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Abstract

Social insects such as ants and bees live in colonies of up to millions of individuals. In

order to satisfy the colony needs, individual workers have to perform a variety of tasks

only relying on their limited local knowledge. The proper allocation of workers to tasks in

different environments is fundamental to the organisation of insect colonies and crucial to

their ecological success. This research explores how mechanisms of task allocation in social

insects are influenced by environmental conditions from different novel perspectives. We

apply mathematical and computational models to explain and simulate the mechanistic

processes of task allocation.

We consider the temporal influence, which tends to be overlooked by most models in

the literature, as an important factor, and in particular, focus on task allocation on short

timescales. We perform survival analysis for the data from biological experiments in order

to take the factor of time into account. Particularly in these experiments, the environ-

mental condition can be measured and controlled at a precise level. The results of our

analysis suggest that surprisingly, neither stimulus intensity nor individual experience has

a strong effect on workers’ task engagement. However, we find that individual workers

tend to be less active when receiving rewards, in contradiction to a general expectation

that workers’ perception of rewards for performing a task should encourage them to engage

in the task more strongly. We also find that the processes of task allocation appear not to

be homogeneous Poisson but close to power laws, demonstrating that the timing-patterns

of workers’ activities cannot be omitted at short timescales.

We study the effect of social interaction on colony-level task allocation by applying game

theory as an alternative framework to traditional approaches. Our game-theoretical mod-

els indicate that specialisation can emerge based on the interaction dynamics between

workers and their environments without intrinsic inter-individual variation, which is typ-

ically assumed to cause specialisation. We evaluate and discuss the efficiency that can

x



be achieved by colonies based on our models as well as their performance in dynamic

environments. Particularly, we find that not only the current environmental condition

but also the history of previous environmental conditions can influence the behavioural

patterns and efficiency achievements of colonies in dynamic environments. This provides

new insights into our understanding of how task allocation in social insects can adapt to

environmental fluctuations, as in general, it is only assumed that task allocation responds

to the current environmental conditions.

The outcomes of this research contribute to the knowledge of how task allocation at

the colony level emerges from individual task choice in social insects. Our approaches

exemplify a methodology for exploring this interdisciplinary field of study. Our models

can be used to explain and predict colony behaviours in social insects and to guide further

biological experiments. Our results may ultimately benefit the bio-inspired applications

of task allocation, such as swarm robotic systems and factory multi-task scheduling.
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Chapter 1

Introduction

1.1 Task Allocation in Social Insects

Social insects such as ants, bees, wasps and termites live in groups, typically called colonies,

of up to millions of individuals. A colony includes one or few queens, and sometimes males,

both of which are responsible for reproduction. The majority of individuals in a colony

are workers, taking charge of the maintenance and expansion of the colony. Social insect

colonies are regarded as one of the most successful organisations in nature (Hölldobler

and Wilson, 1990, 2009; Charbonneau et al., 2013; Oster and Wilson, 1978; Grimaldi and

Engel, 2005). They dominate most terrestrial habitats around the world (Charbonneau

et al., 2013; Charbonneau and Dornhaus, 2015a; Hölldobler and Wilson, 2009) and some

species may have evolved for millions of years (Grimaldi and Engel, 2005).

The collective behaviours of social insect colonies, adapted to a variety of environmen-

tal and social conditions, are complex and diverse (Dornhaus et al., 2012; Charbonneau

and Dornhaus, 2015a) and thus provide a rich field to investigate. Within such a colony,

individual members appear to act in a decentralised way and make simple decisions ac-

cording to their limited local knowledge (Bonabeau, Theraulaz, Deneubourg, Aron and

Camazine, 1997; Camazine et al., 2001; Duarte et al., 2011; Couzin, 2009). This makes

social insect colonies experimentally more tractable than many other collective organisa-

tions and as a result, they are widely used as model systems for the study of collective

behaviour (Beshers and Fewell, 2001; Charbonneau and Dornhaus, 2015a). The princi-

ples of collective behaviour are potentially transferable from social insect colonies to other

social systems or even multicellular organisms (Beshers and Fewell, 2001; Duarte et al.,

2011; Wilson, 1985).

Workers within a colony can cooperate in sophisticated ways for various tasks such as

brood care, nest construction, foraging and defence in order to satisfy the colony needs

that cannot be managed by a single individual (Charbonneau et al., 2013; Charbonneau

and Dornhaus, 2015a; Duarte et al., 2011; Mersch, 2016). Without any central control,

1



2 CHAPTER 1. INTRODUCTION

workers can be appropriately allocated to each task in response to numerous environmen-

tal contexts such as variation of food resources, predation pressures and climatic condi-

tions (Duarte et al., 2011; Gordon, 1996; Oster and Wilson, 1978; Robinson, 1992). This

process is called task allocation (Gordon, 1996, 2002, 2016). It is fundamental to the or-

ganisation of insect colonies and crucial to their survival and ecological success (Beshers

and Fewell, 2001; Jeanson and Weidenmüller, 2014; Oster and Wilson, 1978; Schwander

et al., 2005; Wilson, 1971, 1985; Page Jr. and Mitchell, 1990). Task allocation is one of

the core questions in the study of social insects and connected with a wide range of areas

including behavioural syndromes (Jandt et al., 2014), scaling laws (Fewell and Harrison,

2016) and network dynamics (Charbonneau et al., 2013; Mersch, 2016).

Task allocation is a fast and highly dynamic process that describes how distributions

of colony workforce across different tasks interact with environments (Oster and Wilson,

1978; Gordon, 2016; Fewell and Harrison, 2016; Mersch, 2016; Kang and Theraulaz, 2016).

Over a certain time period, workers can behave with statistically consistent preferences

towards particular tasks, which is called task specialisation (Duarte et al., 2011; Fewell and

Harrison, 2016; Jeanne, 2016). To satisfy various demands within a colony, workers can

specialise in different subsets of tasks, called division of labour (Michener, 1974; Oster and

Wilson, 1978; Robinson, 1992; Fewell and Harrison, 2016; Jeanne, 2016). Here a stable,

long-term division of labour is out of scope of this thesis. This research mainly focuses on

the dynamics of task allocation on short worker-life timescales.

Particularly, specialisation can be used to describe the behavioural patterns of task al-

location. For example, there are 100 workers who need to tackle two tasks (A and B) in

a colony. In order to satisfy the associated demands, Task A requires 30 workers’ engage-

ment and Task B needs 70. At the colony level, one pattern of task allocation is that

all workers are engaged in both tasks with 30% of chance for Task A and 70% for Task

B, which does not involve specialisation at all; Another pattern is that 30 workers are

allocated to Task A, 70 to Task B and all workers make 100% effort at their target tasks,

which represents a complete colony-level specialisation; There can be other patterns of

task allocation in between the above two.

Although there is little evidence that workers permanently specialise into tasks (Gordon,

2016), the colony-level specialisation can statistically occur on certain timescales (Duarte

et al., 2011; Jeanne, 2016). In the study of task allocation, there are some major ques-

tions such as what are the sources that can generate specialisation (Gordon, 2016) and

how specialisation is related to behavioural efficiency and flexibility (Charbonneau and

Dornhaus, 2015a). At the colony level, it is assumed that tasks can be performed more

efficiently by specialised workers (Oster and Wilson, 1978; Charbonneau and Dornhaus,

2015a; Leighton et al., 2017). We will explore and discuss these questions in the following

chapters of this thesis.
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1.2 Research Questions

To study any animal behaviour, the most fundamental and significant approach is to

ask Tinbergen’s four questions (Tinbergen, 1963; Bateson and Laland, 2013): causation

(How does it work?), ontogeny (How did it develop?), adaptive value (What is it for?)

and evolution (How did it evolve?). These questions provide complimentary insights and

lead to a comprehensive understanding of the focal behaviour (Bateson and Laland, 2013).

Among these questions, we focus on the underlying mechanisms of task allocation in social

insects on short worker-life timescales, which are connected with causation and ontogeny,

as well as the associated efficiency achievement, which is related to the adaptive value of

task allocation. Here the evolutionary dynamics of task allocation are out of scope of this

thesis. We propose the following questions for this research:

1) What are the underlying factors that can influence task allocation in social insects?

(causation)

2) What mechanisms potentially determine the dynamics of workers’ strategies for task

allocation over time in social insects? (ontogeny)

3) How can environmental conditions affect task allocation in social insects? (causation)

4) How well can social insect colonies perform in terms of task allocation? (adaptive

value)

5) How and how well can task allocation in social insects adapt to dynamically changing

environments? (ontogeny & adaptive value)

1.3 Methodology

Task allocation in social insects exhibits a self-organised process which emerges from

interactions of workers who follow simple behavioural rules in response to environmen-

tal conditions (Bonabeau, Theraulaz, Deneubourg, Aron and Camazine, 1997; Robinson,

1992; Duarte et al., 2011; Page Jr. and Mitchell, 1998; Gordon, 2016; Kang and Ther-

aulaz, 2016). We divide the behavioural rules that potentially determine workers’ task

allocation into individual and social: Individual behavioural rules represent the factors

within a worker; Social behavioural rules refer to the interactions between workers. For

individual behavioural rules, we perform survival analysis on the data from experiments

in bumblebees (see Chapter 3). Based on this analysis, we explore the influence of poten-

tial factors on workers’ task selection and propose a novel model which is then verified

with the empirical data. To explore the effect of social interaction, we use game theory

as a basic framework (see Chapter 4). We integrate a task-allocation game with different

mechanisms of how workers’ strategies for task allocation can develop over time. Then we

build computer simulations based on these integrated models with a range of environmen-

tal conditions. Our models for both individual and social behavioural rules are simulated

for the analysis of efficiency and flexibility in dynamic environments (see Chapter 5).
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1.4 Key Contributions

1.4.1 Knowledge

The outcomes of this research make the following contributions to the knowledge of task

allocation in social insects:

• Neither stimulus intensity nor individual experience has a significant effect on the

moment-to-moment task allocation in bumblebee thermoregulation under certain

environmental conditions;

• Bumblebee workers tend to be less active after receiving rewards from a homeostatic

task on the moment-to-moment timescale;

• The timing-patterns of workers’ activities in bumblebees are close to power laws

rather than homogeneous Poisson on the moment-to-moment timescale;

• Specialisation can emerge from the interaction dynamics between workers alone un-

der certain environmental conditions;

• Variation of environmental conditions and mechanisms that determine the dynam-

ics of workers’ strategies over time can lead to different behavioural patterns and

efficiency achievements of task allocation;

• The history of previous environmental conditions can influence how social insect

colonies adapt to dynamic environments.

1.4.2 Methodology

The results of this study make the following contributions to the methodology of task

allocation in social insects:

• Exploring task allocation of social insect colonies in a bottom-up approach based on

timescales;

• Conducting survival analysis for the influence of within-worker factors on task allo-

cation in social insects;

• Using game theory as a basic framework to study the effect of social interaction on

task allocation in social insects.

1.5 Thesis Outline

In Chapter 2, we review current theoretical models of task allocation as well as empirical

studies in the literature. Based on this, we identify the limitations of these models and

accordingly make suggestions for future research directions. In Chapter 3, we explore the

influence of potential factors within an individual worker based on the results of survival

analysis for experimental data in the thermoregulation of bumblebees. Accordingly, we
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construct an agent-based model which explicitly takes the temporal effect into account.

In Chapter 4, we apply game theory as a basic framework to study the impact of social

interaction between workers on task allocation. We build computer simulations based

on different mechanisms of how workers’ strategies for task allocation can develop over

time with a range of environmental contexts. In Chapter 5, we analyse the efficiency of

task allocation based on our models introduced in the previous chapters and discuss the

flexibility in dynamic environments with illustration by computer simulations.
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Chapter 2

Literature Review

2.1 Introduction

There are numerous studies that have explored potential mechanisms underlying the pro-

cesses of task allocation in social insects. Empirical work suggests that patterns of task

allocation can be determined by workers’ internal properties, such as body size and age, as

well as external interactions with other workers and their environments (Oster and Wil-

son, 1978; Hölldobler and Wilson, 1990; Robinson, 1992; Gordon, 1996). However, this

may not be sufficient as the mechanistic processes linking individual decisions to colony-

level task allocation are generally too hard to analyse only by conceptual reasoning or

verbal argument (Beshers and Fewell, 2001; Couzin, 2009; Charbonneau and Dornhaus,

2015a). Consequently, computational and mathematical modelling techniques become in-

creasingly popular in explaining how different factors may affect task allocation in social

insects. These models are adopted to simulate the interplay between individual workers

and their environments as well as the process of how colony-level patterns of task allo-

cation can emerge from simple individual behavioural rules (Beshers and Fewell, 2001;

Duarte et al., 2011). Moreover, such models facilitate our communication and can be used

to generate testable hypotheses for guiding further empirical studies (Beshers and Fewell,

2001).

In this chapter, we first describe the factors empirically found to influence behavioural

patterns of task allocation. Then we review the models used to explain the mechanisms

of task allocation. Finally, we identify the limitations of models in the literature and

accordingly make suggestions for future research.

2.2 Empirical Background

Empirical studies have identified a number of factors that can determine individual task

preference and be used to gain some insights into behavioural patterns of task allocation at

the colony level (Robinson, 1992). These empirical factors can be categorised into internal

and external (Beshers and Fewell, 2001): Internal factors represent the state or property

7
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of an individual worker, including genes, morphology, developmental variation and indi-

vidual experience (Jeanson and Weidenmüller, 2014; Duarte et al., 2011); External factors

correspond to the contexts in which a worker lives, such as social interactions, environ-

mental conditions and spatial distribution (Jeanson and Weidenmüller, 2014; Beshers and

Fewell, 2001; Duarte et al., 2011).

Internal and external factors are not mutually exclusive and can interact with each other

in an insect colony (Beshers and Fewell, 2001; Charbonneau and Dornhaus, 2015a). The

processes of task allocation based on internal factors are comparatively stable and can gain

from the potential benefits of specialisation (Jeanson et al., 2005; Charbonneau and Dorn-

haus, 2015a). In contrast, the mechanisms based on external factors are highly dynamic

and can adapt to transient fluctuations in task demands (Jeanson and Weidenmüller,

2014; Charbonneau and Dornhaus, 2015a). Internal factors can be used to predict the

tasks a worker is likely to perform, but workers often respond to variation in social and

environmental contexts by switching their tasks (Gordon, 2016).

2.2.1 Internal Factors

Genetic Diversity

To satisfy the demands of different tasks in a colony, workers tend to have different pref-

erences in task choice. Genetic variation can provide a long-term basis for inter-individual

differentiation in workers’ task preference (Jeanson and Weidenmüller, 2014). Most studies

on behavioural variability of workers within a colony have focused on genetic factors simply

because of easy manipulation in experiments (Jeanson and Weidenmüller, 2014). In social

insects, there are three potential sources that give rise to genetic diversity: polyandry

(multiple patrilines), polygyny (multiple matrilines) and genetic recombination (Oldroyd

and Fewell, 2007; Jeanson and Weidenmüller, 2014). Empirical evidence shows that work-

ers’ task choice is determined by their patrilines in honeybees (Kryger et al., 2000; Jones

et al., 2004; Robinson and Page Jr., 1989; Scheiner and Arnold, 2010) and ants (Wadding-

ton et al., 2010; Eyer et al., 2013). Similarly, workers from different matrilines tend to

perform different tasks in natural and experimentally constructed ant colonies (Julian

and Fewell, 2004; Blatrix et al., 2000; Snyder, 1992; Stuart and Page Jr., 1991). Be-

sides polyandry and polygyny, high combination rates (Wilfert et al., 2007) may also be

a potential factor that influences workers’ task preference (Oldroyd and Thompson, 2007;

Oldroyd and Fewell, 2007; Smith et al., 2008).

Morphological Differentiation

In some species of social insects, workers can be distinguished by their morphological

castes (Oster and Wilson, 1978; Charbonneau and Dornhaus, 2015a). These castes are

permanent features for adult workers as their body size or shape does not generally change.

In a colony workers from different castes are often associated with different types of

tasks (Hölldobler and Wilson, 1990; Oster and Wilson, 1978; Charbonneau and Dornhaus,
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2015a). For example, in the ant genus Pheidole, majors of large size generally specialise

in colony defence or food storage (Wilson, 2003) and rarely engage in brood care, which

is typically performed by minors of small size (Mertl and Traniello, 2009). Another ex-

ample is found in the bumblebee Bombus terrestris where large workers are more likely to

perform the tasks stimulated by odour than small workers (Spaethe et al., 2007).

Developmental Variation

Variation of the preimaginal environments is likely to have an important influence on work-

ers’ behaviour and task choice at their adult stage (Duarte et al., 2011; Jandt et al., 2014;

Jeanson and Weidenmüller, 2014). For example, the temperature experienced during lar-

val development may affect task choice carried out by adult workers in honeybees (Tautz

et al., 2003). In the ant Camponotus rufipes, pupal temperature is shown to modulate the

response behaviour of adult workers in brood-tending tasks (Weidenmüller et al., 2009).

Apart from temperature, other environmental factors, such as humidity and light experi-

enced, during the larval period may also affect task preferences of adult workers (Duarte

et al., 2011; Jeanson and Weidenmüller, 2014).

Young workers tend to be engaged in tasks within their nest, and later in their lives, switch

to tasks outside the nest, such as foraging. This pattern of task allocation associated with

age, called temporal polyethism or age polyethism (Oster and Wilson, 1978; Charbonneau

and Dornhaus, 2015a; Jeanson and Weidenmüller, 2014; Jandt et al., 2014), is observed in

wasps (Naug and Gadagkar, 1998), honeybees (Robinson, 1987b; Seeley, 1995; Wadding-

ton and Hughes, 2010), termites (Hinze and Leuthold, 1999) and ants (Hölldobler and

Wilson, 1990; Julian and Fewell, 2004). The benefit of the age-related task allocation can

be that risky tasks are allocated to older workers, who are less valuable as the amount

of work they can perform in the future is smaller than younger workers (Charbonneau

and Dornhaus, 2015a). The age-dependent task transition of honeybee workers tends to

be correlated with juvenile hormone (Robinson, 1987b; Huang et al., 1994), which also

interacts with the nutritional state, another physiological factor that can determine work-

ers’ task decisions (Duarte et al., 2011; Jeanson and Weidenmüller, 2014; Robinson et al.,

2012; Toth and Robinson, 2005; Ament et al., 2010).

Individual Experience

Workers in an insect colony may select tasks based on their own experience (Jeanson and

Weidenmüller, 2014; Charbonneau and Dornhaus, 2015a). Empirical evidence suggests

that workers are more likely to choose tasks that they have performed before (Franklin

et al., 2012; Ravary et al., 2007; Robinson et al., 2012). However, current knowledge of

how individual experience affects the decisions made by workers on task engagement is still

limited, as the processes of workers’ response to task demands are difficult to precisely mea-

sure and control (Jeanson and Weidenmüller, 2014). For example, conflicting evidence on

the relationship between individual experience and task responsiveness appears in study-

ing the thermoregulation of two closely related bumblebee species (Duong and Dornhaus,
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2012; Weidenmüller, 2004; Westhus et al., 2013). Consequently, the studies on individual

experience have mainly focused on theoretical approaches (Jeanson and Weidenmüller,

2014) and proposed the concept of self-reinforcement (Beshers and Fewell, 2001), which

gives a positive feedback loop (Charbonneau and Dornhaus, 2015a) and promotes short-

term specialisation that can be adjusted to environmental fluctuations (Ravary et al., 2007;

Jeanson and Weidenmüller, 2014; Robinson et al., 2012).

2.2.2 External Factors

Social Context

Interactions between workers are likely to have a significant effect on behavioural patterns

of task allocation and colony-level response to environmental fluctuations (Duarte et al.,

2011; Charbonneau and Dornhaus, 2015a). For instance, being involved in a social context

is shown to make workers more likely to undertake the fanning task in the honeybee Apis

mellifera (Cook and Breed, 2013). In the harvest ant Pogonomyrmex barbatus, the decision

made by a worker to undertake a particular task, can depend on how frequently the worker

has interacted with those who engaged in the same task or other related tasks (Gordon

and Mehdiabadi, 1999; Greene and Gordon, 2007). Workers can interact with each other

in a direct way by tactile contacts or chemical signals (Duarte et al., 2011; Billen, 2006;

Richard and Hunt, 2013). Interaction rates, which may contain the information about the

numbers of workers already allocated in like or unlike tasks, can influence workers’ deci-

sions on task engagement (Gordon, 1996). Interactions between workers are considered

to facilitate efficient information transfer within a colony and regulate task allocation in

a flexible and dynamic way to environmental changes (Duarte et al., 2011; Charbonneau

and Dornhaus, 2015a). In addition, social interactions can reveal and amplify even minor

intrinsic differences among individual workers, thus reinforcing behavioural asymmetry in

a colony (Camazine et al., 2001).

Task allocation of workers may change with colony size (Fewell and Harrison, 2016; Dorn-

haus et al., 2012; Jeanson and Weidenmüller, 2014; Duarte et al., 2011) partially because

colony size can affect social structure and organisation (Anderson and McShea, 2001)

including worker-worker interaction rates (Gordon, 1996; Thomas and Elgar, 2003) and

task demands (Holbrook, Eriksson, Overson, Gadau and Fewell, 2013). Empirical and

theoretical studies suggest that group size can positively influence the degree of task spe-

cialisation (Jeanson et al., 2007; Karsai and Wenzel, 1998; Holbrook et al., 2011; Holbrook,

Kukuk and Fewell, 2013; Thomas and Elgar, 2003). For example, workers in a small-size

wasp colony tend to be generalists for a variety of tasks while colonies of large size consist

of more task specialists (Karsai and Wenzel, 1998). In the ant Rhytidoponera metallica,

temporal polyethism is observed only in the colonies of large size rather than in those of

small size (Thomas and Elgar, 2003). Although variation of colony sizes is usually corre-

lated with transitions in the colony life cycle (Duarte et al., 2011), colony size is shown to

promote task specialisation independently of the stage of colony development (Holbrook

et al., 2011).
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Environmental Stimuli

Social insect colonies tend to react to variation of task demands by adjusting the ratios

of workers allocated to the corresponding tasks (Duarte et al., 2011). In the harvest ant

Pogonomyrmex rugosus, for example, workers can change their engagement in tasks such as

guarding, attacking and foraging in response to predation of spiders (MacKay, 1982). The

number of bee workers undertaking the fanning task for control of nest climate is found to

vary with changes of environmental conditions such as temperature and humidity (Egley

and Breed, 2012; Weidenmüller, 2004; Westhus et al., 2013). In the bumblebee Bombus

terrestris, the response of a worker to foraging can depend on the nectar store in honeypots,

which in turn provides information about nectar foraging of other nest workers (Dornhaus

and Chittka, 2005). Typically, modulating the magnitude of shared environmental stimuli

by task execution without direction communication can constitute an indirect way for

workers to interact with each other in a colony (Jeanson and Weidenmüller, 2014).

Spatial Distribution

Individuals in a colony naturally spread throughout the space of the nest and peripheral

areas (Charbonneau and Dornhaus, 2015a). Which task a worker encounters can depend

on her location (Jeanson et al., 2005). The spatial organisation of workers in some species

is non-random, consistent over their lifetime and may be correlated to the colony-level

task allocation (Charbonneau and Dornhaus, 2015a; Jandt and Dornhaus, 2009; Sendova-

Franks and Franks, 1994, 1995; Tschinkel, 2004; Holbrook et al., 2009). Workers close to

the centre of the nest tend to take care of the brood while those at the periphery are more

likely to forage (Jandt and Dornhaus, 2009). Remaining non-random and limited areas in

the nest may minimise the moving distance of workers and thus improve the colony-level

efficiency (Wilson, 1976; Seeley, 1982).

The extent to which the factors reviewed above contribute to task allocation in a colony

may depend on the situation and remains to be further investigated. Whether a fac-

tor applies or not in a specific scenario can depend on the species or type of tasks in-

volved (Charbonneau and Dornhaus, 2015a). The processes of task allocation do not

appear to be influenced by any single factor all the time. Differentiation in workers’ task

selection in a colony is found to occur independently of a particular factor such as age or

body size (Beshers and Traniello, 1996; Egley and Breed, 2012; Gordon, 1989; Kolmes,

1986; Robinson et al., 2009; Duarte et al., 2011; Jandt et al., 2014). There is a need

for more rigorous comparative studies to explore behavioural patterns of task allocation

potentially influenced by multiple confounding factors (Jeanson and Weidenmüller, 2014;

Dornhaus et al., 2012).
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2.3 Models

To advance our understanding of proximate causation of task allocation in social insects,

mathematical and computational models are applied to explain and simulate the mech-

anistic processes influenced by different factors. Most models focus on the response-

threshold concept (Jeanson and Weidenmüller, 2014; Jeanne, 2016), which identifies the

interplay between workers’ internal properties and their environments as a primary driving

force (Beshers and Fewell, 2001). The response-threshold assumption is typically regarded

as a fundamental framework that can be integrated with other factors such as social in-

teraction and spatial distribution (Fewell and Bertram, 1999; Richardson et al., 2011).

Moreover, recent studies concentrate on the idea that task allocation can be regarded as

a set of distributed processes driven by interactions between individuals and their envi-

ronments (Gordon, 2016). In addition, spatial distribution provides another modelling

perspective which links spatial arrangements of workers and tasks to behavioural patterns

of task allocation. Here we review these models categorised by the main concept involved.

2.3.1 Response Threshold

The response-threshold assumption is widely accepted as the main modelling concept for

task allocation in social insects (Bonabeau et al., 1996; Jeanson and Weidenmüller, 2014;

Jeanne, 2016). For a single worker, it is assumed that the decision made to respond to

a task-associated stimulus is determined by whether the perceived stimulus intensity ex-

ceeds the internal task-related threshold (Page Jr. and Mitchell, 1998; Jeanson et al.,

2007; Gove et al., 2009; Graham et al., 2006; Duarte, Pen, Keller and Weissing, 2012).

For example, bumblebee workers can start the cooling task by fanning their wings if the

within-nest temperature outstrips a certain level (Weidenmüller, 2004).

As performing a task reduces the corresponding stimulus intensity, workers with lower

thresholds tend to maintain the stimulus intensity under the level at which workers with

higher thresholds start to respond. Even small variation of individual thresholds for dif-

ferent tasks thus can lead to consistent task specialisation. When workers with lower

thresholds fail to keep the stimulus intensity at a lower level, workers with higher thresh-

olds subsequently perform the task. Therefore, followed by this mechanism, task allocation

in a colony can be flexible to environmental fluctuations (Jeanson and Weidenmüller, 2014;

Beshers and Fewell, 2001; Camazine et al., 2001; Duarte et al., 2011; Charbonneau and

Dornhaus, 2015a).

For any task in a colony, workers’ response thresholds tend to be intrinsically different.

The distributions of thresholds across tasks and workers can determine the behavioural

patterns of task allocation at the colony level (Charbonneau and Dornhaus, 2015a). For

instance, immensely active or inactive workers with no task specialisation can be generated

by correlated response thresholds over different tasks; Alternatively, task specialisation can
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emerge from the situation when there is at least one large threshold for each worker (Pinter-

Wollman et al., 2012). The response-threshold models can further be generalised into a

function that gives the stimulus-response dynamics between workers’ internal properties

and environmental contexts (Castillo-Cagigal et al., 2014). Here we briefly review different

types of models that are used to elucidate the stimulus-response dynamics.

The Fixed-Threshold Model

The fixed-threshold model assumes that the thresholds for a set of tasks that a worker per-

forms remain constant on a short timescale (Bonabeau et al., 1996). Empirical evidence

suggests that workers do not always perform a task even when the level of stimulus inten-

sity is sufficiently high (Weidenmüller, 2004; Westhus et al., 2013; Duong and Dornhaus,

2012). In general, individual-level task selection is not deterministic as there are poten-

tially numerous factors involved. Therefore, it is more reasonable to explicitly assume that

response probability, the likelihood of a worker to engage in a task, is determined by the

relative difference between the task-associated stimulus and her internal threshold.

The mathematical framework for the fixed-threshold model is built based on this proba-

bilistic assumption (Bonabeau et al., 1996, 1998). It is simply assumed that in a colony,

there are N workers who need to perform one task. Worker i has a threshold θi associated

with stimulus s for i = 1, 2, ..., N . The probability of worker i to be allocated to the task,

denoted by pi, is defined as

pi =
s2

s2 + θ2i

where θi is assumed to be invariable.

There is a negative feedback loop that performing the task reduces the level of s. In

addition, s is assumed to increase naturally by a constant demand δ at each time-step.

Then stimulus s at time-step t is given as

s(t) = s(t− 1) + δ − α

N
n(t− 1)

where α is a scale factor that measures the efficiency of individual task performance and

n(t) is the number of workers allocated to the task at t.

The Threshold-Reinforcement Model

The threshold-reinforcement model integrates the experience-based variation into the fixed-

threshold model (Theraulaz et al., 1998; Gautrais et al., 2002; Castillo-Cagigal et al., 2014).

Performing a task by a worker is assumed to decrease her threshold for this task, while not

performing the task increases the threshold. The mathematical framework for this model

describes the response threshold θi as a function of time-step t:

θi(t+ 1) = θi(t)− ξ
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if worker i performs the task at t;

θi(t+ 1) = θi(t) + ϕ

if worker i does not perform the task at t. Here ξ and ϕ are the rates of learning and

forgetting respectively. Based on this mechanism, specialisation can emerge even from a

colony of initially identical workers (Theraulaz et al., 1998).

Artificial Neural Network

The process that describes how individual workers respond to task-related stimuli can be

generalised into more complex functions, which involve more internal parameters than the

response thresholds in individual task selection. In some models, the stimulus-response dy-

namics are regarded as artificial neural networks (Lichocki et al., 2012; Duarte, Scholtens

and Weissing, 2012), with an example illustrated in Figure 2.1. Lichocki et al. (2012) used

partially-connected artificial neural networks with no hidden layer to represent response-

threshold models (see Figure 2.2). The feed-forward neural network (see Figure 2.3(a)) and

recurrent neural network (see Figure 2.3(b)) with fully connected weights were also imple-

mented as the mechanisms that workers follow in their task selection (Duarte, Scholtens

and Weissing, 2012). Although artificial neural networks have more open features to ex-

plore (Duarte et al., 2011; Duarte, Scholtens and Weissing, 2012), the interpretation of

these models is difficult and may need more support from empirical studies in neurobiol-

ogy (Duarte et al., 2011).

Empirical evidence for the response-threshold models comes from studies on physiol-

ogy (Robinson, 1987a,b) and genotypes (Fewell and Page Jr., 2000; Page Jr. et al., 1998;

Pankiw and Page Jr., 1999; Robinson and Page Jr., 1995) in honeybees, castes and larval

development in ants (Wilson, 1984; Detrain and Pasteels, 1991, 1992; Weidenmüller et al.,

2009) and thermoregulation in bumblebees (O’Donnell and Foster, 2001). The assumption

that response thresholds are modified by individual experience is supported with evidence

in food exploration of the ant Cerapachys biroi (Ravary et al., 2007) and thermoregulation

of the bumblebee Bombus terrestris (Weidenmüller, 2004; Westhus et al., 2013), among

others.

2.3.2 Social Interaction

Task allocation can be modulated by social interactions which facilitate efficient informa-

tion transfer at the colony level (Beshers and Fewell, 2001). In an insect colony, tasks

are performed by interdependent groups of workers and the number of workers engaged in

one group can be influenced by the number of workers involved in others (Gordon, 1996,

2002, 2010). Most models based on social interaction assume that there is no intrinsic

difference among workers in a colony (Gordon, 1996; Beshers and Fewell, 2001). These

models provide an alternative view to those based on intrinsic inter-individual variation in

task preference such as the response-threshold models and can be used to figure out what
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Figure 2.1: An example of the feed-forward artificial neural network (Duarte et al., 2011)

(a) Deterministic response threshold (b) Extended response threshold

Figure 2.2: Neural network representation of two versions of the response-threshold
model (Lichocki et al., 2012). Here in a colony, two tasks need to be performed: A
and B. sA, sB represent the stimuli for Tasks A, B respectively; -1 is the bias node; θA,
θB stand for the response thresholds of A, B; wA, wB are the weights of stimuli for A,
B. Output oi = wisi − θi for Task i = A,B. For the deterministic response-threshold
model (a), wA = wB = 1.
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(a) Feed-forward neural network (b) Recurrent neural network

Figure 2.3: Fully-connected neural network models of task allocation (Duarte, Scholtens
and Weissing, 2012). An output neuron is excited when the activation energy v, resulting
from the stimuli and weights, is larger than the threshold θ. For a recurrent neural
network (b), current activation energy also depends on the self-feedback f at previous
time-steps.

behavioural patterns of task allocation can arise only from interactions between workers

and their environments (Gordon, 1996, 2016).

Some models based on social interaction use the representations by network structures.

For example, Gordon et al. (1992) built a network model in which workers are regarded

as nodes. Task selection of a worker is determined by the weighted sum of her interac-

tions with others and a threshold value. The results show that in an ant colony, even

through simple worker-worker interactions, variation in the number of workers in one

task group causes changes in the number of workers in another group, and eventually,

the colony tends to reach an equilibrium of allocation of workers across tasks. There are

other network models used to reveal the dynamics of switches between tasks (Fewell, 2003;

Charbonneau et al., 2013) or to predict the speed of information transfer (Pinter-Wollman

et al., 2011), which may in turn determine patterns of task allocation.

Apart from the network representation, other models explore numbers of workers that

switch between tasks based on social interactions using differential equations (Pacala et al.,

1996; Pereira and Gordon, 2001; Kang and Theraulaz, 2016). Pacala et al. (1996) devel-

oped deterministic and stochastic models showing that the distribution of workers over

tasks based only on simple interactions between individuals with limited capacity can

reach a stable state that is close to the optimal level. The results of these models fur-

ther indicate how the rates of interaction can influence the efficiency of a colony to track
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environmental fluctuations. The interaction rate may be associated with colony size and

regulated by workers to balance the speeds between information transfer and environmen-

tal changes. Colonies of larger size may respond to environmental changes faster than

those of smaller size, and furthermore, how well a colony can adapt to environmental per-

turbations is determined by workers’ strategies of how to react to environmental stimuli

and social interactions (Pereira and Gordon, 2001).

Social inhibition models are used to study the interactions between workers of differ-

ent ages in honeybees (Beshers et al., 2001) and wasps (Naug and Gadagkar, 1999). It is

assumed that younger workers are inhibited to forage outside the nest by interactions with

older foragers (Beshers et al., 2001; Huang and Robinson, 1992, 1996; Naug and Gadagkar,

1999). This inhibition opposes the effect that intrinsically pushes younger workers to for-

age. With this mechanism, a balance between workers engaged in in-nest tasks and outside

foraging can be achieved, independently of the initial condition of numbers of in-nest work-

ers and foragers, and keep stable under environmental perturbations (Beshers et al., 2001;

Naug and Gadagkar, 1999).

2.3.3 Space

Similar to social interaction, another alternative modelling perspective to inherent differ-

entiation in workers’ task choice is explicitly assuming that workers and tasks in a colony

are spatially arranged. The foraging-for-work model (Franks and Tofts, 1994; Tofts, 1993;

Tofts and Franks, 1992) shows that heterogeneity in task allocation can emerge from a

colony of identical workers, given that task demands are distributed non-randomly in

space. In this model, workers are assumed to randomly seek a task to perform, continue

to perform the task if it has been done successfully or move to a different location if no

task needs to be performed at the current position. Individual task engagement is directly

driven by whether a task is encountered, which makes task allocation predicted by this

model flexible to changes of task needs. The foraging-for-work model can theoretically

generate age polyethism in which young workers are close to brood area and old workers

are near the nest entrance (Tofts and Franks, 1992; Tofts, 1993; Tripet and Nonacs, 2004).

The spatial task-encounter hypothesis assumes that short-term specialisation can result

from spatial variation of task demands (Johnson, 2010), which is supported by biolog-

ical experiments conducted in scenarios of task allocation of foraging and brood care

in ant colonies (Robinson et al., 2009). The foraging-for-work model can be combined

with the frequent-task-quitting mechanism, which randomises the location of workers who

become insensitive to task demands for some period (Johnson, 2009). The frequent-task-

quitting, found in colonies of Apis mellifera (Johnson, 2002), has an opposing effect to the

foraging-for-work mechanism, which allocates workers to areas with high task demands.

This coupled model can explain an equilibrium in which workers switch between tasks

and locations, independently of their spatial distribution in the nest, and can adapt to

dynamic environments (Johnson, 2009).
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2.3.4 Integration of Different Concepts

The process involved in a worker’s response to a task-associated stimulus can be divided

into two parts (Bonabeau et al., 1996):

(a) Sampling the stimulus;

(b) Decision-making on whether or not to perform the task once (a) is done.

Most response-threshold models ignore the first part and only focus on individual response

to task needs (Bonabeau et al., 1996; Theraulaz et al., 1998; Duarte, Pen, Keller and

Weissing, 2012; Castillo-Cagigal et al., 2014; Lichocki et al., 2012; Gautrais et al., 2002).

There are some studies that attempted to address both (a) and (b) by combining the

response threshold with other factors such as social interaction (Fewell and Bertram, 1999;

Bertram et al., 2003; Kang and Theraulaz, 2016) and spatial distribution (Richardson

et al., 2011). In general, these studies demonstrate that the integrated models can predict

behavioural patterns closer to empirical evidence and achieve greater colony performance

than the models only with the response-threshold mechanism.

2.4 Limitations and Future Research

Following the review in Section 2.3, we identify several limitations of models in the litera-

ture. First, we find that the questions on how the factor of time may influence workers’ task

selection tend to be ignored in most models. Then for a single individual worker, the pro-

cesses of responding to task-related stimuli require further specification and clarification.

Moreover, the factor of social interaction needs to be explored from a self-organisational

perspective. Social insect colonies are potentially examples of efficient and flexible or-

ganisations shaped by the optimising processes of natural selection (Charbonneau and

Dornhaus, 2015a). The efficiency and flexibility of mechanisms of task allocation need to

be further explored in addition to behavioural patterns.

2.4.1 The Factor of Time

Most models of task allocation in social insects do not specify on what timescales the

focal mechanistic processes take effect. However, it is crucial to figure out the temporal

range that each factor applies to, in order to compare and integrate different factors, and

ultimately, to achieve a relatively complete picture of mechanisms for task allocation. In

general, the influence of genes, body size or larval development tends to be long-term and

stable over individual lifetime, followed by the medium-term effect from age, which is still

much longer than the moment-to-moment impact of interaction between workers and their

environments. Even though this seems relatively clear in empirical studies, theoretical ap-

proaches tend to ignore the timescales of the relevant processes or factors.

For example, the fixed-threshold model (Bonabeau et al., 1996) assumes the timescales

are relatively short without further specification or quantification. The models that follow
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up the fixed-threshold model, for instance, the threshold-reinforcement model (Theraulaz

et al., 1998), tend to ignore the timescales of additional factors such as individual ex-

perience. This makes it difficult to further expand the response-threshold mechanism

with other factors such as social interaction, which is also assumed to occur on short

timescales (Gordon, 2002, 2016). As the relative timescales among responding to environ-

mental stimuli, learning by individual experience and interacting with other nest mates

for an individual worker are not specified, studies on how individual properties and social

communication interact and contribute to workers’ task decisions can be difficult to move

forward.

The answers to the question of how an individual worker in a colony selects a task are

related to both causation and ontogeny in Tinbergen’s four questions (see Section 1.2).

As developmental variation is continuous, it is necessary to find out the mechanistic pro-

cesses at different timescales in order to understand the proximate causation for task

allocation (Tinbergen, 1963; Bateson and Laland, 2013; Naug, 2016). A practical ap-

proach is to specify the time window for the influence of each factor and attempt synthesis

of different factors based on the associated time windows. To build a clear framework,

we propose a bottom-up approach based on timescales, following the assumption that at

the moment-to-moment term, the number of acting factors can be minimised, which may

generate preliminary and more reliable results.

The effect of time on individual task selection and coordination of workers at the group

level is overlooked by most models of task allocation in social insects. The question of

whether task engagement of an individual worker depends on time is hardly explored, while

it is suggested that the dynamics of human activities and behaviours of some other animals

are time-dependent (Barabási, 2005; Reynolds, 2011). How actions of a large number of

workers are coordinated is a major question for social insect colonies (Camazine et al.,

2001). As individual workers are physically separated units, coordination of both their

spatial and temporal dynamics is significant to the overall function of a colony (Johnson,

2009). There are a number of studies that have explored spatial distribution of workers

and tasks in a colony (see Sections 2.2.2 and 2.3.3). However, most models simply assume

that all workers in a colony simultaneously encounter, perform and quit tasks at discrete

time-steps (Bonabeau et al., 1996; Theraulaz et al., 1998; Gautrais et al., 2002; Lichocki

et al., 2012; Duarte, Pen, Keller and Weissing, 2012; Cornejo et al., 2014). Little work has

investigated the dynamics of temporal patterns in task engagement across workers.

2.4.2 The Stimulus-Response Dynamics

Our understanding of the stimulus-response dynamics at the individual level is not suf-

ficient. Most studies consider that individual task engagement follows the response-

threshold mechanism. However, there are several ambiguities or inconsistencies involved

in different implementations and analyses of the response-threshold concept. Some stud-

ies implicitly treat response threshold and response probability as the same property that
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describes the process in which workers respond to task needs (Jeanne, 2016; Naug, 2016).

Some simply regard either response threshold or response probability (Page Jr. and

Mitchell, 1998; Gordon, 2002; Duong and Dornhaus, 2012) as the only determinant in

the whole responsive process for an individual worker. Most models assume that response

probability is dependent on response threshold (Robinson, 1992; Bonabeau et al., 1996;

Theraulaz et al., 1998; Gautrais et al., 2002), while empirical studies explicitly describe

response probability and response threshold as two independent parameters (Jeanson and

Weidenmüller, 2014; Weidenmüller, 2004; Westhus et al., 2013; Duong and Dornhaus,

2012). The reason behind this may be that the response-threshold models tend to ig-

nore the process of how task demands are encountered or sampled by individual work-

ers (Bonabeau et al., 1996; Lichocki et al., 2012) and that both response threshold and

response probability are hard to measure in experiments (Beshers and Fewell, 2001).

Apart from response threshold and response probability, response duration, the time in-

terval during which a worker tends to perform a task once engaged, is also an important

component involved in the processes of task allocation (Johnson, 2002; Weidenmüller,

2004; Westhus et al., 2013). The assumptions made in theoretical models tend to be sim-

plified as either that response duration depends on the necessity of performing a task,

or that workers quit from a task with certain probability after a constant time period.

Overall, response threshold, response probability and response duration are all likely to

act as significant parameters in task allocation. Currently, the way we understand the

stimulus-response dynamics at the individual level has not reached a well-quantified level.

Further research needs to pay more attention to the relations between the three compo-

nents mentioned above, and to clarify how they are influenced by other factors such as

environmental stimuli and individual experience.

2.4.3 Social Interaction

The models of task allocation based on social interaction tend to lack self-organisational

properties (Beshers and Fewell, 2001). As reviewed in Section 2.3, most studies focus on the

response-threshold models, specifying workers’ internal properties that can be influenced

and modulated by their developmental histories (Jeanne, 2016), such as social interactions

between workers. However, the models that include both response threshold and social

interaction appear to only describe numbers of workers engaged in different tasks at the

colony level without a specification on individual-level task selection (Fewell and Bertram,

1999; Bertram et al., 2003; Kang and Theraulaz, 2016). Similarly, the models based on an

alternative framework in which workers are assumed to be identical and can interact with

each other do not provide a mechanism of how a worker selects a task at the individual

level. It will be interesting to see how social interaction can be integrated into the stimulus-

response dynamics at the individual level and the outcomes of the colony-level behavioural

patterns in future research. A first step towards this would be to ask if there exists a

framework that is only based on social interaction and specifies the mechanistic processes

of individual-level task selection.
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2.4.4 Colony Efficiency and Flexibility

The efficiency for the mechanistic processes of task allocation in social insects is not suf-

ficiently explored. There are a few models that quantitatively evaluated colony efficiency

of certain mechanisms for evolutionary analysis (Waibel et al., 2006; Tarapore et al.,

2009; Lichocki et al., 2012; Duarte, Pen, Keller and Weissing, 2012; Duarte, Scholtens

and Weissing, 2012). However, on worker-life timescales, the efficiency evaluation can be

inconsistent with the stimulus system (Lichocki et al., 2012). In this case, the stability

of stimulus dynamics may be a more appropriate measurement of colony efficiency (Jean-

son and Lachaud, 2015; Castillo-Cagigal et al., 2014). Future research needs to further

investigate how colony efficiency is connected with individual behavioural programs and

productivity in well-established scenarios with different types of tasks.

Social insect colonies naturally live in dynamic environments. Most models (reviewed in

Section 2.3) assume that task allocation is responsive to environmental conditions (Char-

bonneau and Dornhaus, 2015a). However, the question of how well and how fast task

allocation based on these models can adapt to environmental changes is not sufficiently

explored in a quantitative manner (Pereira and Gordon, 2001; Diwold et al., 2009). A

number of studies introduced environmental perturbations by changing colony size or

composition (Bonabeau et al., 1996; Gordon et al., 2006; Pinter-Wollman et al., 2012;

Beshers et al., 2001). Others manipulated the variation of some abstract task demands

that workers may directly respond to (Wakano et al., 1998; Johnson, 2009). Future experi-

ments need to be designed based on more specific and measurable task-related stimuli such

as temperature and food availability (Westhus et al., 2013; Bertram et al., 2003; Fewell

and Bertram, 1999). Much more research is required to understand how the mechanistic

processes of colony-level task allocation can adapt to environmental fluctuations from a

self-organisational perspective.

2.5 Conclusion

In this chapter, we reviewed empirical and theoretical studies of mechanisms of task allo-

cation in social insects. Empirical studies identify the factors that determine task alloca-

tion in social insects as internal and external, which can interact with each other within a

colony. Based on these factors, current models are used to explain and simulate the under-

lying processes of how colony-level patterns of task allocation can emerge from behaviour

rules at the individual level. We made several suggestions on what questions future work

may need to address. To gain a comprehensive view of task allocation, further research

may integrate different factors into one modelling framework and be aware of the relative

timescales that each factor applies to. Theoretical models need to particularly focus on

temporal dynamics involved in individual task selection and worker-worker coordination.

The process of how workers respond to environmental contexts needs to be specified and

quantified with clearly identified parameters that can be empirically measured. Moreover,

the effect of worker-worker interaction demands further attention. Colony efficiency needs



22 CHAPTER 2. LITERATURE REVIEW

to be quantitatively explored together with behavioural rules in well-defined scenarios with

different tasks and so does the flexibility of task allocation in dynamic environments.



Chapter 3

Individual Behaviour – A

Time-Resolved Model

3.1 Introduction

To further our understanding of mechanisms of task allocation, we consider the role

of timescales in exploring the question of how workers dynamically interact with task-

associated stimuli. There may be different opinions on the priorities of what timescale

to start with. Here following a bottom-up approach, we focus on the moment-to-moment

timescale at which the number of acting factors can be minimised and thereby poten-

tially leading to more easily verifiable outcomes. As workers’ task allocation develops over

time, particularly on short timescales, temporal dynamics are likely to have a strong effect

on behavioural patterns at both individual and colony levels. In this study, we regard

individual-level task allocation in social insects as the processes that explicitly involve the

effect of time on workers’ behaviours.

Most established experimental methods (O’Donnell and Foster, 2001; Weidenmüller et al.,

2002; Weidenmüller, 2004; Gardner et al., 2007; Duong and Dornhaus, 2012; Cook and

Breed, 2013; Jandt and Dornhaus, 2014; Cook et al., 2016) do not allow for sufficiently

precise and flexible control of task-associated stimuli. This study explores thermoregu-

lation, a crucial task for brood development in a colony (Heinrich, 2004; Goulson, 2010;

Jones and Oldroyd, 2007). Elicited by high temperature, alate workers can fan their wings

in a stationary position to cool down the nest (Jones and Oldroyd, 2007). This provides

an ideal chance to empirically study the stimulus-response dynamics: The stimulus inten-

sity is temperature, which is comparatively simple to measure and control; Wing fanning,

which is the response, can be clearly distinguished from other behaviours during experi-

ments.

The existing experiments that aim to investigate the influence of temperature on workers’

response tend to involve temperature ramps (O’Donnell and Foster, 2001; Weidenmüller

et al., 2002; Weidenmüller, 2004; Westhus et al., 2013). As a result, these experiments con-

found the effects of temperature and elapsed time. The results and discussions drawn from

23



24 CHAPTER 3. INDIVIDUAL BEHAVIOUR – A TIME-RESOLVED MODEL

these studies implicitly assume a priori that workers’ task engagement is time-independent.

However, it is not certain that the observed behavioural patterns result from the effect

of temperature rather than the elapsed time, as in this case, temperature develops over

time. Therefore, it is necessary to decouple the effects of temperature and elapsed time

by setting up constant temperature in experiments. To the best of our knowledge, this

has not been done before.

Most theoretical models (Bonabeau et al., 1996; Theraulaz et al., 1998; Gautrais et al.,

2002; Duarte, Pen, Keller and Weissing, 2012; Lichocki et al., 2012; Cornejo et al., 2014)

simply assume that workers’ activities in a colony simultaneously happen at discrete time-

steps and do not capture a fine-grained, time-resolved picture of individual actions. In or-

der to take timing patterns into account, stochastic processes (Gardiner, 2004) are needed

to describe task allocation at the individual level, because in general, the timing of actions

for an individual worker is uncertain. If we take account of the effect of time in a model

of task allocation, each variable in the model needs to be treated as a function of time in

principle.

For example, if we integrate the temporal influence into the response-threshold models

(reviewed in Section 2.3.1), workers’ response probability becomes time-dependent. As a

result, we use a rate function λ(t) to represent the instantaneous response probability per

unit time at a given time t. For the fixed-threshold model, if stimulus intensity s does not

change over time t, then λ(t) is constant for any t. There are two important implications

of the response-threshold models: (1) The fixed-threshold model assumes that a worker’s

probability to engage in a task increases with the task-associated stimulus intensity; (2)

The threshold-reinforcement model indicates that a worker’s probability to engage in a

task increases with her repeated task performance. According to these implications, we

can derive the following hypotheses:

(1) λ(t) is proportional to the stimulus intensity;

(2) λ(t) increases with repeated task engagement.

Motivated by the above hypotheses, we first explore the effects of stimulus and individual

experience on workers’ task selection using a set of experiments in bumblebee fanning.

Typically, these experiments set up constant levels of temperature in order to decouple

the effects of stimulus and elapsed time by the equipment which makes it possible to pre-

cisely measure and control the stimulus intensity (Westhus et al., 2013). We also analyse

the influence of individual efficiency based on another set of experiments with a similar

set-up. For the data arising from both sets of experiments, we perform survival analy-

sis (Kleinbaum and Klein, 2012; Liu, 2012), as well as traditional analysis, which is only

used for comparison.

Survival analysis is a collection of statistical tools to analyse time-dependent stochastic

processes. The basic objectives of survival analysis include estimating the rate function
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which gives the instantaneous probability per unit time for an event to occur at a certain

time-point provided that the event has not occurred before this time-point, and assessing

the effect of covariates on the time-interval until the event occurs. Here a covariate can

be, for instance, the stimulus intensity such as nest temperature. Only a few studies have

applied survival analysis for experimental data of task allocation in social insects. Jeanson

et al. (2005) used survival curves which give the probability that an event has not occurred

until a certain time-point to analyse the duration of workers’ task performance. The Cox

proportional hazards model (Cox, 1972), a popular semi-parametric model for survival

data, was adopted to analyse the inter-task intervals in bumblebees (Meyer et al., 2015)1

and ants (Leighton et al., 2017).

Based on our analysis of the experimental data, we develop a time-resolved model of

task allocation, which captures the timing of individual actions as a fundamental compo-

nent. Then we simulate and verify our model with the empirical data. Finally, we discuss

and compare our results with the existing empirical studies and models.

3.2 Biological Experiments

There are two sets of biological experiments used in this study. The first set of experiments

was designed to study the effects of stimulus and individual experience on workers’ task

allocation. In these experiments, brood temperature, which is regarded as the stimulus

for the task of fanning, was kept constant over time in order to decouple the effects of

stimulus and time; Individual experience is quantified as the position in the sequence of

uninterrupted fanning periods for each bumblebee worker. The second set of experiments

was used to test the influence of individual efficiency on task allocation. In general,

workers’ perception of rewards from performing a task is expected to encourage them to

engage in the task more strongly. This expectation was tested by this set of experiments

in which the brood temperature can be changed by workers’ fanning. Here perception of

individual efficiency is regarded as the perceived decrease of brood temperature.

3.2.1 The Effects of Stimulus and Individual Experience

The first set of experiments was conducted by Anja Weidenmüller and her colleagues in the

Neurobiology Lab at the University of Konstanz, Germany. Young colonies of the bumble-

bee Bombus terrestris were obtained from a commercial breeder (Biobest, Belgium) and

housed in wooden two-chamber nest boxes at 22◦C room temperature, 50% RH and under

a 12h:12h light:dark cycle. Colonies were provided with ad libitum sucrose solution in the

‘foraging’ part of the nest boxes, and fed on defrosted, fresh honeybee-packed pollen every

second day directly into the nest chambers.

The experimental set-up consisted of a circular test arena (diameter 7.3 cm, height 4.9

cm) made of Plexiglas (illustrated in Figure 3.1). The wall of the test arena was equipped

1Part of this paper is also included in this chapter.
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with ventilation holes circumventing the chamber 0.5 cm above ground. The floor of the

arena had two indentations alongside the wall where sugar and water were provided dur-

ing experiments and a central hole through which a brood dummy protruded. The brood

dummy consisted of an aluminium cone (diameter 1 cm) to mimic the size and shape of

natural bumblebee brood. The base of the brood dummy was attached to a water-filled

aluminium heating plate which was connected to a water bath. A thermocouple ran along

the longitudinal axis of the dummy, ending in the tip. In this way, the temperature of the

brood dummy could be precisely measured and controlled.

Figure 3.1: The test arena set-up: (b) brood dummy; (h) heating plate; (i) insula-
tion (Westhus et al., 2013).

(a) A bumblebee worker in the test arena (b) A bumblebee worker on the brood dummy

Figure 3.2: Bumblebee workers during experiments (photos by Lasse Kling).

Two aluminium heating plates were placed directly next to each other and covered with

one insulating Styrofoam board, through which two brood dummies protruded. Each plate

was connected to a separate water bath and was used to heat one brood dummy. One

water bath (and the associated brood dummy) was set to 32◦C and the other was set to

either 42◦C or 47◦C, depending on the experiment, as in general, bumblebee workers do

not actively respond to the demand of the fanning task when the temperature of brood

dummy falls below 42◦C (Anja Weidenmüller, personal communication). Each brood
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dummy was covered with fresh Parafilm and a thin layer of canopy wax that had been

removed from the mother colony of the tested workers and frozen at -20◦C in order to

spread the colony odour. The top of the brood dummy was additionally covered with wax

that had been taken directly from the brood of the same colony in order to provide the

necessary olfactory stimuli. The amount of brood wax used for each brood dummy was

controlled according to the amount in brood areas of natural colonies. The thermocouples

measuring brood dummy temperature were connected to a recoding device (NI cRIO-9074

and NI 9213, National Instruments, Germany) using a program (ShortRun, created with

National Instruments LabVIEWTM 2010, Version 10.0.1, by Stefanie Neupert) to record

time, temperature and occurrences of fanning behaviour (via a keyboard).

Individual bumblebee workers were positioned onto brood dummies (see Figure 3.2) at

either 42◦C or 47◦C and logged their fanning activities every second over a 30-minute pe-

riod. 40 workers from three colonies were tested, 20 at 32◦C and 42◦C, another 20 at 32◦C

and 47◦C. At the beginning of each test, the test arena was offered a 32◦C brood dummy,

reflecting the optimum brood temperature (Weidenmüller et al., 2002). For each experi-

ment, a single worker was picked up gently by her wings from the brood area of her colony

under red light using forceps and placed directly on the brood dummy in the test arena.

The test arena was closed with a Plexiglas lid and the worker was left undisturbed for a

10-minute acclimatisation phase. The worker’s fanning behaviour was then continuously

observed and recorded for 10 minutes. Next, the test arena with the worker was carefully

lifted from the brood dummy and placed on the other, adjacent brood dummy, which now

protruded centrally into the test arena and had a temperature of either 42◦C or 47◦C. The

fanning behaviour of the worker on this second brood dummy was recorded for another

20 minutes. Sucrose solution was offered ad libitum. At the end of each experiment, the

worker was marked and returned to her colony. Test arenas and brood dummies were

cleaned and new wax was prepared before the next experiment.

3.2.2 The Effect of Individual Efficiency

The second set of experiments was conducted by Lena Kreuzer and Anja Weidenmüller

in the Neurobiology Lab at the University of Konstanz, Germany. Young colonies of

the bumblebee Bombus terrestris were purchased from a commercial breeder (Biofa AG,

Münsingen, Germany) and housed in wooden-nest boxes at 22◦C room temperature, 45%

RH and under a 12h:12h light:dark cycle. These wooden boxes (26 × 40 × 10 cm3) were

divided into two chambers (nest and food) with four ventilation holes (diameter 3.6 cm),

covered by wire mesh. The bumblebees were fed daily with apiInvert in the food chamber

and every other day with pollen directly in the nest chamber. Bumblebee workers were

used only once and each was marked with a tag glued to the thorax by shellack after use.

The set-up of the test arena in these experiments is similar to that used for the ex-

periments described in Section 3.2.1. In addition, the temperature of the aluminium pin

(brood dummy) was controlled by a PID regulator, rather than by the water bath. A
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voltage generator (Voltcraft VLP-2403) provided constant voltage power of 7.5 V and in

the middle of the aluminium pin there was a peltier element. A change of temperature

could be immediately generated by an electrical current or could result in a change of

an electrical current. In this way workers’ fanning could cause a decrease in temperature

of brood dummies, which was simultaneously controlled by the electrical generator. The

temperature change triggered by workers’ fanning was limited within 2◦C from the pre-set

temperature to guarantee that both workers who experienced fanning efficiency and those

who did not were exposed to an equal mean temperature over the whole trial. The water

bath was set at a constant temperature of 26◦C to make sure that the energy loss kept the

same through the underside for all trials. The temperature on the top of the aluminium

pin was measured via a thermocouple, connected to a recording device (NI cDAQ-9174,

National Instruments, Germany) running a program (BumblebeeState 035, written with

National Instruments LabVIEWTM 2011, Version 11.0, by Stefanie Neupert) to record

time, temperature and occurrences of fanning behaviour (via a keyboard).

Bumblebee workers were tested under two different conditions of efficiency:

(1) Closed loop – brood temperature was kept at a pre-set level without any influence

from workers’ fanning;

(2) Open loop – workers could decrease brood temperature by their own fanning.

Individual workers were positioned in the test arenas under either closed-loop or open-

loop condition and their fanning activities were recorded every milli-second. 43 workers

were tested: 23 for the closed loop and 20 for the open loop. At the beginning of each

experiment, a single selected worker was carefully removed from her colony using forceps

beneath infra-red light and settled in the test arena with a brood dummy at 32◦C for a

10-minute acclimatisation phase. Then the brood dummy was set to a sequence of temper-

atures following 39◦C, 44◦C, 39◦C and 44◦C. Each temperature phase lasted for 7 minutes

after being adjusted to a stable level (less than 0.05◦C fluctuation). Particularly, if the

test was designed for the open-loop condition, the switch between different temperature

phases was executed under the closed-loop condition and once the temperature reached a

stable level, the open-loop condition applied for the 7-minute observation period. ApiIn-

vert was provided during these experiments. At the end of each experiment, the worker

was labelled and placed back to her colony. Test arenas and brood dummies were cleaned

and new wax was prepared before the next experiment.

3.3 Results and Analysis

We perform survival analysis in addition to traditional analysis for the empirical data from

both sets of experiments (see Section 3.2). Traditional analysis does not take account of

the influence of time and is only used for comparison with survival analysis.
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3.3.1 The Effects of Stimulus and Individual Experience

The experiments were conducted with different constant temperatures T = 42◦C and

T = 47◦C. There were 32 bumblebee workers who showed fanning behaviour after being

positioned on the second brood dummy (14 for T = 42◦C, 18 for T = 47◦C). A small

number of workers did not fan at all (6 for T = 42◦C, 2 for T = 47◦C). The reasons

behind may be complicated and are beyond the scope of this research. Our analysis is

implicitly conditioned on the 32 workers who fanned at least one second during the last 20

minutes of experiments. Those who did not show any fanning activity during this period

are excluded from our analysis.

Traditional Analysis

The total fanning time and the number of uninterrupted fanning periods are measured for

each individual worker (see Figure 3.3). The results suggest that there is no significant

difference of workers’ total fanning time between T = 42◦C and T = 47◦C (Mann-Whitney

U -test: P = 0.246; illustrated in Figure 3.3(a)). Similarly, the number of workers’ unin-

terrupted fanning periods does not appear to significantly differ between T = 42◦C and

T = 47◦C (Mann-Whitney U -test: P = 0.447; illustrated in Figure 3.3(b)). Therefore,

the magnitude of stimulus, measured as brood temperature, does not have a statistically

significant effect on bumblebee workers’ engagement in the fanning task. At each time-

point, the proportion of fanning workers is also measured (see Figure 3.4), which tends to

oscillate and appears not to monotonically change with time. Thus workers’ experience of

previous task performance does not appear to significantly influence later decision-making

on allocation of the fanning task if we discard the initial transient period (t < 200).

T = 42°C T = 47°C
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Figure 3.3: Box-and-whisker plots of the total fanning time and the number of uninter-
rupted fanning periods for workers with T = 42◦C and T = 47◦C.

Survival Analysis

For an individual worker i in an experiment at temperature T , we denote the start time of

the j-th uninterrupted fanning period of worker i by si,j and the corresponding end time

by qi,j . Two sequences Si = ∪jsi,j and Qi = ∪jqi,j are recorded, representing the start and
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Figure 3.4: Proportion of fanning workers over time t.

end time-points of all uninterrupted fanning periods with one-second resolution. Then for

worker i at temperature T , the interval of the subsequent uninterrupted fanning periods

between position j and position j+1 is σT
i,j = si,j+1− qi,j and the duration of the j-th un-

interrupted fanning period is ωT
i,j = qi,j − si,j . The inter-fanning interval σT

i,j and fanning

duration ωT
i,j for all i, j, T contain the event and covariate data used to analyse the rate

functions λ(t) and µ(t) respectively, where λ(t) represents the instantaneous probability

per unit time of a worker to start fanning given that she is not fanning at time t, and µ(t)

represents the instantaneous probability per unit time to stop fanning given that she is

fanning at time t. Any inter-fanning interval or fanning duration continuing at the end

of experimental period is right-censored. To understand the effects of stimulus and indi-

vidual experience, we need to know whether the brood temperature T and the position j

in the sequence of uninterrupted fanning periods have a significant impact on λ(t) and µ(t).

We use the Cox proportional hazards model (Kleinbaum and Klein, 2012; Liu, 2012)

to analyse the effect of covariates on the rate function λ(t). This model assumes that the

rate function can be expressed as

λ(t) = λ0(t)e
∑

i
βiXi

where Xi is a time-independent covariate with coefficient βi and λ0(t) is the baseline rate

function that depends on time t. The coefficient βi quantifies the effect of covariate Xi

on λ(t). To check the value of βi, we need two sets of event data between which only the

values of Xi are different, without specifying the baseline rate function λ0(t). Here the

proportional hazards assumption, which means that any covariate Xi does not depend on

time t for all i, has to be verified. For each covariate Xi, the outcome of the Cox model

can be reflected by a P -value, which represents the statistical significance of Xi, or by a

relative risk or hazard ratio, which gives eβi .
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We take the multiset of inter-fanning intervals Σ = ∪i,jσT
i,j as event data, and the temper-

ature T and the position j in the sequence of uninterrupted fanning periods as covariates.

To test the proportional hazards assumption for a covariate, we verify whether the Schoen-

feld residuals (Schoenfeld, 1982), the difference between the observed covariate values and

the expected value, are correlated with the event times, represented by the ranks of inter-

fanning intervals. Here the proportional hazards assumption applies to both covariates T

and j, because the Schoenfeld residuals of T are hardly correlated with the ranks of inter-

fanning intervals (Pearson’s correlation coefficient: 0.016; illustrated in Figure 3.5(a)), and

so are the Schoenfeld residuals of j (Pearson’s correlation coefficient: 0.035; illustrated in

Figure 3.5(b)).
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Figure 3.5: The Schoenfeld residuals over the ranks of inter-fanning intervals for different
covariates (with a linear regression line).

The results of the Cox model show that the brood temperature T does not significantly

influence λ(t) (Wald statistic: P = 0.496; illustrated in Figure 3.6(a)), nor does the po-

sition j in the sequence of uninterrupted fanning periods (illustrated in Figure 3.6(b)).

Particularly for the covariate j, although the Wald statistic (P = 4.12e−11) implies that

the influence of j may be significant, the relative risk resulting from the regression is

1.005 (with confidence interval [1.004 . . . 1.007]), which approximates to 1 and indicates

extremely small influence of j.

Similarly, for the rate function µ(t), we use the Cox model with input of the multiset

of fanning durations Ω = ∪i,jωT
i,j as event data and T, j as covariates. Here the propor-

tional hazards assumption applies to both T and j as well since the Schoenfeld residuals

are barely correlated with the ranks of fanning durations for either T (Pearson’s correla-

tion coefficient: -0.039; illustrated in Figure 3.7(a)) or j (Pearson’s correlation coefficient:

0.081; illustrated in Figure 3.7(b)). The results of the Cox model indicate that µ(t) is

not significantly affected by the brood temperature T (Wald statistic: P = 0.838; Fig-

ure 3.8(a)) or by the position j in the sequence of uninterrupted fanning periods (illustrated

in Figure 3.8(b)). Although the Wald statistic (P = 0.019) suggests that j may have a

significant effect, the relative risk resulting from the regression is 0.998 (with confidence

interval [0.997 . . . 1.000]), which approximates to 1 and indicates that j almost has no

influence on µ(t).
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Figure 3.6: Log(-log) survival curves of inter-fanning intervals stratified by different co-
variates in log-scaled time t: (a) The inter-fanning intervals are partitioned into two strata
based on the brood temperature T ; (b) The inter-fanning intervals are partitioned into
multiple strata based on the position j in the sequence of uninterrupted fanning periods
and we only give three representatives here, as the curves of the remaining strata look
similar and are omitted for clarity. For both (a) and (b), the effects of the covariates T , j
respectively seem insignificant, otherwise the difference of survival curves between strata
would be much more obvious.
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Figure 3.7: The Schoenfeld residuals over the ranks of fanning durations for different
covariates (with a linear regression line).
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Figure 3.8: Log(-log) survival curves of fanning durations stratified by different covariates
in log-scaled time t: (a) The fanning durations are partitioned into two strata based on the
brood temperature T ; (b) The fanning durations are partitioned into multiple strata based
on the position j in the sequence of uninterrupted fanning periods and we only give three
representatives here, as the curves of the remaining strata look similar and are omitted for
clarity. For both (a) and (b), the effects of the covariates T , j seem insignificant, otherwise
the difference of survival curves between strata would be much more obvious.
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Overall, based on the results of the Cox proportional hazards models, neither the brood

temperature T nor the position j in the sequence of uninterrupted fanning periods appears

to have a significant influence on the allocation of workers to the task of fanning, which

is quantified by the rate functions λ(t) and µ(t). The conclusion of survival analysis is

consistent with that of traditional analysis, suggesting that neither stimulus intensity nor

individual experience significantly influences workers’ task allocation. At this point, we

would like to ask what factors may have a strong effect on workers’ decision-making in

task selection on the moment-to-moment timescale. To answer this question, we analyse

the empirical data from the set of experiments for individual efficiency in Section 3.3.2.

3.3.2 The Effect of Individual Efficiency

The second set of experiments was conducted with different conditions on whether work-

ers’ fanning can decrease brood temperature (open loop) or not (closed loop). There were

41 bumblebee workers who performed the fanning task after the 10-minute acclimatisation

phase: 19 for the open loop and 22 for the closed loop. Each experiment was set with

a sequence of temperatures (39◦C – 44◦C – 39◦C – 44◦C), which was designed for other

experimental purposes that are out of the scope of this study. Here we stratify the data

of workers’ fanning activities based on the pre-set temperature (39◦C or 44◦C) to exclude

the potential effect of the temperature, as the temperature at 39◦C may be a level below

which individual fanning behaviour is actively stimulated (Anja Weidenmüller, personal

communication).

Each bumblebee worker experienced the same temperature for two stable periods sep-

arated by a period of different temperature. However, we do not consider the impact of

the position in the sequence of phases with the same temperatures on the fanning data,

due to the possible influence of transitions between two different temperatures. For this

set of experiments, we analyse the effect of individual efficiency (open loop or closed loop)

on the rate functions λ(t) and µ(t). A few workers did not show fanning behaviour at

all or kept fanning all the time during a 7-minute experimental phase, rather than fre-

quently starting or stopping the fanning task. The relevant data-points are excluded from

our analysis as the reasons behind may be complicated and are beyond the scope of this

research.

Traditional Analysis

The total fanning time (see Figure 3.9) and the number of uninterrupted fanning peri-

ods (see Figure 3.10) are measured for individual workers in each phase at both tem-

peratures. There is no statistically significant difference of workers’ total fanning time

between the open-loop and closed-loop conditions in Phase 1 of 39◦C (Mann-Whitney

U -test: P = 0.151; illustrated in Figure 3.9(a)), Phase 2 of 39◦C (Mann-Whitney U -

test: P = 0.877; illustrated in Figure 3.9(b)), Phase 1 of 44◦C (Mann-Whitney U -test:

P = 0.275; illustrated in Figure 3.9(c)) or Phase 2 of 44◦C (Mann-Whitney U -test:
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P = 0.479; illustrated in Figure 3.9(d)). Similarly, the difference of number of work-

ers’ uninterrupted fanning periods between the open-loop and closed-loop conditions does

not appear to be significant in Phase 1 of 39◦C (Mann-Whitney U -test: P = 0.251; illus-

trated in Figure 3.10(a)), Phase 2 of 39◦C (Mann-Whitney U -test: P = 0.979; illustrated

in Figure 3.10(b)), Phase 1 of 44◦C (Mann-Whitney U -test: P = 0.962; illustrated in

Figure 3.10(c)) or Phase 2 of 44◦C (Mann-Whitney U -test: P = 0.101; illustrated in

Figure 3.10(d)). Therefore, individual efficiency does not appear to have a significant

influence on bumblebee workers’ allocation of the fanning task.
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Figure 3.9: Box-and-whisker plots of the total fanning time for workers under the open-
loop and closed-loop conditions. Workers are categorised by the pre-set temperature and
the experimental phase.

Survival Analysis

Similar to Section 3.3.1, for all individual workers, we compute the inter-fanning intervals

Σ and fanning durations Ω, which are regarded as event data for the rate functions λ(t)

and µ(t) respectively. Any inter-fanning interval or fanning duration continuing at the

end of a temperature phase is right-censored. We put each event data-point for both Σ

and Ω into strata based on the associated temperature (39◦C or 44◦C) and consider the

efficiency condition E (open-loop or closed-loop) as the only covariate. Then we apply the

Cox proportional hazards model to both Σ and Ω in addition to graphical approaches.

For the rate of task engaging λ(t), as illustrated in Figure 3.11, the survival curve un-

der the closed loop seems to be slightly above that under the open loop for both 39◦C and
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Figure 3.10: Box-and-whisker plots of the number of uninterrupted fanning periods for
workers under the open-loop and closed-loop conditions. Workers are categorised by the
pre-set temperature and the experimental phase.

44◦C. To test this observation, we then use the Cox proportional hazards model. Here the

proportional hazards assumption applies to E as the Schoenfeld residuals of E are barely

correlated with the ranks of inter-fanning intervals for both 39◦C (Pearson’s correlation

coefficient: 0.025; illustrated in Figure 3.12(a)) and 44◦C (Pearson’s correlation coefficient:

0.028; illustrated in Figure 3.12(b)). The results of the Cox model show that individual

efficiency, regarded as the decrease of brood temperature, has a significant negative influ-

ence on λ(t) for both 39◦C (Wald statistic: P = 0.009; Relative risk: 0.850; Confidence

interval [0.753 . . . 0.960]) and 44◦C (Wald statistic: P = 8.12e−5; Relative risk: 0.862;

Confidence interval [0.801 . . . 0.928]).

10 100 1000 t
0.01

0.1

1

Survivor

Closed-loop

Open-loop

(a) 39◦C

10 100 1000 t
0.01

0.1

1

Survivor

Closed-loop

Open-loop

(b) 44◦C

Figure 3.11: Log(-log) survival curves of inter-fanning intervals stratified by the covariate
of individual efficiency in log-scaled time t for different temperatures.

For the rate of task quitting µ(t), a cursory visual inspection of Figure 3.13 suggests that
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Figure 3.12: The Schoenfeld residuals of the covariate of individual efficiency over the
ranks of inter-fanning intervals for different temperatures (with a linear regression line).

the effect of individual efficiency E seems not significant, as there is no obvious difference

of survival curves between the open loop and closed loop for both temperatures. Then we

use the Cox proportional hazards model to test this observation. The proportional hazards

assumption applies to E as the Schoenfeld residuals of E are hardly correlated with the

ranks of fanning durations for 39◦C (Pearson’s correlation coefficient: 0.014; illustrated

in Figure 3.14(a)) and for 44◦C (Pearson’s correlation coefficient: 0.008; illustrated in

Figure 3.14(b)). The results of the Cox model indicate that individual efficiency E has

a significant positive effect on µ(t) for 39◦C (Wald statistic: P = 0.004; Relative risk:

1.191; Confidence interval [1.056 . . . 1.343]) and 44◦C (Wald statistic: P = 0.040; Relative

risk: 1.080; Confidence interval [1.004 . . . 1.162]), which is, however, not revealed by the

coarse-grained survival curves.
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Figure 3.13: Log(-log) survival curves of fanning durations stratified by the covariate of
individual efficiency in log-scaled time t for different temperatures.

Overall, according to the results of the Cox proportional hazards models for both λ(t) and

µ(t), individual efficiency appears to have a significant negative influence on the allocation

of workers to the task of fanning. Survival analysis specifies the processes of task allo-

cation at the level of unit time whereas traditional analysis only describes the aggregate

behaviours over the whole experimental period. As demonstrated by our analysis for the

effect of individual efficiency, we can use survival analysis to identify the results that can-

not be detected by traditional analysis as the latter ignores the temporal influence. Then

we build an agent-based model to capture the effect of time and facilitate a fine-grained

view of task allocation in social insects.
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Figure 3.14: The Schoenfeld residuals of the covariate of individual efficiency over the
ranks of fanning durations for different temperatures (with a linear regression line).

3.4 A Time-Resolved Model of Task Allocation

Whether or not to engage in a task, such as fanning, is a decision that is repeatedly

assessed by each individual worker. The experimental observations show that even at a

constant temperature, workers assess the brood temperature several times before a decision

to fan is made. Such an assessment can be indicated by their antennation of the brood

dummy (Anja Weidenmüller, personal communication). Typically, workers tend to fan for

a short while before they stop and re-assess the situation (see Figure 3.15). The process

of how workers assess or gather the information necessary to decide whether to engage in

tasks implies the importance of the timing patterns for task allocation. However, this is not

handled in the established response-threshold models (Bonabeau et al., 1996; Theraulaz

et al., 1998; Jeanson et al., 2007; Lichocki et al., 2012).
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Figure 3.15: Fanning activities of bumblebee workers at a constant brood temperature
(either 42◦C or 47◦C) over time t. Workers are sorted in ascending order from top to
bottom by their total fanning time. Each row represents a single worker. Each column
represents the time interval of one second. Fanning activity is visible through the gradient
of shading. Darker areas indicate more active fanning periods. White boxes represent
inactivity or any activity other than fanning.
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To describe these complex timing patterns, we propose an explicitly time-resolved model

of task allocation. This model gives the underlying processes of how workers select and

perform tasks at the individual level. As illustrated in Figure 3.16, allocating an individual

worker i to a task is a three-step process that involves polling or encountering task-related

stimuli. When worker i is ready to take up a new task, she first decides which task k to

execute according to the task-polling probabilities p1, p2, ..., pk. She then tests whether

the level of the task-related stimulus sk is above her threshold θk: If so, i starts to engage

in task k; Otherwise, i repeats the polling process mentioned above. Once engaged in task

k, worker i executes k for a certain amount of time after which she enters a refractory

resting period. Stopping executing task k and Stopping resting after performing k are two

stochastic events with the rate functions µk(t) and λk(t) respectively. After the comple-

tion of one such task cycle, worker i is immediately free to engage in another task or to

resume the same task as before.

Execution 
of Task k

Is Task k  
Required?

Refractory Period 
for Task k

.

.

Yes

No

Ready

.

Figure 3.16: The time-resolved model of task allocation for a single worker and multiple
tasks.

Unfortunately, it is exceedingly difficult to simultaneously set up and precisely control

multiple tasks in biological experiments. As a first step, most experiments set up and

observe only a single task. For workers in the experiments used for our analysis, in be-

tween the performance of the controlled task, there may exist other behaviours, such as

self-grooming and wandering, as well as possibly unobservable ones. To verify the time-

resolved model with the empirical data, we thus reduce the conceptual model (illustrated

in Figure 3.16) to only distinguish between a known, observable task A and a task col-

lection B, a set of alternative behaviours that potentially exist during experiments (see

Figure 3.17). We simulate this model (see Algorithm 1) based on the Gillespie next re-

action method (Gillespie, 1976, 1977), a Monte Carlo algorithm statistically faithful for

simulating dynamic systems in which stochastic effects are involved in individual actions

and coordinations. Based on our simulations, we verify our time-resolved model with the

empirical data at the group level and in turn explain the empirical data at the individual

level by the time-resolved model.
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Refractory Period  
for Task A

Task B

Ready

Figure 3.17: The simplified time-resolved model of task allocation for a single worker and
for a single observable task. Task A refers to the fanning task controlled in experiments.
Task B = {B1, ..., Bk−1} is a lumped meta-task that represents a mixture of possible
behaviours.

Algorithm 1 Simulation algorithm for the time-resolved model of task allocation

1: t← 0 (* initialise time *)
2: for worker wi ∈ {wj |j = 1, 2, ..., N} do
3: state(wi)← B
4: rate(wi)← λB

5: (* initialise worker wi *)
6: end for
7: while t < tend do
8: H ←

∑
i rate(wi) (* i = 1, 2, ..., N *)

9: ∆t ∼ Exponential(H) (* draw next event interval *)
10: t← t+∆t
11: select wi according to probabilities p(wi) = rate(wi)/H
12: if state(wi) = A then
13: state(wi)← R
14: rate(wi)← λA

15: (* wi starts her refractory period after performing Task A *)
16: else
17: r ← random(0, 1)
18: if r < pA(wi) ∧ sA > θA then
19: state(wi)← A
20: rate(wi)← µA

21: (* wi starts to perform Task A *)
22: else
23: state(wi)← B
24: rate(wi)← λB

25: (* wi starts to be engaged in Task B *)
26: end if
27: end if
28: end while
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For workers’ behaviours at the group level, we first compare the distribution of lumped

inter-fanning intervals Σ from the empirical data (see Section 3.2.1) with our simulation

result, as well as the fitted exponential and Weibull distributions (see Figure 3.18). We find

that the result of our simulation can be better mapped to the empirical data (Kullback-

Leibler divergence: 0.074) than either the exponential distribution (Kullback-Leibler di-

vergence: 6.367) or the Weibull distribution (Kullback-Leibler divergence: 1.794). The

inter-fanning intervals are clearly not drawn from an exponential distribution, as would

be expected from the fixed-threshold model (Bonabeau et al., 1996), or from a decreasing

Weibull distribution, which would be predicted by the threshold-reinforcement model (Ther-

aulaz et al., 1998). Instead, the distribution of inter-fanning intervals is power-law-like as is

also recognisable from the straight negative slope in the log-log scaled histogram (Akaike,

1974).2
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Figure 3.18: Distributions of lumped inter-fanning intervals of workers in a log-log scale:
(a) Empirical data; (b) Simulation results (N = 25, tend = 1200, θA = 32, sA = 42,
λA = 0.75, µA ∼ U(0, 1.25), λB ∼ U(0, 1), pA ∼ U(0, 1)); (c) The probability density
function of event times from the exponential distribution fitted to the empirical data with
rate λ = 0.061; (d) The probability density function of event times from the Weibull
distribution fitted to the empirical data with shape α = 0.602 and scale β = 8.659.
Both fitted exponential and Weibull distributions are obtained by the maximum likelihood
estimation (implemented by EstimatedDistribution in Mathematica, Version 11.1, Wolfram
Research Inc.). Here U(a, b) represents a continuous uniform distribution on the interval
[a, b].

2Here for simplicity, we refer to this as power-law-like as it is usually difficult to reliably identify discrete
empirical data as an exact power-law (Clauset et al., 2009).
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Similarly, we then compare the distribution of lumped fanning durations Ω from the em-

pirical data (see Section 3.2.1) with our simulation result, as well as the fitted exponential

and Weibull distributions (see Figure 3.19). The result of our simulation is the closest to

the empirical data (Kullback-Leibler divergence: 0.066) compared with the exponential

distribution (Kullback-Leibler divergence: 8.526) or the Weibull distribution (Kullback-

Leibler divergence: 2.673). Here the distribution of fanning durations is also power-law-like

rather than exponential (Akaike, 1974), which indicates that the timing patterns cannot

be ignored and that the oversimplified assumption about the task-quitting process in the

fixed-threshold and threshold-reinforcement models (Bonabeau et al., 1996; Theraulaz

et al., 1998) does not apply here.
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Figure 3.19: Distributions of lumped fanning durations of workers in a log-log scale:
(a) Empirical data; (b) Simulation results (N = 25, tend = 1200, θA = 32, sA = 42,
λA = 0.75, µA ∼ U(0, 1.25), λB ∼ U(0, 1), pA ∼ U(0, 1)); (c) The probability density
function of event times from the exponential distribution fitted to the empirical data with
rate λ = 0.172; (d) The probability density function of event times from the Weibull
distribution fitted to the empirical data with shape α = 0.668 and scale β = 3.496.
Both fitted exponential and Weibull distributions are obtained by the maximum likelihood
estimation (implemented by EstimatedDistribution in Mathematica, Version 11.1, Wolfram
Research Inc.). Here U(a, b) represents a continuous uniform distribution on the interval
[a, b].

Our time-resolved model also can explain the empirical data at the individual level even

though there is a large variation in both distributions of inter-fanning intervals and fan-

ning durations across workers in the experiments. Here for the distribution of inter-fanning



42 CHAPTER 3. INDIVIDUAL BEHAVIOUR – A TIME-RESOLVED MODEL

intervals, we illustrate two typical cases (see Figure 3.20): Some workers exhibit a power-

law-like statistics in their inter-fanning intervals (Figure 3.20(a)) while the distribution of

inter-fanning intervals of others resembles an exponential distribution (Figure 3.20(b)).
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Figure 3.20: Distributions of inter-fanning intervals for two representatives of individual
bumblebee workers from the experiments in a log-log scale.

As illustrated in Figure 3.17, the inter-fanning intervals consist of both the refractory pe-

riods for Task A and the time on performing Task B, which is assumed to be a mixture of

potential behaviours. The ratio between the refractory-A period and the Task-B period

depends on the value of pA. For a worker with large pA, her inter-fanning intervals almost

exclusively contain the refractory period for A and thus follow an exponential distribution

with rate λA(t) (see Figure 3.21(c)). Alternatively, the behaviour of a worker with small

pA are dominated by Task B, which is mixed of Poisson processes with different rates.

Therefore, as illustrated in Figure 3.21(a), the inter-fanning intervals of this worker follow

a power-law-like distribution, because a mixture of Poisson processes with different rates

can generate event intervals from a power-law distribution (Hidalgo R., 2006).
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Figure 3.21: Distributions of inter-fanning intervals for three representatives of individual
workers from the simulation results in a log-log scale with N = 1, tend = 100000, θA = 32,
sA = 42, λA = 0.575, µA ∼ U(0, 1.25), λB ∼ U(0, 1), pA varying from 0.5 to 1. Here
U(a, b) represents a continuous uniform distribution on the interval [a, b].

Similarly, for the distribution of fanning durations, the empirical data also indicate a large

differentiation across workers. As illustrated in Figure 3.22, the distributions of fanning

durations for some workers are power-law-like (see Figure 3.22(a)) and for some others are
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exponential-like (see Figure 3.22(b)). In our time-resolved model, a worker’s fanning dura-

tions are determined by the rate µA(t) (see Figure 3.17). The fanning durations of a worker

with constant µA(t) follow an exponential distribution (illustrated in Figure 3.23(b)); For a

worker with varying µA(t) over a sequence of fanning periods, illustrated in Figure 3.23(a),

the distribution of her fanning durations tends to be power-law-like, as a Poisson process

with varying rates over a certain period can result in power-law distributed event inter-

vals (Hidalgo R., 2006; Malmgren et al., 2008).
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Figure 3.22: Distributions of fanning durations for two representatives of individual bum-
blebee workers from the experiments in a log-log scale.
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Figure 3.23: Distributions of fanning durations for two representative of individual workers
from the simulation results in a log-log scale with N = 1, tend = 100000, θA = 32, sA = 42,
λA = 0.575, λB ∼ U(0, 1), pA = 0.5. Here U(a, b) represents a continuous uniform
distribution on the interval [a, b].

Here we do not directly compare our model with the set of experimental data for individual

efficiency (see Section 3.2.2), as this set of experiments is also designed for other purposes

which are out of scope of this study.

3.5 Discussion

This research focuses on the allocation of the fanning task for individual bumblebee workers

at the moment-to-moment timescale. On this timescale, the influence of time on workers’

activities cannot be ignored (see Section 3.4). Compared with the existing models in the

literature, one of the core features of our time-resolved model is explicitly characterising



44 CHAPTER 3. INDIVIDUAL BEHAVIOUR – A TIME-RESOLVED MODEL

workers’ ongoing behaviours in task allocation as time-dependent stochastic processes. For

a particular task such as fanning, there are two stochastic processes involved: (1) A worker

is about to engage in the task with some rate if she is in a refractory period; (2) A worker

is about to stop with another rate if she is performing the task. Both processes can be

measured in empirical studies by the time period until the target event occurs, such as

inter-fanning intervals and fanning durations.

At the group level, our time-resolved model is substantially better fitted with the empirical

data for both task-engaging and task-quitting processes than the fixed-threshold model

or the threshold-reinforcement model (see Section 3.4). Most response-threshold models

assume that all workers in a colony simultaneously encounter, start and stop perform-

ing tasks at discrete time-steps (Bonabeau et al., 1996; Theraulaz et al., 1998; Gautrais

et al., 2002; Lichocki et al., 2012; Duarte, Pen, Keller and Weissing, 2012; Cornejo et al.,

2014). The temporal dynamics of task engagement across workers are oversimplified in

these models, which, therefore, cannot match the empirical data used in this study. The

response-threshold models of task allocation were implemented in a time-sequential man-

ner assuming asynchronous actions among workers in a few studies (Page Jr. and Mitchell,

1998; Jeanson et al., 2007), but unfortunately, this has barely been followed up by other

studies.

One of the core interests in current research on task allocation is to investigate what

are the primary sources that cause task specialisation or differentiation in workers’ task

preference (Gordon, 2016). Most studies regard inherent inter-individual variation in re-

sponse to similar environmental conditions as the main cause (Jeanson and Weidenmüller,

2014) while it is also suggested that task specialisation can emerge from a colony of iden-

tical workers with self-reinforcement by individual experience (Theraulaz et al., 1998)

or spatial variation of localised task demands (Tofts and Franks, 1992; Johnson, 2010).

This study suggests that variation in workers’ task selection may also result from the time

delays among workers in perceiving and assessing task-related stimuli (Pacala et al., 1996).

The empirical data suggest that workers’ behavioural patterns of task engagement tend to

follow power-law-like distributions, with sequences of bursty periods intervened by much

longer events (see Section 3.4). Power laws are widespread in natural and social systems

and have been investigated across various disciplines (Newman, 2005). There are a vari-

ety of possible mechanisms proposed to explain how power-law distributions may arise in

different contexts (Barabási, 2005; Newman, 2005). One of the most popular candidates is

the priority-based queuing mechanism originally proposed for human activities (Barabási,

2005), which has also been applied to animal behaviours (Reynolds, 2011; Wearmouth

et al., 2014). It shows that when an individual chooses among multiple tasks based on the

parameter of some perceived priority, the waiting times of the tasks in the queue main-

tained by the individual can follow a power-law distribution (Barabási, 2005). One of the

key components that cause the power-law output in the queuing model is the variation of
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task-associated priorities, which are randomly generated and determine the corresponding

waiting times. This is similar to the mechanism on how a power-law-like distribution can

be generated in our time-resolved model of task allocation even though the latter does

not include any queuing process. Motivated by the ubiquity of power laws, it will be

interesting to see how the mechanisms in different systems may be related and connected

to each other in future research.

For an individual worker, our time-resolved model assumes that the process of engag-

ing in a task is separate from the process of checking the task-associated stimulus. This

corresponds to the empirical evidence that response probability and response threshold are

independent parameters in thermoregulation of bumblebees (Jeanson and Weidenmüller,

2014; Weidenmüller, 2004; Westhus et al., 2013; Duong and Dornhaus, 2012) and hon-

eybees (Cook and Breed, 2013). However, in most models, the response probability is

assumed to correlate with the response threshold (Robinson, 1992; Bonabeau et al., 1996;

Theraulaz et al., 1998; Gautrais et al., 2002). The reason behind this inconsistency may

be that these response-threshold models ignore the process of how workers encounter or

sample task-related stimuli. As a result, it is difficult to verify these models with quanti-

tative experimental data.

Our survival analysis assumes the rate, which is a function of time and represents an

instantaneous probability per unit time, as the main characteristics for the processes of

workers’ task allocation. Most empirical studies in the literature measure the response

probability in traditional approaches as the proportion of trials in which a worker shows

the target behaviour (Weidenmüller, 2004; Duong and Dornhaus, 2012; Ravary et al.,

2007) or the proportion of workers that show the target behaviour for a given condi-

tion (O’Donnell and Foster, 2001; Cook and Breed, 2013; Westhus et al., 2013). However,

at least on the moment-to-moment timescale, the results of these experiments may not

reflect the exact response probability or likelihood of task engagement, which is an inher-

ent property of individual workers (Duong and Dornhaus, 2012; Weidenmüller, 2004) and

can develop over time. The improper measurement of the response probability may be

the reason why empirical studies tend to use an additional parameter, response threshold,

to characterise the variation in workers’ task responsiveness at the individual level. How-

ever, workers’ response thresholds may be a by-product of their response probabilities as

those with large response probabilities in a given time-interval are likely to be observed

to respond at low stimulus intensity and thus have small response thresholds (Duong and

Dornhaus, 2012).

To the best of our knowledge, the experiments used for our analysis are the first to decou-

ple the effect of time and the effect of stimulus on workers’ task allocation. Our analysis

indicates that the absolute value of stimulus, regarded as brood temperature, does not have

a significant effect on workers’ fanning engagement on the moment-to-moment timescale.
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This result contrasts with most response-threshold models (Bonabeau et al., 1996; Ther-

aulaz et al., 1998; Gautrais et al., 2002; Lichocki et al., 2012; Duarte, Pen, Keller and

Weissing, 2012), which predict that the response probability tends to increase with the

absolute stimulus intensity. This leads to the question – how the perceived stimulus is

assessed by individual workers. Some empirical study suggests that the rate of temperature

increase has a significant influence on workers’ decisions of fanning engagement (Westhus

et al., 2013). However, it is difficult to guarantee that the result is caused by the rate

of temperature increase rather than the elapsed time as the brood temperature is set to

increase with time during experiments (Westhus et al., 2013).

Our time-resolved model adopts the simplest possible assumption that workers start per-

forming the task if the perceived brood temperature exceeds a certain threshold value (see

Figure 3.17). This deterministic threshold decision-making can be found to correspond

with specific neurons in some insect species (Christoph Kleineidam, personal communi-

cation) and is fully sufficient for colony homeostasis since a group of workers work as a

closed-loop control system (for a detailed discussion, see Section 5.2.1). The main objec-

tive here is to cool down the colony. Commencing this task does not require an assessment

of the absolute value of temperature, the rate of temperature increase or any other com-

plex function. Particularly, the magnitude of temperature can determine the number of

workers required in fanning, which is irrelevant from the individual-level decision-making

on whether or not to engage.

We show that individual experience, measured as the position in the sequence of un-

interrupted fanning periods, does not appear to strongly influence workers’ fanning be-

haviour on the moment-to-moment timescale. This conclusion is in contradiction to the

hypothesis drawn from the threshold-reinforcement model (Theraulaz et al., 1998; Gau-

trais et al., 2002) that the response probability of a worker for a task tends to increase

with repeated task performance. The effect of individual experience on how workers re-

spond to task-related stimuli has been mainly studied in theoretical models, with scarce

and inconsistent support from empirical evidence (Jeanson and Weidenmüller, 2014). This

may be due to difficulties with precise measurement and manipulation of stimulus inten-

sities (Jeanson and Weidenmüller, 2014) or improper identification and analysis of target

behaviours (Duong and Dornhaus, 2012; Westhus et al., 2013). Based on our analysis, we

find that individual experience hardly affects the process of either task engaging or task

quitting on the moment-to-moment timescale. Interestingly, this is concluded from the

Cox model in which the statistical test suggests that the effect of individual experience is

significant whereas the impact coefficient resulting from the regression is extremely small

(see Section 3.3.1). The reason behind may be that the timescale is too short for individual

experience to take effect and further research may need to explore whether our conclusion

is valid for a longer timescale.

Our analysis points out that individual efficiency, measured as temperature decrease
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caused by workers’ task performance, has a significant negative influence on their fan-

ning behaviour on the moment-to-moment timescale (see Section 3.3.2). However, it is

generally expected that workers are more likely to perform the tasks from which they have

received rewards (Oster and Wilson, 1978; Plowright and Plowright, 1988), with support

of empirical evidence in ant foraging (Tripet and Nonacs, 2004; Ravary et al., 2007). The

reason behind this contradiction may lie in the difference of task types. Workers in a

colony tend to reduce the stimulus to the lowest possible level for a maximising task such

as foraging, while for a homeostatic task such as fanning, it is adequate to maintain the

stimulus within a narrow range (Duarte et al., 2011). In the experiments used for our

analysis, bumblebee workers who have received rewards from the fanning task tend to

engage less in fanning and may be more likely to perform other tasks that are more ur-

gent or demanding, such as foraging. Therefore, the negative effect of individual efficiency

on workers’ engagement in homeostatic tasks may be part of the feedback rules in task

allocation and contribute to the overall colony-level homeostasis and performance across

different tasks.

Based on the empirical data, our time-resolved model of task allocation describes the

refractory periods as time intervals between task execution for individual workers. Re-

fractory periods have been quantified by recent studies as the cost of task switching – a

potential disadvantage of non-specialisation (Jeanson and Lachaud, 2015; Leighton et al.,

2017). Frequent task quitting that connects task execution to a refractory period can be

an important principle to balance flexibility and efficiency in task allocation (Johnson,

2002, 2009). Based on this principle, workers can adapt to changes of task demands by

adjusting their activity levels while remaining specialised rather than by switching between

tasks (Jeanson et al., 2007). Inter-individual variation in the rates of task engaging from

the refractory period may account for elitism and specialised inactivity (Pinter-Wollman

et al., 2012; Charbonneau and Dornhaus, 2015b,a). It may need to be further explored how

the functional roles of refractory periods contribute to the organisation of social insects.

3.6 Conclusion

In this chapter, we took account of the factor of time and explored mechanisms of task

allocation in bumblebees on the moment-to-moment timescale. We performed survival

analysis for the data from two sets of experiments in which the task-associated stimu-

lus can be precisely measured and controlled. Surprisingly, we find that neither stimulus

intensity nor individual experience appears to have a strong effect on workers’ task engage-

ment. This contrasts with most established empirical studies (O’Donnell and Foster, 2001;

Weidenmüller et al., 2002; Weidenmüller, 2004; Westhus et al., 2013) and most theoreti-

cal models (Bonabeau et al., 1996; Theraulaz et al., 1998; Gautrais et al., 2002; Lichocki

et al., 2012; Duarte, Pen, Keller and Weissing, 2012), which do not account for the influ-

ence of time. Our results also indicate that individual efficiency has a negative influence on

workers’ task engagement, in contrast to the general expectation that workers’ perception

of rewards from performing a task tends to encourage them to engage in the task more
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strongly. Then we built a time-resolved model of task allocation which was verified with

the empirical data, suggesting that the influence of time cannot be ignored. Overall, our

exploration of temporal dynamics facilitate a fine-grained analysis of empirical data and

consequently improves our understanding of the underlying mechanisms of task allocation.



Chapter 4

Social Behaviour –

Game-Theoretical Models

4.1 Introduction

The majority of studies of mechanisms of task allocation in social insects focus on the

influence of internal factors (reviewed in Chapter 2). In contrast, the effect of social inter-

action on task allocation is less well-studied (see Section 2.4.3), even though the factor of

social interaction is widely investigated in other behaviours such as foraging and colony

migration (Grüter and Leadbeater, 2014). Recent studies focus on the idea that task

allocation can be regarded as a set of distributed processes driven by the interactions

between individuals and their environmental contexts (Gordon, 2016). However, commu-

nication between individual workers in an insect colony is complex. Due to difficulties in

experimental control and measurement of social behaviours, theoretical approaches have

the potential to guide empirical work and play a leading role in exploring the influence of

social interaction on task allocation.

To study the impact of social interaction on task allocation from a self-organisational

perspective, we propose a framework based on game theory. Game theory is the math-

ematical toolbox for interdependent decision-making and has been widely applied in bi-

ological problems (Izquierdo et al., 2012; McGill and Brown, 2007; Dugatkin and Reeve,

1998; Broom and Rychtář, 2013). Here a game formalises an interaction among a group

of individuals, called players (Nowak and Sigmund, 2004; Izquierdo et al., 2012). Players

take actions based on their behavioural characteristics, called strategies (Nowak and Sig-

mund, 2004; Izquierdo et al., 2012; Broom and Rychtář, 2013). How successful a player’s

strategy is represented by a payoff, which depends on the strategy of this player and those

of others who interact with the player (Nowak and Sigmund, 2004; Izquierdo et al., 2012;

Broom and Rychtář, 2013).

Classical game theory was initially developed as a branch of game theory for analysing

how rational players should behave to maximise their payoffs (von Neumann and Morgen-

stern, 1944; Izquierdo et al., 2012). In such a game, each player does not know exactly

49
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others’ strategies but assumes other players are rational (Broom and Rychtář, 2013). The

outcome of the game is the so-called Nash equilibrium, one of the fundamental concepts in

game theory, at which no player could improve her expected payoff by only changing her

own strategy (Izquierdo et al., 2012). Classical game theory is a static approach which

only focuses on possible equilibria without specifying how steady states are reached, which

leads to a limited applicability (Izquierdo et al., 2012; Broom and Rychtář, 2013).

Evolutionary game theory is a branch of game theory used to study the dynamics of

population exposed to evolutionary pressures (Gintis, 2009; Izquierdo et al., 2012). In

general, the evolutionary dynamics include the processes of selection (with replication)

and mutation (Izquierdo et al., 2012). Players’ payoffs in evolutionary game theory can

translate into Darwinian fitness, which determine how the frequencies of strategies in the

population vary over time (Nowak and Sigmund, 2004; Izquierdo et al., 2012). Particu-

larly, adaptive dynamics, a subset of evolutionary game theory, has been developed and

is applied increasingly to understand the long-term consequences of small mutations with

the key feature of linking population dynamics to evolutionary dynamics (Brännström

et al., 2013; McGill and Brown, 2007; Nowak and Sigmund, 2004; Broom and Rychtář,

2013).

From a perspective of abstract modelling, the selection-mutation process in adaptive

dynamics can be understood and re-interpreted as an imitation-innovation process on

learning timescales (Izquierdo et al., 2012): Both selection and imitation are essentially a

frequency-dependent process of strategy copying; Mutation and innovation describe slight

perturbation which occurs in population with low chance. This leads to the scope of learn-

ing game theory, another branch of game theory, which studies the dynamics of a group

of individuals who adjust their strategies by learning over time (Izquierdo et al., 2012). In

this study, we focus on learning game theory, as task allocation in social insects occurs on

worker-life timescales. Typically in learning game theory, the mechanism that determines

how individual strategies develop over time is not limited to the imitation-innovation pro-

cess but can be diverse, depending on the specific ecological contexts involved.

Game theory was used by an early study (Wahl, 2002) to investigate the evolutionary

dynamics of specialisation in the context of division of labour for co-viruses. The models

in this study demonstrate how individual strategies, simplified as generalists, specialists

or parasites, can evolve. However, these models do not capture enough ecological details

for exploring individual lifetime dynamics in social insects. A recent study by Kanakia

et al. (2016) applied a game-theoretical approach to study task allocation in swarm robotic

systems. This study focuses on how the stimulus-response dynamics can be implemented

in an engineering system of simple agents without direct communication. As a result, it ig-

nores the influence of social interaction between individuals, which is the key concern here.

In this chapter, we use learning game theory to explore how social interactions between
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self-organised workers lead to particular behavioural patterns of task allocation, which

refer to specialisation (see Section 1.1). We first develop a simple game of task allocation

in Section 4.2. Based on this task-allocation game, we build three models integrated with

other assumptions that determine the dynamics of workers’ strategies over time: social

learning (in Section 4.3), individual reinforcement (in Section 4.4) and task recruitment

(in Section 4.5). Each of these models indicates a mechanistic process for which some evi-

dence may exist in real scenarios. The model integrated with social learning assumes that

workers have a relatively complex learning ability and can be analysed by the framework

of adaptive dynamics. However, the assumptions made in this model about individual

cognitive ability need to be empirically tested, even though recent studies show that in-

sect workers can achieve seemingly complex social learning (Hunt and Chittka, 2015; Alem

et al., 2016). Alternatively, the other two models do not assume complex learning abil-

ity. The outcomes of all three models are investigated by agent-based simulations with

different environmental contexts.

4.2 A Task-Allocation Game

We assume that workers in a colony need to perform two types of tasks (A and B): Task

A represents a homeostatic task, such as thermoregulation to maintain nest temperature

within certain bounds; Task B refers to a maximising task, such as foraging to support

the energy cost of the colony. Both tasks have to be properly carried out for the survival

of the colony. For example, poor maintenance of nest temperature can slow down the

development of the brood and some brood may not survive if there is a shortage of food

intake.

Workers are assumed to interact with each other in a small group of size n, due to their

physical or spatial limitations. Empirical studies suggest that individual task prefer-

ence can be determined by an inherent response probability (Duong and Dornhaus, 2012;

Jeanson et al., 2005; Gordon, 2010). Accordingly, for a worker i, her task preference

is represented by a strategy xi ∈ [0, 1], which indicates the probability that she selects

Task A; Conversely, the probability for worker i to perform Task B is 1 − xi. In each

time-period, xi can also be regarded as the proportion of effort that worker i puts in Task

A on average and the average proportion of effort that she spends on Task B is then 1−xi.

Therefore, based on her and other workers’ strategies in the game, worker i receives her

payoff

Πi(X) = B(X)− C(xi)

where X = {xj |j = 1, 2, ..., n}, B(X) and C(xi) are the benefit and cost for worker i

respectively. In the game, workers’ payoffs are the key component which can be regarded

as their perception of rewards and penalties of task engagement influenced by social inter-

actions with others. Here the benefit B(X) is shared by all workers j = 1, 2, ..., n in the

game and the cost C(xi) only applies to individual worker i.
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The overall benefit B(X) is assumed as

B(X) = BA(X) ·BB(X)

where BA(X), BB(X) are the benefits of Task A, Task B respectively. Here BA(X) is

considered as a discount of BB(X), which reflects, for instance, how much food is collected

(Task B) given that the brood temperature is well regulated (Task A). In order to achieve

a large B(X), the workforce needs to be properly balanced between both tasks. As a

homeostatic task, Task A needs to be controlled at a certain level. Under performing or

over performing Task A can reduce BA(X). We use a simple way to model

BA(X) = − 4

n2
· (

n∑

j=1

xj)
2 +

4

n
·

n∑

j=1

xj .

Here BA(X) is assumed to achieve the maximum value, which is normalised between 0

and 1, when half of the workforce in the game is engaged in Task A and to be 0 when none

or all of workers in the game are engaged (illustrated in Figure 4.1(a)). As Task B is a

maximising task, which implies, for example, the more food is collected, the more brood

can survive, BB(X) is simply assumed to be linear:

BB(X) =
1

n
· b

( n∑

j=1

(1− xj)
)

where b is the benefit of Task B per unit cost of Task B (illustrated in Figure 4.1(b)),

which can represent the quality of food resources, for example.
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(a) Task A (n = 10)
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(b) Task B (n = 10, b = 20)

Figure 4.1: An example of the benefit functions for Task A and Task B.

The overall cost C(xi) is simply given by

C(xi) = CA(xi) + CB(xi)

where CA(xi), CB(xi) are the costs of Task A, Task B respectively. Here we assume the

cost of a homeostatic task to be linear in individual effort (illustrated in Figure 4.2(a))

and thus define

CA(xi) = r · xi
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where r is the cost of Task A per unit cost of Task B, which can indicate how costly Task

B (foraging) is, given that the cost of Task A (a maintenance task) is relatively small and

stable in comparison with Task B. We assume that CB(xi) is marginally decreasing with

the effort in Task B, indicating some possible scenarios in which foragers initially need

to spend more effort exploring their neighbourhood and once they become familiar with

the surrounding areas of food resources, the cost for them tend to be less than the initial

stage (illustrated in Figure 4.2(b)). As a result, we simply assume

CB(xi) = −(1− xi)
2 + 2(1− xi).

Here the cost of Task B for a worker who engage fully in Task B per time-period is assumed

to be 1 unit.
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(a) Task A (r = 1)
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(b) Task B

Figure 4.2: An example of the cost functions for Task A and Task B.

To simulate this task-allocation game, we set up a colony of size N >> n with a range of

environmental conditions represented by b and r. The strategy of each worker in the colony

is initialised as 0.5, indicating that there is no intrinsic inter-individual differentiation of

strategies among workers.

4.3 Social Learning

Based on the framework described in Section 4.2, we build a model of task allocation

integrated with social learning. Here social learning refers to the process that a worker

can estimate and learn another worker’s strategy by direct communication. In this model,

each worker is assumed to behave as follows:

(i) Evaluate her payoff based on her and others’ strategies in the game;

(ii) Select a worker with randomness in proportion to the associated payoffs across all

workers and copy her strategy;

(iii) Innovate her strategy slightly with a small chance and then continue with Step (i).

The detailed algorithm for the simulations of this model is given by Algorithm 2.
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Algorithm 2 Simulation algorithm for the model with social learning

1: t← 0 (* initialise time *)
2: for worker wi ∈ {wj |j = 1, 2, ..., N} do
3: xi ← 0.5 (* initialise the strategy of wi *)
4: end for
5: uniformly select and partition workers in the colony into multiple games of size n
6: while t < tend do
7: for worker wi ∈ {wj |j = 1, 2, ..., N} do
8: Πi ← B(X) − C(xi) (* wi evaluates her payoff in the game g of workers with

strategies X = {xj |wj ∈ g} *)
9: end for

10: for worker wi ∈ {wj |j = 1, 2, ..., N} do
11: select wk randomly according to probabilities p(wk) = eαΠk/

∑
k e

αΠk

12: (* k = 1, 2, ..., N *)
13: xi ← xk
14: (* wi selects a worker wk and copies her strategy *)
15: end for
16: m ∼ Binomial(N,β)
17: select m workers uniformly from {wj |j = 1, 2, ..., N} into M
18: for worker wi ∈M do
19: x

′′ ∼ Normal(xi, γ)
20: xi ← x

′′

21: (* wi innovates her strategy *)
22: end for
23: end while

The results of our simulations for social learning are illustrated in Figure 4.3. Here the

behavioural patterns of task allocation at the colony level are divided into being inviable,

strong specialisation and weak specialisation:

• Inviable – The average payoff of workers in a colony is not positive, indicating im-

balanced allocation of workforce between Task A and Task B;

• Strong specialisation – The workforce of a colony splits into different groups each of

which tends to focus only on one task;

• Weak specialisation – All workers in a colony adopt similar strategies.

In practice, the region diagram in Figure 4.3 is obtained through the results at the steady

state shown in Figure A.1. Those colonies with the non-positive mean of workers’ pay-

offs are classified under being inviable (according to Figure A.1(a)). The other colonies

are tentatively classified under strong specialisation if the standard deviation of workers’

strategies exceeds a certain level (set as 0.2 here) or weak specialisation otherwise (based

on Figure A.1(b)). However, a large standard deviation of workers’ strategies cannot guar-

antee strong specialisation, as a colony with a wide span of workers’ strategies may belong

to weak specialisation and correspond to a large standard deviation as well. To capture

the span of workers’ strategies, we verify the above temporary region classification by the
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Shannon entropy

H = −
N∑

i=1

P (xi) ln
(
P (xi)

)

where P (x) is the probability mass function for workers’ strategies in the colony. As shown

in Figure A.1(c), the entropies of workers’ strategies in colonies with large standard de-

viation are smaller than those with small standard deviation, which in turn confirms the

above temporary region classification.

t t t

x

x x x

N’

Figure 4.3: Behavioural patterns of the model with social learning. The upper region
diagram describes the patterns of task allocation of colonies based on the model with
social learning in a range of values for parameters b and r, which are involved in the
functions for payoff evaluation (see Section 4.2). The middle line of inset figures show
three typical cases of how workers’ strategies x in a colony develop over time t: being
inviable (b = 5, r = 0.4), strong specialisation (b = 10, r = 1) and weak specialisation
(b = 35, r = 0.2), followed by three lower inset histograms, each of which corresponds
to the above colony at the last time-period, where N

′
represents the number of workers

within a certain range of strategies.

We find that colony-level task specialisation can emerge from the interaction dynamics

between workers and their environments alone (see strong specialisation in Figure 4.3).

Under a certain range of environmental conditions, colonies initially consist of workers

with identical strategies and then separate their workforce into different groups in each of

which workers specialise into a single task, which is only influenced by social interactions

between workers. One of the core interests in the study of task allocation is to investigate

what are the primary sources that can cause variation in workers’ task preference (Gordon,
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2016). Most studies regard inherent inter-individual differentiation in response to simi-

lar environmental conditions as the main cause (Jeanson and Weidenmüller, 2014), while

it is shown that task specialisation can emerge from a colony of identical workers with

experience-based reinforcement (Theraulaz et al., 1998) or spatial variation of localised

task demands (Tofts and Franks, 1992; Johnson, 2010). The results of the model with

social learning, which does not involve any inherent inter-individual differentiation, show

that an alternative source of variation in task preference can be social interactions between

workers.

We also find that different environmental conditions (characterised by b and r) can cause

obvious variation of behavioural patterns of task allocation, even though the underlying

mechanisms are the same. As shown in Figure 4.3, strong specialisation tends to emerge in

those environments with poor food resources (when b is small). As the quality of food re-

sources in the environment improves (when b is large), workers in a colony are less likely to

specialise into tasks and tend to behave with similar strategies. Our task-allocation game

(described in Section 4.2) is similar to a continuous Snowdrift game (Doebeli et al., 2004),

in which the benefit is shared by all individuals, and the costs tend to be different across

individuals, depending on their strategies adopted. Both games can be used to explore

features of cooperation and illustrate a principle called “Tragedy of the Commune” (Doe-

beli et al., 2004). This principle describes that in a group, individuals contribute to and

reap a common good and some individuals may make high levels of investment while some

invest less or nothing, leading to some steady states that are not always uniform.1 The

results of our model with social learning indicate a new perspective for how task allocation

can change with environmental conditions based on the factor of social interaction, as an

alternative to the response-threshold models (reviewed in Section 2.3.1).

From a perspective of abstract modelling, the process described by the model with social

learning is similar to the evolution of continuous Snowdrift games and can be analysed by

the framework of adaptive dynamics. Here we give a mathematical analysis for the model

with social learning based on the work by Doebeli et al. (2004). In a game of size n, with

n − 1 type-I workers of strategy x and 1 type-II worker of strategy y (x, y ∈ [0, 1]), the

growth rate of the type-II worker is

fx(y) = Π
(
y, (n− 1)x

)
−Π

(
x, (n− 1)x

)

where Π
(
y, (n− 1)x

)
is the payoff of the type-II worker in this game and Π

(
x, (n− 1)x

)

is the payoff of a type-I worker in a game with all type-I workers of size n. Thus, the

1“Tragedy of the Commune” is subtly different from what is commonly known as “Tragedy of the
Commons” (Hardin, 1968). “Tragedy of the Commons” refers to the case that defection is always the
optimal strategy for an individual, which leads to over-exploiting the common resource, while “Tragedy of
the Commune” means that a mixed strategy of cooperation and defection is optimal and thus cooperation
and defection can stably coexist.
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selection gradient is

D(x) =
∂fx(y)

∂y

∣∣∣∣
y=x

=
4b

n

(
3x2 − 4x+ 1

)
+ 2x− r.

Then the singular strategy (solution of D(x∗) = 0) is

x∗ =
8b− n∓

√
16b2 − 16bn+ n2 + 12bnr

12b
.

Both strong specialisation and weak specialisation require the condition that there exists

such x∗ ∈ [0, 1] that x∗ is convergency stable

dD(x)

dx

∣∣∣∣
x=x∗

=
8b

n
(3x∗ − 2) + 2 < 0.

In addition to the above condition, strong specialisation emerges if

∂2fx∗(y)

∂y2

∣∣∣∣
y=x∗

=
8b

n2
(3x∗ − 2) + 2 > 0

and weak specialisation requires

∂2fx∗(y)

∂y2

∣∣∣∣
y=x∗

=
8b

n2
(3x∗ − 2) + 2 < 0.

In other cases such as when x∗ is convergency unstable, colonies tend to become inviable

based on our payoff function (see Section 4.2), as one task out of the two is abandoned.

The behavioural patterns of task allocation based on the above analysis are illustrated

in Figure 4.4, which are similar to those based on the model with social learning in Fig-

ure 4.3. Compared to the mathematical analysis, the behavioural patterns of our model

involve more scenarios of being inviable, especially when r is small. This can be attributed

to the fact that workers’ payoffs tend to decrease with the value of r in strongly specialised

colonies (see Figure A.1(a), details explained in Section 5.3.1). Therefore, when r is small,

the balance of colony workforce allocated between Task A and Task B is fragile and the

random effects involved in simulations can break this balance of task allocation, leading

to more inviable situations.

4.4 Individual Reinforcement

Based on the framework described in Section 4.2, we build a model of task allocation

integrated with individual reinforcement. Here individual reinforcement is achieved by

the process that workers assess and improve their strategies by making comparison with

their previous strategies in their memories (Izquierdo et al., 2012). In this model, each

worker is assumed to behave as follows:

(i) Evaluate her payoff based on her and others’ strategies in the game;
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Figure 4.4: Behavioural patterns predicted by adaptive dynamics. The above diagram
describes the patterns of task allocation of colonies based on the mathematical framework
of adaptive dynamics in a range of values for parameters b and r (given n = 10), which
are involved in the functions for payoff evaluation (see Section 4.2).

(ii) Memorise her strategy and associated payoff;

(iii) Innovate her strategy slightly with a small chance;

(iv) Revert to her previous strategy if her current payoff is worse and then continue with

Step (i).

The detailed algorithm of the simulations of this model is given by Algorithm 3.

The results of the simulations for individual reinforcement are illustrated in Figure 4.5.

Similar to social learning (see Section 4.3), the region diagram in Figure 4.5 is obtained

through the results at the steady state shown in Figure A.3, according to the mean payoff

(see Figure A.3(a)), the standard deviation (see Figure A.3(b)) and the Shannon entropy

(see Figure A.3(c)). Particularly for the model with individual reinforcement, all viable

colonies behave with strong specialisation, identified by the large standard deviations of

workers’ strategies and confirmed by the small variation of the entropies. Our simulations

indicate that workers who adjust their strategies based only on their own exploration tend

to strongly specialise in different tasks. There is no weak specialisation compared to the

model with social learning (see Figure 4.3) as here, no strategy copying is involved between

workers.

Experience-based reinforcement is likely to influence workers’ decision-making in task se-

lection (Jeanson and Weidenmüller, 2014). Most studies focus on how individual experi-

ence is accumulated through encountering task-associated stimuli or engaging in tasks (Jean-

son and Weidenmüller, 2014). An individual worker can receive the information about task

demands by not only perceiving the task-related stimuli but also through interacting with

other workers (Beshers and Fewell, 2001). Empirical evidence suggests that workers’ task

preference is correlated with their recent interaction history (Gordon and Mehdiabadi,

1999). However, how social experience (experience obtained through social interactions)

can modulate workers’ task preference is scarcely explored. Our model with individual

reinforcement provides one potential underlying mechanism that can explain this ques-

tion as workers’ payoffs may represent their recent interaction history. The results of this
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Algorithm 3 Simulation algorithm for the model with individual reinforcement

1: t← 0 (* initialise time *)
2: for worker wi ∈ {wj |j = 1, 2, ..., N} do
3: xi ← 0.5 (* initialise the strategy of wi *)
4: end for
5: uniformly select and partition workers in the colony into multiple games of size n
6: for worker wi ∈ {wj |j = 1, 2, ..., N} do
7: Πi ← B(X) − C(xi) (* wi evaluates her payoff in the game g of workers with

strategies X = {xj |wj ∈ g} *)
8: end for
9: while t < tend do

10: for worker wi ∈ {wj |j = 1, 2, ..., N} do
11: x

′
i ← xi

12: Π
′
i ← Πi

13: (* wi memorises her previous strategy and payoff *)
14: end for
15: m ∼ Binomial(N,β)
16: select m workers uniformly from {wj |j = 1, 2, ..., N} into M
17: for worker wi ∈M do
18: x

′′ ∼ Normal(xi, γ)
19: xi ← x

′′

20: (* wi innovates her strategy *)
21: end for
22: for worker wi ∈ {wj |j = 1, 2, ..., N} do
23: Πi ← B(X)− C(xi)
24: end for
25: for worker wi ∈ {wj |j = 1, 2, ..., N} do
26: if Πi < Π

′
i then

27: xi ← x
′
(* wi reverts to her pervious strategy *)

28: end if
29: end for
30: end while
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Figure 4.5: Behavioural patterns of the model with individual reinforcement. The upper
region diagram gives the patterns of task allocation of colonies based on the model with
individual reinforcement in a range of values for parameters b and r, which are involved
in the functions for payoff evaluation (see Section 4.2). The middle line of inset figures
show two typical cases of how workers’ strategies x in a colony develop over time t for
being inviable (b = 4, r = 0.3) and strong specialisation (b = 25, r = 0.8), followed by
two histograms of workers’ strategies, each of which corresponds to the above colony at
the last time-period, where N

′
represents the number of workers within a certain range of

strategies.



4.5. TASK RECRUITMENT 61

model are also consistent with empirical evidence that the presence of social experience

may promote task specialisation (Jeanson et al., 2008).

4.5 Task Recruitment

Based on the framework described in Section 4.2, we build a model of task allocation

integrated with recruitment. Here task recruitment assumes that workers simply follow

the tasks performed by other workers without relying on complex cognitive ability, which

is widely explored and well supported by empirical studies on social insects (Gordon, 1996,

2010). In this model, workers perform only one task depending on their strategies at each

time-period in contrast with social learning and individual reinforcement. Therefore, the

proportion of effort that each worker puts in Task A at one time-period is either x
′
= 1

if she performs Task A or x
′
= 0 if she performs Task B, which is then used as input for

payoff evaluation. Subsequently, the tasks that workers are recruited to further modify

their strategies. We assume that each worker behaves as follows:

(i) Select a task (A or B) with randomness based on her strategy;

(ii) Evaluate her payoff based on her and others’ allocated tasks in a game;

(iii) Select a worker with randomness in proportion to the associated payoffs across all

workers and follow the task that the selected worker performs;

(iv) Modify her strategy based on the task she follows in Step (iii):

xi ←
{

ρ+ (1− ρ)xi if x
′
i = 1,

(1− ρ)xi otherwise

where ρ is a constant between 0 and 1;

(v) Innovate her strategy slightly with a small chance and then continue with Step (i).

The detailed algorithm for the simulations of this model is given by Algorithm 4.

The results of the simulations for task recruitment are illustrated in Figure 4.6. Similar

to social learning (see Section 4.3), the region diagram in Figure 4.6 is obtained through

the results at the steady state shown in Figure A.4. Particularly for task recruitment, all

viable colonies behave with weak specialisation, which are identified by the small standard

deviations of workers’ strategies (see Figure A.4(b)) and confirmed by the small variation

of the entropies (see Figure A.4(c)). Our simulations show that workers in a colony based

on the model with task recruitment are unlikely to specialise in tasks, in contrast to in-

dividual reinforcement (see Figure 4.5). Compared to the model with social learning (see

Figure 4.3), the patterns of task allocation based on task recruitment tend to be uniform

– only weak specialisation, as in this model, workers are characterised by the tasks they

perform in the interactions between each other rather than their strategies, and conse-

quently, their strategies tend to be bounded to a level determined by the ratio of workers

engaged in Task A and Task B at the steady state.
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Algorithm 4 Simulation algorithm for the model with task recruitment

1: t← 0 (* initialise time *)
2: for worker wi ∈ {wj |j = 1, 2, ..., N} do
3: xi ← 0.5 (* initialise the strategy of wi *)
4: end for
5: uniformly select and partition workers in the colony into multiple games of size n
6: while t < tend do
7: for worker wi ∈ {wj |j = 1, 2, ..., N} do
8: r ← random(0, 1)
9: if r < xi then

10: x
′
i ← 1 (* wi selects Task A *)

11: else
12: x

′
i ← 0 (* wi selects Task B *)

13: end if
14: end for
15: for worker wi ∈ {wj |j = 1, 2, ..., N} do
16: Πi ← B(X

′
)− C(x

′
i) (* wi evaluates her payoff in the game g of workers with

allocated tasks X
′
= {x′

j |wj ∈ g} *)
17: end for
18: for worker wi ∈ {wj |j = 1, 2, ..., N} do
19: select wk randomly according to probabilities p(wk) = eαΠk/

∑
k e

αΠk

20: (* k = 1, 2, ..., N *)
21: x

′
i ← x

′
k

22: (* wi selects a worker wk and follows her task *)
23: if x

′
i = 1 then

24: xi ← ρ+ (1− ρ)xi
25: else
26: xi ← (1− ρ)xi
27: end if
28: end for
29: m ∼ Binomial(N,β)
30: select m workers uniformly from {wj |j = 1, 2, ..., N} into M
31: for worker wi ∈M do
32: x

′′ ∼ Normal(xi, γ)
33: xi ← x

′′

34: (* wi innovates her strategy *)
35: end for
36: end while
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Figure 4.6: Behavioural patterns of the model with task recruitment. The upper region
diagram gives the patterns of task allocation of colonies based on the model with task
recruitment in a range of values for parameters b and r, which are involved in the functions
for payoff evaluation (see Section 4.2). The middle line of inset figures show two typical
cases of how workers’ strategies x in a colony develop over time t for being inviable
(b = 4, r = 0.3) and weak specialisation (b = 25, r = 1), followed by two histograms of
workers’ strategies, each of which corresponds to the above colony at the last time-period,
where N

′
represents the number of workers within a certain range of strategies.
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4.5.1 Integration with Experience-based Reinforcement

We integrate the experience-based reinforcement (individual experience and social expe-

rience separately) into the model of task allocation with recruitment. In these integrated

models, workers are assumed to accumulate and reduce their own experiences through

performing and not-performing the related tasks. Here in the task-recruiting process –

Step (iii) of the model with task recruitment, each worker can not only follow the task

performed by another worker but also select a task based on her experiences of previous

task engagement. Workers’ task decisions are made in proportion to their accumulated

experiences of previous task performance and the current payoffs of other workers. Here

the difference between the reinforcement by individual experience and social experience is:

For individual experience, workers’ experiences are accumulated depending on their own

learning rates, which are assumed to be different across workers in a colony; For social

experience, workers’ experiences increase by the evaluation of social interactions, repre-

sented by their payoffs. The detailed algorithms for the simulations of the models with

reinforcement by individual experience and social experience are given by Algorithm 5 and

Algorithm 6 respectively in Appendix A.3.1.

As illustrated in Figure 4.7, the results of the models integrated with task recruitment and

experience-based reinforcement suggest that strong specialisation can occur under certain

environmental conditions in contrast to the model only with task recruitment (see Fig-

ure 4.6). The fact that task selection depends on experiences influenced by previous task

performance leads to a positive feedback loop in addition to the process of task recruit-

ment. This positive feedback loop can make workers’ accumulated experiences for one task

exceed the magnitude of recruitment signals from other workers, leading to strong spe-

cialisation in certain environments. Interestingly, the environmental conditions in which

strong specialisation occurs appear to be different between individual experience and so-

cial experience.

For the reinforcement by individual experience (see Figure 4.7(a)), the behavioural pat-

terns are similar to those of the model with social learning (see Figure 4.3) – strong

specialisation tends to emerge in the environments when b is small. As the magnitude of

the recruitment signal is proportional to b, workers’ own accumulated experiences tend to

outweigh the recruitment signals from others, thereby becoming specialised in one task,

when b is small. When b is large, workers are more likely to follow others’ tasks due to

stronger recruitment signals than their own experiences, the influence of which, however,

still exist especially when the difference of costs between Task A and Task B is large

(small r). As workers tend to select the task with less cost, in a colony, workers’ payoffs

for the process of task recruitment are low (see Figure A.4(a)) and the balance of work-

force allocated to both tasks is fragile when r is small (for details, see Section 5.3.1). Thus

occasionally, the reinforcement by individual experience can make task allocation in the

environment with small r out of balance, leading colonies to become inviable (illustrated

in Figure 4.7(a)).
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However, for the reinforcement by social experience, the environmental conditions in which

strong specialisation tends to occur seems to be different from social learning or the re-

inforcement by individual experience. As indicated in Figure 4.7(b), strong specialisation

appears to occur when b and r are relatively large. In these environments, workers’ pay-

offs received in the process of task recruitment are large (illustrated in Figure A.4(a)),

which are then accumulated into their own task experiences. Subsequently, workers’ ac-

cumulated experiences for one task tend to outweigh the recruitment signals from other

workers, leading to strong specialisation in colonies which live in the environments with

large b and r.
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Figure 4.7: Behavioural patterns of the models with task recruitment and experience-
based reinforcement. Both region diagrams give the patterns of task allocation of colonies
based on the model with task recruitment and experience-based reinforcement in a range
of values for parameters b and r, which are involved in the functions for payoff evaluation
(see Section 4.2). These region diagrams are obtained by the same procedure with social
learning based on the results at the steady state shown in Figure A.5 and Figure A.6.

4.5.2 Integration with Spatial Fidelity

Apart from individual experience and social interaction, spatial distribution is also widely

considered as an important factor that influences task allocation (reviewed in Chapter 2).

Here we integrate spatial fidelity into the model with task recruitment. By this we assume

that in a colony, each worker tends to show fidelity to some fixed location in the process

of task recruitment. As a result, the colony can be divided into multiple task-recruiting

groups while the games in which workers interact with each other for payoff evaluation

are not restricted to the spatial limitation. The detailed algorithm of the simulations of
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this model is given by Algorithm 7 in Appendix A.3.2.

The results of the simulations for the model with task recruitment and spatial fidelity

are similar to the model only integrated with task recruitment. As illustrated in Fig-

ure 4.8, even though workers within a task-recruiting group tend to behave with similar

strategies, the strategies of workers between these groups can differ. However, the colony-

level workforce does not split into obviously different specialised groups. Spatial influence

on task allocation is mostly studied as to the distribution of task demands (reviewed in

Section 2.3.3). Here we use our game-theoretical models to explore how spatial factors

may influence social interactions involved in task allocation, motivated by empirical evi-

dence that spatial distribution appears to have a significant effect on interactions between

workers in harvester ants (Pinter-Wollman et al., 2011). Further research may explore how

variation of patterns and structures of social interaction, caused by spatial distribution or

other factors, can influence the results of the model with task recruitment.

Our investigation of the model with task recruitment, which assumes that workers simply

follow the tasks performed by others without any complex cognitive ability, is still in an

early stage. The task-following process in worker-worker communication is widely observed

in social insects and well supported by empirical studies (Gordon, 1996, 2010). There are

a considerable number of potential factors and rich contexts that can be involved in or

interact with this task-following process. For example, the integration of different types

of experience can result in substantially different behavioural patterns (see Figure 4.7).

This leads to the question of how workers select tasks based on their experiences and

social interactions with others. For this question, most studies focus on workers’ decision-

making from individual experience and social information use (Grüter and Leadbeater,

2014). Whether and how workers’ social experience is accumulated and influence their

task preference may need further investigation.

4.6 Discussion

One important question is how we understand that workers in a colony play games or what

such a game represents. Due to their physical or spatial limitations, individual workers

are likely to sample and respond to local cues that can reflect the global situation (Gor-

don, 1996). Accordingly, our models assume that the workforce in a colony breaks up

into multiple groups or games in which workers interact with each other and evaluate the

payoffs for their and others’ strategies. Each game happens locally and the behaviour at

the colony level is aggregated by these local games. The size of a local group or game

may be related to the degree or rate in which workers tend to interact with each other,

which can influence the pattern of colony-level task allocation as illustrated by the model

with social learning (see Figure 4.9): Weak specialisation arises when workers are involved

in small games whereas larger games can lead to strong specialisation. This is consistent

with empirical evidence that individuals in larger groups exhibit higher degrees of task

specialisation (Holbrook, Kukuk and Fewell, 2013).
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Figure 4.8: Behavioural patterns of the model with task recruitment and spatial fidelity.
The upper region diagram gives the patterns of task allocation of colonies based on the
model with task recruitment and spatial fidelity in a range of values for parameters b and r,
which are involved in the functions for payoff evaluation (see Section 4.2). This diagram is
obtained by the same procedure with the original task recruitment (see Section 4.5) based
on the results at the steady state shown in Figure A.7. The lower inset figures show a
typical case of weak specialisation (b = 30, r = 0.1): The figure (a) describes how workers’
strategies x in the colony develop over time t; The histogram (c) indicates the number of
workers N

′
within a certain range of strategies x in the colony at the last time-period;

The plot (b) gives the strategy x for each worker i in the colony at the last time-period
– particularly in this plot, workers in the same recruiting group are listed together in line
and represented by the same colour, demonstrated by the inset figure (d).
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Figure 4.9: Behavioural patterns of the model with social learning for different game
sizes. This region diagram describes the patterns of task allocation of colonies based on
the model with social learning in a range of values for parameters n and r, which are
involved in the functions for payoff evaluation (see Section 4.2). This diagram is obtained
by the same procedure with the region diagram in Figure 4.3, based on the results at the
steady state shown in Figure A.2.

Another interesting question is how the strategies of workers in a colony can develop over

time. The model with individual reinforcement simply assumes that workers can improve

their strategies separately based on their short-term memories of previous strategies and

payoffs. In both models with social learning and task recruitment, those workers with

large payoffs could be more active to communicate with others or these workers could

be more readily to be perceived by others. In general, workers are assumed to be able to

move globally across the colony and communicate with others after receiving their payoffs.

Spatial movement such as walking around is widely observed in empirical studies and is

likely to influence task allocation in social insects (Gordon, 2002; Charbonneau et al., 2013;

Seeley, 1982; Johnson, 2003; Cartar, 1992). In the model with task recruitment, workers

can recognise the tasks that others perform simply by chemical cues or antennal contact

in the task-following process (Gordon, 1996; Gordon and Mehdiabadi, 1999). However, in

the model with social learning, the process of strategy copying between workers seems not

straightforward and may assume that workers require complex cognitive ability, such as

some type of concept learning studied in bumblebees (Giurfa, 2015). One possibility may

be that workers infer and estimate the strategies of the workers that they meet by some

fractional concept – For example, an individual worker might perceive the frequency of

different tasks performed by another worker through the proportion of the task-associated

odours carried by the other worker.

As our task-allocation game is on worker-life timescale, there are potentially more mecha-

nisms in the development of workers’ strategies than social learning, individual reinforce-

ment and task recruitment, depending on the ecological contexts. Different mechanisms
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of how workers develop their strategies can lead to variation of behavioural patterns of

task allocation. For instance, the behavioural pattern of the model with individual re-

inforcement (see Figure 4.5) is opposite from task recruitment (see Figure 4.6) while the

results of social learning (see Figure 4.3) are partially similar to both of the above models.

Empirical studies may test which mechanism an insect colony follows by setting up a range

of environmental conditions and checking if the colony-level behavioural patterns follow

the predictions of our game-theoretical models.

4.7 Conclusion

In this chapter, we applied learning game theory to study the mechanisms of task al-

location in social insects. Learning game theory offers an alternative framework to the

response-threshold models (reviewed in Section 2.3) for exploring how behavioural pat-

terns of task allocation can emerge from the interactions between workers and their en-

vironments. Based on our game-theoretical models, we find that specialisation can be

caused by social interactions between workers in a colony alone, in addition to intrinsic

inter-individual differentiation, self-reinforcement and spatial variation of task demands

suggested by previous studies (Jeanson and Weidenmüller, 2014; Theraulaz et al., 1998;

Johnson, 2010). We also find whether specialisation can emerge or not at the colony

level can be determined by the environmental conditions as well as by the mechanisms of

how workers’ strategies develop over time. The components and assumptions involved in

our game-theoretical models can provide new insights into the mechanistic processes of

task allocation and may also advance our understanding of other topics such as concept

learning (Giurfa, 2015) and selective use of social information (Grüter and Leadbeater,

2014).
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Chapter 5

Colony Efficiency and Task

Allocation

5.1 Introduction

Social insect colonies are examples of potentially efficient and flexible organisations shaped

by the optimising processes of natural selection (Charbonneau and Dornhaus, 2015a). Ef-

ficiency represents how well the mechanism of task allocation in a colony can perform

under certain environmental condition. It can be measured by some proxy such as the

quantity of food collected, the amount of time delay or energy cost and the level of demand

satisfied (Dukas and Visscher, 1994; Leighton et al., 2017; Jeanson and Lachaud, 2015).

Efficiency is related to the adaptive value in Tinbergen’s four questions (introduced in

Section 1.2) and may shape the evolution of behavioural patterns of task allocation.

In general, it is reasonable to assume that environmental contexts are static on a fairly

short timescale. However, when the focal timescale is extended, environmental conditions

tend to fluctuate over time in nature. How a colony performs cannot only be measured

by the efficiency achieved but also by the ability to adapt to environmental perturbations.

Most models of task allocation (reviewed in Section 2.3) explicitly assume that workers’

task selection depends on the associated stimulus and thus appear to be reactive to envi-

ronmental changes to some degree (Charbonneau and Dornhaus, 2015a).

However, as reviewed in Section 2.4.4, most models of task allocation tend to focus on be-

havioural patterns and typically evaluate the efficiency in terms of a single task. In order

to analyse the efficiency at the colony level, it is necessary to take account of scenarios

with different tasks. The flexibility of task allocation to environmental changes needs to

be quantified with specific tasks and environmental dynamics. Task allocation in social

insects is likely to be a trade-off between efficiency and flexibility. For example, colonies

usually tend to maintain a large proportion of inactive workers who appear not to be

engaged in any task. It prevents the colony from achieving the optimal efficiency when

the demand is low; however, when the demand is urgent and high, inactive workers can

become active for the survival of the colony (Charbonneau and Dornhaus, 2015a).

71
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In this chapter, we analyse and discuss the efficiency of models of task allocation based on

individual behaviour and social behaviour as well as the performance in dynamic environ-

ments: For individual behaviour,1 we evaluate our time-resolved model of task allocation

(proposed in Chapter 3) by an extended simulation of collective fanning in a natural

bumblebee colony; For social behaviour, we focus on our game-theoretical models of task

allocation integrated with different mechanisms that determine how workers’ strategies

develop over time (proposed in Chapter 4).

5.2 Individual Behaviour

In this section, we further explore and evaluate our time-resolved model of task allo-

cation, which focuses on the influence of within-worker factors. Our evaluation of the

time-resolved model is based on the case of a homeostatic task – fanning in bumblebees,

from our empirical data (see Chapter 3). We use computer simulations to demonstrate

that colony efficiency cannot only be measured by how well homeostasis is achieved but

also by how much workforce is left and available to other tasks. We further explore colony

performance on a longer timescale when environmental conditions tend to fluctuate. In

addition to colony efficiency, we tackle the question of how fast experience-based reinforce-

ment can adapt to environmental fluctuations by simulations.

Our simulations are based on the time-resolved model (see Section 3.4), which is extended

to capture the collective fanning in a bumblebee colony. The simulated nest is exposed to

ambient temperature and additionally produces internal heat. Standard processes of New-

tonian heat conduction are used to approximate the dynamics of nest temperature. For

simplicity, we assume that the effect of each worker’s effort on decreasing nest temperature

is constant over time and identical with the others in the colony.

5.2.1 Efficiency

For a homeostatic task, such as fanning to cool down nest temperature, task performance

at the colony level is usually measured as how close the task-related stimulus is maintained

to a target level. In nature, bumblebee colonies are able to keep their brood temperature

remarkably stable at the ideal level (32◦C) for most of the time (Weidenmüller et al., 2002).

This can be explained by regarding a bumblebee colony and the environmental context as

a closed-loop control system because individual actions influence and are influenced by the

stimulus intensity (Castillo-Cagigal et al., 2014). In a colony, workers continuously assess

the temperature, perform the task for a while if required and then reassess the situation

(for details, see Section 3.4). This closed-loop control ensures that collective homeostasis

can be achieved regardless of the details of individual decision-making, provided that a

sufficient number of workers are available.

1This part includes published work (Meyer et al., 2015)
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Consequently, the efficiency of task performance at the colony-level over a certain pe-

riod cannot only be measured by how well the task demand is satisfied but also by how

many workers have been involved in the task. In principle, the total number of work-

ers that have been involved in the fanning task over a long period may vary from the

number of workers needed to balance the generated heat, up to the colony size. Within

this range, the fewer the workers that are involved in fanning, the more specialised these

workers are. This raises the question of whether task specialisation improves colony effi-

ciency. Even though it may be still under discussion that specialisation contributes to task

performance at the individual level (Hölldobler and Wilson, 1990; Johnson, 2003; Dorn-

haus, 2008), specialisation is likely to promote efficient task performance at the colony

level through various ways such as reducing costs in task switching (Charbonneau and

Dornhaus, 2015a; Leighton et al., 2017). Therefore, the proportion of workers that have

been involved in the task over a certain period can also be used to measure colony efficiency.

We demonstrate the above discussion by extended simulations of the time-resolved model

of task allocation (for details, see Algorithm 8 in Appendix B). As a first step, we assume

that the ambient temperature is constant at a certain level over time. In our simula-

tions, we compare the efficiency of two colonies: One consists entirely of workers with

identical task preference, represented by pA – the probability to select Task A (defined in

Section 3.4) and thus has no specialisation in fanning (Task A); The other is comprised

of workers with different pA and those with larger pA tend to specialise in fanning. The

number of workers actively engaged in fanning at any given time tends to be constant

with slight fluctuations in order to keep the temperature stable around the ideal level (see

Figure 5.1 and Figure 5.2). The simulations confirm that workers can manage to achieve

colony homeostasis based on the closed-loop control, no matter whether there is speciali-

sation in the fanning task at the individual level.
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Figure 5.1: Nest temperature T over time t: (a) pA is identical for all workers in a colony
(pA = 0.5); (b) pA varies among workers in a colony (pA ∼ U(0, 1)). For both (a) and
(b), simulations are set up with parameters N = 100, θA = 32, Tout = 30, α = 0.1,
β = 0.00333, K = 1, r = 1/60, λA = 0.75, µA ∼ U(0, 1.25), λB ∼ U(0, 1). Here U(a, b)
represents a continuous uniform distribution on the interval [a, b].
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Figure 5.2: Number of workers actively engaged in fanning over time t: (a) pA is identical
for all workers in a colony (pA = 0.5); (b) pA varies among workers in a colony (pA ∼
U(0, 1)). For both (a) and (b), simulations are set up with parameters N = 100, θA = 32,
Tout = 30, α = 0.1, β = 0.00333, K = 1, r = 1/60, λA = 0.75, µA ∼ U(0, 1.25),
λB ∼ U(0, 1). Here U(a, b) represents a continuous uniform distribution on the interval
[a, b].

Over our simulation period, however, there seem to be more different workers that have

been involved in fanning for the colony with no specialisation than the one with specialisa-

tion (see Figure 5.3). In the colony with specialisation, workers with large pA are engaged

in fanning more frequently, thereby reducing the likelihood for those with small pA to

engage (see Figure 5.3(b)), while all workers participate more evenly in the colony with

no specialisation (see Figure 5.3(a)). Overall, the colony with specialisation may achieve

better efficiency as there is more workforce available to concentrate on other tasks such as

foraging, which can lower the costs generated in activities such as monitoring the brood

temperature. To satisfy the demands of different tasks in a colony, specialisation is asso-

ciated with inter-individual variation in workers’ task preference, which in turn may have

a functional role in enabling the colony to achieve collective homeostasis more efficiently.
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(a) pA is identical.
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(b) pA varies.

Figure 5.3: Cumulative number of uninterrupted fanning periods for each worker: (a) pA
is identical for all workers in a colony (pA = 0.5); (b) pA varies among workers in a colony
(pA ∼ U(0, 1)). For both (a) and (b), simulations are set up with parameters N = 100,
θA = 32, Tout = 30, α = 0.1, β = 0.00333, K = 1, r = 1/60, λA = 0.75, µA ∼ U(0, 1.25),
λB ∼ U(0, 1). Workers are sorted from left to right in descending order by their total
number of fanning periods. Here U(a, b) represents a continuous uniform distribution on
the interval [a, b].
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5.2.2 Dynamic Environments

Our time-resolved model describes the dynamics of task allocation on a short timescale,

when it is reasonable to assume that environmental conditions do not change. The static

environmental context is assumed for the analysis of colony efficiency in Section 5.2.1.

However, at longer timescales, environmental conditions tend to dynamically change in

nature. Therefore, it is necessary to take into account how quickly a colony can manage

to cope with environmental changes, or equivalently, how well colony homeostasis can be

maintained when environment conditions fluctuate, in addition to the criteria for colony

efficiency discussed in Section 5.2.1.

The results of our data analysis suggest that individual experience does not have a strong

influence on bumblebee workers’ fanning engagement at the moment-to-moment timescale

(see Section 3.3.1). It is entirely possible that the effect of individual experience on task

allocation cannot be ignored for a different species, task or on a longer timescale (see

Section 2.2.1). Here we integrate the paradigm of reinforcement by individual experience

into our time-resolved model of task allocation. Individuals are assumed to derive certain

utility from performing a task and accumulate this utility as their task-related experience,

which is also gradually forgotten and discounted over time (Weissbuch et al., 2000; An-

derson et al., 1992; Camazine et al., 2001).

For an individual i, the cumulative discounted experience for task k is given as

Ei
k(j + 1) := (1− ρ) · Ei

k(j) + ρ · U i
k(j)

where U i
k(j) ∈ R is the utility that individual i derives from performing task k at the j-th

time-period and ρ ∈ [0, 1] is a discount constant. Then the probability piA to poll for Task

A is assumed to be

piA =
f(Ei

A)

f(Ei
A) + f(Ei

B)
.

Here f(x) is a monotonically increasing function f(x) = (m + x)γ where m models a

residual probability to choose a task with no experience and γ determines how strongly

the difference in experiences is emphasised (Sumpter, 2010).

We explore this model using computer simulations (for details, see Algorithm 9 in Ap-

pendix B). Two colonies are simulated under the fluctuating environmental conditions

that may represent a daily ambient temperature cycle: One colony is parameterised to

achieve fast adaptation by strong reinforcement (U i
k(j) ∈ {0, 20})2 while the other is set

with slower adaptation by weak reinforcement (U i
k(j) ∈ {0, 1}).2 Initially for t < 500, the

colony with strong reinforcement shows rapid specialisation given that only about 20%

of the workforce has been involved in fanning (see Figure 5.5(a)). However, this colony

2For simplicity, the utility of individual task performance is assumed as U i
k(j) ∈ {0, c} where c is a

constant.
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Figure 5.4: Nest temperature T over time t for colonies with strong and weak reinforcement
for different time horizons (N = 100, θA = 32, α = 0.1, β = 0.02, K = 1, r = 1/60,
λA = 0.75, µA ∼ U(0, 1.25), λB ∼ U(0, 1), ρ = 0.05, m = 1, γ = 2, E0 = 0.5). Here
U(a, b) represents a continuous uniform distribution on the interval [a, b].
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Figure 5.5: Cumulative number of uninterrupted fanning periods for each worker in
colonies with strong and weak reinforcement for different time horizons (N = 100, θA = 32,
α = 0.1, β = 0.02, K = 1, r = 1/60, λA = 0.75, µA ∼ U(0, 1.25), λB ∼ U(0, 1), ρ = 0.05,
m = 1, γ = 2, E0 = 0.5). Workers are sorted from left to right in descending order
by their total number of fanning periods. Here U(a, b) represents a continuous uniform
distribution on the interval [a, b].
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cannot cope with the rising ambient temperature quickly enough (300 < t < 500, Fig-

ure 5.4(a)). Even though this colony eventually adapts to the environmental fluctuations

(t > 4000, Figure 5.4(b)), specialisation is lost in the process as shown in Figure 5.5(b),

around 90% workers in the colony have been engaged in fanning and their activity levels

do not differ as strongly as the initial stage (t < 500, see Figure 5.5(a)). On the other

hand, the colony with weak reinforcement effectively handles the demand changes all the

time (see Figure 5.4) but specialisation has never arisen (see Figure 5.5). For this colony,

the reinforcement is indeed rendered ineffective by environmental fluctuations.

We see that a colony with strong reinforcement can specialise fast in task allocation but

tends to lose control under environmental fluctuations. On the other hand, a colony with

weak reinforcement tends to be flexible in dynamic environments but hardly involves spe-

cialisation. This leads to the question of how a trade-off between efficiency (achieved by

specialisation) and flexibility in task allocation (Charbonneau and Dornhaus, 2015a) can

be achieved. In this case, it can be reasoned by the relationship between the experience-

based reinforcement, determined by both effects of positive and negative feedbacks, and

the dynamic characteristics of the environment: If the environment changes more slowly

than the rate of reinforcement, there can be a long delay from the time when the environ-

mental change occurs until the associated task need is well-satisfied; If the environment

fluctuates faster than the reinforcement rate, then task specialisation can barely arise.

Consequently, there are two potential mechanisms of how the trade-off between efficiency

and flexibility may be achieved in nature: One is that colonies have evolved under certain

environmental conditions through natural selection (Charbonneau and Dornhaus, 2015a);

The other is that the rates of workers’ positive and negative feedbacks depend on the

current environmental conditions (Castillo-Cagigal et al., 2014). A more detailed and ex-

haustive analysis is unfortunately beyond the scope of this thesis and needs to be kept for

future research.

5.3 Social Behaviour

In this section, we evaluate and analyse the game-theoretical models of task allocation,

which emphasise the effect of social interaction between individual workers (see Chapter 4).

We study how the efficiency achieved by colonies based on these models is related to the

behavioural patterns of task allocation as well as how it can be influenced by environ-

mental conditions and the dynamics of workers’ strategies over time. As the environment

naturally changes over time, we then tackle the question of how the behavioural patterns

of task allocation may differ between static and dynamic environments, and discuss how

well and how fast colonies based on these models may adapt to variation of environmental

conditions.

Game-theoretical models provide a unique opportunity for efficiency analysis as the dy-

namics of workers’ decision-making involve their payoffs, which can be regarded as their
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perception of rewards and penalties and may also be linked to the colony-level fitness.

Here we consider colony efficiency to be proportional to the mean of workers’ payoffs at

the steady state. As the optimal achievable payoff changes with environmental conditions

(illustrated in Figure 5.6), we quantify the efficiency at the colony level as the ratio be-

tween the mean of workers’ payoffs at the steady state and the optimal value that can be

achieved under the associated environmental conditions (see Figure 5.6). Therefore, the

efficiency achieved by colonies based on our game-theoretical models ranges from 0 to 1.3
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Figure 5.6: Optimal payoffs achieved in a game (n = 10). This diagram gives the optimal
payoff that a worker can achieve in a range of values for parameters b and r, which
are involved in the functions for payoff evaluation (see Section 4.2). The value for each
pair of b and r is obtained by optimising the mean of workers’ payoffs in a game of
size n using Differential Evolution (Storn and Price, 1997), a stochastic population-based
heuristic method for global optimisation (implemented by differential evolution in the
package optimize of Scipy, Version 0.17.0).

5.3.1 Efficiency

We find that the efficiency achieved by colonies based on the same underlying mechanism

of how workers’ strategies develop over time can depend on the behavioural patterns and

may not be unique over a range of environmental conditions. Variation of environmental

conditions can result in different behavioural patterns of task allocation, which correspond

to different levels of colony efficiency. For the model with social learning (illustrated in

Figure 5.7), colonies associated with weak specialisation can obtain greater efficiency than

those with strong specialisation. Here, for weak specialisation, the efficiency achievement

tends to keep at the highest level without variation, under different environmental con-

ditions represented by b and r (introduced in Section 4.2), while in the cases of strong

specialisation, the efficiency achieved is sensitive to r, the cost ratio of Task A to Task B.

This connection between efficiency achievement and behavioural patterns is also indicated

by the model integrated with task recruitment and reinforcement by social experience (il-

lustrated in Figure 5.10(b)). For this model, the efficiency achieved by colonies with strong

specialisation remains at the largest with almost no differentiation while the efficiency of

3This is the colour scheme used for the efficiency plots of all models in this section (Figure 5.7 –
Figure 5.11). For simplicity, the efficiency achieved by any colony with a negative mean payoff is simply
treated as 0, indicating being inviable.
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colonies with weak specialisation is sensitive to r, in contrast to the model with social

learning.

x

N’

x

N’

x x

Figure 5.7: Efficiency achievements of the model with social learning. The upper diagram
gives the efficiency achieved by colonies based on the model with social learning at the
steady state in a range of values for parameters b and r, which are involved in the functions
for payoff evaluation (see Section 4.2). This diagram is obtained by the results at the steady
state shown in Figure A.1(a) and Figure 5.6. The lower region diagram is explained in
Section 4.3 and displayed here as a reference to the associated behavioural patterns. The
histograms of workers’ strategies x are illustrated for four typical cases: b = 20, r = 0.4
(lower left); b = 20, r = 0.7 (lower right); b = 20, r = 1 (upper left); b = 35, r = 0.5 (upper
right) where N

′
represents the number of workers within a certain range of strategies.

Not only related to the behavioural patterns, the efficiency achievement of colonies based

on the same model tends to be sensitive to the parameter r. This sensitivity of colony

efficiency to r occurs not only in the pattern of strong specialisation of the model with
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social learning (illustrated in Figure 5.7) but also in weak specialisation of the model with

task recruitment (illustrated in Figure 5.8). In both cases, the efficiency achievement

gradually decreases with the cost ratio r. This can be attributed to one of the similarities

between strong specialisation of social learning and weak specialisation of task recruitment

– Workers in a colony have the opportunity to select a single task into which they invest

their whole effort at each round of payoff evaluation. This opportunity is offered by the

process of strategy copying in strong specialisation of social learning and through task

selection in weak specialisation of task recruitment. As workers share a common benefit

in games, they tend to adjust their strategies in favour of the task that is less costly in

order to achieve better payoffs than others.

N’

x x x

Figure 5.8: Efficiency achievements of the model with task recruitment. The upper dia-
gram gives the efficiency achieved by colonies based on the model with task recruitment
at the steady state in a range of values for parameters b and r, which are involved in the
functions for payoff evaluation (see Section 4.2). This diagram is obtained by the results
at the steady state shown in Figure A.4(a) and Figure 5.6. The lower region diagram is
explained in Section 4.5 and displayed here as a reference to the associated behavioural
patterns. The histograms of workers’ strategies x are illustrated for three typical cases:
b = 25, r = 0.4 (left); b = 25, r = 0.7 (middle); b = 25, r = 1 (right) where N

′
represents

the number of workers within a certain range of strategies.

The sensitivity of colony efficiency to the cost ratio between tasks can be moderated by

factors such as food resources, spatial effects and experience-based reinforcement. When

b (the quality of food resources) is at a high level, colonies based on the model with social
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learning tend to show weak specialisation in which workers attempt both Task A and Task

B for each game, leading to stable high-level efficiency achievement regardless of the cost

ratio r (illustrated in Figure 5.7). For the model with task recruitment, the influence of

spatial fidelity appears to make colony efficiency much less sensitive to r, even through

spatial fidelity does not show a strong effect on behavioural patterns at the colony level

(illustrated in Figure 5.9 compared with Figure 5.8). Besides spatial fidelity, experience-

based reinforcement can reduce the sensitivity of colony efficiency to r in the model with

task recruitment under a certain range of environmental conditions when workers’ accu-

mulated experiences for one task dominate their task selection over recruitment signals

from other workers (see Figure 5.10 compared with Figure 5.8). In this case, workers

cannot switch between tasks due to their accumulated experiences, which prevents them

from reducing their cost, and thus they can increase their payoffs only by improving their

benefits. Particularly, the integration with reinforcement by social experience appears to

improve the efficiency achievement better than individual experience, as individual expe-

rience, which is not related to payoff, can break the process of payoff evaluation, especially

when workers’ payoffs are at a low level. If the accumulated social experience completely

overweighs task recruitment, then this integrated model can approximate to the model

with individual reinforcement, for which colony efficiency is almost insensitive to the en-

vironmental conditions (illustrated in Figure 5.11).

Figure 5.9: Efficiency achievements of the model with task recruitment and spatial fidelity.
The upper diagram gives the efficiency achieved by colonies based on the model with task
recruitment and spatial fidelity at the steady state in a range of values for parameters b
and r, which are involved in the functions for payoff evaluation (see Section 4.2). This
diagram is obtained by the results shown in Figure A.7(a) and Figure 5.6. The lower region
diagram is explained in Section 4.5.2 and displayed here as a reference to the associated
behavioural patterns.

Colony efficiency is not only related to strong or weak specialisation but also depends on
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(a) Individual Experience

(b) Social Experience

Figure 5.10: Efficiency achievements of the models with task recruitment and experience-
based reinforcement. For both (a) and (b), the upper diagrams give the efficiency achieved
by colonies based on the models with task recruitment and experienced-based reinforce-
ment at the steady state in a range of values for parameters b and r, which are involved
in the functions for payoff evaluation (see Section 4.2). These diagrams are obtained by
Figure A.5(a) and Figure 5.6 for (a) individual experience, Figure A.6(a) and Figure 5.6
for (b) social experience. The lower region diagrams are explained in Section 4.5.1 and
displayed here as a reference to the associated behavioural patterns.
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the mechanisms that determine how workers’ strategies develop over time, since the same

behavioural pattern involves different distributions of workers’ strategies (see Figure 5.7

– Figure 5.11). Overall, the model with individual reinforcement appears to achieve more

consistent and greater efficiency than social learning or task recruitment. The model with

task recruitment (see Figure 5.8) is less efficient than the other two models (see Figure 5.7

and Figure 5.11). Integrating spatial fidelity into the model with task recruitment can

improve the efficiency in the environments with costly foraging (small r) while reinforce-

ment by social experience may increase the efficiency in the environments with abundant

high-quality resources (large b and r). Future empirical and theoretical studies may need

to further substantiate the hypotheses drawn from the efficiency analysis of our game-

theoretical models in this section.

Figure 5.11: Efficiency achievements of the model with individual reinforcement. The
upper diagram gives the efficiency achieved by colonies based on the model with individual
reinforcement at the steady state in a range of values for parameters b and r, which
are involved in the functions for payoff evaluation (see Section 4.2). This diagram is
obtained by the results shown in Figure A.3(a) and Figure 5.6. The lower region diagram
is explained in Section 4.4 and displayed here as a reference to the associated behavioural
patterns.

5.3.2 Dynamic Environments

Most of our game-theoretical models suggest that the environmental contexts (static) de-

termine the efficiency that a colony can achieve as well as the behavioural patterns (see

Section 5.3.1). Surprisingly, we find that when the environment changes over time, the his-

tory of previous environmental conditions can strongly influence the behavioural patterns

of task allocation at the colony level, in addition to the current environmental condition,

which is only assumed that colonies can respond to by most models in the literature. The
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behavioural pattern after adapting the environmental change depends on the environmen-

tal condition before the change happens because these patterns cannot always transfer

between each other. This is illustrated with an example of the model with social learning

(see Figure 5.12). When the food quality becomes worse (b gets smaller), the pattern

of task allocation changes from weak specialisation to strong specialisation, which then

keeps stable and do not change back to weak specialisation even though the food quality

improves to the initial level. Here strong specialisation, which appears to be more stable,

cannot be converted to weak specialisation.

In Figure 5.12(c), after b switches back to the initial value (t > 40000), the efficiency

achieved by the colony is at a lower level than that before the first environment change

(t < 20000), since strong specialisation is associated with less efficiency in the model with

social learning (see Figure 5.7). However, although weak specialisation achieves better

efficiency than strong specialisation at the steady state, it is possible that colonies with

strong specialisation may adapt to environmental fluctuations faster than those with weak

specialisation. To adapt to the environmental variation, strongly-specialised colonies ad-

just the ratio of workers in different task groups by strategy copying between workers,

while weakly-specialised colonies depend on exploration and innovation of the strategy

space by a small proportion of workers. In the dynamics of game theory, the process of

innovating new strategies is generally assumed to take a much longer time than strategy

imitation (Broom and Rychtář, 2013).

Again, this leads to the discussion between efficiency and flexibility in task allocation.

Particularly, in contrast to traditional studies (Oster and Wilson, 1978; Charbonneau and

Dornhaus, 2015a), our game-theoretical model with social learning suggests that special-

isation may not necessarily promote efficiency but favours flexibility by making a colony

adapt to environmental changes within a shorter period. Colonies based on the model

with social learning tend to behave with weak specialisation in static environments with

high-quality food resources (when b is large, see Figure 5.7). When the quality of food

resources become worse (when b is small) or tend to fluctuate, these colonies are more

likely to behave with strong specialisation, which is less efficient but more flexible (see

Figure 5.7 and Figure 5.12(b)).

5.4 Conclusion

In this chapter, we focused on efficiency analysis for colonies based on our models of task

allocation introduced earlier in this thesis. For individual behaviour, it is generally as-

sumed that the efficiency can be measured by how well the demand of the focal task is

satisfied. Apart from this, we suggest that the efficiency of task allocation can depend on

how much workforce is available to other tasks, indicating one advantage of task speciali-

sation, by extended simulations of the time-resolved model. When the environment tends

to fluctuate, our simulations suggest that how well task allocation can adapt to environ-

mental changes may be influenced by the focal timescale and the balance between the
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(a) Strategies of all workers

(b) Mean strategy of workers

(c) Colony efficiency

Figure 5.12: An example of the model with social learning in dynamic environments
(N = 2000, tend = 60000, n = 10, r = 0.7, α = 2.5, β = 0.01, γ = 0.005). The above
figures show the dynamics of workers’ strategies (x), mean strategy (x

′
) and efficiency

(Π
′
) in a colony over time (t) under environmental fluctuations (b). The environment is

set up as three stages: (1) b = 40 for t ∈ [0, 20000]; (2) b is switched to 10 at t = 20000
and keeps still until t = 40000; (3) b is switched back to 40 and keeps still until the end of
simulation.
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rates of individual learning and the characteristics of environmental dynamics. For social

behaviour, we find that the efficiency achieved by colonies based on our game-theoretical

models can be influenced by environmental conditions and mechanisms that determine

how workers’ strategies develop over time. Particularly, workers in a colony tend to adjust

their strategies in favour of the less-costly task even though this can reduce the level of

colony efficiency, demonstrating the principle “Tragedy of the Commune” in cooperative

games (Doebeli et al., 2004). Surprisingly, we find that in dynamic environments, task

allocation can exhibit an effect of hysteresis, as the behavioural patterns depend on the

previous history of environmental conditions. This provides new insights into our un-

derstanding of how task allocation can adapt to dynamic environments as colonies are

normally assumed to be highly responsive to the current environmental conditions (see

Section 2.3).
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Chapter 6

Conclusion

6.1 Thesis Summary

In this thesis, we explored the mechanistic processes of task allocation in social insects on

worker-life timescales from different novel perspectives. Particularly, the viewpoints that

we focused on are not well-studied in the literature (reviewed in Chapter 2). Following a

bottom-up approach based on timescales, we built theoretical models to explain and simu-

late the interplay between insect colonies and their environments. Based on these models,

we analysed and discussed the colony-level efficiency as well as the flexibility in dynamic

environments. Here we divided the factors that can influence task allocation into two

categories: within-worker causes and between-worker interactions and approached each of

them separately.

We investigated the effect of within-worker factors by taking account of the influence

of time, which tends to be ignored by most studies (see Chapter 3). Accordingly, we per-

formed survival analysis for the data from experiments on the fanning task in bumblebees.

Particularly, these experiments adopt a novel set-up which makes it possible that the envi-

ronmental condition is measured and controlled precisely. Surprisingly, our results suggest

that neither stimulus intensity nor individual experience strongly influence workers’ task

engagement. This is in contrast with most established empirical studies (O’Donnell and

Foster, 2001; Weidenmüller et al., 2002; Weidenmüller, 2004; Westhus et al., 2013) and

theoretical models (Bonabeau et al., 1996; Theraulaz et al., 1998; Gautrais et al., 2002;

Lichocki et al., 2012; Duarte, Pen, Keller and Weissing, 2012), which do not account for

the temporal influence. Moreover, our survival analysis suggests that workers tend to be

less active after receiving rewards of fanning, which cannot be identified by traditional

analysis. This contrasts with the general expectation that workers’ perception of rewards

should encourage them to engage in the task at a higher level.

We find that the processes of workers’ fanning in bumblebees are not homogeneous Pois-

son but close to power laws, indicating the timing-patterns of workers’ activities indeed

cannot be omitted at short timescales. Consequently, we built a time-resolved model of

task allocation, which can be verified with the empirical data and also used to explain the

89



90 CHAPTER 6. CONCLUSION

data. Based on this model, we illustrated that the colony-level efficiency cannot only be

measured by how well the task-related demand is satisfied but also by how much work-

force is available to other tasks (see Chapter 5). When the environment tends to fluctuate,

how well a colony can adapt to environmental changes seems to depend on both the focal

timescale and the balance between the rates of individual learning and the characteristics

of environmental dynamics.

We applied game theory as a basic framework to explore the influence of social interaction

on task allocation (see Chapter 4). Game theory provides a mathematical foundation and

a modelling perspective to study social interactions, which can guide empirical work as

the interactions between workers in a colony involve complex processes and are difficult to

measure and control in biological experiments. Based on our game-theoretical models, we

find that specialisation can emerge from the interaction dynamics between workers and

their environments alone. This offers a new way of understanding the question – What

are the primary sources that can cause variation in workers’ task preference, which is one

of the core interests in the study of task allocation (Gordon, 2016). Most studies regard

inherent inter-individual differentiation as the main cause (Jeanson and Weidenmüller,

2014), while it is also shown that task specialisation can result from a colony of identical

workers with experience-based reinforcement (Theraulaz et al., 1998) or spatial variation

of localised task demands (Tofts and Franks, 1992; Johnson, 2010). Our results suggest

that an alternative source of variation in task preference can be social interactions between

workers.

We find that variation of environmental conditions and mechanisms that determine the

dynamics of workers’ strategies over time can cause different behavioural patterns and

efficiency achievements of task allocation. Our game-theoretical models can be used to

explore the dynamics of cooperative games and illustrated the principle “Tragedy of the

Commune” (Doebeli et al., 2004). For dynamic environments, our simulations suggest

that surprisingly, the processes of task allocation may exhibit an effect of hysteresis as

the behavioural patterns depend on the previous history of environmental conditions (see

Chapter 5). This provides new insights into our understanding of how the processes of

task allocation can adapt to environmental fluctuations, in addition to the traditional

assumption that colonies are highly responsive to the current environmental conditions.

6.2 Further Research

6.2.1 Empirical Studies

Our time-resolved model of task allocation conceptually captures multiple tasks in an

insect colony (see Figure 3.16). It was reduced to only two tasks for comparison and

verification with the data from the experiments in which, as a first step, only one con-

trolled task was set, due to practical difficulties. Further empirical studies could test our

time-resolved model by setting up experiments with an additional controlled task, such
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as foraging. The reason behind the negative influence of individual efficiency on workers’

fanning engagement is likely to be that fanning is a homeostatic task, the stimulus of which

needs to be maintained within a certain range rather than reduced at the lowest possible

level (see Section 3.5). In addition, by the experiments with a controlled task of foraging,

we can verify if the general expectation that the perception of rewards of performing a task

tends to encourage workers to engage in the task more strongly holds for a maximising task.

The results of our survival analysis suggest that individual experience does not strongly

influence workers’ task engagement on the moment-to-moment timescale. It would be in-

teresting to empirically explore the influence of individual experience on task engagement

at an extended timescale, for example, over a few days (Anja Weidenmüller, personal com-

munication). Apart from individual experience, future work can investigate the influence

of social experience on workers’ task engagement by extending the experimental set-up

(see Section 3.2) to multiple workers and brood dummies within one test arena (Linda

Garrison and Anja Weidenmüller, experiments ongoing). The experiments in which mul-

tiple workers and brood dummies are set in a single test arena may also be used to test

the hypotheses about the influence of social interaction on task allocation, for instance,

the predictions from our game-theoretical models (see Chapter 4).

6.2.2 Theoretical Approaches

Our task-allocation game (introduced in Section 4.2) can be integrated with a variety of

learning mechanisms that determine the dynamics of workers’ strategies over time. Par-

ticularly, the model with task recruitment (see Section 4.5), potentially has much richer

ecological details to further explore. The outcomes of our game-theoretical models are

based on a game of allocation between a homeostatic task and a maximising task. Future

research may investigate how the results can vary if a different type of task is introduced

into this task-allocation game. One potential option could be inactivity, which is widely

observed to take a large proportion of task repertoire in social insects (Charbonneau and

Dornhaus, 2015a). The results may contribute to our understanding of the functional roles

of the presence of inactive workers in a colony.

The question of how colonies can adapt to dynamic environments needs to be further

studied. For the influence of within-worker factors, future work may explore whether

environment-dependent rates of workers’ reinforcement by individual experience can lead

to a trade-off between efficiency and flexibility; For the influence of interactions between

workers, further research could systematically investigate how fast colonies with different

behavioural patterns can adapt to environmental fluctuations.

Overall, the outcomes of this research contribute to the knowledge of how the colony-level

patterns of task allocation can emerge from individual task choice in social insects. Our

methodology demonstrates a set of approaches for modelling in an interdisciplinary study.

For the influence of within-worker factors, we regard task allocation as time-dependent
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stochastic processes and explore temporal dynamics, facilitating a fine-grained analysis of

the empirical data and consequently improves our understanding of the underlying mecha-

nisms. How workers interact with others and their environments is one of the key questions

in the study of task allocation (Gordon, 2016). The modelling framework based on game

theory opens numerous opportunities to explore the dynamics of social interaction between

workers in a variety of ecological contexts. The game-theoretical models provide a new

self-organisational perspective for how task allocation can vary with environmental con-

ditions, as an alternative to the response-threshold models which are widely regarded as

the main paradigm in the literature (reviewed in Section 2.3.1). Our models can be used

to explain and predict the behavioural patterns of task allocation and to guide further

biological experiments. Our results may ultimately benefit the bio-inspired applications

such as swarm robotic systems (Krieger et al., 2000; Zhang et al., 2007) and multi-task

scheduling in factories (Bonabeau, Sobkowski, Theraulaz and Deneubourg, 1997; Campos

et al., 2000; Cicirello and Smith, 2004).



Appendix A

The Game-Theoretical Models

In this appendix, we give the supplementary material used to support the analysis and

results for our game-theoretical models of task allocation. For each model, we present the

additional results of our simulations including the mean payoff (evaluated as the average

of mean payoffs of the colony over five time-periods at the steady state), the standard

deviation and the Shannon entropy over a range of parameter values. In order to high-

light the variation within a model under different environmental conditions, each figure

presented in this section has a unique colour scheme.
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A.1 Social Learning
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Figure A.1: Results of the model with social learning for constant n at the steady state
(N = 2000, tend = 120000, n = 10, α = 2.5, β = 0.01, γ = 0.005).
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Figure A.2: Results of the model with social learning for constant b at the steady state
(N = 2000, tend = 120000, b = 10, α = 2.5, β = 0.01, γ = 0.005).
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A.2 Individual Reinforcement

1 10 20 30 40

1.

0.8

0.6

0.4

0.2

b

r

0

5

10

15

20

(a) Mean Payoff

1 10 20 30 40

1.

0.8

0.6

0.4

0.2

b

r

0

0.1

0.2

0.3

0.4

0.5

(b) Standard Deviation

1 10 20 30 40

1.

0.8

0.6

0.4

0.2

b

r

3.0

3.2

3.4

3.6

3.8

(c) Shannon Entropy

Figure A.3: Results of the model with individual reinforcement at the steady state (N =
2000, tend = 120000, n = 10, β = 0.01, γ = 0.005).
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A.3 Task Recruitment
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Figure A.4: Results of the model with task recruitment at the steady state (N = 2000,
tend = 4000, n = 10, α = 2.5, β = 0.01, γ = 0.005, ρ = 0.005).
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A.3.1 Integration with Experience-based Reinforcement
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Figure A.5: Results of the model with task recruitment and reinforcement by individual
experience at the steady state (N = 2000, tend = 4000, n = 10, α = 2.5, β = 0.01,
γ = 0.005, ρ = 0.005, E0 = 1, ξmax = 1.25, ϕ = −0.05).
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Algorithm 5 Model with task recruitment and reinforcement by individual experience

1: t← 0 (* initialise time *)
2: for worker wi ∈ {wj |j = 1, 2, ..., N} do (* initialise wi *)
3: xi ← 0.5 (* strategy *)
4: EA

i ← E0, EB
i ← E0 (* individual experience *)

5: r ← random(0, 1)
6: ξAi ← rξmax, ξBi ← ξmax − ξAi (* rate of experience reinforcement *)
7: end for
8: uniformly select and partition workers in the colony into multiple games of size n
9: while t < tend do

10: for worker wi ∈ {wj |j = 1, 2, ..., N} do
11: r ← random(0, 1)
12: if r < xi then
13: x

′
i ← 1 (* wi selects Task A *)

14: else
15: x

′
i ← 0 (* wi selects Task B *)

16: end if
17: end for
18: for worker wi ∈ {wj |j = 1, 2, ..., N} do
19: Πi ← B(X

′
)− C(x

′
i) (* wi evaluates her payoff in the game g of workers with

allocated tasks X
′
= {x′

j |wj ∈ g} *)
20: end for
21: for worker wi ∈ {wj |j = 1, 2, ..., N} do
22: O ← merge({Πk|k = 1, 2, ..., N}, {EA

i , E
B
i })

23: if x
′
i = 1 then

24: EA
i ← EA

i + ξAi
25: else
26: EB

i ← EB
i + ξBi

27: end if
28: EA

i ← EA
i e

ϕ, EB
i ← EB

i eϕ

29: select k randomly according to probabilities pk = eαOk/
∑

k e
αOk

30: (* k = 1, 2, ..., N + 2 *)
31: if k = N + 1 then
32: x

′
i ← 1

33: else if k = N + 2 then
34: x

′
i ← 0

35: else
36: x

′
i ← x

′
k

37: end if
38: (* wi follows a task based on her experience or a task others perform *)
39: if x

′
i = 1 then

40: xi ← ρ+ (1− ρ)xi
41: else
42: xi ← (1− ρ)xi
43: end if
44: end for
45: m ∼ Binomial(N,β)
46: select m workers uniformly from {wj |j = 1, 2, ..., N} into M
47: for worker wi ∈M do
48: x

′′ ∼ Normal(xi, γ)
49: xi ← x

′′

50: (* wi innovates her strategy *)
51: end for
52: end while
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Figure A.6: Results of the model with task recruitment and reinforcement by social expe-
rience at the steady state (N = 2000, tend = 4000, n = 10, α = 2.5, β = 0.01, γ = 0.005,
ρ = 0.005, E0 = 1, ϕ = −0.325).
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Algorithm 6 Model with task recruitment and reinforcement by social experience

1: t← 0 (* initialise time *)
2: for worker wi ∈ {wj |j = 1, 2, ..., N} do (* initialise wi *)
3: xi ← 0.5 (* strategy *)
4: EA

i ← E0, EB
i ← E0 (* social experience *)

5: end for
6: uniformly select and partition workers in the colony into multiple games of size n
7: while t < tend do
8: for worker wi ∈ {wj |j = 1, 2, ..., N} do
9: r ← random(0, 1)

10: if r < xi then
11: x

′
i ← 1 (* wi selects Task A *)

12: else
13: x

′
i ← 0 (* wi selects Task B *)

14: end if
15: end for
16: for worker wi ∈ {wj |j = 1, 2, ..., N} do
17: Πi ← B(X

′
)− C(x

′
i) (* wi evaluates her payoff in the game g of workers with

allocated tasks X
′
= {x′

j |wj ∈ g} *)
18: end for
19: for worker wi ∈ {wj |j = 1, 2, ..., N} do
20: O ← merge({Πk|k = 1, 2, ..., N}, {EA

i , E
B
i })

21: if x
′
i = 1 then

22: EA
i ← EA

i +Πi

23: else
24: EB

i ← EB
i +Πi

25: end if
26: EA

i ← EA
i e

ϕ, EB
i ← EB

i eϕ

27: select k randomly according to probabilities pk = eαOk/
∑

k e
αOk

28: (* k = 1, 2, ..., N + 2 *)
29: if k = N + 1 then
30: x

′
i ← 1

31: else if k = N + 2 then
32: x

′
i ← 0

33: else
34: x

′
i ← x

′
k

35: end if
36: (* wi follows a task based on her experience or a task that others perform *)
37: if x

′
i = 1 then

38: xi ← ρ+ (1− ρ)xi
39: else
40: xi ← (1− ρ)xi
41: end if
42: end for
43: m ∼ Binomial(N,β)
44: select m workers uniformly from {wj |j = 1, 2, ..., N} into M
45: for worker wi ∈M do
46: x

′′ ∼ Normal(xi, γ)
47: xi ← x

′′

48: (* wi innovates her strategy *)
49: end for
50: end while
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A.3.2 Integration with Spatial Fidelity
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Figure A.7: Results of the model with task recruitment and spatial fidelity at the steady
state (N = 2000, tend = 10000, n = 10, α = 2.5, β = 0.01, γ = 0.005, ρ = 0.005, n

′
= 10).
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Algorithm 7 Model with task recruitment and spatial fidelity

1: t← 0 (* initialise time *)
2: for worker wi ∈ {wj |j = 1, 2, ..., N} do
3: xi ← 0.5 (* initialise wi *)
4: end for
5: uniformly select and partition workers in the colony into multiple recruiting groups of

size n
′

6: while t < tend do
7: for worker wi ∈ {wj |j = 1, 2, ..., N} do
8: r ← random(0, 1)
9: if r < xi then

10: x
′
i ← 1 (* wi selects Task A *)

11: else
12: x

′
i ← 0 (* wi selects Task B *)

13: end if
14: end for
15: uniformly select and partition workers in the colony into multiple games of size n
16: for worker wi ∈ {wj |j = 1, 2, ..., N} do
17: Πi ← B(X

′
)− C(x

′
i) (* wi evaluates her payoff in the game g of workers with

allocated tasks X
′
= {x′

j |wj ∈ g} *)
18: end for
19: for each recruiting group g in the colony do
20: for worker wi ∈ g do
21: select wk randomly according to probabilities p(wk) = eαΠk/

∑
k e

αΠk

22: (* wk ∈ {wj |wj ∈ g} *)
23: x

′
i ← x

′
k

24: (* wi selects a worker wk from g and follows her task *)
25: end for
26: end for
27: for worker wi ∈ {wj |j = 1, 2, ..., N} do
28: if x

′
i = 1 then

29: xi ← ρ+ (1− ρ)xi
30: else
31: xi ← (1− ρ)xi
32: end if
33: end for
34: m ∼ Binomial(N,β)
35: select m workers uniformly from {wj |j = 1, 2, ..., N} into M
36: for worker wi ∈M do
37: x

′′ ∼ Normal(xi, γ)
38: xi ← x

′′

39: (* wi innovates her strategy *)
40: end for
41: end while
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Algorithm 8 Extended time-resolved model of task allocation at short timescales

1: t← 0 (* initialise time *)
2: Tin ← θA (* initialise nest temperature *)
3: for worker wi ∈ {wj |j = 1, 2, ..., N} do
4: state(wi)← B
5: rate(wi)← λB

6: (* initialise wi *)
7: end for
8: while t < tend do
9: H ←

∑
i rate(wi) (* i = 1, 2, ..., N *)

10: ∆t ∼ Exponential(H) (* draw next event interval *)
11: t← t+∆t
12: select wi randomly according to probabilities p(wi) = rate(wi)/H
13: if state(wi) = A then
14: state(wi)← R
15: rate(wi)← λA

16: (* wi starts her refractory period after performing Task A *)
17: else
18: n← random(0, 1)
19: if n < pA(wi) ∧ Tin > θA then
20: state(wi)← A
21: rate(wi)← µA

22: (* wi starts to perform Task A *)
23: else
24: state(wi)← B
25: rate(wi)← λB

26: (* wi starts to be engaged in Task B *)
27: end if
28: end if
29: GA = {wi|state(wi) = A, i = 1, 2, ..., N}
30: NA ← |GA| (* number of workers engaged in Task A *)

31: Tin ← Tin +
(
Tout − Tin + α−βNA

Kr

)
(1− e−r∆t) (* update nest temperature *)

32: end while
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Algorithm 9 Extended time-resolved model of task allocation at long timescales

1: t← 0 (* initialise time *)
2: Tin ← θA (* initialise nest temperature *)
3: Tout ← 30 (* initialise ambient temperature *)
4: for worker wi ∈ {wj |j = 1, 2, ..., N} do
5: state(wi)← B
6: rate(wi)← λB

7: Ei
A ← E0 (* experience of Task A *)

8: Ei
B ← E0 (* experience of Task B *)

9: (* initialise wi *)
10: end for
11: while t < tend do
12: H ←

∑
i rate(wi) (* i = 1, 2, ..., N *)

13: ∆t ∼ Exponential(H) (* draw next event interval *)
14: t← t+∆t
15: select wi randomly according to probabilities p(wi) = rate(wi)/H
16: if state(wi) = A then
17: Ei

A ← (1− ρ)Ei
A + ρc

18: state(wi)← R
19: rate(wi)← λA

20: (* wi starts her refractory period after performing Task A *)
21: else
22: if state(wi) = B then
23: Ei

B ← (1− ρ)Ei
B + ρc

24: end if
25: select a task k randomly according to probabilities pk =

(Ei
k+m)γ∑

k
(Ei

k+m)γ

26: (* k = A,B *)
27: if k = A ∧ Tin > θA then
28: state(wi)← A
29: rate(wi)← µA

30: (* wi starts to perform Task A *)
31: else
32: state(wi)← B
33: rate(wi)← λB

34: (* wi starts to be engaged in Task B *)
35: end if
36: end if
37: GA = {wi|state(wi) = A, i = 1, 2, ..., N}
38: NA ← |GA| (* number of workers engaged in Task A *)
39: Tout ← 2 sin(0.01t+ π) + 30

40: Tin ← Tin +
(
Tout − Tin + α−βNA

Kr

)
(1− e−r∆t) (* update nest temperature *)

41: end while
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Publications arising from this thesis include:
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ostasis and time-resolved models of self-organised task allocation, Proceedings of the

9th EAI International Conference on Bio-inspired I.C.T., New York City, NY.

Chen, R., Weidenmüller, A., and Meyer, B. (2017). Moment-to-moment task al-

location in bumblebees, in preparation.
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time-resolved models of self-organised task allocation, B.I.C.T., New York City, NY.

Michener, C. D. (1974). The Social Behavior of the Bees: A Comparative Study, The

Belknap Press of Harvard University Press, Cambridge, MA.

Naug, D. (2016). From division of labor to collective behavior: behavioral analyses at

different levels, Behav. Ecol. Sociobiol. 70(7): 1113–1115.

Naug, D. and Gadagkar, R. (1998). The role of age in temporal polyethism in a primitively

eusocial wasp, Behav. Ecol. Sociobiol. 42(1): 37–47.

Naug, D. and Gadagkar, R. (1999). Flexible division of labor mediated by social interac-

tions in an insect colony - a simulation model, J. Theor. Biol. 197(1): 123–133.

Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law, Contemp.

Phys. 46(5): 323–351.

Nowak, M. A. and Sigmund, K. (2004). Evolutionary dynamics of biological games, Science

303(5659): 793–799.

O’Donnell, S. and Foster, R. L. (2001). Thresholds of response in nest thermoregulation

by worker bumble bees, Bombus bifarius nearcticus (Hymenoptera: Apidae), Ethology

107(5): 387–399.

Oldroyd, B. P. and Fewell, J. H. (2007). Genetic diversity promotes homeostasis in insect

colonies, Trends Ecol. Evol. 22(8): 408–413.

Oldroyd, B. P. and Thompson, G. J. (2007). Behavioural genetics of the honey bee Apis

mellifera, Advances in Insect Physiology Volume 33, Elsevier, pp. 1–49.

Oster, G. F. and Wilson, E. O. (1978). Caste and Ecology in the Social Insects, Princeton

University Press, Princeton, NJ.

Pacala, S. W., Gordon, D. M. and Godfray, H. C. J. (1996). Effects of social group size

on information transfer and task allocation, Evol. Ecol. 10(2): 127–165.

Page Jr., R. E., Fondrk, M. K. and Erber, J. (1998). The effect of genotype on response

thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.), J. Comp.

Physiol. A 182(4): 489–500.



120 REFERENCES

Page Jr., R. E. and Mitchell, S. D. (1990). Self organization and adaptation in insect

societies, P.S.A. 2: 289–298.

Page Jr., R. E. and Mitchell, S. D. (1998). Self-organization and the evolution of division

of labor, Apidologie 29(1-2): 171–190.

Pankiw, T. and Page Jr., R. E. (1999). The effect of genotype, age, sex, and caste on

response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.),

J. Comp. Physiol. A 185(2): 207–213.

Pereira, H. M. and Gordon, D. M. (2001). A trade-off in task allocation between sensitivity

to the environment and response time, J. Theor. Biol. 208(2): 165–184.

Pinter-Wollman, N., Hubler, J., Holley, J. A., Franks, N. R. and Dornhaus, A. (2012).

How is activity distributed among and within tasks in Temnothorax ants, Behav. Ecol.

Sociobiol. 66(10): 1407–1420.

Pinter-Wollman, N., Wollman, R., Guetz, A., Holmes, S. and Gordon, D. M. (2011). The

effect of individual variation on the structure and function of interaction networks in

harvester ants, J. R. Soc. Interface 8(64): 1562–1573.

Plowright, R. C. and Plowright, C. M. S. (1988). Elitism in social insects: A positive

feedback model, in R. L. Jeanne (ed.), Interindividual Behavioral Variability in Social

Insects, Boulder, pp. 419–431.

Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. and Jaisson, P. (2007). Individual
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