
Practical Physical Layer Network
Coding

Dmitry Kramarev

A thesis submitted for the degree of Doctor of Philosophy at
Monash University in 2016

Department of Electrical and Computer Systems Engineering



Copyright notice

c© Dmitry Kramarev 2016. Except as provided in the Copyright Act 1968, this thesis may
not be reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for third-
party content included in this thesis and have not knowingly added copyright content to
my work without the owner’s permission.

ii



Abstract

PHYSICAL-layer network coding (PNC) is a new technology which has the potential

to increase network throughput beyond existing standards based on routing. De-

spite the fact that PNC has been well investigated from information-theoretic point of

view, only a few partial prototypes have been reported in the literature. The implemen-

tation of a PNC system is burdened with many challenges such as carrier-phase, symbol

and frame asynchrony. In this research, we mainly focus on software-defined radio proto-

typing of a two-way relay network utilizing PNC relaying. We present the first real-time

implementation of a generalized PNC algorithm, namely compute-and-forward relay-

ing. In addition, we propose an improved compute-and-forward relaying scheme which

simplifies the use of power-of-two size constellations typically used in practical commu-

nication systems. The presented testbed provides a valuable platform for verification of

the theoretical research on PNC and evaluation of synchronization requirements. Our

experimental results show that when the signal-to-noise ratio is high, PNC relaying out-

performs other relaying strategies in terms of the network throughput.

In addition, we propose a new method of multiplierless pulse-shaping filter design which

allows essential reduction of the hardware utilization as well as out-of-band power. There-

fore, a multiplierless filter designed with the proposed method is especially suitable for

FPGA/VLSI implementation.

iii





Declaration

This thesis contains no material which has been accepted for the award of any other

degree or diploma at any university or equivalent institution and that, to the best of my

knowledge and belief, this thesis contains no material previously published or written

by another person, except where due reference is made in the text of the thesis.

Dmitry Kramarev
30/03/2016

v





Publications

Journal Papers

[KSV16] D. Kramarev, A. Sakzad, and E. Viterbo, “Implementation of a two-way relay
network with compute-and-forward in GNU Radio,” Transactions on Emerging
Telecommunications Technologies, vol. 27, no. 4, pp. 484–493, Apr. 2016.

Conference Papers

[KHV14] D. Kramarev, Y. Hong, and E. Viterbo, “Software defined radio implementa-
tion of a two-way relay network with digital network coding,” in 2014 Aus-
tralian Communications Theory Workshop (AusCTW), vol. 1, Sydney, Australia,
Feb. 2014, pp. 120 – 125.

[Kra16] D. Kramarev, “Accurate symbol-level synchronization of universal software
radio peripherals for physical-layer network coding applications,” Oct. 2016,
submitted to IEEE International Conference on Communications 2017.

vii





Acknowledgements

During the course of my PhD studies I have been very fortunate to receive valuable assis-

tance, suggestions and support from many people. I greatly appreciate their generosity

in devoting their time and consideration.

First, I am pleased to acknowledge the continuous support, guidance and encourage-

ment of my PhD supervisor, Professor Emanuele Viterbo. This PhD dissertation would

not have been possible without his invaluable guidance and persistent help.

I feel extremely fortunate to have worked with members and former members of the Soft-

ware Defined Telecommunications Laboratory at Monash University. I would especially

like to acknowledge the support, collaboration and contribution to our common projects

of Dr. Amin Sakzad. I am very thankful for the friendly and helpful environment to Dr.

Harshan Jagadeesh, Dr. Shuiyin Liu, Dr. Lakshmi Natarajan and Dr. Sinan Kahraman. I

would also like to thank software-defined radio expert Mr. Mikael Eriksson for his con-

structive discussions and comments.

I would appreciate the help of the ECSE department technical staff Mr. Ray Cooper, Mr.

Daryl Gaspero, Mr. Ian Reynolds and others, as well as IT staff Ms. Vanessa Luu and Mr.

Godwin Vaz for their kind cooperation in setting up the hardware and software required

for my experiments in the lab. I would also express my appreciation to the department

staff, Mr. Geoff Binns, Ms. Emily Simic, Ms. Ros Rimington and Ms. Maria Scalzo.

I am thankful for the excellent research supports provided by Australian Federal and Vic-

toria State Governments and the Australian Research Council through the ICT Centre of

ix



Excellence program, National ICT Australia (NICTA).

I would also like to thank Ms. Jane Moodie for her patience when helping me with

proofreading and structuring my papers, and Dr. Alex McKnight who assisted by proof-

reading the final draft of this thesis for grammatical and stylistic errors.

Last but not least, I would like to thank the former Head of the ECSE Department, Prof.

Jamie Evans, for his efforts in monitoring my research progress regularly and providing

helpful and timely feedback.

Finally, it is my pleasure to acknowledge my family, relatives and friends, whose love,

support and encouragement have accompanied me throughout my life.

JE JE JE JE

x



Contents

Abstract iii

Declaration v

List of Publications vii

Acknowledgements ix

Contents xi

List of Tables xv

List of Figures xvii

List of Acronyms & Symbols xix

1 Introduction 1
1.1 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Challenges of PNC implementation . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Objectives of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Potential applications of PNC . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature review 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Early studies on PNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Alternatives to PNC . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Compute-and-Forward relaying scheme . . . . . . . . . . . . . . . . . . . . 21
2.4 Synchronization in PNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Channel estimation in PNC . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Network coding prototyping efforts . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Software-defined radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 GNU Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Universal software radio peripheral . . . . . . . . . . . . . . . . . . . . . . 34

2.8.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



3 Practical CF scheme design and analysis 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Codebook construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Search of optimal linear coefficients . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 The multiple-access phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 The broadcast phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Data-link layer protocols for PNC and their implementation on SDR 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Half-duplex packet switching in GNU Radio . . . . . . . . . . . . . . . . . 57

4.2.1 Packet formats for different relaying strategies . . . . . . . . . . . . 61
4.3 ARQ protocols for different relaying strategies in TWRN . . . . . . . . . . 62

4.3.1 ARQ protocol for DNC . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 ARQ protocol for DF . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 ARQ protocol for CF . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 ARQ performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 SDR implementation of CF relaying and experimental evaluation 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Hardware and software platform . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Symbol synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Frame synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.3 FPGA customization . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Symbol-timing recovery at CF relay . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Experimental performance evaluation . . . . . . . . . . . . . . . . . . . . . 86

5.6.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6.2 Bit error rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6.3 Packet delivery ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.4 Network throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Multiplierless IIR filter design via zero/pole approximation 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 The CSD zero/pole approximation method . . . . . . . . . . . . . . . . . . 97

6.2.1 IIR filter design methods . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 CSD representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Hardware complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 BER performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xii



6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusions and Future Work 109
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Implementation of MIMO PNC/CF . . . . . . . . . . . . . . . . . . 113
7.3.2 Extension of the testbed from TWRN to a larger network . . . . . . 114
7.3.3 Further optimization of zero/pole approximation method of CSD

IIR filter design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A Description of GRC flow graphs 117
A.1 Design of custom blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2 Relay design in GRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.3 Terminal design in GRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 125

xiii





List of Tables

1.1 Example explaining principles of PNC . . . . . . . . . . . . . . . . . . . . . 6

2.1 Standard USRP N210 FPGA Utilization . . . . . . . . . . . . . . . . . . . . 36

5.1 Details of the Main Components of the Testbed . . . . . . . . . . . . . . . . 73
5.2 Summary of Main Parameters for GNU Radio Blocks . . . . . . . . . . . . 87

6.1 Zero/pole approximation error . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Advanced HDL synthesis report. Macro statistics comparison for the FIR

and IIR filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Device utilization summary for the FIR and IIR filters . . . . . . . . . . . . 106

xv





List of Figures

1.1 Differences between conventional and cooperative relaying . . . . . . . . . 2
1.2 Two-way relay network with traditional scheduling scheme . . . . . . . . 2
1.3 Two-way relay network with digital network coding . . . . . . . . . . . . . 3
1.4 Two-way relay network with physical layer network coding . . . . . . . . 5
1.5 Applications which may benefit from PNC . . . . . . . . . . . . . . . . . . 11
1.6 Thesis structure and relationship between chapters . . . . . . . . . . . . . 13

2.1 System diagram of CF relaying in Gaussian network . . . . . . . . . . . . . 22
2.2 Symbol and frame asynchrony . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 A technique for PNC decoding in presence of symbol asynchrony . . . . . 25
2.4 Two SDR receiver architectures . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 GNU Radio flow graph architecture . . . . . . . . . . . . . . . . . . . . . . 32
2.6 DSP components of the standard FPGA image of USRP N210 . . . . . . . 35

3.1 CF TWRN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Diagram of CF encoder at terminals . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Example of estimation of xR based on the use of the slicer . . . . . . . . . . 47
3.4 Outage probability of the DNC, DF and CF relaying schemes . . . . . . . . 49
3.5 User FER of DNC, DF and CF relaying schemes . . . . . . . . . . . . . . . 50
3.6 Normalized throughput of DNC, DF and CF . . . . . . . . . . . . . . . . . 51

4.1 Packet verification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Terminal operation flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Location of the half-duplex block in the block diagram of a node . . . . . . 60
4.4 Packet format for terminals and relays . . . . . . . . . . . . . . . . . . . . . 61
4.5 Flowchart of RT-ARQ and TO-ARQ in TWRN . . . . . . . . . . . . . . . . 63
4.6 Scheme of ARQ protocol for TWRN with DNC relaying . . . . . . . . . . . 64
4.7 Scheme of ARQ protocol for TWRN with DF relaying . . . . . . . . . . . . 65
4.8 Scheme of ARQ protocol for TWRN with CF relaying . . . . . . . . . . . . 67
4.9 Throughput of different relaying strategies in TWRN combined with the

relevant ARQ protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Architecture of the TWRN testbed with different relaying strategies . . . . 74
5.2 Frame synchronization scheme for DF and CF TWRN . . . . . . . . . . . . 76
5.3 FPGA customization for frame synchronization . . . . . . . . . . . . . . . 80
5.4 Feedback symbol-timing recovery scheme . . . . . . . . . . . . . . . . . . . 82

xvii



5.5 Example of timing recovery in CF relay . . . . . . . . . . . . . . . . . . . . 85
5.6 BER of TWRN with DNC, DF and CF relaying strategies vs. USRP Tx gain 89
5.7 Examples of constellations of received superimposed signal multiplied by

α, from that CF relay recovers linear combinations xR . . . . . . . . . . . . 90
5.8 Measured PDR of TWRN with DNC, DF and CF relaying strategies vs.

USRP Tx gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.9 Measured data throughput per direction of TWRN with DNC, DF and CF

relaying strategies vs. USRP Tx gain . . . . . . . . . . . . . . . . . . . . . . 92

6.1 R′37 , set of all possible roots of equation x2 + bx + c = 0, where b, c ∈ Q3
7 . 99

6.2 Pole-zero plot for the floating-point IIR filter, IIR filter with CSD3/3, and
IIR filter with CSD3/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Frequency response of the floating-point FIR filter, CSD IIR filter with L =
L′ = 3, CSD IIR filter with L = 3, L′ = 4, and CSD FIR filter with L = 3 . . 103

6.4 Normalized channel impulse response . . . . . . . . . . . . . . . . . . . . . 105
6.5 BER vs. SNR for the CSD FIR and CSD IIR pulse-shaping filters . . . . . . 107

7.1 Two-way relay network with MIMO CF relaying implemented on USRP
N210 and GNU Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Relay network with the star topology and the CF relaying scheme imple-
mented on USRP N210 and GNU Radio . . . . . . . . . . . . . . . . . . . . 114

7.3 Relay network with multiple relays and the CF relaying scheme imple-
mented on USRP N210 and GNU Radio . . . . . . . . . . . . . . . . . . . . 115

A.1 Conventional PHY OOT blocks . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.2 CF PHY OOT blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3 MAC OOT blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.4 GRC flow graph of the DNC relay . . . . . . . . . . . . . . . . . . . . . . . 122
A.5 GRC flow graph of the DF relay . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.6 GRC flow graph of the CF relay . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.7 GRC flow graph of the DNC and DF terminal . . . . . . . . . . . . . . . . . 124
A.8 GRC flow graph of the CF terminal . . . . . . . . . . . . . . . . . . . . . . . 124

xviii



List of Acronyms & Symbols

List of Acronyms

5G 5th Generation

ADC Analog-to-Digital Converter

AF Amplify-and-Forward

AGC Automatic Gain Control

ANC Analog Network Coding

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BER Bit-Error Rate

BPF Bandpass Filter

bps bits per second

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

CF Compute-and-Forward

CIC Cascaded Integrator-Comb

CLLL Complex Lenstra-Lenstra-Lovasz

CORDIC COordinate Rotation DIgital Computer

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSD Canonical Signed Digit

D2D Device-to-Device

DAC Digital-to-Analog Converter

dB Decibel

xix



dBm Decibel-milliwatts

DC Direct Current

DDC Digital Down-Convertion

DF Decode-and-Forward

DNC Digital Network Coding

DQPSK Differential Quadrature Phase Shift Keying

DSP Digital Signal Processing

DUC Digital Up-Convertion

ECC Error-Correcting Code

FDMA Frequency Division Multiple Access

FER Frame Error Rate

FIFO First In First Out

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

GF Galois Field

GHz Gigahertz

GNU GNU‘s Not Unix!

GPS Global Positioning System

GPSDO GPS Disciplined Oscillator

GPU Graphics Processing Unit

GRC GNU Radio Companion

GUI Graphical User Interface

HB Half-band

HDL Hardware Description Language

I/Q In-Phase/Quadrature

IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

IIR Infinite Impulse Response

ISE Integrated Synthesis Environment

ISI Inter-Symbol Interference

kbps kilobits per second

xx



LDPC Low-Density Parity-Check code

LLL Lenstra-Lenstra-Lovasz

LNA Low-Noise Amplifier

LO Local Oscillator

LPF Low-Pass Filter

LUT Look-Up Table

MA Multiple Access

MAC Multiple Access Control

MBd Megabaud

MHz Megahertz

MIMO Multiple-Input Multiple-Output

MM Mueller and Muller

MMSE Minimum Mean-Square Error

MSPS Mega-Samples Per Second

MUD Multi-User Detection

NC Network Coding

NCO Numerically Controlled Oscillator

NI National Instruments

NIC Network Interface Controller

ns nanosecond

OFDM Orthogonal Frequency-Division Multiplexing

OOT Out-of-Tree

PAM Pulse Amplitude Modulation

PC Personal Computer

PDR Packet Delivery Ratio

PGA Programmable-Gain Amplifier

PHY PHYsical layer

PNC Physical Layer Network Coding

PNCF PNC Over Finite Set

PNCI PNC Over Infinite Set

PSK Phase Shift Keying

xxi



QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RC Raised Cosine

RF Radio Frequency

RRC Root-Raised Cosine

RS Reed-Solomon

RT-ARQ Relay-Terminal ARQ

Rx Receiver

SDR Softwared-Defined Radio

SIMD Single Instruction Multiple Data

SNR Signal-to-Noise Ratio

SOP Start of Packet

STRP Symbol-Timing Recovery Preamble

TDD Time Division Duplex

TDMA Time Division Multiple Access

TED Timing Error Detector

TO-ARQ Terminal-only ARQ

TS Traditional Scheduling

TWRC Two-Way Relay Channel

TWRN Two-Way Relay Network

Tx Transmitter

UDP User Datagram Protocol

UHD USRP Hardware Driver

UHF Ultra High Frequency

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VHF Very High Frequency

VLSI Very Large-scale Integration

VOLK Vector-Optimized Library of Kernels

XOR eXclusive or

ZF Zero-Forcing

xxii



List of Symbols

∗ The convolution operation between f (t) and g (t),

( f ∗ g) (t) ,
∞∫
−∞

f (τ) g (t− τ) dτ

i Imaginary unit, i =
√
−1

A Matrix A

AT Transpose of matrix A

A∗ Hermitian Transpose of matrix A

A† Pseudo inverse of matrix A

a Vector a

‖a‖ l2-norm of a

|a| The absolute value of a

â Estimate of a

C The set of complex numbers

log+(x) max(log2(x), 0)

< (·) Real part of a complex number

= (·) Imaginary part of a complex number

a == b a is equal to b

a ∝ b a is proportional to b

⊕ Bitwise XOR

[v]q (v(1) mod q, . . . , v(n) mod q) for any v ∈ Cn.

� Logical left shift

Eb/N0 Energy per bit to noise power spectral density ratio

hXY Channel coefficient between transmitter X and receiver Y.

Fq Finite field of order q

In The identity matrix of size n

P Tx Power

T Symbol period

Tout Time-out period

bxc Floor of x

xxiii



List of Publications

z ∼ CN (µ, σ2) z is a circularly distributed complex Gaussian random variable with
mean µ and variance σ2

Z[i] Gaussian integers

Z+ Non-negative integers

xxiv



Chapter 1

Introduction

RELAYING of an important or alarming message was known far before the inven-

tion of radio. For example, in the Middle Ages people used drums or bells to

notify others about a danger such as enemy intrusion or a coming thunderstorm. When

such a message was received, it was repeated by another bell with the same tone and

frequency, i.e., relayed in order to propagate the alarm among larger numbers of people.

Not surprisingly, relaying in radio communication became a common task soon after the

invention of radio. Radio relaying was needed when the source and the destination of

a message could not communicate directly due to the large distance, obstacles or power

limitations. A relay or a chain of relays simply retransmitted messages without modify-

ing them.

Later, experiments with multiple-input multiple-output (MIMO) wireless systems

demonstrated that the quality of the reception could be improved greatly with the use

of multiple antennas [1, 2]. This effect was achieved by introducing the diversity, i.e. de-

livering several copies of the signal via independent paths, thus reducing the negative

effects of fading. The subsequent introduction of space-time codes encouraged further

development of MIMO systems, improving both diversity and rate without the need for

redundant channel use such as repetition of the same signal [3–5]. However, not all wire-

less devices were able to benefit from the use of transmit diversity because of limited size,

power constraints or hardware costs. To overcome this, the concept of cooperative commu-

nication [6] was introduced. In this scenario, several single-antenna devices in a network

share their antennas in order to create a virtual MIMO system. The introduction of coop-

erative communication allowed single-antenna devices to exploit transmit diversity, thus

1



2 Introduction

S 1X
R D

R

S

D

X

X

hSR
hRD

hSD

X1
(a) Conventional relayS 1X

R D

R

S

D

X

X

hSR
hRD

hSD

X1

(b) Cooperative relay

Figure 1.1: Difference between (a) conventional relaying and (b) cooperative relaying.
The conventional relay R simply retransmits message x1 received from source S transmit-
ted x toward destination D. In the cooperative relaying scheme source S first transmits
x to relay R; then both R and S transmit x simultaneously in order to take advantage of
transmit diversity.

increasing the quality of communication. Accordingly, cooperative communication in-

troduced a new role for relays. In this scenario, the task of relaying changed from merely

repetition to cooperative relaying. Figure 1.1 illustrates the difference between conven-

tional and cooperative relaying in wireless communication systems.

In large wireless networks, such as mobile networks, the traffic is often bidirectional,

when a node can serve as a source and sink at the same time, or even multidirectional. A

two-way relay network (TWRN), alternatively referred to in the literature as two-way relay

channel (TWRC), represents a canonical example of a network topology with bidirectional

relaying. TWRN represents a wireless network consisting of three nodes, namely termi-

nals A and B and relay R. Since there is no direct communication link between A and B,

the terminals exchange information via the relay R. We assume that the nodes operate

in half-duplex mode, i.e. a node can either receive or transmit at the same time, but not

both. A traditional scheduling (TS) scheme shown in Figure 1.2 exchanges information in

1 2

34

1 2

33

1 1

22

A

R

B

A

A

R

R

B

B

Figure 1.2: Two-way relay network with traditional scheduling scheme. The information
exchange is performed within four time slots.



3

1 2

34

1 2

33

1 1

22

A

R

B

A

A

R

R

B

B

Figure 1.3: Two-way relay network with digital network coding. The information ex-
change is performed within three time slots.

TWRN in four time slots. First, terminal A transmits a packet mA to relay R; second, relay

R forwards mA to terminal B; at the third and fourth time slots, respectively, B transmits

a packet mB to relay R, and R forwards mB to A. This example illustrates that the relay

transmits twice as often as the terminals, thus the relay represents a bottleneck in the

network. This mean that with growing demands for higher data rates, this approach is

unable to maximize the network throughput [7]. Therefore, introducing a more efficient

relaying strategy can lead to throughput increase of the entire network. For example, the

relay may need to compute functions of packets it receives, and forward the functions,

rather than the original packets.

With digital network coding (DNC), presented in Figure 1.3, it is possible to reduce the

number of time slots in TWRN information exchange from four to three as follows: in the

first and second time slots each terminal transmits its packet mA and mB, respectively, to

the relay; using conventional demodulation techniques, the relay independently recovers

bits of both the received packets, performs bitwise XOR operation and composes packet

mR such that

mR = mA ⊕mB, (1.1)

where ⊕ denotes bitwise XOR. In the third time slot, relay R broadcasts packet mR to the

both terminals. Subsequently, each terminal is able to recover the packet addressed to it

by performing another XOR operation on mR and its own transmitted packet:

mR ⊕mA = (mA ⊕mB)⊕mA = mB (1.2)

As a result, by performing data exchange in three time slots rather than in four, DNC

increases TWRN throughput by 33%.

DNC was first proposed for wired networks in [8]. Later, [9,10] developed the impor-



4 Introduction

tant class of linear network codes, where mR is computed as a linear combination of mA

and mB over a finite field GF (q)

mR =
[
aAmA + aBmB

]
q (1.3)

where aA and aB are coefficients over the finite field. From the perspective of these works,

the DNC scheme with bitwise XOR operation, described in (1.1) and (1.2), can be consid-

ered as a special case over the finite field GF (2). Subsequently, DNC was applied to

wireless networks in [11] and its performance was investigated in [12, 13]. In particular,

[13] proposes a DNC scheme where the relay forwards the soft decisions, i.e. the soft-

DNC scheme. The simulation results provided demonstrate that the soft-DNC scheme is

especially useful when Tx SNR is high.

Typically, a relay utilizes one of the MAC methods, such as TDMA or FDMA, or mul-

tiuser detection in order to avoid interference from several users. However, these con-

ventional methods do not allow further increase of the throughput. One way of boosting

the throughput derives from the observation that a relay is often not interested in the

content of a packet which it receives and forwards.

Physical layer network coding (PNC) represents a further development of the network

coding concept, where network coding is performed in the physical layer. By exploiting

interference rather than avoiding it, the PNC in theory may double the network through-

put. Unlike DNC, where the network coding operations are performed explicitly by the

relay, the PNC concept proposed independently in [14], [15] and [16] in 2006 shifts the

burden of network coding from the relay to the wireless channel. Specifically, PNC al-

lows several nodes to transmit synchronously. As a result, superposition of electromag-

netic waves occurs in the wireless medium, and this phenomenon is exploited as a form

of network coding, performed by nature. In this way, the interference effect, which is

usually seen as destructive, becomes constructive. Note that early theoretical works on

PNC assume perfect synchronization between several terminals. Subsequent studies,

however, have demonstrated that the synchronization requirements can be significantly

alleviated. The needs for synchronization are discussed in detail in Section 2.4.

With respect to TWRN, PNC allows for further reduction of the number of time slots



5

1 2

34

1 2

33

1 1

22

A

R

B

A

A

R

R

B

B

Figure 1.4: Two-way relay network with PNC. The information exchange is performed
within two time slots. The first and second time slots are referred to as the multiple-access
phase and the broadcast phase respectively.

to two by combining transmissions from both the terminals into one time slot, as illus-

trated in Figure 1.4. Let signals xA(t) and xB(t) respectively represent packets mA and

mB after modulation. If the signals are transmitted synchronously within the first time

slot, in this case also referred to as the multiple-access (MA) phase, the relay receives the

superimposed signal:

y(t) = hAxA(t) + hBxB(t) + z(t), (1.4)

where hA and hB represent channel coefficients, and z(t) is channel noise.

Subsequently, based on the received signal y(t), the relay attempts to estimate vector

mR

m̂R = F (mA, mB) = f (y (t)) , (1.5)

where F (·, ·) is referred to as PNC mapping function, and f (y (t)) determines the map-

ping of y (t) to m̂R.

During the second time slot, the broadcast phase, the relay broadcasts m̂R. Upon recep-

tion, the first terminal recovers the desired packet m̂B based on m̂R and its own trans-

mitted packet mA, and the second terminal recovers m̂A in the same way. The following

example from [17] explains the principle behind the PNC.

Let hA = hB = 1, and both the terminals transmit just one bit modulated with BPSK

modulation. We assume that the channel is noiseless, and the terminals transmit with the

same power and at the same time. Then

y(t) = xA(t) + xB(t). (1.6)

All possible combinations are shown in Table 1.1. From the table it follows that in this



6 Introduction

Table 1.1: Example explaining principles of PNC [17].

Bit Bit Symbol Symbol Received Bit
of mA of mB of xA(t) of xB(t) symbol y(t) mA ⊕mB of m̂R

0 0 -1 -1 -2 0 0
0 1 -1 1 0 1 1
1 0 1 -1 0 1 1
1 1 1 1 2 0 0

example bitwise XOR can be employed as the PNC mapping function:

F (mA, mB) = mA ⊕mB, (1.7)

and

f (y (t)) =

 1, |y (t)| = 0,

0, |y (t)| = 2.
(1.8)

Subsequently, the relay broadcasts m̂R and the terminals A and B receive it and recover

respectively

m̂B = m̂R ⊕mA = mB, (1.9)

and

m̂A = m̂R ⊕mB = mA. (1.10)

From this example, the term “physical layer network coding” is straightforward: net-

work coding in this scenario naturally happens in the physical layer. This example also

demonstrates that in PNC, there is no need for the relay to recover the bits of mA and

mB from y(t); only the bits of mR are required. Accordingly, PNC increases TWRN

throughput by 100% compared to TS, and 50% compared to DNC. This simple exam-

ple is, however, based on unrealistic assumptions. In practice, the throughput can drop

depending on channel conditions and the Tx power. Subsequent studies of PNC propose

and develop algorithms applicable to realistic situations, higher order modulations such

as QPSK and M-QAM, and analyze their performance.

Despite the potential of PNC to boost the network throughput and promising theo-



1.1 Research motivation 7

retical results, it is still in the early stage of development from the perspective of its use

in actual wireless communication systems. In addition, its implementation is hampered

by numerous implementation problems. Therefore, the development of PNC into a tech-

nology suitable for utilization in the next generation telecommunications, its prototyping

and experimental evaluation represent the research foci of this thesis.

1.1 Research motivation

In spite of the fact that many theoretical studies and simulation results have been pub-

lished, little research has been reported on the deployment of PNC in wireless communi-

cations. In particular, limited results are available on the prototyping of PNC algorithms,

especially on real-time hardware. Currently, only a few simplified PNC testbeds are im-

plemented. They support low data rates due to either high computational complexity

or insufficient synchronization, or both. Therefore, they do not fully demonstrate all the

benefits of PNC. The reader is referred to Section 2.6 for a detailed overview of the im-

plementation of PNC testbeds available in the literature.

At the same time, the number of reported DNC implementations is significantly higher.

DNC has been applied in various areas such as routers for mesh networks [18], video

streaming on smartphones [19–21], or implemented on software-defined radio (SDR)

[22]. In all cases, the utilization of network-coding led to a significant increase in the net-

work throughput. For example, [20] demonstrated that cooperation and the exchange of

network-coded messages among several smartphones located within proximity of each

other increased the average download rate for each smartphone, when downloading the

same video content from the Internet, by up to three times. In [18], Katti et al. present

a new architecture for wireless mesh networks (COPE), which provides improvement

of throughput of the network by up to four times, achieved by forwarding DNC-mixed

packets. The testbed consists of 20 wireless nodes located on two floors of a building.

Since in theory PNC outperforms DNC in terms of throughput, we believe that the

practical benefits of PNC will be significant. In our opinion, PNC has large potential

for applications in various areas. From this discussion and taking into account the gap



8 Introduction

between theory and practice, we consider the design of a stable real-time PNC testbed

and subsequent experimental, rather than theoretical analysis, to be the first step toward

demonstrating the full potential of PNC.

Such a testbed, if implemented, will provide inestimable assistance in verifying recent

theoretical research on PNC. As PNC is a broad research area which attracts researchers

with different backgrounds and has a large number of possible applications, we under-

stand the need for the testbed to be universal and quickly modifiable, and to support dif-

ferent data rates and allow experiments with different frequencies, modulations, channel

coding schemes and other techniques. Therefore, SDR appears to be a good basis for

implementation of such a testbed. The reader is referred to Section 2.7 and references

therein for more information on the advantages of prototyping communication systems

in SDR.

With our main work on prototyping of PNC schemes on existing SDR platforms,

we have found that the implementation of a few essential components of a communi-

cation system on FPGA, rather than on a general purpose CPU, dramatically improves

the performance of the entire system. However, due to the limited number of multipli-

ers available on many commercial FPGAs, the design of those components is preferably

multiplierless. An alternative solution would require the use of more expensive FPGAs,

which are equipped with multipliers but considerably increase the costs of both design

and development. Therefore, multiplierless design remains of interest. In particular,

relocation of the root-raised cosine filter to the FPGA used in both Tx and Rx chains for

pulse-shaping can greatly increase the throughput of the SDR platform and decreases the

randomness of processing delay. Therefore, this motivated us to search for an efficient

multiplierless implementation of the root-raised cosine filter on FPGA. In particular, we

are looking at infinite impulse response (IIR) filter design, because IIR filters often achieve

desired specifications with lower computational complexity, thus reducing the hardware

utilization.



1.2 Challenges of PNC implementation 9

1.2 Challenges of PNC implementation

The implementation of PNC systems faces the following major technical challenges which

hinder prototyping and subsequent performance evaluation.

• Information-theoretic focus of the previous research on PNC: In general, studies

on PNC investigate its performance from an information-theoretic point of view.

However, many existing PNC algorithms demonstrate relatively poor performance

when used directly in scenarios typical for wireless communication systems. For

instance, analog PNC schemes are convenient for analysis, and hence are well-

studied, but may be not suitable for use in systems based on digital communica-

tions.

• Increased effective noise of PNC receivers: In addition to channel noise, PNC

mapping introduces extra artificial noise. For example, in the compute-and-forward

(CF) strategy, effective noise is added due to the need to approximate non-integer

complex channel coefficients with the integer coefficients.

• Symbol and frame synchronization: Original PNC algorithms require tight sym-

bol and frame synchronization. On the other hand, recent theoretical works on

asynchronous PNC are based on assumptions which are not realizable on existing

hardware, for example, due to excessive oversampling requirements, or assump-

tions which lead to entire system inefficiency.

• Applicability of established signal processing methods: Widely used signal pro-

cessing techniques, aiming to improve the quality of the received signal, such as

channel estimation and symbol-timing recovery, are well-developed for traditional

communications which avoid interference. However, their applicability to PNC

systems is unclear.

• Uncertain delay of SDR platforms: SDR playing an increasing role in prototyping

of next-generation communication systems. However, despite their well-known

benefits, SDR systems typically introduce additional random delay, which is hardly

predictable, due to the fact that the computations are performed on general purpose



10 Introduction

CPUs rather than on dedicated hardware. Therefore, the implementation of PNC

on SDR represents additional challenges due to its sensitivity to the asynchrony.

• Conventional MAC protocols are inefficient when applied directly in PNC net-

works: The relay in PNC systems recovers the functions of packets, rather than

the packets individually. Therefore, the PNC relay has limited capability to detect

damaged packets, which may result in forwarding corrupted packets to the termi-

nals. This factor can contribute to the reduction of effective network throughput.

Accordingly, MAC protocols utilized in relaying need to be more sophisticated in

order to accommodate the increased role of terminals in such terminal-only data

integrity verification.

The impact of all these problems may outweigh the potential positive effect of PNC. The

challenges are discussed in more detail in Chapter 2.

1.3 Objectives of the research

According to our research motivations and the challenges, we define the objectives of our

research as follows:

• Objective 1: Examination of different PNC algorithms for their efficiency in sce-

narios typical for existing wireless communication standards and the simplicity of

their implementation on SDR.

• Objective 2: Development of a practical CF scheme based on realistic assumptions

and suitable for use in actual communication systems.

• Objective 3: Development of MAC protocols capable of supporting CF relaying

and robust against GNU Radio inadequacies and USRP hardware imperfections.

• Objective 4: Implementation of the first real-time prototype of TWRN with syn-

chronous CF relaying in GNU Radio. This also includes the implementation of a

practical symbol and frame synchronization scheme and solving other implemen-

tation challenges, such as the symbol-timing recovery and channel estimation.



1.4 Potential applications of PNC 11

Wireless sensor networks
Internet of things

5G mobile networks

Optical fiber network
Passive optical networks

Advanced PNC

Mobile base 
station

RelayD2D Relay

Cluster
head

Field 1
Field 2

Figure 1.5: Applications which may benefit from PNC.

• Objective 5: Experimental verification of the benefits of CF. Our aim is the experi-

mental performance evaluation of CF based on a real-time testbed and comparison

of the CF relaying scheme with other non-PNC relaying strategies.

• Objective 6: Development of a new method of multiplierless pulse-shaping IIR

filter design suitable for implementation on FPGA/VLSI with reduced hardware

cost and on wider class of FPGAs without dedicated hardware multipliers.

1.4 Potential applications of PNC

PNC may be useful in many areas where collaborative wireless communications and

networking are utilized, and which demand increased network throughput. These appli-

cations include, but are not limited to 5G mobile communications, ad-hoc and wireless

sensor networks, and Internet access, including Wi-Fi and the Internet of Things. Fig-

ure 1.5 shows some applications which will potentially benefit from PNC.



12 Introduction

Preliminary discussions on possible standards for 5G mobile networks [23, 24] sug-

gest that the device-centric architecture of a cellular network may be preferred over the

conventional base-station-centric architecture. Such architecture allows direct device-to-

device (D2D) communication and possibly cooperative communication. In this scenario,

the relaying represents a natural expansion of the D2D scheme and may benefit in both

increasing throughput and saving energy. The quality of such relaying can be further

improved with PNC utilized in the device serving as a relay.

In wireless sensor networks, long-distance direct communication is undesirable be-

cause the power budget of sensor nodes is extremely limited, but the energy spent for

communication is a superlinear function of the transmission distance. In this scenario,

communicating via relay nodes within a short distance greatly expands the network life-

time [25]. In this case, PNC relaying can effectively reduce the amount of data forwarded

by the intermediate nodes, thus further reducing energy consumption and increasing the

lifetime.

Furthermore, the use of PNC can be extended from wireless networks to optical fiber

networks, in particular passive optical networks [17, 26, 27]. For example, [17] provides

an example which demonstrates that the throughput of a passive optical network can be

potentially doubled when optical PNC is employed.

Finally, the ability for quickly prototype new PNC algorithms can be beneficial for

researchers working on PNC. Currently, since many PNC algorithms are verified only in

simulations, their actual performance and applicability are questionable. Therefore, the

development of a basic TWRN testbed supporting PNC relaying on an SDR platform will

simplify design and experimental evaluation of new PNC algorithms.

1.5 Thesis organization

This thesis consists of seven chapters. The thesis organization and relationship between

chapters is illustrated in Figure 1.6. The main contributions of this research are reported

in Chapters 3 to 7 as follows:

Chapter 2. This chapter introduces different concepts of PNC in more detail, including



1.5 Thesis organization 13

- Research background
- Research problems
- Research motivation

Ch. 1: Introduction

Ch. 2: Literature 
review

- Digital network coding
- Physical-layer network
   coding
- Compute-and-forward
- Synchronization issues
   in PNC
- Prototyping of PNC/CF
- Software-defined radio

Ch. 7:
Conclusions

- Conclusions
- Future work

Ch. 3: Design of 
practical CF scheme

- Codebook 
   construction
- Search of integer 
   coefficients
- Performance 
   evaluation

Ch. 4: Link layer 
protocols for PNC

-ARQ protocols for CF
-ARQ design for GNU 
   Radio

Ch. 5: Implementation
of TWRN testbed in SDR

- Synchronization scheme
- FPGA customization
- Symbol timing recovery
- Channel estimation
- Experimental evaluation

Ch. 6: Multiplierless
IIR filter design

- Motivations
- Zero/pole
   approximation
- FPGA Implementation 

Figure 1.6: Thesis structure and relationship between chapters.

the CF approach. We then provide an extensive literature review of recent results on

PNC and CF, and compare these schemes with other relaying strategies, traditional

and those based on non-PNC network coding. We also review recent prototyping

efforts of various network coding schemes available in the literature. In the second

part, we briefly introduce the concept of SDR and provide some examples of recent

experimental communication systems, the prototyping and experimental evalua-

tion of which was conducted entirely on SDR. We finally introduce GNU Radio, a

particular SDR platform utilized for prototyping in this project, and the hardware

used by GNU Radio, namely Ettus Universal Software Radio Peripheral (USRP)

[28].

Chapter 3. In this chapter we focus on the development of a CF relaying scheme suitable

for practical implementation. We propose the CF scheme, which allows the use of



14 Introduction

conventional constellations and channel codes such as QPSK and Reed-Solomon

(RS) code. At the same time, the scheme provides invertibility of the linear coef-

ficient matrix, thus overcoming the drawbacks of the original CF scheme. Subse-

quently, we evaluate the performance of the proposed scheme, and compare it with

the performance of the original CF scheme and other non-PNC relaying strategies.

Chapter 4. This chapter discusses design in the layers above the physical layer for the

CF scheme implementation, in particular the data-link layer. We propose an ARQ

protocol which supports the use of PNC and CF relaying in TWRN. At the same

time, the ARQ protocol is designed to handle certain features of GNU Radio typi-

cal for many SDR platforms, such as random delay. We subsequently discuss im-

plementation features of the proposed protocol in GNU Radio, and compare the

implementation with that of protocols utilized for other non-PNC relaying strate-

gies, including the DNC scheme. Finally, simulation results, which compare the

throughput of the TWRN with different relaying schemes when they are combined

with relevant ARQ protocols, are provided and discussed.

Chapter 5. In this chapter we discuss PNC implementation challenges, and the meth-

ods we used to solve them in GNU Radio and for USRP. While some can be re-

solved in software (C++, Python) entirely, others require a modification of the field-

programmable gate array (FPGA) image for the USRPs utilized in the testbed. We

then provide a description of the implemented testbed and demonstrate its perfor-

mance with a number of experiments in the indoor environment. We finally analyze

the experimental results and compare the performance of the CF relaying scheme

with other relaying strategies, and elaborate on the applicability of CF/non-PNC

strategies in different SNR regimes.

Chapter 6. In this chapter we focus on the multiplierless design of IIR pulse-shaping

filters and their successive FPGA implementation. We propose a new method of

designing IIR filters based on zero/pole approximation. Subsequently, we con-

sider the implementation of a pulse-shaping filter with the proposed method and

analyze the accuracy of our approach. Our experimental results demonstrate that



1.5 Thesis organization 15

IIR pulse-shaping filters introduce a marginal increase of BER while having signifi-

cantly lower complexity thus saving hardware resources. In addition, the proposed

method allows the implementation of pulse-shaping filters on a cheaper class of

hardware not equipped with expensive built-in hardware multipliers.

Chapter 7. This chapter provides conclusions and discusses potential directions for fu-

ture work.





Chapter 2

Literature review

Since its introduction in 2006, PNC has attracted significant research attention, resulting in a

number of promising theoretical results. In this chapter we provide a literature review on the

major theoretical developments on PNC. We specially draw our attention to performance analysis

of PNC scheme in presence of symbol and frame asynchrony. We also survey the recent efforts

on prototyping of PNC relaying. In addition, we provide a brief introduction to the concept of

software-defined radio (SDR) and GNU Radio, the SDR platform employed in this project.

2.1 Introduction

THE purpose of this chapter is two-fold. In the first part of this chapter we provide

a comprehensive review of the most notable studies on PNC. The second part is

dedicated to a survey of the SDR concept, in particular GNU Radio. In this part we also

overview the recent contribution of SDR in prototyping new wireless communication

technologies.

This chapter is organized as follows. In Sections 2.2 and 2.3 we review the ma-

jor results on PNC and its generalization, the compute-and-forward (CF) scheme. Sec-

tion 2.4 summarizes the existing solutions to the problem of symbol and frame asyn-

chrony, which naturally occurs when several terminals are required to transmit simulta-

neously. Section 2.5 describes the channel estimation problem in PNC. Section 2.6 com-

plements our theoretical review with an overview of implementation efforts on PNC re-

laying schemes. In Section 2.7 we review the concept of SDR and the advantages of

prototyping communication systems on SDR platforms. In particular, we describe GNU

17



18 Literature review

Radio, the SDR platform utilized in this project. We overview our hardware, namely the

USRP and its capabilities in Section 2.8. Finally, Section 2.9 concludes this chapter.

2.2 Early studies on PNC

The example provided in Table 1.1 illustrates just one possible PNC mapping scheme,

where mR = mA ⊕mB. In general, however, the optimal PNC mapping scheme may

be different. Furthermore, the symbols of mR may belong to a different constellation

compared to the symbols of mA and mB. For example, [14] considers a case where all

symbols mA, mB and mR are from QPSK constellation. In contrast, work [29] shows that

in the case when a certain phase mismatch is presented, and the QPSK modulation is

used by the terminal, it is not the best solution to employ QPSK for representation of mR.

The paper suggests that a PNC map with at least five constellation points (5-QAM) is

needed to ensure the successful decoding at the terminals. Furthermore, in some studies

mR takes values from an infinite set [30,31]. In case, mR consists of symbols from a finite

set, such PNC mapping is referred to as PNC over finite set (PNCF). Alternatively, if mR

takes values from an infinite set, such PNC mapping is referred to as PNC over infinite

set (PNCI). According to [30], PNCF schemes usually outperform PNCI when the MA

phase is good and the broadcast phase is noisy. However, when the MA phase is noisy,

but the broadcast phase is not, the PNCI demonstrates better performance compared to

the PNCF. The early works also assumed that the terminals were fully synchronized,

including the frequency, symbol and frame synchronization.

In addition to the PNC schemes where the relay recovers mR symbol-by-symbol, the

relay may also attempt to recover the analog signal

xR(t) = F̂A (xA(t), xB(t)) = fA (y (t)) , (2.1)

where FA (·, ·) represents the analog PNC mapping function. PNC schemes with analog

PNC mapping are referred to as analog PNC (ANC). A simple example of ANC is the

amplify-and-forward (AF) scheme considered in [32]. In the AF scheme, the relay simply



2.2 Early studies on PNC 19

amplifies the received signal in (1.4), as follows:

xR(t) = g · y(t) = g · (hAxA(t) + hBx2(t) + w(t)), (2.2)

where g is amplification gain. The AF strategy is simple from the relay point of view,

does not require tight synchronization, and therefore is easier to implement. On the other

hand, it is obvious from (2.2), that the relay also amplifies the unwanted noise. As a re-

sult, this strategy imposes more burden on terminals which have to compensate channel

effects before subtracting their own part from the received signal. In addition, in [7] the

authors notice that the tradeoff is an architectural price which appears when an analog

part is embedded into a digital communication system. This is especially important if the

relay is to be implemented in software on an SDR platform. In addition, the integration of

the AF relaying with existing channel coding schemes which suit digital communication

is a difficult task [17].

The compress-and-forward strategy [33,34] is a practical modification of the AF scheme,

where the received signal y(t) is quantized into several discrete levels before being re-

layed, i.e.

xR(t) = g∆by(t)
∆
c, (2.3)

where ∆ is the quantization step size. The compress-and-forward scheme performs as

poorly as the AF scheme, because the relay does not remove the noise from the quan-

tized signal, but simply amplifies and forwards it.

Therefore, PNC relaying schemes removing noise from the relayed signal are more

feasible in modern communication systems, compared to the AF or compress-and-forward

schemes. One such scheme, the denoise-and-forward (DNF) is proposed in [35]. The

authors show that the XOR mapping is not optimal for all channel conditions and sub-

sequently propose an alternative PNC mapping scheme. The proposed scheme does not

require phase adjustment between the terminals, i.e. it does not impose constraints on

the phase difference between two terminals. However, since the DNF scheme introduces

only per-symbol denoising, without per-codeword denoising, channel coding cannot be

incorporated in the scheme and should be implemented separately. In addition, the con-



20 Literature review

struction and performance of denoising PNC mappings for higher order constellations

such as M-QAM are studied in [36, 37].

Despite the fact, that PNC takes two time slots, while DNC takes three time slots for

message exchange in TWRN, in certain channel conditions and SNR regimes, DNC relay-

ing can outperform PNC schemes. An extensive comparison of DNC and PNC in TWRN

in terms of BER and network throughput with regard to different fading conditions and

SNR is provided in [38]. However, due to the simplicity of the derivations, only the AF

PNC relaying is considered.

Once the optimal constellations are selected for a PNC relaying scheme, it should be

integrated with channel coding in order to enhance reliability of the relaying. A few such

ECC schemes in PNC are proposed in [39, 40], and the surveys are provided in [7, 17].

Finally, studies on PNC were extended to MIMO PNC and space-time coding PNC in

[41–44].

2.2.1 Alternatives to PNC

We should also discuss other relaying strategies, alternative to PNC, which allow mes-

sage exchange in TWRN in two time slots. In general, these strategies are referred to as

decode-and-forward (DF) or joint DF in different studies. In DF, the relay decodes packets

mA and mB individually, and then produces packet mR = mA ⊕mB. There are a number

of different DF schemes.

First, if the relay is MIMO-capable, and the terminals are synchronized, they can

transmit their packets simultaneously (MA phase). In this way, the relay receives the

following signals:  y1

y2

 = H

 xA

xB

+

 z1

z2

 (2.4)

where

H =

hA1 hB1

hA2 hB2

 (2.5)

and hA{1,2}, hB{1,2} ∈ C are the channel coefficients estimated at the first and second an-

tenna of the relay, and z{1,2} ∈ C is the additive noise. Using MIMO demodulation



2.3 Compute-and-Forward relaying scheme 21

techniques such as the zero-forcing (ZF) receiver [45], the relay recovers xA and xB x̂A

x̂B

 = H−1

 y1

y2

 , (2.6)

and subsequently demodulates mA and mB. In the second time slot the relay broadcasts

mR. Alternatively to the ZF receiver, other MIMO demodulation techniques such as the

minimum mean-square error (MMSE) receiver or the integer-forcing linear receiver pro-

posed in [46] can be employed. The use of the integer-forcing receiver in TWRN, namely

the integer-forcing-and-forward scheme, is presented in [47].

In addition to the use of MIMO, other techniques such as multi-user detection (MUD)

or CDMA can be utilized for the individual recovery of both packets. In all cases, DF

schemes require greater hardware resources, such as multiple antenna RF front-ends and

computational resources for multiple signal recovery. Furthermore, DF schemes are of-

ten redundant compared to PNC schemes, because the relay recovers each individual

packet completely, although only the knowledge of mA ⊕mB is sufficient to recover the

desired messages at the terminals. However, this redundancy may be beneficial in the

MAC layer. For example, algorithms such as the CRC can be applied in the DF scheme

where the packets are represented in bytes. The CRC algorithm enables the post-ECC

verification of data integrity in the DF relay, thus allowing the relay to detect corrupted

packets.

2.3 Compute-and-Forward relaying scheme

Compute-and-forward (CF) relaying [48] represents a generalization of early PNC stud-

ies. Let N single-antenna terminals transmit simultaneously their length-k packets mi ∈

Fk
q, where q is prime and i = 1, . . . , N, using the same encoder E : Fk

q → Cn, i.e.

xi = E (mi). Each of M single-antenna relays receives the following signal

ym =
N

∑
i=1

himxi + zm, (2.7)



22 Literature review

ε

ε

ε

+ Relay 1

Relay 2

Relay M

m

m

m

1

2

N

x

x

x

1

2

N

z

z

z

1

2

M

1

2

M

^

^

^

u

u

u

y1

y2

yM

+

+

h11

h22

hNM

h12

h1M
h21

h2M

hN1

hN2

Figure 2.1: System diagram of CF relaying in Gaussian network. N nodes simultaneously
transmit

where m = 1, . . . , M, him ∈ C are the channel coefficients, and z ∼ CN (0, 1) is the

complex Gaussian noise. Rather than recovering each packet individually, each relay

attempts to recover an integer linear combination of the transmitted signals,

um =
N

∑
i=1

aimxi, (2.8)

where aim ∈ Z[i]. Given xi are codewords of E , their linear combination um is again a

codeword, hence it can be efficiently decoded. The choice of coefficients aim depends on

the channel coefficients him and the transmit power. Each relay chooses the coefficients

aim in order to maximize the computation rate [48] given by

Rcomp
m (αm, P, am) = log+

(
P

|αm|2 + P‖αmhm − am‖2

)
, (2.9)

where P is the power of the transmitted signal, hm = [h1, . . . , hN ]
T and am = [a1, . . . , aN ]

T.

Coefficients αm are chosen in order to minimize the approximation error when the chan-

nel coefficients are approximated with integers. For any given hm and am (2.9) is maxi-

mized when αm = αMMSE
m , [48] where

αMMSE
m =

h∗mam

1/P + ‖hm‖2 . (2.10)



2.3 Compute-and-Forward relaying scheme 23

Therefore,

αym =
N

∑
i=1

αmhimxi + αmzm =
N

∑
i=1

aimxi +
N

∑
i=1

(αmhim − aim) xi + αmzm︸ ︷︷ ︸
effective noise

(2.11)

The effective SNR at the receiver of relay m becomes

SNRm =
P

|αm|2 + P ‖αmhm − am‖
. (2.12)

From (2.12) it is obvious that in addition to the channel noise, the CF scheme introduces

another source of noise due to integer approximation of non-integer channel coefficients.

In the original CF scheme, upon recovery, the linear combinations are forwarded to

the centralized decoder that recovers x̂i from um. The recoverability condition is given as

follows:

rank
(
[< (A)]q

)
= rank

(
[= (A)]q

)
= N (2.13)

over Fq, where A = [a1, a2, . . . , aN ].

In [7] the CF scheme is compared with other relaying strategies for TWRN. It is shown

that the CF scheme significantly outperforms other relaying strategies in terms of the rate

i.e. bits per channel use, and approaches the upper bound with the increase of SNR.

Nazer and Gastpar’s original approach [48] requires the codewords to be from a large

finite field Fq with prime q. However, practical communication systems typically em-

ploy constellations with sizes equal to powers of two. When q is not prime, or small (e.g.

q = 2p), the necessary and sufficient conditions for recovery of xA and xB with respect

to the integer coefficients [48, Th. 8] are often not satisfied. Therefore, a recent work [49]

further develops a CF scheme suitable for practical communication systems. In addition,

this work provides an example of code design for practical CF or integer-forcing receivers

based on the LDPC codes.

A modification of the CF scheme utilizing phase precoding at the terminals is intro-

duced and investigated in [50]. The authors show that phase precoding increases the

computation rate compared to the original CF scheme. As a result, the coding gain of

4 dB was achieved at the equation error rate of 10−4. In spite of the obvious benefits,



24 Literature review

because the implementation of precoders significantly increases the complexity of com-

munication systems, many practical solutions avoid using phase precoders. In addition,

phase precoding is not so beneficial in fast-fading channels.

In [51] Hern and Narayanan propose a multilevel coding scheme for CF which does

not require the code used to be a lattice code, but only requires the code to be linear.

As a result, the proposed CF can be implemented with lower encoding and decoding

complexity. At the same time, it allows error correction for a larger class of decoding

functions compared to the original CF scheme. Another work [52] analyzes the degrees

of freedom of the CF system composed of K transmitters and K relays. It is demonstrated

that the lattice implementation of CF relaying only achieves degrees of freedom less than

or equal to 2. Subsequently, the authors proposed a new CF implementation achieving

K degrees of freedom. Other constructions of practical CF codes are proposed in [53–56].

The extension of CF with MIMO is investigated in [57].

2.4 Synchronization in PNC

The synchronization requirement in PNC means that terminals A and B should be syn-

chronized in terms of their time and frequency. Some early PNC schemes also required

phase synchronization i.e. zero phase difference between the terminals. However, in this

literature review we consider the phase difference as a matter of a mapping algorithm.

Accordingly, the presence of a frequency offset causes a relative rotation of one transmit-

ted signal around the other. As a result, the phase difference is constantly being changed

within the packet duration [17]. If the frequency offset is accurately estimated, the rel-

ative phase difference can be reflected in the mapping algorithm, e.g. the tracking of

the channel coefficients. The methods of channel estimation in the presence of frequency

asynchrony are well-developed for MIMO systems. Therefore, our main focus is limited

to time synchronization. We also note that tight synchronization between the relay and a

terminal is usually not required.

Synchronous arrival of two packets to the relay is a crucial requirement for any PNC

scheme, with the exception of those based on ANC. Figure 2.2 illustrates an example of



2.4 Synchronization in PNC 25

1 2 3 4 5 6 7 8A:

B: 1 2 3 4 5 6 7 8

Symbol asynchrony

...

...

∆τABFrame 
asynchrony

∆T   = k    TAB AB

Figure 2.2: Symbol and frame asynchrony. The integer number of misaligned symbols
kAB represents frame asynchrony, and the fractional number of misaligned symbols ∆τAB
represents symbol asynchrony.

misalignment of two packets due to lack of synchronization. Without loss of generality,

we assume that packet mA arrives earlier than mB. Let ∆tAB > 0 be the time difference

between mB and mA arrivals, such that

∆tAB = kABT + ∆τAB, (2.14)

where kAB is the integer number of symbol periods T, and 0 6 ∆τAB < T is the fractional

part. Then, kAB represents a measure of frame asynchrony, and ∆τAB quantifies symbol

asynchrony.

Most studies on PNC assume perfect symbol synchronization. Other works inves-

tigate the performance of PNC in the presence of symbol asynchrony and demonstrate

that the lack of synchronization causes severe performance degradation [58]. However,

1 2 3 4 5 6 7 8A:

B: 1 2 3 4 5 6 7 8

...

...

∆τAB

R: 112122 23
...

33 4344 5455 6566 7677 87881

Figure 2.3: A technique for PNC decoding in presence of symbol asynchrony. Many
asynchronous PNC methods assume that the symbol offset is known, and the relay can
sample the input signal with the sampling period less than the offset, i.e. Ts < ∆τAB.



26 Literature review

a number of recent theoretical studies [59–63] propose PNC schemes robust for symbol

asynchrony. The common method of analysis in these works is illustrated in Figure 2.3.

According to this method, the relay is able to reliably estimate time offset between two

packets arriving simultaneously but not synchronously. Then, the receiver samples the

superimposed signal with doubled sampling rate, and furthermore, such sampling is

non-uniform. Accordingly, the desired signal is recovered by applying various tech-

niques. For example, the results obtained in [59] suggest that asynchronous PNC yields

satisfactory performance when belief-propagation decoding methods are applied. An-

other concept with the aim of combating the impact of symbol asynchrony is proposed

in [60] for unchannel-coded PNC and in [59] for channel-coded PNC. These papers sug-

gest a concept of network coding [60] or joint channel decoding and network coding

[59] based on belief propagation. The results of these papers show that for unchannel-

coded PNC, belief propagation can significantly reduce the asynchrony penalties com-

pared with other methods. Furthermore, when the channel coding is presented in PNC,

the presence of asynchrony improves the system BER performance, compared to the case

when two transmitters are fully synchronized. The conclusion of [59] suggests that sym-

bol asynchrony is no longer a major concerns in PNC if channel coding is utilized.

However, the implementation of such methods, imposes some difficulties. For in-

stance, doubling the sampling rate in a software receiver may not always be desirable,

as it causes higher computational delay. Finally, decoding algorithms for asynchronous

PNC are often based on the assumption that the pulse-shaping function is rectangular.

This assumption allows the output of the matched filter to be sampled at any time within

∆τAB. In practice, however, the pulse-shaping function takes a different form, for exam-

ple the raised-cosine shape. As a result, the proposed methods should be further studied

before they can be applied.

Perfect frame synchronization between two transmitters is also hard to achieve. How-

ever, [32] and [64] show that a minor lack of frame synchronization is a benefit rather than

a problem, and should be exploited in PNC system design. One such benefit is that un-

aligned interference-free symbols in the beginning and the end of the received signal can

be used for channel estimation. In addition, either a prefix or suffix added to a packet is



2.5 Channel estimation in PNC 27

in the interference-free part of the received superimposed signal. Therefore, it allows the

estimation and subsequent compensation of the frame offset.

Recently, a number of PNC architectures which are initially designed to be reliable

against the lack of synchronization have been proposed. One of them, OFDM-PNC, pre-

sented in [65], is based on the fact that in OFDM, a data stream is represented by a number

of lower-rate streams in different subcarriers. As the symbol duration in each subcarrier

is larger than that in the time domain, the use of OFDM improves symbol alignment in

each subcarrier. Therefore, PNC mapping, performed independently in each subcarrier,

suffers less from asynchrony, making the overall OFDM PNC system more robust.

2.5 Channel estimation in PNC

Most studies on PNC assume that the relay is aware of the channel state information i.e.

the channel coefficients hAR and hBR are known. In fact, however, the relay should be

able to estimate channel coefficients at the beginning of each packet, based on the super-

imposed received signal.

When the symbol synchronization error τAB is small compared to the symbol period

T, the problem of PNC channel estimation can be seen as a MIMO or distributed MIMO

channel estimation problem. As a result, a number of well-developed MIMO channel

estimation techniques can be applied [67]. For example, according to the least squares

training-based channel estimation method, training vectors t1, . . . , tN of length L, known

at the relay, where N is a number of terminals transmitting simultaneously, are transmit-

ted in front of the respective packet x1, . . . , xN . Therefore, the relay receives

r = hT + z, (2.15)

where T = [t1, . . . , tN ] is L× N training matrix, and z is the channel noise. Applying the

least squares method, the channel state is estimated as follows:

ĥLS = rT†, (2.16)



28 Literature review

with T† = T∗ (TT∗)−1. In addition, the work shows that the channel estimation error is

minimized if the training vectors t1, . . . , tN are orthogonal and of the same norm. Further-

more, [67] and references therein address some alternative methods of MIMO channel es-

timation. At the same time, the impact of small symbol asynchrony on the performance

of distributed MIMO systems is investigated in [68].

In general, however, τAB is comparable with the symbol duration T. In this case the

channel estimation methods described in [69, 70] can be applied.

On the other hand, a number of PNC schemes do not require knowledge of the chan-

nel state information. For example, [71] proposes an ANC scheme with differential mod-

ulation (ANC-DM). The simulation results show that the BER performance penalty of

the scheme is about 3 dB compared to a similar coherent ANC scheme. Furthermore,

since the proposed scheme is based on the AF relaying, it demonstrates the common

drawbacks of ANC, such as amplification of noise and the difficulty of integration of this

scheme with channel coding techniques.

2.6 Network coding prototyping efforts

Prototyping of a real-time network coding testbed requires the implementation of a net-

work coding scheme and a relevant ARQ protocol, and subsequently, their integration.

Recently, a number of works have reported the successful implementation of DNC testbeds

which yield a significant increase of the network throughput compared to the traditional

approaches [18–22, 72, 73]. In contrast, only a few results are available on the implemen-

tation of PNC, despite the fact that the theory of PNC has been quickly developing in

the last decade. In [32] the authors describe an implementation of analog PNC (ANC).

In their experiments, the ANC scheme increased the network throughput by up to 70%

compared to traditional scheduling methods. The difference between this result and the

theoretical doubling of the throughput was explained by the lack of frame synchroniza-

tion between the terminals. The performance also deteriorated from the inherent disad-

vantage of the ANC scheme, i.e., that the relay simply amplifies the noisy version of a

signal it receives, without denoising it, and forwards the signal, hence propagating the



2.7 Software-defined radio 29

noise. A more recent paper ([74]) presents the implementation of a TWRN testbed with

the OFDM PNC scheme. In this scheme, the PNC mapping is performed independently

across each subcarrier. The fact that the symbol duration in each subcarrier in the OFDM

is larger than that in the time domain increases the robustness of the system against sym-

bol asynchrony. In a very recent work [75] a prototype of TWRN with asynchronous PNC

is presented. In this testbed, the relay performs well against symbol asynchrony, how-

ever, it often experiences the situation when two packets are frame-asynchronous. In this

case, the relay drops the packets and this results in degradation of the actual network

throughput.

To the best of our knowledge, reports on the successful prototyping of the CF relaying

scheme have not been published before our work [76].

2.7 Software-defined radio

Software-defined radio (SDR) is a radio system in which all signal processing compo-

nents are implemented entirely in software rather than in analog circuits. Reprogram-

ming software, if needed, can be done much faster and cheaper than the replacement of

analog circuits. As a result, SDR presents extreme flexibility and programmability com-

pared with traditional communication systems. Therefore, it appears to be a good basis

for fast prototyping of communication systems. The reader is referred to [77–80] for more

details on the history of development of the SDR concept.

Figure 2.4 illustrates two of the most common architectures of an SDR receiver. In

the first architecture, shown in Figure 2.4(a), the intermediate frequency (IF) signal pro-

cessing of the superheterodyne is implemented as a part of the analog RF circuit, but

the baseband signal processing is performed digitally. The second architecture presented

in Figure 2.4(b) allows further shrinking of the analog part, by supporting the IF signal

processing in a digital manner, on a high-performance FPGA. As a result, the second ar-

chitecture is more flexible compared to the first. In addition to these two schemes, the

third architecture, so-called ideal software radio is theoretically possible. In this case, the

ADC and DAC are connected directly to the antenna, and the rest of signal processing is



30 Literature review

DSP

ADC

ADC

β

DSP
ADC

β NCO

FPGARF Front-end

RF Front-end

BPF BPF

BPF BPF

LO

LO

NCO

LPF

LPF

LPF

LPF

LNA

LNA

PGA

PGA

(a)

DSP

ADC

ADC

β

DSP
ADC

β NCO

FPGARF Front-end

RF Front-end

BPF BPF

BPF BPF

LO

LO

NCO

LPF

LPF

LPF

LPF

LNA

LNA

PGA

PGA

(b)

Figure 2.4: Two SDR receiver architectures. The superheterodyne, (a) with analog IF
signal processing and (b) with digital IF signal processing, performed by an FPGA.

performed digitally. This concept is implementable at present, especially for VHF/UHF

communications, as multi Gigasamples per second ADCs and DACs are available. How-

ever, the use of such converters is often impractical due to their high cost, low effective

resolution [81], and redundancy of such sampling. Therefore, the second SDR architec-

ture is often preferred. In particular, it is implemented on all USRP devices including

USRP N210.

Since SDR represents a perfect environment for the development and prototyping

of new-generation communication systems, it is gaining more popularity. For example,

a number of testbeds prototyping the emerging wireless communication technologies,

such as massive MIMO [82–84], LTE [85], full-duplex transceivers [86] and mobile phone

base station, OpenBTS [87] have been implemented entirely on SDR platforms.

Due to the growing popularity of SDR, there is a strong demand for a universal and

standardized development platform providing compatibility of different modules from

different projects, something like “SDR Matlab”. Such a platform should also provide

a rich library of ready-made modules. Today several such SDR platforms are available,

including commercial platforms such as NI LabView, Matlab Simulink and Nutaq SDR



2.7 Software-defined radio 31

(former Lyrtech), as well as open-source platforms e.g. GNU Radio, SODA [88,89], SORA

[90], CalRadio [91], REDHAWK SDR Framework [92] and the WARP project [93], to name

only a few. Of these, GNU Radio appears to be one of the most popular due to its avail-

ability and flexibility achieved with the fact that its source codes are open. The full avail-

ability of all source codes allows users to take advantage of crowdsourcing, when many

independent users can test the blocks and contribute to GNU Radio development. Fur-

thermore, with the source code open, individual users can modify the algorithms imple-

mented in a block depending on their particular demands. In contrast, a modification of

the signal processing algorithms in a block of a commercial SDR system is impossible,

because the source codes are typically not available.

Despite the obvious benefits, a number of disadvantages are typical for all SDR sys-

tems. First, since the signal processing is done using a regular processor instead of ded-

icated hardware, what can be done is limited. Second, many SDR systems, including

GNU Radio and NI Labview, are not clocked. Instead, the way each block is given access

to the CPU resource is decided by a scheduler. Although special algorithms of the sched-

uler attempt to minimize the waiting time, it is still larger than that of clocked systems.

Therefore, SDR systems demonstrate the increased random delay of signal processing.

Finally, many SDR libraries mainly address signal processing in the physical layer, with-

out consideration of the upper layers [94]. Therefore, the libraries for the layers, other

than the physical layer, are often under-developed, and sometimes support only out-

dated algorithms.

2.7.1 GNU Radio

GNU Radio is a free open-source software development toolkit that provides the envi-

ronment and libraries of blocks for the implementation of software radios using external

low-cost RF hardware, such as Ettus USRP. GNU Radio allows users to implement real-

time, high-throughput radio systems in a simple-to-use, rapid-application-development

environment [95].

The architecture of a GNU Radio project, also referred to as a flow graph, is sketched

in Figure 2.5. A flow graph consists of a number of connected blocks. Typically, there



32 Literature review

Source
Signal

processing
Signal

processing

Sink
Signal

processing
Other
block

Signal
processing

Signal
processing

Scheduler

Flow graph

In:
USRP,
File,
UDP...

Out:
USRP,
file,
UDP,
GUI...

Data flow

Command flow

Signal
processing

C++ Python

SinkOut:

Hierarchical
block

Figure 2.5: GNU Radio flow graph architecture. A flow graph is composed of sources,
signal processing blocks and sinks connected to each other. Primitive blocks are imple-
mented in C++, while Python is used for connecting the blocks and constructing the flow
graph. The scheduler controls the data flow and calls the blocks to process data.

is one or a few source blocks which provide data without consuming other data. There-

fore, source blocks have only output ports. The data can either be imported from a file,

UDP interface, USRP, or a locally-generated signal such as a waveform. Next, signal pro-

cessing blocks have both input and output ports. There are a wide range of processing

blocks available, including simple arithmetic blocks, such as addition and multiplica-

tion, and complex communication signal processing blocks such as filters, modulators

and synchronizers. Finally, sink blocks have only input ports and are used to output the

processed data out of the flow graph. Examples of sink blocks are USRP sinks, audio

sinks connected to the sound card, file sinks or visualization blocks. The flow graph is

written in Python, while blocks are either written in C++ or Python. Typically, signal pro-

cessing blocks are implemented in C++, while other non-signal-processing blocks, such

as valves or selectors, may be implemented in Python. In addition, there are so-called

hierarchical blocks, the superblocks, composed of a few smaller blocks with the connection

provided in Python.

A flow graph is controlled by the GNU Radio scheduler, which allocates computa-



2.7 Software-defined radio 33

tional resources of the CPU to the blocks and determines the order for blocks to be called.

The scheduler attempts to arrange the signal processing in blocks in such a way to min-

imize the overall latency of the flow graph and maximize the signal flow. The behavior

of the scheduler is explained in detail in [96]. By default, the scheduler prefers to process

continuous data streams. Therefore, if a block does not produce the output continuously,

the scheduler may call the block several times repeatedly without a result, rather than

giving the hardware resource to other blocks. This situation may increase the delay of

the system. However, the new design of the scheduler introduced in GNU Radio 3.7

and subsequent versions provides better options for tuning the scheduler. In this way,

the user can define the maximum and minimum output buffer size of a block, giving the

scheduler a clue about the expected behavior of the block. At the same time, modification

or tuning of the scheduler requires substantial experience, as wrong settings can ruin the

performance of a flow graph.

When a flow graph processes data from a real-time hardware such as a USRP, it must

provide real-time processing of the data. If the source supplies data samples too fast,

so that the scheduler cannot ensure real-time processing, this exception is referred to as

overflow. The opposite situation, when the flow graph fails to provide continuous flow of

output samples with the required sampling rate, is known as underflow. Handling over-

flows and underflows breaks the normal order of the scheduler’s work and should be

avoided as far as possible.

GNU Radio latency for the case when GNU Radio is used together with Ettus USRP

is analyzed thoroughly in [97]. The paper identifies the sources of latency and estimates

their contribution to the total latency of the platform. According to the paper, the total

latency is still high enough for the implementation of current wireless network protocols.

Hence, at present, GNU Radio seems to be more suitable for the prototyping and evalua-

tion of emerging wireless communication algorithms in the research environment, rather

than for replacing the traditional hardware-based communication systems. In contrast,

a recent work [98] describes SDR implementation of a Wi-Fi receiver, the performance of

which is comparable to that of a consumer-grade hardware Wi-Fi card. This work shows

that many problems of GNU Radio can be avoided if the software is designed in the ap-



34 Literature review

propriate, computation-efficient way. A useful tool which allows to analyze flowgraphs

and identify slow blocks is presented in [99].

In addition, over recent years, the GNU Radio project has been actively developed.

As a result, the latency is decreasing in each new version of GNU Radio, compared to the

previous versions. This is achieved by optimization of the scheduler [96], vectorization

[100], the use of GPU and other methods. Therefore, we believe, that latency will not be

a major issue in the next generation GNU Radio.

2.8 Universal software radio peripheral

Universal Software Radio Peripheral (USRP) is a family of hardware products developed

and manufactured by Ettus Research. USRPs are designed to be a mid-range price hard-

ware platform for SDR systems, affordable, yet providing high performance and suffi-

cient quality for quick prototyping and research experiments in universities and research

labs. Most USRPs are connected to a computer using the USB interface or Ethernet cable.

The connection type depends on the specific USRP model. For transmitting, a sampled

baseband signal is generated in the computer and sent to the USRP, where it is converted

to an analog signal and up-converted onto an RF carrier. In receiving mode, it receives

an RF signal, downconverts it, digitalizes it and sends it to the computer. In such a way,

the USRP can be seen as a high-speed ADC/DAC peripheral for the PC.

A USRP consists of a motherboard with mounted FPGA and ADCs/DACs, and can

accommodate one or two replaceable daughterboards. The number of daughterboards

depends on the USRP model. Since daughterboards represent the Tx and Rx RF front-

end, they can handle analog signals only. Different types of daughterboards are designed

for different applications, therefore each type provides a different frequency range. With

all the different types of daughterboard available, it is possible to tune in to frequencies

from DC to 5.9GHz.

USRP Hardware Driver (UHD) is a driver that controls USRP from the host PC, con-

figures it and sets it up properly. When the UHD is used with GNU Radio, it is accessible



2.8 Universal software radio peripheral 35

ADC

ADC

From RX RF

To TX RF

CIC
Filter

HB1
Filter

NCO

DSP Rx
Glue

NCO

DAC

DAC DSP Tx
Glue

DDC Chain

DUC Chain

FPGA

HB2
Filter

CIC
Filter

HB1
Filter

HB2
Filter

Etc.

H
o
s
t

P
C

Figure 2.6: DSP components of the standard FPGA image of USRP N210. Modules DSP
Tx Glue and DSP Rx Glue are empty by default, but represent a space for user customiza-
tion of the image. Module named as Etc. represents other non-signal-processing modules
omitted in this diagram for simplicity.

via GNU Radio UHD source and sink blocks. USRP devices serve as a primary hardware

for GNU Radio, however, the UHD libraries can also be used for the design of standalone

applications in C/C++. In addition to UHD and GNU Radio, the use of USRP devices is

also supported by Matlab Simulink and NI LabView, which have their own proprietary

drivers other than the UHD.

2.8.1 FPGA

Each USRP is equipped with the FPGA that performs the IF signal processing as well

as digital down-conversion (DDC) and digital up-conversion (DUC). In particular, the

FPGA of USRP N210 is represented by the Spartan 3A-DSP 3400 FPGA manufactured by

Xilinx, which is able to process signals with up to 100 MS/s sampling rate in both Tx and

Rx directions.

In the standard configuration shown in Figure 2.6, the DSP part of the FPGA is rep-

resented by the DUC chain in the Tx and DDC chain in the Rx. The main purpose of the

DUC is to upsample the Tx signal from the application sampling rate to the FPGA clock

rate. In the same way, the purpose of the DDC is downsampling the received signal from

the ADC sampling rate to the required application sampling rate. Typically, the applica-



36 Literature review

Table 2.1: Standard USRP N210 FPGA Utilization.

Element Total Utilized %
Number of Slice Flip-Flops 47744 19575 41
Number of 4 input LUTs 47744 30079 63
DSP 48A (Fixed-point multipliers) 126 30 24

tion sampling rate is smaller than the FPGA clock rate due to the bottleneck introduced

by the Ethernet interface, which connects the USRP and host PC.

The DDC chain receives the signal downconverted from the carrier frequency to the

IF and outputs the baseband signal. It consists of the CORDIC numerically-controlled

oscillator (NCO), which generates the IF, followed by the cascade of three filters, namely

a Cascaded Integrator-Comb (CIC) downsampling filter, and two half-band (HB) down-

sampling filters. One advantage of a CIC filter is that it can be implemented without

multipliers [101]. Similarly, the input of the DUC chain is the baseband signal, and the

output is upsampled and upconverted to the IF signal, fed into the DAC. The DUC chain

consists of two HB upsampling filters followed by the CIC upsampling filter and another

CORDIC NCO module. After the DDC in the Rx chain and before the DUC in the Tx

chain respectively, the modules DSP Rx Glue and DSP Tx Glue are located. By default,

these modules are empty and set up as simple pass-throughs. However, users wishing to

customize the FPGA image are encouraged to place their signal processing routines for

the baseband signal in these modules.

The standard FPGA image only partially utilizes the available hardware resources

of the FPGA. Table 2.1 summarizes the available resources of the FPGA and their uti-

lization of the standard image. It is obvious that the available resources of the FPGA

are still significant. These resources can be used for customization of the FPGA image,

such as implementation of DSP routines or scheduling schemes for channel multiple ac-

cess. We also note that the relocation of these routines can effectively reduce the impact

of common drawbacks of the GNU Radio platform, such as latency and randomness of

delay.



2.9 Conclusion 37

2.9 Conclusion

In this chapter we have provided a literature review on recent studies on PNC, as well

as the alternatives to PNC, such as DF relaying schemes. Special attention was focused

on the implementability and simplicity of different PNC algorithms. It appears that PNC

has received significant research attention in the last ten years. However, many studies

cannot be directly applied to practice, either because they are based on non-realistic as-

sumptions or their computational complexity is high. In addition, the implementation

of some algorithms, which are well-studied in theory, may be impractical, for instance

analog network coding. In contrast, other algorithms are specially designed to address a

particular implementation challenge such as asynchrony. However, those algorithms are

often too specialized, making it impossible to apply them to a slightly changed scenario.

For these reasons, only a few simplified testbeds with PNC have been implemented to

date. Furthermore, no implementations of the CF relaying strategy have been reported.

From this overview it is clear that a gap between theory and practice still exists. There-

fore, further efforts are required to make the theoretical results yield practically.

From the implementation point of view, SDR appears to be a suitable environment for

prototyping for several reasons. First, SDR provides the utmost flexibility compared to

traditional hardware-based development platforms. This flexibility is especially valuable

for the testing, debugging and upgrading of a communication system. Second, SDR sup-

ports the portability and compatibility of modules from third-party projects. In addition,

GNU Radio software together with USRP hardware presents a popular SDR platform

where the flexibility can be achieved because all the source codes are open.





Chapter 3

Practical CF scheme design and
analysis

The original concept of compute-and-forward (CF) demonstrates superiority over other physical-

layer network coding schemes in terms of its throughput performance as well as its efficiency of

implementation. However, it is still based on a number of assumptions which hinder its deploy-

ment in conventional wireless communication systems. For example, the original CF scheme relies

on the use of constellations of prime size q, while the existing communication protocols typically

utilize constellations the size of which is a power of two. In this chapter we develop a practical

CF scheme for two-way relay network (TWRN) based on the conventional QPSK modulation and

Reed-Solomon ECC codes. Since both these components are usually included in standard libraries

of existing SDR platforms, including GNU Radio, the prototyping is simplified by eliminating

the need to develop custom modules from scratch. At the same time our CF scheme ensures the

recoverability of desired packets from the received linear combination at the terminals, which is not

always possible in the original scheme when q is small. As a result, with the modified CF relaying

scheme, TWRN achieves the throughput predicted by theoretical analysis.

3.1 Introduction

THE compute-and-forward scheme proposed by Nazer and Gastpar in [48] offers

a number of advantages compared to other PNC algorithms. At the same time, it

overcomes several shortcomings of early PNC schemes, for example, the need for phase

alignment between the terminals. In addition, in the context of CF, existing channel cod-

ing algorithms can be naturally integrated with network coding, thus increasing the re-

39



40 Practical CF scheme design and analysis

liability of data exchange. Moreover, the CF scheme can be easily deployed in multi-

terminal, multi-relay wireless networks.

On the other hand, in the early works, the CF scheme was mainly analyzed from the

information-theoretic point of view. As a result, a number of crucial concerns regarding

its employability in actual wireless communication systems were omitted from the scope

of those works. One such problem is that the original Nazer and Gastpar approach [48]

requires the codewords to be from a large finite field Fq with prime q. However, practi-

cal communication systems typically employ constellations with sizes equal to powers of

two. When q is not prime (e.g. q = 2p) or small, the necessary and sufficient condition

for successful recovery of the target signal from the linear combinations at the destina-

tion decoder [48, Th. 8] is often not satisfied. Specifically, the matrix of linear coefficients

is often non-invertible over Fq, when the linear coefficients are optimal with respect to

current channel realization. A failure in the recovery results in an extra retransmission,

thus causing the network throughput degradation. In order to overcome this, a recent

work [49] modifies the original CF scheme to make it suitable for practical communica-

tion systems. In particular, in this scheme the linear combinations are estimated over R

rather than over Fq thus avoiding the case when the matrix of linear coefficients is not

invertible over Fq. However, the work assumes that the channel is real-valued.

In this chapter we develop a CF scheme suitable for implementation in GNU Radio.

The main concept of our design is that the proposed CF scheme makes use of standard

PHY blocks from GNU Radio and Python libraries wherever possible, including ECC and

modulation/demodulation modules. In particular, the Python module of Reed-Solomon

ECC [102] is utilized. Also, we further extend the CF method of estimating the linear

combinations proposed in [49], to make it suitable for use in complex-valued channels

with TWRN rather than Gaussian networks. We show that, even with high Tx power, the

original CF scheme, when directly applied in our implementation, does not achieve the

promised throughput due to the non-invertibility problem. In contrast, with the linear

combinations invertible over C rather than over F2, the throughput of the TWRN can be

increased by about 50% compared to that of the original Nazer and Gastpar approach,

thus achieving the theoretical throughput. In addition, we compare the performance of



3.2 System model 41

A

B

+Relay

m

m

A

B

x

x

A

B

z
y

hAR

hBR

xR
hRA

hRB

mB

mA

^

^

MA phase

Broadcast
phase

Figure 3.1: Diagram of CF TWRN model. During the MA phase terminals A and B simul-
taneously transmit packets mA and mB encoded as xA and xB with identical codebook C.
The relay receives superimposed signal y and attempts to recover a linear combination
xR. The relay then broadcasts the linear combination during the broadcast phase. Sub-
sequently, terminal A subtracts its own transmitted signal xA from xR and demodulates
m̂B. Terminal B recovers m̂A in the same way.

the designed CF scheme with other non-PNC relaying strategies such as DNC and DF.

The rest of this chapter is organized as follows. First, we introduce the system model

of CF two-way relaying in Section 3.2. Then, Section 3.3 describes the construction of

the CF encoder using only standard blocks of GNU Radio platform. Next, several ways

of finding optimal linear coefficients with respect to channel conditions are presented

in Section 3.4. Section 3.5 and Section 3.6 describe the multiple-access (MA) and broad-

cast phases, respectively, in more detail. In Section 3.7 we provide simulation results,

investigate the performance of the proposed scheme and compare it with other relaying

strategies. Finally, the summary of this chapter and conclusions are presented in Sec-

tion 3.8.

3.2 System model

In the CF scheme for TWRN, shown in Figure 3.1, two terminals A and B simultaneously

transmit packets mA and mB, each consisting of 2K bytes, i.e. mA, mB ∈ F2K
28 . Each

terminal encodes the transmitted packet with the same lattice codebook C of length n

such that

xA = C (mA) ,

xB = C (mB) . (3.1)



42 Practical CF scheme design and analysis

The single antenna relay R receives the following signal

y = hARxA + hBRxB + z (3.2)

where hAR, hBR ∈ C are the MA phase channel coefficients and z ∼ CN (0, In) is the

complex Gaussian noise. Rather than recovering each packet individually, the relay at-

tempts to recover an integer linear combination of the transmitted signals,

xR = aAxA + aBxB, (3.3)

where aA, aB ∈ Z[i]. Let P be the power of the transmitter, and a = [aA, aB]
T.

In the second time slot, the broadcast phase, the relay broadcasts xR together with

the linear coefficients aA and aB embedded in the preamble of the packet. Therefore,

terminals A and B receive respectively

yA = hRA (aAxA + aBxB) + zRA,

yB = hRB (aAxA + aBxB) + zRB,

where hRA, hRB ∈ C are the broadcast phase channel coefficients and zRA, zRB ∼ CN (0, In)

represent noise. Upon reception and channel compensation, each terminal subtracts its

own transmitted signal from the received linear combination and demodulates the de-

sired packet m̂A or m̂B.

In this chapter we assume full symbol and frame synchronization between the termi-

nals, and that all channel coefficients hAR, hBR, hRA and hRB are accurately estimated by

the respective receiver and remain constant within the packet duration. We also denote

h = [ĥAR, ĥBR]
T.

3.3 Codebook construction

We first construct our lattice codebook C via Construction A, described in [54]. Let r (x)

be an irreducible polynomial with a primitive root β, i.e. r (β) = 0. We let F28 =
F2 (x)
(r (x))

,



3.3 Codebook construction 43

Splitter

RS Encoder

RS Encoder

Byte Unpack

Byte Unpack <<1

QPSK 
Mod.

+

RS

uncoded
packet

m

m

mI

R

Ix

RS
Rx

Ix

Rx

x

Figure 3.2: Diagram of CF encoder at terminals. Uncoded packet m is split into two parts
mR and mI , and each part is encoded with RS code CRS and unpacked into bits. These
bits xR and xI are then combined and fed into the QPSK modulator. The output of the
QPSK modulator represents codeword x of lattice codebook C.

where (r (x)) is the ideal generated by r (x). In this work we use the Reed-Solomon (RS)

error-correcting code CRS(N, K) over F28 , where N is the codeword length and K is the

packet length. We combine the RS code with QPSK modulation EQPSK : {0, 1, 2, 3} →

{0, 1, i, 1 + i} (q = 2) to construct a lattice codebook C of length n = 8N. Let CRS be the

RS codebook i.e.

CRS =
{

cRS = GRSw : w ∈ FK
28

}
, (3.4)

where GRS is the generator matrix of the RS code. Let also CU
RS be the unpacked RS

codebook

CU
RS = {x = U (cRS) : cRS ∈ CRS} , (3.5)

where unpacking operator U : F28 → F8
2 is the inverse of packing transformation P :

F8
2 → F28 with P (b7, . . . , b0) = b7β7 + · · ·+ b0β0. The codeword x construction is illus-

trated in Figure 3.2. First, a stream of uncoded bytes m ∈ F2K
28 is split into two streams

mR = [m1, m3, . . . , m2k−1] and mI = [m2, m4, . . . , m2k], each of them encoded with RS

code CRS to xR
RS and xI

RS. Subsequently, using U the streams of bytes are unpacked into

streams of bits xR and xI , respectively, and the bits are grouped into chunks of two bits,

where the most significant bit is from the first stream xR, and the least significant bit is

from the second stream xI . These chunks are then fed into the QPSK modulator. This

scheme guarantees that the I and Q components of the Grey-coded QPSK constellation

are represented by two different RS codewords. Therefore,

C =
{

x = xR + ixI : xR, xI ∈ CU
RS

}
. (3.6)



44 Practical CF scheme design and analysis

Then given aA = aR
A + i aI

A, aB = aR
B + i aI

B and xA, xB ∈ C, the received codeword c

at the relay

c = [aAxA + aBxB]2

=
[(

aR
A + i aI

A

) (
xR

A + ixI
A

)
+
(

aR
B + i aI

B

) (
xR

B + ixI
B

)]
2

=
[

aR
AxR

A − aI
AxI

A + aR
B xR

B − aI
BxI

B

]
2
+ i
[

aR
AxI

A + aI
AxR

A + aR
B xI

B + aI
BxR

B

]
2

= cR + icI , (3.7)

where xR
A, xI

A, xR
B , xI

B ∈ CU
RS. Since aR

A, aI
A, aR

B and aI
B are all integers, and CU

RS is a linear

code, cR, cI ∈ CU
RS and therefore c ∈ C.

Based on the above construction, the lattice codebook C has the following property:

if xA, xB ∈ C, then for all aA, aB ∈ Z[i], we have

c = [aAxA + aBxB]q ∈ C, (3.8)

where [v]q denotes [v(1) mod q, . . . , v(n) mod q] for any v ∈ Cn.

3.4 Search of optimal linear coefficients

Finding the optimal linear coefficients a is another practical problem to be solved before

the CF scheme is put into practice. The early works suggest an exhaustive search over all

coefficients a and choosing a0 which maximizes the computation rate (2.9) with given h,

as follows

a0 = arg max
a

Rcomp (α, P, a)

taking into account that the computation rate is zero if

‖a‖2 > 1 + ‖h‖2 P.

The exhaustive search over this region, however, becomes complicated with the increase

of P.



3.4 Search of optimal linear coefficients 45

A number of studies [56,103,104] propose more efficient methods for finding the opti-

mal linear coefficients for the CF relaying scheme. However, the authors assume that the

channel coefficients are real. This scenario is possible when one dimension constellation

such as that of PAM modulation is in use. In our testbed, we make use of a complex

constellation, namely QPSK, and consider the possibility to extend it to M-QAM in the

future. Therefore, those methods cannot be directly applied in our testbed.

Another approach is based on solving the shortest vector problem. Substituting αMMSE

of (2.10) into (2.9) yields

Rcomp (αMMSE, P, a) = log+

(
1

a∗Ma

)
, (3.9)

where

M = I2 −
P

1 + P‖h‖2 hh∗. (3.10)

To maximize the computation rate (3.9), we should solve the following optimization

problem

min
a∈Z2[i]

a∗Ma. (3.11)

Since M is a positive definite matrix, it can be decomposed by Cholesky decomposition

as M = LL∗ where L is a lower triangular matrix. With this, (3.11) can be rewritten as

min
a∈Z2[i]

a∗LL∗a = min
a∈Z2[i]

‖L∗a‖2. (3.12)

The problem in (3.12) is a shortest vector problem for a lattice Λ with generator matrix

L∗. We employ the complex Lenstra-Lenstra-Lovasz (CLLL) reduction algorithm [105]

to solve (3.12). In addition to maximization of the computation rate, we require that

both components xA and xB present in the linear combination xR, in order to ensure the

bidirectional relaying. Therefore, we also require that aA 6= 0 and aB 6= 0.

Other approaches to finding the optimum complex coefficients a to maximize Rcomp

in (2.9) are also addressed in [50, 106, 107] and references therein.



46 Practical CF scheme design and analysis

3.5 The multiple-access phase

Let both the terminals use the same lattice codebook C. Also, ZaA,aB is a set of all possible

sums of constellation points for given aA, aB, i.e.

ZaA,aB = {aAEQPSK (a) + aBEQPSK (b) : a, b = 0, . . . , 2q − 1} . (3.13)

Using the original CF explained through (3.1) - (3.12), the relay first finds the coefficients

aA, aB and α, and obtains vector u by quantizing αy over ZaA,aB

u (k) = arg min
z∈ZaA ,aB

‖αy (k)− z‖, (3.14)

for k = 1, . . . , n. Accordingly,
[
uR]

2 and
[
uI]

2, where uR = < (u) , uI = = (u), are

separately re-encoded with the code CU
RS and the relay computes vector ĉ

ĉ = CU
RS

(
CU

RS
−1
([

uR
]

2

))
+ iCU

RS

(
CU

RS
−1
([

uI
]

2

))
. (3.15)

Next, using ĉ and a simple slicer [49], the relay estimates xR in (3.3) based on the

following decision rule

xR(k) = arg min
j∈(ĉ(k)+qZ[i])∩ZaA ,aB

‖αy(k)− j‖, (3.16)

where k = 1, . . . , n. This means, that first the channel noise may cause errors in the

quantization procedure (3.14). However, these errors are corrected by the RS code when

the relay computes ĉ. Assuming that ĉ was correctly decoded, the relay quantizes αy

again, however over a smaller subset of ZaA,aB , namely each αy (k) is quantized over

(ĉ(k) + qZ[i]) ∩ ZaA,aB . As the minimum distance between the points of (ĉ(k) + qZ[i]) ∩

ZaA,aB is higher than that of ZaA,aB , the quantization (3.16) is more robust against channel

noise than (3.14). An example of this scheme and the relationship between xR, ĉ and αy

at one time instance are illustrated in Figure 3.3. It is obvious that the minimum distance

between the points of ZaA,aB is equal to one, while the minimum distance in each subset

(ĉ(k) + qZ[i]) ∩ ZaA,aB is equal to two.



3.6 The broadcast phase 47

0 1 2 3 4

 0 

 1 

 2 

 3 

 4 

I

Q

 

 
(ĉ(k) + qZ[i]) ∩ Z1,1, given ĉ(k) = 0
(ĉ(k) + qZ[i]) ∩ Z1,1, given ĉ(k) = 1
(ĉ(k) + qZ[i]) ∩ Z1,1, given ĉ(k) = i
(ĉ(k) + qZ[i]) ∩ Z1,1, given ĉ(k) = 1 + i
αy(k)
u(k)
ĉ(k)
xR(k)

Slicer

[Z1,1]2

Figure 3.3: An example of estimation of xR in (3.16) when aA = 1, aB = 1. Assuming
that codeword c was decoded correctly with the RS code and ĉk = 0, the slicer estimates
xR(k) by quantizing αy(k) only using points from (0 + 2Z[i]) ∩ Z1,1 i.e. {0, 2, 2i, 2 + 2i}
as quantization levels. As a result, xR(k) = 2i.

Note that before transmission, the constellation points {0, 1, i, 1 + i} are centered around

zero and normalized in order to transmit the standard QPSK constellation. The centering

results in a constant offset of αy (k), independent of k. This offset can be estimated and

removed accordingly by the relay.

3.6 The broadcast phase

Depending on the MA channel realizations h and Tx power P which determine the lin-

ear coefficients a, the constellation of xR may consist of nine points, when aA = aB = 1,

twelve points, when aA = 1 and aB = 1 + i, or sixteen points. Hence, a larger constella-

tion than QPSK is required for the broadcast phase to deliver xR to the terminals.

During the broadcast phase, the relay broadcasts the computed signal xR mapped



48 Practical CF scheme design and analysis

onto the points of 16-QAM constellation, along with coefficients aA and aB. Upon recep-

tion, terminal A recovers the desired signal by subtracting their own transmitted signal

xA multiplied by the appropriate coefficient from the noisy version x̂R of signal xR. Let

the matrix of channel coefficients

U =

aA aB

1 0

 . (3.17)

Then  x̂R

xA

 = U

 xA

xB

+

 zRA

0B

 . (3.18)

By choosing aA 6= 0, aB 6= 0 when searching the linear coefficients, we ensure that matrix

U is invertible over C. Therefore,

x̂B = v1

 x̂R

xA

 (3.19)

where v1 is the first row of matrix U−1. The target packet m̂B becomes

m̂B =
[
mR

B 1, mI
B1, mR

B 2, mI
B2, . . . , mR

B K, mI
BK

]
, (3.20)

where

mR
B = P

(
CU

RS
−1

(< (x̂B))
)

,

mI
B = P

(
CU

RS
−1

(= (x̂B))
)

. (3.21)

Terminal B recover x̂A and then m̂A in the same way.

3.7 Simulation results

In this section we investigate the performance of the proposed CF scheme with Matlab

simulations and compare it with the performance of the DNC scheme and DF scheme



3.7 Simulation results 49

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

EbN0 (dB)

O
u
t
a
g
e
 
P
r
o
b
a
b
i
l
i
t
y

 

 
DNC
DF
CF

Figure 3.4: Outage probability of the DNC, DF and CF relaying schemes vs. Eb/N0.

with zero-forcing MIMO receiver, introduced in Section 2.2.1. The channel is a zero-

mean fading channel i.e. hAR, hBR, hRA, hRB ∼ CN (0, 1). In this section we only provide

the simulation results based on the RS(64, 56) code, because other RS codes demonstrate

similar behavior. More specifically, the code is CRS(64, 56) with the first consecutive root

β110 over F28 =
F2 (x)
(r (x))

, where r (x) = 1 + x + x2 + x7 + x8. The generator polynomial

has eight roots and is given as

g (x) =
7

∏
i=0

(
x−

(
β110

)i
)

(3.22)

We first simulate the outage probability of the MA phase of the CF scheme and com-

pare it with that of the DF and DNC relaying schemes based on the same ECC code. The

results are shown in Figure 3.4. The figure shows that the CF scheme has the highest

outage probability, while the DF scheme shows the lowest outage probability compared

to other schemes. This result is expected, because the CF scheme introduces extra noise



50 Practical CF scheme design and analysis

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

EbN0 (dB)

F
E
R

 

 
DNC
DF
CF

Figure 3.5: User FER of DNC, DF and CF relaying schemes vs. Eb/N0.

in the receiver due to the approximation of complex channel coefficients by Gaussian in-

tegers. Also, unlike the CF, other schemes take advantage of the use of dedicated time

slots for transmitting each packet (DNC) or using multiple antennas (DF). However, with

high Eb/N0 the outage probability of the CF scheme becomes similar to that of the DNC

strategy.

Next, we consider that both the MA and broadcast phases are noisy, and we investi-

gate the nominal frame error rate (FER) of the TWRN, i.e. when ARQ is not implemented

for removing packets with uncorrectable errors. Figure 3.5 compares the FER of TWRN

operating with DNC, DF and CF relaying strategies. The results are similar to the pre-

vious figure, however, there is a visible gap between FER of the CF and DNC schemes.

This gap appears from the fact that the CF relay uses 16-QAM constellation in the broad-

cast phase, that is larger than QPSK, employed in the broadcast phase of other relaying

schemes. It is well known that the BER of 16-QAM is higher than that of QPSK with the

same Tx power. As a result, the broadcast phase of the CF scheme contributes more to

FER degradation.



3.7 Simulation results 51

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EbN0

N
o
r
m
a
l
i
z
e
d
 
T
h
r
o
u
g
h
t
p
u
t
 
(
b
p
s
/
H
z
)

 

 
DNC
DF
CF practical .
CF original

Figure 3.6: Normalized throughput of DNC, DF and two CF schemes vs. Eb/N0.

We finally consider the throughput of the TWRN. We assume that packets containing

ECC uncorrectable errors are detected and discarded by the terminals, for example, with

the use of a CRC algorithm. Therefore, those packets do not contribute to the through-

put. In this section, we assume the packets do not have an overhead, e.g. address bits

or channel estimation sequences, and we define the normalized throughput as the total

number of packets Np of length n, successfully received by both the terminals within time

duration t, when t is large:

TP = lim
t→∞

Np × n× nbps

R× t
(3.23)

where R is the symbol rate of the network, and each symbol contains nbps bits. We also

assume that no time delay is required for switching between the MA and BC phases.

Note that the throughput in a real-time scenario is studied experimentally in Chapter 5.

Figure 3.6 compares the normalized throughput of TWRN operating with DNC and DF

relaying strategies, as well as our modified CF scheme, all represented by the solid lines.

In addition, we plot the throughput of the original CF scheme when it is applied directly,



52 Practical CF scheme design and analysis

without modification. The throughput of the original CF scheme is represented by the

dashed line. Note that when using QPSK modulation, the possible normalized through-

put cannot exceed 2 bps/Hz. We first observe that the original CF scheme does not pro-

vide any improvements in terms of its throughput compared to the DNC scheme. This is

due to the non-invertibility problem over F2, when a terminal is unable to recover the tar-

get packet from the linear combination, and the terminal therefore requests a retransmis-

sion. However, the modified CF scheme does not suffer from the non-invertibility prob-

lem. It follows from the figure, that when the Eb/N0 is higher than 15 dB, the throughput

of the modified CF scheme is better than that of the DNC scheme. Furthermore, when

Eb/N0 is more than 25 dB, the throughput of the CF scheme becomes similar to that of

the DF relaying strategy, with only a marginal gap. At the same time, CF TWRN does not

require the use of a multi-antenna relay. Therefore, despite the higher FER, as illustrated

in the previous figure, the CF scheme takes advantage of exchanging packets in two time

slots. Yet, with lower energy per bit, even the modified CF scheme provides the lowest

throughput, compared to the DF and DNC relaying strategies. Hence, the figure illus-

trates the advantage of the modified CF relaying strategy when the SNR is high.

3.8 Conclusion

In this chapter we have developed a practical CF scheme that avoids the drawbacks of

the original CF scheme, such as the need to use a constellation of large prime size q, that

ensures the invertibility of linear combinations in the terminals. At the same time, the

proposed CF scheme can be easily implemented on SDR using the standard components

typically available in most SDR libraries. We then investigated the performance of the

proposed scheme using simulations. The simulation results demonstrate that the DNC

scheme outperforms the CF relaying scheme only at low SNR regimes. Despite the fact

that the CF scheme has higher outage probability, it takes advantage of two time-slot

message exchange, and therefore outperforms the three time-slot DNC scheme in terms

of system throughput, when the SNR is medium-to-high.



3.8 Conclusion 53

In this work our practical CF scheme is based on the RS code. However, using the

same construction as described in Section 3.3, it is possible to employ other codes, for ex-

ample LDPC codes. The advantage of the LDPC would be stronger error-correction capa-

bility. However, the iterative nature of the LDPC codes would make the synchronization,

crucial for the CF scheme, much more complicated and increase the waiting time required

to achieve the frame synchronization, thus causing the network throughput to decrease.

Furthermore, the computational speed of the LDPC libraries in the current GNU Radio

version is more than ten times slower than that of the RS codes. Therefore, currently, the

use of the LDPC codes is not a feasible solution on the GNU Radio platform.

In this chapter, we analyzed the performance of the CF scheme, assuming the simpli-

fied channel model. As a result, our analysis is incomplete. In fact, in actual channels the

performance of the CF scheme may deteriorate due to factors other than channel noise

and fading, such as lack of synchronization between the terminals. Therefore, we discuss

the impact of implementation issues in Chapter 5 and propose our solutions to minimize

them.





Chapter 4

Data-link layer protocols for PNC and
their implementation on SDR

In addition to developments in the physical layer, the implementation of a real-time PNC/CF

testbed requires developments in the data-link layer algorithms for detecting corrupted packets

and acknowledging the transmitter accordingly. However, the algorithms developed for the tradi-

tional relay networks or those with DNC relaying cannot be directly applied to PNC networks. In

this chapter we present our design of the data-link layer protocol for the CF TWRN and its imple-

mentation in GNU Radio. We also compare the performance of the protocol with those utilized in

DNC and DF TWRN and discuss the advantages and disadvantages of each protocol.

4.1 Introduction

WHILE most studies on PNC focus on designing novel algorithms for the phys-

ical layer, PNC-motivated development for the upper layers has received con-

siderably less attention. However, in order to integrate PNC algorithms with the existing

wireless communication systems or to prototype them, developments in the physical

layer should be reflected in the upper layers, including the data-link layer. For instance,

PNC relays are not as intelligent as DNC or DF relays, because they do not recover the

packets bit-by-bit. Therefore, the data verification algorithms in the data-link layer can-

not be used directly.

To be put into a real-time prototype, each relaying strategy requires an automatic re-

peat request (ARQ) protocol that fits into the strategy. Such a protocol is needed for data

55



56 Data-link layer protocols for PNC and their implementation on SDR

integrity verification, and provides a mechanism for the detection of packets damaged

beyond the ECC’s capability to correct them and missed packets. Subsequently, the ARQ

protocol requests for retransmission of those packets. In fact, the performance of an ARQ

protocol can be optimized if it is aware of how the relaying is organized in the physical

layer. If not optimized, the ARQ protocol may negatively affect the actual performance

of a relaying scheme, making it far worse than predicted theoretically. In this chapter,

we describe in detail important features of ARQ protocols which we have implemented

in our testbed for the DNC, DF and CF relaying strategies and highlight the differences

between them.

In addition, those ARQ protocols need to be adapted for their use in GNU Radio.

GNU Radio represents a mature SDR platform for developments in the physical layer,

but demonstrates lack of maturity in the upper layer, although that is a common problem

for many other SDR platforms [94]. Therefore, implementation in GNU Radio requires

taking into account special features of this platform, such as the scheduling and block-

by-block signal processing, explained in Section 2.7.1. In [73] we presented the design

of ARQ protocols for the TS and DNC relaying strategies, specifically designed to cope

with GNU Radio inadequacies and hardware imperfections. In this chapter we update

the ARQ protocol for the DNC strategy and subsequently develop similar ARQ protocols

for the DF and CF relaying schemes.

The remainder of this chapter is organized as follows. First, in Section 4.2 we discuss

the challenges of implementation of a half-duplex communication between two nodes

(either relay or a terminal) in GNU Radio and design a half-duplex packet switching pro-

tocol which minimizes the impact of those challenges. Based on this protocol, we design

the ARQ protocols for TWRN with DNC, DF and CF relaying schemes in Section 4.3.

Performance comparison of these ARQ protocols in presence of the frame asynchrony

is provided in Section 4.4. We finally draw conclusions on the data-link layer protocol

developments in Section 4.5.



4.2 Half-duplex packet switching in GNU Radio 57

Postamble 
correct?

packet_no ==
packet_no_expected?

yes

no

noChecksum
correct?

yes

no

yes

Begin

End

error_flag=1

ECC decoding

Figure 4.1: Packet verification scheme. When a receiver receives a packet, it first checks
if the postamble is correct. Subsequently, the receiver decodes the packet and checks if
the packet number matches the expected number. Finally, the checksum of the decoded
payload is calculated and compared with that received from the transmitter. If all three
conditions are satisfied, the packet is considered to be correct.

4.2 Half-duplex packet switching in GNU Radio

Implementation of TWRN requires regular switching between Tx and Rx, or half-duplex

operation. For example, terminal A transmits packet mA and switches to listening for

the signal, which carries packet mB. In case of the relay, it receives mA and mB either

sequentially (DNC) or simultaneously (PNC/CF, DF), and relays their XOR or a linear

combination, i.e. also constantly switches between Tx and Rx. To simplify the following

discussion, we refer to either a terminal or relay as a node if a described feature is appli-

cable for both of them.

The current GNU Radio software architecture is primarily aimed at processing con-

tinuous data streams. Packet switching is therefore difficult to be implemented in the



58 Data-link layer protocols for PNC and their implementation on SDR

SOP 
detected?

Initializing

Listen

Begin

packet_no++

Make a new packet

Send packet

yes

no

timeout_flag ==1

no

Save payload

yes

no

yes
timer>Tout

yes

no

Reset timer

Packet verification

error_flag
==0

Reset timer

Idle

Begin

timeout_flag =1

Reset timer

Master Mode only

Figure 4.2: A terminal operation flowchart. When a terminal operates in master mode it
is equipped with a timer which initiates timeout in case no packets are received within
Tout time interval from the previous transmission.

GNU Radio receiver, and we have to take this fact into account when designing a half-

duplex packet switching protocol. We have chosen the following solutions to minimize

the delays occurring due to the non-continuous natute of half-duplex communication:

• First, the acknowledgement of a successful or failed reception is embedded into the



4.2 Half-duplex packet switching in GNU Radio 59

transmitted reply packet, rather than sent individually.

• Second, longer packets are used, as this seems more reasonable from the GNU Ra-

dio scheduler optimization perspective.

We employ the transmit-on-receive approach, i.e., a node transmits its packet upon

reception from another node. This approach identifies the node starting communication

as the master and the other as the slave. Each packets is equipped with the sequence

number which helps to identify any missed packets. When a packet is received by a

node, the node receiver verifies its integrity. Figure 4.1 illustrates the utilized packet

verification scheme. First, the receiver checks if the tail of the packet is correct. An in-

correctly received end of packet usually indicates the presence of an insertion/deletion

error [108], underflow at the transmitter, or non-compensated channel rotation during

the transmission, i.e., those errors which cannot be recovered with conventional ECC de-

coding. Thus, the incorrect tail of packet indicates that the receiver should not attempt to

decode the damaged packet. Second, after ECC decoding, the packet number is checked.

The node compares the packet number of the received packet with the expected packet

number. A packet with an unexpected packet sequence number is also considered to be

damaged. Third, the checksum of the decoded payload is calculated and compared with

the received checksum calculated at the transmitter. Mismatch of these two checksums

indicates that there are errors uncorrected after channel decoding. In this testbed we

make use of the Adler-32 checksum algorithm from the ZLIB library [109], calculated as

follows. Let d = [d1, d2, . . . , dn] be a vector of bytes of length n. Then the 32-bit checksum

DAdler-32 (d) = B× 65536 + A, where

A =
[
1 + d1 + d2 + . . . + dn

]
mod 65521,

B =
[
(1 + d1) + (1 + d1 + d2) + . . . + (1 + d1 + d2 + . . . + dn)

]
mod 65521

=
[
n× d1 + (n1)× d2 + (n2)× d3 + ... + dn + n

]
mod 65521. (4.1)

The preference for the Adler-32 checksum over conventional CRC is determined by the

former’s higher speed on many platforms [110].

A packet that passes all three steps of verification is considered to be correctly re-



60 Data-link layer protocols for PNC and their implementation on SDR

Matched 
Filter

Symbol 
Timing Rec.

Channel Est. 
& Demod.

Half-Duplex Module

Mod.
Pulse Shaping 

Filter

From 
DDC

To 
DUC

Tx data 
in

Rx data
out

Relay &
Terminal

Terminal only

ECC Enc.

ECC Dec. NC Dec.

ARQ Logic

Figure 4.3: Location of the half-duplex block in the simplified block diagram of a node.
The half-duplex block is the final block of Rx, and the first block of Tx, thus coordinates
Tx and Rx. The white-coloured blocks represent the physical layer blocks processing
complex signals, and gray-coloured blocks represent the upper layers blocks processing
bytes. Some non-essential modules are omitted.

ceived and its payload is saved or passed to the end-user. Subsequently, the node incre-

ments its own packet number and in turn transmits the next packet. A packet that fails

verification at any step is marked as corrupted and discarded. Reception of a corrupted

packet by a node causes the retransmission of the previous packet, which in turn causes

the opposite node to retransmit the packet received corrupted. The full flowchart of this

half-duplex packet switching protocol is presented in Figure 4.2. The master retransmits

if timeout occurs in case the communication is lost. In contrast, slave nodes never initial-

ize transmitting themselves, but only reply upon receiving a packet from the master.

We implemented this half-duplex packet switching protocol in Python and included

it in GNU Radio Companion (GRC) flow graphs as an OOT block, as shown in Figure A.7.

The GRC flow graphs and their implementation are described in detail in Appendix A.

Figure 4.3 illustrates the location of the half-duplex block in the simplified block di-

agram of a node. The half-duplex block is located in the end of the Rx chain, and in

the beginning of the Tx chain. It coordinates the operation of the Tx and Rx chains and

ensures they do not transmit and receive at the same time. Note that Figure 4.3 shows

a simplified scheme. Although the half-duplex blocks in our design are always located

on the host PC, different PHY blocks may be implemented either on the PC or FPGA of



4.2 Half-duplex packet switching in GNU Radio 61

STRP Packet # DataChecksumAck.

STRP

EndCE Tr. Seq.

NC Headera  ,a 

177 bytes 8 bytes 1 byte

4096 bytes

1 byte 4 bytes

173 bytes 8 bytes

16384 symbols

4 bytes

(a)

(b)

Standard Network-coded

NC Data

1 byte

End

Modulation Type:

A B CE Tr. Seq.

NC: Network-coded
CE: Channel estimation

Figure 4.4: Packet format for (a) terminals, DNC relays and DF relays, and (b) CF relays.
Both types of packet include symbol-timing synchronization preamble, channel estima-
tion training sequence, header, data and the end of packet symbol. The header consists of
acknowledgement, packet number and the checksum. In addition, packets transmitted
by CF relays contain the linear coefficient aA and aB of the broadcasted linear combina-
tion.

USRP. The exact location of those PHY blocks is discussed in Section 5.3.3.

4.2.1 Packet formats for different relaying strategies

Based on the needs described above, we first define the packet format for non-PNC com-

munications, such as those used by the terminals, as well as the DNC and DF relay. This

format is sketched in Figure 4.4(a). The length of the packet is 4096 bytes. This means

that, if packets are modulated with QPSK, which encodes 2 bits per symbol, 4 symbols

per byte, the packet length in symbols is equal to 16384. A packet consists of the pream-

ble, header and encoded payload. A preamble begins with a symbol-timing recovery

preamble (STRP), the length of which is 177 bytes. The symbol-timing recovery is used

for obtaining the right sampling time before demodulation and is explained in detail in

Section 5.4. STRP is followed by the 8 byte training sequence for channel estimation at

the receivers. This sequence also represents the address of the intended receiver. The

header is composed of one byte for acknowledgement, one byte for the packet sequence



62 Data-link layer protocols for PNC and their implementation on SDR

number and four bytes of the checksum. The header is followed by the payload, and both

are encoded into 62 codewords with the (64, 56) Reed-Solomon (RS) code. In CF termi-

nals these 62 RS codewords are further processed according to the scheme described in

Figure 3.2 in order to construct 31 consecutive codewords from lattice codebook C. The

end of packet is represented by one byte with the value 0x55.

In contrast, the CF relay is unable to demodulate superimposed packets, because it

only recovers linear combinations of the transmitted symbols. Therefore, the packet de-

livers symbols rather than bytes. For this reason, packets transmitted by CF relay have

a different format. Namely, they consist of two parts, as illustrated in Figure 4.4(b). The

packet begins with a preamble similar to that of conventional packets, followed by the

network-coded body, which represents the symbol-wise, frame-synchronous superim-

posed headers and payloads of both the terminals. The only difference from the conven-

tional preamble is that the last four bytes before the channel estimation training sequence

are reserved for the CF linear coefficients aA and aB.

4.3 ARQ protocols for different relaying strategies in TWRN

Based on the half-duplex packet switching developed in the previous sections, in this

section we describe our design of ARQ protocols for TWRN in GNU Radio with different

relaying strategies, namely DNC, DF and CF schemes.

There are two main types of relaying ARQ protocols. First, when the relay participates

in the ARQ mechanism, such an ARQ protocol is referred to as relay-terminal ARQ pro-

tocol (RT-ARQ). Second, if the relay is not involved in the ARQ mechanism, such an ARQ

protocol is referred to as terminal-only ARQ protocol (TO-ARQ). Generally, RT-ARQ pro-

tocols outperform TO-ARQ protocols in terms of the network throughput, however the

implementation of an RT-ARQ protocol requires complete decoding and additional pro-

cessing of packets at the relay [111, 112]. The difference between RT-ARQ and TO-ARQ

protocols in TWRN relay is illustrated in Figure 4.5.

The performance of different ARQ protocols with PNC was investigated in [113–115].

According to the simulation results provided in [113], RT-ARQ protocols maintained



4.3 ARQ protocols for different relaying strategies in TWRN 63

SOP 
detected?

Initializing

Listen

packet_no++

Make a new packet

Send packet

yes

yes

no

timeout?

no

XOR

Begin

Reset timer

Idle

timer>Tout

Reset timer
timeout_flag =1

yes

no

Begin

Reset timer

Packet A verification Packet B verification

error_flag==0

yes

no

Timeout control

(a) RT-ARQ

SOP 
detected?

Initializing

Listen

Update packet

Send packet

yes

yes

no

timeout?

no

Begin

Reset timer

Idle

timer>Tout

Reset timer
timeout_flag =1

yes

no

Begin

PNC, ECC re-encoding

Reset timer
Timeout control

(b) TO-ARQ

Figure 4.5: Flowchart of RT-ARQ and TO-ARQ in TWRN. Each relay operates in master
mode, therefore it is equipped with a timer which initiates timeout in case no packets
were received within Tout time interval from the previous transmission.

higher network throughput than other protocols or when no ARQ was utilized, espe-

cially when the SNR was medium or high.



64 Data-link layer protocols for PNC and their implementation on SDR

outT

0 1 2 3 1 2 1 23

time

313

R0

A1

B1

R1

A2

B2

R1R1

B2

R2

A3

B3

2 1 2

Correctly received packet Missed packet

B2

A2

R2

Incorrectly received packet

A

R

B

Time slot number

...

outT

3

Figure 4.6: Scheme of ARQ protocol for TWRN with DNC relaying. Frame synchro-
nization between terminals A and B is also not required. The relay serves as master,
i.e. initializes the TWRN and handles timeouts. Successful reception of two packets re-
sults in broadcasting their XORed packet. Otherwise, any error, including packet number
mismatch, timeout, missed packet or a packet with uncorrectable errors causes retrans-
mission of the previous XORed packet.

4.3.1 ARQ protocol for DNC

The DNC relay completely recovers each received packet, therefore it allows the imple-

mentation of an RT-ARQ protocol. The ARQ protocol for DNC scheme is sketched in

Figure 4.6. In order to initialize the protocol, the relay broadcasts a packet containing

dummy data (time slot 0). Upon reception, terminal A transmits its packet immediately

using time slot 1, while B begins to transmit as soon as the transmission from A is over

i.e. time slot 2. If the packets from both the terminals are received successfully, the re-

lay performs bitwise XOR of the data of two packets and broadcasts the resulting packet

(time slot 3). After successful reception of this packet, terminals A and B transmit the

next packets, and so on. If any packet is lost during any time slot, the timeout at the relay

occurs after Tout time interval from the previous transmission. In this case, as well as if

at least one packet is received with uncorrectable errors or with wrong packet number

either from A or B, the relay again broadcasts the previously XORed packet.



4.3 ARQ protocols for different relaying strategies in TWRN 65

outT

0 1 2 1 2 1 1 22

time

1 12

R0

A1

B1

R1

A2

B2B2

R1R1

A2

B2

R2

A3

B3

2 1 2

Correctly received packet Missed packet

R1

B2

R1

A2

B2

R2

Asynchronous packetIncorrectly received packet

A

R

B

Time slot number

...

Figure 4.7: Scheme of ARQ protocol for TWRN with DF relaying. Frame synchroniza-
tion between terminals A and B is required, and failures in frame synchronization cause
packets to be missed or decoded incorrectly. The relay serves as master, i.e. initializes the
TWRN and handles timeouts. Successful reception of two packets results in broadcasting
their XORed packet. Otherwise, any error, including packet number mismatch, timeout,
asynchronous packet arrival or a packet with uncorrectable errors causes retransmission
of the previous XORed packet.

4.3.2 ARQ protocol for DF

The DF relay is also able to completely recover both packets from one superimposed

signal. Hence, it also enables implementation of an RT-ARQ protocol. In fact, with the

exception of a few differences related to simultaneous packet arrivals, the DF ARQ pro-

tocol is similar to that of the DNC scheme. An example of the ARQ protocol for the DF

relaying scheme operation in TWRN is illustrated in Figure 4.7. Again, the communica-

tion is initialized by the relay in the same way as in the DNC scheme. Upon reception

of the initializing packet, both terminals A and B transmit simultaneously (time slot 1),

keeping symbol and frame synchrony. The relay demodulates the received signal and

recovers both packets individually, performs error correction, and checks the packets for

the presence of uncorrectable errors and insertion/deletion errors, and verifies that the

packet ID numbers are as expected. If there are no errors in any packet in the pair, the

relay produces the XORed packet and broadcasts it (time slot 2). Upon reception by



66 Data-link layer protocols for PNC and their implementation on SDR

the terminals, the two time-slot packet exchange is over. Then the terminals transmit

new packets, i.e., the scheme repeats. On the other hand, if there is any kind of error

in at least one packet in the received pair, the relay re-broadcasts the previously XORed

packet. Thus, “intelligence” of the DF relay supports RT-ARQ protocol functioning and

it prevents erroneous packets from being broadcasted. Note that due to the supposed

simultaneous packet arrival, the timeout only occurs when there are no replies from both

the terminals within the Tout time interval. Otherwise, the relay detects the first arrived

packet or at least its front part is recovered from a non-superimposed signal and declared

an error. However, timeout can also occur when two packets are aligned incorrectly, be-

cause failures in the frame synchronization scheme cause incorrect channel estimation

and incorrect SOP detection.

4.3.3 ARQ protocol for CF

Unlike DNC and DF relays, which provide bitwise packet recovery and RT-ARQ proto-

col on top of it, the CF relay only recovers linear combinations of transmitted signals in

the physical layer. At the same time, the CF scheme allows implementation of channel

decoding and re-encoding of the linear combinations. Therefore, while fully capable on

the ECC, the CF relay has limited capability for verifying the packets as DNC and DF

relays do. As a result, the CF relay can only support a TO-ARQ protocol. In this case, the

corrupted packets also corrupt the linear combination which is forwarded to the termi-

nals, rather than discarded, and the burden of detecting the errors lies with the terminals.

This scenario can cause additional retransmissions and decreases the network effective

throughput. Figure 4.8 shows an example of the operation of ARQ protocol for the CF

relaying scheme in TWRN. The initialization and synchronization are performed in the

same way as for the DF scheme, and the same quality synchronization as for the DF

scheme is required. The first time slot is also the same, i.e. both packets are transmitted

simultaneously. Then, the relay recovers a linear combination of two transmitted signals

and re-encodes it with the ECC. As the CF relay is unable to verify the packet number

or checksum, it simply forwards the linear combination (time slot 2). The terminals then

verify the received packets and transmit a new packet or retransmit the previous packet,



4.4 ARQ performance comparison 67

outT

0 1 2 1 2 1 1 22

time

1 12

R0

A1

B1

R1

A2

B2B2

R1R1

A2

B2

R2

A3

B3

2 1 2

Correctly received packet Missed packet

R1

B2

R1

A2

B2

R2

Asynchronous packetIncorrectly received packet

A

R

B

Time slot number

...

Figure 4.8: Scheme of ARQ protocol for TWRN with CF relaying. Frame synchroniza-
tion between terminals A and B is required, and failures in frame synchronization cause
packets to be missed or decoded incorrectly. The relay serves as master, i.e. initializes the
TWRN and handles timeouts. Successful reception of two packets results in broadcast-
ing their linear combination. Errors, including timeout or asynchronous packet arrival,
cause retransmission of the previous linear combination. However, errors like packet
number mismatch or presence of uncorrectable errors are not detected, and their linear
combination is obtained and broadcasted.

i.e. time slot 1 repeats. We note that in the CF scheme the relay also can detect misaligned

packets. Therefore, in the same way as in the DF scheme, a timeout only happens when

there are no replies from both terminals within the Tout interval.

4.4 ARQ performance comparison

In this section we expand simulations presented in Section 3.7, and investigate the perfor-

mance of different relaying strategies with the proposed ARQ protocols. We consider the

DNC, DF and CF relaying strategies, based on the RS(64, 56) code. In this simulations we

assume that there are no computational delays between the time slots, but frame asyn-

chrony occurs with probability pasynch. As in the previous simulations, we assume that

every receiver is aware of the channel state at any time. The throughputs of TWRN with



68 Data-link layer protocols for PNC and their implementation on SDR

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EbN0

N
o
r
m
a
l
i
z
e
d
 
T
h
r
o
u
g
h
t
p
u
t
 
(
b
p
s
/
H
z
)

 

 
DNC
DF, pasynch = 0
DF, pasynch = 0.01
DF, pasynch = 0.05
CF pasynch = 0
CF pasynch = 0.01
CF pasynch = 0.05

Figure 4.9: Throughput of different relaying strategies in TWRN combined with the rele-
vant ARQ protocol in presence of the frame asynchrony vs. Eb/N0.

the chosen relaying strategies are compared in Figure 4.9. The solid lines represent the

throughput of the respective relaying strategy when the frame asynchrony never hap-

pens, i.e. pasynch = 0. The dotted lines and dash-dot lines show the throughput of the

respective relaying strategy, when the frame asynchrony is 0.01 and 0.05 respectively.

Note that since the DNC scheme does not require any synchronization, its performance

is independent of pasynch. Our results are consistent with those illustrated in Figure 3.6.

We first observe in the figure that the normalized effective throughput of all the schemes

is lower than the normalized nominal throughput illustrated in Figure 3.6. This is be-

cause of the presence of the overhead, which does not convey the actual data, e.g. the

preamble, header and postamble of the packet. Next, it follows from the figure that the

presence of frame asynchrony does not cause a significant throughput degradation. As

a result, the effective throughput behavior of each strategy matches that of the nominal



4.5 Conclusion 69

throughput. In particular, the DF relaying scheme provides the highest throughput be-

cause it takes advantage of performing data exchange in two time slots. The CF scheme

also relays the data within two time slots, therefore, with higher energy per bit its perfor-

mance achieves the performance of the DF scheme. However, with the SNR decrease, the

effective noise makes the CF relaying less efficient. Finally, when the Eb/N0 is 15 dB or

less, the throughput of the CF scheme becomes even less than that of the DNC scheme,

despite the fact that the DNC relaying scheme takes three time slots per packet exchange.

4.5 Conclusion

In this chapter we have described modifications which we made on the layers above the

physical layer in order to incorporate the CF relaying strategy into a real-time commu-

nication system. In this chapter we have presented an implementation of logical link

control algorithms for the relaying strategies employed in the testbed such as the DNC,

DF, and CF schemes. The developed ARQ protocols are designed to take into account

GNU Radio natural random delay and other imperfections. The performance of these

ARQ protocols is evaluated experimentally in the next chapter.





Chapter 5

SDR implementation of CF relaying
and experimental evaluation

In this chapter we present the first real-time GNU Radio implementation of a two-way relay

network with compute-and-forward (CF) relaying strategy. Despite the fact that the theoretical

results for CF are promising, the implementation is hindered by a number of practical problems.

We first identify these problems and then propose our solutions to minimize their impact. Rather

than developing complex algorithms able to cope with certain types of asynchrony, we propose a

synchronization scheme for GNU Radio, a popular software-defined radio (SDR) platform. The

scheme enables simple implementation of synchronous CF algorithms. With the implemented pro-

totype working in real-time we are able to conduct experimental performance analysis of the CF

scheme. Our experimental results show that when the SNR is high, CF relaying outperforms other

relaying strategies in terms of the network throughput. Therefore, our testbed experimentally ver-

ifies the benefits of CF relaying predicted by the theoretical analysis. With the common practical

problems solved, the testbed implemented in GNU Radio allows rapid modification for physical

layer network coding (PNC) algorithms other than CF, thus simplifying their experimental anal-

ysis.

5.1 Introduction

IN theory, when the SNR is high, PNC can increase the TWRN throughput by 50%

compared to that of digital network coding (DNC) [7]. In contrast, DNC is expected

to outperform PNC in low SNR regimes. In addition to low SNR, several other factors

negatively affect the practical performance of PNC. First, processing delays are caused by

71



72 SDR implementation of CF relaying and experimental evaluation

the fact that PNC is more computationally intensive than DNC. Second, synchronization

delays are introduced by the need to synchronize the packets transmitted at the differ-

ent terminals. Finally, a PNC relay does not recover the packet data, and therefore does

not provide any packet verification capabilities, unlike a DNC relay. This causes the re-

laying of corrupted packets and requires more retransmissions. All these factors reduce

the actual performance compared to the theoretical performance of the TWRN. However,

their impact cannot be evaluated adequately in simulations, because there are no accurate

models for these factors. In contrast, the impact of the above factors can be experimen-

tally estimated if a relay network testbed with PNC is implemented.

In this chapter, we summarize our design of a TWRN testbed in GNU Radio, where

the relaying is performed with three different strategies, namely the DNC strategy, the

MIMO-based decode-and-forward (DF) and the modified CF scheme developed in Chap-

ter 3. To the best of our knowledge, our testbed is the first real-time implementation of

the CF relaying strategy. Our main contribution is that, unlike the previous work, we pro-

pose practical symbol and frame synchronization schemes which provide sufficient syn-

chronization for the standard PNC algorithms designed under the synchrony assump-

tion, and implement the schemes on FPGA of USRP N210. The synchronization scheme

thus allows us to avoid using the computationally intensive asynchronous algorithms

reviewed in Section 2.4. We also describe implementation challenges specific to the GNU

Radio platform and our solutions applicable for all the strategies, such as channel esti-

mation methods and symbol-timing recovery for superimposed PNC signals. In order to

make the testbed work in real time, we implement the half-duplex packet switching and

ARQ protocols described in Chapter 4. Utilizing these schemes and solutions, one can

easily repeat our implementation on the GNU Radio platform or customize it according

to one’s needs at no additional cost. Furthermore, our implementation on the GNU Ra-

dio platform can be easily customized and extended to higher-order modulation schemes

such as M-QAM or more complex networks beyond TWRN.

In addition, we evaluate the performance of different relaying strategies with several

experiments. We demonstrate that with high SNR, the practical throughput of the CF

scheme is higher than that of the other relaying strategies, despite some practical imple-



5.2 Hardware and software platform 73

mentation factors degrading performance. In the presence of these factors, the CF scheme

achieves practical throughput improvement of about 30% rather than the 50% predicted

by theoretical analysis. On the other hand, the experiments show that the DNC relaying

scheme is more reliable at low SNR.

The rest of this chapter is organized as follows. We begin this chapter with the de-

tailed description of the SDR platform employed in the testbed provided in Section 5.2.

Next, in Section 5.3 we summarize the synchronization requirements and introduce our

symbol and frame synchronization scheme, as well as the implementation of these schemes

on the USRP. In Sections 5.4 and 5.5 respectively, we present our approaches to symbol-

timing recovery and channel estimation for PNC/CF relays. The experimental results

are provided, and the advantages and drawbacks of different relaying strategies are dis-

cussed in Section 5.6. Finally, Section 5.7 concludes this chapter.

5.2 Hardware and software platform

Each terminal and relay is realized with a USRP N210 by Ettus Research connected to an

individual PC running GNU Radio. The details of the main components of the testbed are

provided in Table 5.1. The USRPs are equipped with XCVR2450 half-duplex daughter-

boards operating in 2.4− 2.5 GHz and 4.9− 5.9 GHz dual band. Each USRP is connected

to the host PC with the GigE interface, which provides up to 25 MSPS data throughput.

Each USRP is also equipped with a GPS disciplined oscillator module (GPSDO), by the

same manufacturer. In order to implement a MIMO receiver for the DF scheme, the DF

Table 5.1: Details of the Main Components of the Testbed.

Component Details
CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
NIC NetXtreme BCM5722 Gigabit Ethernet PCI Express
OS Ubuntu 14.04 LTS, 64 bit
GNU Radio v.3.7.4
UHD v.003.007.001
SDR Hardware Ettus USRP N210



74 SDR implementation of CF relaying and experimental evaluation

A
N210

B
N210

R
slot 1
slot 2
slot 3 m m

m = m ⊕m R A B

x  =E(m  )A

Rx  =a x +a  xA B

A x  =E(m  )BB

A B

A B

N210

R
slot 1
slot 2

A B

mA mB

m = m ⊕m R A B

A B
N210

R
slot 1
slot 2

N210

N210

N210

N210
N210

N210

(a)

A
N210

B
N210

R
slot 1
slot 2
slot 3 m m

m = m ⊕m R A B

x  =E(m  )A

Rx  =a x +a  xA B

A x  =E(m  )BB

A B

A B

N210

R
slot 1
slot 2

A B

mA mB

m = m ⊕m R A B

A B
N210

R
slot 1
slot 2

N210

N210

N210

N210
N210

N210

(b)

A
N210

B
N210

R
slot 1
slot 2
slot 3 m m

m = m ⊕m R A B

x  =E(m  )A

Rx  =a x +a  xA B

A x  =E(m  )BB

A B

A B

N210

R
slot 1
slot 2

A B

mA mB

m = m ⊕m R A B

A B
N210

R
slot 1
slot 2

N210

N210

N210

N210
N210

N210

(c)

Figure 5.1: Architecture of our TWRN testbed with different relaying strategies: (a) DNC,
(b) DF, and (c) CF. The DF relay is MIMO-capable, i.e. two USRP N210 devices connected
with MIMO cable, while DNC and CF relays as well as all terminals are single antenna
devices, implemented on single USRP.

relay is equipped with two USRPs connected through a MIMO cable. Figure 5.1 illus-

trates the three testbed architectures for each of the relaying strategies implemented in

the testbed.



5.3 Synchronization 75

5.3 Synchronization

Symbol and frame synchronization is a crucial requirement for the implementation of

PNC algorithms. In the literature review, in Section 2.4, we analyzed several asynchronous

PNC and CF algorithms from the point of view of their implementation simplicity in SDR.

The algorithms proposed in the literature require significant modification of the original

algorithms designed based on the synchrony assumption. The modifications, in turn,

make those modified algorithms not universal, i.e. robust against one particular asyn-

chrony, thus limiting the scenarios where the algorithms can be utilized. Furthermore,

the asynchronous algorithms are usually more computationally complex. These draw-

backs motivate us to choose another approach in this work: we first implement synchro-

nization mechanisms which provide sufficient synchronization for the implementation of

synchronous CF algorithms, such as in [48,49] and our CF scheme described in Chapter 3.

In this section we present our GPS-assisted symbol and frame synchronization schemes

and then discuss FPGA customization required for the implementation of these schemes.

5.3.1 Symbol synchronization

In this testbed we implement a GPS-assisted symbol synchronization scheme. First, we

equipped each terminal with the GPSDO modules [116]. A GPSDO, when locked to the

GPS satellites, is able to retrieve the absolute GPS time. We then configured the USRPs

to use the GPSDO as a clock and time source. As a result, the internal USRP time is ini-

tialized to the GPS time. According to the specifications, the root-mean-square error of

such synchronization is less than 50 ns, i.e. much smaller than the typical symbol dura-

tion supported by GNU Radio (640 ns in our case). Therefore, the GPS-assisted symbol

synchronization accuracy is sufficient for the implementation of PNC algorithms.

The configuration of GPSDOs to be used as a clock and time source is accomplished

by properly setting up the USRP hardware according to [117], followed by configurations

of the USRP Sink and USRP Source blocks in GRC. Note that the symbol synchronization

is only required between the terminals, and is not necessary between a terminal and the

relay. Although also equipped with a GPSDO module, the relay only utilizes it for cor-



76 SDR implementation of CF relaying and experimental evaluation

time

PC A

PC B

USRP A

USRP B

GPS

t proc

t del_r

A

B

Received Packet Transmitted Packet

GPS time

Packet, Awaiting Transmission

tdel_t

Δt

Figure 5.2: Frame synchronization scheme for DF and CF TWRN. tdel r represents the
time interval needed to transfer a received packet from the USRP to the host PC. tdel t
represents the time interval needed to transfer a transmitted packet from the host PC to
the USRP. tproc is the time interval required for a received packet verification and gener-
ating a response packet to be transmitted. The duration of tdel r, tdel t and tproc is random
due to the scheduler’s random queuing delay.

rection of the local oscillator (LO) frequency offset.

Note that a USRP with XCVR2450 daughterboard is mainly appropriate for short-

range wireless communication, where the propagation delay is negligible. Therefore, we

assume that the packets transmitted simultaneously arrive at the same time. In general,

however, one terminal could be located much further from the relay than the other termi-

nal, and the large difference between the distances may cause a significant offset between

two packets transmitted simultaneously. This offset can be compensated if the terminal

nearest to the relay transmits after a short delay equal to a few clock periods of its FPGA.

For example, if the FPGA clock period is 100 ns, as in USRP N210, a distance difference

of 60 meters can be compensated by introducing a two clock-period delay in the terminal

nearest to the relay.

5.3.2 Frame synchronization

Frame synchronism, i.e., simultaneous arrival of packets from both terminals, is another

necessary condition for PNC implementation. Frame synchronization in GNU Radio is



5.3 Synchronization 77

hindered by its inherently random processing time. Additional time is needed to transfer

packets from the USRP to the PC and back via the Ethernet cable. These delays cause

asynchronous processing of the received packets and asynchronous delivery of the pack-

ets to be transmitted to the USRP.

Moreover, underflow exceptions also contribute to the loss of frame synchronism. The

host PC supplies the data to USRP in blocks of the length defined by the GNU Radio

scheduler. In such a way, one packet may be sent to the USRP by several blocks. The

underflow happens when the host PC is not able to provide the next block fast enough

immediately after the previous block has been transmitted. When the FPGA detects an

underflow, it waits until the next block arrives and then retransmits the previous block

followed by the next block. Therefore, underflows are undesirable as they distort the

frame synchronization in the middle of transmission.

Once the terminals are symbol-level synchronized, as described in the previous sub-

section, we focus on the frame-level synchronization. Below we summarize our method

to achieve frame synchronization, given the aforementioned problems:

1. We have relocated a few signal processing routines from the GNU Radio on the host

PC to the USRP’s FPGA. Those routines include modulation and pulse-shaping

filtering in the FPGA’s Tx chain, and automatic gain control (AGC) and matched

filtering in the Rx chain. The reader is referred to Section 5.3.3 for details of FPGA

customization. Assuming QPSK modulation, the relocation reduces the number of

bytes per packet sent via the Ethernet cable by a factor of 32. As a result, the number

of underflows in our experiments was reduced by more than 10 times. Both the

matched filter and the pulse-shaping filter are represented by the root-raised cosine

(RRC) filter. Due to the limited number of multipliers in the FPGA of USRP N210,

the design and implementation of the RRC filter is to be without multipliers. We

review existing methods of multiplierless filter design and propose a new method

based on zero/pole approximation of an IIR filter, also suitable for the RRC filter

multiplierless implementation on FPGA, in Chapter 6.

2. Some blocks cannot be relocated, for instance those which require floating-point

multiplications, such as channel estimation modules. In order to support higher



78 SDR implementation of CF relaying and experimental evaluation

sampling rates, we make use of Vector-Optimized Library of Kernels (VOLK) [100],

wherever possible. This library simplifies the use Single Instruction Multiple Data

(SIMD) instructions. A SIMD instruction performs operations on vectors rather

than on scalars, thus accelerating computations significantly. For example, element-

wise multiplication of floating-point complex vectors with VOLK can be performed

more than five times faster, compared to the use of non-vectorized multiplication.

In addition, the matrix computations involved in finding the shortest vector coef-

ficients with CLLL are implemented with the Armadillo C++ high-speed numeric

library [118].

3. We have implemented a new frame synchronization scheme, where the GPS-assisted

synchronization is carried out by the USRPs of the terminals. This scheme is pre-

sented in Figure 5.2. Despite the fact a packet transmitted by the relay arrives at

both terminals’ USRPs simultaneously, each host PC receives the packet with ran-

dom delay tdel r. Consequently, the response packet to be transmitted is generated

after delay tproc and arrives at the USRP after another random delay tdel t. Therefore,

although the terminals received the packet simultaneously, they would not start the

reply transmission synchronously. However, both USRPs are to start transmitting

simultaneously, in order to ensure successful PNC/CF operation. For achieving

this requirement, the synchronization scheme only allows the USRPs to transmit

after a fixed delay ∆tGPS from the previous transmission. Note that the USRPs are

already symbol-synchronous and their internal time is also synchronized with the

GPS time signal. We have modified the FPGA image in such a way, that upon

reception of a packet from the host PC, the USRP holds it until the ∆tGPS time in-

terval expires. Thus, the frame synchronization is achieved. The choice of ∆tGPS

is determined taking into account the total delay tdel = tdel r + tdel t + tproc by the

following tradeoff. If ∆tGPS is too large compared to the average tdel , the chance

that two terminals can receive the packet and reply within ∆tGPS is high, therefore

the chance of a non-synchronized transmission is low. However, large ∆tGPS causes

the throughput decrease. On the other hand, when the ∆tGPS is short, the chance of

a non-synchronized transmission increases, making decoding of incorrectly super-



5.3 Synchronization 79

imposed packets impossible.

5.3.3 FPGA customization

In order to be able to cope with all sorts of delay introduced by both USRP and GNU Ra-

dio Tx and Rx, the frame synchronization scheme described in the previous subsection

should be implemented as close as possible to the RF front-end, i.e. on FPGA. There-

fore, implementation of the frame synchronization scheme requires modification of the

standard FPGA image of USRP N210 provided by Ettus Research. To achieve this, we

modified the FPGA Verilog source code provided along with the UHD software, and

synthesized a new FPGA images for the testbed. In addition, we relocated a few signal

processing routines from GNU Radio to FPGA in order to reduce the computational load

on GNU Radio and avoid underflows. These modifications were implemented and new

FPGA images was synthesized with Xilinx ISE Design suite 14.5.

Figure 5.3 compares the original architecture of the SDR system i.e. USRP FPGA,

UHD and GNU Radio with the modifications we implemented in this testbed. For sim-

plicity, we omit illustration of components such as FIFOs, buffers, Ethernet controllers

and RF front-end which we did not modify. In the original architecture shown in Fig-

ure 5.3(a) the FPGA only performs DDC in the Rx chain and DUC in the Tx chain, the

tasks common and compulsory for all applications. In other words, the default archi-

tecture of USRP FPGA leaves any application-specific signal processing algorithms to be

implemented on the host PC in GNU Radio. As mentioned previously, relocation of a

few signal processing routines from the PC to the FPGA reduces processing delays and

randomness of the delays, which result in underflows. In this way, implementation of the

pulse-shaping filter in the Tx chain and the matched filter in the Rx chain, both as RRC

filter seems computationally intensive on the host PC, yet is feasible on the FPGA. In ad-

dition, the AGC block in the Rx chain and the modulator in the Tx chain are also good

candidates for relocation to the FPGA, because they do not require intensive floating-

point multiplications. Finally, the frame synchronization scheme, described in the previ-

ous subsection, is also located on the FPGA. The updated architecture of the FPGA image

is sketched in Figure 5.3(b).



80 SDR implementation of CF relaying and experimental evaluation

To/from end-users/applications

Host PC (GNU Radio)
USRP N210 

FPGA

ADC DDC 
ChainADC

DAC DUC 
ChainDAC

Timing 
Recovery

Matched 
Filter (RRC)

CF 
Demod.

Pulse Shaping 
Filter (RRC)

Mod.
Half-Duplex, 

PNC Logic
UHD 

Source

UHD 
Sink

To RX RF

From RX RF

To/from end-users/applications

Host PC
(GNU Radio)USRP N210 FPGA

ADC DDC 
ChainADC

DAC DUC 
ChainDAC

Timing 
Recovery

Matched 
Filter (RRC)

CF 
Demod.

Pulse Shaping 
Filter (RRC) Mod.

Half-Duplex, 
PNC LogicUHD 

Source

UHD 
Sink

To RX RF

From RX RF

Frame Synchronization 
Scheme

AGC

AGC

(a)

To/from end-users/applications

Host PC (GNU Radio)
USRP N210 

FPGA

ADC DDC 
ChainADC

DAC DUC 
ChainDAC

Timing 
Recovery

Matched 
Filter (RRC)

CF 
Demod.

Pulse Shaping 
Filter (RRC)

Mod.
Half-Duplex, 

PNC Logic
UHD 

Source

UHD 
Sink

To RX RF

From RX RF

To/from end-users/applications

Host PC
(GNU Radio)USRP N210 FPGA

ADC DDC 
ChainADC

DAC DUC 
ChainDAC

Timing 
Recovery

Matched 
Filter (RRC)

CF 
Demod.

Pulse Shaping 
Filter (RRC) Mod.

Half-Duplex, 
PNC LogicUHD 

Source

UHD 
Sink

To RX RF

From RX RF

Frame Synchronization 
Scheme

AGC

AGC

(b)

Figure 5.3: FPGA Customization for Frame Synchronization. (a) Original architecture
as provided by Ettus Research and GNU Radio, (b) Our improvements: the AGC and
matched filter of Rx as well as the pulse-shaping filter, modulator and frame synchro-
nization scheme of Tx are relocated from the host PC to FPGA. The relocated blocks are
highlighted in grey.

One particular advantage of the presented implementation is that the entire Tx chain

is moved from the host PC to the FPGA. As a result, a packet to be transmitted can be

transferred to the UHD and subsequently to the FPGA as quickly as possible, most likely

within one block (from the scheduler point of view). Therefore, the impact of the GNU

Radio delays is minimizing, which in turn minimizes the chance of any underflow occur-



5.4 Symbol-timing recovery at CF relay 81

rence.

The performance of the hardware and the latency could be further reduced if the

symbol-timing recovery module is also implemented on the FPGA. However, the Gard-

ner algorithm requires performing intensive floating-point multiplications for timing-

error detection and fractional resampling (see Section 5.4), which cannot be implemented

on the FPGA of USRP N210 due to the limited number of only 18-bit fixed-point multi-

pliers. This means that the Gardner algorithm can only be implemented on FPGA of any

newer generation Ettus SDR products such as USRP X series which are equipped with

more powerful FPGA.

5.4 Symbol-timing recovery at CF relay

The symbol-timing asynchrony appears from the fact that a receiver is unaware of the

precise arrival time of the pulses. Due to this fact, nonzero timing delay τd between the

optimal sampling time and the receiver’s ADC clock, which is unknown by the receiver,

usually exists. In order to take into account τd, the received signal r(t) is modeled as

follows

r (t) = hx (t− τd) + v(t), (5.1)

where h is the channel coefficient, x(t) is the transmitted signal with symbol period T

and v(t) is AWGN. We assume that 0 6 τd 6 T. A symbol-timing recovery algorithm

attempts to estimate and track the timing delay τd. Sampling at time points ts = kT + τ̂d,

where k ∈ Z+, maximizes SNR at the receiver and minimizes intersymbol interference

(ISI), hence the timing delay should be estimated accurately.

In modern software receivers sampling the received signal r (t) at the optimal time

ts = kT + τ̂d is inefficient from the perspective of hardware because of the need to adjust

ts with changing τ̂d. Instead, r (t) is sampled with a fixed sampling period Ts < T/2,

i.e. with oversampling. After proper amplification and matched filtering, the output of

matched filter sn is fed into fractional interpolator [120] which produces estimates of tim-

ing delay τ̂d and received signal at the optimal sampling time ŝ (kT + τ̂d) fully in a digital

manner. Subsequently, output of the fractional interpolator is passed to the demodulator



82 SDR implementation of CF relaying and experimental evaluation

ADC
Matched 

Filter
Fractional

Interpolator

Loop
Filter

TED

AGC Demod.
r(t) r(nT ) s(kT +τ ) x^

s s s d

e

^ ^

x̂

n

k

k

k

Fixed
rate 1/Ts

τd̂

Figure 5.4: Feedback symbol-timing recovery scheme [119]. The received signal r(t) is
sampled with fixed sampling period Ts < T/2. The amplified and filtered signal sn =
s(nTs), n ∈ Z+ is fed into the fractional interpolator which estimates τd and samples
ŝ (kT + τ̂d), k ∈ Z+. The samples are used for the demodulation and by the TED. The
TED estimates timing error e[k] needed for update of τ̂d. The dashed lines represent the
optional components when TED is decision-directed, such as MM algorithm.

or equalizer. Figure 5.4 illustrates such a fully digital symbol-timing recovery scheme

based on feedback timing error detection (TED), where the output of the fractional in-

terpolator is also used for estimating the timing error ek, needed for updating τ̂d. Other

schemes, such as feed-forward TED are discussed in [119].

Of all methods of feedback symbol-timing recovery, the modified Mueller and Muller

algorithm (MM) [121] and Gardner algorithm [122] are two popular algorithms used in

software receivers. The difference between them is how they perform TED. In the MM

algorithm the timing error is estimated as follows

eMM
k =

(
ŝI
(
(k− 1) T + τ̂d

)
− ŝI (kT + τ̂d)

)
< (x̂k)

+

(
ŝQ
(
(k− 1) T + τ̂d

)
− ŝQ (kT + τ̂d)

)
= (x̂k) , (5.2)

where ŝI(t) and ŝQ(t) are I and Q components of ŝ(t), x̂k is the demodulator output i.e.

decision based on sampled value ŝ (kT + τ̂d). In the Gardner algorithm, the timing error

is

eG
k =

(
ŝI
(
(k− 1) T + τ̂d

)
− ŝI (kT + τ̂d)

)
ŝI (kT − T/2 + τ̂d)

+

(
ŝQ
(
(k− 1) T + τ̂d

)
− ŝQ (kT + τ̂d)

)
ŝQ (kT − T/2 + τ̂d) . (5.3)



5.4 Symbol-timing recovery at CF relay 83

A comparison of (5.2) and (5.3) shows the advantages and disadvantages of each method.

The MM algorithm is decision-directed, hence it is sensitive to the carrier offset and phase

errors. Therefore, the carrier and phase recovery should be performed before the tim-

ing recovery. However, once the carrier and phase offsets are recovered, the MM algo-

rithm provides faster timing recovery, and is less sensitive to low SNR than non-decision-

directed methods. Furthermore, the MM algorithm can be enhanced, if the timing recov-

ery is performed in cooperation with channel decoding [123]. At the same time, the MM

algorithm demonstrates reasonable performance with PSK modulations only. In contrast,

the Gardner algorithm is non-decision-directed, and is therefore robust against the carrier

frequency and phase offsets. Therefore, the channel estimation can be performed after the

timing recovery. The Gardner algorithm can also be applied for receivers where the con-

stellation of a received signal is larger than a PSK constellation. However, the Gardner

method suffers from self-noise, especially when the SNR of the received signal is low. The

impact of self-noise can be reduced with interpolation with a higher upsampling factor

[124, 125]. The Gardner method also requires estimation of s(t) with half symbol period

delay after the optimal sampling time i.e. ŝ (kT − T/2 + τ̂d), thus the fractional interpo-

lator should produce twice more output. In addition, the output of the Gardner TED is

proportional to the square of magnitude of the input signal. For this reason, accurate

AGC should precede the Gardner symbol-timing recovery block.

The problem of symbol-timing recovery for conventional communications has been

studied in detail. However, to the best of our knowledge, this problem in context of PNC,

i.e. symbol-timing recovery for superimposed signals, has still been little studied, with

only a few results based on realistic assumptions being available [126,127]. For example,

although [126] offers a symbol-timing recovery solution for non-OFDM communications,

the proposed method requires high oversampling and the use of computationally com-

plex DFT-based interpolation. This problem is also not covered in studies describing

implemented PNC prototypes [32, 74, 75].

In our testbed we utilize another approach. Assuming that with the proposed GPSDO-



84 SDR implementation of CF relaying and experimental evaluation

based synchronization the terminals are symbol-synchronous, i.e.

τd = τA
d = τB

d , (5.4)

the relay only estimates one parameter τd at the beginning of each packet. Therefore,

we can perform the PNC symbol-timing recovery with a method used for conventional

symbol-timing recovery. Given that the superimposed constellations at the CF receiver

are larger than PSK constellations and considering other advantages of the Gardner al-

gorithm discussed above, we adopt the Gardner symbol-timing recovery method in our

testbed.

As data exchange in TWRN is packet-based rather than continuous, the timing re-

covery algorithm is expected to provide both fast acquisition of τ̂d at the beginning of

each packet and quick updates of timing delay τ̂d if a change occurs in the middle of a

packet. For the acquisition phase we add a symbol-timing recovery preamble (STRP) in

front of each packet. We then experimentally determine the required length of the STRP.

The three plots in Figure 5.5 demonstrate an example of symbol-timing recovery in the

CF relay. In this example Ts = T/2, i.e. the oversampling is 2 samples/symbol. Be-

fore the packet arrives, the estimate of timing delay is set to one-half symbol period T,

τ̂d/T = 0.5. During the acquisition phase the TED estimates that the timing error eG
k is

positive. Accordingly, τ̂d is updated in a way to minimize the timing error. With the esti-

mate τ̂d becoming closer to the actual delay τd the timing error is minimized and centered

around zero.

In the example demonstrated in Figure 5.5, the acquisition phase takes about 200

symbols, however, the SNR is high. Based on several experiments performed in different

SNR regimes we determined that a 150-200 bytes long STRP (600-800 symbols) in front

of a packet is sufficient to provide symbol-timing recovery at the CF relay in lower SNR

regimes, without affecting the main part of the packet.



5.5 Channel estimation 85

0 500 1000 1500 2000
−0.4

−0.2

0

0.2

0.4
(a) Output of fractional interpolator

symbols

ŝ
(k
T
+

τ̂
d
)

0 500 1000 1500 2000
-0.1

-0.05

0

0.05

0.1
(b) Timing Error

symbols

e
G k

 

 

Raw
Filtered .

0 500 1000 1500 2000
0

0.5

1
(c) Relative timing delay

symbols

τ̂
d
/
T

Acquisition phase

Figure 5.5: Example of timing recovery in CF relay.

5.5 Channel estimation

All the relaying strategies implemented in this testbed assume that the relay knows the

channel coefficients hAR and hBR. Hence, the relay should be able to obtain accurate es-

timates of the channel coefficients from the arriving packets. The terminals should also

estimate their channel coefficients based on the received packets.

In our testbed, a training sequence which consists of 32 symbols, known by the de-

sired receiver, is placed in the preamble of each packet after the STRP preamble. This se-



86 SDR implementation of CF relaying and experimental evaluation

quence is used for channel estimation with conventional least-squares estimation meth-

ods in all terminals and the DNC relay. The DF and CF relays, however, estimate the

channel coefficients from the superimposed packets. Therefore, in the DF and CF relays

we have applied techniques from MIMO channel estimation (2.15) and (2.16), assuming

the packets are synchronized with the proposed synchronization scheme. Note that both

training sequences tA and tB are also modulated with the QPSK modulation scheme. The

training sequences are generated randomly in the beginning of experiments, however

they are to be orthogonal and of the same norm, as recommended in [68]. Consequently,

we have implemented the joint channel estimation algorithm as a part of the related GNU

Radio blocks.

Our experimental results demonstrate that the implemented method of channel esti-

mation provides accurate estimates of channel coefficients hAR and hBR when the symbol-

timing is estimated correctly before the channel estimation.

The carrier frequency asynchrony is also effectively mitigated with the use of GPSDO.

The GPSDO module provides the reference signal to the local oscillator, thus constantly

correcting any drift away from the target frequency. The measurement results showed

that the residual frequency offset was only about 4 Hz. Therefore, in this work we can

assume that the channel rotation is slow, i.e. almost negligible within the duration of one

packet. Therefore, once estimated at the beginning of packet, the estimates of channel

coefficients ĥAR and ĥBR, as well as CF integer coefficients aA and aB do not need to be

updated in the middle of the packet.

5.6 Experimental performance evaluation

In this section, we demonstrate the performance of the testbed with the CF, DF and DNC

schemes via a series of experiments in the indoor environment. Note that the detail CF

scheme design is discussed in Chapters 3 and 4, the DF scheme design provided in Sec-

tion 2.2.1 and Chapter 4, and the DNC scheme is given by (1.1) and (1.2) and its data-link

layer protocol is described in Chapter 4. The data exchanged between the terminals were

randomly generated.



5.6 Experimental performance evaluation 87

Table 5.2: Summary of Main Parameters for GNU Radio Blocks.

Block Parameter Value
USRP Source, Sampling Rate 3.125 MSPS
USRP Sink Center Frequency 2.41 GHz

LO Offset 2 MHz
Antenna J1
Mb0: Clock Source O/B GPSDO
Mb0: Time Source O/B GPSDO

USRP Source Gain 0 dB
Mod./Demod. Modulation QPSK (Gray code)

Tx Digital Gain b, gd 0.2
PS Filter RRC Filter
Oversampling 2 samples /symbol
Roll-off of the RRC 0.3
AGC Default

Half-duplex Packet Length 4096 bytes
Timeout Tout 0.1 s.
ECC (64,56) Reed-Solomon,

Adler-32 checksum
a The input level of signal for the USRP Sink must be within the range
of [−1, 1] to avoid arithmetic overflow when converting from float to
short type. To guarantee this, the input is multiplied by a coefficient
0 < gd < 1. In this work gd is referred to as Tx Digital Gain.

5.6.1 Experimental set-up

Table 5.2 contains the set-up of the main parameters for various GNU Radio blocks in-

volved in the communication. In particular, we set the GNU Radio sampling frequency

to 3.125 MSPS. This means that the USRP’s ADC and DAC sampling rate was still 100

MSPS, however the Rx signal was downsampled by a factor of 32 in the DDC chain and

the Tx signal was upsampled by the same factor in the DUC chain. This GNU Radio

sampling frequency with oversampling 2 sample/symbol resulted in a symbol rate of

1.5625 MBd. Even though the testbed supports higher sampling rates up to 12.5 MSPS,

the chosen sampling rate provides smooth operation of the testbed, thus CF performance

analysis is less affected by the GNU Radio delays and residual symbol asynchrony1 .

1Shortly after submission of this thesis, we have developed a new enchanced symbol-level synchroniza-
tion scheme for USRP, which increases the stability of the testbed at higher sampling rates [128].



88 SDR implementation of CF relaying and experimental evaluation

Our experiments were conducted in the laboratory environment, such that the dis-

tance between each terminal and the relay was approximately 4 meters. In order to ob-

tain experimental results with both high and low SNR we set the Rx gain to 0 dB and

limited the Tx gain to 22 dB. We also reduced the Tx digital gain gd to 0.2.

In these experiments our goal is the performance evaluation of the relaying strategies

against the Tx power. The problem with all USRP devices is that since the daughter-

boards are not well calibrated, the absolute Tx power may differ slightly from one device

to another. Furthermore, the absolute Tx power may depend on many factors, such as the

frequency, ambient temperature and stability of the power supply. However, the user can

control the approximate Tx power by setting the Tx gain (i.e. the gain of the Tx amplifier)

and the Tx digital gain gd as explained in Table 5.2. Therefore, we fix the Tx digital gain

and plot the Tx gain on the X-axis measured in dB, rather than the absolute Tx power

measured in dBm. In our experiment, when measured with a spectrum analyzer, the

Tx gain of 22 dB approximately matches the absolute Tx power of 4 dBm, while the Tx

gain of 4 dB matches the Tx power of about -10 dBm. If the measurement is repeated

with other XCVR2450 daughterboards, the level of Tx power will be slightly different

but should not deviate much.

In addition, XCVR2450 transmitters expose a significant DC component, that varies

from one daughterboard to another and causes a decrease of the effective Tx SNR [73].

In order to improve the SNR we set the LO offset, which is larger than the half of the

signal bandwidth. The LO offset shifts the DC noise into the matched filter’s stopband

and therefore effectively suppresses the DC noise.

5.6.2 Bit error rates

We first evaluate the performance of different relaying strategies in terms of end-user bit-

error rate (BER). Figure 5.6 illustrates the end-user raw and decoded BER of the TWRN

with DNC, DF (with the MIMO zero-forcing receiver) and CF schemes, obtained during

the experiments vs. the Tx gain of USRP. The end-user BER in TWRN is determined

by uncorrected errors which occur during the MA phase and errors which occur during

the broadcast phase. In our testbed the DNC and DF relays, however, apply the Adler-



5.6 Experimental performance evaluation 89

 
B

E
R

1e−08

1e−06

0.0001

0.01

Transmission Gain (dB)
4 6 8 10 12 14 16 18 20 22 24

CF, raw
CF, decoded
DNC, DF raw
DNC, DF decoded

Figure 5.6: Measured BER comparison of TWRN with DNC, DF and CF vs. USRP Tx gain

32 checksum algorithm for post-ECC data verification, and discard packets with errors

uncorrected after ECC decoding. As a result, the BER of MA phase for those relaying

schemes is negligible compared to the BER of the broadcast phase. Because the broadcast

phase in the DF scheme is implemented in the same way as in the DNC scheme, these

two schemes have similar BER. In fact, the decoded BER is similar to that of the RS code

used for ECC. At the same time the CF relaying scheme exhibits considerably higher BER,

both raw and decoded, for several reasons. First, the CF scheme suffers from the decrease

of effective SNR, as demonstrated in Figure 5.7. Second, the CF scheme also suffers from

imperfect symbol synchronization, which further increases the effective SNR. Finally, the

Adler-32 algorithm is not implemented in the CF relay, because the relay does not re-

cover bits from the received signals. Therefore, unlike the DNC and DF schemes, the CF

relay is oblivious of ECC-uncorrected errors, hence corrupted packets are not discarded.

Instead, the relay broadcasts the corrupted packets, which results in dramatic increase of

the end-user BER. From the figure it is obvious, however, that the BER of the MA phase

is partly improved by ECC decoding at terminals.



90 SDR implementation of CF relaying and experimental evaluation

(a) h = [−0.148 + 0.021i, 0.039− 0.080i],
αMMSE=5.160 + 7.732i, a = [−1− i, 1]

(b) h = [0.021− 0.133i, 0.007 + 0.068i],
αMMSE= − 0.572− 8.075i, a = [−1, 1]

(c) h = [0.135− 0.069i,−0.064− 0.064i],
αMMSE=− 4.030 + 6.039i, a = [i, 1]

(d) h = [−0.146− 0.034i, 0.074− 0.041i],
αMMSE=8.057 + 4.794i, a = [−1− i, 1]

Figure 5.7: Examples of constellations of received superimposed signal multiplied by
αMMSE, αMMSEy, with different integer coefficients a which best fit the channel realization
h. The terminals transmit QPSK modulated signals. From αMMSEy the CF relay recovers
linear combinations xR. The Voronoi diagrams represent decision regions of the slider
(3.16) for each case.

Figure 5.7 presents several examples of constellations of superimposed signal y re-

ceived by the relay, multiplied by the coefficient α with different integer coefficients a



5.6 Experimental performance evaluation 91

 
Pa

ck
et

 D
el

iv
er

y 
R

at
io

0.8

0.85

0.9

0.95

1

1.05

Transmission Gain (dB)
6 8 10 12 14 16 18 20 22 24

 DNC
 DF
 CF

Figure 5.8: Measured PDR of TWRN with DNC, DF and CF relaying strategies vs. USRP
Tx gain

which best fit the current channel state i.e. realizations of h and the SNR. Each subfigure

demonstrates the relative amount of CF effective noise compared to the noise introduced

by the channel.

5.6.3 Packet delivery ratio

Figure 5.8 shows the packet delivery ratio (PDR) of the TWRN with DNC, DF (with the

MIMO zero-forcing receiver) and CF schemes, obtained during the experiments vs. the

Tx gain of the USRP. As expected, the DNC strategy outperforms the other strategies in

terms of PDR with any level of the Tx gain. When the Tx gain is higher than 14 dB, the

PDR of the DF scheme is similar to that of the DNC strategy, although a performance

gap is visible. This gap is determined by the imperfect synchronization typical for the

GNU Radio platform and independent of the power level. The CF strategy shows lim-

ited performance with lower Tx gain. However, the CF’s PDR becomes comparable to

the performance of the DF strategy with increased Tx gain.

A comparison of these results with those provided in Figure 3.5 shows that the PDR



92 SDR implementation of CF relaying and experimental evaluation

 
D

at
a 

th
ro

ug
hp

ut
, k

bp
s

500

600

700

800

900

1,000

1,100

Transmission Gain (dB)
6 8 10 12 14 16 18 20 22 24

 DNC
 DF
 CF

Figure 5.9: Measured data throughput per direction of TWRN with DNC, DF and CF
relaying strategies vs. USRP Tx gain

of the DF scheme is less than that of the DNC scheme, while the FER of the DNC scheme

is higher than that of the DF scheme. In the simulations in Section 3.7 we, however, as-

sumed that the synchronization is perfect; this assumption is not achievable in practice.

Therefore, even small errors in symbol synchronization negatively affect the actual PDR

of the DF scheme. On the other hand, since the DNC relaying does not require synchro-

nization, its performance remains similar.

5.6.4 Network throughput

Figure 5.9 illustrates the measured average data throughput (i.e., not counting the ECC

redundancy and overhead) of the TWRN per direction vs. the Tx gain. With the Tx gain

of 22 dB the average data throughput per direction is about 1000 kbps, 960 kbps and 750

kbps for the CF, DF and DNC schemes, respectively. The figure shows that with high Tx

gain, the CF strategy outperforms the DNC by only about 33%, therefore, the theoretical

advantage of 50% is not achieved. This is probably due to the presence of the synchro-

nization delays and the need for additional retransmissions introduced by the TO-ARQ



5.7 Conclusion 93

protocol of the CF relay. However, this gap, could be partially reduced with a faster link

between the host PC and USRP. Nevertheless, this figure illustrates that the CF scheme is

beneficial in terms of the network throughput when the SNR is high.

We also observe that when the Tx gain is more than 16 dB, the DF TWRN through-

put is less than that of the CF scheme. Furthermore, it also does not achieve the 50%

improvement over the DNC scheme. This experimental result contradicts the simulation

results illustrated in Figures 3.6 and 4.9, where the DF scheme had higher throughput at

any SNR. The contradiction can be explained by the almost double amount of compu-

tations required in the DF relay, compared to that of the CF relay, because the DF relay

processes signals from two antennas, and demodulates both packets individually. There-

fore, this experiment demonstrates the computational efficiency of the CF scheme, when

the scheme is implemented on an SDR platform. Note that in this experiment we im-

plemented the MIMO zero-forcing receiver in the DF relay. Taking into account that the

throughput decline occurs primarily due to the computational delays and hardware is-

sues, we expect that the use of another MIMO receiver such as the MMSE receiver will

not significantly improve performance of the DF scheme.

Finally, the figure shows that with lower Tx power the DNC relaying scheme pro-

vides higher throughput than both the CF and DF schemes. For example, when the Tx

gain is 12 dB, the throughput of the DNC scheme is about 720 kbps, while the throughput

of the DF scheme is only 680 kbps. At the same time, when the Tx gain was set to 8 dB,

only the DNC scheme could provide reliable relaying with the throughput of about 600

kbps. Therefore, in this part the experimental results are consistent with those obtained

in simulations shown in Figures 3.6 and 4.9.

5.7 Conclusion

In this chapter we have presented an implementation of a two-way relay network testbed

with physical-layer network coding, namely the compute-and-forward relaying scheme.

We have solved several problems which have hindered the development of physical-

layer network coding in GNU Radio, such as hardware imperfections, software delays,



94 SDR implementation of CF relaying and experimental evaluation

lack of synchronization and symbol-timing recovery for superimposed signals. As a re-

sult, compared to previous work, our testbed allows the implementation of standard

PNC algorithms that require full synchronization.

Next, using the testbed, we have conducted several experiments and compared the

performance of the compute-and-forward scheme with other relaying strategies such as

digital network coding and decode-and-forward schemes. We have shown that in the

high SNR regime, the compute-and-forward approach outperforms other relaying meth-

ods in terms of the network throughput. At the same time, the compute-and-forward

relays require neither MIMO capabilities nor redundant computations for complete re-

covery of both packets, unlike the DF relay. Therefore, our experiments demonstrate the

practical effectiveness of compute-and-forward relaying.

Further, in general the software-defined radio platform allows modification of the sig-

nal processing and relaying algorithms without additional costs. Therefore, the testbed

and synchronization schemes which we have developed can serve as a base for further

extension to more complex network coding scenarios within larger networks, both syn-

chronous and asynchronous. The development of a larger network testbed and the in-

vestigation of physical-layer network coding efficiency in such networks are subjects of

our future work.



Chapter 6

Multiplierless IIR filter design via
zero/pole approximation

The pulse-shaping filter is an essential component of a communication system, used to limit the

transmission bandwidth and minimize the intersymbol interference. Baseband pulse-shaping fil-

ters are typically implemented as a finite impulse response (FIR) filter. However, FIR filters are

usually more computationally intensive than equivalent infinite impulse response (IIR) filters.

We propose a new method for the design of multiplierless IIR pulse-shaping filters. First, a pro-

totype floating-point IIR filter is designed using standard techniques (e.g. optimal Hankel-norm

approximation). Then, using the proposed method, the filter’s coefficients are converted into the

canonical signed digit (CSD) form, which enables us to avoid using full multiplication opera-

tions. This method, based on zero/pole approximation, introduces a minor deviation of zeros and

poles of the prototype filter, thus preserving the filter stability. The experimental results show that

the bit-error rate introduced by a CSD IIR pulse-shaping filter is similar to that of an equivalent

filter with FIR architecture. At the same time, the hardware complexity is significantly lower

and the out-of-band power is reduced. This makes our CSD IIR filters particularly suitable for

implementation on FPGAs.

6.1 Introduction

BASEBAND pulse-shaping filters for wireless communications have been used for

decades, but their effective implementation on resource-constrained embedded

systems remains a challenge. Various applications and different hardware implemen-

tation options have led to a wide variety of pulse-shaping filter implementations. Exam-

95



96 Multiplierless IIR filter design via zero/pole approximation

ples of practical implementations for a specific application, such as for DVB, WCDMA

and underwater communications, have recently been proposed [129–133].

A common goal in all implementations is to reduce the number of multipliers or even

to remove them completely. One method of multiplierless filter design is based upon the

representation of filter coefficients as a sum of a small number of powers of two, referred

to as canonical signed digit representation (CSD) [134]. In this case, multiplication by a

coefficient can be implemented using only a small number of adders and shifters. Such

filter design for finite impulse response (FIR) filters has received considerable attention

[135–140].

FIR filters have many attractive properties, such as stability, linear phase, and robust-

ness to coefficient quantization, but require a large number of multipliers. On the other

hand, infinite impulse response (IIR) filters generally satisfy the desired frequency re-

sponse specifications with lower order than that of an FIR filter. Therefore, despite the

drawbacks, such as nonlinear phase and sensitivity to coefficient quantization, IIR filters

can be a good alternative for reducing baseband receiver complexity and saving chip

area. Various DSP techniques have been developed to minimize the drawbacks of IIR

filters. For example, an IIR filter implemented as a cascade of second-order sections is

more robust against coefficient quantization [141].

The design of IIR filters with CSD coefficients has attracted much less attention. In

[142] Oh et al. proposed a method of designing a digital IIR filter with CSD coefficients

based on solving the mixed integer linear programming problem. In [143], Liang et al.

used a genetic algorithm to design an IIR filter as a cascade of second-order sections. The

stability of each section was ensured by keeping the coefficients within the stability tri-

angle. In [144], the design of 2D FIR and IIR filters with CSD coefficients using a genetic

algorithm was discussed. A more recent paper [140] suggests a design algorithm based

on solving an optimization problem, where the filter complexity is to be optimized. The

filter complexity is defined as a number of nonzero digits in the CSD representation of

all the coefficients. The complexity minimization is carried out via sequential coefficient

truncation, subject to the constraints on the filter design requirements.

In this project we propose a different approach to CSD IIR filter design. Unlike other



6.2 The CSD zero/pole approximation method 97

methods based on optimized coefficient truncation, our approach is based on zero/pole

approximation. This is based on the principle that a slight error in the location of poles

does not affect the filter characteristics. Furthermore, we can ensure that the poles are

still located within the unit circle in the z-plane, and therefore guarantee that the filter

remains stable. As an example, we apply the proposed method to the root-raised cosine

pulse-shaping filter design. We show that a CSD IIR pulse-shaping filter can be imple-

mented with reduced hardware cost compared to those implemented as a CSD FIR filter.

At the same time, the CSD IIR filter offers bit-error rates (BER) similar to those of the CSD

FIR filter and provides lower out-of-band power.

The rest of this chapter is organized as follows. Section 6.2 introduces the proposed

method of zero/pole approximation. Section 6.3 provides an example of a CSD IIR pulse-

shaping filter design and its performance analysis. In Sections 6.4 and 6.5 the implemen-

tation and experimental results are discussed, and Section 6.6 summarizes our contribu-

tion to this part of the project.

6.2 The CSD zero/pole approximation method

In this section we review existing methods of IIR filter design as well as the CSD rep-

resentation of rational numbers, and then describe the proposed algorithm of zero-pole

approximation.

6.2.1 IIR filter design methods

A large number of methods for IIR filter design have been proposed. One group of meth-

ods, so-called direct methods, such as impulse invariance and bilinear transform, are

based on conversion from analog filter prototypes. However, these methods are not al-

ways usable, for example in the case where the analytic form of the transfer function in

the s-plane does not exist. Another group of methods is based on approximation of FIR

prototype filters. This group includes the Pade approximation, the Chebyshev approxi-

mation and the optimal Hankel-norm approximation methods [145]. Others such as [146]



98 Multiplierless IIR filter design via zero/pole approximation

suggest the use of least-square approximation of an FIR filter by an IIR filter.

6.2.2 CSD representation

A rational number x is CSD representable with at most L nonzero digits if it represents a

signed sum of powers of two:

x =
N

∑
i=−M

ŝi2i =
L

∑
n=1

sn2−pn , (6.1)

where ŝi ∈ {−1, 0, 1}, sn ∈ {−1, 1} and pn ∈ {−N,−N + 1, . . . , M}. Here N + 1 is the

total number of digits in the representation of the integer part and M is the total number

of digits in the representation of the fractional part. We fix N = 0, (i.e., |x| ≤ ∑L−1
n=0 2−n

if L ≤ M) and denote the set of all CSD-representable numbers with a given L and M as

QL
M. Obviously, QL−1

M ⊂ QL
M.

6.2.3 The algorithm

Let RL
M denote the set of all possible roots in the complex plane of the quadratic equa-

tion ax2 + bx + c = 0, when the coefficients have a CSD representation a, b, c ∈ QL
M with

specified L and M. Similarly, we let R′L
′

M denote the set of all possible roots of the monic

quadratic equation x2 + bx + c = 0, where b, c ∈ QL′
M. An example of such a set, R′37 , is

illustrated in Figure 6.1. Obviously, the number of RL
M and R′L

′
M increase with increasing

of L and L′, respectively, and in the complex plain they appear more densely distributed.

We will use these two sets to approximate the zeros and poles on the desired transfer

function.

Given an IIR filter with infinite precision coefficients, we can write the transfer func-

tion as the product of Ns second-order sections

H(z) ∝
Ns

∏
k=1

(1− βk1z−1)(1− βk2z−1)

(1− αk1z−1)(1− αk2z−1)
. (6.2)



6.2 The CSD zero/pole approximation method 99

Figure 6.1: R′37 , set of all possible roots of equation x2 + bx + c = 0, where b, c ∈ Q3
7. The

red circle represents the unit circle.

Each section has two zeros βk1 and βk2 and two poles αk1 and αk2 represented in infinite

precision. The filter is stable if all the poles are located inside the unit circle in the z-plane,

i.e., |αk1| < 1, |αk2| < 1.

Our goal is to design a filter with CSD coefficient representation and a transfer func-

tion:

Ĥ(z) =
Ns

∏
k=1

ĝk
b̂0k + b̂1kz−1 + b̂2kz−2

1 + â1kz−1 + â2kz−2 ∝
Ns

∏
k=1

(1− β̂k1z−1)(1− β̂k2z−1)

(1− α̂k1z−1)(1− α̂k2z−1)
, (6.3)

where b̂0k, b̂1k, b̂2k ∈ QL
M and â1k, â2k ∈ QL′

M. The corresponding zeros and poles are

β̂k1, β̂k2 ∈ RL
M and α̂k1, α̂k2 ∈ R′L

′
M and we select them to approximate the infinite precision



100 Multiplierless IIR filter design via zero/pole approximation

ones as

min
β̂k1,β̂k2

|β̂k1 − βk1|+ |β̂k2 − βk2|, (6.4)

and

min
|α̂k1|<1
|α̂k2|<1

|α̂k1 − αk1|+ |α̂k2 − αk2|. (6.5)

Once the minimizing α̂’s β̂’s are found, the corresponding â and b̂ CSD coefficients are

used for the filter implementation. Here ĝk is the k-th section’s scaling factor, which can

be conveniently adjusted to a power of two in order to avoid overflow and underflow.

Note that the minimization is carried out independently for each section’s numerator

and denominator and only needs to exhaustively search all the elements of RL
M and R′L

′
M

respectively.

In summary, we have designed a filter with CSD coefficients with zeros and poles as

close as possible to the zeros and poles of the original floating-point filter. This slight

change of their locations marginally affects the filter characteristics. Experimental results

in the next sections show that a very good approximation is achievable when the coeffi-

cient CSD representation contains at least three nonzero digits i.e. L > 3 and L′ > 3.

6.3 Performance analysis

In this section, we present an example of an IIR root-raised cosine (RRC) filter with CSD

coefficients implemented as a cascade of second-order sections. The impulse response of

the ideal discrete-time RRC filter is

hRRC (kTs) =



1√
T

(
1− ρ + 4

ρ

π

)
, k = 0,

ρ√
2T

[(
1 +

2
π

)
sin
(

π

4ρ

)
+

(
1− 2

π

)
cos

(
π

4ρ

)]
, k = ± T

4ρTs
,

1√
T

sin
[

π
kTs

T
(1− ρ)

]
+ 4ρ

kTs

T
cos

[
π

kTs

T
(1 + ρ)

]
π

kTs

T

[
1−

(
4ρ

kTs

T

)2
] , otherwise,

(6.6)



6.3 Performance analysis 101

where ρ is the roll-off factor, T is the symbol period, Ts is the sampling period, and r ,
T
Ts

is the oversampling factor. In this example we set ρ = 0.3 and r = 8.

As a performance benchmark, we consider an FIR root-raised cosine filter the coef-

ficients of which are also in CSD form with at most three nonzero digits, i.e. from Q3
M.

We set M = 15, because the input signal resolution is 16 bits. The required minimum

stopband attenuation is Ast = 30 dB. This FIR filter is implemented by rounding each

floating-point coefficient of the root-raised cosine filter to the nearest CSD number. As a

result of the rounding, the CSD FIR filter consists of 73 non-zero symmetric taps.

First, we design the prototype IIR filter with floating-point coefficients via the Hankel-

norm approximation [145]. The desired stopband attenuation is achieved when the pro-

totype IIR filter is composed of 6 second-order sections, which requires 30 multiplications

per one input sample. Then, we convert the prototype filter in the CSD form with the pro-

posed zero/pole approximation.

Figure 6.2 depicts the pole-zero plot of the original floating-point IIR filter, and the fil-

ters with CSD coefficients. According to the figure, the proposed approximation slightly

shifts the zeros and poles from their original locations. However, since all the poles still

lie within the unit circle, the CSD filter is stable. The values of the approximation errors

for each pair of zeros and each pair of poles are provided in Table 6.1. From the table,

the CSD representation of coefficients of the numerators with three nonzero digits, L = 3,

approximates the zeros of the original filter with the worst-case error of the order of 10−4.

At the same time, the pole approximation errors are higher. In the case when L′ = 3, the

Table 6.1: Zero/pole approximation error.

Approximation Error
k Zeros, L = 3 Poles, L′ = 3 Poles, L′ = 4
1 5.41 · 10−6 6.71 · 10−3 8.34 · 10−4

2 2.39 · 10−4 7.95 · 10−3 1.46 · 10−3

3 6.51 · 10−4 8.93 · 10−3 3.09 · 10−3

4 2.69 · 10−5 1.94 · 10−2 2.41 · 10−3

5 1.89 · 10−4 4.20 · 10−3 6.65 · 10−4

6 9.30 · 10−5 7.43 · 10−3 5.45 · 10−4



102 Multiplierless IIR filter design via zero/pole approximation

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
a

g
in

a
ry

 P
a

rt

 

 

IIR, Floating−point: Zero

IIR, Floating−point: Pole

IIR, CSD3/3: Zero

IIR, CSD3/3: Pole

IIR, CSD3/4: Zero

IIR, CSD3/4: Pole

Figure 6.2: Pole-zero plot for the floating-point IIR filter, IIR filter with CSD3/3, and IIR
filter with CSD3/4

largest error is equal to 1.94 · 10−2. When L′ = 4 the largest error is equal to 3.09 · 10−3.

Figure 6.3 illustrates the frequency responses of the floating-point IIR filter and CSD

IIR filters. When L = 3 and L′ = 4, the frequency responses of the filters are similar.

However, with L′ = 3, the frequency response of the CSD filter exposes the undesired

ripple in the passband. This ripple is due to the larger error of a pole approximation. In

addition, the stopband attenuation of the CSD filter is insignificantly weaker. Figure 6.3

also compares the out-of-band power of the CSD IIR and CSD FIR filters. Although both

the FIR and IIR filters satisfy the desired stopband attenuation, the IIR filter provides the

stronger attenuation, thus reducing the out-of-band power.

In addition to the stopband attenuation requirement, another requirement for a pulse-

shaping filter is minimization of the intersymbol interference (ISI). The zero-ISI criterion



6.3 Performance analysis 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

FIR, Floating−point

IIR, CSD 3/3

IIR, CSD 3/4

FIR, CSD 3

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
−12

−10

−8

−6

−4

−2

0

2

4

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

Figure 6.3: Frequency response of the floating-point FIR filter, CSD IIR filter with L =
L′ = 3, CSD IIR filter with L = 3, L′ = 4, and CSD FIR filter with L = 3.

for a filter with impulse response hPS (t) is given as

hPS(krTs) =

 1, k = 0,

0, k 6= 0.
(6.7)

As the raised cosine (RC) filter efficiently limits the bandwidth of the transmitted signal

and its impulse response meets the zero-ISI criterion, the RC filter may be considered as

a good pulse-shaping filter. However, due to the presence of white noise in the wireless

channels, a matched filter is often employed in the receiver, in order to mitigate the effect

of the white noise. In this scenario, it is more practical to split the RC impulse response

between the transmitter and receiver, such that the combined impulse response h (t) is



104 Multiplierless IIR filter design via zero/pole approximation

equal to the RC impulse response hRC (t), i.e.

h (t) = hTx (t) ∗ hRx (t) = hRC (t) . (6.8)

As hRC (t) = hRRC (t) ∗ hRRC (t), the RRC filter can be used in both the transmitter and

receiver

hTx (t) = hRx (t) = hRRC (t) . (6.9)

Therefore, when designing the RRC filter with the proposed method we need to ensure

that the combined impulse response h (t) satisfies the zero-ISI criterion.

Figure 6.4 shows the normalized combined impulse responses h (t) for different im-

plementations of the root-raised cosine filters. In Figure 6.4(a) both the transmitter and

receiver filters are implemented as the CSD IIR filter with L = 3 and L′ = 4 via the pro-

posed zero/pole approximation method, and in Figure 6.4(b) both the transmitter and

receiver filters are implemented as the CSD IIR filter with L = 3 and L′ = 4 via direct

CSD truncation of the coefficients. The red solid markers show the impact of the inter-

symbol interference (ISI) on consecutive impulses. From Figure 6.4(a), it follows that the

zero-ISI requirement is not satisfied exactly, however the ISI introduced by the zero/pole

approximation method is not significant. In fact, the ISI value between two consecutive

pulses for CSD IIR filter is less than 2%. In contrast, Figure 6.4(b) demonstrates that the

direct CSD truncation of the prototype filter’s coefficients ruins the zero-ISI property.

The figure also illustrates the normalized impulse responses of the channel, com-

prised of the identical Tx and Rx floating-point IIR filters (Figure 6.4(c)). These impulse

responses are compared to the channel response of the cascade of two ideal root-raised

cosine filters, which correspond to the channel response of the ideal RC filter in Fig-

ures 6.4(d) to 6.4(f). From a comparison of Figure 6.4(d) and Figure 6.4(f) it follows that

the higher ISI appears from the CSD IIR filter rather than from its floating-point proto-

type. Therefore, an ISI mitigation can be achieved by increasing L and L′ for the sections

where the accuracy of the zero/pole approximation is lower than in the other sections.

In summary, from the discussion above we see that three nonzero digits for the CSD

representation of the coefficients of a second-order section in the numerator and four



6.3 Performance analysis 105

20 30 40 50 60 70 80 90 100 110
−0.2

0

0.2

0.4

0.6

0.8

1

Samples

A
m

pl
itu

de

(a)

20 30 40 50 60 70 80 90 100 110
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Samples

A
m

p
lit

u
d
e

(b)

20 30 40 50 60 70 80 90 100 110
−0.2

0

0.2

0.4

0.6

0.8

1

Samples

A
m

pl
itu

de

(c)

−40 −30 −20 −10 0 10 20 30 40
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Samples

A
m

pl
itu

de

(d)

−40 −30 −20 −10 0 10 20 30 40
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Samples

A
m

pl
itu

de

(e)

−40 −30 −20 −10 0 10 20 30 40
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Samples

A
m

pl
itu

de

(f)

Figure 6.4: Normalized channel impulse response. (a) zero/pole approximation CSD IIR
L = 3, L′ = 4, (b) direct coefficient truncation CSD IIR L = 3, L′ = 4, (c) Floating-point
IIR; Difference between the RC impulse response and channel impulse response with (d)
zero/pole approximation CSD IIR L = 3, L′ = 4, (e) CSD3 FIR, (f) Floating-point IIR.



106 Multiplierless IIR filter design via zero/pole approximation

Table 6.2: Advanced HDL synthesis report. Macro statistics comparison for the FIR and
IIR filters.

FIR IIR
Adders/Subtractors 16-bit adder : 193 20-bit adder : 86

16-bit subtractor: 100 20-bit subtractor : 106
Total: 293 Total: 192

Registers Flip-Flops: 2858 Flip-Flops: 712

Table 6.3: Device utilization summary for the FIR and IIR filters.

FIR IIR
Logic Utilization Available Used % Used %
Number of Slice Flip-Flops 47744 2451 5 708 1
Number of 4 input LUTs 47744 4672 9 4002 8
Number of occupied Slices 23872 3580 14 2161 9
Total Number of 4 input LUTs 47744 4713 9 4002 8

nonzero digits in the denominator, L = 3 and L′ = 4 are sufficient for practical CSD filter

design. Such a filter has a similar frequency response to that of the floating-point proto-

type filter, and introduces tolerable ISI.

6.4 Hardware complexity

In this section, we compare the costs of hardware implementation of the CSD IIR filter

with L = 3 and L′ = 4, and the CSD FIR filter with L = 3 considered in the previous

section. We synthesize the FPGA image for Xilinx Spartan 3A-DSP 3400 FPGA employed

in the Ettus USRP N210 hardware platform.

Table 6.2 and Table 6.3 compare the FIR and IIR filter hardware requirements and ac-

tual hardware utilization respectively. From Table 6.3 it follows that the IIR filter is more

hardware-efficient than the FIR filter. For example, the IIR filter occupies only 60% of

slices and 85% of the four-input look-up tables (LUTs) occupied by the FIR filter. Hence,

the proposed method of zero/pole approximation allows designing of the pulse-shaping



6.5 BER performance 107

8 9 10 11 12 13 14
10−8

10−7

10−6

10−5

10−4

10−3

10−2

SNR (dB)

B
E

R

 

 
IIR, CSD3/4
FIR, Floating−point
FIR, CSD3

Figure 6.5: BER vs. SNR for the CSD FIR and CSD IIR pulse-shaping filters.

filter with reduced FPGA utilization.

6.5 BER performance

In order to verify the impact of the proposed pulse-shaping filter on the overall bit-error

rate (BER) of the system, we performed simulations in GNU Radio. Figure 6.5 shows the

BER vs. SNR curve for a software-defined communication system, where the transmit-

ter and receiver filters are implemented as the CSD IIR filter (the red dashed line). The

BER is compared with that of a system where both the transmitter and receiver filters are

the root-raised cosine CSD FIR filter (the blue solid line). The BER of the floating point

FIR system is also added to the figure (the green solid line). The type of modulation

used is DQPSK. We see from the figure that the BER of the system with CSD IIR filters is

marginally worse than the BER of the system with CSD FIR filters. This is probably due



108 Multiplierless IIR filter design via zero/pole approximation

to the fact that the pair of the IIR filters introduces a higher ISI than the pair of FIR fil-

ters. As a result, the hardware cost reduction is achieved along with a minor BER penalty.

6.6 Conclusion

We have proposed a new method for the design of IIR filters based on zero/pole approx-

imation. The advantage of this method is that filter coefficients are represented in the

CSD form, enabling efficient multiplierless implementation on FPGA. If CSD coefficients

of a filter are represented by at least three nonzero digits, such a filter is stable, because

the shift of the poles’ locations is negligible. In addition, the frequency response of the

filter is similar to that of the original IIR filter with floating-point coefficients.

Subsequently, we have applied the proposed method to the design of multiplierless

IIR pulse-shaping filters. We show that a CSD IIR filter can be implemented with bet-

ter stopband attenuation as well as reduced hardware complexity than those of a CSD

FIR filter. However, the experimental results demonstrate that the combined impulse re-

sponse of two such IIR filters has nearly zero-ISI, and provides a bit-error rate similar to

that of the FIR filter.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Although PNC has attracted significant research attention in the last decade, the gap be-

tween theory and practice remains significant. The theoretical studies suggest that PNC

has the potential to increase network throughput in some applications, such as wireless

networks. At the same time, the practical use of PNC is burdened with several imple-

mentation challenges. As a result, only a few prototypes supporting PNC relaying have

been designed. However, the CF relaying scheme, which demonstrates a number of ad-

vantages compared to other PNC methods, has not been implemented. In addition, some

of those prototypes demonstrated low throughput when operating in real-time due to the

lack of synchronization. Motivated by this fact and by improvements achieved with the

use of digital network coding in various wireless networks, in this research we focused

on prototyping efforts of the CF relaying scheme.

In this thesis we have designed the first real-time prototype of a TWRN with the

CF relaying strategy and implemented it in GNU Radio. Using this testbed, we have

conducted a number of experiments, which demonstrated that, with the proposed mod-

ifications, the CF scheme yielded a throughput improvement of about 30 % compared to

that of the DNC relaying scheme. At the same time, the CF scheme did not require the

use of multiple antennas at the relay.

In addition to the experimental demonstration of the potential of CF relaying, this

testbed, implemented on the SDR platform, can be rapidly modified, extended and adapted

for another PNC scheme. Therefore, this testbed can be used by the research commu-

109



110 Conclusions and Future Work

nity for the design and evaluation of advanced PNC technologies, such as MIMO PNC,

OFDM PNC, and beyond.

7.2 Summary of contributions

The following summarizes the detailed contributions of the research according to the

objectives formulated in Section 1.3.

1. Examining different PNC algorithms for their efficiency in scenarios typical for ex-

isting wireless communication standards and the simplicity of their implementa-

tion on SDR.

We began our research with an extensive literature review on PNC. We have found

that the CF relaying scheme, in theory, outperforms other relaying strategies in terms

of its BER. At the same time, this scheme can be easily deployed in multi-terminal,

multi-relay networks, and the integration of the existing ECC with the CF relaying

is straightforward. We have also analyzed the synchronization requirements for the

synchronous PNC algorithms and the performance of asynchronous PNC algorithms.

Our main focus was the simplicity of the implementation of asynchronous PNC algo-

rithms. Our conclusion was that, while asynchronous PNC algorithms exhibited rea-

sonable theoretical performance, their practical implementation presented a challenge

with the existing hardware. In addition, we have overviewed some techniques which

improve the quality of reception, such as channel estimation methods and the MAC-

layer protocols, and their applicability in PNC. Overall, our review demonstrated that

there was a gap between theoretical studies on PNC and their practical applicability

to wireless communications.

2. Development of a practical CF scheme based on realistic assumptions and suitable

for use in actual communication systems.

In Chapter 3 we have developed a practical CF scheme which overcomes several draw-



7.2 Summary of contributions 111

backs of the original CF scheme, when it is utilized in actual wireless communications

directly, without modification. In particular, the proposed scheme can make use of

constellations with sizes equal to powers of two, without any performance degrada-

tion caused by the non-invertibility of the matrix of linear coefficients. At the same

time, since the key components of this scheme are composed of very basic blocks,

typically available in many SDR libraries, its prototyping is simple. As a result, the

proposed CF scheme achieves the promised theoretical throughput. Our simulations

demonstrated that, with the proposed modifications, the CF scheme outperformed

other relaying strategies, such as the DNC scheme, when the SNR was high.

3. Development of MAC protocols capable of supporting CF relaying and robust against

GNU Radio inadequacies and USRP hardware imperfections.

In order to enhance the performance of the relaying schemes when they are imple-

mented in GNU Radio, we have analyzed the challenges of implementation of packet-

based communications in GNU Radio. Based on this analysis, we have developed a

half-duplex packet-switching protocol which is efficient in SDR, particularly in GNU

Radio. Using this protocol, we have designed and implemented the RT-ARQ protocol

for the DNC and DF relaying schemes and the TO-ARQ protocol for the CF scheme.

The main innovation is that the TO-ARQ protocol takes into account the fact that the

CF relay is unable to recover the received packets individually. In addition, all the

implemented ARQ protocols prevent unnecessary delays of the scheduler and enable

the real-time operation of the testbed in GNU Radio.

4. Implementation of a real-time prototype of TWRN with synchronous CF relaying

strategy in GNU Radio.

In Chapter 5 we have demonstrated the first real-time testbed, where the relaying

in TWRN was performed with the CF relaying strategy. We have analyzed several

practical challenges which were hindering the development of PNC/CF relaying, and



112 Conclusions and Future Work

proposed our solutions to minimize their negative impact. In particular, we designed

a new synchronization scheme enabling both symbol and frame synchronization, and

implemented this scheme on the FPGA of the USRP hardware. The proposed synchro-

nization scheme allows synchronization sufficient for implementation of synchronous

CF algorithms, which are more computationally efficient than non-synchronous algo-

rithms. In addition, the synchronization between the terminals significantly simplifies

the channel estimation, symbol-timing recovery and other routines compared to the

asynchronous case. For the purpose of comparison, we also have implemented the

DNC and DF relaying schemes on the same testbed.

5. Experimental verification of the benefits of CF.

The availability of the testbed working in real-time gave us the opportunity to ex-

perimentally investigate the performance of the CF relaying scheme and compare it

with other non-PNC relaying strategies. We demonstrated that when the SNR was

high, the CF scheme suffered from higher FER and lower PDR than the DNC relay-

ing strategy. Nevertheless, the CF scheme outperformed the DNC scheme in terms of

throughput. However, the DNC scheme still provided better throughput in low-SNR

regimes. Therefore, in general, our experimental results are in agreement with the

simulation results. However, the most important contribution of our experiments is

that, unlike the simulations provided in many previous studies, which only analyze

the impact of fading and channel noise, our experiments evaluated the simultaneous

impact of all the practical challenges. Therefore, the experimental results show that

the practical benefits of the CF scheme still outweigh the negative impact of those

challenges.

6. Development of a new method of multiplierless pulse-shaping IIR filter design.

While working on the implementation of pulse-shaping filters on the USRP’s FPGA,

we found that the number of multipliers was limited and partially utilized by other

modules of both the Tx and Rx chains. Therefore, the number of available multipliers



7.3 Future work 113

N210 N210

N210

A B

R

1 1

22

N210 N210

N210

Figure 7.1: Two-way relay network with MIMO CF relaying implemented on USRP N210
and GNU Radio.

was insufficient for the pulse-shaping filter implementation. We therefore proposed a

new method of multiplierless pulse-shaping filter design based on zero/pole approx-

imation of a floating-point prototype IIR filter. The proposed method allows replace-

ment of the conventional multiplications with those implemented using only adders

and shifters, while still preserving the stability of the IIR filter. Our simulation results

demonstrate that a filter with the desired characteristics can be implemented with re-

duced hardware utilization compared to that of the FIR filter prototype, but with a

marginal increase of BER. Furthermore, the zero/pole approximation method enables

implementation of digital filters on less expensive FPGAs which are not equipped with

dedicated hardware multipliers.

7.3 Future work

There are several ways the research in this thesis can be continued in the future. These

are summarized in the following sections.

7.3.1 Implementation of MIMO PNC/CF

MIMO PNC is another direction of study in PNC. In general, the use of MIMO in com-

munication systems benefits with diversity gain, rate improvement and BER reduction.



114 Conclusions and Future Work

N210 N210

N210 N210

N210

A B

C D

R

Figure 7.2: Relay network with the star topology and the CF relaying scheme imple-
mented on USRP N210 and GNU Radio.

Recent theoretical studies on MIMO network coding are reviewed in [7, 17, 57]. A sim-

plified implementation of TWRN with MIMO DF was also reported in [72]. With several

implementation challenges solved, our TWRN testbed can be easily extended to support

the MIMO PNC architecture, as illustrated in Figure 7.1. Subsequently, experimental per-

formance analysis can be conducted in real environments, rather than simulations.

From the implementation point of view, the implementation of a MIMO terminal with

two USRP N210s connected with the MIMO cable introduces extra delay, caused by the

need to transfer data via the MIMO cable. As a result, the network throughput of the

MIMO network may degrade greatly, making it impossible to accurately investigate the

throughput performance improvements. Alternatively, PNC schemes in MIMO networks

can be implemented with higher experimental efficiency, if the USRP N210 is replaced

with a newer generation of USRP, such as X310 [147].

7.3.2 Extension of the testbed from TWRN to a larger network

In this project we have prototyped the CF relaying scheme in TWRN, a canonical exam-

ple of a simple network topology with the relaying of bi-directional traffic. In general,

however, the CF is designed such that it can be utilized in a larger network with multiple

terminals. For example, a network with the star topology, as illustrated in Figure 7.2,



7.3 Future work 115

N210 N210

N210

A B

R1

N210

R2

Figure 7.3: Relay network with multiple relays and the CF relaying scheme implemented
on USRP N210 and GNU Radio.

assumes that there is a multi-directional traffic between more than two terminals. With

this topology several terminals exchange information via only one relay. Another in-

teresting extension is a multi-relay network where terminals transmit information via a

group of relays, as presented in Figure 7.3. In this scenario, either one relay providing the

best channel condition [148] or the maximum energy efficiency [149] can be selected for

the relaying, or several relays can transmit simultaneously in order to increase transmit

diversity [150].

7.3.3 Further optimization of zero/pole approximation method of CSD IIR fil-
ter design

In this work, we assumed that the prototype floating-point IIR filter was first designed

from a FIR filter with the required specifications using any of the existing methods, and

was stable. We then designed the CSD filter based on that prototype. This is suboptimal,

because the design consists of two steps, and the optimization of each step is performed

independently. A possible future research topic can be the development of a one-step

method providing joint optimality for the design of the CSD IIR filter from the FIR filter

prototype.



116 Conclusions and Future Work

We have also assumed that the number of nonzero digits in the CSD coefficients rep-

resentation was fixed. However, the accuracy of zero/pole approximation differs greatly

in each section, so that for certain coefficients this number may be either redundant or

insufficient. The optimization of the coefficient lengths with regard to the accuracy of

the zero/pole approximation in each section can improve the performance of the CSD

IIR filter without significant increase of hardware complexity. This optimization could be

another possible future research topic.



Appendix A

Description of GRC flow graphs

GNU Radio Companion (GRC) is a block diagram environment for modelling and sim-

ulating communication systems represented as a flow graph composed of blocks. GRC

includes the graphical editor, the library of standard blocks (GNU Radio source tree)

and the source code generator, which generates the Python script from a flow graph.

The standard blocks are customizable, i.e. their functionality can be upgraded or rewrit-

ten completely depending upon the needs of the user. Also, users can create their own

blocks, so-called out-of-tree (OOT) blocks. Development of OOT blocks is simplified with

the gr modtool utility provided in GNU Radio. In addition to the standard blocks and

their own OOT blocks, users can include necessary OOT blocks from other third-party

projects. In this appendix we first describe the OOT blocks we have designed for this

project. Next, we present our GRC flow graphs which enable the operation of the termi-

nals and relays in the DNC, DF and CF modes.

A.1 Design of custom blocks

For this project we have designed several OOT blocks, the functionality of which was

required in this testbed. These blocks include conventional PHY blocks, CF PHY blocks

and half-duplex MAC blocks for the DNC, DF and CF relaying schemes as follows:

I. Conventional PHY blocks

This group includes auxiliary blocks which implement several conventional (non-

PNC) PHY routines not available in the source tree.

117



118 Description of GRC flow graphs

(a) Gardner Symbol-Timing
Recovery block

(b) Coherent Receiver

(c) PSK Demod 2 (d) MIMO Receiver

Figure A.1: Conventional PHY OOT blocks.

1. Gardner Symbol-Timing Recovery. This block provides the same functional-

ity as the Clock Recovery MM block in the Synchronizers library, i.e. symbol-

timing recovery, with the exception that timing error detection is performed with

the Gardner method. The main drawback of symbol-timing recovery with the

MM method is that it is vulnerable to the frequency offset. Except that, the MM

method is mainly designed to support PSK constellations (refer to Section 5.4

for detailed comparison). Therefore, despite the higher level of self-noise, the

Gardner method seems a better solution for signals modulated with M-QAM

constellations and superimposed constellations typical of PNC scenarios.

2. Coherent Constellation Receiver. This block is similar to the Constellation Re-

ceiver block from the source tree. We have added channel estimation functional-

ity. This block searches for the start of a packet (SOP) based on correlation with a

known training sequence. Once SOP is detected, the block performs channel es-

timation, compensates the channel effects, and demodulates the received packet.

3. PSK Demod 2 This block provides demodulation of a PSK-modulated signal.

The difference from the standard block PSK Demod is that two sub-blocks, namely



A.1 Design of custom blocks 119

the AGC and RRC filter of PSK Demod, are removed. Therefore, this block

allows the flow graph to process the input, supplied by a USRP with the cus-

tomized FPGA image (refer to Section 5.3.3).

4. MIMO Constellation Receiver. This block represents an extension of the Co-

herent Constellation Receiver block for MIMO. This block searches for SOP, and

once it is found, estimates the multiple channels and demodulates the received

signals with the zero-forcing MIMO demodulation method.

As these blocks are nearly fixed-rate signal processing blocks, their implementation

in C++ is straightforward.

II. CF blocks

The second group includes PHY blocks required for implementation of the CF relay

and CF terminals

1. CF Relay Receiver. This blocks represents the receiver of the CF relay. When

receiving a superimposed packet, this block first searches for SOP based on the

correlation with two known training sequences. Once the SOP is detected, the

block estimates the channel coefficients h. Subsequently, it searches the optimal

coefficients a according to equations (3.9) - (3.12), and recovers a linear combi-

nation of the superimposed signals as explained in equations (3.14) - (3.16). In

addition, due to the impossibility of implementation of a dedicated half-duplex

block in CF relay, this block coordinates the half-duplex functioning of the relay

according to Figure 4.5(b).

(a) CF Relay Receiver (b) CF Terminal Receiver

Figure A.2: CF PHY OOT blocks.



120 Description of GRC flow graphs

(a) Terminal MAC (b) DNC Relay MAC

(c) DF Relay MAC

Figure A.3: MAC OOT blocks.

2. CF Terminal Receiver. The terminal part of the CF algorithm proposed in Chap-

ter 3 is implemented in this block, namely the routines explained in equations

(3.17) - (3.21). The block provides recovery of the target packet (mA or mB) from

the linear combination x̂R broadcast by the relay. This block has two input ports.

The linear combination x̂R is supplied via the first input port in, and the block’s

own transmitted signal (xB or xA) is provided via the second input port in1. The

type of port in1 is chosen to be ”message queue” in order to avoid errors due

to the fact that GNU Radio prohibits the looping of blocks with connections of

numeric types.

These blocks are also fixed-rate signal processing blocks implemented in C++.

III. Half-duplex MAC blocks

Finally, this group represents MAC blocks utilized in terminals, and DF and DNC

relays for half-duplex packet switching

1. Terminal MAC. This half-duplex block is responsible for the MAC layer routines

in DNC, DF and CF terminals according to Figure 4.2.



A.2 Relay design in GRC 121

2. DNC Relay MAC. This block has expended functionality compared to the pre-

vious block. It performs MAC routines for the DNC relay according to Fig-

ure 4.5(a), i.e. verification of two packets arriving sequentially, and XOR network

coding of successfully received packets. This block outputs the resulting XORed

packet.

3. DF Relay MAC. This block has similar functionality to the previous block. It per-

forms MAC routines for the DF relay according to Figure 4.5(a), i.e. verification

of two packets arriving simultaneously, and XOR network coding of successfully

received packets. This block outputs the resulting XORed packet.

Unlike the blocks from previous groups, these MAC blocks require extensive use

of external libraries, such as the ZLIB library for the Adler-32 checksum algorithm.

As these blocks are not fixed-rate blocks, and their output is represented by packets

rather than continuous streams, they are implemented in Python. The type of port

for tx out port of all these blocks can be selected either as byte (8 bit) or as short (16

bit) depend on the structure of the Tx chain. If the modulation and pulse-shaping

are performed in GNU Radio, the output type should be selected as byte. Otherwise,

if the Tx chain is relocated to the USRP, the type of output should be short, and the

block should be connected directly to a USRP Sink block.

In this section we have introduced the OOT blocks we have developed for the use in this

testbed. This introduction simplifies the description of the testbed design flow graphs,

provided in the following sections.

A.2 Relay design in GRC

The flow graphs which represent the relay design for different relaying strategies are

illustrated in Figures A.4 to A.6.

The flow graph describing the relay operation in the DNC mode is presented in

Figure A.4. The design of this flow graph is straightforward.

Figure A.5 illustrates the flow graph of the relay operating in the DF mode. In this



122 Description of GRC flow graphs

Figure A.4: GRC flow graph of the DNC relay.

Figure A.5: GRC flow graph of the DF relay.

mode, the relay is a MIMO receiver, but a single antenna transmitter. Because the UHD

does not allow two channels in the USRP Source and one channel in the USRP Sink,

when they represent one device, we set the number of channels in the USRP Sink and

USRP Source to two. However, the second input is multiplied by zero in the FPGA to

avoid actual transmission by the second antenna.

Figure A.6 shows the flow graph of the relay operating in the CF mode. The CF

relay has some special features from the GNU Radio implementation point of view. First,

the CF relay does not decode the packets mA and mB individually. Second, unlike the

DNC and DF schemes, the ECC decoding is performed jointly with demodulation, rather

than after demodulation. Therefore, the half-duplex packet-switching logic and the ECC

decoding/re-encoding are merged into one block.



A.3 Terminal design in GRC 123

Figure A.6: GRC flow graph of the CF relay.

A.3 Terminal design in GRC

Unlike the relays, terminals deliver the data sent by the other terminal to the end-users

or applications, or record the data. In this project we record the received data into files.

For this reason, a File Sink block is added to every terminal. However, in other projects,

the File Sink block can be replaced with other sinks such as audio, UDP or TCP sinks. If

the received data is not actually required, it can be consumed with the Null Sink block.

In the same way, the data to be transmitted is supplied to the flow graph with the File

Source block.

The flow graphs of terminals are shown in Figures A.7 and A.8. Figure A.7 shows

a flow graph of a terminal adapted for the DNC and DF schemes. The Skip Head block

is used to skip the dummy data from the first packet sent for initialization. The network

decoding is implemented with one input port of the XOR block connected to the output

port rx out of the Terminal MAC block through the Skip Head block. The second input

port of the XOR block is connected to the File Source block. In this way, the XOR block

performs recovery of the received packets according to (1.2). Note that due to the similar

format of the broadcast phase in DNC and DF TWRN, a DNC and DF terminal can be



124 Description of GRC flow graphs

Figure A.7: GRC flow graph of the DNC and DF terminal.

Figure A.8: GRC flow graph of the CF terminal.

implemented with the same flow graph with only a minor change related to the use of

different channel estimation methods, depending on whether the packets arrive simulta-

neously (DF) or sequentially (DNC). This difference can be reflected with a change in the

CSI Taps field.

Finally, the flow graph of the relay operating in the CF mode is demonstrated in

Figure A.8. After the desired signal is recovered and demodulated by the CF Terminal

Receiver block, the integrity of the packet is verified with the Terminal MAC block, which

sends correctly received packets to the File Sink block. In turn, the Terminal MAC block

prepares the Tx packet, which is sent to the USRP Sink and subsequently transmitted.



Bibliography

[1] G. J. Foschini, “Layered space-time architecture for wireless communication in a

fading environment when using multi-element antennas,” Bell Labs Technical Jour-

nal, vol. 1, no. 2, pp. 41–59, Autumn 1996.

[2] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communica-

tion,” IEEE Transactions on Communications, vol. 46, no. 3, pp. 357–366, Mar. 1998.

[3] S. M. Alamouti, “A simple transmit diversity technique for wireless communica-

tions,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–

1458, Oct. 1998.

[4] J. C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code: a 2 × 2 full-rate space-

time code with nonvanishing determinants,” IEEE Transactions on Information The-

ory, vol. 51, no. 4, pp. 1432–1436, Apr. 2005.

[5] H. Yao and G. W. Wornell, “Achieving the full MIMO diversity-multiplexing fron-

tier with rotation-based space-time codes,” in in Proc. Allerton Conf. Commun.,

Contr., Comput.,, IL, 2003.

[6] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communication in wire-

less networks,” IEEE Communications Magazine, vol. 42, no. 10, pp. 74–80, Oct. 2004.

[7] B. Nazer and M. Gastpar, “Reliable physical layer network coding,” Proceedings of

the IEEE, vol. 99, pp. 438–460, Mar. 2011.

[8] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”

IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.

125



126 BIBLIOGRAPHY

[9] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” Information Theory, IEEE

Transactions on, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[10] R. Koetter and M. Medard, “An algebraic approach to network coding,” Network-

ing, IEEE/ACM Transactions on, vol. 11, no. 5, pp. 782–795, Oct. 2003.

[11] Y. Wu, P. A. Chou, and S.-Y. Kung, “Information exchange in wireless

networks with network coding and physical-layer broadcast,” Microsoft Research,

Redmond, WA, Tech. Rep. MSR-TR-2004-78, Aug. 2004. [Online]. Available:

http://research.microsoft.com/apps/pubs/default.aspx?id=78174

[12] D. Lun, N. Ratnakar, M. Medard, R. Koetter, D. Karger, T. Ho, E. Ahmed, and

F. Zhao, “Minimum-cost multicast over coded packet networks,” Information The-

ory, IEEE Transactions on, vol. 52, no. 6, pp. 2608–2623, June 2006.

[13] S. Zhang, Y. Zhu, and S. C. Liew, “Soft network coding in wireless two-way relay

channels,” Communications and Networks, Journal of, vol. 10, no. 4, pp. 371–383, Dec.

2008.

[14] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physical-layer network coding,”

in Proc. of the 12th Annual Int. Conf. on Mobile Computing and Networking (MobiCom).

LA, USA: ACM, Sept. 2006, pp. 358–365.

[15] P. Popovski and H. Yomo, “The anti-packets can increase the achievable through-

put of a wireless multi-hop network,” in Communications, 2006. ICC ’06. IEEE Inter-

national Conference on, vol. 9, June 2006, pp. 3885–3890.

[16] B. Nazer and M. Gastpar, “Computing over multi-access channels with connections

to wireless network coding,” in IEEE International Symposium on Information Theory

(ISIT). Seattle, USA: IEEE, July 2006, pp. 1354–1358.

[17] S. C. Liew, S. Zhang, and L. Lu, “Physical-layer network coding: Tutorial, survey,

and beyond,” Physical Communication, vol. 6, pp. 4–42, Mar. 2013.

http://research.microsoft.com/apps/pubs/default.aspx?id=78174


BIBLIOGRAPHY 127

[18] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “XORs in the air:

Practical wireless network coding,” IEEE/ACM Transactions on Networking, vol. 16,

no. 3, pp. 497–510, June 2008.

[19] H. Seferoglu, L. Keller, B. Cici, A. Le, and A. Markopoulou, “Cooperative video

streaming on smartphones,” in 49th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), IEEE. Monticello, IL: IEEE, Sept. 2011, pp. 220–

227.

[20] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou, “Micro-

Cast: Cooperative video streaming on smartphones,” in Proceedings of the 10th In-

ternational Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’12.

New York, NY, USA: ACM, 2012, pp. 57–70.

[21] R. Alimi, L. Li, R. Ramjee, H. Viswanathan, and Y. Yang, “iPack: in-network packet

mixing for high throughput wireless mesh networks,” in INFOCOM 2008. The 27th

Conference on Computer Communications. IEEE, IEEE. IEEE, Apr. 2008.

[22] M. Firooz, Z. Chen, S. Roy, and H. Liu, “Wireless network coding via modified

802.11 MAC/PHY: Design and implementation on SDR,” Selected Areas in Commu-

nications, IEEE Journal on, vol. 31, no. 8, pp. 1618–1628, Aug. 2013.

[23] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disrup-

tive technology directions for 5G,” IEEE Communications Magazine, vol. 52, no. 2,

pp. 74–80, Feb. 2014.

[24] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C.

Zhang, “What will 5G be?” IEEE Journal on Selected Areas in Communications, vol. 32,

no. 6, pp. 1065–1082, June 2014.

[25] E. Lloyd and G. Xue, “Relay node placement in wireless sensor networks,” Com-

puters, IEEE Transactions on, vol. 56, no. 1, pp. 134–138, Jan. 2007.



128 BIBLIOGRAPHY

[26] Z. Liu, M. Li, L. Lu, C.-K. Chan, S.-C. Liew, and L.-K. Chen, “Optical physical-layer

network coding,” Photonics Technology Letters, IEEE, vol. 24, no. 16, pp. 1424–1427,

Aug. 2012.

[27] M. Li, Y. Wu, L.-K. Chen, and S. C. Liew, “Common-channel optical physical-layer

network coding,” Photonics Technology Letters, IEEE, vol. 26, no. 13, pp. 1340–1343,

July 2014.

[28] “Ettus USRP N210.” [Online]. Available: https://www.ettus.com/product/

details/UN210-KIT

[29] T. Koike-Akino, P. Popovski, and V. Tarokh, “Denoising maps and constellations

for wireless network coding in two-way relaying systems,” in Global Telecommuni-

cations Conference, 2008. IEEE GLOBECOM 2008. IEEE, Nov. 2008, pp. 1–5.

[30] S. Zhang, S. C. Liew, and L. Lu, “Physical layer network coding schemes over finite

and infinite fields,” in Global Telecommunications Conference, 2008. IEEE GLOBECOM

2008. IEEE, Nov. 2008, pp. 1–6.

[31] T. Cui, T. Ho, and J. Kliewer, “Memoryless relay strategies for two-way relay chan-

nels,” Communications, IEEE Transactions on, vol. 57, no. 10, pp. 3132–3143, Oct.

2009.

[32] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: Analog

network coding,” in SIGCOMM 2007. Kyoto, Japan: SIGCOMM, Aug. 2007.

[33] T. Cover and A. Gamal, “Capacity theorems for the relay channel,” Information The-

ory, IEEE Transactions on, vol. 25, no. 5, pp. 572–584, Sept. 1979.

[34] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theo-

rems for relay networks,” Information Theory, IEEE Transactions on, vol. 51, no. 9,

pp. 3037–3063, Sept. 2005.

[35] T. Koike-Akino, P. Popovski, and V. Tarokh, “Optimized constellations for two-way

wireless relaying with physical network coding,” IEEE Journal on Selected Areas in

Communications, vol. 27, no. 5, pp. 773–787, June 2009.

https://www.ettus.com/product/details/UN210-KIT
https://www.ettus.com/product/details/UN210-KIT


BIBLIOGRAPHY 129

[36] S. Wang, Q. Song, L. Guo, and A. Jamalipour, “Constellation mapping for physical-

layer network coding with M-QAM modulation,” in Global Communications Confer-

ence (GLOBECOM), 2012 IEEE, Dec. 2012, pp. 4429–4434.

[37] Y. Huang, Q. Song, S. Wang, and A. Jamalipour, “Phase-level synchronization for

physical-layer network coding,” in IEEE Global Communications Conference (GLOBE-

COM). Anaheim, CA: IEEE, Dec. 2012, pp. 4423 – 4428.

[38] R. Louie, Y. Li, and B. Vucetic, “Practical physical layer network coding for two-

way relay channels: performance analysis and comparison,” Wireless Communica-

tions, IEEE Transactions on, vol. 9, no. 2, pp. 764–777, Feb. 2010.

[39] P. Popovski and H. Yomo, “Physical network coding in two-way wireless relay

channels,” in Communications, 2007. ICC ’07. IEEE International Conference on. Glas-

gow: IEEE, June 2007, pp. 707 – 712.

[40] S. Zhang and S.-C. Liew, “Channel coding and decoding in a relay system operated

with physical-layer network coding,” Selected Areas in Communications, IEEE Journal

on, vol. 27, no. 5, pp. 788–796, June 2009.

[41] Z. Ding, I. Krikidis, J. Thompson, and K. Leung, “Physical layer network coding

and precoding for the two-way relay channel in cellular systems,” Signal Processing,

IEEE Transactions on, vol. 59, no. 2, pp. 696–712, Feb. 2011.

[42] S. Zhang and S. C. Liew, “Physical layer network coding with multiple anten-

nas,” in Wireless Communications and Networking Conference (WCNC), 2010 IEEE,

Apr. 2010, pp. 1–6.

[43] M. Huang and J. Yuan, “Error performance of physical-layer network coding in

multiple-antenna TWRC,” Vehicular Technology, IEEE Transactions on, vol. 63, no. 8,

pp. 3750–3761, Oct. 2014.

[44] N. Lee and R. W. Heath, “Space-time physical-layer network coding,” IEEE Journal

on Selected Areas in Communications, vol. 33, no. 2, pp. 323–336, Feb. 2015.



130 BIBLIOGRAPHY

[45] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V.

Poor, MIMO Wireless Communications. Cambridge university press, 2007.

[46] J. Zhan, B. Nazer, U. Erez, and M. Gastpar, “Integer-forcing linear receivers,” Infor-

mation Theory, IEEE Transactions on, vol. 60, no. 12, pp. 7661–7685, Dec. 2014.

[47] S. M. Azimi-Abarghouyi, M. Nasiri-Kenari, and B. Maham, “Integer forcing-

and-forward transceiver design for MIMO multi-pair two-way relaying,” 2015,

submitted to IEEE Transactions on Vehicular Technology. [Online]. Available:

http://arxiv.org/abs/1408.2854

[48] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference

through structured codes,” IEEE Transactions on Information Theory, vol. 57, no. 10,

pp. 6463 – 6486, Oct. 2011.

[49] O. Ordentlich, J. Zhan, U. Erez, M. Gastpar, and B. Nazer, “Practical code design

for compute-and-forward,” in IEEE ISIT 2011. St.-Petersburg: IEEE, Aug. 2011,

pp. 1876–1880.

[50] A. Sakzad, E. Viterbo, J. Boutros, and Y. Hong, “Phase precoded compute-and-

forward with partial feedback,” in IEEE International Symposium on Information The-

ory (ISIT). Honolulu, HI: IEEE, June 2014, pp. 2117–2121.

[51] B. Hern and K. Narayanan, “Multilevel coding schemes for compute-and-forward

with flexible decoding,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp.

7613–7631, Nov. 2013.

[52] U. Niesen and P. Whiting, “The degrees of freedom of compute-and-forward,”

IEEE Transactions on Information Theory, vol. 58, no. 8, pp. 5214–5232, Aug. 2012.

[53] C. Feng, D. Silva, and F. Kschischang, “An algebraic approach to physical-layer

network coding,” in Information Theory Proceedings (ISIT), 2010 IEEE International

Symposium on, IEEE. Austin, TX: IEEE, June 2010, pp. 1017 – 1021.

[54] ——, “An algebraic approach to physical-layer network coding,” IEEE Transactions

on Information Theory, vol. 59, no. 11, pp. 7576 – 7596, Nov. 2013.

http://arxiv.org/abs/1408.2854


BIBLIOGRAPHY 131

[55] Q. T. Sun, T. Huang, and J. Yuan, “On lattice-partition-based physical-layer net-

work coding over GF(4),” IEEE Communications Letters, vol. 17, no. 10, pp. 1988–

1991, Oct. 2013.

[56] T. Huang, J. Yuan, and J. Li, “Analysis of compute-and-forward with QPSK in two-

way relay fading channels,” in 2013 Australian Communications Theory Workshop

(AusCTW), Adelaide, Australia, Feb. 2013, pp. 75 – 80.

[57] J. Zhan, B. Nazer, M. Gastpar, and U. Erez, “MIMO compute-and-forward,” in IEEE

International Symposium on Information Theory (ISIT), IEEE. Seoul, Korea: IEEE,

June 2009, pp. 2848–2852.

[58] S. Zhang, S. C. Liew, and P. P. Lam, “On the synchronization of physical-layer net-

work coding,” in IEEE Information Theory Workshop (ITW). Chengdu, China: IEEE,

Oct. 2006, pp. 404 – 408.

[59] L. Lu and S. C. Liew, “Asynchronous physical-layer network coding,” Wireless Com-

munications, IEEE Transactions on, vol. 11, no. 2, pp. 819–831, Feb. 2012.

[60] L. Lu, S. C. Liew, and S. Zhang, “Optimal decoding algorithm for asynchronous

physical-layer network coding,” in IEEE ICC. Kyoto, Japan: IEEE, June 2011, pp.

1–6.

[61] ——, “Channel-coded collision resolution by exploiting symbol misalignment,” in

Communications (ICC), 2010 IEEE International Conference on, Cape Town, May 2010,

pp. 1–6.

[62] H. Najafi, M. O. Damen, and A. Hjrungnes, “Symbol-asynchronous compute-and-

forward,” in IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio

Communications, Toronto, ON, Sept. 2011, pp. 1830 – 1834.

[63] ——, “Asynchronous compute-and-forward,” IEEE Transactions on Communica-

tions, vol. 61, no. 7, pp. 2704–2712, July 2013.

[64] Y. Li, F.-C. Zheng, and M. Fitch, “Physical layer network coding with channel and

delay estimation,” Communications, IET, vol. 7, no. 11, pp. 1109–1116, July 2013.



132 BIBLIOGRAPHY

[65] F. Rossetto and M. Zorzi, “On the design of practical asynchronous physical layer

network coding,” in Signal Processing Advances in Wireless Communications, 2009.

SPAWC ’09. IEEE 10th Workshop on, June 2009, pp. 469–473.

[66] P.-C. Wang, Y.-C. Huang, and K. Narayanan, “Asynchronous compute-and-

forward/integer-forcing with quasi-cyclic codes,” in Global Communications Con-

ference (GLOBECOM), 2014 IEEE, Dec. 2014, pp. 1504–1509.

[67] M. Biguesh and A. Gershman, “Training-based MIMO channel estimation: a study

of estimator tradeoffs and optimal training signals,” Signal Processing, IEEE Trans-

actions on, vol. 54, no. 3, pp. 884 – 893, Mar. 2006.

[68] X. Guo and X. g. Xia, “A distributed space-time coding in asynchronous wireless

relay networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp.

1812–1816, May 2008.

[69] F. Gao, R. Zhang, and Y.-C. Liang, “Optimal channel estimation and training design

for two-way relay networks,” Communications, IEEE Transactions on, vol. 57, no. 10,

pp. 3024–3033, Oct. 2009.

[70] B. Jiang, F. Gao, X. Gao, and A. Nallanathan, “Channel estimation and training de-

sign for two-way relay networks with power allocation,” Wireless Communications,

IEEE Transactions on, vol. 9, no. 6, pp. 2022–2032, June 2010.

[71] L. Song, Y. Li, A. Huang, B. Jiao, and A. V. Vasilikos, “Differential modulation for

bidirectional relaying with analog network coding,” Signal Processing, IEEE Trans-

actions on, vol. 58, no. 7, pp. 3933–3938, July 2010.

[72] K. Mizutani, Y. Kida, T. Miyamoto, K. Sakaguchi, and K. Araki, “Realization of

TDD two-way multi-hop relay network with MIMO network coding,” in Proc. of

the 6th Int. ICST Conf. on Cognitive Radio Oriented Wireless Networks and Commun.

Osaka, Japan: ICST, June 2011.

[73] D. Kramarev, Y. Hong, and E. Viterbo, “Software defined radio implementation of

a two-way relay network with digital network coding,” in 2014 Australian Commu-



BIBLIOGRAPHY 133

nications Theory Workshop (AusCTW), vol. 1, Sydney, Australia, Feb. 2014, pp. 120 –

125.

[74] L. Lu, L. You, Q. Yang, T. Wang, M. Zhang, S. Zhang, and S. C. Liew, “Real-time im-

plementation of physical-layer network coding,” in Proceedings of the Second Work-

shop on Software Radio Implementation Forum, ser. SRIF ’13. New York, NY, USA:

ACM, 2013, pp. 71–76.

[75] A. Marcum, J. Krogmeier, D. Love, and A. Sprintson, “Analysis and implemen-

tation of asynchronous physical layer network coding,” Wireless Communications,

IEEE Transactions on, vol. 14, no. 12, pp. 6595–6607, Dec. 2015.

[76] D. Kramarev, A. Sakzad, and E. Viterbo, “Implementation of a two-way relay net-

work with compute-and-forward in GNU Radio,” Transactions on Emerging Telecom-

munications Technologies, vol. 27, no. 4, pp. 484–493, Apr. 2016.

[77] A. A. Abidi, “The path to the software-defined radio receiver,” IEEE Journal of Solid-

State Circuits, vol. 42, no. 5, pp. 954–966, May 2007.

[78] J. Mitola, “The software radio architecture,” IEEE Communications Magazine, vol. 33,

no. 5, pp. 26–38, May 1995.

[79] J. C. Richard Johnson, W. A. Sethares, and A. G. Klein, Software Receiver Design.

Cambridge University Press, 2011.

[80] V. Alluri, J. Heath, and M. Lhamon, “A new multichannel, coherent amplitude

modulated, time-division multiplexed, software-defined radio receiver architec-

ture, and field-programmable-gate-array technology implementation,” Signal Pro-

cessing, IEEE Transactions on, vol. 58, no. 10, pp. 5369–5384, Oct. 2010.

[81] Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-

Hamida, D. Pollex, P. Schvan, and S. C. Wang, “A 40GS/s 6b ADC in 65nm CMOS,”

in 2010 IEEE International Solid-State Circuits Conference - (ISSCC), Feb. 2010, pp.

390–391.



134 BIBLIOGRAPHY

[82] S. Lee, A. Gerstlauer, and R. Heath, “Distributed real-time implementation of in-

terference alignment with analog feedback,” Vehicular Technology, IEEE Transactions

on, vol. 64, no. 8, pp. 3513–3525, Aug. 2015.

[83] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu, I. Wong,

V. Owall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna testbed for massive

MIMO,” in Globecom Workshops (GC Wkshps), 2014, Dec. 2014, pp. 287–293.

[84] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong, “Argos:

Practical many-antenna base stations,” in Proceedings of the 18th Annual International

Conference on Mobile Computing and Networking, ser. Mobicom ’12. New York, NY,

USA: ACM, 2012, pp. 53–64.

[85] J. Kerttula, N. Malm, K. Ruttik, R. Jäntti, and O. Tirkkonen, “Implementing TD-LTE

as software defined radio in general purpose processor,” in Proceedings of the 2014

ACM Workshop on Software Radio Implementation Forum, ser. SRIF ’14. New York,

NY, USA: ACM, 2014, pp. 61–68.

[86] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti,

and P. Sinha, “Practical, real-time, full duplex wireless,” in Proceedings of the 17th

Annual International Conference on Mobile Computing and Networking, ser. MobiCom

’11. New York, NY, USA: ACM, 2011, pp. 301–312.

[87] “Open BTS.” [Online]. Available: http://openbts.org/

[88] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flaut-

ner, “SODA: A low-power architecture for software radio,” SIGARCH Comput. Ar-

chit. News, vol. 34, no. 2, pp. 89–101, May 2006.

[89] ——, “SODA: A high-performance DSP architecture for software-defined radio,”

Micro, IEEE, vol. 27, no. 1, pp. 114–123, Jan. 2007.

[90] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker, “Sora: High-

performance software radio using general-purpose multi-core processors,” Com-

mun. ACM, vol. 54, no. 1, pp. 99–107, Jan. 2011.

http://openbts.org/


BIBLIOGRAPHY 135

[91] A. Jow, C. Schurgers, and D. Palmer, “CalRadio: A portable, flexible 802.11 wireless

research platform,” in Proceedings of the 1st International Workshop on System Evalua-

tion for Mobile Platforms, ser. MobiEval ’07. New York, NY, USA: ACM, 2007, pp.

49–54.

[92] “REDHAWK Software Defined Radio Framework.” [Online]. Available: https:

//redhawksdr.github.io/Documentation/

[93] “WARP Project.” [Online]. Available: http://warpproject.org

[94] E. Grayver, Implementing Software Defined Radio. Springer New York, 2013.

[95] “GNU Radio.” [Online]. Available: http://gnuradio.org/

[96] T. Rondeau, “GNU Radio scheduler details,” GNU Radio, Tech. Rep.,

Sept. 2013. [Online]. Available: http://www.trondeau.com/blog/2013/9/15/

explaining-the-gnu-radio-scheduler.html

[97] N. Truong, Y.-J. Suh, and C. Yu, “Latency analysis in GNU Radio/USRP-based

software radio platforms,” in IEEE Military Communications Conference (MILCOM).

San Diego, CA, USA: IEEE, Nov. 2013, pp. 305–310.

[98] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE 802.11a/G/P OFDM

receiver for GNU Radio,” in Proceedings of the Second Workshop on Software Radio

Implementation Forum, ser. SRIF ’13. New York, NY, USA: ACM, 2013, pp. 9–16.

[99] T. W. Rondeau, T. O’Shea, and N. Goergen, “Inspecting gnu radio applications with

controlport and performance counters,” in Proceedings of the Second Workshop on

Software Radio Implementation Forum, ser. SRIF ’13. New York, NY, USA: ACM,

2013, pp. 65–70.

[100] T. Rondeau, N. McCarthy, and T. OShea, “SIMD programming in GNU Radio:

Maintainable and user-friendly algorithm optimization with VOLK,” in Conference

on Communications Technologies and Software Defined Radio (SDR’12). Brussel,

Belgium: Wireless Innovation Forum Europe, June 2012. [Online]. Available:

https://gnuradio.org/redmine/attachments/download/422/volk.pdf

https://redhawksdr.github.io/Documentation/
https://redhawksdr.github.io/Documentation/
http://warpproject.org
http://gnuradio.org/
http://www.trondeau.com/blog/2013/9/15/explaining-the-gnu-radio-scheduler.html
http://www.trondeau.com/blog/2013/9/15/explaining-the-gnu-radio-scheduler.html
https://gnuradio.org/redmine/attachments/download/422/volk.pdf


136 BIBLIOGRAPHY

[101] F. J. Harris, Multirate Signal Processing for Communication Systems. Upper Saddle

River, NJ, USA: Prentice Hall PTR, 2004.

[102] “Reed-Solomon ECC Python extension module.” [Online]. Available: https:

//pypi.python.org/pypi/reedsolomon

[103] L. Wei and W. Chen, “Efficient compute-and-forward network codes search for

two-way relay channel,” Communications Letters, IEEE, vol. 16, no. 8, pp. 1204–1207,

Aug. 2012.

[104] A. Osmane and J.-C. Belfiore, “The compute-and-forward protocol: Implementa-

tion and practical aspects,” July 2011, submitted to IEEE Communications Letters.

[Online]. Available: http://arxiv.org/abs/1107.0300

[105] Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-

complexity full-diversity MIMO detection,” Signal Processing, IEEE Transactions on,

vol. 57, no. 7, pp. 2701–2710, July 2009.

[106] A. Sakzad, E. Viterbo, Y. Hong, and J. Boutros, “On the ergodic rate for compute-

and-forward,” in Network Coding (NetCod), 2012 International Symposium on, June

2012, pp. 131–136.

[107] A. Sakzad, J. Harshan, and E. Viterbo, “Integer-forcing MIMO linear receivers

based on lattice reduction,” Wireless Communications, IEEE Transactions on, vol. 12,

no. 10, pp. 4905–4915, Oct. 2013.

[108] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion correcting

codes,” IEEE Transactions on Information Theory, vol. 48, no. 1, pp. 305–308, Jan.

2002.

[109] P. Deutsch and J.-L. Gailly, “ZLIB compressed data format specification version

3.3,” IETF RFC 1950, Tech. Rep., May 1996.

[110] T. C. Maxino and P. J. Koopman, “The effectiveness of checksums for embedded

control networks,” IEEE Transactions on Dependable and Secure Computing, vol. 6,

no. 1, pp. 59–72, Jan. 2009.

https://pypi.python.org/pypi/reedsolomon
https://pypi.python.org/pypi/reedsolomon
http://arxiv.org/abs/1107.0300


BIBLIOGRAPHY 137

[111] S. Heimlicher, M. Karaliopoulos, H. Levy, and M. May, “End-to-end vs. hop-by-

hop transport under intermittent connectivity,” in Proceedings of the 1st international

conference on Autonomic computing and communication systems, no. 20. Rome, Italy:

ICST, Oct. 2007.

[112] W. Fu, Z. Tao, J. Zhang, and D. Agrawal, “Error control strategies for WiMAX

multi-hop relay networks,” in Global Telecommunications Conference, 2009. GLOBE-

COM 2009. IEEE, Nov. 2009, pp. 1–6.

[113] Z. Chen, C. Zhang, J. Zhang, and G. Wei, “ARQ protocols for two-way relay sys-

tems,” in 6th International Conference on Wireless Communications Networking and Mo-

bile Computing (WiCOM). Chengdu, China: IEEE, Sept. 2010, pp. 1–4.

[114] J. He and S. C. Liew, “ARQ for physical-layer network coding,” IEEE Transactions

on Mobile Computing, vol. PP, no. 99, pp. 1–1, 2015.

[115] S. Wang, Q. Song, X. Wang, and A. Jamalipour, “Distributed MAC protocol sup-

porting physical-layer network coding,” IEEE Transactions on Mobile Computing,

vol. 12, no. 5, pp. 1023–1036, May 2013.

[116] Ettus Research, “GPSDO Kit for USRP N200/N210,” May 2014. [Online]. Available:

https://www.ettus.com/content/files/gpsdo-kit 4.pdf

[117] ——, “Application note. synchronization and MIMO capability with USRP

devices,” Ettus Research, Tech. Rep., 2015. [Online]. Available: http://www.ettus.

com/content/files/kb/mimo and sync with usrp updated.pdf

[118] C. Sanderson, “Armadillo: An open source C++ linear algebra library for fast

prototyping and computationally intensive experiments.” NICTA, Australia, Tech.

Rep., 2010. [Online]. Available: http://arma.sourceforge.net/

[119] U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital Receivers.

New York: Plenum Press, 1997.

[120] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers: Syn-

chronization, Channel Estimation, and Signal Processing. New York: Wiley, 1998.

https://www.ettus.com/content/files/gpsdo-kit_4.pdf
http://www.ettus.com/content/files/kb/mimo_and_sync_with_usrp_updated.pdf
http://www.ettus.com/content/files/kb/mimo_and_sync_with_usrp_updated.pdf
http://arma.sourceforge.net/


138 BIBLIOGRAPHY

[121] G. Danesfahani and T. Jeans, “Optimisation of modified Mueller and Muller algo-

rithm,” Electronics Letters, vol. 31, no. 13, pp. 1032–1033, June 1995.

[122] F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” Com-

munications, IEEE Transactions on, vol. 34, no. 5, pp. 423–429, May 1986.

[123] J. R. Barry, A. Kavcic, S. W. LcLaughlin, A. Nayak, and W. Zeng, “Iterative timing

recovery,” IEEE Signal Processing Magazine, vol. 21, no. 1, pp. 89–102, Jan. 2004.

[124] C. Dick, F. Harris, and M. Rice, “Synchronization in software radios. carrier and

timing recovery using FPGAs,” in Field-Programmable Custom Computing Machines,

2000 IEEE Symposium on, 2000, pp. 195–204.

[125] F. J. Harris and M. Rice, “Multirate digital filters for symbol timing synchroniza-

tion in software defined radios,” IEEE Journal on Selected Areas in Communications,

vol. 19, no. 12, pp. 2346–2357, Dec. 2001.

[126] X. Dang, Q. Li, and X. Yu, “Symbol timing estimation for physical-layer network

coding,” IEEE Communications Letters, vol. 19, no. 5, pp. 755–758, May 2015.

[127] Q. Yang, S. C. Liew, L. Lu, and Y. Shao, “Symbol misalignment estimation in asyn-

chronous physical-layer network coding,” IEEE Transactions on Vehicular Technol-

ogy, accepted for publication.

[128] D. Kramarev, “Accurate symbol-level synchronization of universal software radio

peripherals for physical-layer network coding applications,” Oct. 2016, submitted

to IEEE International Conference on Communications 2017.

[129] A. Eghbali, T. Saramaki, and H. Johansson, “On two-stage Nyquist pulse shaping

filters,” Signal Processing, IEEE Transactions on, vol. 60, no. 1, pp. 483–488, Jan. 2012.

[130] A. P. Vinod and E. M.-K. Lai, “Design of low complexity high-speed pulse-shaping

IIR filters for mobile communication receiver,” in IEEE Int. Conf. on Circuits and

Systems (ISCAS), IEEE. Kobe, Japan: IEEE, May 2005, pp. 352–355.

[131] V. Agarwal, P. Kim, D.-G. Oh, and D.-S. Ahn, “Hardware efficient root-raised-

cosine pulse shaping filter for DVB-S2 receivers,” in Advances in Computing



BIBLIOGRAPHY 139

and Communications, ser. Communications in Computer and Information Science,

A. Abraham, J. Lloret Mauri, J. Buford, J. Suzuki, and S. Thampi, Eds. Springer

Berlin Heidelberg, 2011, vol. 191, pp. 595–603.

[132] N. Pal, R. Sarin, K. Singhal, and R. Rajan, “Distributed arithmetic algorithm for

raised cosine filter in WCDMA system,” MIT International Journal of Electronics &

Communication Engineering, vol. 2, no. 1, pp. 5–10, Jan. 2012.

[133] Z. Wang, Y. Li, and H. Huang, “FPGA design and implementation of pulse shaping

filter for coherent underwater communication,” in 2012 2nd International Conference

on Computer Science and Network Technology (ICCSNT), IEEE. Changchun, China:

IEEE, Dec. 2012, pp. 748–752.

[134] A. Avizienis, “Signed-digit numbe representations for fast parallel arithmetic,” IRE

Transactions on Electronic Computers, vol. EC-10, pp. 389–400, Sept. 1961.

[135] Y. C. Lim and S. R. Parker, “FIR filter design over a discrete powers-of-two co-

efficient space,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 31, no. 3, pp.

583–591, June 1983.

[136] H. Samueli, “An improved search algorithm for the design of multiplierless FIR

filters with powers-of-two coefficients,” IEEE Transactions on Circuits and Systems,

vol. 36, no. 7, pp. 1044–1047, July 1989.

[137] Z. Tang, J. Zhang, and H. Min, “A high-speed, programmable, CSD coefficient FIR

filter,” IEEE Transactions on Consumer Electronics, vol. 48, no. 4, pp. 834–837, Nov.

2002.

[138] J. Vankka, Digital Synthesizers and Transmitters for Software Radio. Springer US,

2005.

[139] V. Manoj and E. Elias, “Artificial bee colony algorithm for the design of multiplier-

less nonuniform filter bank transmultiplexer,” Information Sciences: an International

Journal, vol. 192, pp. 193–203, June 2012.



140 BIBLIOGRAPHY

[140] J. Skaf and P. Boyd, “Filter design with low complexity coefficients,” Signal Process-

ing, IEEE Transactions on, vol. 56, no. 7, pp. 3162–3169, July 2008.

[141] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Upper Saddle

River, NJ: Prentice-Hall, 1999.

[142] H. J. Oh, W. J. Oh, and Y. H. Lee, “Design of cascade-form IIR filters with powers-of-

two coefficients using mixed integer linear programming,” in Circuits and Systems,

1996. ISCAS ’96., Connecting the World., 1996 IEEE International Symposium on, vol. 2,

May 1996, pp. 221–224.

[143] L. Liang, M. Ahmadi, M. Sis-Ahmed, and K. Wallus, “Design of canonical signed

digit IIR filters using genetic algorithm,” in The Thirty-Seventh Asilomar Conf. on

Signals, Systems, and Computers, vol. 2, IEEE. IEEE, Nov. 2003, pp. 2043–2047.

[144] T. Williams, M. Ahmadi, and W. Miller, “Design of 2D FIR and IIR digital filters

with canonical signed digit coefficients using singular value decomposition and

genetic algorithms,” Circuits, Systems and Signal Processing, vol. 26, no. 1, pp. 69–89,

Feb. 2007.

[145] B.-S. Chen, S.-C. Peng, and B.-W. Chiou, “IIR filter design via optimal Hankel-norm

approximation,” Circuits, Devices and Systems, IEE Proceedings G, vol. 139, no. 5, pp.

586–590, Oct. 1992.

[146] H. Brandenstein and R. Unbehauen, “Weighted least-squares approximation of FIR

by IIR digital filters,” Signal Processing, IEEE Transactions on, vol. 49, no. 3, pp. 558–

568, Mar. 2001.

[147] “Ettus USRP X310.” [Online]. Available: https://www.ettus.com/product/

details/X310-KIT

[148] Y. Li, R. H. Louie, and B. Vucetic, “Relay selection with network coding in two-

way relay channels,” Vehicular Technology, IEEE Transactions on, vol. 59, no. 9, pp.

4489–4499, Nov. 2010.

https://www.ettus.com/product/details/X310-KIT
https://www.ettus.com/product/details/X310-KIT


BIBLIOGRAPHY 141

[149] M. Zhou, Q. Cui, R. Jantti, and X. Tao, “Energy-efficient relay selection and power

allocation for two-way relay channel with analog network coding,” Communica-

tions Letters, IEEE, vol. 16, no. 6, pp. 816–819, June 2012.

[150] S. Talwar, Y. Jing, and S. ShahbazPanahi, “Joint relay selection and power allocation

for two-way relay networks,” Signal Processing Letters, IEEE, vol. 18, no. 2, pp. 91–

94, Feb. 2011.


	Abstract
	Declaration
	List of Publications
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Acronyms & Symbols
	Introduction
	Research motivation
	Challenges of PNC implementation
	Objectives of the research
	Potential applications of PNC
	Thesis organization

	Literature review
	Introduction
	Early studies on PNC
	Alternatives to PNC

	Compute-and-Forward relaying scheme
	Synchronization in PNC
	Channel estimation in PNC
	Network coding prototyping efforts
	Software-defined radio
	GNU Radio

	Universal software radio peripheral
	FPGA

	Conclusion

	Practical CF scheme design and analysis
	Introduction
	System model
	Codebook construction
	Search of optimal linear coefficients
	The multiple-access phase
	The broadcast phase
	Simulation results
	Conclusion

	Data-link layer protocols for PNC and their implementation on SDR
	Introduction
	Half-duplex packet switching in GNU Radio
	Packet formats for different relaying strategies

	ARQ protocols for different relaying strategies in TWRN
	ARQ protocol for DNC
	ARQ protocol for DF
	ARQ protocol for CF

	ARQ performance comparison
	Conclusion

	SDR implementation of CF relaying and experimental evaluation
	Introduction
	Hardware and software platform
	Synchronization
	Symbol synchronization
	Frame synchronization
	FPGA customization

	Symbol-timing recovery at CF relay
	Channel estimation
	Experimental performance evaluation
	Experimental set-up
	Bit error rates
	Packet delivery ratio
	Network throughput

	Conclusion

	Multiplierless IIR filter design via zero/pole approximation
	Introduction
	The CSD zero/pole approximation method
	IIR filter design methods
	CSD representation
	The algorithm

	Performance analysis
	Hardware complexity
	BER performance
	Conclusion

	Conclusions and Future Work
	Conclusions
	Summary of contributions
	Future work
	Implementation of MIMO PNC/CF
	Extension of the testbed from TWRN to a larger network
	Further optimization of zero/pole approximation method of CSD IIR filter design


	Description of GRC flow graphs
	Design of custom blocks
	Relay design in GRC
	Terminal design in GRC

	Bibliography



