
A Human-Centred Approach to Network Layout Algorithm

Design

by

Steve Kieffer, BSc, MSc, MSc

Thesis

Submitted by Steve Kieffer

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: Dr. Kim Marriott

Associate Supervisor: Dr. Michael Wybrow

Associate Supervisor: Dr. Tim Dwyer

Caulfield School of Information Technology

Monash University

May, 2017



c© Copyright

by

Steve Kieffer

2017



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Human-Centred Approach to Network Layout Algorithm Design . . . . . 2

1.2 Network Layout Languages and Dialects . . . . . . . . . . . . . . . . . . . . 3

1.3 The DiAlEcT Layout Framework . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Blending Observed Behaviour with the Constrained Layout Tradition . . . 5

1.5 Sparse Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Constrained Stress Minimising Layout . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Physical Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Multidimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Adaptagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Rule-Based Layout Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Perceptual Organisation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 The Diagram Creation Problem . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 A Rule-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Topology-Shape-Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Planar Embeddings, Rotation Systems, and Topology . . . . . . . . 25

2.4.2 A Refinement Approach to Layout . . . . . . . . . . . . . . . . . . . 26

2.4.3 The Hierarchy of Aesthetics . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Framework versus Algorithms . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Grid-like Layout with CSML . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Grid-like Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Aesthetic Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Goal Function Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Adaptive Constrained Alignment . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Investigating Manual Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Prior Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Early Aesthetic Studies . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Human-authored Layout Studies . . . . . . . . . . . . . . . . . . . . 48

4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Stage A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Stage B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Results: Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Results: Perceptual Organisation . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Designing a human-like layout algorithm . . . . . . . . . . . . . . . . . . 59

5.1 Configuring with Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Generalising ACA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Recourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 The Steps of HOLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Topological decomposition . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Layout of the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.3 Tree layout and placement . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.4 Opportunistic improvement . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Evaluation of Automatic Layout . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Algorithm Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.1 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 The DiAlEcT Layout Framework . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Phase-D: Decompose/Distribute . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Phase-A: Arrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 Graph Substructure Arrangements . . . . . . . . . . . . . . . . . . . 102

7.2.2 The Constraint-Generation Loop . . . . . . . . . . . . . . . . . . . . 104

7.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Phase-E: Expand/Emend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 The Relative Constraint Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5 Phase-T: Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

iv



8 DiAlEcT Layout for SBGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.1 Basics of SBGN Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1.1 Orientable Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.1.2 Submaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.1.3 Compartments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 Ports and Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2.1 Port Dummy Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2.2 Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2.3 SBGN Port Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2.4 Well-Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3 Phase-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4 Phase-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.4.1 Parallel Chain Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4.2 Regular Polygonal Faces . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.4.3 Sector-Partitioned Orbits . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4.4 Constraint Generation Loop . . . . . . . . . . . . . . . . . . . . . . . 146

8.5 Phase-E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1 Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.1.1 A Straightforward Approach . . . . . . . . . . . . . . . . . . . . . . 156
9.1.2 Stress Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.1.3 An Iterative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.2 GSA Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2.1 Hierarchical Symmetric Trees . . . . . . . . . . . . . . . . . . . . . . 165
9.2.2 PCG Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2.3 RPF Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.3 Illustration and Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.1 Stress and Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.2 Comparison of DiAlEcT with ANDD . . . . . . . . . . . . . . . . . . . . . . 178
10.3 Comparison of DiAlEcT with TSM . . . . . . . . . . . . . . . . . . . . . . . 179

10.3.1 Similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.3.2 Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Appendix A Gradient-Projection for Snap Functions . . . . . . . . . . . . 183

Appendix B Proof of Edge Coincidence Test . . . . . . . . . . . . . . . . . . 185

Appendix C Orthowontist Text Responses . . . . . . . . . . . . . . . . . . . 187

Appendix D Orthowontist Metrics . . . . . . . . . . . . . . . . . . . . . . . . 189
D.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
D.2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
D.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
D.4 “Gridiness” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

v



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

vi



List of Tables

4.1 Pearson’s correlation coefficient between normalised inverted mean rank µ̄ and various indicators

of the quality of a layout. This table shows mostly positive correlations, indicating features that

make a better layout. See Table 4.2 for negative correlations. Single star * means significance at

p = 0.05 level. Double star ** means significance at p = 0.01 level. A ‘–’ indicates a feature not

applicable to that graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Pearson’s correlation coefficient between normalised inverted mean rank µ̄ and various indicators

of the quality of a layout. This table shows mostly negative correlations, indicating features that

make a worse layout. See Table 4.1 for positive correlations. Single star * means significance at

p = 0.05 level. Double star ** means significance at p = 0.01 level. A ‘–’ indicates a feature not

applicable to that graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1 Glossary of technical terms introduced in this chapter . . . . . . . . . . . . . . . . . . . 100
7.2 Graph substructures and their arrangements in HOLA and ACA . . . . . . . . . . . . . . 104
7.3 The lateral and cardinal direction letters are used in the directed relation expressions that form

the entries of a relative constraint matrix. In this table G is the grid size, a and b are nodes with

coordinates (ax, ay) and (bx, by) respectively, and the constraints interpret the direction letters

as operating from node a toward node b. . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4 Direction letters may take subscripts and exponents. In this table examples are shown for the

letters R and E. G is the grid size, r ≥ 0 is a non-negative real number, a and b are nodes with

coordinates (ax, ay) and (bx, by) respectively, and the constraints interpret the direction letters

as operating from node a toward node b. . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.5 All direction letters have opposites. Lateral letters have cardinal strengthenings, while cardinal

letters have lateral weakenings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Mapping from SBGN elements to a coarser classification that is sufficient for layout purposes.

Each element of the coarse classification gets a type code, which is used in Section 8.2.3 when we

introduce our formal model of SBGN graphs. . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Definition of the Ω function for well-orienting. In words, if d is a cardinal direction then Ω(d)

contains all but the opposite direction, while if d is an ordinal direction then Ω(d) consists of the

two cardinal components of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.3 Sequence of DESCEND operations achieving distribution in the presence of SBGN compartments

(clusters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.4 Graph substructures and their arrangements in DiAlEcT layout for MetaCrop SBGN . . . . . . 126

9.1 For each flip those pairs of direction letters are listed that must be swapped in all entries M(a, b)

of the relative constraint matrix (RCM) for which a, b ∈ F , when the flip is to be performed over

the set of nodes F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 For each rotation the necessary permutations of letters in the relative constraint matrix (RCM)

are given by listing disjoint cycles. Letters must be permuted in all entries M(a, b) for which

a, b ∈ F , when the rotation is to be performed over the set of nodes F . . . . . . . . . . . . 165

vii



List of Figures

1.1 Node-link diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Alternation between theory and practice in the core chapters of the thesis . . . . . . . . . . 6

1.3 This flow chart represents the inputs (blue lozenges), processes (white hexagons), theoretical

products (pink rounded rectangles), and concrete products (green rectangles) of this thesis. Each

process node corresponds to one of the chapters 3 through 9, and the chapter numbers are

indicated in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 For each positive integer n we denote by Kn the complete graph on n vertices, i.e. the unique

graph with n vertices every pair of which is connected by an edge. K5 is depicted on the left.

For positive integers m,n we denote by Km,n the complete bipartite graph with m vertices on

one side and n vertices on the other side; this means that each vertex on one side is connected

to each vertex on the other side. K3,3 is depicted on the right. . . . . . . . . . . . . . . . 12

2.2 In Marks’s system, applying the VHUB design directive to a set of nodes indicates that the layout

system should attempt to arrange those nodes in a hub pattern (left). Applying the SSP design

directive to a path of nodes in a directed graph, starting with a source and ending with a sink,

indicates that the layout system should attempt to arrange those nodes in a straight line (right). 22

2.3 Recreation of Marks’s Figure D.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Recreation of Marks’s Figure D.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Recreation of Marks’s Figure D.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 For each node, the rotation system lists that node’s neighbours in clockwise order around it. Note

that the two embeddings shown here of the graph K4 have the same rotation system, but are

not homeomorphic in the plane R2 (they are however homeomorphic on the 2-sphere). This is

why in order to determine the topology of a planar embedding we must give not just the rotation

system but also must say which is the external face. . . . . . . . . . . . . . . . . . . . . 25

2.7 The TSM approach first determines the topology of the drawing in the planarisation step, then

the shape of the drawing in the orthogonalisation step, and finally the metrics in the compaction

step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Stress-minimal (left) and TSM (right) layouts of the same graph, appear quite different. . . . . 33

3.2 Stress-minimised layout with orthogonal routing applied directly tends to produce results with

bad aesthetic value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Different combinations of our grid-like layout techniques are shown, compared with pure stress-

minimal layout. The layout is for an SBGN diagram of the Glycolysis-Gluconeogenesis pathway

obtained from MetaCrop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 M-shaped function. Note that [0, π/2] is the range of |tan−1|. The “M” function is zero at 0 and

π/2, a small value p ≥ 0 at π/4, a large value P > 0 at δ and π/2− δ for some small δ > 0, and

linear in-between. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Adaptive constrained alignment algorithm. G is the given graph, C the set of user-defined

constraints, and K the cost function. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii



3.6 Suppose nodes u and v are horizontally aligned. When the ACA process considers the edge (u,w)

the basic angular cost will suggest that the vertical alignment of u and w would be best; however,

since u has degree 2 we add a special penalty cost to that alignment. The penalty makes the

horizontal alignment of u and w more attractive, and this promotes the creation of long, straight

chains of aligned nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Edge obliqueness (see Section 3.1.2) results. The constraint-based approach ACA is better than

either of the goal-function-based approaches Grid-Snap (GS) and Node-Snap (NS). The combi-

nation of ACA and GS gives the best result. . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 P-Stress values normalised by graph size and density. There is not much to note except that

GS introduces the most significant stress. Basically, this means that optimisation over GS-stress

introduces the most distortion of the underlying SML layout. . . . . . . . . . . . . . . . . 42

3.9 Layout of a SBGN diagram of Calvin Cycle pathway shows how ACA (right) gives a more pleasing

rectangular layout than Node-Snap (left). . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Running time in seconds for the six different grid-like layout methods against number of nodes for

the 252 graphs in our corpus. Times given do not include the other layout stages. For example,

ACA does not include the initial SML layout. ACA+GS, is just the additional grid stage after

SML+ACA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 Angular resolution for the various techniques for all nodes, but also broken down for lower degree

nodes. We see ACA does almost as well as SML on degree-2 nodes, and results in better angular

resolution than SML for degree-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.12 Different combinations of our automatic layout techniques for the graph “ug 213” from the AT&T

Graphs corpus, as generated during our evaluation. In 3.12e and 3.12f we use a simple post-process

to see if edges involved in crossings can be rerouted to avoid crossings using the orthogonal

connector routing scheme described in [WMS10]. . . . . . . . . . . . . . . . . . . . . . 44

3.13 Different combinations of our automatic layout techniques for the graph “ug 268” from the AT&T

Graphs corpus, as generated during our evaluation. . . . . . . . . . . . . . . . . . . . . 45

4.1 The 8 graphs and some of their layouts from the study. At left is the initial layout. The next 4

columns show the two worst and the two best manual layout. The final column shows automatic

layout from yFiles. µ̄ = normalised inverted mean rank (see Section 4.3.3). Best possible value

is 1, worst possible 0. Means in boxes indicate best actual mean rank. . . . . . . . . . . . . 50

4.2 The Orthowontist online editor. We considered existing editors yEd and MS Visio, but found the

controls for editing orthogonal connectors to be overly complex, so devised the simple interface

employed in Orthowontist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 An example tournament for one of the eight graphs, and for a single participant of Stage B.

Participants were not presented with a figure like this, but were instead simply shown three

layouts at a time, constituting each match of the tournament. For each participant the “seeding”

of the tournament was randomised, which in terms of this figure means that the order of the

layouts in the far-left and far-right columns was random. The seventeen human-made layouts

and the yFiles layout entered the tournament on equal footing, while the original messy layout

received a “bye” to the final round, as a sanity check. . . . . . . . . . . . . . . . . . . . 52

4.4 Overall, arrangements like that on the right where trees were placed on the outside of the layout

were preferred over arrangements like that on the left, where trees were placed in inner faces. . . 54

4.5 Users frequently seem to introduce “aesthetic bend points” i.e. bends in connector routes that

allow greater symmetry or allow nodes of degree two to have their edges on opposite sides of the

node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Links (blue nodes) can form both open chains (as in the letters ‘R’, ‘T’, and ‘H’ above) and closed

chains (as in the letter ‘O’). A closed chain must form a connected component unto itself, and is

a special case that will not often concern us. . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 While the sixth best (lower right) layout of Graph 4 aligned the longest chain vertically, the three

highest ranked layouts of that graph each aligned it horizontally. . . . . . . . . . . . . . . 57

ix



4.8 Hierarchical configuration for a subtree was often found in highly ranked layouts. Figure 4.8a,

the single highest ranked layout in the entire study, exhibits a clear schematic expression of the

hierarchical structure of the tree. A similar formation is present in half of Figure 4.8c. For Graph 7

a layout featuring this kind of structure (Figure 4.8f) was ranked fourth; it is possible that its

lack of compactness hurt its rankings. A similar layout came in third for Graph 8 (Figure 4.8g).

For both Graphs 7 and 8 the two top-ranked layouts organised their subtrees neatly, but did not

give them such a pronounced hierarchical structure. They were also very compact. . . . . . . 57

5.1 The eight graphs from the Orthowontist study laid out by pure stress-minimising layout (SML),

NodeSnap (NS), GridSnap (GS), and Adaptive Constrained Alignment (ACA) . . . . . . . . 61

5.2 Changing the cyclic ordering of the neighbours of a given node via PROJECT (Section 2.2.4)

can move the layout from a low point in one stress basin to a high point in a different basin,

often necessitating drastic rearrangement of the graph in order to regain low stress. At best, an

application of the DESCEND operation is required. At worst, the layout may become hopelessly

tangled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Steps in the HOLA Algorithm, with cross-reference to our design principles P1-3 (see below)

and aesthetic goals R1-9 (enumerated in Section 4.3.4) . . . . . . . . . . . . . . . . . . 63

5.4 HOLA applied to a small example graph illustrating the four main steps. . . . . . . . . . . 64

5.5 The peeling process, and assembly of trees with copies of root nodes. In this case we have

R = {D,F,X} \ {U, V,X, Y, Z} = {D,F} so the two root copies D′, F ′ are added to H. Then

the connected components T1, T2 of H are the two trees, while the core C is left over from the

original graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Steps in HOLA’s configuration process . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 An edge routing like that on the left is desirable; a routing like that in the centre cannot be

allowed, since it would cause a node to become a leaf when the graph was planarised, as on the

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 This tree has five “c-trees”, which are the connected components that remain if the root node

is deleted. One of these (the centre one) is unique. The other four pair off into two pairs by

isomorphism. The symmetric tree layout algorithm of Manning and Atallah tries to maximise

symmetry by putting the unique c-tree in the centre while placing those that pair off in corre-

sponding positions on either side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 Tree placement and growth directions . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.10 Suppose we are going to place the trees rooted at nodes r and s into faces f1 and f2 respectively,

both with east growth direction. In a case like this our strategy to place larger trees first pays

off. For if we place the tree at node s first then, due to the alignment constraint on nodes a and b,

our expansion of face f2 results in a simultaneous expansion of face f1 providing adequate room

for the tree rooted at r. If instead we had placed the tree at r first then we would still have to

spend time figuring out how to expand face f2 for the tree at s. . . . . . . . . . . . . . . . 72

5.11 Expanding a face to make room for a tree placement . . . . . . . . . . . . . . . . . . . . 73

5.12 Method for determining the expansion options . . . . . . . . . . . . . . . . . . . . . . 74

5.13 Goal segments and pathological cases . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



5.14 Locating the goal points for a given goal segment is actually not quite as simple as was suggested

in Figure 5.12a. Here is the procedure: Compute the list L = 〈c1, c2, . . . , ck〉 of all points where

the goal segment crosses the boundary of the face. (We can have k = 0, in which case L is

the empty list.) If d is the distal end point of the goal segment (i.e. the end opposite the base

point b), add d to the list L. Finally, the ray extending from b through d and onward to infinity

may or may not cross the boundary of the face again, beyond d; if it does, append the first

such crossing point e to the end of the list L. The list L now looks either like 〈c1, c2, . . . , ck, d〉
or like 〈c1, c2, . . . , ck, d, e〉. In either case, rewrite the list as L = 〈p0, p1, p2, . . . , pn〉. Then the

goal points are those with even index in this listing, i.e. we have the goal points gi = p2i for

0 ≤ i ≤ bn/2c. To illustrate why this works, there are five cases to consider, determined by the

following questions: (1) is the face an internal face or the external face; (2) is k even or odd; (3)

if internal and odd, then is there a final crossing point e (if external and odd then there must be

a final crossing point, since all interior faces are bounded). . . . . . . . . . . . . . . . . . 76

6.1 In Part 1 of the study, participants ranked the HOLA, yFiles, and best human layout of each of

the eight small graphs from the first study. . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Part 2 of the study, finding shortest paths in the large graphs . . . . . . . . . . . . . . . . 81

6.3 Part 3 of the study, finding neighbours in the large graphs . . . . . . . . . . . . . . . . . 82

6.4 Part 4 of the study, user preference . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 HOLA (above) and yFiles (below) layouts of our small graph, with 60 nodes, 65 edges . . . . . 84

6.6 HOLA (above) and yFiles (below) layouts of our lower density medium sized graph, with

90 nodes, 100 edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 HOLA (above) and yFiles (below) layouts of our higher density medium sized graph, with

90 nodes, 110 edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.8 HOLA (above) and yFiles (below) layouts of our large graph, with 120 nodes, 126 edges . . . . 87

6.9 HOLA (above) and yFiles (below) layouts of SBGN Glycolysis-Gluconeogenesis pathway network 88

6.10 HOLA (above) and yFiles (below) layouts of Sydney metro map network . . . . . . . . . . 89

6.11 Participants’ preferences for drawings by human, yFiles or HOLA of graphs from Fig. 4.1. A

solid arrow a→ b indicates a significant preference for condition a over condition b at the p < 0.01

confidence level. The dotted arrow indicates a preference for layout of Graph 8 by HOLA over

yFiles at the p < 0.05 level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.12 HOLA, yFiles, and top-ranked human layout of the first four graphs from the formative study.

(See also Figure 6.13.) µ̄ = normalised inverted mean rank. Best possible value is 1, worst

possible 0. Means in boxes indicate best actual mean rank in the normative study. . . . . . . 91

6.13 HOLA, yFiles, and top-ranked human layout of the last four graphs from the formative study.

(See also Figure 6.12.) µ̄ = normalised inverted mean rank. Best possible value is 1, worst

possible 0. Means in boxes indicate best actual mean rank in the normative study. . . . . . . 92

6.14 Despite the Human layout having been preferred significantly over the HOLA layout on Graph 2,

it is the HOLA layout that seems to better exhibit the golden ratio φ ≈ 1.618. The aspect ratios

of the main rectangles were 86/42 ≈ 2.048 for human and 76/44 ≈ 1.727 for HOLA. The aspect

ratios of the left-hand nested rectangles were 42/33 ≈ 1.273 for human and 44/27 ≈ 1.630 for

HOLA. This result suggests that preference has more to do with adequate spacing of nodes and

avoiding over-compaction, than anything to do with proportions cleaving to the golden ratio.

(Note: there is nothing in the design of HOLA that deliberately tries to achieve the golden ratio,

and these results were merely by chance.) . . . . . . . . . . . . . . . . . . . . . . . . 93

6.15 HOLA running time on a collection of random graphs with between 10 and 170 nodes, and with

densities between 1.1 and 1.5 edges per node. yFiles layout takes less than 2 seconds on each

of these graphs. On the small graphs from our first study HOLA runtimes range from 9 to 97

milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.16 Degree histograms show how many nodes of each degree were present in each of the six graphs

in our second corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



7.1 The DiAlEcT framework describes automatic and interactive layout tools. This figure gives an

overview of their functioning. Details are given in this chapter. . . . . . . . . . . . . . . . 99

7.2 Like most GSAs, the symmetric tree layout admits both geometric and structural variants. Both

layouts depicted here employ the same geometric variant; namely, they both grow in the south

direction. However they employ different structural variants. On the left we choose to put the

deepest trees nearest their parent node; on the right we put the shallowest trees nearest the

parent node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1 Sugar metabolism process diagrammed in SBGN, courtesy of MetaCrop [Met] . . . . . . . . 114

8.2 Oval nodes are entity nodes, the small square node is a process node, and the node labelled or is

a logic node. Among the arcs are (a) consumption arcs, (b) production arcs, (c) logic arcs, and

(d) a modulation arc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Process nodes and logic nodes have ports located at the ends of two “spikes” that stick out on

opposite sides. The spikes can be oriented vertically or horizontally. . . . . . . . . . . . . . 116

8.4 The SBGN diagram at the top can be decomposed into those on the bottom left and bottom

right, using a submap. Bottom left shows the three entity nodes X, Y , and Z connecting to a

submap. Bottom right shows the internal contents of the submap, and the tags A, B, and C

serve to indicate how elements of this diagram connect to nodes outside the submap. . . . . . 117

8.5 Awareness of ports is important to achieve good node positioning. (a) and (c) show internal

representations of what is passed to the layout algorithm, (b) and (d) show the resulting drawings

of data flow diagrams from [RKD+14]. (a) is unaware of ports and yields node positions that

introduce an edge crossing in (b). In (c) ports are considered and the unnecessary crossing is

avoided in (d). Note, however, while the chance is higher that (d) is crossing-free, it is not

guaranteed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.6 For graphics, the positive y-axis points downward. Accordingly, the forward direction for rotation

is clockwise, and the four quadrants are numbered clockwise, starting from the lower-right. . . . 120

8.7 In the layout on the left the process node is well-oriented because its neighbours lie on the appro-

priate sides, considering the ports to which they attach. In the layout on the right neighbouring

nodes lie on inappropriate sides, and the process node is not well-oriented with respect to its

neighbours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.8 Suppose a process node v is oriented with its production port on the east. Then v is well-oriented

with respect to a product neighbour u if and only if the categorical direction from port p
(1)
v to

node u is anything other than W, SW or NW (left). Meanwhile v is well-oriented with respect to

a modulator w if and only if the categorical direction from v to w is neither E nor W (right). . . 124

8.9 In MetaCrop diagrams leaf nodes (“satellites”) are typically arranged on roughly elliptical arcs

around their parent node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.10 Clustering techniques and careful generation of non-overlap constraints are required in order to

separate nodes into their SBGN compartments during the distribution phase. In this example

we look at the skeleton subgraph of the glycolysis-gluconeogenesis pathway shown on the left in

Figure 8.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.11 MetaCrop layout of glycolysis-gluconeogenesis pathway is shown on the left. On the right are

noted several parallel chain groups visible in the skeleton subgraph. . . . . . . . . . . . . . 128

8.12 MetaCrop layout of ascorbate-glutathione cycle pathway is shown on the left. On the right are

noted two pseudo-PCGs in the skeleton subgraph. . . . . . . . . . . . . . . . . . . . . . 129

8.13 A close examination of the nodes at the top of the skeleton from Figure 8.11 reveals that the boxed

nodes actually constitute a PCG. However, in such a case the conventional PCG arrangement

pattern highlighted in Figure 8.11 is to be avoided, as a different metaphor dominates. The

“transporter reactions” lying in “membrane” compartments, whose neighbours span multiple

compartments, are better arranged linearly as in this figure. . . . . . . . . . . . . . . . . 129

xii



8.14 After arbitrarily designating the terminal nodes of a PCG as “source” s and “target” t, we can

orient the PCG in any of the four cardinal compass directions. From left to right in this figure,

the PCG points south, east, north, and west. In a case like the one illustrated here, in which

nodes s and t were aligned vertically with their respective external neighbours, MCGL would

attempt to create either the north or south orientation, i.e. the first or third options in this figure

reading from the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.15 Once a direction is chosen for a PCG, there may be many different ways to arrange the chains

within it. In MCGL we would select the leftmost arrangement in this figure as the standard

structural variant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.16 A PCG with axial direction E, with a centre chain . . . . . . . . . . . . . . . . . . . . . 131

8.17 Different ways of orienting the terminal nodes are depicted for a PCG with axial direction S. In

this and subsequent figures, an arrow on a spike leaving an orientable node u indicates that this

is port p
(1)
u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.18 When exactly one terminal node is in the transverse case, then it may take either of the two

available orientations. The chains must simply be ordered accordingly, in order to avoid crossings. 133

8.19 Representing each terminal port by a vertex and each chain by an edge, a double-transverse PCG

(top row) is modelled by a bipartite graph with two or three vertices in each part (bottom row). 134

8.20 For double-transverse PCGs we expand the definition of infeasibility to include cases where chains

cross from one side to the opposite side, or cross one another. . . . . . . . . . . . . . . . . 135

8.21 Prohibited edges and edge pairs in the bipartite graphs corresponding to double-transverse PCGs 136

8.22 The idealised vectors η(u, v) for any GSA reflect how we expect nodes u and v to lie relative

to one another in the intended arrangement. For computing costs we only need these for nodes

connected by an edge. In this example the idealised vectors would be η(s, a) = E−S, η(s, p) = E,

η(s, u) = E + S, η(a, b) = E, and so forth. . . . . . . . . . . . . . . . . . . . . . . . . 137

8.23 At the centre of Figure 8.23a one face of the skeleton subgraph has been given the shape of a

(roughly) regular hexagon. Two others are (roughly) regular quadrilaterals. In Figure 8.23b a

face of the skeleton subgraph containing eight nodes is configured as a hexagon (not an octagon)

and, although it is not a regular hexagon, it has two axes of reflection symmetry. . . . . . . . 138

8.24 The basic n-gon (hexagon illustrated here, in solid lines) is equilateral, is centred at the origin,

and has a vertex at (1, 0). Any other n-gon (for the same n, illustrated in dashed lines in this

figure) is obtained via a projective linear transformation of this one; that is, via some composition

of rotation, translation, and dilation. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.25 The number of canonical rotations of an n-gon depends on the residue class of n mod 4. . . . . 140

8.26 Graphs of cosine and sine, showing for what sort of pairs of unequal angles they take on equal

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.27 Alignments for regular n-gons. In each figure the vertices are numbered, and these numbers play

the role of the ki in Equations (8.3) and (8.4) . . . . . . . . . . . . . . . . . . . . . . . 142

8.28 Feasibility tests for an example RPF geometry, using Equations (8.6) through (8.9) . . . . . . 145

8.29 Example sector-partitioned orbit arrangement, with relative constraint matrix entries that enforce

its sector partitioning and alignments . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.30 Ascorbate-Glutathione Cycle pathway . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.31 Pentose Phosphate pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.32 MetaCrop layout of Glycolysis-Gluconeogenesis pathway. Compare Figure 8.33. . . . . . . . . 150

8.33 MCGL layout of Glycolysis-Gluconeogenesis pathway. Compare Figure 8.32. . . . . . . . . . 151

xiii



8.34 Hand-made layout (left) of the MAPK pathway shows a cascade pattern: the output of the first

process (say process A) serves to catalyse the next two processes (say B1 and B2), whose output

in turn catalyses the final two processes (say C1 and C2). The layout shows three rows, with

process A in the top row, processes B1, B2 in the next, and processes C1, C2 in the last. This kind

of system, in which the output of one sequence stimulates the next sequence is always represented

in SBGN by Type II diagrams. MCGL layout (right) was designed only for Type I diagrams and

predictably misses the cascade metaphor. This represents a goal for future work. As discussed

in Section 8.6 MCGL also makes a syntactic error caused by the presence of non-leaf modulators

in this Type II diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.1 Selected stages of Layout 8A, together with charts of stress and symmetry metrics over the course

of the layout process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.2 Interactive neighbour rotation: Node A is held fixed, while the user drags Node B relative to A.

The place where node B is dropped indicates to the system which transformation is desired. . . 159

9.3 Interactive chain rerouting: The terminal node T is selected in order to indicate the chain A,B,C

that is to be rerouted. Then the user can drag node A to the right, and the system will auto-

matically choose the connector between nodes A and T as the best place to create a bend point,

using the same procedure as in HOLA. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.4 Selected stages of Layout 6C. More stages and stress chart are in Figure 9.5. . . . . . . . . . 161

9.5 Selected stages of Layout 6C are shown, together with stress chart. See also Figure 9.4. . . . . 162

9.6 With the ability to rotate whole chains, the transformation from Frame 14 to Frame 42 of Lay-

out 6C can be achieved in two motions. First node A is selected as pivot and node D dragged to

its south side. Next, with node A still selected as pivot, node C may be dragged to its west side,

and the system will automatically rotate the entire chain A, B, C. . . . . . . . . . . . . . 163

9.7 In the layout of Frame 14 (Figure 9.4b), node A is set as the pivot, node B is set to be repulsive,

and the user drags node C over to the west side of A. It is automatically inferred that the entire

chain A,B,C is to be rearranged to point west from node A. Since node B was marked repulsive

node D is ejected from the west side of A and sent to the south side. There it is spaced evenly

with the other nodes E and F that occupy that side, creating the layout of Frame 42 (Figure 9.5a).163

9.8 In the layout of Frame 42 (Figure 9.5a), node A is marked as a cut node. Then nodes F and G

are selected to participate in a diagonal flip. This produces the layout of Frame 75 (Figure 9.5c). 164

9.9 Either terminal of a PCG may be selected as pivot, and the opposite terminal dragged to a new

cardinal direction with respect to the former (left). The entire PCG is then rotated automatically

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.10 Either terminal of a PCG may be selected as pivot, and adjacent internal chain nodes may be

rotated with respect to it, in order to change the transverse ordering of the chains. . . . . . . 167

9.11 In RPF interaction mode, any node of an RPF may be rotated relative to the centre of the

polygonal face. During rotation a dashed “ghost” representation is shown, and snaps to the

nearest canonical rotation (centre). When the node is dropped then the RPF is rearranged in

the new rotation (right), with constraints being altered and orientable nodes being reoriented as

needed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.12 In RPF interaction mode, any node of an RPF may be dragged radially, relative to the centre of

the polygonal face. While dragging a dashed “ghost” representation is shown (centre). When the

node is dropped, the RPF is re-sized by increasing the separations in the constraints that define

it (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.13 Transforming a parallel chain group . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.14 Diagonal flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.15 Rotation by component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.16 Another rotation by component, plus a low-level separation . . . . . . . . . . . . . . . . . 172

9.17 Applying one final horizontal flip to the entire network, we are left with a closer approximation

to the hand-made MetaCrop layout in Figure 8.32 (page 150). . . . . . . . . . . . . . . . . 173

xiv



D.1 The “neighbour distance” between these two nodes is the straight-line distance a between their

centres, not the sum b+ c of the lengths of the segments making up the connector route. . . . . 189
D.2 These two layouts of a three-node graph have the same average neighbour separation; however,

the layout on the left has zero stress, while the layout on the right has higher stress. . . . . . . 190
D.3 For grid-like symmetries we consider only axes of symmetry that are horizontal or vertical, and

that pass either through the centre of a node or through the midpoint between two adjacent

aligned nodes. Four of this layout’s eleven possible axes are shown. . . . . . . . . . . . . . 192
D.4 As in this example, layouts may exhibit a lot of symmetry and yet lack a single axis representing

all of it. In a case like this we believe it is important to consider breaking the layout into

sublayouts, and examining the symmetry of each part separately. For example if the central edge

in this figure is deleted then each of the two resulting components has perfect symmetry. . . . . 192
D.5 ε-neighbourhoods around a connector route (left) and node box (right) . . . . . . . . . . . . 193

xv



A Human-Centred Approach to Network Layout Algorithm

Design

Steve Kieffer, BSc, MSc, MSc

Monash University, 2017

Supervisor: Dr. Kim Marriott

Associate Supervisor: Dr. Michael Wybrow

Associate Supervisor: Dr. Tim Dwyer

Abstract

Scientists and engineers often use a type of information graphic called a node-link
diagram to represent the complex systems they study. Here, labelled boxes connected by
lines show how elements of the system relate to one another. It is challenging to create
a good layout for such a diagram, positioning the boxes and lines for maximum clarity.
Existing software can help with the job, but the results often look artificial, or fail to
capture a lab-specific style.

Insofar as node-link diagrams communicate information, like a language does, it is
suitable to refer to the special layout styles employed by various labs as “dialects”. This
thesis develops a human-centred methodology for teaching computers to “speak” such
dialects, i.e. to lay out node-link diagrams in a manner appropriate to one specialised
style or another.

The methodology has three steps: (I) a formative user study, in which we examine both
the process and the product of hand-made layout in a given dialect; (II) the translation
of the formative study’s findings into a new layout algorithm that mimics human design
behaviour, at least in product if not necessarily in process; (III) a normative user study, in
which we examine user preference and performance (on standard node-link diagram tasks
like path following) on layouts generated by: (a) the new algorithm, (b) human beings,
and (c) an existing state-of-the-art algorithm.

The three-part, human-centred methodology is one of the main contributions of this
thesis. Another contribution is the “DiAlEcT Layout Framework,” which is a set of in-
structions and guidelines for carrying out Step (II) of the human-centred methodology.

While the methodology and framework may be thought of as tools intended for use
by computer scientists and developers, other contributions of this thesis include tools in-
tended for end users, developed using the DiAlEcT framework. (1) a new layout algorithm
called “HOLA” for orthogonal diagrams, which performed comparably to human layout
and outperformed the state-of-the-art algorithm (Topology-Shape-Metrics) in a normative
study of the kind described above; (2) a new layout algorithm called “MCGL” for SBGN
(Systems Biology Graphical Notation) diagrams, also developed using the DiAlEcT frame-
work; (3) interactive tools with which the user may perform both high-level and low-level
editing of the diagrams produced by these algorithms.
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The reason for developing interactive tools is that while the new layout algorithms
succeed in making the same sorts of design decisions that human designers would make
within a given layout dialect, these algorithms are nevertheless bound to eventually make a
choice that a particular user would not have made. The interactive tools provide easy ways
for the user to alter such design choices after the fact, and working in high-level terms:
simple interaction gestures with the mouse allow the user to make requests like “switch
these two paths,” or “rotate this subgraph”. Together the automatic and interactive
techniques make a pair of complementary layout tools helping to make the computer into
an ideal layout assistant.
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Chapter 1

Introduction

When we study the world in which we live we are often confronted by complex systems
consisting of many interconnected components. These can arise in nature or be human-
made. An ecologist might wish to understand the relationships between the plant and
animal species living in a certain biome. A neuroscientist might wish to understand
the connections between various regions in the human brain. Industrial engineers need
to understand the flow of materials between processes on a manufacturing floor, and
software engineers the connections between software components. In hopes of halting the
onset of diseases like Parkinson’s and Alzheimer’s, biologists seek to understand the flow
of biochemicals in metabolic pathways and gene-regulatory networks within the cells of
the human body.

Node-link diagrams help us to understand such systems by depicting the entities in
the system as nodes, and the relationships between the entities as links between those
nodes (Figure 1.1). Such diagrams can help us to understand “the big picture,” to com-
prehend how all the parts of the system fit together, to better recall the various parts by
mentally associating them with various locations in a static image, and to quickly switch
our attention back and forth between the big picture and the details of one or another
part of the system by zooming in and out. (See for example Munzner [Mun14], Chapter
9.) Whether it is a biologist seeking to block a disease pathway with a new medicine,
an engineer wishing to improve an industrial process or a software design, or an ecologist
evaluating the sustainability of fishing or farming practices, all need to first understand
the systems they are studying, and then convey the same understanding to others. For
such purposes a picture is worth a thousand words.

(a) Node-link diagram using the UML language
(image credit: http://uml-diagrams.org)

(b) Diagram using SBGN notation to show bio-
chemical reactions involved in sugar metabolism
(image credit: IPK Gatersleben)

Figure 1.1: Node-link diagrams

1



2 CHAPTER 1. INTRODUCTION

With the raw data that describe such a complex system in hand, it is natural to ask
whether a computer can be made to automatically, or semi-automatically (i.e. with some
user interaction), create a clear and understandable node-link diagram from the data, and
this has been the subject of network layout research for approximately the last fifty years.

1.1 A Human-Centred Approach to Network Layout Algo-
rithm Design

Let us consider the trade-offs between getting a computer to create a node-link diagram
automatically, and having a human being create the diagram by hand. Two important
factors are the sheer volume of data, and the desire to have creative control. If a network
consists of just ten nodes then a nice drawing might quite easily be made by hand in a
vector graphics editor like Inkscape or PowerPoint, and users are then able to make
all the design decisions themselves. If the number of nodes is closer to a hundred then it
is easy to imagine most busy professionals eagerly welcoming special software that would
help them with the job, despite its tendency to take away some creative control. Once
available, such software might even be preferred for the ten-node case, at least as a way
to create an initial layout, which could then be altered manually if desired. Ideally, the
computer should help users to get through large jobs, but without forcing them to accept
layouts they would not have created themselves, had they possessed the time and patience
to do so unassisted.

This suggests that the computer should play the role of assistant in the production of
node-link diagrams. If we imagine a workshop where master and assistant collaboratively
produce an artefact (of any kind), the process might go something like this: (1) Master says
to assistant: “You know essentially what I would do. Go off and get the project started,
then show me what you have.” (2) The assistant shows the master the initial work, and
the master says, “This is mostly good, but I would make the following changes....” (3)
The assistant is able to make the requested changes working alone, or perhaps requiring
some small amount of guidance. This process may repeat through several iterations, at
the end of which the master approves of the final product, but was spared much of the
labour involved in producing it.

The reason for considering the master-assistant metaphor is twofold, in that it moti-
vates both our goals and our methodology in this thesis. In terms of goals, the metaphor
suggests that the computerised assistant be able to do two things: (A) create a reasonable
first attempt at a layout, and (B) understand a high-level description of desired changes,
in order to improve the initial attempt. This thesis is concerned primarily with ability
(A), but in the next-to-last chapter some preliminary work on ability (B) is also presented.

Secondly, since each new assistant must study and learn from the skills of the existing
masters of the craft, the metaphor also suggests the methodology that has been taken
in this thesis, namely, a human-centred approach. Here the techniques of living, human
“masters” of network layout are studied and translated into algorithms, and then these
living experts are asked to evaluate the results.

To be precise, the human-centred methodology has three steps: (I) a “formative” user
study, in which we examine both the process and the product of hand-made layout in
a given style; (II) the translation of the formative study’s findings into a new layout al-
gorithm that mimics human design behaviour, at least in product if not necessarily in
process; (III) a “normative” user study, in which we examine user preference and perfor-
mance (on standard node-link diagram tasks like path following) on layouts generated by:
(a) the new algorithm, (b) human beings, and (c) an existing state-of-the-art algorithm.
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1.2 Network Layout Languages and Dialects

To continue with the metaphor, different workshops may produce different types of artefacts—
for example the blacksmiths produce iron work, and the basket weavers produce baskets—
while two workshops of the same kind may produce their artefact in different styles—for
example one basket weaver may produce round baskets while another weaver produces
square ones.

So too in the many industries that use node-link diagrams, different disciplines may
produce different types of diagrams, while two labs belonging to the same discipline may
produce their diagrams in different styles. But node-link diagrams are essentially a com-
municative tool, like a language. This is why special diagramming systems are given names
like Unified Modelling Language (UML, Figure 1.1 left), and Systems Biology Graphical
Notation (SBGN, Figure 1.1 right). Therefore in classifying the various types and styles
of diagrams in use in the world today, we find it suitable to use terms like language family,
language, and dialect.

In these terms, we may say that different types of lab (e.g. software engineering versus
biology) use different node-link diagram languages, of which the aforementioned UML and
SBGN are examples. Different labs of the same kind (e.g. two biology labs) are apt to
develop their own “house style” when it comes to layout and design decisions, and we
refer to these as different node-link diagram dialects. Thus two biology labs may both use
SBGN, but each will develop its own dialect. For example one lab may like to lay out the
nodes of cyclic metabolic processes on the circumference of a circle, while another lab may
prefer to lay them out on the perimeter of a square.

Meanwhile, it often makes sense to group similar node-link diagram languages into
language families. For example both UML and VLSI circuit notation belong to what
in this thesis we dub the Orthogonal Language Family, since both employ orthogonal
connectors.1 This means that the lines connecting nodes in the diagrams are drawn using
alternating horizontal and vertical segments, like in the diagram on the left of Figure 1.1.

In this thesis we take an interest in both the Orthogonal Language Family, and in the
SBGN language, contributing a new layout algorithm for the former in Chapter 5, and
one for the latter in Chapter 8.

However, in keeping with our overall purpose and human-centred methodology, we
cannot directly develop a layout algorithm for a whole language, let alone an entire lan-
guage family, but can only do so indirectly by studying a given dialect of the language or
family in question. This must be the case if our assistant algorithms are to be informed
by observations of existing masters’ diagram layouts; at least, this is so if we confine our
attention to the diagrams produced by just one lab or workshop, where a single “house
style” is in effect. While an ambitious future effort might attempt to combine observations
across multiple labs, in this thesis I have stuck to the rule of one lab, one algorithm.

In the case of SBGN layout, the chosen lab was the Leibniz Institute of Plant Genetics
and Crop Plant Research in Gatersleben, Germany, whose SBGN diagrams are gathered
in a system they call MetaCrop. Accordingly I refer to theirs as the “MetaCrop dialect”
of SBGN diagrams.

In the case of orthogonal diagrams, the word “lab” has to be interpreted loosely. I
conducted an online experiment (described in Chapter 4), by designing a web site where
participants were asked to lay out orthogonal node-link diagrams, and the editing process
was recorded. Later their diagrams were ranked by a new set of participants, so that

1While not strictly mandated, orthogonal connectors are extremely common in UML.
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I could identify the “masters” of this particular craft as those who created the highest-
ranked diagrams. Thus in this case the “lab” was a temporary one, with anonymous
members. I refer to this as the “Orthowontist dialect” of orthogonal diagrams.2

1.3 The DiAlEcT Layout Framework

One of the main contributions of this thesis is a method for solving the problem set out
in Section 1.1, i.e., to observe an existing layout style, and, based on these observations,
create layout tools to aid in the creation of layouts of that style. In terms of our running
metaphor, DiAlEcT is a method for observing a master and creating an assistant.

The capital letters D, A, E, T in the name DiAlEcT stand for the four layout phases of
this method: Distribute, Arrange, Emend, and Transform. The first three are automatic
and the fourth is interactive. The Distribute phase uses stress-minimisation (see Sec-
tions 1.4 and 2.2) to give the nodes of the network a reasonable distribution in the plane.
The Arrange phase then applies constraints (again see Section 2.2) to arrange nodes in
the sorts of patterns that people create when designing node-link diagrams by hand. The
Emend phase removes lingering defects. The Transform phase allows the user to make
broad changes in “high-level” terms, as well as “low-level” changes to the final layout. The
system is described in full in Chapter 7.

Perhaps the clearest way to understand the purpose and nature of any tool is to think
about who would be likely to use it, and what they would use it for. Here then is a
conceivable scenario for the use of DiAlEcT:

Firm A uses node-link diagrams, which its employees create by hand, and they
have a distinct “house style”. Firm B offers consulting and software solutions.
Firm A hires Firm B to create custom layout tools to help its employees create
node-link diagrams faster and more easily.

An engineer from Firm B examines a set of representative examples of node-
link diagrams created in Firm A’s house style, and maybe even pays a visit
to interview the most experienced employees of Firm A and ask them about
design decisions they make when creating diagrams.

The engineer then applies the DiAlEcT framework in order to develop two
layout tools for Firm A. The first of these is an algorithm that automatically
generates node-link diagrams in Firm A’s house style. If this algorithm has
one major drawback it is that, while it succeeds in making the same kinds of
design decisions employees of Firm A would make, it is nevertheless bound to
eventually make a particular choice that a particular employee will disapprove
of.

This is why the DiAlEcT framework also helps the engineer of Firm B to gen-
erate a second tool, this one an interactive layout editor. Employees of Firm
A can use this editor to easily alter the layouts generated by the automatic
algorithm in high-level terms. For example, we could imagine a corrective
statement such as, “I’m happy that these nodes are arranged in a crescent
shape, but I want that crescent to bow downward, not upward.” The editor
facilitates high-level changes of this kind in just a few mouse clicks, while also
allowing arbitrary low-level changes.

2This word, “Orthowontist” is a pun, and it was used as the title of the experiment, greeting participants
on the front page of the site. It refers to the experiment’s goal of determining designers’ “wont” or set of
habits, in laying out “ortho” diagrams.



1.4. BLENDINGOBSERVED BEHAVIOURWITH THE CONSTRAINED LAYOUT TRADITION5

It is important to emphasise however that, while in concept the DiAlEcT framework
stands complete, only the automatic phases D, A, E have been thoroughly examined in
this thesis. Only initial explorations have been done with the interactive phase T (see
Chapter 9), and full testing of that part of the process awaits future work.

1.4 Blending Observed Behaviour with the Constrained Lay-
out Tradition

While the human-centred methodology of this thesis may be a novel contribution to the
field of node-link diagram layout research, that is no reason why we cannot draw on the
existing tools and techniques of the field; on the contrary, we would surely be lost if we
were to try to start from scratch. For, after we have observed the design patterns of
existing masters of a given layout dialect, we need a way to build an algorithm that can
mimic their behaviour. The question then is which of the existing techniques provides the
most suitable foundation on which to build, and the answer is that we build on a technique
called Constrained Stress-Minimising Layout or CSML. If each generation of researchers
stands on the shoulders of giants, CSML is our colossus.

Why do we use CSML? Is there some reason why it is a natural choice when attempting
to make computers simulate observed human layout behaviour? A few things may be said
briefly here in order to justify the choice, but the justification will emerge in full as the
thesis progresses. To begin with, a 2008 study by Dwyer et al. [DLF+09] demonstrated,
among other things, that the best-liked hand-made layout was the one that came the
closest to the computer-made stress-minimal layout. This showed not only that people
like low-stress layouts, but that among hand-made layouts low-stress ones are favoured.

Chapter 2, on background, provides further reasons why the use of CSML is moti-
vated. On the one hand (Section 2.2) this includes a demonstration of how the stress
function emerged naturally from two separate lines of network layout research: force-
directed layout [FCW67, Ead84], and multidimensional scaling [KS80]. On the other
hand (Section 2.3) we examine how constrained optimisation in general was identified in
the early 90s as the proper arena in which to try to develop layout algorithms that can
recreate the results of human graphic designers [Mar91a, KMS94].

1.5 Sparse Networks

There are various ways to measure the density of a network, the simplest of which is to
divide the number of links by the number of nodes. Networks with high density are called
dense while those with low density are called sparse. For an example of a dense network
consider the pages of Wikipedia and their links to one another. For examples of sparse
networks consider a family tree, a map of a metropolitan train network, or a typical flow
chart.

In this project we are interested exclusively in sparse networks. After all, we can
only hope to make computers lay out networks the way people do if people actually do
make hand-made layouts of the kind in question. When it comes to dense networks people
typically do not draw these at all, not because it is impossible but because the job is usually
felt to be too complex and difficult. Pictures of dense networks have begun appearing in
recent years only because computers have been made to draw them.

On the contrary, the specific domains of interest to us are ones in which sparse net-
works are typically used, and hand-made layouts are abundant. To begin with, consider
orthogonal diagrams. When pioneers Di Battista et al. (see Section 2.4) performed an
experimental comparison in 1995 of three orthogonal layout algorithms, they wrote that,
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Figure 1.2: Alternation between theory and practice in the core chapters of the thesis

“Sparsity and ‘near-planarity’ are typical properties of graphs used in software engineering
and database applications.” [DBGL95]. Consequently the graphs used in their study had
densities between 1.2 and 1.3, again using the simple metric of number of links divided by
number of nodes.

As for biological network diagrams, in SBGN it is customary to use a technique called
cloning (see Section 6.4.2) to lower the density of the network to near unity. The practice
is so common that the SBGN standard even includes a special way of indicating cloned
nodes.

If network layout research can be classified according to the density of the networks
considered, this thesis decidedly belongs to the category concerned with sparse networks.

1.6 Outline

Chapters 1, 2, and 10 provide introduction, background, and conclusions, respectively.
Chapter 9 covers preliminary work on interactive layout methods. The heart of the work
lies in Chapters 3 through 8, wherein we repeatedly bounce back and forth between theory
and practice, as illustrated in Figure 1.2. See also Figure 1.3.

Chapter 3 (invention node in Figure 1.3) represents an intuitive first attempt to bring
CSML in the direction of orthogonal and SBGN layout. We experiment with various ways
of adding constraints to position nodes suitably for these types of diagram. In particular
we examine the effectiveness of both goal-function methods (NS = Node-Snap, and GS
= Grid-Snap), and a simple greedy strategy (ACA = Adaptive Constrained Alignment)
for generating constraints on an otherwise stress-minimised layout. We find that such
a technique looks promising for the achievement of layouts conforming to the aesthetic
demands of various layout languages or dialects.
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Figure 1.3: This flow chart represents the inputs (blue lozenges), processes (white hexagons), theoretical products
(pink rounded rectangles), and concrete products (green rectangles) of this thesis. Each process node corresponds
to one of the chapters 3 through 9, and the chapter numbers are indicated in the figure.
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In Chapter 4 (experiment node top-right in Figure 1.3) we move from theory to
practice and begin to gather data through a user study, namely, the Orthowontist study
mentioned in Section 1.2. This is the “formative” study of our human-centred methodology
(Section 1.1). The experiment produced two kinds of data, which we call “static” and
“dynamic”. The former refers to the final layouts produced by the study participants, while
the latter refers to their editing processes. To give the reader a sense of the information
represented by the dynamic data, a flip-book has been drawn on the lower-right corner of
the pages starting in Chapter 4. This shows the playback of “Layout 8A” as defined in
Section 9.1.

It is in Chapter 5 (synthesis node, middle of Figure 1.3) that the two strands of
theory and practice first come together. The basic ideas of Chapter 3 are augmented in
an effort to achieve the special layout patterns that were observed in the user study of
Chapter 4. This results in an algorithm called HOLA, for Human-like Orthogonal Layout
Algorithm. However, like Chapter 3, the effort here is still intuitive; that is, while we
create an algorithm, we are not yet in a position to say how we created it. That must
wait until Chapter 7.

Chapter 6 (experiment node lower-left in Figure 1.3) evaluates the effectiveness of
HOLA, through another user study – the “normative” study of our human-centred method-
ology. Layouts created by HOLA are compared to hand-made ones, as well as to layouts
generated by the state-of-the-art orthogonal layout algorithm available in the yFiles li-
brary [WEK04]. The latter uses the Topology-Shape-Metrics approach to orthogonal
layout (see Section 2.4), so we refer to these diagrams as TSM layouts. The study shows
that both in terms of user preference and performance on standard tasks, HOLA’s layouts
are comparable to human-made ones, and preferable to TSM layouts.

In Chapter 7 (analysis node in Figure 1.3) we distil out of HOLA’s design a general
method for the creation of automatic layout algorithms approximating human perfor-
mance on various network layout dialects. This is the DiAlEcT framework introduced in
Section 1.3. Thus, Chapter 7 represents the culmination of the theoretical side of the
thesis, in that it crystallises the intuitive work from Chapters 3 and 5 into something
methodical that can potentially be applied again and again in the future.

In Chapter 8 (synthesis node bottom-left in Figure 1.3) we verify the methodical
applicability of the DiAlEcT framework by applying it to the MetaCrop dialect of the SBGN
language, to generate a new algorithm called MCGL3, for MetaCrop Graph Layout.

In Chapter 9 (synthesis node bottom-right in Figure 1.3) we study the human de-
signers’ layout processes from the Orthowontist experiment. Inspired in part by this, we
formulate interactive tools for Phase-T (Transform) of the DiAlEcT framework.

The exposition is thus somewhat heuristic, in that instead of jumping straight to the
DiAlEcT framework, we take the time to reach it in a natural way. Chapter 3 represents
purely intuitive thinking; Chapter 5 revises those ideas in light of facts from the real world,
but still guided by intuition; finally Chapter 7 systematises. This approach has the virtue
of reflecting the actual course of development of the ideas presented here.

Miniature versions of Figure 1.3 appear at the start of Chapters 3 through 9.

1.7 Contributions

• We develop a new, human-centred methodology for network layout algorithm design,
as described in Section 1.1, and demonstrated in depth in Chapters 4, 5, and 6.
This starts with observation of the techniques of living, human experts, which are
then translated into algorithms, and finally the performance of the algorithms is

3MCGL is pronounced like the name, “McGill”. Alternatively, Melburnians may prefer to call it “MCG
Layout”, in honour of their beloved Melbourne Cricket Ground.
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assessed by user study. This method gives us a way to try to make computers into
ideal assistants for laying out node-link diagrams. Since we need to observe the
techniques of human layout experts, we have restricted attention to the kinds of
sparse networks (as defined in Section 1.5) that people commonly lay out by hand,
using special layout styles.

• The empirical findings on human layout of orthogonal node-link diagrams gathered
in the experiment of Chapter 4 are a contribution in themselves, in that they may
be useful to other researchers, beyond the way in which they have been interpreted
and used in this thesis.

• In terms of tools for end users, three have been designed and implemented in the
course of this work:

– The HOLA algorithm of Chapter 5 for orthogonal layout: This is the first
layout algorithm to be designed based on a study of hand-made layout, and
then shown in testing (Chapter 6) to perform comparably to human designers.
It also outperformed the current state-of-the-art orthogonal layout algorithm.

– The MCGL algorithm of Chapter 8 for SBGN layout in the MetaCrop dialect

– The interaction tools developed in Chapter 9: These techniques provide a way
to overcome the limitations of the automatic layout algorithms.

• Finally, the most far-reaching contribution of this work may be the DiAlEcT frame-
work of Chapter 7, since this provides guidelines for future developers to create
more tools of the kind just mentioned, for other layout dialects not considered in
this thesis.
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Chapter 2

Background

In this chapter we begin with a brief look at the field of graph drawing, or network layout,
in general (Section 2.1). After this there are three main threads in the history of network
layout that must be understood as background to the present work. The first of these
is constrained stress-minimising layout, or CSML, which serves as the foundation for the
techniques developed in this thesis (Section 2.2). The second is rule-based layout, where
attempts were made in the early 1990s to make computers design network layouts as
humans do (Section 2.3). The third is Topology-Shape-Metrics (TSM) layout, which is
the current state-of-the-art approach to creating orthogonal diagrams (Section 2.4). While
work on the evaluation of layouts is another important part of the background for this
thesis, discussion of that topic is postponed until Section 4.1, where it can be put in closer
proximity to our own evaluation work.

2.1 Graph Drawing

A graph G = (V,E) is a mathematical abstraction, consisting of a set V of vertices, and
a set E ⊆ V × V of edges. It can represent any system in which things (the vertices) are
connected to one another (by the edges). A graph is therefore the underlying mathematical
model when we are interested in networks, as discussed in Chapter 1.

In particular, when we are interested in visualising a given network, there are various
techniques that can be used, but in this thesis we are interested only in node-link diagrams.1

The problem of generating good node-link diagrams may be known as the graph drawing,
graph layout, or network layout problem. The last term, network layout, may be used to
emphasise a practical interest in computing diagrams for visualisation purposes, while the
first term, graph drawing, refers more to the underlying mathematical theory. While this
thesis is primarily concerned with the practical production of node-link diagrams, we may
take a moment here to consider its mathematical roots.

The field of graph drawing itself is rooted in the more general study of graph theory,
which is generally regarded as having been inaugurated in two papers by Euler: one
presented to the St. Petersburg Academy in 1736, in which he solved the famous “Bridges
of Königsberg” problem by representing the landmasses and bridges of Königsberg as the
vertices and edges of a graph [Eul41], and another paper presented to the Berlin Academy
in 1750, in which he established his now-famous formula

v − e+ f = 2

1Other techniques include for example matrix representations, starting with Bertin [Ber83], or hybrid
approaches [HF06, HFM07].

11
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Figure 2.1: For each positive integer n we denote by Kn the complete graph on n vertices, i.e. the unique graph
with n vertices every pair of which is connected by an edge. K5 is depicted on the left. For positive integers m,n
we denote by Km,n the complete bipartite graph with m vertices on one side and n vertices on the other side; this
means that each vertex on one side is connected to each vertex on the other side. K3,3 is depicted on the right.

relating the numbers v of vertices, e of edges, and f of faces of a polyhedron [Eul58].2

Since Euler’s time mathematicians have studied the properties of graphs as a field of
pure mathematical research, and among the questions they have explored have been ones
regarding the embedding of graphs in the two-dimensional plane. It is this particular
focus in the field of graph theory that is called graph drawing, in reference to the idea of
“drawing” the graph in the plane, as we may draw a picture of the graph on a page.

Formally, a planar embedding of a graph G = (V,E) is a map ϕ : G→ ℘(R2) sending
each vertex v ∈ V to a point ϕ(v) in the plane, and each edge e = (u, v) ∈ E to a simple
curve ϕ(e) in the plane connecting the points ϕ(u) and ϕ(v), in such a way that none of the
curves ϕ(e) for e ∈ E intersect one another, i.e. there are no edge crossings.3 (Meanwhile
to say that the curves are simple means that they do not intersect themselves either.)

Foremost among the mathematical questions we can ask about planar embeddings is
the question whether they are possible for all graphs, and, if not, for which graphs they
do exist. It turns out that not all graphs have planar embeddings. Those that do are
called planar graphs, and they are characterised negatively by a theorem of Kuratowski,
which states that a graph is non-planar if and only if it contains a subgraph isomorphic
to a subdivision of K5 or K3,3 (see Figure 2.1).4

In the tomes of graph drawing many further properties about planarity have been
studied. Just to give a flavour of these, we may ask for example whether a given graph
admits a convex embedding, which is a two-dimensional embedding in which all of the faces
are convex. Myriad questions of this kind have been investigated.

The first graph drawing algorithms seem to have appeared in the year 1963: one in the
paper, How to Draw a Graph, by Tutte [Tut63]; and one in the paper, Computer-Drawn
Flowcharts, by Knuth [Knu63].5 The two algorithms point out nicely the distinction

2Note that Euler wrote in Latin, so that he spoke not of vertices, edges, and faces, but of angulorum
solidorum, acierum, and hedrarum, respectively; nevertheless, it would seem to be due to its roots in this
paper of Euler that the modern subject of graph theory continues to use the geometrical terms vertex and
edge, despite graphs being abstract, not geometrical objects. Meanwhile the use of the term graph has
an entirely separate history, having been introduced (according to Biggs et al. [BLW76]) by the English
mathematician J.J. Sylvester in 1878 [Syl78], by analogy to molecular diagrams that were already in use
at the time, known as “chemicographs”.

3We use ℘ to denote the power set. Thus ϕ maps each vertex to a singleton subset of the plane, but
for convenience we say that it simply maps each vertex to a point.

4The reader is referred to Harary [Har] for the formal definitions of graph isomorphism and subdivision.
5On the question whether these are indeed the earliest known graph drawing algorithms, see Eades and

Hong [EH12] who consider the possible primacy of Tutte, and Di Battista et al. [DBETT99] on that of
Knuth.
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between pure and applied graph drawing. Tutte, an English-born mathematician who
spent most of his life and career in Canada, gave an algorithm to compute a convex
embedding for a planar graph, and the algorithm was given in service of a proof that such
a convex embedding exists. Knuth, on the other hand, a giant in the history of computer
science who needs no introduction, was concerned with the practical computation of flow
chart diagrams to aid in the understanding of computer programs. In the present work
we are concerned with the applied side of the subject. Accordingly, we mostly abandon
the term “graph drawing” in favour of the term “network layout” in the remainder of the
thesis.

Another distinction between the pure and applied sides is that in pure graph drawing
we use the terms “vertex” and “edge”, and vertices are zero-dimensional points. In applied
network layout we still speak of vertices and edges when considering the underlying math-
ematical model, but tend to use the terms “node” and “link” for the graphical objects
representing these, and nodes are drawn as shapes—most often boxes—with width and
height. Links are also sometimes called “connectors”, especially in the context of routing,
i.e. computing a path along which to draw the link or connector.

2.2 Constrained Stress Minimising Layout

In this section we trace the origins of stress-minimising layout from two sources: force-
directed layout, and multidimensional scaling. We then examine the introduction of con-
straints. Thus we are now concerned with practical network layout in the tradition we
associated with Knuth [Knu63] in the previous section. Interestingly however, we will see
that even here there is a connection with Tutte [Tut63] (see page 15).

2.2.1 Physical Analogies

The idea of force-directed network layout is to treat a graph as though it were a physical
system, the nodes connected by springs, so that a layout may be computed by allowing the
system to settle into an equilibrium position. We will examine the multiple, independent
origins of this idea, as this lends weight to the idea being a very natural one. The technique
was first invented by researchers working on the automatic layout of electronic circuit
boards, and again about twenty years later by a researcher in the area of data visualisation.
Understandably, the latter was not familiar with the former’s literature.

In the spring of 1964 the Sandia Corporation, a United States laboratory in Albu-
querque, New Mexico, initiated a large project in collaboration with the Thomas Bede
Foundation in California to automate the design and production of printed circuit boards.
As a part of this project the technique of force-directed layout was developed, and was
published in a paper by lead author Fisk [FI65] (see also [FCW67]). It was written in
Fortran II for the IBM 7090 computer. The authors referred to the method as “force
placement” and the metaphor of the network as a physical system is found in their paper:

Imagine that each of the actual components represented on this schematic
has elastic leads which are in a state of tension until they contract to some
arbitrarily short length. ... If the components were suddenly released from
their pinned positions, each would accelerate according to the instantaneous
resultant force exerted on it. The components would move into a cluster and
stop moving only after resultant forces acting on each component provided
enough deceleration to stop all movement. [FI65]

The metaphor is fine as a form of motivation, but, as the authors went on to observe,
to perform an accurate computer simulation of such a physical system obeying the true
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physical laws of our universe would be highly computationally expensive. On the con-
trary, they noted that in the world of simulation we are free to write our own physical
laws, which can be much simpler, and yet still achieve the desired results. To that end
Fisk et al. formulated two forces to act between nodes, one attractive and one repulsive. In
order to state the force formulae that they used, let us define a weighted distance function

d(α, β;u, v) =

√
α2 (xu − xv)2 + β2 (yu − yv)2

where α, β are positive real numbers, u and v are two nodes in a graph, and for any node
t the coordinates of its centre point are (xt, yt). If the width and height of node t are wt
and ht then the force formulae in Fisk et al. were

FA(u, v) = KAd(wu + wv, hu + hv;u, v) (2.1)

FR(u, v) = −KRd(wu + wv, hu + hv;u, v)−1. (2.2)

Note: they did not present these formulae in terms of the weighted distance function, and
I have only introduced that as a notational convenience here. Nor did they discuss the
reason for the weightings. But it is clear that, irrespective of the distance between the
centres of two nodes, Fisk et. al. wanted the attractive force between them to decrease
if the nodes were larger, almost as if the nodes were made of some medium that only
partially transmitted the force. On the other hand, the repulsive force increased with the
thickness of the nodes.

Twenty years later Peter Eades, an academic researcher who had been working on
a graph editing system called TYGES (Typed Graph Editing System), independently
reinvented the force-directed technique, this time for the purposes of data visualisation.
He too described a physical metaphor:

To embed a graph we replace the vertices by steel rings and replace each edge
with a spring to form a mechanical system.... The vertices are placed in some
initial layout and let go so that the spring forces on the rings move the system
to a minimal energy state. The algorithm outputs the positions of the vertices
in this stable state. [Ead84]

Eades too realised that his “springs” did not actually have to obey Hooke’s law,

F = −k(x− `0)

(k the spring constant, `0 the natural length of the spring, x the current length) and he
could instead take the liberty to define whatever forces would work best. In fact his paper
shows that he initially tried Hooke’s law but found that the attractive forces became too
strong when the nodes were far apart. In its place he defined a force with logarithmic
form to operate between neighbouring nodes (those connected by an edge), and again for
purposes of easy comparison I present it here using the weighted distance function, though
Eades did not:

F1(u, v) = C1 log [d(1, 1;u, v)/C2] (2.3)

while another repulsive force was required to operate between all other pairs of nodes, to
keep them from coming too close together:

F2(u, v) =
C3

d(1, 1;u, v)2
. (2.4)

The constants C1, C2, C3 were to be determined empirically, and Eades reported values
that had been successful on many graphs so far. Note that in the force F1 the constant C2
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is similar to the natural length `0 in Hooke’s law, since the sign of the force goes to zero
here and flips between positive and negative on either side of it, so that C2 represents the
natural distance by which two nodes “want” to be separated.

While we can certainly say that the idea of force-directed layout was invented at least
twice, by Fisk’s group and independently by Eades, it is sometimes claimed that the
idea was already present in Tutte’s landmark paper in pure graph drawing, How to Draw
a Graph (see Section 2.1); however, I would suggest that this claim is far too strong.
Tutte’s method is known as the Barycentre Method and, as demonstrated for example
in Section 10.2 of the graph drawing textbook by Di Battista et al. [DBETT99], the
Barycentre Method yields the same layout as a force-directed system in which the springs
obey Hooke’s law and have a natural length of zero, and in which there are no repulsive
forces. But to go from equivalent layouts to the idea of force-directed layout actually
having been present in Tutte is far too generous. While we saw in the quotations above
that both Fisk and Eades explained their idea through the explicit use of a metaphor of
physical forces, such a metaphor is completely absent from Tutte’s paper. Instead, a fairer
assessment is that the Barycentre Method of Tutte, while being conceptually distinct from
the idea of force-directed layout, remarkably turns out to be mathematically equivalent.

Energy, and Faithful Springs

After Eades’s inauguration of the idea in the field of data visualisation in 1984, force-
directed layout became a subfield of the discipline in its own right, with many other
researchers exploring variations on the force model and convergence conditions, in works
that are surveyed in Chapter 10 of Di Battista et al. [DBETT99].

Among these later variants the approach begun in 1989 by Kamada and Kawai [KK89]
is foundational for the techniques employed in this thesis. Recall that in physics energy is
the integral of force over distance, and this time the physical metaphor was realised not
in terms of forces but in terms of an energy function:

E =
∑
i<j

1

2
kij (|pi − pj | − lij)2 (2.5)

where pi was the position of node i, and thus |pi − pj | the distance between nodes i and j,
and where kij and lij were the rigidity constant and natural length for the spring connecting
nodes i and j. The move to an energy function was in itself an important change, paving
the way for the use of classical optimisation techniques, as we will examine in Section 2.2.3.
Moreover, while the energy was ostensibly just that of a system of springs obeying Hooke’s
law, Kamada and Kawai introduced two crucial innovations in their definition of the spring
constants, so that the energy would encode more information about the structure of the
graph.

Their first innovation was in the choice of the natural length lij of each spring, and
their idea was to let this length reflect the connectedness of each pair of nodes in the
graph. Namely, for any pair of nodes connected by an edge, there should be some basic
spring length L; for any pair of nodes whose shortest connection in the graph was a path of
two edges, the spring length should be twice as much, or 2L; in general, the spring length
should be nL for any pair of nodes separated by a minimal path of n edges. Formally, if
dij is the graph-theoretic distance between nodes i and j, that is, the length in edges of
the shortest path between those nodes in the graph, then we define

lij = dijL
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for some ideal edge length L, presumably to be chosen in reference to the average size of
the nodes, or the desired size of the drawing, or both. The ideal edge length L will be an
important parameter in all the algorithms to be developed in this thesis.

The importance of defining the spring lengths lij in this way has been perhaps best
expressed only decades later by Nguyen, Eades, and Hong [NEH13], who have characterised
the layout resulting from such a spring system as a “faithful” representation of the graph.
The layout is called faithful because, ideally, the geometric distances reflect the abstract
graph-theoretic distances.

The idea of stress-minimal layout as faithful layout is central in this thesis.

The second innovation of Kamada and Kawai was in their choice of the rigidity constant
kij for each spring. They realised that the contribution of each pair of nodes to the
total energy of the system must not be allowed to grow with the graph-theoretic distance
dij between those nodes. For supposing all spring constants kij were equal to a single
value k, then consider a pair of nodes u, v separated by a shortest path of ten edges.
Their ideal separation would be 10L, so that a real separation of 11L would contribute
kL2

2 to the total energy of the system. Meanwhile a pair of neighbouring nodes s, t
with a real separation of 2L would contribute exactly the same amount of energy. In
principle, this seems wrong. The deviation of u, v from their ideal separation may be
barely perceptible to the eye, whereas the separation of s and t by twice the desired
amount will be glaring. What becomes apparent is that it is the percentage error in each
ideal separation that matters, not the absolute error, and therefore Kamada and Kawai
defined kij to be inversely proportional to the square of the graph-theoretic distance dij :

kij =
K

d2
ij

for some constant K.

Plugging the definitions of lij and kij into the energy formula (2.5) gives

E =
∑
i<j

1

2

K

d2
ij

(|pi − pj | − dijL)2

=
K

2

∑
i<j

(
|pi − pj |
dij

− L
)2

and since we are only interested in minimising this function, we may as well drop the
constant factor, leaving us with a layout that is determined when the quantity

∑
i<j

(
|pi − pj |
dij

− L
)2

(2.6)

is minimised. It is in this form that the innovations of Kamada and Kawai are most readily
apparent, while the origin in Hooke’s law is now scarcely visible. Their use of percentage
error rather than absolute error, and their realisation that a “faithful” layout will make
geometric distances proportional to graph-theoretic ones, are both immediately apparent
in this form. For we now have an ideal edge length L which, put differently, is the ideal
ratio between geometric and graph-theoretic separation for each pair of nodes, and the
costs accumulated in (2.6) are precisely the squared deviations from this ideal.

We see in the next section how this particular energy function came to be known as
“stress”.
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2.2.2 Multidimensional Scaling

Just as the force-directed layout method was pioneered by Fisk et al. long before a later
rediscovery of the idea by Eades would capture the imagination of mainstream researchers
in graph drawing, the very same thing happened with the “faithful” layout of Kamada-
Kawai. This time the earlier work was presented at the First General Conference on Social
Graphics6 in October 1978 by Joseph B. Kruskal7 and Judith B. Seery [KS80], about a
decade before Kamada-Kawai. In this case, however, there was no spring model, or any
physical metaphor at all. Kruskal and Seery instead approached the problem of laying out
a graph from the standpoint of multidimensional scaling.

Multidimensional scaling is an approach for visualising high-dimensional data in 2- or
3-space, the idea being to represent each higher dimensional point by a point in lower-
dimensional space in such a way as to best preserve the distances between the original
points. (This allows the detection of clusters or other trends via human inspection of a 2-D
or 3-D plot.) In other words, if we are given a set of n-dimensional points X1, X2, . . . , Xm,
and the distance in n-space between points Xi, Xj is dij , and if each Xi is to be mapped
to a point Yi in 2- or 3-space, then we want to choose the points Yi so as to minimise value
of the expression ∑

i<j

(|Yi − Yj | − dij)2 (2.7)

which bears a striking resemblance to the later spring energy (2.6) of Kamada-Kawai.
Here then is yet another example of a single mathematical form, arrived at by conceptually
distinct routes by different researchers, lending a sense of necessity and naturalness to that
form.

The idea of a “faithful” representation is inherent in the idea of multidimensional
scaling, or MDS, and Kruskal and Seery saw that this was a suitable way to lay out the
nodes of a network for the purpose of creating a diagram. They deserve great credit for
perceiving this in an era when the very idea of the computer-aided layout of node-link
diagrams was new.

The newness of this idea in 1978 is evident in the way Kruskal and Seery motivated
their paper. For example their abstract allows that,

The process of designing such diagrams has not generally been recognised as
a problem....

Later, after admitting that interactive computer graphics could be one approach to creat-
ing network diagrams (while noting the scarcity of access to the appropriate equipment),
they explained that they instead took an algorithmic approach:

...we describe a fully algorithmic method which starts from a description of
which nodes are connected to one another and yields suggested locations for
the nodes.

in a description which, for its careful enunciation of something now so utterly common-
place, reads as if it might have been among the very first statements ever made of the
algorithmic approach to network layout.

Credit is also due to Kruskal and Seery for anticipating many of the important aspects
of network layout research which would begin to be examined only decades later, and
which are still being examined in this thesis. They observed that,

6The conference was organised by the U.S. Bureau of the Census.
7This is the same Kruskal of the famous minimum-spanning-tree algorithm, and not to be confused

with his brother William, after whom the Kruskal-Wallis statistical test is named in part.
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Although judgment of quality is necessarily a subjective process, quality could
be studied by the methods of psychology.

and they indicated that they were not aware of any such studies in this area. To my
knowledge, the first formal studies into what makes a good diagram only began in the 1990s
with the work of Helen Purchase and others [PCJ96, Pur97, PCJ97, Pur98, Him95].

Kruskal and Seery also considered whether anyone had yet documented the way in
which people create network diagrams, but stated that,

We are not aware of any published discussion of the “conventional” process of
designing such diagrams....

Formal studies of both these kinds, that is, into the process whereby people create network
diagrams, and into the qualities that make good diagrams, are carried out in Chapters 4
and 6 of this thesis.

The MDS statistical technique itself dates from the 1950s [Tor52] and was further
developed in the 1960s by several researchers [Sam69, Kru64], among them Kruskal, who
introduced the term “stress” for a variant8 of the expression in (2.7). Whereas Kamada
and Kawai were unaware of MDS and the stress function, Cohen [Coh97] seems to have
been the first graph drawing researcher after them to revive the term “stress” and make
the connection with Kruskal and MDS. The idea of the stress function was then picked
up in subsequent papers on network layout [KH03, GKN04, DKM05] and remains current
today.

2.2.3 Constraints

The paper by Kamada and Kawai on what we may now call the “stress energy” (see
Section 2.2.1) was based on the former’s PhD work completed at the University of Tokyo
around the same time, in 1988. Concurrent with this, Kamada published a book describing
his work more fully [Kam89] and containing a whole chapter on the subject of constraints.

By constraints we simply mean any requirements placed on the coordinates of the
nodes. For example a constraint may require that several nodes have the same y-coordinate
(so that they are horizontally aligned) or that one node have smaller x-coordinate than
another (so that it lies to the left of the other).

That constraints should be added atop basic force-directed layout is indeed in keeping
with the spirit of Eades’s paper on the subject in 1984, where he concluded that the
method was at least promising as “a first approximation to a layout,” [Ead84] which could
then be “fine tuned”. Constraints provide a way of fine-tuning an initial force-directed
layout, and this is the basic idea of CSML (i.e. constrained stress-minimising layout, a
subset of constrained force-directed layout).

In his book, Kamada considered what he called “low-level” constraints such as align-
ments and orderings on x- and y-coordinates, as well as “high-level” constraints obtained
by combining these. For example, he had a constraint called “CIRCULARLISTING”
which would constrain a list of nodes to be arranged evenly spaced on a circle around a
central node.9 Kamada’s constraints were given as linear equations—inequalities were not
possible—and the constrained stress-minimisation problem was solved using a technique
based on a simple equation solver [VW82].

8The history has been nicely surveyed by Cohen [Coh97] in a paper in which he presented a faster incre-
mental algorithm than that of Kamada-Kawai, which also had less tendency to get caught in suboptimal
local minima. Among other things, Cohen sorts out the different functions that have been called “stress.”

9This may be compared with the VHUB directive of Marks discussed in Section 2.3.2 as well as with
our regular polygonal face arrangements in Section 8.4.2.
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Kamada’s system was called COOL (for COnstraint-based Object Layout), and was
perhaps the first ever CSML layout system. From this starting point, technological in-
novations would come in both the way the constraints were formulated, and the way the
stress function was minimised subject to these.

Where Kamada and Kawai used a Newton-Raphson iteration to minimise the stress
function, He and Marriott [HM96] improved on this by using active set methods [Fle13]
to minimise the stress function subject to arbitrary linear constraints.

A linear constraint is an equation or inequality of the form

a1u1 + a2u2 + · · ·+ anun = b or a1u1 + a2u2 + · · ·+ anun ≤ b

where a1, a2, . . . , an, b are constants, and u1, u2, . . . , un are the same variables on which
the objective function—the stress function in this case—depends. When for the variables
we take the x- and y-coordinates of the nodes in a diagram, linear constraints permit
imposition of spatial conditions on the layout, such as that one node appear above or to
the left of another, or that several nodes be horizontally or vertically aligned. Moreover,
the ability to use linear constraints with inequalities meant that now it was possible to
constrain one node to lie on a certain side of another node, but without having to set the
exact distance between them, a crucial advance, necessary for all the techniques developed
in this thesis.

Later, Gansner et al. borrowed the technique of stress majorisation [GKN04] from
the multidimensional scaling community. There it had been introduced by de Leeuw
and Stoop [DLS84] under the name SMACOF (“Scaling by MAjorizing a COmplicated
Function”). This works by minimising a pure quadratic function formulated as an up-
per bound on the stress function (which, due to the involvement of Euclidean distance,
contains square-root terms). Dwyer and Koren [DK05] built on this by using quadratic
programming [NW99] to perform stress majorisation in the presence of a special type of
constraint (called “band constraints”) that could be used to organise nodes into layers for
layered layout [STT81].

Subsequently, Dwyer et al. [DKM06] developed a similar system that could now handle
arbitrary separation constraints. A separation constraint is an equation or inequality of
the form

u+ a = v or u+ a ≤ v

where a is a constant and u, v are variables. Separation constraints are so called because
they constrain the difference i.e. “separation” between two variables to be either exactly
equal to a certain value, or bounded below by a certain value. The restricted form of
separation constraints allowed Dwyer et al. to develop a fast, custom gradient-descent
algorithm for minimising stress subject to these.

This allowed solving much faster than the system of He and Marriott, and yet, remark-
ably, nearly every kind of linear constraint that is desirable when arranging the nodes of a
node-link diagram can be achieved with separation constraints alone. In particular these
allow us to enforce separations, alignments, and distributions amongst nodes in both the
x- and y-dimensions.10 Moreover, by updating the set of separation constraints dynami-
cally between iterations of the gradient-descent algorithm even non-linear constraints like
cluster containment and node non-overlap can be achieved [DMS06].

The method is fast enough for interactive use with graphs of up to about two hun-
dred nodes on current processors, as demonstrated in the network layout editor Dun-
nart [DMW09a, WMMS08]. This provides continuous stress minimisation while the user

10A few useful constraints are however not achievable by combining separation constraints. Among these
is the “variable distribution,” i.e. a constraint stipulating that three or more nodes be spaced evenly but
by a variable distance. Others are circular constraints or radial spacing constraints.
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edits the layout by moving nodes manually and applying separation constraints. Node
positions can be smoothly animated as stress is minimised due to the speed with which
the gradient-projection algorithm works.

As is normal for optimisation methods of this kind, the algorithm finds a local stress
minimum subject to the given constraints, not necessarily a global one. There are known
techniques such as simulated annealing [DH96] for working around this, but in practice we
have found that it is not necessary. The local minima discovered by the gradient-projection
algorithm lead to satisfactory layouts (see Chapter 6), while interaction methods (see
Chapter 9) provide ways for the user to move the layout into other (perhaps deeper) stress
basins, if desired.

2.2.4 Adaptagrams

The methods of Dwyer et al. for CSML subject to separation constraints are available along
with techniques of Wybrow et al. [WMS10] for connector routing, in the Adaptagrams
layout library.11 This library provides the foundational techniques for all layout methods
developed in this thesis. In particular, we make use of five operations provided by the
Adaptagrams library: PROJECT, DESCEND, OVERLAP-REMOVAL, POLY-ROUTE, and
ORTHO-ROUTE.12

The first two operations, PROJECT and DESCEND, are understood as mappings R2n →
R2n where n is the number of nodes in the network being laid out, and we think of a vector
in R2n as representing the coordinates of all n nodes. We refer to such a vector as a layout
vector. Both operations are also understood as operating relative to a given set C of
separation constraints (see previous section).

The PROJECT operation maps a given layout vector λ ∈ R2n to the nearest point
λ′ (under the Euclidean metric) in the feasible space, i.e. the subset of R2n in which all
constraints in C are satisfied. It is so named because this is the mathematical operation
of projecting onto the feasible space.

The DESCEND operation refers to the full gradient-projection algorithm introduced
in the last section, which repeatedly alternates between applications of the PROJECT
operation and descent steps in which the gradient of the stress function is used to guide
movement to a new layout vector at which stress is lower. This is repeated until a halting
condition is met, namely that either the change in stress falls below some small threshold
ε > 0, or that the number of iterations exceeds some limit N , both constants determined
experimentally.

Since DESCEND may involve many iterations, each of which includes an application
of PROJECT, the former tends to be much slower than the latter. This is an important
consideration in our algorithm design in this thesis.

The OVERLAP-REMOVAL operation serves to automatically generate minimal sepa-
ration constraints necessary to remove node-node overlaps (it does not remove node-edge
overlaps). The technique is described by Schreiber et al. [SDMW09].

The remaining two operations, POLY-ROUTE and ORTHO-ROUTE, are responsible for
connector routing, i.e. for drawing the plane curves that represent edges in the network.
The former creates polyline connectors, i.e. piecewise-linear curves, while the latter creates
orthogonal connectors, a special type of polyline connector in which each line segment is
axis-aligned, i.e. horizontal or vertical.

11http://www.adaptagrams.org
12These names are used not in the library itself, but only in this thesis.
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2.3 Rule-Based Layout Design

In 1991 Joe Marks completed a doctoral thesis [Mar91b] at Harvard University, in which he
developed a system called ANDD, for Automated Network Diagram Designer. Further de-
veloped in subsequent papers with colleagues Kosak, Shieber, Dengler, and Friedell [KMS94,
DFM93], the system was intended to be able to create node-link diagrams according to
the sorts of design rules followed by human graphic designers. In some ways this work
presaged the project in the present thesis, while differing in important respects. This
section gives a summary of the ANDD system, but a proper comparison with the DiAlEcT
layout framework developed in this thesis must wait until Chapter 10.

2.3.1 Perceptual Organisation

Marks and colleagues described the idea of perceptual organisation, and added this to
the list of basic goals of node-link diagram layout. Previously the main concerns had
been syntactic validity and aesthetic optimality, the former covering basic requirements
like non-overlap of nodes, and the latter encompassing all the classic layout goals such as
minimisation of edge crossings and bends, maximisation of symmetry, and compaction of
the diagram into the smallest area. To this Marks’s group added,

Syntactic validity and layout aesthetics do not, however, account for all the
important aspects of network-diagram layout. For example, human graphic de-
signers rely routinely on grouping principles derived from the classical Gestalt
Laws of perceptual psychology...to organize diagrams visually. ... We there-
fore generalize the problem of network-diagram layout by introducing layout
considerations that concern perceptual organization. [KMS94], p. 440.

Furthermore, they suggested that perceptual organisation be given priority over aesthetic
considerations.

The perceptual organisation of a diagram was to be specified by a set of visual-
organisation features or VOFs. These were said to,

...specify perceptual groupings due to various kinds of proximity relations,
sequentially ordered layout, alignment, axial and radial symmetry, and special,
easily recognised layout patterns, such as the “T-shape” pattern that describes
a conventional layout for nodes that are related hierarchically. [KMS94], p. 442.

More recently, the phrase “perceptual organisation” has been used again by van Ham
and Rogowitz [vHR08], who ran an experiment to learn about the kinds of organisations
people create when working by hand. The experiment presented in Chapter 4 is in the
same tradition, and we too will use the distinction between pure aesthetics on the one
hand, and perceptual organisation on the other hand, throughout the rest of the thesis.

2.3.2 The Diagram Creation Problem

Marks divided the diagram creation problem into two subproblems: (1) the creation of
what he called an expressive mapping, and (2) the layout instantiation problem, mean-
ing the computation of node positions to satisfy the expressive mapping as well as basic
aesthetic and syntactic criteria. The ANDD system was responsible for the first subprob-
lem of designing the diagram; it was in subsequent papers that various approaches to the
second (layout) problem were investigated.

Under the first subproblem, designing the expressive mapping, Marks took a much
broader view of node-link diagram design than we take in this thesis, including choices
of node shape and colour, stroke width and style, and clustering. For example, given



22 CHAPTER 2. BACKGROUND

Figure 2.2: In Marks’s system, applying the VHUB design directive to a set of nodes indicates that the layout
system should attempt to arrange those nodes in a hub pattern (left). Applying the SSP design directive to a path
of nodes in a directed graph, starting with a source and ending with a sink, indicates that the layout system should
attempt to arrange those nodes in a straight line (right).

the same diagram design task, his system ANDD could in one instance choose to mark
all nodes of a given type by drawing them in the same colour, while in another instance
it could instead decide to indicate the similarity of these nodes by drawing them in a
cluster inside a bounding box. Marks motivated this system with statements like, “Good
designers use the entire gamut of graphical properties to communicate information,” and,
“Network diagrams have a mutable semantics.” [Mar91a]. In this respect his emphasis
was quite different from our own. For example, when we work with SBGN in Chapter 8,
all diagram aspects such as node shape, stroke style, and the question of placing nodes
inside of boxes, are completely prescribed by the SBGN specification itself. Our only task
here is to choose node positions.

Where the perceptual groupings or “VOFs” mentioned above entered the ANDD sys-
tem was through what Marks called pragmatic design directives. There were five of these:
VHUB, SSP, FL, IN, and OUT, standing respectively for “visual hub”, “source-sink path”,
“feedback loop”, “inputs”, and “outputs”. These were descriptions of certain graph-
theoretic substructures that might be present in the given network, and, when desired, it
was up to the user to tell the system to apply one of these directives to a substructure
for which it was suitable. For example VHUB could be applied to a node v and all its
neighbours u to indicate that the central node v should be thought of as a “hub” around
which the neighbours u were to be spaced at a constant distance and at equal angles, like
spokes on a wheel. For another example, SSP could be applied to a path of nodes starting
with a source node (one sitting only at the source end of directed edges) and ending with
a sink node (one sitting only at the target end of directed edges), to indicate that in the
layout these nodes should be aligned. See Figure 2.2.

Once the expressive mapping was settled, the problem of creating a layout remained.
Marks and colleagues tried three approaches to this problem: one rule-based approach
implemented in Prolog, and two optimisation-based approaches, one using a Newton-type
iteration [DFM93], and the other using a parallel-genetic algorithm [KMS94]. For our
purposes there is no need to distinguish between the latter two; we need only think about
the difference between the rule-based and optimisation-based methods.

These two approaches involve fundamentally different ways of responding to the de-
sign directives such as VHUB and SSP. In the rule-based method (described in greater
detail in Section 2.3.3), design directives must be satisfied precisely. For example when a
VHUB rule is applied nodes will be arranged exactly as on the left of Figure 2.2. In the
optimisation-based methods each directive is instead merely represented by a term in a
goal function, measuring deviation from the desired arrangement. This means that pre-
cise satisfaction of the directives is traded off for the ability to incorporate goal function
terms representing global considerations, like overall number of edge crossings. In the final
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Figure 2.3: Recreation of Marks’s Figure D.4

layout the design directives may be only approximately satisfied, such as in Figure 3 of
Dengler et al. [DFM93], in which a VHUB directive has resulted in a slanted, imperfect
version of the configuration on the left of Figure 2.2.

The task of producing layouts in which desired node arrangement patterns may be
satisfied only approximately is an essentially different problem than the one we work on in
this thesis. Of much greater interest in comparison with the present work is the rule-based
approach of Marks et al., which we now review in more detail.

2.3.3 A Rule-Based Approach

In the rule-based system of Marks’s group the “visual organisation features” (VOFs) had
to be expressed exactly. Moreover, their characterisation of the rule-based approach shows
it to be an attempt to achieve the very same ends I have set in this thesis:

Our motivation in using heuristic rules for layout is to emulate how human
graphic designers appear to lay out diagrams. Similar sublayout patterns tend
to recur repeatedly in human-designed network diagrams, suggesting that hu-
man designers utilise a small set of patterns when generating diagram layouts.
This pattern-generation expertise can be captured to some degree in heuristic
rules. [KMS94], p. 442.

Implemented in Prolog, it was a resolution-based search strategy. There were twenty-
two basic rules (see Appendix D.2 in Marks’s thesis [Mar91b]), of the form:

Sublayout + Syntactic Features→ Augmented Sublayout

indicating how the layout could be built up, a few nodes at a time, starting from an empty
layout, i.e. with no nodes having any assigned position.

In order to get started, a rule would have to be applied in which the Sublayout term on
the left-hand side of the rule was empty. For example, Figure D.4 in Marks’s thesis gives a
rule in which an empty Sublayout plus an expressive mapping including a Syntactic Feature
called PERIMETER could result in the placement of four nodes on the perimeter of a square
in the Augmented Sublayout. See Figure 2.3. Later, a rule like that in Marks’s Figure D.7
could be applied to an existing Sublayout consisting of two vertically aligned nodes; the
rule states that if the right Syntactic Features are present in the expressive mapping, then
a new node may be added to the diagram, in vertical alignment with the two that are
already present, and placed so that the three are evenly spaced. See Figure 2.4. In this
way the layout is to be gradually built up by repeated application of the various rules.

As explained in Kosak et al. [KMS94], p. 445, some “weak” rules are intentionally
included, so that some rule will always be applicable. The more complex and less-likely
applicable rules are placed first in the list, so that Prolog will attempt to apply them first,
but the list of rules given in Marks’s thesis ends with a sort of catch-all rule, requiring no
Sublayout and no Syntactic Features whatsoever, and allowing an Augmented Sublayout in
which a single node may be positioned “arbitrarily.” See Figure 2.5. In other words, this
catch-all rule means that at any step of the rule-based approach at which no special rule
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Figure 2.4: Recreation of Marks’s Figure D.7

Figure 2.5: Recreation of Marks’s Figure D.22

may be applied, a node is to be placed “arbitrarily”. As will be seen in Chapter 10, this
points toward a fundamental way in which the DiAlEcT system offers an improvement,
namely, in node positions being guided by stress-minimisation even as perceptual node
arrangements are precisely enforced by constraints.

As for the completeness and suitability of their rule base (i.e. the 22 Prolog rules),
Marks and colleagues felt that it covered reasonably well the sorts of design patterns they
had observed in existing diagrams, while acknowledging that in the future the rule base
could be tailored to special diagram types or styles. They wrote,

Though we do not believe that our set of VOFs is inherently exhaustive, we
have noted over a period of time and through informal taxonomic research
that our set of features provides excellent coverage in practice for the actual
organisational primitives conventionally used in network diagrams by graphic
designers. [KMS94], p. 442.

However, the user study described in Chapter 4 of this thesis represents a major contri-
bution of the present work, going beyond mere “informal taxonomic research” as a way of
learning about the kinds of node-link diagram layouts created by human designers.

Kosak et al. added that

The current rule base used by ANDD is only one of probably many useful
rule bases. Different rule bases might reflect different layout styles, and may
be better for some kinds of network diagrams than others. The development
and comparison of different rule bases is a possible goal for future research.
[KMS94], p. 445.

Indeed, that goal is taken up in this thesis in our treatment of two different layout dialects:
one for orthogonal diagrams and one for SBGN diagrams.

2.4 Topology-Shape-Metrics

Topology-Shape-Metrics, or TSM, is an approach for creating orthogonal node-link dia-
grams in three phases. It was developed by researchers at the University of Rome, Italy,
and predates the work of Marks et al. by about five years. It took a purely aesthetics-based
approach to network layout, the very approach on which Marks later aimed to improve
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Figure 2.6: For each node, the rotation system lists that node’s neighbours in clockwise order around it. Note
that the two embeddings shown here of the graph K4 have the same rotation system, but are not homeomorphic in
the plane R2 (they are however homeomorphic on the 2-sphere). This is why in order to determine the topology of
a planar embedding we must give not just the rotation system but also must say which is the external face.

by paying attention to what he called perceptual organisation. In this thesis too I have
aimed to improve on TSM by creating an orthogonal layout technique (Chapter 5) that
takes perceptual organisation into account, although my approach has been more robustly
empirical than that of Marks, owing to my use of formal user studies (Chapters 4 and 6).

Appropriately, TSM layout was born out of not just an improvement but a solution to
one of the aesthetic layout problems, to efficiently minimise the number of bends in the
orthogonal connector routes while preserving a given planar embedding (see next Section).
This came in the form of a procedure discovered by Roberto Tamassia whereby a given
graph layout problem was translated into a corresponding network flow problem, so that
by computing a minimum-cost flow one simultaneously obtained a bend-minimal layout.
Tamassia’s sole-authored article [Tam87] on the algorithm was published in June 1987 but
had been received by the editors nearly three years earlier, in October 1984.

A family of graph layout algorithms have flowed from this original idea, and the very
first of these was formulated by Tamassia and his colleagues Batini and Nardelli also in
October 1984, right on the heels of the theoretical foundations, though this paper too was
delayed in publication until 1986 [BNT86]. This second paper gave an algorithm for or-
thogonal layout in three phases, called Planarisation, Orthogonalisation, and Compaction
(see Figure 2.7). These three phases determined, respectively, the so-called “topology”,
the “shape”, and the “metrics” of the graph drawing being produced.

2.4.1 Planar Embeddings, Rotation Systems, and Topology

Before we can examine how the TSM procedure works, and the motivation for its design,
we must pause to understand the connection between topology, planar embeddings, and
rotation systems. These notions are also important for understanding the design of the
DiAlEcT framework of Chapter 7, and will be next revisited in Section 5.2.2.

Recall the definition of a planar embedding of a graph, from Section 2.1. Given a planar
graph G, a planar embedding ϕ : G → ℘(R2) defines a rotation system, which consists
of the clockwise ordering of the edges incident at each vertex v of G. Equivalently, it is
the clockwise ordering of the neighbours of each vertex. For example, Figure 2.6 gives
the rotation system for a planar embedding of the graph K4. For details see Mohar and
Thomassen [MT01].

In order to understand the connection between these ideas and the notion of topology,
we first note that the topology of a graph drawing is something entirely distinct from the
topology of the graph itself. The latter simply refers to the graph’s connectivity, or the
question of which nodes are connected to which others. In the practical world this is the
topology we are concerned with when considering different ways of connecting computers
in a local area network, and in the theoretical world it is the sense of topology that was
born in Euler’s analysis of the Bridges of Königsberg problem (see Section 2.1), where all



26 CHAPTER 2. BACKGROUND

that mattered was which land masses were connected to which others, and by how many
bridges.

We mean something completely different when, following Batini et al. (see Sec-
tion 2.4.2), we speak of the topology of a drawing of a graph. Here we begin by defining
two planar embeddings ϕ : G→ ℘(R2), ϕ′ : G→ ℘(R2) of a planar graph G to be topolog-
ically equivalent if there exists a homeomorphism ψ : R2 → R2 of the plane carrying one
embedding onto the other, i.e. such that ψ̄ ◦ϕ = ϕ′, where ψ̄ is the map on ℘(R2) induced
by ψ. (See for example Munkres [Mun00] on basic point-set topology and the notion of
homeomorphism or bi-continuous bijection.) Intuitively, if the plane were imagined as an
infinitely stretchable rubber sheet, the two graph embeddings would be considered topo-
logically equivalent if the sheet could be stretched in such a way as to turn one drawing
into the other. Then by “the topology of” a given drawing (i.e. embedding) of a graph we
mean the topological equivalence class of that drawing.

The connection between the topology of a drawing and its rotation system is enunciated
in the Heffter-Edmonds-Ringel rotation principle, a key result in the theory of graphs on
surfaces (see Mohar and Thomassen [MT01], page 91). This states that on an orientable
surface (such as the 2-sphere S2, i.e. the surface of the three-dimensional sphere) a drawing
of a given graph G is determined up to homeomorphism by its rotation system. In other
words, on a surface like S2, two drawings with the same rotation system have the same
topology, and if you change the rotation system you change the topology.

The plane R2 is not an orientable surface, but there is a close connection with the
rotation principle since locally the 2-sphere looks like the plane. (Close to its surface, the
Earth appears flat.) Mathematically, moving from S2 to R2 means that we must augment
the rotation system with one more bit of information: namely, which face of the embedding
is the external face. Together, the rotation system and external face of a planar graph
embedding completely determine its topology. See Figure 2.6.

2.4.2 A Refinement Approach to Layout

Topology-Shape-Metrics is what we will call a refinement approach to layout. For in TSM
we imagine that we start with the set Ω of all possible drawings of the given graph G,
and then this set is progressively refined until at last it contains only a single member,
and that is the final drawing produced by the algorithm. The refinement takes place by
repeatedly considering equivalence relations that partition the set of possible drawings
into equivalence classes, picking one class, and discarding all the rest.

The first equivalence relation is the topological equivalence defined in the previous
section, and accordingly the T- or Topology-phase of the TSM pipeline is concerned with
choosing the topology of the drawing. Batini et al. referred to this first phase as Pla-
narisation, since it involves planarising the given graph G (adding dummy nodes at edge
intersections if the graph G is not planar to begin with), and choosing the rotation system
and external face of the embedding.

The second equivalence relation in the TSM process determines what Batini et al. re-
ferred to as “shape”. Throughout the first phase we were free to imagine graph drawings
in which the connectors were drawn as arbitrary curves, but now, in the shape phase,
they must be drawn as proper orthogonal connectors, i.e. piecewise-linear arcs in which
each line segment is axis-aligned, or parallel to one of the x- and y-axes. Two drawings
have the same shape when for each edge (u, v) in the graph their respective orthogonal
drawings of this edge, traversed in the same direction (say from u toward v) have the same
sequence of left and right bends. Formally, it is as though we wrote down for each edge a
sequence (possibly empty) of L’s and R’s indicating the directions of the bends. The job
of the Orthogonalisation phase is to choose the shape equivalence class of the drawing.
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Figure 2.7: The TSM approach first determines the topology of the drawing in the planarisation step, then the
shape of the drawing in the orthogonalisation step, and finally the metrics in the compaction step.

Finally the metrics of an orthogonal graph drawing in the sense of Batini et al. are
determined when we choose the length of each linear segment of each connector. The third
phase is called Compaction since the goal is to make these lengths as small as possible.
However, Batini et al. decided that the drawing should land on a grid, so the segment
lengths must be integer multiples of the grid size.

After the third phase the drawing is determined up to rigid transformations, but this
was deemed trivial and not deserving of a proper phase of the algorithm. At this point
each node, as well as each bend point of each connector, is assigned a position on the grid,
and the drawing is complete.

Thus TSM gradually converges toward a drawing of the graph, by first determining
the drawing’s topology, then its shape, and finally its metrics. See Figure 2.7.

2.4.3 The Hierarchy of Aesthetics

As noted at the beginning of this section, the TSM approach is entirely concerned with
aesthetics (and not at all with perceptual organisation), namely, with edge crossings, edge
bends, and compactness. But Batini et al. realised that these aesthetics are not always
mutually compatible, but may instead present competing goals, and none of them alone
is sufficient.

Considering that the hierarchy of equivalence relations from Section 2.4.2 defined a
natural way of converging gradually toward a graph drawing, Batini et al. argued that it
was natural to handle the competing layout aesthetics in the corresponding order, that is,
to deal first with edge crossings in the Topology phase, next with edge bends in the Shape
phase, and finally with compactness in the Metrics phase. In this way the hierarchy of
equivalence relations on drawings leads to a natural hierarchy of aesthetics.

Therefore in the initial planarisation phase the algorithm attempts to minimise the
number of edge crossings.13 Fixing the topology of the drawing from this point forward
means that this number cannot change. The second phase, orthogonalisation, uses Tamas-
sia’s algorithm to actually achieve the minimum possible number of connector bends, given
the topology. Finally, the compaction phase is concerned with minimising the overall area
of the drawing.

Whether or not the hierarchy of aesthetics embodied in the TSM approach is “natural”
as Batini et al. stated, it is important to note that this hierarchy enforces an ordering on
aesthetic importance that was not justified empirically. In contrast, the experiment of
Chapter 4 in this thesis allows us to gather some data on how people make trade-offs

13The techniques for this have been surveyed more recently by Gutwenger and Mutzel [GM03].
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among the aesthetics. Moreover, since TSM is concerned only with aesthetics, and yet
remains the state-of-the-art in orthogonal network layout today, this leaves an unmet
need—namely, for an algorithm that produces good orthogonal node-link diagrams while
taking perceptual organisation into account. This is the goal of the HOLA algorithm
developed in Chapter 5.

2.4.4 Framework versus Algorithms

TSM was intended as a general graph drawing framework, whereas any algorithm that
works according to this framework, i.e. by first determining the topology of the drawing,
then its shape, and finally its metrics, may be called an algorithm of the TSM variety, or
simply “a TSM algorithm”. The original TSM algorithm of Batini et al. was built into a
diagram layout system called GIOTTO [TDBB88], and several years later the algorithm
itself began to be called GIOTTO [DBGL95].

Due to a limitation in Tamassia’s bend minimisation technique, wherein it required a
graph of maximum degree four,14 the GIOTTO algorithm required a step called expansion,
where each vertex was replaced by a “skeleton”, a set of new vertices linked together into
the shape of a box, each serving as a connection point to one of the original vertex’s neigh-
bours. The need for this complication was removed by Fössmeier and Kaufmann [FK95]
in work from 1995 in which they augmented Tamassia’s algorithm to handle graphs of
arbitrary degree. In subsequent papers this new algorithm came to be known as Kandin-
sky.15

Further refinements and variants have been devised for the Kandinsky system over the
years, some of them relevant to our concern with human-quality layout. The sketch-based
system of Brandes et al. [BEKW02] works from a user-drawn sketch as a starting point,
then proceeds to minimise bends using Kandinsky. This is one way to try to make more
natural-looking orthogonal layouts, but it requires that the user provide a sketch to get the
system started. Other efforts have for example gone into refining the initial planarisation
phase, and exploring different options and configurations for it [GM03].

In Chapter 6 HOLA is compared with TSM, but it must be understood that in that
and other chapters when we refer to specific TSM algorithms we mean the Kandinsky
system, plus the subsequent techniques and refinements that have been added to it, such
as those mentioned above. The whole suite of techniques is available both in OGDF (the
Open Graph-Drawing Framework) 16 and in the yFiles layout library [WEK04], which
is deployed in the popular yEd network layout editor. Together, these tools make the
present state-of-the-art in orthogonal network layout.

2.5 Conclusions

The utility of the stress function in network layout was independently discovered, once
from the side of multidimensional scaling, and again from the side of force-directed layout.
The latter was in turn independently discovered, both motivated by data visualisation,
and also by circuit board layout.

14Actually Tamassia’s bend minimisation technique is capable of computing a bend-minimal k-gonal
representation for any k ≥ 2, where a k-gonal representation is one in which every connector segment has
slope equal to an integer multiple of 180/k degrees. (Thus the orthogonal case is obtained with k = 2, and
higher values of k allow for more angles.) However, for a k-gonal representation the technique is limited
to 2k-planar graphs, i.e. planar graphs all of whose nodes have degree bounded above by 2k. Therefore in
the important orthogonal case it is restricted to 4-planar graphs.

15The earliest occurrence of the name that I have found in print is in a paper published two years later
by the same authors [FK97].

16http://ogdf.net
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A stress-minimal layout is a faithful one, in that the geometric separation of nodes
faithfully reflects their graph-theoretic separation. This was pointed out by Nguyen et al.,
and also emerges directly from the multidimensional scaling approach. If this “faithful-
ness” quality is something that people expect in a network layout (consciously or not), then
we may expect stress-minimal layouts to be good starting points for layouts approximating
human quality.

Furthermore, in his original paper on the subject Eades already suggested that a force-
directed layout might only provide a “first approximation” to a layout, which could then
be “fine tuned.” The addition of constraints is a way in which we can perform such
fine tuning, and we take that approach in this thesis. Constraints were first introduced
into stress-minimised layout by Kamada and Kawai, eventually evolving to the system
of Dwyer et al. with the use of separation constraints. It is this latter system that is
employed in this thesis specifically, using the Adaptagrams layout library.

Another approach towards approximating human-quality layout was initiated by Marks
et al. with their rule-based system. However their system relied on the user to deliberately
select nodes and apply design directives to them. Moreover nodes were added a few at
a time according to rules, with nothing to serve as a guide toward a good global layout.
When rules for creating syntactic features could not be applied the system had to rely on
arbitrary node placement. The DiAlEcT system of Chapter 7 improves on this by allowing
node placements to be continually stress-guided, starting from a reasonable stress-based
distribution. Marks et al. also did not consider specialised rule sets for different layout
“styles” or dialects.

The state-of-the-art approach to the orthogonal layout style is currently the Topology-
Shape-Metrics or TSM approach. However, being based entirely on optimisation of layout
aesthetics, this approach completely ignores the need for perceptual organisation. It also
has a hard-wired ordering on aesthetics, where human designers instead tend to make
trade-offs, as we see in Chapter 4. Therefore there is room to improve on this system
by creating layouts in the orthogonal style the way that people might create them when
working by hand, as we do in Chapter 5 of this thesis, and evaluate in Chapter 6.
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Chapter 3
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It was argued in the last chapter that stress minimisation should be a good starting
point because of the “faithfulness” quality of this kind of layout. But as we consider how
to get from this starting point to a diagram satisfying the conventions of a given layout
language or dialect, it is clear that some further technique will be needed. See for example
Figure 3.1, which shows the vast difference between stress-minimal and TSM layouts of the
same graph. This chapter represents a first investigation into what the required technique
might be.

Our goal is to begin developing methods that may help to achieve the layout re-
quirements of various diagram languages and dialects, like orthogonal, SBGN, or even
metro-map diagrams, to keep a broad view. We begin by considering orthogonal dia-
grams, whose requirements are simple and motivate the basic ideas that we build on in
this chapter. Along the way we will discover that much of what we can do to make good-
looking orthogonal layouts is in fact useful for many other diagram types as well. Thus,
while orthogonal style will play the role of primary motivator, this chapter aims to take a
broader view of layout style and aesthetics.

Thus we begin by considering the Orthogonal Language Family introduced in Chap-
ter 1. The first fact we must confront is that although this family of diagrams is defined
solely in terms of a condition on connector routes (i.e. that they be composed of alter-
nating horizontal and vertical segments), the task of creating a good orthogonal layout
nevertheless has everything to do with choosing good positions for the nodes. This fact
is vividly demonstrated by what happens if we try to simply apply orthogonal connector
routing directly to a pure stress-minimal layout, i.e. one in which stress has been minimised
but no constraints have been applied. Using the Adaptagrams library, this means one
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application of DESCEND followed immediately by one application of ORTHO-ROUTE (see
Section 2.2.4). The typical results, demonstrated in Figure 3.2, are not pretty.

And in this case the prettiness of the layout, i.e. aesthetic quality, is exactly what we
should be considering; for it will not be until the experiment of Chapter 4 that we learn
something about the perceptual organisation (see Section 2.3.1) that users of orthogonal
diagrams expect. The present chapter instead gives us a chance to address purely aesthetic
concerns. Accordingly we get started in Section 3.1.2 by defining metrics for the aesthetic
qualities that we aim to achieve, and we introduce the name “grid-like layout” for diagrams
exhibiting these qualities. We consider that grid-like layout makes a suitable foundation
for both orthogonal and SBGN layout.

After thus defining the problem we begin to investigate possible solutions. The basic
question is: What new steps can be put in between the initial DESCEND and final ORTHO-
ROUTE operations in order to get better results than the kind shown in Figure 3.2?
Fundamentally, since CSML is a constrained optimisation system, there are two approaches
we can take: we can either modify the goal function (stress) by adding new terms to make
it behave differently, or we can add constraints. We may also use a combination of these
two approaches.

In Section 3.2 we consider the approach of modifying the stress function, and in Sec-
tion 3.3 we consider a pure constraint-driven approach that leaves the stress function
unmodified but instead automatically chooses and applies constraints. Section 3.4 evalu-
ates, while Section 3.5 concludes that the constraint-driven approach is best. A preview
of the various techniques is shown in Figure 3.3. The work described in this chapter
was originally published in a different format, in the proceedings of the Graph Drawing
conference in 2013 [KDMW13].

3.1 Grid-like Layout

The generally accepted set of graph layout aesthetics [DBETT99] including goals like
minimising edge crossings and bends tells us what is so bad about the layout in Figure 3.2.
To begin with, it has far too many bends. The crossings do not help either. Moreover,
while I am not aware of any published research to substantiate the claim, it seems likely
that the dissatisfaction with the layout of Figure 3.2 is amplified by the obvious ease with
which the excessive bends could be removed. In other words, one not only finds the layout
objectionable, but wonders: Why would anyone leave it that way, when it could so easily
be improved?

The tantalisingly easy improvement of the diagram in Figure 3.2 could be achieved
by creating alignments. Aligning nodes that are nearly but not quite aligned would im-
mediately remove many of the small, squiggly S-bends that clutter up this diagram. The
many L-bends at the extremities of the layout, whose presence seems causeless if we forget
about the initial stress-minimisation step, could also be removed by creating alignments.

Pursuing this line of thought we are led to revisit the decision of Batini et al. to put
orthogonal layouts on a grid (Section 2.4). The wisdom of that choice becomes apparent
as we reflect that, on a grid, nodes are never almost-but-not-quite aligned; they are ei-
ther perfectly aligned, or else far enough out of alignment that their disalignment appears
deliberate. In fact grid placement means two things: alignments and commensurate sep-
arations. In other words, many nodes are aligned, while those that are not aligned are
separated by a distance that is an integer multiple of a single, fixed grid size.

However, while the aesthetic deficiencies of Figure 3.2 clearly call for alignments, it is
not as clear that commensurate separations are really necessary. For this reason we aim
to achieve not grid layout, but what we call grid-like layout. The full definition is given in
Section 3.1.2.
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Figure 3.1: Stress-minimal (left) and TSM (right) layouts of the same graph, appear quite different.

Figure 3.2: Stress-minimised layout with orthogonal routing applied directly tends to produce results with bad
aesthetic value.
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(f) ACA + Grid-Snap

Figure 3.3: Different combinations of our grid-like layout techniques are shown, compared with pure stress-
minimal layout. The layout is for an SBGN diagram of the Glycolysis-Gluconeogenesis pathway obtained from
MetaCrop.
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In fact, a layout in which many nodes are aligned seems like a reasonable starting point
not just for orthogonal layout, but for SBGN layout too, since long chains of alignments are
commonly observed in SBGN diagrams in practice. Still, wary of the dangers of overfitting
the solution at this early stage, it is important to keep yet other layout styles in mind.
In order to broaden the approach we therefore consider metro-map (train network) layout
too.

Before coming to our definition of grid-like layout in Section 3.1.2 we pause to review
related work on grid layout, SBGN layout, and metro map layout in Section 3.1.1.

3.1.1 Related Work

Several proposals have been made for grid-like layout of biological networks [BGHM07,
LK05, KNJ+07]. These arrange biological networks with grid coordinates for nodes in
addition to various layout constraints. In particular Barsky et al. [BGHM07] consider
alignment constraints between biologically similar nodes and Kojima et al. [KNJ+07] per-
form layout subject to rectangular containers around functionally significant groups of
nodes (e.g. metabolites inside the nucleus of a cell). In general they use fairly straight-
forward simulated annealing or simple incremental local-search strategies. Such methods
work to a degree but are slow and may never reach a particularly aesthetically appealing
minimum.

Another application where grid-like layout is an important aesthetic is metro-map
layout. Stott et al. [SRMOW11] use a simple local-search (“hill-climbing”) technique to
obtain layout on grid points subject to a number of constraints, such as “octilinear” edge
orientation.1 Wang and Chi [WC11] seek similar layout aesthetics but using continuous
non-linear optimisation subject to octilinearity and planarity constraints. This work is
based on a quasi-Newton optimisation method (like the one used in Adaptagrams), but
it is very specific to metro-map layout. Metro-map layout algorithms such as [NW11a]
run for many hours before finding a solution.

There are several existing examples of the application of altered force laws to layout,
like we consider in Section 3.2. Sugiyama and Misue [SM95] augment the standard force-
model with “magnetic” edge-alignment forces. Ryall et al. [RMS97] explored the use of
various force-based constraints in the context of an interactive diagramming editor. It is
the limitations of such approaches (discussed below) which prompt the development of the
constraint-based techniques described in Section 3.3.

3.1.2 Aesthetic Criteria

We assume that we have a graph G = (V,E,w, h) consisting of a set of nodes V , a set of
edges E ⊆ V × V and wv, hv are the width and height of node v ∈ V . We wish to find
a straight-line 2D drawing for G. This is specified by a pair (x, y) where (xv, yv) is the
centre point of each v ∈ V .

We quantify grid-like layout quality through the following metrics. In subsequent
sections we use these to develop techniques that directly or indirectly aim to optimise
them. We use these metrics for evaluation in Section 3.4 as well.

• Embedding quality: We measure this using the P-stress function [DMW09b], a
variant of stress that does not penalise unconnected nodes being more than their
desired distance apart. It measures the separation between each pair of nodes u, v ∈
V in the drawing and their ideal distance duv proportional to the graph theoretic

1Octilinear edge routing is the same as 4-gonal representation in Tamassia’s terms. See the footnote on
page 28.
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Figure 3.4: M-shaped function. Note that [0, π/2] is the range of |tan−1|. The “M” function is zero at 0 and
π/2, a small value p ≥ 0 at π/4, a large value P > 0 at δ and π/2− δ for some small δ > 0, and linear in-between.

path between them:∑
u<v∈V

wuv

(
(duv − d(u, v))

+
)2

+
∑

(u,v)∈E

wp
(

(d(u, v)− dL)
+
)2

where d(u, v) is the Euclidean distance between u and v, (z)+ = z if z ≥ 0 otherwise 0, dL
is an ideal edge length, wp = 1

dL
, and wuv = 1

d2uv
.

• Edge crossings: The number of edge crossings in the drawing.

• Edge/node overlap: The number of edges intersecting a node box. With straight-
line edges this also penalises coincident edges.2

• Angular resolution: Edges incident on the same node have a uniform angular
separation. Stott et al. [SRMOW11] give a useful formulation:∑

v∈V

∑
{e1,e2}∈Ev

|2π/degree(v)− θ(e1, e2)|

• Edge obliqueness: We prefer horizontal or vertical edges and then—with weaker

preference—edges at a 45◦ orientation. Our precise metric is M
∣∣∣tan−1 yu−yv

xu−xv

∣∣∣ where

M(θ) is an “M-shaped function” over [0, π/2] that highly penalises edges which
are almost but not quite axis-aligned and gives a lower penalty for edges mid-
way between horizontal and vertical (Figure 3.4). Other functions like those of
[SRMOW11, KNJ+07] could be used instead.

• Grid placement: Average of distances of nodes from their closest grid point.

3.2 Goal Function Methods

The CSML framework presents two obvious ways to customise the layout. For one, we
can simply use its capacity to handle constraints and apply these to achieve the kind of
layout we want. We explore this approach in Section 3.3. For another, we can recall that

2Node/node overlaps are also undesirable. We avoid them completely by using non-overlap con-
straints [DMS06] in all our tests and examples.
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CSML is just a case of constrained optimisation, with stress as the goal function, and we
can think about ways to modify that goal function to try and achieve the desired layout.

Such an approach will necessarily only promote certain kinds of layout, and will not
guarantee them, as constraints will. This has the advantage of allowing various desiderata
to compete, and is simple to implement. Note that, while we dismissed the goal-function-
based approaches of Marks et al. in Section 2.3.2, that was because they led to imprecision
in perceptual organisation. By contrast, in the present chapter we are still concerned only
with aesthetics, where we deem imprecision to be much more acceptable.

In this section we describe two new terms that can be combined with the P-stress
function to achieve more grid-like layout: NS-stress for “node-snap stress” and GS-stress
for “grid-snap stress.” An additional term EN-sep gives good separation between nodes
and edges. Layout is then achieved by minimising

P-stress + kns ·NS-stress + kgs ·GS-stress + ken · EN-sep

where the constants kns, kgs, and ken control the “strength” of the various components.
These extra terms, as defined below, tend to make nodes lie on top of one another. It
is essential to avoid this by solving subject to node-overlap prevention constraints, as
described in [DMS06]. To obtain an initial “untangled” layout we run with kns = kgs =
ken = 0 and without non-overlap constraints (Fig. 3.3a). We then run again with the
extra terms and constraints to perform “grid-like beautification”.

Minimisation of the NS-stress term favours horizontal or vertical alignment of pairs of
connected nodes (Figs. 3.3c and 3.9). Specifically, taking σ as the distance at which nodes
should snap into alignment with one another, we define:

NS-stress =
∑

(u,v)∈E

qσ(xu − xv) + qσ(yu − yv) where qσ(z) =

{
z2/σ2 |z| ≤ σ

0 otherwise.

The discontinuity of qσ(z) at ±σ may seem a strange choice, but it turns out that the
function must at least be non-differentiable there (if not necessarily discontinuous). This
is because we want the function to attain its globally maximal value (over all of R) at ±σ,
and so if it is also smooth at those points then it will be concave-down somewhere over the
interval [−σ, σ] and this causes a problem. Specifically, downward concavity causes the
standard step-size calculations on which the Adaptagrams gradient-projection algorithm
is based to make steps that increase the goal function rather than decreasing it. Therefore
more obvious choices like an inverted quartic (1 + (z2 − σ2)2)−1 or a sum of inverted
quadratics (1 + (z + σ)2)−1 + (1 + (z − σ)2)−1 in place of qσ(z) simply won’t work. We
examine the step size, gradient, and Hessian formulae for our snap-stress functions in
Appendix A.

We designed our GS-stress function likewise to make the lines of a virtual grid exert a
similar attractive force on nodes once within the snap distance σ:

GS-stress =
∑
u∈V

qσ(xu − au) + qσ(yu − bu)

where (au, bu) is the closest grid point to (xu, yu) (with ties broken by favouring the point
closer to the origin), see Figure 3.3b. The grid is defined to be the set of all points
(nτ,mτ), where n and m are integers, and τ is the “grid size”. With GS-stress active it is
important to set some other parameters proportional to τ . First, we take σ = τ/2. Next,
we modify the non-overlap constraints to allow no more than one node centre to be in
the vicinity of any one grid point by increasing the minimum separation distance allowed
between adjacent nodes to τ . Finally, we found that setting the ideal edge length equal
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to τ for initial force-directed layout, before activating GS-stress, helped to put nodes in
positions compatible with the grid.

Our third term EN-sep is also a quadratic function based on qσ(z) that separates nodes
and nearby axis-aligned edges to avoid node/edge overlaps and coincident edges:

EN-sep =
∑

e∈EV ∪EH

∑
u∈V

qσ
(
(σ − d(u, e))+

)
,

where EV and EH are the sets of vertically and horizontally aligned edges, respectively,
and the distance d(u, e) between a node u and an edge e is defined as the length of the
normal from u to e if that exists, or +∞ if it does not. Here again we took σ = τ/2.

In our experiments we refer to various combinations of these terms and constraints, as
follows:

• Node-Snap: NS-stress, EN-sep, non-overlap constraints, kgs = 0

• Grid-Snap: GS-stress, EN-sep, ideal edge lengths equal to grid size, non-overlap,
constraints with separations tailored to grid size, kns = 0.

• Node-Snap+Grid-Snap: achieves extra alignment by adding NS-stress to the
above Grid-Snap recipe (i.e. kns 6= 0).

3.3 Adaptive Constrained Alignment

In this section we describe how to make stress-minimised layouts more grid-like simply by
adding alignment and separation constraints (Fig. 3.3e).

The algorithm, which we call Adaptive Constrained Alignment or ACA, is a greedy
algorithm that repeatedly chooses an edge in G and aligns it horizontally or vertically
(see adapt const align procedure of Figure 3.5). It adapts to user-specified constraints by
not adding alignments that violate these. The algorithm halts when the heuristic can no
longer apply alignments without creating edge overlaps. Since each edge is aligned at most
once, there are at most |E| iterations.

We tried the algorithm with three different heuristics for choosing potential alignments,
which we discuss below.

Node overlaps and edge/node overlaps can be prevented with non-overlap constraints
and the EN-sep goal-function-term discussed in Section 3.2, applied either before or after
the ACA process. However, coincident edges can be accidentally created and then enforced
as we apply alignments if we do not take care to maintain the orthogonal ordering of
nodes. If for example two edges (u, v) and (v, w) sharing a common endpoint v are both
horizontally aligned, then we must maintain either the ordering xu < xv < xw or the
opposite ordering xw < xv < xu. 3

Therefore we define the notion of a separated alignment, written SA(u, v,D) where
u, v ∈ V and D ∈ {N, S,W,E} is a compass direction. Applying a separated align-
ment means applying two constraints to the force-directed layout—one alignment and one
separation—as follows:

SA(u, v,N) ≡ xu = xv and yv + β(u, v) ≤ yu, SA(u, v, S) ≡ SA(v, u,N),
SA(u, v,W) ≡ yu = yv and xv + α(u, v) ≤ xu, SA(u, v,E) ≡ SA(v, u,W),

where α(u, v) = (wu + wv)/2 and β(u, v) = (hu + hv)/2. (Thus for example SA(u, v,N)
can be read as, “the ray from u through v points north,” where we think of v as lying
north of u when its y-coordinate is smaller.)

3In a diagram system in which edge bundling [Hol06] was used this restriction could be relaxed, but we
do not pursue that approach here.
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proc adapt const align(G,C,K)
(x, y)← DESCEND(G,C)
SA← chooseSA(G,C, x, y,K)
while SA ! = NULL
C.append(SA)
(x, y)← DESCEND(G,C)
SA← chooseSA(G,C, x, y,K)

return (x, y, C)

proc chooseSA(G,C, x, y,K)
S ← NULL
cost ←∞
for each (u, v) ∈ E and dir. D

if not creates coincidence(C, x, y, u, v,D)
if K(u, v,D) < cost
S ← SA(u, v,D)
cost ← K(u, v,D)

return S

Figure 3.5: Adaptive constrained alignment algorithm. G is the given graph, C the set of user-defined constraints,
and K the cost function.

Alignment Choice Heuristics.

We describe two kinds of alignment choice heuristics: generic, which can be applied to
any graph, and convention-based, which are intended for use with layouts that conform to
special conventions, e.g. those of SBGN diagrams. Our heuristics are designed according
to two principles:

1. try to retain the overall shape of the initial stress-minimal layout;

2. do not obscure the graph structure by creating undesirable overlaps

and differ only in the choice of a cost function K which is plugged into the procedure
chooseSA in Figure 3.5. This relies on procedure creates coincidence which implements
the Edge Coincidence Test described below. Among separated alignments which would
not lead to an edge coincidence, chooseSA selects one of lowest cost. Cost functions may
return a special value of ∞ to mark an alignment as never to be chosen.

The creates coincidence procedure works by maintaining a |V |-by-|V | array of flags
which indicate for each pair of nodes u, v whether they are aligned in either dimension
and whether there is an edge between them. The cost of initialising the array is O(|V |2 +
|E| + |C|), but this is done only once in ACA. Each time a new alignment constraint is
added the flags are updated in O(|V |) time, due to transitivity of the alignment relation.
Checking whether a proposed separated alignment would create an edge coincidence also
takes O(|V |) time, and works according to the ECT. (Proof is provided in Appendix B.)
Note that the validity of the ECT relies on the fact that we apply separated alignments
SA(u, v,D) only when (u, v) is an edge in the graph.

Edge Coincidence Test: Let G be a graph with separated alignments. Let u, v be nodes in
G which are not yet constrained to one another. Then the separated alignment SA(u, v,E)
creates an edge coincidence in G if and only if there is a node w which is horizontally
aligned with either u or v and satisfies either of the following two conditions: (i) (u,w) ∈ E
while xu < xw or xv < xw; or (ii) (w, v) ∈ E while xw < xv or xw < xu. The case of
vertical alignments is similar.

We tried various cost functions, which addressed the aesthetic criteria of Section 3.1.2
in different ways. We began with a basic cost, which was either an estimate KdS(u, v,D)
of the change in the stress function after applying the proposed alignment SA(u, v,D), or
else the negation of the obliqueness of the edge, Kob(u, v,D) = −obliqueness((u, v)), as
measured by the function of Section 3.1.2. In this way we could choose to address the
aesthetic criteria of embedding quality or edge obliqueness, and we found that the results
were similar. Both rules favour placing the first alignments on edges which are almost
axis-aligned, and this satisfies our first principle of being guided as much as possible by
the shape of the initial force-directed layout. See for example Figure 3.3.

On top of this basic cost we considered angular resolution of degree-2 nodes by adding
a large but finite cost that would postpone certain alignments until after others had been
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Figure 3.6: Suppose nodes u and v are horizontally aligned. When the ACA process considers the edge (u,w)
the basic angular cost will suggest that the vertical alignment of u and w would be best; however, since u has degree
2 we add a special penalty cost to that alignment. The penalty makes the horizontal alignment of u and w more
attractive, and this promotes the creation of long, straight chains of aligned nodes.

attempted. This took the form of a fixed cost ten times larger than average values of the
cost functions KdS and Kob, added for any alignment that would make a degree-2 node
into a “bend node,” i.e., would make one of its edges horizontally aligned while the other
was vertically aligned. See Figure 3.6. This allows long chains of degree-2 nodes to form
straight lines, and cycles of degree-2 nodes to form perfect rectangles.

For SBGN diagrams we get good results by applying the same technique, except that
when it comes to locating the “degree-2” nodes we use non-leaf degree. This means
the degree of a node when we discount all of its neighbours that are leaves. Combining
this with another large cost penalty for aligning leaf edges leads to layouts like those in
Figures 3.3e and (f). Since leaves have little to do with the overall structure of the graph,
their edges can be left unaligned. Instead, the nodes having more to do with the structure
wind up getting aligned into long, straight chains.

Respecting User-Defined Constraints.

Layout constraints can easily wind up in conflict with one another if not chosen carefully.
In Adaptagrams such conflicts are detected during the PROJECT operation, an active
set method which iteratively determines the most violated constraint c and satisfies it by
minimal disturbance of the node positions. When it is impossible to satisfy c without
violating one of the constraints that is already in the active set, c is simply marked
unsatisfiable, and the operation carries on without it.

For ACA it is important that user-defined constraints are never marked unsatisfiable
in deference to an alignment imposed by the process; therefore we term the former definite
constraints and the latter tentative constraints. We employ a modified projection operation
which always chooses to mark one or more tentative constraints as unsatisfiable if they
are involved in a conflict.

For conflicts involving more than one tentative constraint, we use Lagrange multipliers
to choose which one to reject. These are computed as a part of the projection process.
Since alignment constraints are equalities (not inequalities) the sign of their Lagrange
multiplier does not matter, and a constraint whose Lagrange multiplier is maximal in
absolute value is one whose rejection should permit the greatest decrease in the stress
function. Therefore we choose this one.

ACA does not snap nodes to grid-points: if desired this can be achieved once ACA has
added the alignment constraints by activating Grid-Snap.
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Figure 3.7: Edge obliqueness (see Section 3.1.2) results. The constraint-based approach ACA is better than
either of the goal-function-based approaches Grid-Snap (GS) and Node-Snap (NS). The combination of ACA and
GS gives the best result.

3.4 Evaluation

To evaluate the various techniques we applied each to 252 graphs from the “AT&T Graphs”
corpus (ftp://ftp.research.att.com/dist/drawdag/ug.gz) with between 10 and 244
nodes. We excluded graphs with fewer than 10 nodes and two outlier graphs: one with 1103
nodes and one with 0 edges. We recorded running times of each stage in the automated
batch process and the various aesthetic metrics described in Section 3.1.2, using a MacBook
Pro with a 2.3GHz Intel Core I7 CPU. Examples are visible in Figures 3.12 and 3.13. In
these and other figures in this section we refer to: unconstrained (except for non-overlap
constraints) stress-minimising layout as SML, Grid-Snap as GS, Node-Snap as NS, and
Adaptive Constrained Alignment as ACA.

We found that ACA was the slowest, often taking up to 10 times as long as the other
methods, on average around 5 seconds for graphs with around 100 nodes, while the other
approaches took around a second. See Figure 3.10. ACA was also sensitive to the density
of edges. Of the goal-function approaches, Grid-Snap (being very local) added very little
time over the unconstrained force-directed approach.

The Edge Obliqueness results are shown in Figure 3.7. ACA does the best job here,
with its performance improved slightly if GS is added. On the other hand, use of GS
increases the stress of the layout dramatically (Figure 3.8), whereas both ACA and NS
keep stress nearly as low as pure SML. It is natural that stress has to be increased a little
as we enforce alignment constraints. Comparing performance on both edge obliqueness
and stress shows ACA to be the clear winner. ACA also shows the best performance on
angular resolution (Figure 3.11), and does a good job of aligning long paths of nodes, as
is visible in Figures 3.3 and 3.9.

3.5 Conclusions

We identified a set of layout aesthetics we call “grid-like” layout, to address the basic aes-
thetic requirements of many types of node-link diagram, including orthogonal and SBGN.
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Figure 3.8: P-Stress values normalised by graph size and density. There is not much to note except that GS
introduces the most significant stress. Basically, this means that optimisation over GS-stress introduces the most
distortion of the underlying SML layout.

We explored ways of achieving grid-like layout with CSML, including both goal-function-
based approaches (Node-Snap, Grid-Snap) and an adaptive constraint-based approach
(ACA) in which alignment constraints are added greedily. ACA is slower but gives more
grid-like layout and so is to be preferred.

One of the lessons learned is that a good layout needs a moderate amount of stress.
A high-stress layout is not faithful to the structure of the network. On the other hand,
if we simply minimise stress (like in Figure 3.2) then we have no hope of satisfying the
expectations of a special layout language or dialect. In this chapter we have seen how
we can improve the aesthetics by adding constraints and thereby adding a bit of stress.
In Chapters 5 and 8 we will see how the same technique also allows us to create good
perceptual organisation.
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Figure 3.9: Layout of a SBGN diagram of Calvin Cycle pathway shows how ACA (right) gives a more pleasing
rectangular layout than Node-Snap (left).

Figure 3.10: Running time in seconds for the six different grid-like layout methods against number of nodes for
the 252 graphs in our corpus. Times given do not include the other layout stages. For example, ACA does not
include the initial SML layout. ACA+GS, is just the additional grid stage after SML+ACA.
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Figure 3.11: Angular resolution for the various techniques for all nodes, but also broken down for lower degree
nodes. We see ACA does almost as well as SML on degree-2 nodes, and results in better angular resolution than
SML for degree-4.

(a) SML (b) GS (c) NS

(d) NS + GS (e) ACA (f) ACA + GS

Figure 3.12: Different combinations of our automatic layout techniques for the graph “ug 213” from the AT&T
Graphs corpus, as generated during our evaluation. In 3.12e and 3.12f we use a simple post-process to see if edges
involved in crossings can be rerouted to avoid crossings using the orthogonal connector routing scheme described in
[WMS10].
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(a) SML (b) GS (c) NS

(d) NS + GS (e) ACA (f) ACA + GS

Figure 3.13: Different combinations of our automatic layout techniques for the graph “ug 268” from the AT&T
Graphs corpus, as generated during our evaluation.
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The study of Chapter 3 showed us that we can use CSML to create grid-like layout
aesthetics, a promising start toward our goal of teaching the computer to “speak” various
layout “dialects”. However, in order to reach that goal we must pick a particular type of
diagram and conduct a user study to find out how real people actually lay out diagrams
of that kind in practice. In terms of the three-part methodology described at the end of
Section 1.1, this is the formative user study.

The Orthogonal Language Family is a natural starting point. It is highly general and
broadly useful, and its aesthetic demands should be particularly well served by the many
alignments created by the ACA procedure of Chapter 3. It will be our focus in this and
the next two chapters. Much of the material in these three chapters originally appeared
in a different format in [KDMW16], though significant additions have been made.

This chapter describes a user study called Orthowontist, a pun referring to the layout
designer’s wont in creating ortho(gonal) diagrams. Section 4.1 reviews prior studies inves-
tigating manual layout. Our experiment is then described in Section 4.2 and the results in
Sections 4.3 and 4.4. The results teach us about the aesthetics that our study participants
were concerned with, and how they traded these off against each other (Section 4.3), as
well as about the kind of perceptual organisations the participants applied to the nodes
(Section 4.4).

4.1 Prior Studies

Historically, formal user studies of the requirements for good layout only occurred after
the initial development of automatic layout methods. The earliest user studies that we
know of were not until the mid 1990’s. See Section 4.1.1. These used carefully designed

47
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diagrams to investigate whether the aesthetic criteria intuitively identified by the early
algorithm designers did in fact assist with comprehension, e.g. [PCJ97, MBK97]. At the
time this was taken very much as an affirmation of the existing algorithms since these
studies largely confirmed that the aesthetic criteria identified by the algorithm designers,
such as reducing crossings and bend points, did affect readability.

It was not until quite recently that studies such as [vHR08, DLF+09, PPP12] returned
to first-principles in understanding the requirements for network layout by investigating
the kind of node-link diagrams that humans construct by hand. See Section 4.1.2. Such
“human authored layout” studies began to identify aesthetic factors not considered by
early algorithm designers or in the previous usability experiments. Yet until now such
studies have not influenced the design of automatic layout algorithms. This is not really
surprising, as creating new algorithms or re-engineering existing algorithms to capture
new aesthetics is difficult and time consuming.

4.1.1 Early Aesthetic Studies

The first network layout user studies investigated whether the intuitive aesthetic criteria
used to motivate the design of graph drawing algorithms did in fact affect human under-
standing of graphs. Early studies by Purchase and her colleagues [PCJ96, Pur97, PCJ97,
PCA02] investigated how reducing edge crossings, reducing bends, showing subgraph sym-
metry, increasing angle of incidence of edges entering/leaving a node, and orthogonality
(which was taken to mean node placement on a grid) affected user performance on tasks
like finding the shortest path between two nodes in abstract graphs. Another study by
Purchase et al. [PAC02] investigated the effect of these aesthetics on user preference in
UML diagrams while Huang et al. [HHE07] investigated their effect on both preference
and performance for social networks.

These studies reported strong negative effects on task performance and user prefer-
ence for edge crossings and to a lesser extent edge bends, and found that symmetry and
orthogonality were preferred. Huang et al. found a preference for important nodes to
be placed at the top of the drawing. Subsequent studies by Ware et al. [WPCM02] and
an eye-tracking study by Huang [Hua07] have suggested that the negative effect of edge
crossings is reduced if the edges cross at large angles and that continuity of edges through
nodes is important in path following. A recent study by Marriott et al. [MPWG12] ex-
amined the effect of these aesthetics on recall. Starting with Himsolt [Him95] some user
studies have used preferences and task performance to compare different automatic layout
algorithms and layout styles [Pur98, PCA02, HHE07].

4.1.2 Human-authored Layout Studies

We believe that a new kind of user study pioneered by van Ham and Rogowitz [vHR08]
can provide particularly important formative input for network layout algorithm design.
In such studies participants are asked to manually draw or edit graphs. Their drawings
may reveal the existence of aesthetic criteria not previously considered and also provide
insight into how people trade off the different competing criteria.

These studies of human-composed network layout have reported a number of findings
about human preferences for layout that have not yet been incorporated into algorithms.
In particular, van Ham and Rogowitz found that people like to arrange “clusters” in graphs
such that the edges form a convex boundary. Dwyer et al. [DLF+09] found that layouts
with low stress were strongly preferred over layouts with large variance in edge lengths.
The same study also found that users strongly preferred force-directed or user-generated
layouts that resemble force-directed layout over an orthogonal diagram produced by the
GIOTTO-Kandinsky algorithm (as implemented in the yFiles library).
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Most recently Purchase et al. [PPP12] asked participants to draw a graph specified by
an adjacency matrix using a graph drawing sketch tool. They found that edge crossings
were avoided and that grid-like layouts were preferred. They also found that clusters were
emphasised and that edge lengths were relatively uniform.

However, while the few previous such studies [vHR08, DLF+09, PPP12] are certainly
relevant to understanding what humans like in orthogonal network layout, none considered
orthogonal connector routing. We therefore conducted a human-composed network layout
study specifically designed to identify the factors that humans regard as important for
good orthogonal layout.

4.2 Experimental Design

Like [DLF+09, PPP12] our study had two stages. In Stage A participants were asked to
manually lay out some small graphs, starting from an initial messy layout. This allowed
us to see what kinds of layout people created, and by what process. In Stage B (different)
participants were asked to rank the manual layouts. This allowed us to identify the manual
layouts that really were regarded as being of high quality. We also included the initial
messy layout and a layout automatically generated by yFiles in this ranking.

4.2.1 Stage A

Apparatus & Materials: Participants were asked to manually improve the layout of 8 small
graphs. The initial layouts are shown in the leftmost column of Figure 4.1 while other
columns show some of the manual improvements. The graph stimuli had between 4 and 13
nodes and the initial layout was quite messy with many bends and crossings. Small graphs
were used because it was unrealistic to require participants to spend the large amount of
time needed to manually layout graphs with more than this number of nodes.

To edit the layout participants used an easy-to-use web-based interactive layout tool
explicitly designed for manually editing orthogonal graph layouts. The tool, also called
Orthowontist, was programmed in HTML5/JavaScript. It allowed the user to move nodes,
to add, delete or move bend points in the orthogonal connector routes, and to change the
position in which a connector enters the node. The tool logged editing actions and their
time as well as recording the final layout. See Figure 4.2.

Participants: The study was advertised on Monash Memo, a university-wide bulletin.
Seventeen participants undertook the study and all completed it. Three $50 gift cards
were offered as incentive, and participants were instructed that they would win one of
these if their layouts were ranked in the top three in Stage B of the study.

Procedure: Participants completed the study online, with the graph editing tasks tak-
ing an average 15 min 6 sec in all. This stage of the study had four components:

1. After reading an explanatory statement and signing a consent form participants
completed a short questionnaire to ascertain their prior experience with node-link
diagrams. The study was done anonymously, but participants were also asked if they
wished to leave contact details in case they won one of the gift cards.

2. The participants completed training in the use of Orthowontist.

3. In the main part of the study the participants were presented in turn with the 8
graphs in random order. Participants were asked to edit each diagram until they
felt that it “looked good” and clearly conveyed the connections between the nodes.
They were asked to imagine that the diagram would be used to convey information
and should be clear and readable. Participants were instructed that the experiment
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Initial Human 17th Human 16th Human 2nd Human 1st yFiles

Graph 1

µ̄: 0.00 0.00 0.00 0.51 0.53 0.51

Graph 2

µ̄: 0.02 0.02 0.09 0.57 0.58 0.25

Graph 3

µ̄: 0.00 0.00 0.00 0.59 0.69 0.33

Graph 4

µ̄: 0.00 0.00 0.00 0.58 0.59 0.21

Graph 5

µ̄: 0.00 0.00 0.07 0.60 0.63 0.63

Graph 6

µ̄: 0.02 0.05 0.02 0.55 0.66 0.15

Graph 7

µ̄: 0.00 0.00 0.03 0.63 0.64 0.63

Graph 8

µ̄: 0.00 0.00 0.02 0.61 0.68 0.61

Figure 4.1: The 8 graphs and some of their layouts from the study. At left is the initial layout. The next 4
columns show the two worst and the two best manual layout. The final column shows automatic layout from yFiles.
µ̄ = normalised inverted mean rank (see Section 4.3.3). Best possible value is 1, worst possible 0. Means in boxes
indicate best actual mean rank.
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(a) Bend point “snap-to” when drag-
ging a node

(b) Dragging an edge

Figure 4.2: The Orthowontist online editor. We considered existing editors yEd and MS Visio, but found
the controls for editing orthogonal connectors to be overly complex, so devised the simple interface employed in
Orthowontist.

was not timed, and they could take as long as they liked. Once they were satisfied
with the layout they moved to the next graph.

4. Finally the participants were asked to write down what their goals were when im-
proving the layout of the networks.

4.2.2 Stage B

Apparatus & Materials: In the second stage participants were asked to choose the best
layout obtained from Stage A for each of the 8 sample graphs. In addition to the seventeen
human-made layouts of each graph, we also included the original messy layout, as well as
a yFiles layout computed for that graph by the classic orthogonal layout command in
the yEd diagram editing software (version 3.9.2) with default settings.1. There were thus

eight graphs g1, g2, . . . , g8 with nineteen layouts each. We denote by L
(i)
j layout j of graph

gi, where i ∈ {1, 2, . . . , 8}, and j ∈ {0, 1, . . . , 18}, with j = 0 meaning the original messy
layout, j = 18 meaning the yFiles layout, and j ∈ {1, 2, . . . , 17} meaning the layouts
created by the seventeen human respondents of Stage A.

Because of the large number of graphs to compare we used a tournament structure to
identify the best layout. This meant that participants were only required to vote for the
best layout out of the three presented to them in each match of the tournament. We wrote
a web-based tournament tool so that the study could be conducted online. See Figure 4.3.

Participants: The study was advertised on Monash Memo. It was completed by 66
participants. A $50 gift card was offered as incentive, and it was explained that the
winner would be the participant whose choices were the closest to the aggregate choices,
thus that in order to win your best strategy was to choose the layouts which you thought
other participants would also choose.

Procedure: The survey was conducted online. Upon loading, the tournament software
organised the human-made and yFiles layouts for each graph gi into a tournament struc-

ture with random seeding; i.e. the eighteen layouts of positive index L
(i)
1 , L

(i)
2 , . . . , L

(i)
18 were

1The yFiles orthogonal layout algorithm has many options. After experimentation we came to the
conclusion that the developers have already tuned the default settings to give best all-around results. For
this reason, and also for easy reproducibility, we chose to use default settings across all graphs used in our
studies.
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Figure 4.3: An example tournament for one of the eight graphs, and for a single participant of Stage B.
Participants were not presented with a figure like this, but were instead simply shown three layouts at a time,
constituting each match of the tournament. For each participant the “seeding” of the tournament was randomised,
which in terms of this figure means that the order of the layouts in the far-left and far-right columns was random.
The seventeen human-made layouts and the yFiles layout entered the tournament on equal footing, while the
original messy layout received a “bye” to the final round, as a sanity check.
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shuffled into a random order to make the seeding of the tournament. For each match of
the tournament the participant was presented with three layouts and asked to choose the
best one. The tournament thus fell into three rounds, with six matches in the first, and
two matches in the second, at which point the two best layouts among the eighteen of pos-
itive index had been chosen. For the final round these two layouts were pitted against the

original messy layout L
(i)
0 . Participants spent an average of 6.57s per choice (discounting

outliers of one minute or longer), and the entire survey took an average of 7 min 53 sec to
complete.

In order to weed out “mindless clicking” from our results we considered whether any
participant consistently selected the first, second, or third layout presented to them with
excessive frequency. We found that for 65 of the 66 participants, no single choice (first,
second, or third) was selected more than half the time. However, for the 66th participant
the third layout was chosen 88 percent of the time. It seemed reasonable therefore to
exclude this one participant, but keep all of the other 65. This decision was reinforced when
we observed that the choices of this one rogue participant also had the lowest correlation
with the aggregate choices out of all 66.

4.3 Results: Aesthetics

In this section and the next we analyse what we call the “static data”, meaning the final
layouts completed in Stage A of the study, and we see how the rankings established in
Stage B correlate with various layout metrics such as stress, symmetry, and others. In
Chapter 9 we review the “dynamic data”, meaning we consider how these same layout
metrics varied over time as our participants created their layouts. Thus, the purpose
of the present section is to learn something about what a final layout should look like,
while in Chapter 9 we instead seek to learn something about how human beings go about
creating such layouts. The present section is concerned with aesthetics, while Section 4.4
is concerned with perceptual organisation.

4.3.1 Questionnaire

In response to the familiarity questionnaire of Stage A, 100% of participants said they were
familiar with node-link diagrams, 94% said they had used a node-link diagram created by
someone else, and 59% said they had created a node-link diagram in order to convey
information to others.

In the answers to the post-task question about their aims when manually laying out
the graphs, many participants mentioned untangling the graph and removing crossings;
this seemed to be the most basic aim. Some mentioned symmetry, overall shape, balance,
and trying to lay it out on a grid. Another mentioned “layout the less connect[ed] node[s]
on [the] outside in a diagram.” See Appendix C for the complete responses.

4.3.2 Time

Excluding outlying inter-drag pauses of a minute or longer, the average time spent editing
each graph ranged from 1 min 4 sec (Graph 1) to 3 min 22 sec (Graph 5), with an overall
average of 1 min 53 sec per graph.

4.3.3 Rank

Based on the tournament results in Stage B we computed the mean rank of each of the
19 layouts for each of the 8 stimuli/input graphs. Equal ranks were averaged so that the
winner of a tournament received rank 1, layouts that lost in the final round rank 2.5 each
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Figure 4.4: Overall, arrangements like that on the right where trees were placed on the outside of the layout
were preferred over arrangements like that on the left, where trees were placed in inner faces.

Table 4.1: Pearson’s correlation coefficient between normalised inverted mean rank µ̄ and various indicators of
the quality of a layout. This table shows mostly positive correlations, indicating features that make a better layout.
See Table 4.2 for negative correlations. Single star * means significance at p = 0.05 level. Double star ** means
significance at p = 0.01 level. A ‘–’ indicates a feature not applicable to that graph.

Compactness Gridiness Symmetry # Outer trees
Graph 1 0.734** 0.517* 0.662** –
Graph 2 0.725** 0.658** 0.618** 0.148
Graph 3 0.687** 0.623** 0.851** –
Graph 4 0.695** 0.883** 0.803** 0.740**
Graph 5 0.870** 0.805** 0.663** -0.055
Graph 6 0.698** 0.698** 0.625** –
Graph 7 0.703** 0.712** 0.866** 0.491*
Graph 8 0.759** 0.754** 0.856** 0.749**

(the mean of 2 and 3), layouts losing in the second round rank 6.5 each (the mean of
4, 5, 6, 7, 8, 9), and layouts that lost in the first round received rank 14.5 (the mean of
10, 11, . . . , 19). See Figure 4.3. These ranks were averaged over all participants to compute
the mean rank µ for each layout of each graph. This was then adjusted to a normalised
inverted mean rank µ̄ = 1−(µ−1)/13.5 ranging from 0 to 1, with 1 being the best possible
score, and 0 the worst. Figure 4.1 shows the original layout, the two best and two worst
manual layouts for each of the input graphs, as well as the yFiles layout.

4.3.4 Analysis

Our analysis identified nine significant results which we will denote R1-9 in this and later
chapters of the thesis. See Appendix D for the definitions of our metrics. The first two
findings are novel:

R1: Users like trees placed outside. To be precise, users largely prefer that the
maximal acyclic components be placed outside the graph and not in inner faces. See
Figure 4.4. This is in line with users wishing to separate clusters [vHR08, PPP12] and is
supported by the positive correlations seen in the “# Outer trees” column in Table 4.1.
It is also consistent with users wishing to decrease stress in the graph.

R2: Users create “aesthetic bend points”. In contrast to previous research, we
observed that while bends overall were correlated with a poor ranking, nevertheless certain
bend points serving an obvious (to us) aesthetic purpose were present in most of the top-
ranked human layouts. This is true for all except Graph 4 in the ‘Human 1st’ column
of Fig. 4.1. In particular unnecessary bend points appear to have been introduced to
emphasise symmetry or to ensure that if a node has two edges they are on opposite sides
of the node, perhaps to ensure continuity in path following. See Figure 4.5.
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Table 4.2: Pearson’s correlation coefficient between normalised inverted mean rank µ̄ and various indicators of
the quality of a layout. This table shows mostly negative correlations, indicating features that make a worse layout.
See Table 4.1 for positive correlations. Single star * means significance at p = 0.05 level. Double star ** means
significance at p = 0.01 level. A ‘–’ indicates a feature not applicable to that graph.

# Crossings # Bend points Seg Length Std Dev Stress
Graph 1 -0.427* -0.705** -0.339 -0.038
Graph 2 -0.253 -0.630** -0.411* -0.565**
Graph 3 -0.436* -0.508* -0.798** -0.734**
Graph 4 – -0.666** -0.813** -0.885**
Graph 5 -0.511* -0.569** -0.614** -0.563**
Graph 6 – -0.048 -0.602** 0.212
Graph 7 -0.586** -0.626** -0.693** -0.708**
Graph 8 -0.660** -0.733** -0.863** -0.898**

Figure 4.5: Users frequently seem to introduce “aesthetic bend points” i.e. bends in connector routes that allow
greater symmetry or allow nodes of degree two to have their edges on opposite sides of the node.

Furthermore we found correlations (Table 4.1) showing that user preference is posi-
tively correlated with several metrics, whose precise definitions are given in Appendix D:

R3: compactness

R4: grid-like node placement (“gridiness”)

R5: symmetry

and negatively correlated (Table 4.2) with:

R6: edge crossings

R7: edge bends

R8: standard deviation of edge segment length

R9: stress

Results R3 through R9 accord with the conclusions of earlier studies [vHR08, DLF+09,
PPP12].

Our experiment confirmed that manual layout leads to quite a different style of layout
than that computed by the most widely used orthogonal layout algorithm. Furthermore
humans significantly prefer the best human layout (µ̄ = 0.621) to that produced by yFiles
(µ̄ = 0.415), as confirmed by a Wilcoxon signed rank test with p = 1.286e-9.

Trade-offs: We believe an important reason why manual layout is preferred is its use
of trade-offs. Current algorithms for orthogonal layout are designed to first minimise
edge crossings, then bend points, and finally area, whereas humans are more flexible and
will keep edge crossings and bends if this reveals symmetries, separates clusters, reduces
segment length or improves compactness.

4.4 Results: Perceptual Organisation

One of the hallmarks of hand-made layout is the presence of special patterns and arrange-
ments of subgraphs, i.e. the perceptual organisations introduced in Section 2.3.1. These
arrangements tend to emphasise something about the structure of the graph, and they
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Figure 4.6: Links (blue nodes) can form both open chains (as in the letters ‘R’, ‘T’, and ‘H’ above) and closed
chains (as in the letter ‘O’). A closed chain must form a connected component unto itself, and is a special case that
will not often concern us.

exhibit a clear concept and design. Meeting our expectations, these sorts of arrange-
ments were abundant in the more highly ranked hand-made layouts in our experiment. In
particular we note three kinds of organisational patterns: chains, trees, and circuits.

Chains

The simplest perceptual organisation is the alignment—horizontal or vertical—of a sub-
structure we will call a chain. To define this we introduce the notion of a link, by which
we mean simply any node of degree 2. A chain is then a maximal connected subgraph
consisting entirely of links.

Chains come in two varieties: closed (forming a loop) and open (connecting to other
nodes at each end). To make these notions precise we introduce some definitions. If H
is any subgraph of a graph G, then by the boundary of H we mean the set of all nodes
in G \ H that have a neighbour in H, and we denote this2 by ∂H. By the closure of a
subgraph H we mean its union with its boundary, H ∪ ∂H. Finally then, a closed chain
is one that equals its own closure, while an open chain is one that does not. The former
must be a closed cycle of links and must form a connected component unto itself, while
the latter must connect at each end to a node that is not a link. See Figure 4.6.

Aligning the nodes of an open chain horizontally or vertically seems a natural way to
emphasise and exhibit this structure. Indeed, we found that this was a common feature
of the preferred layouts of Graph 4 for example, which featured the longest open chain of
any of the eight graphs (Figure 4.7).

Trees

We have already considered trees—maximal acyclic subgraphs—and observed that users
prefer for these to be placed outside the graph, not inside. In some cases, such as Graph 3
in our study, the entire graph may itself be a tree. What we want to now consider is the
shape trees are given in highly-ranked layouts.

In the case of Graph 3 a layout emphasising the hierarchical structure of the tree was
strongly preferred over all others (Figure 4.8a).

On Graphs 7 and 8 a layout employing a similar hierarchical structure for a subtree
ranked among the top four hand-made layouts. More highly ranked layouts of these graphs
gave the subtree a less regular hierarchical structure. See Figure 4.8.

Circuits

Following Tutte [Tut60], a path in a graph G is a finite sequence

P = 〈v0, e1, v1, e2, . . . , ek, vk〉
2We use a conventional notation from point-set topology for denoting boundaries. See [Mun00].
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Figure 4.7: While the sixth best (lower right) layout of Graph 4 aligned the longest chain vertically, the three
highest ranked layouts of that graph each aligned it horizontally.

(a) Graph 3, best layout (b) Graph 3, 2nd best layout (c) Graph 3, 3rd best layout

(d) Graph 7, best layout (e) Graph 7, 2nd best layout (f) Graph 7, 4th best layout

(g) Graph 8, best layout (h) Graph 8, 2nd best layout (i) Graph 8, 3rd best layout

Figure 4.8: Hierarchical configuration for a subtree was often found in highly ranked layouts. Figure 4.8a, the
single highest ranked layout in the entire study, exhibits a clear schematic expression of the hierarchical structure of
the tree. A similar formation is present in half of Figure 4.8c. For Graph 7 a layout featuring this kind of structure
(Figure 4.8f) was ranked fourth; it is possible that its lack of compactness hurt its rankings. A similar layout came
in third for Graph 8 (Figure 4.8g). For both Graphs 7 and 8 the two top-ranked layouts organised their subtrees
neatly, but did not give them such a pronounced hierarchical structure. They were also very compact.
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having at least one term, in which the vi are vertices and the ej edges of G, and where
ei = (vi−1, vi) for 1 ≤ i ≤ k. The path P is degenerate if k = 0. It is circular if it is
non-degenerate and all its terms are distinct except that vk = v0. The edges and vertices
of a path P define a subgraph G(P ) of G, and we call G(P ) a circuit of G if P is a circular
path.

In many of the highly ranked layouts in our study, circuits were configured as rect-
angular faces. Several good examples are present in Figures 4.7 and 4.8, especially if we
allow bend points to count among the “vertices” defining such a circuit. This appears
to be another way in which human layout designers may organise a subgraph in order to
emphasise its structure.

4.5 Conclusions

The experiment demonstrated how people may trade off various aesthetic concerns against
one another. For example the favourite layout of Graph 1 features a deliberate edge cross-
ing and four deliberate edge bends, all (apparently) in the service of symmetry. This
is quite different from what happens in the Topology-Shape-Metrics layout system (Sec-
tion 2.4), which puts a fixed hierarchy on aesthetics, first minimising crossings, then bends,
and finally maximising compactness. In designing a more human-like orthogonal layout
algorithm in Chapter 5 we will try to take a flexible approach to aesthetics, in which they
can be traded off in a similar way.

Meanwhile the observed perceptual organisations of chains, trees, and circuits give us
another layout goal that a more human-like algorithm must attempt to achieve.

Finally, we recall that as our study participants created their layouts the Orthowontist
software recorded the editing process. This means that in addition to what we have learned
in this chapter about the layout product, there also may be something to be learned by
observing the process. In the flow chart of Figure 1.3 we named the former the static
data and the latter the dynamic data of the Orthowontist experiment. The goal of the
next chapter is to design a new orthogonal layout algorithm inspired by the findings from
the static data, but we will return to the dynamic data in Chapter 9 when we develop
interactive layout editing tools.
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Recall that in Section 2.3.1 we reviewed the complementary layout concerns of aes-
thetics and perceptual organisation. Based on the findings of the study from Chapter 4
we can now go beyond the preliminary work of Chapter 3 in addressing both these aspects
of layout. This means devising a new orthogonal layout algorithm based on the ideas from
Chapter 3 which should (a) create the same sorts of perceptual organisations that people
create when working by hand, and (b) trade off the various aesthetic concerns against
one another the way human beings do. For example it should sometimes deliberately cre-
ate connector bends in service of other considerations like stress minimisation, symmetry,
or even perceptual organisation itself. The new algorithm we develop is called HOLA:
Human-like Orthogonal Layout Algorithm.

We start in Section 5.1 by choosing ACA as the foundational technique from Chapter 3
on which to build, not GS or NS. Then in Section 5.2 we consider how the ACA process
can and should be generalised in order to reach the kinds of layout goals we now want
to achieve. Next we get straight to the definition of the HOLA algorithm in Section 5.3
without further motivational discussion. The algorithm design is based on the findings
of Chapter 4, and this constitutes Step 2 of our human-centred methodology: designing
an algorithm based on the findings of the formative user study. However, as explained
in Section 1.6, it will not be until Chapter 7 that we articulate a way of achieving this
second step systematically. This is the natural order of development, since the system of
that chapter will be based on an analysis and generalisation of the algorithm developed
in this one.

59
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5.1 Configuring with Constraints

If we apply pure stress-minimising layout as well as the three techniques NS, GS, and ACA
from Chapter 3 to each of the eight graphs from the Orthowontist study, the results appear
as in Figure 5.1. While some good grid-like aesthetics are present in some of these layouts,
it is clear that something more will be needed in order to create perceptual organisations.

To begin with, consider chains. As Graph 4 demonstrates, merely snapping nodes to
the nearest grid point (GS), or snapping them into alignment with nearby nodes (NS), can
easily fail to align the nodes of a chain. Next consider trees. Graphs 3 and 7 for example
confirm that snap forces cannot be counted on to create a hierarchical arrangement like
in the top-ranked human layout of Graph 3 (see Figure 4.1).

ACA fails to organise trees hierarchically too, but it offers a more promising starting
point than NS or GS. It is an iterative process in which we repeatedly pause to analyse the
current layout before choosing the next constraint to be added. It is natural to generalise
this by making the analysis more involved. The algorithm can look for trees and choose
constraints to put them into the desired shape, and do likewise for chains, cycles, or any
other substructures that are meant to be given some special perceptual organisation. On
the contrary it is in no way clear how snap forces could be devised to achieve something
like this. We therefore choose the ACA procedure as the template on which to develop
the new algorithm, HOLA.

5.2 Generalising ACA

The ACA algorithm uses very simple criteria for selecting edges for alignment, and for
choosing whether to align horizontally or vertically. Setting aside the various refinements
we considered in Chapter 3 the basic idea of ACA is: among the edges that have not yet
been aligned find one that is closest to aligned, either horizontally or vertically, and apply
a constraint to align it in that way if possible.

While we found that this simple greedy application of constraints can significantly
improve the grid-like aesthetics of an initially stress-minimal network layout, it is clear that
we will need to do something more deliberate in order to create perceptual organisations
or to make trade-offs between competing aesthetics. But to merely say that the simple
approach of ACA is no longer good enough and that we now need “something more” is
too open-ended. We therefore pause in this section to in a sense work out “the rules of
the game”. In other words we wish to understand what it means to generalise ACA, and
what are the limits and boundaries that we want to stay within.

5.2.1 Goals

Since the only goal of ACA is to align edges, we may say that the edges of the graph are
its targeted substructures. Now that we are interested in creating perceptual organisations
we must target larger substructures. We must consider a whole chain, a whole subtree,
a whole cycle. As ACA used the current position of a given edge as a guide in choosing
which alignment it should be given (horizontal or vertical), we may want to use the current
positions of the nodes to help us decide on a way of organising a given substructure.

The approach of ACA may be generalised in the pursuit of pure aesthetic goals as
well, not just the goal of creating perceptual organisations. In order to achieve the many
alignments that make the layout grid-like and well suited for orthogonal connector routing,
we may try working node-by-node, rather than edge-by-edge. In other words instead of
picking an edge and aligning it, we can pick a node and align up to four of its neighbours
with it (one in each compass direction).
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SML NS GS ACA
Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6

Graph 7

Graph 8

Figure 5.1: The eight graphs from the Orthowontist study laid out by pure stress-minimising layout (SML),
NodeSnap (NS), GridSnap (GS), and Adaptive Constrained Alignment (ACA)
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Thus, as we generalise the ACA process we see a generalising of the set of goals that
we can address at each step of the algorithm. Instead of just asking which is the next
edge to be aligned, we might ask which node should be aligned with its neighbours on
all four sides, or which tree should be laid out hierarchically, or which chain should be
straightened, or which cycle should be arranged as a rectangle.

5.2.2 Ordering

We know from our study (Chapter 4) and that of Dwyer et al. [DLF+09] that people like
low-stress layouts. In ACA we tried to preserve the stress-based shape of the layout by
applying the right constraints: When aligning an edge we asked with which axis it was
already most nearly aligned, and then aligned it with that one. As we consider designing a
more powerful algorithm, how much farther from the given position should we be willing to
stray? That is, in applying constraints, which of the “choices” made by stress minimisation
should we be willing to convert?

A useful guideline may be to refrain from altering the ways in which nodes have been
ordered by stress minimisation, and there are two orderings to consider: cyclic ordering,
and orthogonal ordering.

Cyclic ordering means the same thing as the rotation system we looked at in Sec-
tion 2.4.1: the clockwise ordering of the neighbours of each node. As we saw, to alter the
rotation system is to alter the topological equivalence class of the layout. That suggests
that this is a major change, and perhaps one that we should avoid making lightly. In fact,
as Figure 5.2 illustrates, changes to cyclic ordering are truly ill-advised from the perspec-
tive of stress minimisation. They can create sharp rises in stress that may be difficult or
impossible to dissipate, depending on how many constraints are already in force in the
layout. We keep this in mind as a guideline when designing HOLA.

As for orthogonal ordering, this simply means the ordering induced on a set of nodes
by considering one coordinate, x or y. In other words it is their left-to-right ordering or
top-to-bottom ordering in the layout. For similar reasons to those illustrated in Figure 5.2,
we should try to refrain from altering the orthogonal ordering of any two nodes. This is
not to suggest an outright ban, but that this sort of operation should be used sparingly.

5.2.3 Recourse

In ACA, when a chosen edge alignment proved impossible to enforce (due to conflicting
constraints already in place), we simply abandoned it and moved on to consider another
edge. In a new algorithm with more complex goals there might be more room for taking
recourse. A complex goal (such as giving a subgraph a good perceptual organisation, or
aligning a high-degree node with four of its neighbours, one on each side) could involve a
“Plan A” which should be attempted first, but if this fails due to conflicts with existing
constraints then there could be recourse to a “Plan B” rather than abandoning the goal
altogether and moving on to another.

5.3 The Steps of HOLA

HOLA has 4 main steps as listed in Figure 5.3 and illustrated in Figure 5.4(a–f). Recall
our aesthetic goals R1-9 from Section 4.3.4. Since symmetry (R5) is easy in tree layout
(Step 3a), and users like trees on the outside (R1), we decided to start by decomposing
the graph into trees and core (see Section 5.3.1), also reasoning that stress-minimisation
could better reveal symmetries (R5) in the core once the trees had been removed. The
flexibility of CSML allows us to then combine a series of new ideas and generalisations of
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(a) Over the space of all layouts
for this simple X-shaped graph
there are many local stress min-
ima, but they are all equivalent
up to translation and rotation of
the graph, and permutation of its
four arms. Stress-minimising lay-
out easily finds one of these min-
ima, and node A happens to wind
up west of node B.

(b) Suppose we now use the
PROJECT operation to impose
the constraint that node B instead
lie west of node A. This changes
the cyclic ordering of the neigh-
bours around the central node,
and is likely to move the layout
into a different stress basin.

(c) Indeed, in this case an applica-
tion of DESCEND now causes the
entire “A arm” and “B arm” of
the X to swap positions fully.

Figure 5.2: Changing the cyclic ordering of the neighbours of a given node via PROJECT (Section 2.2.4) can
move the layout from a low point in one stress basin to a high point in a different basin, often necessitating drastic
rearrangement of the graph in order to regain low stress. At best, an application of the DESCEND operation is
required. At worst, the layout may become hopelessly tangled.

1. Topological decomposition of graph into trees and core (Figure 5.4a)

2. Layout of the core (Figures 5.4b, 5.4c):

(a) Stress-minimising layout of core (P1:R3,5,6,8,9)

(b) Greedy orthogonalisation of layout (P2:R2,4,9)

(c) Orthogonal edge routing (P2:R6,7,8)

3. Tree layout and placement (Figures 5.4d, 5.4e):

(a) Symmetric layout of each tree (P3:R5)

(b) Planarisation of core

(c) Insertion of trees into the core (P3:R1)

(d) Stress-minimising layout (P1:R9)

4. Opportunistic improvement (Figures 5.4e, 5.4f):

(a) Opportunistic alignment (P2:R4)

(b) Node distribution by neighbour stress (P2:R3,8)

(c) Rotation (P2)

(d) Removal of dummy nodes and final orthogonal edge routing

Figure 5.3: Steps in the HOLA Algorithm, with cross-reference to our design principles P1-3 (see below) and
aesthetic goals R1-9 (enumerated in Section 4.3.4)
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(a) Step 1: Trees (dark grey
nodes) will be pruned.

(b) Step 2: Stress-minimal layout
of core. Dark grey nodes are the
roots of trees.

(c) Step 2 (cont.): Core orthogo-
nalised, edges routed, graph pla-
narised.

(d) Step 3: Two trees placed, the
tree rooted at the dark grey node
is next. It could be placed NW,
SW, or E.

(e) Step 3 (cont.) and 4: All trees
placed. Note: the two dark grey
nodes are almost but not quite
aligned.

(f) Final layout. Nodes that were
nearly aligned have been exactly
aligned. Tree nodes have been
reinserted.

Figure 5.4: HOLA applied to a small example graph illustrating the four main steps.

ACA in Steps 2, 3, and 4 to further address the aesthetic goals (R1-9), as examined in
greater depth below.

The design of the algorithm is guided by the following three Principles, and Figure 5.3
also indicates in which steps these are addressed.

P1: Use stress-minimisation (R9) to untangle the graph (R6) and reveal underlying
symmetries (R5) as well as encouraging uniform edge length (R8) while keeping the
layout compact (R3). Also, stress is always considered as one of the optimisation criteria
throughout further modifications (R9).

P2: Apply incremental extensions/improvements to the existing layout, like an oppor-
tunistic human editor. In particular this is used to “tune” bend points (R2) and to
achieve grid-like alignments where possible (R4).

P3: Subgraphs with tree structure are treated specially such that they can be arranged
symmetrically (R5) and their placement can be controlled precisely (R1).

The sections below provide a high-level description of each of the steps of HOLA.

5.3.1 Topological decomposition

Step 1 is a peeling process [AMA07, AvHK06, Sei83] where all leaves are removed from the
graph G repeatedly until none remain. The leaf nodes are added to a new graph H and
reconnected to one another as they are added. When no leaves are left in G the remaining
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subgraph C is called the core. In Figure 5.4a the dark grey nodes will be pruned by this
process. Finally if L is the set of nodes in H, and ρ : L → V maps each pruned leaf
node to the unique node to which it was attached at the time that it was pruned, then
we form the set R = {ρ(`) : ` ∈ L} \L of root nodes, and add to H a copy r′ of each node
r ∈ R, connecting it to each ` for which ρ(`) = r. The connected components of H then
constitute some t trees T1, T2, . . . , Tt, t a non-negative integer equal to the size of the set
R, and each tree Ti has root node r′i ∈ H which is a copy of a node ri ∈ C. See Figure 5.5.

If we have t = 1 and C = ∅, i.e. the graph G is in fact a tree, then we simply apply our
symmetric tree layout procedure (see Section 5.3.3) and terminate. (See for example the
HOLA layouts for Graphs 3 and 6 in Figures 6.12 and 6.13 in the next chapter.) Otherwise
we proceed with Step 2, layout of the core.

5.3.2 Layout of the core

(a) Layout of the core graph C computed in Step 1 begins with a simple unconstrained
stress-minimising layout (DESCEND), followed by the application of overlap removal con-
straints (OVERLAP-REMOVAL from Section 2.2.4).The first of these steps gives the nodes
a natural and low-stress distribution in the plane (Figure 5.4b). As we begin to orthogo-
nalise the layout we will try to keep the stress low, in service of P1.

By allowing a simple application of DESCEND to decide the overall distribution of the
nodes in the plane, we are making a trade-off between the goals of minimising crossings and
minimising stress. This is motivated by our findings on human layout from Section 4.3.4. It
is an essentially different approach from that of Topology-Shape-Metrics, which prioritises
crossing minimisation over all other aesthetics.

(b) Orthogonalisation proceeds in two parts, which we call node configuration and chain
configuration. The process is like ACA but with generalised goals, as discussed in Sec-
tion 5.2.1.

Node configuration. During node configuration we sort all nodes v of degree 3 or higher
by falling degree, and visit them in order. For each node v we will align at most one of
its neighbours in each of the four cardinal compass directions, north, south, east, and
west relative to v, and we call this a configuration of v. We have determined by exper-
iment that configuring the highest degree nodes first tends to result in more favourable
configurations, i.e. in a greater total number of alignments. Meanwhile links (or degree-2
nodes, as defined in Section 4.4) are left out of this process entirely. Recall that the max-
imal subgraphs consisting entirely of links are called chains. These are configured in the
following step, according to different principles (see below).

As we visit each non-link node v we attempt to assign as many as possible of its
neighbours to the four compass directions, favouring an assignment that minimises the
total angular displacement of these nodes relative to v. The configuration is achieved
by projecting onto separated alignments, as in Section 3.3. Following principle P1 and
the discussion in Section 5.2.2, we prohibit any configuration that would alter the cyclic
ordering of the neighbours of v. We also prohibit reversals of the orthogonal ordering
of any neighbour with respect to v. E.g. if u was a neighbour of v with ux < vx before
configuration, then we would require ux ≤ vx after configuration; in other words u could
not be assigned east. If in addition we had uy > vy then u also could not be assigned
north.

As was the case with the ACA process, we must ensure that we do not create and
enforce edge overlaps. Therefore as constraints accumulate we will get into situations
where the ideal configuration, or “Plan A” for a given node would conflict with existing
alignments. In such a situation we compute the next best configuration (“Plan B”) that
will work, as discussed in Section 5.2.3
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Figure 5.5: The peeling process, and assembly of trees with copies of root nodes. In this case we have R =
{D,F,X}\{U, V,X, Y, Z} = {D,F} so the two root copies D′, F ′ are added to H. Then the connected components
T1, T2 of H are the two trees, while the core C is left over from the original graph G.
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See for example Figure 5.6a. The optimal configuration around centre node c, i.e. that
which minimises angular displacement, would assign u, v, w to west, north, east, re-
spectively. But if (c, w) and (u, x) are already horizontally aligned, and (w, x) vertically
aligned, then this configuration is impossible. In a case like this HOLA correctly recog-
nises that assigning u, v, w to south, west, east (resp.) is the next best configuration.
That is, it has the next smallest total angular displacement of the neighbours of c, while
still maintaining the existing orthogonal and cyclic ordering.

As we greedily assign the best configuration we can to each non-link node, we use the
PROJECT operation to apply each new set of constraints. In general this causes stress
to climb, and step by step the geometry departs from a stress-minimal position. Due
to our decision not to reverse orthogonal orderings (Section 5.2.2) the current geometry
dictates which subsequent node configurations we are willing to attempt. Therefore if for
any node v we find that none of the eligible configurations is feasible (i.e. consistent with
existing constraints) then we apply DESCEND and try again. The minimisation of stress
may present us with a different set of eligible configurations to try. We only do this once,
and if v again fails to take any configuration then we move on to the next node. We will
have more to say about this kind of interplay of the PROJECT and DESCEND operations
in Chapters 6 and 7.

When we have visited all non-link nodes and attempted to configure each one, we apply
a final DESCEND to complete the node configuration step. This is because the chains in
the core remain unconstrained, and stress-minimisation will now cause them to settle into
balanced, well-distributed arrangements, smoothing any jagged corners that may have
arisen. This permits us to again honour P1 as we move on to chain configuration, the
second step in the orthogonalisation process.

Chain configuration. Let a chain C be given, consisting of the links v1, v2, . . . , vk, and let
nodes u and w be the outside neighbours of the first and last links v1 and vk, respectively
(so ∂C = {u, v}). Edges e0 = (u, v1) and ek = (vk, w) may or may not have been aligned
already by the node configuration process. For example, v1 might be aligned east of u,
and vk north of w, as in Figure 5.6b. In such a case, choosing where to enforce bends in
the chain is similar to the process of routing an orthogonal connector when the connection
directions at each endpoint are given. As shown in Figure 2 of Wybrow et. al. [WMS10],
the minimal number of bends required, and the direction of each bend (left or right)
depends on the relative positions of u and w as well as the connection directions. If the
edge e0 is not yet aligned we simply consider both of the possible compass assignments of
v1 relative to u that preserve their orthogonal ordering, and likewise with ek.

For a given chain there may be different minimal-length bend sequences, e.g. (R,R,L)
or (L,L,L) as in Figure 5.6c. We evaluate each potential bend sequence by a greedy
process that chooses locally optimal points at which to create each bend in the chain.
Here we depart from the orthodoxy that bend points are always bad, as we consider both
nodes and edges as potential bend points in the chain. According to R2, we believe that a
bend point may be deliberately created in an edge in service of other aesthetic principles,
namely stress-minimisation and symmetry. This is one example of our attempt to follow
P2, and work like an opportunistic human editor.

The basic idea of our greedy process is simple: in order to gauge how suitable an edge
is for becoming a bend point we measure how close its slope is to ±1 in the plane. For a
node we likewise consider the slope of the base of an isosceles triangle with apex at the
node’s centre and with one leg parallel to each of the node’s edges (Figure 5.6d).

The cost of creating a bend at a given edge or node is measured as a certain increasing
function of the difference of the slope at that place from ±1 (sign chosen according to
bend direction), and the cost of a bend sequence is the sum of these costs. We greedily
attempt to choose a minimal-cost bend sequence, and enforce it, aligning each edge of the
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(a) Choosing “Plan B” when locally configuring a node. The pairs
(c, w) and (u, x) are horizontally aligned, while (w, x) is vertically
aligned. The angles α, β satisfy 0 < α < β < π/4.

(b) We must choose the best
place(s) to create orthogonal
bends in each chain, depending on
how it connects to its boundary
nodes.

(c) There may be more than one possible minimal-
length bend sequence.

(d) Determining suitability of a node to become a
bend point

Figure 5.6: Steps in HOLA’s configuration process
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Figure 5.7: An edge routing like that on the left is desirable; a routing like that in the centre cannot be allowed,
since it would cause a node to become a leaf when the graph was planarised, as on the right.

chain vertically or horizontally with new alignment constraints onto which we PROJECT.
After thus processing each chain, the chain configuration step is complete.

As a configurable option the ACA algorithm may be applied to the chains instead of
this process. We have found that this gives better results on large graphs, as will be seen
in our evaluation of HOLA in Chapter 6, but not on small graphs as in the first study.

(c) For the low-density graphs at which our algorithm is targeted (Section 1.5) most of
the connectors will now be mere straight axis-aligned segments as a result of the orthog-
onalisation. However some diagonal connectors may remain, and in Step 2c we compute
an orthogonal routing for each of these using ORTHO-ROUTE (see Section 2.2.4).

By construction every node in the core C has degree at least two, and we take care
to ensure that connectors attach to at least two of the four sides of each node, lest the
node become a leaf in the planarisation of Step 3b (see Figure 5.7). This is important
because subsequent steps operating on the core graph C depend on the assumption that
C contains no leaves.

5.3.3 Tree layout and placement

In this step we now incrementally add the trees back into the core in accordance with P3.

(a) We first determine a layout for each tree Ti. Motivated by the schematic tree config-
urations we considered in Section 4.4 and by the desire to create symmetry, we apply the
symmetric tree layout algorithm of Manning and Atallah [MA88]. Each tree is provision-
ally given south growth direction as in Figure 5.8, meaning that each rank is horizontally
aligned and appears below, i.e. with greater y-coordinate than the prior rank, starting
with the root node r′i. If the tree structure is in fact symmetric with respect to the root
node then the layout will be symmetric about a vertical axis through the root node; oth-
erwise it will be as close to symmetric as possible about this axis in a certain well-defined
sense (namely the “c-trees” [MA88] are paired off about this axis to the extent possible—
see Figure 5.8). The edges of each tree are routed orthogonally [WMS10] with all edge
connections on the sides facing the opposite rank.

(b) Next we determine how to place each tree in the core. We begin by planarising the
core in order to give it a well-defined set of faces into which the trees can be placed. This
is achieved in two passes. In the first pass edge overlaps are removed by first introducing a
dummy node for each bend point of each connector. As a result some pairs of nodes may
now be connected by multiple edges, and in such cases we simply eliminate all but one of
those edges. In the second pass, edge crossings are removed by introducing a dummy node
at each crossing. Because all edge segments are vertically or horizontally aligned, crossing
detection is an easy special case of the O(n log n) Bentley-Ottmann algorithm [BO79].

(c) We are now left with graph P , which is a planarisation of the core graph C, and whose
set of nodes contains that of C as a subset (Figure 5.4c, page 64). In particular each root
node ri for the trees Ti belongs to P . Since P is planar we may compute its set F of
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Figure 5.8: This tree has five “c-trees”, which are the connected components that remain if the root node is
deleted. One of these (the centre one) is unique. The other four pair off into two pairs by isomorphism. The
symmetric tree layout algorithm of Manning and Atallah tries to maximise symmetry by putting the unique c-tree
in the centre while placing those that pair off in corresponding positions on either side.

faces. Step 3c of the layout process now determines how to reattach the trees laid out in
Step 3a to the root nodes ri in P . This means choosing for each tree Ti a tree placement
(f, dp, dg, b), where f ∈ F is a face to which the root node ri belongs, dp and dg are the
placement direction and growth direction, and b is the flip bit.

The placement direction dp is one of the eight compass directions including the four
cardinal directions discussed already, as well as the four ordinal directions, se, sw, nw,
and ne. The growth direction dg is one of the four cardinal compass directions. This
is because while growth is possible only in the cardinal directions, we include ordinal
placement directions dp in order to allow more attachment choices. If dp is cardinal then
dg must equal dp; if dp is ordinal then dg must be one of the two cardinal components of
dp. The flip bit b is a Boolean saying whether the tree should be flipped over the axis of
its growth direction dg. See Figure 5.9.

Note that some placements may require that a face be expanded in order to make room
for the tree, such as any placement in the se direction in Figure 5.9. Such an expansion
can be achieved by the application of suitable separation constraints, which we compute
by the process illustrated in Figures 5.11, 5.12, 5.13, and 5.14.

Because of the need to expand, we make tree placement a greedy process in which
the trees are considered in descending order of the perimeter of their bounding box. The
idea is that this perimeter gives a rough indication of how disruptive any face expansions
are likely to be, and that we are better off making the biggest disruptions early in the
process, rather than late. If we make them early, the first few expansions are apt to provide
sufficient room in neighbouring faces (due to alignments in the core) so that subsequent
tree placements won’t require any further expansion and can be made more quickly. On the
other hand if we make the biggest expansions late in the process, then earlier computation
of small expansions may prove to have been a waste of time. See Figure 5.10.

While we recognise that some expansion will probably be necessary, we want to keep
it to a minimum. Each expansion means an increase in stress. Therefore as we examine
each possible placement (f, dp, dg, b) we attempt to make a choice that will minimise the
increase in stress. Since the expansion can usually be performed in several different ways
we evaluate each option by computing the necessary separation constraints, projecting,
measuring the change in the stress of the graph, and backtracking. In this way tree
placement is guided by P1.

Besides consideration of stress, however, our choice of tree placements is governed by
two configurable flags, one saying whether we will favour cardinal placement directions
dp, and one saying whether we will favour placement in the external face fext, i.e. the
unique unbounded face. Under our default configuration both flags are set to true, with
cardinal placement taking highest precedence, followed by external placement, and with
stress minimisation being considered last.
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(a) Consider a simple planarised core graph (left) with a root
node r, the tree to be placed at r (centre) and the flipped version
of the tree (right). The flip bit b controls whether the tree or
its flipped version will be used. Node r belongs to three faces
(including the external one), making three placement directions
dp possible: ne, se, and west.

(b) If west placement direction
is chosen, then the tree is rotated
so that its growth direction dg is
also west. The tree’s copy r′ of
the root node r is placed directly
over the true root node r.

(c) If ne placement direction is chosen, then the tree can be
rotated into two possible growth directions: north, and east. In
both cases, since we have chosen an ordinal placement direction
the root copy r′ is positioned beside the true root r, not directly on
top of it. Accordingly, the connectors between r and its children
in the tree will be rerouted if either of these placements is chosen.
In all cases the root copy r′ is deleted in the final layout.

Figure 5.9: Tree placement and growth directions
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Figure 5.10: Suppose we are going to place the trees rooted at nodes r and s into faces f1 and f2 respectively,
both with east growth direction. In a case like this our strategy to place larger trees first pays off. For if we place
the tree at node s first then, due to the alignment constraint on nodes a and b, our expansion of face f2 results in
a simultaneous expansion of face f1 providing adequate room for the tree rooted at r. If instead we had placed the
tree at r first then we would still have to spend time figuring out how to expand face f2 for the tree at s.

Favouring of cardinal placement is motivated by the desire for symmetry, and to make
the routing of connectors from the root node to the tree nodes of the first rank easier
(i.e. so that the connectors are shorter overall, and so that there is more room in which to
route them; see Figure 5.9c). Favouring of placement in the external face is motivated by
findings from our formative study. Thus tree placement is also guided by P2.

In Figure 5.4d two trees have been placed already, and their bounding boxes inserted
into the graph temporarily as place holders. The tree rooted at the dark grey node is
to be placed next, and three placement directions dp are possible: sw or e into interior
faces, or nw into the exterior face. Under our default configuration the e placement will
be chosen, since it is the only cardinal direction available.

(d) During the tree placement process the stress of the graph will in general climb as we
PROJECT onto each new set of face-expansion constraints. Therefore after all trees have
been placed (Figure 5.4e, page 64) we perform a DESCEND (Step 3d) to dissipate the
accumulated stress as much as possible.

5.3.4 Opportunistic improvement

The final stage in the algorithm is designed to tweak the layout, ideally leaving no obvious
small changes that would improve it. This consists primarily of alignment and distribution.
Afterwards we add a couple of extra refinements.

(a) We begin in Step 4a with a process that searches for nearby pairs of nodes that are
almost (but not quite) aligned, and it applies constraints to align them. For example in
Figure 5.4e (page 64) the dark grey nodes will be aligned, as in Figure 5.4f.

(b) After addressing alignments we consider the even distribution of nodes. This time
instead of making local refinements we rely on a global stress minimisation step (Step 4b)
in which we modify the stress function to include only those terms corresponding to
neighbouring nodes. We refer to this as neighbour stress, and this step tends to space
sequences of adjacent nodes more evenly by ignoring the effects of long-range forces.
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(a) Suppose a tree rooted at r is to be placed
into this face. A tree rooted at s has already
been placed, and is represented by a box making
room for the tree plus padding.

(b) The tree to be placed requires the space
represented by the box attached to its root node
r.

(c) Using separation constraints between the
nodes belonging to the face, there are various
ways in which we can make room for the new
tree, but all of them require that we push r and
s apart.

(d) Among all the ways we could proceed to
expand the face to make room for the new tree,
here is one. In this case we only needed to work
in the x dimension.

(e) Here is a different way to make room. In
this case we needed to work in both the x and
y dimensions. There remain several more ways
that are not illustrated here. We need some way
to choose the best among the available expansion
options, where “best” means smallest increase in
stress.

Figure 5.11: Expanding a face to make room for a tree placement
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(a) When deciding how to expand a face we may
or may not need to operate in both dimensions
x and y; our first choice is which dimension we
will operate in first. Suppose we choose to work
in the x dimension, meaning that we’re going to
push nodes left and right. In that case we begin
by drawing a vertical line from the base point b
where the tree box meets its root node, to the
distal point d on the opposite side of the tree
box. On this line we mark all the points at which
going any further would cause us to leave either
the tree box or the face. We call these our goal
points g0, g1.

(b) Each goal point provides us with one
option for expanding the face in the chosen
dimension. Let’s begin with g1. We use
the orthogonal connector routing algorithm of
Wybrow et al. [WMS10] with each connector
segment set as an obstacle. This routes a path
from b to g1 without going outside the face. The
vertical segments of this path tell us how to ex-
pand: anything lying to the left of a vertical seg-
ment gets pushed to the left, while anything to
the right gets pushed to the right. Of course,
only objects overlapping the desired tree box
get pushed at all. The result is shown in Fig-
ure 5.11d.

(c) Alternatively, we can try the same thing
with goal point g0. This time the orthogonal
routing algorithm connects b and g0 with a sim-
ple straight line, but the rule is the same: any-
thing to the left goes to the left, while anything
to the right goes to the right.

(d) This time working in the x-dimension is
not enough, and we have to now expand in the
y-dimension as well. The result is shown in Fig-
ure 5.11e.

Figure 5.12: Method for determining the expansion options
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(a) The vertical line segment we drew in Figure 5.12a is
what we call a goal segment. It runs from the base point
b to distal point d. In total, counting both the x- and
y-dimensions, a tree with cardinal placement direction
dp has three goal segments: one axial (in the placement
dimension) and two transverse (in the other dimension).
We find the axial distal point A by moving in the growth
direction dg. We find the transverse distal points T1, T2

by moving in the two perpendicular directions from b, and
again stopping at the boundary of the tree box.

(b) A tree with ordinal placement di-
rection dp has just two goal segments:
one axial and one transverse, since
this time the base point lies at a cor-
ner of the tree box.

(c) We refer to a case as “pathological” if the route from b to the goal point doubles back, i.e. if it
ever goes in the direction opposite the direction from b to the distal point d. In such a case the desired
operation of pushing nodes left and right (or up and down) according to the routing won’t work, so we
simply abandon such cases and opt for a different way of expanding the face. The nearest goal point g0
is always an option, since by definition we have not yet crossed outside the face, and therefore the route
is always a straight line. It is sometimes possible to correct pathological cases by working in alternating
dimensions (e.g. in this figure we could start by pushing obstacles up and down according to the horizontal
segments in the route from b to g1) but we decided to abandon this approach in the interest of speed and
minimal disruption of the existing position.

Figure 5.13: Goal segments and pathological cases
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(a) External face, odd number of crossings. Why
must g1 lie beyond the distal point of the goal seg-
ment? Because the routing from the base point to
g1 must be contained in the external face.

(b) External face, even number of crossings. Why
must g1 lie beyond point c, when the face has already
ended? The problem is that if we merely routed from
b to c, that would tell us to push node u to the right,
and due to non-overlap that would also push node v
to the right, all of which is good, but we would fail
to push node w to the right.

(c) Internal face, even number of
crossings

(d) Internal face, odd number of
crossings, final crossing e = g1

(e) Internal face, odd number of
crossings, no final crossing point e

Figure 5.14: Locating the goal points for a given goal segment is actually not quite as simple as was suggested
in Figure 5.12a. Here is the procedure: Compute the list L = 〈c1, c2, . . . , ck〉 of all points where the goal segment
crosses the boundary of the face. (We can have k = 0, in which case L is the empty list.) If d is the distal end
point of the goal segment (i.e. the end opposite the base point b), add d to the list L. Finally, the ray extending
from b through d and onward to infinity may or may not cross the boundary of the face again, beyond d; if it does,
append the first such crossing point e to the end of the list L. The list L now looks either like 〈c1, c2, . . . , ck, d〉 or
like 〈c1, c2, . . . , ck, d, e〉. In either case, rewrite the list as L = 〈p0, p1, p2, . . . , pn〉. Then the goal points are those
with even index in this listing, i.e. we have the goal points gi = p2i for 0 ≤ i ≤ bn/2c. To illustrate why this works,
there are five cases to consider, determined by the following questions: (1) is the face an internal face or the external
face; (2) is k even or odd; (3) if internal and odd, then is there a final crossing point e (if external and odd then
there must be a final crossing point, since all interior faces are bounded).
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(c) Next, with a view to the aspect ratio of most existing desktop display devices, we
rotate the layout by ninety degrees if its width is less than its height. To make the
rotation direction deterministic we prefer that a majority of trees wind up with south
growth direction after the rotation, rather than north (motivated by the most popular
layout of Graph 3 from the study). Since we must not rotate the nodes themselves (they
may have labels), rotation means that the node positions (but not dimensions) as well
as the constraints holding amongst them, are rotated, and after this we apply another
DESCEND with neighbour stress.

(d) Finally we remove dummy nodes in passing from the planarised graph back to the
original, and perform a final orthogonal routing of the edges. In this step we ensure that
edge routes pass through any bend points deliberately created in the chain configuration
step, but otherwise take this as a final chance for edge routes to be optimised relative to
node positions which in general may have changed since the previous routing.

5.4 Conclusions

In this chapter we designed a new orthogonal layout algorithm, HOLA, informed by the
user study of Chapter 4. It is designed both to create the kinds of perceptual organisation
that people create when working by hand, and to trade off aesthetic concerns as people
do. While based on the idea of the ACA algorithm, HOLA generalises that approach
in several ways, including decomposing and reassembling the graph, and making more
complex constraint choices. Examples of layouts created by HOLA will be presented in
the next chapter, where we compare the new algorithm with the current state of the art
orthogonal layout procedure (Topology-Shape-Metrics) and with hand-drawn layouts.
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Chapter 6

Evaluation of Automatic Layout
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In order to evaluate the human-like orthogonal layout algorithm HOLA developed in
the last chapter we performed a second user study, the normative study in our human-
centred methodology. This extends the formative study of Chapter 4 in three ways.

First, from the previous study we have eight user-generated layouts that were most
highly ranked in the tournament. We can now compare these with two styles of auto-
matic layout: the new HOLA algorithm and the state-of-the-art yFiles implementation
of GIOTTO-Kandinsky. Since the best manual layouts have already been shown to be (on
average) preferred to yFiles, we expect them to again be preferred by participants in a
direct three-way comparison; however, since HOLA is designed to be “human-like” in its
approach to layout, we hypothesise

• (H1) that HOLA’s output will be preferred on average over yFiles, and

• (H2) that HOLA will perform comparably to human layout on the corpus of small
graphs.

Second, the correlations between layout attributes and preference revealed by our first
study (results R1-9 from Section 4.3.4) were observed in small graphs, limited by the
size of graph that could reasonably be manually arranged by our participants. Since both
HOLA and yFiles are completely automated we can now directly compare the “human-
like” layout approach with the existing layout algorithm on much larger graphs. We
hypothesise

• (H3) that HOLA layouts will be preferred over yFiles layouts by most participants
on larger graphs.

79
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Third, these larger and more complex graphs make readability much more challenging,
and so for these graphs we can conduct non-trivial readability tests. We examine user
performance on two standard tasks: finding a shortest path between two nodes and finding
the neighbours of a node. We hypothesise

• (H4) that participants will have greater speed and accuracy in completing these
tasks with HOLA layouts compared to yFiles layouts.

The design of the experiment is described in Section 6.1, the four Hypotheses H1-4
are confirmed in Section 6.2, we consider the efficiency of HOLA in Section 6.3, and finally
we examine possibilities for improvement in Section 6.4.

6.1 Design

Apparatus & Materials: The second user study used two graph corpora. The first con-
tained three layouts of each of the eight graphs from the original study: layouts computed
with HOLA and with yFiles (default settings, as discussed in Chapter 4) and the highest-
ranked human layout of each graph. The second corpus contained HOLA and yFiles
layouts for six larger graphs. We chose one SBGN graph (the Glycolysis-Gluconeogenesis
pathway), one metro map graph (Sydney), and we generated four random graphs, includ-
ing one small (60 nodes, 65 edges), one large (120 nodes, 126 edges), and two medium-sized
graphs of different densities, (90 nodes, 100 edges) and (90 nodes, 110 edges). See Fig-
ures 6.5, 6.6, 6.7, 6.8, 6.9, and 6.10. We could not include human layouts for these larger
graphs because manual layout would have taken prohibitively long. It may be noted that
none of our large graphs has very high density, the largest being 1.22 edges per node. This
fits with our focus on sparse networks as noted in Section 1.5.

Participants: The study was advertised on University newsletter Monash Memo as
well as within our Faculty. In total 89 participants started the survey and completed
Part 1, while 84 completed Part 2, and 83 continued through Parts 3 and 4. Due to a
display error in the first part, we had to reject the first 13 participants’ answers on three
of the eight graphs. A $50 gift card was offered as incentive, and it was explained that the
winner would be the participant whose accuracy and speed were the best in Parts 2 and 3,
and whose choices were the closest to the aggregate choices in Parts 1 and 4 and thus, in
order to win, your best strategy was to choose the layouts which you thought would be
preferred by most other people.

Procedure: The survey was conducted online. It had four parts.

Part 1: (Figure 6.1) Participants ranked the three layouts in the first corpus. The
order of the graphs was randomised, as was the order of the three layouts on each page.
Participants were asked to drag gold, silver, and bronze medal icons onto the three layouts.
(The icons also said ‘1st’, ‘2nd’, and ‘3rd’.)

Part 2: (Figure 6.2) Participants were asked to find a shortest path between two nodes
in the six larger graphs. The two nodes were chosen systematically: one was a highest-
degree node and the other was a node either four or five links away. Nodes meeting these
criteria were chosen randomly during the design of the experiment, but once chosen were
held fixed throughout the experiment. Users were shown each graph in two layouts, HOLA
and yFiles, with the two chosen nodes coloured red, and they were asked to click on the
nodes of a shortest path between them, turning the intermediate nodes green. They were
first given a training task of the same kind, in which they could not advance until they
had correctly identified a shortest path.

Part 3: (Figure 6.3) This was similar to Part 2 but with a single red node and the
task being to click on all neighbours of that node. There was again a training task. The
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Figure 6.1: In Part 1 of the study, participants ranked the HOLA, yFiles, and best human layout of each of the
eight small graphs from the first study.

Figure 6.2: Part 2 of the study, finding shortest paths in the large graphs



82 CHAPTER 6. EVALUATION OF AUTOMATIC LAYOUT

Figure 6.3: Part 3 of the study, finding neighbours in the large graphs

red node was chosen to be a node of maximal degree but different from both of the red
nodes chosen for Part 2, to avoid familiarity effects.

Part 4: (Figure 6.4) The large graphs were shown in the two layouts HOLA and
yFiles side by side, and participants were asked to say which layout was better, and to
briefly explain why in a text box. Again the order of the graphs was randomised, as was
the order of the two layouts on each page.

6.2 Results & Discussion

Part 1: Rankings assigned with the gold, silver, and bronze medal icons in the online
study were mapped onto the numbers 1, 2, 3 respectively, so that 1 was the best possible
rank and 3 the worst. The rankings were analysed using Friedman’s test. The aggregate
mean rank across all graphs was 1.75 for Human, 1.80 for HOLA, and 2.46 for yFiles,
and the null hypothesis was rejected (p < 1.0e-14).

Post-hoc pairwise Nemenyi tests showed that both HOLA and Human layout were
preferred over yFiles and hence are an improvement over the best existing orthogonal
layout algorithm (p < 1.0e-11 and p < 1.0e-10 resp.). Thus, we can accept Hypothesis H1
and conclude that HOLA outperforms yFiles in terms of user preference on the small
graphs from our study.

On average over all the small graphs, neither HOLA nor Human layout was clearly
preferred one over the other, as hoped in our intent to match human layout quality. The
significant pairwise preferences for the eight individual graphs amongst the three layout
methods are shown in Fig. 6.11. Thus we can accept Hypothesis H2 and conclude that
HOLA performs comparably to hand-made layout on the eight small networks considered.

User preferences on the eight graphs both reconfirmed our findings from the formative
study, and provided new insights. See Figures 6.12 and 6.13.

Graph 2 provided new insight. HOLA produced almost exactly the same layout as
the top-ranked human, only slightly more compact. The less-compact human layout was
preferred significantly. This suggests that it may be possible to overdo compaction. Or
perhaps it could simply be that the human layout was preferred because the separations
between neighbouring nodes are more nearly uniform. We might also wonder whether this
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Figure 6.4: Part 4 of the study, user preference

result had something to do with “proportion” but, if so, it does not seem to have been
anything related to the golden ratio φ. See Figure 6.14. Perhaps this can be added to
the results of Markowsky [Mar92], who claims that the supposed aesthetic optimality of
rectangles with aspect ratio φ is merely a popular misconception.

On Graph 3 HOLA again mimicked the best human layout, but it was preferred sig-
nificantly. This is likely attributable to the more precise and even spacing in HOLA’s
version. This tends to confirm the importance of even distribution.

Preference for HOLA’s layout on Graph 4 tends to confirm that users like the arrange-
ment of subtrees in hierarchical format.

Part 2: This compared performance when finding the shortest path between two nodes
on the larger graphs laid out using yFiles and HOLA. Both error rates and timings showed
a high degree of leptokurtosis, so Wilcoxon’s signed rank test was used. The mean error
rates 0.162 for HOLA and 0.548 for yFiles differed significantly (p < 1.0e-13). The mean
times 12.27s for HOLA and 29.15s for yFiles also differed significantly (p < 1.0e-14).

Part 3: This compared performance when counting a node’s neighbours on the larger
graphs laid out using yFiles and HOLA. Again both error rates and timings showed a
high degree of leptokurtosis, so Wilcoxon’s signed rank test was used. The mean error
rates 0.159 for HOLA and 0.349 for yFiles differed significantly (p < 1.0e-08). The mean
times 10.10s for HOLA and 12.98s for yFiles also differed significantly (p < 1.0e-11).

The significant results for Parts 2 and 3 together allow us to reject the null-hypothesis
for H4 and accept that overall, participants were significantly faster and more accurate
with HOLA layout than yFiles.

Part 4: Finally we compared user preferences on the larger graphs. User rankings were
analysed using Wilcoxon’s signed rank test. The aggregate mean rank across all graphs
was 1.20 for HOLA and 1.80 for yFiles, which differed significantly (p < 1.0e-11).

Among individual graphs only the higher density graph on 90 nodes (Fig. 6.7) showed
no significant preference. For all others HOLA was preferred (p < 1.0e-5). This reinforces
our decision to target lower density graphs, and shows that HOLA produces better layouts
in those cases (H3).
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Figure 6.5: HOLA (above) and yFiles (below) layouts of our small graph, with 60 nodes, 65 edges
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Figure 6.6: HOLA (above) and yFiles (below) layouts of our lower density medium sized graph, with 90 nodes,
100 edges
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Figure 6.7: HOLA (above) and yFiles (below) layouts of our higher density medium sized graph, with 90 nodes,
110 edges
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Figure 6.8: HOLA (above) and yFiles (below) layouts of our large graph, with 120 nodes, 126 edges
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Figure 6.9: HOLA (above) and yFiles (below) layouts of SBGN Glycolysis-Gluconeogenesis pathway network



6.2. RESULTS & DISCUSSION 89

Figure 6.10: HOLA (above) and yFiles (below) layouts of Sydney metro map network
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Figure 6.11: Participants’ preferences for drawings by human, yFiles or HOLA of graphs from Fig. 4.1. A solid
arrow a→ b indicates a significant preference for condition a over condition b at the p < 0.01 confidence level. The
dotted arrow indicates a preference for layout of Graph 8 by HOLA over yFiles at the p < 0.05 level.

Feedback: After giving their preference for the large graphs, participants left com-
ments in a free-text field. From 83 participants looking at six graphs, 359 comments were
collected. There were 65 comments concerning proximity of connected nodes, e.g., “Con-
nected nodes are generally closer together, making their association more obvioius [sic].”
There were 12 comments mentioning “structure,” 8 of them favouring the “structure”
of HOLA layout, e.g., “Clearer to see, more structured layout.” Sixteen comments gave
favourable mention to “trees” in HOLA, e.g., “More familiar - like a family tree.” Briefly,
other significant terms and the number of times they were mentioned were: “Compactness”
(13 times), “Symmetry” (3 times), “grid” (4 times), and “cross[ings]” (7 times).

6.3 Algorithm Efficiency

We evaluate the runtime of HOLA on a corpus of random graphs. In choosing the param-
eters of these graphs we again follow the standard set by Di Battista et al. [DBGL95]. The
graphs in their study had between 10 and 100 nodes, and densities of about 1.2 to 1.3. We
decided to push these ranges a bit, generating random graphs with between 10 and 170
nodes, and densities from 1.1 to 1.5.

In runtime yFiles does much better than HOLA. On all the graphs in this corpus
yFiles layout takes less than 2 seconds, whereas the runtimes for HOLA can be as high
as 25 seconds. However, HOLA is fast on smaller graphs. On the eight small graphs from
our first study HOLA runtimes ranged from 9 to 97 milliseconds (Figure 6.15).

6.4 Issues

HOLA did well in the evaluation study, but it leaves room for improvement. The main
issues are its long runtime compared to yFiles, and its performance on denser networks.

6.4.1 Runtime

What do users want and need?

Users always want a faster algorithm, but there are numerous applications and workflows
in which waiting a few seconds to half a minute for a node-link diagram layout is not a
problem.
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Human 1st yFiles HOLA

Graph 1

µ̄: 0.61 0.41 0.48

Graph 2

µ̄: 0.81 0.21 0.49

Graph 3

µ̄: 0.52 0.10 0.88

Graph 4

µ̄: 0.59 0.11 0.80

Figure 6.12: HOLA, yFiles, and top-ranked human layout of the first four graphs from the formative study. (See
also Figure 6.13.) µ̄ = normalised inverted mean rank. Best possible value is 1, worst possible 0. Means in boxes
indicate best actual mean rank in the normative study.
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Human 1st yFiles HOLA

Graph 5

µ̄: 0.70 0.38 0.42

Graph 6

µ̄: 0.83 0.14 0.53

Graph 7

µ̄: 0.52 0.42 0.56

Graph 8

µ̄: 0.45 0.42 0.64

Figure 6.13: HOLA, yFiles, and top-ranked human layout of the last four graphs from the formative study. (See
also Figure 6.12.) µ̄ = normalised inverted mean rank. Best possible value is 1, worst possible 0. Means in boxes
indicate best actual mean rank in the normative study.
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Figure 6.14: Despite the Human layout having been preferred significantly over the HOLA layout on Graph 2, it
is the HOLA layout that seems to better exhibit the golden ratio φ ≈ 1.618. The aspect ratios of the main rectangles
were 86/42 ≈ 2.048 for human and 76/44 ≈ 1.727 for HOLA. The aspect ratios of the left-hand nested rectangles
were 42/33 ≈ 1.273 for human and 44/27 ≈ 1.630 for HOLA. This result suggests that preference has more to do
with adequate spacing of nodes and avoiding over-compaction, than anything to do with proportions cleaving to the
golden ratio. (Note: there is nothing in the design of HOLA that deliberately tries to achieve the golden ratio, and
these results were merely by chance.)
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Figure 6.15: HOLA running time on a collection of random graphs with between 10 and 170 nodes, and with
densities between 1.1 and 1.5 edges per node. yFiles layout takes less than 2 seconds on each of these graphs. On
the small graphs from our first study HOLA runtimes range from 9 to 97 milliseconds.
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How might we improve?

We could reasonably hope to speed up HOLA in a few different ways. To begin with, the
prototype has been implemented in Python, and might be as much as twice as fast if
ported to C++.

Secondly, we could experiment with different approaches to balancing the uses of
PROJECT and DESCEND. As was explained in Section 5.3.2, the DESCEND operation
is used at key moments during the process. This is so that subsequent constraint choices
can be more closely based on the network’s natural, stress-minimal position given the con-
straints already in force. Deciding when to use DESCEND is thus a matter of balancing
speed versus quality. It may be possible to tune the procedure more toward speed, if
desired.

Another way to trade quality for speed would be to restrict the face expansion operation
so that instead of trying all the goal points gi as defined in Figure 5.14 it would consider
only the first point g0.

6.4.2 Density

What do users want and need?

As noted in Section 1.5, sparse networks are the intended application of HOLA and the
SBGN layout algorithm MCGL to be developed in Chapter 8. Still, even the network in
Figure 6.7 has a density of 1.222 which is well within the range considered appropriate
by Di Battista et al. [DBGL95], and HOLA performed poorly on this one. It is worth
considering what could be done to improve.

We can refine the problem by considering the degree histograms of the networks on
which we have tested HOLA (Figure 6.16), which show how many nodes of each degree
were present in each graph. The graph on which HOLA performed most poorly is that
whose degree histogram is skewed the farthest toward higher-degree nodes, as is visible in
Figure 6.16e. This is no real surprise. Conversely, in our own subjective analysis HOLA’s
performance on the SBGN graph and the metro map seemed the most impressive, and
the histograms for these graphs show extreme preference for degree-1 nodes, and degree-2
nodes, respectively. This suggests that, even more than mere low density, it is the presence
of many low-degree nodes that is most important.

Fortunately, the preponderance of degree-1 nodes in the SBGN diagram is not an
accident, but is found in SBGN diagrams generally because of manual cloning (see below).
We take this structural feature into account in Chapter 8 when we develop the MCGL
algorithm.

How might we improve?

It is not clear whether HOLA can be made to perform better on higher density graphs,
but, insofar as the algorithm is designed to create the same kinds of layouts human beings
do when working by hand, perhaps we should not be surprised by this. Recall from
Chapter 1 the motivating model of the computer as the ideal assistant. There was never
any expectation that the assistant would be able to do things the master could not; only
that it would make the job easier.

When the density of the network gets too high human users tend to take steps to lower
it, and this may be the most fruitful line of research when it comes to automated techniques
as well. Density could be lowered by cloning or vertex splitting, as a pre-processing step
to be applied before HOLA is asked to create a layout.

Cloning is a technique in network layout in which one or more copies or “clones”
u′, u′′, . . . of a node u are added to the graph, and the edges incident at u are divided
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Figure 6.16: Degree histograms show how many nodes of each degree were present in each of the six graphs in
our second corpus
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amongst u and its clones u′, u′′, . . . in some way. In the extreme case enough clones
are added so that each of the nodes u, u′, u′′, . . . becomes a leaf. Automatic stress-based
techniques for cloning have been attempted [EdMN95] but are quite slow, with exponential
run time. Some alternative approaches have also been explored [HBF08].

6.5 Conclusions

Our four hypotheses H1-4 were confirmed. HOLA performed comparably to humans,
and outperformed yFiles, on the small networks from the formative study. It also beat
yFiles both for preference and performance on the large networks except for the denser
medium-sized case. These results may be taken as an affirmation of the design of HOLA.

In Chapters 4, 5, and 6 we have (1) conducted a “formative” study to learn about the
way people lay out a certain type of network diagram (orthogonal), (2) designed a layout
algorithm to achieve similar results automatically, and (3) conducted a “normative” study
to check how well our algorithm performed. This is the basic human-centred approach to
network layout algorithm design that was promised in Chapter 1 and in the title of the
thesis.

If one major question remains about this methodology, however, it is how to make the
second step—the algorithm design—more systematic. How do we go from the observations
made in the formative study to an algorithm? This is the project of the next chapter.
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The HOLA algorithm creates orthogonal layouts that mimic the style exhibited in the
Orthowontist study; in other words, it can convincingly “speak” the Orthowontist dialect.
This raises two questions, the first being: How we can distil out of HOLA a general
framework that can be applied to create new layout algorithms for different dialects besides
the one from the study? To put this differently, we want a systematic way to achieve the
second step in our human-centred methodology.

The second question is whether such algorithms are enough. While an algorithm
developed according to our methodology can be expected to make the same kinds of
design decisions a human “speaker” of the given layout dialect is likely to make, it is
bound to eventually make a decision that a particular user will disapprove of. Like the
good assistant we imagined in Chapter 1, the system should then understand high-level
descriptions of the desired changes.

This chapter answers these questions by defining a four-phase layout framework in
which the first three phases are inspired by HOLA, while the fourth is informed by our
expectations of an ideal layout assistant. The whole system is an application of CSML,
constrained stress-minimising layout. The first three phases yield a layout automatically—
the initial layout—while the fourth provides interactive tools allowing users to transform
the initial layout into one that may be more to their liking. The four phases are called
Decompose/Distribute, Arrange, Expand/Emend, and Transform, and the framework is
called the DiAlEcT Layout Framework. We may refer to the phases individually by their
initials, thus “Phase-D,” “Phase-A,” etc., or to the first three phases collectively as the
“automatic phases” and to the last as the “interactive phase”. An overview is given in
Figure 7.1.

97
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By a “framework” we mean a high-level algorithm. DiAlEcT identifies the key ideas
that were employed in HOLA and ACA and restates them in generic terms. It defines
an overall structure, and leaves specific details to be determined in each new application.
Each new layout dialect to which the framework may be applied is likely to present new
and unique challenges—we will see an example of this in Chapter 8—and the developer
will need ingenuity.

In the first three sections of this chapter we cover the three automatic phases, Phase-
D, Phase-A, and Phase-E. In these sections the respective phases are described following
a consistent format: first the general idea of the phase is described in a section headed
“In General,” then we examine how this phase was implemented in HOLA and/or ACA
in a section headed “In HOLA and ACA,” and finally guidelines are given for the future
implementation of the phase for new dialects, in a section headed “Application Guidelines.”
Thus, the idea is explained, examples are given, and it is shown how to apply the idea in
the future.

In Section 7.4 we introduce the idea of the relative constraint matrix, a data structure
recording all the constraints generated during the automatic phases. This, along with a
layout, constitutes the output of the first three phases, and the input to the fourth phase.
When designing tools according to the DiAlEcT framework constraints should always be
described in terms of the relative constraint matrix, as will be seen in Chapters 8 and 9.
Therefore it is important to set this foundation now.

Finally we briefly discuss Phase-T of the DiAlEcT framework in Section 7.5, although
we do not begin to develop particular interaction methods until Chapter 9.

The framework described in this chapter is by nature abstract, but it is sandwiched
between two concrete examples: coming before it is the example of HOLA from which it
was induced; coming after it is the example of MCGL, its first direct application. It is
in the nature of a chapter like this one to introduce a great number of technical terms.
For in a process of induction we must invent terms to refer to the essential aspects of the
given concrete example(s) as we identify them. This is necessary so that we may describe
the way in which similar things should happen in future applications. In order to help
manage the technical terms introduced in this chapter a glossary is provided in Table 7.1.

7.1 Phase-D: Decompose/Distribute

In General

In Phase-D the network may be decomposed into pieces that will be laid out separately
before being rejoined in Phase-E. Apart from optionally decomposing, the purpose of
Phase-D is to spread out the nodes (of each piece) in the plane, giving them a reason-
able distribution that reflects the graph-theoretic structure of the network more or less
faithfully. As discussed in Section 2.2, a stress-minimal layout is a faithful one. The most
straightforward way to achieve Phase-D then, is by a simple DESCEND operation, using
Adaptagrams.

In HOLA and ACA

ACA achieves an initial distribution via the DESCEND operation. HOLA does something
a bit more involved than this, first decomposing the network into trees and core, then
applying DESCEND to the core alone. This effectively enforces a clustering on the nodes of
each tree, since they are laid out independently and later reinserted into the drawing with
well-defined bounding boxes. Stress-minimisation on the entire network, trees included,
would tend to cluster the tree nodes as well, but HOLA takes measures to ensure the



7.1. PHASE-D: DECOMPOSE/DISTRIBUTE 99

• Phase-D: Decompose/Distribute

– Use unconstrained stress minimisation to distribute the nodes in the plane.

– Optionally, decompose the network into parts before distributing.

• Phase-A: Arrange

– Identify target substructures, i.e. subgraphs for which it is desirable to give
some special arrangement.

– Enter the constraint generation loop:

∗ Choose next target substructure, or exit loop if none remain

∗ Try to arrange the substructure by applying constraints

• Phase-E: Expand/Emend

– Optionally, planarise and expand faces in order to reinsert parts of network if
decomposed in Phase-D.

– Remove defects by aligning and distributing.

• Phase-T: Transform

– User can interactively request different arrangements for the substructures ar-
ranged in Phase-A, using high-level commands.

– User can also do low-level editing of the constraints.

Figure 7.1: The DiAlEcT framework describes automatic and interactive layout tools. This figure gives an
overview of their functioning. Details are given in this chapter.



100 CHAPTER 7. THE DIALECT LAYOUT FRAMEWORK

Term Definition Page

arrangement
principles

there are five of these, and they guide the design of
Phase-A

105

axis-aligned pair a GSA (see below) for pairs 103

cardinal-directed
hub

a GSA for hubs 104

chain a maximal connected subgraph consisting of nodes
having degree 2 in the larger graph

104

constraint genera-
tion loop

the main control structure in Phase-A, during which
constraints in the relative constraint matrix are gen-
erated in order to enforce GSAs

104

geometric variant a variation in a GSA that relates to specific geometric
questions such as orientation in the plane

102

graph substruc-
ture

any special graph-theoretic substructure such as a
tree, chain, hub, etc. to which special arrangements
are to be applied (see GSA, graph substructure ar-
rangement)

101

GSA: graph sub-
structure arrange-
ment

a scheme for creating geometric arrangements of cer-
tain graph substructures, using constraints

102

hierarchical sym-
metric tree

a GSA for subtrees 104

hub a subgraph induced by a node and all its neighbours 104

orthogonally-
routed chain

a GSA for chains 104

pair a subgraph induced by a pair of neighbouring nodes 103

relative con-
straint matrix

data structure representing all the constraints gener-
ated in the automatic phases of a DiAlEcT layout pro-
cess. It is used as input to the interactive phase.

107

structural variant a variation in a GSA that relates to qualitative de-
sign choices, rather than to specific geometric ques-
tions such as orientation in the plane

102

Table 7.1: Glossary of technical terms introduced in this chapter
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clustering is perfect. Removing the trees also leaves a simpler stress system, allowing the
core to more easily find a faithful layout.

Application Guidelines

In future applications of the DiAlEcT framework the lessons from HOLA should be kept in
mind. It should be considered whether a decomposition will aid in an overall stress-based
distribution process.

Meanwhile there are other reasonable ideas for the distribution phase that were not
explored in HOLA, but that may be worth trying. In HOLA the nodes begin at whatever
initial positions the user provides (and in our experiments random initial positions were
used). Since the local stress minimum reached by a DESCEND operation depends on these
starting positions a DiAlEcT layout might fruitfully begin by trying to choose a good initial
position based on other considerations, such as minimising crossings. The planarisation
approach [GM03] might be applied, for example, or we could try multiple starting points
in a greedy randomised adaptive search procedure (GRASP) [FR95].

After choosing a starting position in a more principled way, stress should be minimised;
however, performing this by a simple DESCEND operation may undo some of the choices
that were made. It must be decided whether to simply allow this to happen as it may,
or to prevent it, and this represents a trade-off between the faithfulness of the layout and
other considerations like crossing minimisation. These concerns tend to be at odds since
techniques like the planarisation approach mentioned above, which are good at removing
crossings, can lead to very non-faithful (high-stress) layouts. Nevertheless, if it is desired
that the topology of the initial position (meaning its rotation system and external face—see
Section 2.4.1) not change then the topology-preserving layout of Dwyer et al. [DMW09b]
may be applied to now minimise the stress subject to this constraint. This technique is
also available in the Adaptagrams library.

7.2 Phase-A: Arrange

It is in Phase-A that we arrange nodes in those special configurations, or perceptual organ-
isations, that people often create when working by hand. It is largely to the extent that
such arrangements become conventional among a given community of diagram authors
that we attribute to that community a layout dialect of its own.

In all such node arrangements there are choices to be made, and here we make a division
of labour between Phase-A and Phase-T of the DiAlEcT framework. The automatic layout
algorithm makes a “standard choice” in Phase-A, whereas tools are provided for users to
alter these choices interactively in Phase-T. Accordingly, Phase-A cannot be discussed
without at least mentioning Phase-T as well, although the main discussion of Phase-T is
reserved for Section 7.5. Furthermore it will become clear that Phases -A and -T are the
ones most directly influenced by the initial, formative user study that makes Step 1 of our
human-centred methodology.

This section is broken into two subsections, in each of which we follow the expository
pattern of “In General”/“In HOLA and ACA”/“Application Guidelines”. Section 7.2.1
defines graph substructures and their arrangements; Section 7.2.2 introduces the idea of
the constraint generation loop.
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Figure 7.2: Like most GSAs, the symmetric tree layout admits both geometric and structural variants. Both
layouts depicted here employ the same geometric variant; namely, they both grow in the south direction. However
they employ different structural variants. On the left we choose to put the deepest trees nearest their parent node;
on the right we put the shallowest trees nearest the parent node.

7.2.1 Graph Substructure Arrangements

In General

By a graph substructure we mean any identifiable substructure of a graph, defined purely
in graph-theoretic terms. The trees and chains identified in Chapter 5 are examples. By
a graph substructure arrangement or GSA we mean a way of laying out the nodes of a
particular graph substructure using constraints. Consider for example the symmetric tree
layout applied to the subtrees in HOLA. The trees are a graph substructure, and the
symmetric tree layout is a GSA.

Often the basic idea of a GSA admits variations, and we categorise these as being of
two types, which we call geometric variants and structural variants. While there is no
strict definition there are the following guidelines.

Generally speaking geometric variants are chosen based on some computation involving
the current geometry (hence the name), with the goal of minimising the concomitant
stress increase when constraints are applied to enforce the arrangement. They are often
concerned with the way in which a substructure is rotated, relative to the rest of the
network.

On the other hand structural variants have more to do with the internal arrangement
of nodes within the GSA, and less to do with how these nodes relate to the remainder of
the network. The choice of structural variant tends not to be influenced by the current
geometry, but is instead based on a principle, such as maximising symmetry or convexity
of the GSA.

To be clear, when arranging a GSA we must in general choose both a geometric and a
structural variant; however, some GSAs are so simple that they have no internal structure
and only a geometric variant need be chosen. Examples will be seen below.

To return to the example of the symmetric tree layout, the geometric variants are
simple: these are the four cardinal growth directions introduced in Section 5.3.3. As for
the structural variants, recall it was briefly indicated in Section 5.3.3 that the symmetric
tree layout algorithm is recursive, and at each stage tries to pair off isomorphic subtrees
relative to their common parent node. But as Figure 7.2 illustrates, we are free to choose
how we order those isomorphic pairs, and this leads to the structural variants of the
symmetric tree layout. In one variant we put the deepest trees nearest to the parent
node. In another we put the shallowest trees nearest to the parent node. Others would be
possible.

When designing HOLA we had to choose among the many possible structural variants,
and we chose to always put the deepest trees nearest the parent node as on the left of
Figure 7.2. This choice accords with the finding of van Ham and Rogowitz [vHR08] that
convexity is a desirable property. If we had had good reason to do so we could have
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made the choice conditional on some structural properties of a given tree; however, what
distinguishes structural variants from geometric ones is that the former are based on
internal structure of the GSA so can be planned before execution of the algorithm begins,
while the latter are based on the current geometry during the layout process, so must be
chosen at runtime. What this suggests is a fundamental division of labour both between
Phases -A and -T, and between design time and execution time:

Division of Labour:

When designing Phase-A we must set down rules for each GSA saying how
structural variants are to be chosen. We call these standard structural variants,
with the idea that there are usually other reasonable structures that could have
been chosen instead. We call the latter the alternative structural variants,
and we must design Phase-T to make these configurations easily reachable
interactively from the standard ones.

When executing Phase-A a geometric variant will be chosen for each GSA based
on the current position. Phase-T should also provide easy ways to switch to
other geometric variants interactively.

In summary, when designing Phase-A based on the formative user study of the human-
centred methodology we must:

• Decide on the set of graph substructures (trees, chains, faces, etc.) for which special
arrangements may be created.

• Encode the observed, dialect-specific layout behaviours as a set of possible GSAs.

• Define for each GSA:

– a set of structural variants, and among these the standard structural variants;

– a system for choosing geometric variants based on given node positions during
the layout process;

– a system for enforcing a chosen variant using separation and alignment con-
straints.

These ideas will become more clear as we consider the examples in HOLA and ACA,
and as we apply them to SBGN in Chapter 8.

In HOLA and ACA

In HOLA and ACA we identified several graph substructures of interest. Recall that in
Section 5.2.1 we referred to these as target substructures. So far we have designed one
GSA for each of these, and these are listed in Table 7.2. We may briefly elaborate on
these structures and arrangements:

• Pairs: By a pair we mean a subgraph consisting of two neighbouring nodes and
the edge that connects them. The pair was the only substructure on which ACA
operated. It tried to align each pair either vertically or horizontally, and we refer to
this as the axis-aligned pair arrangement.1 This is an example of a GSA so simple
that it has no internal structure, and hence no structural variants.

1This is an alternative way of understanding what we were doing in ACA. At the time we thought of it
as aligning edges, but if we instead say that we were operating on node pairs then we get a unified theory
that explains what was happening in both ACA and HOLA in terms of GSAs.



104 CHAPTER 7. THE DIALECT LAYOUT FRAMEWORK

Graph Substructure Graph Substructure Arrangement

pair axis-aligned pair
tree hierarchical symmetric tree
hub cardinal-directed hub

chain orthogonally-routed chain

Table 7.2: Graph substructures and their arrangements in HOLA and ACA

• Trees: The graph substructure called a tree is as defined in Chapter 4. The hierar-
chical symmetric tree or HST arrangement is achieved by the symmetric tree layout
of Manning and Atallah, as employed in the HOLA algorithm.

• Hubs: By a hub we mean a subgraph consisting of any node u together with all
its neighbouring nodes and the edges that connect them. The node u is referred to
as the centre of the hub. The “node configuration” step in HOLA (Section 5.3.2)
served to arrange those hubs whose centres were of degree three or higher. For each
hub of centre u and neighbours vi, the arrangement tried to place up to four of
the vi in the cardinal compass directions from u. We therefore refer to this as the
cardinal-directed hub arrangement.

• Chains: The graph substructure called a chain is as defined in Section 4.4. In HOLA
we developed a way to arrange chains that is analogous to the way an orthogonal
connector may be routed. We therefore refer to this as the orthogonally-routed chain
arrangement.

Application Guidelines

In future applications of the DiAlEcT framework we expect the GSAs explored in HOLA
and ACA to once again be useful. All known GSAs should be regarded as forming a
steadily growing catalogue, from which we can draw and to which we expect to add each
time we apply the DiAlEcT framework anew. We may view this catalogue as having
begun with Marks [Mar91a], who considered the tree and hub structures. Identifying and
designing new GSAs when studying new layout dialects is one of the important steps of
the human-centred approach to network layout algorithm design.

7.2.2 The Constraint-Generation Loop

In General

The constraint generation loop (CGL) constitutes the main activity of Phase-A. On each
iteration of the loop we choose one or more constraints and add them to the layout.
Typically this means choosing a particular graph substructure instance and attempting
to create a GSA for it. The loop ends when every desired arrangement has either been
created, or else attempted and failed due to conflicting constraints.

We may view the CGL as a greedy process since we make locally optimal choices, and
do not backtrack based on their outcome. However, the “locally optimal” choices tend to
have a forward-looking aspect: As will be seen in the examples from HOLA and ACA
examined below and in the guidelines for future application, each iteration of the CGL
tries (or should try) both to create a good GSA and to plan for the creation of good GSAs
in later iterations.

Another important aspect of designing the CGL is deciding when to use the PROJECT
and DESCEND operations. As noted in Sections 5.3.2 and 6.4, this means a trade-off
between speed and quality. The PROJECT operation is much faster than the DESCEND
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operation, but repeated PROJECT’s lead to accumulating stress, and the occasional2 DE-
SCEND is required to dissipate this so that the geometric variants of subsequent GSAs
can be chosen in a faithful way, i.e. in the way that best represents the structure of the
network.

In HOLA and ACA

Both HOLA and ACA feature a constraint-generation loop, over which constraints are
gradually applied in order to arrange the nodes of the graph. Actually HOLA could be
said to involve a series of CGLs – one for its “node configuration” stage, and a subsequent
one for its “chain configuration” stage; however, whether these are regarded as two CGLs
or merely a single one with two phases is only a question of semantics and does not change
the basic idea.

There are several principles involved in managing the CGL, examples of which were
demonstrated in HOLA and ACA:

1. In both ACA and HOLA we saw constraint choices guided by the desire to keep
stress low.

2. In HOLA we saw choice of standard arrangements, such as symmetric layouts for
trees.

3. In both ACA and HOLA we opted for flexible separation constraints of the form
u + g ≤ v, g > 0, rather than rigid ones of the form u + g = v (i.e. we used
inequalities, not equations), with the idea that greater flexibility would permit better
arrangements in subsequent iterations of the CGL.

4. In HOLA there was an approach for allowing neighbouring GSAs to fit together,
balancing the demands of each. For example, the orthogonally routed chain ar-
rangement of each chain was designed to accommodate any cardinal-directed hub
arrangement its terminal nodes may already have been given (see Table 7.2).

5. In HOLA we saw a careful balance between speed and quality maintained by using
the fast PROJECT operation for most constraint applications, while the costlier
DESCEND operation was reserved for key moments when it was deemed necessary.
For example it was used to obtain new configuration options when all others had
failed during the node configuration step, and as preparation for chain configuration
(see page 67).

Application Guidelines: The Arrangement Principles

The five practices of HOLA and ACA noted above demonstrate good principles that should
always be applied in the constraint generation loop of Phase-A. We refer to these as the
arrangement principles, and will denote them in the remainder of the thesis by their name
in boldface with a capital letter.

1. Faithfulness: Again, we describe a stress-minimal layout as a faithful one. There-
fore an arrangement process will be said to follow the arrangement principle of
Faithfulness when it tries to keep stress low while creating arrangements.

2. Standardisation: An arrangement process will be said to follow the arrangement
principle of Standardisation when it chooses good standard structural variants for
each GSA, reserving alternative variants to be created during Phase-T if desired.

2This is not to say that the occasions for application of DESCEND should be determined randomly or
by manual intervention; rather it is during the design of Phase-A that such occasions must be determined.
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3. Minimality: An arrangement process will be said to follow the arrangement prin-
ciple of Minimality when it applies the minimum constraints necessary to enforce
a given GSA, with the aim of permitting more GSAs to succeed later in the CGL.
This means favouring inequalities over equations, and fewer constraints overall.

4. Cooperation: An arrangement process will be said to follow the arrangement prin-
ciple of Cooperation when it combines neighbouring GSAs in a fair and even-
handed way, giving fair weight to their competing demands.

5. Balance: An arrangement process will be said to follow the arrangement principle
of Balance when it balances use of the two operations PROJECT and DESCEND,
finding a mean point between speed and quality.

If we can find little demonstration of Standardisation in HOLA (let alone ACA),
that is because we contemplated no interactive Phase-T at that time, whereas Standard-
isation essentially involves the separation of arrangement choices between Phase-A and
Phase-T. All five principles will in any case be employed fully in Chapters 8 and 9.

7.2.3 Summary

In summary, and now in terms of the five arrangement principles, the task of designing
Phase-A for a new layout dialect involves the following steps:

1. Identify any special GSAs for the layout dialect in question, and define for each of
these:

(a) the structural and geometric variants;

(b) a system for choosing from among these variants during the constraint genera-
tion loop, conforming to Faithfulness and Standardisation;

(c) a system for enforcing the chosen variant using separation and alignment con-
straints, conforming to Minimality.

2. Describe the constraint generation loop, including:

(a) the order in which GSAs are considered, and how to make neighbouring GSAs
combine, conforming to Cooperation;

(b) how and when to use the PROJECT and DESCEND operations, conforming to
Balance.

7.3 Phase-E: Expand/Emend

In General

If any decomposition was performed in Phase-D, then it is in Phase-E that pieces of the
laid out network may be expanded to make room for reinsertion of other pieces. Meanwhile
the word “emend” comes from Latin ex-, plus mendum, meaning “defect” or “fault”; thus,
to emend is to remove defects. That is another task for this phase. A bit like building
a piece of furniture, this final phase is all about polishing, refining, and finishing each
separate piece, as well as fitting the pieces back together.
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In HOLA and ACA

In HOLA Phase-E took place from Step 3b to the end of the algorithm. The core is
planarised in order to expand the faces and make room for reinsertion of the trees. Finally
we created any alignments that were near enough to appear to have been overlooked,
minimised the neighbour-stress function in order to achieve more even distribution of
nearby nodes, rotated for aspect ratio, and removed dummy nodes left over from the
expansion process.

Application Guidelines

At this time no further measures or alternative techniques are recommended for Phase-
E beyond what was already demonstrated in HOLA. Future DiAlEcT layouts might take
alternative approaches expanding, and might extend this phase by any reasonable measures
designed to remove what appear as defects in the layout after the completion of Phase-A.

7.4 The Relative Constraint Matrix

Besides a layout, Phases D, A, E produce a set of constraints, namely, the final set of
separation constraints that were imposed on the graph in order to achieve the final layout.
We must provide these constraints as input to the interactive Phase-T, since transforming
the layout will be a matter of altering constraints and applying DESCEND.

In order to facilitate the transformations of Phase-T it is essential that the constraints
be described using a formalism we call the relative constraint matrix. This permits a kind
of algebra of constraints and their transformations.

The relative constraint matrix is so called because it has an entry for every pair of
nodes, describing the constrained relation that has been set up between those two nodes,
if any. Separations between nodes are given as multiples of a grid size. Therefore, together
with a chosen grid size G, the matrix describes all the constraints on the graph.

In this section we give a mathematically precise definition of the relative constraint
matrix and of the expressions that make up its entries. This is foundational for an under-
standing of how Phase-T works, for describing the constraints applied in Phase-A when
we develop a layout algorithm for SBGN in Chapter 8, and for developing interaction
methods in Chapter 9.

For a given relative constraint matrix M and nodes a, b, we denote by M(a, b) the
directed relation from a to b under M . A directed relation from node a to node b is a
symbolic expression indicating the constraints relating the two nodes (if any), in both the
x- and y-dimensions, and understood as operating in the direction from the first node a
toward the second node b.

Directed relations are written using the lateral direction letters R,D,L,U, and the
cardinal direction letters E,S,W,N, the meanings of which are given in Table 7.3. Es-
sentially, cardinal direction letters let us constrain one node to lie in a cardinal compass
direction from another, as we have been doing since Chapter 3, whereas lateral direction
letters allow us to set a weaker constraint that involves a side, but not an alignment. For
example M(a, b) = R means that node b must lie on the right-hand side of node a, whereas
M(a, b) = E means this plus horizontal alignment. It is the same as one of the separated
alignments that we applied in Chapter 3.

Furthermore any direction letter may be given a subscript ‘=’ to indicate that its
separation constraint is exact (i.e. involves an equation rather than inequality), and may
be given an exponent equal to any non-negative real number r meaning that the gap G in
the separation constraint is to be multiplied by r. As an example, the various forms are
spelled out for letters R and E in Table 7.4.
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Lateral Direction Letters

Letter Idea Meaning

R right ax +G ≤ bx
D down ay +G ≤ by
L left bx +G ≤ ax
U up by +G ≤ ay

Cardinal Direction Letters

Letter Idea Meaning

E east ax +G ≤ bx ∧ ay = by
S south ay +G ≤ by ∧ ax = bx
W west bx +G ≤ ax ∧ ay = by
N north by +G ≤ ay ∧ ax = bx

Table 7.3: The lateral and cardinal direction letters are used in the directed relation expressions that form the
entries of a relative constraint matrix. In this table G is the grid size, a and b are nodes with coordinates (ax, ay)
and (bx, by) respectively, and the constraints interpret the direction letters as operating from node a toward node b.

Letter Meaning

R ax +G ≤ bx
R= ax +G = bx
Rr ax + rG ≤ bx
Rr= ax + rG = bx
E ax +G ≤ bx ∧ ay = by
E= ax +G = bx ∧ ay = by
Er ax + rG ≤ bx ∧ ay = by
Er= ax + rG = bx ∧ ay = by

Table 7.4: Direction letters may take subscripts and exponents. In this table examples are shown for the letters
R and E. G is the grid size, r ≥ 0 is a non-negative real number, a and b are nodes with coordinates (ax, ay) and
(bx, by) respectively, and the constraints interpret the direction letters as operating from node a toward node b.
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Letter R D L U E S W N
Cardinal Strengthening E S W N - - - -

Lateral Weakening - - - - R D L U
Opposite L U R D W N E S

Table 7.5: All direction letters have opposites. Lateral letters have cardinal strengthenings, while cardinal letters
have lateral weakenings.

Each entry M(a, b) in a relative constraint matrix M expresses the directed relation
from node a to node b using zero, one, or two direction letters, together with subscripts
and exponents. Before defining the format of these expressions precisely, we consider a
few examples:

• If no constraints have been set relating a and b, then we write

M(a, b) = ε.

• If b is constrained to lie at least two grid units east of a, then

M(a, b) = E2.

• If b is constrained to lie exactly one unit right, and at least three units up from a,
then

M(a, b) = R=U3.

In order to define the expressions precisely we first introduce some terminology. The
letters R,L,E,W (right, left, east, west) are called horizontal direction letters, and the let-
ters D,U,S,N (down, up, south, north) are called vertical direction letters. Thus we have
two ways of categorising direction letters: they may be lateral or cardinal (see Table 7.3),
and they may be horizontal or vertical.

If X is any direction letter and r ≥ 0 a non-negative real number, then the following are
referred to as augmented direction letters: X, X=, Xr, Xr=. Finally, the precise definition
of the legal directed relation expressions is as follows:

1. ε is a directed relation expression

2. Every augmented direction letter is a directed relation expression

3. The concatenation of any augmented horizontal lateral direction letter with any
augmented vertical lateral direction letter is a directed relation expression.

Note that the cardinal compass directions are used only as a convenience, since, for
example, Er (east at least r units) is equivalent to RrU0

= (right at least r units and up
exactly 0 units) and to RrD0

= (right at least r units and down exactly 0 units) as well.
Note also that despite its reliance on just the four cardinal and four corresponding lateral
directions, the relative constraint matrix actually permits arbitrary two-dimensional offsets
between nodes, not just orthogonal ones. For example, this is one way to encode the
diagonal offsets that appear in the parallel chain groups of Section 8.4.1.

Each direction letter has an opposite letter—see Table 7.5. We may observe then that
any relative constraint matrix M must be anti-symmetric, meaning that for all nodes a, b,
the entry M(b, a) is obtained from the entry M(a, b) by swapping each direction letter for
its opposite. Note furthermore that every relative constraint matrix must be equal to ε
along the diagonal since we do not set any constraints between a node and itself. Finally,
it is sometimes useful to speak of the cardinal strengthening of a lateral letter, and vice
versa the lateral weakening of a cardinal letter—see again Table 7.5.
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7.5 Phase-T: Transform

The fourth and final phase of the DiAlEcT framework is the interactive Phase-T, in which
users can transform the initial layout. Phase-T must receive as input at least the layout
(i.e. node positions and edge routes) and the relative constraint matrix (RCM) computed
by the automatic phases; it may also receive data structures representing any GSAs com-
puted during Phase-A.

The way that changes to the layout are made in Phase-T is not by editing node positions
directly, but instead by editing the RCM. Each time the user requests a transformation
two things happen: first the RCM is updated, and second an application of the DESCEND
operation makes the layout settle into a new position in which the desired transformation
has taken place. Recalling that DESCEND involves application of PROJECT, if there are
any conflicts in the new set of constraints then these will be detected by the PROJECT
operation. In that case the user will be notified, and given options for resolving the conflict.

Editing of the RCM is possible on two levels: high and low. On the high level the
user can request broad changes in easily understood terms. For example the user can ask
that a subtree with east growth direction instead be made to grow north. The system
automatically translates the high-level request into the required changes to the entries of
the RCM. On the low level the user is also allowed to edit any single RCM entry directly.

As was indicated in Section 7.2, high-level transformations are to be provided for
switching between the structural and geometric variants of GSAs. It is in order to make
such GSA transformations possible that Phase-T may accept as input any special data
structures representing the GSAs computed in Phase-A. Whether such a data structure
is required depends on whether the GSA in question has sufficient internal structure. For
example the axis-aligned pair GSA has no internal structure so needs no data structure
to represent it, but the hierarchical symmetric tree does.

Besides GSA transformations we believe that certain actions like flips and rotations
are also natural, and we will examine evidence for this in the Orthowontist dynamic data
in Chapter 9. It is also in that chapter that we develop specific interaction methods for
Phase-T.

7.6 Conclusions

The DiAlEcT layout framework provides a way of designing automatic and interactive
layout tools to achieve network layouts conforming to the conventions of any real-world
layout dialect. It consists of four phases, Distribute, Arrange, Emend, and Transform, of
which the first three are automatic, and the final one is interactive.

The automatic phases are motivated by generalisation from the processes of HOLA
(Chapter 5), and of ACA (Chapter 3). Application guidelines were given in Sections 7.1,
7.2, and 7.3 for each of the three automatic phases, indicating how they should be de-
signed when countenancing new layout dialects in the future. The interactive phase is a
part of making the computer into a good assistant, which can quickly and easily make
desired changes to the initial layout, and specific interaction methods will be developed in
Chapter 9.

Phases D and E help to embody a human approach to pure layout aesthetics, without
regard to special perceptual organisations of nodes. Phase D may be employed to strike a
trade-off between stress minimisation and crossing reduction. Phase E allows opportunistic
improvements like aligning nearby and slightly dis-aligned nodes.

Meanwhile when we study a new layout dialect we design Phases A and T to capture
its conventional perceptual organisations in graph substructure arrangements (GSAs) and
their transformations. A small catalogue of GSAs has been extracted from ACA and
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HOLA (Table 7.2), and this is expected to grow as new DiAlEcT layouts are designed.
The catalogue should be useful in future efforts, since many GSAs may be common across
various layout dialects. For each GSA, both structural variants and geometric variants
are to be identified.

The constraint generation loop of Phase-A is expected to adhere to the five arrange-
ment principles identified on page 105. In particular it is to be decided which structural
variants of each GSA will be generated automatically (the “standard” variants). Interac-
tion techniques should then be provided in Phase-T to permit the user to choose different
structural and geometric variants.

The guidelines articulated in this chapter are meant to facilitate a scenario like that
imagined in Section 1.3, where Firm B developed layout tools for Firm A. We test the
system in the next chapter, where we try applying the DiAlEcT framework to a layout
dialect of the SBGN language.
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Chapter 8

DiAlEcT Layout for SBGN
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The previous chapter introduced the DiAlEcT layout framework, and in order to verify
the usefulness of that framework we must now demonstrate how it can be applied to a
new layout dialect. In the present chapter we do just that, selecting as our test case a
dialect of the SBGN or Systems Biology Graphical Notation layout language. Developed
in 2005 [KFMO05, KA06, LHM+09], SBGN is used by systems biologists to understand
and communicate things like plant and animal metabolism, and the connections between
genes and disease pathogenesis. The chosen dialect is that demonstrated in the layouts
of the MetaCrop system [SCC+12], published by the Leibniz Institute of Plant Genet-
ics and Crop Plant Research in Gatersleben, Germany. A representative diagram from
the MetaCrop system won the “Best Map” award in the first annual SBGN layout com-
petition [Com]. The algorithm developed in this chapter is called MCGL (pronounced
“McGill”), for MetaCrop Graph Layout.

A clarifying remark is in order: There are in fact three distinct languages defined in the
SBGN standard, intended for representing different types of information about biological
systems. These are known as the Process Description (PD), Entity Relationship (ER), and
Activity Flow (AF) languages. What concerns us in this chapter is the PD language only,
and it is this that is meant by all references made here to “SBGN”. Process Description
diagrams describe things like metabolic processes, such as the breakdown of sugars in
plant or animal cells (Figure 8.1).

Not only conventions of the MetaCrop dialect, but rules of the SBGN language itself
will bear on our design of the phases of DiAlEcT. This will likely prove typical of appli-
cations of the framework. In this case the special features of the language that demand
attention are compartments, ports, and orientable nodes, and these features are examined
in Sections 8.1 and 8.2. Note that in our treatment of ports we borrow ideas from our
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Figure 8.1: Sugar metabolism process diagrammed in SBGN, courtesy of MetaCrop [Met]

publication [RKD+14] on layout of Data Flow diagrams. That work is described briefly for
the sake of clarity in Section 8.2, but was developed separately from this work on SBGN
layout.

After this, Sections 8.3 through 8.5 address the three automatic phases D, A, and E
of the DiAlEcT framework. We postpone our look at Phase-T for SBGN diagrams until
Chapter 9, where it can be given a uniform treatment along with more generic interaction
methods.

The corpus of existing hand-made SBGN network layouts on which the work in this
chapter is based consists of twenty-one diagrams representing amino acid metabolism, car-
bohydrate metabolism, and energy metabolism pathways in plant cells. Besides studying
these hand-curated layouts we also spoke to the experts who created them, and these
steps served as a replacement for the initial formative user study of the human-centred
methodology. As for the final normative user study, we did not have time to carry that
out for the MCGL algorithm, and this remains for future work. The main purpose of
the present chapter is only to demonstrate the methodical applicability of the DiAlEcT
framework, and show how it allows us to carry out the second step of the human-centred
methodology (algorithm design).

We can sort SBGN diagrams into two categories, which in this thesis we call Type I
and Type II, and it is important to note that all the diagrams in the corpus are Type I
diagrams. The definition is simple: a diagram is Type I if all modulators (see Section 8.1.1)
are leaves; otherwise it is Type II.

Since the MCGL algorithm developed in this chapter is designed to create MetaCrop-
style layouts only of Type I diagrams, it must be viewed as the first of two or more steps
toward algorithmically mastering the style. In Section 8.6 we observe MCGL’s excellent
performance on Type I diagrams. We also consider its behaviour on a Type II diagram and
consider what kinds of additional features may be called for in a “MCGL II” algorithm
that could work just as well on diagrams of this kind.
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Figure 8.2: Oval nodes are entity nodes, the small square node is a process node, and the node labelled or is a
logic node. Among the arcs are (a) consumption arcs, (b) production arcs, (c) logic arcs, and (d) a modulation arc.

8.1 Basics of SBGN Diagrams

The SBGN specification defines many different types of node and many different types of
edge (or “arc” as is more common in SBGN parlance), but for layout purposes this typology
can be collapsed into a much coarser set of node and arc types, given in Table 8.1.

To begin with, SBGN defines several different “entity pool nodes” to represent things
like “simple chemicals”, “macromolecules”, and “nucleic acid features”—biochemicals that
participate in metabolic and other processes—as well as more abstract node types like
“sources” and “sinks”, but for layout purposes we may treat all of these in the same way,
and we refer to them all by the name entity nodes.

Next, SBGN defines several different types of node to represent processes in which
chemicals combine or break apart, or react to produce other chemicals, but for layout
purposes we refer to all of these as process nodes. Process nodes connect to entity nodes
representing the chemicals that take part in the represented process. They also connect
to entity nodes representing chemicals that modulate the process, such as enzymes.

Finally, SBGN has nodes representing “logic gates”, and, or, and not, which serve to
show how various modulating chemicals combine. For example if two enzymes must both
be present in order for a certain reaction to be stimulated, these two would each connect
to an and node, which in turn would connect to a process node. We refer to these as logic
nodes.

SBGN defines several types of arc (edge), but again we do not need to know about
all of these for layout purposes. For layout it is enough to identify the consumption arc
connecting a consumed entity node to a process node, the production arc connecting a
produced entity node to a process node, the modulation arc, connecting a process node to
a logic node or to an entity node acting as an enzyme or modulator, and finally the logic
arc, connecting an entity acting as modulator to a logic node. See Figure 8.2. Table 8.1
also features the submap and equivalence arc, which are discussed in Section 8.1.2.

8.1.1 Orientable Nodes

Process nodes and logic nodes have ports. In SBGN these are realised via two “spikes”
extending on opposite sides of the node, as in Figure 8.3. The ports on process and logic
nodes serve to partition the neighbours of these nodes into meaningful groups, correspond-
ing to the type of arc that connects them.

All consumption arcs connected to a process node must attach at one of the ports,
and all production arcs must attach to the opposite port, while all modulation arcs must
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SBGN element For layout purposes Type code

unspecified entity

entity node EN

simple chemical
macromolecule

nucleic acid feature
perturbing agent

source/sink
complex
multimer
phenotype

process

process node PN
omitted process

uncertain process
association
dissociation

and operator
logic node LNor operator

not operator

submap submap SN

consumption arc consumption arc CA

production arc production arc PA

modulation arc

modulation arc MA
stimulation arc

catalysis arc
inhibition arc

necessary stimulation arc

logic arc logic arc LA

equivalence arc equivalence arc EA

Table 8.1: Mapping from SBGN elements to a coarser classification that is sufficient for layout purposes. Each
element of the coarse classification gets a type code, which is used in Section 8.2.3 when we introduce our formal
model of SBGN graphs.

Figure 8.3: Process nodes and logic nodes have ports located at the ends of two “spikes” that stick out on
opposite sides. The spikes can be oriented vertically or horizontally.
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Figure 8.4: The SBGN diagram at the top can be decomposed into those on the bottom left and bottom right,
using a submap. Bottom left shows the three entity nodes X, Y , and Z connecting to a submap. Bottom right
shows the internal contents of the submap, and the tags A, B, and C serve to indicate how elements of this diagram
connect to nodes outside the submap.

meet the node on either of the two remaining sides, i.e. the two sides of the box that do
not have spikes. (See for example modulation arc d in Figure 8.2.)

Similarly all logic arcs connecting to a logic node must attach at one of its ports, while
it is constrained to have a single modulation arc attached to its opposite port (representing
the “output” of the “logic gate”).

The presence of a pair of ports and the ends of two spikes makes process and logic
nodes orientable, since as a part of the layout process it must be decided for each process
and logic node whether its spikes will be aligned horizontally or vertically. We refer to
logic and process nodes collectively as orientable nodes, or O-nodes for short.

When v is a process node it will be useful to be able to refer specially to the neighbours
of v that are connected by modulation arcs. We refer to such neighbours as modulators, and
denote the set of all modulators of process node v by Mod(v). Recall that our definition
of Type I and Type II SBGN diagrams is given in terms of modulators; namely, a diagram
is Type I if and only if all modulators are leaves.

8.1.2 Submaps

SBGN provides a way to hide detail by representing a subgraph by a single node called
a submap. Nodes outside the suppressed subgraph attach to the submap node at labelled
terminals. These serve as reference points that can be replicated as tags in a separate
diagram showing the subgraph. All connections to tags are via equivalence arcs. See
Figure 8.4.

8.1.3 Compartments

For biologists it is often important to know where a biochemical reaction takes place, for
example within a certain organelle inside a cell. For this SBGN features the compartment,
a bounded region of arbitrary shape—though in MetaCrop always drawn as a rounded
rectangle—into which nodes can be placed, and which can be nested into other compart-
ments. This introduces a hierarchical structure to SBGN diagrams. See for example the
left-hand side of Figure 8.11 on page 128, which features five compartments, distinguished
by colour.
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Compartments carry labels naming the structure or region they represent. For exam-
ple there could be a “Mitochondrion” compartment nested inside a “Membrane” compart-
ment, inside a “Cytosol” compartment, inside another “Membrane” compartment. The
nodes of the diagram can be assigned to any of these. For layout purposes this means that
each node must appear within the boundaries of the compartment to which it is assigned.

8.2 Ports and Orientability

A challenge in laying out SBGN diagrams is the presence of ports, and the fact that logic
and process nodes need to be assigned an orientation as illustrated in Figure 8.3. This
section introduces a formal model for dealing with these issues. The formalism is in places
quite heavy, but it is necessary in order to make precise our definition of a well-oriented
node (Section 8.2.4). This notion is fundamental in the design of the MCGL algorithm.

Ports play three roles in a layout process:

1. Routing: Once a position is assigned to it, a port represents an end point for a
connector routing algorithm.

2. Node Positioning: When choosing positions for nodes, placement of port p on a
particular side of node v makes it preferable that neighbours connecting at p go on
the same side.

3. Logical: Ports provide a way to partition the neighbours of a given node into groups,
and a way to express constraints on connection positions.

For the DiAlEcT layout developed in this chapter the first of these roles, routing, is
simply handled by the POLY-ROUTE operation of Adaptagrams at the end of the layout
process. By that time port positions will have been chosen, and these can simply be passed
to the POLY-ROUTE operation as “routing pins”.

Regarding the second point, node positioning, we make use of the technique of “port
dummy nodes” we developed in collaboration with Rüegg for data flow diagrams [RKD+14].
The technique is reviewed in Section 8.2.1.

As for the logical model, SBGN presents a tricky special case that cannot adequately
be handled by standard port models in the literature. This motivates our development
of a special model tailored to SBGN ports in Section 8.2.3. Section 8.2.2 provides addi-
tional supporting definitions, and finally Section 8.2.4 defines the notion of a well-oriented
orientable node.

8.2.1 Port Dummy Nodes

In work together with lead author Rüegg [RKD+14] we applied the ACA process of Chap-
ter 3 to data flow diagrams. The algorithm was called CoDaFlow, for “Constrained Data
Flow” layout. Data flow diagrams are commonly used to model movement of data be-
tween components in complex hardware and software systems [LNW03]. Complex systems
are modelled graphically by composing actors, i.e. reusable block diagrams representing
well-defined pieces of functionality. Data flow is shown by directed edges from the source
port where the data is constructed to the target port where the data is consumed. By
convention, the edges are drawn orthogonally and the ports are fixed in position on the
actors’ boundaries.

While there were pre-existing techniques based on the Sugiyama method [STT81] for
laying out data flow diagrams [SSvH14], the purpose of CoDaFlow was to try an approach
based on stress minimisation and the ACA process. We believed this would result in more
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(a) (b)

(c) (d)

Figure 8.5: Awareness of ports is important to achieve good node positioning. (a) and (c) show internal
representations of what is passed to the layout algorithm, (b) and (d) show the resulting drawings of data flow
diagrams from [RKD+14]. (a) is unaware of ports and yields node positions that introduce an edge crossing in (b).
In (c) ports are considered and the unnecessary crossing is avoided in (d). Note, however, while the chance is higher
that (d) is crossing-free, it is not guaranteed.

compact layouts, and our results bore this out [RKD+14]. A major component of this
work was determining how to use stress minimising layout to compute port positions.

We began with a simple formal model of a graph with ports, consisting of a quadruple
G = (V,E, P, π), where nodes v ∈ V were connected by edges e ∈ E ⊆ P × P through
ports p ∈ P , and π : P → V mapped each port p to what we called the “parent” node
π(p) ∈ V to which it belonged. An edge e = (p1, p2) was directed, outgoing from port p1

and incoming to port p2.

The key idea in the layout process was then to create a small node to represent each
port, called a port node or port dummy, as in Figure 8.5c. If D is the set of all these, and
δ : P → D maps each port to the dummy node that represents it, we construct a new
graph G′ = (V ′, E′) where V ′ = V ∪D, and

E′ = {(δ(p1), δ(p2)) : (p1, p2) ∈ E} ∪ {(π(p), δ(p)) : p ∈ P}

includes one edge representing each edge of the original graph, and an edge connecting
each port dummy to its parent node.

The use of port nodes allows the constrained stress-minimising layout algorithm to
untangle the graph while being aware of relative port positions. This tends to result
in fewer edge crossings, as illustrated in Figure 8.5. We will use this technique in our
DiAlEcT layout for SBGN. In particular we create a port node for each port of a submap
node (Section 8.1.2), and two port nodes for each logic and process node, one for each of
their spikes. We connect modulators directly to process nodes.

8.2.2 Directions

Before our port model for SBGN diagrams can be described in Section 8.2.3 we need to
introduce some notation for working with compass directions in the plane.

As is conventional when discussing plane graphics, our positive x-axis extends to the
right, while our positive y-axis extends downward, not up. Consistent with this, when
we speak of rotational processes we will always think of clockwise rotation as the forward
direction, this being the direction from the positive x-axis toward the positive y-axis.
Accordingly the four quadrants of the plane are numbered 1, 2, 3, and 4 in the order in
which they are encountered in clockwise rotation starting from the positive x-axis. Thus,
counter to the conventional mathematical numbering, Quadrant 1 is in the lower-right
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Figure 8.6: For graphics, the positive y-axis points downward. Accordingly, the forward direction for rotation is
clockwise, and the four quadrants are numbered clockwise, starting from the lower-right.

instead of the upper-right. This also means that lines of positive slope run from upper
left to lower right, while lines of negative slope run from upper right to lower left. See
Figure 8.6.

We will be interested in the cardinal compass directions, and we will usually list these
in the order E,S,W,N, since this is the clockwise progression starting from the positive
x-axis. Note that, despite the downward pointing y-axis, N still means “above”; thus, one
object is north of another when its y-coordinate is smaller, not larger.

We will also be interested in the so-called ordinal directions, which we denote by
combinations of the cardinal letters: SE, SW, NW, NE. We introduce the notation C4 =
{E,S,W,N} for the set of cardinal compass directions, and C8 = C4 ∪ {SE, SW,NW,NE}
for the full set of all cardinal and ordinal directions. We sometimes need to talk about
rotating these directions and so define the map

cw4 : C4 → C4

rotating each cardinal direction clockwise 90 degrees, and similarly the map

cw8 : C8 → C8

rotating each direction clockwise 45 degrees. We will use these maps with exponents to
indicate repeated application, so that for example cw8

3 means clockwise rotation by 135
degrees.

When considering two points p, q in the plane we will often be concerned with the
compass direction from p to q in a categorical sense. If the vector q−p lies on the positive
x-, positive y-, negative x-, or negative y-axes, then we say that the direction from p to
q is E,S,W or N, respectively. Otherwise the vector lies in one of the open Quadrants,
1, 2, 3, or 4, in which case we say that the direction from p to q is SE, SW, NW, or NE,
respectively. We refer to this as the categorical direction from p to q, and denote it by

catdir(p, q) ∈ C8.

In fact the catdir function is polymorphic and its arguments may be points, nodes, or
anything else that has an assigned position. For example if u, v are any nodes that have a
current position during a layout process, then by catdir(u, v) we will mean the categorical
direction from the centre point of u to that of v.
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8.2.3 SBGN Port Model

Section 8.2.1 mentioned the simple, generic model of a directed graph with ports G =
(V,E, P, π) that was used in our CoDaFlow algorithm. Other similar models have been
proposed in the literature, for example by Spönemann et al. [SFVHM09], who also de-
scribed four types of port constraints of increasing specificity:

1. ports are free to go anywhere on the perimeter of the node;

2. each port is constrained to lie on one of the four sides of the node (and nodes are
represented by rectangular bounding boxes of fixed dimensions);

3. ports are constrained to sides, and their (clockwise) order is also fixed;

4. each port must go in a fixed position on the perimeter of the node.

For SBGN layout these models—of both ports and constraints—fall short in two ways.
To begin with, ports represent needless clutter for the many SBGN nodes that have no
ports at all (such as entity pool nodes), whereas in the existing models all connections are
mediated via ports.

A more serious issue is that, while SBGN logic and process nodes do have something
that we think of as “ports,” the simple models mentioned above fail to capture the tricky
rules that govern these. To begin with, logic and process nodes do not even have a
fixed bounding box; instead the dimensions of their bounding boxes change depending on
how we decide to orient the nodes and position their ports (again refer to Figure 8.3).
Furthermore while some of a process node’s neighbours attach to the ports at the ends of
the two spikes, other neighbours, namely modulators, attach in a disjunctive way: they
may attach to either of two (other) ports, representing the two sides of the process node
box that do not have spikes.

In order to handle these complications we introduce a special formal model for SBGN
graphs. To begin with there are a set V of vertices or nodes, a set E of edges or arcs, and
a set P of ports. Each edge is represented by an ordered pair and its endpoints may be
nodes or ports; therefore E ⊆ (V ∪ P )× (V ∪ P ). Introducing the set

T = {EN,PN, LN,SN,CA,PA,MA, LA,EA}

of SBGN layout types as given in Table 8.1 above, our formal model also includes a map
τ : V ∪ E → T . This map assigns a type to each node and arc in the graph, and must
satisfy the obvious condition that for all v ∈ V we have τ(v) ∈ {EN,PN, LN, SN}, while
for all e ∈ E we have τ(e) ∈ {CA,PA,MA, LA,EA}. Inverse images under the map τ can
then be used to refer to the set of all nodes of a given type, or arcs of a given type. For
example τ−1 PN ⊆ V is the set of all process nodes, and τ−1 {PN, LN} ⊆ V the set of all
orientable nodes in a given SBGN network.

Process and logic nodes have predefined sizes but other node types do not; therefore
we have width and height maps

w : τ−1 {EN,SN} → R+

h : τ−1 {EN,SN} → R+

assigning dimensions to these nodes.1

As in the CoDaFlow model there is a parent map π : P → V . Only submaps, logic
nodes, and process nodes have ports. Therefore π(P ) ⊆ τ−1 {SN, LN,PN}. If v is any node

1As for the indeterminate bounding boxes of logic and process nodes mentioned earlier, the only variable
is how the node is to be oriented; once that is decided then the dimensions of the box are known.
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then we will refer to any other node u as a neighbour of v if and only if there exists an
edge e = (r, s) ∈ E whose endpoints r, s are either u and v themselves, or ports belonging
to these nodes, or any mixture thereof; in other words {r, s} ⊆ {u, v} ∪ π−1{u, v}.

While submap nodes can have any number of ports, logic nodes always have precisely
two ports, and process nodes precisely three. We introduce special notation with which

to refer to these. If v is a logic node then we denote its two ports by p
(−1)
v and p

(1)
v . If v is

a process node then we likewise denote two of its ports by p
(−1)
v and p

(1)
v , while by p

(0)
v we

denote its third port—a kind of “pseudo-port” to represent connections to modulators.

For all orientable nodes v (i.e. both logic and process nodes) we refer to the two ports

p
(−1)
v , p

(1)
v as outer ports, while for process nodes we refer to the port p

(0)
v as the centre

port. In terms of the final graph drawing the outer ports are, naturally, those at the ends
of the “spikes” in the glyphs for logic and process nodes. Meanwhile the centre port of
a process node is where modulators connect disjunctively. Before the layout is complete
it will be decided to which of the two available sides (without spikes) each modulator
connects.

If v is any orientable node and u a neighbour of v, then by pv(u) (read “port of v
for u”) we denote the port of v to which u connects. This slight overloading of the “pv”

notation should not cause any confusion. For example pv(u) = p
(1)
v simply indicates to

which spike port of node v node u connects.

Like nodes, ports must be assigned positions during the layout process. As soon as

a process node v is assigned a position its centre port p
(0)
v has that same position, but

its outer ports p
(−1)
v , p

(1)
v do not have positions until the node v has been oriented. The

same goes for the ports of a logic node. Accordingly, we define the following orientation
function for orientable nodes v:

ori(v) = catdir(v, p(1)
v ),

i.e. the orientation of node v is the categorical direction from the centre of v to its outer

port p
(1)
v .

Finally, as for the port constraints that may (optionally) be imposed by the user before
the layout process begins, we allow different options for submaps and for orientable nodes.
For submaps the user may specify port constraints at any of the four levels defined by
Spönemann et al. as presented above. Meanwhile for each orientable node v the user
may specify a nonempty subset Cv ⊆ C4 indicating the acceptable orientations for v,
i.e. imposing the constraint that ori(v) ∈ Cv.

8.2.4 Well-Orientation

Most of the formalism just introduced is in service of a very important notion for SBGN
layout, that the orientable nodes be what we will call well-oriented.2 Roughly, what we
will mean by this is that the orientable node’s neighbours lie on the appropriate sides of
it, given the ports to which they attach, and given its orientation. See Figure 8.7

In order to make this notion precise we begin by defining a function Ω : C8 → ℘C4

from compass directions to sets of cardinal directions, as in Table 8.2. We can then use
the Ω function to define well-orientation in the following way. Suppose v is an orientable
node and u a neighbour of v. We define the predicate wo(v, u), read v is well-oriented

2Mimicking the tradition of Cantorian set theory—in which a set may be well-ordered and we may
speak of a given order relation being a well-ordering—here we will speak of a given orientation being
a well-orientation, and we will speak of the act of well-orienting a node. While not standard English
constructions, such usages are firmly established in the mathematical tradition.
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Figure 8.7: In the layout on the left the process node is well-oriented because its neighbours lie on the appropriate
sides, considering the ports to which they attach. In the layout on the right neighbouring nodes lie on inappropriate
sides, and the process node is not well-oriented with respect to its neighbours.

Direction d Directions in Ω(d)

E S W N
E X X X
SE X X
S X X X

SW X X
W X X X
NW X X
N X X X
NE X X

Table 8.2: Definition of the Ω function for well-orienting. In words, if d is a cardinal direction then Ω(d) contains
all but the opposite direction, while if d is an ordinal direction then Ω(d) consists of the two cardinal components
of d.

with respect to u, as follows:

wo(v, u) ≡

{
catdir(v, u) 6∈

{
catdir(v, p

(j)
v ) : j = ±1

}
if u ∈ Mod(v)

catdir(v, pv(u)) ∈ Ω(catdir(pv(u), u)) if u 6∈ Mod(v).
(8.1)

Unpacking this, the relation depends on whether the neighbour u is a modulator of v or
not. If u is a modulator then well-orientation simply means that the categorical direction
from v to u is not among the categorical directions from v to its two outer ports; see
Figure 8.8, right. Meanwhile if u is not a modulator then it attaches to one of v’s outer
ports, and then well-orientation requires that the direction from v to this port be among
those in the Ω set for the direction from this port to u; see Figure 8.8, left, and Table 8.2.

We say that v is well-oriented and write wo(v) if v is well-oriented with respect to all
of its neighbours.

Furthermore, it will be useful to be able to speak hypothetically about whether v would
be well-oriented with respect to u if u were placed at a given point q in the plane, and for
this we introduce another form of the wo predicate:

wo(v, u, q) ≡

{
catdir(v, q) 6∈

{
catdir(v, p

(j)
v ) : j = ±1

}
if u ∈ Mod(v)

catdir(v, pv(u)) ∈ Ω(catdir(pv(u), q)) if u 6∈ Mod(v)
(8.2)

which we read as, v is well-oriented with respect to u at q. Note that wo(v, u) ≡ wo(v, u, u).

Consider for example a process node v with ori(v) = E, and suppose p
(1)
v is v’s produc-

tion port, i.e. the production arcs connected to v attach at port p
(1)
v on its east side. See
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Figure 8.8: Suppose a process node v is oriented with its production port on the east. Then v is well-oriented

with respect to a product neighbour u if and only if the categorical direction from port p
(1)
v to node u is anything

other than W, SW or NW (left). Meanwhile v is well-oriented with respect to a modulator w if and only if the
categorical direction from v to w is neither E nor W (right).

Figure 8.8. If u is a product neighbour of v, then v is well-oriented with respect to u if

and only if the categorical direction d from p
(1)
v to u is such that E ∈ Ω(d). By Table 8.2,

this means d can be any direction except W, SW or NW (consider the column headed “E”
in the table). On the other hand, if w is a modulator of v then v is well-oriented with
respect to w if and only if the categorical direction from v to w is neither E nor W.

Well-Orientation in MetaCrop

Existing SBGN diagrams from the MetaCrop database show very few process nodes that
are not well-oriented; i.e. well-orientation seems to be a high-priority layout goal in the
MetaCrop dialect. It seems reasonable that well-orientation would be favoured for the sake
of visual ease in path-following, and it is likely a feature of SBGN diagrams whatever the
dialect. Recall that in the Orthowontist study too, path-following seemed a reasonable
hypothesis to explain users’ preference for creating bends in edge routes rather than at
nodes. Accordingly, creating well-orientations will be a major goal of Phase-A, as discussed
in Section 8.4.

8.3 Phase-D

Having introduced the special features of SBGN diagrams in Section 8.1 and developed
a formalism for dealing with ports, orientable nodes, and well-orientation in Section 8.2,
we may now set about applying the DiAlEcT framework to develop the MCGL layout
algorithm.

We begin with Phase-D. Following the guidelines given in Section 7.1, Phase-D involves
both decomposition and distribution.

Skeleton and Orbits

Recall that the HOLA algorithm begins with a peeling process (Section 5.3.1) in which
the leaves are repeatedly stripped off the graph until none remain, thereby decomposing
the graph into core and trees. It is then only the core graph that is distributed by stress
minimisation, making HOLA’s Phase-D.

For SBGN diagrams a similar approach is called for, but with a modification. This
time only the first layer of leaves is stripped off the graph. We refer to these leaves as the
satellites, and to each set of satellites having a common neighbour in the full graph as an
orbit. The terms “satellite” and “orbit” are chosen to reflect the typical layout of these
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Figure 8.9: In MetaCrop diagrams leaf nodes (“satellites”) are typically arranged on roughly elliptical arcs around
their parent node.

nodes in MetaCrop diagrams, on a roughly elliptical arc around their parent node in the
skeleton graph. See Figure 8.9.

After the orbits are removed, the remaining graph is called the skeleton. Thus, skeleton
and orbits play similar roles in MCGL as core and trees did in HOLA. Analogous to HOLA,
the distribution via stress minimisation in Phase-D of MCGL operates only on the skeleton.

There are two reasons for taking this approach in which only the first layer of leaves
is peeled off, the first reason being the typically large percentage of leaves in SBGN
diagrams. (Recall for example Figure 6.16d, page 95.) This is normal, since human
designers deliberately use cloning (Section 6.4.2) to create many of these leaves and achieve
the desired level of sparseness in the graph. After peeling just one layer of leaves it is
common for a very simple skeleton graph to remain.

The second reason for taking this approach is that in the observed MetaCrop layouts it
was normal for the skeleton subgraph to contain trees that were not laid out in hierarchical
form, i.e. were not given the hierarchical symmetric tree arrangement (Table 7.2). A simple
and frequently occurring case is when the skeleton is a mere chain, for which a straight
layout is preferred, or a Y -shaped graph, for which a roughly Y -shaped layout is preferred.
These layouts are best achieved by simply applying a DESCEND operation to the skeleton.

Distributing in Compartments

The Adaptagrams layout library (Section 2.2.4) supports clustering. Nodes can be
added to clusters, and the latter can be nested inside one another. On each iteration
of the DESCEND process containment constraints are generated between the borders of
each cluster, and non-overlap constraints are generated between siblings (both nodes and
clusters) within each cluster.

This allows the hierarchical structure of SBGN compartments to be represented. How-
ever, starting from random initial positions, a few passes are needed in order to get the
nodes properly separated into their respective clusters. See Figure 8.10. For this we em-
ploy a technique we call cluster gravity, in which a dummy node is added to each cluster,
attached to every other node in that cluster. This technique is well-known (see for example
the survey by Brockenauer and Cornelsen [BC01]) but it is worth examining here how to
combine it with the Adaptagrams overlap-prevention technique, where constraints can
be automatically generated just between sibling clusters, or between all sibling clusters
and nodes.
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Pass Cluster Gravity Overlap Prevention

1 on off
2 off just clusters
3 off clusters and nodes

Table 8.3: Sequence of DESCEND operations achieving distribution in the presence of SBGN compartments
(clusters)

Graph Substructure Graph Substructure Arrangement

parallel chains parallel chain group (PCG)
face regular polygonal face (RPF)
orbit sector-partitioned orbit (SPO)

Table 8.4: Graph substructures and their arrangements in DiAlEcT layout for MetaCrop SBGN

Cluster gravity and overlap prevention are combined in three DESCEND passes as
described in Table 8.3 in order to achieve the distribution of the skeleton graph. The
first pass with cluster gravity and no overlap prevention allows nodes to pass through
one another and reach a position in which the clusters form disjoint convex hulls. Then
in the second pass cluster overlap prevention can be activated without conflict; moreover
this overlap prevention means that cluster gravity is no longer needed to keep clustered
nodes together. On the other hand, it is important that for this second pass there be no
overlap prevention between nodes (as opposed to clusters), so that these can pass through
one another and nodes can reach a well-distributed position within each cluster. Finally
overlap prevention between nodes is switched on in a third pass, achieving a basic overlap-
free distribution of nodes within their appropriate SBGN compartments. This completes
Phase-D.

8.4 Phase-A

Following the summary given in Section 7.2.3, the tasks in designing Phase-A are to define
the graph substructure arrangements (GSAs), and to describe the constraint generation
loop (CGL). These must conform to the five arrangement principles identified on page 105.

In fact just three new GSAs are identified for the MetaCrop SBGN dialect, and these
are listed in Table 8.4. The first of these, the parallel chain group, is the subject of
Section 8.4.1, while the regular polygonal face is covered in Section 8.4.2, and the sector-
partitioned orbit in Section 8.4.3. The CGL is described in Section 8.4.4.

Each section introducing a new GSA follows a consistent format: it begins by introduc-
ing and defining the new GSA; next there is a section headed “Structural and Geometric
Variants” where the variants are defined; next comes “Constraints” describing how a cho-
sen arrangement is to be enforced; finally a section headed “Variant Selection” tells how
we choose a variant during the constraint generation loop. Describing the variant selection
routine proves to be the most complex part of defining a GSA, and requires an under-
standing both of the possible variants and of the constraints that will be used to enforce
them.

The arrangement protocols for the new GSAs include one major departure from the
policies of HOLA’s Phase-A: In HOLA, in honour of arrangement principle Faithfulness
(recall the enumeration of arrangement principles on page 105) there was no time at
which we deliberately altered the rotation system, i.e. the cyclic ordering of neighbours of
a given node. In MCGL on the other hand, the importance of well-orienting (Section 8.2.4)
is deemed so high as to outweigh the concerns expressed in Section 5.2.2 (page 62), and
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(a) We start with random initial positions.
Nodes are colour-coded by SBGN compart-
ment.

(b) If we applied DESCEND immediately
we could get into trouble. In this particu-
lar instance the layout winds up “twisted”
(the blue and green clusters cross one an-
other). Attempting to now enforce cluster
non-overlap would simply lead to conflicting
constraints.

(c) Instead, we begin with
cluster gravity. A new node
(black, circular) is added
to each cluster, connected
to every node. Then DE-
SCEND tends to separate
the clusters as shown here.

(d) For illustrative purposes
only (this is not a step
in our process) we exam-
ine what happens after the
cluster gravity nodes are
removed and DESCEND is
applied without any con-
straints. The nodes are well
distributed, but the bound-
ing boxes of the clusters still
overlap.

(e) Now switching on clus-
ter overlap prevention, the
clusters are well separated
from one another, so that
SBGN compartment bound-
aries can now be drawn in
the diagram, as desired.

Figure 8.10: Clustering techniques and careful generation of non-overlap constraints are required in order to
separate nodes into their SBGN compartments during the distribution phase. In this example we look at the skeleton
subgraph of the glycolysis-gluconeogenesis pathway shown on the left in Figure 8.11.
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Figure 8.11: MetaCrop layout of glycolysis-gluconeogenesis pathway is shown on the left. On the right are noted
several parallel chain groups visible in the skeleton subgraph.

making nodes well-oriented may sometimes require the imposition of constraints to alter
a given node’s cyclic neighbour ordering.

This case illustrates what should be a general feature of future applications of the
DiAlEcT framework: the needs of a particular layout dialect must in general be weighed
against the five arrangement principles, and trade-offs must be made. In MCGL we will
continue to honour Faithfulness in other ways, in particular in the cost functions we use
when selecting geometric variants, as described in the following subsections.

8.4.1 Parallel Chain Groups

Layouts in the MetaCrop SBGN dialect emphasise series-parallel structure in the skeleton
via special node arrangements. In order to locate the relevant graph substructures we
begin by identifying all chains in the skeleton graph, as defined in Section 4.4. Once all
chains have been identified we group them into parallel chain groups. A parallel chain
group (PCG) is a maximal set of two or more coterminal chains, where two chains C1, C2

are said to be coterminal when their boundaries (see Section 4.4) are equal and nonempty:

∂C1 = ∂C2 6= ∅.

Several parallel chain groups are visible in Figure 8.11, and the dialect-conventional way
of arranging these in MetaCrop is demonstrated.

Meanwhile lone chains do not enter into PCGs because they do not share their terminal
nodes with any other chains. Lone chains may receive orthogonally routed chain or axis-
aligned pair GSAs (Table 7.2), and the choice may be left as a configurable option.

Among PCGs there are two exceptional cases to note. To begin with there is what
we call a “pseudo-PCG”. As depicted in Figure 8.12, there is a pseudo-PCG for every
chain C for which |∂C| = 1, i.e. each chain C for which there is a single node v that C
attaches to at both its ends. As hand-made layout examples like Figure 8.12 show, it is
desirable to give a pseudo-PCG the same diamond-shaped layout as a proper two-chain
PCG. This arrangement is achieved by selecting a node u as near as possible to the centre
of C and treating u as a “pseudo terminal”, then configuring C as if it consisted of two
chains running between the terminals u and v.
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Figure 8.12: MetaCrop layout of ascorbate-glutathione cycle pathway is shown on the left. On the right are
noted two pseudo-PCGs in the skeleton subgraph.

Figure 8.13: A close examination of the nodes at the top of the skeleton from Figure 8.11 reveals that the boxed
nodes actually constitute a PCG. However, in such a case the conventional PCG arrangement pattern highlighted in
Figure 8.11 is to be avoided, as a different metaphor dominates. The “transporter reactions” lying in “membrane”
compartments, whose neighbours span multiple compartments, are better arranged linearly as in this figure.

The other exceptional case is a PCG that spans multiple SBGN compartments. We
ignore these, and do not attempt to give them any special arrangement. The reason for
this relates to the possibility of their containing what we call “transporter reactions”, and
this is therefore a semantic consideration, tailored to the application domain of SBGN
diagrams. Transporter reactions move entities across cell or organelle membranes, and are
represented by process nodes whose neighbours lie in distinct compartments. Observation
of MetaCrop layouts suggests it is desirable that such processes and their neighbours be
configured linearly in a direction perpendicular to the compartment boundaries that they
cross, as illustrated in Figure 8.13. We leave it up to lone chain GSAs to achieve this,
instead of arranging such chains as parts of PCGs.

Structural and Geometric Variants

The geometric variants for PCGs are quite simple: there are only four, corresponding to
the direction in which the PCG is aligned. The structural variants are more complicated,
involving the choice of the order in which the several chains are to be arrayed beside one
another, and the choice of which of the chains, if any, is to be aligned with the terminal
nodes.

We arbitrarily designate one of the terminal nodes of a given PCG as the source
terminal s, and the other as the target terminal t. Then the four geometric variants place
t in one of the four cardinal compass directions from s. See Figure 8.14.

In all variants, nodes s and t are aligned. We refer to the direction from s to t as the
axial direction of the PCG. Meanwhile the dimension in which the coordinates of nodes
s and t differ is called the axial dimension, while that in which they are the same is the
transverse dimension. For example, when the axial direction is S as in the case far-left in
Figure 8.14, then the axial dimension is y and the transverse dimension x.
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Figure 8.14: After arbitrarily designating the terminal nodes of a PCG as “source” s and “target” t, we can
orient the PCG in any of the four cardinal compass directions. From left to right in this figure, the PCG points
south, east, north, and west. In a case like the one illustrated here, in which nodes s and t were aligned vertically
with their respective external neighbours, MCGL would attempt to create either the north or south orientation,
i.e. the first or third options in this figure reading from the left.

Figure 8.15: Once a direction is chosen for a PCG, there may be many different ways to arrange the chains
within it. In MCGL we would select the leftmost arrangement in this figure as the standard structural variant.

As for structural variation, there are many conceivable ways in which we could arrange
each of the chains within the PCG, but according to Standardisation we select a simple
standard alternative, and leave the variations up to Phase-T.

To begin with, we ensure that the orientation of each O-node (orientable node) occur-
ring within the PCG is compatible with the direction in which the whole PCG points, i.e.
that the spikes of the O-node are aligned in the axial dimension. For example if the axial
direction is S then each O-node v in the PCG must satisfy ori(v) ∈ {N,S}. This confines
us to configurations like those illustrated in Figure 8.15. Furthermore we opt to make each
of the chains in the PCG perfectly straight. This eliminates cases like the one illustrated
in the centre of Figure 8.15.

Finally there is the question as to how the chains should be distributed in the transverse
dimension. For example, for a two-chain PCG we could balance the chains as on the left
of Figure 8.15, or we could put one chain in the centre, and the other off to one side,
as on the right of that figure. However, while the latter option could conceivably be
desirable for semantic reasons in a given case, we leave such choices up to Phase-T; in
Phase-A we honour Standardisation by simply working toward the structural good of
symmetry as far as permitted by the number of chains in the PCG and the length of
each. This leaves us to order the chains in essentially the same way we ordered the c-trees
in the Manning-Atallah algorithm used to create the hierarchical symmetric tree (HST)
arrangement (Table 7.2). As with HSTs, for PCGs we again favour putting longer chains
closer to the centre.
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Figure 8.16: A PCG with axial direction E, with a centre chain

Choosing the ordering of the chains within a PCG means choosing the cyclic ordering
of the neighbours of the two terminal nodes; however, like HSTs, PCGs can be arranged
essentially in isolation from the remainder of the graph, and for this reason there is no
special need here to preserve cyclic ordering, i.e. no essential conflict with Faithfulness.

Constraints

The constraints enforcing a PCG arrangement are easy to define, and we start by consid-
ering an example. For the case illustrated in Figure 8.16 with axial direction E, the entries
of a relative constraint matrix M (Section 7.4) would be as follows:

1. The source and target nodes s and t are aligned in the axial direction. ThusM(s, t) =
E.

2. The internal nodes of each chain (i.e. all but the terminal nodes) are aligned in
the axial direction. Thus M(a, b) = M(b, c) = M(p, q) = M(q, r) = M(u, v) =
M(v, w) = E.

3. The first and last nodes of each chain are placed by separation constraint on the
proper side of their neighbouring terminal node. ThusM(s, a) = M(s, p) = M(s, u) =
R and M(t, c) = M(t, r) = M(t, w) = L.

4. If there is a centre chain, then its nodes are aligned with s and t in the axial direction.
Thus M(s, p) = E = M(r, t) and this overrides the definitions of these entries given
in the last item.

5. The first (in order from source to target) internal nodes of the several chains are
given ordering constraints in the transverse dimension in order to keep the chains
aligned beside one another in the desired order. Thus M(a, p) = M(p, u) = D.

In order to give the precise definitions of the constraints in general, let s and t again
be the source and target terminal nodes. Let the chains of the PCG be C1, C2, . . . , Cn in
the order in which they are encountered in clockwise rotation around the source node s.

For each chain Ci, let v
(0)
i , v

(1)
i , . . . , v

(mi)
i be all its nodes, including its terminals, ordered

from source to target; thus v
(0)
i = s and v

(mi)
i = t for all i. Let A ∈ C4 be the axial

direction of the PCG and let B be the lateral weakening of A (see Table 7.5, page 109).
Let C = cw4(B). Then the constraints are as follows:

1. M(s, t) = A.

2. For i = 1, 2, . . . , n and j = 1, 2, . . . ,mi − 2, M(v
(j)
i , v

(j+1)
i ) = A.
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3. For i = 1, 2, . . . , n, M(s, v
(1)
i ) = B = M(v

(mi−1)
i , t).

4. If there is a centre chain Ci0 then M(s, v
(1)
i0

) = A = M(v
(mi0

−1)

i0
, t), and this overrides

the previous rule.

5. For i = 1, 2, . . . , n− 1, M(v
(1)
i , v

(1)
i+1) = C.

Note that, except where exact alignments are desired, the separation constraints em-
ploy inequalities, not equations, according to Minimality.

Variant Selection

The approach for assessing a potential geometric variant for a PCG is as follows: First it
is to be determined whether it is possible to give each orientable node in the PCG a well-
orientation in the proposed geometric variant. We will call the variant feasible if and only if
this is so. Next, for each feasible variant a cost is assessed by some measure of displacement
from the existing layout; for infeasible ones, the variant is rejected altogether. All that
we need indicate then is (1) how to determine whether a proposed geometric variant is
feasible, and (2) how to assess the cost of a feasible one. It is in this section that the
formalism developed in Section 8.2 begins to serve its purpose.

For PCGs infeasibilities can arise only in relation to the terminal nodes s, t, in the
case that one or more of them is an O-node. On the other hand, any O-node v occurring
interior to a chain can always be given a well-orientation whatever the proposed axial
direction A of the PCG. This is because as an internal chain node v has, by definition,
degree 2 in the skeleton graph, and hence exactly one neighbour connected to each of its
two outer ports (since each of these always has at least one neighbour). Considering for
example the case in which A = S, among the two neighbours of an O-node v one is to
be placed above v and the other below; v can always be given ori(v) ∈ {N, S} in order to
permit this. The other cases A ∈ {E,W,N} are similar.

Let us therefore consider the well-orientation of the terminal nodes, in the case that
either (or both) of them is orientable. Let A be the proposed axial direction for the PCG.
For terminal node u we denote by I(u) the set of interior port numbers for node u, by
which we mean the set of i such that at least one chain in the PCG attaches to node u
at port p

(i)
u . The orientations of node u that permit it to be well-oriented with respect to

the chains of the PCG can then be determined by considering the set I(u), and there are
three possible cases:

• Positive Axial Case: I(u) = {1}. We need ori(u) = A if u = s, and ori(u) = cw4
2 A

if u = t. See Figure 8.17a.

• Negative Axial Case: I(u) = {−1}. We need ori(u) = cw4
2 A if u = s, and ori(u) = A

if u = t. See Figure 8.17b.

• Transverse Case: 0 ∈ I(u) or |I(u)| > 1. In this case we need ori(u) ∈ {cw4 A, cw4
3 A}.

See Figure 8.17c.

Whereas the two axial cases are decisive in themselves, the transverse case leaves a
decision to be made, as to which of two possible orientations the terminal node u is to be
given. If precisely one terminal is in the transverse case (while the other is either in an
axial case or else is not orientable at all), then either of the two transverse orientations may
be chosen, and the proposed axial direction A for the PCG is feasible. See Figure 8.18.

This leaves only one case to be considered, in which both terminals are O-nodes, and
both are in the transverse case. We refer to this as a double-transverse PCG. (See for
example Figure 8.17c, as well as the pseudo-PCG at the bottom of Figure 8.12.) If either
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(a) If all chains attach to the

source terminal at port p
(1)
s

then well-orientation requires
ori(s) = S. If all chains at-
tach to the target terminal at
port p

(1)
t then well-orientation

requires ori(t) = N.

(b) If all chains attach to the

source terminal at port p
(−1)
s

then well-orientation requires
ori(s) = N. If all chains attach
to the target terminal at port
p
(−1)
t then well-orientation re-

quires ori(t) = S.

(c) If chains attach to two
or more of the ports at the
source terminal, or if any
chain attaches to the source
terminal at port p

(0)
s , then

well-orientation requires that
ori(s) ∈ {W,E}. The same
holds for the target terminal.

Figure 8.17: Different ways of orienting the terminal nodes are depicted for a PCG with axial direction S. In

this and subsequent figures, an arrow on a spike leaving an orientable node u indicates that this is port p
(1)
u .

Figure 8.18: When exactly one terminal node is in the transverse case, then it may take either of the two
available orientations. The chains must simply be ordered accordingly, in order to avoid crossings.
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Figure 8.19: Representing each terminal port by a vertex and each chain by an edge, a double-transverse PCG
(top row) is modelled by a bipartite graph with two or three vertices in each part (bottom row).

of the terminals u is a logic node then it has only two ports, p
(1)
u and p

(−1)
u , whereas if it is

a process node then it has in addition a third port p
(0)
u . Each chain of the PCG runs from

some port of terminal s to some port of terminal t. Therefore, modelling each port by a
vertex and each chain by an edge, the topology of a double-transverse PCG is modelled by
a bipartite graph each side of which contains either two or three vertices. See Figure 8.19.

Like all GSAs, the PCG arrangement is meant to add clarity to the layout, and help
demonstrate the structure of the network. In the double-transverse case we are forced
to confront the possibility, to which all GSAs are susceptible, that in some cases the
arrangement may become so muddled as to defeat its purpose, and in such cases the
arrangement ought to be simply abandoned. In light of this we expand our definition of
infeasibility, and call infeasible any double-transverse PCG in which either (a) a chain is
forced to cross from one side of the PCG to the opposite side, as in Figure 8.20a, or else
(b) two chains are forced to cross one another, as in Figure 8.20b.

Since each terminal node has two possible orientations in the transverse case, there are
a total of four combinations for a double-transverse PCG. As regards well-orientation of
the terminals with respect to other nodes outside the PCG, all four combinations must be
considered; however, as regards internal feasibility there are only two essentially distinct
cases: that in which the two terminals are given the same orientation, and that in which
their orientations are opposite.

For a given choice of terminal orientations, the two new feasibility conditions (a) and
(b) given above are easily checked. We illustrate how this can be done for the case in which
both terminals are process nodes and therefore have three ports each; the other cases are
similar. Once the terminal orientations are fixed each chain may be said to connect at
the left, centre, or right port at the source terminal, and likewise at the left, centre, or
right port at the target terminal. Let the former be indicated by `, c, r, and the latter by
`′, c′, r′, respectively. Each chain is then of one of nine possible types, being represented
by an ordered pair in {`, c, r} × {`′, c′, r′}. Feasibility condition (a) says that types (`, r′)
and (r, `′) are prohibited. In other words, if any chain is of either of these types then the
given choice of orientations is infeasible. As for feasibility condition (b), it is satisfiable
(by some ordering of the chains) unless either of two pairs of chain types coexist; namely,
if there is any chain of type (c, `′) then there may not be any chain of type (`, c′), and vice
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(a) Cases in which the extreme
nodes in the corresponding bipar-
tite graph are connected are con-
sidered infeasible, since such cases
are deemed not to capture the in-
tended metaphor of the PCG.

(b) Cases in which the corre-
sponding bipartite graph is non-
planar are considered infeasible,
since the muddiness introduced
by the crossings are deemed to
cancel the benefit of creating a
PCG arrangement.

(c) In some cases the infeasibil-
ity can be removed by reorient-
ing one of the terminals (compare
Figure 8.20a).

(d) In other cases the infeasibility
cannot be removed even if one of
the terminals is reoriented (com-
pare Figure 8.20b).

Figure 8.20: For double-transverse PCGs we expand the definition of infeasibility to include cases where chains
cross from one side to the opposite side, or cross one another.
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(a) Edge (`, r′) is pro-
hibited.

(b) Edge (r, `′) is pro-
hibited.

(c) Edges (`, c′) and
(c, `′) may not occur
together.

(d) Edges (r, c′) and
(c, r′) may not occur
together.

Figure 8.21: Prohibited edges and edge pairs in the bipartite graphs corresponding to double-transverse PCGs

versa; and likewise if there is any chain of type (c, r′) then there may not be any chain of
type (r, c′), and vice versa. See Figure 8.21.

This completes the determination of whether a given geometric variant (as determined
by its axial direction A) is feasible for a PCG, and we have only to say how a cost is
assigned to a feasible variant.

According to Faithfulness the cost is designed to approximate the departure from
stress-minimal positions necessitated by the arrangement. Without knowing in advance
the exact positions to which the nodes of the PCG will be moved after the constraints
are applied, we can approximate the disturbance by considering instead the anticipated
angular displacements of nodes relative to one another.

Let the chains of the PCG be C1, C2, . . . , Cn, again in the order in which they are
encountered in clockwise rotation around the source node s, as when we defined the

constraints in the last section. And for each chain Ci, let v
(0)
i , v

(1)
i , . . . , v

(mi)
i be all its

nodes, as before.

For any two vectors p, q, let α(p, q) ∈ [0, π] be the smaller non-negative angle between
them,

α(p, q) = arccos
p · q
|p| |q|

.

For any two nodes u, v we will use the same symbols to refer to their centre points; thus
v − u is the vector pointing from the centre of node u to the centre of node v. Let G be
the intended grid size for the layout. We will use the cardinal and lateral direction letters
E, R, etc. (Section 7.4) to represent vectors pointing in the corresponding direction and
having length G. Thus for example E = (G, 0) = R. Recall that A is the axial direction
of the PCG. Let C = cw4 A.

For each pair of adjacent nodes u, v in the PCG, there is an idealised vector η(u, v) for

the arrangement. See Figure 8.22. For example for a pair of consecutive nodes v
(j)
i , v

(j+1)
i

internal to a chain the idealised vector is A. If chain Ci0 is to be a centre chain, then we
also have

η(s, v
(1)
i0

) = A.

If chain Ci1 is to be placed beside chain Ci0 in the clockwise direction around s then

η(s, v
(1)
i1

) = A + C.

Similarly if chain Cik is to be placed k chains clockwise (relative to s) from the centre
chain then

η(s, v
(1)
ik

) = A + kC
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Figure 8.22: The idealised vectors η(u, v) for any GSA reflect how we expect nodes u and v to lie relative to one
another in the intended arrangement. For computing costs we only need these for nodes connected by an edge. In
this example the idealised vectors would be η(s, a) = E− S, η(s, p) = E, η(s, u) = E + S, η(a, b) = E, and so forth.

and this holds for anti-clockwise chains as well if k takes negative values for these. Finally,
if I is the set of edges internal to the PCG then the cost of the arrangement is

cost =
∑

(u,v)∈I

α (v − u, η(u, v)) .

That is, it sums the angular displacement for each pair of nodes, from the existing position,
to the idealised arranged position.

This completes our description of how to choose a geometric variant for a PCG during
Phase-A.

8.4.2 Regular Polygonal Faces

In diagrams in the MetaCrop database it is common to find faces of the skeleton subgraph
configured in the shape of regular polygons, as illustrated in Figure 8.23. As detailed in
the figure, the number of sides of the polygon need not equal the number of nodes in the
circuit (though it cannot exceed it). For example a circuit of eight nodes may be arranged
as a hexagon rather than an octagon. This is an excellent example of different possible
structural variants for a GSA as defined in Section 7.2.1, and the need to pick a standard
plan for Phase-A. According to Standardisation it suffices to have the automatic layout
always choose configuration as a regular n-gon for circuits of n nodes, and leave it to
Phase-T to provide handy ways for the user to change this if desired.

Of course, before we can properly speak of the faces of a given embedding it must be
planar. Therefore in order to identify faces we temporarily planarise the current embedding
of the graph by adding dummy nodes at edge crossings. As in Section 5.3.3, the Bentley-
Ottmann algorithm achieves this in O((m+ k) logm) time, where there are m edges and
k crossings. We then identify all faces in the resulting planar graph, and throw away any
that involve dummy nodes. We also discard faces that span multiple compartments, for
the same reason we discard compartment-spanning PCGs, as explained in Section 8.4.1.

The remaining faces are to be configured as regular polygons. What this means is that
for each face F consisting of n nodes we must choose a particular n-gon G in the plane,
and then apply constraints that will tend to place the nodes of F upon the vertices of G,
with more or less rigidity according to Minimality.

Choosing an n-gon means choosing a projective linear transformation of the basic n-
gon, which is equilateral, is centred at the origin, and has one vertex at (1, 0). We define
the radius of an n-gon to be the distance from its centre to any of its vertices, so the basic
n-gon has radius 1. See Figure 8.24.
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(a) Pentose phosphate pathway (MetaCrop) (b) Methionine recycling pathway (MetaCrop)

Figure 8.23: At the centre of Figure 8.23a one face of the skeleton subgraph has been given the shape of a
(roughly) regular hexagon. Two others are (roughly) regular quadrilaterals. In Figure 8.23b a face of the skeleton
subgraph containing eight nodes is configured as a hexagon (not an octagon) and, although it is not a regular
hexagon, it has two axes of reflection symmetry.

Figure 8.24: The basic n-gon (hexagon illustrated here, in solid lines) is equilateral, is centred at the origin, and
has a vertex at (1, 0). Any other n-gon (for the same n, illustrated in dashed lines in this figure) is obtained via a
projective linear transformation of this one; that is, via some composition of rotation, translation, and dilation.
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Applying a projective linear transformation means first mapping points (x, y) in the
plane R2 to the corresponding points (x, y, 1) in three-space R3 and then applying a linear
transformation T whose matrix representation can be factored as a product of three 3× 3
matrices,  1 0 a

0 1 b
0 0 1

 d 0 0
0 d 0
0 0 1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


which apply a rotation of θ radians, a dilation by factor d, and a translation by (a, b). The
transformed point T [x, y, 1] = [u, v, 1] can then be mapped back into the plane as (u, v).
(Working in three-space is necessary to allow translation by linear transformation.) The
decomposition into rotation, dilation, and translation provides an easy way to think about
choosing a particular n-gon. We must choose its centre and radius (i.e. translation and
dilation) and decide how its vertices are rotated about its centre.

Let us think about rotation first. While there may be no objectively right answer, we
can make a principled set of rules describing which rotations to allow by comparing to the
case of a single pair of nodes connected by an edge. Returning to the grid-like aesthetics
examined in Chapter 3, we feel that such a pair of nodes is most neatly arranged when
it is aligned vertically or horizontally, while placing it at a 45-degree angle is either just
as good as axis-alignment (as in the popular “octilinear” layout style [NW11b]), or is
perhaps a second-best alternative. Meanwhile there are infinitely many other angles at
which the edge could possibly lie, but none of the others seems to deserve to be called
“neatly configured in a principled way”.

What this means is that we think that a single edge is neatly arranged when it is given
one of four possible rotations: vertical, horizontal, or one of the two 45-degree diagonals.
We might call these the four canonical rotations for an edge.

It seems reasonable to think in a similar way about the possible rotations of an n-gon.
Which rotations seem somehow neat or principled? Generalising the case of a single edge,
we could (A) look for rotations in which one or more of the sides of the n-gon were axis-
aligned. Alternatively, it could be that (B) an n-gon appears neatly rotated when one or
more of its “radii” are axis-aligned, those being the (imaginary) lines from its centre to
its vertices. To put this second condition differently, one or more vertices should point in
a cardinal compass direction.

Based on these principles, the number of canonical rotations for an n-gon depends on
the residue class of n mod 4. See Figure 8.25. If n is 1 or 3 mod 4 (i.e. odd) then both
principles (A) and (B) lead to the same result: there are four canonical rotations. If n is 2
mod 4 then again principles (A) and (B) agree; this time there are two rotations. Finally,
if n is 0 mod 4 then principles (A) and (B) give different answers: they each say that
there is precisely one canonical rotation, but they disagree on what it is. See Figure 8.25a.
Since both principles seem reasonable, we accept both answers.

Structural and Geometric Variants

Let v0, v1, . . . , vn−1 be n nodes forming a face cycle, listed in clockwise order. Let p0, p1, . . . ,
pn−1 be the vertices of the basic n-gon (see Figure 8.24), also in clockwise order, and with
p0 being the vertex that lies on the positive x-axis. Note that our choice to use clockwise
ordering is consistent with our choice to follow the graphics convention in which the
positive y-axis points down, not up, as explained in Section 8.2.2.

We must choose a transformation T of the n-gon and we must choose a mapping
M of the nodes vi onto the transformed vertices T (pj). According to Faithfulness, we
will consider only those mappings M that preserve clockwise order, meaning that M is



140 CHAPTER 8. DIALECT LAYOUT FOR SBGN

(a) When n is 0 mod 4 there
are two canonical rotations: one in
which there is a vertex pointing in
each of the cardinal directions, and
one differing from that by π/n ra-
dians, in which there are two pairs
of opposite, axis-aligned sides.

(b) When n is 2 mod 4 there
are two canonical rotations: one
in which a pair of vertices point
north and south, and one in which
a pair of vertices point east and
west. Each rotation also has one
pair of opposite, axis-aligned sides.

(c) When n is 1 or 3 mod 4 (i.e. odd) there are four canonical
rotations, in each of which a single vertex points in one of the four
cardinal directions, and a single side is axis-aligned.

Figure 8.25: The number of canonical rotations of an n-gon depends on the residue class of n mod 4.

completely determined as soon as we choose the value of M(v0). Each geometric variant
for the regular polygonal face (RPF) is therefore determined by four parameters:

• the centre point c of the transformed n-gon;

• the radius r of the transformed n-gon;

• the canonical rotation ρ of the transformed n-gon (see Figure 8.25); and

• an integer b ∈ {0, 1, . . . , n − 1} called the “mapping base”, which defines the map-
ping Mb from nodes to transformed vertices by vi 7→ T (pb+i) (where indices are
understood mod n).

Note that, since we enforce arrangements using only relative constraints between nodes,
the centre point c does not matter when computing constraints; on the other hand it does
matter when computing costs in order to choose a geometric variant.

Let (x0, y0), (x1, y1), . . . , (xn−1, yn−1) be the existing coordinates of the n nodes, i.e. the
coordinates as of the current iteration of the constraint generation loop. Then for the
centre point c we take the coordinate-wise mean of these n points, and for the radius r we
take the mean distance from each of these points to c.

For each of the canonical rotations ρ we then get two potential geometric variants.
To define these we find among the transformed points T (pj) the two T (pb), T (pb′) that
are closest to the point (x0, y0). In most cases we expect one of these points to lie in
the clockwise direction from (x0, y0) (relative to c), and the other in the counterclockwise
direction, and it is reasonable to try rotating the nodes v0, v1, . . . , vn−1 in either direction
in mapping them onto the vertices of the polygon. Therefore the two mappings Mb, Mb′

define the two desirable geometries for rotation ρ. Altogether we have either four or eight
potential geometric variants, depending on whether n is even or odd, respectively (again,
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(a) Two unequal angles in the interval [0, 2π) have
the same cosine if and only if their mean is π.

(b) Two unequal angles in the interval [0, 2π) have
the same sine if and only if their mean is π/2 or
3π/2.

Figure 8.26: Graphs of cosine and sine, showing for what sort of pairs of unequal angles they take on equal
values

see Figure 8.25). We will select one of these variants based on both feasibility and cost,
as we did with PCGs.

Constraints

We define the alignment and separation constraints that enforce a regular polygonal shape
on the nodes making up an RPF, beginning with the alignments. These depend only on n
and the chosen canonical rotation, so we may define them for the basic n-gon and indicate
how those for the chosen rotation may be obtained from these. Recall that the basic n-gon
is centred at the origin, has unit radius, and has a vertex on the positive x-axis. Beginning
with that vertex and proceeding clockwise, the vertices have coordinates(

cos

(
2π

n
k

)
, sin

(
2π

n
k

))
for k = 0, 1, . . . , n− 1. We must create a vertical alignment for each pair of vertices with
common x-coordinate, and a horizontal alignment for each pair with common y-coordinate.
Therefore let 0 ≤ k1 < k2 < n be given, and let us consider the conditions under which
the two angles α1 = 2πk1/n and α2 = 2πk2/n have equal cosine or sine.

Considering the graph of cosine over the interval [0, 2π) (see Figure8.26a) we see that
the two angles α1 6= α2 have the same cosine if and only if their mean (α1 + α2)/2 equals
π; equivalently, if and only if

k1 + k2 = n. (8.3)

Meanwhile the graph of sine (Figure 8.26b) shows that α1 6= α2 have the same sine if and
only if their mean is either π/2 or 3π/2; equivalently, if and only if

k1 + k2 ∈
{
n

2
,
3n

2

}
. (8.4)

We can now consider the several cases, as illustrated in Figure 8.27. This tells us on
which pairs of vertices we must apply alignment constraints.

With the alignments in place we need only add separation constraints, and honouring
Minimality we enforce minimum, not exact, separations. The values of these separations
are easily read off of the coordinates of the points T (p0), T (p1), . . . , T (pn−1) of the trans-
formed n-gon. In other words, we enforce as minimum separations the actual separations
between the points T (pi), in both dimensions.
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(a) When n is odd the basic n-gon has (n− 1)/2
vertical alignments, according to Equation (8.3).
Meanwhile, as Equation (8.4) predicts, there are
no horizontal alignments when n is odd. Each
of the three remaining canonical rotations is ob-
tained from the basic one by one or more 90-degree
rotations, and the alignments are easily obtained
from the basic case.

(b) When n is 2 mod 4 the basic n-gon has n/2
horizontal alignments, and (n−2)/2 vertical align-
ments, as predicted by Equations (8.3) and (8.4).
Again, the other canonical rotation differs by 90
degrees, so its alignments are easily obtained from
the basic case.

(c) When n is 0 mod 4 the basic n-gon has (n −
2)/2 alignments in each dimension. The second
canonical rotation differs not by a multiple of 90
degrees but by 180/n degrees, so requires special
treatment; see Figure 8.27d.

(d) The second canonical rotation for n ≡ 0 mod
4 is the oddball case. Following the same analysis
we used with Equations (8.3) and (8.4) but with
a phase shift of π/n shows that we get vertical
alignments when k1 + k2 = n − 1 and horizontal
when k1 + k2 ∈ {(n − 2)/2, (3n − 2)/2}. We get
n/2 alignments in each dimension.

Figure 8.27: Alignments for regular n-gons. In each figure the vertices are numbered, and these numbers play
the role of the ki in Equations (8.3) and (8.4)
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Variant Selection

As with PCGs, we have two tasks: (1) to indicate how a potential geometric variant is to
be checked for feasibility, meaning that it permits all O-nodes to be well-oriented, and (2)
how to assess a cost for each feasible variant.

For RPFs the cost computation is simple. Since we have the exact points at which
the nodes of the RPF are to be positioned, we assess as cost the sum of the distances
by which the n nodes v0, v1, . . . , vn−1 are displaced from their current positions under the
transformation T and mapping Mb that define the geometry, i.e.

cost =

n−1∑
i=0

|vi −M(vi)| . (8.5)

It remains only to say how feasibility is to be checked. For i from 0 to n − 1 let
qi = T (pb+i), so that q0, q1, . . . , qn−1 are the transformed polygon points and Mb : vi 7→ qi.
Suppose vi is an orientable node. Its neighbours in the RPF are vi−1, vi+1 (throughout the
discussion indices are understood mod n), and the question whether vi can be well-oriented
in the given geometric variant depends on the relative positions of the points qi−1, qi, qi+1.
For ease of expression we set u, v, w = vi−1, vi, vi+1 and p, q, r = qi−1, qi, qi+1.

If v has already been given an orientation in the layout process up to this point, then
we must simply check whether wo(v, u, p) and wo(v, w, r) both hold (see equation (8.2),
page 123). If either condition fails then node v cannot be well-oriented with respect to
the proposed geometry, so the geometry is assigned infinite cost.

Otherwise v has not yet been oriented and we must check whether any well-orientation
is possible. Theoretically this means checking all four possible orientations, but in fact we
can check them two at a time, since it turns out that E orientation is possible if and only
if W is, and likewise N if and only if S.

Let H = {E,W} and V = {S,N}. We can write down a predicate F (A) such that
F (H) holds if and only if there is a feasible orientation for v in the set H, and similarly
F (V ) holds if and only if there is a feasible orientation for v in the set V . We define
dp = catdir(q, p) and dr = catdir(q, r), and we use the Ω function defined in Table 8.2,
page 123. There are five cases to consider, and an example is illustrated in Figure 8.28.

We first ask how many among v’s neighbours u and w are modulators. If both u and
w are modulators then

F (A) ≡ {dp, dr} ∩A = ∅. (8.6)

If u is a modulator and w is not, then

F (A) ≡ dp 6∈ A ∧ Ω(dr) ∩A 6= ∅. (8.7)

Obviously if the roles are reversed and w is a modulator while u is not, then the predicate
F is similar. Finally, consider the case in which neither u nor w is a modulator. Then we
must ask whether pv(u) = pv(w), i.e. whether u and w connect to v at the same port. If
pv(u) = pv(w), then

F (A) ≡ Ω(dp) ∩A ∩ Ω(dr) 6= ∅, (8.8)

whereas if pv(u) 6= pv(w) then

F (A) ≡ A ⊆ Ω(dp) ∪ Ω(dr). (8.9)

After formulating the predicate F (A) we check whether F (H) ∨ F (V ) holds. If not then
we assign the geometry infinite cost; otherwise v has a well-orientation for the geometry,
so we move on to check the next orientable node v in the RPF. If all orientable nodes in
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the RPF can be well-oriented for the geometry in question, then the assigned cost is given
by Equation 8.5.

8.4.3 Sector-Partitioned Orbits

Positioning the satellite nodes s1, s2, . . . , sn of a given orbit O relative to their common
parent node p in the skeleton graph is much easier than handling the GSAs we have
looked at in the previous sections. The satellites are leaf nodes and can straightforwardly
be placed where desired.

Our goal is to achieve a roughly circular distribution of the satellites around the parent
node p (recall Figure 8.9, page 125), subject to the conditions that:

1. p is well-oriented,

2. modulators are evenly distributed between alternative ports,

3. on any side of p that gets an odd number of satellites, if there is no aligned skeleton
neighbour then one satellite is aligned with p.

Since a circular distribution is naturally achieved by unconstrained stress-minimisation we
try to meet the above conditions using a minimum of necessary constraints.

This gives rise to the idea of the sector-partitioned orbit, in which lateral (not cardinal)
constraints serve to partition the satellites si into four sectors of angular space around the
parent node p. Consider for example a process node p with ori(p) = S, and having among
its satellites si exactly two consumption, two modulation, and two production neighbours,
as illustrated in Figure 8.29a. If these are s0, s1, s2, s3, s4, s5 respectively, then in order to
partition the satellites into sectors around p the lateral constraints expressed as entries in
the relative constraint matrix in Table 8.29b will suffice. The general case follows in an
obvious way from this example.

Note also that in this example there are two modulators and we have divided them
evenly among the two sides of the process node glyph where they may attach. As a result
both the E and W sides of the process node have precisely one neighbour each; since this
is an odd number, those neighbours are aligned with the process node. Similarly had there
been, say, an odd number of consumption neighbours, then one of those would have been
aligned N of the process node.

Once the sector-partitioning and alignment constraints have been added, stress minimi-
sation will generally distribute the satellites evenly in the available angular space around
their common parent node.

One difficulty, examples of which will be seen in Section 9.3, is that this process
sometimes results in edge-node overlaps involving satellites. Considering the freedom
with which positions may be assigned to leaf nodes, it seems reasonable to try computing
satellite positions by direct geometric computations rather than by minimising stress, and
thereby attempting to avoid such overlaps. However, cursory investigations have revealed
such direct computations to be difficult, and so it remains for future work to properly
attempt such an approach.

There are two issues involved: (1) How to avoid edge-node overlaps, and (2) How to
position the satellites around their parent node. In HOLA we could easily deal with Prob-
lem (1) since it was orthogonal layout. There, each connector segment is axis aligned, and
we can represent it by a long, thin node. Then the existing node-node overlap removal
system of Adaptagrams solves the problem. With the diagonal edges present in SBGN
and other non-orthogonal layouts, we need a new solution. We have considered represent-
ing diagonal edges by sets of small square nodes and applying the same technique, but
this leaves the question of choosing the square sizes and of updating their positions as the
proper nodes move.
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We examine a case in which points p, q, r lie
on the vertices of a regular octagon, with dp =
catdir(q, p) = S and dr = catdir(q, r) = NE. In
this case Ω(dp) = {E, S,W} and Ω(dr) = {E,N}.
Nodes u and w are to be placed at points p and r
respectively, and process node v is to be placed
at point q.

Case: u, w modulators.

F (H) ≡ {S,NE} ∩H = ∅
≡ >

F (V ) ≡ {S,NE} ∩ V = ∅
≡ ⊥

Case: u modulator, w not.

F (H) ≡ S 6∈ H ∧ {E,N} ∩H 6= ∅
≡ >

F (V ) ≡ S 6∈ V ∧ {E,N} ∩ V 6= ∅
≡ ⊥

Case: w modulator, u not.

F (H) ≡ NE 6∈ H ∧ {E, S,W} ∩H 6= ∅
≡ >

F (V ) ≡ NE 6∈ V ∧ {E, S,W} ∩ V 6= ∅
≡ >

Case: no modulators, shared port.

F (H) ≡ {E, S,W} ∩H ∩ {E,N} 6= ∅
≡ >

F (V ) ≡ {E, S,W} ∩ V ∩ {E,N} 6= ∅
≡ ⊥

Case: no modulators, opposite ports.

F (H) ≡ H ⊆ {E, S,W} ∪ {E,N}
≡ >

F (V ) ≡ V ⊆ {E, S,W} ∪ {E,N}
≡ >

Figure 8.28: Feasibility tests for an example RPF geometry, using Equations (8.6) through (8.9)



146 CHAPTER 8. DIALECT LAYOUT FOR SBGN

(a) For a process node p oriented S
with two consumption, two mod-
ulation, and two production satel-
lites s0, s1, s2, s3, s4, s5 as illus-
trated here, the requisite con-
straints are given in Table 8.29b.

p s0 s1 s2 s3 s4 s5

p U U W E D D
s0 ε DL DR D D
s1 DL DR D D
s2 R DR DR
s3 DL DL
s4 ε

(b) The table gives relative constraint matrix (RCM)
entries partitioning satellites into sectors for the case il-
lustrated in Figure 8.29a. The entry in row a, column b
is to be understood as the entry M(a, b) in matrix M ; in
other words, this gives the constrained directions from
node a to node b. Since all RCMs are antisymmetric
and equal to ε along the main diagonal, only the upper
triangular entries are given.

Figure 8.29: Example sector-partitioned orbit arrangement, with relative constraint matrix entries that enforce
its sector partitioning and alignments

As for Problem (2), positioning satellites around their parent node, this seems like
easy geometry as long as we envision simple cases like four to six satellites, all of the same
size, and distributed symmetrically among the parent node’s ports. In full generality
however, it is a tricky optimisation problem. The problem is: Given a centre point c, to
pack n rectangles Ri of various (given) dimensions wi by hi as close to c as possible while
keeping certain rectangles Ri assigned to certain angular sectors [ak, bk], and also keeping
the angular spacing between the rectangles as even as possible. Considered in this light,
it seems reasonable to abandon attempts at direct geometric computation in favour of a
simple optimisation technique like stress minimisation with overlap removal. Due to the
imperfections that remain, this is an area for future research.

8.4.4 Constraint Generation Loop

Having described the new GSAs for MetaCrop SBGN diagrams, we can finally indicate the
operation of Phase-A by describing the CGL, or constraint generation loop. This includes
both initialisation steps that must be carried out before the loop begins, and the loop
itself.

Initialisation

• Before the CGL can begin it is necessary to identify the targeted substructures in
the network, and this must be done with care. In particular we search for PCGs first.
Then after finding all RPFs we discard any of these that happens to be a subgraph
of any PCG. It is important that we operate in this order, or else two-chain PCGs
would be identified as faces, and would not receive the desired arrangement.

• To manage the order in which we consider the targeted substructures we build an
auxiliary graph A with a vertex representing each structure and an edge connecting
the vertices for any structures that share nodes or edges in the original network. For
example if two PCGs share a terminal node then their vertices are neighbours in A.
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Constraint Generation Loop

• We traverse each connected component C of the auxiliary graph A by breadth-first
search starting from a central vertex. Centrality of a vertex v ∈ C is measured by
computing the shortest path from v to each other vertex u ∈ C , and taking the
reciprocal of the maximum of the lengths of these paths. Thus a central vertex is one
whose maximal distance to any other vertex in the component is a short as possible.

If there are several vertices in C with maximal centrality, the tie is broken first by
favouring a vertex representing a largest substructure in the original network, i.e. one
containing the greatest number of nodes, and secondarily (if there are several of the
largest size) by an arbitrary but not random means, such as choosing one containing
a node of minimal ID (where all nodes in the graph have been assigned unique integer
IDs by some mechanism).

It is by this ordering of the graph substructures that we address arrangement prin-
ciple Cooperation. For each connected component C, the central structure with
which the process begins stands the greatest chance of achieving a desirable arrange-
ment, since at this stage there are not yet any potentially conflicting constraints in
effect3. From this starting point the breadth-first search causes each subsequent
graph substructure to be handled at a time when at least one of its neighbours al-
ready has been arranged (or failed to take on any arrangement due to infeasibility).
This means that decisions made earlier in the process have a chance to propagate
smoothly and influence each subsequent decision.

It is expected that good arrangements are most important in the most central sub-
structures since these will appear centrally in the final diagram, and be among the
most eye-catching parts of the layout. This is also the reason for breaking ties by
favouring larger substructures when selecting the starting point.

Moreover as the influence of prior arrangements propagates outward from the first
arranged substructure, the centrality of that one tends to minimise the number of
steps taken before this propagation reaches each other substructure in the graph.
This further tends to minimise the influence of earlier-arranged substructures on
later ones, by minimising the number of pre-existing arrangement constraints that
may come to bear. All of this goes toward allowing each substructure to have a fair
chance to be arranged, in proportion to its centrality in the graph, thus addressing
Cooperation.

• It was noted at the beginning of this Section 8.4 on Phase-A that because of the
importance of well-orientation for SBGN we are willing to apply arrangements that
change the cyclic ordering of neighbours relative to a given node, as necessary in pur-
suit of that goal. However, considering Balance and referring back to the demon-
stration given in Figure 5.2 (page 63), we do apply DESCEND after any PROJECT
that alters the rotation system.

• After arranging all PCGs and RPFs in the skeleton we must conduct a pass in
which we choose an orientation for any orientable nodes that did not already receive
one. In terms of graph substructures, this may for uniformity’s sake be viewed as a
consideration of hubs (Table 7.2), but only those whose centre nodes are orientable.

The manner of arrangement of these “orientable hubs” is simple. We consider each
of the four possible orientations and choose one of least cost, where cost measures

3Alternatively, the user may be allowed to pre-define constraints before the layout process begins, in
which case those will be the only ones in effect at this stage
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angular displacement of neighbours relative to the orientable node in question, just
as was used in the cost function for PCGs (see Section 8.4.1).

This completes the enumeration of special considerations for the constraint generation
loop of our DiAlEcT layout for SBGN diagrams in the MetaCrop dialect. Apart from these
considerations the loop is conducted in the routine manner prescribed in Section 7.2.2.

8.5 Phase-E

In MCGL’s Phase-E we begin by expanding to make room for the orbits. This is much
easier than the expansion for trees in HOLA since an orbit is centred on its parent node,
rather than set off to one side of it in one of the faces to which it belongs. Therefore
expansion for an orbit O with parent node p is easily achieved by the following steps:

1. Increase the size of p to equal the size of the bounding box of the laid out orbit O.

2. Apply OVERLAP-REMOVAL.

3. Return p to its original size and re-attach O to p.

4. DESCEND with overlap-prevention.

We finish up Phase-E with emending operations, and this begins with the same opera-
tions used in HOLA. Nearly missed alignments are created, and DESCEND with Neighbour
Stress is applied for better node distribution.

In addition we introduce a new technique tailored to MetaCrop diagrams which we call
Alignment Continuation. Here we search for any orientable node u that is aligned with a

neighbouring node v attached to one of its two outer ports p
(1)
u or p

(−1)
u , but not aligned

with any node on its opposite port. For example, consider the process node bottom-left in
Figure 8.30c, which is vertically aligned with node 12 to its north side but not vertically
aligned with any node on its south side. We found that in MetaCrop diagrams such node
alignments were “continued” when a leaf node was available on the opposite side of the
orientable node, like node 11 in this example. Our Alignment Continuation step creates
such alignments as in Figure 8.30b, matching the MetaCrop layout in Figure 8.30a.

8.6 Results

As noted in this chapter’s introduction, MCGL has been designed to work on Type I
SBGN diagrams in the MetaCrop style. We begin by observing MCGL’s near-perfect
mimicry on three of the more interesting diagrams from the example corpus, as shown in
Figures 8.30, 8.31, and 8.33.

We take these excellent results as strong indication that, were a normative user study
(Step 3 of the human-centred methodology) to be carried out, MCGL would perform
comparably to human layout for Type I diagrams. Note however that such a study is
not meant to be a part of this thesis, the purpose of the present chapter being only to
demonstrate the systematic applicability of the DiAlEcT framework, as a way of carrying
out Step 2 of the methodology (algorithm design).

As for Type II SBGN diagrams, we can briefly begin to understand the challenges by
examining the performance of MCGL on a simple example. For this we select the “MAPK
Cascade”, a popular example which was featured in the first edition of the SBGN user
manual.

As Figure 8.34 shows, we have already run into a basic syntactic issue. At the top of
the diagram the constraints selected by MCGL have enforced an edge-node overlap, where



8.6. RESULTS 149

(a) MetaCrop Layout (b) MCGL Layout (c) MCGL Layout before Align-
ment Continuation (Section 8.5)

Figure 8.30: Ascorbate-Glutathione Cycle pathway

(a) MetaCrop Layout (b) MCGL Layout

Figure 8.31: Pentose Phosphate pathway
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Figure 8.32: MetaCrop layout of Glycolysis-Gluconeogenesis pathway. Compare Figure 8.33.
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Figure 8.33: MCGL layout of Glycolysis-Gluconeogenesis pathway. Compare Figure 8.32.
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Figure 8.34: Hand-made layout (left) of the MAPK pathway shows a cascade pattern: the output of the first
process (say process A) serves to catalyse the next two processes (say B1 and B2), whose output in turn catalyses the
final two processes (say C1 and C2). The layout shows three rows, with process A in the top row, processes B1, B2

in the next, and processes C1, C2 in the last. This kind of system, in which the output of one sequence stimulates
the next sequence is always represented in SBGN by Type II diagrams. MCGL layout (right) was designed only for
Type I diagrams and predictably misses the cascade metaphor. This represents a goal for future work. As discussed
in Section 8.6 MCGL also makes a syntactic error caused by the presence of non-leaf modulators in this Type II
diagram.

both nodes 5 and 21 have been aligned north of the top-most process node. The basic
issue is that in the Type I diagrams for which MCGL was designed, modulators are never
present in the skeleton subgraph; they are always pruned in Phase-D. Here however, node 5
is a modulator that remains present in the skeleton of this Type II network. Therefore
when the chain at the top of the diagram is aligned vertically a syntactic error creeps in
as this modulator is aligned on one of the “spike port” sides of a process node. Since
modulators were not expected to be present, the code was never designed to catch such
an error. Finally, when MCGL carries out the Alignment Continuation step of Phase-E it
aligns node 21 north of the process node at the top of the diagram, failing to even see that
node 5 is already aligned there since, again, such a node is not supposed to be present in
the skeleton at all.

While this syntactic error is enlightening in its demonstration of how sensitive Phase-
A can be to the expected structure of the network, the problem would be relatively easy
to solve. The current implementation would simply have to be made to operate with an
awareness of the possible presence of modulators in the skeleton subgraph.

A more serious difficulty arises on the semantic side, since on this Type II diagram
MCGL also fails to capture the desired perceptual organisation. MCGL identifies the two
quadrilateral faces in the skeleton graph and creates square RPF arrangements for them in
Phase-A, but this fails to realise the cascade metaphor displayed in the hand-made layout,
as explained in Figure 8.34.

One possible approach to handling Type II diagrams might be to do more decompo-
sition in Phase-D. After removing the satellite nodes, each remaining modulation arc in
the skeleton could be temporarily severed. Phase-A could then be applied to each of the
resulting components separately, while Phase-E would be responsible for reconnecting the
parts in proper cascade patterns, or other desirable patterns, as appropriate. Exploring
such an approach must however await future research.
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8.7 Conclusions

This first deliberate application of the DiAlEcT framework has demonstrated much that
may prove typical of future applications.

The SBGN language presented new challenges in the form of compartments, ports, and
orientability. While the methods we developed to handle these features will likely be useful
in handling future languages that possess similar features, a lesson learned is that within
the guidelines of DiAlEcT there can be significant new challenges in each application.

Our analysis of GSAs was long. For example, just analysing the geometric and struc-
tural variants of the parallel chain group structure, and deciding how to choose a variant
and how to enforce it via constraints, took about nine pages and required the introduc-
tion of a great deal of special terminology (e.g. “double-transverse pseudo PCG”) and
formalism. This too may prove typical in future applications.

Many choices had to be made about GSAs. It might be good to make such choices into
configurable options, so that “speakers” of the layout dialect may fine-tune the algorithm
to their desired layout conventions. For example we made some choices about infeasibility
conditions for potential geometric variants of both the parallel chain group and regular
polygonal face GSAs. We rejected PCG geometries that made chains cross; certain users
might be willing to accept such crossings. We rejected RPF geometries if any O-nodes
could not be well-oriented; some users might not care.

In terms of our human-centred methodology such examples teach us something about
how to better conduct our formative user studies. Given the opportunity to quiz human
graphic designers about the house diagramming style, we should anticipate the kinds
of choices that will come up when we design Phase-A, and ask relevant questions. For
example an interview with the designers of MetaCrop diagrams might involve showing
Figure 8.28 (page 145) and asking whether the “not well-oriented” layouts really should
be prohibited. Our examination of existing diagrams suggests that it is so, but an expert
might be able to point out some exceptions.

Most of the work in applying DiAlEcT to MetaCrop diagrams fell in the design of Phase-
A. Meanwhile Phases-D and -E succeeded for the most part in directly borrowing ideas
already explored in HOLA. As for Phase-T, we finally examine that both in general and
for SBGN in particular in the next chapter.
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Chapter 9
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Chapter 7 described the DiAlEcT framework, and while the basic idea of Phase-T
(“Transform”) was indicated there, it is in this chapter that we begin to design specific
interaction methods.

The methods we develop belong to two categories: natural transformations, and GSA
transformations. The former consists of common types of transformation that people like
to perform when editing network layouts by hand, such as flips and rotations. We are for-
tunate to have the dynamic data from the Orthowontist experiment (Chapter 4), which we
inspect in Section 9.1 in order to motivate development of natural transformations. Recall
that by dynamic data we mean the full layout processes recorded in the experiment, as
opposed to the static data, by which we mean the final layouts created by those processes.

Meanwhile GSA transformations are special techniques for switching among the ge-
ometric and structural variants of the GSAs (graph substructure arrangements) created
in Phase-A of DiAlEcT. As an example we develop transformations in Section 9.2 for the
parallel chain group and regular polygonal face patterns from Chapter 8.

An illustrative example in Section 9.3 shows how the transformations developed in this
chapter could be used in a particular case, and also points out difficulties.

9.1 Natural Transformations

In Sections 9.1.1 and 9.1.3 we examine two key examples selected from the dynamic Or-
thowontist data, to motivate the design of interaction methods. The first of the layouts to
be considered below (Section 9.1.1) shows a “straightforward” approach, in that the pro-
cess aligns well with the four phases of the DiAlEcT framework. This was the highest-voted
layout of Graph 8 from the Orthowontist study, so it is referred to as Layout 8A—“8”
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for the graph number, “A” meaning highest-voted. The second layout to be considered
below (Section 9.1.3) shows an “iterative” approach, beginning with an “initial layout”
and followed by what we may interpret as several “transformations”. This was the third-
highest-voted layout of Graph 6 from the study, so it is referred to as Layout 6C.

Recall that when we examined the static data (final layouts) from the study in Chap-
ter 4, we considered various metrics like stress, symmetry, and others. As we now examine
dynamic data (layout process) we will look at stress and symmetry again. This will help us
to understand what is happening as the layout proceeds. In the charts considered in this
section the horizontal axis will give the “frame number” i.e. the number of steps through
the layout process, with each node drag or edge drag counting as a step, while the vertical
axis will give the value of the metric in question. In other words, these charts show the
change in a particular metric over time as a designer (i.e. study participant) works toward
what they deem to be a good layout.

Symmetry is measured in the same way it was in Chapter 4 (see Section D.2). For
stress measurements (Section D.1) we take as the ideal edge length the one suggested by
the final frame of the layout, i.e. the average straight-line distance between neighbouring
nodes in that frame. The rationale for this choice is that when study participants finished
their layouts they were indicating that this layout looked good, in particular that the
nodes were now spaced as they should be. Defining the ideal edge length in this way does
not guarantee low stress in the final layout; rather the final stress is bounded below by
the final variance in distance between neighbouring nodes.

9.1.1 A Straightforward Approach

There is little reason to suppose a priori that when human beings create network layouts
by hand they should operate according to the phases defined by the DiAlEcT framework.
On the other hand, we should not be surprised to find that they do, since the system was
designed to produce human-like results. In order to demonstrate behaviour conforming
to DiAlEcT a human layout designer would have to (1) quickly decrease the stress of the
layout (Phase- D), then (2) choose an arrangement for the nodes (Phase-A), and (3) fix
up any obvious errors (Phase-E), before possibly (4) transforming the layout (Phase-T).
In fact the designer of Layout 8A did something quite close to this.1

The initial layout of Graph 8 is as in Figure 9.1a. From here the designer immediately
began to untangle the graph, and by Frame 20 the nodes had been brought into a reason-
able distribution in the plane (Figure 9.1b). This corresponds to the precipitous drop in
stress visible in Figure 9.1g, reaching a low by Frame 20 that was roughly maintained for
the remainder of the process.

This initial activity would make for a reasonable “Phase-D” except that “Phase-A”
appears to have been going on simultaneously. The basic arrangement of nodes was nearly
settled already by Frame 20, and in seven more frames (Figure 9.1c), it was complete. Note
also that symmetry (Figure 9.1h) had already risen somewhat by this point.

It seems reasonable that a human layout designer would begin creating an arrangement
even while decreasing stress. If you drag nodes one at a time, you must choose a place
to drop each one before picking up the next. This provides a strong incentive to make
reasonable choices as you go: each node drop necessitates a choice right now, and it pays
to make a good one.

1Interestingly however, among the text responses recorded in Appendix C the response from the designer
of Layout 8A (number 6) does not seem nearly as close a description of phases D-A-E as does response
number 11. The latter states, “Mostly I was trying to make the links as clear as possible, and then achieve
some kind of overall shape. Towards the end I began to focus more on the aesthetics rather than just the
practicalities.”
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Comparing the layouts in Frames 27, 41 and 54 (Figures 9.1c, 9.1d and 9.1e) shows
a clear “Phase-E”: the basic arrangement of the nodes stays the same, but by Frame 41
defects in alignment have been removed, and by Frame 54 defects in spacing have been
removed. This corresponds quite closely with the two activities of aligning and distributing
in HOLA’s Phase-E.

Finally, something happened in the last four frames of the layout (compare Frames 54
and 58) going outside of the D-, A-, and E-phases. Here the designer demonstrated the
need for “Phase-T” by now transforming the layout, and choosing a new arrangement for
the nodes. Two changes were made, and the symmetry jumped up correspondingly, as is
visible in Figure 9.1h.

The two final transformations to the layout suggest simple interaction techniques that
could facilitate the making of such changes.

Neighbour rotation

To begin with, consider the layout that was reached in Frame 54, as shown in Figure 9.2
with two nodes labelled A and B. Supposing this layout had been computed by the
automatic phases of a DiAlEcT layout process, and the final relative constraint matrix for
that process was M , then we would likely have M(A,B) = E. Our first transformation
could then be achieved by changing this constraint to M(A,B) = W and applying the
DESCEND operation.

Any transformation of this kind, which seeks to alter the compass-direction constraint
between two nodes, could be achieved by a simple interaction gesture. As illustrated in
Figure 9.2, a pivot node p (circled in red) could be marked, and a radial node r (circled
in green) could be dragged around the pivot node to the desired point and then dropped.
Then the new direction from p to r would be set in M as a compass direction, overwriting
the previous value of M(p, r).

While this interaction could be performed simply enough with a mouse, clicking once to
mark the pivot and then dragging the radial node, it seems like a very natural application
for a touch-enabled device. In that case the user could simply touch one finger on the
pivot node and drag the radial node with another finger.

Chain rerouting

In Figure 9.3, nodes A, B, C form a chain, with node T as its terminal node at each end
(making it a cycle). A simple interactive chain rerouting mode might allow the user to
first select a chain (perhaps by selecting its terminal nodes), and then have the orthogonal
chain routing procedure from HOLA continually applied automatically, as nodes are moved
manually.

As Figure 9.3 illustrates, in this editing mode the user could simply drag node A to the
right after selecting node T as terminal. The system would then automatically determine
the best places for the bends in the chain routing, considering the node positions as fixed,
and it would create the two bend points seen in Figure 9.1f, as desired.

9.1.2 Stress Phenomena

Discussion of the dynamic Orthowontist data is aided by introducing a way of referring
to phenomena in the stress graph associated with the layout process. Figure 9.1g exhibits
three clear examples of what we may call a stress hill : a rise followed by a fall in stress.
There are small stress hills from Frame 23 to Frame 27 and again from Frame 44 to
Frame 49 in that graph; there is a large hill from Frame 0 to Frame 20 within which we
can even discern small superimposed hills.
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(a) (Frame 0) Graph 8 initially (b) (Frame 20) After reducing stress

(c) (Frame 27) Configuration has been chosen (d) (Frame 41) Defects in alignment have been
removed

(e) (Frame 54) Defects in spacing have been re-
moved

(f) (Frame 58) The layout has been transformed

(g) Stress (h) Symmetry

Figure 9.1: Selected stages of Layout 8A, together with charts of stress and symmetry metrics over the course
of the layout process
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Figure 9.2: Interactive neighbour rotation: Node A is held fixed, while the user drags Node B relative to A. The
place where node B is dropped indicates to the system which transformation is desired.

Figure 9.3: Interactive chain rerouting: The terminal node T is selected in order to indicate the chain A,B,C
that is to be rerouted. Then the user can drag node A to the right, and the system will automatically choose the
connector between nodes A and T as the best place to create a bend point, using the same procedure as in HOLA.

In watching the playback of the Orthowontist layout processes we find that stress hills
tend to correspond to one of a few behaviours: (1) compacting (as in Frames 41 to 54
of Layout 8A), (2) distribution and untangling (as in Frames 0 to 20 of Layout 8A),
and (3) transformation, examples of which we will consider in Section 9.1.3. The two
transformations at the end of Layout 8A were simple enough that stress only decreased,
but in the next example we will see more drastic transformations with corresponding stress
hills.

In all cases the explanation for the increase followed by decrease in stress is simple: If
several nodes begin near one another but are moved to a new location, again near each
other though perhaps arranged differently, the stress first goes up as the nodes are dragged
one at a time and the cluster is broken apart, then falls back down as the remainder of
the cluster “catches up”, thus varying somewhat like the length of an inchworm.

Although participants in the Orthowontist study were provided with a “marquee se-
lect” tool with which to select several nodes at once and move them en bloc, they tended
not to use it, and stress hills resulting from the piecemeal movement just described were
common. Interestingly, this suggests that even though the user (probably) has a target
arrangement in mind they move towards it via the simplest individual steps rather than
the fewest actions.

9.1.3 An Iterative Approach

Whereas the previous example exhibited a relatively straightforward application of the
four phases of the DiAlEcT framework, once each, and in the right order, the next example
(Figures 9.4 and 9.5) shows something different. Most of what goes on can be filed neatly
enough under one of the four activities we refer to in the framework by their initials, D,
A, E, and T, but there are repetitions. This time the entire process can be viewed as
consisting of an initial layout, followed by three transformations.

The layout begins with a straightforward stress reduction up to Frame 14 (see Fig-
ures 9.4b and 9.5d). At this point is seems that the designer suddenly envisioned an
entirely different configuration for the layout. It seems likely that the simplicity of the
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low-stress layout in Frame 14 was essential in allowing the designer to perceive the struc-
ture of the graph clearly enough to now conceive of a new way of arranging the nodes.
Perhaps the familiarity developed by this point also helped. The new arrangement seems
to have been envisioned at this moment in almost all, if not quite all, of its details, for the
layout now converges directly toward the new configuration except for a few details that
remain to be played with.

There comes next a massive stress hill peaking at Frame 21 as the designer transformed
the layout. As seen in Figure 9.4c, three nodes were drawn far over to the left, and others
stretched far down to the lower right in order to make room for other nodes to proceed
toward the left.

The stress plummeted back down by Frame 28. If the node arrangement in this frame
had been desirable, we would have expected the designer to now commence with emending,
that is, cleaning up the layout as appropriate to Phase-E; instead, another stress hill
followed, corresponding to another transformation. This next hill peaks at Frame 30
(Figure 9.4e), and suggests a desire to move the small node from the top of the layout
in Frame 28 down to the bottom. The “plateau” across the top of this stress hill from
Frame 30 to 40 corresponds to an “interim Phase-E” inserted here, after which the three
nodes sitting together under the oblong node top-right have been laid out neatly, and
their connector routes straightened (Figure 9.4f). Finally the stress hill ends in Frame 42
(Figure 9.5a), suggesting a retreat from the idea of moving the third small square node to
the bottom side of the layout, instead placing it on the right-hand side.

The retreat could perhaps be attributed to a feeling of “not wanting to bother” with the
work it would take to achieve the desired transformation; however, over the final stress hill
from Frame 42 to 49 the layout designer appears to have decided that the transformation
was “worth the work” after all. By the end of the final hill the layout is transformed as
in Figure 9.5b. There are then many frames of emending (Phase-E), reaching the final
layout in Frame 75 (9.5c).

Thus, while we cannot know what this designer was thinking during the layout process,
it seems easy to tell a reasonable story to explain what was going on. In particular, if the
two hypotheses enunciated above hold any truth then the plan to develop both automatic
and interactive layout tools seems well-motivated, insofar as it matches the approach that
appears to have been taken in Layout 6C. First, the automatic phases produce a reasonable
initial layout (Figure 9.4b), from which the user can hope to at least understand the graph’s
structure. This layout may be accepted as final, or else the user may employ the interactive
phase to transform the layout one or more times. If the user finds it hard to envision the
desired layout all at once, the interactive phase can be viewed as iterative and exploratory:
several transformations may allow the user to eventually discover the best layout.

Interactions

We first consider what sort of interactions could facilitate the transformation from the
layout of Frame 14 to that of Frame 42. This suggests expanding the capability of the
rotation transformation of Figure 9.2 by allowing a whole chain to be rotated at once.
Secondly, we consider how to get from the layout of Frame 42 to that of Frame 75, and
for this introduce a technique for flipping a subgraph.

Whole chain rotation

It is desirable to be able to rotate a whole chain of nodes at once. As in the discussion of
neighbour rotation associated with Figure 9.2 (page 159), there should again be a pivot
node and radial node; however, after the pivot node p is selected the user may be allowed
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(a) (Frame 0) Graph 6 initially (b) (Frame 14) Initial straightforward stress re-
duction

(c) (Frame 21) Network is stretched out on the
way toward the new configuration

(d) (Frame 28) Second stress minimum

(e) (Frame 30) Second stress peak (f) (Frame 40) End of the interim emending
plateau

Figure 9.4: Selected stages of Layout 6C. More stages and stress chart are in Figure 9.5.
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(a) (Frame 42) After second stress hill (b) (Frame 49) After third stress hill

(c) (Frame 75) Layout complete (d) Stress

Figure 9.5: Selected stages of Layout 6C are shown, together with stress chart. See also Figure 9.4.

to choose a radial node r that is not an immediate neighbour of p, with the idea that some
whole path of nodes from p to r would be selected for rotation.

There are different ways in which the path could be selected. It could be required
that there be a unique path from p to r (or else an error message would be given and
the choice of r rejected). Alternatively the requirement could be relaxed to the need for
a unique shortest path from p to r. Or, dropping all restrictions, in the event that there
were multiple shortest paths from p to r the several paths could be highlighted in some
way and the user asked to choose from among them.

Let us assume then that the nodes p and r and the path between them have been
chosen, and write p = v0, v1, . . . , vn = r for the nodes along this path, including p and r.
The user would drag r into some compass direction X from p and drop it. The system would
then set the constraints M(vi−1, vi) = X for i from 1 to n, and DESCEND, reorienting the
chain as desired.

With this new feature the transformation from Frame 14 to Frame 42 of Layout 6C
could be achieved in two motions, as illustrated in Figure 9.6. However, this example
raises the question of what happens when the radial node is dropped on a side of the pivot
node that already has one or more neighbours. In Figure 9.6 we have simply assumed
that the system would evenly distribute all the neighbours on a given side, but it is worth
asking whether this would be the desired or expected behaviour. To properly answer that
question would require a user study which could be a part of future work, but here we can
at least consider the alternatives, which we do in the next section.

Rotation propagation

In pivot-based rotation, what should happen when radial nodes share a side? If we imagine
that the pivot node p has four available sides (one in each compass direction), then one
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Figure 9.6: With the ability to rotate whole chains, the transformation from Frame 14 to Frame 42 of Layout 6C
can be achieved in two motions. First node A is selected as pivot and node D dragged to its south side. Next, with
node A still selected as pivot, node C may be dragged to its west side, and the system will automatically rotate the
entire chain A, B, C.

Figure 9.7: In the layout of Frame 14 (Figure 9.4b), node A is set as the pivot, node B is set to be repulsive,
and the user drags node C over to the west side of A. It is automatically inferred that the entire chain A,B,C is
to be rearranged to point west from node A. Since node B was marked repulsive node D is ejected from the west
side of A and sent to the south side. There it is spaced evenly with the other nodes E and F that occupy that side,
creating the layout of Frame 42 (Figure 9.5a).

of two things could be expected to happen when we rotate neighbour r1 into a side of p
that already has one or more neighbours r2, r3, . . . occupying it. First, r1 could simply
share this side with the other neighbours. Alternatively, if r1 were somehow marked as a
repulsive node, then all current neighbours could be ejected, pushing them onward to the
next side in the same rotation direction and allowing r1 to now be the sole occupant of
their former side.

As Figure 9.7 illustrates, for the desired transformation in Layout 6C it would suffice
to mark node B as repulsive, set node A as the pivot, and drag radial node C to lie west
of node A. In that case the whole chain A,B,C would be reoriented to point west from
A, the repulsive node B would eject node D from the west side of A, sending it onward
to the south side, and then nodes D, E and F would be readjusted to evenly share the
south side of node A.

Using such “rotation propagation” techniques the transformation from Frame 14 to
that of Frame 42 of Layout 6C could be achieved by requesting just a single rotation, but
additional inputs would be required in order to make repulsiveness settings. Alternatively,
as we already saw, the desired transformation can be achieved without any propagation
system using two manual rotations. In future work a user study should be conducted
in order to determine which of these interaction methods users prefer, and what kind of
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Figure 9.8: In the layout of Frame 42 (Figure 9.5a), node A is marked as a cut node. Then nodes F and G are
selected to participate in a diagonal flip. This produces the layout of Frame 75 (Figure 9.5c).

behaviour they find intuitive. For now only simple rotation (without propagation) has
been implemented. In any case these methods provide a substantial improvement over
the 28 frames the designer spent making this transformation in the study.

Flips

Finally, let us consider how to get from the layout of Frame 42 to that of Frame 75 in
Layout 6C. As Figure 9.8 illustrates, what we desire is to flip a part of the graph. In this
case it would be a diagonal flip, but in general we would also want to allow horizontal,
vertical, and the alternative diagonal flip as well.

We will in general want to be able to select a subgraph to be flipped, and the present
case suggests a reasonable approach. Node A, which lies on the axis of the desired flip
(or reflection), can be thought of as a cut node, whose deletion would split the remaining
graph into several connected components. After selecting the cut node we may then select
which of the resulting components is to participate in the flip, or else choose more cut
nodes if the components need to be further subdivided.

In Figure 9.8 marking node A as cut node would leave five components, of which we
would choose just nodes F and G (which are single-node components) to participate in
the flip.

In general, when all cut nodes ci and all participating components Pj have been se-
lected, then, regarding the Pj as sets of nodes, we would form the set

F = {ci} ∪
⋃
j

Pj

and flip the arrangement of all nodes in F by editing the relative constraint matrix M ,
followed by a DESCEND operation.

The way in which the entries of M are to be changed is simple, but requires the
introduction of some formalism to be expressed precisely. First we must settle on the
meaning of the phrases, “horizontal flip” and “vertical flip”. By a “horizontal” flip we
might mean one in which the horizontal or x-coordinates of nodes are changed, or we
might mean one in which nodes are flipped over a horizontal axis. Unfortunately these
are opposite meanings. However, two popular vector graphics editors, Inkscape and
Microsoft Powerpoint, both assign the name “horizontal flip” to the former meaning,
i.e. that in which the x-coordinates of objects will change (as they are flipped over a
vertical axis) and we will therefore adopt the same convention.

With this convention in place we denote horizontal and vertical flips by H and V
respectively. By D we will mean the diagonal flip over the axis of slope +1 in the graphics
plane as defined in Section 8.2.2 (thus, running from upper left to lower right), while by
D′ we will mean the diagonal flip over the axis of slope −1. Table 9.1 lists for each flip
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Flip Pairs of letters to be swapped in RCM

H (E,W), (R,L)
V (S,N), (D,U)
D (E, S), (W,N), (R,D), (L,U)
D′ (E,N), (S,W), (R,U), (D,L)

Table 9.1: For each flip those pairs of direction letters are listed that must be swapped in all entries M(a, b) of
the relative constraint matrix (RCM) for which a, b ∈ F , when the flip is to be performed over the set of nodes F .

Rotation Cycles of letters to be permuted in RCM

90 degrees clockwise (E, S,W,N), (R,D,L,U)
90 degrees anticlockwise (E,N,W,S), (R,U,L,D)

180 degrees (E,W), (S,N), (R,L), (D,U)

Table 9.2: For each rotation the necessary permutations of letters in the relative constraint matrix (RCM) are
given by listing disjoint cycles. Letters must be permuted in all entries M(a, b) for which a, b ∈ F , when the rotation
is to be performed over the set of nodes F .

the pairs of direction letters that must be swapped in all entries M(a, b) of the relative
constraint matrix for which a, b ∈ F , when the flip is to be performed over the set of
nodes F .

9.2 GSA Transformations

In addition to the basic interaction methods described in the last section the DiAlEcT
framework calls on us to provide special-purpose methods when necessary to switch be-
tween the structural and geometric variants of GSAs. In this section we consider appro-
priate methods for some of the GSAs created by HOLA and MCGL.

9.2.1 Hierarchical Symmetric Trees

Switching between the geometric variants of the hierarchical symmetric tree (HST) ar-
rangement employed in HOLA is already partly served by the techniques described in
Section 9.1. Recall that an HST has eight geometric variants, corresponding to the tree’s
growth direction and flip bit (see Section 5.3.3, page 69). Starting from a given arrange-
ment of an HST, the flip technique given by Table 9.1 already allows switching among
four of the eight variants. In order to reach the other four we are motivated to introduce
a similar rotation technique.

For this, cut nodes and components may be selected just as in the flip technique,
only now the system is asked to rotate the set of nodes F by 90 degrees in either the
clockwise or anticlockwise direction, or else by 180 degrees. The required permutations
of letters in the relative constraint matrix are given in Table 9.2. Readers familiar with
group theory [Gal16] may note that in Tables 9.1 and 9.2 we are simply describing all
the permutations in the dihedral group D4 (except the identity) twice each, once for the
cardinal directions E, S, W, N, and once for the lateral directions R, D, L, U.

While this new rotation technique can achieve some of the same things as the pivot-
based rotation illustrated in Figures 9.2 and 9.7, the latter has the special feature of
managing rotation propagation via repulsive and inert nodes. Moreover, the two tech-
niques are independently valuable since they provide different ways of interacting, which
may have differing degrees of intuitiveness in different situations, and for different users.

As for switching among the structural variants of an HST arrangement, we take this
to mean changing the ordering of the child trees attached to a given parent node. For this
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Figure 9.9: Either terminal of a PCG may be selected as pivot, and the opposite terminal dragged to a new
cardinal direction with respect to the former (left). The entire PCG is then rotated automatically (right).

we can use a similar technique to the pivot-based chain re-ordering technique developed
for parallel chain groups in Section 9.2.2 below.

9.2.2 PCG Interactions

Pivot-based Rotation

To the basic pivot-based rotation technique of Section 7.5 we add a new special case for
PCGs. Namely, the user may mark either of the terminals s, t of the PCG as pivot, then
drag the opposite terminal to lie in a new cardinal direction from the first, and drop it
there. This causes the entire PCG to be rotated so that its axial direction is that indicated
by the pivot interaction. See Figure 9.9.

Pivot-based Chain Re-ordering

Another special case is added to the pivot-based rotation technique in order to allow the
user to change the transverse order of the chains in the PCG. Again either terminal u is
chosen as pivot. Then an internal chain node v adjacent to terminal u is dragged to a new
position and dropped. Let C be the chain to which node v belongs. There are three cases
to consider:

1. The radial node v is dropped in precisely the axial direction from terminal u, up
to some tolerance ε for human-error (say ±5 or 10 degrees—this can be configured
by the user). Then chain C is aligned with both terminal nodes, i.e. is placed into
the centre position. If another chain C ′ was already in the centre position then it is
swapped with C, i.e. it is now configured to lie where C was before the interaction.
All nodes in chain C are now aligned in the axial direction, if they were not so
already. See Figure 9.10a.

2. The radial node v is dropped 90 or more degrees to either side of the axial direction
of u (but at most 270 degrees). In this case the interaction is simply rejected; nothing
changes. See Figure 9.10b.

3. The radial node v is dropped more than the tolerance ε but less than 90 degrees on
either side of the axial direction from u. Then if C1, C2, . . . , Cn are the other chains
besides C, and v1, v2, . . . , vn the neighbours of u in these chains, respectively, then
the slope of the vector v − u is compared to the slopes of all vectors vi − u to find
its immediate neighbours vi0 − u and vi1 − u, and then the chain C is re-positioned
between the corresponding chains Ci0 and Ci1 . See Figure 9.10c.
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(a) If a chain is brought to
the centre position it is aligned
with both terminals.

(b) Rotating 90 degrees or
more from the axial direction
is prohibited.

(c) Dropping the chain be-
tween two others moves it to
that position.

Figure 9.10: Either terminal of a PCG may be selected as pivot, and adjacent internal chain nodes may be
rotated with respect to it, in order to change the transverse ordering of the chains.

Figure 9.11: In RPF interaction mode, any node of an RPF may be rotated relative to the centre of the polygonal
face. During rotation a dashed “ghost” representation is shown, and snaps to the nearest canonical rotation (centre).
When the node is dropped then the RPF is rearranged in the new rotation (right), with constraints being altered
and orientable nodes being reoriented as needed.

A similar technique could also be used to reorder the subtrees in the HST arrangement,
as mentioned in Section 9.2.1.

9.2.3 RPF Interactions

Whereas the new techniques for PCGs introduced above are pivot-based, RPFs warrant
introduction of a new, dedicated interaction mode. The user would select this mode, and
then interact as described below.

Rotation

In RPF interaction mode, dragging any node of an RPF F in a circular arc relative to
the centre c of F will cause F to be rotated. See Figure 9.11. However, only canonical
rotations (Figure 8.25, page 140) may be selected in this way. Thus, as the user drags,
the preview “snaps” to the nearest canonical rotation.

Dilation

In RPF interaction mode, dragging any node of an RPF F nearer or farther from the
centre c of F will cause F to be dilated to the corresponding radius. See Figure 9.12.
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Figure 9.12: In RPF interaction mode, any node of an RPF may be dragged radially, relative to the centre of
the polygonal face. While dragging a dashed “ghost” representation is shown (centre). When the node is dropped,
the RPF is re-sized by increasing the separations in the constraints that define it (right).

9.3 Illustration and Issues

We illustrate Phase-T with an example, showing how the initial SBGN layout of Fig-
ure 8.33 (page 151) can be transformed. See Figures 9.13 through 9.17. All of these
transformation methods have been implemented, and the figures show their actual results.

For the most part the figures demonstrate a fast and easy way to transform the layout.
A couple of difficulties are also noted, which may point toward future work. For one,
Figure 9.13 shows some undesirable edge-node overlaps. A technique should be developed
to remove these both in Phase-E and after each transformation applied in Phase-T.

Another interesting issue comes up in Figure 9.16c. After a rotation is performed,
one satellite node winds up much farther away from its parent node than we would think
appropriate. This results in ugly edge crossings and clutter. This is not however a “bug”
in the rotation procedure; it falls within the range of expected (if occasionally undesirable)
behaviour. Like all the high-level transformations we have developed, the rotation is put
into effect simply by the automatic rewriting of a few entries in the relative constraint
matrix. In the present case it so happens that the satellite that went astray simply
was never constrained to stay nearby its parent node. Recalling that DESCEND is an
iterative procedure in which PROJECT alternates with gradient descent steps, it is easy to
imagine how the initial PROJECT could put the stray satellite too far away. While stress
minimisation would tend to force the satellite to return to a more desirable position, we
are also employing the overlap-prevention technique during the DESCEND, which in this
case prevents the satellite from passing through other nodes lying in its way.

The first solution that presents itself is of course to apply DESCEND twice: the first
time without overlap prevention, and the second time with it. However, since this kind of
problem seems rare, we must ask which is more annoying to the user: having to correct
such a problem manually as shown in Figure 9.16c, or always having to wait through two
DESCEND operations instead of one? This sort of question could be explored in a proper
user study, as a part of future work.

9.4 Conclusions

We begin with a summary of the devised interaction methods:

1. Pivot-based Rotation

• One node is fixed as the pivot node p.

• Another node is chosen as the radial node r.

• The user drags the radial node to a new side of the pivot node.
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(a) We begin with the PCG near the centre of the
diagram toward the right-hand side in Figure 8.33
(page 151). As in the actual MetaCrop layout of
this network in Figure 8.32 (page 150), we might
want the longer chain to be centred in the PCG.

(b) We select the pivot node (light blue).

(c) The first process node in the long chain serves
as the radial node. We grab it and drag it to lie
directly south of the pivot.

(d) On release the constraints are automatically
updated and DESCEND is applied, yielding the
desired new configuration. We may note one area
for future improvement is the removal of edge-
node overlaps, one of which is visible in this figure.

Figure 9.13: Transforming a parallel chain group
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(a) We now consider the lower-right corner of Fig-
ure 8.33.

(b) The pivot node (blue) breaks the graph into
two connected components. We select the compo-
nent below and right of the pivot (red).

(c) With a single “diagonal flip” command, the
chosen component is flipped. Internally all the
necessary constraints are changed automatically
and the stress of the layout is again decreased by
DESCEND.

Figure 9.14: Diagonal flip
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(a) We decide to straighten the pathway in the
lower-left of Figure 8.33.

(b) This time we begin by selecting two pivot
nodes (blue) and the component between them
(red).

(c) A rotation command rotates the selected com-
ponent ninety degrees clockwise.

Figure 9.15: Rotation by component



172 CHAPTER 9. INTERACTION

(a) We continue straightening the pathway in the
lower-left of Figure 8.33, again selecting a pivot
node and component.

(b) This time we rotate ninety degrees anticlock-
wise.

(c) Noticing that one of the satellites landed too
far from the process node to which it belongs, we
select this node and another one (blue). As op-
posed to the high-level transformations we have
being using so far, we now make a low-level change
to the relative constraint matrix, simply con-
straining the upper node to lie south of the lower
one.

(d) The system again applies DESCEND in order
to put our low-level change into effect, and now
the layout is satisfactory.

Figure 9.16: Another rotation by component, plus a low-level separation
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Figure 9.17: Applying one final horizontal flip to the entire network, we are left with a closer approximation to
the hand-made MetaCrop layout in Figure 8.32 (page 150).
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• If r is not a neighbour of p then the system determines a whole path of nodes
to be rotated, possibly relying on user interaction.

• Based on the position where r is dropped relative to p, nodes are rearranged
by editing the relative constraint matrix appropriately.

2. Componentwise Flips and Rotations

• One or more nodes may be chosen as cut nodes ci.

• One or more of the connected components Pj resulting from deletion of the cut
nodes are chosen.

• The set of nodes F = {ci} ∪
⋃
j Pj is either flipped according to Table 9.1, or

else rotated according to Table 9.2.

3. Chain Rerouting

• A chain is selected, by selecting its terminals.

• Nodes of the chain may be re-positioned one at a time, and the system auto-
matically creates bend points as needed, according to the ORC arrangement
system (see Table 7.2).

4. Parallel Chain Group Transformations

• Rotation

– One terminal is selected as pivot node.

– The other terminal is dragged into a new compass direction from the pivot.

• Chain Reordering

– One terminal is selected as pivot node.

– An internal node of a chain is dragged to a new angle relative to the pivot.
If dropped in the centre it will be centre-aligned. If dropped between two
other chains it will be re-positioned to lie between them.

5. Regular Polygonal Face Transformations

• Angular and radial dragging of an RPF node relative to the centre of the RPF
causes rotation and dilation, respectively.

• When rotating, the RPF snaps to the nearest canonical rotation (see Fig-
ure 8.25, page 140).

With rotations and flips literally being types of linear transformation in vector ge-
ometry, the name “Phase-T” for “Transformation” seems apt. However, it must be re-
membered that the transformations described in this chapter are not merely geometric
mappings; instead, they are achieved by altering the constraints in the relative constraint
matrix (RCM) produced by the automatic phases, and then performing a DESCEND op-
eration. This produces a low-stress layout with the new constraints, which enforce the
desired new arrangement of nodes.

The initial list of interaction methods developed in this chapter is not believed to be
complete. Just as we envisioned the catalogue of GSAs growing as our human-centred
methodology is applied to new layout dialects in the future, there should be a correspond-
ing growth in the catalogue of interaction methods to rearrange these. Moreover, even as
the catalogue of high-level interaction methods grows we do not expect it to be “complete”
in the sense of permitting arbitrary editing of the RCM. Therefore a good interaction sys-
tem should also provide users with low-level control by allowing them to edit individual
entries in the RCM directly.
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Finally we reiterate that this work on interaction methods is only preliminary, and
future work should include user studies to examine things like the usability of the methods
proposed here, the best ways to resolve issues such as were discussed in Section 9.3, and
any need for new interaction methods not yet considered.
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Chapter 10

Conclusions

In the sections below we take some time to tie up a few loose ends. When examining the
history of our subject in Chapter 2 we considered the ANDD system of Marks (Section 2.3)
and the TSM system of Batini et al. (Section 2.4). The ANDD system sets the same goal
as DiAlEcT’s Phase-A of creating schematic arrangements or perceptual organisations of
nodes, so one of the jobs left for this final chapter is to compare the approaches of DiAlEcT
and ANDD. We do that in Section 10.2.

Meanwhile the TSM system is for creating orthogonal layouts and while we conducted
a rigorous study to compare the yFiles implementation of TSM with our orthogonal
layout algorithm HOLA in Chapter 6, that was before we defined DiAlEcT in Chapter 7.
Therefore the present chapter is also a good place to compare the DiAlEcT and TSM
frameworks, and we do that in Section 10.3. In support of that comparison we make some
theoretical observations about stress and topology in Section 10.1. We conclude with
thoughts on future work in Section 10.4.

10.1 Stress and Topology

In Chapter 2 we examined the varied origins of the stress function in both force-directed
layout and multi-dimensional scaling. We also noted Nguyen, Eades, and Hong’s obser-
vation that a stress-minimal layout is a faithful one. We can refine this idea a bit. The
stress function defines a fitness landscape with many basins over the 2n-dimensional space
of all x- and y-coordinates when we have n nodes. The minimum points in one or more
of these basins are global minima; others are local minima. In our use of CSML we have
not striven to find global minima, but even if we did there could be multiple ones, so in
all cases a stress-minimal position is one faithful interpretation or representation of the
graph’s structure, but other faithful representations are usually possible too.

Having noted this, perhaps we are now in a position to add one more piece to the
puzzle, augmenting our understanding of the stress function’s role in network layout.
Namely, recalling that in Section 2.4.1 we noted the difference between the topology of a
graph itself and the topology of a given drawing of that graph, perhaps we may now say
that the stress function provides a connection between these two notions. That is, it is
stress-minimisation that makes the topology of a drawing have something to do with the
topology of the graph itself.

In a way this may sound obvious, once it is said. It may seem that this is just another
expression of the faithfulness idea: We already observed that in a faithful layout geometric
distances would reflect graph-theoretic ones, so “of course” planar topology should also
reflect graph-theoretic topology, right? But to treat the issue this way is facile, for in order
to truly understand how stress connects the two notions of topology we must rely on the
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Heffter-Edmonds-Ringel Rotation Principle (recall Section 2.4.1), and this is a non-trivial
result.

Let us unpack this one last time. The topology of a graph says what is connected to
what, and by how long of a path. Minimising the stress function allows this information to
be translated into a distribution of nodes in the plane. On the one hand this distribution
also determines the drawing’s topology via the Rotation Principle. On the other hand,
the stress function divides the fitness landscape into basins, and altering the rotation
system of the drawing tends to push it into a different stress basin (recall Section 5.2.2).
Therefore any manipulation of the drawing that would change its topology would change
its rotation system, which would likely move it into a new stress basin, which represents
a new interpretation, or representation, of the topology of the graph. To recap: different
“rubber sheet” topology of drawing leads to different rotation system, leads to different
stress basin, leads to different representation of graph-theoretic topology.

What good are observations such as these? For one thing they help us to understand
the comparison between DiAlEcT and TSM in Section 10.3. Apart from that, the hope is
simply that they are in some way enlightening. For at the surface level it seems little more
than a coincidence that two things associated with graphs should both be called “topol-
ogy”. On the surface, they use that word in very different ways. Graph-theoretic topology
recalls directly Euler’s sense of “what is connected to what” in the Bridges of Königsberg
problem. On the other hand the topology of a drawing can be so called only after the
development of the subject through nineteenth and twentieth-century mathematics, where
the notion of “rubber sheet geometry” emerged. Through this historical development itself
we can of course trace the connection between the two ways of using the word “topology”,
and yet the topological relation between graphs themselves and their drawings still seems
tantalisingly out of reach. If stress minimisation provides a mechanism to help explain
that relation, then this is something worth knowing. We may hope that future research
will shed still more light on this puzzle.

10.2 Comparison of DiAlEcT with ANDD

The rule-based approach of the ANDD system was designed to arrange nodes much like
the GSAs of DiAlEcT’s Phase-A; however, recall from Section 2.3 that the system was
implemented in Prolog and nodes were added to the diagram a few at a time as Prolog
matched rules with those arrangements of nodes that had been created so far. The fact
that all nodes instead have positions throughout the DiAlEcT layout process leads to
important and fundamental differences with ANDD.

In DiAlEcT we start with Phase-D, bringing stress minimisation to bear from the
beginning, and distributing nodes into natural starting positions, faithful to the graph-
theoretic structure of the network. These positions continue to influence choices made
in Phase-A, and each time we DESCEND we refresh this information. So for each node
that has not yet been arranged we have some vital information: we know where that node
would naturally land in a faithful layout of the graph, subject to the choices that have
been made so far. We combine this information with the existing constraints each time
we make a new choice.

An important advance of DiAlEcT is therefore the way it allows constraint choices to
emerge as continually influenced by (a) a stress-minimal position for all nodes, and (b)
the constraint choices that have been made so far. ANDD’s rules too have “geometric
variants” like DiAlEcT’s GSAs, and at each stage an applicable variant may be chosen,
but in ANDD there is no chance for as yet unplaced nodes to influence the choice, or
to “react” to the choice and thereby maintain their stress-based influence on subsequent
choices. Instead, only nodes already placed influence each choice.
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We will find in Section 10.3 again that the existence and influence of positions for
all nodes throughout the DiAlEcT process is an important feature differentiating DiAlEcT
from earlier techniques.

10.3 Comparison of DiAlEcT with TSM

There are both intriguing similarities and important differences between DiAlEcT and
TSM, and we consider these separately in the sections below.

10.3.1 Similarities

Among the similarities between DiAlEcT’s automatic phases and TSM is that each can be
characterised as a “refinement approach” to layout. We considered this aspect of TSM
in Section 2.4.2. As for DiAlEcT, the Distribution phase achieves a first approximation
to the final layout, then in the iterations of the Arrangement phase we continually refine
the layout, making more and more decisions about the relative positions of nodes, and
finally in the Emendation phase we add “finishing touches”. So this is again a process of
convergence toward a final layout by continual refinements.

There is also a strong analogy between the three automatic phases D-A-E of DiAlEcT
and the three phases T-S-M of Topology-Shape-Metrics.

Phase-Decompose/Distribute versus Phase-Topology

Both distributing (by stress minimisation) and decomposing (peeling off trees as in HOLA
or just one layer of leaves as in MCGL) have to do with topology. We have talked about the
relation between stress minimisation and topology in Section 10.1. As for decomposing,
we are simplifying the rotation system of each node by removing those neighbours whose
position in the rotation system can be decided in a completely independent way.

Also in Phase-D we make a trade-off between stress minimisation and crossing reduc-
tion, and, as noted under Application Guidelines in Section 7.1, the topology-preserving
stress minimisation technique of Dwyer et al. [DMW09b] may be employed. In such a case
Phase-D would clearly be concerned with choosing a good topology.

Phase-Arrange versus Phase-Shape

The similarity between Phase-A and Phase-S seems obvious insofar as Phase-A is all about
arranging GSAs into recognisable shapes. But that comparison is actually a bit shallow,
since what these two phases compute is very different (constraints versus bend sequences).

Still, Phase-A’s encoding of node arrangements in the relative constraint matrix means
that absolute node positions are not being determined, only relative positions, and this
is similar to the role of TSM’s Phase-S which, by determining the sequence of bends in
each connector establishes something about the relative positions of nodes without fixing
their exact positions. Both Phase-A and Phase-S are concerned with angles: Phase-A in
determining the compass direction from one node to another, Phase-S in choosing bend
directions.

Phase-Expand/Emend versus Phase-Metrics

Both emending and expanding are, in part, about metrics. Emending is about metrics in
dealing with even distribution (via neighbour-stress reduction). Expanding is obviously
about metrics, since we are forcing nodes apart from one another via constraints in order to
make room for reinsertion of any “leafy nodes” that may have been peeled off in Phase-D.
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10.3.2 Differences

Despite the strong analogy between D-A-E and T-S-M there are important differences,
both in DiAlEcT’s ability to be flexible and make trade-offs, and, again, in the role of node
positions throughout the DiAlEcT process.

Flexibility and Trade-Offs

Where TSM puts a strict monotonic order on aesthetics, DAE takes a more flexible
and“human” approach by making trade-offs and exceptions.

To begin with, by allowing an initial stress minimisation to decide the basic distribu-
tion of nodes in the plane, we make a trade-off between stress minimisation and crossing
minimisation. By sometimes deliberately creating bend points where it would be possible
to have none, HOLA’s Phase-A works very differently from the Phase-S of GIOTTO-
Kandinsky, making a trade-off between bend minimisation and other aesthetic concerns
like maximising symmetry or again minimising stress.

The guideline in the DiAlEcT system against altering the rotation system in Phase-A
means that we try to maintain the topology determined by Phase-D but we may alter
it under compelling circumstances. This is more flexible and “human” than the strict
approach of TSM in which the topology is absolutely fixed after Phase-T.

The Influence of the Current Layout

Just as in the comparison of DiAlEcT with ANDD, the presence of a complete layout at
every stage of the DiAlEcT process is a major difference with TSM. This may be a very
important way in which the functioning of a DiAlEcT layout algorithm is similar to what
human graphic designers do when creating a layout by hand, at least in a scenario like
the one presented by the Orthowontist experiment of Chapter 4, where a messy layout is
given and the task is to improve it.

In such a scenario, what do we naturally imagine a person doing? And what did we
actually see happening in the layout processes examined in Section 9.1? Roughly the
story seems to be something like this: You (i.e. the layout designer) begin untangling
the network until some structure starts to emerge. Then you start creating shapes and
arrangements and patterns to best exhibit the structure of the network as you perceive it.
As you work—and this is the most important point—your choices are probably continually
influenced by the positions at which the nodes currently sit.

It is this last point about node placement choices being influenced by the current layout
that might just be the most human thing captured by DiAlEcT, and the biggest difference
between this and earlier approaches like ANDD and TSM.

10.4 Outlook

A number of challenges for future research have been noted in the foregoing chapters,
chiefly in Sections 6.4, 8.6, and 9.3. Questions include how best to manage density; how
to handle Type II SBGN diagrams; what are the best interaction methods for Phase-T
layout transformations.

Several graph substructure arrangements (GSAs) were described in Chapters 7 and 8,
while several transformation methods were described in Chapter 9. These should be
thought of as the beginnings of catalogues that should continue to grow as our approach
is applied to more layout languages and dialects in the future. They should also be refined
as future user studies teach us more about what people want in an ideal layout assistant.
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In this thesis we set out with the view of node-link diagrams as artefacts produced by
labs with special house styles, and where those who design these diagrams by hand would
benefit from a skillful, computerised assistant. The computer should be able to produce a
reasonable initial layout on its own, and should then understand corrections expressed in a
high-level language. In pursuit of this goal we have developed a human-centred approach
to network layout algorithm design.

This approach begins with a formative study to gather data about hand-made layouts.
This can mean something as involved as an experiment where participants’ editing proce-
dures are recorded, like we did in Chapter 4, or it can be as simple as inspecting existing
manually-laid-out diagrams produced by a given laboratory like we did in Chapter 8. The
right approach depends on whether static data is enough, or the developer wants to learn
from dynamic data as well.

In the second step we translate the findings of the initial study into two layout tools:
one automatic and one interactive. The DiAlEcT framework tells us how to do this.
This framework was described in Chapter 7 based on lessons learned from the techniques
developed in Chapters 3 and 5. It describes how Phases-D (Distribute/Decompose), -A
(Arrange), and -E (Emend/Expand) are to be designed in order to build the automatic
layout algorithm, and how to design Phase-T (Transform) for the interactive editor. The
latter allows the user to transform the initial layout produced by the automatic phases
in both high-level and low-level terms. An application of the DiAlEcT framework was
demonstrated in Chapters 8 and 9.

The third step of the methodology is to test the new layout tools in a normative user
study. In this thesis we conducted such a study in Chapter 6 for the automatic orthogonal
layout algorithm HOLA developed in Chapter 5. In future work, the MCGL algorithm of
Chapter 8 and the interactive layout tools described in Chapter 9 should also be evaluated
by user study.

By applying this new method we have designed and tested the HOLA algorithm for
human-quality orthogonal network layout. This is the first time a network layout algorithm
has been designed based on human behaviour, and then shown in rigorous testing to
perform comparably to hand-made layout. Our hope is that future work will include
successful application of this new approach to many more layout dialects.
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Appendix A

Gradient-Projection for Snap
Functions

The DESCEND operation in Adaptagrams computes a descent direction and step size in
terms of the gradient and Hessian (matrix of mixed second partial derivatives) of the goal
function S. Namely, if g = ∇S and H = ∇2S then the descent direction is −g and the
step size is

gT g

gTHg
.

(See for example [NW99] p. 47.)

The terms in g and H corresponding to P-stress are given in [DMW09b]. Here we give
the terms corresponding to the following three functions,

N =
∑

(u,v)∈E

qσ(xu − xv) + qσ(yu − yv)

G =
∑
u∈V

qσ(xu − au) + qσ(yu − bu)

E =
∑

e∈EV ∪EH

∑
u∈V

qσ
(
(σ − d(u, e))+

)
,

which are the node-snap, grid-snap, and edge-node repulsion terms, respectively. For
σ > 0 we define

γσ(z) =

{
2z/σ2 |z| ≤ σ

0 otherwise

and

ησ(z) =

{
2/σ2 |z| ≤ σ

0 otherwise.

For node-snap forces we have

∂N

∂xu
=

∑
(u,v)∈E

γσ(xu − xv)

and

∂2N

∂xv∂xu
=

{
−ησ(xu − xv) if (u, v) ∈ E

0 otherwise

}
∂2N

∂x2
u

=
∑

(u,v)∈E

ησ(xu − xv)

and similarly in the y-dimension.
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For grid-snap forces we have

∂G

∂xu
= γσ(xu − au)

and
∂2G

∂xv∂xu
= 0

∂2G

∂x2
u

= ησ(xu − au)

and similarly in the y-dimension. Recall that (au, bu) is defined to be the closest grid point
to (xu, yu).

For edge-node repulsion forces we have

∂E

∂xu
=
∑
e∈EV

sgn(xu − xe)γσ
(
(σ − d(u, e))+

)
where xe is the x-coordinate of a vertically aligned edge e, and

∂2E

∂xv∂xu
= 0

∂2E

∂x2
u

=
∑
e∈EV

ησ(σ − d(u, e))

and similarly in the y-dimension.
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Proof of Edge Coincidence Test

We prove the Edge Coincidence Test from Chapter 3. We begin with definitions and
notation.

Definition: A constrained graph is an ordered triple G = (V,E,C) where V and E are
the sets of nodes and edges in the graph, and C is a set of separation constraints on the
x- and y-coordinates of the nodes.

Notation: The results of this section hold for both directed and undirected graphs. Since
the directedness of edges is completely irrelevant to our results, we write an edge whose
endpoints are u and v in unordered notation {u, v}.
Definition: An edge constraint for a graph G = (V,E) is a separation constraint zu+g ≤
zv or zu + g = zv such that {u, v} ∈ E, i.e. a separation constraint on the endpoints of an
edge.

Definition: An edge-constrained graph is a constrained graph G = (V,E,C) in which C
contains only edge constraints.

Notation: When C is a set of constraints and S a set of equations and inequalities on
coordinates of nodes, we will use the entailment relation C ` S to indicate that each
relation in S is entailed by the constraints in C.

Definition: A constrained graph G = (V,E,C) is said to contain a horizontal overlay
when there are edges {a, b}, {c, d} ∈ E such that

C ` {ya = yb = yc = yd, xa < xd, xc < xb}.

In this case we write (a, b)⇒ (c, d). Similarly, G is said to contain a vertical overlay when
there are edges {e, f}, {g, h} ∈ E such that

C ` {xe = xf = xg = xh, ye < yh, yg < yf},

in which case we write (e, f) � (g, h).

NB: While edges are written in undirected notation, the overlay notation is ordered. For
example, (a, b)⇒ (c, d) is different from (b, a)⇒ (c, d).

Since the horizontal and vertical cases of the ECT are entirely similar, we prove only
the horizontal case. We begin with a lemma.

Lemma: If an edge-constrained graph G = (V,E,C) contains a horizontal overlay, then
there exist three nodes u, v, w ∈ V such that {u, v}, {u,w} ∈ E and either (u, v)⇒ (u,w)
or (v, u)⇒ (w, u).

Proof: By the definition of horizontal overlay there are edges {a, b}, {c, d} ∈ E such that
C ` (a, b) ⇒ (c, d). Let H = (V, F ) be the graph in which {e, f} ∈ F if and only if
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{e, f} ∈ E and C ` ye = yf . Let K be the connected component of a in H. Since G is
edge-constrained, we have a, b, c, d ∈ K. Note that all nodes in K share one and the same
y-coordinate. We will find u, v, w ∈ K satisfying the statement of the lemma.

To begin with, let degH denote degree in H, and suppose that there is any u ∈ K
with degH(u) ≥ 3. Then by the pigeonhole principle u must either have two neighbours
v, w ∈ K on its left, or two on its right, and in either case we are done.

Suppose then that all u ∈ K have 1 ≤ degH(u) ≤ 2. Then K forms either a cycle
or a chain. Consider first the case in which K forms a cycle, that is, every u ∈ K has
degH(u) = 2. Then if u, v, w ∈ K could not be found to satisfy the lemma, then for all
v ∈ K we would have xu < xv < xw, where u and w are the two neighbours of v. In this
case we would have a cycle of less-than relations, making xu < xu for each u ∈ K, which
is impossible.

This leaves only the case in which K forms a chain. Again, if u, v, w ∈ K could not
be found to satisfy the lemma, then each v ∈ K with degH(v) = 2 would have one of
its neighbours on each side of it, so that K would contain no overlay at all, contrary to
assumption. This proves the lemma.

Finally we restate the ECT for the case of horizontal overlays in terms of the definitions
of this section, and prove it.

Edge Coincidence Test: Let G = (V,E,C) be an edge-constrained graph with {u, v} ∈
E, having no constraints relating u and v, and containing no horizontal overlays. Let
S = SA(u, v,E). Then C ∪ {S} entails a horizontal overlay if and only if there exists a
node w ∈ V such that C ` yw = yu or C ` yw = yv, and satisfying one of the following
two sets of conditions:

1. (a) {u,w} ∈ E, and

(b) C ` xu < xw or C ` xv < xw, or

2. (a) {w, v} ∈ E, and

(b) C ` xw < xu or C ` xw < xv.

Proof: It is clear that if a node w satisfying the stated conditions exists, then a horizontal
overlay will be created when S is applied. Conversely, we now suppose that a horizontal
overlay is created when S is applied, and prove that such a node w must exist.

Let C ′ = C∪{S}. By the Lemma there exist three nodes a, b, c ∈ V with {a, b}, {a, c} ∈
E such that C ′ ` (a, b)⇒ (a, c) or C ′ ` (b, a)⇒ (c, a). But since neither of these overlays
is entailed by C, we can conclude that one of the edges {a, b}, {a, c} has to be {u, v}. We
assume (renaming if necessary) that {a, b} = {u, v}, and show that taking w = c satisfies
the conditions of the theorem. Specifically, we will handle the case in which a = u. The
case in which a = v is similar.

In this case C ′ ` (v, u)⇒ (c, u) cannot occur, since this would involve the entailment
C ′ ` xv < xu, whereas we assumed that C states no relation on nodes u and v, while the
only order relation entailed by S is xu < xv. Therefore we must have C ′ ` (u, v)⇒ (u, c),
which says that

C ′ ` {yu = yv = yc, xu < xv, xu < xc}.

Since yu = yv is the only equation entailed by S, we conclude that C ` yc = yu or
C ` yc = yv. By assumption, {u, c} ∈ E. And again, since the only inequality entailed
by S relates xu and xv, it must be that C ` xu < xc or C ` xv < xc. This completes the
proof.
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Orthowontist Text Responses

At the end of the online Orthowontist experiment (Chapter 4) a final page presented
participants with a text field and the instructions, “Please describe in your own
words what your goals were when you were trying to improve the layout of
a diagram.” The responses of the seventeen participants are presented below. One
participant wrote an itemised list, and that is reproduced faithfully here.

1. Show clear relationships between objects and try not to overlap lines.

2. I was trying to find the starting point in order to figure out the relationships between
the nodes so that I could sort and simplify the diagram.

3. Reducing the amount of curvy lines and “noise”. Untangling unnecessary intersec-
tions. Making it as compact and clean as possible as charts are meant to be “at a
glance” to assist with understanding a process, rather than being “attractive” at the
expense of complicating understanding. You would also consider boxes and whether
or not they were absolutely necessary, much like writing, especially business use the
aim is to be clear and concise.

4. Edges had to be rounded, boxes centered when connected, and an equal distance
between the different levels of importance. If an idea box lead to another, it had to
be above and if it was equal to then to the side. The final image had to be balanced,
not allowing the eye to correct balance while trying to figure out what was connected
to what

5. No overlapping lines, line length shortening, layout on a grid

6. Consistency, straight joining lines with no corners where possible, keeping the shapes
along the same logical flow straight

7. I am trying to

• connect one edge from one side of Node as far as possible.

• layout the less connect node on outside in a diagram

8. To try to untangle the lines, which were often criss-crossed and difficult to ‘read’, by
moving the boxes into a more logical order.

9. Trying to increase left-to-right or clockwise reading in threads or loops, because
that’s the way Western readers are taught to read.

Balance situations where two or more options came from one node, i.e. connect each
new node on the same plane (not one above, one under, one to the right of, but all
to the right on three different levels)
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A small amount of aesthetic change, because I think curved corners are nicer than
sharp ones

10. Simple, straight lines to indicate direct relationships between two items. Also, align-
ing nodes so they match up (with an imaginary ruler)

11. Mostly I was trying to make the links as clear as possible, and then achieve some
kind of overall shape. Towards the end I began to focus more on the aesthetics
rather than just the practicalities.

12. symmetry.

13. To keep the diagrams as simple as possible. Fewer over laps with lines and clear
connections between boxes.

14. Get rid of as many bumps and overlaps as possible.

Showing a more direct path.

15. Clean

16. Uncrossed lines, hierarchy of levels, right angles

17. trying to keep it simple and easy to read by trying to keep the lines straight whenever
possible



Appendix D

Orthowontist Metrics

Among the hypotheses to be tested by the Orthowontist experiment (Chapter 4) was the
idea that certain qualities or aspects of a layout would bear on how highly that layout
would be ranked in order of preference. This included the classic aesthetic concerns of
number of crossings and bends in connector routes, standard deviation in the length of
connector segments, compactness of the drawing, and symmetry. We also investigated the
stress of the final layout, its “gridiness” (a measure of how grid-like the layout was), and
whether the trees of the network were placed in the external face. This appendix provides
the formal details of these metrics.

D.1 Stress

Recall that the stress of a drawing of a graph G = (V,E) is given by

∑
u,v∈V

(
|u− v|
duv

− `0
)2

where |u− v| gives the geometric distance between the drawings of nodes u and v, while
duv is the graph-theoretic distance between them, and `0 is the ideal edge length for the
drawing. Therefore before we can compute the stress of a layout we must define the
parameter `0 on which it depends.

In the case of human designed layouts there is a natural way to define `0: take the
average neighbour distance (average distance between neighbouring nodes, i.e. nodes con-
nected by an edge) in the final layout. To be clear, this means the straight-line distance
between the centres of the nodes, not the lengths of the connector routes between them.
See Figure D.1.

The rationale is that when a study participant clicked the “Done” button after each
layout task in the Orthowontist study they were effectively saying, “I think this layout
looks good,” which in particular implies, “Neighbouring nodes are now about as far from
each other as they ought to be.” In other words, by showing us what a good layout

Figure D.1: The “neighbour distance” between these two nodes is the straight-line distance a between their
centres, not the sum b+ c of the lengths of the segments making up the connector route.
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Figure D.2: These two layouts of a three-node graph have the same average neighbour separation; however, the
layout on the left has zero stress, while the layout on the right has higher stress.

looked like, participants were also showing us what they thought was an ideal neighbour
separation. Thus, if for each node v ∈ V the position of v in the final layout is given by
(v.x, v.y), then we define the ideal edge length `0 for stress computations as

`0 =
1

|E|
∑

(u,v)∈E

√
(v.x− u.x)2 + (v.y − u.y)2. (D.1)

The reader may wonder whether it is fair to define the ideal edge length in this way,
and whether this definition automatically means that every layout will have low stress.
The answer is no. To see why not, we may begin by considering a simpler version of
the stress function that sums stress terms only for neighbouring nodes (i.e. the neighbour
stress function that was used in Chapter 5):∑

(u,v)∈E

(|u− v| − `0)2 . (D.2)

We observe that this expression is equal to the variance in the neighbour separations in
the layout. Meanwhile the actual stress function includes additional non-negative terms
on top of the neighbour stress. Therefore with our definition of the ideal edge length
`0 in (D.1) the stress of the layout is bounded below by the variance in the neighbour
separations, and is by no means automatically low. See Figure D.2.

D.2 Symmetry

Various metrics for symmetry in node-link diagrams have been proposed. These metrics
always incorporate the idea of pairing nodes and/or connector routes over axes of reflection,
but the devil lies in the details and invariably some ad hoc choices are made. For example
Purchase et al. used one definition in an initial study [PCJ96] but then after reconsideration
formulated a different metric [PL96] for a later study [Pur97].

The revised symmetry metric of Purchase et al. seems good intuitively, and was shown
to have some correlation with the usability of node-link diagrams [Pur97]. However, it did
not take node size or ports into account. For our study we formulate a similar symmetry
metric, but one that accounts for node sizes and ports.

To begin with, we want to consider axes of reflection over which node boxes and con-
nector routes pair off symmetrically. The percentage of nodes and connectors participating
in the single largest such symmetry may be taken as the symmetry value for the layout.
However, this rough idea needs to be refined in several ways:

1. Since we are concerned with hand-made layouts we must accept approximate sym-
metry, so when nodes or edges “pair off” this will have to mean that when one is
reflected across the axis of symmetry it lands “close enough” to its partner.

2. Since we are interested in grid-like orthogonal layouts it makes sense to consider
only horizontal and vertical axes of symmetry. Furthermore we may demand that
each potential axis pass either through the centre of one or more nodes, or through
the midpoint between the centres of two aligned nodes. See Figure D.3. Restricting
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to this finite set of possible axes also helps to make the problem computationally
tractable.

3. We only want to consider non-trivial symmetries, so we will require that at least
three nodes participate. Otherwise any pair of aligned nodes would constitute a
symmetry, and we believe that this is not worth counting.

4. For each axis we will consider how many nodes and edges pair off symmetrically about
it. However, we are looking for symmetries that “jump out” visually, so rather than
considering random collections of nodes and edges we will consider only subgraphs,
i.e. collections of nodes plus those edges having both their endpoints within that
collection.

5. We want a normalised measure, so if n and m are the total numbers of nodes and
edges in the graph, respectively, then for each axis A and subgraph H that has a
reflection symmetry over A we will count the nodes and edges in H and divide by
n+m. This assigns a symmetry value for H over A.

6. Again, since we want symmetries to pop out visually, we will exclude from consid-
eration any subgraph H whose bounding box intersects any nodes not belonging to
H. Such nodes create visual clutter that obscures the symmetry. A subgraph H
whose bounding box does not intersect any nodes not belonging to H will be called
“closed” with respect to the layout.

7. To each axis A we assign the largest normalised symmetry value over all closed
subgraphs of at least three nodes. Then to the layout itself we assign the largest
such value over all axes A.

8. But in fact we will again refine this idea to allow for “sub-symmetries,” the idea
being that if you can split the graph into two or more parts by deleting one or more
edges, and find a different axis of symmetry for each part, then the total symmetry
of the graph can be computed by combining the symmetries of these parts, minus a
penalty for the deleted edges. See Figure D.4.

These ideas are easy enough to understand, but it takes a fair bit of formalism to
make them precise. Readers satisfied with this rough description may feel free to skip the
remainder of this section.

In the following definitions, we assume a graph G = (V,E), along with width and
height functions w : V → R>0 and h : V → R>0 for the nodes of G.

We also assume a layout L = (c, r) of G, consisting of two maps, c : V → R2 and
r : E → (R2)<ω, where (R2)<ω denotes the set of all finite sequences of points in R2. The
idea is that c(v) represents the centre of node v, while r(e) defines a piecewise-linear curve
to represent edge e. The edge routes must connect the node centres; formally, for each
edge e = (u, v), if r(e) = 〈p0, p1, . . . , pn〉 then we must have p0 = c(u) and pn = c(v).

The functions c, r of the layout L give us the raw data to define the boxes and curves
that make the graphical representations of the nodes and edges of the graph, but we need
additional definitions to refer to these geometric figures, and we set about that now.

For each node v ∈ V we define the box for v, denoted β(v), to be the rectangle in the
plane with centre at c(v) and having width w(v) and height h(v).

Given two points p, q ∈ R2, we define σ(p, q) to be the line segment connecting them.
For each edge e ∈ E we define the connector for e, denoted κ(e) as the union of all the

segments σ(pi−1, pi), 1 ≤ i ≤ n, where r(e) = 〈p0, p1, . . . , pn〉.
It will be useful to be able to denote the geometric figure for both nodes and edges

uniformly; therefore we define
ϕ : V ∪ E → ℘(R2)
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Figure D.3: For grid-like symmetries we consider only axes of symmetry that are horizontal or vertical, and that
pass either through the centre of a node or through the midpoint between two adjacent aligned nodes. Four of this
layout’s eleven possible axes are shown.

Figure D.4: As in this example, layouts may exhibit a lot of symmetry and yet lack a single axis representing all
of it. In a case like this we believe it is important to consider breaking the layout into sublayouts, and examining
the symmetry of each part separately. For example if the central edge in this figure is deleted then each of the two
resulting components has perfect symmetry.
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Figure D.5: ε-neighbourhoods around a connector route (left) and node box (right)

to be the unique map that equals β when restricted to V and equals κ when restricted to
E. The codomain is the powerset of R2 since ϕ maps each node and edge to a subset of
the plane.

We need to be able to talk about reflections. Therefore if F is any geometric figure in
the plane, literally a subset F ⊆ R2, and if A is any axis, i.e. line, in the plane, then the
reflection of F across A will be denoted RA(F ).

Since we are interested in approximate symmetries we need to be able to talk about
neighbourhoods around geometric figures. Therefore if F ⊆ R2 and ε > 0 ∈ R are given,
we will denote by Nε(F ) the ε-neighbourhood around F , i.e. the set of all points in R2 that
lie within a distance of ε of any point in F . See Figure D.5.

Next we formalise the notion of a “pairing off” of geometric figures, up to a tolerance
ε, when reflected over an axis A. If H = (W,F ) is any subgraph of G = (V,E) (so W ⊆ V
and F ⊆W×W ) then by the notation ρ : H → H we will mean a map ρ : W ∪F →W ∪F
satisfying the condition that ρ(W ) ⊆W and ρ(F ) ⊆ F . If A is any axis and if a tolerance
ε > 0 is given then a map ρ : H → H is said to be an A, ε-reflection map if it satisfies all
the following conditions:

i. ρ is one-one and onto;

ii. ρ is its own inverse; i.e. ρ(ρ(x)) = x for all x ∈ H; and

iii. for all x ∈ H,
RA(ϕ(x)) ⊆ Nε(ϕ(ρ(x))).

In words, the last condition states that, for each element x of H, be it node or edge,
the reflection over axis A of the geometric figure representing x is contained in the ε-
neighbourhood of the geometric figure representing the partner ρ(x) in the intended sym-
metric pairing.

A subgraph H of G will be called ε-symmetric over A if there exists an A, ε-reflection
map ρ : H → H.

If H = (W,F ) is a subgraph of G its bounding box β(H) ⊆ R2 is defined to be the
smallest rectangle in the plane containing β(w) for all w ∈W , and κ(f) for all f ∈ F .

A subgraph H = (W,F ) of G = (V,E) is said to be closed with respect to the layout
L if for all v ∈ V , β(v) ∩ β(H) 6= ∅ implies v ∈ W . In other words, H is closed when it
includes every node whose box intersects the bounding box of H.

For a given axis A and tolerance ε, we can now define the set of all subgraphs of G
that can contribute to the degree of symmetry we attribute to axis A. Namely, we define

S(G,L,A, ε)

to be the set of all subgraphs H of G satisfying all the following conditions:

i. H contains at least three nodes;

ii. H is closed with respect to L;
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iii. H is ε-symmetric over A.

For any subgraph H = (W,F ) of G we define the mass of H to be m(H) = |W |+ |F |,
i.e. the total number of nodes and edges in the subgraph.

For any axis A and tolerance ε we define the ε-symmetry of A to be

symmε(A) = max
H∈S(G,L,A,ε)

m(H)

m(G)
.

Let grax(L) denote the set of all “grid-like axes” A for the layout L, i.e. the set of all
axes that are either horizontal or vertical, and either pass through c(v) for some v ∈ V
or through (c(u) + c(v))/2 for some nodes u, v ∈ V that have equal x- or y-coordinate
(i.e. are aligned in one dimension).

Finally we can define the ε-symmetry of the layout L:

symmε(L) = max
A∈grax(L)

symmε(A).

Furthermore we propose that there is a principled tolerance ε to be used in these
measurements, namely,

ε0 =
1

4 |V |
∑
v∈V

(w(v) + h(v)) . (D.3)

i.e. half the average extension of any node box in either dimension. When we speak of
symmetry unqualified by any tolerance ε, we will always mean ε0-symmetry. Thus

symm(L) = symmε0(L).

We have just one last part of the definition of symmetry to work out, and that is the
idea of splitting the graph G by deleting edges, determining the symmetry of the parts,
and putting these together to get a measurement of the symmetry of the full graph G.
This idea is motivated by examples like the layout in Figure D.4 (the top human layout
for Graph 8 in the study), in which if the central edge is deleted, each of the two resulting
subgraphs has complete symmetry. Recall that an edge is called a bridge if its deletion
increases the number of connected components in the graph.

Furthermore, motivated by the same example, we believe it is important that we
consider the deletion not just of any edge, but only of those edges routed in such a way
that their deletion seems visually obvious. We are trying to detect symmetries that jump
out visually, and in Figure D.4 we attribute to its isolation from other objects the central
edge’s appearance of being “prime for deletion”.

We formalise this notion as follows. Given a graph G = (V,E) and a layout L = (c, r)
of G, an edge e ∈ E is called an exposed bridge if (a) it is a bridge, i.e. is such that its
deletion increases the number of connected components in the graph, and (b) it is visually
“exposed” in the sense that if r(e) = 〈p0, p1, . . . , pn〉 then at least one of the segments
σi = σ(pi−1, pi) is such that the perpendicular line passing through the midpoint of σi
does not intersect any other node or segment in the layout.

Our suspicion is that an exposed bridge will have a far greater tendency to induce
visual perceptual chunking than an unexposed one, and this seems consistent with gestalt
principles [Koh50], although to verify this specific claim would require further user studies.

For a graph G = (V,E), let exbr(G) ⊆ E denote the set of exposed bridges of G. For
any set of edges F ⊆ E, we denote by G \ F the subgraph of G resulting from deletion
of all edges in F . We write C (G) for the set of connected components of G. When L is
a layout of G and H is a subgraph of G we denote by L|H the layout L restricted to the
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subgraph H. Then we can define the fractional symmetry of a layout L of G as

fsymm(L) = max
F⊆exbr(G)

∑
H∈C (G\F )m(H) symm(L|H)

m(G)
.

Note that since in particular we have ∅ ⊆ exbr(G) it follows that fsymm(L) ≥ symm(L).
Therefore, since our goal is always to attribute the maximum possible symmetry to any
layout, we will only be concerned with fractional symmetry.

D.3 Compactness

We computed compactness as the ratio of the area occupied by the nodes to the total area
of the graph, the latter being given by the bounding box of all nodes and bend points.

D.4 “Gridiness”

As in Chapter 3, we think of a layout as being “grid-like” when many of the nodes par-
ticipate in alignments. Therefore we measure the grid-like quality of a given layout—its
“gridiness”—by reporting the proportion of nodes that participate in at least one align-
ment of three or more nodes. We require at least three nodes in order to discount trivial
cases.

Since we are concerned with hand-made layouts we must accept approximate align-
ments, up to some error tolerance ε. For this we used one quarter of the average node
size, or half the tolerance defined in (D.3).
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[FK97] Ulrich Fößmeier and Michael Kaufmann. Algorithms and area bounds
for nonplanar orthogonal drawings. In International Symposium on Graph
Drawing, pages 134–145. Springer, 1997.

[Fle13] Roger Fletcher. Practical methods of optimization. John Wiley & Sons,
2013.

[FR95] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive
search procedures. Journal of global optimization, 6(2):109–133, 1995.

[Gal16] Joseph Gallian. Contemporary abstract algebra. Cengage Learning, 2016.

[GKN04] Emden R Gansner, Yehuda Koren, and Stephen North. Graph drawing by
stress majorization. In International Symposium on Graph Drawing, pages
239–250. Springer, 2004.

[GM03] Carsten Gutwenger and Petra Mutzel. An experimental study of crossing
minimization heuristics. In International Symposium on Graph Drawing,
pages 13–24. Springer, 2003.

[Har] Frank Harary. Graph theory. 1969. Addison-Wesley, Reading, MA.

[HBF08] Nathalie Henry, Anastasia Bezerianos, and Jean-Daniel Fekete. Improving
the readability of clustered social networks using node duplication. Visu-
alization and Computer Graphics, IEEE Transactions on, 14(6):1317–1324,
2008.

[HF06] Nathalie Henry and Jean-Daniel Fekete. Matrixexplorer: a dual-
representation system to explore social networks. IEEE transactions on
visualization and computer graphics, 12(5):677–684, 2006.

[HFM07] Nathalie Henry, Jean-Daniel Fekete, and Michael J McGuffin. Nodetrix: a
hybrid visualization of social networks. IEEE transactions on visualization
and computer graphics, 13(6):1302–1309, 2007.

[HHE07] Weidong Huang, Seok-Hee Hong, and Peter Eades. Effects of sociogram
drawing conventions and edge crossings in social network visualization. J.
Graph Algorithms Appl., 11(2):397–429, 2007.

[Him95] Michael Himsolt. Comparing and evaluating layout algorithms within
GraphEd. Journal of Visual Languages and Computing, 6(3):255–273, 1995.

[HM96] Weiqing He and Kim Marriott. Constrained graph layout. In International
Symposium on Graph Drawing, pages 217–232. Springer, 1996.



202 REFERENCES

[Hol06] Danny Holten. Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data. Visualization and Computer Graphics, IEEE
Transactions on, 12(5):741–748, 2006.

[Hua07] Weidong Huang. Using eye tracking to investigate graph layout effects. In
Visualization, 2007. APVIS’07. 2007 6th International Asia-Pacific Sympo-
sium on, pages 97–100. IEEE, 2007.

[KA06] Kurt W Kohn and Mirit I Aladjem. Circuit diagrams for biological networks.
Molecular systems biology, 2(1), 2006.

[Kam89] Tomihisa Kamada. Visualizing abstract objects and relations, volume 5.
World Scientific, 1989.

[KDMW13] Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. Incremental
grid-like layout using soft and hard constraints. In Graph Drawing, pages
448–459. Springer, 2013.

[KDMW16] Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. HOLA:
Human-like orthogonal network layout. Visualization and Computer Graph-
ics, IEEE Transactions on, 22(1):349–358, 2016.

[KFMO05] Hiroaki Kitano, Akira Funahashi, Yukiko Matsuoka, and Kanae Oda. Using
process diagrams for the graphical representation of biological networks.
Nature biotechnology, 23(8):961–966, 2005.

[KH03] Yehuda Koren and David Harel. Axis-by-axis stress minimization. In Inter-
national Symposium on Graph Drawing, pages 450–459. Springer, 2003.

[KK89] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general
undirected graphs. Information Processing Letters, 31:7–15, 1989.

[KMS94] Corey Kosak, Joe Marks, and Stuart Shieber. Automating the layout of
network diagrams with specified visual organization. Systems, Man and
Cybernetics, IEEE Transactions on, 24(3):440–454, 1994.

[KNJ+07] Kaname Kojima, Masao Nagasaki, Euna Jeong, Mitsuru Kato, and Satoru
Miyano. An efficient grid layout algorithm for biological networks utilizing
various biological attributes. BMC Bioinformatics, 8(1):76, 2007.

[Knu63] Donald E. Knuth. Computer drawn flowcharts. Communications of the
ACM, 6, 1963.

[Koh50] Wolfgang Kohler. Physical Gestalten, pages 17–54. The Humanities Press,
1950.

[Kru64] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[KS80] Joseph B Kruskal and Judith B Seery. Designing network diagrams. In Proc.
First General Conf. on Social Graphics, pages 22–50, 1980.

[LHM+09] N. Le Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin,
E. Demir, K. Wegner, M. Aladjem, S. M. Wimalaratne, F. T. Bergman,
R. Gauges, P. Ghazal, K. Hideya, L. Li, Y. Matsuoka, A. Villéger, S. E.
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