is	conducted	on	particles.	

When	different	material	properties	are	given	to	particles	in	a	single	element,	the	element	

still	behave	in	a	homogeneous	way	as	that	in	NMM,	which	is	for	sure	as	it	has	the	same	

DOFs	and	local	approximation.	The	material	properties	of	the	element,	implicitly	obtained	

from	integration,	is	a	weighted	average	of	the	values	defined	on	the	particles.	Conducting	

such	 a	 weighted	 average	 as	 described	 previously	 on	 each	 element,	 the	 model	 will	

therefore	 behave	 as	 an	 inhomogeneous	 material	 on	 the	 element	 level.	 From	 this	

perspective,	PNMM	have	similarities	with	RFPA	(Tang,	1997).	Parameters	on	particles,	in	

this	way,	influence	the	global	matrices.	However,	the	heterogeneity	of	rock	is	not	in	the	

scope	of	this	thesis,	which	could	be	an	important	application	of	PNMM	in	the	future.	

	

Second,	the	movement	of	a	particle	is	governed	by	the	element	it	locates	in,	namely	by	

the	covers.	Particles	in	a	single	element	are	not	solved	separately.	Instead,	the	DOFs	of	an	

element	are	solved	from	the	global	equation,	whereafter	the	movement	of	all	 internal	

particles	are	naturally	determined	by	the	displacement	field.	Particles	belonging	to	the	

same	 element	 are	 in	 this	 way	 glued	 together	 as	 a	 deformable	 body,	 whose	 material	

properties	are	defined	in	an	equivalent	way	as	just	mentioned.		

	

Third,	 fractures	 are	 simulated	 on	 the	 particle	 level.	 In	 PNMM,	 the	 continuous	 status	

between	adjacent	particles	is	defined	as	a	link.	A	micro-crack	is	supposed	to	be	generated	

as	long	as	the	failure	criterion	is	met	on	the	link.	The	initiation	and	propagation	of	macro-

cracks	is	carried	out	by	consecutive	micro-cracks.	Therefore,	based	on	particles	and	their	

links,	cracks	can	be	 initiated,	and	the	 fracturing	path	 is	easier	 to	be	determined	 in	 the	
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proposed	model.	These	capabilities	are	both	absent	in	the	conventional	NMM	(Ma	et	al.,	

2010).		

	

Last,	one	 important	benefit	coming	with	the	 introduction	of	particles	 is	 to	simplify	 the	

block-block	contact	in	NMM	to	the	particle-particle	contact.	In	PNMM,	a	pair	of	contact	

can	be	defined	on	neighboring	particles	without	a	link.	The	contact	detection	and	contact	

operation	between	particles	is	believed	to	be	easier	and	more	straightforward	than	that	

between	polygonal	blocks.	

	

3.8 Rate-dependent	Behaviors	of	Rock	in	PNMM	

Recalling	 the	 importance	 of	 studying	 the	 rate-dependent	 behaviors	 of	 rock	 materials	

mentioned	 in	 Chapter	 1,	 PNMM	 has	 been	 primarily	 developed	 for	 rock	 dynamics.	 To	

accurately	simulate	the	dynamic	behavior	of	rock	materials	and	rock	masses	over	a	wide	

range	of	strain	rates,	reliable	constitutive	models	should	be	incorporated.		

	

For	 brittle	 materials	 subjected	 to	 large	 strains,	 high	 strain	 rates	 and	 high	 pressures,	

Johnson	and	Holmquist	 (1992)	developed	 the	 JH-1	model.	 In	 JH-1	model,	 the	material	

strength	is	expressed	as	a	function	of	the	pressure,	strain	rate	and	damage.	The	pressure	

is	related	to	the	volumetric	strain	and	the	effect	of	permanent	crushing.	The	damage	is	

determined	by	the	accumulation	of	the	plastic	volumetric	strain,	equivalent	plastic	strain	

and	pressure.	However,	 JH-1	model	 fails	 to	 consider	 the	progressive	damage	with	 the	

increase	 of	 deformation.	 The	 JH-2	 model	 (Johnson	 and	 Holmquist,	 1994)	 softens	 the	

strength	and	increases	the	bulking	pressure	gradually	as	the	damage	accumulates.	As	a	

result,	in	JH-2	model,	the	material	strength	is	dependent	on	the	intact	strength,	fractured	

strength,	strain,	strain	rate,	pressure,	and	damage.	Later,	Johnson,	Holmquist,	and	Beissel	

proposed	 the	 Johnson-Holmquist-Beissel	 (JHB)	model	 (Johnson	et	 al.,	 2003,	Holmquist	

and	Johnson,	2005,	Holmquist	and	Johnson,	2011).	Apart	from	including	a	phase	change,	

JHB	model	is	distinguished	from	JH-1	model	by	incorporating	an	analytic	description	for	

both	intact	and	failed	strengths	and	the	failure	strain.	The	JH	models	have	been	applied	

to	various	brittle	materials,	including	concrete	(Holmquist	et	al.,	1993),	ceramic	(Johnson	
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et	al.,	2003,	Holmquist	and	Johnson,	2005),	glass	(Holmquist	and	Johnson,	2011),	and	rock	

(Ma	and	An,	2008).		

	

In	this	research,	the	JHB	model	is	adopted	as	the	rate-dependent	failure	criterion	and	has	

been	incorporated	into	PNMM	as	a	subroutine.	For	dynamic	problems,	where	the	rate-

dependent	behaviors	of	rock	need	to	be	considered,	the	incorporated	JHB	model	will	be	

executed	to	calculate	the	dynamic	strength	at	a	specific	strain	rate.	

	

The	JHB	model	consists	of	(1)	an	analytic	description	for	intact	and	failed	strength,	(2)	a	

damage	variable,	and	(3)	a	pressure	portion,	which	is	graphically	illustrated	in	Figure	3.17.	

	

	

Figure	3.17	The	JHB	model	(Johnson	et	al.,	2003)	
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First,	in	JHB	model,	the	dynamic	strength	σc	is	dependent	on	the	damage	D,	the	pressure	

P,	and	the	dimensionless	strain	rate	Ö∗.	The	strength	at	the	strain	rate	of	Ö∗	is	

	 Up = U. 1.0 + 1 ln Ö
∗ 	 (50)	

where	σ0	is	the	strength	at	Ö∗ = 1.0	and	C	is	the	dimensionless	strain	rate	constant.	For	

intact	material,	i.e.	ó < 1.0,	the	strength	σ0	can	be	expressed	as	

U.

=
U& H + ô H& + ô H ≤ H&

U& + UR�2 − U& 1 − K%å −U& H − H& UR�2 − U& H& + ô H > H&
	

(51)	

where	σi	is	the	strength	at	pressure	Pi,	T	is	the	static	tensile	strength,	σmax	is	the	maximum	

strength	(for	rock	materials,	is	the	compression	strength).	

	

Second,	in	PNMM,	the	damage	variable	D	for	each	manifold	element	is	simply	re-defined	

as	 the	 ratio	 between	 the	 number	 of	 damaged	 links	 and	 the	 total	 number	 of	 links,	

expressed	as		

	 ó = õÑ
ú õÑ 	 (52)	

where	õÑ
ú
	and	õÑ 	are	the	number	of	broken	links	and	total	links	respectively.		

	

Third	and	last,	the	hydrostatic	pressure	without	a	phase	change	P	is	

	 H =
ù)û + ù>û

> + ùJû
J + ∆H compressive	pressure

ù)û tensile	pressure
	 (53)	

where	K1	 is	 the	 bulk	modulus,	K2	 and	K3	are	material	 constants,	μ	 is	 the	 compression	

variable	due	to	the	volume	change	defined	as	û = ü. ü − 1,	V0	and	V	and	are	initial	and	

current	volume	respectively,	and	ΔP	 is	 the	pressure	 increment	 for	 the	dilatation	effect	

after	compression	failure.		

	

The	 implemented	 JHB	model	 is	 executed	at	 every	 time	 step	 in	PNMM	and	applied	on	

every	link.	Once	the	stress	of	a	link	reaches	the	dynamic	strength	obtained	from	the	JHB	
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model,	the	link	is	supposed	to	break.	To	be	specific,	the	failure	criterion	for	the	link	is	UÑ =

Up.	

	

A	 group	 of	 constants	 need	 to	 be	 determined	 before	 applying	 the	 JHB	 model.	 In	 this	

research,	 the	 JHB	 parameters	 for	 granite	 are	 adopted.	 The	 dimensionless	 strain	 rate	

constant	C	is	0.00965,	taken	from	a	semi-empirical	rate-dependent	strength	equation	for	

concrete	 (Tedesco	and	Ross,	1998).	 This	 value	 is	 very	 close	 to	 the	measured	value	 for	

silicon	 carbide	 (Holmquist	 and	 Johnson,	 2005),	 which	 is	 also	 a	 brittle	 material.	 The	

strength	 constants	σi	 and	Pi	 are	 calculated	 to	 be	 59	MPa	 and	 17	MPa	 respectively	 by	

applying	the	curve	 fitting	technique	to	the	Hoek-Brown	criterion	 (Li	et	al.,	2017b).	The	

pressure	constants	K2	and	K3	are	assumed	to	be	-23	GPa	and	2980	GPa	respectively	with	

reference	to	(Ai	and	Ahrens,	2006).	

	

3.9 Implementation	

The	code	of	PNMM	is	developed	according	to	the	concept,	components,	and	formulation	

presented	in	previous	sections.	The	flowchart	of	the	implemented	PNMM	is	illustrated	in	

Figure	3.18,	and	each	step	in	the	figure	is	explained	in	detail	as	follows:	

Step	1. Input	the	model	and	Generate	mathematical	covers.	The	model	is	created	in	

other	software	and	read	by	PNMM	from	text	files.	The	text	file	imported	into	

PNMM	includes	the	geometry	information	of	the	model,	material	properties,	

and	some	other	 setting	variables.	Three	 types	of	mathematical	 covers	are	

adopted	in	PNMM	(Figure	3.1).	

Step	2. Generate	manifold	elements.	The	generation	of	manifold	elements	is	based	

on	the	topological	operation	between	the	imported	model	and	mathematical	

covers	(Section	3.1).	

Step	3. Generate	particles.	Details	of	this	task	are	given	in	Section	3.2.	

Step	4. Generate	links.	Details	of	this	task	are	given	in	Section	3.5.1	and	Appendix	A.	

Step	5. Generate	blocks.	This	step	is	to	detect	how	many	blocks	are	involved	in	the	

model.	A	block	is	constituted	of	a	group	of	particles,	where	each	two	particles	

are	 found	to	be	connected	through	arbitrary	numbers	of	 links.	A	so-called		
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Figure	3.18	The	flowchart	of	PNMM	
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seed	filling	method	is	adopted	to	accomplish	this	task.	Details	of	this	method	

can	 be	 found	 in	 (Sun,	 2012).	 The	 source	 code	 of	 the	 seed	 filling	method	

implemented	in	PNMM	is	given	in	Appendix	C.		

Step	6. Detect	pairs	of	contact.	A	pair	of	contact	is	detected	according	to	Eq.44	or	

Eq.45.	

Step	7. Apply	body	force,	external	loads,	and	boundary	conditions.	These	parameters	

are	defined	on	particles	and	applied	to	the	element	matrices	via	Eq.23	and	

Eq.24.	

Step	8. Generate	element	matrices.	The	element	matrices	are	generated	using	the	

proposed	 particle	 integration	 scheme.	 Details	 have	 been	 given	 in	 Section	

3.3.2	and	Section	3.4.	A	class	template	Matrix	is	implemented	in	the	code	of	

PNMM	 to	 abstract	 the	 frequent	 operations	 on	 element	 matrices.	 A	 brief	

introduction	of	Matrix	is	given	in	Appendix	D.		

Step	9. Assemble	global	matrices.	A	class	template	BlockMatrix	is	implemented	in	

the	code	of	PNMM	to	construct	the	global	matrices.	A	brief	introduction	of	

BlockMatrix is	given	in	Appendix	D.	

Step	10. Solve	global	equation.	This	step	is	to	solve	the	Eq.15	or	Eq.31.	Details	of	this	

task	will	be	given	later.	

Step	11. DOF	results	on	manifold	elements.	Results	on	manifold	elements	are	derived	

from	the	global	vector	of	unknowns,	which	is	solved	in	the	previous	step.	

Step	12. Particle	mechanical	results.	Mechanical	results	on	particles	are	derived	from	

the	mechanical	fields	of	a	manifold	element	using	the	Eq.27.	

Step	13. Link	mechanical	results.	Mechanical	results	on	a	link	are	obtained	from	the	

two	particles	it	connects	using	the	Eq.39	and	Eq.40.	

Step	14. JHB	criterion.	The	JHB	model	is	implemented	in	PNMM	and	applied	on	each	

link	at	every	time	step.	Once	the	JHB	criterion	is	met,	the	status	of	the	link	

will	be	set	to	failed.	Details	of	the	JHB	model	are	presented	in	Section	3.8.	

Step	15. Remove	 failed	 links,	 re-detect	 connectivity	 between	 particles.	 This	 task	 is	

accomplished	by	the	seed	filling	method	as	well	(see	Step	5	for	details).		

Step	16. Generate	new	manifold	element	and	re-group	particles.	Additional	manifold	

elements	need	to	be	generated	when	fractures	have	propagated	through	an	

element,	as	stated	in	Section	3.1.	
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Step	17. Post-process.	PNMM	writes	the	simulation	result	 into	an	external	 text	 file,	

which	will	be	later	processed	by	other	post-process	software.		

	

PNMM	is	 implemented	 in	the	programming	 language	C++.	Based	on	the	PMM	project,	

which	is	developed	by	Dr.	Liang	Sun	at	École	Polytechnique	Fédérale	de	Lausanne	(EPFL),	

Switzerland	(Sun,	2012),	an	in-house	code	of	PNMM	is	written	by	the	author.	An	overview	

of	the	PNMM	code	is	given	in	Appendix	B.	

	

PNMM	 is	 a	 command-line	 program.	 It	 reads	 the	 model,	 including	 the	 geometry	

information	 of	 the	 model,	 boundary	 conditions,	 material	 properties,	 and	 calculation	

settings,	 from	 text	 files.	 After	 the	 calculation	 completes,	 PNMM	 writes	 the	 results,	

including	the	position	and	mechanical	results	of	particles	and	the	status	of	links,	into	text	

files	for	visualization.	Many	software	and	code	packages	are	used	by	or	incorporated	into	

PNMM	to	carry	out	a	complete	simulation.	They	are	concluded	as	follows:	

• The	 commercial	 FEM	 software	 ANSYS	 and	 the	 free	 meshing	 software	 Gmsh	

(Geuzaine	and	Remacle,	2009)	are	used	in	the	pre-process	to	generate	the	model.	

Interfaces	to	PNMM	are	written	as	a	subroutine.	

• The	C++	library	CGAL	is	incorporated	to	conduct	the	2D	discretization.	

• The	C++	library	Eigen	is	incorporated	to	solve	the	global	equation	in	matrix	form.	

Eigen	provides	a	fast	conjugate	gradient	solver	for	sparse	matrices.	Details	on	the	

algorithm	of	the	equation	solver	are	provided	in	Appendix	E.	

• Git	is	used	for	version	control.	

• Doxygen	 is	 used	 to	 automatically	 generate	 the	 documentation	 of	 PNMM.	 A	

screenshot	 of	 the	 generated	 documentation	 is	 shown	 in	 Figure	 3.19.	 The	

documentation	of	PNMM	is	available	at	https://www.particlenmm.org	

• ParaView	is	used	for	the	post-process	of	PNMM	(Figure	3.20).	A	brief	introduction	

to	the	post-process	of	PNMM	is	available	in	Appendix	F.	
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Figure	3.19	The	documentation	of	PNMM	

	

	

Figure	3.20	ParaView	for	post-process	
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3.10 Summary	

A	particle-based	numerical	manifold	method	is	proposed	in	this	chapter.	The	fundamental	

conception,	formulations,	and	the	implementation	of	PNMM	are	given	in	detail.	The	dual-

layer-cover	 system	 inherited	 from	NMM	 is	 first	 briefly	 discussed	 in	 Section	 3.1,	which	

constructs	the	first	level	of	discretization	in	PNMM.	Particles	are	introduced	into	PNMM	

in	Section	3.2	as	the	second	level	of	discretization.	The	dual-level	discretization	is	the	most	

distinct	characteristic	of	PNMM.	Formulation	of	PNMM	is	given	in	matrix	form	in	Section	

3.3.	Matrices	in	the	formulae	and	DOFs	in	PNMM	are	all	defined	and	conducted	on	the	

first	 level	 of	 discretization,	 namely	 on	 the	 manifold	 elements.	 Meanwhile,	 material	

properties,	body	forces,	and	boundary	conditions	are	defined	on	particles	the	second	level	

of	discretization.	The	bridge	between	the	parameters	on	particles	and	the	matrices	on	

manifold	elements	is	the	particle	integration	scheme,	which	is	presented	in	Section	3.4.	

The	particle	integration	scheme	is	easy	to	implement	and	is	theoretically	suitable	for	any	

integrand	 and	 integration	 domain.	 The	 initiation/propagation	 of	 fractures	 and	 contact	

between	 objects	 in	 PNMM	 are	 performed	 on	 the	 second	 level	 of	 discretization	 as	

described	in	Section	3.5	and	Section	3.6.	The	enrichment	function	in	XFEM	around	the	tip	

of	fracture	is	adopted	in	PNMM	to	improve	the	accuracy.	The	particle	aspect	of	PNMM	is	

summarized	in	Section	3.7	for	clarity.	Its	roles	in	PNMM	and	difference	with	other	particle-

based	models	are	discussed.	The	JHB	model	is	introduced	and	incorporated	into	PNMM	

to	 simulate	 the	 dynamic	 response	 of	 rock	materials	 in	 Section	 3.8.	 Parameters	 of	 JHB	

model	adopted	in	this	thesis	are	then	given.	Last,	PNMM	is	implemented	in	programming	

language	C++,	aided	by	several	commercial/free	software	and	third-party	libraries.	Details	

are	given	in	Section	3.9.		

	

The	proposed	PNMM	is	suitable	for	simulations	of	rock	dynamics,	since	it	could	be	easily	

applied	 to	study	 the	heterogeneity	of	 rock	materials,	 the	 initiation	and	propagation	of	

fractures,	the	detachment	and	post-failure	behavior	of	fragments,	the	contact	between	

blocks,	and	the	rate-dependent	behavior	of	rock,	as	will	be	validated	in	following	chapters.	
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Chapter	4 PNMM	Modelling	of	Some	

Fundamental	Problems	

In	 this	 chapter,	 several	 numerical	 examples	 are	 provided	 for	 the	 calibration	 of	 the	

proposed	model.	A	cantilever	beam	bending	test	 is	first	performed	to	verify	the	elastic	

performance	of	PNMM.	Second,	the	Brazilian	disc	test	is	conducted	as	a	static	failure	issue.	

Then,	two	examples	on	stress	wave	propagation	are	given	to	validate	the	ability	of	PNMM	

to	 simulate	 dynamic	 issues.	 Last,	 the	 rate-dependent	 failure	 under	 rock	 blasting	 is	

successfully	simulated	by	PNMM,	as	a	representative	issue	in	rock	dynamics.	

	

This	 chapter	 is	 based	 on	 a	 paper	 published	 in	 the	 journal	 International	 Journal	 of	

Geomechanics:		

Li,	X.,	Zhang,	Q.	B.,	He,	L.,	Zhao,	J.,	2017.	Particle-Based	Numerical	Manifold	Method	

to	 Model	 Dynamic	 Fracture	 Process	 in	 Rock	 Blasting.	 International	 Journal	 of	

Geomechanics.	17	(5),	E4016014.	

and	a	conference	paper	presented	at	the	2nd	International	Conference	on	Rock	Dynamics	

and	Applications	(RocDyn-2)	held	on	18-19	May	2016	in	Suzhou,	China:	

Li,	 X.,	 Zhang,	 Q.	 B.,	 He,	 L.,	 Zhao,	 J.,	 2016.	 Validation	 study	 of	 the	 Particle-based	

Numerical	Manifold	Method	 (PNMM)	on	stress	wave	propagation,	Rock	Dynamics:	

From	Research	to	Engineering.	CRC	Press,	Suzhou,	335-340.	

	

4.1 Cantilever	Beam	

An	 elastic-static	 analysis	 is	 first	 conducted	 to	 calibrate	 the	 proposed	 PNMM	 model.	

Through	this	test,	the	effects	of	particle	resolution	and	the	number	of	manifold	element	

on	calculation	accuracy	are	discussed.		
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Considering	the	cantilever	beam	with	a	length	of	40	mm	and	a	height	of	10	mm,	as	shown	

in	 Figure	 4.1.	 The	 elastic	 constitutive	model	 is	 adopted	 in	 this	 example.	 The	model	 is	

supposed	to	be	homogeneous.	The	Young’s	modulus	of	the	beam	is	assumed	to	be	10	

GPa.	The	Poisson’s	ratio	of	the	beam	is	0.3.	A	downward	pressure	is	uniformly	imposed	

on	the	right	end	of	the	beam.	The	value	of	the	pressure	is	1	MPa.	The	left	end	of	the	beam	

is	fixed.	The	constant	cover	function	is	adopted	in	this	simulation.	

	

	

Figure	4.1	A	cantilever	beam	

	

Analytical	solution	to	the	deflection	of	the	cantilever	beam	is	given	by	

	 † % =
°%>

6d¢
3ä − % =

2H%>

d§> 3ä − % 	 (54)	

where	F	is	the	load	applied	on	the	free	end	of	the	beam,	I	is	the	area	moment	of	inertia	

of	the	beam's	cross	section,	L	is	the	length	of	the	beam,	and	H	is	the	height	of	the	beam.	

	

First,	two	models	with	the	same	mathematical	cover,	and	therefore	the	same	number	of	

manifold	 elements,	 but	 different	 numbers	 of	 particles	 are	 established.	 There	 are	 32	

manifold	elements	and	400	evenly	distributed	particles	(Figure	4.2a)	in	the	Model	I,	while	

the	Model	 II	 has	32	manifold	elements	and	10,000	evenly	distributed	particles	 (Figure	

4.2b).	 The	 particle	 resolutions,	 defined	 as	 the	 ratio	 of	 the	 number	 of	 particles	 to	 the	

number	of	manifold	elements,	of	these	two	models	are	12.5	and	312.5	respectively.	 In	

simulations,	the	displacement	in	the	direction	of	y-axis	along	the	central	line	of	the	beam	

is	taken	as	the	deflection.	Numerical	results	and	the	analytical	prediction	of	the	cantilever	

beam	deflection	are	shown	in	Figure	4.3.	Results	in	the	figure	demonstrate	that	a	model	

with	 higher	 particle	 resolution	 leads	 to	 a	more	 accurate	 result,	 which	 is	 as	 expected.	

However,	 the	 difference	 between	 the	 results	 of	 two	models	 is	 in	 fact	 quite	 small	 and	
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negligible.	This	difference	 is	mainly	due	 to	 the	effect	of	 the	number	of	particle	on	 the	

accuracy	of	particle	integration	scheme,	as	has	proved	in	the	previous	chapter.	

	

	

(a)	

	

(b)	

	

(c)	

Figure	4.2	PNMM	models	for	the	cantilever	beam:	(a)	Model	I	with	32	manifold	elements	
and	400	particles;	(b)	Model	II	with	32	manifold	elements	and	10,000	particles;	(c)	200	

manifold	elements	and	10,000	particles	
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From	the	figure,	we	can	also	conclude	that	both	of	Model	I	and	Model	II	give	poor	results	

for	 the	 beam	 deflection.	 The	 reason	 is	 that	 they	 both	 do	 not	 have	 enough	manifold	

elements	for	bending	problems.	Recalling	that	the	DOFs	in	PNMM	are	defined	on	manifold	

elements,	rather	than	particles.	Although	Model	II	has	much	more	particles	that	Model	I,	

the	number	of	manifold	element	of	them	are	the	same.	Therefore,	the	number	of	DOFs	

in	these	two	models	are	the	same	as	well.	

	

	

Figure	4.3	The	deflection	of	the	cantilever	beam		

	

A	 third	 model	 is	 introduced	 for	 this	 simulation.	 Model	 III	 (Figure	 4.2c)	 has	 the	 same	

number	of	particles	as	Model	II.	But	the	number	of	manifold	elements	is	increased	to	200,	

by	reducing	the	size	of	mathematical	covers.	As	a	result,	 the	particle	resolution	of	 this	

model	 is	 equal	 to	 50,	 which	 will	 be	 efficient	 for	 the	 particle	 integration	 scheme.	 The	

simulation	result	of	Model	III	agrees	well	with	the	analytical	result,	as	shown	in	Figure	4.3.	

It	can	be	concluded	that,	in	spite	of	a	lower	particle	resolution,	Model	III	still	provides	a	

much	better	result	 than	Model	 II,	as	 it	has	a	 larger	number	of	manifold	elements	and,	

consequently,	DOFs.	
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As	 can	be	 seen	 from	 this	example,	 the	effect	of	particle	 resolution	on	 the	accuracy	of	

PNMM	is	limited.	For	homogeneous	models,	the	accuracy	of	PNMM	is	mainly	controlled	

by	the	number	of	manifold	elements.	

	

4.2 Brazilian	Disc	Test	

Brazilian	disc	test	is	an	indirect	experiment	to	measure	the	quasi-static	tensile	strength	of	

rock.	Considering	a	Brazilian	disc	test	with	the	setup	as	shown	in	Figure	4.4.	The	radius	of	

the	rock	disc	 is	25	mm.	The	rock	material	 is	assumed	to	be	homogenous.	The	material	

properties	are	20	GPa	for	Young’s	modulus	and	0.2	for	Poisson’s	ratio.	The	tensile	strength	

of	the	material	is	set	to	be	2	MPa.		

	

	

Figure	4.4	The	Brazilian	disc	test	model	

	

The	adopted	PNMM	model	consists	of	15,256	manifold	elements	and	65,122	particles.	At	

the	beginning	of	simulation,	the	load	P	at	two	ends	of	the	disc	is	equal	to	zero.	The	load	P	
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increases	quasi-statically	during	the	simulation	with	an	increment	of	1	kN	per	step.	The	

mechanical	response	of	the	disc	 is	calculated	at	every	 increment	of	the	 load	until	 fails.	

Before	the	peak	load	Pmax	is	reached,	the	model	deforms	elastically.	At	this	stage,	stresses	

are	distributed	in	a	representative	way	as	shown	in	Figure	4.5.		

	

	

(a)	

	

(b)	

Figure	4.5	Stress	distribution	in	the	Brazilian	disc:	(a)	sigma-x;	(b)	sigma-y	
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The	peak	load	Pmax	in	this	simulation	is	167	kN.	When	the	applied	load	reaches	this	value,	

fractures	 appear	 in	 the	 center	 of	 the	model	 and	 then	propagates	 quickly	 towards	 the	

upper	and	lower	bounds.	The	failure	process	is	illustrated	in	Figure	4.6,	in	which	the	failed	

links	 are	plotted	 as	 red	 straight	 lines.	 The	 simulated	 fracture	pattern	 agrees	well	with	

experimental	result	in	Figure	4.6d.	

	

	

(a)		

	

(b)	

	

(c)	

	

(d)	

Figure	4.6	The	process	of	fracture	propagation	in	Brazilian	disc	test:	fracture	with	a	
length	of	(a)	10	mm,	(b)	20	mm,	(c)	48	mm;	and	(d)	experimental	result	(Liu,	2004)	

	

In	experiments,	 the	 tensile	 strength	of	 the	specimen	 is	estimated	as	 (Zhang	and	Zhao,	

2014)	
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	 Ur =
HR�2
wLé

	 (55)	

where	 t	 is	 the	 thickness	 of	 the	 disc	 and	 R	 is	 the	 radius	 of	 the	 disc.	 Substituting	 the	

simulation	result	Pmax	=	167	kN	into	this	equation,	the	indirectly	measured	peak	strength	

is	2.126	MPa,	which	is	close	to	the	tensile	strength	adopted	in	the	numerical	simulation.	

Therefore,	the	accuracy	of	PNMM	is	confirmed.	

	

4.3 Stress	Wave	Propagation	

Stress	wave	propagation	is	an	important	issue	in	studying	the	dynamic	fracturing	of	rock.	

Two	numerical	examples	with	elastic	stress	wave	will	be	performed	for	validation.		

	

	

Figure	4.7	The	stress	wave	propagation	in	a	rock	cavern	

	

The	first	example	illustrates	the	wave	propagation	in	a	rock	cavern	as	shown	in	Figure	4.7.	

The	rock	cavern	 is	semi-circle	 in	shape.	The	radius	of	the	cavern	 is	2	m.	The	modelling	

domain	has	a	dimension	of	100	m	×	50	m.	The	rock	material	is	assumed	to	be	homogenous.	

The	material	properties	are	63.6	GPa	 for	Young’s	modulus,	0.2	 for	Poisson’s	 ratio,	and	

2,610	kg/m
3
	for	density.	The	propagated	wave	is	induced	by	an	explosion	load	P	uniformly	

applied	on	the	surface	of	the	rock	cavern.	The	peak	value	of	the	load	Pmax	is	30	MPa.	The	

durations	 of	 the	 rising	 stage	 t1	 and	 the	 descending	 stage	 t2-t1	 are	 0.1	ms	 and	 0.4	ms	

respectively.	The	theoretical	velocity	of	P-wave	is	calculated	as	follow	
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	 •¶ =
d 1 − e

W 1 + e 1 − 2e
	 (56)	

Substituting	material	parameters	into	the	equation	above,	the	velocity	of	P-wave	in	this	

example	is	calculated	to	be	5,203	m/s.	

	

The	adopted	PNMM	model	consists	of	10,298	manifold	elements	and	41,145	particles.	

Figure	4.8	shows	the	process	of	wave	propagation	in	the	rock	cavern	predicted	by	PNMM.	

The	wave	arrives	at	the	upper	bound	of	the	model	at	the	time	of	9.72	ms,	being	in	good	

agreement	 with	 the	 theoretical	 result	 9.61	 ms	 which	 can	 be	 easily	 derived	 from	 the	

theoretical	wave	velocity.		

	

	

(a)	

	

(b)	
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(c)	

	

(d)	

	

(e)	
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(f)	

Figure	4.8	The	stress	wave	propagation	in	a	rock	cavern:	(a)	t	=	0.6	ms;	(b)	t	=	1.2	ms;	(c)	
t	=	2.4	ms;	(d)	t	=	4.0	ms;	(e)	t	=	8.0	ms;	(f)	t	=	10.0	ms	

	

Three	monitoring	points	have	been	set	in	the	model	as	illustrated	in	Figure	4.7.	The	time-

displacement	results	of	three	monitoring	points	obtained	by	PNMM	agree	well	with	those	

simulated	by	Abaqus,	which	 is	plotted	 in	Figure	4.9.	Therefore,	 the	ability	of	PNMM	in	

modelling	wave	propagation	in	homogeneous	elastic	materials	is	verified.		

	

	

	

Figure	4.9	The	stress	wave	propagation	in	a	rock	cavern:	displacement	histories	at	
monitoring	points	
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The	second	example	is	the	stress	wave	propagation	across	a	material	interface.	As	shown	

in	Figure	4.10,	the	lower	half	of	the	model	is	a	rock	cavern	the	same	as	the	first	part,	while	

the	upper	half	of	the	model	is	a	rectangle	domain	with	a	dimension	of	100	m	×	50	m.	The	

material	properties	of	 the	rock	part	are	10	GPa	 for	Young’s	modulus,	0.2	 for	Poisson’s	

ratio,	and	2,610	kg/m
3
	for	density.	Material	properties	of	steel	are	assigned	to	the	upper	

part:	200	GPa	for	Young’s	modulus,	0.3	for	Poisson’s	ratio,	and	7,600	kg/m
3
	for	density.		

	

The	propagated	stress	wave	is	induced	by	an	explosion	load	P	uniformly	applied	on	the	

surface	of	the	rock	cavern	and	transmitted	to	the	steel	part.	The	applied	explosion	load	P	

is	the	same	as	that	in	the	first	example.	Four	monitoring	points	as	illustrated	in	the	figure	

are	set	to	examine	the	incident	wave,	transmitted	wave,	and	reflected	wave.	

	

	

Figure	4.10	The	stress	wave	propagation	across	a	material	interface	

	

The	adopted	PNMM	model	consists	of	22,452	manifold	elements	and	89,726	particles.	

Figure	4.11	shows	the	process	of	the	stress	wave	propagation	across	material	interface	

predicted	by	PNMM.	The	 incident	wave	arrives	the	material	 interface	at	24	ms	(Figure	

4.11b).	This	result	agrees	well	with	the	theoretical	wave	velocity,	which	is	calculated	to	
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be	2,063.3	m/s.	The	transmitted	wave	and	reflected	wave	are	generated	at	the	material	

interface	(Figure	4.11).	The	transmitted	wave	arrives	at	the	upper	bound	of	the	steel	plate	

at	about	30	ms	(Figure	4.11d).		

	

The	 time-velocity	 results	at	monitoring	points	obtained	by	PNMM	are	shown	 in	Figure	

4.12.	From	the	result	of	Point	2,	one	can	conclude	that	the	reflected	wave	passes	through	

at	about	30	ms,	as	the	velocity	downwards	in	this	period	has	a	greater	maximum	value	

than	the	last	period.	

	

	

(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	4.11	The	stress	wave	propagation	across	a	material	interface:	(a)	t	=	5	ms;	(b)	t	=	
24	ms;	(c)	t	=	25	ms;	(d)	t	=	30	ms	
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Figure	4.12	The	stress	wave	propagation	across	a	material	interface:	velocity	histories	at	
monitoring	points	

	

4.4 Rock	Blasting	under	Different	Loading	Rates	

In	this	section,	PNMM	is	coupled	with	the	JHB	model	to	simulate	rock	fracturing	subjected	

to	dynamic	 loadings.	Considering	a	borehole	blasting	 issue	as	 illustrated	in	Figure	4.13.	

The	simulating	domain	is	a	square	with	the	side	to	be	6	m	in	length.	The	domain	has	four	

non-reflecting	 boundaries	 in	 order	 to	 represent	 a	 large	 enough	 plane.	 The	 borehole	

locates	at	the	center	of	the	domain	and	has	a	diameter	of	0.12	m.		

	

Properties	for	the	granite	with	good	quality	are	used	to	simulate	the	rock	material:	70	GPa	

for	 Young’s	 modulus,	 0.2	 for	 Poisson’s	 ratio,	 and	 2,650	 kg/m
3
	 for	 density.	 The	 bulk	

modulus	K1	is	calculated	to	be	39	GPa	by	using	the	relationship	

	 ù) =
d

3 1 − 2e
	 (57)	
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where	E	is	the	Young’s	modulus	and	ν	is	the	Poisson’s	ratio.	The	static	tensile	of	the	rock	

material	 is	 14	MPa.	 The	 compressive	 strength	 is	 157	MPa.	Other	 constants	 in	 the	 JHB	

model	can	be	found	in	Section	3.8.	

	

	

Figure	4.13	A	borehole	blasting	

	

A	 radial	 pressure	 wave	 is	 applied	 uniformly	 on	 the	 borehole	 surface.	 The	 pressure	 is	

expressed	in	the	general	form	of	an	impulse	function	as	follow	(Cho	and	Kaneko,	2004),		

	 H L = H.ß K,®r − K,©r 	 (58)	

with	

	 ß =
1

K,®r™ − K,©r™
,				L. =

1

t − s
ln
t

s
	 (59)	

where	P0	 is	 the	 peak	 pressure,	α	 and	β	 are	 two	 constants.	 In	 this	 example,	 the	 peak	

pressure	P0	is	set	to	be	200	MPa	and	the	ratio	t s	is	kept	as	a	constant	of	1.5.	By	setting	

the	rising	time	t0	to	10	μs,	20	μs,	and	200	μs,	three	different	cases	can	be	obtained	with	

the	loading	rate	calculated	to	be	20,	10,	and	1.0	MPa/μs	respectively.	The	applied	impulse	

pressures	of	three	cases	are	graphically	illustrated	in	Figure	4.14.	
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Figure	4.14	The	applied	impulse	pressure	in	borehole	blasting	

	

The	adopted	PNMM	model	consists	of	18,976	manifold	elements	and	81,632	particles.	

Simulation	results	 for	different	 loading	rates	are	shown	in	Figure	4.15.	Red	 lines	 in	the	

figure	indicate	the	fractures	(i.e.,	failed	links)	within	the	rock.	It	is	obvious	that	different	

loading	 rates	produce	distinct	 failure	patterns.	When	 the	 loading	 rate	of	 the	borehole	

pressure	 is	high,	a	crushed	zone	is	created	around	the	borehole.	 It	 is	believed	that	the	

crushed	zone	forms	on	condition	that	the	explosion	peak	pressure	exceeds	the	dynamic	

compressive	 strength	 of	 the	 rock	 material.	 The	 blast	 energy	 is	 greatly	 dissipated	 in	

creating	the	crushed	zone	and	there	is	nearly	no	radial	fracture	occurred.	The	radius	of	

crushing	zone	is	about	0.25	m,	which	is	4.2	times	the	radius	of	the	borehole.	This	is	within	

the	range	observed	in	laboratory	experiments	which	is	from	1	to	10	(Hagan,	1979).	The	

duration	of	the	generation	of	crushing	zone	is	12	μs.	When	the	loading	rate	is	intermediate,	

the	 crushed	 zone	 appears	 slightly	 farther	 to	 the	 borehole	 with	 a	 radius	 of	 0.31	 m.	

Meanwhile,	 the	alleviated	crushed	zone	 is	 followed	by	several	 short	 fractures	 in	 radial	

direction.	The	longest	radial	fracture	has	a	length	of	0.57	m.	When	the	loading	rate	further	

decreases,	 the	 crushed	 zone	 shrinks	 to	 about	 0.16	 m.	 However,	 massive	 long	 radial	

fractures	occur	and	therefore	leads	to	a	bigger	fracture	area.	The	longest	radial	fracture	

is	1.73	m	in	length.		
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t0	=	10	μs	

	 	

t0	=	20	μs	

	 	

t0	=	200	μs	

	 	

	 (a)	 (b)	

Figure	4.15	The	borehole	blasting	under	different	loading	rates:	(a)	global	view;	(b)	
enlarged	view	around	the	borehole	

	

The	fracturing	process	with	the	lowest	loading	rate	is	shown	in	Figure	4.16.	As	can	be	seen,	

a	 crushing	 zone	 is	 first	 created.	 At	 the	 outer	 bound	 of	 the	 crushing	 zone,	 localized	

fractures	are	then	generated	and	finally	grow	radially	without	preferential	directions.	In	

practice,	 long	 radial	 fractures	 with	 a	 minimal	 crushed	 zone	 is	 usually	 regarded	 as	 an	
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efficient	blasting	operation.	Therefore,	simulation	results	here	indicate	that	the	loading	

rate	 should	 be	 controlled	 as	 low	 as	 possible	 to	 improve	 the	 efficiency,	 which	 is	 also	

beneficial	to	the	damage	control.		

	

The	results	in	this	section	agree	well	with	the	findings	reported	in	(Donzé	et	al.,	1997,	Cho	

et	al.,	2003)	and	 the	numerical	 simulation	 results	 in	 (Munjiza	et	al.,	2000,	Ma	and	An,	

2008).	

	

	

(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	4.16	The	fracturing	process	of	borehole	blasting	with	t0	=	200	μs:	(a)	t	=	50	μs;	(b)	
t	=	120	μs;	(c)	t	=	250	μs;	(d)	t	=	500	μs	
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4.5 Summary	

This	 chapter	 presents	 several	 calibration	 examples	 of	 the	 proposed	 PNMM	model.	 A	

cantilever	beam	is	studied	to	validate	PNMM	for	static	 issues.	The	Brazilian	disc	test	 is	

conducted	 to	 validate	 PNMM	 for	 fracturing	 issues	 under	 quasi-static	 conditions.	 Two	

examples	of	stress	wave	propagation	demonstrate	the	applicability	of	PNMM	for	dynamic	

issues.	The	incorporated	JHB	failure	model	is	examined	by	a	borehole	blasting	simulation.	

The	 fracturing	 pattern	 under	 different	 loading	 rates	 agree	 well	 with	 the	 findings	 and	

simulations	 in	 literature.	Simulation	results	also	 indicate	that	the	accuracy	of	PNMM	is	

primarily	 determined	 by	 the	 number	 of	 manifold	 elements.	 However,	 the	 number	 of	

particles	should	still	be	carefully	chosen	to	ensure	the	accuracy	of	the	particle	integration	

scheme,	as	well	as	the	path	of	fracture	propagation.		
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Chapter	5 Rock	Scratch	Test	and	Its	

Fragmentation	Process	

This	chapter	presents	a	numerical	study	of	rock	scratching	using	PNMM.	The	scratching	

processes	with	different	cutting	depths	are	first	simulated,	where	the	failure	pattern	and	

cutting	force	are	discussed.	Then,	a	parametric	study	is	performed	by	a	series	of	numerical	

simulations.	The	effect	of	cutter	operational	parameters	on	the	cutting	force	and	energy	

consumed	 by	 the	 cutter	 are	 studied.	 Three	 operation	 parameters	 of	 the	 cutter	 are	

considered	 in	 this	 chapter,	 including	 the	 cutting	depth,	 cutting	 speed,	 and	 cutter	 rake	

angle.	Advices	are	given	to	improve	the	efficiency	of	rock	cutting	in	engineering	practice.		

	

This	 chapter	 is	based	on	a	paper	accepted	by	 the	 journal	Tunnelling	and	Underground	

Space	Technology:	Li,	X.,	Zhang,	Q.	B.,	and	Zhao,	J.		A	numerical	study	of	rock	scratch	tests	

using	the	particle-based	numerical	manifold	method.	

	

5.1 Introduction	

The	 interaction	 between	 rock	 and	 a	 cutting	 tool	 has	 been	 at	 the	 core	 of	 many	 rock	

engineering	 applications,	 including	 exploration	drilling,	mining,	 tunnelling,	 sawing,	 and	

grinding.	With	a	noticeable	trend	to	mine	and	drill	for	reserves	at	greater	depth	in	recent	

years,	 the	 demand	 for	 the	 continual	 cutting	 of	 rock	 at	 high	 in-situ	 stress	 and	 high	

temperature	conditions	 is	 rapidly	 increasing	 in	civil	engineering	 industries.	Low	cutting	

efficiency	and	high	cutter	consumption	due	to	poor	cutting	conditions	has	been	regarded	

as	one	of	the	main	problems	encountered	in	deep	ground	projects	(Gong	et	al.,	2016).	A	

better	understanding	of	the	rock-tool	interaction	is	necessary	to	overcome	this	problem.		

	

The	rock	cutting	process	involves	penetrating	a	cutting	tool	into	the	rock	and	removing	a	

fraction	of	rock	material	by	moving	the	cutting	tool.	There	are	typically	two	types	of	rock	



Chapter	5.	Rock	scratch	test	and	its	fragmentation	process	

	

100	

	

cutting	in	practice:	cutting	with	a	cutter	and	normal	indentation	with	a	wedge	(Huang	et	

al.,	 2013).	 The	difference	between	 these	 two	processes	 is	 the	moving	direction	of	 the	

cutting	 tool.	 In	 the	 indentation	 process,	 the	 cutting	 tool,	 usually	 a	 wedge	 indenter,	

penetrates	into	and	induces	a	fragmentation	of	rock.	The	direction	of	the	motion	of	the	

cutting	tool	is	normal	to	the	surface	of	rock.	Research	on	this	type	of	rock	cutting	process	

can	be	found	in	(Liu	et	al.,	2002,	Gong	et	al.,	2005,	Gong	et	al.,	2006a,	Gong	et	al.,	2006b,	

Ma	et	al.,	2011,	Wang	et	al.,	2011b,	Li	et	al.,	2016,	Tkalich	et	al.,	2016,	Xiao	et	al.,	2017).	

In	the	other	cutting	process,	the	direction	of	the	motion	of	the	cutting	tool	is	parallel	to	

the	surface	of	rock	at	a	certain	penetration	depth.	This	type	of	rock	cutting	process	is	also	

termed	as	scratching.		

	

The	 scratch	 test	 is	 probably	 one	 of	 the	 oldest	 techniques	 in	 the	 characterization	 of	

mechanical	 material	 properties,	 since	 the	 Mohs’	 hardness	 scale	 was	 introduced	 to	

quantify	 the	 scratch	 resistance	of	minerals	 in	1824	 (Akono	et	al.,	 2011).	 Following	 the	

effort	 initiated	 by	Detournay	 and	Defourny	 (1992),	 the	 scratch	 test	 has	 emerged	 as	 a	

promising	alternative	to	determine	the	strength	of	various	materials	ranging	from	soft	to	

hard,	including	polymers,	metals,	ceramics,	and	rocks	(Akono	and	Ulm,	2011,	Rodriguez	

et	al.,	2017).	Attractively,	extensive	experiment	results	have	clearly	showed	a	relationship	

between	the	energy	consumed	in	a	scratch	test	and	the	uniaxial	compressive	strength	of	

rocks,	on	condition	that	the	cutting	depth	is	shallow	(Schei	et	al.,	2000,	Richard	et	al.,	2012,	

Che	 et	 al.,	 2016).	 Theoretical	 analysis	 and	 experimental	 observations	 also	 indicated	 a	

ductile-brittle	failure	transition	of	rock	when	the	cutting	depth	goes	from	shallow	to	deep	

(Richard,	1999,	Huang	and	Detournay,	2008).		

	

However,	 the	 mechanism	 of	 scratch	 tests	 remains	 a	 challenging	 problem	 due	 to	 its	

complexity.	In	the	process	of	a	scratch	test,	problems	of	the	tool-rock	interaction,	fracture	

initiation	and	propagation	 in	rocks,	and	the	separation	of	rock	 fragments	are	 involved.	

Besides,	the	setup	of	a	scratch	test	is	also	found	to	influence	the	testing	result	(He	et	al.,	

2017).		
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Considering	the	 limited	applicability	of	analytical	 solutions,	numerical	simulations	have	

been	 widely	 performed	 on	 this	 topic.	 Kou	 et	 al.	 (1999)	 utilized	 RFPA	 to	 simulate	 the	

scratch	test	of	inhomogeneous	rocks	and	successfully	predicted	the	damage	under	and	

ahead	of	the	cutter	and	variously	shaped	chips	ahead	of	the	cutter.	However,	due	to	the	

limitation	of	their	model,	they	failed	to	simulate	the	complete	process	of	scratch	tests	but	

could	only	predict	the	initiation	of	fractures	due	to	the	contact	between	the	cutter	and	

rock.	Huang	and	Detournay	(2008)	showed	an	intrinsic	length	scale	of	rock	material	could	

influence	its	behaviour	in	scratch	tests	using	DEM.	The	effect	of	the	intrinsic	length	scale	

on	 the	 critical	 depth	of	 the	ductile–brittle	 failure	mode	 transition	 is	 further	 studied	 in	

(Huang	 et	 al.,	 2013).	 However,	 their	 simulation	 results	 were	 found	 to	 considerably	

overestimate	the	effect	of	the	length	scale	when	comparing	to	experimental	results,	due	

to	the	sensitivity	of	particle	distributions	and	micro	parameters	in	DEM.	He	and	Xu	(2015)	

attempted	 to	 overcome	 this	 sensitivity	 and	 obtain	 a	 more	 realistic	 ratio	 between	

compressive	 and	 tensile	 strength	 by	 proposing	 a	 cluster	 DEM.	 Zhou	 and	 Lin	 (2014)	

revisited	this	length	scale	in	FEM.	Similarly,	Jaime	et	al.	(2015)	utilized	an	explicit	FEM	to	

simulate	the	fragmentation	of	rock	and	the	force	applied	on	the	cutter	during	a	complete	

scratch	test.	However,	due	to	the	 limitation	of	FEM,	failed	elements	were	 immediately	

eliminated	from	the	model,	leading	to	a	so-called	zero	cutting	force	phenomenon	and	a	

considerable	low	energy	consumed	by	the	cutter	in	their	simulation.	A	fine	enough	mesh	

must	be	adopted	in	FEM	to	overcome	this	shortcoming.	

	

In	fact,	the	characters	of	PNMM	are	especially	suitable	for	the	simulation	of	a	scratch	test.	

Considering	that	PNMM	is	an	inherently	continuum-discontinuum	model,	it	is	capable	of	

simulating	the	interaction	between	the	cutter	and	rock,	the	initiation	and	propagation	of	

fractures,	the	separation	and	post-failure	motion	of	fragments,	and	the	rate-dependent	

behaviour	of	rock	materials.	Therefore,	in	this	chapter,	PNMM	is	applied	to	the	study	of	

rock	scratch	tests.	The	complete	scratching	process	of	rock	is	first	simulated.	Then,	the	

transition	 of	 ductile	 and	 brittle	 failure	 is	 presented.	 Last,	 parametric	 studies	 are	

performed	to	investigate	the	effect	of	cutting	setup	on	the	energy	consumed	by	the	cutter.	
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5.2 Numerical	Model	

The	setup	for	the	scratch	test	in	this	research	is	shown	in	Figure	5.1a.	The	rectangular	rock	

sample	has	a	length	of	38.4	mm	and	a	height	of	8.0	mm.	The	rock	sample	is	supposed	to	

be	 homogenous.	 Material	 properties	 of	 the	 South	 Africa	 gabbro	 (Zhang,	 2014)	 are	

assigned	to	the	rock	sample:	2,900	kg/m
3
	for	density,	61.0	GPa	for	Young’s	modulus,	0.13	

for	Poisson’s	ratio,	11.55	MPa	for	static	tensile	strength,	and	227.2	MPa	for	compressive	

strength.	The	JHB	parameters	of	the	rock	can	be	found	in	the	Section	3.8	of	this	thesis.		

	

An	 inclined	 thin	 cutter	 in	 the	 shape	 of	 a	 rectangle	 is	 adopted	 in	 the	 simulation,	

representing	a	perfectly	 sharp	cutter	 in	 scratch	 tests	 (Adachi	et	al.,	1996).	 For	a	 sharp	

cutter,	 the	 only	 force	 between	 the	 rock	 sample	 and	 cutter	 is	 applied	 on	 the	 inclined	

surface	of	the	cutter.	The	cutting	force	has	two	components:	one	is	the	pressure	in	the	

direction	normal	to	the	cutter	surface,	the	other	one	is	the	friction	in	the	direction	parallel	

to	the	cutter	surface.	The	cutter	moves	rightward	at	a	constant	cutting	speed.	The	cutting	

direction	 is	 parallel	 to	 the	 surface	 of	 the	 rock	 sample.	 In	 this	 simulation,	 the	 cutter	 is	

supposed	to	be	rigid.	The	contact	force	applied	on	the	cutter	surface	is	recorded	during	

scratching.	 Three	 operational	 parameters	 of	 the	 cutter	 are	 taken	 into	 consideration,	

including	the	cutting	depth	d,	rake	angle	θ,	and	cutting	speed	v,	as	illustrated	in	Figure	

5.1b.	The	effect	of	operational	parameters	will	be	studied	 in	this	research.	The	PNMM	

model	for	this	simulation	consists	of	62,370	manifold	elements	and	374,220	particles.	

	

It	is	important	to	measure	the	efficiency	of	rock	cutting	from	the	energy	point	of	view.	In	

scratch	tests,	the	mechanical	specific	energy	(MSE)	is	defined	as	the	energy	consumed	by	

the	cutter	to	remove	a	unit	volume	of	rock	(Detournay	and	Defourny,	1992).	In	a	special	

case,	where	the	cutter	 is	moving	at	a	constant	cutting	speed	v	with	a	constant	cutting	

depth	d,	MSE	could	be	simply	defined	as	(Jaime	et	al.,	2015)	

	 ´¨d =
Work	by	cutter

Volume	of	removal
=

°≠%

Volume	of	removal
	 (60)	

where	FH	 is	the	average	cutting	force	parallel	to	the	horizontal	direction,	x	 is	the	travel	

distance	of	 the	 cutter,	 and	 the	volume	of	 removal	 in	 PNMM	simulations	 is	 the	 size	of	
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particles	(rock	fragments	and	dust)	that	are	removed	from	the	model	(rock	sample).	The	

unit	of	MSE	can	be	expressed	as	MJ/m
3
	or	MPa.	

	

	

(a)	

	

(b)	

Figure	5.1	The	rock	scratch	test:	(a)	geometry	conditions;	(b)	cutter	

	

5.3 Brittle	and	Ductile	Failure	

It	has	been	well	known	that	there	is	a	critical	cutting	depth	in	scratch	tests,	at	which	the	

failure	mode	of	rock	will	be	changed.	When	the	actual	cutting	depth	is	smaller	than	the	

critical	depth,	 i.e.	 in	a	 shallow	cutting,	 the	 rock	 failure	displays	 the	characteristics	of	a	

ductile	failure	mode	and	cutting	energy	is	primarily	dissipated	within	the	failed	material,	

as	illustrated	in	Figure	5.2a;	When	the	actual	cutting	depth	is	larger	than	the	critical	depth,	

i.e.	in	a	deep	cutting,	the	failure	mode	of	rock	becomes	brittle	and	cutting	energy	is	mainly	

dissipated	 in	 creating	 fractures	 ahead	 of	 the	 cutter	 and	 the	 kinetic	 energy	 of	 rock	

fragments,	as	shown	in	Figure	5.2b.		
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(a)	

	

(b)	

Figure	5.2	Failure	modes	in	experimental	scratch	tests:	(a)	ductile	failure	in	shallow	cuts;	
(b)	brittle	failure	at	deep	cuts	(Richard,	1999).	

	

For	rock	cutting	process,	such	as	drilling	and	tunnelling,	a	ductile	 failure	mode	 is	often	

preferable	to	a	brittle	mode,	as	it	is	in	a	gentle	way	and	safe	to	workers	and	equipment.	

However,	since	the	efficiency	of	a	ductile	cutting	is	lower	than	that	in	a	brittle	mode,	a	

deeper	cutting	is	preferable	in	practice.	Besides,	researchers	have	shown	that	the	critical	

depth	 of	 rock	 is	 closely	 related	 to	 and,	 hence,	 can	 be	 used	 to	 measure	 its	 uniaxial	

compressive	 strength.	 Therefore,	 estimating	 the	 critical	 depth	 of	 a	 rock	 has	 been	 an	

important	question	in	scratch	tests	(He	and	Xu,	2016,	He	et	al.,	2017,	Zhou	and	Lin,	2013).		

	

The	phenomenon	of	the	transition	from	ductile	to	brittle	failure	with	an	increasing	cutting	

depth	will	be	examined	in	this	section	to	validate	the	simulation	results	of	PNMM.	For	this	

purpose,	three	cases	with	a	same	rake	angle	of	15°	and	a	constant	cutting	speed	of	4	m/s	

are	 performed.	 The	 cutting	 depths	 are	 0.2	 mm,	 0.5	 mm,	 and	 1.0	 mm	 in	 three	 cases	

respectively.	It	should	be	noted	that	the	cutting	speed	in	this	simulation	is	much	higher	

than	that	in	an	experimental	test,	which	is	usually	on	the	order	of	mm/s.	The	reason	for	

this	high	cutting	speed	is	to	shorten	the	scratching	process	and	to	reduce	the	computation	

time	to	a	practical	level	(3	days	for	each	case).	The	cutting	speed	we	adopted	is	the	same	

as	that	in	the	FEM	analysis	performed	by	Jaime	et	al.	(2015).	

	

For	the	case	with	a	cutting	depth	of	0.2	mm,	the	simulated	scratching	process	is	presented	

in	Figure	5.3.	Red	dots	in	Figure	5.3a	indicate	the	particles	with	failed	links	(i.e.,	fractures).	

The	cutter	is	not	plotted	in	the	figure	for	the	sake	of	clarity.	Simulation	results	show	that		
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t	=	1.0	ms	

	

t	=	2.5	ms	

	

t	=	5.0	ms	

	

t	=	7.5	ms	

	

(a)	
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t	=	1.0	ms	

	

t	=	2.5	ms	

	

t	=	5.0	ms	

	

t	=	7.5	ms	

	

(b)	

Figure	5.3	The	scratching	process	of	a	shallow	cut:	(a)	distribution	of	fractures	(red	dots	
indicate	failed	materials);	(b)	distribution	of	von	Mises	stress	



Chapter	5.	Rock	scratch	test	and	its	fragmentation	process	

	

107	

	

the	 stress	 concentration	 occurs	 in	 a	 small	 region	 around	 the	 tip	 of	 the	 cutter.	 The	

propagation	 of	material	 failure	 is	 almost	 consistent	with	 the	moving	 of	 the	 cutter.	 All	

particles	along	the	path	of	the	cutter	are	fractured	from	the	rock	sample.	No	fragment	is	

generated	 in	 this	 case.	 Instead,	 rock	 dust	 (represented	 by	 individual	 particles)	 pile	 up	

along	the	surface	of	the	cutter.	Rock	dust	in	front	of	the	cutter	has	a	high	velocity	to	move	

upward	rather	 than	remain	on	the	surface	of	 the	rock	sample,	due	to	 the	high	cutting	

speed	we	adopted.	There	is	some	rock	dust	left	behind	the	cutter,	due	to	the	shape	of	the	

cutter	we	used.	After	the	scratching	process	is	completed,	a	thin	layer	of	dust	is	left	on	

the	surface	of	rock	sample,	and	the	rock	sample	has	a	smooth	surface.	

	

For	the	case	with	a	cutting	depth	of	0.5	mm,	simulation	results	are	shown	in	Figure	5.4.	

The	scratching	process	of	this	case	is	similar	to	the	case	of	0.2	mm.	The	ductile	mode	of	

failure	still	dominates.	However,	there	are	a	small	number	of	rock	fragments	generated	

in	the	test,	e.g.,	at	the	tip	of	the	cutter	when	t	=	5.0	ms	(Figure	5.4c).	The	generated	rock	

fragments	usually	do	not	pile	up	along	the	surface	of	the	cutter,	but	have	a	higher	velocity	

than	the	cutter	to	fly	forward.	After	the	scratching	process	is	completed,	a	layer	of	dust	is	

left	on	the	surface	of	rock	sample	as	well,	whereas	the	rock	sample	has	a	 less	smooth	

surface	 than	 the	 previous	 case.	 It	 could	 be	 concluded	 that	when	 the	 cutting	 depth	 is	

intermediate,	the	dominating	model	of	failure	is	in	the	transition	from	ductile	to	brittle.	

This	result	validates	the	experimental	observation	in	(Dagrain	et	al.,	2004)	

	

Simulation	results	of	the	case	with	a	cutting	depth	of	1.0	mm	are	presented	in	Figure	5.5.	

The	 brittle	 mode	 of	 failure	 dominates	 in	 this	 case.	 Although	 there	 is	 still	 rock	 dust	

generated	by	scratching,	the	number	and	size	of	rock	fragments	are	both	considerably	

increased.	The	ratio	of	the	size	of	rock	fragments	to	the	size	of	rock	dust	is	approximately	

60:40.	The	fragment	is	typically	initialed	by	the	fracture	from	the	tip	of	the	cutter	to	the	

rock	surface	in	front	of	the	cutter	(Figure	5.5a).	Once	a	fragment	is	generated	in	this	way,	

rock	materials	in	the	small	area	in	front	of	the	cutter	tip	have	a	great	chance	to	be	crashed	

into	rock	dust	by	the	cutter	(Figure	5.5c).	Velocities	of	rock	fragments	are	usually	greater	

than	 the	cutter	 in	 the	 forward	direction.	 It	 is	also	common	to	see	 the	 rotation	of	 rock	

fragments.	The	surface	of	the	rock	sample	is	quite	rough	after	the	scratching	process	is	

completed	in	this	case.	
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(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	5.4	The	scratching	process	of	an	intermediate	cut:	(a)	t	=	1.0	ms;	(b)	t	=	2.5	ms;	(c)	
t	=	5.0	ms;	(d)	t	=	7.5	ms	(red	dots	indicate	failed	materials)	
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(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	5.5	The	scratching	process	of	a	deep	cut:	(a)	t	=	1.0	ms;	(b)	t	=	2.5	ms;	(c)	t	=	5.0	
ms;	(d)	t	=	7.5	ms	(red	dots	indicate	failed	materials)	
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The	cutting	 force	applied	normal	 to	 the	cutter	surface	 in	 the	process	of	scratching	are	

recorded	in	three	cases	and	summarized	in	Figure	5.6.		

	

	

(a)	

	

(b)	



Chapter	5.	Rock	scratch	test	and	its	fragmentation	process	

	

111	

	

	

(c)	

Figure	5.6	Variation	of	cutting	forces	applied	normal	to	the	cutter	surface:	(a)	ductile	
failure	in	the	shallow	cut	d	=	0.2	mm;	(b)	ductile-brittle	failure	in	the	intermediate	cut	d	=	

0.5	mm;	(c)	brittle	failure	in	the	deep	cut	d	=	1.0	mm	

	

Mean	values	of	normal	cutting	force	in	the	shallow,	intermediate,	and	deep	cut	are	12.95	

kN,	19.53	kN,	and	30.46	kN	respectively.	It	is	clearly	shown	that	the	cutting	force	increases	

with	the	increase	of	cutting	depth	as	expected.	Simulation	results	demonstrated	that,	in	

the	shallow	cut,	the	cutting	force	fluctuates	about	the	mean	value	throughout	the	process	

of	scratching.	The	cutting	force	in	any	period	is	approximately	the	same.	The	difference	

between	the	maximum	and	minimum	cutting	force	is	small.	However,	in	the	deep	cut,	the	

cutting	 force	 usually	 increases	 to	 a	 peak	 value	 and	 then	 drops	 rapidly.	 This	 result	 is	

identical	to	the	failure	pattern	of	deep	cuts.	The	increase	of	the	cutting	force	is	to	initiate	

the	fracture	in	front	of	the	cutter,	before	a	rock	fragment	is	generated.	The	rapid	drop	of	

the	cutting	force	is	due	to	the	release	a	rock	fragment	and	the	generation	of	rock	dust.	

The	length	of	the	period	that	has	a	considerably	low	cutting	force	is	related	to	the	size	of	

the	 rock	 fragment	 which	 is	 generated	 before	 this	 period.	 The	 different	 between	 the	

maximum	and	minimum	cutting	force	in	this	case	is	larger	than	that	in	the	shallow	cut	as	

well.	As	for	the	intermediate	cut,	the	cutting	force	in	this	case	has	both	the	characteristics	

of	the	shallow	cut	and	deep	cut	in	different	periods.	This	result	shows	again	that	there	is	
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a	transitional	rage	of	cutting	depth	where	the	failure	of	rock	is	 in	a	combination	of	the	

ductile	and	brittle	mode.	

		

5.4 Effect	of	Cutter	Operational	Parameters	

A	 group	 of	 numerical	 simulations	 are	 conducted	 in	 this	 section	 to	 study	 the	 effect	 of	

operational	parameters	of	the	cutter	on	the	scratch	test.	As	shown	in	Figure	5.1,	three	

operational	parameters	of	the	cutter	are	taken	into	consideration,	including	the	cutting	

depth	d,	rake	angle	θ,	and	cutting	speed	v.	The	cutting	force	is	recorded	in	each	simulation.	

And	then,	the	mean	value	of	normal	cutting	force	and	MSE	(see	Eq.60)	are	calculated	and	

compared.			

	

Effect	of	cutting	depth	

To	study	the	effect	of	cutting	depth,	thirteen	simulations	with	a	same	rake	angle	θ	=	15°	

and	a	same	cutting	velocity	v	=	4.0	m/s	are	performed.	The	cutting	depths	of	 thirteen	

simulations	 are	 0.15,	 0.2,	 0.3,	 0.4,	 0.5,	 0.6,	 0.7,	 0.8,	 0.9,	 1.0,	 1.2,	 2.4,	 and	 3.6	 mm	

respectively.	Simulation	results	are	presented	in	Figure	5.7.	

	

Results	 of	MSE	 explicitly	 show	 the	 effect	 of	 cutting	 depth	 in	 three	 phases:	When	 the	

cutting	depth	is	smaller	than	0.5	mm,	where	the	ductile	mode	of	failure	dominates	as	has	

been	discussed,	the	MSE	decreases	rapidly	from	276.8	MPa	to	138.6	MPa	with	the	cutting	

depth	increases	from	0.15	mm	to	0.4	mm;	When	the	cutting	depth	is	in	the	range	between	

0.4	mm	and	0.8	mm,	 the	MSE	continues	 to	decrease	with	a	much	 lower	 rate	and	 in	a	

nonlinear	 manner,	 from	 138.6	 MPa	 to	 95.5	 MPa;	 When	 the	 cutting	 depth	 further	

increases,	where	the	failure	mode	has	been	transferred	to	brittle,	the	MSE	decreases	very	

slowly	and	almost	remains	constant.	In	the	case	where	the	cutting	depth	in	increased	to	

3.6	mm,	the	MSE	is	equal	to	77.8	MPa.	Therefore,	a	conclusion	could	be	made	that	MSE	

decreases	rapidly	in	ductile	failure,	remains	approximately	constant	in	brittle	failure,	and	

decreases	 at	 an	 intermediate	 rate	 in	 the	 transition	 from	 ductile	 to	 brittle	 failure.	 The	

transition	from	ductile	to	brittle	mode	of	 failure	could	be	estimated	from	the	result	of	

MSE	as	in	the	range	of	cutting	depth	from	0.4	to	0.8	mm.	
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Figure	5.7	Effect	of	cutting	depth	on	the	mean	normal	cutting	force	and	MSE	in	scratch	
test,	with	a	cutting	velocity	of	4	m/s	and	a	rake	angle	of	15	degree	

	

The	critical	 failure	mode	transition	cutting	depth	 is	always	associated	with	the	uniaxial	

compressive	strength	of	the	rock	material	by	researchers.	Based	on	a	numerical	study,	

Zhou	 and	 Lin	 (2013)	 proposed	 that	 the	 critical	 transition	depth	dc	 is	 proportional	 to	 a	

fractional	power	of	the	uniaxial	compressive	strength	σc	as	follows:	

	 :p = 5.6Up
,..PJ	 (61)	

where	 the	 units	 of	dc	 and	σc	 are	mm	 and	MPa	 respectively.	 Substituting	 the	 value	 of	

compressive	strength	in	this	simulation,	namely	227.2	MPa,	into	this	equation,	the	critical	

transition	depth	dc	given	by	their	model	is	0.54	mm,	which	falls	into	the	transition	range	

estimated	by	PNMM	simulations.	

	

Since	the	MSE	decreases	with	the	increase	of	cutting	depth,	it	is	energy-	and	cost-efficient	

to	adopt	a	high	cutting	depth	in	engineering	practice.	However,	in	deep	cuts,	the	force	

applied	on	 the	 cutter	 increases	 linearly	whereas	 the	decrease	of	MSE	 is	negligible.	An	
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extreme	 high	 cutting	 force	 could	 damage	 the	 cutter	 and	 lead	 to	 an	 extra	 cost.	

Consequently,	 for	 a	 rock	 cutting	 process	 in	mining,	 drilling,	 and	 tunneling,	 it	 could	 be	

advised	from	the	energy	point	of	view	that	a	cutting	depth	slightly	greater	than	the	critical	

transition	depth	should	be	chosen	so	that	the	failure	of	rock	is	 in	brittle	mode	and	the	

cutting	force	required	is	small.	

	

Effect	of	cutting	speed	

Twelve	cases	with	a	constant	cutting	depth	of	1.2	mm	and	a	constant	rake	angle	of	15°	

have	been	performed	in	total	to	study	the	effect	of	cutting	speed.	The	cutting	speed	varies	

from	0.4	 to	 50	m/s	 in	 these	 cases.	 Simulation	 results	 are	 summarized	 in	 Figure	5.8.	 It	

should	be	noted	that	all	of	twelve	cases	are	deep	cuts	and	in	brittle	failure	mode.	

	

	

	

Figure	5.8	Effect	of	cutting	speed	on	the	mean	normal	cutting	force	and	MSE	in	scratch	
test,	with	a	cutting	depth	of	1.2	mm	and	a	rake	angle	of	15	degree	
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Although	He	and	Xu	(2016)	observed	in	experimental	tests	that	the	effect	of	cutting	speed	

can	 be	 regarded	 as	 negligible	 for	 low	 cutting	 speed,	 which	 is	 on	 the	 order	 of	 mm/s.	

Simulation	results	show	that	when	the	cutting	speed	is	high,	its	effect	on	scratching	could	

be	significant,	due	to	the	rate-dependent	behavior	of	rock	materials.	Specifically,	both	of	

the	cutting	force	and	MSE	increase	with	the	increase	of	cutting	speed.	Such	an	increase	

of	the	cutting	force	has	also	been	reported	in	a	FEM	simulation	in	(Menezes	et	al.,	2014).	

The	 increased	 energy	 consumption	 at	 high	 cutting	 speeds,	 in	 this	 study,	 is	 mainly	

dissipated	as	the	increased	kinetic	energy	of	rock	fragments	and	rock	dust,	as	well	as	in	

the	crash	of	rock	fragments.	

	

The	figure	also	indicates	that	there	is	a	critical	cutting	speed	in	scratch	test,	above	which	

the	increase	of	cutting	force	and	MSE	is	accelerated.	In	this	example,	the	critical	cutting	

speed	is	equal	to	30	m/s.	The	values	of	MSE	at	the	cutting	speed	of	0.4,	30,	and	50	m/s	

are	equal	to	67.1,	178.9,	and	366.4	MPa	respectively.	Therefore,	the	values	of	average	

MSE	 increasing	 rate	 in	 the	 range	 of	 0.4	 ~	 30	m/s	 and	 30	 ~	 50	m/s	 are	 3.78	 and	 9.38	

respectively.	The	accelerated	increasing	rate	of	both	cutting	force	and	MSE	in	scratch	test	

is	supposed	to	be	related	to	the	relationship	between	the	strain	rate	and	compressive	

strength	of	rock	materials,	which	is	in	a	similar	manner	as	summarized	by	Zhang	and	Zhao	

(2014).	

	

Effect	of	rake	angle	

Thirteen	cases	with	a	constant	cutting	depth	of	1.2	mm	and	a	constant	cutting	velocity	of	

4.0	m/s	are	performed	to	study	the	effect	of	cutter	rake	angle.	A	sequence	of	rake	angles	

ranging	from	0°	to	60°	is	adopted	in	the	cases.	Results	of	the	mean	value	of	normal	cutting	

force	and	MSE	are	summarized	in	Figure	5.9.	

	

As	shown	in	the	figure,	the	increase	of	cutting	force	with	the	increase	of	cutter	rake	angle	

is	significant,	especially	when	the	rake	angle	is	greater	than	30°.	In	cases	the	rake	angle	

ranges	 from	 20°	 to	 30°,	 the	 normal	 cutting	 force	 approximately	 has	 a	 constant	 value	

around	150	kN.	The	 cutting	 force	has	 the	most	 rapid	 variation	when	 the	 rake	angle	 is	

between	30°	and	45°,	increasing	from	155.3	kN	to	387.3	kN.	The	cutting	force	reaches	a	
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maximum	value	of	469.3	kN	when	the	rake	angle	is	60°.	Comparing	to	cutting	force,	the	

value	of	MSE	has	a	much	moderate	variation	with	the	increase	of	cutter	rake	angle.	In	all	

cases,	the	value	of	MSE	falls	into	the	range	of	50	MPa	and	140	MPa.	Specifically,	the	value	

of	 MSE	 monotonically	 increases	 from	 50.9	 MPa	 to	 its	 maximum	 value	 136.5	 MPa,	

accompanying	with	 the	 increase	of	 rake	angle	 from	0°	 to	45°.	 Then,	 the	 value	of	MSE	

slightly	decreases,	though	the	cutting	force	continues	to	increase.	

	

	

Figure	5.9	Effect	of	rake	angle	on	the	mean	normal	cutting	force	and	MSE	in	scratch	test,	
with	a	cutting	depth	of	1.2	mm	and	a	cutting	speed	of	4	m/s	

	

Simulation	results	indicate	that	when	the	cutter	rake	angle	is	small,	both	the	cutting	force	

and	MSE	 increase	at	 a	 relatively	moderate	 rate.	However,	when	 the	 cutter	 rake	angle	

becomes	 great,	 say	 greater	 than	 30°	 in	 this	 study,	 the	 cutting	 force	 rapidly	 increases	

whereas	the	MSE	slightly	increases	and	then	decreases.	The	difference	between	cutting	

force	and	MSE	at	great	cutter	rake	angle	is	due	to	the	increase	of	actual	cutting	depth.	

The	term	actual	cutting	depth	is	defined	as	the	realistic	depth	of	removed	rock	in	a	scratch	

test.	 In	 PNMM	 simulations,	 the	 actual	 cutting	 depth	 is	 calculated	 as	 the	 ratio	 of	 the	
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volume	of	removal	(see	Eq.60)	to	the	travel	distance	of	cutter.	As	shown	in	Figure	5.5,	

when	the	rake	angle	is	small,	the	actual	cutting	depth	of	rock	along	the	path	of	cutting	is	

almost	the	same	as	the	depth	of	cutter.	However,	when	the	rake	angle	becomes	great,	

the	 difference	 between	 the	 actual	 cutting	 depth	 and	 the	 depth	 of	 cutter	 becomes	

significant.	A	snapshot	of	the	case	with	a	rake	angle	of	30°	is	presented	in	Figure	5.10.	The	

surface	of	rock	sample	is	rough	after	scratching	in	this	case.	And,	as	can	be	seen	from	the	

figure,	the	actual	cutting	depth	of	this	case	is	noticeably	greater	than	the	depth	of	cutter,	

which	is	approximately	equal	to	the	actual	cutting	depth	at	the	left	boundary	of	rock.	In	

fact,	the	simulation	result	demonstrates	that,	with	a	constant	cutting	depth	of	cutter,	the	

actual	cutting	depth	of	rock	increases	with	the	increase	of	cutter	rake	angle.	In	the	most	

severe	case,	i.e.	the	rake	angle	is	equal	to	60°,	the	actual	cutting	depth	is	more	than	twice	

as	great	as	the	cutter	depth.	If	the	volume	of	removal	in	Eq.60	is	calculated	by	the	depth	

of	 cutter	 rather	 than	 the	 actual	 cutting	 depth,	 the	 value	 of	 MSE	 would	 be	 greatly	

overestimated,	as	plotted	in	Figure	5.9.	

	

In	conclusion,	due	to	the	increase	of	both	cutting	force	and	MSE	at	great	rake	angles,	a	

small	rake	angle	of	cutter	is	recommended	in	practice.	Besides,	it	is	interesting	to	notice	

that	cutting	force	and	MSE	remains	almost	constant	in	a	narrow	range	of	rake	angle,	which	

is	20°	to	30°	in	this	study.		

	

	

Figure	5.10	The	actual	cutting	depth	of	the	scratch	test	with	a	rake	angle	of	30	degree,	a	
cutting	depth	of	1.2	mm,	and	a	cutting	speed	of	4	m/s,	at	the	time	of	5	ms	(red	dots	

indicate	failed	materials;	dash	line	indicates	the	depth	of	cutter)	
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5.5 Summary	

The	 process	 of	 rock	 cutting	 has	 been	 a	 significant	 issue	 in	 many	 rock	 engineering	

applications.	In	this	chapter,	PNMM	is	applied	to	study	the	scratching	of	rock	material	by	

considering	its	dynamic	behaviour.	The	failure	patterns	of	ductile	and	brittle	scratching	

are	first	simulated.	It	is	validated	that	at	an	intermediate	cutting	depth	the	mode	of	rock	

scratching	 is	 in	 the	 transition	 from	 ductile	 to	 brittle,	 and	 the	 failure	 pattern	 is	 in	 a	

combination	of	 ductile	 and	brittle	mode.	 The	 cutting	 forces	 in	 the	ductile,	 brittle,	 and	

mixed	 mode	 of	 scratching	 are	 studied	 and	 compared.	 Then,	 a	 parametric	 study	 is	

performed	by	a	series	of	PNMM	simulations	to	study	the	effect	of	operational	parameters	

of	the	cutter.	Following	conclusions	can	be	drawn	from	the	simulation	results:	

1) The	 effect	 of	 cutting	 depth	 is	 divided	 into	 three	 phases.	 The	 value	 of	 MSE	

decreases	 rapidly	 when	 the	mode	 of	 failure	 is	 ductile,	 remains	 approximately	

constant	 when	 the	mode	 of	 failure	 is	 brittle,	 and	 decreases	 nonlinearly	 at	 an	

intermediate	rate	when	the	mode	of	 failure	 is	 in	 the	transition	 from	ductile	 to	

brittle.	The	range	of	the	transitional	cutting	depth	could	be	estimated	from	the	

result	of	MSE.	In	the	practice	of	rock	cutting,	a	cutting	depth	slightly	greater	than	

the	transition	depth	is	advised	since	it	provides	the	failure	of	rock	in	brittle	mode	

and	the	cutting	force	required	is	small.	

2) The	effect	of	high	cutting	 speed	 is	 significant.	The	cutting	 force	and	MSE	both	

increase	with	the	increase	of	cutting	speed.	A	critical	cutting	speed	exists,	above	

which	 the	 increase	of	 cutting	 force	and	MSE	are	accelerated.	The	value	of	 the	

critical	 cutting	speed	 is	believed	 to	be	 related	 to	 the	 relationship	between	the	

dynamic	compressive	strength	of	rock	and	strain	rates.	

3) The	effect	of	cutter	rake	angle	is	significant	on	the	cutting	force	but	moderate	

on	MSE.	The	actual	cutting	depth	is	defined	in	this	study,	which	is	found	to	be	

increased	with	the	increase	of	cutter	rake	angle.	In	cases	where	the	cutter	rake	

angle	is	large,	the	actual	cutting	depth	could	be	noticeably	greater	than	the	

cutting	depth	of	cutter,	leading	to	a	significant	difference	between	the	cutting	

force	and	MSE.	The	cutting	force	and	MSE	are	found	to	be	both	constant	in	a	

narrow	range	of	cutter	rake	angle,	whose	mechanism	though	is	still	unclear	and	

needs	to	be	studied	in	future	work.	



119	

	

Chapter	6 Rock	Spalling	and	Related	

Rockburst	Triggered	by	Far-field	Dynamic	

Disturbance	

This	chapter	presents	a	numerical	study	of	spalling	and	spalling-induced	rockburst	under	

dynamic	disturbance	using	PNMM.	The	spalling	of	rock	bars	under	1D	stress	condition	is	

first	simulated.	The	spalling	process	and	fracturing	pattern	of	the	long	bar	under	different	

loading	 types,	 including	decreasing,	 increasing,	 and	 symmetrical	 triangular	waves,	 and	

loading	 rates	are	 investigated	 respectively.	Then,	 the	 spalling	 in	plate	 impact	 tests	are	

numerically	studied.	Two	types	of	 impactor	with	various	 impact	speed	are	used	 in	 this	

simulation.	Last,	a	simulation	of	the	spalling	and	rockburst	of	rock	tunnels	subjected	to	

static	 in-situ	 stresses	 and	 dynamic	 disturbance	 is	 carried	 out	 to	 investigate	 the	

relationship	 between	 the	 in-situ	 stress,	 dynamic	 disturbance,	 spalling	 fractures,	 and	

rockburst	phenomenon.	

	

This	chapter	 is	based	on	a	paper	submitted	to	the	journal	Tunnelling	and	Underground	

Space	 Technology:	 Li,	 X.,	 Zhang,	Q.	 B.,	 and	 Zhao,	 J.	 	A	numerical	 study	of	 spalling	 and	

related	rockburst	under	dynamic	disturbance	using	a	particle-based	numerical	manifold	

method	(PNMM).	

	

6.1 Introduction	

There	has	been	a	noticeable	trend	to	mine	and	construct	underground	caverns	at	greater	

depth	 in	 recent	 years.	 As	 in-situ	 stresses	 increase	 with	 depth,	 stress-induced	 rock	

fracturing,	especially	the	sudden	and	violent	failure	of	rock,	will	be	a	great	threat	to	the	

construction,	 equipment,	 and	 the	 safety	 of	 mining	 worker.	 Rockburst	 is	 defined	 as	 a	

sudden	rupture	and	explosion	of	rock	on	the	surface	of	rock	wall	and	is	associated	with	a	

seismic	 event	 (Kaiser,	 1996).	 Cai	 et	 al.	 (2012)	 classified	 rockbursts	 into	 three	 types,	
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including	strain	burst,	pillar	burst	and	fault-slip	burst.	Strain	bursting,	as	the	most	common	

rockburst	type	in	many	mines,	is	a	phenomenon	that	a	certain	volume	rock	wall	violently	

destroys	 under	 high	 stresses	 (Gong	 et	 al.,	 2012).	 Strain	 bursts	 can	 be	 either	 mining-

induced	by	energy	release	or	dynamically-induced	by	remote	seismic	events.	The	strain	

energies	stored	in	the	failing	rock	and	surrounding	masses	are	released	in	a	strain	bursting,	

such	that	the	failure	is	in	a	violent	manner.	Research	shows	that	strain	bursting	is	closely	

related	to	the	spalling	failure	of	rock.	The	term	spalling	here	represents	the	development	

of	 visible	 tensile	 fractures	 under	 compressive	 loading,	 induced	 by	 either	 the	 stress	

concentration	of	 a	 stress	 flow	around	underground	openings	or	 remote	 seismic	 event	

(Kaiser	and	McCreath,	1994).	Ortlepp	(2001)	described	a	strain	bursting	as	a	superficial	

spalling	 with	 violent	 ejection	 of	 fragments.	 Diederichs	 (2007)	 stated	 that	 the	 spalling	

failure	could	happen	before	the	actual	strain	bursting,	and	strain	bursting	is	induced	by	

the	energy	 release	of	parallel	 and	 thin	 spall	 slabs.	He	et	 al.	 (2012)	 clearly	 showed	 the	

transfer	of	dominating	failure	type	from	spalling	to	strain	bursting	with	the	increase	of	in-

situ	stress	in	experimental	tests.	In	this	thesis,	the	term	spalling	is	used	to	describe	the	

tensile	 failure	 process	 due	 to	 the	 reflection	 of	 a	 compression	wave	 at	 free	 surface	 or	

material	interfaces	(Weerheijm	and	Van	Doormaal,	2007).	The	spalling	in	this	definition	is	

induced	by	a	remote	compressive	stress	wave.	This	phenomenon	has	been	widely	used	

to	 determine	 the	 dynamic	 tensile	 strength	 of	 a	 variety	 of	 brittle	materials	 (e.g.,	 rock,	

concrete,	 and	 ceramics)	 under	 shock	wave	 loading	 in	 experiments,	 as	 these	materials	

have	a	much	lower	tensile	strength	comparing	to	their	compression	strengths.		

	

The	spalling	method	falls	into	the	category	of	indirect	tension	testing	methods.	The	most	

common	type	of	spalling	tests	is	to	utilize	long	bars	under	1D	stress	wave	condition	(Dıáz-

Rubio	et	al.,	2002).	Schuler	et	al.	(2006)	measured	the	tensile	strength	and	determined	

the	 specific	 fracture	energy	at	 strain	 rates	between	10
1
	 and	10

2
	 s

-1
.	 Forquin	and	Erzar	

(2010)	measured	 the	 tensile	 strength	of	both	dry	and	wet	 concrete	under	 strain	 rates	

between	30	and	180	s
-1
.	Lu	and	Li	(2011)	determined	the	tensile	strength	of	dry	concrete	

under	strain	rates	between	10
-4
	and	10

2
	s

-1
.	Millon	et	al.	 (2016)	conducted	tests	under	

strain	rates	varying	from	1	to	520	s
-1
	on	two	sedimentary	rocks,	namely	sandstone	and	

limestone.	Li	et	al.	 (2017a)	adopted	a	modified	split	Hopkinson	pressure	bar	 (SHPB)	 to	

measure	the	spall	strength	of	granite	with	a	static	confining	load	up	to	30	MPa.	Another	
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application	 of	 spalling	 phenomenon	 is	 the	 normal	 plate-impact	 experiment	 under	 1D	

strain	wave	propagation	condition,	by	which	the	spall	strength	as	well	as	the	Hugoniot	

properties	of	brittle	materials	are	measured	(Yuan	and	Prakash,	2013,	Zhang	et	al.,	2017).	

Efforts	have	also	been	made	to	numerically	study	the	spalling	phenomenon	of	rocks	and	

rock-like	materials.	 Cho	et	 al.	 (2003)	 adopted	 a	 Finite	 Element	Method	 (FEM)	 code	 to	

simulate	 the	 spalling	 of	 rock	 bars.	 Erzar	 and	 Forquin	 (2011)	 numerically	 studied	 the	

spalling	of	concrete	using	a	mesoscopic	method.	Zhu	and	Tang	(2006)	applied	the	RFPA	

model	 to	 the	 simulation	 of	 spalling	 in	 rock	 bars,	 and	 studied	 the	 effect	 of	 the	 rock	

heterogeneity	on	dynamic	tensile	strength	(Zhu,	2008).	Then,	Xu	et	al.	(2016)	extended	

the	model	and	studied	the	spalling	of	fiber-reinforced	concrete	in	the	manner	of	both	long	

bars	and	plate	impact.		

	

Some	 researchers	 have	 also	 numerically	 studied	 the	 spalling	 and	 spalling-induced	

rockburst	in	tunnels.	Zhu	et	al.	(2014b)	adopted	the	AUTODYN	code	to	study	the	spalling	

and	 zonal	 disintegration	 around	 a	 tunnel	 induced	by	 stress	wave.	Mitelman	 and	 Elmo	

(2016)	simulated	the	blast-induced	spalling	of	tunnels	using	ELFEN,	a	hybrid	FDEM	code.	

However,	no	in-situ	stress	is	considered	in	both	of	their	research.	Zhu	et	al.	(2010)	pointed	

out	that	rockbursts	may	occur	when	the	rock	mass	is	first	supposed	to	be	under	high	static	

in-situ	 stresses	 and	 then	 triggered	 by	 a	 far-field	 dynamic	 disturbance.	 Therefore,	 they	

adopted	RFPA	as	the	numerical	method	and	studied	tunnel	rockbursts	with	varying	in-situ	

stresses	and	dynamic	disturbances.	Similarly,	Weng	et	al.	(2017)	utilized	ANSYS/LS-DYNA	

to	 simulate	 the	 tunnel	 rockburst	 in	 three-dimensional	 cases.	 The	 rockburst	 in	 their	

simulation	 was	 triggered	 by	 a	 blast	 loading	 at	 the	 advancing	 surface	 of	 the	 tunnel.	

However,	as	the	numerical	models	they	adopted	are	both	based	on	FEM,	they	are	not	

able	 to	 simulate	 the	 post-failure	 stage	 of	 rock	 (Jing,	 2003),	 including	 the	 behavior	 of	

fragmented	rocks	and	the	effect	of	spall	slabs	on	rockburst.	Besides,	their	work	did	not	

utilize	a	rate-dependent	constitutive	model	to	capture	the	tensile	strength	under	dynamic	

loading.	

	

In	this	chapter,	PNMM	is	applied	to	numerically	study	the	spalling	of	rock	and	the	spalling-

induced	rockburst	of	rock	tunnels.	In	following	sections,	the	application	of	PNMM	is	first	



Chapter	6.	Rock	spalling	and	related	rockburst	triggered	by	far-field	dynamic	disturbance	

	

122	

	

extended	to	the	spalling	of	long	rock	bars	for	further	validation.	Then,	the	simulation	of	

spalling	induced	by	plate	impact	will	be	conducted	as	a	contact	issue	to	confirm	the	model.	

At	last,	inspired	by	the	work	in	(Zhu	et	al.,	2010),	tunnel	rockbursts	induced	by	dynamic	

disturbance	will	be	numerically	studied.	

	

6.2 Spalling	of	Long	Bars	

The	 spalling	of	 long	 rock	bars	 is	 studied	as	a	plane	 stress	problem	 in	 this	 section.	 The	

purpose	is	to	validate	the	proposed	method	by	comparing	with	theoretical	analysis.	

	

6.2.1 Numerical	Model	
The	long	bar	in	this	simulation,	as	shown	in	Figure	6.1a,	has	a	length	of	1.0	m	and	a	width	

of	0.04	m.	A	triangular	compression	wave	is	uniformly	applied	on	the	left	end	of	the	bar.	

The	peak	value	and	decreasing	time	of	the	triangle	wave	is	50	MPa	and	100	μs	respectively,	

as	 illustrated	 in	 Figure	 6.1b.	 The	 right	 end	 of	 the	 bar	 is	 set	 to	 be	 free.	 The	model	 is	

supposed	to	be	homogenous.	The	material	properties	are	2,650	kg/m
3
	for	density,	70.0	

GPa	for	Young’s	modulus,	0.2	for	Poisson’s	ratio,	and	14	MPa	for	static	tensile	strength.	

The	PNMM	model	consists	of	2,500	manifold	elements	and	10,521	particles.		

	

	

(a)	

	

(b)	

Figure	6.1	The	long	bar	subjected	to	a	triangular	compression	wave	with	a	free	end:	(a)	
geometry	and	boundary	conditions;	(b)	the	applied	triangular	compression	wave	



Chapter	6.	Rock	spalling	and	related	rockburst	triggered	by	far-field	dynamic	disturbance	

	

123	

	

The	dynamic	tensile	strength	of	the	rock	bar	and	the	thickness	of	the	first	spall	will	be	

examined	in	this	simulation.	Analytical	equations	for	the	spalling	of	long	bars	are	based	

on	the	1D	wave	theory.	Specifically,	the	dynamic	tensile	strength	of	materials	in	spalling	

tests	can	be	estimated	from	the	velocity	history	of	the	free	end	using	the	pull-back	velocity	

method	(Schuler	et	al.,	2006),	as	follows	

	 Ur
Ø = W•v •) − •> 2	 (62)	

where	σtd	is	the	dynamic	tensile	strength,	vp	is	the	stress	wave	velocity,	and	v1	and	v2	are	

the	first	local	maximum	and	local	minimum	value	of	the	free	surface	velocity	respectively.	

v1	-	v2	is	the	so-called	pull-back	velocity.	The	dynamic	tensile	strength	in	spalling	tests	is	

also	named	the	spall	strength.	The	analytical	solution	to	the	thickness	of	the	first	spalling	

piece	h	is	(Wang	et	al.,	2007)	

	 ℎ =
∞

2
∙
Ur
Ø

Uv
	 (63)	

where	λ	 is	 the	wave	 length	of	 the	compression	 stress,	and	σp	 is	 the	peak	value	of	 the	

compression	stress.	

	

6.2.2 Spalling	Process	
The	simulated	spalling	process	is	illustrated	in	Figure	6.2.	The	applied	compression	stress	

wave	travels	from	the	left	end	to	the	right	end	of	the	bar.	The	P-wave	velocity	in	the	bar	

can	be	calculated	to	be	5,140	m/s,	making	the	compression	wave	to	reach	the	free	(right)	

end	at	 the	 time	of	about	195	μs	 ideally.	Then,	 the	compression	wave	 is	 reflected	as	a	

tensile	wave,	and	a	tensile	stress	zone	is	formed.	As	the	tensile	stress	zone	propagates	

back	toward	the	left	end	of	the	bar,	the	amplitude	of	the	tensile	stress	wave	increases	as	

well.		

	

At	the	time	of	248	μs,	the	amplitude	of	tensile	stress	reaches	23.0	MPa,	and	the	first	spall	

fracture	 is	 generated.	 Therefore,	 the	 dynamic	 tensile	 strength	 at	 this	 loading	 rate	 is	

simulated	to	be	23.0	MPa,	which	is	calculated	by	the	JHB	model.	The	distance	from	the	

first	spall	fracture	to	the	free	end	is	121.5	mm.		
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The	spall	fracture	forms	a	new	free	end	for	stress	waves.	The	compression	wave	on	the	

left	surface	of	the	spall	fracture	is	reflected	as	a	tensile	wave	propagating	toward	the	left	

end	of	the	bar,	while	the	tensile	wave	on	the	right	surface	of	the	spall	fracture	is	reflected	

as	a	compression	wave	propagating	toward	the	right	end	of	the	bar.	At	the	time	of	254	μs	

and	260	μs,	the	second	and	third	spall	fractures	are	generated	to	the	left	of	the	first	spall	

fracture	in	sequence.	The	distance	from	the	first	spall	fracture	to	the	second	and	third	one	

is	32.9	mm	and	68.4	mm	respectively.		

	

	

(a)	

	

(b)	

	

(c)	

	

(d)	

	

(e)	

Figure	6.2	The	spalling	process	of	long	bar	subjected	to	decreasing	triangular	
compression	wave:	(a)	t	=	150	μs;	(b)	t	=	235	μs;	(c)	t	=	248	μs;	(d)	t	=	254	μs;	(e)	t	=	260	

μs	
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(a)	

	

(b)	

	

(c)	

Figure	6.3	1D	wave	analysis	for	the	spalling	under	decreasing	triangular	compression	
wave:	(a)	the	incident	compressive	stress	wave;	(b)	the	reflected	tensile	stress	forms	a	

tension	area;	(c)	the	tensile	strength	is	reached	

	

The	 spalling	 process	 induced	 by	 the	 decreasing	 triangular	 compression	 wave	 can	 be	

explained	by	the	1D	wave	analysis	in	Figure	6.3.	The	compressive	stress	is	plotted	above	

the	1D	bar,	while	the	tensile	stress	is	plotted	below.	The	resultant	stress	is	the	realistic	

stress	suffered	by	the	rock	during	spalling.	There	 is	only	compressive	stress	before	the	

compression	wave	reaches	the	free	end	and	reflects	(Figure	6.3a).	After	the	reflection,	the	

resultant	stress	is	still	compression	to	the	left	of	reflected	tensile	stress,	as	there	is	only	

compressive	stress	in	this	portion.	However,	 in	the	part	where	tensile	stress	exists,	the	

resultant	stress	is	changed	to	tension,	as	the	reflected	tensile	stress	is	always	higher	than	

the	compressive	stress	at	a	specific	point	(Figure	6.3b).	With	the	further	propagation	of	
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waves,	 the	 resultant	 stress	 is	 gradually	 transferred	 from	 compression	 to	 tension.	

Meanwhile,	 the	 peak	 value	 of	 the	 tension	 part	 of	 the	 resultant	 stress	 is	 gradually	

increased.	The	first	spalling	happens	when	the	peak	value	increases	to	the	tensile	strength,	

as	shown	in	Figure	6.3c.	After	the	first	spalling	takes	place,	the	compressive	stress	to	the	

left	of	the	spalling	fracture	takes	the	fracture	as	a	new	free	surface	and	reflects	to	tensile	

stress.	On	condition	that	the	peak	value	of	this	part	of	compressive	stress	is	still	higher	

than	 the	 tensile	 strength,	 it	 will	 be	 able	 to	 create	 more	 spalling	 fractures	 after	 the	

reflection,	with	the	same	process	of	the	first	fracture.	At	the	same	time,	the	tensile	stress	

to	the	right	of	the	first	fracture	takes	the	fracture	as	a	free	surface	as	well	and	reflects	to	

a	compressive	stress.	Considering	that	the	reflected	compressive	stress	is	higher	than	the	

remaining	 tensile	 stress,	 the	 resultant	 stress	 in	 this	 portion	 will	 be	 changed	 to	

compression,	making	it	hard	to	generate	more	spalling	fractures.	However,	because	the	

peak	value	of	the	reflected	tensile	stress	itself	is	higher	than	the	tensile	strength,	it	is	still	

possible	to	form	spalling	fractures	in	this	portion	of	the	bar	after	several	reflections.	

	

	

Figure	6.4	The	free	surface	velocity	of	long	bar	subjected	to	decreasing	triangular	
compression	wave	
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The	particle	velocity	of	the	free	end	is	recorded	and	illustrated	in	Figure	6.4.	The	figure	

shows	that	the	compression	wave	reaches	the	free	end	at	the	time	of	194	μs,	which	agrees	

well	 with	 the	 theoretical	 result	 previously	 mentioned.	 The	 pull-back	 velocity	 can	 be	

obtained	from	the	figure	as	3.45	m/s	(v1	and	v2	are	8.49	m/s	and	5.04	m/s	respectively).	

According	to	Eq.62,	the	spall	strength	is	calculated	to	be	23.5	MPa.	Substituting	the	spall	

strength	into	Eq.63,	we	have	the	theoretical	solution	to	the	thickness	of	the	first	spall	as	

120.8	mm.	Both	theoretical	results	agree	well	with	the	simulation.		

	

6.2.3 Effect	of	Loading	Rate	
Two	more	 simulations	 are	 conducted	 to	 study	 the	 effect	 of	 loading	 rate	 on	 the	 spall	

strength.	The	peak	value	of	the	decreasing	triangular	compression	wave	is	kept	as	50	MPa,	

whereas	the	decreasing	time	is	changed	to	50	μs	and	200	μs	respectively.		

	

The	spalling	process	of	these	two	simulations	is	similar	as	described	previously,	despite	a	

different	thickness	of	the	first	spall.	Although,	in	simulations,	the	dynamic	tensile	strength	

is	inherently	determined	by	the	JHB	model.	We	can	still	use	the	pull-back	velocity	method	

to	theoretically	estimate	the	spall	strength,	being	consistent	with	experimental	tests.	And	

we	 have	 proved	 that	 PNMM	 simulations	 agree	 well	 with	 the	 results	 of	 the	 pull-back	

velocity	method.		

	

The	particle	velocities	of	the	free	end	with	different	loading	rates	are	plotted	in	Figure	6.5.	

Substituting	 the	 pull-back	 velocities	 from	 simulations	 into	 Eq.62,	 spall	 strengths	 at	

different	loading	rates	can	be	estimated,	as	summarized	in	Table	6.1.	The	term	dynamic	

ratio	 is	defined	as	 the	 ratio	of	 the	 spall	 strength	 to	 the	 static	 tensile	 strength.	Results	

indicate	that	under	the	loading	rates	ranging	from	250	to	1,000	GPa/s,	the	dynamic	ratio	

increases	from	1.38	to	2.53.	This	result	 is	reasonable	when	comparing	to	experimental	

tension	test	(Zhang	and	Zhao,	2014).	
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Figure	6.5	The	free	surface	velocities	under	different	loading	rates	

	

	

Table	6.1.	Spall	strengths	at	different	loading	rates	estimated	by	the	pull-back	velocity	
method	

Decreasing	

time	(μs)	

Loading	rate	

(GPa/s)	
v1	(m/s)	 v2	(m/s)	

Pull-back	

velocity	

(m/s)	

Spall	

strength	

(MPa)	

Dynamic	

ratio	

50	 1,000	 8.24	 3.03	 5.21	 35.48	 2.53	

100	 500	 8.49	 5.04	 3.45	 23.50	 1.68	

200	 250	 8.98	 6.14	 2.84	 19.34	 1.38	
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6.2.4 Effect	of	Loading	Type	
The	 effect	 of	 loading	 types	 on	 the	 spalling	 fracture	 pattern	 is	 studied	 by	 imposing	 an	

increasing	and	a	symmetrical	triangular	compression	wave,	as	illustrated	in	Figure	6.6,	on	

the	bar	respectively.	Both	loadings	have	a	peak	value	of	50	MPa	and	a	total	duration	of	

100	μs.		

	

	

(a)	

	

(b)	

Figure	6.6	Compression	loads	applied	on	the	long	bar	to	study	the	effect	of	loading	types:	
(a)	the	increasing	triangular	wave;	(b)	the	symmetrical	triangular	wave	

	

Increasing	triangular	wave	

The	spalling	process	under	the	increasing	triangular	wave	is	presented	in	Figure	6.7.	The	

first	 spalling	occurs	at	 the	 time	of	444	μs.	The	thickness	of	 the	 first	 spall	 is	148.3	mm.	

Different	 from	 the	 case	 of	 decreasing	 triangular	 wave,	 following	 spall	 fractures	 are	

generated	to	the	right	of	the	first	one.	At	the	time	of	450	and	454	μs,	the	second	and	third	

spalling	take	place	at	37.9	and	63.1	mm	to	the	first	one	respectively.		

	

The	difference	in	spalling	fracture	pattern	can	be	explained	by	the	1D	wave	analysis	shown	

in	Figure	6.8.	For	the	increasing	triangular	compression	wave,	the	reflected	tensile	stress	

is	 lower	 than	 the	 incident	 compressive	 stress.	 Therefore,	 the	 resultant	 stress	 is	 still	

compression	along	the	whole	bar	(Figure	6.8b).	Only	after	the	reflected	tensile	stress	has	

passed	the	tail	of	the	incident	compressive	stress,	a	tension	area	could	be	created	on	the	

bar	(Figure	6.8c).	The	first	spalling	happens	at	the	tail	of	the	incident	compressive	stress,	

when	the	resultant	tensile	stress	is	increased	to	the	tensile	strength	(Figure	6.8d).		
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(a)	

	

(b)	

	

(c)	

Figure	6.7	The	spalling	process	of	long	bar	subjected	to	increasing	triangular	
compression	wave:	(a)	t	=	444	μs;	(b)	t	=	450	μs;	(c)	t	=	454	μs	

	

	

(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	6.8	1D	wave	analysis	for	the	spalling	under	increasing	triangular	compression	
wave:	(a)	the	incident	compressive	stress;	(b)	the	reflected	tensile	stress	is	not	high	
enough	to	form	a	tension	area;	(c)	the	reflected	tensile	stress	passes	the	incident	
compressive	stress	and	forms	a	tension	area;	(d)	the	tensile	strength	is	reached	
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After	 the	 occurrence	 of	 the	 first	 spalling,	 the	 tensile	 stress	 to	 the	 left	 of	 the	 spalling	

fracture	continues	propagating	toward	the	left	end	of	the	bar	and	no	compressive	stress	

is	reflected	at	this	side.	As	the	peak	value	of	the	tensile	stress	wave	is	lower	than	the	spall	

strength,	no	spalling	is	possible	to	happen	to	the	left	of	the	first	one.	At	the	same	time,	

the	tensile	stress	to	the	right	of	the	first	spalling	fracture	takes	the	fracture	surface	as	a	

free	surface	and	reflects	as	a	compressive	stress.	However,	as	the	value	of	the	reflected	

compressive	 stress	 is	 lower	 than	 the	 tensile	 stress	 that	 propagates	 toward	 the	 first	

spalling	fracture,	a	tensile	stress	zone	is	form	near	the	spall	fracture.	Therefore,	following	

spalling	fractures	have	the	potential	to	be	generated	in	this	area.	

	

Symmetrical	triangular	wave	

The	spalling	pattern	under	the	symmetrical	triangular	wave	is	quite	unique.	The	spalling	

process	of	this	case	is	presented	in	Figure	6.9.	As	shown	in	the	figure,	instead	of	a	single	

spalling	fracture,	a	spalling	zone	is	generated	at	the	time	of	426	μs.	The	spalling	zone	has	

an	initial	width	of	41.5	mm,	and	is	further	expanded	to	99.7	mm	at	436	μs.	The	1D	wave	

analysis	 for	 the	 generation	 of	 spalling	 zone	 is	 given	 in	 Figure	 6.10.	 Due	 to	 the	 equal	

increasing	and	decreasing	slopes	of	the	symmetrical	triangular	wave,	the	resultant	stress	

along	a	considerable	zone	is	constant	and	reaches	the	spall	strength	simultaneously.	This	

simulation	result	validates	the	experiment	test	and	analysis	by	Dıáz-Rubio	et	al.	(2002).	

They	suggested	that	symmetrical	waves	should	be	avoided	in	spalling	tests	that	attempt	

to	measure	the	dynamic	tensile	strength	of	materials.	

	

	

	

(a)	

	

(b)	

Figure	6.9	The	spalling	process	of	long	bar	subjected	to	symmetrical	triangular	
compression	wave:	(a)	t	=	426	μs;	(b)	t	=	436	μs	
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(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	6.10	1D	wave	analysis	for	the	spalling	under	symmetrical	triangular	compression	
wave:	(a)	the	incident	compressive	stress;	(b)	the	reflected	tensile	stress	is	not	high	
enough	to	form	a	tension	area;	(c)	the	reflected	tensile	stress	is	equal	to	the	incident	

compressive	stress;	(d)	the	tensile	strength	is	reached	along	a	zone		

	

6.3 Spalling	of	Rock	Plates	under	Impact	Loading	

A	plate	impact	test	will	be	studied	in	this	section	to	extend	the	spalling	simulation	to	2D	

cases.	The	setup	for	the	 impact	simulation	 is	graphically	 illustrated	 in	Figure	6.11.	Two	

flyers	are	adopted	in	the	test:	a	long	flyer	with	the	same	length	as	the	target	and	a	short	

flyer	with	half	the	length	of	the	target.	Two	flyers	are	both	3	mm	in	width.	In	both	tests,	

the	target	has	a	length	of	50	mm	and	a	width	of	5	mm.	The	flyer	is	parallel	to	the	target.	

The	flyer	is	supposed	to	be	made	of	aluminum,	with	a	density	of	2,703	kg/m
3
,	a	Young’s	

modulus	of	70.87	GPa,	and	a	Poisson’s	ratio	of	0.345.	The	material	properties	of	the	target	

are	2,650	kg/m3	for	density,	70.0	GPa	for	Young’s	modulus,	0.2	for	Poisson’s	ratio,	and	14	
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MPa	for	static	tensile	strength.	The	flyer	impacts	the	target	at	two	speeds:	10	m/s	for	a	

low-speed	impact,	and	200	m/s	for	a	high-speed	impact.		

	

	

(a)	

	

(b)	

Figure	6.11	The	plate	impact	test:	(a)	long	flyer;	(b)	short	flyer	

	

Long	flyer	

The	PNMM	model	for	the	long	flyer	test	consists	of	41,024	manifold	elements	and	328,192	

particles.	The	spalling	process	of	the	low-speed	impact	is	presented	in	Figure	6.12.	The	

spalling	process	of	this	case	is	similar	to	that	of	rock	bars.	The	stress	wave	is	generated	in	

the	 target	 due	 to	 the	 impact	 contact	 between	 the	 flyer	 and	 target.	 The	 impact	wave	

arrives	at	 the	 lower	bound	of	 the	 target	at	1.6	μs	and	 reflected.	Spalling	 fractures	are	

generated	by	the	reflected	stress	in	a	narrow	area	near	the	center	of	the	target	at	2.2	μs.	

The	 length	of	 the	 fractured	area	 is	almost	 the	 same	as	 the	 length	of	 the	 target.	Then,	

spalling	 fractures	 are	extended	 to	 the	 left	 and	 right	boundaries	of	 the	 target,	 and	 the	
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target	 is	 consequently	 separated	 into	 two	 parts.	 At	 the	 time	 of	 43.5	 μs,	 an	 obvious	

difference	between	the	flying	speeds	of	two	parts	exists.	The	lower	half	has	an	average	

velocity	of	7.76	m/s,	while	the	upper	half	has	an	average	velocity	of	4.72	m/s.	

	

	

	

(a)	

	

(b)	

	

(c)	

Figure	6.12	The	spalling	process	of	the	long	flyer	impact	at	low	speed:	(a)	t	=	1.6	μs;	(b)	t	
=	2.2	μs;	(c)	t	=	43.5	μs	

	

Simulation	 results	 of	 the	 high-speed	 impact	 is	 presented	 in	 Figure	 6.13.	 The	 target	 is	

heavily	damaged	in	this	case.	Fractures	are	not	explicitly	plotted	in	the	figure	for	the	sake	

of	clarity.	Comparing	to	the	low	speed	test,	more	spalling	fractures	are	generated	and	the	

target	is	fractured	into	more	layers	in	this	case.	However,	the	spalling	fractures	are	found	

to	be	 still	 parallel	 to	 the	 flyer	 and	 target,	 except	when	 it	 is	 close	 to	 the	 left	 and	 right	

boundaries	of	the	target,	due	to	the	boundary	effect.	
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(a)	

	

(b)	

	

(c)	

Figure	6.13	The	spalling	process	of	the	long	flyer	impact	at	high	speed:	(a)	t	=	5	μs;	(b)	t	=	
15	μs;	(c)	t	=	25	μs	

	

Short	flyer	

The	 PNMM	model	 for	 the	 short	 flyer	 test	 consists	 of	 33,332	 manifold	 elements	 and	

266,656	particles.		

	

The	spalling	process	of	the	low-speed	impact	is	presented	in	Figure	6.14.	The	impact	wave	

arrives	at	 the	 lower	bound	of	 the	 target	at	1.6	μs	and	 reflected.	Spalling	 fractures	are	

generated	by	the	reflected	stress	in	a	narrow	area	near	the	center	of	the	target	at	2.2	μs.	

The	 fracturing	 zone	 is	 shorter	 than	 the	 flyer.	 Then,	 some	 longitudinal	 fractures	 are	
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generated	 from	 the	 spalling	 zone	 to	 the	 lower	 bound	 of	 the	 target,	 creating	 several	

spalling	pieces	from	the	target.	The	speed	of	these	spalling	pieces	is	non-uniform	at	their	

creation	(namely	5.4	μs),	but	becomes	uniform	with	the	increase	of	the	simulation	time	

(e.g.,	at	43.5	μs).	The	final	speed	of	spalling	pieces	is	between	6	and	8	m/s.	We	can	imagine	

that	 if	 the	simulation	time	 is	 further	 increased,	 theses	spalling	pieces	will	be	extracted	

from	the	target	and	fly	away.	There	are	also	some	fractures	originating	from	the	upper	

bound	of	the	target,	due	to	the	mismatch	between	the	length	of	the	flyer	and	target.		

	

	

	

(a)	

	

(b)	

	

(c)	

	

(d)	

Figure	6.14	The	spalling	process	of	the	short	flyer	impact	at	low	speed:	(a)	t	=	1.6	μs;	(b)	t	
=	2.2	μs;	(c)	t	=	5.4	μs;	(d)	t	=	43.5	μs	
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The	rock	plate	 is	almost	completely	damaged	when	the	 impact	speed	 increases	to	200	

m/s.	The	simulation	results	at	this	speed	is	presented	in	Figure	6.15.	Again,	fractures	are	

not	explicitly	plotted	in	the	figure	for	the	sake	of	clarity.	A	spalling	fracture	can	be	clearly	

identified	near	the	lower	bound	of	the	target.	Moreover,	due	to	the	high	impact	stress,	

the	spalling	piece	and	the	rock	plate	are	both	severely	fractured	afterward.	The	spalling	

process	and	fracture	pattern	is	similar	to	that	simulated	by	Zhang	et	al.	(2015c).		

	

	

	

(a)	

	

(b)	

	

(c)	

Figure	6.15	The	spalling	process	of	the	short	flyer	impact	at	high	speed:	(a)	t	=	5	μs;	(b)	t	
=	15	μs;	(c)	t	=	25	μs	
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6.4 Rockburst	Induced	by	Dynamic	Disturbance	

6.4.1 Numerical	Model	
The	 spalling	 and	 rockburst	 of	 a	 tunnel	 triggered	 by	 the	 dynamic	 disturbance	 will	 be	

studied	in	this	section.	As	depicted	in	Figure	6.16,	a	square	domain	with	the	size	of	20	m	

×	20	m	is	taken	into	consideration	with	a	tunnel	located	at	the	center	of	the	domain.	The	

tunnel	 is	1	m	 in	height	and	has	a	 semicircular	 roof	with	a	 radius	of	1	m.	The	model	 is	

supposed	 to	 be	 homogeneous.	Material	 properties	 of	 the	model	 are	 2,650	 kg/m
3
	 for	

density,	 70.0	 GPa	 for	 Young’s	modulus,	 0.2	 for	 Poisson’s	 ratio,	 and	 14	MPa	 for	 static	

tensile	strength.	The	PNMM	model	for	this	example	consists	of	59,562	manifold	elements	

and	502,002	particles.	

	

	

Figure	6.16	The	tunnel	subjected	to	in-situ	stresses	and	a	dynamic	disturbance	

	

The	 simulation	 is	 divided	 into	 two	 stages.	 In	 the	 first	 stage,	 static	 in-situ	 stresses	 are	

imposed	on	the	model	to	obtain	the	initial	stress	state.	Specifically,	the	horizontal	stress	

PH	 is	applied	on	the	left	and	right	boundaries	of	the	model,	and	the	vertical	stress	PV	 is	
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applied	 on	 the	 top	 and	 bottom	 boundaries	 simultaneously.	 Various	 groups	 of	 in-situ	

stresses	will	be	applied	in	the	following	simulations	to	study	its	effect	on	the	rockburst.	

Then,	 in	the	second	stage,	a	dynamic	disturbance	P(t)	 is	uniformly	 imposed	on	the	 left	

boundary	to	trigger	the	spalling	and	rockburst.	The	applied	dynamic	disturbance	is	in	the	

form	of	an	impulse	function,	given	by	Eq.58.	In	this	example,	the	peak	value	P0	is	set	as	50	

MPa,	the	rising	time	t0	is	set	as	2	ms,	and	the	ratio	β/α	is	kept	as	a	constant	of	1.5.		

	

6.4.2 Spalling	and	Rockburst	in	Tunnel		
The	 mechanism	 of	 the	 spalling	 and	 rockburst	 phenomenon	 in	 tunnels	 triggered	 by	

dynamic	disturbance	is	studied	first.	The	horizontal	and	vertical	in-situ	stress	are	both	set	

to	10	MPa.	Simulation	results,	including	distributions	of	the	maximum	principal	stress	and	

minimum	principal	stress,	and	particle	velocity	at	different	time	steps	are	presented	in	

Figure	6.17	and	Figure	6.18	respectively.	An	enlarged	view	around	the	tunnel	is	adopted	

in	figures.	Fractures	are	explicitly	indicated	as	solid	black	lines.		

	

From	the	results	of	maximum	and	minimum	principal	stress	(Figure	6.17)	at	t	=	0,	we	can	

conclude	that	the	roof,	floor,	and	left	and	right	surfaces	of	the	tunnel	are	all	under	the	

state	 of	 compression	 before	 the	 dynamic	 disturbance	 is	 applied.	 The	 distribution	 of	

compressive	stresses	around	the	tunnel	is	jointly	determined	by	the	shape	of	the	tunnel	

and	 the	 combination	 of	 horizontal	 and	 vertical	 in-situ	 stresses.	 After	 the	 dynamic	

disturbance	is	applied,	a	compressive	stress	wave	propagates	from	the	left	boundary	of	

the	model	toward	the	tunnel,	and	reaches	the	left	surface	of	the	tunnel	at	t	=	1.74	ms.	

The	incident	stress	wave	takes	the	left	surface,	as	well	as	the	left	half	of	the	roof,	of	the	

tunnel	as	a	free	surface	and	reflects	as	a	tensile	wave.	Therefore,	the	superposition	of	the	

reflected	tensile	stress,	the	incident	compressive	stress	and	the	initial	compressive	stress	

induced	by	the	 in-situ	stress	arises	 in	this	area.	A	domain	under	the	state	of	tension	 is	

consequently	formed	on	condition	that	the	reflected	tensile	stress	is	greater	than	the	sum	

of	the	compressive	stresses.		

	

At	t	=	2.14	ms,	a	spalling	fracture	is	generated	since	the	resultant	tensile	stress	reaches	

the	tensile	strength	of	the	rock.	The	distance	from	the	spalling	fracture	to	the	surface	of	
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the	 tunnel	 is	 0.57	m.	Wave	 propagations	 in	 the	 rock	 become	 complicated	 due	 to	 the	

creation	and	propagation	of	the	spalling	fracture.	More	spalling	and	non-spalling	fractures	

are	generated	with	the	propagation	of	stress	waves.	Some	of	these	fractures,	especially	

those	are	close	to	the	tunnel,	have	the	chance	to	propagate	to	the	surface	of	the	tunnel.	

Some	rock	blocks	can	be	clearly	seen	in	the	figure	that	are	ejected	from	the	surface	of	the	

tunnel.		

	

The	contour	chart	of	particle	velocity	at	t	=	4	ms	is	enlarged	without	plotting	fractures	for	

the	sake	of	clarity	(Figure	6.18c).	Consequently,	the	rockburst	in	a	tunnel	triggered	by	the	

dynamic	disturbance	 is	modelled	 in	this	example.	The	ejected	rock	 in	this	simulation	 is	

fractured	into	several	pieces.	The	velocities	of	ejected	rock	blocks	are	in	the	range	of	4	~	

10	m/s.	The	total	size	of	the	ejected	rock	is	approximately	0.14	m	in	width	and	0.6	m	in	

height.		

	

t	=	0	ms		

	 	

t	=	1.74	ms	
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t	=	2.14	ms	

	 	

t	=	4	ms	

	 	

	
	

(a)	

	

(b)	

Figure	6.17	The	spalling	and	rockburst	process	of	the	tunnel	with	PH=10	MPa	and	PV=10	
MPa:	(a)	distribution	of	maximum	principal	stress;	(b)	distribution	of	minimum	principal	

stress	

	

This	simulation	shows	that	rockburst	is	possible	to	happen	in	tunnels	subjected	to	in-situ	

stresses	 and	 a	 dynamic	 disturbance.	 The	 mechanism	 of	 the	 rockburst	 under	 this	

circumstance	is	the	spalling	induced	by	the	dynamic	disturbance	near	the	surface	of	the	

tunnel.	The	contribution	of	in-situ	stresses	is	to	provide	an	initial	stress	field	around	the	

tunnel.	A	compressive	stress	field	helps	to	offset	the	reflected	tensile	stress	wave,	and	

therefore	has	the	function	to	reduce	or	prevent	the	spalling/rockburst	in	tunnel.	However,	

spalling	still	happens	when	the	peak	value	of	 the	dynamic	disturbance	 is	high	enough.	

Spalling	fractures	that	propagate	to	the	tunnel	forms	the	rockburst	with	the	rock	ejection	

from	 the	 surface.	 Other	 fractures	 remaining	 in	 the	 rock	 mass	 did	 not	 enhance	 the	

rockburst	but	can	be	a	potential	hazard	to	the	safety	of	the	tunnel	in	following	use.	
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(a)	

	

(b)	

	

(c)	

	

Figure	6.18	The	spalling	and	rockburst	process	of	the	tunnel	with	PH=10	MPa	and	PV=10	
MPa,	distribution	of	particle	velocity:	(a)	t	=	1.74	ms;	(b)	t	=	2.14	ms;	(c)	t	=	4	ms,	

enlarged	view	around	the	tunnel	

	

6.4.3 Effect	of	In-situ	Stress	
The	effect	of	in-situ	stresses	on	the	rockburst	in	tunnels	is	investigated	in	this	section.	The	

dynamic	disturbance	to	the	tunnel	is	kept	the	same	as	that	in	the	previous	section.	Five	

cases	with	 different	 in-situ	 stresses	 are	 considered	 in	 total.	 The	 horizontal	 stress	 and	

vertical	stress	for	each	case	is	listed	in	Table	6.2.	The	term	lateral	pressure	coefficient	is	

the	ratio	of	the	horizontal	stress	to	the	vertical	stress.		
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Table	6.2.	The	in-situ	stresses	for	different	cases	

Case	 PH	(MPa)	 PV	(MPa)	
Lateral	pressure	

coefficient	

1	 20	 10	 2	

2	 10	 20	 0.5	

3	 20	 20	 1	

4	 10	 1	 10	

5	 20	 2	 10	

	

Simulation	 results	 of	 all	 cases	 are	 summarized	 in	 Figure	 6.19	 and	 Figure	 6.20.	 The	

distributions	of	maximum	principal	stress	and	minimum	principal	stress	at	the	initial	state,	

namely	subjected	to	the	static	in-situ	stress	only,	for	each	case	are	presented	in	Figure	

6.19,	while	 the	distributions	of	 particle	 velocity	 at	 the	 time	of	 4	ms	 for	 each	 case	 are	

presented	in	Figure	6.20.	Fractures	are	explicitly	indicated	as	solid	lines.	

	

case	1	

PH	=	20	MPa	

PV	=	10	Mpa	

	 	

case	2	

PH	=	10	MPa	

PV	=	20	Mpa	
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case	3	

PH	=	20	MPa	

PV	=	20	Mpa	

	 	

case	4	

PH	=	10	MPa	

PV	=	1	Mpa	

	 	

case	5	

PH	=	20	MPa	

PV	=	2	Mpa	

	 	

	
	

(a)	

	

(b)	

Figure	6.19	Initial	states	of	tunnels	subjected	to	different	in-situ	stresses:	(a)	distribution	
of	maximum	principal	stress;	(b)	distribution	of	minimum	principal	stress	
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(a)	

	

(b)	

	

(c)	

	

(d)	

	

(e)	

	

	

Figure	6.20	The	spalling	and	rockburst	of	tunnels	subjected	to	different	in-situ	stresses,	
enlarged	view	around	the	tunnel:	(a)	case	1,	PH	=	20	MPa,	PV	=	10	MPa;	(b)	case	2,	PH	=	
10	MPa,	PV	=	20	MPa;	(c)	case	3,	PH	=	20	MPa,	PV	=	20	MPa;	(d)	case	4,	PH	=	10	MPa,	PV	=	

1	MPa;	(e)	case	5,	PH	=	20	MPa,	PV	=	2	MPa	
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In	case	1,	the	horizontal	in-situ	stress	is	increased	to	20	MPa	and	the	vertical	in-situ	stress	

is	the	same,	when	comparing	with	those	in	the	previous	section	(called	case	0	hereafter).	

Consequently,	 the	 initial	 compressive	 stresses	 at	 the	 roof	 and	 floor	 of	 the	 tunnel	 are	

higher	than	case	0,	while	the	initial	compressive	stress	at	the	left	and	right	surface	of	the	

tunnel	is	lower.	Since	the	dynamic	disturbance	is	reflected	at	the	left	surface	of	the	tunnel,	

the	reflected	tensile	stress	is	easier	to	offset	the	reduced	initial	compressive	stress	in	this	

region.	Therefore,	spalling	fractures	are	easier	to	be	generated	in	this	case	than	case	0.	

Simulation	result	at	t	=	4	ms	indicates	that	the	rockburst	in	case	1	is	severer	than	case	0,	

as	the	ejected	rock	is	bigger	in	size	(1.02	m	in	height,	0.18	m	in	width)	and	higher	in	flying	

speed	(in	the	range	of	4.5	~	11.5	m/s).	Spalling	fractures	that	locate	far	from	the	tunnel	

are	harder	to	propagate	vertically	but	tend	to	propagate	toward	the	tunnel,	because	the	

compressive	stress	is	high	in	the	region	above	the	tunnel.		

	

On	 the	other	hand,	 in	case	2,	 the	horizontal	 in-situ	 stress	 remains	 at	 10	MPa	and	 the	

vertical	in-situ	stress	is	increased	to	20	MPa.	In	contrast	to	case	1,	the	initial	compressive	

stress	at	the	left	surface	of	the	tunnel	in	case	2	is	higher	than	that	in	case	0.	Therefore,	

spalling	fractures	are	difficult	to	be	generated	and	propagated	in	this	case.	The	fracture	

pattern	at	the	final	stage	indicates	that	there	is	only	one	spalling	fracture	generated	and	

no	rockburst	is	triggered	in	this	case.		

	

Further	in	case	3,	when	the	horizontal	and	vertical	in-situ	stresses	are	both	increased	to	

20	MPa,	the	initial	compressive	stresses	surrounding	the	tunnel	are	even	higher	than	all	

cases	mentioned	earlier.	As	a	result,	no	fracture	is	generated	and	the	tunnel	is	safe	to	the	

dynamic	disturbance	in	this	case.		

	

Above	analysis	shows	that	the	initial	compressive	stress	at	the	left	surface	of	the	tunnel	

is	mainly	determined	by	the	vertical	in-situ	stress,	but	also	influenced	by	the	horizontal	

in-situ	stress.	In	general,	increasing	the	vertical	in-situ	stress,	hence	decreasing	the	lateral	

pressure	 coefficient,	 will	 significantly	 increase	 the	 compressive	 stress	 around	 the	 left	

surface	 of	 the	 tunnel	 and	 help	 the	 tunnel	 to	 withstand	 the	 dynamic	 disturbance	 in	

horizontal	direction.	The	effect	of	horizontal	in-situ	stress	is	complex.	With	the	increase	
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of	 the	 horizontal	 in-situ	 stress	 and	 consequently	 the	 lateral	 pressure	 coefficient,	 the	

compressive	stress	around	the	left	surface	of	the	tunnel	will	be	reduced	(case	0	and	case	

1)	or	increased	(case	2	and	case	3)	when	the	horizontal	in-situ	stress	is	higher	or	lower	

than	the	vertical	in-situ	stress	respectively.	Therefore,	the	conclusion	can	be	made	that	

the	effect	of	the	lateral	pressure	coefficient	on	rockburst	is	not	monotonic	but	related	to	

the	relationship	between	horizontal	and	vertical	in-situ	stresses.	

	

Although	the	lateral	pressure	coefficient	has	been	greater	than	1	in	case	1,	the	left	surface	

of	 the	tunnel	 is	still	under	the	state	of	compression	before	the	dynamic	disturbance	 is	

applied.	In	case	4,	we	increase	the	coefficient	to	10	by	decreasing	the	vertical	in-situ	stress	

to	1	MPa.	Although	such	a	high	coefficient	has	exceeded	the	typical	value	range	in	practice,	

it	 helps	 to	 reveal	 the	mechanism	 of	 rockburst	 under	 static	 in-situ	 stress	 and	 dynamic	

disturbance	and	makes	the	result	in	this	study	comparable	to	the	work	of	Zhu	et	al.	(2010).		

Simulation	 results	 show	 that	 the	 left	 and	 right	 surfaces	 and	 surrounding	 regions	 are	

initially	under	the	state	of	tension	instead.	The	superposition	between	the	initial	tensile	

stress	and	the	reflected	tensile	stress	will	weaken	the	ability	of	the	tunnel	to	withstand	

the	dynamic	disturbance.	The	fracture	pattern	of	case	4	indicates	a	severer	rockburst	than	

case	0.	This	result	shows	that	when	there	is	a	large	difference	between	the	horizontal	and	

vertical	in-situ	stress,	the	rockburst	can	be	easily	triggered	in	the	direction	of	the	higher	

in-situ	stress.		

	

A	 constant	 lateral	 pressure	 coefficient	 of	 10	 is	 adopted	 in	 case	 5,	 but	 increasing	 the	

horizontal	and	vertical	in-situ	stress	to	20	MPa	and	2	MPa	respectively.	Simulation	results	

show	 that	 the	 initial	 tensile	 stress	 around	 the	 left	 and	 right	 surface	 of	 the	 tunnel	 is	

increased	correspondingly.	As	a	result,	the	rockburst	in	case	5	is	severer	than	that	in	case	

4.	Although	the	size	of	the	ejected	rock	in	two	cases	is	almost	the	same,	the	maximum	

velocity	of	the	ejected	rock	is	increased	from	11.6	m/s	to	14.0	m/s.	However,	on	the	other	

hand,	if	there	is	no	large	difference	between	the	horizontal	and	vertical	in-situ	stresses,	

increasing	the	value	of	in-situ	stress	while	keeping	a	constant	lateral	pressure	coefficient	

will	not	lead	to	a	severer	rockburst,	e.g.,	case	0	and	case	3.	In	practice,	it	is	common	to	

see	the	horizontal	and	vertical	in-situ	stresses	increase	proportionally	with	the	increase	
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of	the	depth	of	the	tunnel,	keeping	an	almost	constant	lateral	pressure	coefficient.	This	

simulation	 indicates	 that	 in	 deep	 tunnels,	 severe	 rockburst	 can	 be	 easily	 triggered	 by	

dynamic	disturbance	when	there	is	a	large	difference	between	horizontal	and	vertical	in-

situ	stresses	along	the	direction	of	the	higher	one.		

	

Analysis	 above	 is	 made	 on	 condition	 that	 the	 dynamic	 disturbance	 is	 imposed	 and	

reflected	horizontally.	In	fact,	the	effect	of	in-situ	stress	on	rockburst	is	closely	related	to	

the	direction	of	dynamic	disturbance.	If	the	dynamic	disturbance	is	reflected	at	the	roof	

or	floor	of	the	tunnel,	in-situ	stresses	that	produce	high	tensile	stresses	along	the	vertical	

direction	will	lead	to	severe	rockburst.	

	

6.5 Summary	

Rock	spalling	is	found	to	be	closely	related	to	strain	bursting,	the	most	common	type	of	

rockburst.	In	this	chapter,	PNMM	is	applied	to	study	the	spalling	failure	of	rock	materials	

and	spalling-induced	rockburst.	The	spalling	of	long	rock	bars	is	first	studied.	Simulation	

results	provide	satisfactory	prediction	for	the	thickness	of	the	first	spall	piece	and	spall	

strengths	at	different	loading	rates.	The	effect	of	 loading	types	on	the	spalling	fracture	

pattern	is	also	studied.	Then,	plate	impact	tests	with	both	long	and	short	flyers	at	both	

low	and	high	impact	velocities	are	simulated.	The	simulated	failure	pattern	agrees	well	

with	the	numerical	results	by	other	models	in	the	reference.	Last,	the	validated	model	is	

adopted	to	simulate	the	rockburst	of	tunnels	under	various	static	in-situ	stress	conditions,	

triggered	by	a	same	dynamic	disturbance.	Following	conclusions	can	be	drawn	from	the	

simulation	results:	

1) The	mechanism	of	rockburst	under	this	circumstance	is	the	spalling	failure	near	

the	surface	of	tunnel	induced	by	the	dynamic	disturbance.	The	ejection	of	rock	is	

formed	by	spalling	fractures	that	propagate	to	the	surface	of	tunnel.	The	function	

of	 in-situ	 stress	 is	 to	 provide	 an	 initial	 stress	 field	 around	 the	 tunnel.	 A	

compressive	stress	field	assists	the	tunnel	 in	preventing	rockburst	by	offsetting	

the	reflected	tensile	stress	wave,	whereas	a	tensile	stress	field	weakens	the	ability	
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of	the	tunnel	to	withstand	the	dynamic	disturbance	due	to	its	superposition	with	

the	reflected	tensile	stress	wave.	

2) The	initial	stress	field	near	the	horizontal	surface	of	tunnel	is	mainly	determined	

by	the	vertical	in-situ	stress.	When	the	vertical	in-situ	stress	is	much	lower	than	

the	horizontal	 in-situ	 stress,	 the	horizontal	 surface	of	 tunnel	will	 be	under	 the	

state	of	 tension.	When	 the	vertical	 in-situ	 stress	 is	 close	 to	or	higher	 than	 the	

horizontal	in-situ	stress,	the	horizontal	surface	of	tunnel	will	be	under	the	state	

of	 compression.	 The	 effect	 of	 horizontal	 in-situ	 stress	 on	 the	 state	 of	 the	

horizontal	surface	of	tunnel	is	opposite	when	it	is	higher	or	lower	than	the	vertical	

in-situ	stress.	Therefore,	the	effect	of	the	lateral	pressure	coefficient	on	rockburst	

is	not	monotonic.	

3) The	effect	of	the	depth	of	tunnel	on	rockburst	is	related	to	the	lateral	pressure	

coefficient.	If	the	horizontal	in-situ	stress	is	much	higher/lower	than	the	vertical	

in-situ	stress,	 increasing	the	depth	of	tunnel	will	also	increase	the	possibility	of	

rockburst	in	tunnel.	However,	if	the	horizontal	in-situ	stress	is	close	to	the	vertical	

in-situ	stress,	the	possibility	of	rockburst	will	be	decreased	by	increasing	the	depth	

of	tunnel.	The	most	dangerous	situation	for	deep	tunnels	is	that	there	is	a	large	

difference	between	the	horizontal	and	vertical	in-situ	stresses	and	the	dynamic	

disturbance	comes	from	the	direction	of	the	higher	in-situ	stress.	
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Chapter	7 Conclusions	

7.1 Summary	of	Contributions	and	Findings	

This	thesis	aims	to	develop	a	reliable	numerical	method	for	rock	dynamics,	especially	for	

the	dynamic	fracturing	of	rock	(Chapter	1).	After	reviewing	and	comparing	the	advantages	

and	 challenges	 of	 existing	 numerical	methods	 (Chapter	 2),	 a	 particle-based	 numerical	

manifold	method	(PNMM)	is	proposed	and	applied	to	study	the	rate-dependent	behaviors	

of	rock	under	various	conditions.	The	developments	of	PNMM,	including	its	conception,	

methodology,	formulae,	implementation,	characteristics,	and	validation,	are	summarized	

as	follows:	

Development	of	PNMM	(Chapter	3	and	Chapter	4)	

1) PNMM	 is	 modified	 from	 the	 numerical	 manifold	 method	 (NMM)	 and	 particle	

manifold	method	(PMM).	Some	ideas	from	the	extended	finite	element	method	

(XFEM)	and	discrete	element	method	(DEM)	are	adopted.		

2) PNMM	is	implemented	in	C++,	incorporating	some	open-source	third-party	C++	

libraries,	e.g.,	the	computational	geometry	algorithms	library	(CGAL)	and	Eigen.	

3) The	 dual-layer-cover	 system	 is	 inherited	 from	 NMM	 to	 form	 the	 first	 level	 of	

discretization	in	PNMM.	Manifold	elements	are	generated	at	this	stage.	Degrees	

of	 freedom	 and	 interpolation	 functions	 are	 defined	 on	 manifold	 elements.	

Particles	are	introduced	as	the	second	level	of	discretization.	A	group	of	particles	

are	generated	within	each	manifold	element	at	this	stage.	Material	parameters,	

body	forces,	external	loads,	and	boundary	conditions	are	defined	on	particles.	The	

global	 governing	 equation	 of	 PNMM	 in	matrix	 form	 is	 assembled	 by	 variables	

defined	 on	 both	 manifold	 elements	 and	 particles	 using	 a	 particle	 integration	

scheme.	The	mechanical	behaviors	of	particles	in	a	same	manifold	element	are	

determined	by	the	manifold	element,	and	there	are	no	forces	defined	between	

particles.	A	link	is	defined	between	two	neighboring	particles	to	represent	their	

continuous	status.	The	JHB	strength	model	is	implemented	and	applied	on	links	
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to	 determine	 the	 failure	 of	 a	 link.	 Failed	 links	 simulate	 the	 initiation	 and	

propagation	 of	 fractures.	 Enrichment	 are	 applied	 on	 the	 manifold	 elements	

containing	 a	 fracture	 tip.	 Contact	 forces	 are	 defined	 on	 a	 pair	 of	 neighboring	

particles	belong	to	different	blocks/objects.		

4) A	particle	 integration	scheme	 is	developed	 for	PNMM.	The	particle	 integration	

scheme	utilizes	existing	allocation	of	particles	and	requires	no	further	operations.	

Numerical	example	shows	 the	proposed	 integration	scheme	 is	 suitable	 for	any	

integrand	 on	 both	 convex	 and	 concave	 integration	 domains.	 The	 integration	

accuracy	 is	mainly	determined	by	the	number	of	particles,	and	affected	by	the	

size	distribution	as	well	as	the	position	of	particles,	especially	when	the	number	

of	particles	is	relatively	small.	

5) An	interpolation	function	enrichment	scheme	from	XFEM	has	been	successfully	

incorporated	into	PNMM	to	improve	the	accuracy	around	fracture	tips.	

6) The	Johnson-Holmquist-Beissel	(JHB)	model	is	implemented	to	simulate	the	rate-

dependent	behavior	of	rock	in	PNMM.	Parameters	in	the	model	are	determined	

with	reference	to	literature.	Numerical	examples	show	that	the	PNMM	coupled	

with	the	JHB	model	can	accurately	simulate	the	dynamic	response	of	rock	under	

different	loading/strain	rates.	

7) Calibration	examples	have	been	performed	to	verify	the	performance	of	PNMM	

for	both	static	and	dynamic	problems.	It	is	also	proved	that	the	accuracy	of	PNMM	

is	primarily	influenced	by	the	number	of	manifold	elements,	whereas	the	effect	

of	 particle	 resolution	 is	 limited.	However,	 enough	number	of	 particles	 are	 still	

necessary	to	guarantee	the	accuracy	of	the	particle	integration	scheme.	

8) Comparing	with	NMM,	 the	 proposed	method	 simplifies	 the	 contact	 operation	

between	 blocks,	 improves	 the	 flexibility	 in	 initiating	 and	 determining	 the	

propagation	path	of	fractures,	and	gains	the	ability	to	simulate	the	heterogeneity	

of	rock	materials.		

9) Comparing	with	PMM,	several	aspects	have	been	reclarified	and	improved	in	the	

proposed	model,	including	the	adoption	of	high-order	interpolation	functions,	the	
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development	of	 a	 particle	 integration	 scheme,	 an	enrichment	 function	 around	

fracture	tips,	an	improved	algorithm	for	the	generation	of	links,	the	unambiguous	

failure	of	links,	the	incorporation	of	a	rate-dependent	strength	model,	expanded	

applications	in	rock	dynamics,	and	improved	calculation	performance.	

	

Due	to	 its	characteristics,	PNMM	could	be	easily	applied	to	study	the	heterogeneity	of	

rock	materials,	the	initiation,	coalescence,	and	propagation	of	fractures,	the	detachment	

and	post-failure	behavior	of	 rock	 fragments,	 the	contact	between	rock	blocks,	and	the	

rate-dependent	behavior	of	rock,	making	it	a	promising	tool	for	modelling	the	dynamic	

fracturing	of	rock.	Therefore,	in	this	thesis,	PNMM	has	been	applied	to	study	the	spalling	

of	rock,	the	spalling-induced	rockburst	in	tunnels,	and	rock	scratching/cutting.	The	main	

conclusions	drawn	from	these	applications	are	summarized	as	follows:	

Rock	scratching	(Chapter	5)	

10) The	rock	scratching	in	both	ductile	and	brittle	modes	of	failure	could	be	simulated	

by	PNMM.	It	is	validated	that	at	an	intermediate	cutting	depth,	the	mode	of	rock	

scratching	 is	 in	the	transition	from	ductile	to	brittle,	the	pattern	of	rock	failure	

and	fluctuation	of	cutting	force	shows	both	characteristics	of	that	in	ductile	and	

brittle	mode.		

11) There	is	a	range	of	cutting	depth	at	which	the	mode	of	rock	scratching	is	in	the	

transition	 from	ductile	 to	brittle.	The	transitional	cutting	depth	range	could	be	

estimated	by	PNMM	from	the	result	of	MSE.	

12) The	effect	of	cutting	depth	on	rock	scratching	could	be	divided	into	three	phases.	

The	value	of	MSE	decreases	rapidly	when	the	cutting	depth	is	shallow,	remains	

approximately	constant	when	the	cutting	depth	 is	 intermediate,	and	decreases	

nonlinearly	at	an	intermediate	rate	in	deep	cuts.	

13) The	effect	of	 cutting	 speed	on	 rock	 scratching	 is	 significant	when	 the	dynamic	

response	 of	 rock	 is	 taken	 into	 consideration.	 The	 cutting	 force	 and	MSE	 both	

increase	with	the	increase	of	cutting	speed.	A	critical	cutting	speed	exists,	above	

which	 the	 increase	of	 cutting	 force	and	MSE	are	accelerated.	The	value	of	 the	
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critical	 cutting	speed	 is	believed	 to	be	 related	 to	 the	 relationship	between	the	

dynamic	compressive	strength	of	rock	and	strain	rates.	

14) The	effect	of	cutter	rake	angle	is	significant	on	cutting	force	but	moderate	on	MSE.	

The	actual	cutting	depth	is	found	to	be	increased	with	the	increase	of	cutter	rake	

angle,	which	leads	to	a	significant	difference	between	the	cutting	force	and	MSE	

when	the	cutter	rake	angle	is	great.	Besides,	there	exists	a	narrow	range	of	cutter	

rake	angle,	in	which	the	cutting	force	and	MSE	are	both	found	to	be	constant.	

Spalling	and	rockburst	(Chapter	6)	

15) The	spalling	of	long	rock	bars	could	be	successfully	simulated	by	PNMM,	since	the	

thickness	 of	 the	 first	 spall	 piece	 is	 accurately	 predicted	 and	 spall	 strengths	 at	

different	loading	rates	are	in	a	reasonable	range.	The	spalling	pattern	is	related	

to	 the	 type	 of	 the	wave	 applied	 on	 the	 bar.	When	 a	 decreasing	 or	 increasing	

triangular	wave	was	imposed,	the	second	spall	fracture	would	possibly	be	created	

on	the	remaining	part	of	the	bar	or	the	first	spall	piece	respectively.	Whereas	in	

the	case	where	a	symmetrical	triangular	wave	is	applied,	a	spalling	zone	instead	

of	a	single	spalling	fracture	will	be	generated.	

16) The	spalling	process	of	the	plate	impact	with	a	long	flyer	is	similar	to	that	of	long	

bars.	 In	this	case,	spalling	fractures	are	parallel	to	the	flyer	and	target,	and	the	

number	of	spalling	fractures	increases	with	the	increase	of	the	impact	velocity.	

When	a	short	flyer	is	adopted	to	impact	on	the	plate,	a	fracturing	zone	shorter	

than	the	flyer	will	be	formed,	and	several	spalling	pieces	will	be	extracted	from	

the	target	due	to	the	propagation	of	longitudinal	fractures.	

17) Rockburst	 could	 be	 triggered	 by	 a	 far-field	 dynamic	 disturbance	 in	 the	 tunnel	

subjected	to	static	in-situ	stresses	and	could	be	simulated	by	PNMM.	The	in-situ	

stress	provides	an	initial	stress	field	surrounding	the	tunnel.	A	compressive	stress	

field	 assists	 the	 tunnel	 in	 preventing	 rockburst,	 whereas	 a	 tensile	 stress	 field	

weakens	 the	 ability	 of	 the	 tunnel	 to	 withstand	 the	 dynamic	 disturbance.	 The	

dynamic	disturbance	 induces	 spalling	 fractures	near	 the	surface	of	 tunnel.	The	

ejection	of	rock	is	formed	by	spalling	fractures	that	propagate	to	the	surface	of	

tunnel.	
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18) The	initial	stress	field	near	the	horizontal	surface	of	tunnel	is	primarily	determined	

by	the	vertical	in-situ	stress.	When	the	vertical	in-situ	stress	is	much	lower	than	

the	horizontal	 one,	 the	horizontal	 surface	of	 tunnel	will	 be	under	 the	 state	of	

tension;	When	the	vertical	in-situ	stress	is	close	to	or	higher	than	the	horizontal	

one,	the	horizontal	surface	of	tunnel	will	be	under	the	state	of	compression.	The	

effect	of	the	lateral	pressure	coefficient	on	rockburst	is	not	monotonic.	

19) The	effect	of	the	depth	of	tunnel	on	rockburst	is	related	to	the	lateral	pressure	

coefficient.	If	the	horizontal	in-situ	stress	is	much	higher/lower	than	the	vertical	

one,	increasing	the	depth	of	tunnel	will	also	increase	the	possibility	of	rockburst	

in	tunnel;	If	the	horizontal	in-situ	stress	is	close	to	the	vertical	in-situ	stress,	the	

possibility	of	rockburst	will	be	decreased	by	increasing	the	depth	of	tunnel.		

20) When	talking	about	the	rockburst	in	a	deep	tunnel,	the	most	dangerous	situation	

is	 that	 there	 is	 a	 large	 difference	 between	 the	 horizontal	 and	 vertical	 in-situ	

stresses	and	the	dynamic	disturbance	comes	from	the	direction	of	the	higher	one.	

	

7.2 Recommendations	for	Future	Work	

Based	on	 the	development	of	PNMM	and	simulation	 results	obtained	 in	 this	 research,	

following	recommendations	for	future	work	are	outlines:	

1) Investigate	 the	 heterogeneity	 of	 rock	 materials.	 The	 heterogeneity	 could	 be	

defined	by	either	a	random	distribution	of	material	properties	among	particles	

(similar	to	RFPA)	or	a	meso-scale	structure.	In	the	second	scenario,	the	geometry	

information	of	aggregates	need	to	be	provided	 first.	Then,	particles	 locating	 in	

aggregates	are	assigned	with	different	material	parameters.	This	work	could	be	

an	 important	 application	 of	 PNMM	 in	 the	 future.	 In	 the	 next	 phase,	 a	 PNMM	

model	should	be	able	to	be	generated	from	a	CT	scanning	image.	The	effect	of	the	

variety	of	particle	size	and	particle	allocation	should	also	be	studied	in	the	scope	

of	this	work.	

2) Enhance	 the	 computational	 efficiency	 of	 PNMM	 by	 developing	 a	 parallelized	

version.	Both	central	processing	unit	 (CPU)	based	and	graphics	processing	unit	
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(GPU)	based	technologies	are	possible	to	be	adopted.	The	first	attempt	could	be	

made	on	solving	the	global	equation.	

3) Develop	an	explicitly	coupled	method	using	PNMM	and	NMM.	A	major	difference	

between	 PNMM	 and	 NMM	 is	 the	 introduction	 of	 particles.	 It	 is	 possible	 to	

introduce	particles	as	the	second	level	of	discretization	in	a	part	of	the	model,	and	

conducts	only	 the	 first	discretization	 in	 the	rest	portion	of	 the	model	with	 less	

interest,	e.g.,	 in	 far-field,	 in	the	domain	with	small	deformation,	 in	the	domain	

where	no	fracture	and	contact	happens,	etc.	

4) Extend	the	PNMM	code	to	three-dimensional	cases.	Some	formulae	proposed	for	

three-dimensional	PMM	in	(Sun,	2012)	could	be	borrowed.	The	extension	of	the	

proposed	particle	integration	scheme	to	three	dimensions	is	straightforward.	The	

three-dimensional	PNMM	could	be	applied	to	the	problems	that	do	not	obey	the	

plane	strain	and	plane	stress	assumptions,	e.g.,	the	projectile	penetration	in	rock	

plates.	

5) Incorporate	thermal	and	fluid	components	into	PNMM	and	investigate	coupled	

problems,	which	have	been	increasingly	important	in	rock	engineering.	

6) Based	on	the	results	in	Chapter	5,	the	transitional	cutting	depth	range	could	be	

thoroughly	studied.	The	effect	of	the	cutting	speed,	cutter	rake	angle,	and	rock	

properties	should	be	investigated	respectively.	Experimental	tests	are	better	to	

be	conducted	as	well	to	validate	the	simulation	results.		

7) Based	on	the	results	in	Chapter	6,	rockburst	induced	by	underground	excavation,	

i.e.	a	near-field	dynamic	disturbance,	could	be	further	investigated.	In	fact,	this	

type	of	rockburst	is	more	possibly	to	take	place	in	practice.	

8) The	application	of	PNMM	could	be	extended	to	the	stress	wave	propagation	in	

jointed	rock	masses,	which	is	also	an	important	topic	in	rock	dynamics.		
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Appendix	A 	Algorithm	for	the	Generation	

of	Links	

The	algorithm	for	the	generation	of	links	in	PNMM	is	given	in	this	appendix.	This	algorithm	

is	implemented	in	C++	as	a	subroutine	of	PNMM.	This	algorithm	is	based	on	the	Munjiza-

NBS	contact	detection	algorithm	(Munjiza	and	Andrews,	1998).	

	

Loop over all particles 

{ 

    find the maximum radius rmax; 

    find the minimum value of the x-coordinate of the centroid xmin; 

    find the minimum value of the y-coordinate of the centroid ymin; 

    find the maximum value of the x-coordinate of the centroid xmax; 

    find the maximum value of the y-coordinate of the centroid ymax; 

} 

 

The number of rows nrow = (ymax - ymin) / (2 * rmax); 

The number of columns ncol = (xmax - xmin) / (2 * rmax); 

 

Loop over all particles 

{ 

    Locate the particle in the cell (ix, iy); 

    place the particle onto the Yiy list; 

    mark the list Yiy “new”; 

} 

 

Loop over all particles 

{ 

    if the particle belongs to a “new” list Yiy 

    { 

        mark the list Yiy “old”; 

        Loop over all particles in list Yiy 

        { 
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            place the particle onto the corresponding list XixYiy; 

            mark the list XixYiy “new”; 

        } 

        Loop over all particles in list Yiy-1 

        { 

            place the particle onto the corresponding list XixYiy-1; 

            mark the list XixYiy-1 “new”; 

        } 

        Loop over all particles in list Yiy 

        { 

            if the particle i belongs to a “new” list XixYiy 

            { 

                mark the list XixYiy “old”; 

                place particles in list XixYiy, Xix-1Yiy, Xix-1Yiy-1, 

                    XixYiy-1, Xix+1Yiy-1 in list neighboring; 

                Loop over all particles in list neighboring 

                { 

                    if the particle is close enough to particle i 

                    { 

                        generate a link between two particles; 

                    } 

                } 

            } 

        } 

    } 

}	
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Appendix	B 	Overview	of	PNMM	Code		

An	overview	of	PNMM	code	 is	given	 in	this	appendix.	The	class	diagram	of	the	PNMM	

code	is	illustrated	in	Figure	Appendix	B.1a.	Particles	as	the	most	important	component	in	

PNMM	is	implemented	as	a	class	named	Particle_Disk.	A	snapshot	of	the	variables	and	

methods	 in	 this	 class	 is	 given	 in	 Figure	Appendix	B.1b.	 Links	as	another	 component	of	

PNMM	is	implemented	as	the	class	Link_DiskToDisk,	whose	variables	and	methods	are	

outlined	in	Figure	Appendix	B.1c.	

	

The	flowchart	and	detailed	calculation	process	of	PNMM	have	been	given	in	Section	3.9.	

Accordingly,	the	source	code	of	a	complete	calculation	process	is	presented	below.	The	

presented	process	is	for	a	dynamic	case	and	considers	the	failure	of	links.	Each	task	in	the	

calculation	 procedure	 is	 programmed	 as	 a	 method/function	 with	 a	 self-explanatory	

function	name.	

			

void ParticleModel::ProcessDynamicFailure(void) { 

    //pre-process 

    Mesh g_backgroundMesh, g_Model; 

ParticleModel g_ParticleModel; 

 

    g_Model.ReadModelMesh(); 

    g_backgroundMesh.GenerateBackgroundMesh(); 

    g_ParticleModel.SetBackground(g_backgroundMesh); 

    g_ParticleModel.ManifoldElementsGenerator(g_Model); 

    ParticlesGenerator(); 

    LinksGenerator(); 

    SeedFilling(); 

    ManifoldNodesGenerator(); 

    ManifoldElementsGenerator(); 

BlocksGenerator(); 

 

    ApplySettings();//apply some constants used in computation 

    DefineKinematicBoundary(); 

DefineLoadingConditions(); 
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    //calculation process 

    CheckBrokenLinks(); 

    ApplyFailureParameters(); 

    GenerateElasticMatrix(); 

for (unsigned int istep = 1; istep <= SETTINGS_H::stepNumber; 

     ++istep) { 

        GenerateElementMatrices(); 

        GenerateMassMatrices(); 

        ApplyKinematicBoundary(istep); 

        ApplyLoading(istep); 

        ApplyDynamicMatrices(); 

        AssembleStiffness(); 

        AssembleLoading(); 

        AssembleDegreeOfFreedom(); 

 

        LinearEquationsSolver(); 

 

        SetDOFResult(); 

        CalculateParticleDisplacementsAndUpdateCenters(istep); 

        CalculateParticleStrainAndStress(); 

        CalculateParticlePrincipalStrainAndStress(); 

        CalculateLinkStrainAndStress(); 

        CalculateLinkPrincipalStrainAndStress(); 

        KinematicsIterator();//compute variables in newmark-beta dynamic 

                               scheme 

        FailureCheck();//apply the JHB criterion 

        ParticleManifoldModelRegenerator(); 

 

        std::cout << "Time step " << istep << " finishes." << std::endl; 

} 

 

PostProcess_Print(); 

} 
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(a)	
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(b)	
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(c)	

Figure	Appendix	B.1	Overview	of	the	PNMM	code:	(a)	the	class	diagram;	(b)	a	snapshot	
of	the	particle	class;	(c)	a	snapshot	of	the	link	class	

	

	 	



Appendix	B.	Overview	of	PNMM	code	

	

192	

	

	

	



193	

	

Appendix	C 	Source	Code	of	the	Seed	

Filling	Method	in	PNMM	

The	seed	filling	method	is	an	image	processing	operation	in	computer	graphics.	It	is	used	

for	assignment	of	a	special	label	to	the	pixels	in	some	region	of	an	image,	for	example,	

changing	the	colour	of	selected	domain.	In	PNMM,	the	seed	filling	method	is	adopted	to	

generate	blocks	according	to	the	connectivity	between	particles,	as	well	as	to	detect	 if	

new	manifold	elements	need	to	be	generated	due	to	the	failure	of	 links.	The	recursive	

seed	filling	algorithm	is	implemented	through	the	vector	in	C++.	The	method	begins	with	

pushing	an	initial	seed	into	an	empty	vector,	and	then	repeats	the	procedure	as	below:	

1) Pop	the	top	element	(e.g.	a	particle)	out	of	the	vector;	

2) Mark	the	element	which	is	just	popped	out;	

3) Search	for	the	neighbours	of	the	marked	element.	 If	a	neighbour	has	not	been	

marked	before,	push	it	into	the	vector;	

4) End	if	the	vector	is	empty.	Otherwise,	go	back	to	the	first	step.	

More	details	of	the	seed	filling	method	are	available	in	(Sun,	2012).	The	source	code	of	

the	seed	filling	method	implemented	in	PNMM	is	given	below.	

//This function is to check how many blocks are formed by a group of particles. 

  Links between particles have been generated prior to executing this function. 

//Two particles sharing a link are a neighbour to each other. 

//m_particle: all particles stored in a vector 

//Particle_Disk: the class name of particles 

//filledSignal: whether the particle has been marked 

 

void StarCover::SeedFilling(void) { 

    vector<int> particleIndices; 

    for (auto iparticle : m_particles) 

        particleIndices.push_back(iparticle->GetIndex()); 

 

    vector<bool> filledSignal(m_particles.size(), false); 

    vector<Particle_Disk*> seedsQueue; 

    auto particlesInBlock = new vector<Particle_Disk*>; 

    int blockIndex = 1; 

    seedsQueue.push_back(m_particles.front()); 
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    particlesInBlock->push_back(m_particles.front()); 

    filledSignal.front() = true; 

m_particles.front()->IsInThisCoverAndBlock(make_pair(this->GetIndex(),  

                                           blockIndex)); 

 

while (find(filledSignal.begin(), filledSignal.end(), false) !=  

       filledSignal.end()) { 

        if (!seedsQueue.empty()) { 

            auto currentParticle = seedsQueue.back(); 

            seedsQueue.pop_back(); 

            int numberOfNeighbours = currentParticle->GetNumberOfNeighbours(); 

            for (int ineighbour = 0; ineighbour < numberOfNeighbours;  

                 ++ineighbour) { 

                for (int iparticle = 0; iparticle < m_particles.size(); 

                     ++iparticle) { 

                    if (m_particles[iparticle]->GetIndex() ==  

                        currentParticle->GetNeighbours()[ineighbour] && 

                        filledSignal[iparticle] == false) { 

                        seedsQueue.push_back(m_particles[iparticle]); 

                        particlesInBlock->push_back(m_particles[iparticle]); 

                        filledSignal[iparticle] = true; 

                        m_particles[iparticle]->IsInThisCoverAndBlock(make_pair( 

                            this->GetIndex(), blockIndex)); 

                        break; 

                    } 

                } 

            } 

        } else { 

            m_particlesInBlocks.push_back(*particlesInBlock); 

            particlesInBlock->clear(); 

            auto nextSeed = find(filledSignal.begin(), filledSignal.end(), 

                                 false); 

            seedsQueue.push_back(*(m_particles.begin() + (nextSeed –  

                                 filledSignal.begin()))); 

            particlesInBlock->push_back(*(m_particles.begin() + (nextSeed –  

                                        filledSignal.begin()))); 

            *nextSeed = true; 

            (*(m_particles.begin() + (nextSeed - filledSignal.begin()))) 

             ->IsInThisCoverAndBlock(make_pair(this->GetIndex(), ++blockIndex)); 

        } 

    } 

 

if (!particlesInBlock->empty())  

    m_particlesInBlocks.push_back(*particlesInBlock); 

    delete particlesInBlock; 

} 
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Appendix	D 	Matrix	and	Block	Matrix	in	

the	Source	Code	of	PNMM	

Since	the	formulation	of	PNMM	is	derived	in	matrix	form,	as	can	be	seen	in	Section	3.3.2,	

frequent	operations	to	matrices	in	PNMM	are	conducted.	Therefore,	in	order	to	abstract	

the	programming	flow	of	the	PNMM	code,	two	template	classes	Matrix	and	BlockMatrix	

are	implemented	for	element	matrices	and	global	matrices	respectively.		

	

The	source	code	of	the	template	class	Matrix	is	given	below.	Only	functions	concerning	

the	linear	algebra	are	given	in	detail.	

template <typename valuetype> 

class Matrix { 

    /// \name Constructors and Destructor 

public: 

Matrix(void) = default; 

~Matrix(void) = default; 

 

    /// \name Size Operations 

public: 

    /// \brief Get the size of the matrix.  

/// \return A pair of integers, the former is the row number while the  

            latter is the column number. 

    pair<unsigned int, unsigned int> GetSize(void) const; 

    /// \brief Check if the matrix is empty. 

    /// \return True for empty, and false for non-empty. 

    inline bool IsEmpty(void) const; 

    /// \brief Check if the matrix is square. 

    /// \return True for square, and false for non-square. 

    bool IsSquare(void) const; 

    /// \brief Check if the matrix is symmetrical. 

    /// \return True for empty, and false for non-symmetrical. 

    bool IsSymmetrical(void) const; 

    /// \brief Check if the matrix is a zero matrix. 

    /// \return True for zero, false for non-zero. 

    bool IsZero(void) const; 

 

    /// \name Type Operations 
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public: 

    /// \brief Convert a 1X1 matrix to a basic type. 

    /// \return The only element in the matrix. 

    inline valuetype ConvertToBasicType(void) const; 

    /// \brief Convert a one-dimension matrix to a vector. 

    /// \return The converted vector. 

    vector<valuetype> ConvertToVector(void) const; 

 

    /// \name Mathematics 

public: 

    Matrix<valuetype> operator=(const Matrix<valuetype> &anotherMatrix); 

    Matrix<valuetype> operator+=(const Matrix<valuetype> &anotherMatrix); 

    Matrix<valuetype> operator-=(const Matrix<valuetype> &anotherMatrix); 

    Matrix<valuetype> operator*=(valuetype multiplier); 

    Matrix<valuetype> operator/=(valuetype divisor); 

    Matrix<valuetype> operator*=(const Matrix<valuetype> &anotherMatrix); 

    Matrix<valuetype> operator+(const Matrix<valuetype> &anotherMatrix) const; 

    Matrix<valuetype> operator-(const Matrix<valuetype> &anotherMatrix) const; 

    Matrix<valuetype> operator*(valuetype multiplier) const; 

    Matrix<valuetype> operator/(valuetype divisor) const; 

    Matrix<valuetype> operator*(const Matrix<valuetype> &anotherMatrix) const; 

    bool operator==(const Matrix<valuetype> &anotherMatrix) const; 

    bool operator!=(const Matrix<valuetype> &anotherMatrix) const; 

 

    /// \name Linear Algebra 

public: 

    Matrix<valuetype> Transposition(void) const;///< Get the transpose matrix. 

valuetype Cofactor(unsigned int rowIndex, unsigned int colIndex) const;///< 

Get the cofactor at any given position, mainly used to get the determinant. 

    valuetype Determinant(void) const;///< Get the determinant. 

    Matrix<valuetype> Adjugate(void) const;///< Get the adjugate matrix. 

    Matrix<valuetype> Inverse(void) const;///< Get the inverse matrix. 

 

    /// \name Add and Delete Elements 

public: 

    inline void PushBackRow(const vector<valuetype> &newRow); 

    void PushBackRows(const Matrix<valuetype> &anotherMatrix); 

    void PushBackCol(const vector<valuetype> &newCol); 

    void PushBackCols(const Matrix<valuetype> &anotherMatrix); 

    inline void PopBackRow(void);///< Delete the last row. 

    void PopBackCol(void);///< Delete the last column. 

    inline void InsertRow(unsigned int rowIndex, const vector<valuetype> 

&newRow); 

void InsertCol(unsigned int colIndex, const vector<valuetype> &newCol); 

inline void EraseRow(unsigned int rowIndex);///< Erase the row. 

    void EraseCol(unsigned int colIndex);///< Erase the column. 
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    /// \name Access Element(s)  

public: 

    inline vector<vector<valuetype>> GetValues(void) const; 

    inline vector<valuetype> GetRow(unsigned int rowIndex) const; 

    inline vector<valuetype> &operator()(unsigned int rowIndex); 

    vector<valuetype> GetCol(unsigned int colIndex) const; 

    vector<valuetype> &operator[](unsigned int colIndex); 

inline valuetype GetElement(unsigned int rowIndex, unsigned int colIndex) 

       const; 

    inline valuetype &operator()(unsigned int rowIndex, unsigned int colIndex); 

    inline vector<valuetype> GetFrontRow(void) const; 

    vector<valuetype> GetFrontCol(void) const; 

    inline vector<valuetype> GetBackRow(void) const; 

    vector<valuetype> GetBackCol(void) const; 

 

    /// \name Memory Management 

public: 

    void Resize(unsigned int rowSize, unsigned int colSize); 

    void Reserve(unsigned int rowSize, unsigned int colSize); 

    void ShrinkToFit(void);///< Similar to vector's shrink_to_fit(). 

    void Clear(void);///< Similar to vector's clear(). 

 

    /// \name Printer 

public: 

    void Print(void) const;///< Print the matrix to screen. 

 

    /// \name Private Members 

protected: 

    bool CheckSize(void) const;///< Check if the vectors have a same size. 

 

protected: 

    vector<vector<valuetype>> values;///< Store elements. 

    vector<string> rowLabels;///< Store row labels. 

    vector<string> colLabels;///< Store column labels. 

}; 

 

// Linear Algebra 

template<typename valuetype> 

Matrix<valuetype> Matrix<valuetype>::Transposition(void) const { 

    Matrix<valuetype> result; 

for (unsigned int colIndex = 0; colIndex < this->GetSize().second; 

     ++colIndex) { 

        vector<valuetype> tempRow; 

        for (unsigned int rowIndex = 0; rowIndex < this->GetSize().first;  

             ++rowIndex) 
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            tempRow.push_back(values[rowIndex][colIndex]); 

        result.values.push_back(tempRow); 

    } 

    return result; 

} 

 

template<typename valuetype> 

valuetype Matrix<valuetype>::Cofactor(unsigned int rowIndex, unsigned int  

    colIndex) const { //the parameters rowIndex and colIndex start from 0 

    Matrix<valuetype> tempMatrix(*this); 

    auto deletedRow = tempMatrix.values.begin() + rowIndex; 

    tempMatrix.values.erase(deletedRow); 

 

    unsigned int rowSize = tempMatrix.GetSize().first; 

    for (unsigned int irow = 0; irow < rowSize; ++irow) { 

        auto deletedCol = tempMatrix.values[irow].begin() + colIndex; 

        tempMatrix.values[irow].erase(deletedCol); 

    } 

    return tempMatrix.Determinant() * pow(-1, rowIndex + colIndex); 

} 

 

template<typename valuetype> 

valuetype Matrix<valuetype>::Determinant(void) const { 

    if (!this->IsSquare()) { 

        cout << "This is not a square matrix." << endl; 

        return -1; 

    } 

    const unsigned int rowIndex = 0; 

    valuetype result = 0.; 

    if (this->GetSize().first > 1) { 

        for (unsigned int colIndex = 0; colIndex < this->GetSize().second;  

             ++colIndex) { 

            valuetype cofactorValue; 

            cofactorValue = this->Cofactor(rowIndex, colIndex); 

            result += values[rowIndex][colIndex] * cofactorValue; 

        } 

        return result; 

    } 

    return values[0][0]; 

} 

 

template<typename valuetype> 

Matrix<valuetype> Matrix<valuetype>::Adjugate(void) const { 

    Matrix<valuetype> result; 

for (unsigned int rowIndex = 0; rowIndex < this->GetSize().first;  

     ++rowIndex) { 
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        vector<valuetype> tempRow; 

        for (unsigned int colIndex = 0; colIndex < this->GetSize().second;  

             ++colIndex) 

            tempRow.push_back(this->Cofactor(rowIndex, colIndex)); 

        result.values.push_back(tempRow); 

    } 

    return result.Transposition(); 

} 

 

template<typename valuetype> 

Matrix<valuetype> Matrix<valuetype>::Inverse(void) const { 

    if (this->Determinant() == 0.) { 

        cout << "This matrix is singular." << endl; 

        return *this; 

    } 

    return this->Adjugate() / this->Determinant(); 

} 

	

The	source	code	of	the	template	class	BlockMatrix	is	given	below.	The	implementation	

of	functions	is	not	presented	in	detail.	But	comments	are	given	to	explain	all	the	functions.	

template<typename valuetype> 

class BlockMatrix { 

public: 

    BlockMatrix(void) = default;///< Default constructor. 

    ~BlockMatrix(void) = default;///< Default destructor. 

 

public: 

    /// \brief Initialize the block matrix with zeros. 

    /// \param There are four parameters: 

    /// -# The number of blocks in row. 

    /// -# The number of blocks in column. 

    /// -# The row size of every block. 

    /// -# The column size of every block. 

void Initialize(unsigned int rowSize, unsigned int colSize,  

                unsigned int blockRowSize, unsigned int blockColSize); 

    /// \brief Similar to vector's clear(). 

    void Clear(void); 

    /// \brief Equals the equivalent matrix to the block matrix. 

    /// \warning After modifying the block matrix, this function must be called. 

    void RefreshEquivalentMatrix(void); 

    /// \brief Equals the block matrix to its equivalent matrix. 

/// \warning After modifying the equivalent matrix, this function must be  

             called. 

    void Refresh(void); 
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public: 

    /// \brief Check if the block matrix is empty. 

    inline bool IsEmpty(void) const; 

    /// \brief Check if the block matrix is square. 

    bool IsSquare(void) const; 

    /// \brief Get the size of the block matrix.  

/// \return A pair of integers, the former is the row number while the  

            latter is the column number. 

    /// \note The returned size indicates the amount of blocks. 

    std::pair<unsigned int, unsigned int> GetSize(void) const; 

    /// \brief Get the size of the blocks.  

/// \return A pair of integers, the former is the row number while the  

            latter is the column number. 

    /// \note The returned size indicates the size of every block. 

    std::pair<unsigned int, unsigned int> GetBlockSize(void) const; 

    /// \brief Get the block at the given position. 

inline Matrix<valuetype>& operator()(unsigned int rowIndex,  

                                     unsigned int colIndex); 

    /// \brief Get the corresponding normal matrix, elements are not changed. 

    Matrix<valuetype>& GetEquivalentMatrix(void); 

 

protected: 

    bool CheckSize(void) const;///< Check if the block matrix has a right size. 

    bool CheckBlockSize(void) const; ///< Check if every block has a same size. 

bool EquivalentMatrixUpToDate(void) const;///< Check if the equivalent  

                       matrix is the same with the block size in value. 

 

protected: 

    std::vector<std::vector<Matrix<valuetype>>> matrices; 

    Matrix<valuetype> equivalentMatrix; 

}; 
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Appendix	E 	Solving	the	Global	Equation	

The	global	equation	(Eq.15)	in	PNMM	is	a	system	of	linear	equations	represented	in	the	

matrix	form.	It	is	solved	by	incorporating	a	third-party	library	Eigen	(2017)	into	the	source	

code	of	PNMM.	As	a	C++	template	library	developed	for	linear	algebra,	Eigen	provides	a	

good	support	for	sparse	matrices	in	large	size,	which	meets	the	demand	of	PNMM	in	most	

cases.	Specifically,	a	conjugate	gradient	solver	for	sparse	matrices	in	Eigen	is	adopted	by	

PNMM.	This	solver	is	based	on	the	indirect	or	iterative	version	of	the	conjugate	gradient	

(CG)	method	(Saad,	2003),	whose	algorithm	will	be	briefly	introduced	in	this	appendix.	

	

Suppose	the	following	system	of	linear	equations	is	to	be	solved	

	 ± ∙ @ = j	 (64)	

where	A	is	a	known	symmetric,	positive	definite,	and	real	matrix,	b	is	a	known	vector,	and	

x	is	the	vector	to	be	solved.	

	

Starting	from	an	input	vector	x0,	which	can	either	be	an	initial	solution	with	guess	or	simply	

taken	as	a	vector	of	0,	we	get	

	

≤. = j − ±@.

≥. = ≤.

¥ = 0

	 (65)	

Then,	the	iteration	starts	by	calculating	following	variables	in	sequence		

	 sµ =
≤µ
=≤µ

≥µ
=±≥µ

	 (66)	

	 @µ() = @µ + sµ≥µ 	 (67)	

	 ≤µ() = ≤µ − sµ±≥µ 	 (68)	
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If	the	value	of	 ≤µ()
= ≤µ()	is	sufficiently	small,	then	the	vector	@µ()	is	the	solution	to	Eq.64.	

Otherwise,	calculate	following	variables	and	go	back	to	Eq.66	to	repeat	the	iteration		

	 tµ =
≤µ()
= ≤µ()
≤µ
=≤µ

	 (69)	

	 ≥µ() = ≤µ() + tµ≥µ 	 (70)	

	 ¥+= 1	 (71)	

	

A	maximum	number	of	times	of	iteration	is	given	before	the	calculation.	If	the	solver	fails	

to	converge,	another	preconditioned	conjugate	gradient	(PCG)	method	will	be	executed.	

The	PCG	method	has	been	implemented	as	a	subroutine	in	the	source	code	of	PNMM.	A	

preconditioner	based	on	the	diagonal	entries	of	matrix	A	 is	adopted.	The	work	flow	of	

PCG	method	is	similar	to	CG	method,	by	simply	replacing	equations	(65),	(66),	(69),	and	

(70)	with	following	equations	respectively	

	

≤. = j − ±@.

≥. = ^,∂≤.

¥ = 0

	 (65’)	

	 sµ =
≤µ
=^,∂≤µ
≥µ
=±≥µ

	 (66’)	

	 tµ =
^,∂≤µ()

=
≤µ()

^,∂≤µ =≤µ
	 (69’)	

	 ≥µ() = ^,∂≤µ() + tµ≥µ 	 (70’)	

where	M	is	the	preconditioner.		

	

These	two	solvers	have	been	capable	of	solving	all	the	problems	in	this	thesis.	The	source	

code	 of	 two	 solvers	 are	 given	 below	 as	 two	 functions	 in	 class	 Calculator.	 The	 term	

Matrix	 is	a	class	template	defined	in	the	source	code	of	PNMM.	It	defines	the	variable	

type	of	matrix	and	implements	useful	operations.	
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// The Eigen solver based on CG method 

void Calculator::Calculator_Eigen(const Matrix<double> &A, vector<double> &x, 

const vector<double> &b) { 

    auto sizeOfA = A.GetSize(); 

     

    assert(A.IsSquare()); 

    assert(sizeOfA.first == x.size()); 

    assert(sizeOfA.first == b.size()); 

 

    vector<Eigen::Triplet<double>> nonZeros; 

    nonZeros.reserve(sizeOfA.first * sizeOfA.second); 

    for (int irow = 0; irow < sizeOfA.first; ++irow) { 

        for (int icol = 0; icol < sizeOfA.second; ++icol) { 

            if (A.GetElement(irow, icol) != 0.)  

                nonZeros.push_back(Eigen::Triplet<double>(irow, icol,  

                    A.GetElement(irow, icol))); 

        } 

    } 

    Eigen::SparseMatrix<double> stiffness(sizeOfA.first, sizeOfA.second); 

    stiffness.setFromTriplets(nonZeros.begin(), nonZeros.end()); 

 

    Eigen::VectorXd loading(b.size()); 

    for (int i = 0; i < b.size(); ++i) 

        loading[i] = b[i]; 

 

    Eigen::VectorXd unknown(x.size()); 

 

    Eigen::ConjugateGradient<Eigen::SparseMatrix<double>> cgEigenSolver; 

    cgEigenSolver.compute(stiffness); 

    unknown = cgEigenSolver.solve(loading); 

 

    for (int i = 0; i < unknown.size(); ++i) 

        x[i] = unknown[i]; 

} 

 

//The solver based on PCG method 

void Calculator::Calculator_PCG(const Matrix<double> &A, vector<double> &x, 

const std::vector<double> &b) { 

    auto sizeOfA = A.GetSize(); 

     

    assert(A.IsSquare()); 

    assert(sizeOfA.first == x.size()); 

    assert(sizeOfA.first == b.size()); 

 

    int iterationTimes = 0; 

    double rLength; 
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    Matrix<double> M; 

    vector<double> r, z, p; 

    double alpha, beta; 

 

M.Resize(sizeOfA.first, sizeOfA.second); 

//M is the preconditioner 

    for (int irow = 0; irow < sizeOfA.first; ++irow) 

        M(irow, irow) = A.GetElement(irow, irow); 

    r = b; 

z = (M.Inverse() *  

     MATRIX_H::ConvertVectorToVerticalMatrix(r)).ConvertToVector(); 

    p = z; 

    x.clear(); 

    x.resize(b.size(), 0.); 

 

    do { 

        alpha = (MATRIX_H::ConvertVectorToVerticalMatrix(r).Transposition() *  

            MATRIX_H::ConvertVectorToVerticalMatrix(z)).ConvertToBasicType() /  

            (MATRIX_H::ConvertVectorToVerticalMatrix(p).Transposition() * A *  

            MATRIX_H::ConvertVectorToVerticalMatrix(p)).ConvertToBasicType(); 

        x = (MATRIX_H::ConvertVectorToVerticalMatrix(x) + alpha *  

             MATRIX_H::ConvertVectorToVerticalMatrix(p)).ConvertToVector(); 

        beta = 1. 

            / (MATRIX_H::ConvertVectorToVerticalMatrix(z).Transposition() *  

               MATRIX_H::ConvertVectorToVerticalMatrix(r)).ConvertToBasicType(); 

        r = (MATRIX_H::ConvertVectorToVerticalMatrix(r) - alpha * A *  

             MATRIX_H::ConvertVectorToVerticalMatrix(p)).ConvertToVector(); 

        rLength =  

            sqrt((MATRIX_H::ConvertVectorToVerticalMatrix(r).Transposition() *  

            MATRIX_H::ConvertVectorToVerticalMatrix(r)).ConvertToBasicType()); 

        z = (M.Inverse() *  

             MATRIX_H::ConvertVectorToVerticalMatrix(r)).ConvertToVector(); 

        beta *= (MATRIX_H::ConvertVectorToVerticalMatrix(z).Transposition() *  

            MATRIX_H::ConvertVectorToVerticalMatrix(r)).ConvertToBasicType(); 

        p = (MATRIX_H::ConvertVectorToVerticalMatrix(z) + beta *  

             MATRIX_H::ConvertVectorToVerticalMatrix(p)).ConvertToVector(); 

} while (++iterationTimes < GLOBALVARIABLES_H::equationSolverIterationTimes  

         && rLength > GLOBALVARIABLES_H::error); 

} 
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Appendix	F 	Post-process	of	PNMM	

In	the	post-process	of	PNMM,	simulation	results	are	written	by	a	subroutine	of	PNMM	

into	a	text	file,	which	is	later	processed	by	ParaView	for	visualization.		ParaView	(2017)	is	

an	open-source,	multi-platform	data	analysis	and	visualization	application.	It	supports	the	

import	 of	 data	 in	 several	 formats.	 The	 interface	 between	 PNMM	and	 ParaView	 is	 the	

Visualization	Toolkit	(VTK)	file.		

	

The	format	of	the	VTK	file	should	be	strictly	followed.	An	example	of	the	VTK	file	written	

by	PNMM	is	given	below.		

	

# vtk DataFile Version 2.0  

An example of rock slope 

ASCII  

DATASET UNSTRUCTURED_GRID 

 

n File Header 

POINTS  27659  float  

0.073258  5.958376  0.000000 

… 

1.739018  0.607733  0.000000 

 

n Particle 

centroid 

CELLS  44401  133203   

2  0  322 

… 

2  24857  7842 

CELL_TYPES  44401 

3  

…  

3 

 

n Link 

POINT_DATA  27659 

SCALARS  radius  float  1  

n Particle 

radius 
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LOOKUP_TABLE  default   

0.026360 

… 

0.017555 

 

VECTORS displacements float  

0.00020562578  -5.3271651e-07  0. 

… 

0.00014568978  -4.5647657e-07  0. 

 

n Particle 

results 

(vector form) 

SCALARS  X-stress  float  1 

LOOKUP_TABLE  default 

4.7480834e+005 

… 

3.5765755e+005 

 

n Particle 

results 

(scalar form) 

CELL_DATA  44401 

SCALARS  link_status  int   

LOOKUP_TABLE  default   

1 

… 

1 

n Link status 
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