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Abstract

Combinatorial problems are those where a set of decisions that satisfy a given set of
constraints, must be selected from a set of possible combinations. Solving these prob-
lems is critical in a wide range of areas, such as telecommunications, circuit design and
transportation. It is also remarkably hard, which is why many solving techniques exist,
each with their own strengths and weaknesses. High-level modelling languages allow com-
binatorial problems to be specified as high-level models that can then be compiled into
different low-level programs, each suitable for a solving technique. While the high-level
modelling and solver-independence characteristics of these languages are very useful for
modellers, they make it difficult for the compiler to yield programs that can be solved
efficiently. Further, changes to a model can have a significant and unexpected impact
on the efficiency of the resulting programs. This makes the modelling, compilation, and
solving of combinatorial problems a challenging iterative process.

This thesis states that information regarding the implicit and explicit structure present
in a model can be very beneficial for this challenging process, as it allows users, compilers
and solvers to make better decisions during modelling, compilation, and solving. The
main objective of the thesis then, is to effectively take advantage of structure in constraint
models to improve the modelling, compilation, and solving process. To achieve this, a new
framework is proposed for exploring how structural information can be discovered, shared,
and generalised between different stages of the process. In particular, the framework is
used as a guide to determine whether the explicit structure of a model can be used to (a)
improve the quality of compiled programs; (b) guide the search for and exposure of hidden
implicit structure; and (c) help identify parts of a model that are incorrectly formulated.

This is achieved by the following three main contributions of this thesis. First, a
method that preserves model structure deeper into the compilation process, thus enabling
more efficient programs to be produced. Second, a method for finding implicit structure
that can be made explicit in a model, thus making modelling easier. And third, a method
that uses preserved model structure to help explain why a model is unsatisfiable, thus
helping users produce correct models. These three methods have been implemented and
evaluated for the MiniZinc language. The experimental results show them to be effective
in practice. Together, these contributions help make high-level modelling a more powerful
and attractive approach for solving hard combinatorial problems.
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Chapter 1

Introduction

Combinatorial problems are those where there is a set of decisions to be made, a set of
constraints on these decisions and, in the case of combinatorial optimisation problems,
an objective function that measures the quality of a solution. Solving a combinatorial
problem requires finding a solution for it, that is, finding a set of decisions that satisfy
the set of constraints and optimise the objective function (i.e., minimise or maximise),
if any. Combinatorial satisfaction and optimisation problems occur in virtually every
organisation, and solving them is critical in a wide range of diverse fields such as telecom-
munications, emergency management, circuit design, bioinformatics, energy management,
transportation, network management and configuration, production scheduling and drug
design (Freuder, 1997).

An example of a real-world combinatorial problem is that of the car sequencing prob-
lem (Bergen et al., 2001; Dincbas et al., 1988), where a set of cars must be assembled at a
factory. The factory can install different optional components (air-conditioning, sun-roof,
etc.) on the cars, by using an assembly station for each option. These stations are limited
in the number of cars they can handle within a certain time period. For example, a station
may only be capable of installing two sun-roofs in any three time slots. The goal then
is, given a number of cars to assemble along with the options that are required for each,
produce a solution schedule for their assembly, i.e., a schedule that ensures they can all
be constructed without overloading any of the assembly stations.

Let us focus on a special form of this problem that asks the question: Is it possible to
find a schedule where there are only as many time slots as there are cars to be constructed?
Figure 1.1 shows a particular instance of this problem with five assembly stations (Sun
Roof, Air-con, etc.), each with their associated limits represented on the right as N : M
(N cars within a period of M time slots), and with six classes of car (1 to 6), where the
assembly stations required by each car are represented by a dot within the appropriate
circle. A possible schedule is demonstrated by the sequence of cars shown at the bottom
of the figure. This schedule is a solution, as the constraints on the number of cars each
station can handle within a certain period are satisfied. For example, sun roofs can only
be installed once in every five time slots (1:5). There are a total of ten cars to be scheduled
here and, thus, only ten time slots available. This means that only two cars that require a
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Figure 1.1: Example solution to an instance of the Car Sequencing Problem.

sun roof can possibly be processed in the schedule. The sun roof is only required by cars
of class 3, of which only two are required. Therefore, this constraint can be satisfied.

Combinatorial problems are remarkably difficult to solve efficiently, due to the ex-
ponential number of possible combinations of decisions that need to be explored when
searching for a solution. There has been a significant amount of research in developing
and evaluating a wide range of general purpose solving techniques, some of which can
speed up the search for a solution by orders of magnitude. When packaged as stand alone
programs, these techniques are called solvers. Solvers take a representation of a problem as
input and either output a solution or, in the case that there is none, report unsatisfiabilty.

High-level modelling languages for combinatorial problems such as Zinc (Garcia de la
Banda et al., 2006), Essence (Frisch et al., 2007), OPL (Van Hentenryck et al., 1999),
and MiniZinc (Nethercote et al., 2007) allow combinatorial problems to be described in
a model in a solver-independent way, that is, to be modelled in a high-level language
and then by translated for solving by one of a wide selection of solvers. This is useful,
as no solver is consistently better for all combinatorial problems and high-level models
are often much clearer than low-level ones. However, achieving solver-independence is
not straightforward, since not all solvers can understand the same input formats, as they
approach solving in different ways. In this thesis we differentiate between constraint
models and programs. Models are compiled from their high-level representations into low-
level programs which target specific solvers. Importantly, the particular structures used to
model a given problem will have a major impact on the efficiency of the resulting programs.
For example, modelling a problem in terms of Boolean (zero-one) decisions may make the
search for solutions harder for certain solvers, when compared to modelling the problem in
terms of integer decisions. This is, among other reasons, because the knowledge provided
by these structures can help the compiler and solver make good decisions when compiling
and solving the model. Thus, developing a good model, that is, one that results in correct
and efficient programs, is critical for program efficiency.

Unfortunately, while developing naive models can be relatively easy, developing good
models is often a challenging iterative process that requires considerable levels of expertise
and consumes significant resources. The aim of this thesis is to improve this situation,
that is, reduce the level of expertise and the amount of resources needed to develop good
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models, by making better use of the structures present in the model. In particular, the
main objective of the thesis is:

To effectively take advantage of structure in constraint models to
improve the modelling, compilation, and solving process.

To achieve this objective a framework is proposed that can help us reason about the flow
of knowledge and structural information within the modelling, compilation, and solving
process. Using this framework as a guide, the thesis presents three approaches that use
structure from constraint models to improve this process. The first approach develops and
uses a representation of the explicit structure of a model to improve the compilation of
models for target solvers. By explicit structure we refer to any information syntactically
present in the model, from the type of variables and the name of the constraints used, to
annotations marking a constraint as redundant and a set of variables as symmetric. The
second approach utilises explicit model structure to guide the search for implicit structure.
By implicit structure we refer to any model information that is not explicit, but is implied
by the explicit structure. We are interested in implicit structure that, if made explicit in
the model, could help modellers, compilers, and solvers make better decisions. Finally, the
third approach extends the representation of explicit model structure developed before,
and uses it both to quickly diagnose modelling mistakes that cause unsatisfiability, and to
explain them to the user in an understandable way.

1.1 The Modelling, Compilation, and Solving Process

Combinatorial problems are typically specified in terms of a set of parameters representing
the input data, a set of variables representing the decisions that must be made, a set
of domains representing the possible options for each variable, and a set of constraints
representing the relationships between variables. In the case of an optimisation problem,
an objective function must also be specified, which measures the quality of a solution.

High-level modelling languages allow models of combinatorial problems to be solved
using a wide selection of solvers. There are several types of solvers available for combinato-
rial problems, most notably Constraint Programming (CP), Boolean Satisfiability (SAT),
Mixed-Integer Programming (MIP), Mixed Integer Non-Linear Programming (MINLP)
and Satisfiability Modulo Theory (SMT) solvers. Different types of solver require prob-
lems to be described in different ways. For example, CP solvers solve problems described
in terms of complex non-linear global constraints with non-linear objectives (see Sec-
tion 2.3.4), while MIP solvers require problems to be formulated in terms of systems
of linear equations with a linear objective function (see Section 2.3.2), and SAT solvers re-
quire problems to be described in terms of logical formulae over Boolean variables (see Sec-
tion 2.3.3). Since no solver dominates in performance for all problem classes, it is important
for modellers to be able to easily experiment with different solvers to find what works best
for their specific problem. This is achieved by the modelling, compilation, and solving
process shown in Figure 1.2. The modeller starts the process by formalising their problem
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Figure 1.2: Traditional modelling, compilation, and solving process.

as a high-level parametric model. Some input data for the parameters of the model must
also be provided, often in the form of a separate file.

Let us illustrate this with an example in the popular MiniZinc (Nethercote et al., 2007)
modelling language. MiniZinc was chosen for this thesis for several reasons. First, it is
a solver independent modelling language with support for many CP and MIP solvers.
Please note that as a result, this thesis focusses mainly on CP and MIP solvers. This
makes experimentation with different technologies very easy. Second, The language itself
is has features such as user-defined predicates and functions which allows more problem
structure to be expressed explicitly in the model. Third, The popularity and maturity of
the language has resulted in a relatively large suite of benchmark models being available,
many of which have come from the MiniZinc challenge (Stuckey et al., 2010). And fourth,
the MiniZinc language now has a standard IDE (The MiniZinc IDE) where the tools
presented in this thesis can be integrated. In addition, access to MiniZinc expertise was
on hand, since the new MiniZinc compiler (Tack, 2011) was in development at Monash
University. The compiler has several features that were required and, since it was still
in-development, new features could be added more easily. Note that, despite the use of
MiniZinc, the methods explored in the thesis should be applicable to other languages.
Listing 1.1 and Listing 1.2 present a MiniZinc model and data file for the Car Sequencing
Problem described above. It is not necessary to fully understand this example, it is here
simply to illustrate the concepts that will be explored later in the thesis.

The model starts with a comment (marked by the symbol %), which provides the
name of the file (cars.mzn). It then includes the library file globals.mzn, which will
be described later. The model continues by declaring the parameters of the problem in
lines 4-13. Keywords of the language are shown in bold to make reading the model easier.
The first three parameters declared are n_cars, n_options and n_classes, which will hold
the number of cars, the number of options and the number of classes of cars, respectively.
Next, the model uses these three parameters to define three sets that will be used to
make the remaining declarations more readable. Next, it declares four array parameters:
max_per_block, block_size, cars_in_class and need. These represent, respectively, the
number of cars that a station can process within its period, the period of each station,
the number of cars of each class required, and what options each class requires. After
the parameters are defined, the model declares its decision variables in lines 16-19. In
particular, it first defines the main array of variables class, which will contain the solution
schedule (if any), that is, the class that should be constructed at each timeslot. The other
array, used, defines intermediate variables that make it easier to express the constraints
of the model. These are defined in lines 23-33. The first constraint, on line 23 connects
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1 % cars.mzn
2 include "globals.mzn";
3
4 int: n_cars; int: n_options; int: n_classes;
5
6 set of int: steps = 1..n_cars;
7 set of int: options = 1..n_options;
8 set of int: classes = 1..n_classes;
9

10 array [options] of int: max_per_block;
11 array [options] of int: block_size;
12 array [classes] of int: cars_in_class;
13 array [classes, options] of 0..1: need;
14
15 % The class of car being started at each step.
16 array [steps] of var classes: class;
17
18 % Which options are required by the car started at each step.
19 array [steps, options] of var 0..1: used;
20
21 % Block p must be used at step s if the class of the car to be
22 % produced at step s needs it.
23 constraint forall (s in steps, p in options) (used[s, p]=need[class[s], p]);
24
25 % For each option p with block size b and maximum limit m, no consecutive
26 % sequence of b cars contains more than m that require option p.
27 constraint
28 forall (p in options, i in 1..(n_cars - (block_size[p] - 1))) (
29 sum (j in 0..(block_size[p] - 1)) (used[i + j, p])
30 <= max_per_block[p]);
31
32 % Require that the right number of cars in each class are produced.
33 constraint forall (c in classes) (count(class, c, cars_in_class[c]));
34
35 solve satisfy; % Find any solution.

Listing 1.1: Model for the Car Sequencing Problem (cars.mzn).

the class variables which select the class to use at a certain step, and the used variables
which record the active stations at a certain step. This is achieved using what is called an
element constraint, where a variable (class[s]) is used to select from an array of values.
The next set of constraints starting on line 30 restrict the number of cars that can be
processed within each station’s period. Finally, the constraint on line 33 maintains that
the correct number of cars in each class must be constructed. It does this by calling the
count constraint which says that for each class c, the number of occurrences of this class
in the array class must be equal to cars_in_class[c]. The last item in the model, the
solve item, states that the goal is to find any solution that satisfies the constraints.

High-level modelling is not only important because it allows problems to be described
in a natural way (using high-level rather than solver specific formulations), but also be-
cause it allows flexibility during compilation. One powerful contribution of CP is the idea
of encapsulating subproblems that crop up frequently as single global constraints. An ex-
ample of a global constraint is that of the count constraint included in the model presented
above. This constraint could be represented using a set of constraints that record whether
or not a value occurs in each position of an array, and then a linear sum constraint over
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% cars1.dzn
n_cars = 10;
n_options = 5;
n_classes = 6;
max_per_block = [1, 2, 1, 2, 1];
block_size = [2, 3, 3, 5, 5];
cars_in_class = [1, 1, 2, 2, 2, 2];

need = [| 1, 0, 1, 1, 0 |
0, 0, 0, 1, 0 |
0, 1, 0, 0, 1 |
0, 1, 0, 1, 0 |
1, 0, 1, 0, 0 |
1, 1, 0, 0, 0 |];

Listing 1.2: Example data file for cars.mzn.

int: n_cars = 10; int: n_options = 5; int: n_classes = 6;

set of int: steps = 1..n_cars; % 1..6
set of int: options = 1..n_options; % 1..5
set of int: classes = 1..n_classes; % 1..6

array [1..5] of int: max_per_block = [1, 2, 1, 2, 1];
array [1..5] of int: block_size = [2, 3, 3, 5, 5];
array [1..6] of int: cars_in_class = [1, 1, 2, 2, 2, 2];
array [1..6, 1..5] of 0..1: need = [| 1, 0, 1, 1, 0 |

0, 0, 0, 1, 0 |
0, 1, 0, 0, 1 |
0, 1, 0, 1, 0 |
1, 0, 1, 0, 0 |
1, 1, 0, 0, 0 |];

. . .

Listing 1.3: Instance of cars.mzn model instantiated with parameters from Listing 1.2.

these stating that they must sum to a particular value. By stating the constraint as a count
constraint instead, the model is not just easier to read, but also allows the compiler more
flexibility when it comes to compilation. Depending on the type of solver being targeted,
the compiler may present the constraints as they are (i.e., as globals) or decompose them
into simpler constraints if the solver does not posses a dedicated algorithm for handling
count constraints.

Once a model is defined, the compiler combines it with given input data to form an
instance level representation of the model, that is, a non-parametric model of the problem
instance. Listing 1.3 shows an instantiation of Listing 1.1 where the parameters have been
bound to the values of Listing 1.2. Note that the exact dimensions of the arrays and
matrix are now known.

An instance is then translated by the compiler into a program, which can be under-
stood and solved by a target solver. This is usually achieved by unrolling all loops and
decomposing constraints that cannot be handled by the target solver into constraints that
describe the same relationship in a way that the solver can handle. Note that a single in-
stance can be compiled into different programs, depending on the target solver. Listing 1.4
shows a small extract from the result of compiling the instance above for a CP solver that
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supports both linear constraints and the count constraints. The program contains some
variables with an i prefix, indicating integer variables introduced by the compiler. The
program also contains linear constraints, int_lin_le, which take as arguments an array of
coefficients, an array of variables, and a bound. The first constraint listed corresponds to
linear constraint i84 + i89 + i94 + i99 + i104 ≤ 1. The program also shows some of the count

constraints from the model, which restrict the number of times a certain class can occur
in the array class.

Note that much of the explicit structure present in the original model, such as the way
in which constraints and variables are grouped, has been so obscured as to be practically
lost, making it extremely challenging to recover. As we will see later, this has repercussions
regarding the kinds of compiler and solver optimisations that can be performed.

1.2 The Importance of Good Models

During his acceptance speech for the 2013 Research Excellence Award by the Association
of Constraint Programming, Jean-Charles Régin reinforced my view of the importance
of modelling (and the models themselves) when solving combinatorial problems (Régin,
2013). Figure 1.3 shows one of Régin’s slides where he argues that, while model improve-
ments are difficult, they are still worth attempting as the reward in performance gained can
be considerable. Despite the fact that these numbers are merely anecdotal, they resonate
with what I have observed to be the case in practice.

Intuitively, the approach for improving models taken in this thesis is to analyse them
in order to detect, represent, and communicate structures, both implicit and explicit, that
can be used to improve modelling, compilation, and solving.

Research Objective

Currently, there is a gap in the knowledge related to the use of structure to support the
modelling, compilation, and solving process. Therefore, the primary research objective
that this thesis seeks to satisfy is to effectively take advantage of structure in constraint
models to improve the modelling, compilation, and solving process.

As the basis for this work a new framework for reasoning about how models are com-
piled is presented. It shows the many possible ways that information can be shared and
transferred within the modelling, compilation, and solving process. This work is of signif-
icance, as it provides a framework for the study of structure usage in constraint models.

153 constraint int_lin_le([1,1,1,1,1],[i84,i89,i94,i99,i104],1);
154 constraint int_lin_le([1,1,1,1,1],[i89,i94,i99,i104,i109],1);
155 constraint int_lin_le([1,1,1,1,1],[i94,i99,i104,i109,i114],1);
156 constraint count(class,1,1);
157 constraint count(class,2,1);
158 constraint count(class,3,2);

Listing 1.4: Extract from program compiled from cars.mzn.
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General considerations 

 When solving a problem in CP: 

 Potential performance gain: 

 data structure optimization (code): x 10 

 search strategies: x 1 000 

 model : x 1 000 000 

 Chance of success 

 data structure optimization (code): 95 % 

 search strategies: 1 % 

 model: 0,001 % 

 In this talk, I will mainly speak of modeling 
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3 

Figure 1.3: A slide from Régin’s 2013 Research Excellence Award presentation.

The framework is presented in Chapter 3. With this in mind, the search for answers to
the following three questions are tackled as sub-goals:

1. Can the explicit structure in models be used to improve the quality of programs
compiled from them?

2. Can the explicit structure of a model guide the search for and exposure of implicit
structure?

3. Can the explicit structure of a model be used to help identify parts of the model
that are incorrectly formulated?

Can the explicit structure in models be used to improve the quality of programs
compiled from them?

During compilation, the compiler must make decisions about how different constraints
will be compiled. For example, constraint x 6= y→ y ≤ z might need to be broken down
into the three constraints b1↔ x 6= y, b2↔ y ≤ z, b1→ b2. If the compiler knew that b1

was going to be fixed to be true, due to constraints processed later in the compilation,
it could have compiled these constraints more concisely as just y ≤ z. One way to allow
the compiler to have access to this information is to compile the model twice, first for a
solver that operates on a higher-level representation that can find good tighter domains
for the variables in a problem (e.g., b1 being true), and then for the solver that the user
intends to solve the problem with, which may use a different representation. In a second
compilation, more information (e.g. domains) is made available to the compiler, allowing
it to make better decisions.

Automatic approaches for sharing variable domains between different solvers typically
focus on sharing between variables that have the same name. This usually means only
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sharing domains for the variables that occur in the model. Unfortunately, compilation
is a complex process during which many intermediate variables (such as the bi variables
above) are introduced, as they are required for some constraints to be represented in a
form supported by the target solver. Compiling an instance for different solvers reveals
that the names of these intermediate variables can end up being quite different, making the
task of communicating information inferred in the first pass to the second much harder.

To complete this sub-goal, the thesis presents a method that preserves the structure
of a constraint model deeper into the compilation process, allowing these intermediate
variables to be matched across compilations. To achieve this, the compiler is instructed
to record a trace starting from the model and continued through compilation, all the way
to the point at which each specific variable is introduced in the output program. This
provides a unique identifier for variables (referred to as a variable path) that is resilient to
compilation, even when parts of the model are compiled in a different order.

Consider, for example, the compilation of the Car Sequencing model presented in List-
ing 1.1 for a solver that does not support the count global constraint directly. The con-
straint will be expressed in a form that the solver can understand by breaking it into
simpler constraints. This is possible because we can use the same model with different
target solvers, but it also means that the count constraint no longer occurs explicitly in
the program. The approach taken is to first compile for a solver that does support this
constraint, then use the dedicated algorithms of that solver to perform some initial anal-
ysis of the instance, and finally use what is learned to produce a better program for the
target solver.

The significance of the approach is that a representation of the structure of a constraint
model is now able to survive compilation. This allows for greater sharing of information
between programs derived from the same instance and, as a result, allows problems to be
both compiled and solved faster, making the use of high-level modelling languages more
attractive for users.

The approach, presented in Chapter 4, was implemented for MiniZinc and has been
shown to improve the performance of compiled programs, particularly when compiling for
target MIP solvers, where it was able to reduce the size of the formulations considerably,
making compilation faster, and improving solve times. The implementation is part of the
MiniZinc compiler and is scheduled for release. This work was published in Leo et al.
(2015):

Kevin Leo and Guido Tack, “Multi-Pass High-Level Presolving”. Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, pp. 346–352.

Can the explicit structure of a model guide the search for and exposure of
implicit structure?

The goal here is to suggest improvements for a model by making use of the explicit
structure already present to detect and make implicit structures, such as inverse variables
and global constraints, explicit. Making global constraints explicit in a model is in general
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advantageous, as they might improve the modeller’s understanding of the problem, allow
compilers to make better choices about compilation, and solvers to solve problems faster.

Previously, it has been demonstrated that some global constraints present in a prob-
lem instance can be exposed and explicitly stated based on sample solutions to the prob-
lem (Beldiceanu et al., 2012). However, this approach only finds global constraints for a
single instance. To achieve this goal, the thesis goes beyond the instance level and seeks to
discover globals at the model level by using an already existing model to guide the search.

The approach, presented in Chapter 5, is to first split models into many possible
submodels. For each submodel, a set of candidate global constraints are constructed using
the explicit structure present in them. Finally, sample solutions for each submodel and
candidate global constraints for various instances, are generated and tested by checking
that a) all sample solutions of one can be accepted as solutions to the other and b) that the
candidate global constraints exist in all previously explored instances. The experimental
evaluation of this approach has shown that, for many models, we can correctly detect
global constraints that were not explicitly stated in the model. While the approach does
not prove the correctness of adding these global constraints, it is expected that users will
not find it difficult to decide whether they are appropriate.

Consider again the cars.mzn model presented above. This model has several con-
straints that could be expressed more succinctly using global constraints. Using the ap-
proach presented in Chapter 5 these constraints can be found. Two global constraints
in particular can be added to strengthen the model. The first is a sliding-sum constraint
that can replace part of the constraint on line 30 of cars.mzn. The sliding-sum constraint
maintains that the sum of any contiguous subsequence of variables of a certain length in
an array is between some bounds. The constraint is defined by four parameters: a lower
bound for the sum of each subsequence, an upper bound, the length of the subsequences,
and the array itself. The constraint can be added as follows:
25 % For each option p with block size b and maximum limit m, no consecutive

26 % sequence of b cars contains more than m that require option p.

27 constraint forall(p in options) (

28 sliding_sum(0, max_per_block[p],

29 block_size[p],

30 [used[i, p] | i in 1..n_cars]));

This constraint is now a single forall loop over each p in options. For each option, we
introduce a sliding-sum constraint with a lower bound of 0, an upper bound defined by the
value max_per_block[p], the length set by the value block_size[p], and finally an array
of used variables corresponding to the selected option at each time slot is constructed. The
second constraint that can be added is the global-cardinality constraint. This subsumes the
entire group of count constraints introduced on line 33 resulting in the following:
32 %% Require that the right number of cars in each class are produced.

33 constraint global_cardinality(class,

34 [i | i in 1..n_cars]),

35 cars_in_class);
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Figure 1.4: MiniZinc IDE showing combination of constraints that cause failure.

This constraint takes three parameters: an array, a cover, and a set of counts. The cover
defines the values that must occur a certain number of times in the array, while the counts
define these numbers. In this case, the array is class, which holds variables representing
the manufacturing schedule. The cover is defined as an array of the numbers 1 to n_cars.
The counts are then presented by the parameter array cars_in_class. Replacing the
constraints in the model with these higher-level global constraints can make the model
easier to read, allow compilers to make better decisions about how to compile an instance,
and allow instances for a CP solver that has dedicated algorithms for these constraints,
to be solved faster.

This work was implemented for MiniZinc and was made available as an online tool
called MiniZinc Globalizer. Experimental evaluation has shown that this is a good ap-
proach for exposing implicit structure in constraint models. While the online service is no
longer available, a stand alone version that integrates with the MiniZinc IDE is planned.
This will allow users to more easily integrate this tool into their existing workflow without
having to copy and paste their model to an online service. This work was published as Leo
et al. (2013):

Kevin Leo, Christopher Mears, Guido Tack, and Maria Garcia de la Banda,
“Globalizing Constraint Models”. Principles and Practice of Constraint Pro-
gramming, CP 2013, Proceedings, pp. 432–447.

Can the explicit structure of a model be used to help identify parts of the
model that are incorrectly formulated?

Modelling combinatorial problems can be hard initially. In fact, a first attempt at mod-
elling a problem will often result in an unsatisfiable model, that is, one in which no solution
that satisfies the constraints of the model can be found. Having an explanation of what
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constraints in a model have lead to the unsatisfiability can be useful for helping users
discover and correct their mistakes. Existing approaches focus on finding explanations in
terms of compiled programs. A common approach is to search for what are called minimal
unsatisfiable sets, or MUSes (Bailey et al., 2005; Junker, 2001; Liffiton et al., 2013). These
MUSes try to succinctly represent the cause of unsatisfiability.

There are two main limitations of current MUS-based diagnosis approaches. The first
is that MUSes are found in the set of program-level constraints and, thus, it may be
difficult for a user to map them back to the model they wrote. The second limitation is
that finding MUSes in large programs can be prohibitively slow, as MUS detection tries
to explore the power-set (all combinations) of constraints in the program.

The approach taken here extends the concept of variable paths to constraint paths,
which identify the path from a model through compilation to a specific constraint in the
program. Constraint paths make the hierarchy of constraints in a model explicit, so that
they can then be used to intelligently break the search for MUSes into more manageable
chunks. Importantly, the hierarchy also allows program level constraints to be mapped back
to the user model, making it easier for a user to interpret the MUS.

Figure 1.4 shows an unsatisfiable version of cars.mzn where instead of using <= in
line 30, the modeller wrote <. Using the approach presented in Chapter 6 we can highlight
in the model which constraints were involved in the failure. In this case, the constraint
connecting the used and need variables, combined with the faulty constraint on line 30,
are highlighted. In addition, the interface also presents to a user the specific assignment
of index variables in loops that are involved in the fault. The highlighting allows the user
to focus on the parts of the model that are causing issues.

A prototype implementation for finding MUSes in MiniZinc models was developed as
part of this research by modifying an existing MUS enumeration tool. Integration with
the MiniZinc compiler is planned. This work was published as Leo et al. (2017):

Kevin Leo and Guido Tack. “Debugging Unsatisfiable Constraint Models”.
Integration of AI and OR Techniques in Constraint Programming, CPAIOR
2017, Proceedings, pp. 77–93.

1.3 Contributions

In conclusion, combinatorial problems appear in a wide range of real world problems. High-
level modelling makes it feasible to find effective ways to solve these complex problems.
This thesis first presents a framework for reasoning about how structural information can
be better used and communicated during the modelling, compilation, and solving process.
This framework is then used to develop the core contributions of this thesis, which are:

• To design, implement, and evaluate a method that preserves a representation of the
structure in a constraint model (variable paths), allowing multiple compilations of
the same instance of a problem to be accurately compared and utilised to improve
further compilations. This is achieved by introducing the concept of variable paths.
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This contribution makes high-level modelling more attractive and efficient, requiring
less expertise on the side of the modeller and fewer resources, as it yields smaller
more efficient programs.

• To design, implement, and evaluate a method that utilises explicit model structure
to guide the search for implicit model structure that can then be made explicit in a
later revision of the model. This is achieved by the MiniZinc Globalizer approach.
This approach can have a great impact on the quality of models produced and,
therefore, its impact can translate to improvements for all instances. This more
than makes up for the cost of analysis.

• To design, implement, and evaluate a method that extends the representation of
high-level structure (constraint paths) and uses it to aide the search for sets of un-
satisfiable constraints that succinctly describe a fault. This presents an improvement
in terms of efficiency and allows for more user-friendly presentation of faults. Thanks
to this contribution, users will be able to more quickly diagnose and fix issues in their
models leading to faster development that requires less specialised expertise.

Together, these methods help modellers produce models that are easier to read, can be
solved faster, and have fewer bugs, making high-level modelling more attractive.

1.4 Structure of the Thesis

The structure of the thesis is as follows. Chapter 2 explores the necessary background
required for understanding the concepts in this thesis. This involves an exploration of
combinatorial problems, the related general purpose solving technologies, how the mod-
elling of combinatorial problems is achieved, and how structure is currently used in ex-
isting modelling and solving tools. The compilation of MiniZinc models is also explored.
Chapter 3 presents the new framework for the modelling, compilation, and solving of com-
binatorial problems. The techniques explored in later chapters all relate to aspects of this
framework, as it provides a map for explaining how information (e.g., structures) flows
throughout the process. Chapter 4 introduces the concept of variable paths and how these
have been implemented. This is then used for multi-pass presolving, a method that uses
the explicit structure in models to help improve the quality of programs compiled from
them, and thus, improve solve times. Chapter 5 explores an approach that seeks to use
the explicit structure of a model to guide the search for and exposure of hidden implicit
structure. This chapter also makes use of a generalisation methodology that allows infor-
mation learned from instances to be expressed in terms of the model. Chapter 6 extends
variable paths into constraint paths and presents an approach that uses this explicit model
structure to help identify parts of the model that are incorrectly formulated. The explicit
structure of the model is also used in presenting these incorrect parts to the modeller in
terms of the model constraints. A case study using another generalisation methodology is
also presented. Finally, Chapter 7 summarises and concludes the thesis.
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Chapter 2

Background

2.1 Introduction

This thesis studies the inference and use of structural information to improve the process
of modelling, compiling, and solving combinatorial problems supported by the MiniZinc
tool-chain. This chapter presents the required background for the rest of the thesis and
outlines the boundaries of this research. In doing so, it gives a brief introduction to
combinatorial problems, to the general purpose tools available to model, compile, and
solve them, and how these tools use structural information.

Structure of the Chapter

Section 2.2 provides an introduction to combinatorial problems. Section 2.3 explores
the different approaches for solving combinatorial problems that are used in this thesis.
Section 2.4 introduces the MiniZinc modelling language by means of a simple example.
Section 2.5 provides the grammar for a reduced subset of the MiniZinc language and de-
scribes in detail how a MiniZinc model based on this grammar would be compiled. The
grammar and associated compilation will be expanded upon in later chapters, as needed.
Section 2.6 highlights the importance of using model structure during the modelling, com-
pilation, and solving process and, therefore, the advantages of both retaining explicit
structure and rediscovering implicit structure. Finally, Section 2.7 presents an overview
of the ways in which the structure available at different levels of abstraction is used to
improve the modelling, compilation, and solving of combinatorial problems.

2.2 Combinatorial Problems

Combinatorial problems are those where a set of decisions must be made that satisfy
the given constraints. A notable property of combinatorial problems is the presence of
discrete (integral) decisions. Combinatorial problems appear in a wide range of areas in
diverse fields such as telecommunications, circuit design, bioinformatics, transportation,
network management and configuration, and production scheduling (Freuder, 1997). In
this thesis, we will focus on both combinatorial satisfaction and optimisation problems.
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2.3 Solving Combinatorial Problems

There are many ways to approach the solving of combinatorial problems. We could, for
example, implement a dedicated algorithm for each problem we come across. While this
can result in a focused and efficient solver, it also requires a huge investment of time,
expertise, and other resources. To reduce this investment significantly, an off-the-shelf
general purpose solver for combinatorial problems can be used. Mature solvers typically
have many years of research and development invested in them, which can make them as
efficient as dedicated solvers for many classes of problem. The use of a general purpose
solver shifts the work from implementing an efficient solving mechanism, to finding the
best way to describe the problem for that solver.

However, while generic solvers may solve many kinds of combinatorial problems, sim-
ilarly to the no-free-lunch theorem (Wolpert et al., 1997), they often work best for some
classes of problem and not so well for others. Further, it is often difficult to predict whether
a given problem is a good fit for a specific solver. As a result, it is usually a good idea
to attempt to have the problem solved by several different solvers, each following an ap-
proach aimed at different classes of problem. To achieve this, we would have to learn how
best to describe the problem for each new solver, once again having to invest in attaining
specialised knowledge.

This section outlines four common kinds of general purpose solvers used to solve com-
binatorial problems – linear programming, mixed-integer (linear) programming, Boolean
satisfiability and constraint programming – and highlights their specification requirements.
The next section will show how to improve the solver-specific specification issue by using
a high-level modelling language.

2.3.1 Linear Programming

Linear programming (LP) (Dantzig, 1963) is an early problem solving technique, closely
related to the solving of combinatorial problems. Linear programs are described as a set
of linear constraints over a set of continuous variables. While LP is rich enough to de-
scribe many problems, including some that require variables to take integral values, it is
possible to solve linear programs in polynomial time (Papadimitriou et al., 1982). Thus
LP an unsuitable language for describing more general NP-hard combinatorial problems,
as these are not known to have any polynomial time solving algorithm. Nevertheless, it
is an important approach in the field and a key component of the mixed-integer program-
ming (MIP) approach, which has proven to be quite successful in practice and will be
described in Section 2.3.2.

There are many implementations of LP solvers, as MIP solvers typically implement
their own. These include Gurobi (Gurobi Optimization, Inc., 2015), IBM CPLEX (IBM,
2010), Mosek (MOSEK ApS, 2016) and Express (FICO, 2016). In addition, open source
solvers are also available, including GLPK (Makhorin, 2001); SoPlex, used in the SCIP
solver (Gamrath et al., 2016); and the COIN-OR Linear Programming solver (CLP), used
in the CBC solver (COIN-OR, 2016).
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Linear programs are typically presented in the following form:

minimize:
∑
j∈C

cjxj

subject to: bli ≤
∑
j∈C

aijxj ≤ bui ∀m
i=1

lj ≤ xj ≤ uj j ∈N

xj ∈ R j ∈ C

where N and C represent the set of all variables and continuous variables, respectively
(which in this case are the same set, others will be added later); vector c holds the
coefficients for variables in the objective function (e.g., vector [1,3,0,4] corresponds to an
objective function x1 + 3x2 + 4x4); matrix a holds the coefficients for the constraints in
the program; each row is bound by values from the vectors bl and bu, which represent
the lower and upper bounds, respectively; and vectors l and u represent the lower and
upper bounds, respectively, of the variables x in the program. To represent variables or
constraints that are only bound in one direction, or are unbounded, we use infinity or
negative infinity as the upper or lower bound.

The Simplex Algorithm

The simplex algorithm originally proposed by Dantzig (1963) is the primary method used
for solving linear programs. Since then, there has been much work on improving the
algorithm and the implementations provided in modern solvers are extremely efficient.

In a broad sense, the algorithm walks the vertices of the polytope described by the
constraints of the program. Thus, every step provides an assignment to the variables that
satisfies the constraints of the program. At each step the objective value is checked and the
algorithm will only move to a vertex that improves the objective. An important property
of LP is that once there is no vertex that can be moved to from the current one that
improves the objective value, we proven that the current vertex is the global optimum.

While simplex is the most popular algorithm for solving LPs, other approaches do
exist and are used in commercial solvers (Barahona et al., 2000; Wright, 2005). The
different approaches have different strengths. For example, one algorithm may be slow
when solving an LP from scratch but may be faster when resolving an LP with only small
changes (e.g., new variables or constraints). The requirement that an LP solver be able
to quickly resolve is important for mixed integer programming.

2.3.2 Mixed-Integer Programming

Mixed-integer (linear) programming (MIP) is similar to LP but includes the concept of
integer variables. The presence of these variables means that the simplex algorithm cannot
be used to find correct solutions as, even if the constraints are linear, there is no guarantee
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that the solutions will lie on the vertices of a polytope described by linear constraints. The
integer variables introduce non-linearity to the formulation and require a more complex
solving method. As a result, this formulation can be used for describing and solving
NP-hard combinatorial problems.

MIP is typically solved by solving LPs that describe subproblems of the MIP, using a
variant of the Branch and Bound approach suggested in Land et al. (1960) and expanded
upon in Dakin (1965). Thus, MIP solvers have efficient implementations of the simplex
algorithm built-in. Additionally, some MIP solvers maintain an implementation of an
interior-point (or barrier) algorithm, which may suit some problems better (Wright, 2005).

Several commercial MIP solvers are listed in Section 2.3.1. Several open source solvers
are also available including SCIP (Gamrath et al., 2016), GLPK (Makhorin, 2001), and
CBC (COIN-OR, 2016).

MIP formulations are similar to those of LP. The following shows the extended language
available for MIPs.

minimize:
∑
j∈N

cjxj

subject to: bli ≤
∑
j∈N

aijxj ≤ bui ∀m
i=1

lj ≤ xj ≤ uj j ∈N

xj ∈ R j ∈ C

xj ∈ Z j ∈ I

Here, the main additions are the set I, which represents the set of integer variables in
the problem, and the set N which represents the combined set of integer and continuous
variables. The rest of the formulation is essentially the same, but adapted to include these
integer variables in the objective and constraints.

Branch and Bound

As mentioned before, MIP solvers typically solve mixed-integer programs by repeatedly
solving linear programs with a branch and bound style algorithm. The first step of the
algorithm is to relax the integrality constraints and find a continuous solution to the
formulation using an LP solver (Linderoth et al., 1999). If the integer variables of the
program are given integer values in this initial solution, a solution has been found and the
algorithm can stop. Otherwise, the algorithm selects from the integer variables using some
variable selection heuristic. One simple heuristic is the most-fractional value heuristic,
which finds the variable that has taken a value that is the furthest from an integer value.
In practice, more complex heuristics are used, such as the pseudo-costs heuristic, which
take into account information about how variables have interacted with the constraints
and objective of the program so far.
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Once a variable has been selected, the solver creates two subproblems: The first,
with the variable bound to be less than or equal to the floor of its assigned value; and
the second, where the variable is bound to be greater than the ceiling of its assigned
value. If a subproblem is found to be unsatisfiable the solver backtracks to the previous
decision, and continues to search the remaining, unexplored subproblems. When a valid
solution (one where the integer variables have been assigned integral values) is found,
a bound on the objective value can be updated and used to trivially discard remaining
unexplored subproblems if the objective found by solving their continuous relaxation is
worse. When there are no more unexplored subproblems, the solver has either proven that
the last found solution is indeed optimal (with respect to some tolerance) or, if no solution
has been found, that there is no solution and the program is unsatisfiable.

As an example, assume that we have just solved the linear relaxation of a MIP and the
solution sets an integer variable x to the value 1.3. The solver will create two subproblems:
One for x≤ b1.3c (x≤ 1.0), and the other for x≥ d1.3e (x≥ 2.0). The solver then recurses
into the first subproblem and finds the best solution it can. It then compares this to the
best solution it can find in the second subproblem, intelligently pruning the search tree
when a continuous relaxation cannot find a solution with a better objective value.

Designing programs for MIP solvers presents two main benefits. First, many available
MIP solvers are quite mature after many decades of research and development. Second,
the language is quite simple and for some problems can be sufficient to clearly describe
a problem. However, the simplicity of the language also means that describing more
complex problem constraints can be a real challenge requiring significant experience. In
addition, while the solvers are powerful, they contain many moving parts that can interact
unpredictably. This means it can be difficult to predict how MIP solvers will perform on a
particular formulation of a problem. Thus, one must invest the time and energy to design
a program, without knowing if it will be fruitful or not.

Creating Mixed-Integer Programs

For linear relationships between variables, one can simply add linear constraints to the
formulation. However, for non-linear relationships one will often have to use more complex
formulations that require intermediate variables to be introduced. An example of a type
of intermediate variable that is commonly used when modelling problems as mixed-integer
programs is that of the binary indicator variable. These kinds of variables are introduced
to represent the possible assignments to an integer variable. For example, for an integer
variable 0≤ x≤ 5, we would introduce six binary variables b0, . . . , b5 to represent x= i↔
bi = 1. Non-linear constraints over integer variables can then be represented in terms of
linear constraints on these binary variables. This approach will be demonstrated below.
Another use of binary indicator variables is to allow the degree to which a constraint is
satisfied to be measured. For example, the satisfaction of the constraint x+ y+ z <= 10
can be measured by transforming it into x+ y+ z−Mb <= 10, where M is selected so
that b = 1 if x+ y+ z is not less than or equal to 10. The b variable can then be used
in other constraints to represent the truth value of the expression, and can be used in
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given: m integer (2.1)
minimize: markm (2.2)
subject to: mark1 = 0 (2.3)

markj−marki = dij ∀m
i=1∀m

j=i+1 (2.4)
marki−marki+1 ≤ 0 ∀m−1

i=1 (2.5)
m2∑
k=0

kbijk = dij ∀m
i=1∀m

j=i+1 (2.6)

m∑
i=1

m∑
j=i+1

bijk ≤ 1 ∀m2
k=0 (2.7)

0≤marki ≤m2 ∀m
i=1 (2.8)

0≤ dij ≤m2 ∀m
i=1∀m

j=i+1 (2.9)

bijk ∈ {0,1} ∀m
i=1∀m

j=i+1∀m2
k=0 (2.10)

Figure 2.1: MIP formulation of the Golomb Ruler Problem.

the objective function to penalise satisfaction or non-satisfaction of the constraint. This
approach is called a “big-M” formulation, and allows for much more complex problems to
be described using MIP.

Mixed-integer programming example. Consider the Golomb Ruler problem of size
m, which aims to find a ruler with m marks, where the distances between any pair of
marks are distinct and the length of the ruler is minimal. There have been many real-
world applications for Golomb Rulers, including carrier frequency assignment (Fang et
al., 1977), antenna placement (Thompson et al., 2001), and error correction (Robinson
et al., 1967). In Figure 2.1 a MIP formulation of the Golomb Ruler problem is presented.
To formulate this problem we first introduce the decision variables marki..m to represent
the positions of the m marks. The objective is to minimise the position of the last mark
markm. Constraint 2.3 states that mark1 must be fixed to 0, as any valid set of marks that
do not start at 0 can always be shifted to the left to give a better objective value. Any such
non-zero starting solution is said to be dominated. Adding this constraint stops the solver
from having to explore these dominated solutions. Constraint 2.4 sets the values of a set of
introduced variables d to represent the distances between all distinct pairs of marks on the
ruler. Constraint 2.5 ensures the marks are ordered as increasing, removing symmetries.
Constraint 2.6 establishes the channelling between the introduced variables d and a set of
binary indicator variables b to maintain the relationship dij = k→ bijk = 1. Constraint 2.7
states that for each distance, at most one of the binary variables representing a d variable
can be assigned that distance. This restricts the d variables to be distinct since the
distances between the marks on the ruler must take distinct values. This formulation of
the well known distinct or alldifferent constraint (discussed later when presenting the CP
formulation), is covered in Williams et al. (2001). The remainder of the formulation sets
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bounds for the marks and introduced variables. For m = 4, this formulation results in a
program containing a few hundred variables and tens of constraints.

2.3.3 Boolean Satisfiability

Boolean satisfiability (SAT) is a classic problem of computer science (Cook, 1971; Levin,
1973). It poses the question of whether a given Boolean formula can be satisfied. Many
combinatorial problems can be represented in the form of Boolean formulae and, thus,
SAT is often used for solving these problems. SAT programs usually take the form of
Conjunctive Normal Form (CNF) formulae. CNF is a simple language comprised of literals,
that is, Boolean variables (x) or their negation (¬x), joined together in disjunctive clauses
(at least one literal in each clause must evaluate to true).

SAT programs are solved by recursively assigning variables and propagating the result.
When propagation reaches failure (by the presence of an empty clause) a naive SAT solver
will backtrack by reverting the most recent decision. This is how the traditional Davis
Putnam Logemann Loveland (DPLL) algorithm works (Davis et al., 1962). An extension
to this, referred to as conflict driven clause learning (CDCL), attempts to make more
intelligent decisions when backtracking. The approach operates similarly to the DPLL
algorithm until a decision causes failure. When this happens, it constructs an implication
graph, the analysis of which can allow the solver to construct a clause that succinctly
describes the cause of failure. This clause is known as a nogood. Using the nogood, the
solver can backjump to the decision that lead to the failure, avoiding the exploration of
many unrelated decisions. This can yield considerable speed-ups (Silva et al., 1996).

The simplicity of the language and the power of nogood learning makes SAT a powerful
solving technology, capable of dealing with millions of variables and clauses. However,
despite its ability to solve large programs, the simplicity of the language also means that
even simple problems might require large, complex program formulations, and require
considerable modelling expertise. Reducing the number of clauses and variables has been
found to translate directly into faster solving times. Therefore, reducing the size of these
formulations is important.

There are many solvers available for solving SAT problems. They can be loosely
categorised into two classes: those applying the CDCL approach, such as MiniSat (Eén
et al., 2004) and Chaff (Moskewicz et al., 2001), and those utilising some form of local
search, such as WalkSat (Selman et al., 1995).

Boolean satisfiability example. Implementing a SAT program for a problem involves
representing all decisions in terms of Boolean variables. There are several ways to represent
integer decisions with Boolean variables. One way is to introduce a Boolean variable for
each possible value an integer variable can take (e.g., bX=5 represents the assignment of 5
to the integer decision X), as with binary indicator variables in MIP. This is the approach
taken in the case of both the direct and support encodings (Gent, 2002; Walsh, 2000).

In the direct encoding, constraints are represented by enumerating the assignments
that the constraint rejects. For example, if a constraint states that the assignments X = i
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given: m integer
(2.11)

subject to:
∨m2

k=0
markik ∀m

i=1
(2.12)

¬markik1 ∨¬markik1 ∀m
i=1∀m2

k1,k2=0,k1<k2

(2.13)

dijk↔
∨m2

k1=0

∨m2

k2=0,k=k2−k1,k1 6=k2
(markik1 ∧markjk2) ∀m

i,j=1,i<j∀m2
k=0

(2.14)∧m

i2=1,j2=1,i2<j2,i1<i2∨j1<j2
(¬di1j1k ∨¬di2j2k) ∀m

i1=1,j1=1,i1<j1

(2.15)

dijk ∈ {true, false} ∀m
i=1∀m

j=1∀m2
k=0
(2.16)

markik ∈ {true, false} ∀m
i=1∀m2

k=0
(2.17)

Figure 2.2: SAT formulation of the Golomb Ruler Problem.

and Y = j are incompatible, the SAT clause is ¬bX=i∨¬bY =j . In contrast, in the support
encoding constraints are represented by enumerating the assignments that the constraint
admits. Clauses are added that state for each pair of variables X and Y in a constraint,
that either variable X is not assigned some value, or one of the supporting values for
variable Y must be taken: ¬bX=i∨ (

∨
j bY =j).

For example, encoding the mark variables from the Golomb Ruler problem in the
direct or support encoding, requires the introduction of m2 Boolean variables for each
integer variable, with markik representing mark i being in position k. Since each mark
can be in only a single position, a clause is added representing an at-least-one constraint:
∀m

i=1
∨m2

k=0markik. In addition, a set of clauses representing an at-most-one constraint must
be posted since a mark cannot be in multiple positions: ∀k,l∈0..m2,k 6=l(¬markik ∨¬markil)

Another possible encoding for variables and constraints is that of the order encod-
ing (Ansótegui et al., 2005), where Boolean variables are added that represent bounds
on integer decisions instead of simple assignments. Let us again illustrate this by en-
coding the mark2 variable from the Golomb Ruler problem above. Boolean variables
representing an upper bound on the value that mark2 can take are added to the pro-
gram (bmark2≤0, bmark2≤1, . . . , bmark2≤m2). Just as in the case of direct and support encoding
of variables, these variables require a set of clauses that encode the relationship between
the different variables: ∀i∈0..(m2)−1(¬bmark2≤i ∨ bmark2≤i+1). This is a linear number of
clauses, in comparison to the quadratic number of clauses required by the at-most-one
constraints of the direct and support encodings. With this encoding, representing a con-
straint such as mark2 < 4 is as simple as posting the unit clause bmark2≤3 and discarding
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the variables representing higher valued assignments. This encoding can make certain
kinds of constraints easier to represent.

Figure 2.2 presents a high-level SAT formulation of the Golomb Ruler problem. In
this formulation, mark represents the marks using the direct encoding of the mark integer
decisions. Equation 2.12 encodes the at-least-one constraints on the mark variables as
at least one value must be selected for each integer decision. Equation 2.13 encodes the
at-most-one constraints which makes sure that no attempt is made to select more than
one value for any integer decision. Just as in the case of the MIP formulation above,
the distances between marks are represented by variables named d. In this case, d is a
three-dimensional matrix where dijk = true states that the distance between the marks
marki and markj is k. This is encoded by Equation 2.14. This constraint would have to
be translated a little further to be valid in a CNF program. Equation 2.15 then represents
the alldifferent constraint on the distances. Note that there is no minimize objective here,
as optimisation in SAT is typically controlled from outside of the CNF program. The
solver is used to find a valid solution first, then a bound is set on the objective and a new
formulation is generated with this bound added. For m= 4, this formulation results in a
SAT program containing roughly one thousand variables and four thousand clauses.

2.3.4 Constraint Programming

Constraint programming (CP) is another powerful approach for modelling and solving
combinatorial problems. Modern CP comes as the result of many years of research, from
early constraint based systems (Sutherland, 1964), to constraint logic programming in
Prolog (Emden et al., 1976), to constraint based reasoning, which introduced the gen-
eral concept of a Constraint Satisfaction Problem (Güsgen et al., 1992) and, finally, to
the modern concept of Constraint Programming (Rossi et al., 2006). A constraint pro-
gram is comprised of a set of variables, domains, constraints and an objective function to
be optimised (if any), much like the other approaches. The main difference resides in the
wide variety of types of variables and constraints supported. Typically, CP solvers provide
many high-level constraints over variable types such as Booleans, integers, floats, and sets,
ranging from simple binary relations to complex global constraints describing entire sub-
problems involving many variables. Constraint solving systems, such as Gecode (Gecode
Team, 2006) support user defined variable and constraint types. This generality allows
CP solvers to solve problems described using a high-level, compact representation, more
suitable for non-expert users.

Many CP solvers exist, including Mistral (Hebrard, 2016), Minion (Gent et al., 2006a),
Opturion CPX (Opturion, 2016), Chuffed (Chu, 2011), Choco (Prud’homme et al., 2016),
and IBM CP Optimizer (IBM, 2016). They solver combinatorial problem by interspersing
constraint propagation and search during solving.

Constraint Propagation

One of CP’s greatest strengths is the idea of constraint propagation. A propagator for
a constraint is a specialised algorithm that removes values from the domains of variables
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that will never satisfy a constraint. For example, consider the variables 0≤ x, y ≤ 10 and
a constraint x < y. The less-than propagator will remove 10 from the domain of x, and
0 from the domain of y since these values cannot take part in a solution. Propagators
provide a much more general interface than that of the constraints in MIP or SAT, and
can be defined over many different kinds of constraints and variables. This is what allows
CP to support a much more expressive language. Constraint solvers will typically execute
propagators for each constraint repeatedly until they no longer change the domains of any
variables, that is, until fixed-point.

Global constraints. Propagators can operate on large sets of variables, and implement
more complex constraints than simple inequality or logical relationships. In particular,
many structures that occur as subproblems of different problems often have dedicated
algorithms implemented for them; these are called global constraints. The best known
global constraint is the alldifferent constraint, which ensures that the variables in a set
take different values in a solution. As such, the global constraint concisely expresses
high-level information regarding the structure of the problem, and can be seen as a short-
hand for the semantically equivalent relation that can be expressed as the conjunction of
not-equal constraints.

Using global constraints grants three main advantages. The first is that they allow
problems to be described in a more clear and concise way. For example, one could use a
large set of simple constraints to ensure that a variable x should be assigned the index of
the variable in array a that has the smallest value. Alternatively, one could simply use
the minimum-arg constraint, which describes this relationship more succinctly.

The second advantage is that solvers can implement dedicated propagators for these
global constraints allowing for stronger propagation, that is, propagation that would not
occur given the simpler decomposition. For example, a set of not-equal constraints being
propagated in isolation will not provide the same level of propagation possible with a
dedicated alldifferent propagator. The case of Hall-sets show why this is the case. Assume
a problem has three variables x, y and z with respective domains {1,2,3},{1,2},{1,2}
and a clique of not-equal constraints between each pair of variables (i.e., x 6= y, x 6= z,
y 6= z). Local propagation of each of these constraints in isolation has no impact on the
domains, since we cannot safely remove any values until one of the variables has been
assigned. Conversely, if the clique is represented by a single global constraint (alldifferent),
the propagation algorithm can assign x to 3 since the values 1 and 2 must be taken by y
and z, leaving 3 as the only valid assignment to x. Propagation algorithms for alldifferent
have been introduced by Leconte (1996), López-Ortiz et al. (2003), Puget (1998), and
Régin (1994). An empirical survey of some techniques for implementing the alldifferent
propagator is presented in Gent et al. (2008).

The third advantage of using global constraints is that they allow compilers for high-
level modelling languages to make better decisions during compilation, when the structure
represented by global constraints is made explicit in the model, as will be shown in Sec-
tion 2.4.1.
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Common global constraints. The Global Constraint Catalog maintains a large cat-
alogue of definitions and implementations of global constraints and their availability in
different constraint programming solvers (Beldiceanu et al., 2007). The following briefly
discusses a selection of global constraints that appear frequently in constraint programs
and are used later in this thesis.

alldifferent The alldifferent constraint restricts a set of variables to take distinct values.

table The table constraint allows constraints to be described extensionally, that is, as a list
of tuples that represent valid (supporting) assignments to variables. This constraint
requires the enumeration of the solutions of a constraint, which can be inefficient
but is sometimes worth the extra cost (Dekker, 2016).

cumulative The cumulative constraint is a common constraint in scheduling problems. It
maintains that a schedule for a set of tasks, with start times, durations, and resource
demands, can be found that does not exceed some resource bound in any time step.

lex-less The lex-less, lex-greater, and the associated lex-less-eq and lex-greater-eq enforce
a lexicographic ordering between two arrays of variables. These are often used as
symmetry breaking constraints.

element The element constraint allows the indexing of an array using a variable as index.
For example, x = A[v] where x and v are variables and A is an array.

global-cardinality The global-cardinality constraint maintains that certain values must oc-
cur a certain number of times in an array.

bin-packing The bin-packing constraint packs a set of objects of different weights (or sizes)
into a set of bins, ensuring that the capacities of the bins are not exceeded.

sliding-sum The sliding-sum constraint states that within a sequence, the sum of any
consecutive sequence of elements lies between a certain lower and upper bound.

knapsack The knapsack constraint takes a set of item weights and profits, and maintains
a connection between these and variables representing the number of items that are
selected, the sum of the weights of selected items, and the sum of the profit from
the selected items.

Search

CP solvers typically use a backtracking depth-first search to solve constraint satisfaction
programs (that is, problems without an objective function). For combinatorial optimiza-
tion problems, they add to this some form of branch and bound similar to that of MIP
solvers (see below).

A backtracking depth-first search typically proceeds as follows: First, propagation is
called. This initial call to propagation is known as root-node propagation, as it is performed
at the root of the search tree. The propagation performed at the root node is important
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because the inferences found at the root (before any decisions have been made) are valid
for the rest of the search, no matter how it proceeds. If propagation wipes out (empties)
the domain of a variable at the root-node, the constraint program is trivially unsatisfiable,
meaning there is no valid assignment to the variables that will satisfy all constraints
simultaneously. Otherwise, after root-node propagation, search will begin to recursively
select variables and assign them values from their domains. Variables and values are
selected using one of many different available heuristics. Most solvers have several default
variable selection heuristics such as lexical selection, which selects variables in the order
they appear in the program, and first-fail selection, which selects the variable with the
smallest domain in an attempt to prune the search tree as early as possible. Many other
heuristics can be employed and it is often the case that the user may implement their own
problem-specific heuristics for a solver to use. In addition to the selection of a variable, a
value from that variable’s domain must also be selected for it to be assigned to. This is
achieved using what is called a value selection heuristic.

Once all variables are assigned (all domains have only one value left) the solver has
found a satisfying solution to the problem. If at any time, however, a variable has an empty
domain, it cannot take a value and, thus, the subproblem is unsatisfiable. In this case,
solvers will typically backtrack to the last variable/value selected and select a different
one. If the algorithm backtracks out of all branches from the root node without ever
finding a satisfiable solution, the program can be declared unsatisfiable.

For optimization problems, the depth-first search approach mentioned above is often
extended to perform branch-and-bound in such a way as to optimise the objective function.
Typically, an objective variable is added to the program together with a constraint ensuring
this variable takes the value of the objective function. If a solution is found during search,
the value of the objective variable is retrieved and stored as the current best bound. In
addition, a constraint is added to the program stating that the objective variable must
take a value better than this bound. Search continues as normal and the bound is updated
whenever a better solution is found. When the solver finishes the exploration or pruning
of the remaining search space, it has proven optimality or, if no solution has been found,
unsatisfiability.

Constraint Programming Example

Figure 2.3 presents a possible constraint model for the Golomb ruler problem. The model
has a single parameter m denoting the number of marks required on the ruler. Each mark
marki must take a value somewhere within the range 0 to m2. A constraint is posted
stating that each consecutive pair must be ordered (Constraint 2.21). An alldifferent global
constraint ensures that the distance between every pair of marks (computed by 2.22) is
distinct (Constraint 2.23). Also, a constraint fixing the first mark (mark1) to zero is
added, as we did for the MIP program (Constraint 2.20). In contrast to the MIP and SAT
formulations, for m= 4, this formulation results in a program containing only 16 variables
and 6 constraints.
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given: m integer (2.18)
minimize: markm (2.19)
subject to: mark1 = 0 (2.20)

marki <marki+1 ∀m−1
i=1 (2.21)

markj−marki = dij ∀m
i=1∀m

j=i+1 (2.22)
alldifferent(∪m

i=1∪m
j=i+1 dij) (2.23)

0≤marki ≤m2 ∀m
i=1 (2.24)

0≤ dij ≤m2 ∀m
i=1∀m

j=i+1 (2.25)

Figure 2.3: Constraint Model of the Golomb Ruler problem.

It is clear from this example, that the constraint programming approach leads to much
more natural, concise descriptions of problems. This is why the language of constraint
programming is nowadays used as the basis of major high-level modelling languages, with
problems being described as constraint programs and then compiled into the more low-level
MIP or SAT programs if required.

2.4 High-Level Modelling

Traditionally, problems were modelled by writing code that would construct input for a
solver. Later with systems based around constraint logic programming (Emden et al.,
1976), a declarative language was used to describe instances of a problems which are then
passed to one of several back-end solvers. Later, stand-alone modelling languages became
available. One such language is AMPL (Fourer et al., 1989), which provided a language
for describing MIP models which could be combined with data and then be compiled
into standard input formats supported by MIP solvers. OPL (Van Hentenryck et al.,
1999) is another high-level modelling language that allowed problems to be modelled and
solved by both MIP and CP solvers. OPL had a fixed set of types and constructs that
could be used for describing problems but was not easily extended. Zinc (Garcia de la
Banda et al., 2006) is a very high-level language that supported arbitrarily nested user-
defined types, predicates, and functions, making it a very powerful language for describing
problems. Essence (Frisch et al., 2007) is another very high-level modelling language that
supports arbitrarily nested types with a focus on describing CP models in terms of first-
order relations. MiniZinc (Nethercote et al., 2007), is a high-level language that was
later introduced a simplified and more practical modelling language than Zinc. The most
notable difference between MiniZinc and Zinc is the removal of the arbitrarily nested user-
defined types. MiniZinc allows combinatorial problems to be modelled and solved using
a wide selection of solvers. The language used to describe problems is independent of the
solver used and, thus, problems are typically modelled as CP models since CP provides
the most flexible language for describing problems. The challenge for a compiler then, is
to compile these solver-independent models from high-level constraint models to efficient
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1 % golomb.mzn
2 int: m;
3
4 array[1..m] of var 0..m*m: mark;
5 constraint mark[1] = 0;
6
7 constraint forall ( i in 1..m-1 )
8 (mark[i] < mark[i+1]);
9

10 constraint alldifferent(
11 [mark[j]-mark[i] | i in 1..m,
12 j in i+1..m]);
13
14 solve minimize mark[m];

% 4.dzn
m = 4;

% 10.dzn
m = 10;

Figure 2.4: MiniZinc model and two data files for the Golomb Ruler problem.

programs for whatever target solver the user selects. To better formalise this challenge,
this section first introduces MiniZinc using the Golomb ruler example and then presents
a reduced MiniZinc grammar, adapted in part from Stuckey et al. (2013) and Feydy et al.
(2011). This reduced grammar will be used later to illustrate the translation of high-level
MiniZinc into a low-level representation, called FlatZinc, consisting of a flat set of variables
and constraints, suitable for a particular target solver.

2.4.1 MiniZinc by Example

Figure 2.4 shows a MiniZinc model for the Golomb ruler problem presented in Figure 2.3.
Line 2 in the model declares the integer parameter m by leaving it unassigned. Without
a value for all parameters, a MiniZinc model cannot be compiled. Line 4 in the model
declares an array mark of variables (indicated by the var keyword) which can take integer
values in the range 0 to m2 inclusive. This is followed by the first constraint which
simply forces the first mark to be at position 0. Lines 7-8 constrain consecutive marks
to be strictly ordered. Lines 10-12 construct a new array of variables, using an array
comprehension ([... | ...]), to hold the distances between each pair of marks, and
then constrains this array of variables to take distinct values using the alldifferent global
constraint. Finally, the objective is given in Line 14 as the minimisation of the position
of the final mark mark[m]. Two example data files can be seen under the model providing
different assignments to parameter m.

Note that while the model mostly follows the one presented in Figure 2.3, there are
some minor differences. Primarily, the set of variables dij does not need to be explicitly
stated in the MiniZinc model, as they are introduced by the array comprehension which
is passed to the alldifferent.
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2.4.2 Grammar of a Simplified MiniZinc

The MiniZinc modelling language supports several variable types (Boolean, Integer, Float,
Set), and has a large library of constraints to choose from when modelling. As seen in
the example above, a constraint model in MiniZinc contains many different kinds of items
including declarations of parameters and decision variables, constraints expressed in terms
of loop constructs such as forall and exists quantifiers, array/set comprehensions, and a
solve item which can specify an objective function to be minimised/maximised, or specify
the problem as a satisfaction one. More complex models can contain nested expressions
and other kinds of items such as function and predicate definitions and calls.

MiniZinc declarations and items. While there are many different types of items in
the full MiniZinc specification, here we focus on those used to define predicates, state
the constraints of a problem, and state the type of problem (satisfaction or optimisation,
with an objective function). This is because these items are the only ones needed to
illustrate how compilation of MiniZinc works. The following set of production rules define
the declarations and items allowed in a simplified MiniZinc model.

model −→ decls items
items −→ ε | item items
item −→ predicate pred ( params ) = cons ; | predicate pred ( params );

−→ constraint cons; | solve sense;
params −→ ε | bdecl | bdecl, params | idecl | idecl, params
sense −→ satisfy | minimize obj | maximize obj
obj −→ ivar

decls −→ ε | idecl; decls | idecl = term ; decls
−→ bdecl ; decls | bdecl = cons ; decls
−→ array[int] of idecl; decls | array[int] of idecl = iarray ; decls
−→ array[int] of bdecl; decls | array[int] of bdecl = barray ; decls

idecl −→ int : ivar | var int : ivar | term..term : ivar | var term..term : ivar
bdecl −→ bool : bvar | var bool : bvar

These rules state that a model has two components: decls, followed by items. The latter
can either be ε (empty) or an item followed by further items. An item is then described
as being either a predicate declaration, a constraint or a solve item. The production rules
for a cons item will be described in the next section. Two forms of predicate declaration
are presented. Common to both is params which, combined with pred (the name of the
predicate), represent the signature of the predicate. The first form of predicate declaration
has a cons as its right-hand-side. This cons provides the definition (i.e., decomposition)
of the predicate. The second form does not have this right-hand-side, indicating that
the predicate is a builtin and should not be decomposed. In the simplified MiniZinc, only
integer and Boolean variables and parameters are represented. The full MiniZinc language
also supports set and float variables. The last two production rules for an item introduce
constraints (using the cons seen before for predicates) and the solve item, which can be
declared with three “senses”: satisfy marks the problem as a satisfaction one where any
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solution will do, while maximize or minimize mark it as an optimisation problem for an
objective function with value given by an integer variable.

We next see the production rule for decls, which introduces the variable and parameter
declarations for the model. Note that integer declarations (idecl) can be bound to a
term (an expression returning a scalar) and Boolean declarations can be bound to a cons (a
Boolean expression). Arrays of Boolean and integer variables and parameters can also be
declared. These can also be bound to literal Boolean and integer arrays (barray and iarray).
Finally, we have the two production rules for parameter and variable integer and Boolean
declarations. Integer declarations can also take a set, denoted by term..term, with integer
expressions that represent the bounds of the variable.

MiniZinc expressions. MiniZinc expressions are comprised of cons and term items.
The former represent Boolean expressions, that is, constraints in the root context and
reified constraints otherwise. The latter represent integer expressions, that cannot occur
in the root context; only as arguments to cons. The following presents the rules for cons and
term expressions, along with those for Boolean and integer arrays (and comprehensions).

cons −→ true | false | bvar | term relop term
−→ not cons | cons relop cons
−→ barray[term] | forall barg | pred( args )
−→ if cons then cons else cons endif | let decls in cons

relop −→ = | != | < | <= | -> | <->

args −→ ε | iarg, args | barg, args |
barg −→ bvar | barray
iarg −→ ivar | iarray
term −→ int | ivar | term arithop term | iarray[term]

−→ if cons then term else term endif

arithop −→ + | - | / | * | mod

barray −→ [ cons, . . . , cons ] | [ consv | v in term..term ]
iarray −→ [ term, . . . , term ] | [ termv | v in term..term ]

The first rule for cons shows that it can be a Boolean value (true or false), a Boolean
variable or a relational operator (such as <, >, =, and !=) between to two terms. In addition,
a cons can also take the form of a negation (not cons), or a logical operator (such as /\, \/,
->, and <->) between two cons. Next we have the indexing of a Boolean array by a term.
This will return the element in the array, selected by the term. After this we see that cons
can be a forall which takes an array of Booleans as its argument and is true if, and only if
all Booleans are true. Another kind of cons is that of a predicate call. Here instead of the
params from a predicate declaration item, we have args which the production rule indicates
can be empty, a sequence of integer variables, Boolean variables, integer arrays or Boolean
arrays. The next production rule for cons is that of an if statement. Since it is a cons
item, the then and else branches must also be cons. The last production rule for cons is
a let expression (let decls in cons), which introduces the variables declared in decls and
uses these declarations in cons. Next we have the production rules for term expressions.
Terms are expressions that resolve to non-Boolean values (only integers in the simplified
MiniZinc presented here). A term can be any integer parameter or variable, an arithmetic
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operation between two terms (+, -, /, and *) or an integer array access (iarray[term]).
Finally, the if expression can be used with terms as the then and else branches.

2.5 Compilation

Recall Figure 1.2 which showed the modelling, compilation, and solving process common
to modern modelling languages for combinatorial problems. The user starts the process by
formalising their problem as a model, that is, a parametric specification of the problem.
Following this, the compiler combines the model with a given set of data to form an
instance, that is, a non-parametric model. Conceptually the instance is a useful stage to
reason about, as all the instance specific information is available but the compiler is yet
to make any decisions about how the instance will be further compiled to a program. The
compiler then translates the instance into a program that can be understood and solved
by the target solver.

2.5.1 Compiling MiniZinc Instances to Programs: an Overview

MiniZinc follows this same process, with high-level (parametric) MiniZinc models being
translated into concrete solver-level programs, comprised of a flat list of variable dec-
larations and builtin constraints, that is, constraints supported natively by the solver.
This translation, called flattening, unrolls all loops and reduces expressions to sets of in-
dividual, atomic, flat constraints that are part of the FlatZinc language. In this thesis
the terms “flattening” and “compiling” are used interchangeably. The FlatZinc language
is a subset of MiniZinc comprising only variable and constant declarations, along with
simple constraints. In contrast to MiniZinc, FlatZinc has no loops or complex expres-
sions, and only supports optimisation of a single variable (an objective function must
be encoded using constraints to constrain the objective variable). All constraints in a
FlatZinc program are represented by calls to builtin predicates. These take the form:
predicate_name(arguments).

Solver writers need only provide support for reading FlatZinc in order to support the
solving of combinatorial problems defined using MiniZinc. This can be achieved by either
implementing a stand-alone parser, which translates FlatZinc programs into the correct in-
ternal representation for solving or, alternatively, by implementing a solver interface to the
libminizinc1 (Tack, 2011) library, which already provides a MiniZinc (and, thus, FlatZinc)
parser. In addition, it provides type checking and flattening (compilation) together with
several existing solver interfaces. Thus, implementing a solver interface for the libminizinc
library is a simple way to add MiniZinc support to a solver.

Each predicate in the constraint library can be declared in two different ways: without
a definition (marking it as a builtin), or with a definition that defines it in terms of
simpler constraints (marking it as a decomposition). Therefore, for each target solver, the
MiniZinc system must contain a specialised library that declares all of its builtins and

1http://www.minizinc.org

http://www.minizinc.org
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1 include "all_different_int.mzn";
2 include "all_different_set.mzn";
3
4 % Constrain the array of integers x to be all different.
5 predicate all_different(array[int] of var int: x) =
6 all_different_int(x);
7
8 % Constrain the array of sets of integers x to be all different.
9 predicate all_different(array[int] of var set of int: x) =

10 all_different_set(x);

Listing 2.1: all_different.mzn.

1 % Constrains the array of objects ’x’ to be all different.
2 predicate all_different_int(array[int] of var int: x) =
3 forall(i,j in index_set(x) where i < j) ( x[i] != x[j] );

Listing 2.2: all_different_int.mzn.

provides solver specific decompositions for constraints that are not natively supported,
falling back on the decompositions from the standard library if necessary.

Different solvers require problems to be described in different ways. However, they
can be relatively uniform within a particular solver class. For example, all MIP solvers
support only integer and continuous variables with contiguous domains, and linear con-
straints. Thus, the MiniZinc distribution comes with a library for MIP solvers called
linear, which provides linear decompositions for many constraints such as global and
non-linear constraints. Similarly, all SAT solvers support only Boolean variables and sim-
ple clauses. A slight modification of the MIP library developed in Abío et al. (2014) is
used as the basis of a SAT translation for MiniZinc. These two libraries allow high-level
constraint programming style models in MiniZinc to be solved by any MIP or SAT solver.

When it comes to CP solvers however, there is more variation. For example, some
CP solvers support continuous variables, while others support set variables, and no two
solvers support the exactly the same set of global constraints. As such, each CP solver
must provide a library declaring which global constraints are supported and which must
be decomposed, or possibly provide decompositions that happen to better suit the solver.
As an example, consider a model that uses the constraint set_eq(s1,s2), which constrains
the two set variables (s1 and s2) to be equal. A solver that does not natively support
set variables could provide a library definition for this constraint that introduces Boolean
variables to represent the two set variables, and a set of constraints on these that describe
the set_eq constraint. If the connection between the set variables and their representative
Boolean variables is functional, and they do not occur in any other constraints, they can be
left out of the program. The set variables and constraints that link them to the Boolean
variables in the program, would be stored in a separate file (.ozn) and used later for
outputting solutions.

As another example, consider Listing 2.1 and Listing 2.2, which are extracts from the
MiniZinc standard library of decompositions (std). In Listing 2.1 we see two definitions
of a constraint all_different defined with two different signatures: the first for an array
of integer variables and the second for an array of set variables. These two constraints get
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1 var 1..10: a; var 1..10: b;
2 var 1..10: c; var 1..10: d;
3 constraint a * b + c = d;
4 constraint alldifferent([a, b, c, d]);
5 solve minimize d;

Listing 2.3: Sample Instance to be Flattened.

1 var 1..9: a; var 1..9: b;
2 var 1..9: c; var 2..10: d;
3 var 1..9: t1;
4 constraint int_times(a, b, t1);
5 constraint int_plus(t1, c, d);
6 constraint all_different_int([a, b, c, d]);
7 solve minimize d;

Listing 2.4: Flattened Program.

rewritten into all_different_int and all_different_set respectively. Listing 2.2 shows
the standard decomposition for alldifferent over integer variables, which is to represent it
as a clique of not-equals constraints.

Flattening in MiniZinc is implemented as a recursive call-by-value (inside-out) trans-
lation. Intuitively, this works as follows. If a predicate or function call is nested as an
argument of another, it is decomposed into a separate constraint, and the argument is
replaced with an auxiliary variable holding the result of the call. For Boolean predi-
cates that are not in a top-level conjunction, a reified version of the expression will be
constructed and bound to an auxiliary Boolean variable. Reified constraints are impor-
tant for allowing complex problems to be modelled. However, they are often less efficient
than their top-level counterparts. For example, many reified versions of global constraints
require a specialised propagator and, thus, many solvers only implement a few reified ver-
sions of global constraints. As a result, the MiniZinc compiler is forced to instead post a
decomposition, which may be costly in some circumstances.

After flattening the arguments of a call, the compiler looks for a predicate or function
declaration with the same type signature. If it is defined as a builtin, the compiler inserts
it into the FlatZinc as is. Otherwise, a copy of its body is instantiated with the actual
arguments of the call and then flattened. Further optimisations performed by the MiniZinc
compiler are explored in Section 2.5.3.

Listing 2.3 and Listing 2.4 demonstrate the flattening of a simple MiniZinc instance
to FlatZinc. After adding the variables a, b, c, and d, the compiler reaches the expression
a ∗ b+ c = d. This is flattened by first flattening the subexpression a * b. To do so, a
new variable is introduced, t1 which will hold the result of the expression. This expression
is represented as int_times(a, b, t1) in the program, which constrains the introduced
variable to be equal to the product of a and b. Next, with a ∗ b substituted by t1, the
remaining expression t1 +c= d must be flattened. The flat constraint that represents this
expression is int_plus(t1, c, d). Finally, the alldifferent constraint is flattened to an
all_different_int constraint.
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Algorithm 2.1 The mzn2fzn driver.
procedure mzn2fzn(modelFile, dataFile, libraryFile)

library ← parse(libraryFile)
model ← parse(modelFile)
data ← parse(dataFile)
return flatten(library ∪ model ∪ data)

2.5.2 Compiling MiniZinc Instances to Programs: a Procedure

Now that the reduced representation of the MiniZinc grammar has been introduced and an
overview of the flattening process has been provided, it is time to explain the compilation
procedure in more detail. The components of the procedure will be extended in later
chapters, as needed, to illustrate how certain extensions can be implemented.

The mzn2fzn driver. The mzn2fzn driver compiles a MiniZinc model and its data,
together with a selected target solver’s library, into a FlatZinc program suitable for solving
with the target solver. Pseudocode for this procedure is presented in Algorithm 2.1.

The algorithm takes a path to a required MiniZinc model file (modelFile), its MiniZinc
data file (dataFile) and a selected library (libraryFile). Each is parsed into a set of items
and declarations (library, model and data, respectively) and merged into a single set,
which can be seen as a complete instance and is then passed to the flatten procedure.
Note that this is possible because library files are essentially MiniZinc models, and data
files follow a subset of the MiniZinc model grammar (the subset required to provide values
to parameters). In practice, users will directly or indirectly (through the MiniZinc IDE
for example) call the mzn2fzn program. For example, to compile the Golomb ruler model
for m= 4 with a MIP target solver, the command mzn2fzn -G linear golomb.mzn 4.dzn

would be executed. This will produce a FlatZinc program, golomb.fzn, and an output
file, golomb.ozn, which is used for translating solutions from the solver into the output
format requested by the user (MiniZinc’s output functionality is out of scope and will not
be explored here).

The flatten procedure. As expressed in Section 2.5, an instance must be flattened be-
fore it can be solved. A procedure for flattening an instance is presented in Algorithm 2.2.
All procedures called from flatten have access to the global compiler state. The main
components of the state are the set S, which represents the FlatZinc program, the stack
CallStack, which stores the sequence of expressions the compiler is currently processing
and, finally, the map PredicateMap which stores a mapping of predicate names to their
definitions (decompositions) in either the model or the target library. A predicate declara-
tion, lacking a definition, signifies a builtin, and is stored in the map as ⊥. Note that the
while the compiler presented here assumes that predicate declarations will occur before
any calls to those predicates, the real MiniZinc does not have this restriction.

After initialising the global state, flatten then steps through each declaration or item in
the instance and applies rules based on their type. Note that the real MiniZinc compiler
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Algorithm 2.2 Flattening an instance.
Compiler State:
S: set . FlatZinc program
CallStack: stack . Trace of expressions currently being processed
PredicateMap: map: name → item . Mapping of predicate names to definitions
procedure flatten(instance)

S←∅
CallStack ←∅
PredicateMap ←∅
for each (elem ∈ instance) do

switch elem
case predicate p (t1, . . . , t2) = c0: PredicateMap [p(t1, . . . , t2)] ← c0
case predicate p (t1, . . . , t2); : PredicateMap [p(t1, . . . , t2)] ← ⊥
case idecl | bdecl: flatd(elem)
case constraint c: flatc(true, c)
case solve satisfy: S← solve satisfy

case solve s t: flatt(newVar(v), t); S← solve s v

return S

does not iterate through the instance in order, since a better compilation can be achieved
by postponing the compilation of some constraints.

If elem is a predicate definition with a body (c0) that defines how a predicate can be
decomposed using MiniZinc, its definition is added to PredicateMap without any further
flattening, since it is not being called here. If elem is a predicate definition without a
body, the special symbol ⊥ is added to the PredicateMap indicating that this is a builtin
predicate. If elem is a variable declaration, the procedure flatd(elem) is called to introduce
a variable to the FlatZinc program. If elem is a constraint item, the procedure flatc is
called on this item’s cons. flatc takes two arguments b and c, where b is a Boolean control
variable tied to the satisfiability of the constraint c, that is, if c is satisfied (unsatisfied) b
will be true (false). The flatten procedure fixes b to be true for all its constraints, as all top
level (root context) constraints must be satisfied. Next, the case of a solve item that states
that the problem is a satisfaction problem. In this case, the item is added directly to the
program. The final case is that of a solve item, where the argument s provides the sense
of the problem. The objective must be flattened by introducing an objective variable, and
using flatt to bind the expression to the variable. The solve item is then added to the
program with the objective replaced by the this new variable. Finally, the flattened set of
constraints and variable declarations of the program S are returned.

Flattening variable declarations. The flatd procedure is presented in Algorithm 2.3.
Depending on the type of variable declaration the procedure introduces a new variable
by calling newVar (Algorithm 2.4) and restricts the domains as necessary. Note that v
in Algorithm 2.3 does not correspond to an actual variable, but to an identifier that will
be used in the creation of the actual variable, v′, that will appear in the flattened program.
If required, the compiler will in turn process terms by calling flatt and cons by calling flatc.
These procedures are discussed below. When constraints are ready to be added to the set



CHAPTER 2. BACKGROUND 35

Algorithm 2.3 Flattening a variable declaration.
procedure flatd(decl)

CallStack.push(decl)
switch decl
case array[int] of var l..u : v: ∀|v|i=1 newVar(v′i); c← l <= v′i ∪ v′i <= u
case var int: v = t: c← flatt(newVar(v′), t)
case var l..u : v: newVar(v′); c← l <= v′ ∪ v′ <= u
case var l..u : v = t: c← flatt(newVar(v′), t) ∪ l <= v′ ∪ v′ <= u
case var bool:b= c0: newVar(b′); flatc(b′, c0)
postConstraints({c})
CallStack.pop()

of flattened FlatZinc constraints, the procedure postConstraints (Algorithm 2.5) is called
and the CallStack popped. Note that, for brevity, this simplified MiniZinc only deals with
variable bounds (thus, disregarding non-contiguous sets as domains).

Algorithm 2.4 Adding new variables.
procedure newVar(v)

v̄← new v

return v̄

Algorithm 2.5 Adding constraints.
procedure postConstraints(C)

for each (c ∈ C) do
S← S∪{c}

The procedures newVar and postConstraints are quite simple, but are reproduced here
as they will be expanded upon in later chapters. In particular, newVar will be extended
in Chapter 4 to record the reasons for the introduction of different variables in support
of a multi-pass compilation. The postConstraints procedure will be extended in a similar
way in Chapter 6 to support the annotation of FlatZinc constraints with their reason for
being introduced.

Flattening arrays. Algorithm 2.6 presents two helper procedures that will be used by
the other flattening procedures. The first, flate, is used whenever the types of expression
to be flattened are mixed (might be term or cons), e.g., in arguments to a predicate call.
The procedure takes two arguments: v and e. If e is a term, the procedure will call flatt
to bind v to the result of flattening e. Alternatively, if e is a cons, flatc will be called and
v will be used as the control variable for the flattened expression e.

Next, a procedure for flattening array literals and comprehensions is presented called
flata. This procedure takes two arguments: a control variable b, and an array literal or a
comprehension t. If t is an array literal, the algorithm first checks the value of b and, if it is
known to be true, it flattens each element as a cons expression in the root-context. If the
value of b is unknown or undefined (argument passed as: _) each element ti of the array
is flattened using flate, with the resulting introduced variable being stored in t′i. If given
an array comprehension with expression e, variable v and range t1 .. t2, the procedure
expands the comprehension, flattening by assigning values from the range to v in e and
flattening this instantiated expression. To do this, the lower and upper bounds must be
computed. The eval function takes a fixed expression and returns its value. For each
index value i in the calculated range, the assignment v = i is pushed onto the CallStack.
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Algorithm 2.6 Helper procedures for flattening expressions and arrays.
procedure flate(v, e) . Helper for flattening cons or term

if e is a term then return flatt(v, e) else return flatc(v, e)
procedure flata(b, t)

switch t
case [ t1,. . . , tn ]:

for each i ∈ 1 . . .n do
if b≡ true then flatc(true, ti) else flate(newVar(t′i), ti)

case [ e | v in t1 .. t2 ]:
for each i ∈ eval(t1) . . . eval(t2) do

CallStack.push(assignment v = i) . Assignment should be recorded
if b≡ true then flatc(true, eJv/iK) else flate(newVar(t′i), eJv/iK)
CallStack.pop()

if b≡ true then b else return [v′1, . . . ,v′n]

This allows the compiler to produce more useful feedback when printing errors, as it can
show which specific iteration of the comprehension caused a failure. Next, the assignment
has to be substituted into the expression e by replacing v with i (eJv/iK), which is then
flattened as before. The assignment is popped from CallStack and the loop continues to
work through the other assignments to v. Finally, if b is true, it is returned. Alternatively,
the result of flattening the elements of the array literal or expanding the comprehension
is returned.

Flattening constraints. Algorithm 2.7 shows how constraints are recursively flattened
by the MiniZinc compiler using flatc. The procedure takes two arguments, b and c, with b
being a Boolean variable representing the result of the evaluation of constraint c. Recall
that calls to flatc from the flatten procedure set b to true, as the constraints are in the
root-context. The procedure starts by pushing the current constraint to be flattened
onto the CallStack. Different cases are then applied depending on the type of constraint
being flattened. The first two cases flatten constraints in the form of Boolean literals.
The control variable b is posted directly to the constraint set C, either in a positive or
negated form. The next case flattens a Boolean variable b′. In this case we unify the
control variable b with b′ so that any further use of either returns the same variable. Note
that the full MiniZinc compiler binds identifiers (use of variables) to actual variables and,
thus, unification points two identifiers at the same variable, and sets the domain of the
variable to be the intersection of the two original variables. The next case flattens a
relational constraint between two terms. This is flattened by first calling flatt to flatten
the terms and introduce new variables i1 and i2 to represent them. Then, flatc is called
on a predicate form of the relational operator (r(i1, i2)) which can be posted or further
flattened, if needed.

The next case is that of a negated constraint (not c1). For this case, a new variable
b1 is introduced as the control variable for constraint c1, and a predicate bool_not(b1,b)
is posted. After this we have a case for handling a conjunction of two constraints. If the
control variable b is known to be true, the flattener can simply flatten c1 and c2 in the
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Algorithm 2.7 Flattening a constraint.
procedure flatc(b,c)

CallStack.push(c)
switch c
case true: C← {b}
case false: C← {¬b}
case b′ (bvar): C← unify(b,b′)
case t1 r t2: C← flatt(newVar(i1), t1) ∪ flatt(newVar(i2), t2) ; flatc(b,r(i1, i2))
case not c1: flatc(newVar(b1), c1) ; flatc(bool_not(b1, b))
case c1 /\ c2: if b≡ true then flatc(true, c1) ; flatc(true, c2)

else flatc(newVar(b1), c1) ; flatc(newVar(b2), c2) ; flatc(b, bool_and(b1, b2))
case c1 \/ c2: flatc(newVar(b1), c1) ; flatc(newVar(b2), c2) ; flatc(b, bool_or(b1, b2))
case p(t1, . . . , tn) (pred call):

for each j ∈ 1 . . .n do . Flatten arguments as v1 . . . vn

if tj is an array then vj ← flata(_, tj)
else flate(newVar(vj), tj)

if (PredicateMap[p] 6= ⊥ ) then . Predicate has a body?
p(x1, . . . ,xn) = c0← PredicateMap[p]
flatc(b, c0Jx1/v1, . . . ,xn/vnK)

else
if b≡ true then C← {p(v1, . . . ,vn)}
else flatc(true, p_reif(v1, . . . ,vn, b))

case if c0 then c1 else c2 endif: if eval(c0) then flatc(b, c1) else flatc(b, c2)
case let { d } in c:

let v̄′ be a renaming of variables v̄ defined in d
flatc(b, flatlet(dJv̄/v̄′K, cJv̄/v̄′K,0))

case forall ba:
[b1, . . . , bn]← flata(b, ba)
if b 6≡ true then

C← {array_bool_and([b1, . . . , bn], b)} . Conjunction of introduced vars
postConstraints(C)
CallStack.pop()
return b

root-context. If b is not known to be true, Boolean variables have to be introduced to
represent c1 and c2 in a predicate bool_and(b1, b2), which is then flattened further.

The next case deals with the disjunction of two constraints. In this case both con-
straints must have control variables introduced and a predicate bool_or(b1, b2) is posted.
The next case flattens predicate calls. First, the arguments to the predicate (t1, ..., tn)
must be flattened resulting in the set of variables v1, ...,vn. If a tj is an array, it is passed
to flata, with the resulting array stored as the variable vj . Otherwise, tj is a cons or term,
amd a new variable vj is introduced to store the result of flattening by flate. Once v1, ...,vn

have been instantiated, the compiler checks whether the predicate exists in PredicateMap.
If it has a definition, it is extracted from the map and its parameters x1, ...,xn are in-
stantiated with v1, ...,vn, the syntax c0Jx1/v1, . . . ,xn/vnK representing this instantiation.
Finally, this instantiated c0 is flattened with flatc. In the alternative case, where the entry
for a predicate in PredicateMap is ⊥, marking it as a builtin predicate, another conditional
controls how it must be flattened. If the control variable b is true, the predicate can be
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Algorithm 2.8 Flattening a term.
procedure flatt(v, t)

C←∅
CallStack.push(t)
switch t
case i (int): C← {v = i}
case v′ (ivar): unify(v,v′)
case t1 ⊕ t2: C← flatt(newVar(v1), t1) ∪ flatt(newVar(v2), t2) ∪

{flatc(true, ⊕(v1,v2,v))}
case a[t1]: C← flatt(newVar(v′), t1) ∪ {element(v′,a,v)}
case if c then t1 else t2 endif: if (eval(c)) then C←flatt(v, t1)

else C←flatt(v, t2)
CallStack.pop()
return C

posted in the root context as p(v1, ...,vn). If b is not true, the postfix “_reif” is added
to the predicate name and the control variable is added as the final argument. This new
predicate call is then flattened using flatc.

The next case is that of an if statement. Here, the condition c0 is evaluated using the
function eval, which takes an expression that involves no variables and returns a concrete
value. In this case the concrete value is a Boolean to decide which branch of the if state-
ment should be flattened further (c1 or c2). The next case is for a let expression, where
the procedure flatlet is used to flatten the expression’s declarations and constraint after
the variables used are first replaced by renamed versions. The final case flattens forall

loops. Here, flata is called with b as its first argument. Recall that, if b is known to be true,
the elements of the flattened array will be flattened in the root-context. Alternatively, if
the value of b is unknown, flata will return an array of variables ([b1, . . . , bn]) which are
bound to the flattened elements of the array or array comprehension. These variables are
then used as arguments to an array_bool_and predicate which will state that b must be
true if all of b1, . . . , bn are true. Finally, postConstraints is called to commit the constraints
from C to the FlatZinc program, and the CallStack is popped.

Flattening terms. Terms are expressions that return a number or a variable represent-
ing a number. Terms are processed by the flatt(v, t) procedure presented in Algorithm 2.8.
The procedure begins by initialising the constraint set C to be empty. Next the term is
pushed onto the CallStack. Following this a switch statement applies the necessary case
depending on the type of t. If t is an integer i, the assignment v = i is added to the
constraint set C. If t is another variable v′, the procedure unify is called. The next case is
for a case involving an arithmetic expression t1⊕ t2, where t1 and t2 are terms and ⊕ is
one of +,−,/,∗ or ‘mod‘. In this case we introduce new variables v1 and v2 using newVar.
These are assigned the result of evaluating t1 and t2, respectively, by recursive calls to
flatt. The returned constraints from these calls are then added to a call to a concrete re-
lational constraint a(v1,v2,v), e.g., w = x+ (y+ z) becomes the set: { int_plus(y,z,v1),
int_plus(x,v1,w) }. The next case handled by flatt is that of an array access a[t1], where
a is an array and t1 is a variable term. A new variable v′ is introduced to take the result
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of evaluating t1 with flatt. An element constraint is then added to C: element(v′,a,v).
This constraint states that v must take the value from the array a indexed by v′. The
last case handled by the simplified flatt procedure is the case of an if statement, where
the condition c is not variable. The procedure will call eval on c and, based on the result,
will flatten either the then branch (t1) or the else branch (t2). Finally, the CallStack is
popped and the set C of flat constraints is returned.

Flattening let expressions. The flattening of let expressions is handled by the flatlet
procedure presented in Algorithm 2.9. The procedure iterates twice through the items
in d, that is, through the declarations of the let. The first time through, it evaluates
any parameter (constant) declarations, updating d, c and t as needed. After this, it
flattens any variable terms, introducing variables as needed. Finally, it returns in c the
set of constraints representing the instantiation of these variables in conjunction with the
updated in component of the let expression. Note that c will be flattened later.

Algorithm 2.9 Flattening a let expression.
procedure flatlet(d,c,t)

for each (item ∈ d) do
switch item
case l . . .u : v = t′: d← dJv/eval(t′)K;c← cJv/eval(t′)K; t← tJv/eval(t′)K
case int: v = t′: d← dJv/eval(t′)K;c← cJv/eval(t′)K; t← tJv/eval(t′)K
case bool: v = c′: d← dJb/eval(c′)K;c← cJb/eval(c′)K; t← tJb/eval(c′)K

for each (item ∈ d) do
switch item
case l . . .u : v = t′: c← c ∪ l <= v ∪ v <= u
case var int: v = t′: c← flatt(newVar(v′), t′) ∪ v = v′ ∪ c
case var l . . .u : v: newVar(v′); c← c ∪ v = v′ ∪ l <= v ∪ v <= u
case var l . . .u : v = t′: c← flatt(newVar(v′), t′) ∪ v = v′ ∪

c ∪ b′ ∪ l <= v ∪ v <= u
case var bool: b= c′: newVar(b′); c← c ∪ (b <-> b′) ∪ (b <-> c′)

return c

2.5.3 Further Compilation Techniques

This section lists several techniques used by the full MiniZinc compiler that further improve
the compilation of models to programs. Knowledge of these techniques is necessary to
properly interpret the experimental results obtained in Chapter 4. This is because the
reduced variable domains obtained by the evaluated methods increase the applicability of
these techniques and, thus, the effectiveness of the compilation and the efficiency of the
solving process. The techniques are not integrated into the algorithms above because a
good understanding of their implementation is not necessary.

Compiling partial functions. For each subexpression e, the compiler conceptually
introduces two new variables: ve for the value of e, and a Boolean be representing whether
e is defined (Stuckey et al., 2013). Consider then, the expression e=x + (y div z) <= 10.
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The relational semantics (Frisch et al., 2009) dictates that this constraint holds if and only
if the division is defined (i.e., z!=0) and the condition is satisfied. Flattening e will generate
the following auxiliary variables:

v0 = div_total(y,z) // total version of division
b0 = (z!=0) // condition under which v0 is defined
v1 = x + v0

b1 = b0

v2 = (v1 <= 10) /\ b1 // true if defined and condition holds
b2 = true

ve = v2

be = true

Depending on the context in which the expression is translated, the algorithm will try
to avoid introducing auxiliary variables and expressions as much as possible. For instance,
if the above expression was stated as a top-level constraint, the value of ve would be known
to be true (since the whole constraint needs to be true). From this the algorithm can infer
that v2 and, hence, b1 and b0 must also be true. This forces z to be non-zero.

Overloading resolution. An important feature of MiniZinc is its support for over-
loading functions and predicates based on the types of their arguments. For example, in
Algorithm 2.8, an array access x[y] is compiled as an element constraint if y is a variable,
but evaluated if fixed. Similarly, a solver library may declare builtin support for a cu-
mulative constraint with fixed durations and capacities, but use a decomposition if those
arguments are variables. When translating a call, the compiler uses the types of the actual
arguments to decide which version to use (Nethercote et al., 2007).

Linear simplification. The linear parts of arithmetic expressions are aggregated into
linear expressions, rather than being posted as sets of simpler constraints.

Boolean simplification. Any complex Boolean expression needs to be decomposed
into simple constraints understood by the target solver. Before decomposing, the compiler
normalises Boolean expressions by pushing negations inwards, and aggregates individual
expressions into longer clauses and conjunctions. In doing so, the compiler delays the
decomposition of reified constraints as long as possible to avoid reification altogether if it
can be inferred that the constraint must be globally true (Feydy et al., 2011).

2.6 Model Structure

Information about the structure specified by models can be used throughout the mod-
elling, compilation, and solving process to find solutions faster. Two general classes of
structure that will be explored in the thesis and how they can be lost during compilation,
or never be discovered in the first place, will be discussed. The first class is that of the
explicit structure which relates to the particular way in which the modeller designed and



CHAPTER 2. BACKGROUND 41

constraint int_lin_le([1,1,1],[i155,i243,i313],1);
constraint int_lin_le([1,1,1],[i156,i244,i314],1);
constraint int_lin_le([1,1,1],[i157,i245,i315],1);
constraint int_lin_le([1,1,1],[i158,i246,i316],1);
constraint int_lin_le([1,1,1,1,1,1],[i12,i67,i105,i159,i247,i317],1);
constraint int_lin_le([1,1,1,1,1,1],[i13,i68,i106,i160,i248,i318],1);
constraint int_lin_le([1,1,1,1,1,1],[i14,i69,i107,i161,i249,i319],1);
constraint int_lin_le([1,1,1,1,1,1],[i15,i70,i108,i162,i250,i320],1);

Listing 2.5: Extract golomb.fzn compiled for a MIP target.

represented the model. This includes, for example, how variables are used to represent
the problem decisions, how related constraints are grouped within the model via a forall,
and what specific constraints are used to describe the problem. The second class is that
of implicit structure which relates to properties of the model that are not explicitly stated
in it, but are entailed or implied by it. For example, a constraint of a model might be
redundant, i.e., entailed by other constraints (Bessiere et al., 2007; Choi et al., 2004), a set
of its variables might be symmetrically interchangeable (Gent et al., 2006b; Mears et al.,
2008; Van Hentenryck et al., 2005), or a set of constraints may be semantically equivalent
to a global constraint not present in the model (Leo et al., 2013).

The more structural information (both implicit and explicit) compilers and solvers are
aware of, the better decisions they will make. This is why, if the information does not
explicitly appear in the compiled program, some solvers will perform potentially expensive
operations to rediscover it (Biere et al., 2014; Salvagnin, 2014, 2016). Therefore, retaining
explicit structure and discovering implicit structure during the compilation process can be
beneficial for obtaining efficient programs.

2.6.1 Losing Structure

The representation of a problem is refined during compilation from a parametric and solver
independent model down to a specific set of variables and constraints for a specific solver.
As the representation is refined, explicit structure might be lost. We therefore aim at
reducing the amount of explicit structure that gets lost and make sure that any implicit
structure we detect is explicitly represented and retained during the compilation process.

An example of this loss is the case of a forall loop: once it has been unrolled entirely
and its specific set of constraints are in the program, there is little evidence available to
the compiler (or the modeller trying to debug the output program) that these constraints
are related in any way. Listing 2.5 illustrates such a case by showing a section of the
FlatZinc program obtained when compiling the golomb.mzn model of Figure 2.4 for a MIP
solver. The constraints are all the same kind of constraint (int_lin_le) and involve sets
of introduced variables that are not explicitly mentioned in the model. It can be difficult
to match these constraints and variables back to the model. Retaining knowledge of
where the constraints came from, allows us to reason with more certainty about particular
properties of these constraints.

Another closely related example is that of a decomposed global constraint. In the
traditional compilation approach, a global constraint that is decomposed into simpler
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constraints is syntactically missing from later compilation steps. The simpler constraints
that make up this global are mixed in with the other compiled constraints, making it
difficult to efficiently rediscover the missing high-level structure. Again, looking at the
example in Listing 2.5, which shows the result of flattening for a MIP solver, we see a set
of int_lin_le constraints. These come from the alldifferent constraint.

In summary, recovering lost structure from programs without the context of the original
model can be difficult. Thus, it is important for the compilation process not to lose
information regarding structure present in the model. A technique for achieving this is
presented in Chapter 4.

2.6.2 Recovering Structure

As discussed above, sometimes the model has structures that, if made explicit, can poten-
tially be exploited by the compiler and/or the solver. We already provided some examples
of implicit structures such as redundant constraints, symmetries, and sets of constraints
that are equivalent to a global constraint. Another common and practical example is that
of a modeller coming from a MIP background who models their whole problem in terms
of binary variables. The binary variables might be representing assignments to conceptual
integer variables that do not actually occur in the model. If this implied structure (the
integer variables) can be discovered and explicitly represented in the model, it may be
then possible to discover global constraints on these integer variables.

Unfortunately, detecting implicit structures in a model is a complex and, thus, un-
common task. Exceptions to this include Mears et al. (2008) and Van Hentenryck et al.
(2005), where symmetries among variables and values in a model are inferred. Consider
the case of detecting the equivalence of a global constraint to a set of constraints in the
model. As stated before, there exists many ways to model a problem and, similarly, there
are also many ways to encode a global constraint. Therefore, detecting a manually writ-
ten encoding of a global constraint described by the modeller in a purely syntactic way
is in general a non-trivial task. While there are some trivial cases, such as a clique of
dis-equality constraints representing an alldifferent, there are many other ways to describe
this constraint that would be difficult to detect in the general case. The task is even more
difficult when the modeller is unaware of the structures present in the problem. For exam-
ple, when describing a scheduling subproblem in terms of linear constraints, the modeller
might not realise that the conjunction of some of these constraints implies an alldifferent
constraint on some variables. A method to detect global constraints in this general case
is presented in Chapter 5.

2.7 Using Structure

The structure present in a combinatorial problem can be utilised to find solutions more
efficiently. As a result, most solvers have associated presolving approaches that attempt to
reformulate a given program (based on knowledge about its structure) in such a way as to
allow the solver to find solutions faster. Sometimes the approaches require concrete data
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but are useful for many different kinds of solvers and are, therefore, conceptually associated
to the instance (rather than the program) level. At the level of a model there is a related
concept, called model reformulation, where a model is analysed and reformulated to allow
solutions to be found faster. This section provides a brief description of how structure can
be used at the program level, at the instance level, and at the model level.

2.7.1 Program Level

This section presents a brief overview of program level presolving in LP, MIP, SAT, and
CP. There is a significant amount of research on refining these kinds of programs (Andersen
et al., 1995; Eén et al., 2005; Mahajan, 2010). This is because at the level of a program,
concrete decisions have been made with specific instance data in mind. This yields a
concrete, low-level description of a problem which admits relatively quick and simple pre-
solving, since some simple structures can be easier to detect. A more detailed examination
of presolving methods in programs and instances is presented as part of Chapter 4, which
is more closely related to the topic of presolving.

Linear programming. Presolving methods have been a core part of LP solvers for
decades. Most of these methods aim at tightening variable bounds and removing redun-
dant constraints by utilising the structures represented by constraints in the program. A
detailed survey of presolving methods for linear programs can be found in Andersen et al.
(1995).

Mixed-integer programming. In addition to presolving for linear programs, a number
of dedicated presolving techniques that target the discrete variables in a MIP program can
be used (Mahajan, 2010). One important technique, called probing (Savelsbergh, 1994),
tentatively assigns values to the zero-one variables in a program, and records the effects
of the assignment. The implication graph that is constructed can expose hidden structure
in a program that solvers can take advantage of when the solving begins. Probing may
also fix certain variables or discover infeasibility before solving begins.

Boolean satisfiability. SAT solvers face similar challenges as LP and MIP solvers, in
that their input programs can be large. This has led to the development of presolving for
SAT (Eén et al., 2005), which mainly aims at fixing variables and reducing program size.

Constraint programming. While there has not been as much work done one presolving
for CP as for LP or MIP, there has still been a number of studies. For example, techniques
such as Singleton Arc Consistency (Bessiere et al., 2011) (or SAC) and k-Singleton Arc
Consistency (Dongen, 2006) have been explored. These perform a preprocessing step
similar to probing, tentatively assigning variables and removing values from domains that
lead to failure before search begins.

Syntactic matching (mentioned earlier in Section 2.6.2) can be used to automatically
detect particular structures in different kinds of program. While powerful, this method
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is hampered by the fact that the detection algorithms are limited by the number of ways
a structure can be described. A common form of syntactic matching is that of clique
detection in constraint programs. The aim is to detecting cliques of simple dis-equality
constraints (<,>, 6=) in a program and add the stronger alldifferent constraint which can
improve performance considerably (Bardin et al., 2012; Frisch et al., 2003).

2.7.2 Instance Level

The previous techniques are focused on modifying a program so that it can be more
efficiently solved by a particular solver. It is sometimes possible to obtain information
for a program (or more accurately, an instance, since while the input data is needed, the
target solver is not) that allows it to be modified in such a way as to be solved faster by all
solvers of a particular class (i.e, all MIP solvers) or even any solver. This section describes
these instance-level approaches.

There are two main instance-based transformations that yield good speed ups: reducing
the size of the instance by eliminating variables and useless redundant constraints, or
adding useful redundant information to the instance. However, it is important to note that,
while having more structural information about a problem, and having less unnecessary
information may sound useful, it is not always the case. The performance of a solver,
given slight variations of the same instance, can be difficult to predict (Fischetti et al.,
2014), with minor changes to the structure of a problem leading to significantly different
performance (Liberto et al., 2016).

Reduction-based Techniques

An example of a reduction based technique designed to work at the instance, rather than
at the program, level is that of Dittel et al. (2009), where the presolving performed by
a MIP solver was not sufficient to allow a problem to be solved correctly. The authors
deemed that the solver was not able to infer enough from their mixed-integer program
and set about implementing their own problem-specific presolving which could improve
an instance before producing the final program. Most notably, their approach included a
technique that improved the linear representation of the problem, by using hand coded
algorithms for presolving the non-linear constraints that are later implemented with linear
constraints. This non-linear presolving leads to significant reductions in program size and
an associated improvement in solving times, increasing the number of instances that can
be solved.

Another example is that of equi-propagation for Boolean satisfiability (Metodi et al.,
2011). The approach starts from a model in a language similar to MiniZinc that includes
integer variables and constraints. It uses propagators for these constraints to help produce
smaller, more efficient SAT programs.

These approaches motivate the need for presolving of higher level representations before
compiling for a low-level target solver. Chapter 4 explores the reduction-based presolving
of instances, by using the structure from a model to enable a CP solver to presolve an
instance before compilation for a MIP solver.



CHAPTER 2. BACKGROUND 45

Extension-based Techniques

It is often possible to extend an instance with constraints that improve the speed at which
a solution can be found. The following approaches aim at finding structure in instances
that can be used to construct these constraints.

Symmetry detection. Symmetry detection aims to avoid exploring branches of the
search tree that correspond to symmetric (non)solutions to a problem. An example of a
symmetrical solution can be found in the Golomb Ruler problem. Recall that a solution is a
set of marks on the ruler. All solutions can be rearranged to find other valid solutions (e.g.,
[0,1,4,6] is the same solution as [4,1,0,6]). As these solutions can easily be found by simple
permutations of assignments to variables, it would be pointless (if trying to enumerate all
solutions) to spend time looking at these symmetric solutions. More importantly, just
as the valid solutions to the problem have symmetries, so do the partial assignments
constructed during search that do not lead to a solution, and a lot of time can be spent
exploring these redundant failures. To break this permutation symmetry we can add
constraints that force the marks to be in order.

Detecting symmetries in instances has received considerable attention (Mears et al.,
2009; Puget, 2005; Van Hentenryck et al., 2005). One of the most popular and accurate
approaches for detecting symmetries is discussed in Puget (2005) which first creates a
graph, mapping variables to the constraints they are involved in (a single vertex in the
case of alldifferent, though different graphs are needed for different types of constraint), and
then search for graph automorphisms, which correspond to symmetries. This approach was
extended by Mears et al. (2009) to work for more constraint types and with several different
representations of the graph. The choice of graph allows a broader range of problem
types to be analysed as some representations might be significantly larger than others. A
generalisation of this idea can be found in dominance detection, where approaches seek to
prune trivially dominated branches of the search tree (Chu et al., 2012a).

Implied constraints. Implied constraints are redundant constraints that can provide
a solver with an alternative view of an instance, potentially making it easier to solve.

A technique presented in Bessiere et al. (2007) finds global constraints that are implied
by a subproblem of an instance. To use this technique one must start by selecting a sub-
problem by hand, generate many possible arguments for a global constraint and construct
a large disjunction of globals with these arguments. Globals that can be easily proved to
be false are then removed from the disjunction until what is left is a collection of global
constraints that are implied by the subproblem. These constraints are then added to the
full instance. This approach was shown to be effective for improving the solving time of
some scheduling problems.

Another important related approach is that of Constraint Seeker (Beldiceanu et al.,
2011), which infers global constraints from positive and negative sample arguments for a
global constraint. It rearranges the arguments and matches them to global constraints
found in the Global Constraint Catalog (Beldiceanu et al., 2007). It returns a ranked list
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of global constraints that may fit. The constraint seeker tool is used as an intuitive way
to search the catalog based on sample solutions to subproblems.

A more powerful tool that tries to not only find implied constraints, but an actual
constraint program for a given set of solutions is Model Seeker from Beldiceanu et al.
(2012). The Model Seeker takes a set of solutions to a problem and partitions them in
various ways to construct possible arguments for a global constraint. It then submits these
arguments to Constraint Seeker and tries to build a valid constraint program for the given
solutions. The “model” that its title refers to is in fact an instance in our notation as
it is not a parametric model and cannot be used for arbitrary data, with generalisation
to a model being left as a task for the user. This approach proved effective for several
well structured problems, but cannot construct constraint programs when intermediate
variables are required, as these are typically not included in the solution to a problem.

2.7.3 Model Level

Changes to a model can have a drastic impact on performance, making this the most
important target for improvements. While finding improvements to a model can have a
big impact on solving time, there has not been as much research on model reformulation
as for the presolving of instances and programs. Arguably, this is due to the fact that
the model is often difficult to analyse and subsequently improve, as it is difficult to infer
accurate information from the parametric constraints without data. While analysis at this
level is not as common, there has been some important work which is explored here.

Symmetries

Symmetries can also be discovered and exploited at the model-level. One approach for
exploiting symmetries at the model level is that of Van Hentenryck et al. (2005) in which
the symmetric properties inherent in certain global constraints were exploited. The main
contribution of this paper is to show that the symmetries associated with individual global
constraints can be used to derive symmetries for the model via composition. This paper
is also notable for suggesting some possible reformulations that make symmetry detection
easier, and which could be applied as a form of automatic model reformulation.

The work of Mears et al. (2006) (later Mears et al. (2009)) for instance level symmetry
detection was later used in Mears et al. (2008) to generalise the symmetries found in an
instance to parametric symmetries at the model level. The approach works by taking a
model and some instance data, building graphs that retain some information from the
model, and then detecting symmetries in these graphs. The symmetries are combined
with the identifiers from the graph to create different parameterised symmetries. The
intersection of the parameterised symmetries found in all instances is a set of candidate
model symmetries. These can then be filtered by using theorem proving tools or, if this
is not feasible, can be presented to the user as possible model symmetries that need to be
proved. The approach was shown to be effective, allowing symmetries to be detected in
more complex models than was previously possible. This approach for finding structure
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at the model level by classifying structures in the instances in a parametric fashion, is the
inspiration behind the Globalizer approach described in Chapter 5.

Implied Constraints

As discussed in Section 2.7.2, implied constraints can improve the speed at which solutions
to a problem can be found. The inference of implied constraints at the model level has not
been explored as much as the inference at the instance level. An example of model level
implied constraint acquisition can be found in Charnley et al. (2006a), where machine
learning techniques are used to generate implied constraints for a model. The approach
taken constructs implied constraints that can be proved or disproved with a theorem
prover, thus restricting the types of constraints that can occur in the model and also those
that can be inferred. The work restricts the types of models that can be analysed in this
way to those that can be parameterised by a single integer. MiniZinc focuses on more
general, realistic models that are parameterised by arbitrary input data. A method to
detect implied global constraints in these more general models is presented in Chapter 5.

2.8 Conclusion

There are many techniques available that can solve combinatorial problems encoded in
different ways. High-level modelling languages like MiniZinc allow users to describe a
problem once at a high level of abstraction and, then, have this representation compiled,
in conjunction with some instance data, into a solver-specific program. Structural informa-
tion can be inferred and used to improve the modelling, compilation, and solving process
supported by these modelling languages. This can be achieved by developing techniques
that allow (a) explicit structure to be preserved during the compilation process, and (b) im-
plicit structure to be discovered and made explicit. A simplified grammar and interpreter
for MiniZinc was presented here, and will be built upon in later chapters, to illustrate
the changes required to a compiler to implement the various techniques introduced by the
thesis. A brief overview of some approaches that are used to improve programs (presolv-
ing) and higher level representations (model reformulation) was also presented. The next
chapter will present a framework that allows for better reasoning about how the various
techniques could interact to improve the modelling, compilation, and solving process.
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Chapter 3

A Framework for Model Structure

3.1 Introduction

This chapter discusses the shortcomings of the existing modelling, compilation, and solv-
ing process explored in Section 2.5, and introduces a new framework for exploring how
structure is communicated and used throughout this process. The added components of
this new framework are introduced, providing a map for the remaining chapters of the
thesis.

Motivation

As mentioned in Chapter 1, combinatorial problems can be modelled in many different
ways, and the choice of model can have a significant impact on the efficiency of the resulting
program, that is, on the time it takes to find a solution to the program. Models that
make explicit their inherent structure allow users, compilers, and solvers to make better
decisions during modelling, compilation, and solving. This can yield better models and
programs and, as a result, faster solve times. However, this is only possible if the framework
appropriately handles this structural information during compilation. Exploring the flow
of structural information and how it is discovered and transformed by the different stages
of the compilation process exposes ways in which the existing modelling, compilation, and
solving process can be improved upon.

Contribution

The flow of structural information between the different stages of the modelling, com-
pilation, and solving process takes three main forms. The first is the flow of structural
information that occurs during the traditional translation of the high-level representation
of a model to the low-level representation of a program. The second is the flow of struc-
tural information that can occur between representations at the same level (or stage) of
the process, that is, structure sharing between several models, several instances or several
programs. The third is the flow of structural information that can occur in later stages
back to earlier stages in the process, that is, structure generalisation from a program to
an instance or from an instance to a model. As we will see, both structure sharing and
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structure generalisation can enable powerful improvements to the modelling, compilation,
and solving process. The main contribution of this chapter is to highlight the opportuni-
ties for improving this process, by proposing a framework for exploring where structural
information can be discovered and communicated. By doing so, we can develop a more ef-
ficient, productive process that allows users to produce problem models that can be solved
faster. In addition, the framework provides a map that should help readers contextualise
the remaining chapters of the thesis.

Structure of the Chapter

The new framework is introduced and described in Section 3.2. Section 3.3 discusses the
concept of structure sharing between components at the same stage, and several examples
of structure that can be found at the different stages of the framework are presented,
along with how they can be shared within a stage. Section 3.4 discusses the concept
of structure generalisation, where structural information is communicated back to earlier
stages of the modelling, compilation, and solving process. Section 3.5 shows a diagram of
the framework, that highlights the particular aspects that will be explored in the remainder
of the thesis. The chapter then concludes with Section 3.6.

3.2 The New Framework

Figure 3.1 presents a view of the new framework that is proposed as an extension of the
traditional modelling, compilation, and solving process presented in Figure 1.2. Recall that
in the traditional process, a problem is first formalised as a model, which is then combined
with data to form an instance. This instance is further specialised into an input program
for a target solver, which is then used to find appropriate solutions. This traditional
process is represented in the figure by the black and grey arrows going from left to right.
The paths represented by the grey arrows correspond to copies of the traditional process,
where the user instantiates the model with different data yielding different instances, or
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Figure 3.1: Modelling, compilation, and solving process, showing structure generalisation
and structure sharing, in addition to the traditional flow of structural information.



CHAPTER 3. A FRAMEWORK FOR MODEL STRUCTURE 50

compiles an instance for different target solvers yielding different programs. This allows
us to explore the flow of information among different problem instances and programs.
The iterative process of modelling and reformulating a model to produce multiple models
is represented by the stack of models with red self-loops.

Augmenting the left-to-right links of the traditional process is a new set of red arrows
representing opportunities for structural information to be communicated throughout the
framework. In particular, vertical arrows represent opportunities available for structure
sharing, while right-to-left arrows represent opportunities available for structure generali-
sation. The diagram also includes self-loops that represent internal sharing or exploitation
of structure to improve the same representation. Some examples of structural information
that can be discovered at the different stages in the process, are listed in blue text above
these stages. These will be explored in more detail in the following sections.

This new framework provides a more complete view of the possible paths the process
can take, and of the associated flows of structural information. Thus, it allows us to
explore the greater number of opportunities this flow of information creates for improving
the modelling, compilation, and solving process. Note that, by including the idea of
multiple instances deriving from a model, the framework emphasises the value of good
modelling, as this makes the hierarchy of model, instance, and program clearer. Changes
to a model (or even more powerfully, to the modeller’s concept of the problem) will impact
the quality of all instances and all programs that result from it, while an improvement to
a single instance can only affect the quality of its compiled programs.

3.3 Structure Sharing

This section briefly discusses some of the types of implicit structural information that can
be made explicit at different stages in the process, and how this information can be shared
with other components within the same stage.

3.3.1 Between Solvers

There are certain kinds of structural information that solvers can discover relatively easily,
and that would also be useful to share with other solvers working on the same problem
instance. However, sharing this information is not always straightforward, as the internal
representation used by solvers may be different. To illustrate this, three such kinds of
implicit structural information that can be discovered will be presented, and the issues of
sharing these with other solvers working on the same problem instance will be discussed.

The first kind of information is one of the simplest a solver can infer and share: an
answer to whether or not the program being solved is satisfiable. There are several uses
for this kind of information, beyond just learning whether the instance is satisfiable or
not. For example, when trying to debug an unsatisfiable instance of a problem, it can be
useful to learn which subsets of constraints cause unsatisfiability. Most approaches for this
rely on the solver to get this information, and do so by repeatedly calling it with different
subsets of program constraints (Bailey et al., 2005; Liffiton et al., 2015). Another example
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of the use of this kind of information is the case of MIP solvers, where an LP solver is
used to solve subproblems derived from the input program during search. Discovery of
an infeasible subproblem is communicated back to the MIP solver to ensure the correct
action can be taken. Communicating this is relatively simple, as it only requires passing
a “satisfiable” or “unsatisfiable” (or 1/0) message.

A second kind of information that can be inferred and shared among solvers working
on the same instance is nogoods. This is useful, for example, to improve performance
when solving a program with a portfolio of different configurations of the same SAT
solver (Audemard et al., 2014). Communicating this kind of information is possible because
the internal representations of these solvers should be similar and, therefore, nogoods
involving literals from one instance can be easily added to another. However, if the
internal encodings of the program are different, specialised algorithms for translating a
nogood must be used.

The third kind of information discussed here is that of variable domains. This is useful,
for example, for hybrid solvers, which try to benefit from the strengths of two different
solving technologies. They do this by sharing implicit information about an instance that
is learned during the solving of a program (Bockmayr et al., 2006; Yunes et al., 2010).
This can be achieved by, for example, using a CP solver to propagate complex global
constraints with dedicated algorithms that outperform the general inference possible with
a decomposition given to a MIP solver. Sharing this information between solvers can be
difficult when their internal representations are different (which is often the case). This is
why solvers usually only share the domains of a few variables, in many cases just the bounds
on the objective. To increase the opportunities for sharing, either a custom translation
must be implemented to share information between different representations of a problem,
or both solvers are given an identical – lowest-common denominator – representation,
which will make the inferences for one technology weaker but allow more to be shared.
For example, a MIP formulation may be presented to both the CP solver and the MIP
solver, as the formulation can be understood by both.

3.3.2 Between Programs

As shown in the framework, each instance can yield several possible programs depending
on the target solver. Since the programs come from the same instance, any inference
made about any one of them is true for all of them. There are certain kinds of structural
information that can be easier to infer at the program level than at the instance level,
as the exact variables and constraints that will be used by the solver are known at the
program (but not at the instance) level. This section discusses what information can be
discovered in a program and shared with other programs derived from the same instance.

As explored in Section 2.7, symmetries are an example of structural information that
can be exposed at the program level (Mears et al., 2008). While it is correct for symmetries
to be communicated between programs (as they are based on the same problem data),
it is not always easy. Different programs may present considerably different views of
an instance, making it difficult to match similar components of different programs. For
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Figure 3.2: Trace of compilation of golomb.mzn (Figure 2.4) with m=4.

example, a symmetry in a set of variables introduced in one program may be impossible
to match to another set without a complex translation step.

Another kind of information that can be inferred from programs is that of implied
constraints (Bessiere et al., 2005b; Charnley et al., 2006a; Frisch et al., 2003). One way
to infer implied constraints is to simply examine what constraints are explicitly present
in the program. This approach is called syntactic matching (Frisch et al., 2003). One
example is the search for cliques of constraints that imply dis-equality between variables.
A clique like this can be replaced or accompanied by an alldifferent constraint, which can
improve solving performance. It could thus be advantageous to share the discovery of such
structure with other programs. However, a difficulty arises when sharing with programs
specialised for a solver that does not support global constraints. At the program level the
instance has already been compiled for a specific solver and, therefore, the constraint may
not be supported. In fact, the variables that the implied constraint is related to may not
even be present in the target program in some cases. As such, it is clear that to gain the
most from this inferred information, it must be presented at the higher level of instance.

As seen above, sharing non-trivial information at the solver level and at the program
level requires mapping components of one program to another. To this end, we introduce
the concept of variable paths and constraint paths, or, collectively, MiniZinc paths. These
paths can provide unique identifiers for concrete items at the program-level expressed
in terms of the model. The approach records a trace of how a model and its data is
compiled, recording paths that describe why variables and constraints were introduced. A
simplified trace of the paths that lead to the introduction of variables and constraints for a
compilation of the golomb.mzn model with m=4 from Chapter 2 is presented in Figure 3.2.
From this diagram we can see the introduction of the three mark variables (mark[1] being
a fixed to 0), the two int_le constraints added by a forall, and also the set of lin_ne
constraints introduced by the all_different constraint. Note how the trace includes
information regarding which loop iterations introduced each constraint. Matching common
parts of different compilations of an instance is made easier by this representation. This
is described in more detail in Chapter 4.

3.3.3 Between Instances

Sharing structure learned from one instance with another can also be beneficial. It is,
however, more difficult than sharing at later stages, as the explicit and implicit structures
found in one instance, being dependent on the data, may not be present in the next.

An example of information that can be shared between instances can be found in Chu et
al. (2012b), where the authors present a method for sharing the nogoods learned from one
instance of a problem with other instances. They present two approaches for achieving this.
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The first is to treat the parameters of a model as variables and, rather than compiling each
instance into a separate specialised program, compile once without any data (the model
no longer has “parameters” in the MiniZinc sense) and fix these parameter variables after
compiling to a program at the solver level. This essentially allows the nogoods to include
these parameters, which would otherwise have been removed by compilation. One of the
major downsides of this is that the compilation will have to use the most general versions
of some constraints. For example, constraint p[1]*v[1] + p[2]*v[2] <= 10, where p is a
parameter represented as a variable, must be compiled as two multiplications and a linear
constraint on the results (stored in introduced variables), while given actual instance data,
it would be compiled as a single linear constraint. Alternatively, and more flexibly, they
present a method for allowing the solver to produce “parameterised nogoods”, which are
expressed in terms of the model parameters. This allows later instances to be compiled
separately in the traditional way, while still allowing the solver to use these nogoods.

Communicating symmetries described at the instance level to the lower stages of com-
pilation is relatively easy, as they are expressed in terms of the variables and constraints
that will exist in some form in all resulting programs. The compiler can then make deci-
sions about whether it is useful to keep the associated symmetry breaking constraints in
the program or not (e.g., solvers that use local search methods may choose to ignore sym-
metry breaking constraints as they can hurt performance). However, sharing information
regarding symmetries inferred for a given instance with other instances of the same model
is harder to achieve as, depending on the type of problem, the input data can lead to
considerably different instances. Therefore, there will typically not be enough information
available within the modelling, compilation, and solving process to prove that a symmetry
discovered for one instance is valid for another.

Similarly, the implied constraints described at the instance level can be communicated
safely and easily down to the lower levels, offering the compiler more freedom in how it
compiles an instance to a program for a specific solver. However, again, sharing these
constraints with other instances is difficult, as one needs to prove that they are in fact
valid for them too.

As in the case of the parameterised nogoods, the sharing of symmetries and implied
constraints between instances can be achieved by describing the information in terms of
the parametric model. Some of the challenges and solutions for this are presented in the
next section about structure generalisation.

3.4 Structure Generalisation

Possible opportunities to generalise structural information are represented in Figure 3.1
by the red right-to-left links. Generalisation seeks to introduce higher level structure for
the framework to use, that is, it generalises the structure inferred at lower levels, making
it available earlier in the framework for later compilations. This section briefly discusses
the different approaches proposed to achieved this at each stage of the process.
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3.4.1 From Solvers

To enable information sharing at the level of individual solvers, we can attempt to gener-
alise the structural information to the level of a program. Generalising structural infor-
mation from the solver-level can be challenging, as different solvers have different internal
representations of problems. A solution, then, is for the solver to express the learned
structural information explicitly in terms of the program and deal with the generalisation
at this level. This has the added advantage of avoiding the need for specialised handlers
to be implemented.

3.4.2 From Programs

To enable information sharing at the level of a program, we can generalise the learned
information to the level of an instance. Generalising the information found in programs
to their respective instances would allow all future programs generated from these same
instances to benefit (e.g., in portfolio solving or multi-pass compilation). This can be
achieved by using MiniZinc paths. These paths explicitly represent the structure of an
instantiated model and the path the compiler took through translation from model to
instance to program. Once the information is available at the instance level, all future
compilations of the same instance can benefit from what was learned.

3.4.3 From Instances

Presenting the structure found in instances of a problem in terms of a model can be
difficult, as what is true for an instance is not necessarily true for a model. The approach
taken in this thesis for generalising to the model level, inspired by Mears et al. (2008),
allows us to generalise found structures to a model based on a subset of instances. The full
set of possible instances for a model is referred to as the parameter space of that model.
Without total knowledge of the parameter space it is difficult to prove that structural
information discovered about one or several instances is, in fact, going to be present in all
instances. However, if a discovered structure occurs across a set of instances, the structure
is a likely candidate that can be presented as such to the user.

This thesis presents two approaches for generalising information to the model level.
The first, referred to as sample based generalisation and explored in Chapter 5, constructs
candidate structures based on the contents of the model. The presence of these candidates
is then checked in several instances. If they are present in all of them, they can be
considered likely candidates that can be presented to the user. Since the candidates are
already described in terms of the model and use variables and arrays that exist at that
level, they are not tied to a specific instance and can be passed to all. The second approach,
referred to as path based generalisation and explored in Chapter 6, is to record the MiniZinc
paths of the variables and constraints created during compilation. Then, when structures
are found at the program or instance level, the instance specific components of the paths
are removed so that they can be matched.
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Figure 3.3: Modelling, compilation, and solving process with MiniZinc paths and instance
generalisation shown.

As an example, consider a model with a set of dis-equality constraints between the
variables in an array called x. The sample based generalisation approach constructs can-
didate constraints using explicit structure present in the model such as, for example, an
alldifferent(x). It then tests whether this constraint is valid by instantiating it with different
instances and testing its presence. If it is present in all instances tested, the alldifferent(x)
constraint is marked as a likely candidate and presented to the user. Instead, the path
based generalisation approach compiles each instance into a program, each of which is then
used to detect structural information such as cliques of dis-equality constraints. Since this
approach works at the program level, the inferred alldifferent constraints will involve sets of
variables with different names and arity (e.g., {x1,x2,x3} and {x1,x2,x3,x4}). To match
these variables, we must compare the paths that uniquely identify each variable. The
variable paths will only differ in the indices used when introducing them: i= 1, i= 2, etc.
Replacing these data-dependent indexes with a placeholder, would make the set of paths
identical if they are all from the same array. This parameterised path must be identical
in every instance tested for this structure to be considered a likely candidate.

3.5 Additions to the Framework

Figure 3.3 presents a view of the particular elements of the framework that later chap-
ters will explore. The blue headings represent the different goals that are explored in
the thesis. At the model level, the globalizing of constraint models and the debugging of
unsatisfiable models is explored. At the program level, the debugging of a single instance
and multi-pass presolving are explored. Finally, at the level of a solver, domains and
satisfiability information is discovered and used to achieve these other goals. The dotted
red lines going from left to right show the representation of explicit structure contained in
variable and constraint paths, being passed down from a model to an instance and then
a program. This preserved explicit representation of the structure is used in Chapters 4
and 6 to identify parts of programs and to enable the generalisation of inferred information
from the program back to the instance and model. The dot-dashed and dashed red lines
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represent the generalisation techniques used in Chapters 5 and 6 respectively. These allow
the generalised information learned from multiple instances of the same model to itera-
tively improve a model and potentially improve the user’s understanding of the problem
itself (exposing implicit structure that may not have been evident, or exposing mistakes
in the problem specification).

3.6 Conclusion

This chapter introduced a new framework for exploring the flow of structural information
during the modelling, compilation, and solving process. This new framework extends the
traditional framework by introducing two additional flows of information related to the
sharing of structural information between components at the same stage of compilation,
and to the generalisation of structural information from later compilation stages to earlier
ones. These two flows allow for a more flexible and powerful process. With improved shar-
ing, the strengths of different solving techniques can be better combined to find solutions
to an instance faster. With generalisation, the structures learned in several instances can
be presented to a user in terms of the original model, thus allowing the user to improve
their model.
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Chapter 4

Preserving Structure

4.1 Introduction

In Chapter 2 the concept of presolving was briefly introduced as one of the ways in which
explicit low-level structure available in a program can be used to modify the formulation
of the program to improve solve times. Presolving is commonly used in linear and mixed-
integer linear programming (LP/MIP) solvers and in Boolean satisfiability (SAT) solvers.
However, these solvers cannot easily exploit most of the explicit structure available in the
model, as it is often lost during the compilation process. This chapter answers the sub-goal
presented in Chapter 1:

Can the explicit structure in models be used to improve the quality of programs
compiled from them?

To achieve this, it first presents a method that allows the structure present in a model to
be preserved further into the compilation process than before. It then demonstrates how
this structure can be used to improve the quality of the programs produced by a compiler
for a modelling language.

Motivation

Traditional presolving methods analyse and improve a constraint program before the ac-
tual solving process starts, inferring tighter variable domains, simplifying constraints, and
removing variables and constraints that are guaranteed not to contribute to a solution.
Section 4.2 presents some of these techniques in more detail. A compiler for a high-level
constraint modelling language performs similar optimisations when it translates a con-
straint model to a solver-level program. It will try to compute tight variable bounds,
select the most suitable variant of each constraint, and generate a compact program that
does not contain unnecessary variables or constraints.

The main difference between a presolver and an optimising compiler for a constraint
modelling language is the level of detail available for analysis. A presolver can analyse the
entire compiled program, with all data, variables, and constraints present and accessible.
In traditional compiler terminology, this would be called whole program optimisation. A
compiler for a modelling language, on the other hand, typically performs the analysis and
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compilation simultaneously, while it is constructing the solver-level program. Therefore,
the compiler’s knowledge of the whole generated program is, inevitably, only partial until
it is finished compiling. However, it can use the structure available in the input model,
such as global constraints, functional dependencies, and a rich expression language, to
perform more powerful optimisations.

The above situation motivates the development of techniques for integrating whole-
program optimisation into compilers for constraint modelling languages. The resulting
system should combine the advantages of whole program optimisation with the addi-
tional inference strength possible due to the model structure being available. This can be
achieved by preserving structure and making use of this structure during multiple com-
pilation passes. The initial passes would translate the input model into representations
suitable for whole-program analysis, preserving other representations of model structure
for use in later passes. A final pass would use the information gained from the earlier
analysis, e.g., tightened variable domains and learned variable aliases, and combines it
with the preserved structure to produce efficient programs.

Contribution

This chapter presents two main technical contributions. The first contribution is a method
that preserves structure deep into the compilation process in the form of a novel
variable synchronisation method. This method works by computing unique variable
identifiers called variable paths that are stable across different compilations. The second
contribution is an approach for multi-pass presolving that makes use of the model
structure represented by variable paths to integrate whole program optimisation.
We refer to this approach as path-based multi-pass presolving. This method to preserve
structure has a wide range of important applications in the analysis, compilation, solving,
and debugging of constraint problems. This alone can provide benefits to the compilation
as the compiler implements some simple propagation which can allow for better decisions
to be made on a second pass. More powerfully, the path-based multi-pass approach enables
the compiler to generate a better program for the target solver (e.g., a MIP solver) by first
compiling an intermediate program more suitable for presolving in a different solver (e.g., a
CP solver). Using the information learned from presolving on that program, in conjunction
with the variable paths, allows the compiler to then generate a better program for the
target solver. The power of this approach is illustrated by using the strong inference
methods of a constraint propagation solver to strengthen the compilation of models to
a target solver that is not propagation-based. The experiments show that a path-based
two pass compilation with a propagation based presolving pass, can produce significantly
better solver-level programs, reduce the numbers of variables and constraints, tighten
variable bounds, and lead to faster solving.

Structure of the Chapter

Section 4.2 presents a summary of the most common presolving methods currently applied
in LP, MIP, SAT, and CP, as well as related work regarding multi-pass compilation.
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Section 4.3 introduces the concept of variable-paths and their use in the path-based multi-
pass presolving approach. The actual implementation of this approach for the MiniZinc
modelling language is explored in Section 4.4. Section 4.5 presents experimental results
that show the new technique is efficient and effective. Section 4.5.3 presents a case study
showing how the path-based multi-pass approach can be beneficial for a specific problem
class. Finally, Section 4.6 presents the conclusions.

4.2 Background

The concept of presolving was presented in Section 2.7. This section presents a brief
overview of the existing presolving methods in LP, MIP, SAT and CP. After this, it
discusses related work regarding multi-pass optimisation.

4.2.1 Presolving Linear Programs

Presolving originated in the field of Linear Programming (LP) and has been a core part
of any LP solver for decades (Andersen et al., 1995). Most LP presolving methods aim
at tightening variable bounds and removing redundant constraints. To simplify the dis-
cussion, this section will use a formulation of linear programs involving only equality
constraints. Note, however, that there is no loss of generality, as inequalities can be easily
implemented by introducing slack variables. Consider the following characterisation of a
linear program:

minimize:
∑
j∈C

cjxj

subject to:
∑
j∈C

aijxj = bi ∀m
i=1

lj ≤ xj ≤ uj j ∈N

xj ∈ R j ∈ C

which is identical to that presented in Section 2.3.1, except it is restricted to equality
constraints. It has been found that reducing the size of the coefficient matrix a often results
in quicker solve times (Gondzio, 1997). Therefore, presolving for LP aims to minimise
the number of variables (columns), constraints (rows) and nonzeros (coefficients) in the
constraint matrix a, and to maximise the number of linearly independent constraints.
Further, presolving can sometimes discover solutions or infeasibility without needing to
perform any search.

Presolving is applied repeatedly to a linear program until the reductions are too minor
to waste time on. Most of the presolving techniques applied in each iteration are relatively
easy to perform, as they focus on the detection of quite simple structures. Nevertheless,
they can yield a large reduction in program size that allows for large improvements in
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solving time. Further, these techniques can also be applied to the dual of a linear program
(that is, an alternative view of the program that can be used to find an upper bound on
the objective value), yielding further information. The following is a brief summary (based
on the survey of Andersen et al. (1995)) of the most common structures exploited in LP
presolving.

Infeasible variables: A variable is infeasible if its lower bound is greater than its upper
bound. These variables indicate an infeasible instance or possibly an incorrect model.

Fixed variables: A variable xj is fixed if its lower bound lj is equal to its upper bound
uj . These variables can be substituted out of the program by modifying the bound bi:
∀i bi← bi−aijlj . One way to detect fixed variables is to look for rows involving only a
single variable. These are called singleton rows. The fixed value can be calculated simply
as xj = bi/aij where i is the index of the singleton row and xj is the variable to be fixed.

Free variables: A variable xj is free if its value is unbounded. That is, if lj =∞. The
values of these variables can be assigned after assigning the other variables.

Column singletons: A column j is a singleton if the coefficients of xj are 0 in all
rows except one. This indicates a variable that appears in a single constraint (row i).
Techniques can improve a linear program by making use of column singletons as follows:

• Given a free column singleton j, that is, if xj is a free variable, then xj can be fixed
as follows:

xj =
bj−

∑
p 6=j aipxp

aik

• If the column singleton occurs in a constraint with only one other variable (a two
variable constraint), the bounds on a row can be modified so that the feasible region
is unchanged when bounds on the singleton variable are removed.

• When a column singleton is discovered, a check can be performed to find whether it
is “implied free” by calculating bounds on the variable. If the bounds are at least as
tight as the original ones, the variable can be treated as a free column singleton.

Forcing, dominated, and infeasible constraints: Finding the minimum and maxi-
mum value that a constraint can sum to in isolation (a simple operation), allows bounds
to be tightened and can fix variables if one of the calculated bounds is equal to both
the upper and lower bounds of a constraint (an equation). Finding forcing and infeasible
constraints works as follows: Let Pi = {j|∀ij ,aij > 0}, be the set of variables with only
positive coefficients, and Ni = {j|∀ij ,aij < 0}, be the set of variables with only negative
coefficients. Lower and upper row sums Li and Ui can be computed for each row i as:
Li =

∑
j∈Pi

aijlj +
∑

j∈Ni

aijuj and Ui =
∑

j∈Pi

aijuj +
∑

j∈Ni

aijlj where P and N are columns with

positive and negative coefficients respectively.
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• If ∃i : Li > bi∨Ui < bi, the constraint i is infeasible.

• If ∃i : Li = bi∨Ui = bi, the constraint i is a forcing constraint and variables in this
row can be assigned to their bounds depending on their objective coefficient.

These techniques can also be applied to the dual of the linear program to find other
infeasible and forcing columns.

Strengthening constraint bounds: Savelsbergh (1994) presents techniques for strength-
ening (tightening) variable bounds and removing redundant constraints. If bui and Li are
finite, then tighter bounds l′j and u′j can be computed as follows:

u′j = Min{lj + (bui−Li)
aij

,uj} for j ∈ Pi

l′j = Max{uj + (bui−Li)
aij

, lj} for j ∈Ni

Similarly, if bli and Ui are finite then:

u′j = Min{lj + (bli−Ui)
aij

,uj} for j ∈Ni

l′j = Max{uj + (bli−Ui)
aij

, lj} for j ∈ Pi

For integer variables the upper and lower bounds should be rounded to integral values.
Further, A constraint i is redundant if bui is not finite and Li > bli. Similarly for

Ui < bui if bli is not finite. These can be removed from the program.

Variable locks: Up-locks and down-locks are a measure of how often a variable is bound
from a particular direction (Achterberg, 2009; Heinz et al., 2013). If a variable is only
bound from a single direction (counting its coefficient in the objective function as a bound)
it can be fixed to one of its bounds without affecting the optimality of the solution. For
example, if a variable x is only locked from above it can be fixed to its lower bound.

Conclusion

LP presolving is simple and powerful owing to the fact that the language of linear con-
straints is simple and uniform. Note that many of the techniques used for presolving in LP
aim at finding and removing redundant parts of the formulation. This hints to weaknesses
in the way these programs are constructed. In fact, the typical modelling languages for
these kinds of problems directly encode the users’ constraints with little analysis. It stands
to reason that analysing an instance before it is completely compiled to a program can
save the solver from having to perform much of the presolving.
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4.2.2 Presolving Mixed Integer Programs

Since MIP uses the same type of matrix as LP, the LP presolving methods detailed above
can also be applied here. In addition, MIP presolvers take advantage of the integer vari-
ables present in the MIP, and may even apply presolving that specifically focuses on the
relationships between assignments to binary variables. Presolving for MIP programs has
been explored in many different works including Crowder et al. (1983), Dittel et al. (2009),
Savelsbergh (1994), and Suhl et al. (1994). For MIP programs, reducing the size of the
matrix does not always improve solving time. While the solve time for individual LP
subproblems can be improved, the number of linear programs that need to be solved may
increase in a non-trivial way. In practice, presolving for MIP is generally considered to
be beneficial, although it is also quite unpredictable, since MIP solvers can be sensitive
to even small changes in input (Fischetti et al., 2014). The following briefly summarises
some of the most common presolving techniques used in MIP.

Row Classification

In (Hoffman et al., 1991) a presolve procedure is described that classifies rows in the
constraint matrix and performs different presolving for the different types of constraint.
The different classes of constraints described are:

SOS and Invariant Knapsack: Constraints containing only zeroes, ones, and minus
ones are either special-ordered sets or invariant knapsack. If the constraint is of
the form

∑
j∈Pi

xj +
∑
j ∈Nixj ≤ 1− |Ni|, it is classified as a special-ordered set.

Otherwise, it is an invariant knapsack.

Plant Location and Reverse Plant Location: If the constraint is of the form∑
j∈Pi∪Ni

xj ≤Mxk the constraint is a plant-location constraint. Note that if M is
greater than |Pi ∪Ni|, coefficient reduction (see below) will reduce it to |Pi ∪Ni|.
If the constraint has the same form as an SOS constraint, except the expression is
≥ 1−|Ni| instead, it is classified as a “reverse plant location” constraint.

Knapsack: All other constraints are considered knapsack constraints.

The above classes of constraints are then used by various presolving techniques, includ-
ing: Euclidean reduction and coefficient reduction. Euclidean reduction can be performed
on any knapsack constraint with rational coefficients to discover the smallest number
k (sometimes called KEXP in the literature) such that all coefficients multiplied by 10k

are discrete. The Euclidean reduction method finds this number and the greatest common
denominator (GCD) of the resulting coefficients. The constraint is then multiplied by 10k

and divided by the GCD. If the scaled constraint is an equation and has a non-integer
bound, the problem has no feasible integer solution. If the constraint is an inequality, the
bound is rounded to an integer value (≤ round down, ≥ round up). Following this, the
minimum coefficient is subtracted from the maximum coefficient in the constraint and, if
it is equal to 0, the constraint is reclassified as an SOS constraint.
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Coefficient reduction tightens the LP relaxation by reducing the size of the coefficients
of the constraints. Transforming a constraint of the form: · · · ≥ bi all coefficients >bi can be
adjusted to be equal to bi when all variables are binary. More powerful coefficient reduction
can be achieved by combining SOS constraints that overlap with a knapsack constraint
to tighten the coefficients on the knapsack constraint. Plant location constraints can also
be used to tighten the coefficients of a knapsack constraint. This can be achieved as
follows. Given a knapsack constraint Ai, find a plant location constraint that shares the
plant variable xp and at least one more variable. Create a new constraint, where K is the
index set of the knapsack constraint and P is the index set of the plant location constraint
without the plant variable:

∑
j∈K\P

aijxj +
∑

j∈K∩P

aijxj +aipxp ≤ bi

If we solve, where all aij > 0:

d= max{
∑

j∈K\P
aijxj |

∑
j∈K\P

aijxj ≤ bi}

we can make the substitutions aip = bi−d and bi = d.
Additionally, set partitioning, covering, and packing inequalities are mentioned in Mahajan
(2010) as a few more classes of constraint that can be detected and exploited.

Infeasibility and Simple Redundancy

This technique looks for two identical rows in the coefficient matrix ai1 and ai2 , so that:

• If both constraints are equations and bi1 = bi2 , it can remove one of the constraints,
otherwise the problem is infeasible.

• If one of the constraints is an inequality and the other is an equation and bi1 = bi2 ,
it can remove the inequality. If bi1 6= bi2 the problem is infeasible.

• If both constraints are inequalities, they either form an equation or one is redundant.

Probing

Probing is used in Savelsbergh (1994) and Suhl et al. (1994) to explore the effect that
assigning some binary variable has on the problem. Probing is performed by assigning
binary variables to either 0 or 1 and analysing the resulting program. The following can
be inferred from probing:

Infeasiblity: If infeasibility is detected, the variable can be fixed to the opposite assign-
ment.

Fixing other variables: If setting a variable xj to both 0 and 1 result in a variable xk

being assigned to a certain value v, xk can be fixed to v and removed.
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Implication Graph: Presolving a model can produce useful implications between vari-
ables. For example, if probing the assignment xj1 = 1∧xj2 = 1 results in an infeasible
model, we can identify the implications xj1 = 1⇒ xj2 = 0 and xj2 = 1⇒ xj1 = 0.
These implications can be useful for strengthening solving.

Cliques: Cliques of incompatible assignments can be discovered in the implication graph
allowing for the construction of “clique cuts”. These cliques can be discovered by
building a graph of literals (assignments to variables or to their negation, i.e., x̄= 0),
where edges between literals indicate that they cannot be assigned the same value
at the same time. Cliques can be used to create clique cuts that can be added to the
model. Larger cliques provide more useful cuts (Suhl et al., 1994). With a clique
C = C0∪Cc, where Co is a set of original variables in the clique and Cc is a set of
negated variables in the clique, the following can be deduced:

• If |Co∩Cc|= 1 and k ∈ Co∩Cc, then xj = 0 for all j ∈ Co \{k} and xj = 1 for
all j ∈ Cc \{k}

• If |Co∩Cc|> 1 the problem is infeasible

• The following cut can be added:
∑

j∈Co xj−
∑

j∈Cc xj ≤ 1−|Cc|

Implication Inequalities: Logical implications can also be used for creating useful cuts.
For example, xi = 1⇒ yj = vj implies yi ≥ lj + (vj − lj)xi, where xi is a binary
variable, yj is any variable, and vj is some value to which yj is fixed during probing.
These can provide stronger linear approximations of the feasible region than the
original constraints (Suhl et al., 1994).

Detecting Permutation Structures

An approach for detecting and exploiting permutation structures (such as alldifferent) is
presented in Salvagnin (2014). The approach first attempts to find the constraints in a
mixed integer program that encode what is called an assignment structure. Once this
structure has been found, the algorithm checks whether an assignment to the variables in
the structure can allow the remaining variables in the problem to be trivially assigned.
If so, this can then be exploited by a heuristic that focuses on just the variables in the
assignment structure, in this case, a specialised local search heuristic. This highlights again
the importance of high-level modelling, as these structures can be explicitly represented
in a model, avoiding the need for this rediscovery entirely.

Detecting Semantic Groups

Another example of structure that can be rediscovered from a MIP program is that of
semantic groups. Typically a model for a problem will include several distinct sets of vari-
ables that represent different aspects of a problem. The grouping of variables is explicit
in the model but once compiled for a program the variables are separated into individual
integer and binary variables. It is possible for the semantic grouping of variables and
constraints to be exploited by a MIP solver to improve branching and other heuristics.
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Without the detection of semantic groups, a solver simply applies different heuristics de-
pending on the type of a variable or constraint. Salvagnin (2016) describes approaches for
detecting semantic groups using partition refinement techniques where the variables and
constraints of a problem are partitioned into initial groupings which are then iteratively
refined into smaller groups. These techniques are shown to effectively recover semantic
groups in experiments.

Conclusion

When it comes to MIP, more complex presolving techniques can be applied than (and in
addition to) those used in LP. Techniques such as probing and the detection of various
kinds of higher level constraints (such as permutation structures and semantic groups),
highlight the fact that some of the structure that the solver can exploit while solving a MIP
program, is lost during compilation and must be rediscovered. This, again, motivates the
need for presolving that analyses a higher-level representation of a problem, where these
structures are still present.

4.2.3 Presolving Boolean Satisfiability

As described in Section 2.3.3, a SAT program is described as a conjunction of clauses C,
where each clause ci ∈C is a set of disjunct literals, and each literal represents a variable x
or its negation ¬x. The following briefly summarises some of the most common presolving
techniques used to simplify SAT programs.

Unit propagation. This is the prime propagation mechanism of SAT. Given any clause
that contains a single literal (e.g., x), propagation removes all clauses that include x (as
they are trivially true), and removes its negation (e.g., ¬x) from all other clauses.

Pure literal rule. If a variable only occurs in a particular polarity, it can be fixed to
this polarity. For example, if the variable x only ever occurs as the literal ¬x, it can be
fixed to false (Eén et al., 2005).

Clause distribution. Given two clauses {x,a1, . . . ,an} and {¬x,b1, . . . , bm} the implied
clause {a1, . . . ,an, b1, . . . , bm} is called the resolvent. A program can be simplified by first
aggregating all clauses involving some variable x and its negation ¬x into Sx and S¬x,
respectively, and then pairwise resolving the clauses of Sx and S¬x. All non-trivial clauses
are kept. To reduce the cost of performing clause distribution, it can be restricted to
clauses of ≤ 3 literals as in Satz (Li et al., 1997).

Equivalent literals in the order encoding. Recall the order encoding from Sec-
tion 2.3.3. Removing a value from the domain of a variable represented with the order
encoding is achieved by equating some of the literals. For example, given an integer vari-
able 0≤X ≤ 9, represented by 9 Boolean variables X = [x1, . . . ,x9], it is possible to specify
that X cannot take a specific value v by equating xv = xv+1 (Metodi et al., 2011). Assume
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X cannot take one of the values in {2,5,7}. We can equate some of the SAT variables rep-
resenting X as follows: X = [x1,x2,x2,x4,x5,x5,x7,x7,x9], where underlining highlights
the variables that are now unified. In this way, variables x3, x6, and x8 have been removed
from the representation, allowing a reduction in the number of variables in the CNF.

Clause subsumption. A clause c1 is said to subsume c2, if c1 ⊆ c2. A subsumed clause
may be removed from the problem as it is redundant.

Detecting structures in SAT formulations. In Biere et al. (2014) two approaches
for detecting cardinality constraints (e.g., x1 +x2 +¬x3 +¬x4 ≤ 2) in SAT encodings of
problems are presented. The first approach uses explicit syntactic structure to find at-most-
one and at-most-two constraints. The second uses a semantic method to find implicit at-
most-k constraints, generating candidate cardinality constraints and testing whether they
are present or not. Detecting and making these constraints explicit, can allow SMT solvers
to better solve CNF programs. This again motivates the need to use a high-level modelling
language and preserve the structural information during compilation, rather than writing
the CNF directly, as these higher-level constraints should not have to be rediscovered.

Conclusion

Presolving has been found to be important for solving SAT, with current techniques relying
on the simple language of CNF. Again, we see that some problem structure is being
rediscovered during the presolving process, as in the case of Biere et al. (2014).

4.2.4 Presolving Constraint Programs

The most common presolving techniques in CP aim at reducing domain sizes, tighten
bounds and remove redundant parts of a constraint program. Note that in CP, reducing the
size of a model does not necessarily result in faster solve times as, for example, redundant
constraints can help propagation by providing an alternative view of the relationship
between variables in the instance. Ideally, a constraint should only be removed if it is
both propagation and performance redundant, that is, it does not duplicate inference
already available in the model and it can actually make the instance easier to solve (Choi
et al., 2004). However, this information is not always easy to deduce.

Common subexpression elimination. This is a common compiler optimization where
repeated expressions can be removed by creating a new variable that is equal to the
expression, and using this new variable in place of the expression throughout the rest
of the model (Rendl et al., 2009). This has been shown to often lead to a significant
improvement in solving time in CP. The introduction of functions to MiniZinc (Stuckey
et al., 2013) brought with it an implementation of common subexpression elimination,
which can almost halve the number of constraints needed to describe some problems.
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Polarity analysis. Variable locks were discussed in Section 4.2.1 in the context of LP,
where it was shown that the count of the number of times a variable is bound from a
particular direction can be used in LP presolving. This idea can be extended to more
general constraints, as done in SCIP (Achterberg, 2009; Heinz et al., 2013). The polarity
of a variable is implied by the bounds of the variable, and the directions in which it is
bound by the constraints of a program. The polarity can be taken into account during
compilation or solving to find solutions faster. This has also been used in Brand et al.
(2008), where polarity analysis was used to decide which encoding of a maximum constraint
should be used during compilation.

k-singleton arc consistency (k-SAC). SAC, introduced in Section 2.7.2, removes
values from variable domains to ensure the next decision made cannot cause a failure. A
generalisation of this concept is explored in Dongen (2006), in which k-SAC is described. k-
SAC reduces the domains of variables to ensure the next k decisions will lead to consistent
domains. While this approach can be time consuming, it can also lead to huge reductions
in the size of the search space, and its application has resulted in the closing of some
previously open problems.

A related reduced form of SAC is that of shaving, where a variable is repeatedly
assigned its bounding values, removing infeasible ones until valid bounds are found. This
approach is not as thorough as SAC, but provides a good middle-ground between the
cheapest propagation and the more expensive SAC.

Conclusion

CP presolving techniques such as SAC and shaving can be expensive. However, when
appropriately applied they can allow problems to be solved faster. This may be the
case when presolving is performed before compiling for target solvers that require large
decompositions, e.g., when compiling for MIP or SAT solvers. Effective presolving for
these targets requires communicating the tighter domains to the compiler so that it can
make use of them.

4.2.5 Related Work in Compilation

A detailed overview of the compilation of MiniZinc models was presented in Section 2.5.
Compiling a constraint model to a good MIP program can be quite difficult. Even small
instances can require a large number of constraints and variables to be described correctly.
These large programs can pose a difficulty for MIP solvers due to either their combinatorial
complexity, or simply because they require a large amount of memory to process. Pre-
solving performs a whole program analysis that aims to improve a program. While parts
of this analysis cannot be done until the entire MIP program has been flattened, much of
it can. In fact, the need for some of the low-level presolving could be avoided entirely by
omitting parts of the program that are known to be redundant, from the beginning, thus
improving the program and, in some cases, drastically speeding up flattening.



CHAPTER 4. PRESERVING STRUCTURE 68

As we have seen, some presolving approaches focus on the reconstruction of higher
level constraints that have been decomposed in a program (i.e., detecting cardinality con-
straints in SAT (Biere et al., 2014), and detecting permutation structures in MIP (Sal-
vagnin, 2014). Once detected, stronger propagation may be used to tighten domains and
to remove redundant variables and constraints earlier, saving time on flattening and detec-
tion. The rest of the section reviews previous work that perform a multi-pass compilation,
by first inferring information about a problem specification, and then using the inferred
information to obtain a better program for the target solver.

As shown by Dittel et al. (2009), it is sometimes useful to perform presolving be-
fore compiling a model for a MIP solver. In their work, the presolving performed by
a MIP solver was not sufficient to allow a problem to be solved correctly. The authors
deemed that MIP presolving was not able to infer enough from their linear representa-
tion and set about implementing their own problem-specific presolving. Most notably,
their approach included a technique that improved the linear representation of the prob-
lem by using hand coded algorithms for presolving the non-linear constraints which are
later implemented with linear constraints. This non-linear presolving lead to a significant
improvement in solving time, increasing the number of instances that could be solved.
This further motivates the need for presolving higher level representations before compi-
lation for some low-level target solver. While hand-coded algorithms were used in this
case, CP solvers provide dedicated algorithms that can reason about high-level, non-linear
constraints. This makes them ideal for use in presolving.

The use of CP solvers to preprocess combinatorial optimisation programs before the
actual solving begins has been explored in, for example, Achterberg (2009). The Savile Row
compiler for Essence’ performs multi-pass presolving using the constraint propagation
engine of Minion (Nightingale et al., 2014) during the first pass. In addition to constraint
propagation, Savile Row can run variants of SAC to infer stronger variable bounds. While
Essence’ is a powerful modelling language, it does not support user-defined predicates and
functions, and solver-specific translation routines are hard-coded into the compiler. Thus,
the compiler can communicate presolving results through top-level model variables and
those that can be uniquely identified by the expressions that introduce them (Nightingale,
2016). In contrast, the approach presented in this chapter is more general, since it is
compatible with the model structure as expressed in predicate and function definitions
and calls, by enabling presolving on any auxiliary variables introduced by these structures.

Another example of the use of constraint programming techniques to presolve a pro-
gram before solving, was explored in Metodi et al. (2011) for improving SAT formulations.
There, the equivalence of some literals in the SAT formulation of an instance was inferred
by plugging a specialised constraint program into an encoding aware constraint propaga-
tion based compiler. This resulted in a large reduction in the size the of encoded SAT
programs and a significant improvement in solving time. This differs from the approach
presented in this chapter as the compilation translates a low level constraint program to
a SAT formulation, whereas our approach is for compiling high-level models to programs.
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The above examples show that multi-pass presolving during compilation can be effec-
tive. The rest of this chapter introduces a new multi-pass presolving approach that makes
use of model structure to increase the amount of information that can be shared between
passes, leading to the compilation of more efficient programs.

4.3 Multi-Pass Presolving

This section presents the two main contributions: a technique for preserving model struc-
ture and an approach that can use this preserved structure to facilitate communication
between different flattening passes. Most of the traditional presolving methods discussed
in the previous sections work at the program level, where all variables and constraints are
known. A compiler for a high-level modelling language, to get to this point, must make
decisions during flattening that depend on its current (typically incomplete) knowledge of
variable domains. For example, the compiler can only simplify a quadratic constraint x*y
into a linear constraint if the value of x is known at compile time; it can also turn a reified
constraint b <-> c into a non-reified constraint c if b is known to be true; and it can avoid
generating unnecessary code for loops such as forall (i in lb(x)..ub(x)) (c(i)) if it
can shrink the bounds of x. This case often appears with the introduction of different
viewpoints, such as the introduction of an encoding of an integer variable using binary
variables. These are all common situations where considerable improvements can be made
when more information is made available.

One solution to this problem, is to flatten at least twice, with initial passes collecting
information about the instance, and subsequent passes using this information to produce
better programs. Interestingly, as seen in the previous section, the different passes do
not need to flatten for the same target. The design of MiniZinc, with its solver-specific
libraries of constraint definitions implemented in the MiniZinc language, rather than as
opaque pieces of software, is ideal for this approach. However, multi-pass, multi-library
presolving poses a significant technical challenge: the different passes may create different
programs, with different variables, domains, and constraint decompositions. These pro-
grams lack the model structure needed to allow information to be correctly shared between
them. Therefore, the flattener needs to identify corresponding variables across passes, and
communicate information gathered about those variables from one pass to the next.

The remainder of this section presents (1) examples that demonstrate how flattening
can benefit from multi-pass presolving, (2) how the multi-pass presolving can strengthen
some optimisations that a compiler can use, (3) how the flattener can benefit from being
able to identify and communicate more variable information across passes, and (4) how
this communication of variable information can be achieved.

4.3.1 Multi-Pass Examples

The following examples show how additional information from multi-pass presolving can
lead to better FlatZinc.
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array[1..3] of var 1..30: x;
constraint all_different (i in index_set(x)) (x[i] div 3);
constraint forall (i in index_set(x)) (x[i] <= 20);

Listing 4.1: MiniZinc model.

array[1..3] of var 1..20: x;
array[1..3] of var 0..10: xi;
constraint int_div(x[1],3,xi[1]);
constraint int_div(x[2],3,xi[2]);
constraint int_div(x[3],3,xi[3]);
constraint all_different(xi);

Listing 4.2: FlatZinc after first pass.

array[1..3] of var 1..20: x;
array[1..3] of var 0..6: xi;
constraint int_div(x[1],3,xi[1]);
constraint int_div(x[2],3,xi[2]);
constraint int_div(x[3],3,xi[3]);
constraint all_different(xi);

Listing 4.3: FlatZinc after second pass.

Improved bounds. Listings 4.1–4.3 show a MiniZinc model and two possible FlatZinc
programs. The model contains an array of variables x and two constraints. The first
constraint restricts the result of dividing each variable in x by 3 to be distinct. The second
one adds tighter bounds to the variables in x.

Listing 4.2 shows the result of flattening this model for a CP solver using single pass
flattening. The first constraint introduces the intermediate variables xi representing the
division by 3 of each variable in x. The bounds for the xi variables are computed to
be in the range 0..10, as b30/3c = 10. These intermediate variables are then passed to
the all_different constraint. After this constraint has been flattened, the flattening
proceeds to the second constraint where tighter bounds for the variables in x are added. If
this second constraint had occurred earlier, the flattener would have had tighter domains
for the variables in x earlier and, as a result, would have been able to further tighten the
bounds on the variables in xi as they were being introduced. This again demonstrates the
difference between whole program optimisation and the typical compilation approach.

Listing 4.3 shows how the bounds could be improved by a second pass of flattening.
The bounds for the xi variables are correctly computed as 0..6 since the new bound of 20
gives us: b20/3c= 6. Note that this is only possible if the compiler can correctly identify
the equivalence between introduced variables in the two passes.

Shorter loops. The improvement seen in this first example may seem small, as many
propagation based solvers will likely perform simple propagation at the root node that will
find the tighter bounds for the xi variables. Assume however, that we want to solve this
example using a MIP solver for which the flattener will have to encode the all_different

constraint, using a set of zero-one variables and a set of linear constraints over these.
Such a linear decomposition of all_different is shown in Listing 4.4. The definition

introduces an array of zero-one variables provided by the call to eq_encode(x). The
definition of the eq_encode for an array of variables also introduces a matrix of zero-one
variables and, for each integer variable, calls another eq_encode function. This eq_encode
introduces an array of zero-one variables and calls the equality_encoding(x,y) predicate
to establish the connection between the integer variables and these introduced zero-one
variables. It is important to note that the number of zero-one variables introduced depends
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predicate all_different(array[int] of var int: x) =
let {

array of var 0..1: x_eq_d = eq_encode(x)
} in (
forall(d in index_set_2of2(x_eq_d)) (

sum(i in index_set_1of2(x_eq_d)) ( x_eq_d[i,d] ) <= 1
)

);

predicate equality_encoding(var int: x, array[int] of var 0..1: x_eq_d) =
x in index_set(x_eq_d)
/\ sum(d in index_set(x_eq_d))( x_eq_d[d] ) = 1
/\ sum(d in index_set(x_eq_d))( d * x_eq_d[d] ) = x;

function array[int] of var 0..1: eq_encode(var int: x) =
let {

array[
�� ��lb(x)..ub(x) ] of var 0..1: y;

constraint equality_encoding(x,y);
} in y;

function array[int,int] of var int: eq_encode(array[int] of var int: x) =
let {

array[index_set(x),lb_array(x)..ub_array(x)] of var int: y =
array2d(index_set(x),lb_array(x)..ub_array(x),
[ let {

array[int] of var int: xi = eq_encode(x[i])
} in if j in index_set(xi) then xi[j] else 0 endif
| i in index_set(x), j in lb_array(x)..ub_array(x)

]
)

} in y;

Listing 4.4: Encoding alldifferent with the MiniZinc linearisation library.

on the bounds of the x variable, as shown by the array indexed by lb(x)..ub(x) (marked
with a red box in Listing 4.4). Note that lb and ub are compiler builtins that return a fixed
value, representing a valid, but not necessarily tight bound, during compilation. Thus, the
number of variables and constraints introduced by the equality encoding depends directly
on the domain sizes. Having tighter bounds on the xi variables in the example would
allow the same model to be described using fewer variables and constraints. Thus, such a
two pass flattening for a MIP solver would result in a 40% smaller program.

Again, this optimisation depends crucially on the bounds of the introduced variables
xi. Only communicating bounds on top-level variables, i.e., those that occur directly in
the original model, cannot lead to any improvements during the second pass, as the bounds
on x have not changed.

Avoiding reification. Listings 4.5–4.9 demonstrate the benefits of stronger presolving
for models containing reified constraints. The model in Listing 4.5 has three integer vari-
ables x, y, and z, with domains {2,4}, {2,4} and {2,4,5}, respectively. The first constraint
is an alldifferent constraint, while the second constraint introduces an implication between
two expressions. Listing 4.9 shows the ideal (simplified) FlatZinc for this model when
compiled for a simple constraint solver.
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Listing 4.6 shows the program that results from flattening this model without any
presolving. The first constraint is added directly to the FlatZinc as is. The implication is
transformed to the disjunction ¬(x+y+z=12) ∨ y = max([x,y,z]). The negation is pushed
inside the linear expression and the Boolean control variables b0 and b1 are introduced
for both sides of the disjunction.

Listing 4.7 shows what happens when the flattener learns bounds for the top-level
variable z by propagating the all_different constraint (fixing z to 5). The resulting
FlatZinc is not different. The variable z has been removed from some constraints since
it is fixed, but the FlatZinc still contains two reified constraints and a redundant global
constraint in the form of the max([x,y,5]) constraint, where the variables have upper
bounds lower than 5. While reified constraints allow the MiniZinc language to support
much more natural descriptions of problems, they often require awkward decompositions
and, in many cases, may not provide useful propagation until quite late during the search.

By performing constraint propagation on the program given in Listing 4.6 the flattener
can get bounds for the introduced variables i0, b0, and b1. Listing 4.8 demonstrates what
can be achieved by taking these new bounds into account while flattening. The assignment
to i0 allows the flattener to remove the max constraint. With i0 set to 5, b0 is trivially false
leaving the disjunction with only one non-false disjunct in the root-context. Recall that
being in the root-context means that the control variable b1 must be forced to be true,
allowing a non-reified version of the linear constraint to be used in place of the disjunction
over the reified variable. With this additional information, the flattener will produce the
desired FlatZinc shown in Listing 4.9.

Flattening this model for a MIP solver, presolving would result in a roughly 60%
smaller FlatZinc program due to the complexity introduced by representing the reified
constraints as linear constraints. As before, it is the information about the bounds of
introduced variables that makes this kind of optimisation possible.

4.3.2 Presolving Phases

During and after a first pass of flattening, the compiler can infer different kinds of in-
formation, such as stronger variable domains and variable aliases. These can then be
communicated to the presolving phases explored in the following sections. These phases
seek to help the compiler produce efficient programs by simplifying constraints, cleaning
up the variables and constraints of a program once flattened, and performing constraint
propagation to tighten domains further.

Simplifications during flattening

Section 2.5.3 presented several optimisations that compilers for constraint modelling lan-
guages typically perform. Here we discuss the effect that multi-pass compilation can have
on these optimisations.

Constant Folding: When a variable is fixed during compilation, all references to this
variable should be replaced with the constant value that was assigned.
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var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
constraint x+y+z=12 -> y=max([x,y,z]);

Listing 4.5: Original MiniZinc.

var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
var 2..5: i0 = max([x,y,z]);
var bool: b0 = (y = i0);
var bool: b1 = (x+y+z != 12);
constraint or(b0,b1);

Listing 4.6: Standard FlatZinc.

var {2,4}: x; var {2,4}: y; var {5}: z;
constraint x != y;
var 2..5: i0 = max([x,y,5]);
var bool: b0 = (y = i0);
var bool: b1 = (x+y != 7);
constraint or(b0,b1);

Listing 4.7: FlatZinc with tightened top-level bounds.

var {2,4}: x; var {2,4}: y; var {5}: z;
constraint x != y;
var {5}: i0 = max([x,y,5]); % remove (unused)
var {false}: b0 = (y = 5); % remove (entailed)
var {true}: b1 = (x+y != 7); % replace (x+y !+ 7)
constraint or(b0,b1); % remove (entailed)

Listing 4.8: FlatZinc with tightened top-level and intermediate bounds.

var {2,4}: x; var {2,4}: y; var {5}: z;
constraint x != y;
constraint x+y != 7;

Listing 4.9: Desired FlatZinc.

Variable Aliases: During compilation, the equality among several variables may be de-
tected. If so, these equivalent variables can be replaced with a single unified variable.

Constraint Aggregation: There are several schemes by which certain constraints can be
aggregated into fewer and/or simpler constraints. For example, the sets of constraints
a+b= x, x+c= y, y+d= z can be combined into a single constraint a+b+c+d=
z. With more variables being fixed by multi-pass compilation, these aggregated
constraints can be much more concise.

Compiling partial functions: If we learn from compilation that a constraint is total,
later passes can compile the same constraint as a total function.

Common Subexpression Elimination: If two variables are fixed to the same value or
found to be equal to each other, more subexpressions can also become identical and
be shared.
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Figure 4.1: Example configuration of the multi-pass presolving approach.

Overloading Resolution: Knowledge about fixed variables allows the use of more spe-
cialised decompositions.

Linear Simplification: Fixing variables and tightening their bounds will result in shorter
linear constraints.

Boolean Simplification: Fixing Boolean variables allows for simplification of Boolean
expressions, fewer disjunctions, and constraints being pushed into the top-level con-
junction instead of being reified.

Post-flattening code optimisation

After flattening, the compiler will again perform some basic constant propagation (replace
fixed variables with fixed values and evaluate subexpressions which no longer contain
variables), unify variables that have been found to be equal, and remove variables and
constraints that are not used. This can help when, for example, a variable has been
introduced but all constraints that referenced it have been found to be entailed, or when a
reified constraint appears in a disjunction for which one disjunct has already been shown
to be true.

Constraint propagation

In addition to the optimisations performed during and after flattening, the compiler can
run the propagation engine of a generic constraint solver, whose specialised propagators
for various global constraints can produce smaller variable domains or even fix variables.
Figure 4.1 presents an example execution of this multi-pass compilation approach, config-
ured for a two pass compilation using a CP solver as the presolver for a MIP target. Three
steps are marked in this figure: The first performs an initial flattening of the instance into
a CP program and gives it to the CP solver for presolving. In the second step, the in-
formation learned from the CP solver is returned and used to strengthen the instance.
Finally, in the third step, this strengthened instance is flattened into a MIP program and
given to the MIP solver for solving.
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4.3.3 Preserving Structure

In the examples of Section 4.3.1, the set of variables generated in the first pass is the
same as the set generated in the second pass. If this were guaranteed, the compiler could
update the domains of variables by simply matching the variable names. Unfortunately,
this is typically not the case in practice. Indeed, while bounds can be easily communicated
for top-level variables that are common between different FlatZinc programs, the compiler
cannot rely on the temporary variables introduced during flattening having the same names
across different compilations. The code in Figure 4.2 illustrates the problem of identifying
variables across different compilation passes.

The first MiniZinc file, a.mzn, defines a predicate f(k) that introduces an integer
variable x and a constraint h(x, k), which is defined as a builtin constraint. The second
file, b.mzn, includes a.mzn and defines a predicate g(j) that calls f(k) and f(k+1), as
well as two constraints that call g(4) and f(1), f(2), f(3), respectively.

1 % a.mzn
2 predicate f(int: k) = let { var int: x } in h(x, k);
3 predicate h(var int: x1, int: x2);

1 % b.mzn
2 include "a.mzn";
3
4 predicate g(int: j) = f(j) /\ f(j+1);
5
6 constraint g(4);
7 var 1..3: z;
8 constraint forall(i in lb(z)..ub(z)) (f(i));

1 % b.fzn
2 var 1..3: z;
3 var int: i0;
4 var int: i1;
5 var int: i2;
6 var int: i3;
7 var int: i4;
8 constraint
9 h(i0,5)

10 /\ h(i1,4)
11 /\ h(i2,1)
12 /\ h(i3,2)
13 /\ h(i4,3);

1 % b.fzn with paths
2 var 1..3: z;

�� ��b:7.10-11

3 var int: i0;
�� ��b:6.12-15

�� ��b:4.22-25
�� ��a:2.38-39

4 var int: i1;
�� ��b:6.12-15

�� ��b:4.30-35
�� ��a:2.38-39

5 var int: i2;
�� ��b:8.20-21

�� ��i=1
�� ��b:8.34-37

�� ��a:2.38-39

6 var int: i3;
�� ��b:8.20-21

�� ��i=2
�� ��b:8.34-37

�� ��a:2.38-39

7 var int: i4;
�� ��b:8.20-21

�� ��i=3
�� ��b:8.34-37

�� ��a:2.38-39

8 constraint
9 h(i0,5)

10 /\ h(i1,4)
11 /\ h(i2,1)
12 /\ h(i3,2)
13 /\ h(i4,3);

i0 i1

i=1

i2

i=2

i3

i=3

i4

Figure 4.2: Preserving explicit structure to the program-level.

The flattening of model b.mzn will introduce five different instances of variable x. The
MiniZinc compiler will simply number them in the order they are generated. The first
two, i0 and i1, come from the call to g(4) in line 6, which results in calls to f(4) and
f(5), and which in turn result in the calls h(i0,5) and h(i1,4). The remaining three are
generated on line 8, where the bounds of z that are known to the compiler are iterated
over. The resulting FlatZinc file, b.fzn, appears at the bottom left of Figure 4.2.

Let us now have a look at the variable names generated in different flattening passes.
If the second pass produced exactly the same FlatZinc code as the first pass, remembering
the name of each variable, such as i2 in our example, would be sufficient. But assume
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var z
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f i1
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forall

i=1 i2f let
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f i1
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i=3 f let

i=2 letf i2

i3

Figure 4.3: Trace of compilation for introduced variables showing how paths can match
variables when simple identifiers cannot.

that, after the first pass, presolving managed to narrow the domain of z to the set 2..3. In
the second pass, iteration now starts at i=2, and only four instances of x are generated (i0
through i3). Crucially, the names of the variables will change, too: the name i2 will now
refer to the variable from iteration i=2, whereas in the first pass it referred to iteration
i=1. Clearly, it would be wrong to transfer any information inferred about i2 during first
pass presolving to the new second-pass variable i2. Instead, information about first-pass
i3 now corresponds to second-pass i2.

4.3.4 Variable Paths

The above example illustrates how a multi-pass, multi-target presolving algorithm needs to
identify variables that arise from the same subexpressions across passes. The algorithmic
solution to this problem is to generate variable identifiers that are unique and that do not
depend on the order of flattening or on what has been flattened before. To satisfy these
conditions, it is sufficient for identifiers to capture the following information:

• The call stack leading to the introduction of a variable. For example, variable i1

in Figure 4.2 was added by the call to g on line 6, which then called f(j+1) on line 4.

• Any loop iteration values. For example, variable i3 was introduced when i had
value 2.

We call an identifier that captures this information a variable path. The variable
paths for the example in Figure 4.2 are represented graphically, with lines connecting
each predicate call through to the place where the variable is introduced. The matching
made possible by this approach is demonstrated in Figure 4.3, where the two separate
compilations of this model are presented. First, with the original bounds on z being in
the range 1..3, and then 2..3. The old i2 variable is nowhere to be found in the second
compilation, and that the old i4 corresponds to the new i3 by matching the paths (shown
here with thick blue lines).
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Path representation. A textual representation can use the location in the source code
to represent call sites and variable declarations, together with the value of loop vari-
ables to identify the iteration. A path for i1 would include the location of the call g(4)
in file b.mzn on line 6, column 12–15, the location of the call f(j+1) on line 4, col-
umn 31–36, and the location of x in a.mzn, line 2, column 38–39, resulting in the path�� ��b.mzn:6.12-15

�� ��b.mzn:4.31-36
�� ��a.mzn:2.38-39 . For i3 we need to add the loop iteration

value:
�� ��b.mzn:8.20-21

�� ��i=2
�� ��b.mzn:8.34-37

�� ��a.mzn:2.38-39 . The bottom right code of Fig-
ure 4.2 shows the FlatZinc variables annotated with their respective variable paths. Note
how the identifiers are independent of the order in which the constraints are flattened, and
of the concrete bounds of the variables at the time of flattening. For instance, variable
i3 is linked to iteration i=2, independently of whether the loop started at 1 or 2. An
approach for implementing this scheme is presented in Section 4.4.2.

4.4 Implementation in MiniZinc

This section discusses the implementation and the challenges of integrating path-based
multi-pass presolving into the MiniZinc compiler presented in Chapter 2.

4.4.1 Compilation in MiniZinc

Recall from Section 2.5 that MiniZinc 2.0 is based on libminizinc, a C++ library that
implements parsing, type-checking and flattening of MiniZinc to FlatZinc. The parser
turns a text model into a set of expressions, which are then passed to the type-checking
and flattening algorithms. Flattening is implemented as a recursive call-by-value (inside-
out) translation, and some expressions in a model may not always be traversed during
flattening, while others may be visited several times. For example, given an if expression,
the flattener may traverse the then branch or the else branch, depending on the result of
evaluating the condition, and an expression may be traversed several times in the case
of a list or set comprehension. Visiting the same expression several times means that
several items may be added to the FlatZinc program from the same syntactic position of
the expression. This needs to be taken into account when computing variable paths.

4.4.2 Implementing Variable Paths

When generating large programs, e.g., when compiling for MIP solvers, it is not uncom-
mon to introduce tens of thousands of variables. Therefore, an actual implementation
must make both the generation and lookup of paths efficient. To achieve this, instead of
encoding the path into the variable identifier, the implementation keeps a separate path
map from paths (represented as strings) to variables. The initial compilation passes pop-
ulate the map. If a variable to be introduced exists in the map, the pass can access all the
information collected during previous passes about this variable.

The call stack is represented explicitly inside the flattener. This is achieved by pushing
each call being processed onto the call stack. The original purpose of this call stack was
to help the compiler produce useful error messages. Consider Listing 4.10, which shows
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MiniZinc: evaluation error:
mknapsack_global.mzn:44:
in call ’forall’
in array comprehension expression

with i = 1
mknapsack_global.mzn:45:
in call ’knapsack’
/usr/share/minizinc/std/knapsack.mzn:17:
in call ’assert’
Assertion failed: index set of weights must be equal to index set of

profits and index set of items

Listing 4.10: Error in faulty model.

an error message produced by the MiniZinc compiler when compiling a model. A trace
of the compilation is displayed to identify where an error occurred. It begins on line 44
of the mknapsack_global.mzn model. The compiler was processing iteration i = 1 of the
forall loop. Inside this, a call to the knapsack constraint is being processed. The failure
occurs somewhere within the decomposition of the knapsack constraint in knapsack.mzn

in the standard library, where an assert has failed. Finally, the error is displayed.
In order to generate error messages like these, the call stack includes information about

the recursive structure of the expression that is being compiled, including all comprehen-
sions that introduce loop variables (with i = 1). This data is reused by our implementa-
tion to construct variable paths.

Integrating multi-pass presolving with variable paths into the MiniZinc compiler pre-
sented in Section 2.5, can be achieved by extending the implementation of newVar (Al-
gorithm 2.4) to manage a map of variables that have already been seen and their paths,
as shown in Algorithm 4.1. This algorithm starts by calling the getCurrentPath procedure
from Algorithm 4.2, which steps through the callstack and, for each callstack item c, ap-
pends to the path a pair 〈location(c), desc(c)〉 with the location and a simple descriptor
for c. If the returned path is not in the PathMap yet, a new variable is introduced to
the FlatZinc and is added to the PathMap, along with an integer signifying which pass
this variable comes from. If a variable already exists with this path in the PathMap, the
procedure checks whether the pass in which this variable was introduced was the current
pass. If that is the case, it simply returns the variable from the PathMap without intro-
ducing any new variable. If however the variable was added in a previous pass, a new
variable is constructed for this pass and the domain information from the old variable is
transferred (by intersection with its current bounds) to this new variable, initialising it
with the tightest bounds available.

During compilation one variable may be found to be equivalent to another. If so, the
compiler will unify these variables into a single program level variable. This exposes a
minor inefficiency in the multi-pass approach as described above. The paths for a unified
variable can potentially point to a variable that is never added to the program in the first
pass. Therefore, we will only see the original bounds for this variable when it is being
introduced in a later pass and, thus, we must wait for it to be unified. The multi-pass
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Algorithm 4.1 Integrating variable paths into compilation with unification highlighted.
Compiler State:
PathMap: map: path → 〈var,pass〉 . Mapping of paths to variables and pass number
CurrentPass: integer . Current pass number
ReversePathMap: map: expression→ path . Allows duplicate paths
procedure newVar(v) . v is the name of the new variable

path ← getCurrentPath()
if path 6= [ ] then
〈v′,p〉 ← PathMap[path]
if v′ 6=⊥ then . We have an entry for this path

if p=CurrentPass then . Unify if it’s from the same pass
v̄← v′

else . Variable from previous pass
v̄← new v . Create new variable
dom(v̄) ← dom(v̄) ∩ dom(v′) . Update domain
PathMap[path]← 〈v̄,CurrentPass〉 . Add new variable to map

if name(v′) 6= canonicalName(v′) then . Was this unified previously?
path′← ReversePathMap[canonicalName(v′)] . Get the real path
PathMap[path′]← 〈v̄,CurrentPass〉 . Point both paths at v̄
ReversePathMap[v̄]← path . Update ReversePathMap

else . We have not seen this variable before
v̄← new v
PathMap[path]← 〈v̄,CurrentPass〉 . Create new variable and
ReversePathMap[v̄]← path

return v̄
return new v . Return new variable

approach should be able to unify variables in the PathMap, so that paths for unified
variables will point to a single canonical variable.

Algorithm 4.1 highlights with a red box the specific checks related to unification. An
extra map, the ReversePathMap, is required for this. It maps an arbitrary expression (just
variables in this chapter) to its path in the PathMap. This allows several expressions to
share a path and, thus, they all point to the same variable in the PathMap. When
MiniZinc unifies a variable it creates a link between this variable’s unique identifier and
the canonical variable, to ensure any use of the identifier of any unified variables points to a
single variable. To simulate this behaviour in the algorithm we introduce two procedures,
name(v) and canonicalName(v), which return the identifier for v and the identifier for the
variable to which v is actually bound. When a variable is retrieved from the PathMap
its name compared to its canonical name. If they are different, we then configure the
PathMap so that the paths for either this variable or its unified version will point to the
same canonical variable from now on. This ensures that, when a previously unified variable
is being added, we can just return its canonical variable without introducing a new one.

Path representation. The current implementation encodes paths into strings. This
allows the PathMap to be implemented by a simple hash map. While more incremental
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Algorithm 4.2 Procedure that returns a path uniquely identifying this compilation unit.
procedure getCurrentPath()

path ← [ ]
for each (i ∈ |CallStack| . . .1) do . Read CallStack backwards

c← CallStacki

path ← path+ 〈location(c), desc(c)〉
return path

and compact data structures, such as prefix trees, could be used for this purpose, current
experiments with the optimisations presented in the rest of this section suggest that the
performance of the string-based solution is sufficient.

Optimised path generation. Since constructing and comparing paths as strings can
be costly, the implementation employs two simple optimisations to reduce the number
of paths generated. Firstly, it remembers the maximum call stack depth from previous
passes. If it is in its final pass and detects a variable being introduced deeper in the call
stack than the recorded maximum, it knows the variable cannot be present in the map.
This will often occur when using a CP solver for the presolving pass and a MIP solver as
the target. The amount of decomposition required to flatten for a CP solver will often
be much less than that required for a MIP solver. For example, compiling an alldifferent
constraint for a CP solver is as simple as just posting the constraint, whereas for a MIP
solver the constraint must be decomposed, with many variables and constraints being
introduced. In this case, no paths will be constructed for the introduced variables, as the
compiler knows that (a) it has not seen variables at that depth before, and (b) there will
not be any further passes that might need to compare paths with these. If, instead, it is
not in its final pass, paths will be collected, as they may be needed in these later passes.
The same can be said for variables introduced from a file that was not used in earlier
passes, since no presolving information can exist about them. Again, this occurs when
different passes use different libraries.

In both cases, we save the overhead of constructing the path and looking it up in
the map. These optimisations are critical for large models. An optimised getCurrentPath
procedure is presented in Algorithm 4.3, which adds MaxPathDepth and VisitedFiles to
the flattener state and implements the above optimisations.

4.5 Experimental Evaluation

The experiments summarised in this section measure the impact of the new approach
on compile-time overhead, program size and solving performance, when compiling for a
MIP target solver and for a CP target solver. The experiments use the implementation
discussed in Section 4.4 configured to perform a two pass compilation. In addition to
the simplifications performed by the MiniZinc compiler (as discussed in Section 4.3.2),
the implementation invokes the propagation engine of the Gecode (Gecode Team, 2006)
constraint solver (version 4.3.1) in the first pass, storing tighter domains for use in the
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Algorithm 4.3 getCurrentPath with optimisations.
Flattener State:
CallStack: stack
PathMap: map: path → 〈var,pass〉
CurrentPass: integer
NPasses: integer . Number of passes to be completed
MaxPathDepth: integer . Length of deepest path
VisitedFiles: set . Files visited in previous passes
procedure getCurrentPath()

path ← [ ]
if |CallStack | > MaxPathDepth then . If we are deeper than any previous path

if CurrentPass = NPasses then return [ ] . If this is the final pass
MaxPathDepth ← |CallStack|

for each (i ∈ |CallStack| . . .1) do
c← CallStacki

if filename(c) 6∈VisitedFiles then . If we have not seen this file before
if CurrentPass = NPasses then return [ ] . If this is the final pass
VisitedFiles ← VisitedFiles ∪ {filename(c)}

path ← path + 〈location(c), desc(c)〉
return path

second pass. Many constraint solvers utilise a trailing-based search in which the actions of a
propagator must be recorded so that the propagation can be undone during backtracking.
Gecode, on the other hand, primarily relies on a copying-based approach. As a result,
computing a single fixed-point without doing any search does not incur this extra overhead.
This makes it ideal for presolving, since no search will be performed. The first compilation
pass uses the MiniZinc library for Gecode, which supports many of the global constraints
provided by MiniZinc natively. The second pass uses the target solver’s MiniZinc library.

For these experiments, 300 instances were taken from three years (2012, 2013, 2014) of
the MiniZinc Challenge (Stuckey et al., 2010). This includes 49 different MiniZinc models
which cover 46 different problems (listed in Figure 4.4). The 300 instances are those
used in the challenge in those years. See Appendix A for more details. Each instance
was compiled using the MiniZinc 2.0 compiler both with a single pass compilation (non-
presolved) and a two pass compilation (presolved). The experiments were executed on a
cluster, where each node had dual 2.00GHz Intel Quad Core Xeon E5405 processors with
16GB of memory. Compilation and solving were, however, both limited to 8Gb of memory.
Solving was also limited to a maximum of 1800 seconds. The following two subsections
explore the evaluation of the approach when targeting MIP and CP solvers, respectively.
In addition, the last subsection presents a case study to demonstrate how the multi-pass
approach can be used in practice.

4.5.1 Two Pass Compilation: For MIP

Table 4.1 shows a summary of the results of using the implemented two pass compilation
for the MIP solver CPLEX version 12.6. The table shows the median (Med%) and the
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Amaze-2 Amaze-3 Black-hole Cargo-coarse
Carpet-Cutting Celar Fastfood Fillomino
Filter FJSP FM Ghoulomb
Handball Jp-encoding League Linear2program
Mario Mknapsack Mqueens MSPSP
NMSeq Nonograms OC-Roster Openshop
Parity-learning Patternset-mining Pentominoes-int ProjectPlanner
Radiation RCMSP RCPSP Rect-packing
Road-Cons Rubik SB Ship-Schedule
Smelt Spot5 Still-life TP
TPP TPPPV Train Trip
VRP WCSP

Figure 4.4: Problems selected for use in evaluation of multi-pass approach.

N Var Con Dom Cmp Pre Sol Tot

M
ed

% 250 100 100 98 102 98 - -
130 97 97 91 96 90 100 100
67 97 96 86 91 87 74 79

G
eo
% 250 96 97 89 106 86 - -

130 92 93 88 97 85 72 78
67 88 90 85 96 80 53 61

Table 4.1: Two pass compilation for a MIP solver experiment.

geometric mean (Geo%) of the percentage sizes and runtimes of presolved versus non-
presolved programs. Three subsets of the 300 instances are reported: the set of instances
that compile without exceeding memory or time limits, showing the impact on compilation
time; the set where presolving has changed the number of variables or constraints after
MIP presolving, showing the potential impact on program size; and the set where solve
times for both presolved and non-presolved programs are greater than 1 second and less
than the 1800 second time limit. This organisation is based on the difficulty in reasoning
about results when either solve times exceed the limit, or are so small that differences can
be due to environmental factors (e.g., process scheduling).

Column N shows the number of instances in each group. Columns Var, Con, and Dom
show the percent size of presolved programs relative to non-presolved ones, measured
in number of variables, constraints, and the product of domain sizes, respectively. The
columns Cmp, Sol, and Tot denote the percentage duration of compilation, solving and the
total compile and solve time of presolved programs relative, again, to the non-presolved
ones, respectively. Solve times are only available for instances where the number of con-
straints and variables were changed by presolving. In addition the Pre column shows how
long it took CPLEX’s own built-in presolver to prepare the program before solving began.
Figure 4.5 shows more detail regarding the impact on each of the 130 instances. In par-
ticular, it shows the average total (compile + solve) time for presolved and non-presolved
programs, along with the ratio between them. Blue arrows show how the average total
solve time for each instance was changed by the two pass compilation. Arrows that point
down (up) are faster (slower) with presolving. Times are marked on the right-hand axis.
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Figure 4.5: Comparison of single and two pass compilation for a MIP solver.

Instances are sorted in order of ratio, with the smallest ratio (biggest improvement) first
for clarity. The ratios are represented by purple squares and green Xs and are presented
on a log scale to emphasise the impact of presolving. Squares are from the set of 67 com-
parable instances, and Xs are either too fast or too slow to be compared meaningfully. A
red dot-dashed line indicates the 1800 second solving timeout. Note that the total time
includes compilation and so we can see several points that occur above this line. The
horizontal line at the 1.0 ratio indicates where presolving has had little to no impact.
Additionally, a dashed vertical line marks the median total time.

To control for the erratic behaviour of MIP solvers (Fischetti et al., 2014), each instance
is solved six times with different random seeds. To narrow the set of 250 compilable
instances, we looked at the results of running CPLEX’s presolver on each program, and
kept the 130 instances where multi-pass presolving resulted in a change to the number
of variables or constraints after MIP presolving. This is because in those 120 cases MIP
presolving reached the same point regardless of whether we presolved beforehand or not.

As expected, we see that the two pass compilation has a big impact when applied to
MIP. The total time improves by 39% (geometric mean) in the 67 comparable instances.
This improvement is due to the solve time being almost halved on average. Thanks to
the relatively low cost of compiling for CP, presolving has only a small cost of around 6%
for the whole set of instances. Interestingly, it even speeds up compilation in many cases,
most likely due to a reduction in the amount of decomposition required.

Figure 4.5 shows these results more clearly. Most of the instances with close to 1.0
ratios are there because solving timed out in both the case of single pass and two pass
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Model N Var Con Dom Cmp Pre Sol Tot
Amaze-2 1 91 92 85 88 87 129 128
Amaze-3 8 94 94 88 89 92 108 102
Black-hole 2 89 99 98 100 195 111 111
Fastfood 1 99 99 59 60 3 79 77
Fillomino 4 85 86 77 83 79 82 81
FJSP 1 100 100 96 119 133 95 107
Jp-encoding 5 64 76 75 86 65 23 72
Linear-to-program 1 98 96 92 106 91 79 79
Mario 7 98 97 85 90 75 48 49
OC-Roster 2 101 101 92 97 84 96 87
Pattern-set-mining-k1 2 92 92 102 160 89 12 39
Pattern-set-mining-k2 2 24 25 33 121 27 56 91
Project-Planner 3 99 99 97 122 97 119 119
Cyclic-RCPSP 4 81 89 68 82 70 116 111
Rect-Packing 1 100 100 89 90 91 178 143
Road-Construction 3 104 102 176 147 115 6 8
SB 9 99 100 85 100 98 65 66
Still-life 2 100 100 98 110 96 97 97
TPP 7 97 96 83 86 72 14 17
Train 2 88 90 81 82 98 84 82

Table 4.2: Per-model summaries for MIP experiment.

compilation. Note that the cost of compilation is minimal in these cases, as it is only a
tiny fraction of the total time. The number of points that lie below the black line is quite
large, with the total time reduced to less than half in many cases and three instances
where there is an order of magnitude improvement. We can see from the blue arrows that
many of these improvements are indeed quite large, with several instances that time out
without presolving, being solved in less than 500 seconds. Above the line we see a handful
of instances that take longer, with only two having 1.5 times (150%) slower total time.
The upward-pointing blue arrows show that, in these cases, the slow-down is typically
not as significant, with only a small handful of cases where two pass compilation led to a
timeout.

Table 4.2 presents a model-by-model breakdown of the results for the set of 67 in-
stances. Here the N indicates how many instances are in the set for each model. Some of
the interesting cases are discussed below:

FastFood: Presolving has little impact on the number of variables and constraints in
the resulting programs, removing just 1% of them. Domains however, are reduced
significantly. The impact of this is a much faster compilation and a hugely sped
up MIP presolve (3%), indicating that the MIP solver had to work hard to remove
redundant information in the non-presolved case.

Pattern-set-mining-k1 and k2: The k in the model names represent different versions of
the model, which mine sets containing k items. With k = 1, solve times are seen to
be significantly improved, despite only a small reduction in the number of variables
and constraints. However, in the k = 2 case, program size can be greatly reduced
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resulting in programs that are 25% the size of non-presolved programs. This does
translate into much faster solving (44% faster), but presolving is so expensive that
the overall improvement is relatively small (9% faster total time).

Road-Construction: This model was one of the most expensive to presolve, taking 147%
of the duration of the non-presolved case. Interestingly, the number of variables and
constraints actually increased due to two pass compilation. This is likely due to extra
holes being introduced in the domains of some variables, requiring more constraints
to represent these in the MIP formulation. The domain size increases significantly
due to these added binary variables. These instances are shown to benefit the most
from presolving. This is due to some numerical instability that the MIP solver
encounters when faced with the non-presolved program. In fact, for this model,
CPLEX works much harder to find solutions, and returns invalid solutions when
two pass presolving has not been applied. Activating CPLEX’s “numerical precision
emphasis” parameter allows these instances to be solved correctly indicating that it
is not the fault of the compiler but the default configuration of the solver.

Rect-Packing: This is the model that seems to be impacted least favourably by two pass
compilation. Solving takes 78% longer when presolved. The exact reasons for this
have been difficult to discern. Changing CPLEX’s parameters again reveals different
results. For example, enabling the “numerical precision emphasis” in CPLEX makes
the presolved instances faster than non-presolved.

Examination of the results suggest that the biggest improvements are gained when
presolving can reduce the number of element and reified linear constraints in an instance.
Overall, the results indicate that this presolving technique is effective when compiling for
a MIP target, and suggest that multi-pass compilation should be the default compilation
approach whenever a user is targeting a MIP solver.

4.5.2 Two Pass Compilation: For CP

Table 4.3 shows a summary of the results when using the implemented two pass presolving
for the CP target solver Chuffed (Chu, 2011), a lazy clause generation solver that has of-
ten performed well in the MiniZinc challenge. This solver was selected, instead of Gecode,
because it supports a different subset of global constraints and, thus, its propagation could
be complementary to Gecode’s. As mentioned above, Gecode performs a copying-based

N Var Con Dom Cmp Sol Tot

M
ed

% 271 98 100 96 188 - -
132 90 92 91 194 100 101
57 89 95 89 195 98 103

G
eo
% 271 90 92 85 170 - -

132 84 88 76 179 97 112
57 85 89 75 187 93 105

Table 4.3: Two pass compilation for a CP solver experiment.
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Figure 4.6: Comparison of single pass and two pass compilation for a CP solver.

search. When copying, the solver simplifies the program somewhat, removing constraints
that will no longer propagate and replacing some constraints with more appropriate de-
compositions where appropriate. Thus, Gecode performs much of the same work that a
second compilation pass would perform making it unnecessary.

Table 4.3 is organised in the same way as Table 4.1, except for the Pre column, which
is not present here since Chuffed does not have a separate presolve step. Similarly, the
accompanying plot in Figure 4.6 is organised in the same way as that of Figure 4.5.

For Chuffed, some reduction in program size and solving time was expected, as it
supports fewer global constraints than Gecode and, thus, should benefit from the stronger
propagation. A significant increase in relative compilation time was also expected, since
two similar compilations must be performed.

Table 4.3 shows that, on the full set of 271 instances, we often have a reduction in prob-
lem size with a typical compilation time increase of 70%. The compile time increases with
the impact of presolving, with an increase of 87% in the group of comparable instances.
Solve time is often reduced but often not enough to compensate for the compilation time.

Figure 4.6 shows a different picture from the MIP experiments. Here we see far more
instances above the line, meaning that the total time is longer with two pass compilation.
However, looking at the upward pointing arrows we see that many of these cases are
really only a few seconds slower, indicating that the slow down is due to the cost of
compiling twice and not from solving being much slower. However, some of them are due
to the programs being harder to solve. The presolving does allow several instances to
be compiled and solved faster but, in general, it has little impact. Three down-pointing
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Model N Var Con Dom Cmp Sol Tot
Amaze-2 1 89 94 94 119 201 190
Amaze-3 4 95 95 96 146 119 126
Black-hole 2 99 100 93 127 100 100
Fastfood 4 95 96 81 170 88 88
Fillomino 3 88 92 90 197 68 68
Ghoulomb 3 85 84 84 166 97 102
Handball 5 84 87 81 211 57 80
Mario 6 73 70 64 189 99 99
Nonograms 3 93 100 93 196 99 119
OC-Roster 1 94 97 89 182 114 116
Pattern-set-mining-k1 1 98 100 98 199 98 105
Pattern-set-mining-k2 1 45 53 49 186 98 177
Radiation 2 51 59 16 170 89 106
Cyclic-RCPSP 3 86 87 66 187 91 94
Ship-schedule 6 100 100 100 223 99 135
Still-life 5 97 98 97 214 104 117
TPP 2 93 91 91 195 102 120
Train 1 80 88 94 180 98 99
VRP 1 65 98 71 196 83 83
WCSP 3 74 100 27 200 91 96

Table 4.4: Per-model summaries for CP experiment.

arrows stand out as having improved significantly. In little more than half of the cases,
presolving actually hurts performance, even doubling the total time in one case.

Further analysis of the results identified two classes of problem where presolving ap-
pears to hurt performance. The first case is when the total time is dominated by compila-
tion time. In this case, compiling twice adds a significant overhead. We can address this
issue by limiting the time available for presolving. The second case occurs when solving
the presolved model takes much longer than the non-presolved. Here the presolving ap-
pears to have some negative effect on the search strategy and, possibly, on the nogoods
learned during search. It would be useful to further investigate how to detect these cases.
However, this investigation is made difficult by the sensitivity of different solvers to slight
changes in input and parameters (Fischetti et al., 2014).

Table 4.4 presents a model-by-model breakdown of the results. Some of the interesting
cases are discussed here.

Amaze-2: Despite reducing the size of the program to be solved, presolving appears to
make solving much harder. In exploring this behaviour by hand, it was discovered
that modifying the search strategy can change whether two pass compilation is ben-
eficial or not. The model defines a search strategy that labels two specific arrays
of variables before any others. Placing one array first makes presolving hurt per-
formance, while placing it second makes presolving increase performance. Enabling
random tie-breaking in Chuffed, removes this difference in performance.
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Fillomino: Presolving successfully reduces the size of these programs by about 10%. Achiev-
ing this reduction costs twice the compilation time. Despite this, the solve time was
improved enough for the total solve time to be improved by 32%.

Handball: Presolving again doubles the cost of compilation time and, again, improves
solving enough for the total solve time to be improved by 20%.

Pattern-set-mining-k1 and k2: For k=1 we see little impact of the two pass compilation.
However, for k=2 we see that the constraint programs are about half the size when
compiled using the two pass compilation. However, this does not translate into faster
total time. Solve time was only improved slightly and the cost of compilation was
high in comparison, leading to a large overhead in total time.

VRP: Despite compile time being doubled, for this model we see a large reduction in the
number of variables, with solve time also being reduced. However, the compile time
was small in comparison to the solve time and, thus, had little effect on the total
time.

WCSP: Another case where compilation time was doubled. However, solving time was
reduced by 9%, which was enough to pay for the compilation time.

In these experiments we see that using the multi-pass compilation approach when
targeting a CP solver (or maybe just a solver that is similar to the presolving solver)
is not often worth it. This presents a counter argument to the suggestion that multi-
pass compilation should be a default setting. Additionally, from the case of the Amaze-2
instance, if multi-pass compilation was the default, a user may be forced to reason about
how this may help or hinder their chosen search strategy, potentially adding unnecessary
cognitive overhead to modelling.

4.5.3 Two Pass Compilation: Case Study

To demonstrate how path-based multi-pass presolving can be used in practice, a case
study is presented here for a model that produces large MIP formulations. The Resource
Constrained Modulo Scheduling Problem (RCMSP) is a cyclic resource constrained project
scheduling problem with generalised precedence relations, scarce cumulative resources,
and tasks that are repeated infinitely. The objective is to find a cyclic schedule that first
minimizes the period of the schedule and then the makespan.

The model used (shown in Listing 4.11) is mainly comprised of linear constraints,
reified logical expressions and a set of cumulative constraints. The objective is also de-
fined in terms of non-linear min and max constraints over a set of variable expressions.
Compilations of this model for MIP result in long FlatZinc programs, mainly due to the
large overhead introduced by the decomposition of the cumulative constraint (described
in Section 2.3.4). To give an idea of how large this compilation can be, compiling this
constraint, for just 10 tasks, with start times, durations, and requirements in the range
1..10, results in 1,211 variables and 1,420 constraints.
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1 % rcmsp.mzn
2 include "cumulative.mzn";
3 int: n_res; set of int: Res = 1..n_res; array [Res] of int: rcap;
4 int: n_tasks; set of int: Tasks = 1..n_tasks;
5 array [Tasks] of int: d =
6 [ if i in {1, n_tasks} then 0 else 1 endif | i in Tasks ];
7 array [Tasks, Res] of int: rreq;
8 int: n_prec; set of int: Prec = 1..n_prec;
9 array [Prec, 1..4] of int: prec;

10 int: t_max = sum(i in Prec where prec[i, 3] > 0)(prec[i, 3]);
11 set of int: Times = 0..t_max; set of int: Iters = 0..n_tasks;
12
13 array [Tasks] of var Times: s; array [Tasks] of var Iters: k;
14 var Times: makespan =
15 max([ s[i] - k[i] * s[n_tasks] | i in Tasks where i > 0 /\ i < n_tasks ])
16 - min([ s[i] - k[i] * s[n_tasks] | i in Tasks where i > 0 /\ i < n_tasks ])
17 + 1;
18 var 0.. (t_max * (1 + t_max)): objective = s[n_tasks] * t_max + makespan;
19
20 constraint forall(i in Prec)(
21 let { var bool: b } in (
22 ( b <-> ( s[prec[i,1]] + prec[i,3] <= s[prec[i,2]] ) )
23 /\ k[prec[i,1]] + not(b) <= k[prec[i,2]] + prec[i,4]
24 ));
25
26 constraint forall(i, j in Tasks where i < j)(
27 if exists(r in Res)(rreq[i, r] + rreq[j, r] > rcap[r])
28 then s[i] + d[i] <= s[j] \/ s[j] + d[j] <= s[i]
29 else true
30 endif);
31
32 constraint forall(r in Res)(
33 let {
34 set of int: ResTasks =
35 { i | i in Tasks where rreq[i, r] > 0 /\ d[i] > 0 },
36 int: sum_rreq = sum([0] ++ [rreq[i, r] | i in ResTasks])
37 } in (
38 if sum_rreq <= rcap[r]
39 then true
40 else cumulative(
41 [ s[i] | i in ResTasks ],
42 [ d[i] | i in ResTasks ],
43 [ rreq[i, r] | i in ResTasks ],
44 rcap[r])
45 endif));
46
47 constraint k[n_tasks] = max([ k[i] | i in Tasks where i < n_tasks])
48 /\ forall(i in Tasks where i < n_tasks)(
49 s[i] + d[i] <= s[n_tasks]);
50
51 constraint s[1] = 0 /\ k[1] = 0;
52
53 solve minimize objective;

Listing 4.11: Model for RCMSP problem.
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Figure 4.7: Geometric mean optimality gap for the RCMSP problem.

The instances used for the experiment are available from the MiniZinc benchmarks,
which are available online1. The 20 instances used are grouped into easy, medium, and
hard classes. Each instance was compiled using three different configurations. The first
configuration compiles the instances in a single pass (1P). The second uses a two pass (2P)
presolving approach with root-node propagation from Gecode (version 4.3.3). Finally, the
third configuration uses two pass presolving with shaving (Sh), which is applied using
Gecode to tighten variable bounds before solving. In all three configurations, the re-
sulting FlatZinc was passed to the CPLEX solver (version 12.6). Again, to account for
randomness, each instance was solved 6 times using different random seeds. A time limit
of 1800 seconds was used, and the memory usage was limited to 4Gb. The experiments
were executed on an Intel Core i5 processor clocked at 3.20Ghz with 8Gb of RAM. The
solver was instructed to use only one thread for the search.

The results are summarised in Table 4.5. The table shows the size of the resulting
programs, in terms of the number of variables and constraints. The mean compilation time
and total solve time across the 6 runs is also presented. The geometric mean optimality
gap, which is calculated as the best solution found divided by the best objective bound
discovered at timeout, is listed here to give some idea of how close the timed out instances
were to being solved by the different configurations. The smaller the gap, the closer to an
optimal solution the solver was, with 0% indicating a proven optimal solution. For each
statistic, the result for a single pass (1P) is shown as is, with the two pass (2P), and two
passes with shaving (Sh) results shown as percentages of the single pass result. The best
configuration (with a significant lead) for each instance is highlighted in bold.

The tables show that presolving reduced the number of variables and constraints in all
cases. Interestingly, shaving always results in more variables than root-node propagation
alone. This can be explained by how the new linearisation library (Belov et al., 2016)

1https://github.com/MiniZinc/minizinc-benchmarks

https://github.com/MiniZinc/minizinc-benchmarks
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Instance Variables Constraints Compilation
1P 2P (%) Sh (%) 1P 2P (%) Sh (%) 1P (s) 2P (%) Sh (%)

easy-1 18116 67.98 78.43 23804 67.62 68.03 1.62 66.77 237.15
easy-2 9328 80.62 86.51 12140 80.29 79.92 0.89 84.62 135.08
easy-3 12047 84.99 88.06 15769 84.80 83.37 1.58 94.63 472.53
easy-4 3783 85.36 89.27 5106 85.59 84.14 0.50 96.00 205.67
easy-5 10196 75.07 84.98 13357 74.75 75.13 0.89 80.90 189.89
easy-6 7130 83.90 90.63 9305 83.69 83.47 0.72 86.57 134.03
medium-1 3790 85.38 89.26 5114 85.61 84.16 0.49 100.68 216.10
medium-2 3330 85.71 90.72 4527 86.02 85.42 0.44 96.60 203.02
medium-3 9020 66.21 75.94 12250 66.96 67.77 1.08 89.83 1478.43
hard-1 59656 64.59 78.17 77434 63.70 63.95 5.23 65.99 546.27
hard-2 79973 63.31 78.32 103977 62.44 62.69 7.37 60.36 935.12
hard-3 39551 69.90 82.13 51506 69.26 69.49 3.63 71.59 371.59
hard-5 5903 84.31 88.34 7818 84.29 82.80 0.76 96.93 282.02
hard-6 9360 85.11 89.51 12253 84.92 83.45 1.18 97.88 400.85
hard-7 15178 65.36 77.64 20435 65.81 66.44 1.88 83.17 2551.73
hard-8 7965 66.38 75.63 10835 67.19 68.05 0.95 86.47 1100.53
hard-9 18505 78.77 87.75 24057 78.33 78.22 1.77 80.43 205.74
hard-10 33532 70.92 83.19 43619 70.28 70.54 3.20 69.90 313.07
hard-11 16271 67.54 79.41 21272 67.01 67.47 1.37 72.35 240.68

GeoMean Gap Mean Total Time
1P (%) 2P (%) Sh (%) 1P (s) 2P (%) Sh (%)

easy-1 0.00 0.00 0.00 110.60 73.56 71.55
easy-2 0.00 0.00 0.00 13.47 98.21 118.47
easy-3 0.00 0.00 0.00 253.92 123.54 137.24
easy-4 0.00 0.00 0.00 34.66 51.44 42.24
easy-5 0.00 0.00 0.00 128.30 126.25 45.79
easy-6 0.00 0.00 0.00 15.51 132.05 105.53
medium-1 0.00 0.00 0.00 55.63 76.70 93.03
medium-2 0.00 0.00 0.00 23.25 92.40 73.01
medium-3 6.12 6.11 4.86 1801.08 99.99 100.83
hard-1 100.00 100.00 50.02 1805.23 99.99 101.29
hard-2 100.00 100.00 100.00 1807.37 99.84 103.41
hard-3 85.48 87.88 3.95 1803.63 99.94 100.55
hard-5 0.00 0.00 0.00 409.79 139.02 33.25
hard-6 12.33 11.86 0.00 1801.18 100.00 4.22
hard-7 88.85 89.15 33.03 1801.88 99.98 102.56
hard-8 50.41 48.86 29.87 1800.95 99.99 100.53
hard-9 11.16 11.09 0.00 1801.77 99.98 45.74
hard-10 48.67 48.21 0.36 1803.20 99.95 100.38
hard-11 45.57 45.62 0.00 1801.37 99.98 7.35

Table 4.5: Path-based two pass presolving comparison for the RCMSP problem.
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Figure 4.8: Total solve time for the RCMSP problem.

attempts to introduce auxiliary variables for ranges within a domain, rather than for all
values. While shaving aims to only tighten the bounds of variables, the propagation that
this enables can introduce holes in the domains of variables and, as a result, more ranges
need to be represented. The number of constraints resulting from the presolving methods
are similar and there is no obvious pattern. Of note however, is the instance hard-2 which
had 103,977 constraints reduced down to only 64,919 (62.44%), an impressive reduction.

Compilation times are affected as expected, with two pass presolving being quite cheap.
It reduces the number of variables and constraints required so significantly, that the re-
sulting compilation is faster than with single pass. Shaving, being an expensive technique,
increases significantly the compilation time. It is always slower, and sometimes signifi-
cantly slower than single pass. One instance, hard-4 has been omitted since its shaving
exceeded the memory limit.

For easy instances, the three approaches are all sufficient to solve the problem to
optimality in less than 1800 seconds. In the case of the medium and hard instances,
however, a trend emerges. While root node propagation does not appear to remove the
hard parts of the programs resulting in a similar performance to single pass compilation,
shaving does seem to remove these difficult parts, allowing harder instances (hard-5, hard-6,
hard-9, and hard-11 to be solved within the time limit and obtaining much better optimality
gaps. Recall however that, as the mean total time shows, root node propagation can result
in faster compile times and can still result in faster total solving.

The optimality gaps and solving times are visualised graphically in Figure 4.7 and Fig-
ure 4.8. As in the plots presented earlier, the order of instances is arbitrary, in this case
sorted by the mean value for the single pass approach. Figure 4.7 clearly shows that the
shaving approach results in better optimality gaps for all but one instance. Figure 4.8
shows that shaving can solve instances much quicker than the single pass and root node
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propagation approach. While it is slightly slower in the cases where all runs timeout, this
is simply due to the extra cost of performing the shaving during compilation.

This case study has shown that while two pass compilation may reduce the number of
variables and constraints in programs, it will not always speed up solving. Experimenting
with different presolving configurations can, however, yield huge speed-ups. Shaving, for
this specific problem, appears to have a big impact on solve times.

4.6 Conclusion

This chapter had two main contributions. The first, variable paths, presents a method for
preserving structure during compilation. The second, path-based multi-pass presolving,
presents an improved approach that integrates whole program optimisation with variable
paths, allowing useful information, such as tighter domains and variable aliases, to be
communicated between several distinct representations of the same instance. Several mo-
tivating examples were presented in Section 4.3.1, demonstrating the need for presolving
more than just the top-level variables in a compiled program. Further, evaluations of the
approach when applied to two different targets was presented showing that, for CP solvers,
compiling twice is often too slow to justify the use of multi-pass compilation by default
while, for MIP solvers, little compilation overhead is seen with a significant reduction
in program size and solving times. A case study is also presented showing how for the
RCMSP problem, a multi-pass presolving that makes use of structural information can
be beneficial, allowing several hard instances to be solved within a given time limit when
stronger techniques are applied during presolving. In conclusion, path-based multi-pass
presolving can make the compilation of constraint models more robust, with a low average
time overhead, and the potential to improve performance significantly.

4.6.1 Limitations

This type of presolving may be unnecessary for a CP solver. Most CP solvers will have
their own propagation algorithms which should be able to detect when a constraint is
entailed and remove it automatically. This motivates the implementation of different
passes that may be more beneficial for different kinds of solvers.

In this chapter, only a single form of multi-pass presolving was explored, one where a
CP solver is used as the presolver. Other kinds of passes have not been explored yet and
may provide interesting results. For example, Dekker (2016) presents a method that can
replace a MiniZinc predicate with a table constraint by enumerating the possible solutions
for it. This could be added as an extra presolving pass in a multi-pass compilation.

4.6.2 Further Research

The contributions of this chapter can be extended and expanded upon in several ways. It
may be interesting to explore the benefits of presolving iteratively until a fixed-point
is reached and of synchronising additional information such as constraint entailment.
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The main aspects of the framework that this chapter relates to are highlighted on
the framework diagram above. The variable paths, that allow a representation of the
model structure to be transferred to later stages of the modelling, compilation, and
solving process are represented here as the dashed red arrows from model to instance,
and instance to programs. Domain information can also be seen being raised from
the solver back to the program, which, due to variable paths, is also raised to the
instance. This learned information can then be communicated during compilation of
the next program, which will be used to solve the instance.

Stronger inference techniques should also be explored, such as supporting arbitrary preci-
sion integers and infinities. This could safely and correctly tighten the domains of variables
to a point where the target solver can handle instances that previously were out of reach.

There are also several important applications of the new path-based variable synchro-
nisation method that could be explored further. An obvious application of variable paths
is in the automated construction of hybrid solvers for arbitrary models. Currently, it is
difficult to automatically create a hybrid for a model that communicates on more than
just the top-level variables without giving all solvers the same lowest common denomina-
tor program. Path-based variable synchronisation would allow for greater communication
between solvers.

A small but interesting adjustment to the current approach would be to use a modified
presolving library that creates relaxations of a problem for the presolving solver, avoiding
the cost of decomposition entirely and focusing the presolving only on the global con-
straints in a program. This can be achieved by replacing unwanted predicate bodies with
true in the presolver’s library.

Another interesting approach is to merge both the presolving library and the target
library together for use by the presolver. This approach would maximise the overlap of
introduced variables, improving communication, but it is also likely make compilation
more expensive.
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Chapter 5

Discovering Structure

5.1 Introduction

As explored in Chapter 3, constraint problems can be modelled in many different ways, and
the choice of model can have a significant impact on the efficiency of the resulting programs,
that is, on the time that it takes solvers to find (good enough) solutions. Unfortunately,
developing good models is often a challenging, iterative process that requires considerable
levels of expertise and consumes significant amounts of resources. With this in mind, this
chapter aims to answer the second sub-goal presented in Chapter 1:

Can the explicit structure of a model guide the search for and exposure of
implicit structure?

To answer this question, the chapter presents an approach that supports users through
this iterative process by suggesting possible model improvements based on the detection
of implicit model structures, such as global constraints.

Motivation

Using global constraints in a model has three significant advantages. The first advantage
is improved efficiency when using one of the many solvers that implement specialised
propagators for global constraints. In such cases, having the global constraint appear
explicitly in the model can considerably improve the efficiency of the solving process for
all instances of the model. The second advantage is improved efficiency even when using
solvers that do not implement the global constraints. This is because the presence of
global constraints in the model provides information regarding the implicit structure of
the model that might not have been apparent without them. This information can also be
used to improve the effectiveness of the resulting constraint program. For example, global
constraints can facilitate the automatic detection of symmetries (Van Hentenryck et al.,
2005), which can then be exploited either by adding symmetry breaking constraints or by
modifying the search. Also, as discussed in Chapter 4, the presence of a global constraint
in the model can be used by the compiler to make better decisions during compilation, by
tightening variable bounds and selecting appropriate decompositions when a target solver
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does not support the inferred global constraint. The third advantage is the fact that global
constraints might make the model more readable to modellers.

Unfortunately, this might be difficult for modellers. For example, naive modellers might
simply be unaware of global constraints, while expert modellers might be unfamiliar with
the globals available for a specific modelling language. Further, globals might only apply
to alternative (or dual) model viewpoints (Law et al., 2002) of which the modeller may not
be aware (e.g., zero-one variables that could explicitly represent integer variables). Such
viewpoints can also be seen as implicit structures and, if made explicit, can in turn enable
the detection of other implicit structures. As a result, techniques able to detect implicit
structures in a model are useful.

Contribution

This chapter presents a method, implemented by the MiniZinc Globalizer, which uses
explicit model structure to guide the discovery of implicit structure that can
be made explicit. In particular, given a model for a constraint problem and several input
data files, the method suggests global constraints as possible replacements for combinations
of simple constraints from the model. This method can be applied iteratively, allowing the
system to expose, for example, alternative viewpoints (Cheng et al., 1999) of the variables
in the model which, when represented as global constraints and made explicit, enable the
detection of other implicit structures. This helps users write higher level models that can
be solved more efficiently, can be compiled better (see Chapter 4), and can improve the
modeller’s understanding of the problem.

The method exploits both the explicit and implicit structure of the model by consider-
ing combinations of the constraints, collections of variables, parameters and loops already
present in the model, as well as parameter data from several data files. Each candidate
global constraint is assigned a score by comparing a sample of its solution space with that
of the part of the model it is intended to replace. The top-scoring candidates are presented
to the user through an interactive display, which shows how they could be incorporated
into the model.

This method has many novel characteristics when compared to other automatic con-
straint model inference and transformation methods (e.g., Beldiceanu et al. (2011, 2012),
Bessiere et al. (2007), Charnley et al. (2006b), Frisch et al. (2001, 2003, 2005), and Gent
et al. (2007a); see Section 5.3 for a detailed discussion). First, most other methods focus
on using the known solutions and non-solutions of a constraint problem to infer the con-
straints for an instance of a problem. Instead, our approach splits an already complete
and correct model, along with several data files, into submodels. The candidate global
constraint is then allowed to be directly associated with the group of constraints it re-
places (those in the submodel). Second, the generation of arguments for the candidate
global constraints uses the variables, parameters and collections of variables appearing in
the associated submodel. Likely arguments for constraints can then be generated more
efficiently. Further, it means the candidate global constraints are defined at the model
level rather than at the instance level. This is important not only for the user, but also
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for the third novel characteristic: the method uses the solutions from different instances
(rather than those from a single one) to generate, rank and filter the candidates. This
increases its accuracy considerably (as shown experimentally in Section 5.6).

The resulting tool – the MiniZinc Globalizer – was originally made available through a
web interface however this service is no longer available. A new version that is integrated
with the MiniZinc IDE and allows off-line use is in development and a release is planned.
This version can be more easily integrated into a user’s typical modelling workflow.

Structure of the Chapter

The rest of the chapter is organised as follows. Section 5.2 introduces a model that will
be used as a running example throughout the chapter, together with some common global
constraints that have not been discussed thus far. Section 5.3 discusses related work.
Section 5.4 introduces the proposed method to globalize a constraint model and later
extends it to be able to infer relationships among hidden structures by representing these
hidden structures as constraints to be detected in an initial pass. Section 5.5 provides
some details regarding the implementation of the method used in this chapter to perform
the experiments reported in Section 5.6, which show that the method can detect these
hidden structures and, in addition, is not prohibitively slow. Finally, Section 5.7 presents
the conclusions.

5.2 The Progressive Party Problem

A version of the Progressive Party Problem will be used as a running example in this
chapter. The goal in solving this problem is to organise a party between the crews of
several boats at a yacht club. The rules of the party state that only certain boats can host
visitors, while the crews of the remaining boats must take turns visiting these host boats
in different time periods. Further, the host boats have capacities that limit the number
of guests they can accommodate, each guest crew can only visit a host once, and guest
crews cannot meet more than once.

The first known model for this problem was presented in Smith et al. (1996), which
compared a zero-one integer program (a specialisation of MIP, involving only zero-one
variables) for this problem against a CSP. As seen previously, MIP formulations often
require many more constraints to describe an instance than a CP formulation. The integer
program suffered from this issue and, as a result, had too many constraints, while a second
formulation was able to successfully find a 13-host solution.

A MiniZinc version of the second model is shown in Listing 5.1. Lines 1–6 declare
the parameters of the model. Line 1 declares the first three parameters: the number of
time periods p, number of host boats nh, and number of guest crews ng. These three
parameters are used in lines 2–4 to declare the sets of designated host boats HostBoats,
guest crews GuestCrews and time periods Time, where each host boat, guest crew and time
period is identified by a distinct integer in the ranges 1..nh, 1..ng and 1..p. These sets
are used in lines 5 and 6 to declare two arrays of parameters representing the number of
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1 int: p; int: nh; int: ng;
2 set of int : HostBoats = 1..nh;
3 set of int : GuestCrews = 1..ng;
4 set of int : Time = 1..p;
5 array [GuestCrews] of int : crew;
6 array [HostBoats] of int : capacity;
7
8 array [GuestCrews, Time] of var HostBoats : hostedBy;
9 array [GuestCrews, HostBoats, Time] of var 0..1 : visits;

10 constraint forall (g in GuestCrews, h in HostBoats, t in Time)
11 ( visits[g,h,t] = 1 <-> hostedBy[g,t]=h ); % channel
12
13 constraint forall (h in HostBoats)
14 ( forall (g in GuestCrews)
15 (sum (t in Time) (visits[g,h,t]) <= 1) % at_most_one_visit
16 /\ forall (t in Time)
17 (sum (g in GuestCrews) (crew[g]*visits[g,h,t]) <= capacity[h]));
18 % capacity
19
20 array [GuestCrews, GuestCrews, Time] of var 0..1 : meet;
21 constraint forall (k, l in GuestCrews where k<l)
22 ( forall (t in Time)
23 (hostedBy[k,t] = hostedBy[l,t] -> meet[k,l,t] = 1) % will_meet
24 /\ sum (t in Time) (meet[k,l,t]) <= 1 ); % meet_once
25
26 solve satisfy;
27 output [show(hostedBy)];

Listing 5.1: MiniZinc model for the Progressive Party Problem based on the second
formulation proposed in Smith et al. (1996).

members in each guest crew and the maximum capacity of each boat. The values for all
these parameters are provided in data files. The following is a data file for the model:

% party.1.dzn

crew = [6, 5, 4, 4, 4, 3, 2, 2, 2, 2];

capacity = [7, 10, 8, 8, 11];

nh = 5;

ng = 10;

p = 3;

The main decision variables in the model are declared in line 8 by a two dimensional
array, where the variable selected by the array access hostedBy[g,t] represents the boat
in HostBoats that hosts guest crew g at time t, with g coming from the set GuestCrews,
and t coming from the set Time. Lines 9–11 declare a three dimensional array of auxiliary
zero-one variables satisfying a constraint (labelled channel) that ensures auxiliary variable
visits[g,h,t] is 1 if and only if hostedBy[g,t]=h. That is, it is 1 if guest crew g visits
host boat h at time t. These auxiliary variables are used in lines 13–17 to (a) constrain
each guest crew g to visit each host boat h at most once (by summing up the value of
visits[g,h,t] for every time period t, and ensuring the sum is less or equal to 1); and
(b) ensure the capacity constraints are satisfied (by summing up the members crew[g]

of any guest crew g that visits the same host boat h at the same time t, and ensuring
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that the sum is less than or equal to capacity[h]). Note that the constraint (a) is set by
lines 13–15 (labelled at_most_one_visit), while constraint (b) is set by line 13 (labelled
capacity) together with lines 16–17. This is achieved by using conjunction (represented
by the symbol /\) and nested forall loops to build a conjoined constraint. This conjoined
constraint could easily be replaced by two constraints, by repeating line 13 right before
line 16 (and appropriately dealing with parenthesis and semicolons). While this might
be considered simpler, it might also be considered less structured and, thus, less clear to
readers, as they would be required to notice that both loops use the same index sets.

Finally, lines 20–24 introduce another three dimensional array of auxiliary zero-one
variables with a constraint (labelled will_meet) that ensures that the auxiliary variable
meet[k,l,t] is 1 if and only if hostedBy[k,t]=hostedBy[l,t]. That is, it is 1 if guest
crews k and l met at time period t. These auxiliary variables are then used to constrain
each pair of guest crews to meet at most once (labelled meet_once). Again, the constraints
are conjoined and nested within the outer forall set in line 20.

As mentioned in Section 2.3.4, a global constraint establishes a relation between a non-
fixed number of variables. We have already discussed the well-known alldifferent constraint.
We will now introduce another common class of global constraint that will be used in the
rest of this chapter: channelling constraints (Cheng et al., 1996), which are often added
to establish a bijective connection between two different arrays of variables. This is useful
when, for example, the problem can be modelled using different types of variables that
represent the same information redundantly. In such cases, it is often advantageous to
create the two kinds of variables, use them to define the different (possibly redundant)
constraints, and then add a channel constraint to connect the two types of variables
(and, thus, their associated constraints). This can be advantageous either because some
constraints are easier to express when using a given type of variable, or because the aim
is to create two alternative models (often referred to as duals) that can benefit from each
other’s propagation by means of the channelling constraints. There are two main kinds
of channelling constraints. The first one is inverse(XVars,YVars) which connects the two
arrays of integers variables XVars and YVars as follows: XVars[i] = j ↔ YVars[j] = i.
This constraint is often used when modelling problems involving successor and predecessor
variables, with XVars[i] indicating the task that will follow task i and YVars[j] indicating
the task that should precede task j. The second one is channel(x,BVars), which connects an
integer variable x with an array of zero-one variables BVars as follows: x= j↔BVars[j] =
1. As explored in Section 2.3.2 and Section 2.3.3, some constraints sometimes require a
binary variable view of some integer variables, and vice-versa. The channel constraint
encodes the link between the integer and binary view of the variables.

Another constraint of interest for this Chapter is the bin-packing-capa(C,x,w) global
constraint. This is a variant of the bin-packing constraint described in Section 2.3.4, where
objects in the array x with weights given by array w are packed in bins, such that the
capacities of the bins given by array C are not violated. More formally, each object has a
weight wi and each bin has a capacity Cj , and the variable xi is assigned to value j if object
i is packed in bin j. The global constraint can be decomposed as ∀j : Cj ≥

∑
iwi(xi = j).
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Bin-packing has found use in several fields, ranging from loading cargo into delivery trucks
to stock-cutting problems (Coffman et al., 1997).

An expert modeller can immediately see that line 15 expresses an alldifferent global
constraint on the hostedBy variables for each g in GuestCrews, which would be writ-
ten as alldifferent([hostedBy[g,t] | t in Time]). This can be seen by examining
the channel constraint which connects visits to the hostedBy variables. Since for a
fixed guest and host only one visits variable will be set to 1, a host can only be as-
signed for a fixed guest and time in the hostedBy variables once. It is less obvious that
line 17 can be expressed with the bin-packing-capa constraint with arguments: capacity,
[hostedBy[g,t] | g in GuestCrews], and crew. The capacity constraints encode this with
the reification of xi = j being provided by the channel constraints. The goal then, is to
automatically detect these global constraints so that a user may add them to their model.

To simplify the discussion of the running example, the remaining sections will use
the following shorthand notation to express the main structure of the above model:
(∀GHT : channel) ∧ (∀H : (∀G : at_most_one_visit) ∧ (∀T : capacity)) ∧ (∀GG : (∀T :
will_meet) ∧ meet_once), where channel denotes the constraint appearing in lines 10–11,
at_most_one_visit that in line 15, capacity that in line 17, will_meet that in line 23,
and meet_once that in line 24. Universal quantifications over G, H and T correspond to
loops over the sets GuestCrews, HostBoats, and Time, respectively. We call G,H and T

the index sets of their loops. For simplicity, we always write nested forall loops using a
single quantifier and disregard the order of their index sets, e.g., ∀GHT is equivalent to
∀T ∀GH, to ∀H ∀T ∀G, and so on.

5.3 Related Work

There are two main lines of research related to this work: constraint acquisition and
automatic model transformation. In the acquisition line of work, the closest works are to
be found in Beldiceanu et al. (2011, 2012), which introduced Constraint Seeker to infer
global constraints from positive and negative examples of solutions, and Model Seeker
to infer an entire constraint program (i.e., a concrete set of variables and constraints)
given a set of complete solutions to a constraint problem. Note, that it is common in the
constraint programming literature to refer to a constraint program as a “model”, but in
this thesis we distinguish between parametric models and concrete programs. Constraint
Seeker and Model Seeker differ from the method presented here both in motivation and
methodology. The motivation of this chapter is to identify parts of a given model that can
be replaced by global constraints. Having access to an initial model significantly affects the
methodology, as it allows us to make extensive use of the explicit information contained
in the model. In particular, it allows us to (a) focus on submodels that are equivalent to
a single global constraint, as opposed to a conjunction of them, (b) significantly reduce
the search for possible combinations of global constraint arguments, while increasing the
likelihood of obtaining meaningful ones, and (c) consider not only the solution variables,
but any other intermediate variables in the model and its input data. Having the input
data also affects the methodology, as it allows us to (a) better generate candidates and (b)
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automatically generate as many solutions as required for ranking. For example, the input
data enables us to derive bin-packing constraints for the Progressive Party problem, while
Model Seeker cannot infer these from the solutions alone, since the constraints depend on
fixed parameters for the weights and capacities that are only available in the input data.

The method presented here also relates to the CGRASS system (Frisch et al., 2001,
2003), which among other model transformations, syntactically matches cliques of dis-
equality constraints that can be replaced by an alldifferent constraint. This requires the
modeller to implement the constraint using the exact structure to be matched. The
approach taken in this chapter goes beyond this, to infer any of a set of global constraints
using a general (rather than specialised) method, and does so for a model, rather than for
single instances. Syntactic matching could be used however to catch common formulations.

Other acquisition approaches focus on the automatic generation of implied constraints.
A general method is described in Charnley et al. (2006b), where machine learning is
used to induce constraints for the solutions of small problems, and a theorem prover is
then used to show the constraints hold for the model. The generality of the method
results in applicability restrictions: the model can only be parameterised by a single
integer, and it needs to be expressible in first order logic. In our case the constraints are
already predetermined (the list of global constraints considered) and, thus, the data can
be as complex as necessary. Further, we do not attempt to prove the correctness of the
constraints as this reduces to proving the equivalence of two models, which is undecidable.

Another related method is that of CONACQ (Bessiere et al., 2005a) which, given ex-
amples of solutions and non-solutions for a target problem and a library of constraints,
acquires constraint networks, that is, conjunctions of constraints in the library that are
consistent given solutions and non-solutions. It uses the SAT-based version space algo-
rithm, where the version space is the set of all constraint networks defined from the library
that are consistent with the examples. While general and powerful, it considers instances
of models, rather than models themselves. Further, it relies on the library of constraints
being relatively small. This is not the case for the approach presented in this chapter.

Finally, (Bessiere et al., 2007) describes how implied parametric constraints can be
learned by first adding a large disjunction of constraints with different parameters that
together are trivially implied, and then successively pruning that disjunction by removing
constraints that do not change the solutions found. This method goes further than what we
attempt in that it infers parameters from solutions, while we only try to match parameters
that are already given in the model. For functional dependencies, however, we can infer
parameter sets, as in the Schedule example in Section 5.6.

In the area of model transformation, the work on Essence’ (Frisch et al., 2005; Gent et
al., 2007a) is somewhat related. These systems transform a model specified in a highly ab-
stract manner into a more concrete one. The method in this chapter moves in the opposite
direction: we detect parts of a model that are instances of a more generic model pattern.
While this generic pattern is currently restricted to global constraints, it is straightfor-
ward to extend the method to use any other useful constraint pattern (see Section 5.4.5).
In fact, globalization and automatic transformation are complementary: starting from a
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int: p; int: nh; int: ng;
set of int : Hosts = 1..nh;
set of int : Guests = 1..ng;

array [Guests] of int : crew;
array [Hosts]  of int : capacity;

array [Guests, 1..p] of var Hosts : hostedBy;

array [Guests, Hosts, 1..p] of var 0..1 : visits;
constraint forall (g in Guests, h in Hosts, t in 1..p)
  (visits[g,h,t] = 1 <-> hostedBy[g,t]=h);@

constraint forall (g in Guests, h in Hosts)
  (sum (t in 1..p) (visits[g,h,t]) <= 1);

constraint forall (h in Hosts, t in 1..p)
  (sum (g in Guests) (crew[g]*visits[g,h,t]) <= capacity[h]);

solve satisfy;
output [show(hostedBy)];
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include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "inverse.mzn";

include "inverse_set.mzn";

include "lex_greater.mzn";

include "lex_greatereq.mzn";

include "lex_lesseq.mzn";

include "lex_less.mzn";

include "lex2.mzn";

include "link_set_to_booleans.mzn";

include "maximum.mzn";

include "member.mzn";

include "minimum.mzn";

include "nvalue.mzn";

include "partition_set.mzn";

include "range.mzn";

include "regular.mzn";

include "roots.mzn";

include "sliding_sum.mzn";

include "sort.mzn";

include "strict_lex2.mzn";

include "subcircuit.mzn";

include "sum_pred.mzn";

include "table.mzn";

include "value_precede.mzn";

include "value_precede_chain.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "inverse.mzn";

include "inverse_set.mzn";

include "lex_greater.mzn";

include "lex_greatereq.mzn";

include "lex_lesseq.mzn";

include "lex_less.mzn";

include "lex2.mzn";

include "link_set_to_booleans.mzn";

include "maximum.mzn";

include "member.mzn";

include "minimum.mzn";

include "nvalue.mzn";

include "partition_set.mzn";

include "range.mzn";

include "regular.mzn";

include "roots.mzn";

include "sliding_sum.mzn";

include "sort.mzn";

include "strict_lex2.mzn";

include "subcircuit.mzn";

include "sum_pred.mzn";

include "table.mzn";

include "value_precede.mzn";

include "value_precede_chain.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "inverse.mzn";

include "inverse_set.mzn";

include "lex_greater.mzn";

include "lex_greatereq.mzn";

include "lex_lesseq.mzn";

include "lex_less.mzn";

include "lex2.mzn";

include "link_set_to_booleans.mzn";

include "maximum.mzn";

include "member.mzn";

include "minimum.mzn";

include "nvalue.mzn";

include "partition_set.mzn";

include "range.mzn";

include "regular.mzn";

include "roots.mzn";

include "sliding_sum.mzn";

include "sort.mzn";

include "strict_lex2.mzn";

include "subcircuit.mzn";

include "sum_pred.mzn";

include "table.mzn";

include "value_precede.mzn";

include "value_precede_chain.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "inverse.mzn";

include "inverse_set.mzn";

include "lex_greater.mzn";

include "lex_greatereq.mzn";

include "lex_lesseq.mzn";

include "lex_less.mzn";

include "lex2.mzn";

include "link_set_to_booleans.mzn";

include "maximum.mzn";

include "member.mzn";

include "minimum.mzn";

include "nvalue.mzn";

include "partition_set.mzn";

include "range.mzn";

include "regular.mzn";

include "roots.mzn";

include "sliding_sum.mzn";

include "sort.mzn";

include "strict_lex2.mzn";

include "subcircuit.mzn";

include "sum_pred.mzn";

include "table.mzn";

include "value_precede.mzn";

include "value_precede_chain.mzn";

include "all_different.mzn";

include "alldifferent_except_0.mzn";

include "all_disjoint.mzn";

include "all_equal.mzn";

include "among.mzn";

include "at_least.mzn";

include "at_most.mzn";

include "at_most1.mzn";

include "bin_packing.mzn";

include "bin_packing_capa.mzn";

include "bin_packing_load.mzn";

include "circuit.mzn";

include "count.mzn";

include "count_eq.mzn";

include "count_neq.mzn";

include "count_geq.mzn";

include "count_gt.mzn";

include "count_leq.mzn";

include "count_lt.mzn";

include "cumulative.mzn";

include "decreasing.mzn";

include "diffn.mzn";

include "disjoint.mzn";

include "distribute.mzn";

include "element.mzn";

include "exactly.mzn";

include "global_cardinality.mzn";

include "global_cardinality_closed.mzn";

include "global_cardinality_low_up.mzn";

include "global_cardinality_low_up_closed.mzn";

include "increasing.mzn";

include "int_set_channel.mzn";

include "inverse.mzn";

include "inverse_set.mzn";

include "lex_greater.mzn";

include "lex_greatereq.mzn";

include "lex_lesseq.mzn";

include "lex_less.mzn";

include "lex2.mzn";

include "link_set_to_booleans.mzn";

include "maximum.mzn";

include "member.mzn";

include "minimum.mzn";

include "nvalue.mzn";

include "partition_set.mzn";

include "range.mzn";

include "regular.mzn";

include "roots.mzn";

include "sliding_sum.mzn";

include "sort.mzn";

include "strict_lex2.mzn";

include "subcircuit.mzn";

include "sum_pred.mzn";

include "table.mzn";

include "value_precede.mzn";

include "value_precede_chain.mzn";

Constraint 
library

submodel group

normalisation

Data sets

Figure 5.1: Graphical overview of model globalization.

Algorithm 5.1 High-level algorithm for Globalizer.
procedure globalize(M , DtFiles, Lib, SubModelSize)
〈Constrs,Decls〉 ← normalize(M)
Submodels ← generate_submodels(〈Constrs,Decls〉, SubModelSize)
Candidates ← ∅
for each Submodel ∈ Submodels do

SubmodelInstanceGroup ← instantiate_submodel(Submodel, DtFiles)
Candidates ← Candidates ∪ process_group(SubmodelInstanceGroup, Lib)

return Candidates

low-level model, globalization yields a high-level model that is then amenable to automatic
transformation.

5.4 Globalization

Figure 5.1 provides a graphical view of the main steps of the method, which can also be
seen in high-level algorithmic form in Algorithm 5.1. Intuitively, the method starts by
normalising the input model M , that is, by separating the declarations Decls from the
constraints Constrs, and normalising the constraints in such a way that conjoined con-
straints are split into their component constraints. After normalization, several Submodels
are generated as targets for globalisation, where each such target Submodel ∈ Submodels
corresponds to the submodel formed by combining Decls with a particular subset of the
normalised constraints in Constrs, possibly unrolled. The size of the submodel is con-
trolled by the input parameter SubModelSize, which indicates the number of constraints
that will appear in the submodel. Each such submodel is then instantiated with the data
provided by each data file appearing in the set DtFiles, obtaining a group of submodel
instances. Each such group is then processed to determine its associated set of candidate
global constraints. To achieve this, the method generates an initial set of candidates called
Candidates from those present in the constraint library Lib, where each global constraint
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in this set is a candidate for equivalence to the submodel instance group associated to
Submodel. These generated candidates are then processed in order to score them accord-
ing to how well their solution space matches that of the submodel instance group, and
filter them out if their score is below a given threshold. Note that the instantiation of the
submodel is needed to be able to find its solution space and test its equivalence with that
of the global constraint. Finally, the filtered candidates are returned and, as shown in Sec-
tion 5.5.3, they are presented to the user by means of an interactive GUI. The following
sections discuss each of these steps in detail.

5.4.1 Normalization

The algorithm for normalizing a model M is simple and is shown in Algorithm 5.2. The
procedure partitions M into two sets: the set Constrs of normalized constraints and the
set Decls of original variable and parameter declarations. The constraints in the model
are normalized by exhaustively applying two simple rewriting rules that (a) split simple
conjunctions of the form c1 ∧ . . .∧ cn, into their individual constraints c1, . . . , cn, and (b)
split forall loops that contain conjunctions into individual forall loops. For example, in
the case of the Progressive Party model, Decls will be initialised as the set containing all
declarations in the model, that is, all declarations appearing in lines 1–9 plus the one in
line 20. SC will be initialised as the set containing the three top-level constraints in the
model, that is, {∀GHT : channel,∀H : (∀G : at_most_one_visit)∧ (∀T : capacity),∀GG :
(∀T : will_meet)∧meet_once}. After normalizing the Progressive Party model, Constrs
will contain the following five constraints {∀GHT : channel, ∀GH : at_most_one_visit,
∀HT : capacity, ∀GGT : will_meet,∀GG : meet_once}.

Normalization is vital for discovering global constraints that describe parts of a con-
straint, rather than all of it. For example, the combination of the constraint ∀GH :
at_most_one_visit with the channelling constraint ∀GHT : channel in the Progressive
Party is equivalent to a conjunction of several alldifferent constraints. To discover this,
each component constraint must be considered separately, so that they can be combined.

Algorithm 5.2 Flatten conjunctions and aggregate forall quantifier to normalize.
procedure normalize(M )

Decls ← set of all variable and parameter declarations in M
Constrs ← set of constraints in M
while one of the following rules applies do

if there is a c ∈ Constrs of the form (c1∧ . . .∧ cn) then
Constrs← (Constrs \ c)∪{c1, . . . , cn}

if there is a c ∈ Constrs of the form (∀A1 . . .∀An : c1∧ . . .∧ cm) then
Constrs← (Constrs \ c)∪{∀A1 . . .∀An : c1, . . . ,∀A1 . . .∀An : cm}

return 〈Constrs, Decls 〉
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Algorithm 5.3 Splitting a set Constrs of constraints into submodels.
procedure generate_submodels(〈Constrs,Decls〉, SubModelSize)

targetSet ← ∅
for each (S ⊆ Constrs where 1≤ |S| ≤ SubModelSize) do

Decls′← subset of Decls that includes variables and parameters of S
targetSet ← targetSet ∪ {〈S,Decls′〉} ∪ unrollings(〈S,Decls′〉)

return targetSet
procedure unrollings(〈Constrs,Decls〉)

submodels←∅
if Constrs are of the form (∀a1 ∈A1,∀a2 ∈A2, . . .∀an ∈An〈where c〉) : e) then

for each (X ⊆ {a1 ∈A1,a2 ∈A2, . . .an ∈An}) do
if X is not empty then

if Constrs has 〈where c〉 that depends on X then
Constrs′ ← (c->Constrs) with X removed from the forall

else
Constrs′← Constrs with X removed from the forall

for each (ai ∈Ai in X) do
Constrs′← Constrs′∪{ai = val(Ai)}

submodels← submodels∪{〈Constrs′,Decls〉}
return submodels

5.4.2 Generating Submodels

After normalizing a given model M , the next step is to generate the submodels of M
that will be considered as targets for globalization. The goal here is to find many com-
binations of constraints from the model for which we may be able to find an equivalent
global constraint. Algorithm 5.3 shows how this is achieved by the generate_submodels
procedure, which takes as arguments the full set of constraints (Constrs) and the number
of constraints to include in each submodel (SubModelSize), and generates all submodels
that can be formed by conjunctions of the given number of possibly unrolled constraints
in the model (in our implementation we default to using two constraints). The proce-
dure works as follows. For each subset S ∈ Constrs of appropriate size, it adds S and
the possible unrollings of S (unrollings(S)) to the set targetSet, which will later be re-
turned with the full set of generated submodels. Listing 5.2 shows an example submodel
that corresponds to the ∀GHT : channel constraint from the model. Each submodel
S will be unrolled by the unrollings procedure only if its constraints are of the form
(∀a1 ∈ A1,∀a2 ∈ A2, . . .∀an ∈ An〈where c〉) : e), that is, if they are defined over a (pos-
sibly nested) universally quantified expression with an optional where condition c. If so,
unrolling is achieved by selecting some subset X of the quantified variables and construct-
ing a new set of constraints Constrs′ by removing each of these variables ai ∈ X from
the quantified part and equating ai to expression val(Ai), denoting a value in domain

constraint forall (g in GuestCrews, h in HostBoats, t in Time)
( visits[g,h,t] = 1 <-> host1edBy[g,t]=h );

Listing 5.2: Example: generated submodel.
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% Submodel S with two constraint items, as they appear in the model
constraint forall(h in HostBoats, t in Time)

(sum(g in GuestCrews) (crew[g] * visits[g, h, t]) <= capacity[h]);
constraint forall(k,l in GuestCrews, t in Time where k < l)

(hostedBy[k, t] = hostedBy[l, t] -> meet[k, l, t] = 1);

% Unrolling of S with t fixed and removed from the two forall loops
t = val(Times);
constraint forall(h in HostBoats)

(sum(g in GuestCrews) (crew[g] * visits[g, h, t]) <= capacity[h])
constraint forall(k,l in GuestCrews where k < l)

(hostedBy[k, t] = hostedBy[l, t] -> meet[k, l, t] = 1);

% Submodel S’ with a single constraint item
constraint forall(k,l in GuestCrews where k < l)

(hostedBy[k, t] = hostedBy[l, t] -> meet[k, l, t] = 1);

% Unrolling of S’ with l fixed and removed
l = val(GuestCrews)
constraint forall(k in GuestCrews where k < l)

(sum(t in Time) (meet[k, l, t]) <= 1);

% Unrolling of S’ with k fixed and removed
k = val(GuestCrews);
constraint forall(l in GuestCrews where k < l)

(sum(t in Time) (meet[k, l, t]) <= 1);

% Unrolling of S’ with k and l fixed and removed. Note that the
% condition from the forall now implies the constraint.
k = val(GuestCrews); l = val(GuestCrews);
constraint k < l -> sum(t in Time) (meet[k, l, t]) <= 1;

...

Listing 5.3: Selection of submodels showing loop unrolling.

set Ai. These values will later be fixed to an arbitrary value (in our concrete case, the
minimum, maximum, or middle value) of their domain. This is achieved by adding the
relevant ai = val(Ai) constraints to each submodel Constrs′. If the condition c depends
on the quantified variables in X it is moved from the where into the constraint e as an
implication. Listing 5.4 shows a partial unrolling of the ∀GHT : channel constraint.

For the example model in Listing 5.1, the algorithm generates many possible target sub-
models in addition to the one presented in Listing 5.4. More examples of partial unrollings
of submodels are presented in Listing 5.3 (separated by empty lines). These examples show
how the instantiation of val(Ai) works. The first submodel has two constraint items which
correspond to a particular target S in the algorithm. The second submodel corresponds
to an unrolling of S, where the value for t has been fixed and t in Time has been removed
from the forall loops of both constraints. The third submodel has a single constraint on

int: g = val(GuestCrews);
constraint forall (h in HostBoats, t in Time)

( visits[g,h,t] = 1 <-> hostedBy[g,t]=h );

Listing 5.4: Example: partial unrolling.
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Algorithm 5.4 Instantiating a set of submodels.
procedure instantiate_submodel(〈Constrs, Decls 〉, DtFiles)

for each DtFile ∈ DtFiles do
Decls ←Decls∪DtFile . Assign parameters with DtFile
TempSetDecls ←{Decls}
for each declaration of the form x= val(Ax) ∈ Decls do

for each TempDecls ∈ TempSetDecls do
TempSetDecls ← TempSetDecls \TempDecls
for each value v ∈ {min(Ax), max(Ax), mid(Ax)} do

TempSetDecls ← TempSetDecls∪ (TempDecls \x= val(Ax)∪{x= v})
SubmodelInstanceGroup ←∅
for each TempDecls ∈ TempSetDecls do

if ∀c1, c2 ∈ Constrs, c1 and c2 are connected then
SubmodelInstanceGroup← SubmodelInstanceGroup∪{〈Constrs,TempDecls 〉}

return SubmodelInstanceGroup

its own, representing another target S′ in the algorithm. The next two submodels unroll
S′ by fixing variables k and l, and removing them from their respective targets. The
final submodel also unrolls S′ and shows what happens when all loop variables are fixed
and there is a where condition (k < l) that must be considered: the condition implies the
remaining constraint. In this way, the implication (k < l -> ...) ensures that candidates
cannot be compared against this submodel when the condition is not met.

5.4.3 Instantiating Submodels

Each submodel generated in the previous step will give rise to a group of concrete instances,
constructed by instantiating the unrolled variables with concrete values and by adding
given data values for the model’s parameters.

This is achieved by the procedure presented in Algorithm 5.4, which takes as input
a submodel (represented by its declarations Decls and its constraints Constrs) and a set
of data files DtFiles, and proceeds as follows. It first constructs in TempSetDecls all
possible instantiations of the declarations Decls using both the different input data files
and some of the values of the unrolled variables. As discussed later in Section 5.5.1,
while we have used min(x), max(x), and mid(x), representing the minimum, maximum
and mid value, respectively, of the domain associated to quantified variable x, any other
concrete values could have been used. Listing 5.5 shows the example submodel after being
partially unrolled and instantiated with g being fixed to the minimum value from the
set GuestCrews. After computing TempSetDecls, each of its elements is combined with
the constraints Constrs in the submodel to produce a submodel instance. Note that this

int: g = min(GuestCrews);
constraint forall (h in HostBoats, t in Time)

( visits[g,h,t] = 1 <-> hostedBy[g,t]=h );

Listing 5.5: Example: unrolled subinstance.
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last step only happens if all pairs of constraints in the resulting instance are connected,
that is, if the constraints either directly share at least one uninstantiated variable, or
there is a path of connecting constraints for them in Constrs, such that every two adjoint
constraints in the path are connected. This is a reasonable optimisation as constraints
represent a connection between variables and, if there is no connection in the model, one
cannot possibly be inferred.

5.4.4 Processing Submodel Instance Groups

The procedure instantiate_submodel(Submodel, DtFiles) returns in SubmodelInstanceGroup
a set containing different instances of Submodel constructed using DtFiles. Recall that each
such instance has different parameter values due either to different data files given by the
user, or to the different values chosen (from min(x), max(x), and mid(x)) during loop un-
rolling. For each Submodel of the original model M , its associated SubmodelInstanceGroup
is then processed in order to generate, rank and filter a set of candidate constraints, which
are then added to the final set Candidates for M . This is achieved by the procedure
process_group (shown in Algorithm 5.5) which, in addition to SubmodelInstanceGroup,
takes the declarations Decls in the original model and the constraint library Lib as input
parameters, as they are needed to generate the candidates.

Processing all instances of each submodel as a group allows process_group to in-
crease its accuracy by taking the intersection of the candidate constraints found for each
SubModelInstance in SubmodelInstanceGroup. This is correct because a global constraint
can only be equivalent to a submodel (and, thus, be a candidate) if it holds for every
instantiation of the submodel. Initially, the full set of constraints and argument tuples
(written as the special symbol Universe) is considered as the set of possible candidates.
Thanks to the filtering (intersection) performed later in the process, the number of can-
didates in this initial set may decrease with each subsequent instance in the group, and
only those that remain after processing the final instance are returned as the result. These
remaining candidates are exactly the intersection we seek to compute.

Algorithm 5.5 Processing submodel instance groups.
procedure process_group(SubmodelInstanceGroup, Decls, Lib)

Candidates ← Universe
for each SubModelInstance in SubmodelInstanceGroup do

Candidates ← Candidates ∩ generate_candidates(SubModelInstance, Decls, Lib)
Candidates ← rank_and_filter(SubModelInstance, Candidates)

return Candidates

Candidate generation

The first step of the group processing is the generation of candidate constraints for
each SubmodelInstance in SubmodelInstanceGroup. The algorithm for generating can-
didates is shown in Algorithm 5.6. It takes as input a SubmodelInstance in its associate
SubmodelInstanceGroup, the set Decls of declarations of the original model M , and the
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Algorithm 5.6 Generating candidate constraints for a submodel instance.
procedure generate_candidates(SubModelInstance, Decls, Lib)

Candidates ← ∅
Solutions ← disjunction of random sample of solutions of SubModelInstance
Template ← (SubModelInstance \Decls)∪Solutions
BaseArguments ←

(variable and parameter collections in SubModelInstance) ∪
(variable and parameter sub-collections in constraints of SubModelInstance)

Arguments ← BaseArguments ∪
(array accesses of elements of BaseArguments) ∪
{ constant 0 } ∪ { blank symbol }

for each constraint cons in Lib do
for each tuple args that can be built from Arguments do

Replace blank symbols in args by their value if necessary
Instance ← Template ∪ (constraints for cons(args))
if Instance is satisfiable then

Candidates ← Candidates ∪ {cons(args)}
return Candidates

library of global constraints Lib. Note that each constraint entry in Lib has a signa-
ture comprising the name, arity, and valid argument types. In addition, arguments can
have associated information indicating whether they are functionally dependent on other
arguments, and stating conditions that must be met for the argument to be used. See Sec-
tion 5.5.2 for details on the particular Lib used by the implementation.

The algorithm proceeds as follows. First it finds a reasonably large random sample
of solutions of the given SubModelInstance (the default number of samples is 30, see Sec-
tion 5.6 for details), and constructs Solutions as their disjunction. Intuitively, we will
consider a global constraint as a candidate for the submodel if it is satisfied by all these
sample Solutions. To determine this, we create a template submodel in such a way that,
if after adding the global constraint, the template submodel remains satisfiable, then the
global constraint satisfies all sample Solutions and can be considered a candidate. This
template submodel is built by adding the Solutions to the parameters and variables in
Decls. Note that this template is trivial to satisfy.

Possible candidate constraints are then obtained by combining each global constraint
cons in Lib with an A-tuple args of arguments, where A is the arity of the constraint.
The arguments are drawn from the identifiers that appear in SubModelInstance as shown
in Algorithm 5.6. The BaseArguments include the variable and parameter collections
whose identifiers appear in SubModelInstance, and the same collections restricted to the
subsets that are actually used in the constraints of SubModelInstance. In addition, the
arguments can also be array access expressions composed from the BaseArguments, the
constant zero, and a special blank symbol. This blank symbol is used as a place-holder for
arguments known to be functionally defined by the others. Once all non-blank arguments
are selected, the blank symbol is replaced by its corresponding value. For example, in
the constraint maximum(_, xs) the value of the first argument can be computed from the
value of the second and this will be represented by a blank symbol. Note that the value
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of the blank symbol must be the same for all sample solutions. If the constraint is not
functional, or if the sample solutions disagree on what the value should be — for example,
if one sample solution suggests maximum(10,xs) but another says maximum(8,xs) — they
will be discarded in the intersection computation in process_group. Note that, since the
generated candidate constraint must be the same for all instances, the functionally-defined
arguments to this constraint must take the same value across all instances to be considered
as a candidate, since the constraint cannot be posted to the model without a selected
value. This is however not a significant issue, as they are only used when no named
parameter is found (i.e., maximum(a, xs), where a comes from the model, should be taken
over maximum(8, xs)).

Finally, the candidate global constraint cons(args) is added to the template submodel
and the result is evaluated. If the constraint is satisfiable, cons(args) is added to the
list of candidate global constraints for SubModelInstance. If a satisfiable solution for
the constraint is not found within a reasonable amount of time we treat it as if it is
unsatisfiable. This maintains the correctness of the approach at the cost of completeness.

Let us now illustrate how generate_candidates works with the SubModelInstance formed
by combining the constraint (g= min(G))∧(∀HT : channel) of the Progressive Party model
(where min(G) = 1) with the variable and parameter declarations in the model, and some
data file DtFile ∈ DtFiles. Listing 5.5 presents a MiniZinc instance that corresponds to the
selected submodel instance using the data presented in Section 5.2. The BaseArguments
computed by the procedure for SubModelInstance include the variable collections hostedBy
and visits, the variable sub-collections hostedBy[1,t] and visits[1,h,t], and the parameter
collections HostBoats, GuestCrews, p, nh, ng, Time, and the index g itself (with value
1). The Arguments computed are the constant 0, the blank symbol, the base arguments,
and the array accesses formed by combining an array with a parameter, e.g., crew[nh]
and hostedBy[p, ng]. After considering all constraints in Lib with these arguments, the
procedure generates 39 candidate constraints including the following:

lex2(hostedBy)

alldifferent([hostedBy[g,1], hostedBy[g,2],..., hostedBy[g,p]])

sub_circuit([hostedBy[g,1], hostedBy[g,2],..., hostedBy[g,p]])

Note that in the first global constraint, the entire hostedBy array is used as an argu-
ment, while in the second and third global constraints only the subset of the array that
participates in the constraints of the submodel – where g is fixed– is used as an argument.

Ranking and Filtering

As shown in Algorithm 5.5, once all candidates for a submodel are generated, the method
ranks and filters those candidates. Procedure rank_and_filter, shown in Algorithm 5.7
achieves this as follows. For each candidate constraint cons(args) inferred for a given
SubModelInstance (and, given the intersection performed by process_group, for all pre-
vious ones too), rank_and_filter measures how closely it matches SubModelInstance. To
achieve this, it collects a random sample of solutions of cons(args), and computes the
fraction of these solutions that are also solutions to SubModelInstance. If the constraint is
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equivalent to the submodel of SubModelInstance, this fraction must be 1; if the constraint
is a poor match, the fraction should be close to 0. The procedure filters the candidates by
keeping only those constraints whose matching fraction is greater than a given threshold.
A threshold of 0.5 has been shown experimentally to be sufficient to eliminate imperfect
matches, and we use that value in the implementation. A ranking of the candidates is
achieved in rank_and_filter by simply sorting them by their Score.

Algorithm 5.7 Ranking submodel instances.
procedure rank_and_filter(SubModelInstance, Candidates)

result ←∅
for each cons(args) in Candidates do

SolutionsC ← random sample of solutions of cons(args)
SolutionsM ← subset of SolutionsC that are also solutions of SubModelInstance
Score ← |SolutionsM |÷ |SolutionsC |
if Score ≥ equivalenceThreshold then

result ← result ∪ 〈Score, cons(args)〉
return sequence of cons(args) from result ranked by Score

In some cases a constraint in a model is equivalent to a candidate global constraint
only in the context of another constraint. Consider a SubModelInstance containing con-
straints A and B, and a candidate global constraint cons(args), where A is not equivalent
to cons(args), but the conjunction A∧B is equivalent to the conjunction cons(args)∧B. We
callB the context in whichA is equivalent to cons(args). For example, let SubModelInstance
have the constraints (t = min(T ))∧∀GH : channel ∧∀H : capacity from the Progressive
Party. The global constraint bin_packing_capa(capacity, hostedBy[1..ng,t], crew) is
equivalent to ∀H : capacity, but only in the context of ∀GH : channel. This is due to
the fact that the bin-packing constraint does not constrain the auxiliary visits variables.
This connection must be provided by the channel constraints. In general, a contextually-
equivalent constraint cons(args) will be implied by SubModelInstance but appear weaker
than the instance and, thus, will be ranked in a low place. In this case, we try using
one of SubModelInstance’s constraints as the context constraint B, and test via sampling
whether cons(args)∧B implies the submodel instance. If this scores well, we say that A
(obtained as SubModelInstance \B) is equivalent to cons(args) under the context of B,
and add this to the list of candidates. For the purpose of scoring and filtering, a candidate
constraint is thus considered to be a pair of the cons(args) and its context, which may be
empty. This means that for a context-dependent constraint to pass the filtering tests, it
must pass with the same context in all instances of the group.

5.4.5 Preprocessing Step to Uncover Hidden Structures

The method proposed in Section 5.4.4 to build the arguments of the candidate global con-
straints, uses only variable and parameter identifiers already present in the original model.
This is not enough to discover constraints that might include dual “hidden” variables, that
is, dual viewpoints involving new variables that could be declared and connected to ex-
isting model variables via channelling constraints. For example, as seen in Section 2.3,
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1 predicate channel_2of3(array[int,int] of var int : x,
2 array[int,int,int] of var int : b) =
3 lb_array(b) in {0,1}
4 /\ ub_array(b) in {0,1}
5 /\ forall (i in index_set_1of3(b),
6 v in index_set_2of3(b),
7 k in index_set_3of3(b))
8 (x[i,k] = v <-> (b[i,v,k]=1));

Listing 5.6: Channelling between matrices of integer and binary variables.

it is common in modelling problems to use a set of zero-one variables bv to represent a
single integer decision x, such that bv = 1 if and only if x takes the value v. By exten-
sion, a vector of integer decisions xi can be represented as a matrix of zero-one variables
biv, such that biv = 1↔ xi = v. Further, a two dimensional matrix of integer decisions
xij can be represented as a three dimensional matrix of zero-one variables bijv, such that
bijv = 1↔ xij = v. The dimensions used to represent the variables can vary. For example,
instead of the third dimension of b representing the selected value, it may be the case the
second dimension is used instead. That is, instead of bijk representing xij = k it could be
bijk = 1↔ xik = j. This form of channelling can be added to a model using the constraint
shown in Listing 5.6. Note that the IofJ (2of3) indicates that this constraint is for chan-
nelling dimension I of a J-dimensional array of zero-one variables to a J-1 dimensional
matrix of integer variables. The predicate first posts two constraints restricting the domain
of the variables in b to be zero-one. This is achieved using the lb_array and ub_array

functions which returns the lowest lower bound, and largest upper bound, respectively, of
variables in the multi-dimensional array. Next, a forall loop iterates over the index sets
of the dimensional array b. The function index_set_IofJ is used since MiniZinc supports
arrays with arbitrary contiguous index sets.

This style of representation is especially common when targeting a mixed-integer pro-
gramming solver. However, the integer variables in such models may sometimes be omit-
ted, with only the zero-one variables explicitly declared, as their corresponding integer
meanings can be computed from solutions. Knowledge of the presence of these variables
might allow new global constraints that were previously hidden to be inferred.

This section extends the method to find such “hidden” variables (in particular, implied
integer variables), and use them to extend the set of candidate constraints. To achieve this
we perform two modifications. The first one is to define a new kind of global constraint
that captures the dual representations we are trying to detect. In particular, we consider
three global constraints which take a 1-, 2- or 3-dimensional array of zero-one variables
as an argument, and hold if a specific dimension potentially represents the values of an
integer. For example, the following constraint holds if a 3-dimensional array of variables b
might represent a 2-dimensional array of integers x such that b[i,v,k]=1 <-> x[i,k]=v.
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1 predicate binaries_represent_int_2of3(array[int,int,int] of var int : b) =

2 lb_array(b) in {0,1}

3 /\ ub_array(b) in {0,1}

4 /\ forall (i in index_set_1of3(b),

5 k in index_set_3of3(b))

6 (sum (v in index_set_2of3(b)) (b[i,v,k]) = 1);

A second modification adds an initial Globalizer pass to the method aimed at detecting
this new kind of constraint. If such a constraint is found, the implied dual variables
(i.e, the integer variables) and a channelling constraint linking them to the original ones
(i.e., a channelling constraint linking the new integer variables to their original zero-one
representatives) are added to the model. This pass allows the method to discover properties
of variables as constraints and make them explicit in the model. Once this additional pass
has finished, the second pass of Globalizer is launched on the augmented model to find
constraints using the introduced variables.

Consider, for example, a model for the Latin Square problem. A Latin Square is an
n×n matrix of integers where each row and column contain permutations of the numbers
1 to n. A solution to this problem for a given a value n, is an n×n Latin Square. The
MiniZinc model for the Latin Square problem presented in Listing 5.7 is a summarised
version of the one included in the MiniZinc benchmark set, which uses zero-one variables
and linear constraints.

1 int: n;

2 set of int: N = 1..n;

3 array [N, N, N] of var 0..1: b;

4 constraint forall (i, j in N) (sum (k in N) (b[i, j, k]) = 1);

5 constraint forall (i, k in N) (sum (j in N) (b[i, j, k]) = 1);

6 constraint forall (j, k in N) (sum (i in N) (b[i, j, k]) = 1);

Listing 5.7: Binary model for Latin Squares problem.

Globalizer finds that each dimension of b might represent integer variables. That is, it
finds the following constraints:
1 binaries_represent_int_1of3(b)

2 binaries_represent_int_2of3(b)

3 binaries_represent_int_3of3(b)

It then introduces new arrays of auxiliary variables and channelling constraints as follows,
with the different versions of the channelling constraint mapping to different dimensions:
1 array [index_set_2of3(b),index_set_3of3(b)] of var index_set_1of3(b): b_3a;

2 constraint channel_1of3(b_3a, b);

3 array [index_set_1of3(b),index_set_3of3(b)] of var index_set_2of3(b): b_3b;

4 constraint channel_2of3(b_3b, b);

5 array [index_set_1of3(b),index_set_2of3(b)] of var index_set_3of3(b): b_3c;

6 constraint channel_3of3(b_3c, b);

With the introduction of these variables and constraints, Globalizer can now find the
alldifferent constraints that correspond to the sets of sum constraints in the original model.



CHAPTER 5. DISCOVERING STRUCTURE 113

As another example, consider again the Progressive Party problem but, this time,
the zero-one integer model given by Smith et al. (1996). A notable difference between
this model and the one presented in Listing 5.1 is the absence of the hostedBy variables.
The discovery of the alldifferent and bin-packing constraints depended upon these variables
being present. With the introduction of this initial pass, Globalizer can now discover these
integer variables and, therefore, the global constraints implied by the model. To illustrate
this, we have translated the zero-one integer program into MiniZinc and adapted it in such
a way that the set of hosts is fixed in advance, as done in Section 6 of Smith et al. (1996).
The variable names are also changed to match those in Listing 5.1. This yields the model
presented in Listing 5.8.

The first pass of the extended Globalizer can discover that the visits[g,h,t] variables
represent integer variables H[g,t] such that if visits[g,h,t] is 1, then H[g,t] equals
h. After introducing these variables, the second pass is able to discover that the first
constraint is an alldifferent constraint, and the second is a bin-packing constraint.

5.5 Implementation

This section provides details regarding the implementation of the globalizing system, called
the MiniZinc Globalizer, used in the experiments. In particular, the following subsections
discuss several implementation choices taken while implementing the different algorithms,
describe the particular composition of the global constraint library used, and provide a
quick overview of a web interface that was developed for the MiniZinc Globalizer.

1 int : p; int : ng; int : nh;
2 set of int : HostBoats = 1..nh;
3 set of int : GuestCrews = 1..ng;
4 set of int : Time = 1..p;
5
6 array [GuestCrews] of int : crew;
7 array [HostBoats] of int : capacity;
8
9 array [GuestCrews, HostBoats, Time] of var 0..1 : visits;

10
11 constraint forall (g in GuestCrews, t in Time) (
12 (sum(h in HostBoats)(visits[g,h,t])) = 1 );

% at_most_one_visit
13
14 constraint forall (h in HostBoats, t in Time) (
15 (sum(g in GuestCrews)(
16 crew[g]*visits[g,h,t])) <= capacity[h]); % capacity
17
18 constraint forall (h1,h2 in HostBoats, g1,g2 in GuestCrews, t1,t2 in Time
19 where h1 != h2 /\ g1 < g2 /\ t1 != t2) (
20 visits[g1,h1,t1] + visits[g2,h1,t1] +
21 visits[g1,h2,t2] + visits[g2,h2,t2] <= 3 ); % will_meet
22
23 constraint forall (h in HostBoats, g in GuestCrews) (
24 (sum(t in Time)(visits[g,h,t])) <= 1); % meet_once

Listing 5.8: Zero-one integer model for the Progressive Party Problem.
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5.5.1 Implementation Choices

The implementation of the globalize(M , DtFiles, Lib,SubModelSize) algorithm provided
in Section 5.4 assumes the model M given as input is a MiniZinc model. As shown in the
algorithm, once the submodels are computed by generate_submodels(Constrs, SubModel-
Size), each of these submodels can be processed independently. Thus, the implementation
can process them in parallel to increase efficiency.

As shown in Algorithm 5.6, generate_candidates(SubModelInstance, Decls, Lib) first
solves SubModelInstance to find a random sample of its solutions. To do this, the default
implementation uses the standard MiniZinc tool mzn2fzn to flatten SubModelInstance,
and the Gecode constraint solver (Gecode Team, 2006) version 4.4.0 to find 30 random
solutions for it (while 1, 30 and 100 were tested in our experiments, 30 was found to
have the best accuracy/efficiency ratio and is, thus, used in the default implementation).
These are found with a search that selects values in random order and restarts from
scratch whenever a solution is found. If the search is not complete within 1 second,
SubModelInstance is discarded as it may be too expensive to find 30 random solutions for
this SubModelInstance.

Later in the process, the algorithm needs to determine the satisfiability of the Instance
after adding candidate global constraints to the Template. Since this template has no
variables and the added constraints are simply evaluated, no search is required. Such
checks are performed often, and it was clear that the expense of flattening the instance and
calling a full constraint solver was crippling. To avoid this, a simple evaluator of MiniZinc
instances known not to have any variables was implemented. In practice, this optimization
is crucial, as the number of evaluations is usually in the hundreds of thousands.

Additionally, choices must be made about the number of samples that should be sought
for any global constraint (as opposed to samples for a submodel instance), and the value
of SubModelSize, i.e., the maximum number of constraints that can appear in the submod-
els. After considerable experimentation, we settled upon a maximum of two constraints
in each submodel, and generating 30 samples for ranking and filtering for the default im-
plementation. The results of our experiments are explored and evaluated in Section 5.6.

Another decision that had to be made was the choice of possible values from which to
select for fixing loop variables. We chose min(x), max(x), and mid(x), as special cases
in loops tend to be at the boundaries (e.g., the first or last variable in an array often has
different constraints on it than the others). The min(x) and max(x) cover these edge
cases, with mid(x) selecting a non-boundary case. However, other values could also have
of been selected.

5.5.2 Library of Global Constraints

Table 5.1 lists the global constraints appearing in the current implementation of Lib, which
is used for candidate generation. These are all the global constraints defined in MiniZinc’s
standard library (version 1.6) over integer arguments (sets are not handled yet by the
prototype implementation), with the addition of the following constraints:
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alldifferent circuit global_cardinality nvalue
alldifferent_except_0 count increasing sliding_sum
all_equal cumulative inverse sort
atleast decreasing lex_less strict_lex2
atmost diffn lex_lesseq subcircuit
bin_packing distribute lex2 unary
bin_packing_capa element maximum value_precede
bin_packing_load exactly minimum
channel gcc member

Table 5.1: Library of global constraints supported by Globalizer.

• channel(x, a): channels an integer variable x to an array of zero-one variables a.

• gcc(x, counts): a special case of global_cardinality where the “cover” argument, which
specifies a map from indices to values, is fixed to the identity map.

• unary(s, d): a special case of cumulative where the resource capacity and the usage
for each task are fixed to 1, implementing a unary resource constraint.

These three global constraints have special versions in some solvers (e.g., Gecode) and
are, therefore, worth detecting even if they are special cases of more general constraints.
Our implementation is able to evaluate most of the global constraints above using the
default decomposition given in the MiniZinc library. However, some decompositions intro-
duce variables that cannot be handled by the simple satisfiability check evaluator (recall
that, as explained in Section 5.5.1, the satisfiability check does not perform search). Thus,
stand-alone constraint checkers were implemented in these cases to evaluate these globals.

As mentioned in Section 5.4.4, each global constraint is annotated with conditions
for its use in order to prevent the constraint from being considered as a candidate when
it is trivially true or otherwise useless. For example, the alldifferent global constraint
specifies that its argument must be an array of variables with arity greater than one
since, otherwise, the constraint is trivially true or nonsensical. As another example, the
sliding_sum(l,u,n,x) global constraint specifies that every n-length subsequence of x

must sum to a value between l and u. When generating candidates, we ensure that l <

u and 1 < n < length(x). These two conditions ensure that the parameters make sense,
thus avoiding the generation of meaningless candidates.

5.5.3 Displaying Candidates

The MiniZinc Globalizer was implemented as an asynchronous web server that queues
requests made by clients and can execute several requests in parallel. Requests can be
cancelled by the user and are automatically cancelled when the session is terminated, e.g.,
when a user closes the browser window. The online service is no longer available and an
off-line version that integrates with the MiniZinc IDE is currently in development.

Figure 5.2 shows a screen shot of the web interface which is similar to the interface
provided by the MiniZinc IDE. Users can enter their model and instance data through an
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Figure 5.2: The web interface to the MiniZinc Globalizer.

embedded editor (seen on the left). Clicking ANALYZE launches the request, initiating
a progress bar that attempts to estimate the percentage of work left and provides the
user periodic progress updates. When the analysis finishes, the right hand side of the
window displays the results in ranking order (indicated by the number preceding each
entry, where confidence is given as a value in the interval [0,1]). Clicking on any candidate
constraint highlights in yellow the part of the original model that the constraint could
replace, and highlights in orange the candidate’s context, if any. The interface allows the
user to select parts of the model and restrict the analysis to the selected parts by clicking
“Only selection” in the lower left corner of the window. The analysis will then only use
the selected constraints. This is useful when the analysis is taking a long time, or the user
wants to focus on a particular part of their model.

5.6 Experimental Evaluation

This section reports on a set of experiments designed to evaluate the accuracy and practi-
cality of the default implementation of the MiniZinc Globalizer. In addition, it reports on
another set of experiments that shows the reasons behind the choices made for our default
implementation. Note that the experiments attempt to find globals using each model in its
entirety, without using the “Only selection” feature provided by the web interface which
can speed up the search in many cases.

5.6.1 Evaluating the Default Configuration

Let us start by discussing the results of evaluating the accuracy and practicality of the
default configuration of the implementation (detailed in Section 5.5.1). The results are
shown in Table 5.2 where, for each problem model, the table displays the name of the
problem (problem), the time in seconds to run the MiniZinc Globalizer (time), the
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number of global constraint candidates found with a score > 0.5 (|cs|), the number of
submodel instance groups obtained (|sms|), the number of calls to Gecode to obtain sample
solutions of either submodel instances or global constraint candidates (calls), the number
of satisfiability tests performed (evals), and some of the global constraints proposed as
candidates with a score of 1 (top candidates), where high quality candidates appear in
bold. Note that the output has been manually simplified, with some duplicate constraints
removed where the system was unable to distinguish between two parameters that appear
to be different, but actually refer to the same value. Two data files are used for each
model and the default parameters for number of samples to generate (30), and number of
constraints per submodel (2) are used. The models used in the experiments are reproduced
in Appendix B. The set of problems used in the table is as follows.

Cars: a version of the car sequencing problem of CSPLib 001, as implemented in the
MiniZinc distribution. It uses simple arithmetic and counting constraints to ex-
press the capacity and sequence restrictions of the problem. Globalizer finds three
constraints: sliding_sum, count and gcc. The gcc subsumes the count constraint.

Jobshop: a simple job-shop scheduling problem taken from the MiniZinc distribution. It
implements the non-overlapping of two tasks on a unary resource using simple reified
constraints. Globalization finds a single constraint: the unary scheduling constraint.

Party, Party-CSP and Party-LP: the running example from Listing 5.1. Globalizer
finds 6 different constraints. The most important of which were discussed earlier:
the bin-packing, alldifferent, and channel global constraints. It also finds a unary

scheduling constraint. Party-CSP is a slight variant of the Party model. The main
difference is that the constraints are not grouped together under conjunctions (/\)
under forall loops. It also includes the alldifferent constraint on the hostedBy vari-
ables. The results presented in the table show that this has little impact on the
amount of time it takes to discover globals. However, we see that some constraints
are not found, with only 3 constraints being found here, compared to the 6 of the first
model. Party-LP is the integer model presented in Listing 5.8. Globalizer first detects
and introduces integer variables that channel to visits named visits_3b. These
correspond to the hostedBy variables from Listing 5.1. It then successfully detects
the alldifferent and bin_packing_capa constraints on the visits_3b variables.

Packing: a packing problem that aims to pack n squares into a rectangle. The source
code was taken from the MiniZinc distribution. Globalizer finds diffn constraints
that express the non-overlapping of the squares.

Schedule: a contrived scheduling example from Bessiere et al. (2007). The schedule is
constrained in such a way that one task needs to start at every even time point,
which implies a gcc (global-cardinality) constraint with argument [1,0,1,0,...].
The approach can find this constraint, as long as all data files provided have the
same schedule length, as otherwise the arguments differ in length between instances
and are thus discarded. The generalization of such sequences is left to future work.
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Sudoku LP and Sudoku CSP: two different models for the Sudoku puzzle where values
in each of the nine rows, the nine columns and the nine 3×3 blocks must be distinct.
The first, Sudoku LP, uses a zero-one integer program formulation, and Globalizer
finds 17 constraints, these are some of the alldifferent constraints on the rows and
columns. It does not however detect the constraints on the blocks since the sys-
tem does not attempt to generate complex array slices. This issue is discussed in
more detail in Section 5.7.2. In addition to the alldifferent constraints, some global-
cardinality constraints are also detected which are equivalent to the alldifferent in
stating that the values 1,2, . . .9 can only occur in each row or column a single time.
The second model, Sudoku CSP, represents the entire problem with a single forall

loop over every pair of variables in the matrix. A complicated if statement then
decides whether a not-equal constraint should be posted between each pair or not.
Here, loop unrolling is not strong enough to generate candidates that correspond to
individual rows, columns, or blocks. As a result, no replacement global constraints
can be found. This motivates somewhat the use of a syntactic matching approach
in conjunction with Globalizer, as these constraints may have been easier to detect
in this case.

Warehouses: the warehouse allocation problem of CSPLib 034, as distributed with the
MiniZinc distribution. Globalizer finds that a loop containing counting constraints
can be aggregated into one global-cardinality constraint.

The experimental results indicate that the default implementation is quite accurate,
as in most cases (e.g., Cars, Party, Packing) Globalizer has been able to find the global
constraints that an expert modeller would have used. In the other cases (e.g., Sudoku
CSP), it mainly found constraints with low rank or it simply found nothing useful.

The results show that the approach can be time consuming. The time to analyse a rea-
sonably complex model with 3-4 data sets is in the range of several minutes up to an hour,
depending mainly on the number of candidates that need to be checked for satisfiability,
a number that grows considerably with the number of possible arguments. However, this
is not unacceptably slow, as it should not be necessary to use Globalizer often and, if it
can find global constraints for the user’s model, it can potentially speed up the solving
of all resulting instances, which more than makes up for the initial investment. Further,
the current prototype is not optimized for performance. There is still great potential
for improving performance by, for example, avoiding unnecessary candidate checks and
parameter instantiations which, as indicated, make up the bulk of the run time.

The number of generated submodel instance groups (|sms|) is relatively small (usually
less than 100), which means that the problem splitting algorithm achieves a good level
of pruning. Generating only a small number of groups and top scoring constraints is
important, since the results are meant to be presented to a human user.

Looking at the number of satisfiability tests, which can reach hundreds of thousands,
it becomes clear that each check needs to be efficient. This justifies the introduction of a
dedicated constraint evaluator as discussed in Section 5.5.1.
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problem time |cs| |sms| calls evals top candidates
Cars 37.3 3 35 848 70173 gcc(step_class,cars_in_class)

count(step_class,c,cars_in_class[c])

sliding_sum(0,

option_max_per_block[p],

option_block_size[p],

step_option_use[1..10,*])

Jobshop 534.3 1 99 13704 1483093 unary(s[1..n,*], d[1..n,*])

Party 809.2 6 280 6438 308482 bin_packing_capa(capacity,

hostedBy[i..n,*],

crew)

alldifferent(hostedBy[*,1..4])

channel(hostedBy[*,*], visits[*,1..4,*])

unary(hostedBy[*,1..4], visits[*,*,1..4])

Party-CSP 850.3 3 258 6799 485166 bin_packing_capa(capacity,

hostedBy[i..n,*],

crew)

alldifferent(hostedBy[*,1..4])

channel(hostedBy[*,*], visits[*,1..4,*])

Party-LP 128.7 4 79 1322 55084 alldifferent(visits_3b[g, *])

bin_packing_capa(capacity, visits_3b[*, t], crew)

binaries_represent_int_3B(visits)

Packing 166.1 2 163 4895 426052 diffn(x,y,pack_s,pack_s)

diffn(y,x,pack_s,pack_s)

Schedule 44.3 1 42 1241 99285 gcc(x,[1,0,1,0,1,0,1])

Sudoku LP 21339.9 17 580 15762 974174 alldifferent(p[*,1..9])

gcc(p[*,1..9], [1,1,1,1,1,1,1,1,1])

alldifferent(p[1..9,*])

gcc(p[1..9,*], [1,1,1,1,1,1,1,1,1])

Sudoku CSP 4230.5 0 61 5116 364467 -
Warehouses 68.7 1 97 1793 227023 gcc(supplier,use)

Table 5.2: Globalizer experiment (3 datafiles, 30 samples, 2 constraints).

5.6.2 Evaluating Alternative Configurations

Let us now evaluate configuration choices other than those taken in the default imple-
mentation, in particular, the effect of varying the number of data files per problem used
to instantiate submodels (3 in the default configuration), the number of sample solutions
used to build the templates and filter the global constraint candidates (30 in the default
configuration), and the size of submodels (2 constraints in the default configuration), on
the accuracy and practicality of the resulting prototype. Note that while currently there
are few enough possible parameter configurations to be explored that this kind of analysis
can be done by hand, in future, given the introduction of more heuristic components to
the Globalizer, it may be useful to apply machine learning approaches to tune parame-
ters. Table 5.3 shows the results of this evaluation, which needs to be considered together
with those presented in Table 5.2. Each cell in the table shows the running time (time),
the number of global constraints found (|cs|), the number of submodel instance groups
generated (|sms|), the number of calls to the constraint solver (calls), and the number of
satisfiability checks performed (evals). Figure 5.3 shows plots demonstrating in graphical
form several interesting results from these experiments. The plotted values are ratios,
with the first configuration being the baseline.

The results shown in the first row of Table 5.3 (together with those in Table 5.2) indi-
cate that increasing the number of data-files often reduces the number of global constraint
candidates generated by the method. For example, analysing the packing problem with
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time |cs| |sms| calls evals time |cs| |sms| calls evals
problem 1 Datafile 2 Datafiles
Cars 26.9 4 35 543 65923 33.5 3 35 748 72292
Jobshop 262.4 2 99 6696 891532 268.6 2 99 6877 883609
Party 831.9 6 280 3731 313166 817.7 5 280 5082 311055
Party-CSP 993.8 3 258 4394 495079 893.8 3 258 5526 484318
Party-LP 77.3 4 79 637 38180 103.4 4 79 973 46014
Packing 138.8 20 163 4337 452842 153.7 2 163 4835 457195
Schedule 34.6 1 42 914 99327 41.4 1 42 1107 102138
Sudoku LP 8655.7 33 580 7170 514396 14979.0 2 580 114515 742875
Sudoku CSP 1483.0 0 61 2736 238385 2854.3 0 61 3926 301604
Warehouses 56.7 1 97 1340 209726 68.5 1 97 1774 225933

1 Sample 100 Samples
Cars 45.4 3 35 1402 32176 53.5 3 35 825 157532
Jobshop 2517.4 62 99 76720 526517 680.8 1 99 12443 3787542
Party 645.7 30 280 15366 176552 1995.2 5 280 6296 722161
Party-CSP 566.6 63 258 14426 253512 2028.0 3 258 6539 1017368
Party-LP 61.0 5 79 1711 8718 305.3 4 79 1317 168493
Packing 287.6 24 163 10787 135731 237.4 2 163 4685 1095227
Schedule 68.4 9 42 2518 38107 64.8 1 42 1211 242938
Sudoku LP 1871.8 26 580 16850 88644 67712.4 14 580 15557 3057030
Sudoku CSP 421.3 0 61 6194 84632 13534.6 0 61 5116 1044746
Warehouses 139.6 23 97 4761 120312 90.1 1 97 1622 443992

1 Constraint 3 Constraints
Cars 31.5 3 27 712 56472 38.0 3 36 860 71291
Jobshop 400.6 1 60 10075 1114608 559.2 1 113 14340 1560720
Party 505.5 5 140 3879 194213 928.1 5 352 7366 336937
Party-CSP 546.5 3 130 4239 298793 942.8 3 327 7636 524926
Party-LP 110.5 4 52 1070 47075 133.0 4 87 1379 57623
Packing 79.8 2 78 2362 195102 259.6 2 243 7516 662124
Schedule 31.6 1 30 888 68360 44.9 1 43 1262 101126
Sudoku LP 18308.6 18 216 10700 742623 23984.7 21 1060 21010 1220339
Sudoku CSP 4125.2 0 40 3420 243729 4229.3 0 61 5116 365088
Warehouses 26.6 1 45 685 76511 108.8 1 130 2896 369605

Table 5.3: Comparison of different configurations.

a single data file results in 20 candidate global constraints with a score of 1. Adding the
additional data files increases the discriminative power of the system by reducing the can-
didates with a score of 1 to the two shown in Table 5.2. Similarly, analysing Sudoku-LP
with only one data file results in 33 candidate global constraints with a score of 1, as
opposed to two given two data files. However, for some problems such as Schedule and
Warehouses, a single data file was enough to narrow the candidates down to a single con-
straint with a score of 1. The results are represented graphically in Figure 5.3. Different
colours represent different models.

Figure 5.3a (which includes the results from Table 5.2) shows graphically that increas-
ing the number of data files tends to increase also the running time, although in some cases
it actually reduces it. The return for this (sometimes considerable) overhead is greater
assurance of the validity of the detected global constraints. Note in particular the packing
problem, where considering 1 data file causes many spurious constraints to be detected,
as they relate only to that specific data file. When the other data files are added these
constraints are eliminated, leaving only those which are found in all the data files.
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Figure 5.3: Experiment looking at different configurations.

Figure 5.3b shows graphically, that increasing the number of constraints in a sub-
model (increasing the size) has the expected effect of increasing the runtime. While for
many models the increase is sub-linear, in some cases it can really blow up. For example,
the Warehouses model takes just over four times longer when submodels can contain up
to three constraints. This is why the default configuration uses 2 constraints.

As shown in the second row of Table 5.3, and graphically shown in Figure 5.3c, in-
creasing the number of samples tends to reduce the number of spurious global constraint
candidates found, by eliminating those that meet the conditions simply by chance. Note
that the number of constraints found under 30 samples (shown in Table 5.2) and 100
samples are quite similar, which is why we chose 30 for our default implementation. An
interesting, non-intuitive result can be found in the progressive party model. Here we find
a cumulative constraint with arguments: hostedBy[_, t], visits[_, h, t], crew, and
capacity[h], which encodes:
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sum (g in GuestCrews) (crew[g]*visits[g,h,t]) <= capacity[h]

This plays a similar role to the bin-packing constraint, but the use of cumulative requires
a different perspective: instead of packing objects (guest crews) into capacitated bins
(host boats), we are scheduling tasks (guest crews) such that the resource (host boat
capacity) is not exhausted, and the duration of each “task” is 1 if the crew visits the host
in that time slot and zero otherwise. The cumulative constraint is eliminated in the 100
sample run because an edge case (all tasks with zero duration) is not permitted by the
definition of cumulative, and the edge case is only found with the larger sample size. This
demonstrates Globalizer’s ability to present alternative viewpoints to the modeller, in this
case presenting this subproblem as a scheduling task rather than as a bin-packing task.

Figure 5.3d shows that increasing the number of samples typically results a small
increase or decrease in running time, which seems a reasonable price to pay for the in-
creased accuracy. Note however, the two outliers of Sudoku-LP and Sudoku-CSP where
we can see a huge increase in execution time. Further analysis showed that, compared to
the other benchmark problems, the submodels produced for these models involve a huge
number of constraints, and sample generation required exploring very deep search trees.
This indicates that the constraints are quite weak. The combination of weak propagation
and a huge number of variables and constraints to in a very deep search leads to the
comparatively poor performance.

5.7 Conclusion

This chapter proposes a method for globalizing constraint models, that is, for inferring
global constraints that can replace parts of a given constraint model. This helps users
improve their models, since global constraints capture the inherent structure of a model
and can, thus, help obtain a better translation to the underlying solving technology and
faster solving using specialised algorithms.

The inference process is based on splitting a model into submodels that correspond
to subsets of its constraints, potentially unrolling loops, and instantiating each of the
resulting submodels with different data sets into a group of submodel instances. From
these groups of instances, candidate constraints are generated by sampling the solution
space of both the group and the candidate constraints. The candidates are ranked and
filtered based on how well their search spaces match.

In addition, the same approach can be applied as an initial pass that focusses on
finding alternative viewpoints in the form of binary variables that may represent integer
variables. These viewpoints can then be added to the model so that in the second pass
with the full set of constraints, Globalizer may be able to find constraints on the variables
of these alternative viewpoints.

Experimental evidence was presented showing that the method is both practical and
accurate. Experiments were also presented that explore different configurations of the
approach. The implementation, the MiniZinc Globalizer, was previously available as a
web-based tool. A new version, which integrates with the MiniZinc IDE is planned.
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The main aspects of the framework that this chapter relates to are highlighted on
the framework diagram above. Candidate constraints are shown to be present in a
program, by a solver. Ultimately, this informs their presence in an instance. These
links are shown by red arrows between these levels. Dashed arrows from several
instances to the model represent the generalisation of discovered constraints in the
instances being expressed at the level of a model. The intersection of these suggests
globals that can likely be added to the model. The self loop at the model level
represents the introduction of implicit structures, either as part of the Globalizer
approach, or by the user afterwards. Finally, users learning about structures present
in their problem is represented by the arrow from the model to the problem level.

5.7.1 Limitations

Currently, globalizing a model using Globalizer can be a slow process. While we believe
that this is a reasonable cost to pay considering how the improvement of a model can speed
up the solving of many resulting instances, it is still something that could be improved.
The implementation of heuristics that would prioritise the order in which submodels are
explored, could allow global constraint to be discovered earlier. In a similar vein, the
system currently may test whether a constraint occurs in a subset of a set of constraints
that have already been explored. It is unclear how much of a performance boost the
pruning of these redundant submodels would provide.

5.7.2 Further Research

While the system already provides useful results, there are some improvements that would
be interesting to explore.

Stronger ranking and filtering. One, is the incorporation of ranking techniques from
Constraint Seeker, such as using known implications between constraints to eliminate
more imperfect candidates. Model Seeker could also be used to generate more complex
candidates for each submodel. The confidence in the suggested constraints may also be
improved by using theorem proving or other techniques to prove equivalence in cases where
it is possible.
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MiniZinc IDE integration. A valuable contribution would be the integration of the
system with the MiniZinc IDE that lets users refactor models automatically using the
suggestions generated by Globalizer.

Array slicing. A natural application of the tool is in teaching constraint program-
ming. In a recent assignment given as part of a constraint programming course at Monash
University, students were required to write a MiniZinc model to solve a vehicle routing
problem. The problem involved determining a tour to deliver goods to customers over sev-
eral days using several trucks, where each customer has some fixed demand and each truck
some fixed capacity. A constraint of the problem is that the trucks cannot be overloaded.
Several students modelled this constraint as follows:
1 % Parameters

2 array[1..NumCustomers] of int: Demand;

3 array[1..NumVehicles] of int: Capacity;

4 int : TourLength = NumCustomers + 2*NumVehicles

5 % Assignment of customers / depots to vehicles

6 array[1..TourLength] of var 1..NumVehicles: Assignments;

7 ...

8 % Demand/capacity constraint

9 constraint forall(v in Vehicles) (

10 sum(i in 1..NumCusts)

11 (Demand[i]*(Assignments[i]==v)) <= Capacity[v]);

This conjunction of constraints can be replaced by a bin-packing constraint, where the
trucks are the bins, and the customers are the objects to be placed in the bins. Note that
the tour length has more entries than the number of customers, because it also includes
the start and end visits to the depot. The replacement constraint could be written as:

bin_packing_capa(Capacity, [Assignments[i] | i in 1..NumCustomers], Demand);

However, this constraint cannot be found by Globalizer, as it does not construct “array
slices”, like the second argument above, as potential arguments. A slice of the array is nec-
essary because the Demand array is smaller than the Assignments array, as the Assignments
array also contains the visits to the depots, and for the bin-packing we want to consider
only the visits to the customers. We also saw this earlier in Table 5.2 where for the Sudoku
LP model the alldifferent constraints on sub-squares of the matrix could not be found.

One approach would be to modify Globalizer to generate every possible array slice
as a possible argument. However, this might well be too expensive. Instead, we can
modify Globalizer to analyse syntactically the array access expressions in the constraint
to determine which elements of the array are used, and use this subset as a potential
argument. We expect this to work in most cases.

In the example above, we can see that the Assignments array is only used with i as
an argument, and i is declared to be drawn from the set 1..NumCusts. Via this simple
syntactic analysis, we can see that the constraint acts only on the subset of the array given
by [Assignments[i] | i in 1..NumCustomers]. Therefore, we can consider this slice of
the Assignments array as a potential argument.
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Chapter 6

Structure Guided Fault Diagnosis

6.1 Introduction

As discussed in previous chapters, writing correct and efficient models for problems requires
a lot of expertise. In Chapter 5 a method was presented that can help users improve a
given, correct model of a problem. Unfortunately, real-world problems typically exhibit a
level of complexity that makes it difficult to create a correct model in the first place, with
a first attempt at modelling a problem often resulting in an incorrect model. Models may
be incorrect in many different ways. This chapter focusses on the case of over-constrained
models, where the programs are unexpectedly unsatisfiable.

When faced with unsatisfiability, users have few tools available to help them with de-
bugging. The typical strategy for finding the cause of unsatisfiability consists of manually
activating and deactivating constraints in the model until a satisfiable subset is found, in-
dicating the problem lies in (some of) the deactivated constraints. This approach is tedious
and often impractical since the fault may involve a non-trivial combination of groups of
constraints and instance data. Thus, automatic approaches are required to make the task
feasible. This chapter aims to answer the third, and final sub-goal presented in Chapter 1:

Can the explicit structure of a model be used to help identify parts of the model
that are incorrectly formulated?

To answer this question the chapter presents a method that uses the explicit structure to
guide the search for conjunctions of constraints that lead to unsatisfiability.

Motivation

Most automatic techniques for debugging unsatisfiable constraint problem specifications
focus on finding Minimal Unsatisfiable Subsets (MUSes) (Bailey et al., 2005; Junker, 2001;
Liffiton et al., 2013) in constraint programs. A MUS is a set of unsatisfiable constraints
that becomes satisfiable if any constraint in the set is removed. MUSes are therefore useful
in identifying the possible sources of unsatisfiability in a constraint program. This is why
the approach presented in this chapter builds upon MUS detection techniques.

Unfortunately, MUS detection techniques do not scale well for constraint programs in
general, as these programs typically contain hundreds or thousands of constraints, even
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for relatively simple models. To counter this, some debugging techniques focus on specific
kinds of constraint programs, such as numeric CSPs (Gasca et al., 2007) or linear pro-
grams (Gleeson et al., 1990; Loon, 1981), as the particular properties of these constraints
can be used to improve scalability. Other debugging techniques focus on diagnosing un-
satisfiability during search (Jussien et al., 2001; O’Callaghan et al., 2005; Ouis et al.,
2003), which considerably reduces the scalability problem and can be useful for interac-
tive solving, where users have some input into how the search should proceed when it
encounters difficulties. Instead, we must focus on constraint-system agnostic diagnosis
algorithms, as our aim is to be able to debug any model, without regard for the type of
constraints or particular solving technology used. This will make the scalability of the
approach challenging.

Further, the MUSes detected for a constraint program might not be meaningful for
users. This is because, as discussed in Chapter 2, much of the explicit model structure is
lost during compilation to a program. As a result, a MUS defined in terms of the program
might bear little resemblance to the model the user actually designed. This is why most
debugging techniques work at the program level, rather than at the model level, making
the usefulness of the approach challenging.

Contribution

This chapter builds upon the techniques presented in Chapter 4 to present an automatic
approach to the debugging of unsatisfiable constraint problem models that is both scalable
and useful. To achieve scalability, the approach extends the concept of variable paths to
preserve the constraint structure present in a model and uses this explicit model struc-
ture preserved during compilation to speed up a MUS detection algorithm. To
achieve usefulness, the approach presents the resulting MUSes to the user in a meaning-
ful way by automatically linking the program constraints in the MUS to the
model constraints. Further, using a generalisation approach similar to that presented
in Chapter 5, MUSes found across a set of instances can be generalised, that is, expressed
in terms of the high-level (parametric) model. These generalised MUSes can help the
user to distinguish between genuine modelling bugs from the unsatisfiability
that arises from instance data.

The approach, designed and implemented for the MiniZinc modelling language, can
utilise any constraint-system agnostic MUS enumeration algorithm. The proof of con-
cept implementation, experimentally evaluated in Section 6.5, makes use of the MARCO
algorithm from Liffiton et al. (2015), and shows that using the structure available in a
MiniZinc model can be both useful and efficient, speeding up the search for MUSes.

Structure of the Chapter

Section 6.2 introduces a simple model that will be used as a running example throughout
the chapter. Section 6.3 presents an overview of MUS detection algorithms and discusses
related work. Section 6.4 introduces the new approach for guiding MUS detection us-
ing the explicit structure present in a user’s model. It also discusses how this can be
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1 int: n;
2 array[1..n, 1..n] of var 1..n: X;
3
4 % Problem constraints
5 constraint forall (i in 1..n)
6 (all_different(row(X, i))); % rows
7 constraint forall (j in 1..n)
8 (all_different(col(X, j))); % cols
9

10 % Conflicting symmetry breaking constraints
11 constraint forall (r in 1..n-1)
12 (lex_less(row(X, r), row(X, r+1))); % row ordering
13 constraint forall (c in 1..n-1)
14 (lex_greater(col(X, c), col(X, c+1))); % col ordering
15
16 solve satisfy;

Listing 6.1: Latin Squares model with conflicting symmetry breaking constraints.

implemented as part of the simplified MiniZinc interpreter presented in Chapter 2. Sec-
tion 6.5 presents an experimental evaluation of the prototype on a set of faulty models
showing promising speed-ups. Section 6.6 shows how the additional explicit structure can
be used to present more meaningful diagnoses to the user, and Section 6.7 discusses how
the approach presented can help generalise the results found across several instances to
the model-level. Finally, Section 6.8 presents the conclusions to this chapter.

6.2 The Latin Squares Problem

This section presents the model that will be used as a running example to illustrate the
techniques presented in this chapter. Recall that a Latin Square is an n×n matrix of
integers where each row and column contain permutations of the numbers 1 to n. Given a
value for n, the aim of the problem is to find an n×n Latin Square. Listing 6.1 presents
a faulty MiniZinc model for this problem. Line 1 declares an integer parameter ‘n’, to
represent the dimension of the matrix. Line 2 creates the n×n matrix, named X, of integer
variables that must take values in the range 1..n. Lines 5 and 6 introduce the first of the
main problem constraints, namely, the constraints on the rows of the matrix. Rather than
declaring a set of individual alldifferent constraints for each row in a specific instance, the
modeller has used a forall to parametrically group the alldifferent constraints, and has used
the helper function row to select each specific row. Lines 7 and 8 do the same for the
columns of the matrix.

The Latin Square Problem has many symmetric solutions (Mears et al., 2008), includ-
ing symmetries along the horizontal and vertical axes. The modeller has added symmetry-
breaking constraints to help the solver avoid the enumeration of these symmetric solutions.
These constraints are added on lines 11-14 and introduce a set of lex-less and lex-greater
constraints on pairs of rows and pairs of columns. The lex_less constraints on lines 11
and 12 enforce an ordering on the values in the columns, which forces pairs of consecutive
rows to be lexicographically ordered from the first to last element. This means that the
first element of the first row must be less than or equal to that of the second row, and
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1 % lex_greater.mzn
2 include "lex_less.mzn";
3 predicate lex_greater(array[int] of var int: x,
4 array[int] of var int: y) = lex_less(y, x);

Listing 6.2: lex_greater is rewritten in terms of lex_less.

1 % lex_less.mzn
2 predicate lex_less(array[int] of var int: x,
3 array[int] of var int: y) = lex_less_int(x, y);
4
5 predicate lex_less_int(array[int] of var int: x, array[int] of var int: y)
6 = let { int: lx = min(index_set(x)), int: ux = max(index_set(x)),
7 int: ly = min(index_set(y)), int: uy = max(index_set(y)),
8 int: size = max(ux - lx, uy - ly),
9 array[0..size+1] of var bool: b

10 } in
11 b[0]
12 /\
13 forall(i in 0..size) (
14 b[i] = ( x[lx + i] <= y[ly + i]
15 /\
16 (x[lx + i] < y[ly + i] \/ b[i+1]) )
17 )
18 /\
19 b[size + 1] = (ux - lx < uy - ly);

Listing 6.3: Decomposition of lex_less into simple relational constraints.

if all but the final elements are equal these last element must be ordered. For example,
the arrays a = [1, 2, 2] and b = [1, 2, 3] satisfy the constraint lex_less(a, b) as the
final element in a is strictly less than that in b. When combined with the alldifferent con-
straints, they ensure the first column of X is sorted from the lowest to the highest value.
This breaks the symmetry on the horizontal axis. Lines 13 and 14 then introduce a set
of lex-greater constraints which, when combined with the alldifferent constraints, similarly
restrict the first row to be sorted, this time from highest to lowest. This breaks the sym-
metry on the vertical axis. Unfortunately, these symmetry-breaking constraints overlap in
an undesirable way, as they constrain, for example, the first element of the matrix to be
both the smallest and largest value, thus leaving the domain of this variable empty. It is
not immediately clear just looking at the model that these symmetry breaking constraints
are in conflict. In fact, adding symmetry breaking constraints that successfully eliminate
different symmetries without eliminating non-symmetric solutions is a notoriously difficult
task and the source of many modelling errors.

For the purposes of demonstrating the strengths of the technique without using an
overly complex model, we will assume a compilation that decomposes the all_different

and lex constraints. As explored in previous chapters, the decomposition of all_different
is quite straight forward, introducing a clique of not-equals constraints, one for each pair of
variables passed as an argument. The standard library decompositions for the lex_greater
and lex_less constraints are presented in Listing 6.2 and Listing 6.3, respectively. In the
former, a lex_greater constraint is simply rewritten as a lex_less with its arguments
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array [1..2] of int: i10 = [1,-1];
var 1..3: i0; var 1..3: i1; var 1..3: i2;
var 1..3: i3; var 1..3: i4; var 1..3: i5;
var 1..3: i6; var 1..3: i7; var 1..3: i8;
array [1..9] of var int: X = [i0,i1,i2,i3,i4,i5,i6,i7,i8];
var bool: b18; var bool: b19; var bool: b21; var bool: b24; var bool: b25;
var bool: b26; var bool: b27; var bool: b29; var bool: b32; var bool: b33;
var bool: b35; var bool: b38; var bool: b39; var bool: b40; var bool: b41;
var bool: b43; var bool: b46; var bool: b47; var bool: b49; var bool: b52;
var bool: b53; var bool: b54; var bool: b55; var bool: b57; var bool: b60;
var bool: b61; var bool: b63; var bool: b66; var bool: b67; var bool: b68;
var bool: b69; var bool: b71;
int_lin_ne(i10,[i0,i1],0); array_bool_and([b41,b43],b33);
int_lin_ne(i10,[i0,i2],0); int_lin_le_reif(i10,[i3,i6],-1,b35);
int_lin_ne(i10,[i1,i2],0); array_bool_or([b32,b35],true);
int_lin_ne(i10,[i3,i4],0); int_lin_le(i10,[i3,i6],0);
int_lin_ne(i10,[i3,i5],0); int_lin_le_reif(i10,[i4,i7],-1,b38);
int_lin_ne(i10,[i4,i5],0); array_bool_or([b33,b38],b39);
int_lin_ne(i10,[i6,i7],0); int_lin_le_reif(i10,[i4,i7],0,b40);
int_lin_ne(i10,[i6,i8],0); int_lin_le_reif(i10,[i5,i8],-1,b41);
int_lin_ne(i10,[i7,i8],0); int_lin_le_reif(i10,[i5,i8],0,b43);
int_lin_ne(i10,[i0,i3],0); array_bool_and([b53,b54],b46);
int_lin_ne(i10,[i0,i6],0); array_bool_and([b55,b57],b47);
int_lin_ne(i10,[i3,i6],0); int_lin_le_reif(i10,[i1,i0],-1,b49);
int_lin_ne(i10,[i1,i4],0); array_bool_or([b46,b49],true);
int_lin_ne(i10,[i1,i7],0); int_lin_le(i10,[i1,i0],0);
int_lin_ne(i10,[i4,i7],0); int_lin_le_reif(i10,[i4,i3],-1,b52);
int_lin_ne(i10,[i2,i5],0); array_bool_or([b47,b52],b53);
int_lin_ne(i10,[i2,i8],0); int_lin_le_reif(i10,[i4,i3],0,b54);
int_lin_ne(i10,[i5,i8],0); int_lin_le_reif(i10,[i7,i6],-1,b55);
array_bool_and([b25,b26],b18); int_lin_le_reif(i10,[i7,i6],0,b57);
array_bool_and([b27,b29],b19); array_bool_and([b67,b68],b60);
int_lin_le_reif(i10,[i0,i3],-1,b21); array_bool_and([b69,b71],b61);
array_bool_or([b18,b21],true); int_lin_le_reif(i10,[i2,i1],-1,b63);
int_lin_le(i10,[i0,i3],0); array_bool_or([b60,b63],true);
int_lin_le_reif(i10,[i1,i4],-1,b24); int_lin_le(i10,[i2,i1],0);
array_bool_or([b19,b24],b25); int_lin_le_reif(i10,[i5,i4],-1,b66);
int_lin_le_reif(i10,[i1,i4],0,b26); array_bool_or([b61,b66],b67);
int_lin_le_reif(i10,[i2,i5],-1,b27); int_lin_le_reif(i10,[i5,i4],0,b68);
int_lin_le_reif(i10,[i2,i5],0,b29); int_lin_le_reif(i10,[i8,i7],-1,b69);
array_bool_and([b39,b40],b32); int_lin_le_reif(i10,[i8,i7],0,b71);
solve satisfy;

Listing 6.4: FlatZinc for Latin Squares with n=3 with 42 variables and 58 constraints.

swapped. In the latter, the lex_less constraint is decomposed introducing several tem-
porary constants (lx, ux, ly, uy, and size), which make the body of the constraint more
succinct. In addition, it introduces an array of Boolean variables b, representing whether
or not each pair of corresponding elements in the arrays are ordered, with one extra
element (b[size + 1]) to represent whether the first array is shorter than the second.
The body defines a set of relational constraints which define these Booleans, the first of
which (b[0]) must be true. Listing 6.4 shows the output from the MiniZinc compiler when
compiling this model with n = 3. For brevity, the constraint keyword has been omitted.
We can see from this FlatZinc program that, once a model has been compiled, it can be
difficult for a user, especially a novice one, to interpret and map these constraints back to
their source in the original model.
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6.3 Related Work

This section discusses existing MUS-based approaches for debugging constraint problem
specifications. A Minimal Unsatisfiable Subset (MUS) is an unsatisfiable set of constraints
where the removal of any one constraint makes the set satisfiable. A MUS, being minimal,
attempts to succinctly describe a source of unsatisfiability in a constraint program. A
related concept is that of a Maximal Satisfiable Subset (MSS), that is, a satisfiable subset
of constraints, where the addition of any extra constraint from the full program makes the
set unsatisfiable.

Typical approaches for fault diagnosis of constraint problem specifications work at the
constraint program level. These approaches aim at enumerating all (or some subset of)
the MUSes that can point to the sources of unsatisfiability. Having a selection of MUSes
gives the user a better chance to discover the root cause of unsatisfiability, although in
some cases a single MUS may be sufficient.

Enumerating all of the MUSes of a program can be achieved by exploring the power-
set, that is, all possible subsets of constraints, to perform a satisfiability check on each,
and collect the unsatisfiable ones, discarding all strict supersets. The satisfiability check
is typically delegated to an external solver, with the algorithm just operating on a set of
labels (typically integers) representing the program level constraints. This allows a MUS
detection algorithm to be agnostic in the concrete type of problem that is being diagnosed.

Most MUS algorithms avoid enumerating the entire power-set, attempting instead to
minimise the number of satisfiability checks required by pruning the set intelligently. For
example, by not exploring any superset of an already discovered MUS. A detailed survey
of MUS enumeration approaches can be found in Liffiton et al. (2015). These approaches
work with the full set of program level constraints (such as all 58 constraints in Listing 6.4).
Good techniques for pruning the search space can reduce the number of satisfiability
checks considerably. However, depending on the time taken by each satisfiability check,
the pruning may not be enough to make these approaches practical for large programs.

As mentioned above, there has been much work in the area of program level MUS
enumeration. Some approaches focus on the characteristics of specific constraint systems
in order to be able to further prune the search space. For example, for mixed integer
linear programming, properties of the linear system can be taken into account (Gleeson et
al., 1990; Loon, 1981). For unsatisfiable numerical CSPs (NCSPs), algorithms exploiting
structure inherent to NCSPs to prune the power-set of program constraints have also been
proposed (Gasca et al., 2007). While powerful, these methods restrict the applicability of
the debugging methods and are, thus, not the focus of this thesis.

In addition, there are several algorithms available for constraint-system agnostic MUS
enumeration (Bacchus et al., 2016; Bailey et al., 2005; Liffiton et al., 2013, 2015). Many
of these algorithms focus on finding explanations (in the form of MUSes) during search, as
the number of applicable MUSes is then much smaller. However, these methods can also
be used for diagnosing unsatisfiable constraint programs, if scalability can be achieved.
One approach, known as QuickXplain (Junker, 2001) attempts to discover MUSes using
a divide and conquer approach. It works by removing a constraint from the full set, and
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recursively enumerating MUSes. Once enumerated, it recursively explores the set of con-
straints that include this constraint. Later approaches such as Dualize and Advance (DAA)
from Bailey et al. (2005) use more powerful techniques for pruning the search space. DAA
exploits the duality between Minimal Correction Sets (sets that, when removed completely
from unsatisfiable sets makes them satisfiable, and removing only a subset of them leaves
them unsatisfiable) and MUSes. Hitting sets are computed for each MCS to discover
MUSes. The main drawback of this approach was that the enumeration of the hitting sets
incurs a prohibitive memory and time cost. The MARCO algorithm (Liffiton et al., 2013)
and the more recent MCS-MUS-BT (Bacchus et al., 2016), provide much more efficient
approaches for finding MUSes. Details of the MARCO algorithm, which is the one used
in our implementation, are presented in Section 6.3.

Existing MUS enumeration approaches are likely to produce MUSes that include con-
straints and variables introduced during compilation. It can be difficult for a user to
map these back to the source in the model. Thus, presenting these MUSes to a user who
is unfamiliar with the workings of the compiler may not actually be conducive to fixing
modelling mistakes. Consider the final program in Listing 6.4, which has a large set of
int_lin_ne constraints. Deciding which call to alldifferent these constraints come from in
the original model is possible but can be difficult. Recall that MiniZinc does not guarantee
the constraints are inserted into the FlatZinc program in the order they are encountered.
One example of this out-of-order compilation is when the compiler encounters a constraint
in a reified context. The compiler will introduce a Boolean control variable for the con-
straint and then defer the compilation of the constraint until a later point. If the control
variable is fixed to true later during compilation a non-reified version of the constraint
can be used, leading to a more efficient constraint program. This becomes more impor-
tant when a target solver does not support a reified version of a global constraint, where,
without the out of order compilation, the constraint would have to be decomposed.

At the modelling system level there has been some effort to provide more meaningful
explanations of unsatisfiability. In Jussien et al. (2001) users can explicitly group their
constraints, giving a user friendly name to each sub-group. When a constraint system
is found to be unsatisfiable, explanations are found at the system level (program level).
These are then mapped to the names provided by the user to provide better feedback. Our
approach builds on this idea, but shifts the burden from the user to the debugging system.
CPTEST (Lazaar et al., 2012) is a modelling system level framework that can aide a user
in correcting several types of faults in a model given a correct (though possibly naive)
model as an “oracle”. It focusses on finding faults involving individual model constraints.
It finds these by negating each one, and compares the resulting search space of the model
with that of the oracle. Unfortunately, some problems are difficult to model even naively.
Thus, non-oracle based approaches are indeed needed.

The MARCO Algorithm

Our approach to structure guided fault diagnosis is based on the use of a constraint-system
agnostic MUS algorithm. In particular, the proof-of-concept implementation evaluated in
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Algorithm 6.1 An implementation of EnumerateMUSes adapted from the most basic
form of the MARCO algorithm from Liffiton et al. (2015).
function MARCO(labels, maxMUSes)

MUSes ←∅ . Set of sets of labels
map ← BooleanFormula(vars = labels, clauses = ∅)
while map is satisfiable and |MUSes | ≤ maxMUSes do

activeLabels ← GetUnexplored(map)
if check(activeLabels) then

MSS ← Grow(activeLabels)
map ← map

∧
BlockDown(MSS) . Block all subsets of MSS

else
MUS ← Shrink(activeLabels)
map ← map

∧
BlockUp(MUS) . Block all supersets of MUS

MUSes ← MUSes ∪ {MUS}
return MUSes

Algorithm 6.2 Satisfiability check.
function check(activeLabels)

M ←∅ . Start with empty constraint program
for each (p ∈ activeLabels) do
〈d,C〉 ← T [p]
M ←M ∪

∧
c∈C c . Assume variables are added automatically

return solve(M)

this Chapter uses the MARCO algorithm. MARCO was chosen due to its simplicity and
the availability of an existing implementation that could be extended. An adapted version
of the basic MARCO algorithm is reproduced from Liffiton et al. (2015), in Algorithm 6.1.
Here, the algorithm takes the form of a function MARCO(labels, maxMUSes) which im-
plements an interface, EnumerateMUSes, which the new approach requires. The interface
must take a set of constraint labels, labels, and a maximum number of MUSes, maxMUSes,
to enumerate. It returns a set of MUSes defined in terms of the labels. The MARCO algo-
rithm can be used to both find minimal unsatisfiable sets (MUSes) and Maximal Satisfying
Sets (MSSes). The algorithm selects a subset of constraints, and checks if it is satisfiable.
If it is, it grows the set by adding constraints that do not cause unsatisfiability until it is
an MSS. Alternatively, if the selected subset is unsatisfiable, it removes constraints that
do not contribute to the unsatisfiability. Once an MSS or MUS has been found, it then
selects a new subset that is not a subset of an MSS or a superset of a MUS.

To achieve this the algorithm maintains a CNF formula called map. The map initially
comprises a BooleanFormula, initialised with variables representing the selection of certain
constraints (by label) in a program, and an empty set of clauses. That is, any subset can
be selected. The map is used as a generator of subsets that have not yet been checked.

The main loop of the algorithm executes until the map is no longer satisfiable, sig-
nifying that the entire power-set of constraints has been explored, or until the number
of enumerated MUSes reaches maxMUSes. The algorithm calls GetUnexplored, which re-
quests a satisfying solution to the map and stores it as activeLabels. The activeLabels are
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then passed to check (Algorithm 6.2), which returns whether or not the subset is satisfi-
able. If the set of constraints is satisfiable, it is grown by calling Grow. This procedure
incrementally grows the activeLabels set into an MSS from the set labels, checking for sat-
isfiability as it goes. In particular, if adding a label to activeLabels causes unsatisfiability,
it is removed and the procedure continues with the remaining constraints. This set is then
returned and stored in MSS. A clause is then added to the map to reflect that all strict
subsets of MSS are satisfiable and do not need to be explored. This is accomplished by
using the procedure BlockDown, which returns the clause

∨
i 6∈MSS xi, where xi is a label

from the full set of labels. Alternatively, if the subset was unsatisfiable, the Shrink proce-
dure is called to remove constraints from the activeLabels set that do not appear to cause
unsatisfiability. Thus, Shrink returns a MUS. In this case a clause is added to the map
that marks all supersets as explored. This is achieved using the procedure BlockUp, which
returns the clause

∨
i∈MUS ¬xi. The algorithm continues as long as map is satisfiable,

indicating that unexplored subsets remain.

6.4 Exploiting Model Structure for MUS Detection

This section introduces the new approach for guiding an existing MUS detection algorithm
to find MUSes using the explicit high-level structure present in a model. The approach
builds upon two existing techniques and extends the MiniZinc variable path concept, in
order to speed up MUS detection and provide more meaningful diagnoses to the user.
The first existing technique is that of Jussien et al. (2001), where explanations, found at
the program level, are described with user friendly names for grouped constraints. These
names, which are manually obtained from the user encode the constraint hierarchy. This
is used to provide more readable, useful feedback. Our method extends this concept to
show how existing model-level structure can be used to group constraints automatically,
by using the concept of constraint paths, which are an extension of the variable paths
introduced in Chapter 4. Further, we show how constraint paths allow for an iterative
refinement of MUSes that avoids the complete exploration of the space. The second
existing technique is that of constraint agnostic MUS enumeration. As indicated before,
the prototype implementation uses MARCO. However, any MUS enumeration algorithm
that implements the EnumerateMUSes interface could be used.

6.4.1 Constraint Paths

In Jussien et al. (2001) the modeller is tasked with manually grouping related constraints
together. One of the key contributions of this chapter is the insight that a high-level
language, like MiniZinc, has by default an explicit hierarchy of constraints and, therefore,
does not need to be annotated by a user. To access this hierarchy at the program level,
we need a mechanism that preserves this hierarchical structure through compilation.

The concept of variable paths was presented in Chapter 4. Recall that variable paths
describe the path the compiler took through the model to the point where a concrete
variable is introduced to the program. Paths contain information on the location of each



CHAPTER 6. STRUCTURE GUIDED FAULT DIAGNOSIS 134

30 int_lin_ne(i10,[i3,i4],0);
�� ��5:12:forall:i=2

�� ��all_different_int
�� ��forall:i=1 j=2

�� ��!=

31 int_lin_ne(i10,[i3,i5],0);
�� ��5:12:forall:i=2

�� ��all_different_int
�� ��forall:i=1 j=3

�� ��!=

32 int_lin_le(i10,[i3,i6],0);�� ��11:12:forall:r=2
�� ��lex_less

�� ��lex_less_int
�� ��let

�� ��/\
�� ��forall:i=0

�� ��=
�� ��/\

�� ��forall
�� ��<=

33 int_lin_le_reif(i10,[i4,i7],-1,b38);�� ��11:12:forall:r=2
�� ��lex_less

�� ��lex_less_int
�� ��let

�� ��/\
�� ��forall:i=1

�� ��=
�� ��/\

�� ��forall
�� ��\/

�� ��exists
�� ��<

Listing 6.5: Simplified MiniZinc paths with depth 1 prefix marked in bold.

syntactic construct, as well as the bindings of all loop variables involved in producing a
variable. In Chapter 4 we used paths to match variables across multiple compilations
of an instance. Our fault diagnosis approach requires the development of a similar path
concept for constraints (in addition to that of variables) to access the extra structure
available in the form of the hierarchy of constraints, and also to be able to tie low-level
constraints in a MUS back to the user’s model. The construction of constraint paths can
be added to the reduced MiniZinc compiler presented in Chapter 2, by simply modifying
the postConstraints procedure to call getCurrentPath when constraints are being added to
the FlatZinc, and by adding the path as an annotation to the constraint. Pseudocode for
this can be seen in Algorithm 6.3.

Algorithm 6.3 Annotating program constraints with paths.
procedure postConstraints(C)

for each (c ∈ C) do
path← getCurrentPath()
annotations(c) ← annotations(c) ∪ {path}
S← S∪{c}

Figure 6.1 and Listing 6.5 illustrate how paths for constraints can expose the hierarchy
of constraints at the program level. This section will show how the variable paths approach
from Chapter 4 can be extended to make this possible. Listing 6.5 shows simplified paths
for four constraints from the compiled Latin Squares instance where n=3, which was already
shown in Listing 6.4. The path for the third constraint (int_lin_le(i10,[i3,i6],0))
shows that it was introduced by the lex_less constraint for row r=2. This means it was
introduced by call lex_less(row(X, 2), row(X, 2+1)). Following the rest of the path, we
can see that this specific int_lin_le constraint can be traced to the less-than (<) on line
14 of the decomposition presented in Listing 6.3. As in Chapter 4, the amount of detail
in the paths presented here has been reduced for illustrative purposes. Actual MiniZinc
paths retain information about what file a call is in, and the span of text the call covers
(start and end rows and columns).

Figure 6.1 presents the trace of compilation for all constraints in the flattened program
of Listing 6.4. The figure clearly shows that there is a hierarchy of constraints, where a
forall introduced a set of all_different_int constraints, and the decomposition of these
introduced sets of individual int_lin_ne constraints. Note also how the lex_greater

constraints are clearly seen as being replaced with lex_less constraints.
The figure also shows how paths make both the model-level (what the user wrote)

hierarchy and the decomposition (or compiler-level) hierarchy, available at the program
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Figure 6.1: A reduced trace tree for the Latin Squares model with n=3.

level. At the root of the tree there are four different high-level constraints (the four
forall loops). Descending to a depth of 1 exposes the two sets of three all_different

constraints on the rows and columns, and the two pairs of lex constraints also on the
rows and columns. Descending deeper exposes the decomposition of these constraints
into the individual program level constraints (the int_lin_ne constraints coming from the
decomposition of all_different, and the int_lin_le_reif constraints from lex_less).
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6.4.2 Grouping Constraints by Paths

Having access to the model-level structure at the program-level allows constraints to be
grouped together automatically when searching for MUSes. Our method combines the
advantages of not having to rely on the user to define the constraint groups, with those of
not having to explore the full set of program level constraints. It achieves this by generating
automatically the constraint groups based on the model structure, starting from the top-
level constraint items, and iteratively refining them down to individual program-level
constraints only if needed. This allows for a novel approach that is scalable, automatic,
and can produce more accessible diagnoses.

The approach operates on a reduced form of the hierarchy where only nodes that have
multiple child nodes are included, that is, it only contains branching nodes. The root node
of the hierarchy presented in Figure 6.1 (or depth 0, which is omitted from the diagram)
for the Latin Squares model, would have 4 constraint groups corresponding to the top-level
constraints from lines 5, 7, 11, and 13 in the original model. Grouping constraints under
branching nodes in this hierarchy, and treating them as a single unit for the purposes of
MUS enumeration, allows us to find “high-level” MUSes.

Take for example Figure 6.1. Grouping constraints by their path prefixes to a depth of
0, a MUS enumeration algorithm will have to explore the power-set of only four constraint
groups, which is a much smaller search space than that of the full 58 program level
constraints. Of course, MUSes found at the root can only hint at what might be wrong,
by drawing a user’s attention to specific lines in the model. More fine-grained and, thus,
more useful MUSes, will have to be found deeper in the hierarchy by using longer prefixes.

With this approach, the mapping from labels representing constraint groups to the
individual program-level constraints that they represent, must be recorded. Algorithm 6.4
presents the function split, which takes a set of constraints C, a depth depth, and a map T ′.
This map maintains a mapping from a label (a path prefix of the first d nodes in a path)
to a 2-tuple 〈depth,cons〉, which records the depth of a prefix and the set of program-level
constraints that share this prefix, grouping them as a single constraint group. Note that
the algorithms here make use of ReversePathMap. This map was introduced in Chapter 4
for managing the unification of variables, but can also be used to provide a mapping
from program-level constraints back to their respective paths. The split function iterates
through each constraint c in the set of constraints C. For each such c, it gets a path
from ReversePathMap and uses the prefix function to select the first depth elements of the
path to be used as the group label. If T ′ has an entry corresponding to this label, the
constraints of that entry are extracted as cons. Finally, the entry in T ′ for the label p is
set (or updated) with the new constraint added to cons (cons ∪ {c}).

Selective deepening. Algorithm 6.5 presents the an algorithm for finding MUSes. The
diagnose procedure takes as arguments a set of constraints C, a minimum depth to be-
gin searching for MUSes, minDepth, a depth at which to stop searching, maxDepth, a
maximum number of MUSes to discover at each depth, maxMUSes, and a flag, complete
stating whether constraint groups can be discarded during the search. The process starts
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Algorithm 6.4 Function that groups constraints that share a prefix.
Global State:
ReversePathMap: map: expression→ path
Parameters:
C: set of constraints . Program level constraints
depth: integer . Depth of prefixes
T ′: map: label → 〈depth, cons〉 . Maps labels to associated constraints
function split(C, depth, T ′)

for each (c ∈ C) do
cons ←∅ . Get first depth elements from path of c
p← prefix(ReversePathMap[c], depth)
if p ∈ T ′ then . If prefix is already in T use existing cons

_, cons ← T ′[p]
T ′[p] ← 〈minDepth, cons ∪ {c}〉

return T ′

Algorithm 6.5 Procedure for reporting MUSes found at different depths.
Global State:
T : map: label → 〈depth, cons〉 . Maps labels to associated constraints
Parameters:
C: set of constraints . Program level constraints
minDepth: integer . Starting depth
maxDepth: integer . Depth to stop at
maxMUSes: integer . Maximum number of MUSes to find at each depth
complete: Boolean . Should constraints be discarded?
procedure diagnose(C, minDepth, maxDepth, maxMUSes, complete)

T ← split(C, minDepth, ∅)
do

MUSes ← EnumerateMUSes(labels of T , maxMUSes)
report(T , MUSes)

while ¬increase_depth(
⋃

MUSes, maxDepth, complete)

by initialising the global map T by calling the split function with the full set of constraints
C, the starting depth, minDepth, and an empty map. T essentially represents the fron-
tier of the diagnosis algorithm. A do-while loop calls a MUS enumeration algorithm that
implements the EnumerateMUSes interface with the labels of T , that is, only the labels
of groups of constraints, not the constraints themselves, and maxMUSes which states the
maximum number of MUSes we wish to retrieve at this depth. The returned MUSes are
then presented to a user by the call to report.

It is important to note that a “MUS” that includes constraint groups, rather than
individual program level constraints, does not correspond directly to a single program
level MUS. After a MUS at a certain depth is found, there is guaranteed to be at least
one MUS at the program level involving a subset of the program constraints represented
by the constraint groups in the MUS, but possibly even more.

To find these (giving more fine-grained information about the MUS) we must first split
the constraint groups by increasing the depth as described in Algorithm 6.6. This could be
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Algorithm 6.6 Mapping labels to deeper constraint groups.
Global State:
T : map: label → 〈depth, cons〉 . Maps labels to associated constraints
function increase_depth(labels, maxDepth, complete)

T ′←∅
for each (p ∈ labels) do
〈d,C〉 ← T [p]
d′← Min(d+ 1, maxDepth)
T ′← split(C, d′, T ′)

if Complete then . Retain constraint groups not in labels
for each (p 6∈ labels) do

T ′[p]← T [p]
T ← T ′

return can the prefixes be extended? . Are the prefixes all at their maxDepth

done by simply increasing the depth for all constraint groups, splitting each of them again
according to the next part of their respective paths. However, this would be inefficient,
as the depth does not need to be increased for constraint groups that did not take part in
any MUS. Only expanding the groups that are involved in a MUS allows the algorithm to
avoid a detailed search through constraints that are likely irrelevant and to spend more
time focussing on constraints that are likely to be involved in a MUS at this increased
depth. This can speed up enumeration considerably, since a constraint group that is not
involved in any MUS can potentially contain a large set of constraints. In Algorithm 6.5
this is represented by the call to the increase_depth procedure with the union of constraint
groups that occur in the discovered MUSes.

The increase_depth procedure, defined in Algorithm 6.6, takes a set called labels repre-
senting the set of constraints to be split, a limit maxDepth to increase the depth to, and a
flag, complete which states whether the algorithm can discard constraint groups. The pur-
pose of this procedure is to construct a new T ′ that results from unpacking the constraint
groups from T that correspond to the labels in labels. It calculates new labels based on
longer prefixes of their constituent constraint paths. It then builds a new T ′ with these
labels. This splits the constraint groups into a set of smaller constraint groups that are
from deeper in the hierarchy. If the complete argument is set to true, the algorithm adds
to T ′ the set of labels and associated constraint groups that were not in labels. Finally,
it replaces the original T with T ′. This makes sure that all program constraints remain
reachable. It then returns a Boolean stating whether the maxDepth has been reached.

If increase_depth returns true, the diagnose procedure is finished. Calling increase_depth
on the union of found MUSes, essentially implements a kind of breadth-first search for
MUSes. To allow the search for a MUS to be more focussed, maxMUSes can be set to
1, forcing the MUS enumeration to only find a single MUS at each depth before going
deeper. An evaluation of this approach is presented in Section 6.4.3.

To illustrate how the selective deepening approach works, consider a simple example
where the approach is applied to a set of constraint groups labelled {1,2}. Assume we
find the MUS {1}. This means the depth only needs to be increased for constraint 1,
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(a) Frontier: 4 constraint groups.
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(b) Frontier: 8 constraint groups.
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(c) Frontier: 14 constraint groups.
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(d) Frontier: 22 constraint groups.
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(e) Frontier: 30 constraint groups.
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(f) Frontier: 36 constraint groups.

Figure 6.2: Selective Deepening.
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which may result, for example, in the new set {1.1, 1.2, 1.3, 2}. If the second constraint
group contains five lower level constraints, taking this approach leads to a significant
reduction in the number of subsets to be explored over the number of possible subsets in:
{1.1,1.2,1.3,2.1, 2.2, 2.3, 2.4, 2.5}.

A more detailed demonstration of the workings of the algorithm is presented in Fig-
ure 6.2. The different panels of this figure show the progression of the frontier of the
algorithm as it is applied. The red ellipses (filled in or not) mark the branching points
that are being explored by the algorithm. The filled in, red ellipses mark MUSes that have
been found. The red line highlights the frontier. The trace of paths presented here is a
reduced version of the compiled Latin Squares constraint program presented in Figure 6.1.
The first iteration of the algorithm calls the MUS enumeration algorithm on 4 constraint
groups, finding a MUS involving 3 of them. Increasing the depth for these 3 constraints
results in the frontier growing to 8 constraints. Once program level constraints are reached
at depth 6, a set of only 36 constraints needs to be explored instead of the full set of 58.

Incomplete enumeration. A further optimisation that can improve scalability is to
omit entirely the constraint groups that did not occur in any MUS at the current depth.
Figure 6.3 shows how the frontier is focussed while searching for a MUS in the Latin
Squares example. The difference is evident after only the first call to increase_depth,
which leaves the frontier with only 7 constraint groups on the frontier, improving slightly
on the 8 constraint groups that the complete approach finds at this stage. As search
continues we see that the difference becomes even more apparent, with the incomplete
approach only having to look at 25 constraints at the program-level, compared with the
36 of the complete approach. This incomplete deepening approach can allow us to quickly
discover MUSes. However, the removal may occasionally cut off MUSes that can only be
found at lower depths.

To demonstrate how incomplete deepening can omit valid MUSes, Figure 6.4 shows
a simple faulty model where incomplete deepening will miss a valid program level MUS.
This example has two MUSes, shown in Figure 6.4b and Figure 6.4c: {x<4, x>5} and
{x>6, x<4}, respectively. A MUS detection algorithm searching at a depth of 0, i.e., only
looking at each constraint item as a whole, will find the conflict {x>6, x<4 /\ x>5}. This
set is not minimal, as the set is still unsatisfiable when constraint x>6 is removed. Incom-
plete enumeration will then seek to find MUSes in the set {x<4, x>5} discarding constraint
x>6 and, thus, cutting off the MUS {x>6, x<4}. This approach sacrifices completeness for
scalability, allowing users to quickly discover some subset of the MUSes in their model.
In Algorithm 6.5 this is implemented by passing false as the complete argument to in-
crease_depth, which implements incomplete enumeration by including or omitting labels
that are not included in a MUS from the new T .

6.4.3 Implementation Details

The proof of concept implementation evaluated in the next section is based on the released
code for the MARCO approach. The approach was implemented as a Python script with
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(a) Frontier: 4 constraint groups.
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(b) Frontier: 7 constraint groups.
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(c) Frontier: 11 constraint groups.
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(d) Frontier: 15 constraint groups.
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(e) Frontier: 19 constraint groups.
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(f) Frontier: 25 constraint groups.

Figure 6.3: Incomplete Deepening.
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% simple.mzn
var int: x;

x > 6;
x < 4 /\ x > 5;

solve satisfy;

(a) Example Model.

conj
x < 4

x > 5

x > 6

(b) MUS 1.

conj
x < 4

x > 5

x > 6

(c) MUS 2.

conj
x < 4

x > 5

x > 6

(d) Compilation Trace.

conj
x < 4

x > 5

x > 6

(e) Conjunction is minimal.

conj
x < 4

x > 5

x > 6

(f) MUS 1 discarded.

Figure 6.4: Incomplete enumeration can miss some MUSes.

interfaces to some SAT solvers, including MiniSAT and MiniCard. The script allows for
new satisfaction checkers to be integrated relatively easily. The core MARCO algorithm
represents the selection of different constraints as simple integers. Our implementation
added a satisfaction checker for FlatZinc that is aware of MiniZinc paths and of the
grouping of constraints. In addition, the implementation included a modification to the
MARCO frontend that implements the algorithm presented in Algorithm 6.5.

The frontend supports running MARCO on a set of constraint groups at a target depth,
by setting minDepth and maxDepth to the same value. To perform selective deepening
instead, minDepth must be less than maxDepth. In this case MUSes will be enumerated
at minDepth, with increase_depth being called until the frontier cannot be expanded any
further, or until maxDepth is reached. Incomplete enumeration occurs when complete is
set to false. The number of MUSes discovered by each call to EnumerateMUSes can be
configured by setting maxMUSes. This setting, combined with complete being set to false,
allows the tool to focus on finding the maxDepth constraint groups related to a specific
fault as quickly as possible.

6.5 Experimental Evaluation

To evaluate the efficiency and usefulness of the new approach, two experiments were
performed. The first explores the effectiveness of the approach for finding multiple MUSes
at different depths. The second experiment explores how it behaves when only searching
for a single MUS. Six different configurations of the system were evaluated, paired by
their target maxDepth. Each execution was given a timeout of 300 seconds (5 minutes).
The configurations are presented in Figure 6.5. Configurations C2, C3, and CProgram

correspond to a fixed depth MUS enumeration at depths 2, 3, and the depth of the
individual program-level constraints. This program-level enumeration corresponds to the
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Config minDepth maxDepth complete
C2 2 2 true
C1→2 1 2 false
C3 3 3 true
C1→3 1 3 false
CProgram Program Program true
C1→Program 1 Program false

Figure 6.5: Experiment configurations.

traditional application of MARCO. Configurations C1→2, C1→3 and C1→Program perform
incomplete enumeration (setting complete to false), enumerating MUSes first at a depth
of 1 and then increasing the depth to 2, 3, and the program depth, respectively, discarding
constraint groups that are not involved in any MUS as they proceed.

Dataset

Currently, there are no collections of constraint models that contain bugs that make them
unsatisfiable. Collections such as CSPLib (Gent et al., 1999) or the MiniZinc benchmarks1

contain only finished, correct models for problems. We therefore introduced artificial faults
into some of the models from the MiniZinc Challenge 2015 (Stuckey et al., 2010), similarly
to how fault injection was applied in (Lazaar et al., 2012). The faults were introduced so
that each model became unsatisfiable in a non-trivial way, i.e., so that the compiler does
not detect it already during compilation and the solver must perform some search to prove
unsatisfiability. The instances for each model were selected at random. The following lists
the models used, along with the faults that were injected. The source for these faulty
models can be found in Appendix C.

Costas-Array: This problem can be seen as a two dimensional version of the Golomb
ruler problem. Points must be placed in an n×n matrix, such that the displacement
vectors between each pair of points are distinct. The fault added is a common off-by-
one mistake in the indexing of an array: array access differences[k-2,l-1] became
differences[k-2,l-2].

CVRP : A capacitated vehicle routing problem. This is the classic VRP with maximum
capacities for the vehicles. The fault injected replaces the use of a successor vari-
able array in one of the constraints with the predecessor variable array: expression
successor[n] became predecessor[n].

Free-Pizza: The goal of this problem is to find the best way to use a given set of vouchers
for acquiring pizzas. The fault added replaces a less-equal with a strict less-than:
constraint <= became <.

Mapping : This problem is about mapping streaming applications on multiprocessors with
time-division-multiplexed network-on-chip. The added fault changes a constant in
an expression from a zero to a one.

1https://github.com/MiniZinc/minizinc-benchmarks

https://github.com/MiniZinc/minizinc-benchmarks
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Configuration C2 C1→2 C3 C1→3 CProgram C1→Program
Model T G M T G M T G M T G M T G M T G M
Costas-Array 300.0 56 88 300.0 54 11 300.0 83 0 300.0 0 0 300.0 83 0 300.0 0 0
CVRP 300.0 34 1 0.5 7 1 300.0 66 2 0.7 7 1 300.0 101 3 1.4 14 4
Free-Pizza 300.0 81 13 0.7 9 1 300.0 82 12 0.7 1 1 300.0 553 8 1.2 1 1
Mapping 0.4 24 1 0.3 2 1 28.9 69 70 10.9 28 66 300.0 254 70 300.0 0 0
MKnapsack 7.6 31 49 7.2 30 49 7.8 31 49 14.3 30 49 9.5 32 65 58.2 31 65
NMSeq 300.0 40 0 300.0 40 0 300.0 40 0 300.0 0 0 300.0 3240 0 300.0 0 0
Open-Stacks 300.0 802 5 300.0 800 5 300.0 841 4 300.0 0 0 300.0 4421 0 300.0 0 0
P1F 113.6 89 77 89.3 77 77 113.9 89 77 170.6 77 77 300.0 947 10 300.0 0 0
Radiation 0.5 5 1 0.5 4 1 12.0 68 12 4.1 25 12 73.1 388 12 20.4 12 12
Spot5 300.0 4998 0 300.0 4406 1 300.0 5227 0 300.0 0 0 300.0 5457 0 300.0 0 0
TDTSP 300.0 46 1 300.0 0 0 300.0 62 1 300.0 0 0 300.0 170 1 300.0 0 0

Table 6.1: Enumerating multiple diagnoses.

MKnapsack : The multi dimensional Knapsack Problem. This involves a large number
of overlapping knapsack constraints. The fault added replaces constraints less-equal
and greater-equal with constraints less-than and greater-than, respectively.

NMSeq : A naive model for the Magic sequence problem. The injected fault replaces an
equality with a disequality: constraint == became !=.

Open-Stacks : This is a scheduling problem where a sequence of product orders must be
found that minimises the number of orders open at the same time. The injected
fault is an indexing issue, where a constant array access to the first element of a
zero-indexed array is changed: array access o[i,0] became o[i,1]

P1F : The goal with this problem is to find a perfect 1-factorization of a graph. The
added fault replaces a disequality with an equality: constraint != became ==.

Radiation : The goal here is to find an arrangement of screens with blocked sections so
that certain amounts of radiation can be delivered through the screens in a treat-
ment. The added fault uses the wrong index variable for the coefficients used in an
expression: expression b * Q[i,j,b] became i * Q[i,j,b].

Spot5 : This problem is an earth observation satellite management problem. The fault
added offsets an expression by adding 1 to it: expression constraints2[u] became
constraints2[u]+1.

TDTSP : The time dependant travelling sales person problem. The added fault is another
off-by-one mistake: index n+1 became n.

6.5.1 MUS enumeration

Table 6.1 shows a comparison of the different configurations when enumerating multiple
MUSes. The columns for each configuration show the duration in seconds (T) taken in
finding the MUSes for the FlatZinc program obtained for the model’s instance, the number
of constraint groups (G) explored, and the number of MUSes found (M). Bold text is used
to highlight which configuration was faster for a particular model at each maxDepth. It
can be seen from the number of cases where configurations reach the 300 second time
limit that enumerating all MUSes for a problem can be an expensive task. Comparing
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Configuration C2 C1→2 C3 C1→3 CProgram C1→Program
Model T G M T G M T G M T G M T G M T G M
Costas-Array 2.5 56 1 3.9 54 1 300.0 83 0 4.7 33 1 300.0 83 0 6.0 33 1
CVRP 0.5 34 1 0.3 7 1 0.9 66 1 0.4 7 1 1.3 101 1 0.8 14 1
Free-Pizza 1.6 81 1 0.6 9 1 1.7 82 1 0.7 1 1 9.4 553 1 0.9 1 1
Mapping 0.4 24 1 0.3 2 1 0.6 69 1 0.4 28 1 1.6 254 1 0.6 4 1
MKnapsack 0.5 31 1 0.5 30 1 0.5 31 1 0.5 1 1 0.6 32 1 0.7 1 1
NMSeq 300.0 40 0 300.0 40 0 300.0 40 0 300.0 0 0 300.0 3240 0 300.0 0 0
Open-Stacks 53.9 802 1 52.1 800 1 73.7 841 1 55.4 7 1 300.0 4421 0 73.4 14 1
P1F 3.9 89 1 1.9 11 1 4.2 89 1 2.1 1 1 29.6 947 1 2.4 1 1
Radiation 0.5 5 1 0.5 4 1 1.4 68 1 0.9 25 1 6.5 388 1 1.2 1 1
Spot5 300.0 4998 0 258.9 4406 1 300.0 5227 0 264.2 1 1 300.0 5457 0 264.2 1 1
TDTSP 1.2 46 1 0.5 1 1 1.4 62 1 0.4 1 1 3.0 170 1 0.7 1 1

Table 6.2: Finding the first diagnosis.

configurations C2 and C1→2, we see that C1→2 is often faster, although in three of the
eleven cases it cannot find as many MUSes as the fixed depth C2 configuration. For
example, for Free-Pizza configuration C2 returns 13 MUSes before timing out, while C1→2

can only yield a single MUS, having discarded too many groups.
Comparing configurations C3 and C1→3, shows that there are also several cases where

configuration C1→3 is faster (CVRP, Free-Pizza, Mapping, and Radiation), although again
C3 can find more MUSes and, surprisingly, is faster for two models (MKnapsack, P1F).

Finally, comparing configurations CProgram and C1→Program , the deepening approach
discovers MUSes at the level of individual program level constraints much faster than the
full enumeration approach in three cases (CVRP, Free-Pizza, and Radiation). An interesting
result can be seen in the MKnapsack instance, where increasing the depth does not change
the number of constraint groups found. Further, since the enumeration algorithm has to
essentially repeat enumeration at each depth before going deeper, it ends up being much
slower. This indicates that the deepening approach may be less useful when most of the
constraints are in conflict. It also suggests an optimisation that, if implemented, will not
allow for fruitless deepening.

Ultimately for enumeration of MUSes, both the selective deepening and fixed-depth
approaches are viable, but the selective deepening should probably be attempted first as
it is often faster.

6.5.2 Time to First MUS

In practice a user will often start trying to fix the first few MUSes that are presented rather
than wait for a full enumeration. This is similar to debugging in traditional programming
languages, where one would rarely try to fix multiple reported errors at once but, instead,
fix one and then check whether it was responsible for the cascade of remaining errors.
With this in mind, a second experiment, presented in Table 6.2, explores how quickly the
configurations can find their first MUS at a target depth.

Configurations C2 and C1→2 in this case show that the incomplete enumeration con-
figuration (C1→2) is almost always faster even at the shallow depth of 2. The fixed-depth
approach is only significantly faster in one case (Costas-Array). An interesting case at this
depth is Spot5, where C1→2 can find a MUS in the set of 4406 groups, while the fixed-depth
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approach fails to do so in the larger set of 4998. This shows that even small reductions in
the number of constraints can have a big impact on performance.

C3 and C1→3 show an even more pronounced effect, with C1→3 being faster or equal
in all cases. The impact of the incomplete enumeration can be seen in the results for
the Free-Pizza model, where C2 must find MUSes given 82 groups at depth 2, whereas
configuration C1→2 has narrowed the set of constraints to a single constraint group. An
issue is highlighted by the performance of the approach on the NMSeq model. The table
shows that C1→3 is exploring a set of zero constraint groups. This is because, after 300
seconds, the algorithm had not reached the target depth and was still searching in the
set of 40 constraints at a depth of 2. This suggests that the fixed-depth approach might
actually be more suitable in certain cases. However, predicting this is challenging.

Finally, with CProgram and C1→Program , the traditional program-level approach for find-
ing a single MUS is compared against the incomplete deepening approach. Again the in-
complete deepening approach outperforms CProgram in almost all cases by honing in on a
single MUS rather than getting lost searching in the full set of program-level constraints.
The results for the Open-Stacks problem demonstrate that the incomplete deepening ap-
proach can outperform the traditional approach by quite a large margin, with CProgram

having to search through the powerset of 4421 constraints, while C1→Program has narrowed
this down to a set of only 14 constraints. This huge difference in performance shows that
the incomplete deepening approach can be effective for discovering MUSes.

6.6 Displaying Diagnoses

The approach presented in Section 6.4 reports diagnoses as sets of MiniZinc paths. While
paths contain all the information required to find the conflicting constraints, they are not
easy to read by humans. One approach is to require users to explicitly group related con-
straints together under user defined predicates, mimicking the approach taken in Jussien
et al. (2001). The predicate names will then be included in the constraint paths, making
the paths a little easier to follow. However, even with these hints the paths might still be
difficult to read. Additionally, users may be reluctant to go through the tedious process
of picking through the paths.

To improve this situation, diagnoses must be presented in a more useful form than a set
of constraint paths. The paths encode the set of syntactic positions that a diagnosis relates
to, and the specific combination of assignments to loop index variables during compilation
that make up the diagnosis. An extension to the MiniZinc IDE has been developed which
can interpret and display this information directly in a source code editor.

Case Study: Over-constrained Latin Squares

Section 6.2 introduced a faulty model for the Latin Squares problem. Figure 6.6 shows
the model in the MiniZinc IDE editor. Using the techniques presented in this chapter
on this model instantiated with n = 3, exposes several MUSes. Figure 6.7 shows how
the IDE presents these to the user. Each MUS is displayed in the output section at the
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Figure 6.6: Over-constrained Latin Squares in the MiniZinc IDE.

bottom, with the number of constraint groups involved and the list of assignments to index
variables that lead to each group being introduced.

The highlighting in the model presented in Figure 6.7a marks the constraints involved
in the selected MUS. Note that all MUSes for this problem involve some combination of the
alldifferent constraints and the lex constraints. However, looking at the intersection of
constraint groups involved in all MUSes, it is easy to find that they all include at least 3
of the lex constraints. It follows that these lex constraints are likely candidates for being
the real source of unsatisfiability. With this hint, the user can re-examine the reasoning
behind the inclusion of these constraints and, hopefully, understand the conflict.

If users cannot immediately deduce the cause of unsatisfiability, they can look at which
specific rows and columns are involved by looking at the assignments that are listed with
each MUS. For example, the MUS Conflict:5: c=2; i=1; i=2; c=1; r=1 highlighted
in Figure 6.7a, involves 5 constraint groups, and indicates that the fault involves both
of the lex_greater constraints over the first three columns (c=1; c=2), the alldifferent

constraints on the first two rows (i=1; i=2), and the lex_less over the first two rows r=1.
If the enumeration algorithm is configured to find MUSes at greater depths, the MUSes

will include constraints introduced by decompositions of constraints. This can be seen
in Figure 6.7d where a user has clicked on one such MUS. Tabs for displaying the place in
the decompositions of the lex_less_int and all_different_int constraints are opened
automatically. The highlighting shows a specific less-than-equal constraint that is involved
in this MUS. Tracking down constraints across multiple MiniZinc files is made much easier
by this feature. This would mostly be useful for experts users, since new users will probably
only want to focus on the faults in their own models, rather than in the decompositions.
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(a) MUS with first alldifferent. (b) MUS with second alldifferent.

(c) MUS with both alldifferent. (d) MUS at library level.

Figure 6.7: Prototype MiniZinc IDE showing different diagnoses.

6.7 Generalising MUSes to the Model Level

MiniZinc paths were introduced to identify common structures across multiple compila-
tions of the same instance. With a slight modification, they can also provide insights into
the common structures shared between different instances, generalising these structures
by expressing them in terms of the parametric model.

In some cases multiple instances of a problem will have some common MiniZinc paths.
For example, paths for the initial iterations of a forall loop will usually be the same.
In the Latin Square model presented in Section 6.2, all valid values for the parameter n

result in the first forall being evaluated for i = 1. Different instances will have similar
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paths for these constraints. Since the instances are different, the constraints cannot be
considered to be the same and, thus, no automatic reasoning on these can be performed.
A similar approach to that presented in Section 6.6 can be applied here. We previously
discussed how users could look at the intersection of MUSes to find the constraints that
occur in most MUSes. Here, this idea is extended and used to explore the intersection of
model-level (parametric) MUSes instead. However, in a similar vein to Chapter 5 these
MUSes can only be provided to the user as suggested model-level structure. It is up to
the user to determine whether the suggested structure holds or not. These MUSes are
parametric and can only say that a set of parameters exist that make them unsatisfiable.

To demonstrate this, we will return to the Latin Squares example from Section 6.2.
Trying to compare MUSes found for an instance with m = 4 against MUSes found for
m = 12, we find that many MUSes cannot be directly compared as they involve rows or
columns that do not exist in the smaller instance. However, the particular combination
of constraints that cause unsatisfiability is the same. Thus, we need to find a way to
compare MUSes when the instances are different. This is achieved by generalising the
paths of the constraints in the MUSes by replacing the instance dependant parts of each
path with placeholders before comparing, e.g., by replacing the loop index assignment
i=1 with i=$. This way, all iterations of a loop will be grouped together when grouping
by path. While this means that we can no longer mark the specific iteration that is
faulty, we still know there is at least one faulty iteration in every instance. Importantly,
these generalised paths still retain enough of the explicit structure from the model for
the selective deepening approach to be applied. A more nuanced form of generalisation
could be implemented if this is not specific enough. For example, place-holders signifying
whether a constraint comes from the first half of the iterations of a loop could be used,
i.e., i=4 becoming i=LEFT or i=RIGHT depending on the range of i.

Grouping instances by their generalised MUSes: Generalised MUSes are par-
ticularly useful when some of the set of instances should be satisfiable, while others should
be unsatisfiable (assuming a correct model). If it is not known which instances should be
unsatisfiable, the process of debugging a model can be difficult, as the user will have to
deduce whether unsatisfiability is due to a bug in the model or the instance data. Using
the techniques presented in this chapter, the conflicts arising from each set of instances
can quickly be discovered and compared, giving the user a better idea of what may be
happening with their model. In particular, just as the intersection of MUSes from a single
instance was used to find which constraints are common to a set of MUSes, the intersection
of generalised MUSes can be used to group the instances. To do this, generalised MUSes
are presented to the user ranked by the number of instances that they occur in. Looking at
this ranked list, a user can discern which generalised MUSes are common to all instances,
indicating potential modelling bugs, and which generalised MUSes only occur in specific
instances, indicating unsatisfiable instances. A proof of concept implementation of this
approach was developed. It takes the form of a small Python script that takes a MiniZinc
model and a set of data files as input, along with parameters for the diagnose procedure.
The following explores a case where this implementation of the approach proves useful.
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Case Study: RCMSP

To demonstrate how this approach can work in practice, a complex model along with a
set of satisfiable and unsatisfiable instances is explored here. The selected model imple-
ments the Resource-Constrained Modulo Scheduling Problem (RCMSP) that was explored
in Chapter 4, and presented as Listing 4.11. A simplified version of this model was pre-
sented in Section 4.5.3.

37 constraint forall(r in Res)(
38 let {
39 set of int: ResTasks =
40 { i | i in Tasks where rreq[i, r] > 0 /\ d[i] > 0 },
41 int: sum_rreq = sum([0] ++ [rreq[i, r] | i in ResTasks])
42 } in (
43 if sum_rreq <= rcap[r]
44 then true
45 else cumulative(
46 [ d[i] | i in ResTasks ],
47 [ s[i] | i in ResTasks ],
48 [ rreq[i, r] | i in ResTasks ],
49 rcap[r])
50 endif));

Listing 6.6: Incorrect argument order in call to cumulative.

Listing 6.6 shows an extract from the model that introduces several cumulative con-
straints. Note that a fault has been introduced in this model by modifying the call to
cumulative on lines 45-49, swapping the arguments s and d, the start time and duration
variables. Since both s and d have the same type signature (array[int] of int) the
MiniZinc compiler does not detect this mistake.

The instances used include three satisfiable instances, along with two pairs of unsatis-
fiable instances: two instances with unsatisfiable resource capacities; and two with cyclical
task precedences (task A depends on task B, which in turn depends on task A).

Figure 6.8 presents a trace of the compilation of one of the instances of the model.
It is clear from this figure that the programs for these instances can get large, making
MUS enumeration a challenging and time consuming task even for just a single instance.
We are interested, however, in finding generalised MUSes for several instances. Applying
the generalisation approach outlined above, which replaces identifying information with
placeholders, results in the collapsed tree shown in Figure 6.9. Note that there are no
longer any program-level constraints in the tree, and the leaves are in fact groups of
constraints with the same paths.

This grouping means that the MUS enumeration algorithm only needs to look through
combinations of at most 9 groups regardless of the instance data, as the data can only
change which groups trigger unsatisfiablity. MUSes for each instance can now be discovered
quickly. The output from the Python script that automates this process is presented
in Listing 6.7. Five distinct generalised MUSes can be seen here, occurring in instances
{0,1,2,5,6}, {3,4}, {1,5}, {2,6} and {2}, respectively. Since the first generalised MUS
occurs in 6 of the 7 instances, it is a strong candidate for being a model-level fault.
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Figure 6.8: Full trace tree for RCMSP instance medium_2.dzn.
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Figure 6.9: Resulting generalised tree for the RCMSP problem. MUSes found in this tree
can be compared across instances.

Indeed, this MUS involves the incorrect arguments to cumulative. The instance that
does not include this exact MUS (4) also relates to cumulative but it fails in a slightly
different way. Once the bug is fixed, the analysis can be executed again. The output of
this is shown in Listing 6.8. The remaining MUSes occur in instances {3,4} and {2,6}
which correspond to the instances with the two different injected faults. This shows that
generalised MUS enumeration is a useful and powerful approach that can make debugging
unsatisfiable models and instances considerably easier.

MUS: Instances
0: 0 1 2 5 6
1: 3 4
2: 1 5
3: 2 6
4: 2

Listing 6.7: MUSes occurring in sev-
eral instances.

MUS: Instances
1: 3 4
2: 2 6

Listing 6.8: MUSes remaining after
correcting bug.
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Relation to Framework

Problem Model Instance1

Data

Program SolutionsSolver

Instancen Solutions

Program Solver

11

nn

11

nn

Debugging

Path-Based
Generalisation

Satisfiability

Constraint Paths

The main aspects of the framework that this chapter relates to are highlighted in
the framework diagram above. Constraint paths are shown as dotted arrows going
from the model down through the instance to the program level. This structure is
used to guide the search for MUSes at the program level. The expression of these in
terms of the model is shown by the dot-dashed arrows pointing back to the model.
generalisation of MUSes is represented by the arrows going from multiple instances to
the model level. These generalised MUSes may inform a user about misconceptions
they had about the problem.

6.8 Conclusion

When faced with debugging an unsatisfiable model, users are typically on their own.
Generating meaningful diagnoses can make the task easier. The main contribution of this
chapter is an approach for finding Minimal Unsatisfiable Subsets (MUSes) in constraint
models that is more scalable and presents the MUSes in such a way that allows users to
quickly find the source of unsatisfiability.

Explicit model-level structure is utilised to automatically extract the constraint hierar-
chy using the novel concept of constraint paths, and to group related constraints together
during MUS enumeration. This reduces the search space and can speed up the discovery
of diagnoses. Using constraint paths, the exact pieces of code that are unsatisfiable when
combined, can be highlighted in the user’s model.

Further, a methodology is presented for deducing whether the model is faulty, given
a set of satisfiable and unsatisfiable instances. This approach also allows unsatisfiable
instances to be classified by showing the generalised MUSes they have in common.

6.8.1 Limitations.

The approach presented in this chapter makes use of the explicit hierarchy present in a
model of a constraint problem. While our experimental evaluation has shown that this
can be an effective choice in practice, it is possible to conceive of pathological cases where
this does not work well. For example, examining Figure 6.8 we see that once we leave the
root-level of the hierarchy, the frontier is expanded into a large number of constraints that
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must be explored. As such, it may make sense to implement some other form of binary
splitting that introduces extra nodes that split the constraints below in half.

As the area of MUS enumeration research has been focused on finding program-level
MUSes, there is no existing corpus of unsatisfiable models that can be used to effectively
benchmark our approach. The collection of unsatisfiable models from users who are new
to modelling constraint problems, is a time consuming and labour intensive task that is
considered beyond the scope of this thesis but may be worth pursuing in future.

Similarly, we do not attempt to test the effectiveness of the user interface. While, intu-
itively, it should be useful, we can only offer anecdotal evidence for now. User studies are
out of scope of this thesis, since the focus of the work was on improving MUS enumeration.

6.8.2 Further Research.

The approaches explored here will be integrated into the MiniZinc compiler. This will
provide a more consistent interface for users than the prototype system, which involves
running a Python script to find the MUSes and load them into the IDE for examination.

The UI for displaying MUSes in the MiniZinc IDE, while already useful, could be
improved by showing the values of index variables in the modelling window, making it
easier for users to figure out which specific iterations are involved. Further, as mentioned
above, we have not focused on the usability of the user interface. The application of a user
focussed design methodology to develop a better interface for the debugging tool would
be interesting, and beneficial for the community.

The speed of using incomplete enumeration to find a single MUS also suggests a fur-
ther optimisation for the enumeration of MUSes. Enumeration is currently implemented
as a breadth-first search, finding all MUSes at a certain depth before deepening. An im-
provement to this would be to use the incomplete enumeration to find a single MUS in a
backtracking depth-first manner to enumerate MUSes.

Finally, using a solver based on Lazy Clause Generation (Feydy et al., 2009; Ohrimenko
et al., 2007) to maintain the map in the MARCO algorithm may offer a more expressive
language for finding unexplored subsets and intelligently blocking subsets that do not need
to be checked.
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Chapter 7

Conclusions

High-level modelling languages allow combinatorial problems to be specified as high-level
models that can then be compiled into different low-level programs, suitable for being
solved by different solvers. While the high-level modelling and solver-independence of
these languages is useful for modellers, they make it difficult for the compiler to yield
programs that can be solved efficiently. This makes the modelling, compilation, and
solving of combinatorial problems a challenging iterative process.

This thesis explores in detail the process and presents improvements to both the mod-
elling and compilation stages. These improvements have made the entire process more
efficient and, as a result, more attractive to users. One of the key weaknesses identified in
the process was the fact that much of the explicit structure present in a model was not
being utilised to its full potential. The improvements presented in this thesis all focus on
the goal of taking advantage of the explicit and implicit structure in constraint models to
improve the modelling, compilation, and solving process. This chapter presents the con-
clusions to the thesis focusing on its contributions, and discusses the future work arising
from them.

A framework for model structure. The first main contribution of this thesis, pre-
sented in Chapter 3, is a framework for reasoning about the flow of structural information
within the modelling, compilation, and solving process. The framework presents a more
complete view of the process that includes the multiple programs that can result from
an instance, and the multiple instances that can result from the same model. By doing
this, the framework exposes opportunities for discovering inefficiencies and waste in the
process. The main contributions of the new framework are as follows:

• It shows many new routes the flow of structural information can take within the
modelling, compilation, and solving of a problem; routes that are omitted from the
traditional model.

• It highlights the importance of good models by showing how the quality of structural
information available at each successive stage in the process, is derived from the
model, and is thus critically dependant on its quality.
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• It allows the identification of gaps in the existing process, where structural informa-
tion is not being adequately discovered and used. This puts in context the methods
introduced in this thesis and suggests further improvements that could be made.

• It shows how structural information can be both shared within a stage and gener-
alised to earlier stages, to improve the entire process.

Of course, the framework is not complete and there is room for further research. First,
the thesis only explores a few improved uses of information sharing and generalisation
within the framework, covering only a subset of the possible improvements that could be
made. And second, more components of the framework could be introduced to strengthen
the links in the process. For example, the framework does not address the idea that
multiple models for a problem can be used in conjunction with each other. While the
iterative process of improving a model is shown (as a red self-arrow on a stack of models),
it could be expanded further. The Essence (Gent et al., 2007b) modelling language
explores the idea that, from an abstract description of a problem, many, still high-level
models can be automatically specified. There is definitely room for exploring the sharing
of information between these models (e.g., sharing of information between different models
solving the same instance).

Preserving structure. The second main contribution of this thesis, presented in Chap-
ter 4, is a method to preserve the explicit structure of a model during the compilation
process, and to use this structure to improve the quality of the resulting compiled pro-
gram. This approach demonstrated that explicit structure in models can be used to improve
the quality of programs compiled from them. The main contributions of this work are as
follows:

• It introduces the novel concept of variable paths, that is, unique variable identi-
fiers that are stable across compilations and can, thus, be used in the matching of
structural information in multiple compilations of an instance of a model.

• It shows how the sharing of information within the modelling, compilation, and
solving process is much easier, thanks to the introduction of variable paths.

• In particular, it shows how for the first time the compiler can fully combine the
strengths of multiple solvers in producing efficient programs, that is, how the com-
piler can communicate information inferred by different solvers not just on top level
variables but also, on those introduced by the compiler. This has never been pos-
sible before and significantly increases the possibilities for improving the resulting
programs.

• It narrows the gap between hand-written programs and those produced by compilers
for high-level modelling languages, making the use of these languages much more
attractive for both experts and new users.

• It implements the approach for the MiniZinc tool chain, and a release is planned.
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With the multi-pass architecture in place in the MiniZinc compiler, there is now some
room for exploring the integration of new kinds of passes that can improve the compilation
of models, other than the root node propagation pass. In addition, the variable paths
concept could also be utilised in more areas. An interesting application could be the
use of paths to provide more useful feedback to users when they use tools such as the
CP Profiler (Shishmarev et al., 2016), where paths could be used to tie the nogoods
learned by a learning solver back to the user’s model, making it easier for users to explore
the solver behaviour. Another application of variable paths could be in allowing more
powerful hybrid solvers to be automatically derived for a given model; hybrids that can
communicate much more information than was previously possible. A limitation of the
multi-pass compilation approach is that it can be difficult to predict when it should be
used. Using techniques from machine learning to decide whether it should be used, and if
so, how it should be configured for different classes of problem, would also be an interesting
research direction.

Discovering structure. The third main contribution of this thesis, presented in Chap-
ter 5, is a method for globalizing constraint models, that is, for proposing global constraints
that can replace parts of a model. It does this by using the explicit structure of a model
to guide the search for and exposure of implicit structure. This helps users develop clearer
models that can be compiled into more efficient programs. The main contributions of this
work are as follows:

• It shows how both the model and the data can be used to increase efficiency and
accuracy. In particular, it shows how to split the constraints of the model and
unroll its loops to increase the number of global constraints considered; how to use
the variables, parameters, and expressions of a model to efficiently generate the
arguments for the candidate global constraints; and how to use different instances
of the same model to remove spurious candidates.

• It captures other known kinds of structure – such as the alternative viewpoints com-
mon in dual models – since they can also be expressed in terms of parameterised
patterns similar to global constraints. This, when combined with an iterative ap-
plication of the method, can be used to significantly increase the usefulness of the
method.

• It makes modelling easier for users, as it allows them to first focus on designing a
correct and intuitive model. Once this is achieved, the system guides them through
possible improvements that could be made.

• Again, this makes high-level modelling more attractive to new users who, to get
started with the new language, do not have to completely change the way they think
about modelling problems before they can start solving them.

• It implements the method in the MiniZinc Globalizer, which was previously available
as an online tool. A new version will soon be released and integrated with the
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MiniZinc IDE where it can be more easily integrated into a users’ existing workflow.
A release is planned.

One limitation of the approach is that beyond using the model structure to split a
model and construct arguments for global constraints, the search does not use any syntactic
matching, and thus, in some pathological cases, can be inefficient. Developing heuristics
that can guide the search for globals (e.g., integrating syntactic matching techniques)
could allow the approach to become much more robust.

Structure guided fault diagnosis. The fourth and final main contribution of the
thesis, presented in Chapter 6, is an automatic approach to the debugging of unsatisfiable
constraint problem models that is both scalable and useful. It achieves this by using the
explicit structure of a model to help identify parts of a model that are incorrectly formulated.
The main contributions of this work are as follows:

• It extends the concept of variable paths by defining constraint paths, that is, unique
constraint identifiers that are stable across compilations and can, thus, be used in
the matching of structural information in multiple compilations of an instance of a
model.

• It shows how to use the constraint hierarchy automatically exposed by constraint
paths to speed up the search for minimal unsatisfiable subsets. This makes the
method scalable.

• It shows how to present program-level MUSes to modellers in a meaningful way, by
making use of constraint paths to link the program constraints present in a MUS to
the model constraints. This significantly increases the method’s usefulness.

• It shows how to generalise MUSes in such a way as to be able to distinguish between
genuine modelling bugs from the unsatisfiability that arises from faulty instance
data. This is achieved by further generalising the concept of constraint paths – and
thus MUSes – so they can be examined across multiple instances of a problem.

• It provides users with more tools to aid their development of a correct version of a
model. This again, contributes to the benefits that high-level modelling languages
can provide to users.

• A prototype was developed for MiniZinc by modifying an existing MUS enumeration
tool. The ability to explore the MUSes of a model in the MiniZinc IDE was also
implemented, along with a Python script that automated the exploration of cross-
instance MUSes. A native implementation in the MiniZinc compiler is planned for
release.

One limitation of the approach is the fact that unsatisfiability is not the only type of
fault that can occur in an incorrect model. For example, sometimes a model is satisfiable
but returns incorrect solutions. It would be interesting to see whether this approach can
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be extended to explain other kinds of model faults. In addition, other extensions of the
constraint and variable paths for use in the debugging or profiling of constraint solvers
could also be explored. For example, paths could make the comparison of search trees
from two different solvers operating on different programs much easier and could give
users insight into their models.

Summary. In conclusion, this thesis presents a methodology for exploring the flow of
structural information in the modelling, compilation, and solving process, and how it can
be improved. In addition, it presented three other significant contributions that, together,
make high-level modelling a more powerful and attractive tool for those who need to solve
hard combinatorial problems.
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Appendix A

Preserving Strucutre: Models

The models and instances used in the experimental evaluation of the path based multi-
pass presolving presented in Chapter 4 were downloaded from the results pages for the
MiniZinc challenge, years 2012, 2013, and 2014 (http://www.minizinc.org/challenge<year>
/results<year>.html)). Each model comes with 5 data files. The selected problems
from Figure 4.4 are repeated below.

Amaze-2 Amaze-3 Black-hole Cargo-coarse
Carpet-Cutting Celar Fastfood Fillomino
Filter FJSP FM Ghoulomb
Handball Jp-encoding League Linear2program
Mario Mknapsack Mqueens MSPSP
NMSeq Nonograms OC-Roster Openshop
Parity-learning Patternset-mining Pentominoes-int ProjectPlanner
Radiation RCMSP RCPSP Rect-packing
Road-Cons Rubik SB Ship-Schedule
Smelt Spot5 Still-life TP
TPP TPPPV Train Trip
VRP WCSP

These models, along with many others, and their data files can also be acquired from
the MiniZinc benchmarks repository which can be found at https://github.com/MiniZinc/
minizinc-benchmarks.

http://www.minizinc.org/challenge<year>/results<year>.html)
http://www.minizinc.org/challenge<year>/results<year>.html)
https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/MiniZinc/minizinc-benchmarks
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Appendix B

Discovering Structure: Models

Adapted versions of the models used for the experimental evaluation of the Globalizer
approach presented in Chapter 5 are reproduced here.

B.1 Cars

A model for this problem was presented in Listing 1.1.

B.2 Jobshop

1 int: size = 2;

2 array [1..size,1..size] of int: d;

3 int: total = sum(i,j in 1..size) (d[i,j]);

4
5 array [1..size,1..size] of var 0..total: s;

6 var 0..total: end;

7
8 constraint end != end;

9
10 constraint

11 forall(machine in 1..size) (

12 forall(j in 1..size-1)

13 (s[machine,j] + d[machine,j] <= s[machine,j+1]) /\

14 s[machine,size] + d[machine,size] <= end /\

15 forall(j,k in 1..size where j < k) (

16 s[j,machine]+d[j,machine] <= s[k,machine] \/

17 s[k,machine]+d[k,machine] <= s[j,machine])

18 );

19
20 solve minimize end;

B.3 Party

This model was presented in Listing 5.1.
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B.4 Party-CSP

1 include "all_different.mzn";

2
3 int: p; int: nh; int: ng;

4 set of int : HostBoats = 1..nh;

5 set of int : GuestCrews = 1..ng;

6 set of int : Time = 1..p;

7
8 array [GuestCrews] of int : crew;

9 array [HostBoats] of int : capacity;

10
11 array [GuestCrews, Time] of var HostBoats : hostedBy;

12
13 array [GuestCrews, HostBoats, Time] of var 0..1 : visits;

14
15 constraint forall (i in GuestCrews)

16 (alldifferent([h[i,t] | t in Time]));

17
18 constraint forall (t in Time, i in GuestCrews, j in HostBoats)

19 (visits[i,j,t] = 1 <-> hostedBy[i,t]=j);

20
21 constraint forall (t in Time, j in HostBoats)

22 (sum (i in GuestCrews) (crew[i]*visits[i,j,t]) <= capacity[j]);

23
24 array [GuestCrews, GuestCrews, Time] of var 0..1 : meet;

25
26 constraint forall (k in GuestCrews, l in GuestCrews, t in Time where k<l)

27 (hostedBy[k,t] = h[l,t] -> meet[k,l,t] = 1);

28
29 constraint forall (k in GuestCrews, l in GuestCrews where k<l)

30 (sum (t in Time) (m[k,l,t]) <= 1);

31
32 solve satisfy;

B.5 Party-LP

This model was presented in Listing 5.8.
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B.6 Packing

1 int: pack_x;

2 int: pack_y;

3 int: n;

4 array[1..n] of int: pack_s;

5
6 array[1..n] of var 0..pack_x-1: x;

7 array[1..n] of var 0..pack_y-1: y;

8
9 constraint

10 forall (i in 1..n) (

11 x[i] <= pack_x - pack_s[i] /\

12 y[i] <= pack_y - pack_s[i]

13 );

14
15 constraint

16 forall (i in 1..n-1, j in i+1..n) (

17 x[j] - x[i] >= pack_s[i] \/

18 x[i] - x[j] >= pack_s[j] \/

19 y[j] - y[i] >= pack_s[i] \/

20 y[i] - y[j] >= pack_s[j]

21 );

22
23 constraint

24 forall (i in 1..n-1) (

25 if pack_s[i]=pack_s[i+1] then

26 x[i] <= x[i+1]

27 else

28 true

29 endif

30 );

31
32 constraint

33 forall (cx in 0..pack_x-1) (

34 sum (i in 1..n)

35 (pack_s[i]*bool2int(x[i] in cx-pack_s[i]+1..cx)) = pack_y

36 );

37 constraint

38 forall (cy in 0..pack_y-1) (

39 sum (i in 1..n)

40 (pack_s[i]*bool2int(y[i] in cy-pack_s[i]+1..cy)) = pack_x

41 );

42
43 solve ::seq_search([int_search(x,smallest,indomain_min,complete),

44 int_search(y,smallest,indomain_min,complete)])

45 satisfy;
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B.7 Schedule

1 int: d;

2 int: n;

3 array[1..n] of int: m;

4 int: maxR;

5 int: horizon = 2*(n-1);

6 int: makespan = horizon+d;

7
8 array[1..n] of var 0..2*(n-1): x;

9 array[0..2*(n-1),1..n] of var 0..maxR: R;

10
11 constraint forall (i,j in 1..n where i<j)

12 ((x[i]-x[j] >= 2) \/ (x[j]-x[i] >= 2));

13
14 constraint forall (t in 0..horizon, i in 1..n) (

15 let {

16 var bool: active = (x[i] <= t /\ t<x[i]+d)

17 } in

18 ( active <-> R[t,i] = m[i] ) /\

19 ( (not active) <-> R[t,i] = 0 )

20 );

21
22 constraint forall (t in 0..horizon) (sum (i in 1..n) (R[t,i]) <= maxR);

23
24 solve satisfy;

B.8 Sudoku LP

1 int: S = 3;

2 int: N = S*S;

3 array[1..N, 1..N] of int: givens;

4
5 array[1..N, 1..N, 1..N] of var 0..1: x;

6
7 constraint forall(i,j in 1..N where

8 givens[i,j] != 0) (

9 x[i,j, givens[i,j]] = 1

10 );

11
12 constraint forall(i in 1..9, j in 1..9) (sum([x[i,j,k] | k in 1..9]) = 1);

13 constraint forall(i in 1..9, k in 1..9) (sum([x[i,j,k] | j in 1..9]) = 1);

14 constraint forall(j in 1..9, k in 1..9) (sum([x[i,j,k] | i in 1..9]) = 1);

15 constraint forall(I,J in 0..2,

16 k in 1..9) ( sum([x[i,j,k] | i in (I*3+1)..(I*3+3),

17 j in (J*3+1)..(J*3+3)]) = 1);

18
19 solve satisfy;
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B.9 Sudoku CSP

1 int: S = 3;

2 int: N = S*S;

3 array[1..N, 1..N] of int: givens;

4 array[1..N, 1..N] of var 1..9: p;

5
6 constraint forall(i in 1..N, j in 1..N) (

7 if givens[i,j] != 0 then p[i,j] = givens[i,j] else true endif

8 );

9
10 constraint forall(r1 in 1..N, c1 in 1..N, r2 in 1..N, c2 in 1..N ) (

11 if ((not (r1 = r2 /\ c1 = c2)) /\

12 ((r1 = r2)

13 \/ (c1 = c2)

14 \/ ( ((r1-1) div S = (r2-1) div S)

15 /\ ((c1-1) div S = (c2-1) div S))))

16 then

17 p[r1,c1] != p[r2,c2]

18 else

19 true

20 endif

21 );

22
23 solve satisfy;
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B.10 Warehouses

1 include "globals.mzn";

2
3 int: n_suppliers;

4 int: n_stores;

5 int: building_cost;

6 array[1..n_suppliers] of int: capacity;

7 array[1..n_stores,1..n_suppliers] of int: cost_matrix;

8 int: MaxCost;

9 int: MaxTotal;

10
11 array[1..n_stores] of var 1..n_suppliers: supplier;

12 array[1..n_suppliers] of var 0..1: open;

13 array[1..n_stores] of var 1..MaxCost: cost;

14 var 1..MaxTotal: total;

15
16 constraint

17 sum (i in 1..n_suppliers) (building_cost * (open[i])) +

18 sum (i in 1..n_stores) (cost[i])

19 = total;

20
21 constraint

22 forall (i in 1..n_stores) (

23 cost_matrix[i,supplier[i]] = cost[i]

24 );

25
26 array [1..n_suppliers] of var 0..ub_array(capacity) : use;

27
28 constraint

29 forall (i in 1..n_suppliers) (

30 count(supplier,i,use[i]) /\ use[i] <= capacity[i]

31 );

32
33 constraint

34 forall (i in 1..n_suppliers) (

35 (exists (j in 1..n_stores) (supplier[j] == i)) == (open[i]=1)

36 );

37
38 solve

39 :: int_search(

40 supplier ++ cost ++ [(open[i]) | i in 1..n_suppliers],

41 first_fail,

42 indomain_split,

43 complete

44 )

45 minimize total;
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Appendix C

Structure Guided Fault Diagnosis:
Models

This section presents models which have had faults added to them to make them unsatis-
fiable for use in the evaluation of the structure guided fault diagnosis techniques presented
in Section 6.7. These are adapted somewhat for brevity. The original, non-faulty versions
of these can eb found at https://github.com/MiniZinc/minizinc-benchmarks. The models
are available under the MIT licence.

C.1 Costas-Array

1 include "alldifferent.mzn";

2
3 int: n;

4
5 array[1..n] of var 1..n: costas;

6 array[1..n,1..n] of var -n+1..n-1: differences;

7
8 constraint alldifferent(costas);

9
10 constraint

11 forall(i,j in 1..n)(

12 if i < j then

13 differences[i,j] = costas[j] - costas[j-i]

14 else

15 differences[i,j] = 0

16 endif

17 );

18
19 constraint

20 forall(i in 1..n-1)(

21 alldifferent(j in 1..n where i < j)(differences[i,j])

22 );

23
24 constraint

25 symmetry_breaking_constraint(

https://github.com/MiniZinc/minizinc-benchmarks
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26 if 1 < n then costas[1] < costas[n] else true endif

27 );

28
29 constraint

30 redundant_constraint(

31 forall(i,j in 1..n where i < j)(

32 differences[i,j] != 0

33 )

34 );

35
36 % Fault added: differences[k-2,l-1] became differences[k-2,l-2]

37 constraint

38 redundant_constraint(

39 forall(k,l in 3..n where k < l)(

40 differences[k-2,l-2] + differences[k,l] =

41 differences[k-1,l-1] + differences[k-1,l]

42 )

43 );

44
45 solve :: int_search(costas, input_order, indomain_min, complete)

46 satisfy;

C.2 CVRP

1 include "circuit.mzn";

2
3 int: N;

4 int: Capacity;

5 int: nbVehicles = N;

6 int: nbCustomers = N;

7 int: timeBudget = sum (i in 1..N) (max([ Distance[i,j] | j in 1..N]) );

8 set of int: VEHICLE = 1..nbVehicles;

9 set of int: CUSTOMER = 1..nbCustomers;

10 set of int: TIME = 0..timeBudget;

11 set of int: LOAD = 0..Capacity;

12 set of int: NODES = 1..nbCustomers+2*nbVehicles;

13 set of int: DEPOT_NODES = nbCustomers+1..nbCustomers+2*nbVehicles;

14 set of int: START_DEPOT_NODES = nbCustomers+1..nbCustomers+nbVehicles;

15 set of int: END_DEPOT_NODES =

16 nbCustomers+nbVehicles+1..nbCustomers+2*nbVehicles;

17 array[1..N] of int: Demand;

18 array[NODES] of int: demand = [

19 if i <= N then Demand[i] else 0 endif

20 | i in NODES];

21 array[1..N+1, 1..N+1] of int: Distance;

22 array[NODES, NODES] of int: distance = array2d(NODES,NODES,[

23 if i<=nbCustomers /\ j <= nbCustomers then

24 Distance[i+1,j+1]

25 elseif i<=nbCustomers /\ j>nbCustomers then

26 Distance[1,i+1]

27 elseif j<=nbCustomers /\ i>nbCustomers then
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28 Distance[j+1,1]

29 else

30 Distance[1,1]

31 endif

32 | i,j in NODES ]);

33
34 array[NODES] of var NODES: successor;

35 array[NODES] of var NODES: predecessor;

36 array[NODES] of var VEHICLE: vehicle;

37 array[NODES] of var LOAD: load;

38 array[NODES] of var TIME: arrivalTime;

39 var 0..timeBudget: objective;

40
41 constraint redundant_constraint(

42 forall(n in (nbCustomers+2..nbCustomers+nbVehicles)) (

43 predecessor[n] = n + nbVehicles-1

44 )

45 );

46
47 constraint redundant_constraint(

48 predecessor[nbCustomers+1] = nbCustomers+2*nbVehicles

49 );

50
51 constraint

52 forall(n in (nbCustomers+nbVehicles+1..nbCustomers+2*nbVehicles-1)) (

53 successor[n] = n-nbVehicles+1

54 );

55
56 constraint successor[nbCustomers+2*nbVehicles] = nbCustomers+1;

57
58 constraint

59 forall(n in START_DEPOT_NODES) (

60 vehicle[n] = n-nbCustomers

61 );

62
63 constraint

64 forall(n in END_DEPOT_NODES) (

65 vehicle[n] = n-nbCustomers-nbVehicles

66 );

67
68 constraint

69 forall(n in START_DEPOT_NODES) (

70 arrivalTime[n] = 0

71 );

72
73 constraint

74 forall(n in START_DEPOT_NODES) (

75 load[n] = 0

76 );

77
78 constraint redundant_constraint(

79 forall(n in NODES) (
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80 successor[predecessor[n]] = n

81 )

82 );

83
84 constraint redundant_constraint(

85 forall(n in NODES) (

86 predecessor[successor[n]] = n

87 )

88 );

89
90 constraint circuit(successor);

91 constraint redundant_constraint(

92 circuit(predecessor)

93 );

94
95 constraint redundant_constraint(

96 forall(n in CUSTOMER) (

97 vehicle[predecessor[n]] = vehicle[n]

98 )

99 );

100 constraint

101 forall(n in CUSTOMER) (

102 vehicle[successor[n]] = vehicle[n]

103 );

104
105 constraint

106 forall(n in CUSTOMER) (

107 arrivalTime[n] + distance[n,successor[n]] <= arrivalTime[successor[n]]

108 );

109 constraint

110 forall(n in START_DEPOT_NODES) (

111 arrivalTime[n] + distance[n,successor[n]] <= arrivalTime[successor[n]]

112 );

113
114 constraint

115 forall(n in CUSTOMER) (

116 load[n] + demand[n] = load[successor[n]]

117 );

118
119 % Fault added: successor[n] became predecessor[n]

120 constraint

121 forall(n in START_DEPOT_NODES) (

122 load[n] = load[predecessor[n]]

123 );

124
125 constraint

126 objective = sum (depot in END_DEPOT_NODES) (arrivalTime[depot]);

127
128 solve :: seq_search(

129 [int_search([successor[j] | j in NODES],

130 first_fail, indomain_split, complete),

131 int_search(vehicle, first_fail, indomain_split, complete),
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132 int_search([arrivalTime[j] | j in NODES],

133 first_fail, indomain_min, complete),

134 int_search([load[j] | j in NODES],

135 first_fail, indomain_min, complete)

136 ])

137 minimize objective;

C.3 RCMSP

A version of this model is presented in Section 4.5.3. The added fault was shown in List-
ing 6.6.

C.4 Free-Pizza

1 int: n;

2 set of int: PIZZA = 1..n;

3 array[PIZZA] of int: price;

4 int: m;

5 set of int: VOUCHER = 1..m;

6 array[VOUCHER] of int: buy;

7 array[VOUCHER] of int: free;

8 set of int: ASSIGN = -m .. m;

9
10 array[PIZZA] of var ASSIGN: how;

11 array[VOUCHER] of var bool: used;

12
13 constraint forall(v in VOUCHER)

14 (used[v] <-> sum(p in PIZZA)(how[p] = -v) >= buy[v]);

15 % Fault added: < became <=

16 constraint forall(v in VOUCHER)

17 (sum(p in PIZZA)(how[p] = -v) < used[v]*buy[v]);

18
19 constraint forall(v in VOUCHER)

20 (sum(p in PIZZA)(how[p] = v) <= used[v]*free[v]);

21
22 constraint forall(p1, p2 in PIZZA)

23 ((how[p1] < how[p2] /\ how[p1] = -how[p2])

24 -> price[p2] <= price[p1]);

25
26 int: total = sum(price);

27 var 0..total: objective = sum(p in PIZZA)((how[p] <= 0)*price[p]);

28
29 solve :: int_search(how, input_order, indomain_min, complete)

30 minimize objective;
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C.5 Mapping

1 include "globals.mzn";

2
3 int: row;

4 int: col;

5 int: k = row*col;

6 int: n = k + 2;

7 int: no_links;

8 int: m = no_links + 2*k;

9 int: no_flows;

10 int: link_bandwidth;

11 int: no_actors;

12 array[1..m, 1..2] of int: arc;

13 array[1..m] of int: unit_cost;

14 array[1..no_flows, 1..n] of int: balance;

15 int: processor_load;

16
17 array[1..k] of var 0..processor_load: cpu_loads;

18
19 array[1..no_actors] of int: actor_load;

20 array[1..2, 1..no_flows] of int: load;

21
22 array[1..no_flows] of var 0..10000: cost;

23 var 0..10000: communication_cost;

24 var 0..10000: objective;

25 array[1..2*no_flows] of var 1..k: flow_processor;

26 array[1..no_links] of var 0..link_bandwidth : comm_full;

27 array[1..k] of var 0..5*link_bandwidth : flow_from_processor;

28
29 array[1..k] of var 0..10000*no_flows: cc;

30
31 array[1..no_flows] of int: inStream;

32 array[1..no_flows, 1..n] of int: b;

33
34 array[1..no_flows, 1..k] of var 0..max(inStream): inFlow;

35 array[1..no_flows, 1..k] of var 0..max(inStream): outFlow;

36 array[1..no_flows, 1..no_links] of var 0..link_bandwidth: commFlow;

37
38 array[1..no_flows, 1..m] of

39 var 0..max(max(inStream),link_bandwidth): flows;

40
41 array[1..no_flows,1..2] of int: source_destination_actor;

42
43 array[1..no_actors] of var 1..k: actor_processor;

44
45 array[1..2*k*no_flows + no_links] of

46 var 0..max(max(inStream),link_bandwidth): total_flow;

47 array[1..2*k*no_flows + no_links] of int: total_unit_cost;

48 array[1..k+2*no_flows] of int: total_balance;

49
50 array[1..2*no_flows*k] of int: in_connections;
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51 array[1..2*no_flows*k] of int: out_connections;

52 array[1..2*no_flows*k+no_links, 1..2] of int: all_connections;

53
54 constraint

55 forall( i in 1..no_flows, j in 1..k) (inFlow[i,j] in {0, inStream[i]}

56 /\ outFlow[i,j] in {0, inStream[i]});

57
58 constraint

59 forall (i in 1..no_flows) (count([flows[i,j] | j in 1..k], 0, k-1)

60 /\ count([flows[i,j] | j in m-k+1..m], 0, k-1));

61
62 constraint

63 forall (i in 1..no_flows)

64 (network_flow_cost( arc, [balance[i,j] | j in 1..n],

65 unit_cost, [flows[i,j] | j in 1..m], cost[i]));

66
67 constraint

68 network_flow_cost(all_connections, total_balance, total_unit_cost,

69 total_flow, communication_cost)

70 /\

71 forall (i in 1..no_links)

72 (comm_full[i] = sum(j in 1..no_flows)(flows[j,i+k]));

73
74 % Fault added: flows[i,j] != 0 became flows[i,j] != 1

75 constraint

76 forall (i in 1..no_flows, j in 1..k)

77 ( ( flows[i,j] != 0 <-> flow_processor[i] = j)

78 /\

79 ( flows[i, m-k+j] != 1 <-> flow_processor[no_flows+i] = j) )

80 /\

81 bin_packing_load(cpu_loads, flow_processor,

82 [load[i, j] | i in 1..2, j in 1..no_flows]);

83
84 constraint

85 forall (i in 1..k)

86 (cc[i] = sum(j in 1..no_flows)

87 ((flow_processor[source_destination_actor[j,1]] = i) * cost[j]))

88 /\

89 maximum(objective, [cpu_loads[i] + cc[i] | i in 1..k]);

90
91 constraint

92 forall (i in 1..k)

93 (flow_from_processor[i] =

94 sum(j in 1..no_flows, n in k+1..no_links+k where arc[n,1] = i)

95 (flows[j,n]));

96
97 constraint

98 forall ( i in 1..no_flows) (

99 forall (j in i+1..no_flows

100 where source_destination_actor[i,1] = source_destination_actor[j,1])

101 (flow_processor[i] = flow_processor[j]))

102 /\
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103 forall ( i in 1..no_flows) (

104 forall (j in 1..no_flows

105 where source_destination_actor[i,1] = source_destination_actor[j,2])

106 (flow_processor[i] = flow_processor[no_flows+j]))

107 /\

108 forall ( i in 1..no_flows) (

109 forall (j in i+1..no_flows

110 where source_destination_actor[i,2] = source_destination_actor[j,2])

111 (flow_processor[no_flows+i] = flow_processor[no_flows+j]));

112
113 solve ::

114 seq_search([

115 int_search(flow_processor, first_fail, indomain_min, complete),

116 int_search(total_flow, smallest, indomain_min, complete),

117 int_search(cost ++ [communication_cost], input_order,

118 indomain_min, complete),

119 int_search( cpu_loads, first_fail, indomain_min, complete),

120 int_search( [inFlow[i,j] | i in 1..no_flows, j in 1..k],

121 first_fail, indomain_min, complete),

122 int_search( [outFlow[i,j] | i in 1..no_flows, j in 1..k],

123 first_fail, indomain_min, complete),

124 int_search( [commFlow[i,j] | i in 1..no_flows, j in 1..no_links],

125 first_fail, indomain_min, complete),

126 int_search( [flows[i,j] | i in 1..no_flows, j in 1..m],

127 first_fail, indomain_min, complete),

128 int_search( actor_processor, first_fail, indomain_min, complete)

129 ])

130 minimize objective;

C.6 MKnapsack

1 include "knapsack.mzn";

2
3 int: N;

4 int: M;

5 set of int: VRange = 1..N;

6 set of int: CRange = 1..M;

7 array[CRange,VRange] of int: a;

8 array[CRange] of int: b;

9 array[VRange] of int: c;

10 int: z;

11
12 array[VRange] of var 0..1: x;

13 array[CRange] of var 0..ub_array(b): bVar;

14 var 0..sum(c): objective = sum(i in VRange)(c[i] * x[i]);

15
16 % Fault added: >= became >

17 constraint

18 forall(i in CRange)( bVar[i] > 0 /\ bVar[i] <= b[i] );

19
20 constraint
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21 forall(i in CRange)(

22 knapsack(c, [a[i,j] | j in VRange], x, bVar[i], z)

23 );

24
25 solve

26 :: int_search(x, input_order, indomain_max, complete)

27 maximize objective;

C.7 NMSeq

1 int: n;

2
3 array [1..n] of var 0..n-1: s;

4
5 % Fault added: xs[i] = v became xs[i] != v

6 predicate number_of_v(array [int] of var int: xs, var int: x, int: v) =

7 x == sum (i in index_set(xs)) (bool2int(xs[i] != v));

8
9 constraint

10 forall (i in index_set(s)) (

11 number_of_v(s, s[i], i-1)

12 );

13
14 solve :: int_search(s, input_order, indomain_min, complete)

15 satisfy;

C.8 Open-Stacks

1 include "globals.mzn";

2
3 int: c;

4 int: p;

5 set of int: Custs = 1..c;

6 set of int: Prods = 1..p;

7 array[Custs,Prods] of 0..1: orders;

8 array[Custs] of int: norders =

9 [ sum(j in Prods)(orders[i,j]) | i in Custs ];

10
11 array[Prods] of var Prods: s;

12 array[Custs,0..p] of var 0..max(norders): o ;

13 var 0..c: objective;

14
15 constraint alldifferent(s);

16
17 % Fault added: o[i,0] became o[i,1]

18 constraint forall (i in Custs)(o[i,1] = 0);

19
20 constraint forall(t in 1..p, i in Custs)

21 (o[i,t] = o[i,t-1] + orders[i,s[t]]);
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22
23 constraint objective =

24 max(j in Prods)(

25 sum(i in Custs)(

26 bool2int( o[i,j-1] < norders[i] /\ o[i,j] > 0 )

27 )

28 );

29
30 solve ::

31 int_search(s, input_order, indomain_min, complete)

32 minimize objective;

C.9 P1F

1 include "globals.mzn";

2
3 predicate union_circuit( array[int] of var int: x,

4 array[int] of var int: y) =

5
6 let { int: n = length(x),

7 array[1..n] of var 1..n: c

8 } in

9
10 forall(i in 1..n) (

11 let {

12 var 1..2: index

13 } in

14 [x[i], y[i]][index] = c[i]

15 ) /\

16
17 circuit(c) /\

18
19 symmetry_breaking_constraint(c[1] == x[1]);

20
21 int: n;

22 int: m = n-1;

23 array[1..m, 1..n] of var 1..n: p;

24 int: obj_lb = sum(i in 1..n)(i);

25 int: obj_ub = sum(i in 1..n)(i * n);

26
27 var obj_lb..obj_ub: objective = sum(i in 1..n) (i * p[1, i]);

28
29 % Fault added: p[row, col] != col became p[row, col] == col

30 constraint

31 forall(row in 1..m) (

32 forall(col in 1..n) (

33 p[row, col] == col

34 )

35 );

36
37 constraint
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38 forall(row in 1..m) (

39 let {

40
41 array[1..n] of var int: ra = [p[row, i] | i in 1..n]

42 } in

43 inverse(ra, ra) :: domain

44 );

45
46 constraint

47 forall(col in 1..n) (

48 let {

49
50 array[1..m] of var int: c = [p[i, col] | i in 1..m]

51 } in

52 alldifferent(c) :: domain

53 );

54
55 constraint

56 forall(rowa,rowb in 1..m where rowa<rowb) (

57 let {

58 array[1..n] of var int: ra = [p[rowa, i] | i in 1..n],

59 array[1..n] of var int: rb = [p[rowb, i] | i in 1..n]

60 } in

61 union_circuit(ra, rb) :: domain

62 );

63
64 constraint

65 forall(row in 1..m-1) (

66 symmetry_breaking_constraint(

67 let {

68 array[1..n] of var int: ra = [p[row , i] | i in 1..n],

69 array[1..n] of var int: rb = [p[row+1, i] | i in 1..n]

70 } in

71 lex_less(ra, rb)

72 )

73 );

74
75 solve

76 :: int_search(

77 [p[i,j] | i in 1..m, j in 1..n],

78 input_order, indomain_min, complete

79 )

80 minimize objective;
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C.10 Radiation

1 int: m;

2 int: n;

3 set of int: Rows = 1..m;

4 set of int: Columns = 1..n;

5 array[Rows, Columns] of int: Intensity;

6 set of int: BTimes = 1..Bt_max;

7 int: Bt_max = max(i in Rows, j in Columns) (Intensity[i,j]);

8 int: Ints_sum = sum(i in Rows, j in Columns) (Intensity[i,j]);

9
10 var 0..Ints_sum: Beamtime;

11 var 0..m*n: K;

12 array[BTimes] of var 0..m*n: N;

13 array[Rows, Columns, BTimes] of var 0..m*n: Q;

14
15 constraint

16 Beamtime = sum(b in BTimes) (b * N[b])

17 /\

18 K = sum(b in BTimes) (N[b])

19 /\

20 % Fault added: b * Q[i,j,b] became i * Q[i,j,b]

21 forall(i in Rows, j in Columns)

22 ( Intensity[i,j] = sum([i * Q[i,j,b] | b in BTimes]) )

23 /\

24 forall(i in Rows, b in BTimes)

25 ( upper_bound_on_increments(N[b], [Q[i,j,b] | j in Columns]) );

26
27 predicate upper_bound_on_increments(var int: N_b,

28 array[int] of var int: L) =

29 N_b >= L[1] + sum([ max(L[j] - L[j-1], 0) | j in 2..n ]);

30
31 int: obj_min = lb((m*n + 1) * Beamtime + K);

32 int: obj_max = ub((m*n + 1) * Beamtime + K);

33 var obj_min..obj_max: objective = (m*n + 1) * Beamtime + K;

34
35 solve

36 :: int_search(

37 [Beamtime] ++ N ++

38 [Q[i,j,b] | i in Rows, j in Columns, b in BTimes ],

39 input_order, indomain_split, complete)

40 minimize objective;
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C.11 Spot5

1 include "table.mzn";

2
3 int: num_variables;

4 int:min_domain;

5 int:max_domain;

6 array[1..num_variables] of set of int: domains;

7 array[1..num_variables] of int: costs;

8 int: num_constraints2;

9 int: max_constraints2;

10 int: num_constraints3;

11 int: max_constraints3;

12 array[1..num_constraints2] of int: scopes2x;

13 array[1..num_constraints2] of int: scopes2y;

14 array[1..max_constraints2] of int: constraints2;

15 array[1..num_constraints2] of int: num_tuples2;

16 array[1..num_constraints2] of int: cum_tuples2;

17 array[1..num_constraints3] of int: scopes3x;

18 array[1..num_constraints3] of int: scopes3y;

19 array[1..num_constraints3] of int: scopes3z;

20 array[1..max_constraints3] of int: constraints3;

21 array[1..num_constraints3] of int: num_tuples3;

22 array[1..num_constraints3] of int: cum_tuples3;

23
24 array[1..num_variables] of var min_domain..max_domain: p;

25 int: obj_min = sum(j in 1..num_variables)

26 (if costs[j] < 0 then costs[j] else 0 endif);

27 int: obj_max = sum(j in 1..num_variables)

28 (if costs[j] > 0 then costs[j] else 0 endif);

29 var obj_min..obj_max: objective;

30
31 solve :: seq_search([

32 int_search(p, first_fail, indomain_min, complete),

33 int_search([objective], input_order, indomain_min, complete)

34 ]) minimize objective;

35
36 constraint objective = sum(j in 1..num_variables)

37 ( costs[j] * bool2int(p[j] = 0) );

38
39 constraint forall(j in 1..num_variables) (

40 p[j] in domains[j]);

41
42 % Fault added: constraints2[u] became constraints2[u]+1

43 constraint

44 forall(j in 1..num_constraints2) (

45 table(

46 [p[scopes2x[j]], p[scopes2y[j]]],

47 array2d(1..num_tuples2[j], 1..2,

48 [ constraints2[u]+1

49 | u in (2*cum_tuples2[j]+1)..(2*cum_tuples2[j]+num_tuples2[j]*2)]

50 )
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51 )

52 );

53
54 constraint

55 forall(j in 1..num_constraints3) (

56 table(

57 [p[scopes3x[j]], p[scopes3y[j]], p[scopes3z[j]]],

58 array2d(1..num_tuples3[j],1..3,

59 [ constraints3[u]

60 | u in (3*cum_tuples3[j]+1)..(3*cum_tuples3[j]+num_tuples3[j]*3)]

61 )

62 )

63 );

C.12 TDTSP

1 include "inverse.mzn";

2
3 int: n;

4 set of int: VISIT = 1..n;

5 set of int: VISIT1 = 1..n+1;

6 array[VISIT] of int: D;

7 int: q;

8 set of int: PREC = 1..q;

9 array[PREC,1..2] of VISIT: prec;

10 int: steps;

11 int: l;

12 int: H = steps * l - 1;

13 set of int: TIME = 0..H;

14 int: r;

15 set of int: FORBID = 1..r;

16 array[FORBID] of VISIT: which;

17 array[FORBID,1..2] of TIME: interval;

18 array[VISIT1,VISIT1,0..steps] of int: T;

19
20 array[VISIT1] of var VISIT1: position;

21 array[VISIT1] of var VISIT1: next;

22 array[VISIT1] of var VISIT1: prev;

23 array[VISIT1] of var TIME: tvar;

24 var TIME: objective = tvar[n+1];

25 array[VISIT1] of var VISIT1: atposition;

26
27 constraint inverse(next,prev);

28 constraint position[1] = 1;

29
30 % Fault added: n+1 became n

31 constraint position[n+1] = n;

32 constraint tvar[1] = 0;

33 constraint prev[1] = n+1 /\ next[n+1] = 1;

34
35 constraint forall(i in VISIT1)(next[i] != i /\ prev[i] != i);
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36
37 constraint forall(i in VISIT)(position[next[i]] = position[i] + 1);

38 constraint forall(i in 2..n+1)(position[i] = position[prev[i]] + 1);

39
40 constraint forall(i in 2..n+1)(

41 tvar[i] >= tvar[prev[i]] + D[prev[i]] +

42 T[prev[i],i,tvar[prev[i]] div l]

43 );

44
45 constraint forall(i in 1..n)(

46 tvar[next[i]] >= tvar[i] + D[i] + T[i,next[i],tvar[i] div l]

47 );

48
49 constraint forall(i in PREC)(

50 tvar[prec[i,1]] + D[prec[i,1]] <= tvar[prec[i,2]]

51 );

52
53 constraint forall(i in FORBID)(

54 tvar[which[i]] + D[which[i]] <= interval[i,1]

55 \/ tvar[which[i]] >= interval[i,2]

56 );

57
58 constraint redundant_constraint(

59 tvar[n+1] >= sum(D) + sum(i in VISIT)

60 (T[i,next[i],tvar[i] div l])

61 );

62 constraint redundant_constraint(

63 tvar[n+1] >= sum(D) + sum(i in 2..n+1)

64 (T[prev[i],i,tvar[prev[i]] div l])

65 );

66
67 constraint redundant_constraint(inverse(position,atposition));

68 constraint redundant_constraint(atposition[1] = 1);

69 constraint redundant_constraint(atposition[n+1] = n+1);

70 constraint redundant_constraint(

71 forall(j in VISIT)(next[atposition[j]] = atposition[j+1])

72 );

73 constraint redundant_constraint(

74 forall(j in VISIT)(prev[atposition[j+1]] = atposition[j])

75 );

76
77 solve

78 :: seq_search([

79 int_search(atposition, input_order, indomain_min, complete),

80 int_search(tvar, smallest, indomain_min, complete)

81 ])

82 minimize objective;



Vita

Publications arising from this thesis include:

Kevin Leo and Guido Tack
“Debugging Unsatisfiable Constraint Models”. In Integration of AI and OR Techniques
in Constraint Programming - 14th International Conference, CPAIOR 2017, Proceedings,
pp. 77–93.

Kevin Leo and Guido Tack
“Multi-Pass High-Level Presolving”. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 346–352.

Kevin Leo, Christopher Mears, Guido Tack, and Maria Garcia de la Banda
“Globalizing constraint models”. In Principles and Practice of Constraint Programming -
19th International Conference, CP 2013. Proceedings, pp. 432–447.

Permanent Address: Caulfield School of Information Technology
Monash University
Australia

This thesis was typeset with LATEX2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this thesis were written by Glenn
Maughan and modified by Dean Thompson and David Squire of Monash University.

181



Bibliography

Abío, I., Stuckey, P. J. (2014). “Encoding Linear Constraints into SAT”. Principles and
Practice of Constraint Programming - 20th International Conference, CP 2014, Pro-
ceedings, pp. 75–91.

Achterberg, T. (2009). “SCIP: Solving constraint integer programs”. Mathematical Pro-
gramming Computation 1, pp. 1–41.

Andersen, E. D., Andersen, K. D. (1995). “Presolving in linear programming”. Mathemat-
ical Programming 2, pp. 221–245.

Ansótegui, C., Manyà, F. (2005). “Mapping Problems with Finite-Domain Variables to
Problems with Boolean Variables”. The Seventh International Conference on Theory
and Applications of Satisfiability Testing, SAT 2004, Proceedings, pp. 1–15.

Audemard, G., Hoessen, B., Jabbour, S., Piette, C. (2014). “Dolius: A Distributed Parallel
SAT Solving Framework”. POS-14. Fifth Pragmatics of SAT workshop, pp. 1–11.

Bacchus, F., Katsirelos, G. (2016). “Finding a Collection of MUSes Incrementally”. In-
tegration of AI and OR Techniques in Constraint Programming - 13th International
Conference, CPAIOR 2016, Proceedings, pp. 35–44.

Bailey, J., Stuckey, P. J. (2005). “Discovery of Minimal Unsatisfiable Subsets of Con-
straints Using Hitting Set Dualization”. Practical Aspects of Declarative Languages:
7th International Symposium, PADL 2005, Proceedings, pp. 174–186.

Barahona, F., Anbil, R. (2000). “The volume algorithm: producing primal solutions with
a subgradient method”. Mathematical Programming 3, pp. 385–399.

Bardin, S., Gotlieb, A. (2012). “FDCC: A Combined Approach for Solving Constraints
over Finite Domains and Arrays”. Integration of AI and OR Techniques in Contraint
Programming for Combinatorial Optimzation Problems - 9th International Conference,
CPAIOR 2012, Proceedings, pp. 17–33.

Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T. (2007). “Global Constraint Cata-
logue: Past, Present and Future”. Constraints 1, pp. 21–62.

182



BIBLIOGRAPHY 183

Beldiceanu, N., Simonis, H. (2011). “A Constraint Seeker: Finding and Ranking Global
Constraints from Examples”. Principles and Practice of Constraint Programming, 17th
International Conference, CP 2011, Proceedings, pp. 12–26.

— (2012). “A Model Seeker: Extracting Global Constraint Models from Positive Exam-
ples”. Principles and Practice of Constraint Programming, 18th International Confer-
ence, CP 2012, Proceedings, pp. 141–157.

Belov, G., Stuckey, P. J., Tack, G., Wallace, M. (2016). “Improved Linearization of Con-
straint Programming Models”. Principles and Practice of Constraint Programming -
22nd International Conference, CP 2016, Proceedings, pp. 49–65.

Bergen, M. E., Beek, P. van, Carchrae, T. (2001). “Constraint-Based Vehicle Assembly
Line Sequencing”. Advances in Artificial Intelligence: 14th Biennial Conference of the
Canadian Society for Computational Studies of Intelligence, AI 2001, Proceedings,
pp. 88–99.

Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B. (2005a). “A SAT-based version space
algorithm for acquiring constraint satisfaction problems”. Machine Learning: ECML
2005, pp. 23–34.

Bessiere, C., Coletta, R., Petit, T. (2005b). “Acquiring parameters of implied global con-
straints”. Principles and Practice of Constraint Programming, 11th International Con-
ference, CP 2005, Proceedings, pp. 747–751.

— (2007). “Learning implied global constraints”. Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 44–49.

Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C. (2011). “Efficient algorithms for
singleton arc consistency”. Constraints 1, pp. 25–53.

Biere, A., Le Berre, D., Lonca, E., Manthey, N. (2014). “Detecting Cardinality Constraints
in CNF”. Theory and Applications of Satisfiability Testing, 17th International Confer-
ence, SAT 2014, Proceedings. Ed. by C. Sinz, U. Egly, pp. 285–301.

Bockmayr, A., Pisaruk, N. (2006). “Detecting Infeasibility and Generating Cuts for Mixed
Integer Programming Using Constraint Programming”. Computers and Operations Re-
search 10, pp. 2777–2786.

Brand, S., Duck, G. J., Puchinger, J., Stuckey, P. J. (2008). “Flexible, Rule-Based Con-
straint Model Linearisation”. Practical Aspects of Declarative Languages, pp. 68–83.



BIBLIOGRAPHY 184

Charnley, J., Colton, S., Miguel, I. (2006a). “Automatic Generation of Implied Con-
straints”. Proceedings of the 17th European Conference on Artificial Intelligence, ECAI
2006, pp. 73–77.

— (2006b). “Automatic generation of implied constraints”. Proceedings of the 17th Euro-
pean Conference on Artificial Intelligence, ECAI 2006, pp. 73–77.

Cheng, B. M. W., Lee, J. H., Wu, J. C. K. (1996). “Speeding Up Constraint Propagation
By Redundant Modeling”. Principles and Practice of Constraint Programming, Second
International Conference, CP 1996, Proceedings, pp. 91–103.

Cheng, B. M. W., Choi, K. M. F., Lee, J. H., Wu, J. C. K. (1999). “Increasing Constraint
Propagation by Redundant Modeling: an Experience Report”. Constraints 4, pp. 167–
192.

Choi, C. W., Lee, J. H., Stuckey, P. J. (2004). “Removing Propagation Redundant Con-
straints in Redundant Modeling”. CoRR.

Chu, G. (2011). “Improving Combinatorial Optimization”. PhD thesis. The University of
Melbourne.

Chu, G., Stuckey, P. J. (2012a). “A Generic Method for Identifying and Exploiting Dom-
inance Relations”. Principles and Practice of Constraint Programming, 18th Interna-
tional Conference, CP 2012, Proceedings, pp. 6–22.

— (2012b). “Inter-instance Nogood Learning in Constraint Programming”. Principles and
Practice of Constraint Programming, 18th International Conference, CP 2012, Pro-
ceedings, pp. 238–247.

Coffman Jr., E. G., Garey, M. R., Johnson, D. S. (1997). “Approximation Algorithms
for NP-hard Problems”. Chap. Approximation Algorithms for Bin Packing: A Survey,
pp. 46–93.

COIN-OR (2016). COIN-OR CBC - Coin-Or Branch and Cut. https : / /projects . coin -
or.org/Cbc.

Cook, S. A. (1971). “The Complexity of Theorem-proving Procedures”. Proceedings of the
Third Annual ACM Symposium on Theory of Computing. STOC 1971, pp. 151–158.

Crowder, H., Johnson, E. L., Padberg, M. (1983). “Solving Large-Scale Zero-One Linear
Programming Problems”. Operations Research 31, pp. 803–834.

Dakin, R. J. (1965). “A tree-search algorithm for mixed integer programming problems”.
The Computer Journal 3, pp. 250–255.

https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc


BIBLIOGRAPHY 185

Dantzig, G. (1963). Linear Programming and Extensions. Princeton landmarks in mathe-
matics and physics.

Davis, M., Logemann, G., Loveland, D. (1962). “AMachine Program for Theorem-proving”.
Commun. ACM 7, pp. 394–397.

Dekker, J. J. (2016). “Sub-Problem Pre-Solving in MiniZinc”. MA thesis. Uppsala Uni-
versity, Department of Information Technology.

Dincbas, M., Simonis, H., Hentenryck, P. V. (1988). “Solving the Car Sequencing Problem
in Constraint Logic Programming”. In European Conference on Artificial Intelligence,
ECAI 1988, pp. 290–295.

Dittel, A., Fuegenschuh, A., Goettlich, S., Herty, M. (2009). “MIP presolve techniques for
a PDE-based supply chain model”. Optimization Methods & Software 24, pp. 427–445.

Dongen, M. R. C. van (2006). “Beyond Singleton Arc Consistency”. Proceedings of the
17th European Conference on Artificial Intelligence, ECAI 2006, pp. 163–167.

Eén, N., Sörensson, N. (2004). “An Extensible SAT-solver”. Theory and Applications of
Satisfiability Testing. Chap. 37, pp. 333–336.

Eén, N., Biere, A. (2005). “Effective Preprocessing in SAT Through Variable and Clause
Elimination”. Theory and Applications of Satisfiability Testing, pp. 61–75.

Emden, M. H. van, Kowalski, R. A. (1976). “The Semantics of Predicate Logic As a
Programming Language”. J. ACM 4, pp. 733–742.

Fang, R. J. F., Sandrin, W. A. (1977). “Carrier frequency assignment for nonlinear re-
peaters”. COMSAT Technical Review, pp. 227–245.

Feydy, T., Stuckey, P. J. (2009). “Lazy Clause Generation Reengineered”. Principles and
Practice of Constraint Programming, 15th International Conference, CP 2009, Pro-
ceedings, pp. 352–366.

Feydy, T., Somogyi, Z., Stuckey, P. J. (2011). “Half Reification and Flattening”. Principles
and Practice of Constraint Programming, 17th International Conference, CP 2011,
Proceedings, pp. 286–301.

FICO (2016). FICO Express. http://www.fico.com/en/products/fico-xpress-optimization-
suite.

Fischetti, M., Monaci, M. (2014). “Exploiting Erraticism in Search”. Operations Research
62, pp. 114–122.

http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.fico.com/en/products/fico-xpress-optimization-suite


BIBLIOGRAPHY 186

Fourer, R., Gay, D. M., Kernighan, B. W. (1989). AMPL: A Mathematical Programming
Language. Tech. rep. Management Science.

Freuder, E. C. (1997). “In Pursuit of the Holy Grail”. Constraints 1, pp. 57–61.

Frisch, A. M., Miguel, I., Walsh, T. (2001). “Extensions to Proof Planning for Generating
Implied Constraints”. Calculemus-01, pp. 130–141.

— (2003). “CGRASS: A system for transforming constraint satisfaction problems”. Recent
Advances in Constraints, pp. 15–30.

Frisch, A. M., Jefferson, C., Martínez, B. H., Miguel, I. (2005). “The rules of constraint
modelling”. International Joint Conference on Artificial Intelligence, pp. 109–116.

Frisch, A. M., Grum, M., Jefferson, C., Martínez, B. H., Miguel, I. (2007). “The design
of ESSENCE: a constraint language for specifying combinatorial problems”. Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007,
pp. 80–87.

Frisch, A. M., Stuckey, P. J. (2009). “The Proper Treatment of Undefinedness in Constraint
Languages”. Principles and Practice of Constraint Programming, 15th International
Conference, CP 2009, Proceedings, pp. 367–382.

Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J.,
Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schenker, S.,
Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt,
J. T., Witzig, J. (2016). The SCIP Optimization Suite 3.2. Tech. rep. ZIB.

Garcia de la Banda, M., Marriott, K., Rafeh, R., Wallace, M. (2006). “The Modelling Lan-
guage Zinc”. Principles and Practice of Constraint Programming, 12th International
Conference, CP 2006, Proceedings, pp. 700–705.

Gasca, R. M., Valle, C., Gómez-López, M. T., Ceballos, R. (2007). “NMUS: Structural
Analysis for Improving the Derivation of All MUSes in Overconstrained Numeric
CSPs”. Current Topics in Artificial Intelligence: 12th Conference of the Spanish Asso-
ciation for Artificial Intelligence, CAEPIA 2007, pp. 160–169.

Gecode Team (2006). Gecode: Generic Constraint Development Environment. http://www.
gecode.org.

Gent, I. P. (2002). “Arc Consistency in SAT”. Proceedings of the 15th Eureopean Confer-
ence on Artificial Intelligence, ECAI 2002, pp. 121–125.

Gent, I. P., Walsh, T. (1999). CSPLib: a benchmark library for constraints. Tech. rep.
http://www.csplib.org.

http://www.gecode.org
http://www.gecode.org
http://www.csplib.org


BIBLIOGRAPHY 187

Gent, I. P., Jefferson, C., Miguel, I. (2006a). “MINION: A Fast, Scalable, Constraint
Solver”. Proceedings of the 17th European Conference on Artificial Intelligence, ECAI
2006, pp. 98–102.

Gent, I. P., Petrie, K. E., Puget, J. (2006b). “Symmetry in Constraint Programming”.
Handbook of Constraint Programming, pp. 329–376. isbn: 978-0-444-52726-4.

Gent, I. P., Miguel, I., Rendl, A. (2007a). “Tailoring solver-independent constraint models:
A case study with Essence’ and Minion”. Abstraction, Reformulation, and Approxima-
tion, pp. 184–199.

— (2007b). “Tailoring solver-independent constraint models: a case study with ESSENCE’
and MINION”. Proceedings of the 7th International conference on Abstraction, refor-
mulation, and approximation. SARA 2007, pp. 184–199.

Gent, I. P., Miguel, I., Nightingale, P. (2008). “Generalised arc consistency for the AllD-
ifferent constraint: An empirical survey”. Artificial Intelligence 18, pp. 1973 –2000.

Gleeson, J., Ryan, J. (1990). “Identifying Minimally Infeasible Subsystems of Inequalities”.
INFORMS Journal on Computing 1, pp. 61–63.

Gondzio, J. (1997). “Presolve Analysis of Linear Programs Prior to Applying an Interior
Point Method”. INFORMS Journal on Computing 9, pp. 73–91.

Gurobi Optimization, Inc. (2015). Gurobi Optimizer Reference Manual. http : / /www .
gurobi.com.

Güsgen, H., Hertzberg, J. (1992). A perspective of constraint-based reasoning: an intro-
ductory tutorial.

Hebrard, E. (2016). Mistral 2.0. https://github.com/ehebrard/Mistral-2.0.

Heinz, S., Schulz, J., Beck, J. C. (2013). “Using dual presolving reductions to reformulate
cumulative constraints”. Constraints 18, pp. 166–201.

Hoffman, K. L., Padberg, M. (1991). “Improving LP-Representations of Zero-One Linear
Programs for Branch-and-Cut”. INFORMS Journal on Computing 2, pp. 121–134.

IBM (2010). IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.

IBM (2016). IBM ILOG CPLEX CP Optimizer. http://www.ibm.com/software/commerce/
optimization/cplex-cp-optimizer/.

http://www.gurobi.com
http://www.gurobi.com
https://github.com/ehebrard/Mistral-2.0
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-cp-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-cp-optimizer/


BIBLIOGRAPHY 188

Junker, U. (2001). “QUICKXPLAIN: Conflict detection for arbitrary constraint propa-
gation algorithms”. Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, IJCAI 2001.

Jussien, N., Ouis, S. (2001). “User-friendly explanations for constraint programming”.
Proceedings of the Eleventh Workshop on Logic Programming Environments, WLPE
2001.

Land, A. H., Doig, A. G (1960). “An Automatic Method of Solving Discrete Programming
Problems”. Econometrica 3, pp. 497–520.

Law, Y. C., Lee, J. H. (2002). “Model Induction: A New Source of CSP Model Redun-
dancy”. Proceedings of the Eighteenth National Conference on Artificial Intelligence
and Fourteenth Conference on Innovative Applications of Artificial Intelligence, pp. 54–
61.

Lazaar, N., Gotlieb, A., Lebbah, Y. (2012). “A CP framework for testing CP”. Constraints
17, pp. 123–147.

Leconte, M. (1996). “A Bounds-Based Reduction Scheme for Difference Constraints”. Con-
straints 96.

Leo, K., Mears, C., Tack, G., Garcia de la Banda, M. (2013). “Globalizing Constraint
Models”. Principles and Practice of Constraint Programming - 19th International Con-
ference, CP 2013, Proceedings, pp. 432–447.

Leo, K., Tack, G. (2015). “Multi-Pass High-Level Presolving”. Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 346–
352.

— (2017). “Debugging Unsatisfiable Constraint Models”. Integration of AI and OR Tech-
niques in Constraint Programming - 14th International Conference, CPAIOR 2017,
Proceedings, pp. 77–93.

Levin, L. A. (1973). “Universal search problems”. Problems of Information Transmission
3.

Li, C. M., Anbulagan (1997). “Look-Ahead Versus Look-Back for Satisfiability Problems”.
Principles and Practice of Constraint Programming, Third International Conference,
CP 1997, Proceedings, pp. 341–355.

Liberto, G. D., Kadioglu, S., Leo, K., Malitsky, Y. (2016). “DASH: Dynamic Approach for
Switching Heuristics”. European Journal of Operational Research 248, pp. 943 –953.



BIBLIOGRAPHY 189

Liffiton, M. H., Malik, A. (2013). “Enumerating Infeasibility: Finding Multiple MUSes
Quickly”. Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, 10th International Conference, CPAIOR 2013, Pro-
ceedings, pp. 160–175.

Liffiton, M. H., Previti, A., Malik, A., Marques-Silva, J. (2015). “Fast, flexible MUS enu-
meration”. Constraints 2, pp. 223–250.

Linderoth, J. T., Savelsbergh, M. W. P. (1999). “A Computational Study of Search Strate-
gies for Mixed Integer Programming”. INFORMS Journal on Computing 2, pp. 173–
187.

Loon, J. van (1981). “Irreducibly inconsistent systems of linear inequalities”. European
Journal of Operational Research 3, pp. 283 –288.

López-Ortiz, A., Quimper, C., Tromp, J., Beek, P. van (2003). “A Fast and Simple Algo-
rithm for Bounds Consistency of the AllDifferent Constraint”. Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 245–
250.

Mahajan, A. (2010). “Presolving Mixed-Integer Linear Programs”. Wiley Encyclopedia of
Operations Research and Management Science. John Wiley & Sons, Inc.

Makhorin, A (2001). “GLPK-The GNU linear programming toolkit”. http://www.gnu.
org/software/glpk/glpk.html.

Mears, C., Garcia de la Banda, M., Wallace, M. (2006). “On implementing symmetry detec-
tion”. Proceedings of the The Sixth International Workshop on Symmetry in Constraint
Satisfaction Problems, SymCon 2006.

Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B. (2008). “A Novel Approach
For Detecting Symmetries in CSP Models”. Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, 5th International
Conference, CPAIOR 2008, Proceedings, pp. 158–172.

Mears, C., Garcia de la Banda, M., Wallace, M. (2009). “On implementing symmetry
detection”. Constraints 14.4, pp. 443–477.

Metodi, A., Codish, M., Lagoon, V., Stuckey, P. J. (2011). “Boolean Equi-propagation for
Optimized SAT Encoding”. CoRR abs/1104.4617.

MOSEK ApS (2016). The MOSEK optimization toolbox for MATLAB manual. Version
7.1 (Revision 60). http://docs.mosek.com/7.1/toolbox/index.html.

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://docs.mosek.com/7.1/toolbox/index.html


BIBLIOGRAPHY 190

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S. (2001). “Chaff: Engi-
neering an Efficient SAT Solver”. Proceedings of the 38th Annual Design Automation
Conference. DAC 2001, pp. 530–535.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., Tack, G. (2007). “MiniZ-
inc: Towards a Standard CP Modelling Language”. Principles and Practice of Con-
straint Programming, 13th International Conference, CP 2007, Proceedings, pp. 529–
543.

Nightingale, P. (2016). personal communication.

Nightingale, P., Akgün, Ö., Gent, I. P., Jefferson, C., Miguel, I. (2014). “Automatically
Improving Constraint Models in Savile Row through Associative-Commutative Com-
mon Subexpression Elimination”. Principles and Practice of Constraint Programming
- 20th International Conference, CP 2014, Proceedings, pp. 590–605.

O’Callaghan, B., O’Sullivan, B., Freuder, E. C. (2005). “Generating Corrective Explana-
tions for Interactive Constraint Satisfaction”. Principles and Practice of Constraint
Programming, 11th International Conference, CP 2005, Proceedings, pp. 445–459.

Ohrimenko, O., Stuckey, P. J., Codish, M. (2007). “Propagation = Lazy Clause Genera-
tion”. Principles and Practice of Constraint Programming, 13th International Confer-
ence, CP 2007, Proceedings, pp. 544–558.

Opturion (2016). Opturion CPX. http://www.opturion.com/cpx.

Ouis, S., Jussien, N., Boizumault, P. (2003). “k-relevant Explanations for Constraint Pro-
gramming”. Proceedings of the Sixteenth International Florida Artificial Intelligence
Research Society, FLAIRS 2003, pp. 192–196.

Papadimitriou, C. H., Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and
Complexity.

Prud’homme, C., Fages, J.-G., Lorca, X. (2016). Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. http://www.choco-solver.org.

Puget, J. (1998). “A Fast Algorithm for the Bound Consistency of alldiff Constraints”.
Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 359–
366.

— (2005). “Automatic Detection of Variable and Value Symmetries”. Principles and Prac-
tice of Constraint Programming, 11th International Conference, CP 2005, Proceedings,
pp. 475–489.

http://www.opturion.com/cpx
http://www.choco-solver.org


BIBLIOGRAPHY 191

Régin, J.-C. (1994). “A Filtering Algorithm for Constraints of Difference in CSP”. Pro-
ceedings of the AAAI National Conference, pp. 362–367.

— (2013). “Simple Solutions for Complex Problems”. Presentation - Principles and Prac-
tice of Constraint Programming - 19th International Conference, CP 2013. Presented
upon receiving the ACP Research Excellence Award. http://cp2013.a4cp.org/slides/a1.
pdf.

Rendl, A., Miguel, I., Gent, I. P., Gregory, P. (2009). “Common Subexpressions in Con-
straint Models of Planning Problems”. SARA 2009.

Robinson, J., Bernstein, A. (1967). “A class of binary recurrent codes with limited error
propagation”. IEEE Transactions on Information Theory 1, pp. 106–113.

Rossi, F., Beek, P. van, Walsh, T., eds. (2006). Handbook of Constraint Programming.

Salvagnin, D. (2014). “Detecting and Exploiting Permutation Structures in MIPs”. In-
tegration of AI and OR Techniques in Constraint Programming - 11th International
Conference, CPAIOR 2014, Proceedings, pp. 29–44.

— (2016). “Detecting Semantic Groups in MIP Models”. Integration of AI and OR Tech-
niques in Constraint Programming - 13th International Conference, CPAIOR 2016,
Proceedings, pp. 329–341.

Savelsbergh, M. W. P. (1994). “Preprocessing and Probing Techniques for Mixed Integer
Programming Problems”. INFORMS Journal on Computing 6, pp. 445–454.

Selman, B., Kautz, H., Cohen, B. (1995). “Local Search Strategies for Satisfiability Test-
ing”. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science,
pp. 521–532.

Shishmarev, M., Mears, C., Tack, G., Garcia de la Banda, M. (2016). “Learning from
Learning Solvers”. Principles and Practice of Constraint Programming - 22nd Inter-
national Conference, CP 2016, Proceedings, pp. 455–472.

Silva, J. a.P. M., Sakallah, K. A. (1996). “GRASP - A New Search Algorithm for Satisfiabil-
ity”. Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided
Design. ICCAD 1996, pp. 220–227.

Smith, B. M., Brailsford, S. C., Hubbard, P. M., Williams, H. P. (1996). “The progressive
party problem: Integer linear programming and constraint programming compared”.
Constraints 1, pp. 119–138.

Stuckey, P. J., Becket, R., Fischer, J. (2010). “Philosophy of the MiniZinc challenge”.
Constraints 15, pp. 307–316.

http://cp2013.a4cp.org/slides/a1.pdf
http://cp2013.a4cp.org/slides/a1.pdf


BIBLIOGRAPHY 192

Stuckey, P. J., Tack, G. (2013). “MiniZinc with Functions”. Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, 10th
International Conference, CPAIOR 2013, Proceedings, pp. 268–283.

Suhl, U. H., Szymanski, R. (1994). “Supernode processing of mixed-integer models”. Com-
putational Optimization and Applications 3, pp. 317–331.

Sutherland, I. E. (1964). “Sketch Pad a Man-machine Graphical Communication System”.
Proceedings of the SHARE Design Automation Workshop. DAC 1964, pp. 6.329–6.346.

Tack, G. (2011). “libmzn – A modular CP infrastructure based on MiniZinc”. MZN’11,
first international MiniZinc workshop.

Thompson, A., Moran, J., Swenson, G. (2001). Interferometry and Synthesis in Radio
Astronomy.

Van Hentenryck, P., Michel, L., Perron, L., Régin, J.-C. (1999). “Constraint Programming
in OPL”. Principles and Practice of Declarative Programming, International Confer-
ence PPDP 1999, Proceedings, pp. 98–116.

Van Hentenryck, P., Flener, P., Pearson, J., Ăgren, M. (2005). “Compositional Derivation
of Symmetries for Constraint Satisfaction”. Abstraction, Reformulation and Approxi-
mation, pp. 234–247.

Walsh, T. (2000). “SAT v CSP”. Principles and Practice of Constraint Programming, 6th
International Conference, CP 2000, Proceedings, pp. 441–456.

Williams, H. P., Yan, H. (2001). “Representations of the All_Different Predicate of Con-
straint Satisfaction in Integer Programming”. INFORMS Journal on Computing 2,
pp. 96–103.

Wolpert, D. H., Macready, W. G. (1997). “No Free Lunch Theorems for Optimization”.
Transactions on Evolutionary Computation 1, pp. 67–82.

Wright, M. H. (2005). “The interior-point revolution in optimization: history, recent devel-
opments, and lasting consequences”. Bulletin of the American Mathematical Society,
pp. 39–56.

Yunes, T. H., Aron, I. D., Hooker, J. N. (2010). “An Integrated Solver for Optimization
Problems”. Operations Research 58, pp. 342–356.


	List of Tables
	List of Figures
	Abstract
	Acknowledgments
	Introduction
	The Modelling, Compilation, and Solving Process
	The Importance of Good Models
	Contributions
	Structure of the Thesis

	Background
	Introduction
	Combinatorial Problems
	Solving Combinatorial Problems
	Linear Programming
	Mixed-Integer Programming
	Boolean Satisfiability
	Constraint Programming

	High-Level Modelling
	MiniZinc by Example
	Grammar of a Simplified MiniZinc

	Compilation
	Compiling MiniZinc Instances to Programs: an Overview
	Compiling MiniZinc Instances to Programs: a Procedure
	Further Compilation Techniques

	Model Structure
	Losing Structure
	Recovering Structure

	Using Structure
	Program Level
	Instance Level
	Model Level

	Conclusion

	A Framework for Model Structure
	Introduction
	The New Framework
	Structure Sharing
	Between Solvers
	Between Programs
	Between Instances

	Structure Generalisation
	From Solvers
	From Programs
	From Instances

	Additions to the Framework
	Conclusion

	Preserving Structure
	Introduction
	Background
	Presolving Linear Programs
	Presolving Mixed Integer Programs
	Presolving Boolean Satisfiability
	Presolving Constraint Programs
	Related Work in Compilation

	Multi-Pass Presolving
	Multi-Pass Examples
	Presolving Phases
	Preserving Structure
	Variable Paths

	Implementation in MiniZinc
	Compilation in MiniZinc
	Implementing Variable Paths

	Experimental Evaluation
	Two Pass Compilation: For MIP
	Two Pass Compilation: For CP
	Two Pass Compilation: Case Study

	Conclusion
	Limitations
	Further Research


	Discovering Structure
	Introduction
	The Progressive Party Problem
	Related Work
	Globalization
	Normalization
	Generating Submodels
	Instantiating Submodels
	Processing Submodel Instance Groups
	Preprocessing Step to Uncover Hidden Structures

	Implementation
	Implementation Choices
	Library of Global Constraints
	Displaying Candidates

	Experimental Evaluation
	Evaluating the Default Configuration
	Evaluating Alternative Configurations

	Conclusion
	Limitations
	Further Research


	Structure Guided Fault Diagnosis
	Introduction
	The Latin Squares Problem
	Related Work
	Exploiting Model Structure for MUS Detection
	Constraint Paths
	Grouping Constraints by Paths
	Implementation Details

	Experimental Evaluation
	MUS enumeration
	Time to First MUS

	Displaying Diagnoses
	Generalising MUSes to the Model Level
	Conclusion
	Limitations.
	Further Research.


	Conclusions
	Appendix A Preserving Strucutre: Models
	Appendix B Discovering Structure: Models
	Cars
	Jobshop
	Party
	Party-CSP
	Party-LP
	Packing
	Schedule
	Sudoku LP
	Sudoku CSP
	Warehouses

	Appendix C Structure Guided Fault Diagnosis: Models
	Costas-Array
	CVRP
	RCMSP
	Free-Pizza
	Mapping
	MKnapsack
	NMSeq
	Open-Stacks
	P1F
	Radiation
	Spot5
	TDTSP

	Vita



