
Flow-Induced Vibration of a Circular
Cylinder Undergoing Rotary Motions

by

Ka Wai Lawrence Wong

A Thesis submitted to Monash University

for the degree of

Doctor of Philosophy

August 2017

Department of Mechanical and Aerospace Engineering

Monash University





Notices

1. Under the Copyright Act 1968, this thesis must be used only under the normal conditions of
scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor
should it be copied or closely paraphrased in whole or in part without the written consent of
the author. Proper written acknowledgement should be made for any assistance obtained from
this thesis.

2. I certify that I have made all reasonable efforts to secure copyright permissions for third-party
content included in this thesis and have not knowingly added copyright content to my work
without the owner’s permission.

iii





This thesis is dedicated to my parents

Eric Wong,

and

Willa Lam.





Statement of Originality

I, Ka Wai Lawrence Wong, declare that this thesis is my own work and contains no material that
has been accepted for the award of a degree or diploma in this, or any other, university. To the
best of my knowledge and belief, information derived from the published and unpublished work of
others has been acknowledged in the text of the thesis and a list of references is provided in the
bibliography.

Can ng

Submitted: 18 August 2017

vii



viii



Abstract

This thesis investigates the effect of active vortex-induced vibration (VIV) suppression methods on an
elastically-mounted circular cylinder over a range of flow and rotary forcing parameters. Two active
suppression methods are of particular interest, one involves forcing the cylinder to undergo constant
rate rotation and the other involves forcing the cylinder to undergo sinusoidal rotary oscillation.
Consequently, this thesis consists of two main components. The first component focuses on constant
rate rotation. Using displacement and imaging data, the dynamic response and wake structure
of an elastically-mounted circular cylinder undergoing crossflow VIV and constant rate rotation
is studied. The second component characterises the dynamic response and wake structure of an
elastically-mounted circular cylinder undergoing crossflow VIV and sinusoidal rotary oscillations.

In order to characterise the response and wake of a rotating cylinder, a low-friction air bearing
was used to elastically-mount the test cylinder such that it oscillations only in the crossflow direction.
A rotation rig was designed and built to control the rotary motion of the cylinder.

Active VIV suppression methods have been studied in the past with varying level of effectiveness.
Constant rate rotation is of particular interest to researchers due to its simplicity and relevance to
industrial applications such as offshore oil and gas exploration. A number of studies involve rotating
a rigid cylinder have shown its ability to suppress vortex shedding, which is a key component to
VIV. Limited studies have been done to examine the effect of constant rotation on an elastically-
mounted cylinder. Of the few studies done, they are limited to very low Reynolds numbers. The
present study investigates the effectiveness of constant rotation on an elastically-mounted cylinder
at higher Reynolds numbers where the intrinsic flow characteristics are different. Results from the
present study showed that at sufficiently high rates of rotation, vortex shedding and large amplitude
vibrations ceases. Constant rate rotation is found to introduce asymmetry to some of the known
VIV wake patterns. Some new wake structures were also observed. The dynamic response of the
cylinder undergoing rotation are generally different to that of a non-rotating cylinder. Compared to
similar studies at very low Reynolds numbers, results from the present study exhibits some similar
trends for some response variables.

The second active suppression technique involves sinusoidal rotary oscillations. A number of
studies have been done on rigid cylinders and found rotary oscillation to be very effective at sup-
pressing large fluid forces at certain rotary forcing parameters. One other study was done on an
elastic body at a very low Reynolds number. The present study showed that previously observed re-
sponse trends continue at higher Reynolds numbers. At certain combinations of forcing parameters,
large amplitude oscillations are suppressed. The wake structure from imaging results showed that
an elastically-mounted cylinder undergoing rotary oscillations is generally different to those seen in
non-rotating VIV and rigid rotary oscillation studies.
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Nomenclature

English Symbols

Symbol Description

A Aspect ratio

Am Velocity ratio

Ao Initial displacement in free decay tests

A∗ Normalised transverse oscillation amplitude

A∗10 Mean of the highest 10% of normalised transverse oscillation amplitude

A∗max Maximum normalised transverse oscillation amplitude

c Damping coefficient

CA Potential flow added-mass coefficient

Cpot Potential force coefficient

CL Lift coefficient of a rotating cylinder

C̄L Time-averaged lift coefficient of a rotating cylinder

CL,max Maximum lift coefficient of a rotating cylinder

Cv Vortex force coefficient

Cv,RMS Root mean square values of the vortex force coefficient

Cy Total lift force coefficient

Cy,RMS Root mean square values of the total lift force coefficient

C̄y Time-averaged lift coefficient

dopt Optimal spatial displacement

dκ Distance measurement from ruler test

D Cylinder diameter

DOF Degree of freedom

DAQ Data acquisition

fd Damped natural frequency in vacuum (Hz)

Continued on next page...
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Continued from previous page...

Symbol Description

fls Large-scale vortex shedding frequency (Hz)

fn Natural frequency of an oscillating system (Hz)

fna Natural frequency of an oscillating structure in vacuum (Hz)

fnw Natural frequency of an oscillating structure in water (Hz)

fosc Rotary forcing frequency (Hz)

fpump Pump frequency of water channel (Hz)

fsh Vortex shedding frequency (Hz)

f Oscillation frequency (Hz)

fVIV Oscillation frequency of a non-rotating cylinder undergoing vortex-induced vi-
bration (Hz)

fr Normalised forcing frequency

fSt Strouhal frequency, the dominant vortex shedding frequency (Hz)

f∗ Normalised oscillation frequency

f∗rot Rotary forcing frequency ratio (normalised by the natural frequency of an oscil-
lating structure in water, fnw)

f∗rot,VIV Rotary forcing frequency ratio (normalised by the oscillation frequency of a cylin-
der undergoing non-rotating VIV, fVIV)

FL Total lift force

Fpot Potential force component

Fvor Vortex force component

Fy Transverse lift force

FIV Flow-induced vibration

FFT Fast Fourier transform

i, j, k Spatial coordinate induces

k Spring constant or structural stiffness

l Cylinder length

lch Characteristic length

lms Immersed length

lFS Free-surface water level

LVDT Linear variable differential transformer

m Mass of an oscillating system

Continued on next page...
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Continued from previous page...

Symbol Description

mfld Mass of the fluid displaced by an immersed body

mosc Total mass of an oscillation structure

mA Added mass

m∗ Mass ratio

m∗crit Critical mass ratio

m∗ζ Non-dimensionalised mass-damping parameter

px Pixels

PIV Particle image velocimetry

POD Proper orthogonal decomposition

PSD Power spectra density

Re Reynolds number

Rblock Blockage ratio

RMS Root mean square value

Sf Forcing Strouhal number

St Strouhal number

t Time

T Oscillation period

Td Damped oscillation period

Tmod Modulation period

TTL Transistor-transistor logic

~u Three-dimensional velocity fields in x-y-z Cartesian coordinates

U∞ Free-stream velocity

U∗ Reduced velocity

vθ Peak tangential velocity of the cylinder surface

V Voltage

VIV Vortex-induced vibration

x, y, z Rectangular Cartesian coordinates in space (mm)

ȳ Time-averaged transverse displacement

y∗ or y/D Normalised transverse displacement

y′ Mean-subtracted transverse displacement

Greek Symbols

Symbol Description

§ Thesis section

Continued on next page...
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Continued from previous page...

Symbol Description

α Normalised rotation rate

αcrit Critical noramlised rotation rate

∆t PIV time interval between each image pair

δ Ratio between any two consecutive amplitude peaks

δAm Mean relative error of velocity ratio for a rotary oscillating cylinder

δω Mean relative error of angular velocity for a rotating cylinder

κ Magnification Factor

λ Free decay rate

ν Kinematic viscosity

Ω Normalised peak rotation rate

~ω Vorticity

ω Angular frequency of transverse oscillation

ωd Damped natural angular frequency

ωin Motor input

ωout Rotary encoder output

ωn Angular natural frequency

ωnw Undamped natural angular frequency

ωrc Angular velocity of a rotating cylinder

φ Proper orthogonal decomposition temporal coefficients

φT Total phase angle, defined as the phase angle between the transverse lift force
and cylinder displacement

φV Vortex phase angle, defined as the phase angle between the vortex force compo-
nent and cylinder displacement

ρ Density

θdev Rotational deviation in rotary oscillations

ζ Structural damping ratio

ζa Structural damping ratio measured in air

ζd Total damping

ζsw Structural damping ratio with added mass effect
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Chapter 1

Introduction

1.1 Overview

Flow-induced vibration (FIV) of bluff bodies is a phenomenon that surrounds us. In windy condi-
tions, FIV can be observed from the swaying of television antennae and flag poles to the span of
power cables suspended between support towers. These are examples of the body vibration caused
by fluctuating forces generated by a moving fluid. While these examples may seem gentle and
harmless; those encountered in engineering applications can have severe consequences. Common
examples of FIV seen in engineering applications are cylinder arrays in a nuclear power generator
cooling system, tall civil structures such as chimneys and riser tubes and floating structures used
in offshore engineering. Flow-induced vibration can be a problem that becomes critical when they
have a negative impact on the fatigue life of structures, which has the potential to cause catastrophic
structural failures. The best known example of structure failure caused by FIV is the collapse of
the original Tacoma Narrows Bridge. In high-winds the structure was excited causing large body
oscillations that led to the destruction of the bridge in the 1940’s (Billah & Shinozuka 1991).

Researchers have spent decades studying and predicting FIV. Due to its unpredictable nature,
designing against FIV often involves active and passive suppression devices or large safety factors.
These solutions usually increase the cost of engineering projects and can hinder their progress and
operational efficiency. In the past century, research has been conducted to further our understanding
of FIV of bluff bodies. Much of this research was oriented towards finding active and passive FIV
suppression techniques.

Two common forms of FIV are Vortex-induced vibration (VIV) and galloping. Vortex-induced
vibration is caused by the shedding of vortices in the wake of a body that subsequently causes
structural vibration. Due to its potential to have a negative effect on engineering structures VIV
has been extensively studied. The current paradigm of VIV research owes its origin to pioneering
work by Feng (1968). Many studies have concentrated on characterising FIV under various flow and
geometric conditions, including those likely achieve active and passive suppression. These have been
reviewed by Griffin et al. (1973); Blevins (1977); Bearman (1984); Carberry et al. (2001); Sarpkaya
(2004); Williamson & Govardhan (2004a); Naudascher & Rockwell (2005). Galloping occurs when
the cross-sectional geometry of the body is asymmetric. This makes the body aerodynamically
unstable to oscillations transverse to the direction of the fluid flow (Parkinson & Wawzonek 1981).

Vortex-induced vibration occurs when vortices shed alternately from a bluff body to produce
a wake. These vortices generate regions of low pressure resulting in fluctuating forces that act
on the body. For any elastically-mounted or flexible bodies this results in the body vibrating.
As vortex shedding is the result of flow instabilities VIV is intrinsically an unstable phenomenon
(Naudascher & Rockwell 2005) that occurs over a range of flow velocities. Within this range, the body
oscillation frequency and vortex-shedding frequency will synchronise with the natural frequency of
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the oscillating structure, which results in large body oscillations. This phenomenon is known as ‘lock-
in’. Under lock-in, the vortex-shedding frequency of an elastically-mounted body can substantially
deviate from the vortex-shedding frequency of a stationary cylinder. As a result of added-mass
effects, the body oscillation frequency can also deviate from the vortex-shedding frequency of a
stationary cylinder under lock-in (Williamson & Govardhan 2004a).

Galloping is characterised by low-frequency body oscillations in which the amplitude monoton-
ically increases with flow velocity. Nemes et al. (2012) showed a square section cylinder with an
angle of attack that is asymmetric to the oncoming fluid flow can undergo combinations of VIV and
galloping. When symmetry is broken, a mixed-mode response was found. This response is accom-
panied by a new amplitude response branch where its response is larger than those observed in the
‘upper’ amplitude response branch in VIV. The frequency response at this higher branch is lower
at half that of VIV responses; a behaviour that resembles those of galloping. As a result, the study
showed features of both VIV and galloping. Of particular interest to the current study is VIV of
a circular cylinder. This geometry was chosen not because it is symmetric but could produce flow
asymmetries by other means independent of geometry. One method of introducing flow asymmetries
is to impose a forced, rotary motion to the body such as forced constant rotation and forced rotary
oscillation.

Over the past century, a rigidly-mounted circular cylinder undergoing forced rotation has been
studied and reviewed by (e.g. Prandtl & Tietjens (1934); Swanson (1961); Coutanceau & Menard
(1985); Mittal & Kumar (2003); Rao et al. (2013)) due to its potential to manipulate the wake of
the body. When a cylinder in a flow is rotated about its axis it experiences an asymmetric pressure
distribution. This is caused by the cylinder experiencing higher velocity on the side where the
rotational velocity adds to the free-stream, whereas on the other side the rotational and free-stream
velocities are in opposite directions. The force caused by the differences in pressure on the two
sides gives rise to the Magnus effect. This has been extensively studied and reviewed (e.g. Prandtl
& Tietjens (1934); Coutanceau & Menard (1985); Badr et al. (1990); Kang et al. (1999); He et al.
(2000); Stojković et al. (2002); Mittal & Kumar (2003); Rao et al. (2013)). Notable work by Mittal &
Kumar (2003) have characterised a number of different wake regimes over a range of body rotation
rates. These were found to depend on the ratio between the tangential velocity of the rotating
cylinder’s surface and the free-stream velocity is defined as the rotation rate.

For low rotation rates, Von Kármán vortex shedding dominates the flow as Kármán vortex streets
are observed in experimental and numerical studies over a range of Reynolds number (Coutanceau
& Menard 1985; Badr et al. 1990; Kang et al. 1999; He et al. 2000; Stojković et al. 2002; Mittal &
Kumar 2003; Rao et al. 2013). In a band of moderate rotation rates where the tangential velocity
of the cylinder surface is approximately two to four time that of the free-stream velocity of the
flow, the wake is stabilised (Mittal & Kumar 2003; El Akoury et al. 2008). As rotation rate is
increased, however, a secondary region of wake instability exists. This region is characterised by its
low frequency, one-sided vortices (Stojković et al. 2003; Mittal & Kumar 2003; Pralits et al. 2010).
A number of steady and unsteady wake modes exist depending on the rotation rate of the cylinder
and Reynolds number (Pralits et al. 2013; Rao et al. 2013, 2015). The capacity to manipulate and
stabilise the wake by rotating the cylinder could be of significant interest to VIV studies if it provides
a way to actively reduce the strength of vortices and consequently the body’s vibration.

By rotating an elastically-mounted cylinder it is possible to study how the addition of body
rotation affects the known VIV characteristics of a non-rotating cylinder. Previous work, e.g. Mittal
& Kumar (2003), have shown that at certain rotation rates the lift forces acting on the cylinder
will have an oscillating component where the lift fluctuates about some mean value. This is not
unexpected as the body rotation generates a mean lift, a Magnus force, proportion to the body’s
rate of rotation (Prandtl & Tietjens 1934) and the oscillating component of the lift is the result of
vortex shedding. Mittal & Kumar (2003) showed that the oscillating component of the lift forces to
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be periodic and in some cases of rotation rate the cylinder the amplitude of the oscillating lift can
be larger than those seen in non-rotating cases. The amplitude of the oscillating component of the
lift forces is of great significance as it can directly influence the vibration response of an elastically-
mounted body. Rotating an elastically-mounted body at rotation rates where vortex shedding and
the oscillating component of the lift forces is absent will reduce or even eliminate VIV. Bourguet & Lo
Jacono (2014) appear to have been the first to conduct such a study numerically, they did this for a
Reynolds number of 100, with minimal system damping. They found that for an elastically-mounted
body, large amplitude vibrations and vortex shedding can still occur at ranges of rotation rate where
the flow was previously considered to be steady in rigid cylinder studies (e.g. Mittal & Kumar (2003);
El Akoury et al. (2008)). Bourguet & Lo Jacono (2014) observed a number of differences between
the amplitude and frequency response of an elastically-mounted rotating cylinder and that of a non-
rotating one. Notably, the global peak amplitude of the rotating cylinder is approximately three
times higher than the non-rotating cylinder. Furthermore, the frequency response of the rotating
cylinder decreases with increasing in body rotation. They also discovered a new wake mode. It is
referred as the T+S pattern and it consists of a triplet of vortices and a single vortex being shed per
cycle. This wake pattern is observed at high rotation rates where large amplitude body vibrations
persist. Zhao et al. (2014c) conducted a numerical study of a cylinder rotating in both 1 and 2 degrees
of freedom, again the study was done at low Reynolds numbers. The 2 degree of freedom case showed
significant differences in the vibration response between a non-rotating cylinder and a rotating one.
In particular is the vibration amplitude response of the cylinder in the streamwise direction. When
the cylinder is not undergoing rotation, the amplitude response is significantly smaller than the cross-
flow direction. However, with added body rotation, the streamwise amplitude response increases with
rotation rate. In their study where the tangential velocity of the cylinder surface equals the free-
stream velocity, the streamwise amplitude response is marginally lower than the cross-flow values. A
low Reynolds number, experimental study by Seyed-Aghazadeh & Modarres-Sadeghi (2015) showed
moderate changes in vibration response. Contrary to findings from Bourguet & Lo Jacono (2014),
they did not observe a threefold increase in peak amplitude response. Instead Seyed-Aghazadeh
& Modarres-Sadeghi (2015) observed a peak amplitude response that is approximately 50% higher
than that of a non-rotating cylinder.

Until recently, studies on rotary motions of circular cylinders has primarily been focused on
constant body rotation. In comparison, the study of a rigidly-mounted circular cylinders undergoing
rotary oscillations about its axis has received less attention until the 1990’s. Rotary oscillation has
the potential to modify the wake structure of a body. This is achieved through interactions between
the rotary oscillation frequency and the vortex shedding frequency of the body. One of the first
studies on rotary oscillating cylinders was conducted by Okajima et al. (1975). They discovered
frequency synchronisation behaviour similar to those observed in VIV. When ”lock-on” occurs, the
vortex-shedding frequency synchronises with the forcing frequency. Such phenomenon occurs over a
range of forcing frequencies (Okajima et al. 1975; Tokumaru & Dimotakis 1991; Choi et al. 2002).
The ability for rotary oscillation to control the vortex-shedding frequency of a body is of significant
interest to VIV studies. Instead of suppressing the strength of vortices, rotary oscillation has the
potential manipulate the vortex-shedding frequency of a body away from the natural frequency of
an oscillating structure. This can prevent the vortex-shedding and body oscillation frequency from
synchronising with the natural frequency of the oscillating structure; hence, prevents large body
oscillations.

The effectiveness of rotary oscillations on manipulating vortex shedding of a rigidly-mounted
cylinder is well established. Du & Sun (2015) appear to have been the first to numerically study
the effects of rotary oscillation on vortex shedding on an elastically-mounted circular cylinder at
low Reynolds numbers. They found rotary oscillations to be effective at suppressing vortex shed-
ding on elastically-mounted cylinders. Suppression is achieved by synchronising the vortex-shedding
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frequency to the forcing frequency. By changing the shedding frequency away from the natural fre-
quency of the oscillating structure; significant suppression can be achieved with appropriate rotary
oscillation control.

From the current state of FIV research, the effects of rotary motions on VIV of an elastically-
mounted circular cylinder have been studied at relatively low Reynolds numbers. No studies have
yet been done to investigate the effects of Reynolds number. The focus of this thesis is on two areas:

1. The comparison between a non-rotating, elastically-mounted circular cylinder and that of a
cylinder undergoing forced, constant rotation over a range of Reynolds numbers. The focus of
the investigation will be on the vibration response and wake structure of the rotating cylinder
and how body rotation suppresses vortex shedding strength.

2. The comparison between a non-rotating, elastically-mounted circular cylinder and that of a
cylinder undergoing forced, rotary oscillation over a range of Reynolds numbers. The inves-
tigation will focus on how shedding frequency manipulation through rotary forcing can affect
the vibration response and wake structure of the cylinder.

1.2 Structure of the thesis

With the exception of the Introduction; each subsequent chapter will begin with a brief outline of
the chapter’s contents and conclude with a short summary on the key findings of the chapter. The
thesis is structured as follows:

Chapter 2: Review of relevant literature on the current state of knowledge. This chapter will
cover fundamental fluid mechanic concepts, vortex-induced vibration of elastically-mounted circular
cylinders, rigidly-mounted circular cylinders undergoing rotary motions and vortex-induced vibration
of elastically-mounted circular cylinders undergoing rotary motions. The review will highlight gaps
in knowledge and what remains to be answered.

Chapter 3: The methodology of the current experiment will be described. This chapter will
provide a detailed overview of the facilities, experiment apparatus, data measurement and processing
techniques.

Chapter 4: Results on the vortex-induced vibration of an elastically-mounted circular cylinder
undergoing forced, constant rotation is presented. The results on the vibration response and wake
structure will be discussed and compared to that of an elastically-mounted, non-rotating cylinder.

Chapter 5: Effects of rotary oscillation of the cylinder on vortex-induced vibration of an elastically-
mounted circular cylinder are studied. The results on the vibration response and wake structure will
be discussed and compared to that of an elastically-mounted, non-rotating cylinder.

Chapter 6: A comprehensive conclusion of the thesis. This will summarise key findings and
discussions from each chapter. Future work will also be discussed at the end of this chapter.

Bibliography: References cited in this thesis are listed in this bibliography.
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Chapter 2

Literature review

2.1 Introduction

The flow-induced vibration (FIV) of bluff bodies have been extensively investigated by a number of
research groups over the past decades. This is due to its increasing relevance in a broad range of
engineering industries such as offshore oil production, cooling systems in nuclear power generation
and aerodynamics of industrial structures. Comprehensive reviews about FIV have been presented
in works by Griffin et al. (1973); Blevins (1977); Bearman (1984); Carberry et al. (2001); Sarpkaya
(2004); Williamson & Govardhan (2004a); Naudascher & Rockwell (2005). Research on the flow past
a rigidly-mounted circular cylinder undergoing axial rotary motions, such as Coutanceau & Menard
(1985); Badr et al. (1990); Tokumaru & Dimotakis (1991); Choi et al. (2002); Mittal & Kumar (2003);
El Akoury et al. (2008); Rao et al. (2013), have shown that rotary motions have the potential to
actively control and manipulate the cylinder’s fluid forces and vortex shedding. Limited research has
been undertaken to investigate the effects of these rotary motions on the FIV of elastically-mounted
bluff bodies. This chapter will present a brief review of literature describing the fundamentals and
the current state of knowledge on topics which are relevant and served as motivation to the research
presented in this thesis. Topics concerning vortex shedding fundamentals, VIV of elastically-mounted
non-rotating circular cylinders; rigidly-mounted circular cylinders undergoing constant rotation and
sinusoidally-driven rotary oscillations will be surveyed in detail. The current state of knowledge on
VIV of elastically-mounted circular cylinders undergoing rotary motions will be presented at the end
of the chapter.

To understand how the fluid interacts with a circular cylinder under a range of cross-flow and
rotary motions, it is essential to first examine the flow past a stationary circular cylinder. The
chapter begins by describing the different flow regimes, the fundamentals of vortex shedding and
the fluid forces acting on a stationary circular cylinder in §2.2. Vortex-induced vibration has been
extensively researched since the pioneering experiment conducted by Feng (1968). The current state
of knowledge on VIV of elastically-mounted circular cylinders are presented in §2.3. This section
will focus on the vibration response (i.e. the amplitude and frequency response) of the cylinder, the
wake-body synchronisation phenomenon (commonly known as ‘lock-in’), fluid forces, phase response
between the body displacement and forces, and lastly, the wake structure of the cylinder at different
flow conditions. Due to the destructive effects VIV have on structures, researchers have experimented
with a number of passive and active VIV control techniques.

Few active VIV control techniques have been as extensively investigated as constant rate rotation
of a rigidly-mounted cylinder. The study of flow past rigidly-mounted circular cylinders undergoing
constant rotation dates to early experiments conducted by Prandtl & Tietjens (1934). Many studies
on this subject have followed over the past century (e.g. Swanson (1961); Coutanceau & Menard
(1985); Badr et al. (1990); Chen et al. (1993); Chen (2000); Mittal (2001); Stansby & Rainey (2001);
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Mittal & Kumar (2003); El Akoury et al. (2008); Rao et al. (2013)) due to the motions ability
to manipulate the fluid forces and wake structure. As the effects of constant rate rotation on an
elastically-mounted body is one of the motivations of the present research, literature on the fluid
forces and wake structures of a rigidly-mounted circular cylinder undergoing constant rotation will
be reviewed in §2.4.1.

An alternate method to actively manipulate vortex shedding is through steady sinusoidally-
driven rotary oscillations. Rigidly-mounted cylinders undergoing rotary oscillations was first studied
experimentally by Okajima et al. (1975) as they observed changes in wake structure by the forcing
motion. Many studies followed (e.g. Tokumaru & Dimotakis (1991); Cheng (2001); Choi et al. (2002);
Thiria et al. (2006)). Choi et al. (2002) have shown the vortex shedding frequency to synchronise
with the oscillation forcing frequency at specific oscillation forcing amplitudes and frequencies. The
ability to manipulate the shedding frequency has applications in controlling VIV as it can potentially
manipulate the wake-body synchronisation phenomenon. Discussion on steady sinusoidally-driven
rotary oscillations will be presented in §2.4.2.

A limited number of studies have been undertaken to investigate the effects of rotary motions
on VIV of elastically-mounted circular cylinders. To the author’s knowledge, Bourguet & Lo Ja-
cono (2014) were the first to present a low Reynolds number numerically study of the effects of
constant rotation on an elastically-mounted cylinder restricted to vibrate in the cross-flow direction.
Low Reynolds number simulation by Zhao et al. (2014c) and experiment by Seyed-Aghazadeh &
Modarres-Sadeghi (2015) followed. A review on the current state of knowledge on the effects of
constant rate rotation on VIV is presented in §2.5.1.

The effects of sinusoidal rotary oscillations on VIV has not been thoroughly surveyed. Du &
Sun (2015) were the first to study the effects of sinusoidally-driven rotary oscillations on elastically-
mounted cylinders that oscillate in the cross-flow direction. Their low Reynolds number simula-
tion showed the efficacy of rotary oscillation in controlling vortex shedding, even for an elastically-
mounted body. An in-depth discussion on sinusoidal rotary oscillations is presented in §2.5.2.

2.2 Flow past a stationary cylinder

2.2.1 Flow regimes

In bluff body fluid aerodynamics, the circular cylinder is regarded as the prototypical model in
steady flow. Its symmetry enables fluids researchers to study the behaviour the flow independently
of the body geometry. In addition to its geometric symmetry, its simplicity enables the cylinder to be
described simply by its length (l) and diameter (D). Due to these advantages, extensive studies have
been undertaken over the past century to characterise the flow past a stationary circular cylinder.

For bluff bodies immersed in a steady Newtonian fluid flow, the characteristics of the flow regimes
can be quantified by the Reynolds number (Re), which is the ratio of inertial to viscous forces. This
is mathematically expressed as

Re =
U∞lch
ν

, (2.1)

where U∞ is the free-stream velocity, lch is the characteristic length of the body and ν is the kinematic
viscosity of the fluid. For cylinders the characteristic length is the diameter, D and eq. 2.1 is
commonly expressed as

Re =
U∞D

ν
. (2.2)

As Re is increased from zero the flow transitions through several different regimes, each having dis-
tinct features. Several works have described the different flow regimes a circular cylinder transitions
through as the Reynolds number is increased (e.g. Williamson (1996); Fredsoe & Sumer (1997);
Leontini et al. (2007); Nazarinia et al. (2009); Zhao (2012)).
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At Re < 5, the dynamics of the fluid flow around the cylinder is dominated by viscous forces.
As the flow passes the cylinder neighbouring streamlines will contour to the shape of the cylinder
and uniform flow is recovered downstream. In this regime, the flow topology is steady and flow
separations do not occur. This is often called creeping flow.

The onset of flow separation is indicated by the formation of a pair of symmetric vortices in the
near wake of the cylinder. The vortex pair formation results in a recirculation region (Fredsoe &
Sumer 1997). This occurs at Re ' 5.

When Reynolds number is increased above Re ' 46, the flow undergoes the phenomenon of vortex
shedding, as described in Taneda (1956); Roshko (1993); Williamson (1996). Vortex shedding occurs
when the wake of the cylinder becomes unstable and as a result vortices are shed from alternating
sides of the cylinder at a specific frequency. This frequency is known as the vortex shedding frequency
(fsh) and it can be defined by a non-dimensionalised quantity called the Strouhal number St. A
detailed discussion on the Strouhal number is provided in §2.2.2. In this flow regime, vortices shed
are in a two-row, staggered formation. They form a laminar vortex street commonly known as the
Kármán vortex street. As vortices of opposite sign are shed alternately they exert a fluctuating force
on the cylinder. If the cylinder is elastically-mounted this fluctuating force will excite the cylinder
to vibrate, leading to the important phenomenon of VIV.

At 46 < Re < 190, the flow remains laminar and two-dimensional meaning there are negligible
variations in the vortex shedding along the span of the cylinder. As Reynolds number is increased
pass Re ≈ 260, the boundary layer of the cylinder surface remains laminar while the wake of the
cylinder becomes turbulent (Fredsoe & Sumer 1997).

2.2.2 Vortex shedding fundamentals

Vortex shedding develops when the symmetric vortex pair becomes unstable and susceptible to
small perturbations in the flow, typically at Re > 46. The vortex shedding mechanism is described
in detail in Fredsoe & Sumer (1997). Figure 2.1 illustrates the development of vortex formations in
the near wake of a circular cylinder. The small perturbations in the flow cause asymmetric growth
in the pair of counter rotating vortices. Figure 2.1(a) shows vortex A (clockwise) growing longer
in streamwise length and stronger than vortex B (anti-clockwise). When vortex A is sufficient in
strength, it draws in the opposite shear layer containing vortex B. Vortex B curls upwards towards
the wake/ streamwise axis as illustrated by fig. 2.1(b). As vortex B is drawn towards the shear layer
that is linked with vortex A the anti-clockwise vorticity in vortex B severs the supply of clockwise
vorticity to vortex A from the shear layer. This ceases the growth of vortex A and detaches it from
its shear layer. At this point, vortex A becomes a free vortex and is carried downstream by the flow,
as illustrated in fig. 2.1(c). Over this single shedding cycle, the strength of vortex A and vortex B
varies with time as the vortex structure is formed and shed.

A new vortex, C, is formed from the upper shear layer. As vortex B grows to a sufficient length
and strength, it draws in the shear layer of vortex C across the wake, which then severs vortex B
from its shear layer before being shed and flowing downstream. Repeating this process forms vortex
streets. The strength of vortex A and B Periodic shedding of vortices from alternating sides of the
cylinder results in the continual interaction between the two shear layers (Gerrard 1966). Fredsoe &
Sumer (1997) suggested that controlling these shear layers could suppress their interaction, which
could suppress or prevent the shedding of vortices.

A number of works have described the phenomenon of vortex shedding as a global instability
that is self-excited and which affects the entire wake (Huerre & Monkewitz 1990; Williamson 1996;
Paidoussis et al. 2007). Over a range of Reynolds numbers, the robust process of vortex shedding
occurs at a well-defined shedding frequency. As mentioned in §2.2.1, the vortex shedding frequency
can be non-dimensionalised and expressed as the Strouhal number St. This is mathematically
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Figure 2.1: The development of vortices for a circular cylinder. (a): Clockwise rotating vortex A grows
stronger and larger than the anti-clockwise rotating vortex B, (b): At the onset of vortex A being shed,
vortex B is drawn across the wake axis and towards the shear layer connecting vortex A; (c): Vortex A is
shed and carried downstream as vortex B grows and draws the newly developed vortex C across the wake
axis and towards its shear layer. Illustration modified from Zhao (2012).

expressed as

St =
fStD

U∞
, (2.3)

where fSt is the dominant vortex shedding frequency (also known as the Strouhal frequency) of a
stationary cylinder, D is the cylinder diameter (the characteristic length of a circular cylinder) and
U∞ is the free-stream velocity. Strouhal reported in Strouhal (1878) that the non-dimensionalised
Strouhal frequency remained constant. As illustrated in fig. 2.2, studies involving smooth circular
cylinders have shown that the Strouhal number remains close to a constant value of St ≈ 0.2
(Williamson 1992; Williamson & Brown 1998; Norberg 2001).

Williamson (1989) reported discrepancies in Strouhal number (St) between oblique and parallel
vortex shedding modes caused by end effects of the cylinder. Figure 2.3 shows the difference between
oblique (a) and parallel shedding (b). In oblique shedding mode, the vortices are shed at an angle
with respect to the spanwise cylinder axis but parallel to each other. In parallel shedding mode
vortices are shed parallel to the cylinder axis over most of the span.

The effect oblique shedding is not limited to the topology of the wake and vortex shedding fre-
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2.2. Flow past a stationary cylinder

St

Re

Figure 2.2: A St− Re function curve showing the convergence of the Strouhal number towards St ≈ 0.2
as the Reynolds number is increased between 10 < Re < 106. Figure and references from Norberg (2001).

(a) Oblique shedding (b) Parallel shedding

Figure 2.3: Experimental flow visualisation of (a) oblique shedding at Reynolds number Re = 85 and
length-to-diameter ratio L/D = 140 and (b) parallel shedding at Re = 110 and L/D = 130 from Williamson
(1989).

quency. The fluid forces of a cylinder undergoing oblique shedding were investigated experimentally
by Khalak & Williamson (1996). They showed variations in lift and drag forces with different end
conditions and oblique shedding modes. In the Reynolds number range investigated by Khalak
& Williamson (1996), the comparison shows a 15 − 20% increase in time-averaged drag when the
cylinder undergoes parallel shedding. The lift produced by a cylinder with parallel shedding has a
significantly higher RMS values and the instantaneous time trace of the lift signal is stronger and
more periodic. Furthermore, they showed that oblique shedding is dominated by two weaker fre-

9



Chapter 2. Literature review

quencies of lower power due to the weaker and less periodic lift. Parallel shedding shows a single
dominant frequency of higher power. This demonstrates that proper end conditioning, via the use of
end platform and end plates, is essential to promote parallel shedding in experiments with cylinders.

Studies, notably by Szepessy & Bearman (1992); Norberg (1994), have found that the fluid forces
and wake structure depend on the cylinder aspect ratio (A), defined as

A =
lms

D
, (2.4)

where lms is the immersed length of the cylinder and D is the cylinder diameter. Norberg (1994)
reported that low aspect ratio cylinders (A < 40) can significantly delay the critical Reynolds
number for the onset of vortex shedding. Szepessy & Bearman (1992) showed that using end plates
on a low aspect ratio cylinder (A = 6.7) can reduce variations in fluctuating lift forces and vortex
shedding frequency.

From the review of literature, it is clear that the end conditioning and aspect ratio of the cylinder
have influences on the response of the cylinder and wake structure. An end plate should be used
to limit the influence of oblique shedding and promote parallel shedding From Szepessy & Bearman
(1992), the test cylinder must have an aspect ratio greater than 6.7 to minimize aspect ratio effects.

2.3 Vortex-induced vibration of a circular cylinder

Section 2.2.2 discussed the development of vortices and the process of vortex shedding. Bishop
& Hassan (1964); Fredsoe & Sumer (1997) showed that the in-line force component (i.e. drag)
fluctuates at twice the vortex-shedding frequency (e.g. 2fsh) and the cross-flow force component (i.e.
lift) fluctuates at the vortex-shedding frequency (e.g. fsh). These fluctuating force components can
cause the cylinder to vibrate if it is elastically-mounted or flexible. The drag and lift force components
can induce vibration in the in-line and cross-flow directions, respectively. This is generally known as
vortex-induced vibration (VIV). Due to the complex cylinder motions in VIV, experimental studies
are often simplified to the VIV of a rigid circular cylinder that is restrained to freely vibrate in the
cross-flow direction, which leads to a better understanding of the fundamental characteristics of the
interaction between the flow and the structure. Using a rigid circular cylinder as the test body has
several benefits: (1) its axial symmetry and geometric simplicity means a circular cylinder can be
defined simply by its length and diameter without the need to consider the relation between the
cylinders dimensional parameters with respect to the orientation of the flow, (2) due the circular
cylinder’s axial symmetry, it is immune from galloping, a FIV phenomenon caused by geometric
asymmetry; and (3) circular cross-section is a commonly used geometry in engineering. When
the vibration system is restrained to one degree-of-freedom (DOF) in the cross-flow direction, the
complex body motions are simplified while maintaining the system’s maximum amplitude response
because the vibrational amplitudes are significantly larger in the cross-flow than the in-line direction.

Figure 3.5 presents a schematic of a rigid circular cylinder undergoing cross-flow VIV. The cylin-
der is immersed in a uniform free-stream with velocity U∞ and is elastically-mounted to give one
DOF for the cylinder to freely oscillate in the y-direction, transverse to the free-stream flow. When
vortices are shed from alternating sides of the cylinder, the cylinder experiences a fluctuating force,
Fy(t), that causes it to oscillate. The oscillatory motion of the cylinder undergoing cross-flow VIV
is governed by the equation of motion, given by

Fy = mÿ + cẏ + ky , (2.5)

where Fy is the lift force acting transverse to the direction of the free-stream flow, m is the mass
of the oscillating system, c is the structural damping and k is the spring constant. The governing
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2.3. Vortex-induced vibration of a circular cylinder
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m

Figure 2.4: A schematic of a circular cylinder undergoing cross-flow VIV. The cylinder immersed is a
free-stream flow with velocity U∞ and it is restrained to freely oscillate in the cross-flow y direction. Fy

is the lift force, m is the mass of the oscillating system, c is the structural damping and k is the spring
constant.

equation of motion can also be expressed in terms of the system’s natural frequency of damping

Fy
m

= ÿ + 2ζωnẏ + w2
ny , (2.6)

where ζ is the damping ratio and ωn is the angular natural frequency of the system, they are
mathematically expressed as

ζ =
c

2mωn
, (2.7)

ωn =

√
k

m
. (2.8)

A number of articles and books (e.g. Bearman (1984); Blevins (1990); Fredsoe & Sumer (1997);
Sarpkaya (2004); Williamson & Govardhan (2004a); Naudascher & Rockwell (2005); Gabbai & Be-
naroya (2005); Williamson & Govardhan (2008); Paidoussis et al. (2007)) have surveyed and compre-
hensively reviewed elastically-mounted circular cylinders undergoing cross-flow VIV. The following
sections focuses on the literature relevant to the present thesis.

2.3.1 Vibration amplitude and frequency responses

Two variables, the vibration amplitude and frequency response, are critical to understanding any
VIV system. An early study that examined these was conducted by Feng (1968) in a wind tunnel. His
pioneering study characterised the vibration (i.e. amplitude and frequency) responses of a circular
cylinder at a high mass ratio of 248. Mass ratio (m∗) is the ratio between the system mass and mass
of the fluid displaced by the immersed body, it is expressed as

m∗ =
m

mfld
, (2.9)

where m is the mass of the oscillating system and mfld is the mass of the fluid displaced by cylinder.
Quantities such as amplitude, frequency, force and phases in VIV studies are often presented as a
function of a non-dimensionalised parameter, reduced velocity, U∗, it is defined as

U∗ =
U∞
fnD

, (2.10)
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where U∞ is the free-stream velocity, fn is the natural frequency of the oscillating structure and
D is the diameter of the cylinder. Feng (1968) discovered that the cylinder vibration amplitude is
the largest within a range of reduced velocities where the wake and structure becomes synchronised.
This is known as the ‘lock-in’ region (synchronisation is discussed in further detail in §2.3.2). The
oscillation frequency (f) of an elastically-mounted cylinder in a free-stream flow follows the Strouhal
frequency (fSt) of a stationary cylinder (i.e. f ∼= fSt). When synchronisation occurs, oscillation
frequency and the vortex-shedding frequency (fsh) will lock-in with the natural frequency of the
oscillating structure,

f ∼= fsh ∼= fn (2.11)

fsh in eq. 2.11 is the vortex-shedding frequency of an elastically-mounted cylinder in a VIV system
and should not be confused with the dominant shedding or Strouhal frequency of a stationary
cylinder, fSt.

The large increase in amplitude associated with synchronisation is shown in fig. 2.5, where
fig. 2.5(a) presents the normalised amplitude and (b) the normalised frequency response as a func-
tion of U∗. The amplitude response of the oscillating system is often expressed in terms of cylinder
diameter (D) by normalising the amplitude output, this is defined as

A∗ =
y

D
. (2.12)

Normalised oscillation amplitude (A∗), has previously been expressed in different forms. It has been
presented in terms of the maximum amplitude, an arbitrary percentage of highest amplitude peaks
and RMS amplitude values. Here, to avoid confusion, the type of normalised amplitude data will be
denoted in the subscript. Similarly, the oscillation frequency is non-dimensionalised and expressed in
terms of the natural frequency of the oscillating structure, the normalised frequency (f∗) is expressed
as

f∗ =
f

fn
. (2.13)

Data from Feng (1968) presented in fig. 2.5(a) shows there is a significant increase in vibration ampli-
tude over a range of reduced velocities when 5 ≤ U∗ ≤ 7. Over the same range of U∗, the normalised
frequency (see fig. 2.5(b)) locks to values close to unity (i.e. f∗ ≈ 1). This fulfils the mathematical
relationship presented in eq. 2.11 for wake-structure synchronisation and subsequently the oscillation
frequency, vortex shedding frequency and natural frequency of the structure synchronises.

Extensive research conducted by Prof. Williamson’s research group at Cornell University has
expanded our understanding and characterisation of VIV vibration responses. The low mass ratio
(m∗ ≤ 20.6) water channel experiments reported in Khalak & Williamson (1996, 1997b, 1999)
observed two distinct discontinuities in the A∗max − U∗ curve that forms three amplitude response
branches. fig. 2.5(a) shows the three distinct amplitude response branches, the ‘initial’, ‘upper’ and
‘lower’ branches. In the high mass ratio study (m∗ = 248) by Feng (1968), only the initial and
the lower branches were observed. Khalak & Williamson (1997a) showed that at lower mass ratios
synchronisation and body oscillations occur at lower reduced velocities. This increases the width
of the synchronisation region as it extends over a range of reduced velocities to 4 ≤ U∗ ≤ 12. The
cylinder also experiences larger amplitude responses at lower mass ratios. From see fig. 2.5(a) it
can be seen that the peak amplitude value at A∗max ≈ 1 is approximately 40% higher than the peak
value observed in Feng (1968). After the initial deviation from fSt, Khalak & Williamson (1997b)
also observed that f∗ within the synchronisation region increased above unity monotonically with
U∗ (see fig. 2.5(b)).

It is evident that the peak amplitude response, the number of amplitude response branches,
frequency response characteristics and the width of the synchronisation region are influenced by m∗.
In addition to m∗, the amplitude response can be influenced by a non-dimensionalised mass-damping
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2.3. Vortex-induced vibration of a circular cylinder

Figure 2.5: The (a) normalised amplitude (A∗) and (b) normalised frequency response (f∗) of a cylinder
with low mass and damping presented as a function of reduced velocity (U∗). 3 represent data from Feng
(1968) with a mass ratio of m∗ = 248 and � represents data from Khalak & Williamson (1997a) with
m∗ = 2.4. In (b), the horizontal solid line represents the natural frequency of the oscillating system (fn)
and the angled solid line represents the vortex-shedding frequency (fsh) of a stationary cylinder. Figure
taken from Khalak & Williamson (1997a).

parameter (m∗ζ), where ζ is the structural damping ratio. It has been shown that the width of the
synchronisation region principally depends onm∗ wherem∗ζ remains constant (Khalak & Williamson
1996, 1997b, 1999). In general, the amplitude response within the entire synchronisation region is
influenced by m∗ζ of the system. In low m∗ cases, the upper amplitude response branch is more
sensitive to changes in m∗ζ than other branches. A change in the system’s m∗ζ will result in a
larger change in amplitude values in the upper branch than the initial and lower response branches.
Therefore, the peak amplitude response primarily depends on m∗ζ (Khalak & Williamson 1999).
The effects of mass ratio, m∗, and mass-damping, m∗ζ, are illustrated in fig. 2.6(b).

The study of mass and damping effects on VIV systems have been exhaustively surveyed and
discussed by Feng (1968); Khalak & Williamson (1999), this review will focus on low mass and
low damping systems because they produce larger amplitude responses. For a high mass-damping
system, similar to the that of Feng (1968), there are two amplitude response branches, initial and
lower branch (see schematic illustration in fig. 2.6(a)). The transition between the initial and lower
branch is hysteretic. A system with relatively low mass-damping exhibits three amplitude response
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branches, initial, upper and lower branch. It is further characterised by the deviation of the fre-
quency response from the natural frequency of the oscillating system within the synchronisation
region. These characteristics were first presented in Khalak & Williamson (1997b) and have been
confirmed in other experimental (Govardhan & Williamson 2000, 2002; Brankovic 2004; Zhao 2012)
and numerical (Leontini et al. 2006; Klamo 2007) studies. The amplitude response branches and
transition characteristics of a low mass-damping system is schematically illustrated in fig. 2.6(b).

The initial branch begins at very low U∗. Khalak & Williamson (1997b) showed that the initial
branch can occur at reduced velocities as low as U∗ ≈ 1. This branch is characterised by (1) low to
moderate amplitude responses that increases with U∗ and (2) an oscillation frequency response that
locks to the Strouhal frequency of a stationary cylinder. Due to the influence of the natural frequency
of the structure and the vortex shedding frequency, the oscillation observed in this branch is not
highly periodic but quasi-periodic (Khalak & Williamson 1999). The system undergoes hysteretic
transition from the initial branch to upper branch as the reduced velocity is increased past U∗ ≈
1/St ≈ 4.8. As the transition occurs, f∗ begins to lock-in to the natural frequency of the structure.

In the upper branch, A∗ is significantly larger. It is known that the maximum amplitude response
A∗maxis influenced by the oscillating system’s mass and damping ratios (Khalak & Williamson 1996,
1997b, 1999) but work by Govardhan & Williamson (2006); Klamo (2007) have shown that the
maximum amplitude can also be influenced by the effects of Reynolds number. This maximum
amplitude response is self-limited and Govardhan & Williamson (2000) have reported that for a
system with very low mass ratio, the maximum amplitude response could reach A∗max ≈ 1.2. The
oscillation frequency in the upper branch initially deviates from the Strouhal frequency of a stationary
cylinder and locks onto the natural frequency of the structure. As U∗ is increased, the frequency
response increases monotonically with reduced velocity and deviates from the natural frequency of
the structure (i.e. f∗ > 1). Oscillations in the upper branch are highly periodic up to the onset of the
transition to the lower branch. Here, the system switches intermittently between the two amplitude
response branches. This intermittent switching was documented in Khalak & Williamson (1999) and
indicated by the instantaneous phase difference between the measured cylinder displacement and lift
force.

Compared to the initial and upper amplitude response branches, the lower branch spans a larger
portion of the synchronisation region. Its amplitude response remains in the proximity of A∗ ≈ 0.6
over a large section of the response branch. As the oscillation frequency increases with reduced
velocity the amplitude response gradually decreases.

When the reduced velocity is increased further the system desynchronizes from the natural fre-
quency of the structure and a sharp reduction in amplitude response. When the oscillation system
desynchronizes from the natural frequency of the structure it resumes following the Strouhal fre-
quency of a stationary cylinder. Both the natural frequency of the structure and the shedding
frequency influence this region, known as the desynchronization region, which is characterised by
chaotic oscillations and very small amplitude responses.

2.3.2 Synchronisation

In vortex-induced vibration, the synchronisation between wake and structure is known as ‘lock-in’.
In the synchronisation region, the vortex shedding frequency deviates from the Strouhal frequency
of a stationary cylinder and follows the frequency response of the cylinder. For a high mass-damping
system, similar to the wind-tunnel studies by Feng (1968), the phenomenon of synchronisation is
characterised by the oscillation frequency response (and subsequently the vortex shedding frequency)
in close approximation of the natural frequency of the structure. This is schematically illustrated in
fig. 2.7(a) and mathematically expressed in eq. 2.11. In the synchronisation region in a low mass-
damping system, as is typically observed in water-channel experiments, the oscillation frequency
deviates from the natural frequency of the structure and monotonically increases above unity with
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Figure 2.6: An illustration of the two distinct types of VIV amplitude responses for an elastically-mounted
circular cylinder: (a) a high mass-damping (m∗ζ) system characterised by two response branches (initial
and lower branch), and (b) a low m∗ζ system characterised by three response branches (initial, upper and
lower branch). Transition between branches are either hysteretic (H) or involves intermittent switching (I).
Illustration reproduced from Khalak & Williamson (1999).

reduced velocity (see fig. 2.7(b)). Studies by Fredsoe & Sumer (1997); Govardhan & Williamson
(2000) have discussed that this deviation from the natural frequency of the structure results from
added-mass effects arising from the acceleration of the oscillating cylinder.

Differences in the definition of synchronisation continues to exist, as some work defines synchro-
nisation as the matching of the cylinder oscillation frequency response with a periodic wake mode
(Gabbai & Benaroya 2005). A definition adopted by Williamson’s research group and the present
thesis was first defined by Sarpkaya (1995). He defined synchronisation as being when the frequency
of the total lift force FL matches the oscillation frequency of the cylinder, f .

A number of studies have shown that the mass ratio of the oscillation system significantly influ-
ences the synchronisation regime (Govardhan & Williamson 2000; Williamson & Govardhan 2004b;
Brankovic 2004; Ryan et al. 2005). The effects of mass ratio were first reported in Govardhan
& Williamson (2000, 2002). In his experimental studies, he observed the existence of a critical
mass ratio, m∗crit = 0.542 ± 0.01. Below this critical value, the range of reduced velocity within
which the synchronisation region exist expands to infinity (see fig. 2.8). Brankovic (2004) reported
a critical mass ratio of m∗crit = 0.4 in her experimental study. Ryan et al. (2005) presented nu-
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Figure 2.7: An illustration of the frequency response (f∗) of the synchronisation region of an elastically-
mounted circular cylinder undergoing VIV. (a) shows that f∗ lock-in with the natural frequency of the
structure (fn) through the VIV synchronisation region in air. (b) shows that in water, f∗ deviates from unity
and increases monotonically through the synchronisation region with reduced velocity (U∗). Illustration
reproduced from Fredsoe & Sumer (1997).

Figure 2.8: Amplitude response (A∗) of an oscillating system where the mass ratio m∗ = 0.52 is below
the critical value m∗ < m∗crit. The synchronisation region extends to infinitely with reduced velocity (U∗)
and the amplitude response at infinity remains large at A∗ ≈ 0.7. The spring constant is set at k = 0. ◦
represents the initial branch and • represents the upper branch. Illustration from Govardhan & Williamson
(2002).

merical results showing the effects of Re on m∗crit. The critical mass ratio varied within the range
0.075 ≤ m∗crit ≤ 0.51 as a function of Reynolds number within the range 30 ≤ Re ≤ 200.

2.3.3 Fluid forces, phases and wake structures

The characterisation of amplitude and frequency responses help researchers predict the vibrational
responses of the structures, however, they alone are insufficient in providing a complete understanding
of mechanics and wake-structure interactions. To understand the mechanics and wake-structure
interactions of a circular cylinder undergoing VIV, it is essential to characterise: (1) the fluid forces,
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2.3. Vortex-induced vibration of a circular cylinder

(2) phase relationship between fluid forces and the body motion and (3) wake modes. Direct fluid
force measurements have been taken in the past in forced oscillation studies (e.g. Bishop & Hassan
(1964); Staubli (1983)), however, not until recent is there such measurement for a freely oscillating
system. The first direct fluid force measurements of a circular cylinder undergoing VIV was presented
by Khalak & Williamson (1997b). In addition to direct force measurements, Khalak & Williamson
(1997b) applied Hilbert transformation (HT) and computed the instantaneous total phase angle
(φT ) between the cross-flow lift force and body displacement. From this, it was found that φT
intermittently switches between φT ≈ 0◦ and φT ≈ 180◦, this corresponded with the intermittent
switching that occurs during the transition between the upper (φT ≈ 0◦) and lower (φT ≈ 180◦)
amplitude branches.

The fluid force decomposition method was first proposed by Lighthill (1986) and used by Go-
vardhan & Williamson (2000) to decompose the total lift force Fy from eq. 2.5 into two components:
(1) the potential force component (Fpot) arise from the potential added-mass force and (2) the vortex
force component (Fvor) arisen from fluid vorticity. This decomposition is mathematically expressed
as

Fy = Fpot + Fvor . (2.14)

By dividing the above force equation by 1
2ρU

∗DL, where ρ is the fluid density, eq.2.14 is non-
dimensionalised into force coefficients

Cy(t) = Cpot(t) + Cv(t) . (2.15)

Khalak & Williamson (1999); Govardhan & Williamson (2000) have shown that when the cylinder
oscillation frequency response, f∗, is lock onto the vortex shedding frequency, fsh, the cylinder
displacement, y, and total cross-flow lift force, Fy, is approximated by

y(t) = Ao sinωt , (2.16)

and
Fy(t) = FY sinωt+ φT , (2.17)

where Ao is the magnitude of the cylinder displacement, FY is the magnitude of the cross-flow lift
force; φT is the total phase and ω is angular frequency of oscillation and is defined as

ω = 2πf . (2.18)

The instantaneous potential force (Fpot(t)) acting on the cylinder is defined by

Fpot(t) = −mAÿ(t) =
CAπρD

2L

4
ÿ(t) , (2.19)

where mA is the added mass. It is termed as

mA = CAmfld , (2.20)

with CA being the potential flow added-mass coefficient (For a circular cylinder CA = 1), and mfld
is the mass of the fluid displaced. For a circular cylinder, mfld is expressed as

mfld =
πρD2L

4
, (2.21)

By substituting eq. 2.20 and eq. 2.21 into eq. 2.20, the potential force can be expressed as

Fpot(t) =
CAπρD

2L

4
ÿ(t) . (2.22)
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Figure 2.9: An illustration of the relationships between the three force components and the phases. Figure
reproduced from Zhao (2012).

By normalising eq. 2.22 with 1
2ρU

∗DL and substituting for the cylinder displacement from eq. 2.16,
the potential force coefficient is found and it is expressed as

Cpot(t) = 2π3 y(t)/D

(U∗/f∗)2
. (2.23)

As expected, the equation above shows that the instantaneous potential added-mass force (Cpot(t))
is in phase with the displacement of the cylinder y(t).

Consequently, when the cylinder is undergoing vortex-induced oscillations the governing equation
of motion can be termed as

mÿ + cẏ + ky = Fo sinωt+ φT . (2.24)

The above equation can be rewritten to only retain the vortex force term by combining eq. 2.14 and
eq. 2.22, thus, eq.2.24 can be expressed as

(m+mA)ÿ + cẏ + ky = Fvor sinωt+ φV , (2.25)

where φV is the vortex phase. It is defined as the phase angle between the vortex force (Fvor(t))
and the cylinder displacement y(t). The relationship between the forces and phases are illustrated
fig. 2.9.

The vortex structure is important to a body undergoing VIV because it directly influences the
fluid forces and the phase between them and body motion. A number of experiments have char-
acterised the different wake modes of a circular cylinder undergoing VIV. This was perhaps first
performed with sinusoidally-driven cylinders by Williamson (1988). He presented a map showing
the different wake modes with respect to different regimes of A∗ and U∗. Flow visualisation studies by
Brika & Laneville (1993); Khalak & Williamson (1999) observed changes in wake mode correspond-
ing to the transition of amplitude response branches. Govardhan & Williamson (2000) presented
particle image velocimetry (PIV) (see §3.5.4) results on the wake modes of a circular cylinder un-
dergoing VIV. They showed that, depending on the mass-damping, m∗ζ, of the oscillating system,
the cylinder exhibits two distinct types of response. At high m∗ζ, it was observed there is one wake
mode transition, which corresponds to the transition from the initial amplitude response branch to
the lower branch. When the oscillating system has low m∗ζ, there exist two distinct transitions in
the amplitude response branches. A wake mode transition was observed to occur at the transition
in amplitude response between the initial and upper branch.
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Figure 2.10: The response of a circular cylinder undergoing VIV with a mass ratio of m∗ = 8.63 and
damping ratio of ζ = 0.00151. Presented as a function of reduced velocity (U∗): (a) the maximum amplitude
response (A∗max), (b) frequency response (f∗); (c) the RMS values of the total transverse lift force coefficient
(Cy,RMS) and the total phase (φT ); and (d) the RMS values of the vortex force coefficient (Cv,RMS) and
the vortex phase (φV ). (4, N), initial (I) branch; ◦, upper (U) branch; •, lower (L) branch; and 2,
desynchronization region. �, location of PIV measurements. .......... represents the wake mode boundaries
from Williamson (1988). Figures taken from Govardhan & Williamson (2000).

The relationships between the oscillation amplitude, frequency response, fluid forces, phases and
the wake modes occurring at low mass-damping (m∗ = 8.63, ζ = 0.00151) is shown in fig. 2.10 from
the research of Govardhan & Williamson (2000). Figure 2.10(a) presents the amplitude response from
Govardhan & Williamson (2000) with the bullseyes, which show the locations of PIV measurements,
it is overlaid with the wake mode boundaries from the forced oscillation results from Williamson
(1988). As predicted by Williamson (1988), the free vibration study by Govardhan & Williamson
(2000) observed two distinct wake modes. The wake of the initial amplitude response branch is
characterised by the 2S mode, in which two single vortices are shed per body oscillation cycle. In
the upper and lower amplitude response branches the 2P mode was observed. This mode comprises
of two pairs of vortices shed per body oscillation cycle. PIV flow measurements of the 2S and 2P
wake modes in the initial, upper and lower amplitude response branches are presented in fig. 2.11.
Anti-clockwise vorticity is presented in red and clockwise vorticity in blue.

The development of 2S mode vortices and their shedding is shown in fig. 2.11(a). Two single
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Figure 2.11: Vorticity contour plots of the wake modes of a circular cylinder undergoing VIV with low
mass-damping (m∗ = 8.63 and ζ = 0.00151). Closewise vorticity in blue and anti-clockwise vorticity in
red. (a) shows the wake of the 2S mode associated with the initial branch (normalised amplitude response
A∗ = 0.33 and reduced velocity U∗ = 5.18), (b) shows the wake of the 2P mode in the upper branch
(A∗ = 0.81 and U∗ = 5.39); and (c) shows the wake of the 2P mode in the lower branch (A∗ = 0.6 and
U∗ = 6.40). Contour images taken from Govardhan & Williamson (2000).

vortices of opposite vorticity were shed from alternate sides of the cylinder per oscillation cycle. This
forms a narrow row of vortices along the wake centreline. When the oscillation transitions from the
initial to upper amplitude response branch the wake mode transitions from 2S to the 2P mode.

The 2P mode (presented in fig. 2.11(b)) consist of a pair of vortices of opposite vorticity shed per
half oscillation cycle from only one side of the cylinder. Over a complete oscillation cycle, two pairs
of vortices are shed from alternating sides of the cylinder. They form two rows of vortices flowing
downstream parallel to the wake centreline. Each pair consists of a strong first vortex and a weaker
second vortex. The relatively stronger first vortex puts strain on the second vortex and results in
it being rapidly weakened (Govardhan & Williamson 2000). Five cylinder lengths downstream (i.e.
x/D > 5), the weaker second vortex decays completely and takes on the appearance of the 2S mode.
Govardhan & Williamson (2000) remarked that the rapid decay of the second weaker vortex in the
upper branch is the reason behind the difficulty in identifying this mode in Khalak & Williamson
(1999). The wake remains in 2P mode as it transitions from the upper to the lower amplitude
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2.4. Circular cylinder undergoing rotary motions

response branch. However, the 2P mode in the lower branch exhibits a stronger second vortex that
is comparable in strength to the first vortex in the pair. In addition to relating wake modes to
amplitude response branches, the vortex modes can be predicted by the changes in fluid forces and
phase angle.

In the transition from the initial to upper amplitude response branch, the vortex phase jumps
from φV ≈ 0◦ to φV ≈ 160◦ and continues to converge towards φV ≈ 180◦ with increases in
reduced velocity in the upper branch, as shown in fig. 2.10(d). In contrast, the total phase shown
in fig. 2.10(c) remained at φT ≈ 0◦ during the transition between the initial and upper branch.
It increased marginally with U∗ in the upper branch. This jump in φV corresponds to the wake
transition from 2S to 2P mode.

A jump in total phase was observed from φT ≈ 0◦ to φT ≈ 180◦ when the amplitude response
transitioned from upper to lower branch, as seen in fig. 2.10(c). The vortex phase gradually increases
from φV ≈ 160◦ at the start of the upper branch to, and remained at, φV ≈ 180◦ throughout of the
lower branch. Moreover, there is a sharp jump in vortex force as the oscillating system transitions
to the beginning of the lower branch. The vortex force reaches a peak value of Cv,RMS ≈ 1.2 before
it gradually decreases with U∗. As the vortex phase plateaued and vortex force peaked in the lower
branch, the 2P wake mode, as shown in fig. 2.11(c), becomes clearer in its structure and stronger in
vorticity compared to the 2P mode in the upper branch.

A summary of the characteristics of a low m∗ζ VIV system is presented in fig. 2.12. This is a
reproduction of the figure presented in Govardhan & Williamson (2000) for experimental results at
mass ratios significantly higher than the critical mass ratio (i.e. m∗ = 8.63 � m∗crit = 0.54). As
the amplitude response transitions from the initial to the upper branch, the oscillation frequency
increases past the natural frequency of the oscillating structure in water, (i.e. f ≈ fnw). Here,
the wake mode transitions from 2S to 2P mode with a sharp jump in φV . The transition from the
upper to lower branch occurs when the oscillation frequency approaches the natural frequency of
the oscillating structure in vacuum, (i.e. f ≈ fna). A sharp jump in φT occurs with the transition
from upper to lower branch. There is no significant change in vortex phase throughout the upper
and lower branch and the wake remains in the 2P mode in the lower branch.

2.4 Circular cylinder undergoing rotary motions

When vortex-induced vibrations resonate with the structure, large amplitude oscillations occur. In
engineering applications, these large amplitude oscillations can cause catastrophic failures. There-
fore, researchers have conducted studies into active and passive suppression techniques. Passive
VIV suppression techniques involve geometric alterations or attachments on the oscillating struc-
ture to alter its wake-structure interactions. Wong & Kokkalis (1982); Hover et al. (2001); Owen
et al. (2001); Bearman & Branković (2004); Assi et al. (2009) have characterised the behaviour of
a number of passive VIV suppression techniques and a review of these techniques is presented in
Kumar et al. (2008). Active VIV suppression techniques, where the flow is manipulated using motion
control of the body has been the focus of recent research. Research in active flow control techniques
are often conducted with a circular cylinder, due to its spanwise geometric symmetry. This enables
researchers to study the effects of the body motion independent from the effects of any geometric
and orientation asymmetry with respect to the free-stream flow. Research has focussed on two types
of active flow control techniques (1) body rotation about the spanwise axis (z axis) at a constant
rate and (2) sinusoidally-driven rotary oscillations about the spanwise axis of the body (z axis).

As the focus of the present thesis is on active flow manipulation via body rotation, a brief review
of relevant literature is presented. The effects of constant rate rotation on the fluid forces and wake
regimes of a rigidly-mounted circular cylinder is discussed in §2.4.1. Section §2.4.2 reviews work on
sinusoidally-driven rotary oscillation of rigidly-mounted circular cylinders.
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Figure 2.12: An illustration showing the characteristics of a low mass-damping (m∗ζ) circular cylinder
undergoing VIV: the three-branch amplitude response, corresponding wake modes and phase jumps during
branch transitions. Illustration reproduced from Govardhan & Williamson (2000).

2.4.1 Constant rotation

The phenomenon of a rotating body moving through fluids has captured the interest of researchers
for well over a century because of its effect on the flight path of projectiles. In the 1850’s, German
researcher H.G Magnus was one of the first to publish the effects of rotation on musket balls and
cylinders moving through air (Swanson 1961). He observed that the interaction between the spinning
body and the velocity of the fluid flow creates an asymmetric pressure distribution. As the body
undergoes rotation the boundary layer on the windward side of the body is accelerated, meanwhile,
the boundary layer is decelerated on the leeward side of the body. This creates an asymmetric
pressure distribution, producing a force to act on the body (Magnus 1993), which was became
known as the Magnus force. When a body is rotating through its axis of rotation, the Magnus force
acts in a direction that is perpendicular to the direction of the free stream flow and the axis of
rotation. The magnitude of this force is proportional to the rate of body rotation.

A core parameter in rotating cylinder studies is the rotation rate, α, which is defined as the
cylinder’s surface tangential velocity normalised by the free stream velocity, U∞. Its mathematical
form is

α =
Dωrc
2U∞

, (2.26)

where D is the cylinder diameter and ωrc is the cylinder’s angular velocity, in radians per second.

2.4.1.1 Fluid forces

A parameter that is of particular interest is the lift force rotating cylinders can generate. One of the
earliest investigators into the fluid flow past a rigidly-mounted rotating cylinder was Prandtl (1925).
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2.4. Circular cylinder undergoing rotary motions

He proposed that there exists a maximum lift (CL,max) that a rotating cylinder in a uniform flow
can generate. This prediction is based on the rotation rate at which the stagnation point moves to a
location on the windward side of the cylinder such that shedding ceases. This ideal rotation rate is
predicted to be α = 2. From this, the predicted maximum lift is limited to CL,max = 4π ≈ 12.6. The
two-dimensional numerical study by Chew et al. (1995) shows agreement with Prandtl’s prediction.
At a Reynolds number of Re = 1000, Chew et al. (1995) found that with increasing α, the mean lift
coefficient approaches an asymptotic value.

However, there are questions on the existence of a limit to maximum lift. Chen et al. (1993)
reported in his numerical study (Re = 200) and at rotation rate α ≤ 3.25 that the instantaneous
lift values exceeded Prandtl’s limit of CL,max = 4π ≈ 12.6. More recent studies (see Mittal (2001);
Stansby & Rainey (2001); Mittal & Kumar (2003)) conducted at a low Reynolds number of Re = 200
and rotation rates 0 ≤ α ≤ 5 have shown instantaneous and time-averaged lift values much larger
than Prandtl’s prediction.

The experimental study by Tokumaru & Dimotakis (1993) at a Reynolds number of Re = 3800
also showed that Prandtl’s limit can be exceeded. In that experiment, a cylinder with an aspect ratio
ofA = 18.7 rotating at a rate of α = 10 produced an estimated lift 20% larger than Prandtl’s limit.
They suggested that three-dimensionality and end effects are the likely cause of the increase in lift
coefficient values compared to those reported in two-dimensional numerical studies. Furthermore,
they remarked, from the trends of their results, that the lift coefficient (CL) can be increased further
with higher α and using a cylinder with larger A.

These claims in Tokumaru & Dimotakis (1993) are unsurprising because a number of studies
have shown the effect of end conditions and aspect ratio effects on a rotating cylinder. Prandtl
(1925) concluded that the overall lift coefficient can be increased by utilising end disc/plates and
cylinders with larger aspect ratios. Thom (1935) remarked that as the aspect ratio of the finite
length cylinder decreases the magnitude of the maximum lift also decreases as the rotation rate at
which the maximum lift is achieved.

The exceeding of Prandtl’s limit has also been observed in studies involving impulsively rotated
cylinders. Notable studies by Badr et al. (1990); Chen et al. (1993); Chen (2000) have shown that the
lift generated by the cylinder increases with time until it reaches a stable band of values. Figure 2.13
from Mittal & Kumar (2003) presents the time histories of CL at different α. Their low Reynolds
number (Re = 200) numerical study showed that with sufficient time the lift generated by the
rotating cylinder achieves a steady state at specific rotation rates. This was also observed at high
Reynolds number (Re = 50000) by Karabelas et al. (2012). There is a direct correlation between the
system’s steady and unsteady fluid force states to the wake structure and vortex shedding behind
the cylinder. Wake modes and their correlation with the fluid forces are discussed in the following
section.

2.4.1.2 Wake structures

The wake structure of a rotating cylinder has been extensively studied over the past three decades.
To characterise the wake structures and their development with body rotation, it is essential to
understand the different steady and unsteady flow states. Researchers, most notably El Akoury
et al. (2008); Rao et al. (2013), have presented a map highlighting the different flow states at various
α with respect to Re. Figure 2.14 presents this map, it shows the three different flow states where
Reynolds number Re ≤ 500; (1) unsteady flow, (2) steady-state flow and (3) the second instability.
These have been reported in a number of studies (e.g. Mittal & Kumar (2003); El Akoury et al.
(2008); Rao et al. (2013, 2015)).

The unsteady flow state has previously been observed by (e.g. Dı́az et al. (1983); Coutanceau
& Menard (1985); Badr et al. (1990); Tokumaru & Dimotakis (1991); Chen et al. (1993); Kang
et al. (1999); Mittal & Kumar (2003); El Akoury et al. (2008); Rao et al. (2013)). This flow state
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Figure 2.13: Time histories of lift coefficients (CL) of a rigidly-mounted rotating cylinder for different
rotation rates (α) at Reynolds number Re = 200. • represents numerical data from Chen et al. (1993).
Figure and reference from Mittal & Kumar (2003).

ranges from a non-rotating cylinder (α = 0) case to the first critical rotation rate (αcrit.1) at which
it marks the boundary between unsteady and steady-state flow. However, there is some dispute
over the value of αcrit.1. Dı́az et al. (1983); Coutanceau & Menard (1985); Badr et al. (1990) found
that above a rotation rate α ≥ 2, vortex shedding is suppressed and concluded that αcrit.1 ≈ 2.
Numerical work by Kang et al. (1999) showed that αcrit.1 exhibits a logarithmic dependence on
Re. More recent numerical work by Rao et al. (2013) showed that over a range of low Reynolds
numbers (100 < Re ≤ 350, the critical rotation rate is 1.8 ≤ αcrit.1 ≤ 2.1. This is in good agreement
with the αcrit.1 = 1.91 value mentioned in Mittal & Kumar (2003). Results presented in fig.2.14
from El Akoury et al. (2008) shows larger variations as the critical rotation rate ranged between
1.9 ≤ αcrit.1 ≤ 2.5 at the same Reynolds number (Re = 200). The wake of the cylinder within the
unsteady flow state is characterised by the Kármán vortex street. Two single vortices of opposite
vorticity are shed from alternate sides of the cylinder per shedding cycle. As α is increased the
wake deflect away from its centreline and this increases with αwhile the lateral width decreases.
This is seen in the vorticity fields presented in fig. 2.15 and fig. 2.16 (cases where the rotation rate
α < 2.08). The wake, and subsequently the fluid forces, are unsteady in this flow state, however,
they are periodic as evidenced by the time histories of the lift forces (see fig. 2.13) and the Kármán
vortex street.

24



2.4. Circular cylinder undergoing rotary motions
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α

Figure 2.14: Wake stability diagram based on critical rotation rates (αcrit) and Reynolds number (Re).
The dashed lines represent the three αcrit values and outline the different flow states. Figure and reference
from El Akoury et al. (2008).

When the rotation rate increases above αcrit.1 ≈ 2, the fluid transitions to steady-state flow.
This steady-state flow exists between α ≈ 2 and a second critical rotation rate (αcrit.2) The second
critical rotation rate marks the upper limit of the steady-state and defines the boundary with the
second instability. Unlike αcrit.1, which marks the boundary between unsteady and steady-state
flow, the value of αcrit.2 is better defined for different work. El Akoury et al. (2008) (see fig. 2.14)
showed that at Re = 200, the second critical rotation rate is αcrit.2 ≈ 4.35. This agrees well with
Mittal & Kumar (2003). A logarithmic relationship exists between flow state boundaries and Re as
discussed in Kang et al. (1999). The value of αcrit.2 decreases and converges towards αcrit.2 ≈ 3.8 as
Reynolds number is increased (Re ≥ 500). The wake in the steady-state flow regime is characterised
by three features: (1) the absence of vortex shedding, (2) long elongated regions of vorticity and (3)
vorticity reversal. These features can be seen in fig.2.15 and fig. 2.16 (cases where the rotation rate
1.9 ≤ α ≤ 4.3). The cylinder in fig.2.15 and fig. 2.16 are rotating counter-clockwise with solid lines
denoting positive clockwise and dashed lines denoting negative anti-clockwise vorticity. In a typical
Kármán vortex street, positive and negative vorticity is generated from the two sides of the cylinder
and feed into the near wake For a rotating cylinder in the steady-state flow region, as α is increased
(with reference to fig.2.15 and fig. 2.16 ), positive vorticity increases from the windward side that
then curls upwards by the rotation. This exposes the region of negative vorticity to the oncoming
free-stream flow. Vortex shedding stops as both vorticity regions become stabilised, elongated and
carried downstream. The reversal of the location of the positive and negative vorticity (not the
sign of the vorticity) occurs when the cylinder rotation begins to wrap the negative vorticity on the
leeward side of the cylinder around to the windward side (see α = 2.5 − 4.3 cases in fig.2.15). As
rotation rate is increased between 2.5 ≤ α ≤ 4.3, the amount of negative vorticity on the leeward
side of the cylinder decreases as the cylinder rotation wraps it on the windward side of the cylinder
forming a ‘tongue’ like structure as described by Mittal & Kumar (2003). As the reversal occurs,
negative vorticity exists on both side of the cylinder until it is completely wrapped around under the
region of positive vorticity. In this process, the wake deflects further away from the wake centreline.

No oscillating lift forces are generated as a result of the absence of vortex shedding, however,
the Magnus force generated by the cylinder rotation remains. This is evidenced in fig. 2.13 (see
2.07 ≤ α ≤ 4.2 cases) where CL increases with α, however, each of these cases reaches steady-state
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Figure 2.15: Vorticity contours of the near wake of a rigidly-mounted circular cylinder rotating at various
rotation rates (α) at Reynolds number Re = 200. Solid lines represent positive, clockwise vorticity, dashed
lines represent negative, anti-clockwise vorticity. Figure from Mittal & Kumar (2003).

due to the absence of the oscillating lift component arisen from vortex shedding. Increasing the
rotation rate above αcrit.2 ≈ 4.3 results in the system transitioning to a flow regime known as the
second instability. This regime extends from the second critical rotation rate, αcrit.2, to the third
critical rotation rate, αcrit.3. αcrit.3 marks the boundary between the second instability and a second
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Figure 2.16: Global vorticity contours of a rigidly-mounted circular cylinder rotating at various rotation
rates (α) at Reynolds number Re = 200. Solid lines represent positive, clockwise vorticity, dashed lines
represent negative, anti-clockwise vorticity. Figure from Mittal & Kumar (2003).

region of steady-state flow associated with even higher rotation rates (α > 4.8). Mittal & Kumar
(2003); El Akoury et al. (2008) both showed that αcrit.3 is located at αcrit.3 ≈ 4.9 for a Reynolds
number of Re = 200. As Re is increased, αcrit.3 decreases towards αcrit.3 ≈ 4.8 at Re = 500 (El
Akoury et al. 2008). Rao et al. (2015) presented similar findings with αcrit.3 decreasing towards
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Figure 2.17: The Strouhal number (St) of a rotating cylinder presented as a function of rotation rate (α)
at various Reynolds numbers (Re). Figure from El Akoury et al. (2008).

αcrit.3 ≈ 4.5 at Re ≈ 400 The wake of the second instability is characterised by very low-frequency,
single-sided vortex shedding. This is shown in the global vorticity contours of Mittal & Kumar (2003)
(see fig. 2.16, 4.5 ≤ α ≤ 4.7 cases), and frequency data by El Akoury et al. (2008) (see in fig. 2.17). El
Akoury et al. (2008) presented frequency results showing a significant reduction in Strouhal number
from St ≈ 0.2 in the unsteady flow state to St ≈ 0.05 in the second instability. In the near wake
(see fig. 2.15, 4.5 ≤ α ≤ 4.7 cases), the length of the ‘tongue’ like structure previously described
is significantly reduced. At these high rotation rates, both positive and negative vorticity regions
would wound into a spiral (Mittal & Kumar 2003). The impact these low-frequency vortices have on
CL is shown in fig. 2.13 (4.4 ≤ α ≤ 4.8 cases). Periodic, low-frequency fluctuations in CL is observed
at these rotation rates after the cylinder has passed its transition period from being stationary to
undergoing rotation. Periodic oscillations in CL occur over very large oscillation periods compared
to those in the unsteady flow state, in good agreement with El Akoury et al. (2008).

Above the third critical rotation rate, αcrit.3, the cylinder returns to steady-state flow, as vortex
shedding is suppressed (Mittal & Kumar 2003; El Akoury et al. 2008; Rao et al. 2015). Figure 2.13
shows that CL approaches steady-state after the initial transition from a stationary body. Frequency
data from El Akoury et al. (2008) further support this as the Strouhal number decreases to St ≈ 0.
However, there are some striking differences in the wake between this second region of steady-state
flow and the first (2 ≤ α < 4.4). Firstly, the near wake containing the tightly wounded positive
and negative vorticities is deflected such that it is almost perpendicular (on the leeward side) to the
wake centreline and free-stream flow. Secondly, the global wake takes the ‘tongue’ shape described
by Mittal & Kumar (2003) instead of the elongated wake observed between 2 ≤ α < 4.4.

The review of literature on rigidly-mounted circular cylinders undergoing constant rate rotation
has shown that by manipulating the flow through body rotation the system can achieve steady-state
flow for certain ranges of rotation rates. Under steady-state flow, oscillatory vortex shedding is
suppressed, meaning the oscillating lift force is also suppressed. Constant rotation is a method that
primarily suppresses the strength of the vortices, which reduces the amplitude of oscillating forces
and consequently any structural vibrations they may cause. In the following section, the literature
on rigid cylinders undergoing sinusoidally-driven rotary oscillations will be reviewed.
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2.4.2 Sinusoidal rotary oscillations

In addition to constant body rotation, several other active VIV control methods have been proposed
and studied over the last four decades. Notably, the moving surface boundary layer control by
Mittal (2001) and the windward suction, leeward blowing study by Dong et al. (2008) demonstrated
effective suppression and control of vortex shedding. However, these methods can be sensitive to the
flow orientation and may lose their effectiveness when the flow changes direction. An active control
method of interest that is insensitive to the orientation of the flow is sinusoidally-driven rotary
oscillation of cylinders. This was first examined by Okajima et al. (1975) at Re = 40 − 160 and
3050−6100. They showed that when the forcing frequency of oscillation is close to the vortex shedding
frequency of a stationary cylinder the shedding frequency synchronises with the forcing frequency.
Taneda (1978) reported that at Re = 30 − 300, rotary oscillation at high forcing frequencies can
almost eliminate vortex shedding and the recirculation region behind the cylinder. More recent
studies by Tokumaru & Dimotakis (1991); Cheng (2001); Choi et al. (2002); Thiria et al. (2006)
have further investigated the wake structure, fluid forces and the influence of Reynolds number and
phase between the fluid forces and the cylinder motion.

Two important parameters define the rotary oscillation motion of the cylinder: (1) the normalised
peak rotation rate, and (2) the forcing frequency. The normalised peak rotation rate (Ω), otherwise
known as the forcing velocity ratio (Am), is defined as the ratio between the peak tangential velocity
of the cylinder surface, vθ, and the free-stream velocity, U∞. It is expressed as

Ω ≡ Am ≡
vθ
U∞

=
Dθ̇

2U∞
, (2.27)

where D is the cylinder diameter and θ̇ is the peak rotation rate of the cylinder. The forcing
frequency of the cylinder previously have been presented in two normalised forms. The first is in
form of forcing Strouhal number

Sf ≡
Dfosc
U∞

, (2.28)

where fosc is the forcing frequency. Alternatively, it can be expressed as the normalised forcing
frequency (fr)

fr ≡
fosc
fSt

, (2.29)

where fSt is the Strouhal frequency of a stationary cylinder. The forcing Strouhal number, Sf ,
can be used to compare the forcing and shedding frequencies Strouhal numbers and the normalised
forcing frequency fr expresses the forcing frequency as a ratio of fSt.

Due to the large parametric field, literature in the following sections focuses on characterising
the fluid forces and wake inside and outside of the lock-in regime. The synchronisation regime for
a rigidly-mounted cylinder undergoing sinusoidally-driven rotary oscillations will first be discussed
and defined. The fluid forces and the wake structure of a rotary oscillating cylinder will then be
reviewed.

2.4.2.1 Lock-on regimes and frequency modulation

For a rigidly-mounted cylinder undergoing sinusoidally-driven rotary oscillations, synchronisation
between the forcing motion and the wake is important. It occurs when the vortex-shedding frequency
(fsh) synchronises with the rotary forcing frequency (fosc), deviating from the Strouhal frequency
(fSt) of a non-rotating cylinder. This is expressed as

fsh ∼= fosc . (2.30)
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Sf

Figure 2.18: A lock-on map presented in the forcing Strouhal number (Sf ) and forcing velocity ratio (Am)
domain. The solid line delimits the boundary between lock-on and non lock-on regions. Figure from Choi
et al. (2002) and re-labelled using the terminology conventions of the present thesis.

This has been reported by a number of works (e.g. Okajima et al. (1975); Tokumaru & Dimotakis
(1991); Cheng et al. (2001); Cheng (2001); Choi et al. (2002)) and it is commonly referred as ‘lock-
on’. Note that ‘lock-on’ is should not be confused with lock-in, a term commonly used in this thesis
referring to the wake-body synchronisation of cylinders undergoing VIV.

While lock-on will occur when the cylinder undergoes forcing at the Strouhal frequency of a
stationary cylinder (i.e. fosc = fSt), Cheng et al. (2001); Cheng (2001); Choi et al. (2002) have
shown that lock-on can also occur over certain ranges of Am and Sf . Figure 2.18 is a map showing
the lock-on regimes as a function of Sf and Am at a low Reynolds number of Re = 100. In fig. 2.18,
• represents lock-on, × non lock-on and the solid line shows the approximate boundary between
the two regimes. Choi et al. (2002) discussed that the determination of lock-on is based on the
characteristics of the lift forces. They showed that lock-on occurs when the forcing frequency is close
to the Strouhal frequency of a non-rotating cylinder (i.e. fosc ≈ fSt). As Am increases, the lock-on
region widens. This was also observed in Lu & Sato (1996); Cheng et al. (2001); Cheng (2001).

Another phenomenon associated with motion-wake synchronisation occurs outside the lock-on
regime. Tertiary lock-on occurs when the vortex-shedding frequency, fsh, becomes synchronised with
one-third the rotary forcing frequency, fosc, it is defined as

fsh ∼=
1

3
fosc . (2.31)

A comprehensive study on tertiary lock-on has been done by Baek & Sung (2000).
A number of works (e.g. Baek & Sung (1998); Cheng et al. (2001); Cheng (2001); Choi et al.

(2002)) have documented the presence of frequency modulation, however, the conditions at which it
occurs are disputed. Baek & Sung (1998) reported that modulation occurs when the rotary forcing
frequency approximately equals the Strouhal frequency of a non-rotating cylinder (i.e. fosc ≈ fSt).
Contrary to earlier work, at sufficiently large Am Cheng et al. (2001); Cheng (2001); Choi et al.
(2002) observed frequency modulation outside the lock-on regime where fosc 6= fSt. Figure 2.19
from Choi et al. (2002) shows the presence of frequency modulation in the lift and drag coefficient
time histories.

While frequency modulation was not extensively discussed in Cheng et al. (2001), a number
of low-frequency peaks can be observed in their data. In particular, the power spectra density
(PSD) plots in fig. 2.20(right column) (in cases outside the lock-on fr values). They remarked
that the presence of a large-scale vortex shedding frequency (fls), low in value, is related to the
Strouhal frequency fSt of a stationary cylinder. Choi et al. (2002) elaborated that the presence of
fls and frequency modulation is the result of discrepancies between fosc and fsh of a non-rotating
cylinder. Cheng et al. (2001) mentioned that fls is the result of the coalescence of small-scale vortex
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Figure 2.19: Presence of frequency modulation in the (a) lift (CL) and (b) drag (CD) coefficient time
histories for a rigidly-mounted cylinder undergoing sinusoidally-driven rotary oscillation at Reynolds number
Re = 100 and forcing velocity ratio Am = 1.4 and forcing Strouhal number Sf = 0.5. Figure from Choi
et al. (2002).

structures within the Kármán vortex formation length scale. Choi et al. (2002) reported similar
findings. These small-scale vortex structures are shed at relatively higher frequencies; as they flow
downstream, they form larger, lower frequency structures. The low-fls modulation becomes more
apparent as fr increases and shifts fosc away from fls. Therefore, the influence of fls and the level
of frequency modulation increases with fr. In higher fr cases (fr = 2.0), fls is higher in power than
the combined fosc and fsh peak. As a result, the fosc (and fsh) becomes modulated by fls. Choi
et al. (2002) remarked that frequency modulation exist at varying levels when the fluid-structure is
not under lock-on.

2.4.2.2 Fluid forces

To further understand the effects of sinusoidal rotary oscillations on a rigidly-mounted cylinder,
researchers studied fluid forces. Previous work has shown that significant drag reductions can be
achieved using sinusoidally-driven rotary oscillations. Tokumaru & Dimotakis (1991) showed there
was a six-fold reduction in drag compared to the non-rotating case at some optimal ranges of forcing
at Re = 15000. There are, however, some discrepancies between studies. Low Reynolds number
(Re = 100) simulation by Choi et al. (2002) showed that drag increases to some maxima when the
forcing Strouhal number Sf approaches the Strouhal number of a stationary cylinder (Sf ≈ St).
Furthermore, they found that drag reduction is only achieved near the lock-on boundaries and
that the six-fold reduction in Tokumaru & Dimotakis (1991) was not observed. Choi et al. (2002)
suggested this discrepancy may result from the large differences in Reynolds number. Other work by
Shiels & Leonard (2001); Cheng et al. (2001); Cheng (2001); Thiria et al. (2006) have also reported
reductions in drag. Of particular interest to the present thesis is the lift force as this directly
influences the characteristics and flow mechanisms that causes an elastically-mounted system to
undergo VIV. This section will focus on characterising the lift forces of a rigidly-mounted cylinder
undergoing rotary oscillations. Tokumaru & Dimotakis (1991); Chou (1997); Fujisawa et al. (1998);
Shiels & Leonard (2001); Cheng et al. (2001); Cheng (2001); Choi et al. (2002); Thiria et al. (2006)
provide further details on the drag forces of a rigidly-mounted cylinder undergoing rotary oscillations.

Several studies have focused on characterising the effects of rotary oscillation on drag but lift
forces have received considerably less attention. Simulations at a low Reynolds number of Re = 1000
by Chou (1997) showed that C̄L of the cylinder monotonically decreases towards zero with fr while
it increases with Am. The time histories at these non-zero mean lift C̄L points show that the lift
signals are non-sinusoidal about zero (but are generally periodic) after the initiation of the oscillatory
motion. Later work by Cheng et al. (2001); Cheng (2001) showed similar findings when forcing was
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(a) fr = fosc/fSt = 0.2
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(e) fr = 1.3

(f) fr = 2.0

fosc

fsh

fosc, fsh

fosc, fsh

fosc, fsh

fosc, fsh

fls

fosc, fsh
fls

Figure 2.20: The time histories of the lift (CL) and drag (CD) coefficients (left column) and the power
spectra density (PSD) of the CL signal (right column) for a rigidly-mounted cylinder undergoing sinusoidally-
driven rotary oscillations at Reynolds number Re = 100 and forcing velocity ratio Am = 0.5 at several
normalised forcing frequency ratio (fr) cases are presented. fosc is the forcing frequency, fSt is the Strouhal
frequency of a stationary cylinder, fsh is the vortex shedding frequency and fls is the large-scale vortex
shedding frequency. Figures extracted from Cheng et al. (2001) and re-labelled using the terminology
conventions of the present thesis.
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Sf (St = 0.21)
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Figure 2.21: The mean lift coefficient (C̄L) of a rigidly-mounted cylinder undergoing sinusoidally-driven
rotary oscillations presented as a function of forcing Strouhal number (Sf ) and forcing velocity ratio (Am)
at Reynolds number Re = 1000. Figure from Chou (1997) and re-labelled using the terminology conventions
of the present thesis.

outside the lock-on regime.

As Cheng et al. (2001); Cheng (2001); Choi et al. (2002) reported frequency modulation outside
the lock-on regime, this casts doubt on the magnitude of C̄L results from Chou (1997) in Fig. 2.21.
As can be seen in fig. 2.19, the modulation period can be very large, meaning a large sampling time is
required to capture even a single modulation period. The force coefficient time histories presented in
Chou (1997) are approximately 40 s in duration, with the transition time for the oscillatory motion
and wake taking up a significant portion of the sampled data, as evidenced by fig. 2.22. It is possible
that C̄L is overestimated due to their limited sampling duration. With a sampling duration long
enough to capture a sufficient number of modulation periods, C̄L of the cylinder could be smaller
than what is reported in Chou (1997).

More recent numerical work by Cheng et al. (2001); Cheng (2001); Choi et al. (2002) has shown
that there is no significant reduction in lift with sinusoidally-driven rotary oscillations over most
forcing parameters. In fact, within the lock-on regime lift can increase significantly. This is evident
from the lift coefficient time histories in fig. 2.20(left column). At a forcing velocity ratio Am = 0.5
and at forcing frequencies below lock-on (see fig. 2.20(a)), the peak lift (CL(max)) increases compared
to that of a non-rotating cylinder from 0.52 < CL(max) ≤ 0.8 (calculated based on data from Norberg
(2001)) to CL(max) ≈ 1.05. As lock-on initially occurs (fig. 2.20(b)), there are no significant changes
in lift magnitudes, however, frequency modulation ceases as the force signals become sinusoidal and
periodic. Figure 2.20(c) shows that further increases in forcing frequency to fr = 1.0 results in
significant increases in lift to CL(max) > 1.5. Within the lock-on regime, further increases in forcing
frequency above fr = 1.0 causes the peak lift decreases. As evidenced in fig. 2.20(d), peak lift
decreased from CL(max) ≈ 1.6 at fr = 1.0 to CL(max) ≈ 1.25 at fr = 1.2. Increasing the forcing
frequency above the lock-on range will result in an initial reduction in peak lift (see fig. 2.20(e) at
fr = 1.3). In this non lock-on regime, the peak lift gradually increases with further increases in
forcing frequency. As Am is increased, CL(max) also increases.

Choi et al. (2002) also reported similar findings and fig. 2.23 from their work presents a map of
CL(max) overlaying the lock-on regime map from fig. 2.18 in the Sf −Am parameter space.

This section has shown that rotary oscillations can significantly change the magnitude and profile
of the lift forces acting on the cylinder. The changes in wake structure as a result of rotary forcing
as well as the wake modes observed in and outside the lock-on regime are discussed in the section
to follow.
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Figure 2.22: The time histories of the drag coefficient (CD) and lift coefficient (CL) of a rigidly-mounted
cylinder undergoing sinusoidally-driven rotary oscillations at various forcing Strouhal number (Sf ) and
forcing velocity ratio (Am) and at Reynolds number Re = 1000. Each dot on the CL curve denotes the
beginning of a cycle of rotary oscillation. Figure from Chou (1997) and re-labelled using the terminology
conventions of the present thesis.

Am

Sf

Figure 2.23: The time-averaged lift coefficient (C̄L) of a rigidly-mounted cylinder undergoing sinusoidally-
driven rotary oscillations presented as a function of forcing Strouhal number (Sf ) and forcing velocity ratio
(Am) at Reynolds number Re = 100. The solid line delimits the boundary between lock-on and non lock-on
regions. Figure from Choi et al. (2002) and re-labelled using the terminology conventions of the present
thesis.

2.4.2.3 Wake structures

The wake of a rigid cylinder undergoing rotary oscillations was studied experimentally by Okajima
et al. (1975); Tokumaru & Dimotakis (1991) and later numerically by Chou (1997); Cheng et al.
(2001); Cheng (2001); Choi et al. (2002). Tokumaru & Dimotakis (1991) observed four distinct wake
structures that changes with Sf at Re = 15000. Figure 2.24 illustrates the four wake structures they
referred as Mode I to VI. Mode I, as shown in fig. 2.24(a), is characterised by the shedding of two
vortices of the same sign per half cycle. Figure 2.24(b) illustrates Mode II, the wake structure of this
mode persist a large distance downstream of the cylinder and it is synchronised with Sf . In Mode
III (see fig. 2.24(c)), the wake structure is also synchronised with Sf , however, due to instability the
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(a)

(b)

(c)

(d)

Figure 2.24: Instantaneous vorticity contours showing (a) Mode I (forcing velocity ratio Am = 2.0 and
forcing frequency ratio Sf = 0.165), (b) Mode II (Am = 2.0, Sf = 0.4), (c) Mode III (Am = 2.0, Sf = 0.8),
and (d) Mode IV (Am = 0.6, Sf = 0.8). Original figure taken from the low Reynolds number simulation
(Re = 100) by Choi et al. (2002).

higher frequency structures transform into a lower frequency structure at some distance downstream.
Figure 2.24(d) illustrates Mode VI, rotary oscillation only have an effect on the shear layers of the
cylinder. At some distance downstream the wake structure resembles the 2S structure of a stationary
cylinder.

Chou (1997); Cheng et al. (2001); Cheng (2001); Choi et al. (2002) have presented complex wake
structures from their simulations. Chou (1997); Choi et al. (2002) reported the evolution of the
wake at different forcing parameters and Cheng et al. (2001); Cheng (2001) reported the evolution
of the wake of an impulsively oscillating cylinder. A few common trends have arisen from their
reports of the cylinder wake at varying forcing parameters. Their simulations observed the shedding
of multiple vortices in the near wake, as they flow downstream, they transform into a larger, lower
frequency structure. This is similar to Mode III reported in Tokumaru & Dimotakis (1991). Choi
et al. (2002) presented the evolution of the wake over many shedding cycles to show the presence
of frequency modulation. Figure 2.25 presents a time history of the CL and the evolution of the
cylinder’s spanwise vorticity over one modulation period. It can be seen that vortices shed into
the near wake occur at a higher rate than the coalesce and merging of small structures further
downstream. From this, it is clear that a large sampling time is required to capture the effect of
frequency modulation. For experiments, capturing even one modulation period will be exceptionally
difficult. Due to turbulences in the flow and variation of vortices structures, a modulation period
may not be clear or requires a significant amount of resources to capture; hence, it has yet to be
observed in an experiment.

Chou (1997); Cheng et al. (2001); Cheng (2001) presented results that, under specific flow con-
ditions and forcing parameters, a tandem vortex pair is shed per half shedding cycle. Figure 2.26
presents the evolution of the vortex structure at Re = 1000. Two pairs of counter-rotating vortices
are shed per shedding cycle. Each vortex pair is composed of a larger primary and followed by the
shedding of a smaller secondary vortex. Close inspection reveals that the secondary vortex orbits
arounds the primary vortex as the pair moves downstream. This is not unexpected as the rotary os-
cillation forces the shedding of primary vortices, which is high in strength, to draw counter-rotating
vorticity from the opposite side of the cylinder and form a secondary vortex.
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Figure 2.25: The evolution of the spanwise vorticity contour over approximately one modulation period
(Tmod ≈ 26) at forcing velocity ratio Am = 1.4 and forcing Strouhal number Sf = 0.5. At the top is the
time history of the lift coefficient (CL) marked with solid circles to indicate the instant corresponding to
each vorticity snapshot. Time of each vorticity snapshots increases from top to bottom in the left column
and then to the right column. Figure taken from the low Reynolds number simulation (Re = 100) by Choi
et al. (2002).

2.5 Vortex-induced vibration of a cylinder undergoing rotary mo-
tions

From the literature reviewed in the previous section active control methods such as constant rate ro-
tation and sinusoidally-driven rotary oscillations can clearly affect the wake, fluid forces and motion-
wake synchronisation of a rigidly-mounted cylinder. However, it is an open question whether such
active control methods can affect a cylinder mounted elastically causing it to freely vibrate. More-
over, it is not known how the cylinder will and whether the wake structure will differ from that of
a non-rotating cylinder undergoing VIV or a rigidly-mounted cylinder undergoing rotary motions.
Bourguet & Lo Jacono (2014) appear to have been first to present a low Reynolds number (Re = 100)
simulation of the effects of constant rotation on an elastically-mounted cylinder that can freely vibrate
in only the cross-flow direction. Two other studies followed. Zhao et al. (2014c) numerically stud-
ied both one and two degree-of-freedom oscillations at a low Reynolds number. Seyed-Aghazadeh
& Modarres-Sadeghi (2015) presented experimental work at relatively low Reynolds numbers be-
tween 350 ≤ Re ≤ 1000. Literature on an elastically-mounted cylinder undergoing constant rate
rotation is presented in §2.5.1 Du & Sun (2015) appear to have been first to study the effects of
sinusoidally-driven rotary oscillation on elastically-mounted cylinders in the cross-flow direction.
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Figure 2.26: The evolution of the spanwise vorticity contour over one shedding cycle at forcing velocity
ratio Am = 1.5π and forcing frequency ratio fr = 1.15. Figure taken from the low Reynolds number
(Re = 1000) simulation by Chou (1997) and re-labelled using the terminology conventions of the present
thesis.

Their low Reynolds number (Re = 350) simulation showed the efficacy of rotary oscillation in con-
trolling vortex shedding even for an elastically-mounted body. Findings from their work is reviewed
in §2.5.2

2.5.1 Constant rotation

It is fundamental to any VIV systems, even with the addition of constant rate rotation, to charac-
terise: 1, the amplitude and frequency response of the body, and 2, the fluid forces, phase differences
between forces and motion, and the structure of vortex shedding. In §2.5.1.1, the time-averaged
position of the cylinder will be discussed prior to the oscillatory component of the cylinder’s mo-
tion. The phenomenon of ‘lock-in’ and the frequency response of the oscillatory component of the
cylinder’s motion will then be presented. The wake structure will be reviewed at the beginning of
§2.5.1.2 followed by the fluid forces, in particular the lift forces in the cross-flow direction, and phase
of the cylinder.

2.5.1.1 Vibration amplitude and frequency responses

The time-averaged position of the cylinder, ȳ, in the cross-flow direction from the low Reynolds
number, Re, simulation by Bourguet & Lo Jacono (2014) is presented in fig. 2.27(a). A zero ȳ
value in fig. 2.27(a) and fig. 2.27(b) represents the natural position of the cylinder in stationary
flow i.e. ȳ = 0). Their results showed that as the rotation rate, α, is increased at any given U∗, a
corresponding increase in deviation from the cylinder’s natural position is observed. Similarly, at any
fixed α, increases in U∗ will also increase the time-averaged position (ȳ) deviation from the natural
position. This is not an unexpected result as it is established in rigidly-mounted cylinder literature,
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Figure 2.27: The normalised time-averaged displacement (ȳ/D) of an elastically-mounted cylinder under-
going constant rate rotation presented as a function of reduced velocity (U∗) and rotation rate (α). (a)
figure taken from the low Reynolds number (Re = 100) simulation by Bourguet & Lo Jacono (2014), and
(b) figure taken from the low Reynolds number (Re = 350 − 1000) experiment by Seyed-Aghazadeh &
Modarres-Sadeghi (2015).

covered in§2.4.1, that when a cylinder undergoes constant rate rotation, the lift force generated by
the Magnus effect increases correspondingly. Results from Seyed-Aghazadeh & Modarres-Sadeghi
(2015) is presented in fig. 2.27(b) and they are in good agreement with those from Bourguet & Lo
Jacono (2014). Zhao et al. (2014c) also reported similar trends in their one DOF data set. The
time-averaged lift force will be discussed in further detail in §2.5.1.2.

While the time-averaged position of the cylinder sheds light on an aspect of the cylinder’s re-
sponse, researchers have a stronger interest in the dynamic response of the cylinder. For elastically-
mounted cylinders free to vibrate, the amplitude of the oscillatory component of the cylinder’s po-
sition is examined. This was previously done in VIV studies (e.g. Feng (1968); Williamson (1988);
Khalak & Williamson (1996); Govardhan & Williamson (2000)) to quantify the amplitude response
of the cylinder at different U∗. It was found that the amplitude response of a cylinder undergoing
VIV in the cross-flow direction is typically well within one diameter of the cylinder (A∗ < 1D).

Figure 2.28(a) from Bourguet & Lo Jacono (2014) presents the maximum normalised amplitude
response A∗maxof the cylinder as a function of U∗ and α. The same results from Seyed-Aghazadeh
& Modarres-Sadeghi (2015) is presented in fig. 2.28(b). Figure 2.28(a) shows that body vibrations
persist up to a rotation rate of α ≈ 4 and that the maximum amplitude response observed was
1.9 times the cylinder diameter. Bourguet & Lo Jacono (2014) found in their simulation that the
amplitude of the cylinder is quite unresponsive where the rotation rate is α < 1. When the rotation
rate is increased to the range of 1 ≤ α ≤ 1.5, there is a notable increase in A∗max, however, the trend
remains similar to that on a non-rotating cylinder. Further increases in rotation rate to 1.5 < α ≤ 3
will result in large increases in A∗max as well as large shifts in the location of the amplitude peak
to higher U∗ values. The global peak response of A∗max ≈ 1.9D occurred at a rotation rate of
α = 3.75 and Bourguet & Lo Jacono (2014) did not observe any vibration response at α = 4. The
similarity between the rotating and non-rotating amplitude response curves suggest the vibration
is caused by the wake-body synchronisation and not a galloping response. Figure 2.28(b) presents
the vibration region map by Bourguet & Lo Jacono (2014) delimiting regions of vibration response
(where A∗max < 0.05D) in the U∗ and α domain. It is evident that at sufficiently high α, the
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Figure 2.28: (a) presents a map in the rotation rate (α) and reduced velocity (U∗) domain delimiting
the vibration region and regions where steady and unsteady flow is observed. (b) presents the maximum
normalised amplitude response (A∗max) of the oscillating component of the cylinder’s motion about its time-
averaged position (ȳ) as a function of U∗ and α. Figures taken from Bourguet & Lo Jacono (2014) and
re-labelled using the terminology conventions of the present thesis.

vibration region can extend to higher U∗. From this it is clear that the lock-in region in which large
body oscillations occur widens with increased rotation rates at low Reynolds numbers. Zhao et al.
(2014c) also reported similar observations in the widening trend to the lock-in region, however, large
increases in amplitude response in the cross-flow direction is not observed.

This, however, is not observed in the experiment by Seyed-Aghazadeh & Modarres-Sadeghi
(2015). Their results showed no vibration above a rotation rate of α ≈ 2.55 and the vibration
region do not extend to higher reduced velocities once the wake and body becomes desynchronized.
In fact, their lock-in region becomes narrower with α. Seyed-Aghazadeh & Modarres-Sadeghi (2015)
reported a global peak amplitude response of A∗max ≈ 0.6, which is approximately 50% larger than
the non-rotating case. While the increase in response is still large, it is significantly less than those
observed in Bourguet & Lo Jacono (2014). This is likely due to the differences in experimental
variables such as mass and damping as Bourguet & Lo Jacono (2014) performed their simulation
at a mass ratio of m∗ = 10 with zero damping ζ = 0 while Seyed-Aghazadeh & Modarres-Sadeghi
(2015) conducted their experiments at m∗ = 11.5 and ζ = 0.01. Furthermore, the Reynolds number
of the two studies are very different as Bourguet & Lo Jacono (2014) maintained Re = 100 while
Seyed-Aghazadeh & Modarres-Sadeghi (2015) varied between Re = 350− 1000.

Bourguet & Lo Jacono (2014) reported that the body oscillations they observed are typically
periodic and exhibits strong sinusoidal characteristics. The normalised frequency responses (f∗) as a
function of U∗ and α from Bourguet & Lo Jacono (2014) and Seyed-Aghazadeh & Modarres-Sadeghi
(2015) are presented in fig. 2.29(a) and fig. 2.29(b). Both studies share similar trends in frequency
response. The response of rotating cases is comparable to those of a non-rotating cylinder. In
Bourguet & Lo Jacono (2014), at low U∗, f∗ bends downwards to follow approximately the Strouhal
frequency (fSt) of a stationary cylinder (shown as a dashed line in fig. 2.29(a)). This bending in
f∗ is also observed at α associated with the suppression of vortex shedding for a rigidly-mounted
cylinder. At moderate to high U∗, f∗ is relatively constant and remain in the proximity of fnw but
differs from it (f∗ 6= 1). As α is increased, there is a global decrease in f∗.

To better understand the fluid mechanics behind the changes in the cylinder’s amplitude and
frequency responses as a result of body rotation; a review of the wake structure, with respect to
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Figure 2.29: The normalised frequency response (f∗) of an elastically-mounted cylinder undergoing con-
stant rate rotation presented as a function of reduced velocity (U∗) and rotation rate (α). (a) figure taken
from the low Reynolds number (Re = 100) simulation by Bourguet & Lo Jacono (2014), and (b) figure taken
from the low Reynolds number (Re = 350 − 1000) experiment by Seyed-Aghazadeh & Modarres-Sadeghi
(2015).

the vibration region described in Bourguet & Lo Jacono (2014), will be presented in the following
section followed by the fluid forces and their phases with the cylinder’s motion.

2.5.1.2 Fluid forces, phases and wake structures

The identification of vortex shedding patterns downstream of a cylinder undergoing free or forced
vibration in the cross-flow direction have been characterised by previous work such as Williamson
(1988); Govardhan & Williamson (2000). Their work has shown that the wake structure downstream
of a vibrating cylinder may differ to the Kármán vortex streets observed behind stationary cylinders.
The wake structure of a rigidly-mounted cylinder undergoing constant rate rotation have also been
extensively studied (see Badr et al. (1990); Mittal & Kumar (2003); El Akoury et al. (2008); Rao
et al. (2013, 2015). It is of interest for researchers to know whether these wake patterns seen in non-
rotating VIV and rigidly-mounted rotating cylinders continues to exist when an elastically-mounted
cylinder is subjected to constant rate rotation. Furthermore, to understand the changes to the
cylinder’s vibration and force responses with rotation, it is essential to characterise the changes in
wake pattern.

Figure 2.30, extracted from Bourguet & Lo Jacono (2014), is a map of the different wake modes
observed in their U∗ − α parameter space. They made clear that the boundaries between wake
modes on the map are approximates as hysteresis and wake-mode switching may occur in transition
regions between modes, as documented by Khalak & Williamson (1999). The instantaneous iso-
contours of spanwise vorticity presented in fig. 2.31 shows the different wake modes Bourguet &
Lo Jacono (2014) observed. Outside their vibration region, the wake is dominated by three wake
structures: the 2S, D+ and D−. These structures, shown in fig. 2.31(a), (b) and (c), have been
previously reported in non-rotating VIV and rigidly-mounted rotating cylinder studies. Outside
their vibration region and at rotation rates α < 1.8, the 2S mode is observed. Shown in fig. 2.31(a),
this mode is characterised by the shedding of two single counter-rotating vortices per shedding cycle,
as typically seen in stationary cylinder studies. The D+ and D− mode was previously seen in Mittal
& Kumar (2003). As discussed in §2.4.1.2, the body rotation creates an asymmetry in the strength
of the positive and negative vortices that then causes the wake to deflect away from the streamwise
centreline. At rotation rates α ≥ 1.8, the flow becomes steady and the wake is composed of two
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Figure 2.30: Wake pattern of an elastically-mounted cylinder undergoing constant rate rotation presented
as a function of reduced velocity (U∗) and rotation rate (α). The thick black line delimits the approximate
boundaries of the vibration region. Figure taken from the low Reynolds number (Re = 100) simulation by
Bourguet & Lo Jacono (2014).

Figure 2.31: Instantaneous vorticity iso-contours of the different wake modes of an elastically-mounted
cylinder undergoing constant rate rotation are shown. (a) and (d) shows the 2S pattern, (b) D+ pattern,
(c) D− pattern, (e) C(2S) pattern, (f) P pattern, (g) P+S pattern, (h) T+S pattern, and (i) U pattern.
Figures taken from the low Reynolds number (Re = 100) simulation by Bourguet & Lo Jacono (2014).

elongated vorticity layers of opposite signs deflected away from the streamwise centreline. Between
rotation rates 1.8 < α . 3.7, the D+ mode exhibits a negative vorticity layer above the positive layer
(see fig. 2.31(b)). When the rotation rate becomes sufficiently high (α & 3.7), the negative vorticity
layer wraps around the cylinder like a ‘tongue’ and the positive vorticity layer is now positioned
above the negative layer. This is denoted as the D− mode as shown in fig. 2.31(c).

Within their vibration region, Bourguet & Lo Jacono (2014) observed a number of wake struc-
tures. At low α, the wake is characterised by the 2S mode (see fig. 2.31(d)) and its two variant: (1)
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C(2S) (see fig. 2.31(e)) and (2) P (see fig. 2.31(f)). At low U∗, the shed vortices tend to coalesce
in the wake, hence, it is referred to as C(2S). This mode was previously reported in Singh & Mittal
(2005). At higher U∗, the two counter-rotating vortices shed per cycle exhibits a tendency to collect
in pairs which lead to it being referred as P, as it resembles the P pattern reported in Williamson
(1988) Seyed-Aghazadeh & Modarres-Sadeghi (2015) presented dye visualisation of their wake at
similar reduced velocity (U∗ = 5.2) over a range of α. At rotation rates α < 1.4, they observed the
2S mode and asymmetric variants of the 2S mode. The vortices shed in these asymmetric 2S variants
deflects from the streamwise centreline with its deflection increases with α. Between rotation rates
1.4 ≤ α ≤ 1.8, the P mode is observed. These findings are in good agreement with those reported in
Bourguet & Lo Jacono (2014). Zhao et al. (2014c) also reported observing the C(2S) and 2S modes
at comparable U∗ and α.

Within the vibration region reported in Bourguet & Lo Jacono (2014), at higher α and moderate
U∗, the wake is dominated by the P+S mode (see fig. 2.31(g)). This wake pattern is composed of a
pair (P) of counter-rotating vortices and a single (S) vortex. This mode was previously reported in
forced and freely vibrating cylinders (see Blackburn & Henderson (1999); Singh & Mittal (2005)). At
moderate U∗ and rotation rates α & 2.5, Bourguet & Lo Jacono (2014) observed a new wake mode..
As it differs in topology to the 2P mode and resembles an extension of the P+S mode, this new
wake structure, compose of a collection of a triplet (T) of vortices and a single (S) vortex is referred
to as T+S. The T+S mode is illustrated in fig. 2.31(h). The last wake mode Bourguet & Lo Jacono
(2014) observed within their vibration region is associated with high U∗. They reported a wake
mode that is composed of two undulating vorticity layers and exhibited no signs of vortex shedding.
This mode has not been reported in previous work on VIV. Due to its undulating behaviour, this
mode is referred as U and is shown in fig. 2.31(i).

From the review, it is evident that some wake modes previously seen in non-rotating VIV and
rigidly-mounted rotating cylinder studies continue to exist even for an elastically-mounted cylinder
undergoing constant rate rotation. A new wake mode, the T+S mode, was reported by Bourguet &
Lo Jacono (2014) and it is associated with regions of high amplitude responses. To further understand
the mechanics, the fluid forces, in particular the lift forces acting in the cross-flow direction will be
review.

As discussed in §2.5.1.1, the deviation of time-averaged position of the cylinder, ȳ, from its natural
position when the cylinder is undergoing rotation is the result of a net force acting on the cylinder.
This time-averaged force is the net lift which acts on the cylinder in the cross-flow direction. They
reported a global decrease in the time-averaged lift coefficient (C̄y) with increasing α. This explains
the global increase in the deviation of ȳ from its natural position with α.

To study the impact of body rotation on the fluctuating force component, the RMS values of
the total lift force coefficients (Cy,RMS) from Bourguet & Lo Jacono (2014) and Seyed-Aghazadeh &
Modarres-Sadeghi (2015) are studied. Bourguet & Lo Jacono (2014) remarked that the addition of
body rotation did not have a significant impact on the trends of Cy,RMS from that of a non-rotating
cylinder. The RMS values of the pressure component (Cpy ) from their simulation follows the total lift
coefficient (Cy) closely. The evolution of Cvy with increasing U∗ at each α case is generally smoother
and at lower RMS values compare to Cy and Cpy . Seyed-Aghazadeh & Modarres-Sadeghi (2015) also
reported similar behaviour in the RMS lift. The magnitude of Cy,RMS from Bourguet & Lo Jacono
(2014) and Seyed-Aghazadeh & Modarres-Sadeghi (2015) are in good agreement.

The phasing between the fluid forces and motion of the body has been extensively studied for
a non-rotating cylinder undergoing VIV (see Khalak & Williamson (1999); Carberry et al. (2001);
Williamson & Govardhan (2004a)). Bourguet & Lo Jacono (2014) presented the first decomposi-
tion of the phasing between forces and displacement of an elastically-mounted cylinder undergoing
constant rate rotation. Figure 2.32 presents the phase differences between the first harmonics of
the cylinder displacement, y, and its force components (total Cy, pressure Cpy and viscous Cvy ) as
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2.5. Vortex-induced vibration of a cylinder undergoing rotary motions

Figure 2.32: The phase differences between the total (Cy), pressure (Cp
y ), viscous (Cv

y ) cross-flow force
coefficients and the cylinder displacement (y) as functions of reduced velocity (U∗) and rotation rate (α).
Figure taken from the low Reynolds number (Re = 100) simulation by Bourguet & Lo Jacono (2014).

a function of U∗ for different cases of α. They reported that at rotation rates α ≤ 2, the phase
associated with the total transverse lift, here referred as the total phase, φT , exhibits two phase
states. The first phase state is at φT = 0◦ (in phase) and then the cylinder jumps to the second state
at φT = 180◦ (out of phase). At rotation rates α > 2, the force and motion of the cylinder remains
in phase, therefore, the total phase remains at φT = 0◦ regardless of changes in U∗. Their analysis
of the frequency response showed that the phase jump, occurs at low α, consistently coincides with
the cylinder oscillating at the natural frequency of the system, i.e., f∗ = 1. The global decrease
in f∗ with α seen in fig. 2.29(a) sufficiently explains the shift in the phase jump to higher U∗ with
α. As α increase, the value of U∗ at which the cylinder oscillates at the natural frequency shifts
to higher U∗. Furthermore, at rotation rates α ≥ 2.5, the frequency response remains between the
natural frequency (i.e. f∗ < 1) hence there is no phase jump and the total phase remains at φT = 0◦.
Previous work on non-rotating VIV such as Govardhan & Williamson (2000) reported that a jump in
phase does not coincide with a switch of the wake mode. Bourguet & Lo Jacono (2014) also reported
the phasing between the pressure Cpy forces and viscous Cvy forces with the motion of the cylinder
(labelled as the φpy and φvy, respectively). The evolution of the phase response of the pressure φpy and
viscous φvy forces did not exhibit any jump in phase angle, instead they varied smoothly with U∗.
They discussed that the jumps in φT is the result of the continuous variation in both pressure φpy
and viscous φvy force phases.

Seyed-Aghazadeh & Modarres-Sadeghi (2015) reported the presence of two phase states at lower
α. The general trends in total phase from their experiment are in good agreement with the simula-
tion by Bourguet & Lo Jacono (2014). However, unlike the numerical results Seyed-Aghazadeh &
Modarres-Sadeghi (2015) did not observe a clear jump in φT . Differences in the phase jump behaviour
and phase angle values between their work may perhaps be explained by: (1) the Reynolds number
differences, and (2) the experimental nature of the results in Seyed-Aghazadeh & Modarres-Sadeghi

43



Chapter 2. Literature review

(2015), electrical and mechanical noise is inevitable.
The review of the current state of knowledge on an elastically-mounted cylinder undergoing

cross-flow VIV and constant rate rotation showed that the cylinder can exhibit amplitude responses
significantly higher than those observed for a non-rotating cylinder. The trends in the frequency
response remains comparable to those seen in non-rotating VIV studies but they globally decrease
with rotation. Wake patterns previously observed in non-rotating VIV and rigidly-mounted rotating
cylinder studies continues to exist. A new T+S mode was reported by Bourguet & Lo Jacono (2014)
and it is associated with the region of high amplitude response. In general, the force and phases
follow the trend of a non-rotating cylinder with some alterations as α is increased. The following
section will review literature related to a freely-vibrating cylinder undergoing sinusoidally-driven
rotary oscillations.

2.5.2 Sinusoidal rotary oscillations

To the author’s knowledge, Du & Sun (2015) is the first to present work on an elastically-mounted
cylinder undergoing sinusoidally-driven rotary oscillations in the cross-flow direction. The following
sections will review the results from their low Reynolds number (Re = 350) numerical study. The
phenomenon of lock-on and its impact on the amplitude response and wake structure will be discussed
first. The effects of rotary oscillation amplitude on the cylinder’s response will be reviewed prior
to examining the effects of rotary oscillation frequency on the cylinder. The effectiveness of rotary
oscillation at different U∗ and the impact of mass ratio, m∗, will be reviewed at the end. Except
their investigation into the effects of m∗, all other results from Du & Sun (2015) were collected with
m∗ = 10.

2.5.2.1 The impact of lock-on

As explained in §2.3, the synchronisation between the fluid and structure occurs when the vortex
shedding frequency (fsh) deviates from the Strouhal frequency (fsh) of a stationary cylinder and
follows the frequency response of the oscillating system (f∗), which is in close approximation to the
natural frequency of the oscillating structure (fn). This is mathematically defined in eq. 2.11. Un-
der lock-in, the body experiences large amplitude oscillations and fluid forces. The principle behind
using sinusoidally-driven rotary oscillations to control VIV is to manipulate the vortex shedding fre-
quency to follow the rotary oscillation’s forcing frequency (fosc), therefore, deviating from the natural
frequency of the structure. This deviation enables structural resonance of an elastic system to be
minimised. When fsh follows approximately fosc, this is known as lock-on and it was mathematically
defined in eq. 2.30. The impact of rotary oscillation and the forcing frequency has been extensively
studied ( e.g. Okajima et al. (1975); Tokumaru & Dimotakis (1991); Cheng et al. (2001); Cheng
(2001); Choi et al. (2002)) and reviewed in §2.4.2. It is evident that rotary oscillations are effective
in manipulating fsh to follow fosc, however, researchers are interested in investigating the efficacy
of rotary oscillations in controlling VIV of an elastic body. In their simulation, the rotary forcing is
controlled by two parameters: (1) the forcing velocity ratio (Am), which is identical to the normalised
peak rotation rate described in eq. 2.27, and (2) the forcing frequency ratio, fr. With the addition
of free vibrations in the cross-flow direction, the forcing frequency reported in Du & Sun (2015)
is normalised by the natural frequency of the structure, fn, instead of the Strouhal frequency, fSt.
To avoid confusion, the normalised forcing frequency ratio, fr, associated with elastically-mounted
bodies will be termed as f∗rot and mathematically defined as

f∗rot =
fosc
fn

. (2.32)

Taken from Du & Sun (2015), fig. 2.33 presents the spectra of the cylinder’s normalised displace-
ment (y/D) for four different cases of f∗rot at reduced velocity U∗ = 4.5 and velocity ratio Am = 2.0.
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Figure 2.33: The power spectra density (PSD) of the displacement (y) of an elastically-mounted cylinder
undergoing rotary oscillations is presented as functions of normalised displacement (y/D) and normalised
frequency response (f∗). Four forcing frequency ratios (f∗rot) cases are presented at fixed forcing velocity
ratio Am = 2.0 and at reduced velocity U∗ = 4.5. Figure taken from Du & Sun (2015) and re-labelled using
the terminology conventions of the present thesis.

Figure 2.34 presents the PSD of the total (Cy) and vortex (Cv) force coefficients at the same para-
metric values as fig. 2.33. From fig. 2.33 it is evident that the frequency response of the cylinder’s
motion follows that of the f∗rot at f∗rot = 1.17 and 1.62. Analysis of the force component spectra in
fig. 2.34 showed that the dominant total and vortex force frequencies follow the forcing frequency,
fosc, and not the natural frequency of the structure in water, fnw(i.e. f∗ = 1) at f∗rot = 0.27, 1.17 and
1.62. Since the mathematical relationship described in eq. 2.30 is satisfied, the elastically-mounted
cylinder is lock-on to the rotary motion at f∗rot = 0.27, 1.17 and 1.62. The impact of lock-on is
significant as Du & Sun (2015) reported large reductions in the cylinder’s amplitude response. In
their simulation, the amplitude of the non-rotating case is A∗ ≡ y/D ≈ 0.5 As the cylinder un-
dergoes lock-on, A∗ is reduced to A∗ ≈ 0.04 and 0.0035 at f∗rot = 1.17 and 1.62, respectively (see
fig. 2.33(b) and (c)). This reduction demonstrates the effectiveness of rotary oscillations in sup-
pressing the vibrational response of an elastically-mounted cylinder. It should be noted that such
significant reduction in amplitude response was not observed at forcing frequency ratio f∗rot = 0.27.
Despite the cylinder locking onto the forcing motion, large oscillation amplitudes of A∗ ≈ 0.27 can
be seen in fig. 2.33(a). Figure 2.34(a) shows a weaker peak appearing at the natural frequency of
the structure (f∗ = 1). This suggested that the fn peak must be sufficiently suppressed in order
for the motion of the cylinder to follow that of the rotary forcing. When the cylinder is in the non
lock-on regime (at f∗rot = 3.87 in fig. 2.33(d) and fig. 2.34(d), the cylinder continues to exhibit a large
amplitude response where A∗ > 0.2. Du & Sun (2015) remarked that both the forcing frequency
ratios f∗rot = 3.87 and natural frequency f∗ = 1 continued to influence the vortex shedding process
and fluid forces, hence, making rotary oscillations ineffective at suppressing vortex shedding when
the system is in the non lock-on region.

The instantaneous wake structures of a cylinder undergoing VIV and rotary oscillations from
Du & Sun (2015) are presented in fig. 2.35. They observed stable wake formation at f∗rot = 1.17
and 1.62 (see fig. 2.35(b) and fig. 2.35(c)). Furthermore, the vortex formation and the frequency at
which they form is controlled by the rotary forcing and not the transverse motion of the cylinder.
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Figure 2.34: The power spectra density (PSD) of the total lift (Cy) and vortex lift (Cv) coefficients
of an elastically-mounted cylinder undergoing rotary oscillations is presented as functions of normalised
frequency response (f∗). Four forcing frequency ratios (f∗rot) cases are presented at fixed forcing velocity
ratio Am = 2.0 and at reduced velocity U∗ = 4.5. (a) f∗rot = 0.27, (b) f∗rot = 1.17, (c) f∗rot = 1.62, and (d)
f∗rot = 3.87. Figure taken from Du & Sun (2015) and re-labelled using the terminology conventions of the
present thesis.

Du & Sun (2015) reported that outside the lock-on region (see f∗rot = 3.87 case in fig. 2.35(d)), the
stable vortex streets previously observed becomes unsteady as the shedding process is influenced by
multiple vortex shedding frequencies as illustrated in fig. 2.34(d).

While understanding the impact of lock-on on an elastically-mounted body is sufficient to show
the rotary motion’s efficacy in suppressing vortex shedding and the subsequent changes in fluid
forces and vibrational response, it is not enough to reveal the evolution of the cylinder’s response
with the forcing parameters (Am and f∗rot). The following section will focus on the effects of the
forcing frequency ratio.
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Figure 2.35: Instantaneous vorticity contours of an elastically-mounted cylinder undergoing rotary oscil-
lations. Four forcing frequency ratios (f∗rot) cases are presented at fixed forcing velocity ratio Am = 2.0 and
at reduced velocity U∗ = 4.5. (a) f∗rot = 0.27, (b) f∗rot = 1.17, (c) f∗rot = 1.62, and (d) f∗rot = 3.87. Figure
taken from Du & Sun (2015).

Figure 2.36: Flow regime of an elastically-mounted cylinder undergoing rotary oscillations at fixed forcing
frequency ratio f∗rot = 2.0 and at Reynolds number Re = 350. Figure taken from Du & Sun (2015) and
re-labelled using the terminology conventions of the present thesis.

2.5.2.2 Effects of rotary oscillation frequency

A map of the lock-on and non lock-on regimes in the reduced velocity (U∗) and forcing frequency
ratio (f∗rot) domain is presented in fig. 2.36 for the velocity ratio Am = 2.0 case. Du & Sun (2015)
reported that the range of f∗rot at which the cylinder remains locked on decreases with increasing
U∗.

This behaviour is further exemplified in fig. 2.37 where the amplitude response (A∗) at two
reduced velocities (U∗ = 4.5 and 5.0) is presented as a function of f∗rot at a fixed velocity ratio of
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Figure 2.37: The normalised amplitude response (A∗) of an elastically-mounted cylinder undergoing rotary
oscillations presented as a function of forcing frequency ratio (f∗rot). Two reduced velocity (U∗) cases are
presented for the fixed forcing velocity ratio Am = 2.0. Figure taken from Du & Sun (2015) and re-labelled
using the terminology conventions of the present thesis.

Am = 2.0. A large amplitude response is observed when the forcing frequency coincides with the
natural frequency of the structure (i.e. f∗rot = 1), this response is highlighted by the dot-dash line
in fig. 2.37. This is not unexpected as fosc becomes synchronised with f and fnw. Reduction in
A∗ can be achieved in both lock-on and non lock-on regions. In both U∗ cases (see fig. 2.37(a) and
fig. 2.37(b)), a decrease in A∗ is observed compare to the non-rotating case (shown as a dotted line).
Du & Sun (2015) reported that A∗ decreased significantly when the forcing frequency is in the range
of 1.2 ≤ f∗rot ≤ 2.3. The largest reduction at a reduced velocity of U∗ = 4.5 is observed at a forcing
frequency ratio of f∗rot = 1.8 where the amplitude is reduced to less than 0.01D. Within this region,
lock-on occurs where the wake of the elastically-mounted body and the shedding frequency (fsh)
is locked to the forcing frequency (fosc). They also reported observing amplitude peaks where fosc
matches fnw, i.e., f∗rot = 1. The response at f∗rot = 1 is illustrated as a dot-dash line in fig. 2.37.
This observation is not discussed in detail by Du & Sun (2015), however, it can be speculated that
the amplitude peak is due to the rotary forcing operating at a frequency that is in the proximity
of the dominant frequency response of a non-rotating cylinder (f = 0.222 Hz at U∗ = 4.5 and the
natural frequency is fn = 0.228 Hz).

2.5.2.3 Effects of rotary oscillation amplitude

Du & Sun (2015) also investigated the effect of the velocity ratio, Am, as previously studies on
rigidly-mounted cylinders undergoing rotary motions showed that the occurrences of lock-on are
dependent a sufficiently large Am for a specific forcing frequency ratio, f∗rot(see Choi et al. (2002)).

Du & Sun (2015) investigated the effects of Am at U∗ = 5.0 and at f∗rot = 1.3. Figure 2.38
presents their findings where A∗ is presented as a function of Am. For Am ≤ 1, rotary oscillations
are ineffective. As the velocity ratio is increased from Am = 1.0 to 1.4, A∗ decreased rapidly. When
the velocity ratio is Am > 1.35, A∗ is reduced to less than 0.04D.

The power spectra density (PSD) of the cylinder’s normalised displacement (y/D) and the power
spectra of the vortex force coefficient (Cv) are presented as a function of f∗ at different values of Am

and at a fixed reduced velocity of U∗ = 5.0 in fig. 2.39. With increasing Am, A∗ decreases. Lock-on
occurs when the vortex shedding frequency, fsh, follows the forcing frequency, fosc, this is observed
in the Am = 1.4 case in fig. 2.39(c). This can be seen through the single frequency peak occurring
at a response of f∗ = 1.3 At lower velocity ratios (Am = 1.0 and 1.3), the Am is not high enough to
completely eliminate the displacement and vortex force peaks occurring at f∗ = 1.0.

When the velocity ratio is Am = 1.0, the vortex structure downstream of the cylinder is chaotic
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Figure 2.38: The normalised amplitude response (A∗) of an elastically-mounted cylinder undergoing rotary
oscillations presented as a function of forcing velocity ratio (Am) at fixed frequency ratio f∗rot = 1.3 and
reduced velocity U∗ = 5.0. Figure taken from Du & Sun (2015) and re-labelled using the terminology
conventions of the present thesis.

Figure 2.39: The power spectra density (PSD) of the normalised displacement (y/D) and vortex lift
coefficients (Cv) of an elastically-mounted cylinder undergoing rotary oscillations is presented as functions
of normalised frequency response (f∗). Three forcing velocity ratio (Am) cases are presented at fixed
forcing frequency ratio f∗rot = 1.3 and at reduced velocity U∗ = 5.0. Figure taken from Du & Sun (2015)
and re-labelled using the terminology conventions of the present thesis.
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Figure 2.40: A comparison of the response of an elastically-mounted cylinder undergoing rotary oscillations
and that of a non-rotating cylinder. The normalised amplitude response (A∗) is presented as a function
of reduced velocity (U∗). The forcing cylinder was oscillating at fixed frequency ratio f∗rot = 1.8 and fixed
velocity ratio Am = 2.0. Figure taken from Du & Sun (2015).

because in the non lock-on region, fsh is influenced by both the cylinder oscillation and the rotary
forcing. However, as velocity ratio is increased to Am = 1.4, the cylinder sheds counter-rotating
vortices that then form two parallel rows further downstream.

The results presented by Du & Sun (2015) on the effects of the rotary forcing parameters showed
that, similar to previous rigid cylinder studies, the effectiveness of using rotary oscillations to control
vortex shedding and VIV is dependent on the appropriate selection of the Am and f∗rot. While optimal
forcing parameters may be effective, it is limited to specific systems parameters. Du & Sun (2015)
investigated how U∗ and the system’s m∗ impact the response of the cylinder. Their results will be
reviewed in the following section.

2.5.2.4 Effects of reduced velocity and mass ratio

The amplitude response, A∗, as a function of reduced velocity, U∗, of a cylinder undergoing rotary
forcing at velocity ratio Am = 2.0 and frequency ratio f∗rot = 1.8 is presented in fig. 2.40. For a non-
rotating cylinder, large amplitude oscillations are observed between reduced velocities 3.6 ≤ U∗ ≤ 6.1
as a result of wake-body excitation. In the same U∗ range, the A∗ of the cylinder with rotary forcing
decreased significantly. When the reduced velocity is U∗ < 7, A∗ is less than 0.03D with forcing.
However, rotary oscillation is not effective for all ranges of U∗, when U∗ ≥ 8.0, the amplitude
response of the cylinder with forcing is equal or large than those observed in the non-rotating case.
Figure 2.40 shows that rotary oscillation is most effective in the lock-in region where large amplitude
oscillations are typically observed for a non-rotating cylinder. At U∗ higher than the upper bound
of the lock-in region of a non-rotating cylinder (i.e. the desynchronization region), implementing
rotary oscillation will increase the amplitude response on the cylinder.

Du & Sun (2015) presented results on the influence of m∗. At a fixed reduced velocity of U∗ = 5.0
and at a fixed velocity ratio of Am = 2.0, their study showed that A∗ decreases with increases in
system mass. Reductions in A∗ with m∗ is significant at low frequency ratios (f∗rot < 1.2), however,
when
frot ≥ 1.2, the reduction in A∗ with m∗ is marginal.

2.6 Chapter summary and research questions

From the review of past literature, it is evident that limited research has been done on characterising
response and wake structure of an elastically-mounted cylinder undergoing constant rate rotation

50



2.6. Chapter summary and research questions

and rotary oscillations. While work by Bourguet & Lo Jacono (2014); Zhao et al. (2014c); Seyed-
Aghazadeh & Modarres-Sadeghi (2015); Du & Sun (2015) have provided knowledge in the response
and wake structure, there exist limitations to their study and some questions remain unanswered.
The voids in knowledge and the research statements proposed to answer them will be explained.

1. Simulation by Bourguet & Lo Jacono (2014) and experiment by Seyed-Aghazadeh & Modarres-
Sadeghi (2015) of an elastically-mounted cylinder undergoing constant rate rotation have shown
that the amplitude and frequency responses exhibits a number of similarities with that of a
cylinder undergoing non-rotating VIV. Bourguet & Lo Jacono (2014) observed a number of
wake patterns that was previously seen in non-rotating VIV and rigidly-mounted rotating
cylinder studies; furthermore, they reported a new T+S wake mode that is associated with
large cylinder oscillations. However, all the existing work on this subject studied the cylinder
at low Reynolds numbers (Re ≤ 1000). One might question if the observed similarities in
vibrational responses and the appearance of the new T+S wake mode will persist at higher
Reynolds numbers. Therefore, the first question for research is: What are the differences
in vibrational response and wake structure between an elastically-mounted circular cylinder
undergoing constant rate rotation and a non-rotating cylinder at moderate Reynolds numbers
(Re > 1000)?

2. Du & Sun (2015) demonstrated that rotary oscillation is effective at reducing VIV. However,
little is known about the amplitude peak observed when the forcing frequency ratio is at
f∗rot = 1. At very low forcing frequency ratios (f∗rot < 0.5), A∗ of the cylinder appeared to be
larger than the non-rotating case. One might ask will the amplitude response increase further
at even lower f∗rot. Tertiary lock-on was observed in rigid cylinder studies, however, Du & Sun
(2015) did not observe it. With finer increments in the forcing parameters, will tertiary lock-on
appear for an elastically-mounted cylinder? As Du & Sun (2015) conducted their simulation
at a low Reynolds number of Re = 350, one might wonder if the trends in vibrational response
and wake formation can be seen at high Re. Therefore, the second question for research is:
What are the differences in vibrational responses, lock-on boundaries and wake development
between an elastically-mounted cylinder undergoing sinusoidally-driven rotary oscillations and
a non-rotating cylinder at moderate Reynolds numbers (Re > 1000)?

In order to answer these questions, experimental investigations are necessary to broaden the
knowledge of VIV of circular cylinders undergoing rotary motions. The experimental study is divided
into two sections: VIV of circular cylinders undergoing constant rate rotation and VIV of circular
cylinders undergoing sinusoidally-driven rotary oscillations. Prior to the discussion of results, the
experimental methodologies will be reviewed in §3.
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Chapter 3

Experimental methodology

3.1 Chapter overview

This chapter provides an overview of the facilities, experiment configuration, apparatus, measure-
ment techniques and procedures used to acquire the data to be presented in later chapters. The
experimental facility and flow control system will be described in §3.2. The experimental configu-
ration and an overview of the apparatus set up and test model will be presented in §3.3. Section
§3.4 provides details of the air bearing and rotation rig system that control the translational and
rotational motion of the cylinder, respectively. Data measurement systems used to record the linear
and rotary displacement, fluid forces and flow visualisation data will be explained in §3.5. Section
§3.6 explains the experimental procedure and free decay measurements. Key findings of the chapter
are summarised in §3.7

3.2 Flow control system

The experiment was conducted in the FLAIR free-surface, recirculating water channel at the Depart-
ment of Mechanical and Aerospace Engineering at Monash University. A photograph and schematic
of the water channel is presented in fig. 3.1 and fig. 3.2, respectively. This closed-loop water chan-
nel is driven by a mixed-flow pump powered by an AC electric motor. The free-stream velocity of
the water channel was controlled by varying the operating frequency of the pump. This operation
frequency of the pump was controlled digitally using the data acquisition software LabVIEW®. By
varying the pump frequency between fpump = 4.5− 45 Hz, the free-stream velocity within the test
section can be varied between U∞ = 0.041− 0.391 m/s.

The flow upstream of the test section was conditioned by the devices shown in figure 3.2. When
the water leaves the return pipe it is guided through a set of guiding vanes. This is followed by a
combination of mesh, settling chamber, honeycomb; and a three-dimensional 3:1 ratio contraction.
The test section has internal dimensions measuring 600 mm in width, 800 mm height and 4000 mm
in length. It was constructed from glass and reinforced by a steel structure. This enabled the use
of flow visualisation imaging techniques. Downstream of the test section are the diffuser and return
pipe intake, which feeds water back through the centrifugal pump. The combined upstream flow
conditioning measures and the 3:1 contraction reduced the free-stream turbulence in the test section
to less than 1%.

To ensure flow characteristics in all experiments were accurate and relevant the free-stream
velocity and turbulent intensity were measured periodically. Particle image velocimetry was used
to measure these, as it is non-intrusive. Images were taken at the centre of the test section over a
range of pump frequencies. Figure 3.3 presents the free-stream velocity (U∞) plotted as a function
of pump frequency (fpump) at a water height of 780 mm. The results show that free-stream velocity
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Figure 3.1: A photograph of the FLAIR water channel. Image from Zhao (2012).
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Figure 3.2: Schematic of the free surface, recirculating water channel at FLAIR.

varies linearly with pump frequency. This linear relationship enables simple interpolation for any
desired free-stream velocity output.
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Figure 3.3: PIV measurement of the free-stream velocity (U∞) as a function of the pump frequency (fpump)
of the water channel at a water level of lFS = 780 mm.
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Figure 3.4: PIV measurement of the streamwise velocity profile (U∞) as a function of the water depth of
the water channel at a free-surface water level of lFS = 780 mm (represented by the red dashed line) and
at a free-stream velocity U∞ = 0.1143 m/s.

Viscosity and the ‘no-slip’ condition ensures the layer of fluid in contact with the solid boundary
will slow down creating a non-uniform velocity profile. The fluid at the boundary having zero velocity
(i.e. U∞ = 0 m/s). Therefore, the boundary layer has an impact on the fluid forces along the span
of the cylinder (i.e. the z-axis). To better understand the boundary layer, the streamwise velocity
profile is studied.

The streamwise velocity profile of the water channel was captured at U∞ = 0.1143 m/s. Un-
derstanding the streamwise velocity profile is essential to designing the length of the test cylinder
and the height of the transparent end platform such that effects of the boundary layer is eliminated
and proper end conditioning is achieved to promote parallel shedding. The PIV imaging system was
traversed in the z-axis from the bottom of the test section to near the free surface in several sampling
sections. The mean velocity profile from each image sampling section was combined to form a single
velocity profile which is presented in fig. 3.4. Figure 3.4 shows that at 100 mm above the bottom of
the test section, the free-stream velocity is uniform and it is within 1% of its free-stream value.
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(b) Rotary oscillation study(a) Constant rotation study
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Figure 3.5: Fluid-structure configuration of an elastically-mounted circular cylinder undergoing, (a) forced
constant rotation and (b) rotary oscillations.

3.3 Experimental configuration

The elastically-mounted circular cylinder was immersed in a free-stream flow parallel to x axis.
Figure 3.5 shows the fluid-structure configuration. Structural stiffness and damping in the system
arise from springs and energy dissipation, respectively. The stiffness of the oscillating system is
defined by the spring constant (k). Damping (c) of the system is quantified by the structural
damping ratio (ζ), defined as the product of the structural damping in air and the ratio between
the natural frequency of the vibration system in water and air. These will be discussed in further
detail in §3.6. A rotary motion was imposed on the cylinder and Figure 3.5 (a) and (b) show the
configuration for forced constant rotation and forced rotary oscillation, respectively.

A schematic of the experiment set up is presented in fig. 3.6. An air bearing system was positioned
above the water channel to allow hydro-elastic oscillations only in the cross-flow direction. All
oscillating masses were supported on two guide shafts that were suspended on four air bushings. A
detailed overview of the air bearing system is reported in §3.4.1. An aluminium carriage was attached
to the two shafts. The opening on the air bearing base plate can accommodate body oscillations
up to ±123 mm or ±4.1D for a 30 mm diameter cylinder from the centre zero position. Stainless
steel springs attached between the carriage and the base of the air bearing provided structural
stiffness. A magnetic rod was attached to one of the support shafts and this acted as the core of
the linear variable differential transformer (LVDT) sensor that measures the linear displacement
of the oscillating system. A linear optical encoder is later used to measure the cross-flow linear
displacement. More details are provided in §3.5.2. A sting was attached to the bottom of the
carriage to measure fluid forces and to support the rotation rig and test cylinder. The rotation
rig was attached to the bottom of the sting. It controls the rotary motion of the cylinder via a
Parker® stepper motor and motor controller. Further details on the rotation rig and rotary motion
control system are provided in §3.4.2. Housed within the rotation rig was a US Digital® EP5
differential encoder that measures the angular displacement of the cylinder. The rotary displacement
measurement system is explained in §3.5.3.

Test cylinders were attached to the rotation rig. The cylinder has a diameter of D = 30 mm and
is machined from a single circular aluminium tube with a wall thickness of 1.6 mm. For constant
rotation experiments the immersed length was lms = 604 mm and for rotary oscillation experiments
it was lms = 614 mm. The difference in immersed lengths was due to a change in free-surface
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water level (lFS) between the two experiments. The free-surface water levels for constant rotation
and rotary oscillation were lFS = 770 mm and 780 mm, respectively. The aspect ratio (A) of the
cylinder is given by eq. 2.4 and it is A = 20.1 for constant rotation and 20.5 for rotary oscillation
experiments.

When a body is immersed in a moving fluid, the flow around the body causes the streamlines to
expand in the near wake. This expansion can be restricted by any enclosing walls, such as those of
a wind tunnel or water channel and these can have a significant effect. This is related to the ratio
between the profile cross section area of the body (Abody) and the cross section are of the enclosure
or the test section (Atest section). This is commonly known as blockage and the blockage ratio is
given by eq. 3.1

Rblock =
Abody

Atest section
(3.1)

For both water level configurations, the current study has a blockage ratio of Rblock = 3.9%. This
value is acceptable in experimental studies. Previously published work by the FLAIR group have
similar blockage ratios.

To control the end condition of the test cylinder, an end platform was used. This was constructed
from transparent polycarbonate to enable PIV imaging and the top plate was 580 mm wide, 400 mm
long and 5 mm thick. An elliptical leading edge reduces turbulent eddies and prevents large flow
separations from developing on the platform. Use of such a platform to control end conditions for
an elastically-mounted circular cylinder was reported by Khalak & Williamson (1996); Govardhan &
Williamson (2000); Morse et al. (2008). Controlling the end condition of a low aspect ratio cylinder
means the effects of the boundary layer from the floor of the water channel test section and effects
of three-dimensionality can be reduced, promoting parallel vortex shedding. Khalak & Williamson
(1996) used an end platform that only requires the stationary platform to be positioned 0.04D
below the end of the oscillating cylinder. Parallel vortex shedding was produced without adding any
unwanted mass or inducing any undesired fluid forces on the oscillating system.

The oscillating mass of the system determines the maximum amplitude response of the cylinder if
the system damping is constant and is hence considered a key parameter affecting the fluid forces of
the oscillating system. The component masses of the current apparatus were measured by a digital
scale which has a resolution of 0.1 gm. For constant rotation experiments, the total mass of the
oscillation structure was mosc = 2.467 kg. This gives a mass ratio, defined as the ratio between
mosc and mass of the fluid displaced by the cylinder (mfld), of m∗ = 5.78. There were hardware
modifications made between the constant rotation and rotary oscillation experiments that changed
the oscillating system mass. For the rotary oscillation experiments, mosc = 2.448 kg and the mass
ratio was m∗ = 5.641.

3.4 Motion control systems

In the present study, the motion control of the cylinder can be separated into translational and rotary
motions. The free translational motion of the cylinder in the direction transverse to the free-stream
flow was restricted by the air bearing system, which is further explained in §3.4.1. A photograph of
the experiment apparatus used in the present studies is presented in fig. 3.7. Forced rotary motions
of the cylinder were driven by the stepper motor mounted on the rotation rig and controlled by the
motor controller. Details on rotary motion control is provided in §3.4.2.

3.4.1 Air bearing system

To best study the fundamental behaviours and maximum body response of bluff bodies undergoing
VIV, undesired damping was minimised. Damping is caused by friction in the oscillating system.
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Figure 3.6: Schematic of the present experiment.

Previous researchers have used air bearings (e.g. Feng (1968); Khalak & Williamson (1996); Govard-
han & Williamson (2000); Zhao et al. (2014b)) to experimentally simulate the low friction condition
and precise translational motion required. The present experiment utilised a system of four air
bearing bushings and two circular guide shafts to elastically support the oscillating masses as illus-
trated in fig. 3.6. The air bearing system used here was designed by Zhao (2012) and constructed
in-house by FLAIR and the Department of Mechanical and Aerospace Engineering. An air bearing
is a non-contact, friction control system where compressed air is used to form a thin lubrication layer
that separates the solid surfaces from coming in contact while they are in relative motion. There
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Figure 3.7: A photograph of the experiment apparatus used in the present studies.
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Figure 3.8: Cross-sectional view of the porous-media type air bushing used in the current air bearing
system.

are two types of air bearings, orifice and porous media. The advantage of using the porous media
over the orifice type bearing is that as the compressed air bleeds through the porous media the air
pressure is evenly distributed along the length of the bushing. This is illustrated in fig. 3.8. This
even distribution of air pressure enables a uniform layer of thin air which increases system stability
and decreases vibration from fluctuating air pressures. The current system utilised the porous-type
system. The four carbon air bushings used in the current air bearing are model S302502; commer-
cially manufactured by NEWWAY® Air Bearings, USA. Compressed air at a pressure of 90 PSI was
supplied to all four bushings. The compressed air was filtered, conditioned and regulated upstream
of the air bushings to ensure a steady supply of clean, dry air.

The air bushings are housed within aluminium pillow blocks, which were mounted on an alu-
minium base plate. Exterior dimensions of the base plate measures 208 mm in width, 800 mm in
length and 16 mm in thickness. At each corner of the base plate a threaded support pad was used
to enable small height and levelling adjustments. The air bearing system was originally designed to
be positioned directly on top of the two channel support rails. As illustrated in fig. 3.6, to accom-
modate the additional height of the rotation rig, large support frames were used to elevate the air
bearing system such that the rotation rig clears the water surface. A digital inclinometer and a large
digital protractor were used to ensure the air bearing system was horizontal and perpendicular to
the direction of the free-stream flow. Both devices have a resolution of 0.05◦.

Smooth operation of the air bearings requires the bushings and shafts to work in harmony. This
requires the guiding shafts to be very precise. NEWWAY® recommended guide shafts diameters to
be �25.0000+0.0000

0.0076 mm. The straightness of the shaft is vital to the low friction of the air bearing
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k1 k2 keq
m m

Figure 3.9: An illustration of a one-spring-pair one-mass spring system (left); and its reduced, equivalent
spring system (right).

system. Extensive work was done by Zhao (2012) to ensure the guide shafts were straight and within
the geometric tolerances of the bushings. Two sets of guide shafts were used. The original set of
carbon fibre shafts were used for constant rotation experiments. Aluminium shafts with even higher
precision were later used in rotary oscillation experiments. They caused a change in the oscillation
mass, which was previously discussed.

The stiffness of the oscillating system was provided by springs attached between the two spring
anchors mounted on the air bearing base plate and the carriage as illustrated in fig. 3.6. The spring
anchors and the attachment points on the carriage are coplanar to the longitudinal centre plane of
the base plate. This arrangement constrains the extension of the springs to the direction of the guide
shafts’ motion. The stainless steel springs used are model LE014BS13S, commercially manufactured
by Lee Springs, UK. They have a free, unextended length of 63.5 mm, an outer diameter of 4.775 mm,
a wire diameter of 0.355 mm and a coil count of 151.9.

The carriage is the central connection to all the oscillating masses in the system. Figure 3.9
shows that as springs are attached on either side of the mass (m), it is a one degree-of-freedom,
one-spring-pair one-mass system. In such a spring-mass system, the spring pair is considered to act
in parallel. The equivalent spring constant for a parallel spring system is given by eq.3.2:

keq = k1 + k2 (3.2)

where k1, k2 are spring constants of individual springs.

The stiffness of the system can be adjusted by attaching additional spring pairs. Two pairs and
one pair of springs were used for the constant rotation and rotary oscillation, respectively. Two pairs
of springs were used due to the large body oscillations about the mean displacement position. This
caused the cylinder to oscillate beyond the opening on the air bearing base plate. The increased
system stiffness altered the natural frequency of the oscillating system from that of one pair of springs.
The measured equivalent spring constant for two spring pairs in constant rotation experiments is
0.0493 N/mm and for one spring pair in rotary oscillation experiments is 0.0212 N/mm. These
stiffness values of the oscillating system were calculated from free decay tests, which are discussed in
§3.6. Displacement measurements were acquired by the LVDT and later by optical linear encoder.
The magnetic core of the LVDT was suspended by two supports that were clamped onto the ends of
one of the guide shaft. This ensured the core moved in the same motion as the rest of the oscillating
masses. This core runs through the centre of the LVDT, which remained stationary and was mounted
on top of the pillow blocks. In later studies, the optical linear encoder replaces the LVDT. The low
noise digital signal from the optical linear encoder enabled accurate estimates of fluid force derived
only from the cylinder motion , oscillation masses and structural properties. Important structural
properties to the experiment such as the natural frequency, structural stiffness and damping of the
oscillating system were measured experimentally through free decay tests. This is outlined in §3.6.
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Figure 3.10: A detailed cross-sectional schematic of the rotation rig used to control the rotary motion of
the cylinder.

3.4.2 Rotation rig and motion controller

A motor and motor controller were used to impart rotation and control the rotary motion of the test
cylinder. The rotation rig was designed and manufactured in-house to mount the test cylinder and
motor. A Parker® motor drivers and controllers were used control the motor. Figure 3.10 shows
a detailed schematic of the rotation rig. An adaptor plate on the top of the rotation rig connects
to the connection sting. Mounted above the motor is an optical rotary encoder. The rotation rig
was designed such that the motor was mounted at the centre of the rig. A helical flexible coupling
was installed to allow for axial misalignments and dampens mechanical vibration from the motor.
It connects the shaft of the motor to the rotating sleeve that mounts the test cylinder. Two high-
precision ball bearings were used to support the rotating sleeve between the sleeve and exterior
housing. These two bearings are positioned approximately 90 mm apart in the z-axis. By increasing
the length of the cylinder supported between the bearings; axial alignment is maximised and radial
vibration minimised.

The motor used in the rotation rig is a Parker® model LV172-02-FL DC rotary stepper motor.
It was wired as a parallel circuit to increase its drive current. Thus, configuration increases its torque
performance over the motor’s operational speeds. A schematic including the motor control system
is presented in fig. 3.11. The motor control system is outlined in red dash lines. The laboratory
computer hosted a digital input-output (I/O) interface that communicates with the Parker® 6K
motor controller. Information such as motor-controller scaling, operation modes and rotary motion
parameters were input into this interface and sent to the controller. This input enables the controller
to control the DC motor drivers that then provide power and control the motion of the stepper motor.

To ensure the motor and test cylinder undergoes the desired rotary motion precisely, calibration
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Figure 3.11: A complete block diagram of the measurement apparatus and systems used in the present
study. Highlighted in coloured dashed lines are sub-systems. The motor control in red, DAQ acquisition in
blue and PIV imaging in green dashed lines.

tests were performed using an optical rotary encoder. Validation of the rotary motion profile of a
cylinder undergoing constant rate rotation and sinusoidally-driven rotary oscillation is presented in
Appendix A.

3.5 Data measurement systems

To study the vibration response and wake structure, a number of quantitative measurements are
required. A comprehensive measurement and acquisition system was used to acquire the necessary
data,. Data acquisition (DAQ) hardware and software used in conjunction with other sensory devices
are described in §3.5.1. The LVDT and the linear optical encoder was used to measure the linear
displacement of the cylinder is explained in §3.5.2. The acquisition of rotary motion measurements is
presented in §3.5.3. The PIV system used to acquire quantitative flow visualisation data is reported
in §3.5.4.

3.5.1 Data acquisition (DAQ) system

Figure 3.11 presents a schematic of the entire DAQ and control system used in the present experiment.
Outlined in a blue dashed line is the DAQ system. Signals from the LVDT, optical linear encoder,
optical rotary encoder and TTL (transistor-transistor logic) trigger timing controller (if the PIV
measurement system was used) are connected to the DAQ connector block. This connector block
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centralises and transmits the signals to the custom LabVIEW™ VI digital I/O interface where they
are sampled and recorded.

To acquire data simultaneously required a device that centralises all analogue and digital signals
(excluding PIV images) before being transmitted to the digital I/O interface hosted by the laboratory
computer. Two DAQ connector blocks were used for this purpose. An older 37pin port system was
initially used for constant rotation measurements before being replaced by a USB™ port system that
was used for rotary oscillation measurements. The old connector block is a National Instruments®

BNC-2110 connector block. It was connected to a 37 pin PCI-6221 DAQ board installed in the
laboratory computer. This computer runs a digital I/O interface which records all measurement
channels and controls the water channel pump and motor controller. The BNC-2110 connector
block has eight analogue ±10 V DC inputs, two analogue ±10 V DC outputs and a terminal block
for digital I/O connections. A new connector block, National Instruments® USB-6218, with a USB™

connection was directly connected to the laboratory PC. It has sixteen analogue ±10 V DC inputs,
two analogue ±10 V DC outputs and a terminal block for two digital I/O device connections. Both
connector blocks are capable of acquiring data at a maximum sampling frequency of 250 kHz.

A custom digital I/O interface was used to sample and record the measurements. This interface
utilises a collection of smaller LabVIEW™ VI programs. Each of these VI programs have specific
functions. They range from sampling and recording the measurements to those that control the
water-channel pump and rotary motion of the cylinder by sending commands to the Parker® 6K
motor controller. Recorded data were sorted, processed and analysed using MATLAB® codes and
scripts.

3.5.2 Linear displacement measurement

A linear variable differential transformer was used to measure the linear displacement of the cylinder
until it was replaced by a linear optical encoder. The LVDT is a non-invasive, non-contact system. As
illustrated by fig. 3.12, the principle operations of a LVDT consist of a cylindrical ferromagnetic core
and a coil assembly. The core is attached to the body that requires its position to be measured. The
coil assembly has three solenoid coils that are positioned end to end within a non-ferrous cylindrical
housing. At the centre of the assembly is the primary coil and on either sides are the secondary
coils. An alternating current (AC) power supply powers the primary coil that generates magnetic
flux and is linked to the secondary coils. This arrangement enables a voltage to be induced in each
of the secondary coils. As the ferromagnetic core moves coaxially through the coil assembly, the
linkage of magnetic flux changes. Changes in the magnetic flux then changes the induced voltage
in the secondary coils. Therefore, the voltage output in each of the secondary coils depends on the
position of the core and the body it is attached to. As the two secondary coils are connected, the
voltage output is the differential of the two coils. This differential voltage is linearly controlled by
the position of the ferromagnetic core and the body it is attached to. The LVDT system has several
advantages over other position measurement systems. They are mechanically robust and being a
non-contact system given them exceptional service life. Linear variable differential transformers can
theoretically detect changes in core position that are infinitesimally small as it principally relies on
changes in magnetic flux. This is only limited by the resolution of the DAQ system.

In the present application, the ferromagnetic core was in a long cylindrical tube mechanically
attached to one of the oscillating guide shafts in the air bearing. This is illustrated in fig. 3.6.
Because the guide shaft was rigidly connected to the rest of the oscillating masses and test cylinder,
the displacement of the cylinder can be measured through the displacement of the guide shaft the core
is mounted on. The coil assembly containing additional electronics was mounted on to the stationary
pillow blocks. The LVDT used was model SE 750-10000 manufactured by Marco Sensors™, USA.
A constant 28 V power supply was used to power the LVDT coil. It has an output voltage that
ranges from 0 − 10 V and corresponds to a displacement measurement of 0 − 250 mm. The LVDT
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Figure 3.12: A wiring schematic of a linear variable differential transformer (LVDT).
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Figure 3.13: Examples of linear displacement measurement using (a) LVDT and (b) a linear optical
encoder. Controlled displacement input (yin) is achieved through high-precision gauge blocks.

was statically calibrated whilst installed on the air bearing. Figure 3.13(a) presents the differential
voltage output from the LVDT as a function of core displacement. It shows the output voltage
responded linearly with displacement. Using information obtained from static calibration tests,
voltage measurements are converted to displacements that are then used to calculate the cylinder
amplitude, frequency responses of the oscillating system.

Zhao (2012) provided a comprehensive report of the LVDT system used at the FLAIR water
channel.

Response force and phases are also derived from the displacement measurements as direct force
measurements using strain gauges and load cells had been unsuccessful due to the high electrical
and mechanical noise of the stepper motor rotating the cylinder. Derived response forces and phases
from displacement measurements taken with the LVDT are inaccurate as LVDT is also susceptible to
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Figure 3.14: A photograph of the optical linear encoder used to measure the displacement of the cylinder.

electrical interferences beyond the control of the author. As a result of this, an optical linear encoder
is used in place of the LVDT towards the end of the constant rotation study and for the entirety of the
rotary oscillation study. The advantage of an optical linear encoder is similar to those of an optical
rotary encoder (see §3.5.3). An optical linear encoder is robust; it is unsusceptible to temperature,
moderate mechanic vibrations and electrical interferences. However, improper installation of the
encoder system and exposure to dirt and dust can compromise the sensor’s accuracy. An optical
linear encoder comprises of a linear scale and an optical sensor unit. The linear scale is a strip
containing alternating reference markers. The linear scale may be transparent depending on the
design of the encoder. The optical sensor unit has a light source and a photo sensor. Depending
on the design, light shone from the source is either transmitted through or reflected off the linear
scale and received by the photo sensor. In application, the linear scale is typically attached to the
stationary body while the sensor unit is installed to the moving body. As the sensor unit moves
with the body, it shone light on the linear scale’s markers and the photo sensor receives pulses of
light. When the sensor receives light, it registers a high voltage. A low voltage is registered when
the no light is received by the sensor. These high and low voltage registrations are counted and
used to compute the physical linear displacement of body. The optical linear encoder’s accuracy is
limited by the sampling rate of the data acquisition system, and the scale of the reference markers
of the linear scale. Due to its accuracy, relative robustness and very low signal noise digital output;
displacement measurements taken using the optical linear encoder can produce accurate theoretical
VIV force and phase responses.

In the present experiment, the linear scale is attached to the base plate of the air bearing rig
and the optical sensor unit is installed onto the side of the moving carriage as shown in fig. 3.14.
The optical linear encoder used was model RGH24X30F00B manufactured by Renishaw®, UK, The
linear scale is a gold plated metallic strip that has scale facets with a 20 µm pitch. It was powered
by a 5 V external DC power supply. The signal output was processed by a built-in VI program in
LabVIEW™. Based on encoder specifications, LabVIEW™ then records the voltage measurements and
converts them into displacement in mm. Figure 3.13(b) shows the measured displacement output
from the optical linear encoder as a function of input displacement. It shows the optical linear
encoder output responded linearly with displacement Post processing analyses the displacement
measurements and calculate relevant variables. Variables such as normalised amplitude response,
normalised frequency response, theoretical force coefficients and the theoretical phase differences
between the force coefficients and the displacement of the cylinder.
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3.5.3 Rotary motion measurement

The rotational motion of the cylinder is a key component of the present study. To ensure the
cylinder’s motion is accurate it was measured by an optical incremental rotary encoder mounted
on the rotation rig. An optical rotary encoder comprises of an optical disk and an optical sensor
unit. Optical disks are typically constructed from glass or transparent plastic. On the disk are
alternating transparent and non-transparent lines. The optical sensor unit has a light source and an
optical sensor. Light shone from the source is either transmitted through or reflected off the optical
disk and received by the optical sensor. In application, the optical disk is mechanically attached to
the rotating component while the sensor unit is fixed. As the disk rotates through transparent and
non-transparent lines, the sensor receives pulses of light. When the sensor receives light, it registers
a high voltage. A low voltage is registered when the non-transparent line on the disk blocks the light
from the sensor.

In the present experiment, the encoder disk was mounted on the shaft of the stepper motor and
the sensor unit onto the upper section of the rotation rig. The optical encoder used was model
E5-1000-250-IE-S-D manufactured by US Digital®, USA. It has a 1000 line, 25.4 mm diameter op-
tical disk. It was powered by a 5 V DC power supply from the digital terminal block on the DAQ
connector blocks. The typical low and high voltage output of the encoder were 0.2 and 3.4 V, respec-
tively. The signal output was processed by a built-in VI program in LabVIEW™. Based on encoder
specifications, LabVIEW™ then records the rotation measurements as revolution per second (rps)
for constant rotation and degree angular displacement (◦) for rotary oscillation experiments. Post
processing converted the rotary motion measurements into relevant non-dimensionalised variables
such as rotation rate (α) for constant rotation studies; frequency ratio (f∗rot) and velocity ratio (Am)
for rotary oscillation studies. Both encoder and motor controller were independently validated by
manually measuring the time it took for a very large number of rotations or sinusoidal oscillations.

3.5.4 Flow visualisation: particle image velocimetry (PIV) system

Understanding the fluid structure in the near wake of a body is important because it contains
qualitative and quantitative data on the fluid interaction with the body. In the present study,
particle image velocimetry (PIV) was used to measure the vortex structure in the near wake of the
oscillating cylinder. This technique has been used in many fluid mechanic studies in both wind
tunnels and water channels since the early 1990ś. It has a number of advantages over traditional
flow visualisation methods such as dye, smoke and hydrogen bubble. Particle image velocimetry
enables non-invasive, instantaneous, high-spatial resolution velocity field measurements of a region
of interest. High-spatial resolution measurements allow the detection and identification of spatial
fluid structures in the measurement window. Though post-processing, additional information such as
the vorticity field, circulation and pressure distributions can be derived. Particle image velocimetry
is extensively documented in Adrian (1991); Raffel et al. (2007), this section aims to provide a
brief overview on the technique’s fundamentals, laboratory equipment set up and post-processing
methods.

The FLAIR water channel uses a double-image, single exposure PIV imaging system. Spatial
cross-correlation, as documented in Fouras et al. (2008), was used to process the captured images.

The present PIV experiment and DAQ configuration is presented in fig. 3.6 and fig. 3.11. The
water in the channel was seeded with small micro glass spheres, Vestosint™ 2158, which were man-
ufactured by Evonik Degussa GmBH. They have a nominal diameter of 21 µm and has a specific
weight of 1.016 g/cm3. A pair of lasers were used to produce a laser sheet that illuminates the region
of interest. The glass spheres traverse this laser sheet and will reflect its light. The pair of miniature
pulsed lasers used were Minilite™ II Q-Switched lasers manufactured by Continuum®, CA, USA.
They have a wavelength of 532 nm and a peak energy output of 25 mJ/pulse.
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Figure 3.15: Analytical procedures to cross-correlate PIV images. Illustration reproduced from Zhao
(2012).

A high resolution, high sensitivity camera capable of capturing double images with a single
exposure captured the illuminated flow at specific timing and exposure settings. The current study
used a pco.dimax S4 high speed CMOS camera manufactured by pco. AG. It has a maximum
frame rate of 1279 monochrome frames per second at a maximum resolution of 2016× 2016 px. The
size of each pixel is 11 × 11 µm. Mounted on the camera is a 50 mm F-mount lens manufactured
by Nikkor, Nikon Corporation, Japan. The photographic sampling frequency was controlled by a
timing signal generator. It sends a trigger signal to the sequencer that then splits the single signal
into a sequence of TTL signal outputs with controlled time separations to trigger the camera and
lasers. The signal generator’s TTL signal pulses were recorded simultaneously with the cylinder
displacement signal from the LVDT, such that the position of the cylinder at the instances the
image pairs were capture is known. This information enables phase average processing, which will
be discussed in further detail later in the section. Both signal generator and sequencer were built
in-house by the Department’s Electronic Workshop. In a double-image, single exposure PIV system,
the first TTL signal triggers the camera to open its shutter and initiate the single exposure. The
second and third TTL signal triggers the lasers to illuminate the first and second images of each
pair, respectively. The time separation (∆ t) between the first and second image of each pair is
determined using eq. 3.3. The free-stream velocity was varied to obtain the desired reduced velocity.
Optimally, the spatial displacement (dopt) between the sampling of the first and second image is
sought to be constant for bluff body studies.

∆t =
dopt

U∞
(3.3)

PIV images were processed then analysed by in-house software by Fouras et al. (2008). The
process is illustrated by fig. 3.15. Images in pairs were divided into a grid of 16×16 px2 interrogation
windows. Fast Fourier Transform (FFT) was applied to the cross-correlation computation between
two interrogation windows from the same image pair with a 50% window overlap. The average
displacement (∆x,∆y) of all particles within the interrogation window was computed statistically
by using the location of the peak value of the cross-correlation computation. Fouras & Soria (1998)
showed, by using the least-square fitting of the Gaussian function, the peak value can be located
with very high accuracy. an Inverse Fourier Transfer was then used to compute the displacement
vectors in pixels. To convert the vector into physical dimensions, the correlation between the number
of pixels in the images and the physical distance it represents within the focal plane of the images
has to be determined. An optical calibration procedure, referred to as the ‘ruler test’, was used to
find this relationship. By capturing photographs of an immersed ruler coplanar with the focal plane
of the camera and laser sheet, a relationship between the number of pixels and the physical distance
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within the images was found. This is the Magnification Factor κ and is given by

κ =
px

dκ
(3.4)

where dκ is the distance measurement from the ruler in mm and px is the number of pixels over
the same distance. Knowing both ∆ t and κ enables the conversion of displacement vectors in pixels
to velocity vectors in mm/s as shown by

∆u =
∆x

κt
(3.5)

and

∆v =
∆y

κt
, (3.6)

where ∆u and ∆v are velocity vectors in the x and y directions, respectively.
Using this computation on all the interrogation windows in an image pair provided a complete

velocity field. From a series of such velocity fields the computation of other fluid quantities and a
visualisation of how spatial features develop in the wake could be determined.

An important kinematic property is fluid vorticity, which quantifies the rotation of the fluid.
Mathematically vorticity is the curl of the flow velocity vector and is given by

~ω = ∇× ~u , (3.7)

where ~ω is the three-dimensional vorticity vector field (~ωi, ~ωj , ~ωk) and ~u is the three-dimensional
velocity fields in x− y − z Cartesian coordinates, respectively. In Cartesian coordinate, ~ω in eq.3.7
is expanded into the following form

~ω = (
∂w

∂y
− ∂v

∂z
)~i+ (

∂u

∂w
− ∂z

∂x
)~j + (

∂v

∂x
− ∂u

∂y
)~k . (3.8)

The focus of the current study is on the planar vorticity field in the wake of the cylinder that is
perpendicular to the x− y plane. The ‘right hand’ rule indicates the planar vorticity field of interest
will be based on the z component of vorticity vectors ( ~ωk) and given by

~ωk =
∂v

∂x
− ∂u

∂y
. (3.9)

The of PIV data can be evaluated statistically. The accuracy of ~ωk primarily depends on the
spatial displacement (dopt) between velocity points in the interrogation window of the same image
pair and the accuracy of ~u (Fouras & Soria 1998). By applying a second order polynomial fit to local
~u components with analytic differentiation, Fouras & Soria (1998) showed the accuracy could be
improved compared to other methods based on finite difference computation. In the current study,
the PIV data processing method utilises a 21 point, second order polynomial fit developed by Fouras
& Soria (1998). This method samples 21 neighbouring velocity points to compute the vorticity field.

Instantaneous velocity and vorticity fields contain information of spatial features at the instance
the image pairs were captured. They result in smaller, chaotic spatial structures that are the result
of smaller perturbations in the free stream flow and not significant vortex structures shed from the
body. To better interpret the wake dynamics these small chaotic structures these can be removed
by averaging the instantaneous fields. PIV velocity and vorticity fields are phase-averaged with
two techniques, phase-locked and phase-band averaging. Phase-lock averaging requires images be
captured at specific phases of over the cylinder’s oscillation cycle. This requires the body oscillation
to be perfectly sinusoidal for easy implementation and control. The method is more suited for
forced sinusoidal oscillation studies such as Carberry et al. (2001, 2005); Nazarinia et al. (2009).
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Free vibration oscillations in VIV studies are never perfectly sinusoidal or periodic, making phase-
lock averaging more difficult to implement compare to phase-band averaging. Phase-band averaging
is easier to implement as it doesn’t depend on capturing images at specific phases of controlled
oscillations. The technique requires the recorded TTL triggering pulses and LVDT signal which
provides the timing of the captured image pairs and a time history of the cylinder displacement,
respectively. These two signals enable the processed contour images (i.e. the instantaneous velocity
and vorticity fields) to be phase-band averaged based on the position and velocity of the cylinder.
Figure 3.16 illustrates the phase-band averaging process. As discussed, the TTL trigger pulses are
recorded with the body displacement LVDT signal as presented in fig.3.16(a). Figure 3.16(b) and
(c) shows that by using the timing of the TTL trigger pulses, the processed contour images can be
sorted into phase bands based on the displacement and velocity of the cylinder. Instantaneous images
sorted in each bands were then combined to produce an averaged contour image. The comparison
between instantaneous and phase-band averaged image of the same phase is presented in fig. 3.17.
The phase-band averaged image shows clear spatial structures in the cylinder’s wake.

While the phase-band averaging technique is easier to implement, the image capturing process
and post-processing is more time consuming than in phase-lock averaging. Both techniques have
some common disadvantages. Both require the cylinder oscillation and vortex shedding to be stable.
Neither technique can be used when the cylinder oscillation and wake structures are highly chaotic.
Therefore, the present PIV measurements were only taken when the cylinder displacement and
frequency is highly periodic.

3.6 Experiment procedures

Damping in any oscillating mechanical system is caused by the dissipation of the excitation energy
supplied to the system. Previous work has shown the system damping to have a pronounced effect on
reducing the peak amplitude response of elastically-mounted bodies undergoing VIV Feng (1968);
Khalak & Williamson (1997a); Govardhan & Williamson (2002). It is essential to quantify and
maintain a consistent damping between experiments as it is a key variable in the body’s governing
equation of motion. The experimental apparatus used in the current study has several sources of
damping. Fluid damping is the dissipation of energy due to the hydrodynamic forces by the fluids
surrounding the body. Relative motion between mechanical components can cause the dissipation of
energy through friction and impacts. These energy losses are caused by structural damping. Energy
can be dissipated through material of components, e.g. flexing of components. This is the result
of internal energy dissipation through material deformation. As the test cylinder and oscillating
components are constructed from rigid material, primarily aluminium and steel, material damping
is not a significant source of energy dissipation here. Due to this, the present study only considers
the structural and fluid damping. To experimentally measure the combined structural damping of
the oscillating structure, free decay measurements were taken.

3.6.1 Free decay measurement in air

Free decay measurements were used to determine the combined structural damping and natural
frequency of the oscillating structure. This has previously been reported in Khalak & Williamson
(1997a) and later by Zhao (2012). The current study is a single-DOF free vibration system with the
cylinder motion restricted to the direction transverse to the free-stream flow. When this vibration
system is placed in a vacuum with no external forces applied, the governing differential equation of
motion can be expressed as

mÿ + cẏ + ky = 0 , (3.10)
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Figure 3.16: Phase-band technique used in averaging instantaneous PIV fields.

Figure 3.17: A comparison of PIV image processing methods. (a) an instantaneous image and (b) a
phase-band averaged image produced from over 100 instantaneous images of the same bin. Figure taken
from Zhao (2012).

where m is the mass of the oscillating system, c is the combined damping of the structure and k
is the spring constant. This equation can be rearranged as
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Figure 3.18: The response of an underdamped (0 < ζ < 1) one-DOF system. Figure taken from Zhao
(2012).

ÿ + ζωnẏ + ω2
ny = 0 , (3.11)

where the damping ratio is given by ζ = c/(2
√
km) and defined as the ratio between the combined

structural damping and the critical damping; and the natural angular frequency of the system is
given by ωn =

√
k/m.

Figure 3.18 illustrates an underdamped (0 ≤ ζ < 1) free decay system where the oscillating
structure was given an initial displacement (Ao), released to freely oscillate and the damped motion
of the oscillation recorded. The solution to eq. 3.11 for the underdamped system is given by

y(t) = Aoe−ζωnt sin(
√

1− ω2ωnt) . (3.12)

The maximum envelope to eq. 3.12 is given by

ymax(t) = Aoe−ζωnt . (3.13)

The decay rate, defined as λ = −ζωn, can be computed from the gradient of a plot of ln ymax
and time, t. The damping ratio is then computer from

ζ =
−λ√
k/m

. (3.14)

The damped natural angular frequency (ωd) can be approximated as the undamped natural
angular frequency (ωn) when the damping ratio is significantly less than unity (ζ � 1). This is
mathematically presented in eq. 3.15.
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ζd =
2π

Td
= ωn

√
1− ζ2 ∼= ωn . (3.15)

The logarithmic decrement, which describes the ratio between any two consecutive amplitude
peaks, is quantified by

δ , ln
yn
yn+1

= ζωnTd =
2πζ√
1− ζ2

∼= 2πζ , (3.16)

where Td = 2π/ωn is the damped oscillation period. The approximation in eq.3.15 enabled the
decay rate to be written as

λ = −ζωd = −2πζfd , (3.17)

where fd is the damped natural frequency and it is defined by

fd =
ωd
2π
∼= ωn

2π
=

1

2π

√
k

m
. (3.18)

As the free decay measurements were taken in air and not vacuum, the effects of air resistance on
the moving structure must be minimised. This was done by removing the test cylinder and replacing
its mass for an equal concentrated mass attached to the air bearing rig carriage. As the oscillation
system is lightly damped, the natural frequency in air (fna) is assumed to equal to the natural
frequency in vacuum (fd), therefore the natural frequency of the system in air can be expressed as

fna ∼=
1

2π

√
k

m
= fd . (3.19)

The structural damping ratio measured in air (ζa) is can also be assumed to be equal to the
structural damping ratio in vacuum (ζ) and the relationship is expressed as

ζa =
c

2
√
km
∼= ζ . (3.20)

3.6.2 Free decay measurement in stationary water

To take into consideration the effects of added mass, the natural frequency and structural damping
ratio of the oscillating structure was measured in stationary water with a free decay. Blevins (1990);
Fredsoe & Sumer (1997) reported the mathematical details of free decay measurements in stationary
water. In these free decay measurements, the vibration of the structure is damped by structural
damping from mechanical components and also fluid damping from the viscous fluid surrounding
the test cylinder. Blevins (1990) described fluid damping as the result of flow separation and viscous
shearing of fluid adjacent to the surface of the oscillating structure. Fredsoe & Sumer (1997) further
explained that the oscillating structure is subjected to the Morison force, which is a hydrodynamic
force (Fy) mathematically described as

Fy = −1

2
ρCDDL|ẏ|ẏ −mAÿ , (3.21)

where mA is the added mass. The added mass is given by

mA = CAmfld , (3.22)

where CA is the potential added mass coefficient (CA = 1 for circular cylinder) and mfld is the mass
of water displaced by the immersed length of the cylinder.
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In stationary water, the undamped natural angular frequency (ωnw) is expressed as

ωnw =

√
k

m+mA
(3.23)

where k is the structural stiffness and m is the mass of the oscillating system. Similar to the
approximation made to free decay tests in air; the damped natural angular frequency is approximated
as the undamped natural angular frequency because the total damping (ζd) typically measured in
experiments are significantly less than unity (ζd � 1).

This approximation enabled the computation of the natural frequency in water (fnw) which is
given by

fnw =
ωnw
2π

=
1

2π

√
k

m+mA
. (3.24)

where k is the structural stiffness and m is the mass of the oscillating system.
From this, the structural damping ratio with added mass effect, ζsw, can be expressed as

ζsw =
fnw
fna

ζa. (3.25)

The term structural damping ratio, ζ, is commonly used in FIV research. From this section, it is
clear that there are a number of damping ratios that ζ may represent and that term lacked specificity.
This often confuses readers as they question the true definition behind the term. The research group
led by Prof. C.H.K Williamson at Cornell University and the FLAIR group at Monash University
have consistently used the term, ‘structural damping ratio ζ’, to represent the structural damping
ratio with added mass effects ζsw; i.e.

ζ = ζsw . (3.26)

Therefore, any reports of structural damping ratio ζ in subsequent sections of the thesis refers to
ζsw.

3.7 Chapter summary

This chapter have shown the details of the FLAIR water channel facility used to conduct the proposed
experimental studies. An air bearing rig was used to achieve free oscillations in the cross-flow
direction. A rotation rig is used to control the rotary motion of the cylinder. The LVDT and optical
linear encoder responses linearly with cross-flow displacement. The optical rotary encoder tracks the
rotary motion of the cylinder. A PIV system is used to study the flow structure in the near wake of
the cylinder. Free decay tests in both air and water were used to quantify the structural properties of
the oscillation system. This chapter have shown and validated the experimental apparatus and data
acquisition methods used for both the study of an elastically-mounted cylinder undergoing constant
rate rotation and sinusoidally-driven rotary oscillations.
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Chapter 4

Flow-induced vibration of a rotating
cylinder

This chapter presents results for an elastically-mounted cylinder undergoing VIV subject to constant-
rate rotation about the cylinder axis. While there have been both experimental and numerical studies
of this problem at low Reynolds numbers previously, to the knowledge of the author, this is the first
time that the comprehensive VIV response has been recorded at Reynolds numbers sufficiently large
where the behaviour is less sensitive to variations in Reynolds number.

To begin, the experimental set up is presented in §4.1.1. Section 4.1.2 presents validation studies
to characterise the VIV response of the experimental apparatus used and to validate against relevant
previous studies. Validation work on the rotary motion profile is included in Appendix A. The time-
averaged displacement of the cylinder is then presented, prior to the observed vibration (amplitude
and frequency) response in §4.2. Next, the response is examined at a several selected rotation rates
over the reduced-velocity range tested (U∗). Following this, the changes caused by different rotation
rates (α) are investigated in detail. The different wake states associated with the changes to the
vibration response are presented in §4.3, which leads into an examination of the intermittent wake
behaviour observed in the upper response branch in §4.3.1. Finally, section 4.4 presents a comparison
in lift force and phases between a non-rotating and rotating cylinder. A summary of the key findings
of this chapter is provided to conclude (§4.4.1).

The contents of this chapter have been accepted for publication in the Journal of Fluid Mechanics.

4.1 Experiment details and validation

4.1.1 Experimental details

The experiments were conducted in the FLAIR water channel. A specially designed and constructed
rotation rig was used to control the rotational motion of the cylinder and an air-bearing system was
used to enable low-friction cross-flow oscillations. Details of the experimental apparatus and data
acquisition have been discussed in §3.

Critical characteristics of the oscillating system (i.e. the spring constant and damping coefficient)
were measured through free-decay tests conducted before and after experiments. For this set of
experiments, the cylinder model employed had a diameter of D = 30 mm and an immersed length
of lms = 614 mm (i.e. approximately 20D). The total mass of all oscillating components was
mosc = 2.5036 kg and the mass ratio was m∗ = 5.78. From free-decay tests, the natural frequency of
the oscillating system in water was determined to be fnw = 0.656 Hz, and in air as fna = 0.706 Hz.
Structural stiffness is provided by one pair of springs with an equivalent stiffness of k = 0.0493 N/mm.
The decay tests allowed the damping ratio to be determined, giving ζ = 0.0041.
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Chapter 4. Flow-induced vibration of a rotating cylinder

This experimental study covers the reduced velocity range U∗ = 2.5 − 14, equivalent to the
Reynolds numbers range of (1100 . Re . 6300). At each tested U∗, the cylinder was prescribed
rotation rates increasing in value and in range of (0 . α . 4).

4.1.2 Related validation

Before studying the response and wake structure of an elastically-mounted cylinder undergoing
constant-rate rotation, it was essential to understand the dynamic response of the air-bearing system
with a non-rotating cylinder and to validate the rotary motion of the cylinder. As the air-bearing
system was used in previous work (see Zhao et al. (2012); Zhao (2012); Nemes et al. (2012); Zhao
et al. (2014a)); the main focus of this section is to present baseline measurements of the dynamic
response of a non-rotating cylinder. This provides evidence for the correct operation of the air-
bearing system and provides VIV data for a non-rotating cylinder for subsequent comparison with
that of a rotating cylinder.

The vibration response of a non-rotating circular cylinder undergoing VIV is compared against
previous work by Khalak & Williamson (1997a, 1999), and Zhao et al. (2014b) in figure 4.1. Fig-
ure 4.1(a) presents the amplitude response as a function of reduced velocity, showing that the current
experimental configuration produces non-rotating VIV results in good agreement with previous VIV
studies. Here, it is important to note the effect of the mass ratio that reduces the peak response,
and which is necessarily higher here than for the comparison studies because of the added weight
arising from the motor assembly. At the lowest m∗ achievable (m∗ = 5.78), the three VIV amplitude
response branches characteristic of a non-rotating cylinder are clearly seen. The initial branch exists
for U∗ < 4.8. For m∗ = 5.78, the upper branch covers the range U∗ = 4.8− 6.4; the lower response
branch lies within the range 6.4 6 U∗ 6 9.5, and the desynchronized region exists for U∗ > 9.5.
Previous studies by Khalak & Williamson (1997a); Zhao et al. (2014b) at m∗ = 2.4 showed a peak
amplitude response of A∗ ≈ 0.95. The mean of the highest 10% of amplitude peaks (A∗10) of the
current system is A∗10 = 0.82. This agrees with previous studies on the effects of mass and damping.
As the mass and damping ratios are increased, the magnitude of the amplitude response decreases
and the range of U∗ over which the system self-excites reduces (Feng 1968). A hysteretic transition
between the initial and upper branch occurs at U∗ ≈ 4.8 and is accompanied by a jump in A∗10

from 0.25 to 0.79. The transition from the upper to the lower branch causes a reduction in A∗10

from 0.78 to 0.55, and the desynchronization of the system at U∗ ≈ 9.5 is accompanied by another
drop in A∗10 from 0.54 to ∼ 0.07. This comparison with results from previous literature shows that
the current air-bearing system reproduces an amplitude response variation consistent with previous
careful studies.

Figure 4.1(b) presents a power spectra density (PSD) contour plot of the normalised amplitude re-
sponse (A∗) as a function of f∗ and U∗. This consists of individual vertically aligned greyscale-coded
power spectra density for each U∗ stacked together horizontally to show the frequency response of
the system, with darker regions representing frequencies of higher power. The narrowness/broadness
of the spectral peaks is also clear from the colour gradation. The variation of the shedding frequency
ratio (fsh/f) with U∗ is plotted as a dot-dashed line in figure 4.1(b) to highlight U∗ regions where
f ≈ fsh. To highlight U∗ ranges where f locks to fnw (i.e. f ≈ fnw), the f∗ = 1 curve is shown
as a dotted line in figure 4.1(b). The body’s frequency response (f) follows the shedding frequency
(f ≈ fsh) until the end of the initial amplitude response branch, where it begins to bend towards fnw
and subsequently lock-in to it (f ≈ fnw). The frequency response remains synchronised throughout
the upper and lower amplitude response branches until the desynchronized region is reached. At
that point, the body frequency response deviates from fnw, returning to follow fsh, although there is
still a broad spectral peak close to the natural shedding frequency. For the current experiment, the
mean Strouhal number, defined by St = fshD/U∞, was measured as St ≈ 0.215 for the Re range
investigated; this agrees with the known St value in the same Re range.
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Figure 4.1: Vibration response of a non-rotating circular cylinder undergoing VIV. (a) is the normalised
amplitude response (A∗) as a function of reduced velocity (U∗). •, represents the mean of the highest 10%
of oscillation amplitude (A∗10) in the present study with m∗ = 5.78 & ζ = 0.0041; �, represents results from
Zhao et al. (2014b) with m∗ = 2.4 & ζ = 0.00243; 4, represents results from Khalak & Williamson (1997a)
with m∗ = 2.4 & ζ = 0.0045; O, represent results from Khalak & Williamson (1999) with m∗ = 10.3 and
ζ = 0.00165. The vertical dashed lines represent the boundaries of branches for the present study. (b) is a
power spectra density (PSD) contour map of A∗ as a function of normalised frequency response (f∗) and
U∗. Essentially normalised power spectra are assembled together horizontally to construct this map. Note
that the PSD is normalised by the peak value at each U∗.

4.2 Vibration response

In this section, the time-averaged displacement, ȳ, of the rotating cylinder from its non-rotating neu-
tral position is first discussed. Observations in the cylinder’s vibration response (i.e. the oscillation
amplitude and frequency response) as reduced velocity (U∗) and rotation rate (α) are varied will
follow.

In the present investigation, the observed body oscillations are typically periodic, although there
are some variations in the waveform from one cycle to another. An uneven mean pressure distribution
about the centreplane is generated when a cylindrical body, such as a circular cylinder, is rotated
about its spanwise axis in a viscous fluid. This unsymmetric distribution of the mean pressure is
caused by the body rotation, causing fluid to the accelerate on the leeward side and decelerate with
flow separation on the windward side of the body. As discussed in §2.4, this is generally known as
the Magnus effect. Over the past century this effect has been extensively studied by a number of
researchers (e.g. Prandtl & Tietjens (1934); Coutanceau & Menard (1985); Badr et al. (1990); Kang
et al. (1999); He et al. (2000); Stojković et al. (2002); Mittal & Kumar (2003); Rao et al. (2013)).
Due to the unsymmetric mean pressure distribution acting on the cylinder, a net force is generated
in the cross-flow direction. The magnitude of this net lift force increases with rotation rate. It is,
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Figure 4.2: The time-averaged displacement of the cylinder (ȳ) as a function of reduced velocity (U∗) at
different rotation rates (α). Numerical prediction results from Bourguet & Lo Jacono (2014) (abbreviated
as BL14 in figure) for Reynolds number Re = 100 at rotation rates α = 2.0 and 4.0 are shown by the
dashed and solid lines, respectively. The dot-dashed line shows experimental results of Seyed-Aghazadeh &
Modarres-Sadeghi (2015) (abbreviated as SM15 in figure) at Re = 350− 1000 at α = 2.0 for comparison.

therefore, expected that at any reduced velocity, an increase in the rate of rotation will cause a
corresponding increase in ȳ.

Figure 4.2 presents the time-averaged displacement as a function of reduced velocity at several
different rotation rates. As expected, the data shows that the time-averaged displacement increases
with rotation rate due to an increase in the mean lift. This general observation is in good agreement
with the low Reynolds number (Re = 100) rotating VIV simulations of Bourguet & Lo Jacono
(2014), although the offsets in position in the current experiment are larger than those observed in
their numerical work. In fig. 4.2, the numerically predicted displacements for rotation rates α = 2.0
(dashed) and α = 4.0 (solid) from Bourguet & Lo Jacono (2014) are overlaid for comparison. The
experimentally determined ȳ at rotation rate α = 2.0 from Seyed-Aghazadeh & Modarres-Sadeghi
(2015) is also overlaid (dot-dashed line). It is evident that the measurements from Seyed-Aghazadeh
& Modarres-Sadeghi (2015) are closer to the numerical results of Bourguet & Lo Jacono (2014) than
those from the present study. The general agreement between their results is perhaps attributable
to the comparatively low Reynolds numbers of their studies (Re = 100 for Bourguet & Lo Jacono
(2014) and Re = 350 − 1000 for Seyed-Aghazadeh & Modarres-Sadeghi (2015)). In contrast, the
Reynolds number of the present study increases from Re ≈ 1000 at the lowest reduced velocity
examined.

To further document the dynamic response of the cylinder, the oscillatory component of its motion
is characterised in figures 4.3 and 4.4. The vibration response as a function of reduced velocity is
presented in figure 4.3. In figure 4.3(a), the means of the highest 10% of normalised amplitude
response peaks (A∗10) about their time-averaged positions are presented as a function of reduced
velocity at several rotation rates. To help clarify the overall behaviour of the cylinder response with
body rotation, the amplitude response for a number of selected cases (α = 0, 1.0, 2.0, and 3.0) have
been highlighted with dashed lines. This figure reveals that large amplitude oscillations exist over
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Figure 4.3: The vibration response of an elastically-mounted circular cylinder undergoing constant rotation
as a function of reduced velocity (U∗) at different rotation rates (α). (a): the means of the highest 10%
of normalised amplitude response peaks (A∗10) about their time-averaged positions (ȳ), (b): the normalised
frequency response (f∗). Approximate fits to rotation cases α = 0, 1.0, 2.0, and 3.0 are shown by the
labelled dashed lines.

broad ranges of reduced velocity and rotation rate. The peak amplitude (over U∗) first increases
as the rotation rate is increased from α = 0. This is evident as the amplitude response increased
from A∗10 ≈ 0.8 for the non-rotating cylinder to A∗10 ≈ 1.4 for a cylinder at rotation rate α = 2.0.
However, increasing the rotation rate beyond α = 2.0 results in the peak response decreasing. The
peak response decreased to A∗10 ≈ 0.1, for the highest rotation rate investigated of α = 4.0.

Despite changes in magnitude, the overall shapes of the amplitude responses for rotation rates
α 6 2.0 are comparable to those for the non-rotating cylinder. While there are modifications due to
the effects of rotation, the typical three-branch (i.e. the initial, upper and lower branches) amplitude
response associated with a low mass-damping system can be clearly identified. At low rotation rates
0 < α 6 1.5, an increase in α: increases the peak amplitude response; increases the width of the
range of U∗ over which body excitation occurs; and makes the transitions between the upper and
lower branch and the desynchronization distorted and less distinct. For a cylinder rotating between
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1.5 < α 6 2.0, the peak amplitude increases to higher values than those observed at lower rotation
rates (0 < α 6 1.5). The range of U∗ at which body excitation occurs is comparable to the non-
rotation case but the transition between the upper and lower response branches is abrupt. Up to
a rotation rate of α ≈ 2.0, it can be observed that there is an increase in the reduced velocity
range corresponding to the increase in the amplitude peak with rotation rate; furthermore, there is
a tendency for the amplitude peak to shift to a higher U∗ with increased α. In the range of rotation
rate 2 < U∗ 6 3, there are significant reductions in the amplitude response at any U∗, and the shape
of the response curve no longer resembles that of a non-rotating cylinder undergoing VIV. Within
this range of rotation rate, the typical two- or three-branch response is replaced with a dual-peak
response curve at α = 2.5, and a smaller, single peak response at α = 3.0. In addition to the changes
in the shape of the response curve, the range of reduced velocities at which excitation occurs becomes
narrower. When the cylinder is rotating at rates α > 3, body excitation is minimal.

Figure 4.3(b) presents the normalised frequency response, f∗, about its time-averaged position,
ȳ, as a function of U∗ and α. Similar to the amplitude response curves, the frequency variations are
compared for the non-rotating and rotation cases, with the curves for α = 1.0, 2.0 and 3.0 again
highlighted by dashes lines. The frequency variation for the non-rotating case from the present
study is in good agreement with previous non-rotating VIV research. As wake-body synchronisation
occurs, the frequency response of the cylinder becomes close to the natural frequency of the oscillating
structure in water, fnw, (f∗ = 1 in figure 4.3(b)); when reduced velocity is increased within the lock-
in region, the frequency response departs from fnw. For a rotating cylinder, the frequency response
broadly follows the non-rotating VIV case; as α increases the frequency response globally decreases.
This finding is in excellent agreement with the simulations of Bourguet & Lo Jacono (2014) and
experiments of Seyed-Aghazadeh & Modarres-Sadeghi (2015).

An investigation into the vibration response of the cylinder at fixed rotation rate increments can
better show the influence of body rotation on the vibration response, and how each α increment
compares to the non-rotating case over the range of tested reduced velocities. The normalised
vibration response about its time-averaged position at several reduced velocities of interest were
selected and are presented as a function of rotation rate in figure 4.4. These reduced velocity cases
were selected based on how each represents the vibration response at comparable U∗, and how well
these cases show the progression of the response with increasing rotation rate.

Figure 4.4(a.i) shows the amplitude response (A∗10) response variation about its time-averaged
position (ȳ) as a function of α at U∗ = 4.00. At this reduced velocity, the effect of rotation rate on
the amplitude response is minimal. The maximum amplitude registered is A∗10 ≈ 0.2 or less over the
entire range of rotation rate. Above a rotation rate of α ≈ 2.3, the cylinder’s amplitude response
decreases to near zero. Figure 4.4(a.ii) presents the corresponding normalised frequency response
as a function of rotation rate at U∗ = 4.00. As the rotation rate is increased, the frequency of
the cylinder converges towards the natural frequency of the oscillating structure in water with an
associated decrease in amplitude response. These trends are observed through the initial branch and
at the beginning of the upper branch.

As the reduced velocity was increased to the value at which the peak upper branch response
occurred for a non-rotating cylinder (U∗ = 6.25), figure 4.4(b.i) and figure 4.4(b.ii) show that the
amplitude response increases significantly up to a rotation rate of α ≈ 2.0 and A∗10 abruptly decreases
thereafter. This is highlighted by the vertical dashed line in figure 4.4(b.i). In the current study, the
highest A∗10 amplitude, globally, was observed at a reduced velocity of U∗ = 6.25. The amplitude
increased from A∗10 = 0.79 for a non-rotating cylinder to the global peak of A∗10 = 1.39 at α = 2.0.
On further increases in rotation rate, the amplitude abruptly drops to A∗10 ≈ 0.3 at α ≈ 2.3.
On increasing rotation rate, the frequency response decreases towards fnw. A small jump in the
frequency response is observed. Highlighted by the vertical dashed line in figure 4.4(b.ii), there is
small jump in the frequency response which accompanies the abrupt drop in amplitude. As rotation

80



4.2. Vibration response

A∗10

A∗10

A∗10

f ∗

f ∗

f ∗

α α

(a.i)

(a.ii)

(b.i)

(b.ii)

(c.i)

(c.ii)

(d.i)

(d.ii)

(e.i)

(e.ii)

(f.i)

(f.ii)

Figure 4.4: The vibration response of an elastically-mounted circular cylinder undergoing constant rotation
as a function of rotation rate (α) at selected reduced velocities (U∗). (a) at U∗ = 4.00, (b) at U∗ = 6.25,
(c) at U∗ = 6.50, (d) at U∗ = 7.50, (e) at U∗ = 8.00 and (f) at U∗ = 10.00. In each reduced velocity
case, figure (i) is the means of the highest 10% of normalised amplitude response peaks (A∗10) about their
time-averaged positions (ȳ); figure (ii) is the power spectra density contour of the normalised frequency
response (f∗) normalised by the peak power. The horizontal dashed line in figure (ii) indicates f∗ = 1 or
(f = fnw). The vertical dash lines highlight features of interest discussed in the text.

rate is increased from α = 0, the oscillation frequency, f , initially converges towards the natural
frequency of the oscillating structure in water, fnw; the body oscillation locks-in to fnw, resulting in
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Chapter 4. Flow-induced vibration of a rotating cylinder

an increase in amplitude response. As the rotation rate is increased above α ≈ 2.25, the wake mode
changes and the body oscillation frequency is no longer locked-in with the natural frequency of the
oscillating structure. Details of wake modes and flow structures will be discussed in §4.3.

As the U∗ is increased to the onset of the lower amplitude response branch from U∗ = 6.5, an
increase in amplitude response is observed, albeit it is less pronounced than for the U∗ = 6.25 case.
Figure 4.4(c.i) shows that with an increase in rotation rate the amplitude response does drop following
the peak. However, in this case the abrupt drop takes place at a lower rotation rate of α ≈ 1.7 and
is followed by a plateau between the peak and the lower amplitude regions at higher α. Within
the range of rotation rates where the amplitude plateau exists, the cylinder oscillation frequency
locks-in to the natural frequency of the oscillating structure in water, (i.e. f ≈ fnw). The frequency
response of the cylinder becomes similar to that seen in the upper branch case as the rotation rate
is increased above a rotation rate of α ≈ 2.25 (second vertical dotted line in figure 4.4(c.ii)). At
rotation rates above α ≈ 2.25, the frequency response in both the upper (U∗ = 6.25) and lower
(U∗ = 6.50) amplitude response branch cases begin at values slightly above f∗ = 1; as α is increased
f∗ gradually decreases to below f∗ = 1.

When the reduced velocity is increased to a value at which is approaching the centre of the lower
amplitude response branch for a non-rotating cylinder (U∗ = 7.50); the vibration response observed
is different to that seen at the beginning of the lower branch at U∗ = 6.5. Figure 4.4(d.i) shows that
the amplitude response is characterised by two peaks, with the second peak appearing at a higher
rotation rate than the peaks seen at lower reduced velocities. The cylinder is unresponsive to the
effects of rotation as evidenced by the stable amplitude response up to rotation rates of α ≈ 0.8
(as highlighted by the vertical dashed line in figure 4.4(d.i)). As the rotation rate is increased to
within the proximity of α ≈ 2.75, a second amplitude peak appears. Similar to that of the amplitude
response, the frequency exhibits minimal effects of rotation up to α ≈ 0.8. When the rotation rate
is increased above α ≈ 0.8, there is a corresponding reduction in the frequency response down to
and then below f∗ = 1 (f = fnw). The location at which the second amplitude peak occurs and
the rotation rate at which f decreases past fnw suggests that the appearance of the second peak is
the result of f approaching fnw. There are similar observations at higher reduced velocities, such as
U∗ = 8.0; however, the second amplitude peak becomes less distinct.

In the desynchronized region (U∗ = 10.0), the vibration response trends are similar to those
observed in the lower amplitude response branch, as exhibited in figures 4.4(f.i) and 4.4(f.ii). How-
ever, the magnitude of the amplitude response is significantly lower than those seen in the lower
branch. Figure 4.4(a.i) shows that body rotation does not appear to have a significant impact on
the amplitude response of the body at relatively low reduced velocities, i.e. U∗ lies in the initial
branch. However, there is an unexpected response in the desynchronized region. As the rotation rate
is increased, the amplitude increases from A∗10 ≈ 0.1 to a peak value of A∗10 ≈ 0.5. This frequency
response feature is comparable to those seen in the lower branch cases, where the location of the
first amplitude peak coincides with the rotation rate value at which f begins to converge towards
fnw.

It is of interest to see how do the present results compare to previous numerical and experimental
work at different Re, mass and damping ratios. Presented in figure 4.5(a) is a comparison of the
normalised amplitude response (A∗) at a rotation rate of α = 2.0 with previous studies. Seyed-
Aghazadeh & Modarres-Sadeghi (2015) performed their experimental study using a water channel
and presented their data on a rotating cylinder undergoing VIV in the form of an amplitude response
contour map. The amplitude response curve presented in figure 4.5(a) was extracted from their
contour plot. In their experiment, the Reynolds number covered the range 350 ≤ Re < 1000. The
maximum amplitude response reported occurred at a reduced velocity of U∗ = 6.5 corresponding to
a Reynolds number of Re ' 600. The results from the low Reynolds number (Re = 100) simulation
by Bourguet & Lo Jacono (2014) at the same α is also presented in figure 4.5(a). At a rotation
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Figure 4.5: (a) Comparison of the normalised amplitude response (A∗) of the present study against pre-
vious numerical and experimental work at a rotation rate of α = 2.0 and as a function of reduced velocity
(U∗). Note in particular, the significantly higher amplitude response in the present experiment. (b) presents
an approximate boundaries of vibration regions as a function of U∗ and α.

rate of α = 2, Seyed-Aghazadeh & Modarres-Sadeghi (2015) reported a peak amplitude response of
A∗ ' 0.6D. The global peak amplitude in their study occurred at a slightly higher rotation rate
of α ' 2.3; however, their global peak value is only marginally higher than the local peak value
reported in the α = 2 case shown in fig. 4.5(a). Conversely, Bourguet & Lo Jacono (2014) reported,
in their low Re numerical study, that a large amplitude response persists and continues to increase
with rotation rate up to α = 4, beyond which the amplitude response becomes minimal.

It is also evident that Bourguet & Lo Jacono (2014) observed a significant vibration response over
a considerably wider range of reduced velocities than the experimental study of Seyed-Aghazadeh
& Modarres-Sadeghi (2015) and also in the present thesis. It seems probable that the observed
variations in amplitude response are the result of the significant differences in Reynolds number (the
current experiment being at significantly higher Re of Re ' 3000 at U∗ = 6.5), rather than the effects
of mass and damping. Despite the mass ratio of m∗ = 5.8 from the current experiment being half the
value of the other two studies, it can still be considered comparable (m∗ = 11.5 for Seyed-Aghazadeh
& Modarres-Sadeghi (2015) and m∗ = 10 for Bourguet & Lo Jacono (2014)) given previous observed
variation with mass ratio for non-rotating VIV studies. Moreover, the mass-damping ratios of the
three studies are similarly low. Previous work by Feng (1968); Khalak & Williamson (1996, 1997a,
1999) on the effects of mass and damping on a cylinder undergoing VIV have documented that
the vibration response of an elastically-mounted cylinder does not show significant changes with
reasonable variations in mass and damping ratios.

Figure 4.5(b) delimits regions where the vibration response is non-negligible in the three stud-
ies. The boundaries from the two experiments are comparable despite significant differences their
Reynolds numbers and amplitude responses. The vibration region from the simulation of Bourguet
& Lo Jacono (2014) is comparable at low rotation rates over the initial range of reduced velocities;
however, they reported significant amplitude response that, when α is sufficiently high, extends to
significantly higher U∗.

Previous VIV studies have shown that changes in the vibration response of the cylinder are often
accompanied by a corresponding change in the structure of the wake. To better understand the
behaviour of a rotating cylinder undergoing VIV, the wake patterns are examined in the following
section.
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Figure 4.6: The wake patterns observed are based on particle image velocimetry data with approximate
boundaries shown by the solid lines. This overlays a greyscale contour map of the mean of the highest
10% of amplitude peaks (A∗10) about their time-averaged positions (ȳ), in U∗ − α parameter space, with
amplitude levels indicated by the dashed lines. There appears to be a gradual change from 2P to P+S as
the rotation is increased causing a deflection of the wake away from the streamwise centreline.

4.3 Wake structures

The structure of vortices shed into the wake are of great significance as they influence the vibra-
tion response of an elastically-mounted structure. A number of studies have discovered and cat-
egorised the wake structure of rigidly-mounted cylinders undergoing forced constant rotation and
non-rotating cylinders undergoing free and forced vibrations in the cross-flow direction (see Badr
et al. (1990); Mittal & Kumar (2003); Rao et al. (2013); Williamson & Roshko (1988); Khalak &
Williamson (1999); Carberry et al. (2001); Zhao et al. (2014a)). It has been established that the
wake structure can vary significantly from the Kármán vortex streets typically observed for a sta-
tionary cylinder. The low Re simulations of Bourguet & Lo Jacono (2014) provided evidence that an
elastically-mounted cylinder undergoing constant-rate rotation can exhibit wake patterns previously
documented in forced-rotation, free-vibration and forced-vibration studies. To better understand the
interactions between wake modes and the cylinder’s vibration responses, the observed wake modes
have been mapped against the primary independent variables, reduced velocity (U∗) and rotation
rate (α).

A contour map of the mean of the highest 10% of amplitude peaks in the U∗–α parameter space is
presented in fig. 4.6. Iso-amplitude contours are represented by the dashed lines. The wake structures
observed for selected PIV data sets (refer to §3.5.4 for processing details) are marked to indicate how
the state of the wake affects the cylinder’s amplitude response. Approximate boundaries of regions
of the same wake state are represented by solid lines. The inclusion of these approximate boundaries
is to assist the interpretation of how the wake modes and amplitude responses (measured by A∗10)
are related.

Work such as Feng (1968); Khalak & Williamson (1999); Williamson & Govardhan (2004a) have
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shown that a non-rotating cylinder undergoing VIV exhibits hysteresis and wake mode switching in
transition regions between amplitude response branches. A primary focus of the present study is
to characterise the wake modes in U∗–α parameter space. In regions where the amplitude response
is low, i.e. at reduced velocities associated with the initial response branch (U∗ < 4.8) and in the
desynchronized region (U∗ > 9.5), the wake mode typically found in non-rotating VIV studies was
observed up to a rotation rate of α ≈ 2.0. This shedding mode, as documented in fig. 4.7, is
characterised by the shedding of two single counter-rotating vortices per oscillation cycle and it is
commonly referred to as the 2S mode. The 2S mode is the standard wake structure that is commonly
found in stationary cylinder and non-rotating VIV studies.

In the same reduced velocity ranges (U∗ < 4.8, U∗ > 9.5) at rotation rates above α ≈ 2.0,
a new wake structure characterised by the shedding of small, asymmetric vortices was discovered.
This mode resembles the shedding structure observed in the second region of wake instability for
a rotating cylinder reported by Mittal & Kumar (2003). However, the mode observed by Mittal
& Kumar (2003) occurred at significantly higher rotation rates or α ∼ 4.5. As the flow undergoes
the initial transition into this mode, i.e. at its boundary with other wake modes, the vortices shed
are larger in size and their shedding is more periodic. on entering this wake mode state, as the
rotation rate is further increased, the vortices shed becomes smaller and more chaotic. In addition
to the evolution in size and periodicity with rotation rate, it was observed that the wake may switch
between a wider and narrower state, with the latter associated with the shedding of larger vortices.
Figure 4.8 illustrates the instantaneous spanwise vorticity contours for this mode: the left image
illustrates the narrower wake state; and the right image shows the wider state. Further work is
needed to characterise the intermittent behaviour of this wake state and details about the switching
behaviour. This mode is named C(AS) due to the Coalescence of these small Asymmetric vortices
and its intermittent wake Switching.

At moderate reduced velocities associated with the lower amplitude response branch (6.5 6 U∗ 6
9.5) of a non-rotating cylinder, where the amplitude response is 0.4 < A∗10 6 0.6 and the rotation rate
is below α 6 0.5, two pairs of counter-rotating vortices are shed per oscillation cycle as illustrated
in figure 4.7. This resembles the 2P mode previously reported in non-rotating VIV studies such as
Williamson & Roshko (1988); Khalak & Williamson (1999).

At moderate rotation rates (1.25 6 α < 2.25), a dominant wake mode is observed that persists
across the reduced-velocity vibration region (5.0 < U∗ 6 9.0) where wake-body synchronisation
occurs. The wake in this region is characterised by the P+S mode, as illustrated in fig. 4.7. The
P+S mode is composed of a pair (P) of counter-rotating vortices plus a single (S) vortex shed per
oscillation cycle. A number of free and forced vibration studies have reported the observation of this
wake mode (e.g. Williamson & Roshko (1988)). The lower Reynolds number simulation by Bourguet
& Lo Jacono (2014) and experiments of Seyed-Aghazadeh & Modarres-Sadeghi (2015) of a rotating
cylinder undergoing VIV have also reported observing this mode. It should be noted that as the
rotation rate is increased, the mean wake becomes more asymmetric about the centreline due to the
Magnus effect, and this influences the wake state. This effect is likely to register as a change from
2P shedding at low rotation to P+S at higher rotation. Indeed at intermediate rotation rates, the
wake state shows the characteristics of both 2P and P+S modes. Over the same range of reduced
velocities in the vibration region (5.0 < U∗ 6 9.0), the aforementioned C(AS) wake mode is observed
when the rotation rate is increased above α > 2.25.

A comparison of figure 4.4 and fig. 4.6 reveals that large changes in the cylinder’s oscillation
amplitude response correspond with changes to the wake mode. This is most evident in the upper
branch (U∗ = 6.25) case, as shown in figure 4.4(b.i), the abrupt drop in amplitude response and
jump in frequency response near a rotation rate of α = 2.25 coincides with a change in wake mode
from 2S, in the unsteady flow regime, to the C(AS) mode, where the wake flow becomes near steady.
Another example is at the onset of the lower branch (U∗ = 6.50). Figures 4.4(c.i) and 4.4(c.ii)
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showed that near a rotation rate of α = 2.25, the drop off in the amplitude response from the
plateau to a lower amplitude state and the change in frequency response from a single dominant
response (associated with the plateau) to a weaker and more scattered response also coincides with
a similar wake transition as P+S undergoes transition to C(AS).

To better understand and characterise the influence of increasing α on the wake of the cylinder,
the induced changes to the standard 2S mode are examined. The 2S mode was selected as it is the
dominant wake mode for a stationary cylinder and for non-rotating free and forced vibration studies.
The evolution of the 2S wake mode with increasing rotation rate at a reduced velocity of U∗ = 5.0
is illustrated in figure 4.3. Figure 4.3 is laid out such that each row shows a different rotation rate
case: the top row illustrates the wake of a non-rotating cylinder; the centre row shows the cylinder
at α = 1.0; and the bottom row shows the α = 2.25 case. Visual aids have been added to the figure
to help explain the different effects of body rotation on the wake. These visual aids are arranged
such that each column within the figure explains a different effect of body rotation on the 2S wake
mode.

As the rotation rate is increased (see figure 4.3 left column from top downwards), ȳ of the cylinder
shifts upwards and the vortices shed deviate further downwards away from the streamwise centreline
(marked as a dashed line) as they advect downstream. These observations are expected for the
forced body rotation cases wake deflection, as a result of the Magnus effect.

The spacing between clockwise and anti-clockwise vortex cores in the wake is altered by the
increased rate of rotation. Positive and negative vortex cores are evenly distributed along the wake
for the non-rotating cylinder. However, as the body is forced to rotate, the vortices in the wake
exhibit signs of collecting in pairs. This effect is shown in the third column of figure 4.3, and it is
enhanced with increases in rotation rate. The vertical dashed lines are visual aids to mark out the
boundary of shedding cycles. It is evident that when α is increased, the distance ( labelled as ‘a’ in
the centre column) between counter-rotating vortex pairs of the same shedding cycle (i.e. the shed
anti-clockwise (red) vortex and the subsequently formed clockwise (blue) vortex both on the right
side of the vertical dashed line) is less than the distance (labelled as ‘b’ in the right column) between
the clockwise vortex (blue, to the right of the dashed line) and the anti-clockwise vortex (red, to the
left of the dashed line) of the next shedding cycle.

With increases in rotation rate, the size and strength of the vortices decreases (see figure 4.3
centre column from top downwards). These observations have previously been reported in the wake
of a rigidly-mounted cylinder undergoing rotation (see Radi et al. (2013), figure 5). This is consistent
with body rotation resulting in the two separation points feeding the shed vortices to shift closer
together; thereby limiting the vorticity shed into each vortex in the wake and increasing cross-
annihilation. Similar observations of the effect of α on the asymmetry of the wake and spacing
between vortex cores are seen with the P+S mode.

An inspection of the contours of the P+S mode at different ranges of reduced velocity show an
indistinct change in the vortex pattern. Observations of the P+S mode in previous VIV studies
showed that the mode consisted of a single vortex on one side of the streamwise centreline with a
clockwise and anti-clockwise vortex pair of the other side of the centreline. Because of symmetry,
the single and pair of vortices can form interchangeably on both sides of the streamwise centreline in
non-rotating VIV wakes. Phase-averaged contours of the P+S mode in the upper amplitude response
branch of a non-rotating cylinder at U∗ = 5.50 (left) and in the lower branch at U∗ = 6.5 (right)
are illustrated in fig. 4.10. The upper branch was observed to have one anti-clockwise vortex on the
advancing side of the cylinder and two clockwise vortices on the retreating side of the cylinder. In the
lower branch, the anti-clockwise vortex on the advancing side of the cylinder remains; however, on the
retreating side there is now a vortex pair consisting of one clockwise and one anti-clockwise vortex.
This was an unexpected observation. It had been thought that the asymmetric flow generated by
the rotation of the cylinder would promote the vortices to shed in one direction, with a consistent
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Figure 4.7: Phase-averaged spanwise vorticity contours of a 2S mode at reduced velocity U∗ = 5.0 and
rotation rate α = 1.0 (left column), 2P mode at U∗ = 8.0, α = 0.0 (centre column) and P+S mode at
U∗ = 6.5, α = 0.6 (right column) over an oscillation cycle. Cylinder rotation is anticlockwise.
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Figure 4.8: Instantaneous iso-contours of the C(AS) mode at reduced velocity U∗ = 4.00 and rotation
rate α = 2.75. The C(AS) wake pattern is of a chaotic nature and consists of small vortices distributed
around a mean trajectory.

vortex pattern seen in previous VIV studies and in figure 4.10 (right). This observation can be seen
over a range of α in the upper and lower amplitude response branches. To better understand this
behaviour, further work is needed.

4.3.1 Wake intermittency in the upper amplitude branch

Previous work has shown that the wake of a cylinder undergoing VIV in the upper amplitude response
branch exhibits intermittent or chaotic behaviour (Zhao et al. 2014a; Lucor & Triantafyllou 2008). It
is of interest to know whether this mode-switching behaviour observed in the upper branch continues
to exist when the cylinder undergoes forced rotation. The forced rotary motion of rigidly-mounted
cylinders do indeed modify the wake stability; this is observed in both constant rotation (El Akoury
et al. 2008; Rao et al. 2013, 2015) and rotary oscillation (Lo Jacono et al. 2010; D’Adamo et al. 2015)
studies. In the present study, the cylinder undergoes constant-rate rotation, consequently biasing
the produced vorticity towards one side and therefore biasing the topology of the wake; the question
of interest is how the dynamics of the wake in the upper-amplitude response branch may be affected?

In order to find out how the wake dynamics in the upper branch is affected, observations on the
state of the wake are presented for U∗ = 6.5 at three rotation rates: α = 0.0, 0.8&1.5. The switching
of the wake state was identified though examining the φ1–φ4 POD temporal coefficients. The in-
stantaneous cylinder motion given by the body displacement y(t) was insufficient to unambiguously
decipher changes within the wake, as exemplified though figure 4.11 and figure 4.13. However, it is
possible to observe many instances of wake mode switching time-resolved PIV images (∼ 3100) that
covers a large number of shedding cycles (∼ 200-300).

An example of the aforementioned wake-mode switching behaviour of a non-rotating cylinder is
presented in fig. 4.11. The transition from the 2P to 2S wake mode is shown in this example. The
time history of the cylinder’s normalised position y∗ is presented in figure 4.11(a) with the segment
in blue showing where wake-mode switching occurred. The cylinder’s normalised position y∗ = y′/D
is defined as the mean-subtracted displacement y′ = y− ȳ of the cylinder normalised by the cylinder
diameter (D). The temporal evolution of the mode is presented through Lissajous figures of the
first and second modes (φ1 & φ2) in figure 4.11(b); and the first and third modes (φ1 & φ3) in
figure 4.11(c). The symbols (•) and (N) in figure 4.11(a-c) correspond to the instantaneous vorticity
contours illustrating the 2P mode in figure 4.11(d) and 2S mode in figure 4.11(e). The motion time
history in figure 4.11(a) exemplified that the information contained in the cylinder displacement y(t)
signal is insufficient to reveal switching behaviour within the wake evolution; however, changes in the
shape of the Lissajous curves clearly draw a distinction between the two modes. Thus, essential to
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Figure 4.9: Phase-averaged spanwise vorticity contours of 2S mode at different rotation rates (α) over an
oscillation cycle at reduced velocity U∗ = 5.0. α = 0.00 (top row), α = 1.00 (centre row) and α = 2.25
(bottom row). Contours were selected to align the leading vortex of each oscillation cycle, i.e., the vortex
with positive vorticity, to the trailing vortex of the previous oscillation cycle. This illustrates the effects of
α on wake asymmetry and gap between vortices from adjacent oscillation cycles. Therefore, the contours
between different α are not necessarily in phase. The horizontal dashed lines in the left column of contours is
a visual aids placed to represent the streamwise centre line; dimension ‘a’ qualitatively show the approximate
distance between vortex cores belonging to the same shedding cycle; dimension ‘b’ qualitatively show the
approximate distance between the trailing clockwise vortex core and the leading anti-clockwise vortex core
in the subsequent shedding cycle. The vertical dashed lines in the right column are visual aids placed to
represent an imaginary boundary between shedding cycles.

the differentiation of the wake modes and dynamics was the inspection of the POD temporal modes;
this was only feasible owing to the large number of shedding cycles recorded.

Another example of wake-mode switching, at a rotation rate of α = 0.80, is presented in fig-
ure 4.12. In this example, the transition from the P+S+ (the S+ indicates an anticlockwise single
vortex) to a 2S shedding mode is shown. Similar to the previous analysis, the time history of the
normalised displacement y∗ is presented in figure 4.12(a), with blue sections highlighting the wake-
mode switching zone. Again, the temporal evolution is presented though the Lissajous figures, with
figure 4.12(b) showing the first and second modes (φ1 & φ2), and figure 4.12(c) showing the first and
third modes (φ1 & φ3). The red symbols placed in figure 4.12(a-c) correspond to the instantaneous
vorticity contours of a P+S+ mode in figure 4.12(d) and a 2S mode in figure 4.12(e). Once again,
the changes in the form of the Lissajous curves distinctly differentiates the two wake modes while
the time history of the normalised displacement y∗ based on the displacement signal y(t) is unable
to distinguish the switching of wake modes.

The mode switching behaviour continues as the rotation rate is increased to α = 1.50. Figure 4.13
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Figure 4.10: Phase-averaged iso-contours of the P+S mode at reduced velocity U∗ = 5.50 and rotation
rate α = 1.15 in the upper response branch (left) and U∗ = 6.50, α = 0.60 in the lower response branch
(right).

Figure 4.11: Instantaneous measurement for reduced velocity U∗ = 6.50 and rotation rate α = 0.0. (a)
Time-varying normalised position of the cylinder y∗ = y′/D, with y′ = y − ȳ, as a function of oscillation
cycles, T (i.e., time normalised by the natural period of the oscillating structure T = t/fnw). The zone
of transition from the 2P to 2S mode is marked in blue. The red filled symbols, circle (•) and triangle
(N), match the instantaneous vorticity contours presented in (d) and (e) (showing the 2P and 2S mode,
respectively) to the instantaneous positions in the other plots. Plots (b) and (c) are Lissajous figures
showing the temporal evolution of the POD modes highlighting the differences over time (i.e., providing
different Lissajous shapes).

presents the transition from a P+S− (the S− indicates a clockwise single vortex) to a 2P mode.
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Figure 4.12: Instantaneous measurement for reduced velocity U∗ = 6.50 and rotation rate α = 0.80. (a)
Time-varying normalised position of the cylinder y∗ = y′/D, with y′ = y − ȳ, as a function of oscillation
cycles T (i.e., time normalised by the natural period of the oscillating structure T = t/fnw). Highlighted
in blue is the zone of transition from the P+S+ to 2S shedding mode. The red filled symbols, circle (•)
and triangle (N), correspond to the instantaneous vorticity contours presented in (d) and (e) showing a
P+S+ and 2S mode, respectively. Plots (b) and (c) show the Lissajous figures for (φ1 & φ2) and (φ1 & φ3),
respectively. They are representative of the temporal POD mode evolution, highlighting the differences in
time (providing different Lissajous shapes).

Similar to the previous two cases, the time history of the normalised displacement y∗ is presented
in figure 4.13(a), with the blue segment highlighting the switch of wake modes. As before, figures
(b) and (c) of fig. 4.13 presents the Lissajous figures of the temporal evolution and they confirm the
distinct changes in shape that differentiate the two wake modes.

The present results do not provide a comprehensive collection of all possible wake-mode transition
cases; an extensive study is needed to characterise the switching behaviour in the U∗–α parameter
space. However, the results reported in this section is sufficient to corroborate that the intermittent
wake-mode switching behaviour in the upper amplitude response branch persists even at elevated
rates of body rotation rate.

4.4 Force and phases

The fluid forces and their phase angle difference with the body displacement signal is core to un-
derstanding the interactions between the fluid and structure. The (force) results presented in this
section were obtained using the new air-bearing displacement measurement system. Details of the
experiment apparatus and measurement sensors have been provided in §3. The new air-bearing
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Figure 4.13: Instantaneous measurement for reduced velocity U∗ = 6.50 and rotation rate α = 1.50. (a)
Time-varying normalised position of the cylinder y∗ = y′/D, with y′ = y − ȳ, as a function of oscillation
cycles, T (i.e., time normalised by the natural period of the oscillating structure T = t/fnw). Section in
blue highlights the zone of transition from a P+S− to 2P mode. The red filled symbols, circle (•) and
triangle (N), correspond to the instantaneous vorticity contours presented in (d) and (e), showing a P+S−

and 2P mode, respectively. Plots (b) and (c) show the Lissajous figures for (φ1 & φ2) and (φ1 & φ3),
respectively. They are representative of the temporal POD mode evolution, highlighting the differences in
time (providing different Lissajous shapes).

setup has a total mass of mosc = 2.4481 kg and the mass ratio is m∗ = 5.641. From free-decay
tests, the natural frequency of the oscillating system in air was fnw = 0.468 Hz ,and in water was
fnw = 0.429 Hz. Structural stiffness is provided by one pair of springs and they have an equivalent
stiffness of k = 0.0212 N/mm; and the oscillating system has a damping ratio of ζ = 0.001515. This
new experimental set up was also used for the rotary oscillation study presented in§5.

The incorporation of a precision digital optical linear encoder onto the new air-bearing apparatus
enabled direct measurement of the body displacement y(t) with minimal electrical interference (that
would lead to noisy force transducer signals). The linear encoder allowed the time-varying lift force
to be estimated through the cylinder’s equation of motion, which was mathematically described in
equation 2.5. Hence, the data presented in this section was obtained using only the linear encoder
to measure the displacement signal and derive the force signal. (It should be borne in mind that use
of a force transducer to extract the lift force still relies on removing the inertial force components,
which is estimated from the acceleration derived from the displacement signal.)

The variation in mean of the highest 10% of normalised amplitude peaks (A∗10), RMS lift coeffi-
cient (Cy,RMS), total phase (φT ) and vortex phase (φV ) at two rotation rates (α = 0.2) are presented
as a function of U∗ in figure 4.14. The computation of the RMS lift coefficients was performed after
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the mean lift was subtracted from the signal. In figure 4.14, φT corresponds to the phase-angle
difference between the measured lift force, Fy(t), and the body displacement, y(t); and the vortex
phase (φV ) represents the phase-angle difference between the lift force excluding the added-mass con-
tribution (i.e. Fvor(t) = Fy(t)−Fpot(t)) and y(t). The decomposition of fluid forces was proposed by
Lighthill (1986) and was first used in Govardhan & Williamson (2000) in their investigation into VIV
of cylinders. It has subsequently been used to characterise the different VIV response branches and
the transitions of freely vibrating cylinders. Further details and mathematical relationships between
the force components and phases are provided in §2.3.3. For a non-rotating cylinder (α = 0) under-
going VIV, the predicted Cy,RMS, φT and φV are in excellent agreement with previous literature on
VIV of a cylinder.

Figure 4.14(b) presents a comparison of the total RMS lift coefficient between a non-rotating
cylinder and that rotating at a rate of α = 2.0. The lift response of both curves exhibits similar
trends. The peak force occurs at a reduced velocity value marking the beginning of the upper
amplitude response branch.

Khalak & Williamson (1999) and other VIV studies that have followed have documented that
for a non-rotating cylinder, a sudden jump in φT from 0 to 180◦ can be observed at the transition
between the upper and lower response branches. This is also observed in the present experiment.
The total phase is sustained at 180◦ until the onset of wake-body desynchronization. On increasing
the reduced velocity beyond the desynchronization transition, the total phase drops to φT ≈ 135◦.
When the cylinder undergoes constant rate rotation at α = 2.0, φT changes significantly. It remains
at approximately 0◦ throughout the entire initial, upper and most of lower amplitude response
branches. The total phase only begins to increase at the end of the lower branch.

Figure 4.14(d) presents a comparison of the vortex phase and exemplifies the changes in φV
with the addition of body rotation. Previous work by Govardhan & Williamson (2000) on a non-
rotating cylinder showed that the vortex phase sharply jumps from 0 to approximately 180◦ at the
transition between the initial and upper amplitude response branches. The present results are in
excellent agreement with this. When the cylinder is forced to rotate at α = 2.0, the vortex phase
did not exhibit a jump in response until the transition between the upper and lower branch, where
it abruptly increased to φV ≈ 135◦. This phase is observed over a range of reduced velocity within
the first portion of lower branch, before φV gradually increases to 180◦ for the second half of that
branch.

These differences in phases are significant as previous work has established that phase rela-
tionships are closely related to the amplitude response branches and switches in the wake mode.
Govardhan & Williamson (2000) showed that for a non-rotating cylinder, the jump in φV at the
transition between the initial and upper branch corresponds to a switch in wake mode from 2S to
2P. Perhaps it is unsurprising that the vortex phase is different to that of a non-rotating cylinder as
the 2P mode is not observed in the present study for a cylinder undergoing non-negligible rotation.

4.4.1 Chapter summary

This chapter presented results on the vibration response and wake structure of an elastically-mounted
circular cylinder subjected to forced, constant rotation over a range of rotation rates and Reynolds
numbers. There are several new findings.

Substantial body vibration was found to occur through wake-body synchronisation over a range
of rotation rates, α, and reduced velocities, U∗. Significant cylinder oscillations were observed to
occur for rotation rates up to α ≈ 3.5 over the lock-in range. Interestingly, previous rigidly-mounted
cylinder studies show that rotation rates beyond α = 2 cause suppression of vortex shedding. Overall,
the present study shows that forced constant-rate rotation can cause the cylinder to vibrate at up
to 1.4 times the cylinder diameter, a 76% increase in A∗10 amplitude response over non-rotating
VIV. This maximal response was observed when the rotation rate is close to α = 2.0, and in the
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Figure 4.14: Comparison of lift force and phase variations with reduced velocity (U∗) for a non-rotating
(α = 0) and rotating (α = 2) cylinder. (a) Mean of the highest 10% of normalised amplitude response
peaks (A∗10); (b) the RMS lift coefficient variation after subtracting the mean lift (Cy,RMS); (c) the total
phase (φT ) of the lift signal relative to the displacement signal; and (d) the vortex phase (φV ) relative
to the displacement signal are presented as a function of U∗. The vertical lines are visual aids showing
the approximate boundaries of the different amplitude response branches for the two cases with the ranges
indicated for each α case.

range of reduced velocities associated with the upper amplitude response branch of a non-rotating
cylinder. Across the U∗–α parameter space, where a large amplitude response is observed, the
cylinder frequency response was observed to be synchronised with the natural frequency of the
oscillating system in water. It is the resonance between these two frequencies that enables large
vortex-induced oscillations for non-rotating VIV and also enables large oscillations for VIV of a
rotating cylinder. Increasing α from 0 to 2 both broadens the range of reduced velocity where large
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body oscillations occur and increases the peak amplitude response. As the rotation rate is increased
towards α ≈ 2.0, the normalised frequency response gradually decreases to fall below f∗ = 1, where
the oscillation frequency, f , equals the natural frequency of the structure, fnw. This is correlated
with the amplitude response increasing as the rotation rate is increased towards α ≈ 2.0. An increase
in rotation rate beyond α ≈ 2.0 results a reduced peak amplitude response, noting that the body
oscillation becomes desynchronized with the weakened, less coherent vortex shedding.

A number of different wake modes were observed over the parameter space covered by the present
study. At low to moderate reduced velocities (U∗ < 6.5), the 2S mode dominates at all rotation rates
studied. At low rotation rates (α < 1.25), the 2S and 2P modes characterise the wake at reduced
velocities associated with the upper and lower response branches, respectively. In the desynchronized
region, the 2S mode appears again. At moderate rotation rates (1.25 6 α < 2.25), the P+S mode, a
mode composed of a pair of counter-rotating vortices and a single vortex shed per cycle, was observed
for most of the synchronisation region. Chaotic switching of the wake mode was observed in the
upper branch. Indeed, it was found that regardless the rotation rate, the upper response branch
seemed to maintain a chaotic state. In the desynchronized region, a mode in which small-scale
vortices coalesce and shed asymmetrically, C(AS), was observed at rotation rates above α ≈ 1.25.
Beyond rotation rates α ≈ 2.25, C(AS) dominates in the reduced velocity range associated with the
vibration region of a non-rotating cylinder (U∗ ≈ 4 − 10). On further increasing the rotation rate,
shed vortices increasingly deviate from the streamwise centreline of the cylinder. This deviation
with rotation rate was observed for multiple wake modes, as it is expected from the Magnus effect.
In addition, the distance between vortices of adjacent oscillation cycles increases, and the size and
peak vorticity of the vortices shed decreases, in line with non-VIV studies.

Of further interest is the significantly lower amplitude response observed experimentally by Seyed-
Aghazadeh & Modarres-Sadeghi (2015) relative to that found in this case. Given the substantial
Reynolds numbers difference between these studies, this could simply be a low-Re effect but it
would be useful to have independent verification of either study. In a sense, it is surprising that
rotation significantly enhances vibration amplitudes, given that it tends to make the wake narrower
and asymmetric, so a deeper understanding of the near-wake dynamics and the effects on VIV
would be useful. Also of interest is the still significant amplitude response observed at α = 2.5
and 3, well beyond the rotation rate for suppressing shedding from a fixed rotating cylinder, that
warrants further investigation. The present study showed that a number of response trends and wake
structures previously observed at very low Reynolds numbers, namely the simulation by Bourguet &
Lo Jacono (2014), continue to exist at moderate Reynolds numbers Re > 1000, although, of course,
there are also notable differences.
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Chapter 5

Flow-induced Vibration of a Rotary
Oscillating Cylinder

5.1 Introduction

In this chapter, the results of an elastically-mounted cylinder undergoing VIV and sinusoidally-driven
rotary oscillations about its spanwise axis are presented and discussed. The experimental details
relevant to the chapter’s results are reviewed in §5.2. Work done to validate the sinusoidal rotary
oscillation motion profile is included in Appendix A. The definition and phenomenon of ‘lock-on’
is presented and discussed in §5.3 prior to an overview of the cylinder’s lock-on regions, vibration
amplitude responses, fluid forces and phase responses being presented in §5.4. The impact of varying
the forcing f∗roton the cylinder’s response is examined in more depth in §5.5. Results on the effects
of varying the forcing velocity ratio, Am, follow. At selected f∗rot, the evolution of the cylinder’s
response with varying Am is examined in §5.6. The wake structure of the cylinder is characterised
in §5.7. Section 5.8 discusses the effectiveness of rotary oscillation over a range of reduced velocities,
U∗. The key findings are summarised in §5.9.

5.2 Experimental details

The experiment was conducted in the FLAIR water channel. A rotation rig was used to control the
rotary motion of the cylinder and an air bearing system was used to provide low friction cross-flow
oscillations. Further details on the experimental apparatus were discussed in §3.

Critical characteristics of the oscillating system were measured using free decay tests conducted
before and after experiments. For the experiment on an elastically-mounted cylinder undergoing
sinusoidally-driven rotary oscillations, the cylinder model used has a diameter of D = 30 mm and an
immersed length of lms = 614 mm. The total mass of all oscillating components is mosc = 2.4481 kg
and the mass ratio is m∗ = 5.641. From free decay tests, the natural frequency of the oscillating
system in air is fna = 0.468 Hz and in water is fnw = 0.429 Hz. Structural stiffness is provided by
one pair of springs, these have an equivalent stiffness of k = 0.0212 N/mm and the oscillating system
has a damping ratio of ζ = 0.001515.

The primary experiment was done at reduced velocities U∗ = 5.5 and 8.0; they belong to the up-
per and lower amplitude response branches of a cylinder undergoing non-rotating VIV, respectively.
The two examined U∗ corresponds to Reynolds numbers Re = 1621 and 2359. At each tested U∗,
the cylinder was prescribed a forcing velocity ratio in range of (0 . Am . 2) and a forcing frequency
ratio in range of (0 . f∗rot . 2). The forcing velocity ratio is held constant as f∗rot is varied in the
increasing direction.
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Secondary experiments were done with extended parameter ranges in limited cases. To study
the presence of the lock-on regions at higher values of forcing velocity ratios (0 . Am . 3.5);
two tests were conducted at f∗rot = 1.0 and 3.0 and at U∗ = 5.5 The impact of rotary forcing
on the cylinder’s vibration response over a range of reduced velocities was also examined. In this
experiment, the reduced velocity is in range of U∗ = 3 − 20, equivalent to the Reynolds numbers
range of (885 . Re . 5899).

5.3 The phenomenon of ‘rotary-lock-on’

The phenomenon of lock-on is fundamental to understanding rotary oscillation’s ability to suppress
vortex shedding. Lock-on, explained in greater detail in §2, occurs when the cylinder’s vortex
shedding frequency, fsh, follows fosc. Tokumaru & Dimotakis (1991); Cheng et al. (2001); Cheng
(2001); Choi et al. (2002) among others have reported favourable results in drag as lock-on occurs
for a rigidly-mounted cylinder. However, VIV researchers studying elastically-mounted bodies are
more interested in the cross-flow lift as it affects the oscillation amplitude of the body, which can be
more destructive in engineering applications.

Du & Sun (2015) reported observing lock-on in their low Reynolds number (Re = 350) simulation
of an elastically-mounted cylinder undergoing rotary oscillations. In their spectral analysis of the
cylinder displacement and forces they revealed that under the traditional definition of lock-on, the
natural frequency of the oscillating system (fn) may persist. The inability of rotary forcing to
suppress oscillation at fn results in persistent larger amplitude oscillations at some values of f∗rot.
While it is not a part of the lock-on definition, Du & Sun (2015) showed that the body oscillation
frequency (f) may continue to follow the frequency response of a non-rotating cylinder undergoing
VIV, fVIV, and not fosc during lock-on.

A system is considered locked-on given that the dominant lift frequency peak equals the combined
fsh − fosc frequency peak. Under this condition, even if the combined fsh − fosc peak is marginally
higher in power than the fn peak, the system is still considered to be under lock-on. While the tra-
ditional lock-on definition is unambiguous when identifying the changes to the lift force frequencies,
the impact of lock-on of the vibration response is unclear, particularly near the lock-on boundaries
where the combined fsh, fosc and fn peaks are comparable in power. Du & Sun (2015) showed that
the body is only locked on to the rotary forcing (i.e. f = fosc) when the shedding in the wake is
synchronised with the rotary forcing motion (i.e. fsh = fosc).

In light of this the present thesis uses a different lock-on definition. To satisfy the traditional
condition of lock-on and to clearly show its influence on the vibration response of the body, the
vortex shedding frequency, fsh, is replaced with the oscillation frequency of the body, f . To avoid
confusion, this is referred to as ‘rotary-lock-on’ and is defined as

f ∼= fosc . (5.1)

As the locking between f and fosc occurs as a subset of the fsh locking onto fosc, rotary-lock-
on can satisfy the lock-on condition while showing clearer links between the rotary forcing and
the vibration response of the cylinder. The definition is also suitable for practical applications as it
provides engineers a direct relationship between the rotary and translational motions of the cylinder.

Rotary-lock-on is observed throughout all studied Am values in the present study. The PSD
of the displacement signal is presented in fig. 5.1 as a function of normalised frequency response
(f∗). From §4, f∗ is defined as f normalised by fnw. Four different cases of f∗rot are presented at
a fixed reduced velocity of U∗ = 5.5 and velocity ratio Am = 0.9. In fig. 5.1, the vertical dashed
lines represent fVIV and the red dot-dash line represents the forcing f∗rot. It is evident that at a low
f∗rot, rotary-lock-on does not occur and the oscillation frequency, f , of the cylinder (labelled in each
subplot of fig. 5.1 and fig. 5.2) follows a value close to fVIV and fnw(see fig. 5.1(a)).
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Figure 5.1: The power spectral density (PSD) of the displacement signal of four different cases of forcing
frequency ratio (f∗rot) are presented at a fixed reduced velocity belonging to the upper amplitude response
branch of a non-rotating cylinder undergoing VIV (U∗ = 5.5) and forcing velocity ratio Am = 0.9. The
vertical dashed lines represent the non-rotating VIV oscillation frequency (fVIV) and the red dot-dash line
represents f∗rot.

As f∗rot is increased, the body undergoes rotary-lock-on, f follows fosc as the dominant frequency
peak overlaps the red dot-dash line in fig. 5.1(b). Further increases in f∗rot result in the body no
longer locking on to the forcing and the cylinder’s primary response returns to fnw and is close to the
non-rotating cylinder response (as illustrated by the vertical dashed line in fig. 5.1(c)). Increasing f∗rot
further results in the cylinder undergoing rotary-lock-on for the second time as shown in fig. 5.1(d)).
This is known as ‘tertiary-lock-on’ and has been observed in previous rigid cylinder studies (see Choi
et al. (2002); Thiria et al. (2006)) In rigid cylinder studies, tertiary-lock-on occurs when the vortex
shedding frequency locks with the sub-harmonic frequency at one-third the forcing frequency (i.e.
1
3fosc). Du & Sun (2015) appear to have not observed tertiary-lock-on. Here the tertiary-lock-on is
observed for some ranges of the forcing parameters. The tertiary-lock-on in the present study refers
to the body oscillation frequency locking on to one-third of the forcing frequency 1

3fosc given the
above definition of rotary-lock-on.

From fig. 5.1(a), it is clear that f is synchronised with fnw. However, this is not the case at
U∗ = 8.0, in the upper branch. The PSD of the displacement signals of four f∗rot cases are presented
in fig. 5.2 at the same velocity ratio Am = 0.9 as fig. 5.1. As expected with an increase in U∗ to
the lower branch, fig. 5.2(a) and fig. 5.2(c) clearly show that fVIV increased and shifted further away
from fnw. When the cylinder is not under rotary-lock-on, f follows fVIV. The discrepancies between
f following fnw in the upper branch and f following fVIV in the lower branch when the cylinder is not
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Figure 5.2: The power spectral density (PSD) of the displacement signal of four different cases of forcing
frequency ratio (f∗rot) are presented at a fixed reduced velocity belonging to the lower amplitude response
branch of a non-rotating cylinder undergoing VIV (U∗ = 8.0) and forcing velocity ratio Am = 0.9. The
vertical dashed lines represent the non-rotating VIV oscillation frequency (fVIV) and the red dot-dash line
represents f∗rot.

under rotary-lock-on suggests that the oscillation frequency response could switch between following
fnw or fVIV. Furthermore, it is probable that this switching behaviour is influenced by the proximity
of fnw and fVIV values. Rotary-lock-on persist in the lower branch as f follows f∗rot, as illustrated in
fig. 5.2(b). From fig. 5.2(d) it is evident that tertiary-lock-on also exists in the lower branch. Based
on these frequency observations, boundaries delimiting rotary-lock-on and tertiary-lock-on zones are
defined, and the boundary maps of these regions for the two U∗ cases are presented in fig. 5.3(a)
and fig. 5.3(b).

Figure 5.3(a) presents the lock-on boundary map in the forcing frequency ratio and velocity ratio
domain (f∗rot, Am) at a U∗ = 5.5, which is close to the peak of the upper amplitude response branch
for a non-rotating cylinder. From a small range of forcing frequency ratios close to f∗rot ≈ 1 at low
Am, the rotary-lock-on region expands to wider ranges of f∗rot as Am is increased. The increases in
the width of the rotary-lock-on region is skewed towards higher f∗rot and upper-f∗rot boundary rapidly
increases to higher f∗rot when the velocity ratio is Am & 1.

These trends agree well with observations reported by Choi et al. (2002) for a rigid cylinder
undergoing rotary oscillations. The tertiary-lock-on region resides near f∗rot ≈ 3 where the one-third
sub-harmonic is 1

3f
∗
rot ≈ f∗ ≈ 1. It initially increases in width as the velocity ratio is increased to

Am ≈ 0.5. Further increases in Am result in a rapid reduction in the width of the tertiary-lock-on
region until it disappears when Am > 1.5. Interestingly, at low velocity ratios (Am . 0.7), the width

100



5.3. The phenomenon of ‘rotary-lock-on’

(a) (b)

f∗rot f∗rot

f∗rot,VIV f∗rot,VIV

A
m

A
m

Rotary
Lock On

Tertiary
Lock On

Rotary
Lock On

Tertiary
Lock On

U∗ = 5.5 U∗ = 8.0

Figure 5.3: The approximate boundaries of the rotary-lock-on and tertiary-lock-on regions are presented
as a function of the forcing velocity ratio (Am) and forcing frequency ratio (primary x-axis: f∗rot = fosc/fnw,
secondary x-axis: f∗rot,VIV = fosc/fVIV). (a) presents the reduced velocity case that corresponds to the upper
amplitude response branch (U∗ = 5.5) and (b) presents the reduced velocity case that corresponds to the
lower amplitude response branch (U∗ = 8.0).

of the tertiary-lock-on region is larger than that of the rotary-lock-on.

At U∗ = 8.0, which is close to the centre of the lower amplitude response branch for a non-
rotating cylinder, the boundary map in fig. 5.3(b) exhibits similarities to the upper branch. The
rotary-lock-on region starts near f∗rot ≈ 1 and continues to be fan-shaped but is skewed towards
higher f∗rot. However, the evolution of the upper f∗rot boundary is different to the upper branch case.
The upper boundary increases to higher frequency ratio values rapidly between 0.1 ≤ Am ≤ 0.3. For
Am > 0.3, the widening of the rotary-lock-on region is gradual compared to the upper branch case.
The tertiary-lock-on region no longer resembles a teardrop. Between 0.3 ≤ Am ≤ 0.5, the region
extends to higher f∗rot beyond the tested range of the present study.

It is plausible that the interpretation of the boundaries could change if, instead of fnw, f∗rot were
normalised by fVIV at the same reduced velocity. This new forcing frequency ratio, f∗rot,VIV, is defined
as

f∗rot,VIV =
fosc
fVIV

, (5.2)

where fosc is the forcing frequency and fVIV is the frequency response of a cylinder undergoing non-
rotating VIV. This new parameter is used as a secondary x-axis in the top of fig. 5.3. At U∗ = 5.5,
there are no major changes to the rotary-lock-on region when fosc is normalised by fVIV. However,
the approximate centre of the tertiary-lock-on region is located closer to f∗rot,VIV ≈ 3 than f∗rot ≈ 3.
In the upper branch, changes are more obvious (see fig. 5.3(b)). At a low velocity ratio of Am = 0.1,
the rotary-lock-on and tertiary-lock-on regions can be observed near frequency ratios f∗rot ≈ 1.1 and
f∗rot ≈ 3.3, respectively. These correspond to the ratios f∗rot,VIV ≈ 1 and f∗rot,VIV ≈ 3.

These observations suggest that using fVIV rather than fn results in a stronger correlation be-
tween lock-on boundaries and the frequency response of a cylinder undergoing non-rotating VIV.
The present study was conducted with forcing parameters selected based on the natural frequency
of the structure in water, fnw. To avoid confusion, subsequent discussions will be based on the
forcing f∗rot normalised by fnw unless specified. For reference, the f∗rot,VIV based on the non-rotating
VIV frequency response fVIV will be presented as a secondary axis where it is relevant. It is recom-
mended that the selection forcing parameters in future experiments be based on the non-rotating
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Figure 5.4: The contours of four key response quantities presented as a function of the forcing velocity
ratio (Am) and forcing frequency ratio (primary x-axis: f∗rot = fosc/fnw, secondary x-axis: f∗rot,VIV =
fosc/fVIV) at a reduced velocity belonging to the upper amplitude response branch of a non-rotating cylinder
undergoing VIV (U∗ = 5.5). (a) contour of the mean of the highest 10% of normalised amplitude peaks
(A∗10), (b) contour of the RMS values of the total lift coefficient (Cy,RMS), (c) contour of the total phase
(φT ) and (d) contour of the vortex phase (φV ). The blue outline in each figure presents the approximate
boundaries of the rotary-lock-on and tertiary-lock-on regions.

VIV frequency response fVIV.

5.4 Amplitude responses, fluid forces and phase responses

Due to the extensive data set collected with the independent variables being f∗rot, Am and U∗ this
section presents their effect on the cylinder’s amplitude response, theoretical forces and phases using
contour plots based on the lock-on boundary maps in fig. 5.3(a) and fig. 5.3(b). By overlaying the
contours with the approximate boundaries delimiting the rotary-lock-on and tertiary-lock-on regions,
it is possible to observe how trends and variations in each response quantity correlate with these
regions.
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Figure 5.4(a) presents a contour of the mean of the highest 10% of normalised amplitude peaks,
A∗10, as a function of f∗rot and Am at U∗ = 5.5, i.e. the upper amplitude response branch of a
non-rotating cylinder. A∗10 of the non-rotating VIV case at the U∗ is A∗10 ≈ 0.8. It also shows
interesting behaviour in how the A∗10 varies with changes in forcing parameters. Clearly, a low A∗10

region coincides with the rotary-lock-on region, which is expected. However, as rotary-lock-on occurs
the system can no longer sustain lock-in, the primary mechanism behind large amplitude oscillations
in non-rotating VIV. In the rotary-lock-on region the body oscillation frequency, f , synchronises
with fosc and deviates from frequencies at which large body oscillations occur for a non-rotating
elastically-mounted body (fnw and fVIV).

Within the rotary-lock-on region there is a small range of forcing frequency ratios (f∗rot ≈ 1)
where large oscillation amplitudes remain. The cylinder’s A∗10 returns to values close to or above
the amplitude response in the non-rotating VIV case as a result of its being forced to oscillate at
frequencies close to fVIV and fnw (i.e. fosc ≈ fVIV ≈ fnw).

Within the boundaries of the tertiary-lock-on region, A∗10 is higher than in its surrounding regions
and is comparable to that of a non-rotating cylinder. This can be explained by the one-third
subharmonic of fosc being in close to fVIV and fnw

Outside the rotary-lock-on and tertiary-lock-on regions, large amplitude responses are observed.
At f∗rot below the lower boundary of the rotary-lock-on region A∗10 is comparable at low ranges of
velocity ratios (Am . 1), as Am is increased above Am ≈ 1, A∗10 increases with Am. The peak A∗10

amplitude response in this U∗ case is A∗10 ≈ 1.2. At f∗rot above the upper limits of the rotary-lock-on
region and excluding the tertiary-lock-on region, A∗10 generally decreases with increasing Am. In the
same region and at low velocity ratios (Am . 0.5), A∗10 is similar to the non-rotating value.

Figure 5.4(b) presents a contour plot of the RMS values of the total lift coefficient, Cy,RMS,
as a function of f∗rot and Am at U∗ = 5.5, i.e. in the upper branch of a non-rotating cylinder.
Within the rotary-lock-on region, when the frequency ratio is f∗rot & 1, Cy,RMS is comparable to
non-rotating cylinder values. However, below a frequency ratio of f∗rot ≈ 1 Cy,RMS is significantly
higher than that of a non-rotating cylinder. The global peak Cy,RMS occurs near the lower bounds
of the rotary-lock-on region at velocity ratios Am & 1.9.

Within the rotary-lock-on region, a band of low Cy,RMS exist where the forcing frequency is close
to the non-rotating VIV frequency response, and the natural frequency (i.e. fosc ≈ fVIV ≈ fnw). At
f∗rot immediately below this low-lift band there exists a band of high-Cy,RMS that coincides with the
location of the high-amplitude (A∗10) band seen in fig. 5.4(a). It is unsurprising to observe this as
large total lift forces (Cy,RMS) naturally results in larger motion responses. However, it is unexpected
to observe a global peak value in Cy,RMS and large Cy,RMS values near the lower boundary of the
rotary-lock-on region without a corresponding region of high A∗10. This is explored in more detail in
§5.5.

In the tertiary-lock-on region, an area of higher Cy,RMS occurs when f∗rot . 3. This high Cy,RMS

region coincides with a region of higher A∗10. It is also evident that within the rotary-lock-on and
tertiary-lock-on regions the cylinder exhibits larger Cy,RMS between their lower boundaries and
forcing frequencies f∗rot ≈ 1 (rotary-lock-on) and f∗rot ≈ 3 (tertiary-lock-on).

Outside the rotary-lock-on and tertiary-lock-on regions, large Cy,RMS is observed at f∗rot below
the lower boundary of the rotary-lock-on region and their values increase with Am. At f∗rot above
the upper boundary of the rotary-lock-on region and excluding the tertiary-lock-on region, Cy,RMS

is comparable to, or below, the values for a non-rotating cylinder. As f∗rot and Am ratios increase,
Cy,RMS decreases.

Figure 5.4(c) presents a contour of the total phase, φT , defined as the phase angle difference
between the total lift force, Cy, and the cylinder displacement, y, as a function of f∗rot and Am at
U∗ = 5.5, belonging to the upper amplitude response branch of a non-rotating cylinder. In the
same format, fig. 5.4(d) presents vortex phase, φV , defined as the phase angle difference between the
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vortex force, Cv (total lift force, Cy, excluding the effects of added mass) and y. The total phase
of the cylinder within the rotary-lock-on region is split into two areas. Cy remains in-phase with
the motion as φT ≈ 0◦ up to frequency ratios slightly above f∗rot = 1. When the frequency ratio is
f∗rot & 1, Cy and the cylinder’s motion move out of phase and the total phase abruptly jumps from
φT ≈ 0◦ to φT ≈ 180◦. Similar behaviour is observed in φV in fig. 5.4(d). However, the jump from in
to out-of-phase occurred at a f∗rot slightly below f∗rot = 1. As a result of Cy and Cv forces become out
of phase with the motion of the cylinder both A∗10 and Cy,RMS decreases. This behaviour is similar
to that observed in non-rotating VIV studies (see Govardhan & Williamson (2000); Zhao (2012)),
particularly in the transition between the upper and lower amplitude response branches where the
reductions in amplitude response is accompanied by Cy and Cv being out of phase with the motion
of the cylinder.

In the rotary-lock-on region, there is a small band of f∗rot values where φV jumped to φV ≈ 180◦

while the total phase remained at φT ≈ 0◦. In this narrow band of f∗rot there is a large range of total
lift values (Cy,RMS). These vary from high to low values as f∗rot is increased. This occurs while the A∗10

remains relatively large. Such behaviour is similar to what is seen in the upper amplitude response
branch from non-rotating VIV cases. The present results suggest similar phase behaviour exist in
the tertiary-lock-on region. However, the band of frequency ratios where φV jumped to φV ≈ 180◦

and the total phase remained at φT ≈ 0◦ has broadened. In this range of f∗rot the transition from
a higher to lower total lift and reduced amplitude response is more subtle. At f∗rot below the lower
boundaries of the rotary-lock-on region, φT is slightly higher in value (φT ≈ 45◦) than that of a
non-rotating cylinder (φT ≈ 0◦). In the same region, at low velocity ratios (Am . 0.5) φV , similar
to a non-rotating cylinder, remained at φV ≈ 180◦. As velocity ratio is increased (Am & 0.5), the
vortex phase decreases to φV ≈ 90◦. At f∗rot above the upper boundary of the rotary-lock-on region
and excluding the tertiary-lock-on region, Cy remains mostly in phase with motion while Cv remains
mostly out of phase.

Figure 5.5(a) presents a contour of the mean of the highest 10% of normalised amplitude peaks,
A∗10, as a function of f∗rot and Am at U∗ = 8.0 belonging to the lower amplitude response branch
of a non-rotating cylinder. In addition to the changes in the boundaries of the rotary-lock-on and
tertiary-lock-on regions discussed in §5.3, there are changes to the cylinder’s amplitude response
when the reduced velocity is increased.

In the rotary-lock-on region, large amplitude reductions continue to exist where the frequency
ratio is f∗rot,VIV & 1 (or f∗rot & 1.1). The high-amplitude band previously observed in the upper
branch (U∗ = 5.5) widens to lower frequency ratio values (f∗rot,VIV . 1) that are close to the lower
boundary of the rotary-lock-on region in the lower branch. The global peak for U∗ = 8.0 occurs
in this high-amplitude band at f∗rot ≈ 1 and Am = 2. From the two U∗ cases, it is observed that
within this high-amplitude band, the A∗10 amplitude response increases with Am. (It is possible A∗10

will increase to higher values with further increases in Am.) Near the lower boundary a narrow
zone of low A∗10 amplitude response is observed. Similar behaviour is observed in the upper branch
where A∗10 decreases abruptly as the cylinder becomes rotary-locked-on. As the forcing frequency is
increased A∗10 also increases up to f∗rot,VIV ≈ 1. Comparison of the two U∗ cases shows that the lower
boundary of the rotary-lock-on region shifts to higher f∗rot and that the low-amplitude zone below
the high-amplitude band widens as U∗ is decreased. An immediate increase in A∗10 above that of a
non-rotating cylinder is observed at the lower f∗rot boundary of the tertiary-lock-on region.

As f∗rot is increased within the tertiary-lock-on region the A∗10 amplitude response decreased. At
frequency ratios below the lower rotary-lock-on region boundary A∗10 is close to the non-rotating
value at low Am. As Am is increased above Am ≈ 1.3, there is a gradual increase in A∗10. Between
the upper f∗rot boundary of the rotary-lock-on region and the lower boundary of the tertiary-lock-on
region there exists an area where A∗10 is comparable to that of a non-rotating cylinder at Am . 1.3.
However, when Am & 1.3 there is a decrease in A∗10 that is more abrupt than those observed in the
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Figure 5.5: The contours of four key response quantities presented as a function of the forcing velocity ratio
(Am) and forcing frequency ratio (primary x-axis: f∗rot = fosc/fnw, secondary x-axis: f∗rot,VIV = fosc/fVIV)
at a reduced velocity belonging to the lower amplitude response branch of a non-rotating cylinder undergoing
VIV (U∗ = 8.0). Refer to fig. 5.4 caption for detailed description of the figure.

upper branch case.

The total lift (Cy,RMS) of the cylinder in the lower branch (U∗ = 8.0) exhibits similar trends to
what was seen in the upper branch (U∗ = 5.5). Figure 5.5(b) shows Cy,RMS as a function of f∗rot and
Am at U∗ = 8.0. In the rotary-lock-on region Cy,RMS is higher near the lower f∗rot boundary. As f∗rot
increases past f∗rot ≈ 1.1, there exist a band of low Cy,RMS, not unlike that observed in the upper
branch U∗ = 5.5. At frequency ratios above f∗rot ≈ 1.1, Cy,RMS is lower than what is observed near
the lower f∗rot boundary of the rotary-lock-on region but remains at values above the non-rotating
case. Trends in the tertiary-lock-on region and outside the rotary-lock-on region are similar to those
previously described for the upper branch (U∗ = 5.5).

Figure 5.5(c) presents a contour of φT as a function of forcing frequency ratios and velocity ratios
at U∗ = 8.0. Fig. 5.5(d) presents φV of the cylinder. From these figures, it is clear that the tends
in φT and φV phases within the rotary-lock-on and tertiary-lock-on regions are the same as those in
the upper amplitude response branch (U∗ = 5.5).
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In the rotary-lock-on region φT jumped from φT ≈ 0◦ to φT ≈ 180◦ at a frequency ratio of
f∗rot ≈ 1.1. The same jump in phase angle occurred at a slightly lower frequency ratio of f∗rot ≈ 1
for φV . The tendency for φT and φV to jump within the rotary-lock-on region are similar to that
seen in the upper branch (U∗ = 5.5). This suggests that the mean φT magnitude and its transitions
within the rotary-lock-on region are largely independent of the U∗ of the cylinder, though further
work is needed to make this suggestion definitive.

In the tertiary-lock-on region φT retains similar trends to that seen in the upper branch. The
mean vortex phase, however, remains out of phase and do not jump from φV ≈ 0◦ to φV ≈ 180◦.

Outside the rotary-lock-on and tertiary-lock-on regions, the phases also exhibit differences to
the upper branch case. Below the lower f∗rot boundary of the rotary-lock-on region and at velocity
ratios Am . 0.3 Cy remains out of phase with the motion (φT & 160◦). As Cy of a non-rotating
cylinder undergoing VIV is also out of phase with the motion of the cylinder, it is unsurprising that
Cy remains out of phase with the motion. As the velocity ratio and its influence on the cylinder’s
response both increased, Cy becomes more in phase with the motion and the mean total phase
decreases to φT ≈ 90◦. In the same region, φV remained at φV ≈ 180◦ up to a velocity ratio of
Am ≈ 0.7, the φV decreases shortly thereafter.

Above the upper f∗rot boundary of the rotary-lock-on region and outside the tertiary-lock-on
region, the total force, Cy, remains out of phase up to a velocity ratio of Am ≈ 0.8. With further
increases in velocity ratio above Am ≈ 0.8 the mean total phase decreases from φT ≈ 180◦ to
φT ≈ 45◦. In the same parameter space region, φV of the cylinder remained close to φV ≈ 180◦ and
only decreased to φV ≈ 90◦ after the velocity ratio is increased pass Am ≈ 1.3.

The results presented these contours plots provides an overview of the changes in the response
variables with reference to the rotary-lock-on and tertiary-lock-on regions. To better understand the
changes in each response quantity with the forcing parameters an in-depth investigation into the
relationships between different responses is needed, this is presented in the following sections. In
§5.5, the response of the cylinder with the cylinder over a range of f∗rot at selected fixed Am cases
will be presented in detail. Section 5.6 will present the response of the cylinder with the cylinder
over a large range of Am at selected fixed f∗rot cases.

5.5 Response at fixed forcing velocity ratios

Here, the responses of an elastically-mounted cylinder undergoing sinusoidally-driven rotary oscil-
lations is examined in greater detail at selected velocity ratio, Am, cases. These cases are located
in the Am-f∗rot domain, they are illustrated in fig. 5.6(a) for the upper branch (U∗ = 5.5) and in
fig. 5.6(b) for the lower branch (U∗ = 8.0) cases. In fig. 5.6(a) and (b), the red lines represent fixed
Am cases, the arrow head indicates the direction in which f∗rot were varied. Red circles in fig. 5.6(a)
and (b) represent points in the Am-f∗rot domain where the time history, PSD and of the cylinder’s
response characteristics were examined.

The response of the cylinder over the range of forcing frequency ratios tested (f∗rot = 0− 4.5) at
Am = 0.5 and U∗ = 5.5 is presented in fig. 5.7. Figure 5.7(a) presents the mean of the highest 10%
of normalised amplitude peaks (A∗10) as a function of f∗rot. The black dashed line shows the response
of the non-rotating case. Figure 5.7(b) presents a PSD contour of the cylinder’s displacement (y) as
a function of normalised frequency response (f∗) and f∗rot. The power density is normalised by the
peak power at each f∗rot value. The blue dotted line shows f∗ is equal to f∗rot. The blue dot-dashed
lined illustrates the one-third subharmonic of the forcing frequency ratio f∗ = f∗rot/3. Figure 5.7(c)
and fig. 5.7(d) presents the force coefficients and phases as a function of f∗rot.

In both Figure 5.7(c) and fig. 5.7(d), the black markers represent the RMS total force coefficient,
Cy,RMS, and mean total phase, φT . Similarly, in in both figures, the blue markers represent Cv,RMS

and φV . The black dotted line and blue dot-dashed line represent the total and vortex component
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Figure 5.6: Cases of the fixed forcing velocity ratio (Am) and fixed forcing frequency ratio (f∗rot) where
the response of the cylinder is examined in more detail is presented in form of a visual map in the Am−f∗rot
parameter space. (a) presents the cases in the upper branch at reduced velocity of U∗ = 5.5 and (b) presents
the cases in the lower branch at a reduced velocity of U∗ = 8.0. Red lines represent the locations of the fixed
parameter cases and the arrow head indicates the direction in which the forcing parameter was increased.
Red circle markers indicate points in the Am − f∗rot domain where the time history, power spectra density
(PSD) and distribution of the cylinder’s response quantities will be examined

values of a non-rotating cylinder, respectively. In fig. 5.7, the rotary-lock-on and tertiary-lock-on
regions are highlighted by vertical red lines. Figures presenting subsequent fixed Am cases follow
the same format.

Figure 5.7(a) shows that as f∗rot is increased towards the lower f∗rot boundary of the rotary-lock-on
region the amplitude response increases from A∗10 ≈ 0.8 for the non-rotating cylinder to a local peak
of A∗10 ≈ 0.95. The local peak A∗10 occurs as the cylinder’s oscillation frequency, f , passes fnw. There
is a corresponding peak in RMS total force coefficient, Cy,RMS, and an abrupt drop in RMS vortex
force coefficient, Cv,RMS. As the A∗10 amplitude response approaches the local peak, φT increased
marginally to φT ≈ 60◦ while φV decreased from φV ≈ 180◦ to 0◦. Fig. 5.7, shows that the increase
in A∗10 in this range of f∗rot is the result of both the total (φT ) and vortex (φV ) phases being in phase
with the motion of the cylinder, resulting in large total lift forces, Cy.

As the cylinder enters the rotary-lock-on region, A∗10 and Cy,RMS decrease sharply and the total
φT and vortex φV phases increased to approximately 180◦, indicating that the fluid forces are out
of phase with the motion of the cylinder. Increasing f∗rotresults in the cylinder leaving the rotary-
lock-on region and A∗10 and Cy,RMS increase to values similar to those before the cylinder underwent
rotary-lock-on.

The vortex force component, Cv, becomes out of phase as vortex phase returned to φV ≈ 180◦

and the total phase increased to φT ≈ 120◦. At most of the f∗rot between the upper boundary of
the rotary-lock-on region and the lower boundary of the tertiary-lock-on region A∗10 remains close to
the non-rotating value and φT gradually decreases towards φT ≈ 0◦ with f∗rot. At the onset of the
tertiary-lock-on region A∗10 decreased, the normalised frequency response, f∗, gradually decreased
pass fVIV, and φV decreased from φV ≈ 180◦ to 0◦.

As the cylinder initially undergoes tertiary-lock-on, there is a sharp increase in A∗10 and Cy,RMS.
Both these quantities reach a secondary peak as the f∗ of the cylinder approaches fVIV, A∗10 and
Cy,RMS decreased thereafter. The total φT and vortex φV phases remain close to 0◦ during the initial
increase in amplitude response in the tertiary-lock-on region. φV jumps to 180◦ as f∗ passes fVIV
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Figure 5.7: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 0.5 and at
a reduced velocity of U∗ = 5.5. The rotary-lock-on and tertiary-lock-on regions are highlighted by vertical
red lines. (a) presents the mean of the highest 10% of normalised amplitude peaks (A∗10). The black
dashed line represents the non-rotating VIV value. (b) presents a power spectra density (PSD) contour of
the cylinder’s displacement (y). The PSD is normalised by the peak power at each f∗rot value. The blue
dotted line illustrates the normalised frequency response, f∗, being equal to f∗rot (f∗ = f∗rot). The blue
dot-dashed lined illustrates the one-third subharmonic of f∗rot (f∗ = f∗rot/3). (c) and (d) presents the RMS
force coefficients (Cy,RMS, Cv,RMS) and mean phases (φT , φV ), respectively. In both (c) and (d), the black
markers represent the total component and the blue markers represent the vortex component. The black
dotted line and blue dot-dashed line represent the total and vortex component values of a non-rotating
cylinder, respectively.
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(f ≈ fVIV) while φT remains near 0◦. These response trends associated with the rotary-lock-on and
tertiary-lock-on regions were also observed in other fixed Am cases.

From fig. 5.7, there are a number of interesting features. Principally, the rotary-lock-on and
tertiary-lock-on is based on changes in the shedding frequency (fsh), followed by the oscillating
frequency (f) following the forcing frequency (fosc) (or its sub-harmonic in the case of tertiary-lock-
on). From the amplitude and frequency response plots in fig. 5.7(a) and (b), it is evident that these
changes occur but the behavioural trends there are noticeable differences in the forces and phases
between rotary-lock-on and tertiary-lock-on regions. A possible explanation for these differences
could lie in the wake structure, this will be examined in §5.7.

To gain a clearer understanding on the cylinder’s behaviour, the time history and distribution
of its response quantities at several points of interest will be presented. Figure 5.8(a), (b) and (c)
presents a sample of the time history of the cylinder’s normalised displacement y/D(t), forces (Cy(t),
Cv(t)) and phases (φT (t), φV (t)). Figure 5.8(d) presents a distribution of all the amplitude peak
values (A∗) of the entire recorded data sample. The count of each amplitude peak value is normalised
by the highest count value. Figure 5.8(e) presents a PSD of the cylinder’s displacement as a function
of the normalised frequency response. The power density is normalised by the peak power and the
vertical dashed line represents the fosc. Figure 5.8(f) presents a distribution of all the total force,Cy
(black), and vortex force, Cv (blue), coefficient values of the entire recorded data sample. Similar
to fig. 5.8(d), the count of each coefficient value is normalised by the highest respective count value.
Figure 5.8(g) presents a distribution of all the total phase ,φT (black), and vortex phase ,φV (blue),
angle values of the entire recorded data sample. The count of each phase angle value is normalised
by the highest respective count value. Later figures presenting the time history and the distribution
of response quantities will follow this format.

Fig. 5.8(a) exhibits frequency modulation similar to those previously documented in Cheng et al.
(2001); Choi et al. (2002) on the rotary oscillation of rigidly-mounted cylinders. Here, the amplitude
of the cylinder switches between a higher state, where the normalised amplitude response (A∗) of the
cylinder is close to 0.8D, and a lower state, where the A∗ is approximately 0.65D and a transition
region where the value of A∗ is between the higher and lower state.

The distribution of the amplitude peaks is shown in fig. 5.8(d) and shows clearly the three
distinct amplitude states. Examining the displacement time history, it is can be seen that the
switching between these amplitude states occurs at a lower frequency than the oscillation frequency
of the cylinder, with the switching occurring every one or two oscillation periods.

The PSD of the cylinder’s displacement presented in fig. 5.8(e) shows two distinct peaks at
frequency responses below f∗ < 1.5. The frequency with the highest power (the frequency response
of a non-rotating cylinder) is at f∗ ≈ 1.05, and the frequency with the second highest power is close
to the forcing frequency ratio at f∗ ≡ f∗rot ≈ 0.65. The rotary motion’s influence persists even for
an elastically-mounted cylinder, as evident in how it alters the cylinders cross-flow amplitude and
frequency responses. The inconsistent switching behaviour is attributed by the frequency f∗ ≈ f∗rot ≈
0.65 not being a subharmonic of the frequency response of a non-rotating cylinder (f∗ ≈ 1.05). At a
forcing frequency ratio of f∗rot = 0.5 the frequency modulation and amplitude switched consistently at
twice the period of the oscillation frequency of the cylinder. As a result of the frequency modulation
phenomenon, the time history of the fluid forces presented in fig. 5.8(b) exhibit switching and were
not strongly sinusoidal. The distribution of the fluid forces presented in fig. 5.8(f) also showed
evidence of scattering. The total φT and vortex φV phase time histories in fig. 5.8(c) show periodic
jumps in value. The phase distribution in fig. 5.8(g) shows a split in the total phase between being
out of phase at φT ≈ 170◦ to being in phase at φT ≈ 0◦. The vortex phase, however, remained at
over φV ≈ 100◦.

Figure 5.9 presents the response of the cylinder while it undergoes rotary-lock-on at f∗rot ≈
1.15 a velocity ratio of Am = 0.5. The displacement time history in fig. 5.9(a) shows a periodic
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Figure 5.8: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 0.65, forcing velocity ratio Am = 0.5 and
reduced velocity U∗ = 5.5. (a), (b) and (c) presents a 60s sample of the normalised displacement (y/D),
force coefficients (Cy, Cv) and phases (φT , φV ) time histories, respectively. The distribution of amplitude
peaks (A∗), force coefficients (Cy, Cv) and phases (φT , φV ) are presented in (d), (f) and (g), respectively.
The power of each quantity in (d), (f) and (g) is normalised by their respective peak power. (f) presents
a power spectra density (PSD) of y/D, its power density is normalised by the peak power. In (b), (c), (f)
and (g), the total and vortex components are represented by the black and blue data series, respectively.
The black dashed line in (a) represents the mean of the highest 10% of the normalised amplitude peaks
(A∗10). The dashed lines in (b) represents the RMS values of the force coefficients (Cy,RMS, Cv,RMS), and
the dashed lines in (c) represents the mean values of the phases. The vertical dashed line in (f) represents
the forcing frequency (fosc).
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Figure 5.9: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 1.15, forcing velocity ratio Am = 0.5 and
reduced velocity U∗ = 5.5. Refer to fig. 5.8 caption for detailed description of the figures.

and sinusoidal signal with signs of beating. This is not unusual as the displacement of a cylinder
undergoing non-rotating VIV can exhibit similar beating behaviour. As shown in fig. 5.9(d), there
is a standard bell-shape distribution of amplitude peaks. While there is a single-peak instability the
distribution the shape of the peak is quite broad compared to other f∗rot cases. This may be caused
by the slight difference between the frequency response of a non-rotating cylinder at f∗ ≈ 1.05 and
the combined cylinder oscillation and rotary forcing frequency response at f∗ ≡ f∗rot = 1.15. The
fluid forces are periodic and sinusoidal (see fig. 5.9(b)) and they exhibit single-peak distributions
(see fig. 5.9(f)). Figure 5.9(c) and (g) show that both φT and φV phases are narrowly distributed
around 180◦. As f follows fosc under rotary-lock-on, it is expected that the cylinder’s response
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Figure 5.10: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 1.80, forcing velocity ratio Am = 0.5 and
reduced velocity U∗ = 5.5. Refer to fig. 5.8 caption for detailed description of the figures.

remains strong and sinusoidal despite large reductions in A∗10 amplitude response compared with the
non-rotating case.

When f∗rot = 1.80, between the rotary-lock-on and tertiary-lock-on region, there are changes to
the cylinder’s response from the rotary-lock-on case. Fig. 5.10 time histories show that the cylinder
exhibits frequency modulation and response trends similar to those previously seen when f∗rot is
below the rotary-lock-on region (see fig. 5.8). The PSD of the cylinder’s motion in fig. 5.10(e) shows
the cylinder is oscillating at a frequency close to the frequency response of a non-rotating cylinder,
f∗ ≈ 1.05, while the forcing frequency ratio is at f∗ ≡ f∗rot ≈ 1.80. A∗10 and force coefficients are
distributed over a larger range of values as a result of the frequency modulation (see fig. 5.10(d) and

112



5.5. Response at fixed forcing velocity ratios

(a)

(b)

(c)

(d) (e)

(f) (g)

t(s)

A∗ f∗

Cy, Cv φT , φV

y
D

C
y
,
C

v
φ
T

,
φ
V

Figure 5.11: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 2.75, forcing velocity ratio Am = 0.5 and
reduced velocity U∗ = 5.5. Refer to fig. 5.8 caption for detailed description of the figures.

(f)). The distribution of phases, as shown in fig. 5.10(g), is comparable to those seen at f∗rot below
the rotary-lock-on region (see fig. 5.8). Since the response of the cylinder below the rotary-lock-on
region and between the rotary-lock-on and tertiary-lock-on regions are so similar it is unsurprising
for the cylinder in these regions of the forcing parameter space to have the similar wake structures.

It was previously mentioned that as f∗rot is increased there is a jump in φT and φV as the frequency
response of the cylinder increased past the frequency response of a non-rotating cylinder (fVIV) at
f∗ ≈ 1.05. Figure 5.11 and fig. 5.12 present the response time history of the cylinder at two points
within the tertiary-lock-on region. Figure 5.11 presents the response where the φT and φV are both
at 0◦, i.e. when the fluid forces are in phase with the cylinder’s motion at a frequency ratio, of
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Figure 5.12: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 3.30, forcing velocity ratio Am = 0.5 and
reduced velocity U∗ = 5.5. Refer to fig. 5.8 caption for detailed description of the figures.

f∗rot = 2.75. Fig. 5.12 presents the response when φT and φV are at approximately 180◦, when the
forces are out of phase with the motion, at f∗rot = 3.30.

The time histories of the amplitude response and both fluid forces are highly periodic and si-
nusoidal. The single dominant frequency response peak is near f∗ ≈ 1 and the large separation
between the oscillation and forcing frequency peaks is attributed to the strong and consistent mo-
tion of the cylinder. As a result of the consistent oscillation of the cylinder, the amplitude response
and fluid force peaks are narrowly distributed above a single value and do not show any signs of
signal switching or beating. φT and φV are very stable and both phases remained at 0◦ at frequency
ratio f∗rot = 2.75 and 180◦ at f∗rot = 3.30. Similarly, the A∗10 amplitude response and forces, the
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Figure 5.13: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 1.0 and at
a reduced velocity of U∗ = 5.5. Refer to fig. 5.7 caption for detailed description of the figures.

phases are narrowly distributed in both cases. The φT and φV are the only response quantities that
changed significantly, while the A∗10 amplitude and the forces are very similar between the two f∗rot
cases. The data collected in the present study will not be sufficient to explain this jump in phases
in the tertiary-lock-on region, a detailed study of the cylinder wake and direct force measurement
could provide more insight into the cylinder response in this f∗rot range.

As the velocity ratio is increased to Am = 1.0, i.e. where the peak velocity of the cylinder
surface equals the free-stream velocity, U∞, the cylinder exhibits some minor changes to its responses,
however, most of the trends previously described for the Am = 0.5 persist. Figure 5.13 presents the
response of the cylinder over the tested range of forcing frequency ratios (f∗rot = 0− 4.5) at a fixed
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forcing velocity ratio of Am = 1.0 and a reduced velocity of U∗ = 5.5. Figure 5.13(a) shows that
the amplitude response at frequency ratios below the lower boundary of the rotary-lock-on region
continue to remain above the non-rotating value. Amplitude response in fact jumped from A∗10 ≈ 0.78
in the non-rotating case to A∗10 ≈ 0.9 when the cylinder undergoes even the lowest frequency rotary
oscillation. The magnitude of this initial jump in A∗10 was found to increase with Am. The RMS
total force coefficient, Cy,RMS, in the same f∗rot range is significantly highly than the non-rotating
case and the lower velocity ratio case of Am = 0.5. As the f∗rot is increased and approaches the
lower rotary-lock-on boundary at f∗rot ≈ 0.75, there is an abrupt drop in A∗10 that coincides with
decreases in the total φT and vortex φV phases. Interestingly, the RMS total (Cy,RMS) and RMS
vortex (Cv,RMS) force coefficients reached a local peak after A∗10 began to decrease. Further increases
in f∗rot and the cylinder undergoes rotary-lock-on.

As f∗rot approaches the lower rotary-lock-on boundary A∗10 drops to A∗10 ≈ 0.4 while both fluid
forces remain large and in phase with the motion of the cylinder (see fig. 5.13(c) and (d)). This
is different to the observations at Am = 0.5 where fig. 5.7 showed that the drop in A∗10 within
the rotary-lock-on region is accompanied by having both φT and φV at approximately 180◦. In
the present case, both phases remain close to 0◦ from the boundary of rotary-lock-on where the
amplitude response is decreasing to a peak in amplitude within the rotary-lock-on region.

Increasing f∗rot further causes A∗10 to decrease to a local minima, during this reduction φT and
φV remain at 180◦. Within the rotary-lock-on region, given the fluid forces are in phase with
displacement of the cylinder, it is unsurprising that there is an increase in amplitude response.
Similarly, when the fluid forces actin the opposite direction to the motion of the cylinder it is expected
that A∗10 will decrease. The interesting finding is that the location of the amplitude peak within the
rotary-lock-on region it is located at a frequency ratio of f∗rot = 1, the same as the local maximum of
A∗10 in the lower velocity ratio case (Am = 0.5). Also, in both Am cases the phases jumped from 0◦

to 180◦ in close proximity to the amplitude peak within the rotary-lock-on region. The φT jumped
at frequency ratios between f∗rot = 1 − 1.1, and φV jumped at f∗rot = 0.95 − 1.0 This shows the
amplitude peak and phase jump within the rotary-lock-on region are related to fosc equalling fnw
and in close proximity to the frequency response of a non-rotating cylinder (fosc ≈ fnw ≈ fVIV). The
widening of the rotary-lock-on region to lower f∗rot occurs as Am is increased.

When f∗rot increases to values between the rotary-lock-on and tertiary-lock-on regions, the trends
of the cylinder’s responses are similar to those observed at lower velocity ratios. Increasing f∗rot to
the onset of tertiary-lock-on causes the A∗10 to return to values similar to that of a non-rotating
cylinder and Cy and Cv become in phase with the cylinder’s motion. Within the tertiary-lock-on
region, the cylinder reaches a local amplitude peak as φV jumps from 0◦ to 180◦ at f∗rot = 2.90.
TheφT remained close to 0◦ and only jumped to 180◦ at f∗rot = 3.15. This is consistent with the
other lower velocity ratio (e.g. Am = 0.5 presented in fig. 5.7). Moreover, the f∗rot at which the
phases jumped within the tertiary-lock-on region are approximately three times that of the f∗rot
values at which phase jumps occurred within the rotary-lock-on region. The jump in mean vortex
phase coincides with the natural frequency of the oscillating structure in water (presented as f∗rot ≈ 1
in fig. 5.13(b)) in the rotary-lock-on region and three times fnw (presented as f∗rot ≈ 3 in fig. 5.13(b))
in the tertiary-lock-on region. φT seem to respond to fVIV as, in the rotary-lock-on region, φT
jumped to 180◦ at a frequency ratio of f∗rot ≈ 1.05, which is the equivalent of f∗rot,VIV ≈ 1. Similarly,
in the tertiary-lock-on region φT jumped to 180◦ at a frequency ratio of f∗rot ≈ 3.15, which is the
equivalent of three times fVIV (f∗rot,VIV ≈ 3). This further implies there is a correlation between the
natural response of the oscillating system and changes in the phase responses of a rotary oscillating
cylinder. However, given the close proximity of fnw (f∗rot = 1) and fVIV (f∗rot ≈ 1.05) it is difficult to
conclusively determine if the jump in φT at fVIV (or f∗rot ≈ 1.05) is related to: (1) fVIV, or (2) fnw
with φT responding more slowly when compared to the jump in φV .

Examination of the lower branch responses provides a clearer understanding between the jump
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in phases and the forcing frequencies. In the lower amplitude response branch fVIV moves further
away from fnw, if there is a relationship between φT and fVIV, the jump in φT in the rotary-lock-on
and tertiary-lock-on regions should occur at a higher value of f∗rot( discussed later in this section).

When the f∗rot is increased above the tertiary-lock-on region the cylinder exhibits reductions in
A∗10 and force responses are similar to those observed at a lower velocity ratio (e.g. Am = 0.5 case).
There are, however, striking differences in φT compared to lower Am cases. In this region, the Cy
remained in phase with the motion of the cylinder (φT ≈ 0◦), in the lower velocity ratio case of
Am = 0.5, φT remain close to 180◦. As other response trends persist at a higher velocity ratio of
Am = 1.0, this change in φT may be an indicator of changes in the structure of the wake, this will
be explored in §5.7.

Further increases in Am = 1.3 results in the rotary-lock-on region widening and extending to
higher frequency ratios. Figure 5.14 presents the response of the cylinder over the tested range of
forcing frequency ratios (f∗rot = 0−4.5) at a fixed Am = 1.3 and U∗ = 5.5. Below a frequency ratio of
f∗rot ≈ 1.3, the cylinder’s response trends are similar to those in the velocity ratio case of Am = 1.0.
Above the frequency ratio f∗rot ≈ 1.3 and within the wider rotary-lock-on region, VIV is effectively
suppressed by the sinusoidal rotary forcing as the amplitude response decreased to values less than
0.1D. This reduction in amplitude response, A∗10, is accompanied by significant reductions in the
fluid forces as shown in fig. 5.14(c). Both Cy and Cv remain out of phase with the motion of the
cylinder as φT and φV phases remain between 90◦ − 180◦ throughout the range of frequency ratios
for which the cylinder’s amplitude response is effectively suppressed (< 0.1D). Increases in f∗rot
to values outside the rotary-lock-on region results in the rotary oscillation no longer being able to
effectively suppress VIV. Hence, as f∗rot increases there is a steady increase in A∗10. As this occurs, the
total force, Cy, becomes in phase with the cylinder motion (φT ≈ 0◦) and the vortex force becomes
out of phase (φV ≈ 180◦). The tertiary-lock-on region is no longer observed at this Am. To better
understand the response of the cylinder as VIV is suppressed the time history and distribution of
the cylinder’s responses were examined at several points of interest, as highlighted by the red circle
markers.

Figure 5.15 presents the response of the cylinder while it undergoes rotary-lock-on at a forcing
frequency ratio of f∗rot ≈ 1.40. VIV is again effectively suppressed and the A∗10 response drops below
0.1D within the rotary-lock-on. The displacement time history in fig. 5.15(a) shows that the cylinder
continues to exhibit periodic and sinusoidal oscillations despite the small amplitude response. The
response of A∗10 and fluid forces (Cy, Cv) reflects the regular cylinder vibrations as both response
quantities exhibit a single, narrow peak distribution of values. The oscillating frequency follows the
forcing frequency within the rotary-lock-on region, as the peak with the highest power in fig. 5.15(e)
is located at the same response value as the forcing value represented by the vertical dashed line.
Both Cy and Cv remain consistently out of phase (see fig. 5.15(c)) and the two phases are narrowly
distributed around 180◦ (see fig. 5.15(g)). From this, it is clear that the responses of the cylinder,
while it undergoes rotary-lock-on, remains consistent even when the cylinder barely vibrates.

As the frequency ratio is increased above the upper boundary of rotary-lock-on region (f∗rot =
2.00), the influence of fosc and fVIV on the cylinder’s response increases. The PSD of the cylinder’s
displacement in fig. 5.16(e) showed that the frequency response of the cylinder follows that of a non-
rotating cylinder, fVIV, as the frequency response with the highest power is located at f∗rot ≈ 1.05.
There is a secondary frequency peak at slightly lower power, which occurs at the rotary forcing value
of f∗rot = 2. Because of the similar power of these frequency peaks, frequency modulation is observed
in the displacement and force time histories (see fig. 5.16(a) and (b)) and there is switching in the
phase time history (see fig. 5.16(c)). The forces in fig. 5.16(f) and phases in fig. 5.16(g) exhibit a
wider distribution because of the frequency modulation.

At high frequency ratios, above the upper boundary of the tertiary-lock-on region, there exist
a difference in the cylinder’s phases between higher velocity ratio cases such as Am = 1.0 1.3 and
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Figure 5.14: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 1.3 and at
a reduced velocity of U∗ = 5.5. Refer to fig. 5.7 caption for detailed description of the figures.

that of lower values such as the Am = 0.5 case. At Am = 0.5, Cy remain out of phase as φT
stayed above 120◦. However, at elevated Am and at similar f∗rot, Cy is consistently in phase, with
φT close to 0◦. Figure 5.17 presents the response of the cylinder at a higher forcing frequency ratio
of f∗rot = 3.40. The cylinder displacement and forces are highly sinusoidal and periodic as shown
by their time histories in fig. 5.17(a) and (b). Their distributions are, as a consequence, clustered
closely around a single peak. The time history and distribution of the phases in fig. 5.17(c) and (g)
also exhibits a strong, consistent signal. As the φT and the magnitudes of the forces are the only
differences between the cylinder response at low and that at moderate velocity ratios, further studies
into the wake structure and direct force measurements is needed at these forcing parameter points
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Figure 5.15: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 1.40, forcing velocity ratio Am = 1.3 and
reduced velocity U∗ = 5.5. Refer to fig. 5.8 caption for detailed description of the figures.

to understand their differences.

When the velocity ratio is increased to the highest tested value of Am = 2.0, it is evident that the
rotary-lock-on region spans across a significant range of the tested f∗rot (see fig. 5.18). Figure 5.18(a)
shows that the increase in A∗10 as the cylinder initially undergo rotary oscillation is significantly
larger than those observed at lower velocity ratios. With increases in Am and the widening of the
rotary-lock-on region, large VIV amplitude response remains suppressed over a larger range of f∗rot
and the transition for Cy changes from being out of phase to being in phase occur more gradually.
The response trends in and above the rotary-lock-on region are the same as those reported for the
velocity ratio Am = 1.3 case and were also observed at Am = 1.5− 1.9.
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Figure 5.16: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 2.00, forcing velocity ratio Am = 1.3 and
reduced velocity U∗ = 5.5. Refer to fig. 5.8 caption for detailed description of the figures.

This shows that in the upper amplitude response branch of a non-rotating cylinder (U∗ = 5.5),
the response trends of the cylinder remain largely the same from Am ≈ 1.3 − 2.0. Furthermore,
sinusoidal-driven rotary oscillations have been shown to be effective in causing the cylinder to undergo
rotary-lock-on, which then suppresses large VIV responses. As reported in rigidly-mounted rotary
oscillating cylinder studies by Cheng et al. (2001); Cheng (2001); Choi et al. (2002), the range of
frequency ratios at which rotary-lock-on occur increases with Am. Du & Sun (2015) showed that
rotary oscillations are effective at suppressing VIV at very low Reynolds numbers and at specific
values of the forcing parameters. The present results proved that rotary oscillation remains effective
at moderate Re and that its effectiveness increases with velocity ratio when Am & 1.1. A number
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Figure 5.17: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 3.40, forcing velocity ratio Am = 1.3 and
reduced velocity U∗ = 5.5. Refer to fig. 5.8 caption for detailed description of the figures.

of studies involving elastically-mounted cylinders, including Du & Sun (2015), focused on the upper
amplitude response branch, as it is where the large amplitude response is observed, less attention
has focussed on the lower branch where the cylinder’s amplitude response is still significant.

The response of the cylinder undergoing sinusoidally-driven rotary oscillations for f∗rot = 0− 4.5
and Am = 0.5 at a reduced velocity of U∗ = 8.0 is presented in fig. 5.19. Compared to the cylinder’s
response in the upper branch with the same forcing parameters, there are several similarities. There
exists rotary-lock-on and tertiary-lock-on regions. However, in the lower branch these two regions
span over a larger range of f∗rot than is seen the upper branch (see fig. 5.19(a)). The A∗10 peaks
associated with the rotary-lock-on and tertiary-lock-on regions are also present in the lower branch.
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Figure 5.18: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 2.0 and at
a reduced velocity of U∗ = 5.5. Refer to fig. 5.7 caption for detailed description of the figures.

Compared to their upper branch counterparts, the A∗10 peaks in the lower branch have larger increases
over the non-rotating case and reached higher peak magnitudes. Between the rotary-lock-on and
tertiary-lock-on regions, A∗10 decreased to values below the non-rotating case. The trends in Cy,RMS

and Cv,RMS are different to those seen in the upper branch. In the lower branch, Cv,RMS is consistently
larger than Cy,RMS over the range of f∗rot. The mean total φT and mean vortex φV phases also exhibit
some differences. The fluid forces are 180◦ out of phase with the motion for a non-rotating cylinder
oscillating in the lower branch. As the cylinder began to undergo low-frequency (f∗rot . 0.9) rotary
oscillations, the total phase decreased to φT ≈ 120◦ until the onset of rotary-lock-on and the vortex
phase remained at φV ≈ 180◦. As fosc approached fnw (i.e. f∗rot = 1), φT abruptly decreased to
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Figure 5.19: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 0.5 and at
a reduced velocity of U∗ = 8.0. Refer to fig. 5.7 caption for detailed description of the figures.

approximately 0◦ and there was a small dip in φV over the same frequency ratios. Shortly thereafter,
both phases sharply increased back to 180◦.

It was previously mentioned that fnw and fVIV are likely to have an impact on the f∗rot at which φT
transitions from 0◦ (in phase) to 180◦ (out of phase) within the rotary-lock-on and tertiary-lock-on
region. As shown in fig. 5.19(d), φT jumped from 0◦ to 180◦ between frequency ratios f∗rot = 1− 1.1,
as was seen in the upper branch case. As fnw and fVIV in both the upper (f∗rot = 1.04) and lower
(f∗rot = 1.12) branch lie between f∗rot ≈ 1−1.1, it is still unclear if fosc equalling fnw or fVIV triggered
the jump in φT . In the upper branch (refer to fig. 5.7(d)) in the tertiary-lock-on region, φT began to
jump to 180◦ at f∗rot ≈ 3.15 (three times f∗rot ≈ 1.05 observed at the φT jump in the rotary-lock-on
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Figure 5.20: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 0.65, forcing velocity ratio Am = 0.5 and
reduced velocity U∗ = 8.0. Refer to fig. 5.8 caption for detailed description of the figures.

region). If φT jump was triggered by fosc passing fVIV, φT should jump to 180◦ at f∗rot ≈ 3.36
(three times f∗rot ≈ 1.12). However, this is not observed in the lower branch in fig. 5.19(d). Instead,
the total phase began jumping to φT ≈ 180◦ at the same frequency ratios (f∗rot ≈ 3.1) that were
observed in the upper branch. This suggests that fosc passing fnw (f∗rot = 1) is the mechanism that
triggered the jump in φT . The time history and distribution of response quantities at several points
of interest in the forcing parametric domain will be presented and discussed. This is done to assist in
understanding the response of the cylinder and help highlight the similarities and differences between
the cylinder’s response in the upper and lower branches under the same rotary forcing parameters.

Figure 5.20 presents the response of the cylinder below the rotary-lock-on region at f∗rot = 0.65
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and U∗ = 8.0. The cylinder exhibits frequency modulation as seen in fig. 5.20(a) and the time history
of the forces in fig. 5.20(b). Typical of cases that exhibit frequency modulation of A∗10 the results are
distributed across a range of values with two dominant peaks, one at higher and one at lower A∗10

values. The frequency response in fig. 5.20(e) has two peaks, one is fosc and the other is f . With the
exception of the magnitude of the phases, the cylinder’s responses in the lower amplitude response
branch are similar to those seen the upper branch. At identical forcing parameters, the responses of
the cylinder at both amplitude branches exhibit similar trends: frequency modulation and a broad
distribution of amplitude peaks over two or more A∗10 values. It is evident from this that sinusoidal
rotary oscillations continue to have the same impact on the response of an elastically-mounted
cylinder below the rotary-lock-on region at higher reduced velocities and Reynolds numbers.

At a frequency ratio within the rotary-lock-on region (f∗rot = 1.15) and in the lower branch, the
response trends of the cylinder are nearly identical to the upper branch counterpart. From fig. 5.21(e)
it can be seen that as rotary-lock-on occurs f follows the forcing frequency fosc and results in a single
high-power frequency peak. Consequently, the cylinder’s motion is sinusoidal and highly periodic
(see fig. 5.21(a)), and its amplitude response, A∗10, is consistent and narrowly distributed over a small
range of values (see fig. 5.21(d)). At f∗rot between the rotary-lock-on and tertiary-lock-on regions,
the trends in the time history and distribution of the cylinder’s responses is similar for the upper
and lower amplitude response branches.

In the lower amplitude response branch (U∗ = 8.0), as the forcing velocity ratio is increased
to Am = 1.0, there exist some small changes to the response of the cylinder, however, their trends
remain very similar to that observed at Am = 0.5. The response of the cylinder while f∗rot = 0−4.5 at
Am = 1.0 and U∗ = 8.0 is presented in fig. 5.22. At the elevated Amthe rotary-lock-on region widens
while the tertiary-lock-on region shrinks. The evolution of A∗10 with f∗rot shows two local peaks within
the rotary-lock-on and tertiary-lock-on regions. The peak A∗10 amplitude value is located within the
rotary-lock-on region and it is almost three times that of the non-rotating case. The magnitude
of the phases of the cylinder at low frequency ratios (f∗rot . 0.6) as it initially undergoes rotary
forcing (i.e. from non-rotating to rotating) decreased with increases in Am. This trend continues
with further increases in Am until both the φT and φV are below 25◦ in the Am = 2.0 case (see
fig. 5.24(d)).

At a velocity ratio of Am = 1.3, the amplitude peak within the rotary-lock-on region increased to
A∗10 = 1.8 with corresponding increases in Cy and Cv (see fig. 5.23(a) and (c)). The rotary-lock-on
region widens further and it is evident that rotary oscillation effectively suppresses VIV (amplitude
response is below A∗10 = 0.1) over most of the frequency ratios above f∗rot ≈ 1.6 but excluding the
tertiary-lock-on region. The tertiary-lock-on region shrunk to a narrow range of f∗rot, within the
small tertiary-lock-on region, large amplitude oscillations were observed, Cy became in phase while
Cv became out of phase with the motion of the cylinder. with further increase in velocity ratio to
Am = 2.0 the tertiary-lock-on region disappears and large amplitude oscillations remain suppressed
at frequency ratios f∗rot & 1.5 (see fig. 5.24).

From this, it becomes obvious that there exist trends in the cylinder’s response that are common
to the two investigated reduced velocity cases. The amplitude response, A∗10, comes to some local
peak value in the rotary-lock-on region and tertiary-lock-on region, if it exists at that particular
Am. In the upper branch, the amplitude response of the cylinder A∗10 at frequency ratios below the
rotary-lock-on region increases with Am, and in the lower branch the magnitude of the amplitude
peak within the rotary-lock-on region increases. For both amplitude branches, magnitude of the
amplitude peak observed in the tertiary-lock-on region decreases with Am. The phase response
of the cylinder in the proximity of and within the rotary-lock-on and tertiary-lock-on seems to
be independent of U∗ and the effects of Reynolds number. The fluid forces become aligned to
specific values in the rotary-lock-on and tertiary-lock-on regions. At the onset of rotary-lock-on (and
tertiary-lock-on), the total force becomes in phase (total phase at φT ≈ 0◦). Shortly thereafter, the
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Figure 5.21: The response time histories and distribution of quantities of an elastically-mounted cylinder
undergoing rotary oscillations at forcing frequency ratio f∗rot = 1.15, forcing velocity ratio Am = 0.5 and
reduced velocity U∗ = 8.0. Refer to fig. 5.8 caption for detailed description of the figures.

vortex force becomes out of phase (vortex phase jumps to φV ≈ 180◦) and this is soon followed
by the total force (total phase jumps to φT ≈ 180◦). For the remainder of the rotary-lock-on and
tertiary-lock-on region, the forces remained out of phase (phases at 180◦) and large reductions in the
cylinder’s vibration amplitude is observed. Furthermore, the suppression of VIV and large amplitude
oscillations persist even outside rotary-lock-on and tertiary-lock-on regions. However, this generally
occurs after Am is increased to values where rotary oscillation becomes effective (i.e. at values where
the amplitude is suppressed below A∗10 . 0.1 over a range f∗rot).

Examination of the time history and distribution of the cylinder’s responses showed that within
the central regions of the rotary-lock-on and tertiary-lock-on regions the cylinder response is highly
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Figure 5.22: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 1.0 and at
a reduced velocity of U∗ = 8.0. Refer to fig. 5.7 caption for detailed description of the figures.

periodic and sinusoidal. The cylinder exhibits one dominant frequency response as the oscillation
frequency, f , follows the forcing frequency, fosc. As the cylinder undergoes rotary forcing at values
close to the rotary-lock-on and tertiary-lock-on boundaries and outside the two regions, the cylinder
exhibits frequency modulation. Frequency modulation results in a broad distribution of amplitude
response peaks and fluid forces, and periodic switching in phases is also observed. The severity of
frequency modulation largely depends on how close in power the cylinder’s frequency response peak
and the forcing frequency peak are. Larger differences in the power of the two frequency peaks
leads to weaker effects on frequency modulation. Closeness of the values of the cylinder’s frequency
response and the forcing frequency also have an influence.
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Figure 5.23: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 1.3 and at
a reduced velocity of U∗ = 8.0. Refer to fig. 5.7 caption for detailed description of the figures.

From the above it is clear that the vibration response an elastically-mounted cylinder undergoing
sinusoidally-driven rotary oscillations at different forcing parameters and U∗ show some trends that
are independent to U∗ (and Reynolds number, Re), These trends are consistent and depend on the
rotary-lock-on and tertiary-lock-on phenomenon. Understanding the consistency of the cylinder’s
response in different regions of the forcing Am and f∗rot domain will have implications from the view
point of fundamental and applied studies flow-induced vibration. From the fundamental point of
view, the consistent vibrational response suggests the possibility of consistent wake mode within
the same region. The wake of the cylinder is discussed in §5.7. From a practical point of view, a
consistent response makes the vibration system predictable and safer for engineering applications.
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Figure 5.24: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing frequency ratio (f∗rot) at a fixed forcing velocity ratio of Am = 2.0 and at
a reduced velocity of U∗ = 8.0. Refer to fig. 5.7 caption for detailed description of the figures.

From the present study, it is abundantly clear that, at specific values of Am and f∗rot, sinusoidal rotary
oscillation is very effective at suppressing VIV and large amplitude body oscillations associated with
it.

The evolution of the cylinder’s response presented in this section focused on increasing the f∗rot at
a fixed value of Am. Limited cases of the vibration response results will be presented and discussed
where the Am, at finer increments, is increased at two fixed values of f∗rot. These results are discussed
in the following section.
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5.6 Response at fixed forcing frequency ratios

As the primary experimental study was conducted at relatively large increments of Am, a secondary,
targeted study was conducted over a larger range of Amat finer increments. This was motivated by
a desire to better understand if the rotary-lock-on region persists and to see if the tertiary-lock-on
region reappears at higher Am. Figure 5.25 presents the response of the cylinder over a range of Am

at a reduced velocity belonging to the upper branch (U∗ = 5.5) and a fixed frequency ratio that lies
within the rotary-lock-on region (f∗rot = 1.0). Figure 5.26 presents the response at a fixed frequency
ratio that lies within the tertiary-lock-on region (f∗rot = 3.0).

Figure 5.25(a) presents the mean of the highest 10% of normalised amplitude peaks, A∗10, as a
function of Am. The black dashed line represents the response value of the non-rotating case. Fig-
ure 5.25(b) presents a PSD contour of the cylinder’s displacement, y, as a function of the normalised
frequency response, f∗, and the Am. The power density is normalised by the peak power at each Am

value. The blue dotted line illustrates f∗ being equal to the forcing f∗rot (f∗ = f∗rot). Figure 5.25(c)
and fig. 5.25(d) presents the force coefficients and phases as a function of the Am, respectively. In
both fig. 5.25(c) and fig. 5.25(d), the black markers represent the RMS total force coefficient, Cy,RMS,
and mean total phase, φT . Similarly, in the same figures, the blue markers represent the RMS vortex
force coefficient, Cv,RMS, and mean vortex phase, φV . The black dotted line and blue dot-dashed line
represent the total and vortex component values of a non-rotating cylinder, respectively. Figure 5.26
follows the same format.

Figure 5.25(b) shows that the cylinder continues to undergo rotary-lock-on at velocity ratios
Am > 2. At velocity ratios Am & 1.8, the amplitude of the cylinder monotonically decreases with
increasing Am(see fig. 5.25(a)). However, large amplitude vibrations persist. Between velocity ratios
Am = 0 − 0.3, the amplitude sharply increased from the non-rotating value and remained above
A∗10 ≈ 0.9 up to an Am ≈ 1. The amplitude response, A∗10, decreased to values comparable to that
of a non-rotating cylinder. As shown in fig. 5.25(d), the phases of the cylinder do not show much
significant changes with increases in Am. From this, it is evident that the rotary-lock-on region exist
even at velocity ratios up to Am = 3.5. However, with the monotonic decrease in A∗10, it is possible
for that large amplitude oscillations will become suppressed with sufficiently large Am. Due to the
physical limitations of the apparatus, it was not possible to sustain prolonged operation at velocity
ratios Am & 2.

The frequency response, f∗, when rotary oscillations at a frequency ratio of f∗rot = 3.0 are
applied is presented in fig. 5.26(b). The cylinder undergoes tertiary-lock-on between velocity ratios
Am = 0.1 − 1.6 as the primary frequency peak remains close to f∗ ≈ 1, the cylinder no longer
undergoes tertiary-lock-on beyond this. This is evident as the primary frequency peak jumped from
f∗ ≈ 1 to f∗ ≈ 3 to follow the forcing frequency and not its one-third harmonic. Furthermore,
this change is accompanied by the suppression of large VIV amplitude response (see fig. 5.26(a)),
which continues up to a velocity ratio of Am ≈ 2.6. Surprisingly, with further increases in velocity
ratio Am & 2.6, the cylinder undergoes tertiary-lock-on once again as the primary frequency peak
returned to f∗ ≈ 1. The cylinder’s phases also show the return of tertiary-lock-on at high Am.
φT and φV ranges are consistent with previously seen velocity ratios where the cylinder undergoes
tertiary-lock-on (Am = 0.1− 1.6Am & 2.6), and φT remains close to 0◦ while φV remains near 180◦.
As the cylinder undergoes tertiary-lock-on for the second time, there is a small bump in A∗10 near a
velocity ratio Am ≈ 3. However, this decreased shortly after as the Am is increased near the upper
limit of the present study. From these results, it seems probable that the cylinder will no longer
undergo tertiary-lock-on at velocity ratios Am > 3.

This study shows that the rotary-lock-on region persists to much higher Am than the tertiary-
lock-on region.
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Figure 5.25: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing velocity ratio (Am) at a fixed forcing frequency ratio of f∗rot = 1.0 and at
a reduced velocity of U∗ = 5.5. (a) presents the mean of the highest 10% of normalised amplitude peaks
(A∗10). The black dashed line represents the non-rotating VIV value. (b) presents a power spectra density
(PSD) contour of the cylinder’s displacement, y. The power density is normalised by the peak power at
each Am value. The blue dotted line illustrates the normalised frequency response,f∗, being equal to f∗rot
(f∗ = f∗rot). (c) and (d) presents the RMS force coefficients (Cy,RMS, Cv,RMS) and mean phases (φT , φV ),
respectively. In both (c) and (d), the black markers represent the total component and the blue markers
represent the vortex component. The black dotted line and blue dot-dashed line represent the total and
vortex component values of a non-rotating cylinder, respectively.
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Figure 5.26: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of forcing velocity ratio (Am) at a fixed forcing frequency ratio of f∗rot = 3.0 and at
a reduced velocity of U∗ = 5.5. Refer to fig. 5.26 caption for detailed description of the figures.

5.7 Wake modes

The structure of vortices shed into the wake are interesting to researchers because they can influence
the vibration response of an elastically-mounted structure. Here, the elastically-mounted cylinder
is subjected to sinusoidally-driven rotary oscillations about its spanwise axis. Previous work on
rotary oscillation of rigidly-mounted cylinders have shown the wake of the cylinder can change
significantly from the Kámán vortex street observed in stationary cylinder studies. Depending on
the forcing velocity and frequency ratios, the rotary oscillating cylinder can exhibit different wake
modes (e.g.Tokumaru & Dimotakis (1991); Cheng et al. (2001); Cheng (2001); Choi et al. (2002)).
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Figure 5.27: The wake patterns observed are based on particle image velocimetry data taken at a reduced
velocity (U∗ = 5.5) that belongs to the upper amplitude response branch of a non-rotating cylinder. The
rotary-lock-on and tertiary-lock-on boundaries are shown by the solid lines. This overlays a greyscale
contour map of the mean of the highest 10% of amplitude peaks (A∗10) in the Am − f∗rot forcing parameter
space.

This section presents and discusses PIV results to help understand the wake modes of the elastically-
mounted cylinder and how these vary from the structures observed in rotary oscillation of rigid
cylinders and non-rotating VIV studies.

To better understand the interactions between wake modes and the cylinder’s vibration, the
observed wake modes have been mapped against the primary independent variables, Am and f∗rot
at the two reduced velocities previously investigated. Figure 5.27 presents the wake map while
the cylinder is undergoing VIV at U∗ = 5.5(upper response branch of a non-rotating cylinder).
Figure 5.28 presents a similar map at U∗ = 8.0 (lower branch).

At U∗ = 5.5 and f∗rot below the lower boundary of the rotary-lock-on region, the wake of the
cylinder exhibits switching behaviour and in some cases chaotic vortex shedding. This is expected
because outside the rotary-lock-on region the response of the cylinder mainly depends on the f
and fosc frequencies, which can cause the cylinder to exhibit strong frequency modulation. Studies
involving rotary oscillating rigid cylinders showed that while the forcing motion determines the
structure of the wake and the wake are generally variations of the 2S and 2P mode (see Tokumaru &
Dimotakis (1991); Cheng et al. (2001); Cheng (2001); Choi et al. (2002)). Non-rotating VIV studies
such as Khalak & Williamson (1999); Govardhan & Williamson (2000, 2002) have shown that the
natural wake mode of an elastically-mounted cylinder in the upper amplitude response branch is 2P.

In this region (below the lower f∗rot boundary of the rotary-lock-on region), the cylinder often
switches between 2S (two single, counter rotating vortices shed per cycle), 2SO (two single, counter
rotating vortices shed per cycle offset from the streamwise centreline) and 2P (two counter-rotating
vortex pairs shed per cycle) mode. This is the result of frequency modulation as the oscillating body
switches between the forcing frequency (fosc) and the frequency response of a cylinder undergoing
non-rotating VIV(fVIV). As the cylinder switches between the 2S, 2SO and 2P; it intermittently
exhibits the P+S structure during transition between the three aforementioned modes. The P+S
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Figure 5.28: The wake patterns observed are based on particle image velocimetry data taken at a reduced
velocity (U∗ = 8.0) that belongs to the low amplitude response branch of a non-rotating cylinder. The
rotary-lock-on and tertiary-lock-on boundaries are shown by the solid lines. This overlays a greyscale
contour map of the mean of the highest 10% of amplitude peaks (A∗10) in the Am − f∗rot forcing parameter
space.

mode is a transitional structure between 2S, 2SO and 2P, it is not observed for more than several
instantaneous frames when it occurs. 2SO mode will be discussed later and the P+S mode is
characterised by a pair of counter-rotating and a single vortex shed per cycle. As a result of the
switching between the three wake modes, this mode is simply labelled as SW for switching. To better
show the switching behaviour of the SW mode, the instantaneous iso-contours of the cylinder’s wake
at different points in its displacement time history is presented in fig. 5.29. The switching behaviour
of the SW mode can be seen from fig. 5.29 where the red sections of the time history in fig. 5.29(a)
exhibits the 2SO mode while the blue sections exhibits the 2S mode typically seen in stationary
cylinder and VIV studies. Instantaneous vorticity iso-contours of the 2SO, 2S and P+S modes are
shown in fig. 5.29(b.i - b.vi), fig. 5.29(c.i - c.iii) and fig. 5.29(d.i - d.iii), respectively. The wake
switched from 2SO mode to 2S mode and back to 2SO mode in less than five oscillation periods.
This shows how frequent the wake structure can switch. The wake briefly switched from 2SO to
P+S mode for approximately one oscillation period before switching back to 2SO. This mode is
observed at low frequency ratios (f∗rot . 0.5) where the cylinder’s amplitude response, A∗10, remains
comparable or larger in value when compared to the non-rotating case.

As the cylinder undergoes rotary oscillations at f∗rot = 1 (within the rotary-lock-on region), the
structure of the wake is characterised by the shedding of two counter rotating vortices away from
the streamwise centreline per shedding cycle. This is similar to Mode I reported in rotary oscillation
studies of rigidly-mounted cylinders. However, the difference between the wake structure observed
in the present study and Mode I is that only two single counter-rotating vortices. The observed
wake pattern is inherently different to 2S and Mode I. Mode I sheds two pairs of vortices of the
same sign (see Tokumaru & Dimotakis (1991); Choi et al. (2002)), the present structure sheds two
single counter-rotating vortices. Because the two single counter-rotating vortices are shed offset
from the streamwise centreline, this wake mode observed in the present study is referred as 2SO.
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Figure 5.29: The intermittency and switching behaviour of the SW wake mode is presented. PIV data
presented were taken at reduced velocity U∗ = 5.5, forcing velocity ratio Am = 0.5 and forcing frequency
ratio f∗rot = 1.5. (a) presents a short time history sample of the normalised displacement (y/D). Circle
markers are locations where images were taken. The red data series represent the presence of a wake pattern
similar to Mode I. The labelled red circle markers are locations of the instantaneous vorticity iso-contours
presented sequentially in b(i - vi). The blue data series represent a wake pattern similar to the 2S mode. The
labelled blue circle markers are locations of the instantaneous vorticity iso-contours presented sequentially
in c(i - iii).The magenta data series represent a wake pattern similar to the P+S mode. The labelled
magenta circle markers are locations of the instantaneous vorticity iso-contours presented sequentially in
d(i - iii).
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Figure 5.30: 2SO wake pattern observed at reduced velocity U∗ = 5.5, forcing velocity ratio Am = 1.5
and forcing frequency ratio f∗rot = 1.0. i - vi sequentially presents the phase-averaged iso-contours of the
vorticity over one shedding cycle.

The phase-averaged iso-contours of the 2SO pattern are presented in fig. 5.30(i - vi). In the area
between the rotary-lock-on and tertiary-lock-on regions, 2SO is also observed. Data from the present
study suggests that 2SO is observed at sufficiently large values of forcing frequency ratio (f∗rot & 0.5)
and it is associated with relatively large values of A∗10. The vorticity of the vortices shed in this
wake mode increases with Am. This phenomenon is not unexpected. Since Am is the ratio between
the peak surface tangential velocity, rθ̇, and the free-stream velocity, U∞; an increase in Am is the
result of an increase in the peak surface tangential velocity when U∞ is fixed. Increase in the peak
surface tangential velocity, rθ̇, is caused by the controlled increase in the cylinder’s angular velocity,
θ. Therefore, an increase in the peak angular velocity, θ, will increase the circulation being fed into
the vortices shed.

A variation of the 2SO wake pattern is observed within the rotary-lock-on region. From the phase-
averaged vorticity iso-contours presented in fig. 5.31(a.i - a.vi), it can be seen that this variation
of 2SO exhibits a tongue-shaped structure as a vortex is being shed. From fig. 5.31(a.i - a.iii), as
the counter-clockwise (red) vortex is being shed, it draws a tongue-shaped region of clockwise (blue)
vorticity from the other side of the cylinder (across the streamwise centreline) towards itself. This
occurs within 2.5D downstream of the cylinder. This was observed at forcing velocity ratios Am & 1.5
and frequency ratios f∗rot & 1.5. An examination of the instantaneous vorticity iso-contours presented
in fig. 5.31(c.i - c.iv) at positions highlighted in fig. 5.31(b) revealed an interesting phenomenon. The
contours show a smaller vortex opposite in sign (labelled as A2 and B2) is shed with the primary
vortex (labelled as A1 and B1) on each side of the streamwise centreline per half shedding cycle.
What was seen as a tongue-shaped structure in fig. 5.31(a.i - a.vi) is in fact a smaller vortex of
opposite vorticity. In terms of vortex count per shedding cycle, this mode is more similar to 2P than
Mode I, as two pairs of counter rotating vortices are shed per cycle. However, in terms of the overall
wake structure, it strongly resembles Mode I. Similar wake structures were reported in Du & Sun
(2015) and Chou (1997). However, in the present study, the smaller vortex is found to orbit around
the larger vortex in the near wake as they move downstream. As a result of their counter-rotating
vorticity, the two vortices self-annihilate. At a sufficient distance downstream of the cylinder, the
smaller vortex will be annihilated by the primary vortex. The primary vortex will be weakened
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by the smaller vortex and drawn towards the streamwise centreline by the opposite vorticity of the
smaller vortex. These are new observations for an elastically-mounted cylinder, as the behaviour
of the smaller vortex and the overall structure of the wake was not reported or discussed in the
simulation by Du & Sun (2015), and the observations by Chou (1997) on their simulation was for a
rigidly-mounted cylinder. Due to its similarity to Mode I and the orbiting behaviour of the smaller
vortex, this mode is referred as Mode I-O. This mode is observed in an area within the rotary-lock-on
region where the cylinder exhibits amplitude responses significantly smaller in A∗10 value than the
non-rotating case.

In general, the wake of the cylinder undergoing rotary oscillations is well defined. However,
this is not always the case, imaging results taken at the tertiary-lock-on boundary at velocity ratio
Am = 1.5 and frequency ratio f∗rot = 3.0 showed the wake of the cylinder lacked distinctive shedding
structures. Figure 5.32(a.i - a.vi) presents the phase-averaged vorticity iso-contours of the cylinder’s
wake. These contours show that the wake exhibit some shedding structure. The instantaneous
vorticity iso-contours in fig. 5.32(c.i - c.iv) showed that the cylinder sheds small counter-rotating
vortices into the wake at irregular rates. These small vortex structures quickly decay as they flow
downstream. While this mode is not completely without any form or structure, especially in the near
wake, due to the chaotic shedding and decay of small vortex structures, this mode is referred as CS.
This mode is also observed at other forcing parameters near the boundaries of the rotary-lock-on
region. However, it is generally observed as a secondary wake mode where its occurrence is less than
the primary wake mode.

At U∗ associated with the lower amplitude response branch (U∗ = 8.0) some of wake modes
observed in the upper branch continue to exist. As shown by the wake mode map presented in
fig. 5.28, at f∗rot below the lower f∗rot boundary of the rotary-lock-on region, the wake of the cylinder
continues to be characterised by the SW mode. In low A∗10 areas of the rotary-lock-on region, Mode
I-O was observed. A number of new wake modes were observed in the lower branch.

At the lower f∗rot boundary of the tertiary-lock-on region, a new variant of the 2P mode was
observed. The instantaneous vorticity iso-contours of this 2P variant are presented in fig. 5.33(b.i -
b.vi). The typical 2P wake mode consist of a pair of counter-rotating vortices shed per half shedding
cycle. The closewise and counter-clockwise vortices in each vortex pair are aligned in the streamwise
direction. The new variant of the 2P mode also sheds two pairs of counter rotating vortices over a
complete shedding cycle, however, each vortex pair is aligned in the cross-flow direction. As a result
of the number of vortex pairs and their orientation, this mode is referred as CF2P.

In parts of the rotary-lock-on region where body vibrations persist (at frequency ratios f∗rot . 1.5),
a variant of the 2S mode was observed. It is characterised by the shedding of two counter rotating
vortices per shedding cycle. Figure 5.34(i - vi) presents the phase-averaged vorticity iso-contours
of this wake mode. The vortices are shed to either side of the streamwise centreline. As the shed
vortices flow downstream they have a tendency to coalesce in the streamwise direction and break
down within several cylinder diameters, D. This type of behaviour was previously reported in free
and forced oscillation studies by Williamson (1988); Govardhan & Williamson (2002) and in the low
Re simulation of an elastically-mounted cylinder undergoing constant rate rotation by Bourguet &
Lo Jacono (2014). They refer to this type of wake structure as C(2S). Similar wake pattern have
also been reported in studies of rigidly-mounted cylinders undergoing rotary oscillations. Studies
by Tokumaru & Dimotakis (1991); Cheng et al. (2001); Cheng (2001); Choi et al. (2002) observed
a similar wake structure and Tokumaru & Dimotakis (1991); Choi et al. (2002) refer this pattern
as Mode II. As this wake mode sheds two single counter-rotating vortices per cycle, offset from the
streamwise centreline and coalesces as the vortices flow downstream, this mode is referred as 2S-OC.
This help differentiates this wake mode to the 2SO pattern where larger offsets from the streamwise
centreline are observed with no signs of coalescing.

From the study of the fluid structure downstream to the cylinder, it is evident that there exist
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Figure 5.31: Mode I-O observed at reduced velocity U∗ = 5.5, forcing velocity ratio Am = 1.5 and forcing
frequency ratio f∗rot = 1.5. a(i - vi) sequentially presents phase-averaged iso-contours of the vorticity of the
Mode I-O wake pattern over one shedding cycle. (b) presents a short time history sample of the normalised
displacement (y/D). Black circle markers are locations where images were taken and red circle markers
represent the instantaneous cases presented in c(i - iv).
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Figure 5.32: CS wake pattern observed at reduced velocity U∗ = 5.5, forcing velocity ratio Am = 1.5
and forcing frequency ratio f∗rot = 3.0. a(i - vi) sequentially presents phase-averaged iso-contours of the
vorticity of the CS wake pattern over one shedding cycle. (b) presents a short time history sample of the
normalised displacement (y/D). Black circle markers are locations where images were taken and red circle
markers represent the instantaneous cases presented in c(i - iv).
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Figure 5.33: CF2P observed at reduced velocity U∗ = 8.0, forcing velocity ratio Am = 1.0 and forcing
frequency ratio f∗rot = 3. (a) presents a short time history sample of the normalised displacement (y/D).
Black circle markers are locations where images were taken and red circle markers represent the instanta-
neous vorticity iso-contours presented sequentially in b(i - iv). Blue and red coloured arrows highlight the
clockwise and counter-clockwise vortex structures, respectively.

a number of different wake modes. Based on the collected imaging data, it is clear that some wake
patterns are observed in specific regions of the forcing parameter space. In particular, Mode I-O
is observed exclusively in very low amplitude response, A∗10, areas within the rotary-lock-on region.
While a number of new wake modes are observed in the present study, they are variants of the
2S and 2P mode. As discussed, the wake of a rigid cylinder undergoing rotary oscillations largely
exhibit variants of the 2S mode while an elastically-mounted cylinder oscillating in the upper and
lower amplitude response branches exhibit variants of the 2P mode. Therefore, it is expected that
these new wake modes are based on some elements of the 2S and 2P mode, particularly, the number
of single or vortex pairs shed per cycle.

As the PIV images from the present study were taken concurrently with the response data at
chosen locations of interest, the wake maps are somewhat coarse in resolution and specific questions
concerning transitions in the cylinders response and how they correlate to the wake structure cannot
be answered. While better resolution of the map would be desirable, to achieve that, given the
large parameter set and space, would have required more resources than were available. To better
characterise each wake mode and how they correlate with some of the response changes, as reported
in §5.5, could be the basis for future studies on this subject.
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Figure 5.34: The 2S-OC observed at reduced velocity U∗ = 8.0, forcing velocity ratio Am = 2.0 and
forcing frequency ratio f∗rot = 1.5. i-vi sequentially presents phase-averaged iso-contours of the vorticity of
the Mode II wake pattern over one shedding cycle.

5.8 Response over a range of reduced velocities

It has been shown in the present study that sinusoidally-driven rotary oscillations of an elastically-
mounted cylinder can effectively suppress VIV and large amplitude oscillations at specific forcing
velocity ratios and frequency ratios in both upper and lower amplitude response branches. From
the results presented in §5.5, it is clear that at certain forcing parameters the elastically-mounted
cylinder can reach A∗10 amplitude values more than three times that of a non-rotating cylinder. Of
interest to researchers and engineers is how an elastic system will behave when subjected to the
less favourable forcing parameters, i.e. where large increases in A∗10 over the non-rotating case were
observed. In the present study, the large amplitude response increases were generally observed at
forcing frequency ratio of f∗rot ≈ 1.0 and at velocity ratios Am & 1. In order to examine how the
response of an elastically-mounted cylinder changes with non-ideal forcing parameters, the cylinder
is subjected to rotary-lock-on at velocity ratio Am = 1.0 and frequency ratio f∗rot = 1.0 over a large
range of reduced velocities, U∗ = 3− 20.

The cylinder’s response at Am = 1.0 and f∗rot = 1.0 is presented as a function of U∗ in fig. 5.35.
Figure 5.35(a) presents the mean of the highest 10% of normalised amplitude peaks, A∗10. The open
circle markers represent the A∗10 amplitude response of a non-rotating, elastically-mounted cylinder,
and the red square markers represents the A∗10 of a cylinder rotary oscillating with favourable forcing
parameters (Am = 1.3 and f∗rot = 2.0). Figure 5.35(b) presents a PSD contour of the cylinder’s
displacement, y, as a function of the normalised frequency response, f∗, and U∗. The power density
is normalised by the peak power at each Am value. A comparison of A∗10 shows that the amplitude
of the cylinder oscillating at non-ideal rotary forcing parameters is significantly higher than that of
a non-rotating cylinder across most of the tested range of U∗. At reduced velocities (U∗ ≈ 5− 5.5)
associated with the beginning of the upper amplitude response branch of a non-rotating cylinder,
the A∗10 of the cylinder rotary oscillating at non-ideal parameters is similar to the non-rotating case.
While undergoing rotary oscillation at a velocity ratio Am = 1.0 and a f∗rot = 1.0, the A∗10 of the
cylinder increases monotonically with reduced velocity when U∗ & 12. This monotonic increase in
A∗10 amplitude is similar to the response observed in galloping studies Zhao et al. (2014b). However,
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Figure 5.35: The response quantities of an elastically-mounted cylinder undergoing rotary oscillations is
presented as a function of reduced velocity (U∗) at a fixed forcing velocity ratio of Am = 1.0 and at fixed
forcing frequency ratio of f∗rot = 1.0. (a) presents the mean of the highest 10% of normalised amplitude
peaks (A∗10). The open circle markers represent the A∗10 of a non-rotating cylinder undergoing VIV. The red
squares represents the A∗10 at Am = 1.3 and f∗rot = 2.0. (b) presents a power spectra density (PSD) contour
of the cylinder’s displacement, y. The power density is normalised by the peak power at each U∗ value.
(c) and (d) presents the RMS force coefficients (Cy,RMS, Cv,RMS) and mean phases (φT , φV ), respectively.
In both (c) and (d), the black markers represent the total component and the blue markers represent the
vortex component.

unlike galloping, the frequency response of the cylinder shown in fig. 5.35(b) remains rotary-locked-
on to the natural frequency of the oscillating system, i.e. f∗rot = f∗ = 1, while galloping typically
occurs at lower frequencies.

Figure 5.35(c) and fig. 5.35(d) presents the force coefficients and phases, respectively. In both
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fig. 5.35(c) and (d), the black markers represent the RMS total force coefficient, Cy,RMS, and mean
total phase, φT . Similarly, in the same figures, the blue markers represent the RMS vortex force
coefficient, Cv,RMS, and mean vortex phase, φV . For a non-rotating cylinder undergoing VIV, φT
remains close to 0◦ and jumps to 180◦ at the upper to lower branch transition. With the addition
of rotary oscillation, φT remained close to 0◦ across the entire vibration region of a non-rotating
cylinder.

5.9 Chapter summary

This chapter has presented results of an elastically-mounted cylinder free to oscillate in the cross-
flow direction and undergoes sinusoidally-driven rotary oscillations at moderate Reynolds numbers
(Re > 1000). The sinusoidal rotary oscillation motion profile is validated at a range of Am and f∗rot.

The results from the present study show that the ‘lock-on’ phenomenon previously reported in
rotary oscillation of rigid cylinders (see Cheng et al. (2001); Choi et al. (2002)); and the low Re
simulation of an elastically-mounted cylinder undergoing rotary oscillations by Du & Sun (2015)
persist at Re > 1000. At the two tested reduced velocities (U∗ = 5.5, 8.0), two regions exist
where the cylinder’s oscillation frequency, f , synchronises with the rotary forcing frequency, fosc,
or its subharmonic. At forcing parameters where f follows fosc, i.e. f = fosc, it is referred as the
rotary-lock-on region. The rotary-lock-on region is found near frequency ratio f∗rot ≈ 1. This region
increases in width covering a larger range of f∗rot as Am is increased. Cheng et al. (2001); Cheng
(2001); Choi et al. (2002) also reported similar widening of their lock-on regions as Am is increased.
At forcing parameters where f follows the one-third subharmonic of the fosc, i.e. f = 1/3fosc, this
is referred as the tertiary-lock-on region. The tertiary-lock-on region is found near frequency ratio
f∗rot ≈ 3. It is in the shape of a spinning top. With increasing Am, the range of f∗rot at which
the cylinder undergoes tertiary-lock-on first increases from a single point to a maximum, then it
decreases to a single point again before disappearing.

The dynamic response of a rotary-oscillating cylinder showed that the rotary oscillation’s effec-
tiveness at reducing large amplitude VIV is dependent on the forcing parameters. In the upper
amplitude response branch at reduced velocity U∗ = 5.5, large amplitude VIV is observed in most of
the areas outside the rotary-lock-on and tertiary-lock-on regions in the Am-f∗rot domain. At f∗rot be-
low the lower f∗rot boundary of the rotary-lock-on region and at velocity ratios Am & 1.0, amplitudes
(A∗10) larger than the non-rotating VIV case is observed. Large amplitude oscillations were observed
at two other areas; the first is a narrow range of frequency ratios (0.8 . f∗rot . 1.1) within the rotary-
lock-on region and second within the tertiary-lock-on region. The remainder of the rotary-lock-on
region achieved significant reductions in A∗10; especially at forcing frequency ratios f∗rot & 1.3. In
the lower amplitude response branch (U∗ = 8.0), the response of the cylinder is generally similar
to that of the upper branch case (U∗ = 5.5). Large amplitude VIV was observed at low frequency
ratios f∗rot . 1.1 and high velocity ratios Am & 0.5. The largest amplitude response measured was
more than three times that of the non-rotating response and it is within the rotary-lock-on region.
At forcing velocity ratios Am & 1.3 and frequency ratios f∗rot & 1.3, large amplitude responses (A∗10)
cease to exist. When comparing the range of Am and f∗rot at which large amplitude oscillations were
suppressed in previous work, they are in good agreement. In the low Re simulation by Du & Sun
(2015), they reported large decreases in amplitude response, A∗, at frequency ratios f∗rot & 1 and at
velocity ratios Am & 1.3. This demonstrates the efficacy of rotary oscillation to suppress VIV even
at moderate Reynolds numbers Re > 1000.

An experiment was done to study whether the rotary-lock-on region will disappear at sufficiently
high Am and if the tertiary-lock-on region will reappear. This study was done over a large range
of forcing velocity ratios (Am = 0 − 3.5) at fixed frequency ratios f∗rot = 1.0 and 3.0 in the upper
amplitude response branch (U∗ = 5.5). Response results showed that large amplitude oscillations
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persist and f continues to follow fosc at all tested range of Am at f∗rot = 1.0. This demonstrates
that rotary-lock-on continue to occur at very high Am. At a fixed frequency ratio of f∗rot = 3.0, the
tertiary-lock-on region disappears between velocity ratio 1.6 . Am . 2.4 and reappears at Am & 2.4.

Following the cylinder’s dynamic responses, the wake structure was studied using PIV. A number
of new and existing wake modes were observed. The SW mode is characterised by the switching
of wake patterns. These wake patterns resemble the 2S and 2P modes observed in previous studies
of forced and freely oscillating cylinders. This mode is typically observed at low f∗rot regions where
the effect of frequency modulation is strong. 2SO and 2S-OC are two wake modes that consist of
two single counter-rotating vortices shed per cycle. The vortices in both modes are shed away from
the streamwise centreline. The difference between these two modes are largely the shed vortices’
closeness to the streamwise centreline and the decay of the vortical structures that. While these
two wake patterns share some likeness to the 2S mode observed in VIV studies, their separation
from the streamwise centreline is a feature that resembles Mode I and Mode II from rigid rotary
oscillating cylinder studies. These modes were observed over a large range of Am and f∗rot. Mode I-O
was observed within the rotary-lock-on region where large amplitude vibration response is minimal.
This mode consists of two pairs of counter-rotating vortices shed per cycle. Each pair has a larger
primary vortex and a smaller secondary vortex of opposite vorticity that orbits around the primary
vortex. A similar wake structure was shown in Du & Sun (2015) but little about its behaviour
was discussed. A similar wake structure was observed in a simulation of a rigid cylinder at a
Reynolds number of Re = 1000 by Chou (1997). The CS wake pattern was observed close to the
boundary of the tertiary-lock-on region. This new wake mode consists of chaotic shedding of small
vortex structures. The CF2P mode is another new wake pattern observed at high f∗rot in the lower
amplitude response branch (U∗ = 8.0). It sheds the same number of counter-rotating vortex pairs
as regular 2P mode seen in VIV studies; however, the vortex pairs in the CF2P mode is aligned
in the cross-flow direction whereas the vortex pairs in a 2P mode are aligned streamwise. From
the study of the cylinder’s wake structure, it is evident that some features of the wake patterns
observed in rotary oscillation of rigid cylinder studies continue to exist even when the body becomes
elastically-mounted.

Furthermore, the dynamic response of a rotary oscillating cylinder is compared with a non-
rotating cylinder over a large range of reduced velocities. It was observed that at a forcing velocity
ratio of Am = 1.0 and a forcing frequency ratio of f∗rot = 1.0, the addition of rotary forcing increases
the amplitude response (A∗10) of the cylinder, significantly. At all tested reduced velocities, U∗,
the amplitude response of the cylinder remained higher than the non-rotating case. This clearly
demonstrates the limitations of using sinusoidal rotary oscillations as a mean of suppressing VIV.
The present work also showed the need for specific combinations of Am and f∗rot for rotary oscillation
to be beneficial to engineering applications.
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Chapter 6

Conclusions and Recommendations for
Future Investigations

6.1 Conclusions

In this thesis, two of the most researched active control methods to suppress vortex-induced vibration
(VIV) were experimentally investigated on an elastically-mounted cylinder that is free to oscillate
in the cross-flow direction. The experiments were conducted at low mass and damping ratios over
a range of moderate Reynolds numbers (Re & 1000). The first investigation involves rotating the
elastically-mounted cylinder at a constant rate, the parametric studies were based on the independent
variables: reduced velocity, U∗, and rotation rate, α. The second investigation involves forcing
the elastically-mounted cylinder to undergo sinusoidally-driven rotary oscillations at specific forcing
values in the forcing velocity ratio and forcing frequency ratio domain. In both investigations, the
dynamic response of the cylinder is studied and compared to the non-rotating cases and similar
studies previously done at lower Reynolds numbers. The wake of the cylinder was also studied using
particle image velocimetry (PIV) in both investigations. A summary of the main findings from this
thesis is presented in the following sections.

6.1.1 Flow-induced vibration of a cylinder undergoing constant rate rotation

The results of an elastically-mounted cylinder undergoing constant rate rotation at moderate Reynolds
numbers (Re & 1000) have exhibited response features that are agree with previous low-Re studies
and have also shown new wake structures. The mean displacement of the cylinder increases with
rotation rate at any fixed reduced velocity and also increases with at any fixed α. This is in excel-
lent agreement with previous trends observed at lower Reynolds numbers in Bourguet & Lo Jacono
(2014); Zhao et al. (2014c); Seyed-Aghazadeh & Modarres-Sadeghi (2015). It is expected that the
cylinder’s time-averaged displacement increases with rotation rate as the net lift, the Magnus force,
is proportional to the cylinder’s rate of rotation.

The amplitude response of the cylinder undergoing constant rate rotation exhibits significant
differences to the non-rotating response. Up to a rotation rate of α ≈ 1.5, the peak amplitude
response increases and the range of reduced velocities over which large amplitude oscillations (A∗10 >
0.1D) were observed also increased. The global peak amplitude response was observed at a reduced
velocity associated with the upper amplitude response branch of a non-rotating cylinder and at a
rotation rate of α ≈ 2.0. The global peak amplitude response was approximately 80% higher than the
non-rotating case at 1.4D. The largest increases in amplitude response, A∗10, over the non-rotating
case were observed in the upper branch and beginning of the lower branch. The amplitude response
of the cylinder decreases abruptly as the rotation rate is increased pass α ≈ 2.25. With increasing
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rotation rate, there is a global decrease in the normalised frequency response of the cylinder. These
findings are in good agreement with the trends observed in the low Reynolds number (Re = 100)
simulation by Bourguet & Lo Jacono (2014). They reported significant increases in amplitude
response, A∗, over the non-rotating case with a global peak of A∗ ≈ 1.9D and global decreases in
frequency response with increasing rotation rate. A comparison of the size of the vibration region
(where the amplitude response is A∗10 & 0.1D) in the reduced velocity and rotation rate domain
revealed some differences between the present study and previous work. The low Reynolds number
(Re = 350−1000) experiments by Seyed-Aghazadeh & Modarres-Sadeghi (2015) did not exhibit the
same increases in amplitude response, however, their observations on the time-averaged displacement
and frequency response trends are in agreement with those seen in Bourguet & Lo Jacono (2014) and
the present study. While the response trends from Bourguet & Lo Jacono (2014) are in good with the
present work, their vibration region are distinctively different to the present study’s. Their vibration
region persists up to a rotation rate of α ≈ 3.75 and extends across to the upper reduced velocity
limit of their study, whereas the vibration regions of the present study disappears when α & 3.2 and
are limited to reduced velocities between the beginning of the initial branch and the end of the lower
branch (4.8 . U∗ . 10.5). Despite some differences in other response trends, the vibration region
in Seyed-Aghazadeh & Modarres-Sadeghi (2015) is very similar to the present study. It is evident
that experimental parameters such as the oscillating systems’ structural properties and the effect of
Reynolds number will have an impact on the cylinder’s response and may explain variations in the
response trends.

Imaging of the rotating cylinders wake showed that wake modes typically seen in forced and freely
vibrating cylinders such as 2S, 2P and P+S continue to exist over a range of reduced velocities and
rotation rates. With increasing rotation rate, modes such as 2S and P+S becomes asymmetric and
deviates from the streamwise centreline. Furthermore, vortex and vortex pairs in each shedding cycle
have an increased tendency to collect in groups with increasing rotation rate. The close proximity
of these vortices in collected groups caused increased cross-annihilation resulting in smaller and
weaker vortices as they flow downstream. A new C(AS) mode was found and it is characterised
by the coalescence of small asymmetric vortices and its intermittent switching between a wider and
narrower state. This mode is found at α & 2. Compared to Bourguet & Lo Jacono (2014), the
present study did not observe wake patterns such as the T+S and U modes. This is expected after a
comparison of the cylinder’s response as the two studies have distinctively different vibration regions.

From the study of an elastically-mounted cylinder undergoing constant rate rotation, it is con-
cluded that constant rate rotation continues to have a significant impact on the dynamic response
and wake structure of the cylinder at a range of moderate Reynolds numbers (1000 . Re . 6300).
Compared with previous low Reynolds number studies these results show that some response trends
and wake structures observed at Re ≤ 1000 continue above Re = 1000.

6.1.2 Flow-induced vibration of a cylinder undergoing sinusoidally-driven rotary
oscillations

The flow-induced vibration of a cylinder undergoing sinusoidally-driven rotary oscillations was in-
vestigated at Reynolds numbers Re > 1000. The dynamic response and wake structure of an
elastically-mounted cylinder undergoing rotary forcing showed similarities to previous work involv-
ing rotary oscillating cylinder. Analysis of the cylinder’s frequency response have shown that the
lock-on phenomenon reported in previous low Re studies (see Cheng et al. (2001); Cheng (2001); Choi
et al. (2002); Du & Sun (2015)) continues to exist at moderate Re. The present thesis defined the
phenomenon where the oscillation frequency of the cylinder following the rotary forcing frequency,
fosc, as ‘rotary-lock-on’. Furthermore, when the oscillation frequency of the cylinder follows the
one-third subharmonic of the rotary forcing frequency 1/3fosc, this is referred as ‘tertiary-lock-on’.
In the present forcing parameter space (Am−f∗rot), a rotary-lock-on region is observed near f∗rot ≈ 1,
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and a tertiary-lock-on region is observed near f∗rot ≈ 3. These two regions exist in both reduced
velocity cases examined (U∗ = 5.5 and 8.0). The observation of a rotary-lock-on region was previ-
ously reported in a number of works. The presence of the rotary-lock-on region is expected since
the forcing frequency approaches the non-rotating VIV frequency response, the oscillation frequency
will follow the higher power fosc to some value above the frequency response in non-rotating VIV
(fVIV) before the oscillation frequency (f) returns to fVIV. The range of forcing frequency ratios
over which rotary-lock-on occurs increases with forcing velocity ratio, Am. This observation is in
excellent agreement with previous rigid cylinder studies. Tertiary-lock-on was previously discussed
in rigid cylinder studies by Choi et al. (2002); Thiria et al. (2006), however, the low Reynolds num-
ber Re = 350 simulation of an elastically-mounted cylinder by Du & Sun (2015) did not report
on tertiary-lock-on. In the present study, tertiary-lock-on was observed over a substantial range of
forcing velocity and frequency ratios.

The amplitude response of the cylinder outside the rotary-lock-on and tertiary-lock-on regions
are at similar or are lower than non-rotating VIV values. However, at forcing frequency ratios
below the lower boundary of the rotary-lock-on region and at velocity ratios Am & 1, the amplitude
response increases significantly with Am. Large amplitude oscillations were also observed within
the rotary-lock-on region at forcing frequency ratios close to f∗rot = 1. Within the tertiary-lock-
on region, large amplitude vibrations were observed near the lower boundary and the amplitude
response decreases with increasing frequency ratio. These trends exist in both the upper branch
(U∗ = 5.5) and lower branch (U∗ = 8.0) cases. In the upper branch, within the rotary-lock-on region
at velocity ratios Am & 1.0 and frequency ratio f∗rot & 1.3, the amplitude response decreases below
Am ≈ 0.1. The range of rotary forcing parameters over which large reductions in amplitude response
over the non-rotating value were observed is similar to those reported by Du & Sun (2015), despite
the significantly lower Reynolds number. This shows that the rotary oscillation mechanism remains
effective at suppressing VIV up to moderate Reynolds numbers (Re > 1000).

Two experiments were conducted in the upper branch (U∗ = 5.5) to examine the presence of,
or lack of, the rotary-lock-on and tertiary-lock-on regions. The response data of the cylinder also
showed that the rotary-lock-on region extends to velocity ratios up to the limit of the present study
at Am = 3.5. Tertiary-lock-on initially disappears when the velocity ratio is increased pass Am ≈ 1.6,
however, with further increases in Am, tertiary-lock-on reappears at Am > 2.4.

Using PIV, the wake of an elastically-mounted cylinder undergoing sinusoidal rotary oscillations
was studied. A number of existing and new wake modes were observed. The 2SO and 2S-OC are
wake patterns that resembles those previously reported in rotary oscillation of rigid cylinders (e.g.
Tokumaru & Dimotakis (1991); Choi et al. (2002)). Both the 2SO and 2S-OC mode consist of
the shedding of two single counter-rotating vortices offset from the streamwise centreline per cycle.
Their differences are that the 2S-OC shed vortices comparatively closer to the streamwise centreline
and that the vortices coalesce as they flow downstream. These two wake patterns were seen in
and outside the rotary-lock-on region where the amplitude response is not minimal (A∗10 & 0.2).
Another wake mode that is foreign to previous VIV studies is the Mode I-O pattern. It involves
the shedding of a pair of counter-rotating vortices per half shedding cycle, in each vortex pair, the
smaller secondary vortex orbits around the larger primary vortex. It is observed in low amplitude
response areas (A∗10 . 0.2) within the rotary-lock-on region. A similar wake structure was observed
in a simulation of a rigid cylinder at a Reynolds number of Re = 1000 by Chou (1997). Du & Sun
(2015) presented results showing the shedding of two pairs of tandem, counter-rotating vortices but
they did not discuss other aspects of their behaviour. The CS mode, short for the chaotic shedding
and decay of small vortex structures, was observed close to the boundary of the tertiary-lock-on
region. Another new wake mode characterised by the shedding of two counter-rotating vortex pairs
aligned in the cross-flow direction was observed in the tertiary-lock-on region in the lower amplitude
response branch U∗ = 8.0). This mode is referred as CF2P.
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From the study of an elastically-mounted cylinder undergoing sinusoidally-driven rotary oscilla-
tions, it is evident that rotary forcing and the phenomenon of ‘lock-on’ continue to have a significant
impact on the dynamic response and wake structure of the cylinder at a range of moderate Reynolds
numbers (Re & 1000). Comparisons with previous low Re studies showed that trends such as
the rotary-lock-on and tertiary-lock-on regions continue to exist at higher Reynolds numbers. In
fact, the range of forcing velocity ratio and frequency ratio over which the largest reduction in the
cylinder’s amplitude response was achieved is very similar between the present experimental study at
Re & 1000 and the low Reynolds number (Re = 350) simulation by Du & Sun (2015). It is concluded
that rotary-oscillation remains effective at suppressing VIV at moderate Reynolds numbers.

6.2 Recommendations for future investigations

It is hoped that this thesis contributes to expanding the knowledge on the dynamic response and
wake structure of an elastically-mounted cylinder undergoing constant rate rotation and sinusoidally-
driven rotary oscillations. However, it is inevitable that a number of new fundamental questions have
arisen from the results presented in this thesis. Some of these questions are listed in the final sections
of the thesis.

6.2.1 Flow-induced vibration of a cylinder undergoing constant rate rotation

• It is known that an elastically-mounted cylinder undergoing VIV will exhibit hysteresis when it
switches between the initial and upper amplitude response branches, i.e. when U∗ is increased
or decreased. Due to the expansive parameter space to survey, α was varied only in the
increasing direction in the present study. It is possible for the cylinder to exhibit hysteresis
as α is increased then decreased. In particular, at α values where there are abrupt jumps or
drops in A∗10 amplitude and/or frequency responses

• Due to finite resources, it was impossible to capture PIV images at every data point. There are
areas in the wake map where the wake structure of the cylinder is not quantified or understood.
It has been shown that the C(AS) mode was observed across the entire vibration region at
sufficiently high α. However, there is a discrepancy in the values of α at which the wake
transitions from a 2S or P+S based mode to the C(AS) mode. More work should be done to
study this boundary between the unsteady, 2S and 2P, and the steady, C(AS), wake modes.
The vorticity sign switching phenomenon associated with the P+S mode at certain values of
α and U∗ is another interesting discovery that should be investigated. Furthermore, no PIV
imaging was performed in the desynchronised region where the cylinder showed some variations
in amplitude response (see U∗ = 10, α = 0.5−2.5). It is unknown if the variation in amplitude
response is associated with any changes to the wake structure of the cylinder. These are some
of the questions that have arisen from the present study.

6.2.2 Flow-induced vibration of a cylinder undergoing sinusoidally-driven rotary
oscillations

• From the present study, it is evident that the response of the cylinder with rotary forcing
showed some differences between the two U∗ cases. Limited work has been done to examine
the evolution of the cylinder’s response over a large range of U∗ when the cylinder is under-
going rotary forcing at fixed values of velocity ratio (Am) and frequency ratio (f∗rot). At a
fixed velocity ratio of Am = 1 and frequency ratio of f∗rot = 1, the cylinder showed amplitude
responses that are significantly higher than the non-rotating equivalent. Additional combina-
tions of Am and f∗rot should be investigated. A case that is of particular interest is at velocity
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ratio Am = 1.5, and frequency ratio f∗rot = 2. This is a point in the Am-f∗rot domain where
vibration is effectively suppressed by rotary forcing.

• As PIV imaging was employed to survey the Am − f∗rot parameter space in a grid-like matter,
some points of interest such as the boundaries of the rotary-lock-on and tertiary-lock-on regions
were not thoroughly investigated. Further investigation in selective areas can better show how
the wake evolves and behaves as the cylinder becomes rotary-lock-on.

• The two reduced velocity cases examined in the present thesis belong to the peak of the upper
branch (U∗ = 5.5) and centre of the lower branch (U∗ = 8.0). A parametric study at reduced
velocities associated with the highest point of the initial branch, the beginning of the upper
branch, the end of the upper branch and the beginning of the lower branch will provide a better
understanding of the response of an elastically-mounted cylinder undergoing rotary forcing at
U∗ associated with amplitude branch transitions. This will be a highly complicated study
as the switching behaviour associated with frequency modulation in rotary oscillation will be
combined with switching and hysteresis behaviour of VIV.

• Hysteresis is a known phenomenon in VIV studies. Due to the expansive parameter space,
Am remained constant while f∗rot is increased in the present study. A study on the hysteresis
of varying Am and f∗rot can provide a better understanding of the dynamic response of the
cylinder near the rotary-lock-on and tertiary-lock-on boundaries.
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Appendix A

Rotary Motion Validation

A.1 Constant rate rotation motion profile validation

A rotation device was used to attach the test cylinder and control its rotational motion. Motor control
systems are susceptible to errors and require fine tuning and testing. It was therefore imperative
to validate that the prescribed motion was achieved over a range of rotation rates investigated.
Figure A.1 presents validation data of the cylinder’s constant rotation motion. Figure A.1(a) shows
that the measured output (ωout) from the rotary encoder overlaps the ideal input value (ωin) and
varied linearly. Figure A.1(b) presents the relative error (δω) of ωout over the tested range of ωin The
mean value of δω over the tested range of rotation rates is 0.222%. This showns that the motion of
the cylinder as it undergoes constant rate rotation is accurate.

A.2 Sinusoidal rotary oscillation motion profile validation

The sinusoidal rotary oscillation motion profile of the cylinder was measured as the rotation rig and
test cylinder were subjected to tests on a rigid test jig. The motion profile was measured through
the optical rotary encoder built into the rotation rig. The measured profiles were analysed and
compared against an ideal signal of the same forcing parameters. A number of forcing parameters
were tested, here two cases are presented to cover the extremities of the independent parameters:
(1) reduced velocity (U∗), (2) forcing velocity ratio (Am), and (3) forcing frequency ratio (f∗rot).
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Figure A.1: Validation of the constant rotation motion of the cylinder. (a) presents a comparison of the
input (ωin) and measured output (ωout) rotation rate of the cylinder in rpm. (b) presents the relative error
(δ) between ωin and ωout.

151



Appendix A. Rotary Motion Validation

Fig. 5.1(a) presents the low U∗ case, which is associated with the initial amplitude response branch
of a non-rotating cylinder (U∗ = 3.0) and at a low forcing velocity ratio of Am = 0.1 and a low
frequency ratio of f∗rot = 0.25. Fig. 5.1(b) presents the high U∗ case that is associated with the lower
amplitude response branch of a non-rotating cylinder (U∗ = 8.0) and at a high forcing velocity ratio
of Am = 2.0 and a high frequency ratio of f∗rot = 4.50.

Fig. A.2(a) presents a small sample of the time history of the cylinder’s rotary motion and
fig. A.2(c) presents a larger sample of the rotary displacement time history. The rotary displacement,
in terms of velocity ratio (Am), is presented as a function of oscillation periods (T ). The reader
should be mindful that the Am of the cylinder varies with time depending on the phase of the rotary
oscillation cycle. Based on the definition described in eq. 2.27, the forcing parameter commonly
referred as ‘velocity ratio’ (Am) is the peak value. The measured and ideal motion profiles are
represented by the black and red data series, respectively. From the figure (a) it is evident that the
measured rotary motion profile follows the ideal input very closely. At higher forcing values, the
measured rotary motion continues to follow the ideal input (see fig. A.3(a) and (c)).

Fig. A.2(b) presents a power spectra density (PSD) of the cylinder’s rotary displacement as a
function of normalised frequency response, f∗. The power density is normalised by the peak power
and the vertical dashed line represents the input rotary forcing frequency, fosc. Fig. A.2(b) shows
that the measured f∗rot = 0.2422, is within 3% of the input value. This value is typical at low values
of U∗, Am and f∗rot. As the values of the three independent variables were increased, f∗rot typically
falls within 0.5% of the input value. This is shown in fig. A.3(b) where the measured f∗rot = 4.4922
is within 0.2% of the input value of 4.5.

Physical limitations of the motor and motor controller meant the motion the cylinder was not
perfectly sinusoidal. Small mechanical slippages can cause the sinusoidal motion profile to deviate
from its zero position. When small this deviation, or drift, from the rotational zero position is
unlikely to affect the overall response of the cylinder, large values, however, could be detrimental to
the quality of the study.

Fig. A.2(d) presents the rotational deviation (θdev), in radians, of the cylinder from its zero
position as a function of T . It can be seen that the measured rotary motion is not perfectly sinusoidal
about its zero position as the motor slips in one direction as it oscillates. This results in monotonic
increases in θdev with T . However, θdev is small as the total deviation over 10 oscillation periods
are less than θdev . 0.035 rad. As the values of the three independent variables were increased (see
Fig. A.3(d)), θdev decreases as its value fall to within θdev ± 0.002 rad over T .

Fig. A.2(e) presents the mean relative error (δAm) in Am between the measured and ideal motion
profiles over a complete oscillation cycle, as a function of T . This error analysis shows that over each
oscillation cycle, the δAm is less than 0.4%. As the values of the three independent variables were
increased (see fig. A.3(e)), δAm decreased to values less than 0.1%.

The analysis of the rotary motion profile shows that the apparatus and control software used in
the present experiment can accurately simulate and control the cylinder model to undergo sinusoidal
motions at a range of forcing velocity and frequency ratios.
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A.2. Sinusoidal rotary oscillation motion profile validation
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Figure A.2: The motion profile of a cylinder undergoing sinusoidal rotary oscillations at a reduced velocity
that is associated with the upper amplitude response branch of a non-rotating cylinder (U∗ = 5.0) and at
low forcing velocity ratio of Am = 0.1 and a low frequency ratio of f∗rot = 0.25. (a) presents a close-up
view of the sinusoidal rotary displacement time history as a function of Am and oscillation period (T ).
(c) presents a larger sample of the rotary displacement time history. In (a) and (c), the red data series
is the ideal input and the black data series is the measured rotary displacement. (b) presents the power
spectra density of the cylinder’s rotary displacement as a function of f∗rot. The f∗rot that corresponds to
the peak power is labelled. (d) presents the rotational deviation (θdev), in radians, of the cylinder from its
zero position as a function of T . (e) presents the mean relative error (δAm), in percent, of Am between the
measured and ideal motion profiles over a complete oscillation cycle as a function of T .
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Appendix A. Rotary Motion Validation
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Figure A.3: The motion profile of a cylinder undergoing sinusoidal rotary oscillations at a reduced velocity
that is associated with the lower amplitude response branch of a non-rotating cylinder (U∗ = 8.0) and at
low forcing velocity ratio of Am = 2.0 and a low frequency ratio of f∗rot = 4.5. (a) presents a close-up
view of the sinusoidal rotary displacement time history as a function of Am and oscillation period (T ). (c)
presents a larger sample of the rotary displacement time history. In (a) and (c), the red data series is the
ideal input and the black data series is the measured rotary displacement. (b) presents the power spectra
density (PSD) of the cylinder’s rotary displacement as a function of f∗rot. The f∗rot that corresponds to the
peak power is labelled. (d) presents the rotational deviation (θdev), in radians, of the cylinder from its zero
position as a function of T . (e) presents the mean relative error (δAm), in percent, of Am between the
measured and ideal motion profiles over a complete oscillation cycle as a function of T .
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Bearman, P. & Branković, M. 2004 Experimental studies of passive control of vortex-induced
vibration. European Journal of Mechanics - B/Fluids 23 (1), 9–15.

Billah, K. & Shinozuka, M. 1991 Fluctuations of dynamic pressure and white noise assumption
in flow-induced vibration problems. Journal of Sound and Vibration 147 (1), 179–183.

Bishop, R. & Hassan, A. 1964 The lift and drag forces on a circular cylinder oscillating in a flowing
fluid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, , vol. 277, pp. 51–75. The Royal Society.

Blackburn, H. & Henderson, R. 1999 A study of two-dimensional flow past an oscillating
cylinder. Journal of Fluid Mechanics 385, 255–286.

Blevins, R. 1977 Flow-induced vibration, 1st edn. Van Nostrand Reinhold, Co., New York, NY.

Blevins, R. 1990 Flow-induced vibration, 2nd edn. Malabar: Krieger Publishing Company.

Bourguet, R. & Lo Jacono, D. 2014 Flow-induced vibrations of a rotating cylinder. Journal of
Fluid Mechanics 740, 342–380.

Brankovic, M. 2004 Vortex induced-vibration attenuation of circular cylinders with low mass and
damping. Phd, Imperial College London.

Brika, D. & Laneville, A. 1993 Vortex-induced vibrations of a long flexible circular cylinder.
Journal of Fluid Mechanics 250, 481–508.

Carberry, J., Sheridan, J. & Rockwell, D. 2001 Forces and wake modes of an oscillating
cylinder. Journal of Fluids and Structures 15 (1), 523–532.

155



References

Carberry, J., Sheridan, J. & Rockwell, D. 2005 Controlled oscillations of a cylinder: forces
and wake modes. Journal of Fluid Mechanics 538, 31–69.

Chen, M.-H. 2000 Numerical study of vortex shedding from a rotating cylinder immersed in a
uniform flow field. International Journal for Numerical Methods in Fluids 32, 545–567.

Chen, Y.-M., Ou, Y.-R. & Pearlstein, A. 1993 Development of the wake behind a circular
cylinder impulsively started into rotary and rectilinear motion. Journal of Fluid Mechanics 253,
449–484.

Cheng, M. 2001 Numerical investigation of a rotationally oscillating cylinder in mean flow. Journal
of Fluid Mechanics 15, 981–1007.

Cheng, M., Liu, G. & Lam, K. 2001 Numerical simulation of flow past a rotationally oscillating
cylinder. Computers & Fluids 30 (3), 365–392.

Chew, Y., Cheng, M. & Luo, S. 1995 A numerical study of flow past a rotating circular cylinder
using a hybrid vortex scheme. Journal of Fluid Mechanics 299, 35–71.

Choi, S., Choi, H. & Kang, S. 2002 Characteristics of flow over a rotationally oscillating cylinder
at low Reynolds number. Physics of Fluids 14 (8), 2767–2777.

Chou, M.-H. 1997 Synchronization of vortex shedding from a cylinder under rotary oscillation.
Computer & Fluids 26 (8), 755–774.

Coutanceau, M. & Menard, C. 1985 Influence of rotation on the near-wake development behind
an impulsively started circular cylinder. Journal of Fluid Mechanics 158, 399–446.

D’Adamo, J., Godoy-Diana, R. & Wesfreid, J. E. 2015 Centrifugal instability of stokes layers
in crossflow: the case of a forced cylinder wake. In Proc. R. Soc. A, , vol. 471, p. 20150011. The
Royal Society.
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