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Abstract

Cloud Computing has recently emerged as a highly successful alternative information

technology paradigm through on-demand resource provisioning and almost perfect relia-

bility. In order to meet the customer demands, Cloud providers are deploying large-scale

virtualized data centers consisting of thousands of servers across the world. These data

centers require huge amount of electrical energy that incur very high operating cost and

as a result, leave large carbon footprints. The reason behind the extremely high energy

consumption is not just the amount of computing resources used, but also lies in ineffi-

cient use of these resources. Furthermore, with the recent proliferation of communication-

intensive applications, network resource demands are becoming one of the key areas of

performance bottleneck. As a consequence, efficient utilization of data center resources

and minimization of energy consumption are emerging as critical factors for the success of

Cloud Computing. This thesis addresses the above mentioned resource and energy related

issues by tackling through data center-level resource management, in particular, by effi-

cient Virtual Machine (VM) placement and consolidation strategies. The problem of high

resource wastage and energy consumption is dealt with an online consolidated VM clus-

ter placement scheme, utilizing the Ant Colony Optimization (ACO) metaheuristic and a

vector algebra-based multi-dimensional resource utilization model. In addition, optimiza-

tion of network resource utilization is addressed by an online network-aware VM cluster

placement strategy in order to localize data traffic among communicating VMs and reduce

traffic load in data center interconnects that, in turn, reduces communication overhead in

the upper layer network switches. Besides the online placement schemes that optimize the

VM placement during the initial VM deployment phase, an offline decentralized dynamic

VM consolidation framework and an associated algorithm leveraging VM live migration

technique are presented to further optimize the run-time resource usage and energy con-

sumption, along with migration overhead minimization. Such migration-aware dynamic

VM consolidation strategy uses realistic VM migration parameters to estimate impacts of

necessary VM migrations on data center and hosted applications. Simulation-based per-

formance evaluation using representative workloads demonstrates that the proposed VM

placement and consolidation strategies are capable of outperforming the state-of-the-art

techniques, in the context of large data centers, by reducing energy consumption up to

29%, server resource wastage up to 85%, and network load up to 60%.
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Chapter 1

Introduction

With the rapid progress in microminiaturization of technologies and the proliferation of the

Internet, computing resources are now more powerful, cheaper, and ubiquitously available

than ever before. This technological shift has enabled the realization of a new computing

paradigm called Cloud Computing. Technically, Clouds are large pools of easily accessible

and readily usable virtualized resources, such as hardware, development platforms, and

services that can be dynamically reconfigured to adjust to a variable load in terms of scal-

ability, elasticity, and load balancing, and thus, allow opportunities for optimal resource

utilization. This pool of virtualized resources is typically provisioned by Cloud infrastruc-

ture providers using a pay-per-use business model with extremely high availability and

almost perfect reliability (e.g., 99.997% for Amazon EC2 [75]) by means of Service Level

Agreements (SLAs). Cloud consumers can access these resources and services based on

their requirements without any regard as to the location of the consumed resources and

services.

In order to cope with the rapid growth of customer demands for processing power,

storage, and communication, Cloud providers, such as Amazon, Google, and Microsoft

are deploying large-scale data centers across the globe. Recent report shows that Cloud

giant Amazon operates at least 30 data centers in its global network, each comprising

50,000 to 80,000 servers with a power consumption of between 25 to 30 megawatts [86].

As a consequence, a huge amount of electrical energy is required to run the servers and

network devices, as well as to keep the cooling systems operating for these data centers.

As per the Data Center Knowledge report [99], power is one of the critical TCO (Total

Cost of Ownership) variables in managing data centers, and servers and data equipment

1



2 Introduction

A
nn

ua
l E

le
ct

ri
ci

ty
 U

se
 (T

W
h)

Year

Figure 1.1: Worldwide data center electricity consumption (source: Digital Power Group
[87]) (best viewed in color).

are responsible for 55% of energy used by the data center, followed by 30% for the cooling

system. In spite of continuous progress in equipment efficiency, statistics of the worldwide

data center electricity consumption show non-linear growth throughout the last decade

and a similar trend is expected for the upcoming years [87]: a steady rise of 110% from

2010 to 2015 and a predicted rise of 82% from 2015 to 2020 (Figure 1.1).

Large data centers are not only expensive to maintain, but they also have enormous

detrimental effects on the environment. Reports claim that the information technology

ecosystem alone represents around 10% of the world’s electricity consumption [27] and data

centers, the main driving element of this ecosystem, are responsible for around 2% of global

Greenhouse Gas (GHG) emissions, a share comparable to the aviation industry [119].

This extremely high energy consumption is not just because of the amount of com-

puting resources used and the power inefficiency of the hardware infrastructures, but also

due to the inefficient use of these resources. A recent study presented by Reiss et al. [102]

shows that a 12,000-nodes Google cluster achieves aggregate CPU utilization only of 25%-

35% and memory utilization of 40%. A similar underutilization trend has been identified

by the researchers from Stanford University showing that a thousand-nodes production

cluster at Twitter runs consistently at CPU utilization below 20% and memory usage at

around 40%-50%, whereas the overall utilization estimates are even poorer (between 6%
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and 12%) for Cloud facilities that do not consider workload co-location [31]. Moreover, the

narrow dynamic power range of physical servers further exacerbates the problem— even

completely idle servers consume about 70% of their peak power usage [42]. Such low re-

source utilization, technically termed Server Sprawl, contributes to both capital expenses

and operational costs due to non-proportional energy consumption. As a consequence,

underutilization of data center resources is a major challenge for the ultimate success of

Cloud Computing.

Furthermore, rapid development and expansion of Cloud technologies have resulted

in data centers experiencing sharp rise in network traffic, a major portion of which is

constituted by the data communications within the data center. A recent report [25]

published by Cisco Systems Inc. demonstrates that the Cloud data centers will dominate

the global data center network traffic flow for the foreseeable future and its importance is

highlighted by one of the top-line projections from this forecast, which predicts that more

than four-fifths of the total data center traffic will be Cloud traffic by 2019 (Figure 1.2).

One important trait on data center traffic, pointed out in this report, is that the majority

of global data center traffic is generated due to the data communications within the data

centers: in 2014, it was 75.4% and it will be around 73.1% in 2019. This huge amount of

intra-center traffic is primarily generated by application components that are interrelated

to each other in terms of communication: for example, the computing components of a

multi-tier application writing data to the storage array after processing the data. This

large growth in data center traffic poses a serious scalability concern for the wide adoption

of Cloud Computing, particularly with the recent escalation in the size of data being

processed and transmitted within and outside the data center.

Given that Cloud Computing is relatively a recent information technology model with

rapidly increasing popularity, infrastructures and services offered by Cloud providers are

being expanded with a similar pace. As a consequence, from a market-oriented point of

view, design directions and development endeavors are primarily focused on the function-

ality, scalability, and reliability aspects of Cloud resources and services. Having said that,

optimization of resource utilization and energy consumption in Cloud infrastructures is

going to be the upcoming high priority area of advancement. Moreover, due to the propri-

etary nature of large-scale Cloud infrastructures, developments and innovations achieved

by the corporate Cloud providers are hardly available in public domain.
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Figure 1.2: Worldwide data center traffic growth (source: Cisco Systems Inc. [25]) (best
viewed in color).

In light of the above discussion, this thesis addresses the problem of the inefficient use of

computing, storage, and network resources in large-scale, virtualization data centers, such

as Clouds, through Virtual Machine (VM) management, with the goal of minimizing data

center power consumption, resource wastage, and network cost, as well as the associated

management overhead.

1.1 Motivations

Among all the Cloud service models, the key for the extreme success of Cloud Comput-

ing is the Infrastructure-as-a-Service (IaaS), which enables Cloud providers to provision

the computing infrastructures needed to deliver the services simply by renting resources

as long as needed, without ever buying a single component. Cloud infrastructures de-

pend on one or more data centers, either centralized or distributed, and on the use of

various cutting-edge resource virtualization technologies that enable the same physical

resources (computing, storage, and network) to be shared among multiple application

environments [133]. Server Virtualization is one of the essential technologies that have

enabled Clouds to be highly flexible and dynamically reconfigurable environments where

physical resources are provisioned and reclaimed through the creation, resizing, migra-

tion, and termination of VMs. Virtualization technologies allow data centers to address
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Figure 1.3: Virtual Machine management through placement and consolidation strategies.

resource and energy inefficiencies by (i) provisioning multiple VMs in a single physical

server, where each VM represents a run-time environment completely isolated from one

another, and (ii) live migrations of VMs [26] from current hosts to other servers; and by

this process, providing opportunities to improve resource utilization. In particular, effi-

cient VM placement and consolidation decisions during the VM life cycle offer potential

for the optimization of data center resources and power consumption (Figure 1.3).

Underutilization of server resources can be optimized through efficient online VM place-

ment during the initial VM deployment phase. Due to the wide spectrum of heterogeneous

applications deployed in the Clouds, such as e-commerce, business workflows, and social

networking, and so on, VM resource demands expand across multiple dimensions and ex-

hibit large variations. Focusing on the diverse resource demands of customer applications,

Cloud providers, such as Amazon1 and Google2, offer various categories of predefined VMs

with different set amounts of resources across multiple dimensions (such as CPU, main

memory, and network bandwidth), as well as customized VMs, where users can configure

the amount of various resources based on their needs. Such multi-dimensionality of VM

resource demands can be effectively utilized to optimize VMs placement in the physical

servers that will improve resource utilization for various resource types.

1Amazon EC2 Instance Types, 2016. https://aws.amazon.com/ec2/instance-types/
2Google Cloud Platform— Compute Engine, 2016. https://cloud.google.com/compute/

https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/
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Moreover, an effective approach for improving overall server resource utilization is

through consolidated VM placement, where a group of requested VMs are efficiently packed

so that a minimal number of servers are used for hosting the VMs. This process helps

to improve center-wide resource utilization of the active servers which, in turn, facilitates

energy efficiency as unused servers can be kept in lower power states, such as turned

off [123], and tries to avoid running servers underutilized and reduce non-proportional

power consumption. This approach has a further advantage that unused servers can be

kept reserved for hosting any future workloads and, therefore, it improves the overall

throughput of the data center in terms of workloads.

Online VM placement also helps in addressing network scalability issues arising in

the context of large-scale Cloud data centers. Considering the recent trend in modern

Cloud applications, it is observed that a large portion of these applications are multi-

component-based, such as multi-tier enterprise applications and scientific workflows [68].

As a consequence, a significant portion of the VMs deployed in the Clouds are part of

multi-component applications, where the inter-component communication correlations are

known during the initial application deployment phase. Online placement decisions of

such VMs, with consideration of the communication dependencies, provide opportunities

for optimization of network resources; most importantly, link bandwidth. As already

mentioned, around three-fourths of the global data center traffic is generated due to the

inter-component communications of the applications running within data centers [25],

network-aware VM placements can be highly effective in managing this huge network traf-

fic. Moreover, traditional research on network communication and bandwidth optimiza-

tion have so far focused on the rich connectivity at the edges of the network and dynamic

routing protocols to balance the traffic load [85]. Complementary to these approaches,

network-aware VM placement policies can be developed in parallel to help addressing

network scalability issues from the perspective of data center management.

Furthermore, with the increasing trend in applications being ever more data-dependent,

progressively more Cloud applications are deployed with associated data components [58].

Computational components of such applications are coupled with their associated data

components in terms of communication dependencies. As a consequence, consideration of

such associated data components, along with their correlations with the VMs, has potential

to further improve VM placement for network resource optimization.
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While online VM placement and allocations strategies can optimize placement decisions

during the initial VM deployment phases, active VMs can exhibit variations on run-time

resource usage during VM life cycle due to workload variations [89]. Moreover, due to the

Cloud features of on-demand resource provisioning and a pay-as-you-go business model,

VMs are created and terminated in the data centers dynamically based on customer re-

quests. As a consequence, physical server resources become fragmented in time, which

eventually reduces server resource utilization, as well as the overall hosting capacity of the

data center. Such underutilization of computing resources at run-time is one of the pri-

mary reasons for very high resource wastage in production data centers [30]. In addition,

underutilized physical servers contribute to energy wastage due to the narrow dynamic

power range: even completely idle servers consume about 70% of their peak power us-

age [42]. Both the problems of run-time server resource wastage and non-proportional

power consumption can be addressed by improving server resource utilization by means

of offline, dynamic VM consolidation operation.

Complementary to the online VM placement schemes where VM deployment requests

are served as soon as possible with a best-effort policy, offline, dynamic VM consoli-

dation could be run according to a periodic or trigger-driven policy, and thus can be

accommodated simultaneously with the online placement strategies. Such dynamic VM

consolidation can be achieved by utilizing the VM live migration technique [26], where the

running VMs are rearranged and packed into a reduced number of active servers within

the data center, while respecting VM resource requirements and server resource capacity

constraints. Servers that are released by this process can be switched to lower power states

(e.g., standby) in order to save energy.

1.2 Research Problems and Objectives

This thesis deals with the research challenges associated with multi-objective VM place-

ment and consolidation in the context of large-scale virtualized data centers. Given that

VMs and servers are characterized by multi-dimensional resources, such placement and

consolidation problems effectively fall in the category of NP−hard combinatorial opti-

mization problems. In particular, the following research problems are addressed in this

thesis:
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(i) VMs that are requested for placement are characterized by their resource demands

across multiple resource dimensions, such as CPU, memory, and network bandwidth.

In a dynamic environment, such as the Clouds, VMs are usually rented by various

Cloud customers and potentially host different types of applications [15]. Such VM

resource demands demonstrate balanced, as well as complementary, amounts of re-

sources across multiple dimensions. This multi-dimensionality of resource types in-

creases the complexity of the VM placement problem since exhausting one type of

server resource, such as memory, will eventually make the server incapable of hosting

any more VMs, even though other types of resources, such as CPU and network I/O,

remain underutilized [88]. Therefore, both the balanced and the complementary

resource patterns need to be exploited in order to make efficient VM placements,

so that server resources can be utilized in a balanced way across different resource

dimensions, that will eventually improve the overall server resource utilization and

reduce resource wastage. This raises the problem of how to capture server utilization

effectively during VM placement so that the technique would be uniform and could

be readily integrated to the VM placement and consolidation strategies.

(ii) When VMs submission requests arrive, the online VM placement subsystem needs to

make the decision as to which server to select for allocating each of the VMs, with the

aim of improving the overall resource utilization of the active servers, so that both

resource wastage and power consumption are minimized. Effectively, this requires

the subsystem to determine placement decisions for the VMs so that the number

of servers needed for hosting the VMs is minimized. Moreover, the complexity of

the problem is further increased by the size of today’s large-scale infrastructures,

in particular Cloud data centers, that are comprised of thousands of servers, where

a large number of VM deployment requests are issued at run-time. In fact, this

particular VM placement problem is an instance of Multi-dimensional Vector Packing

Problem [23] for which there is no known polynomial-bound exact solution [17], which

consequently makes designing scalable solutions even harder.

(iii) Placement decisions of VMs with mutual communication correlations need to en-

sure feasible VM placement both in terms of computational resources and network

bandwidth. Taking into account the diversity and structural complexity of compos-

ite Cloud applications [57], it is crucial to represent such composite applications in
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a generic and appropriate manner. With a focus on improving network scalability,

the immediate problem is how to model the network overheads incurred due to the

placement of such composite applications.

(iv) Online placement of VMs, that are submitted as a part of a composite application

having associated data components, focusing on network resource optimization needs

to figure out appropriate servers for the VMs, as well as appropriate storage nodes

for the data components. This necessitates the design of efficient algorithms such

that it minimizes the network overheads due to the placements, with the ultimate

goal of improving network scalability. However, optimal placement of application

components that results in minimum network overhead is non-trivial, especially in

the context of large-scale data centers, since it requires finding the best placement

among all possible combinations of feasible placements. This makes the problem

an extended version of the Quadratic Assignment Problem (QAP) [80], which is a

combinatorial optimization problem that is already shown to be computationally

NP−hard [18].

(v) Run-time optimization of resource utilization through dynamic VM consolidation re-

quires VM live migration operations that have adverse effects on hosted applications

and data center components [122]. The problem is how to estimate the overheads of

the VM live migrations, which will be necessary to achieve a certain consolidation

state. Moreover, active VMs differ in their run-time properties, such as memory size

and page dirty rate, that contribute to the impact of VM migrations. As a conse-

quence, different VM migrations have different amounts of migration overheads and

oversimplified measures, such as the number of migrations, are inappropriate to use

in consolidation decisions.

(vi) Dynamic VM consolidation with the application of VM migration is effectively a

multi-objective problem with potentially conflicting goals of maximizing the number

of released servers and minimizing the associated migration overheads. Therefore,

the problem is to identify which VMs to migrate, along with the corresponding tar-

get servers, that will help in releasing the largest number of servers with minimal

migration overheads, so that both server resource wastage and power consumption
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can be reduced with a nominal impact on hosted applications and data center com-

ponents. From algorithmic point of view, this problem requires the solution to come

up with the VM migration decisions among all possible migrations within the data

center that would optimize the defined objectives. Moreover, with the increase in the

number of VMs and servers, the search space of the problem expands exponentially.

As a consequence, this particular VM consolidation problem secures its place in the

spectrum of discrete combinatorial optimization problems.

(vii) Migration-based consolidation operations can suffer serious scalability issues for large-

scale data centers. Since VM live migration operations involve non-negligible amounts

of memory data transfer across the communication network, data center-wide VM

consolidation decisions can lead to a large amount of data transfer through the upper

layer switches and, therefore, have the potential to impose large network overheads.

As a consequence, it is necessary to design a scalable, dynamic VM consolidation

scheme.

The overall goal of this research project is to devise VM management strategies and

algorithms with a focus on optimizing resource utilization and power consumption in the

context of large-scale virtualized data centers. To this end, both online and offline VM

management scenarios are considered in the thesis. In particular, the following specific

research objectives are delineated in order to deal with the challenges associated with the

above research problems:

• Explore, analyze, and categorize the research in the field of VM management, pri-

marily VM placement, migration, and consolidation, with the goal of achieving sys-

tematic knowledge and understanding of the existing techniques and approaches.

• Develop an effective and unified technique to capture balanced utilization of multi-

dimensional server resources during the course of VM placement such that it can be

readily integrated into VM placement and consolidation schemes.

• Design an online, multi-objective VM placement scheme and associated algorithm to

generate VM placement plans that require a minimal number of physical servers and,

by this process, improve server resource utilization and reduce power consumption.

Moreover, the decision time required by the algorithm needs to be realistic for online

scenarios, even for reasonably large-scale problems.
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• Formulate appropriate models to represent a generic structure of composite appli-

cation with VMs and data components, with mutual communication correlations,

and define relevant cost functions to capture network overheads incurred by VM

placements.

• Design an online, network-aware VM placement strategy and associated algorithm

for composite application placement with the goal of reducing the network overheads

incurred due to the overall application placement by localizing network traffic among

VMs and data components.

• Develop an effective and uniform VM live migration overhead estimation technique,

taking into account realistic migration parameters and overhead factors, so that

the estimate of the migration overheads can be integrated with the dynamic VM

consolidation schemes.

• Design a decentralized, dynamic VM consolidation framework in order to form mul-

tiple server clusters within a data center with the aim of improving the scalability of

dynamic VM consolidation operations and reducing network overheads due to the

associated VM migrations.

• Design an offline, multi-objective VM consolidation technique and associated algo-

rithm in order to generate VM migration plans that consolidate the active VMs into

a reduced number of server with the potentially conflicting goals of maximizing the

number of released servers with minimal migration overheads.
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1.3 Contributions

The key contributions of this thesis are summarized below.

1. A taxonomy and survey of state-of-the-art VM management strategies in the context

of large-scale virtualized data centers, including identification of various nomenclatural

aspects of VM placement, migration, and consolidation, as well as classification and

analysis of the prominent techniques and strategies (Chapter 3).

2. A mathematical framework for modeling the multi-objective VM placement problem

as an instance of the general Multi-dimensional Vector Packing Problem [23] that facil-

itates problem analysis and guides the designing of a solution approach (Chapter 4).

3. A server resource utilization capture technique based on vector algebra that effectively

measures the mean across multiple resource dimensions as a unified scalar quantity such

that it represents balanced utilization. This utilization capture technique is generic so

that it can exploit the complementary resource demand patterns among heterogeneous

VMs and be readily integrated to any online or offline VM management strategies

(Chapter 4).

4. A novel online, multi-objective VM placement algorithm, integrated with the server

utilization capture technique, with the goal of reducing power consumption and server

resource wastage. The algorithm is application-agnostic and adapts the Ant Colony

Optimization (ACO) metaheuristic in order to navigate the search space efficiently

within polynomial time that makes it suitable for online or real-time VM placement

scenarios in the context of large-scale Cloud infrastructures (Chapter 4).

5. Models for representing generic, multi-component Cloud applications and placement-

related network costs, and a mathematical framework that defines the network-aware,

online application placement as a combinatorial optimization problem with the objec-

tive of network cost minimization (Chapter 5).

6. Novel heuristics for network-efficient, simultaneous placement of VMs and data blocks

comprising multi-component applications with a focus on reducing the network over-

heads on the data center network and, ultimately, improving scalability. The proposed

placement scheme strives to reduce the distance that data packets need to travel within



1.3 Contributions 13

the communication substrate and thereby, help in localizing network traffic and min-

imizing communication overhead in upper-layer network switches. Moreover, the pro-

posed algorithms compute the placements pretty quickly (in the fractions of a second)

that makes it suitable for medium-to-large-scale infrastructures (Chapter 5).

7. A mathematical framework with associated models for defining the migration impact-

aware, multi-objective dynamic VM consolidation problem as an NP-hard discrete com-

binatorial optimization problem with potentially conflicting objectives of minimizing

data center resource wastage, power consumption, and overall migration overheads due

to VM consolidation (Chapter 6).

8. VM live migration overhead estimation models, in the context of the pre-copy VM

live migration technique, which takes into account realistic migration parameters and

overhead factors such that the models are not restricted to any specific VM consolida-

tion method and can be readily integrated to any migration-based VM management

strategy (Chapter 6).

9. A hierarchical, decentralized VM consolidation framework for clustering servers in a

data center based on mutual network costs of data communications where VM consoli-

dation can be performed within each group separately. This decentralized consolidation

approach assists in localizing migration-related network traffic and reducing network

costs due to VM migrations, thus ultimately facilitating the minimization of migra-

tion overheads and improving the scalability of dynamic VM consolidation operations

(Chapter 6).

10. A novel offline, multi-objective dynamic VM consolidation algorithm, coupled with the

migration overhead estimation models, designed through appropriate adaption of the

ACO metaheuristic. The consolidation algorithm consolidates the active VMs in a

reduced number of servers with the goal of optimizing the run-time resource utilization

and power consumption within the data center, while at the same time minimizing

the associated VM migration overheads incurred due to the consolidation. Due to

the polynomial nature of ACO-based metaheuristics, the proposed algorithm generates

VM consolidation decisions reasonably fast that makes it suitable for taking offline

optimization decisions (Chapter 6).
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11. Extensive simulation-based performance evaluation of the proposed VM placement

and consolidation techniques, which are compared with the state-of-the-art algorithms

across multiple performance metrics and several scaling factors, along with comprehen-

sive analysis and discussion of the observed results (Chapters 4-6).

1.4 Thesis Organization

The chapters and their contributions are set out in Figure 1.4. The remainder of the

thesis is organized as follows:

Contribution 1

Contributions 2, 3, 4, and 11

Contributions 5, 6, and 11

Contributions 7, 8, 9, 10 and 11

Chapter 1:  Introduction

Chapter 2:   Background

Chapter 3:   Taxonomy and Survey on Virtual 
Machines Management

Chapter 4:   Multi-objective Virtual Machine 
Placement

Chapter 5:   Network-aware Virtual Machine 
Placement

Chapter 6:   Multi-objective, Decentralized Dynamic 
Virtual Machine Consolidation

Chapter 7:   Conclusions and Future Directions

Figure 1.4: Thesis chapters outline.

• Chapter 2 presents an overview of the various concepts, elements, systems, and

technologies relating to the research area of this thesis.

• Chapter 3 presents a taxonomy and survey of the VM placement, migration, and

consolidation strategies in the context of virtualized data centers, particularly of

Cloud data centers. Preliminary results from this chapter have been published in

two book chapters [47] and [49] published by Springer International Publishing and

IGI Global, respectively.
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• Chapter 4 proposes a multi-objective, on-demand VM cluster placement strategy for

virtualized data center environments with a focus on energy-efficiency and resource

utilization. Preliminary results from this chapter have been published in [48].

• Chapter 5 presents a network-aware, on-demand VM cluster placement scheme along

with associated data components in the context of modern Cloud-ready data centers

with the objective of reducing network traffic overheads. Journal paper written from

preliminary results of this chapter is under second review.

• Chapter 6 proposes an offline, decentralized, dynamic VM consolidation framework

and an associated VM consolidation algorithm leveraging the VM live migration

technique with the goal of optimizing the run-time resource usage, energy consump-

tion, and associated VM live migration overheads.

• Chapter 7 concludes the thesis with a summary of the contributions, main findings,

and discussion of future research directions, followed by final remarks.
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Chapter 2

Background

Cloud Computing have been very successful from its very inception and the reason behind

its extreme success is the utilization of various technological elements, ranging from phys-

ical servers to virtualization technologies and application development platforms. As this

thesis focuses on data center-level resource management and energy consumption leverag-

ing Virtual Machine (VM) management strategies, this chapter presents an overview of

the various Cloud Computing features and properties from infrastructure point of view,

including background on virtualization and data center architectures.

2.1 Introduction

Cloud Computing has been growing with a rapid pace from its very inception. The

main reason behind its continuous and steady improvement is the unique features of very

high reliability, elasticity, and on-demand resource provisioning. In order to provide these

features, Cloud providers are provisioning large-scale infrastructures, leveraging various

technological elements, ranging from physical servers to virtualization technologies and

application development platforms. Since this thesis addresses the issues of the data

center-level resource utilization and energy-efficiency through Virtual Machine (VM) man-

agement, an overview of various Cloud Computing features and properties from infrastruc-

ture point of view, including background on the virtualization technology and data center

architectures will facilitate an informed and smooth reading of the remaining chapters.

With this motivation, this chapter presents a brief background on the relevant topics

relating to VM management in the context of Cloud data centers.

17
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The rest of this chapter is organized as follows. Section 2.2 presents an background

on Cloud Computing from perspectives of the architecture, the deployment models, and

the provided services. Various features and categories of the virtualization technologies

are discussed in Section 2.3, followed by a description on the VM migration techniques

in Section 2.4. Section 2.5 presents a brief overview of the different data center network

architectures, followed by a description of the Cloud application workloads and network

traffic patterns in Section 2.6. A brief overview of the VM consolidation techniques, along

with their pros and cons, are presented in Section 2.7. Finally, Section 2.8 summarizes

the chapter.

2.2 Cloud Infrastructure Management Systems

While the number and scale of Cloud Computing services and systems are continuing

to grow rapidly, significant amount of research is being conducted both in academia and

industry to determine the directions to the goal of making the future Cloud Computing

platforms and services successful. Since most of the major Cloud Computing offerings

and platforms are proprietary or depend on software that is not accessible or amenable to

experimentation or instrumentation, researchers interested in pursuing Cloud Computing

infrastructure questions, as well as future Cloud service providers, have very few tools

to work with [96]. Moreover, data security and privacy issues have created concerns

for enterprises and individuals to adopt public Cloud services [6]. As a result, several

attempts and ventures of building open-source Cloud management systems came out of

collaborations between academia and industry, including OpenStack1, Eucalyptus [96],

OpenNebula [110], and Nimbus2. These Cloud solutions provide various aspects of Cloud

infrastructure management, such as:

1. Management services for Virtual Machine (VM) life cycle, compute resources, net-

working, and scalability.

2. Distributed and consistent data storage with built-in redundancy, fail-safe mecha-

nisms, and scalability.

3. Discovery, registration, and delivery services for virtual disk images with support of

different image formats (e.g., VDI, VHD, qcow2, VMDK, etc.)

1OpenStack Open Source Cloud Computing Software, 2016. https://www.openstack.org/
2Nimbus is cloud computing for science, 2016. http://www.nimbusproject.org/

https://www.openstack.org/
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Figure 2.1: The Cloud Computing Architecture.

4. User authentication and authorization services for all components of Cloud manage-

ment.

5. Web and console-based user interface for managing instances, images, cryptographic

keys, volume attachment/detachment to instances, and similar functions.

Figure 2.1 shows the four essential layers of the Cloud Computing environment from

the architectural perspective. Each layer is built on top of the lower layers and provides

unique services to its upper layers.

1. Hardware Layer: This layer is composed of the physical resources of typical data

centers, such as physical servers, storage devices, load balancers, routers, switches,

communication links, power systems, and cooling systems. This layer is essentially

the driving element of Cloud services and, as a consequence, operation and manage-

ment of the physical layer incur continuous costs for the Cloud providers. Example

includes the numerous data centers of Cloud providers that spread all over the globe,

such as Amazon AWS3, Rackspace4, Google5, Microsoft6, and Linode7.

2. Infrastructure Layer: This layer (also known as Virtualization Layer) creates

a pool of on-demand computing and storage resources by partitioning the physi-

cal resources, utilizing the various virtualization technologies, such as Xen [9] and

3Amazon Web Services, 2016. http://aws.amazon.com/
4Rackspace: The Managed Cloud Company, 2016. http://www.rackspace.com/
5Google Cloud Platform, 2016. https://cloud.google.com/compute/
6Microsoft Azure, 2016. https://azure.microsoft.com
7Linode: SSD Cloud Hosting, 2016. https://www.linode.com/

http://aws.amazon.com/
http://www.rackspace.com/
https://cloud.google.com/compute/
https://azure.microsoft.com
https://www.linode.com/
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VMware8. Efficient allocation and utilization of the virtual resources, in accordance

with the computing demands of Cloud users, are important to minimize the Service

Level Agreement (SLA) violations and maximize revenues.

3. Platform Layer: Built on top of the infrastructure layer, the platform layer con-

sists of customized operating systems and application frameworks, that help auto-

mate the process of of application development, deployment, and management. In

this way, this layer strives to minimize the burden of deploying applications directly

on the VM containers.

4. Application Layer: This layer consists of the actual Cloud applications, which are

different from traditional applications and can leverage the on-demand automatic-

scaling feature of Cloud Computing to achieve better performance, higher availabil-

ity, and reliability, as well as the minimization of operating costs.

In alignment with the architectural layers of Cloud infrastructure resources and ser-

vices, the following three primary service models have evolved and are used extensively

by the Cloud community [118]:

1. Infrastructure-as-a-Service (IaaS): Cloud provides provision computing re-

sources (e.g., CPU and memory) to Cloud customers in the form of VMs, storage

resources in the form of storage blocks, file systems, databases, and so on, as well

as communication resource in the form of bandwidth. IaaS provides further provide

management consoles and dashboards, APIs (Application Programming Interfaces),

and advanced security features for manual and autonomic control and management

of the virtual resources. Typical examples are Amazon EC29, Google Compute

Engine10, and Rackspace Server Hosting11.

2. Platform-as-a-Service (PaaS): PaaS providers offer a development platform,

such as programming environments, tools, that allows Cloud consumers to develop

Cloud services and applications, as well as deployment platforms that host those

8VMware Virtualization, 2016. http://www.vmware.com/virtualization
9Amazon Elastic Compute Cloud, 2016. http://aws.amazon.com/ec2

10Google Cloud Platform, 2016. https://cloud.google.com/compute/
11Rackspace Server Hosting, 2016. http://www.rackspace.com.au/cloud/servers

http://www.vmware.com/virtualization
http://aws.amazon.com/ec2
https://cloud.google.com/compute/
http://www.rackspace.com.au/cloud/servers
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services and applications, and thus support full software life-cycle management. Ex-

amples include Google App Engine12 and Microsoft Azure13 platforms.

3. Software-as-a-Service (SaaS): Cloud consumers release their applications on

a hosting environment fully managed and controlled by the SaaS Cloud providers

and the applications can be accessed through the Internet from various clients, such

as Web Browsers, Mobile Apps, and Terminal Emulators. Examples of the SaaS

platform include Google Apps14, Salesforce.com15, and Twitter16.

2.3 Virtualization Technologies

One of the main enabling technologies that paved the way of Cloud Computing towards

its extreme success is virtualization. Clouds leverage various virtualization technologies

(e.g., machine, network, and storage) to provide users an abstraction layer that provides a

uniform and seamless computing platform by hiding the underlying hardware heterogene-

ity, geographic boundaries, and internal management complexities [133]. It is a promising

technique by which resources of physical servers can be abstracted and shared through

partial or full machine simulation by time-sharing and hardware and software partitioning

into multiple execution environments each of which runs as complete and isolated system.

It allows dynamic sharing and reconfiguration of physical resources in Cloud Comput-

ing infrastructure that makes it possible to run multiple applications in separate VMs

having different performance metrics. It is virtualization that makes it possible for the

Cloud providers to improve utilization of physical servers through VM multiplexing [84]

and multi-tenancy (i.e., simultaneous sharing of physical resources of the same server by

multiple Cloud customers). It also enables on-demand resource pooling through which

computing resources (like CPU and memory), network, and storage resources are pro-

visioned to customers only when needed [73]. This feature helps avoid static resource

allocation based on peak resource demand characteristics. In short, virtualization enables

higher resource utilization, dynamic resource sharing, and better energy management, as

well as improves scalability, availability, and reliability of Cloud resources and services [20].

12Google App Engine, 2016. https://cloud.google.com/appengine/
13Microsoft Azure: Cloud Computing Platform & Services, 2016. http://azure.microsoft.com/
14Google Apps for Work, 2016. https://apps.google.com/
15Salesforce: CRM and Cloud Computing, 2016. http://www.salesforce.com/
16Twitter, 2016. https://twitter.com/

https://cloud.google.com/appengine/
http://azure.microsoft.com/
https://apps.google.com/
http://www.salesforce.com/
https://twitter.com/
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From the architectural perspective, the virtualization approaches are primarily cate-

gorized into the following two types:

1. Hosted Architecture: The virtualization layer is installed and run as an individ-

ual application on top of an operating system and supports the broadest range of

underlying hardware configurations. Example of such architecture includes VMware

Workstation17 and Player18, and Oracle VirtualBox19.

2. Hypervisor-based Architecture: The virtualization layer, termed Hypervisor is

installed and run on bare hardware and retains full control of the underlying physical

system. It is a piece of software that hosts and manages the VMs on its Virtual

Machine Monitor (VMM) components (Figure 2.2). The VMM implements the

VM hardware abstraction, and partitions and shares the CPU, memory, and I/O

devices to successfully virtualize the underlying physical system. In this process, the

Hypervisor multiplexes the hardware resources among the various running VMs in

time and space sharing manner, the way traditional operating system multiplexes

hardware resources among the various processes [108]. VMware ESXi20 and Xen

Server [9] are examples of this kind of virtualization. Since hypervisors have direct

access to the underlying hardware resources rather than executing instructions via

operating systems as it is the case with hosted virtualization, a hypervisor is much

more efficient than a hosted virtualization system and provides greater performance,

scalability, and robustness.

Among the different processor architectures, the Intel x86 architecture has been estab-

lished as the most successfully, widely adopted, and highly inspiring. In this architecture,

different privilege level instructions are executed and controlled through the four privilege

rings: Ring 0, 1, 2, and 3, with 0 being the most privileged (Figure 2.3) in order to manage

access to the hardware resources. Regular operating systems targeted to run over bare-

metal x86 machines assume full control of the hardware resources and thus are placed in

Ring 0 so that they can have direct access to the underlying hardware, while typical user

level applications run at ring 0.

17VMware Workstation, 2015. http://www.vmware.com/products/workstation
18VMware Player Pro, 2015. http://www.vmware.com/products/player
19Oracle VirtualBox, 2015. https://www.virtualbox.org/
20VMware ESXi Hypervisor, 2015. http://www.vmware.com/products/esxi-and-esx/

http://www.vmware.com/products/workstation
http://www.vmware.com/products/player
https://www.virtualbox.org/
http://www.vmware.com/products/esxi-and-esx/
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Figure 2.2: The Hypervisor-based Virtualization Architecture.
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Figure 2.3: The x86 processor privilege rings without virtualization.

Virtualization of the x86 processor required placing the virtualization layer between

the operating system and the hardware so that VMs can be created and managed that

would share the same physical resources. This means the virtualization layer needs to

be placed in Ring 0; however unmodified operating systems assumes to be run in the

same Ring. Moreover, there are some sensitive instructions that have different semantics

when they are not executed in Ring 0 and thus cannot be effectively virtualized. As

a consequence, the industry and research community have come up with three types of

alternative virtualization techniques presented in the following subsections.
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2.3.1 Full Virtualization

Full Virtualization technique provides complete abstraction of the underlying hardware

and facilitates the creation of complete VMs in which guest operating systems can execute

[9]. This type of virtualization is achieved through a combination of binary translation and

direct execution techniques that allow the VMM to run in Ring 0. The binary translation

technique translates the OS kernel level code with alternative series of instructions in

order to substitute the non-virtualizable instructions so that it has the intended effect

on the virtual hardware (Figure 2.4(a)). As for the user level codes, they are executed

directly on the processor to achieve high performance. In this way, the VMM provides

the VM with all the services of the physical machine like virtual processor, memory, I/O

devices, BIOS, etc. This approach have the advantage of providing total virtualization of

the physical machine as the guest operating system is fully abstracted and decoupled from

the underlying hardware separated by the virtualization layer. This enables unmodified

operating systems and applications to run on VMs, being completely unaware of the

virtualization. It also facilitates efficient and simplified migration of applications and

workloads from one physical machine to another. Moreover, full virtualization provides

complete isolation of VMs that ensures high level of security. VMware ESXi Server and

Microsoft Hyper-V21 are examples of full virtualization.

21Microsoft Hyper-V, 2015. https://technet.microsoft.com/en-us/windowsserver/dd448604.aspx

https://technet.microsoft.com/en-us/windowsserver/dd448604.aspx


2.3 Virtualization Technologies 25

Host System Hardware
(Processors, RAM, I/O Devices, 

Storage, Interrupts)

Virtualization Layer (VMM)

Guest OS

Applications

Ring 0

Ring 1

Ring 2

Ring 3

1

2

1. Direct 
execution of 
Application 
instructions

2

2. Binary 
translation of 

OS instructions

(a)

Host System Hardware
(Processors, RAM, I/O Devices, 

Storage, Interrupts)

Modified Guest OS

Applications

Ring 0

Ring 1

Ring 2

Ring 3

1

2

1. Direct 
execution of 
Application 
instructions

2
2. Non-

virtualizable 
System Calls 
replaced by 
Hypercalls

(b)

Virtualization Layer (VMM)

Host System Hardware
(Processors, RAM, I/O Devices, 

Storage, Interrupts)

Guest OS

Applications

Ring 0

Ring 1

Ring 2

Ring 3

1

2

1. Direct 
execution of 
Application 
instructions

2
2. VMM traps 

OS 
instructions 

directly 

(c)

Virtualization Layer (VMM)

Privilege 
Levels:

Non-root mode

Privilege Level:
Root mode

Figure 2.4: Alternative virtualization techniques: (a) Full Virtualization through binary

translation, (b) Paravirtualization, and (c) Hardware Assisted Virtualization.
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2.3.2 Paravirtualization

Different from the binary translation technique of full virtualization, Paravirtualization

(also called OS Assisted Virtualization) works through the modification of the OS kernel

code by replacement of the non-virtualizable instructions with hypercalls that communi-

cate directly with the hypervisor virtualization layer [29] (Figure 2.4(b)). The hypervisor

further provides hypercall interfaces for special kernel operations such as interrupt han-

dling, memory management, timer management, etc. Thus, in paravirtualization each

VM is presented with an abstraction of the hardware that is similar but not identical to

the underlying physical machine. Since paravirtualization requires modification of guest

OSs, they are not fully unaware of the presence of the virtualization layer. The primary

advantage of paravirtualization technique is lower virtualization overhead over full virtual-

ization where binary translations affect instruction executing performance. However, this

performance advantage is dependent on the types of workload running on the VMs. Par-

avirtualization suffers from poor compatibility and portability issues since every guest OS

running on it top of paravirtualized machines needs to be modified accordingly. For the

same reason, it causes significant maintenance and support issues in production environ-

ments. Example of paravirtualization is the open source Xen project [29] that virtualizes

the processor and memory using a modified Linux kernel and virtualizes the I/O subsystem

using customized guest OS device drivers.

2.3.3 Hardware Assisted Virtualization

In response to the success and wide adaptation of virtualization, hardware vendors

have come up with new hardware features to help and simplify virtualization techniques.

Intel Virtualization Technology (VT)22 and AMD-V23 are first generation virtualization

supports allow the VMM to run in a new root mode below Ring 0 by the introduction of a

new CPU execution mode. With this new hardware assisted feature, privileged and critical

system calls are automatically trapped by the hypervisor and the guest OS state is saved in

Virtual Machine Control Structures (VT-x) or Virtual Machine Control Blocks (AMD-V),

removing the need for either binary translation (full virtualization) or paravirtualization

(Figure 2.4(c)). The hardware assisted virtualization has the benefit that unmodified guest

22Intel Virtualization Technology, 2015. http://www.intel.com.au/content/www/au/en/

virtualization/virtualization-technology/intel-virtualization-technology.html
23AMD Virtualization, 2015. http://www.amd.com/en-us/solutions/servers/virtualization

http://www.intel.com.au/content/www/au/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.intel.com.au/content/www/au/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.amd.com/en-us/solutions/servers/virtualization
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OSs can run directly and access to virtualized resources without any need for modification

or emulation. With the help of the new privilege level and new instructions, the VMM

can run at Ring -1 (between Ring 0 and hardware layer) allowing guest OS to run at Ring

0. This reduces the VMM’s burden of translating every privileged instruction, and thus

helps achieve better performance compared to full virtualization. The hardware assisted

virtualization requires explicit virtualization support from the physical host processor,

which is available only to modern processors.

Among the various virtualization systems, VMware, Xen [9], and KVM (Kernel-based

Virtual Machine) [70] have proved to be the most successful by combing features that

make them uniquely well suited for many important applications:

• VMware Inc. is the first company to offer commercial virtualization technology.

It offers VMware vSphere (formerly VMware Infrastructure 4) for computer hard-

ware virtualization that includes VMware ESX and ESXi hypervisors that virtualize

the underlying hardware resources. VMware vSphere also includes vCenter Server

that provides a centralized point for management and configuration of IT resources,

VMotion for live migrating VMs, and VMFS (Virtual Machine File System) that

provides a high performance cluster file system. VMware products support both full

virtualization and paravirtualization.

• Xen Server is one of a few Linux hypervisors that support both full virtualization

and paravirtualization. Each guest OS (termed Domain in Xen terminology) uses a

pre-configured share of the physical server. A privileged Domain called Domain0 is

a bare-bone OS that actually controls physical hardware and is responsible for the

creation, management, migration, and termination other VMs.

• KVM also provides full virtualization with the help of hardware virtualization sup-

port. It is a modification to the Linux kernel that actually makes Linux into a

hypervisor on inserting a KVM kernel module. One of the most interesting KVM

features is that each guest OS running on it is actually executed in user space of the

host system. This approach makes each guest OS look like a normal process to the

underlying host kernel.
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2.4 Virtual Machine Migration Techniques

One of the most prominent features of the virtualization system is the VM Live Mi-

gration [26] which allows for the transfer of a running VM from one physical machine to

another, with little downtime of the services hosted by the VM. It transfers the current

working state and memory of a VM across the network while it is still running. Live mi-

gration has the advantage of transferring a VM across machines without disconnecting the

clients from the services. Another approach for VM migration is the VM Cold or Static

Migration [112] in which the VM to be migrated is first shut down and a configuration

file is sent from the source machine to the destination machine. The same VM can be

started on the target machine by using the configuration file. This is a much faster and

easier way to migrate a VM with negligible increase in the network traffic; however static

VM migration incurs much higher downtime compared to live migration. Because of the

obvious benefit of uninterrupted service and much less VM downtime, live migration has

been used as the most common VM migration technique in the production data centers.

The process of VM live migration is much more complicated than just transferring the

memory pages of the VM from the source machine to the destination machine. Since a

running VM can execute write instructions to memory pages in the source machine during

the memory copying process, the new dirty pages must also be copied to the destination.

Thus, in order to ensure a consistent state of the migrating VM, copying process for all the

dirty pages must be carried out until the migration process is completed. Furthermore,

each active VM has its own share and access to the physical resources such as storage,

network, and I/O devices. As a result, the VM live migration process needs to ensure that

the corresponding physical resources in the destination machine must be attached to the

migrated VM.

Transferring VM memory from one machine to another can be carried out in many

different ways. However, live migration techniques utilize one or more of the following

memory copying phases [26]:

• Push phase: The source host VMM pushes (i.e., copies) certain memory pages

across the network to the destination host while the VM is running. Consistency of

VM’s execution state is ensured by resending any modified (i.e., dirty) pages during

this process.
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• Stop-and-copy phase: The source host VMM stops the running VM on certain

stop condition, copies all the memory pages to the destination host, and a new VM

is started.

• Pull phase: The new VM runs in the destination host and, if a page is accessed

that has not yet been copied, a page fault occurs and this page is copied across the

network from the source host.

Performance of any VM live migration technique depends on the balance of the fol-

lowing two temporal parameters:

1. Total Migration Time: The duration between the time when the migration is

initiated and when the original VM may be discarded after the new VM is started

in the destination host. In short, the total time required to move the VM between

the physical hosts.

2. VM Downtime: The portion of the total migration time when the VM is not

running in any of the hosts. During this time, the hosted service would be unavailable

and the clients will experience service interruption.

2.4.1 Types of VM Migration

Incorporating the above three phases of memory copying, several VM live migration

techniques are presented by the research communities with trade-offs between the total

migration time and VM downtime:

Pure stop-and-copy

In Pure stop-and-copy VM migration technique [104], the VM is shut down at the

source host, all the memory pages are copied to the destination host, and a new VM

is started. This technique is simple and, the total migration time is relatively small

compared to other techniques and directly proportional to the size of the active memory

of the migrating VM. However, the VM can experience high VM downtime, subject to the

memory size, and as a result, this approach can be impractical for live services.

Pure demand-migration

In Pure demand-migration migration technique [131], the VM at the source host is shut

down and essential kernel data structures (e.g., CPU state, registers, etc.) are transferred
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to the destination host using a short stop-and-copy phase. The VM is then started in the

destination host. The remaining pages are transferred across the network when they are

first referenced by the VM at the destination. This approach has the advantage of much

shorter VM downtime; however the total migration time is generally much longer since the

memory pages are transferred on-demand upon page fault. Furthermore, post-migration

VM performance is likely to be hampered substantially due to large number of page faults

and page transfers across the network.

Post-copy migration

Similar to the pure demand-migration approach, in Post-copy migration migration

technique [61], the VM is suspended at the source host, a minimal VM kernel data structure

(e.g., CPU execution state, registers values, and non-pageable memory) is transferred to

the destination host, and the VM is booted up. Unlike pure demand-migration, the source

VMM actively sends the remaining memory pages to the destination host, an activity

termed pre-paging. When the running VM at the destination attempts to access a page

that is not copied yet, a page fault occurs (known as network faults) and the faulted

page is transferred from the source host to the destination host over the communication

network. As in the case of pure demand-migration, post-copy migration suffers from

VM performance degradation due to on-demand page transfer upon page fault. However,

pre-paging technique can help reduce the performance degradation by adapting the page

transmission order dynamically in response to the network faults by pushing the pages

near the last page fault.

Pre-copy migration

Unlike the above approaches, in Pre-copy migration technique [26], the VM contin-

ues running in the source host while the VMM iteratively transfers memory pages to the

destination host. Only after a substantial amount of memory pages are copied, or a pre-

defined number of iterations are completed, or any other terminating condition is met, the

VM is stopped at the source, the remaining pages are transferred to the destination, and

the VM is restarted. Pre-copy migration has the obvious benefit of short stop-and-copy

phase since most of the memory page would be copied to the destination by this time. So,

the VM downtime is comparatively much shorter than other live migration techniques,

making this approach suitable for live services. Furthermore, pre-copy migration offers
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higher reliability since it retains an up-to-date state of the VM in the source machine

during the migration process, an added advantage absent in other migration approaches.

However, pre-copy migration can suffers from longer total migration time since the same

memory pages can be transmitted multiple times in several rounds depending on page

dirty rate. For the same reason, it can generate much higher network traffic compared

to other techniques. Almost all the modern virtualization environments offers VM live

migration feature, including Xen Server (through XenMotion [26]), VMware ESXi Server

(through VMotion [93]), KVM, Microsoft Hyper-V, Oracle VM VirtualBox, and OpenVZ.

A high level flow chart of the logical steps followed during the pre-copy migration tech-

nique implemented in Xen Server is depicted in Figure 2.5 [26]. Focusing primarily on

high reliability against system failure, the Xen pre-copy migration takes a transactional

approach between the source and target hosts:

• Stage 0 (Pre-migration): Source host A has an active VM to be migrated. The

target host B can be pre-selected in advance in order to speed up future migrations

through guaranteed resources required for the migration process.

• Stage 1 (Reservation): The request to migrate the VM from source host A to target

host B is issued. Host B confirms that it has the required resources and reserves a

VM container of that size. If host B fails to secure enough resources, the migration

request is discarded and the VM runs on host A without any changes.

• State 2 (Iterative pre-copy): In the first iteration, all the memory pages are trans-

mitted (i.e., copied) from host A to host B. In the remaining iterations, only the

pages that have been modified during the previous iteration are transmitted.

• Stage 3 (Stop-and-Copy): The VM is shut down in host A and all the network traffic

is redirected to host B. Then, the critical kernel data structures (e.g., CPU states

and registers) and the remaining dirty pages are transmitted. At the end of this

stage, the two copies of the VM at both host A and B are consistent; however, the

copy at A is still considered primary and is resumed in the incident of failure.

• State 4 (Commitment): Host B notifies host A that it has a consistent VM image.

Upon receipt, host A sends the acknowledgment message indicating the commitment

of the total migration transaction. After this point, the original VM at host A can

be abandoned and host B is considered as the primary host of the VM.
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• State 5 (Activation): Host B activates the migrated VM. The post-migration code

runs in order to reattach the device drivers at host B and advertise the moved IP

addresses.

Stage 0: Pre-migration
Active VM on Host A
Alternate physical host may be preselected for 
migration
Block devices mirrored and free resources maintained

VM running 
normally on 
source host A

Stage 1: Reservation
Initialize a container on the target host

Stage 2: Iterative Pre-copy
Enable shadow paging
Copy dirty pages in successive rounds

Stage 3: Stop and copy
Suspend VM on host A
Generate ARP to redirect traffic to Host B
Synchronize all remaining VM state to Host B

Stage 4: Commitment
VM state on Host A is released

Stage 5: Activation
VM starts on Host B
Connects to local devices
Resumes normal operation

Overhead due 
to memory page 
copying

Downtime 
(VM out of 
service)

VM running 
normally on 
target host B

Figure 2.5: Stages of the Pre-copy VM Live Migration Technique [26].

2.5 Data Center Network Architectures

Modern data centers are built primarily according to the generic multi-tier architec-

ture24. The most common network topologies follow the three-tier architecture (Figure

2.6), where each tier has specific responsibility and goal in the design and traffic handling.

In the bottom tier, known as the Access Tier every physical server is connected to one

or two (in case of redundancy to increase reliability) access switches, in the Aggregation

24Cisco Data Center Infrastructure 2.5 Design Guide, 2014. https://www.cisco.com/application/

pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf

https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
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Figure 2.6: The Three-tier Network Architecture.

Tier, each access switch is connected to one or two aggregation switches, and in the Core

Tier each aggregation switch is connected to more than one core switches. The access

switches provide the servers connectivity to other servers and to the upper tiers, the aggre-

gate switches interconnects between the access switches and enables localization of traffic

among the servers, and finally, the core switches connects the aggregation switches in such

a way that there exists connectivity among each pair of servers and also includes gateways

for the traffic to communicate outside the data center.

In three-tier network architectures, the access tier links are normally 1 Gigabit Ethernet

(GE) links. Although 10 GE transceivers are available in the commodity market, they

are not used for the following reasons: (1) very high price and (2) bandwidth capacity

is much more than needed by the physical servers. Servers in data centers are normally

grouped in ranks and rack connectivity is achieved through the use of not-so-expensive

Top-of-Rack (ToR) switches. Typically, such ToR switches have two 10 GE uplinks with

48 GE links that interconnects the servers within the rack. Oversubscription Ratio of a

switch is defined the difference between the downlink and uplink capacities of the switch

and in this case it is 48:20 or 2.4:1. As a result, though each access link has 1 GE capacity,

under full load, only 416 Mb/s will be available to each server [71]. At the aggregation
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and core tier, the racks are organized in modules with a couple of aggregation switches

and oversubscription ratio for these switches is around 1.5:1. Therefore, the available

bandwidth for each server is reduced to 277 Mb/s.

Though such network architectures have multi-rooted forest topology at the physical

level, because of the extensive use of Virtual LANs (VLANs) and Spanning Tree algorithm

the network packets are forwarded according to the logical layer-2 topology. Such layer-

2 logical topology always takes the form of a tree, normally rooted at one of the core

switches.

Scalability issue of three-tier architecture is normally addressed through scaling up each

individual switches by increasing their fan-outs, not by the scaling out of the network

topology. For example, according to the Cisco Data Center Infrastructure 2.5 Design

Guide, the core tier can have a maximum of 8 switches. Because of such scalability issues

regarding topology scaling, high oversubscription ratio, as well as requirement for flat

address space, several recent research endeavors produced complex network architectures

for the large scale modern data centers and among these, the following are considered as

the standard-de-facto solutions:

• Fat-tree: This is a three-tier architecture based on bipartite graphs [5] and basic

building block of this topology is called pods which are collections of access and

aggregation switches connected in a complete bipartite graph. Every pod is con-

nected to all the core switches; however links that connect pods to core switches are

uniformly distributed between the aggregation switches contained within the pods.

Such connection pattern results in a new bipartite graph between aggregation and

core switches. In this topology, all the switches need to have same number of ports.

The primary advantage of fat-tree topology is that N2/4 paths are available to route

the traffic between any two servers.

• VL2: Somewhat similar to fat-tree, VL2 [52] is also a three-tier topology having

a complete bipartite graph between core and aggregation switches, rather than be-

tween access and aggregation switches. Moreover, access switch traffic is forwarded

through the aggregation and core switches using valiant load balancing techniques

that forwards the traffic first to a randomly selected core switch and then back to

the actual destination switch. The advantage of such routing is that when traffic

is unpredictable, the best way to balance load across all the available network links
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is to forward the packets to a randomly selected core switch as an intermediate

destination.

• PortLand: This is also a three-tier architecture that shares the same bipartite

graph feature with VL2, however at different levels [91]. It makes use of fat-tree

topologies [74] and uses the concept of pods. Such pods are collections of access

and aggregations switches that form complete bipartite graphs. Furthermore, each

pod is connected to all the core switches, by uniformly distributing the up-links

between the aggregation switches of the pod. As a result, another level of bipartite

graph is formed between the pods and the core switches. Portland requires that

the number of ports of all the switches is same. The number of ports per switch is

the only parameter that determines the total number of pods in the topology, and

consequently the total number of switches and hosts machines.

• BCube: It is a multi-level network architecture for the data center defined in a

recursive fashion [54]. Host machines are considered as part of the network architec-

ture and they forward packets on behalf of other host machines. It is based on the

generalized hypercube architecture [14] with the main difference that the neighboring

hosts instead of forming a full mesh network with each other, they connect through

switches. In a BCube topology, the total number of connected hosts machines and

the total number of required switches is a function of the total number of ports of

each switch.

2.6 Cloud Applications and Data Center Traffic Patterns

With the increasing popularity of Cloud hosting platforms (e.g., Amazon AWS and

Microsoft Azure) due to the benefits of pay-as-you-go business model, high availability

and reliability, as well as extensive computing and storage services, Cloud platforms are

enjoying deployment of a wide variety of composite applications, including scientific ap-

plications, social networks, video streaming, medical services, search engines and web

browsing, various content delivery applications, and so on [24, 63, 118]. Such composite

applications are generally composed of multiple compute VMs backed by huge amount

of data. As more and more communication-intensive applications are being deployed in

data centers, the amount of inter-VM traffic is increasing with rapid pace. Based on the



36 Background

dynamics on computational and communication requirements, the commonly deployed

Cloud application workloads are categories into the following three groups [71]:

1 Data-Intensive Workloads: Such workloads require less computational resources,

but cause heavy data transfers. For example, video file sharing where each user request

generates a new video streaming process. For such applications, it is the interconnection

network that can be a bottleneck rather than the computing power. In order to maintain

the application performance and respect the SLAs, a continuous feedback mechanism

need to be present between the network devices (e.g., switches) and the centralized

workload scheduler or placement manager. Based on feedback, the scheduler will decide

the placement of the workloads with consideration of the run-time network status and

congestion levels of communication links. In this way, placement of workloads over

congested network links can be avoided even though corresponding servers have enough

computing capacity to accommodate the workloads. As a result, data center traffic

demands can be distributed over the network in a balanced way and minimize network

latency and average task completion time.

2 Computationally Intensive Workloads: This category represents the High Perfor-

mance Computing (HPC) applications that are used to solve advanced and computa-

tionally expensive problems. These applications require very high amount of computing

capacity, but causes little data transfer over the communication network. Such applica-

tions can be grouped together and placed in a minimum number of computing servers

through VM consolidation mechanisms in order to save energy. Because of low data

traffic among the VMs, there is very less probability of network congestion and most of

network switches can be turned into lower power states (e.g., in sleep mode) and thus

help reducing energy consumption in the data center.

3 Balanced Workloads: Applications that require both computing power and data

transfer among the computing nodes (i.e., VMs) are represented by balanced workloads.

For example, Geographic Information Systems (GISs) need to transfer large volume of

graphical data as well as huge computing resources to process these data. With this type

of workloads, the average compute server load is proportional to the amount of data

volume transferred over the communication networks. VM placement and scheduling
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policies for such application need to account for both current state of compute servers’

load and traffic loads on the network switches and links.

Since Cloud data centers host heterogeneous services and application, communication

patterns exhibit wide spectrum of variations, ranging from one-to-one and all-to-all traffic

matrices. Based on trace analysis of network usage from production data centers, the

following trends of network traffic are found to be predominant [41,69,85]:

1 Highly non-uniform distribution of traffic volume among VMs: VMs run-

ning on servers exhibit uneven traffic volume among themselves across different VMs.

The trace analysis reports show that 80% of the VMs have relatively low traffic rate

(800Kbyte/min) over a period of two-weeks, 4% of the VMs have a rate ten times higher.

This concludes that the inter-VM traffic rate varies significantly and it is quite hard for

the data center administration to estimate the amount of inter-VM traffic accurately

and consistently.

2 Stable inter-VM traffic volume: For a long duration, the average inter-VM traffic

rate is found to be relatively stable in spite of the highly skewed traffic rate among VMs.

Meng et al. [85] showed that for the majority of the VMs, the standard deviation of

their traffic rates is less than the double of the mean of the traffic rates. This consistent

traffic volume among VMs implies that the run-time communication patterns among

the VMs can be estimated and known a priory from the users deploying the VMs in the

Clouds.

3 Weak correlation between traffic rate and network latency: It is further re-

ported from the measurement-based study that there is no any dependency or rela-

tionship between inter-VM traffic volume and the network distance between the servers

hosting the VMs. That means VM pairs with high traffic rate do not necessarily corre-

spond to low latency and vice versa.

2.7 Virtual Machine Consolidation

While Cloud Computing provides many advanced features, it still has some short-

comings, such as the relatively high operating costs for both public and private clouds.

The area of Green Computing is also becoming increasingly important in a world with
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limited energy resources and an ever-rising demand for computational power. As pointed

out before, energy costs are among the primary factors that contribute to the Total Cost of

Ownership (TCO) and its influence will grow rapidly due to the ever increasing demands of

resources and continuously increasing electricity costs [53]. As a consequence, optimization

of energy consumption through efficient resource utilization and management is equivalent

to the reduction in operating cost in the context of data center management. In order

to optimize the energy consumption of the physical devices, different techniques have

been proposed and used, including VM Consolidation, energy-aware resource management

frameworks and design strategies, as well as energy-efficient hardware devices.

Resource management and optimization is getting more challenging day-by-day for

large-scale data centers, such as the Cloud data centers, due to their rapid growth, high

dynamics of hosted services, resource elasticity, and guaranteed availability and reliabil-

ity. Static resource allocation techniques, that are used in traditional data centers, are

simply inadequate to address these newly emerged challenges [60]. With the advent of

virtualization technologies, server resources are now better managed and utilized through

server consolidation by placing multiple VMs hosting several applications and services in

a single physical server, and thus ensuring efficient resource utilization. Energy-efficiency

is achieved by consolidating the running VMs in minimum number of servers and transi-

tioning idle servers into lower power states (i.e., sleep or shut-down mode).

VM consolidation techniques provide VM placement decisions that indicates the map-

ping of each running VM to appropriate server. Depending on the initial condition of data

centers, that VM consolidation techniques start with, it is categorized into two variants:

Static and Dynamic VM Consolidation.

2.7.1 Static VM Consolidation

The static VM consolidation techniques start with a set of fully empty physical servers,

either homogeneous or heterogeneous with specific resource capacity and a set of work-

loads in the form of VMs with specific resource requirements. Thus, such consolidation

mechanisms require prior knowledge about all the workloads and their associated resource

demands. Such techniques are useful in situations like initial VM placement phase or mi-

gration of a set of workload from one data center to another. Static consolidation does not
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consider the current VM-to-server assignments and thus unaware of the associated VM mi-

gration overheads on hosted application performance, hosting physical machines, and un-

derlying network infrastructure [45]. Considering the predominant energy costs of running

large data centers and low utilization of servers resulted by traditional resource manage-

ment technologies, and through the blessings of virtualization techniques, VM placement

strategies like server consolidation have become a hot area of research [46,50,59,117].

2.7.2 Dynamic VM Consolidation

VM consolidation mechanisms that consider the current VM-to-server assignments

for the consolidation decision fall in the category of dynamic consolidation. Contrary to

static consolidations where the current allocations are disregarded and whole new solution

of VM placement is constructed without considering the cost of reallocation of resources,

dynamic consolidation techniques include the cost or overhead of relocation of existing

workloads into the modeling of consolidation and try to minimize relocation overhead and

maximize consolidation. Such server consolidation mechanisms employ VM live or cold

migration techniques [26, 93] to move around workloads from servers with low utilization

and consolidate them into minimum number of servers, thus improving overall resource

utilization of the data center and minimizing power consumption.

As clouds offer an on-demand pay-as-you-go business model, customers can demand

any number of VMs and can terminate their VMs when needed. As a result, VMs are

created and terminated in the cloud data centers dynamically. This causes resource frag-

mentation in the servers, and thus leads to degradation in server resource utilization.

However, efficient resource management in clouds is not a trivial task since modern service

applications exhibit highly variable work-loads causing dynamic resource usage patterns.

As a result, aggressive consolidation of VMs can lead to degradation of performance when

hosted applications experience an increasing customer demand resulting in a rise in re-

source usage. Since cloud providers ensure reliable Quality of Service (QoS) defined by

SLAs, resource management systems in cloud data centers need to deal with the energy-

performance trade-off.

In order to estimate the cost of relocation of workloads by the dynamic VM consoli-

dation techniques, several system and network level metrics and parameters are used as

modeling elements, such as the number of VM live migrations required to achieve the new

VM-to-server placement [45], VM active memory size, speed of network links used for
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the migration [4,60,121], page dirty rate [120], as well as application-specific performance

model [64].

2.7.3 Pros and Cons of VM Consolidation

Virtualization technologies have revolutionized the IT management works and opened

up a new horizon of opportunities and possibilities. It has enabled application envi-

ronments to be compartmentalized and encapsulated within VMs. By the use of server

virtualization and VM live migration techniques, virtualized data centers have emerged

as highly dynamic environments where VMs hosting various applications are created,

migrated, resized, and terminated instantaneously as required. Utilizing virtualization,

information technology infrastructure management has widely adapted VM consolidation

techniques to reduce operating costs and increase data center resource utilization. The

most notable advantages of adopting VM consolidation techniques are mentioned below:

1. Reduction in Physical Resources: By the help of efficient dynamic VM consol-

idation, multiple VMs can be hosted in single physical server without compromising

hosted application performance. As a result, compared to static resource alloca-

tions where computing resources such as CPU cycles and memory frequently lay

idle, through dynamic VM consolidation fewer numbers of physical machines can

provide the same QoS and maintain SLAs, and thus effectively cut the Total Cost

of Ownership (TCO). Reduction in the number of servers also implies reduction in

the cooling equipment necessary for the cooling operations in data centers.

2. Energy Consumption Minimization: Unlike other approaches of energy effi-

ciency (e.g., implementing efficient hardware and operating systems), VM consoli-

dation is a mechanism under the disposal of data center management team. If same

level of service can be provided by fewer servers through VM consolidation, it im-

plies minimization of energy costs both for the running servers and the operating

cool systems. As energy costs continue to escalate, this implies a significant saving

that will continue during the course of the data center operation.

3. Environmental Benefits: World data centers contribute a significant portion of

Greenhouse Gas (GHG) emission and thus, have enormous effects of environment.

With recent trend towards Green Data Centers, VM consolidation is a major business

drive for the information technology industry to contribute to the Green Computing.
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4. Minimization of Physical Space: Reduction in the number of hardware implies

reduction in terms of space needed to accommodate the servers, storage, network,

and cooling equipment. Again, this contributes to the reduction of TCO and oper-

ating costs.

5. Reduced Labor Costs: A major portion of TCO of data centers is derived from

administrative, support, and outsourced services, and thus, VM consolidation can

help trim down these costs significantly by reducing the maintenance effort.

6. Automate Maintenance: By incorporating autonomic and self-organizing VM

consolidation and VM migration techniques, much of the administrative and sup-

port tasks can be reduced and automated, and therefore, it can further reduce the

maintenance overhead and associated costs.

With all the above-mentioned benefits, if not managed and applied appropriately VM

consolidation can be detrimental to the services provided by the data center:

1. System Failure and Disaster Recovery: VM Consolidation puts multiple VMs

hosting multiple service applications in a single physical server, and therefore can cre-

ate single-point-of-failure (SPOF) for all the hosted applications. Moreover, upgrade

and maintenance of a single server can cause multiple applications to be unavailable

to users. Proper replication and disaster recovery plans can effectively remedy such

situations. Since VMs can be saved in storage devices as disk files, virtualization

technologies provide tools for taking snapshots of running VMs and resuming from

saved checkpoints. Thus, with the help of shared storage such as Network Attached

Storage (NAS) or Storage Area Network (SAN), virtualization can be used as con-

venient disaster recovery tool.

2. Effects on Application Performance: Consolidation can have adverse effects

on hosted application performances due to resource contention since they would

share the same physical resources. Delay sensitive applications such as Voice-over-IP

(VoIP) and online audio-visual conferencing services as well as database management

systems that require heavy disk activity need to be given special consideration dur-

ing resource allocation phase of VM consolidation. Such applications can be given

dedicated resources whereas delay-tolerant and less resource hungry applications can

be scheduled with proper workload prediction and VM multiplexing schemes.
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3. VM Migration and Reconfiguration Overheads: Performing VM consolida-

tion dynamically requires VM live migrations that have overheads on network links

of the data center as well as on the CPU cycles of servers executing the migration op-

erations. As a consequence, VM migrations and post-migration reconfiguration can

have non-negligible impact on application performance. Experimental results [122]

show that applications that are being migrated as well as co-located applications can

suffer from performance degradation due to VM live migrations. As a consequence,

VM consolidation mechanisms need to minimize the number of VM live migrations

and its effects on applications.

Despite all the drawbacks of VM consolidation, due to its benefits in continuous reduc-

tion in energy and operating costs and increasing resource utilizations data center owners

are increasing adopting VM consolidation mechanisms, especially for large data centers.

Since VM consolidation can have adverse effects on application performance, various char-

acteristics and features of data center resources and hosted applications need to be taken

into account during the design and implementation of VM consolidation schemes, such as

heterogeneity of servers and storage devices, system software and tools, middleware and

deployment platforms, physical and virtual network parameters, as well as application

types, workload patterns, and load forecasting.

2.8 Summary and Conclusions

This chapter has presented an overview of the various concepts, elements, systems, and

technologies relating to resource management and optimization in the context of large-

scale data centers, such as the Cloud data centers. A brief description on the architectural

features and components, as well as different service models of the newly emerged Cloud

distributed computing system are presented. Since virtualization technology is one of the

main technological elements that has paved the way for the extreme success of the Cloud

Computing, various aspects the virtualization and VM live migration are also described.

Moreover, data center network architectures and communication patters of the hosted

applications are also presented to provide an overview on the properties of networks and

communications within typical data centers. Furthermore, since the main focus of this

thesis is data center-level resource management and energy consumption, leveraging VM
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placement and consolidation strategies, this chapter has presented a brief background on

the VM consolidation approaches, including their benefits and potential drawbacks.
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Chapter 3

Taxonomy and Survey on Virtual

Machines Management

This chapter presents a comprehensive taxonomy and survey of the existing works VM

management in the context large-scale data centers. A brief introduction to the salient

features of various state-of-the-art VM management techniques is also presented. More-

over, a detailed taxonomy and survey of recent notable research contributions has been

delineated.

3.1 Introduction

Cloud Computing is quite a new computing paradigm and from the very beginning it

has been growing rapidly in terms of scale, reliability, and availability. In order to meet

the increasing demand of computing, storage, and communication resources, infrastruc-

ture Cloud providers are deploying planet-scale data centers across the world, consisting of

thousands of servers. These data centers extensively use virtualization technologies in or-

der to utilize the underlying physical resources effectively and with much higher reliability.

Optimization of VM placement and migration decisions has been proven to be practical

and effective in the arena of physical server resource utilization and energy consumption re-

duction, and a plethora of research contributions have already been made addressing such

problems. Several research attempts have been made to address the VM management

problems focusing on physical server resource utilization, network bandwidth optimiza-

tion, energy consumption minimization, server load and resource constraints, computing

and network resource demands of VMs, data storage locations, and so on. These works

45
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not only differ in the addressed system assumptions and modeling techniques, but also

vary considerably in the proposed solution approaches and the conducted performance

evaluation techniques and environments. As a consequence, there is a rapidly growing

need for comprehensive taxonomy and survey of the existing works in this research area.

In order to analyze and assess these works in a uniform fashion, this chapter presents

the salient features of various state-of-the-art VM management techniques, taxonomy and

survey of notable research contributions.

The rest of the chapter is organized as follows. Section 3.2 presents a description of

the various nomenclatural aspects, followed by a detailed taxonomy. Section 3.3 presents

analysis and survey on the recent prominent VM management studies. Finally, Section

3.4 concludes the chapter with a summary of the contribution.

3.2 Taxonomy of Virtual Machine Placement, Migration,

and Consolidation

With the various intricacies of virtualization technologies, enormous scale of modern

data centers, and wide spectrum of hosted applications and services, different VM man-

agement strategies and algorithms are proposed with various assumptions and objectives.

Figure 3.1 presents a full taxonomy of the various aspects of VM management, including

placement, migration, and consolidation.

A brief description of the identified aspects of the research works used in the course of

taxonomy is provided below:
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VM Placement, 
Migration, & 

Consolidation

System Assumption

Homogeneous System

Heterogeneous system

Network Architecture

Three-tier Tree architecture

VL2

PortLand

BCube

Placement Type

Online

Offline

Physical Resources

CPU & Memory

Storage

Network Bandwidth

Placement Constraints

Server-side Resource Constraints

Network Link Bandwidth Constraints

Migration Overhead

Migration Overhead-aware

Migration Overhead-unaware

Objective/Goal

Minimization of Traffic Volume

Maximization of Server Load

Minimization of Energy Consumption

Reduction of Placement Decision Time

Evaluation Environment

Simulation-based

Experimental Test Bed or Real System

Workload Synthetic (Statistical) Workload

Traces from Real Data Center

Benchmarking Tool-based

Evaluation Performance 
Metrics

Traffic Volume/Network Utilization

Number of Active Servers

Optimization of Objective Function

Average Task Completion Time

Network Cut Load Ratio

Placement Decision Time

Figure 3.1: Taxonomy of VM Placement, Migration, and Consolidation
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1. System Assumption: Physical servers and network resources in data centers or

IT infrastructures are primarily modeled as homogeneous, and often times as het-

erogeneous as well. Homogeneous cluster of servers normally represent servers with

same capacity for certain fixed types of resources (e.g., CPU, memory, and storage),

whereas heterogeneous cluster of servers can either mean servers having different

capacities of resources or different types of resources (e.g., virtualized servers pow-

ered by Xen or VMware hypervisor, and servers with Graphics Processing Units or

GPUs). In practice, commercial data centers evolve over time and thus different

parts of the data center can have devices with different capabilities and properties.

It is quite common that a recent server installed in a data center would have much

higher computing power compared to the old ones; similarly a network switch can

be more recent than others and thus can have lower network latency and higher I/O

throughput capacity. Moreover, recently there is growing trends towards deploying

multi-purpose hardware devices that increase the degree of heterogeneity in data

centers. Example of such devices can be some storage devices, such as IBM DS8000

series that have built-in compute capability (POWER5 logical portioning LPAR)

that can host applications [1, 72] and network switches, such as Cisco MDS 9000

switches (Cisco MDS 9000 SANTap1) that have additional x86 processors capable of

executing applications. Efficiency and effectiveness of VM placement and migration

strategies are dependent on the assumed system assumptions and properties. VM

placement techniques that consider the heterogeneity of the devices in data centers

can efficiently utilize various capabilities of the divergent resources and optimize the

placements, and thus can reduce the traffic burden and energy consumption.

2. Physical Resources: Generally, optimization across different ranges of resources

(e.g., processing, memory, network I/O, storage, etc.) is harder than single resource

optimization. Often various mean estimators (such as L1 norm, volume-based, and

vector algebra) are used to compute equivalent scalar representation while trying to

optimize across multiple types of physical resource utilization. This aspect has direct

influence on the modeling techniques applied in the research works as well as on the

optimization efficiency. Inter-VM communication requirement is often modeled as

Virtual Link (VL) which is characterized by the bandwidth demand. VM cluster

1Cisco MDS 9000 SANTap, 2014. http://www.cisco.com/c/en/us/products/collateral/

storage-networking/mds-9000-santap/data_sheet_c78-568960.html

http://www.cisco.com/c/en/us/products/collateral/storage-networking/mds-9000-santap/data_sheet_c78-568960.html
http://www.cisco.com/c/en/us/products/collateral/storage-networking/mds-9000-santap/data_sheet_c78-568960.html
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forming an application environment with mutual traffic demand is represented as a

graph with VMs denoted by vertices and VLs denoted by edges of the graph.

3. Network Architecture/Topology: With the variety of proposed data center

network architectures and intricacies of traffic patterns, different VM placement

approaches are proved to be efficient for different types of network topologies and

inter-VM traffic patterns. Such effectiveness is sometimes subject to the specific an-

alytic or modeling technique used in the proposed placement and migration schemes.

Since different network topologies are designed independently focusing on different

objectives (e.g., VL2 is good for effective load balancing while BCube has higher

degree of connectivity and network distances among hosts), different VM place-

ment techniques see different levels performance gains for existing network topolo-

gies. For example, the TVMPP (Traffic-aware VM Placement Problem) optimization

technique [85] gains better performance for multi-layer architecture such as BCube,

compared to VL2.

4. Modeling Technique: As for any research problem, the solution approaches of

various VM placement and migration schemes as well as their effectiveness and ap-

plicability are highly contingent on the applied modeling (mathematical, analytic,

or algorithmic) techniques. Since different models have specific system assump-

tions and objectives, VM placement problems are presented using various optimiza-

tion modeling techniques, such as Quadratic Assignment Problem (QAP), Knapsack

Problem, Integer Quadratic Programming, Convex Optimization Problem, and so

on. The characteristics of VM consolidation problem make it most resemble to the

general multi-dimensional bin/vector packing problems. Furthermore, depending

on project goal, modeling can vary across other theoretical problems such as Mul-

tiple Multi-dimensional Knapsack Problem, Constraint Satisfaction Problem, and

Multi-objective Optimization Problems.

5. VM Placement Constraints: Individual VM placement feasibility or practical-

ity involves server resource capacity constraints which means that the remaining

resource (e.g., CPU cycles, memory, storage, etc.) capacities of the hosting servers

need to be enough in order to accommodate the VM. Similarly, while placing two

VMs with mutual communication requirement, the bandwidth demand of the VL
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connecting the two VMs need to match with the remaining bandwidth capacities of

the corresponding physical network links connecting the two hosting servers. When

allocating CPU cycles to hosted VMs, static or dynamic threshold-based allocation

mechanisms are applied so that processors never get 100% utilization in which case

hosted applications can suffer from performance degradation.

6. Migration Overhead-awareness: During VM live migration process, additional

network traffic is generated during the whole migration period since hypervisor needs

to transfer in-memory states of the running VM to the target machine. Furthermore,

VM migration causes unavailability of hosted applications due to the VM downtime

factor. As a consequence VM living migration is identified as an expensive data

center operation that should not be triggered very often [81]. Therefore, efficiency

of a VM migration policy also dependents on the overheads associated to the mi-

grations commands issued. While network-aware VM migration strategies opt for

optimizing overall network usage and reduce the inter-VM communication delays

through migrating communicating VMs into nearby hosts, most of the strategies do

not consider the associated VM migration overheads in data center components and

resulting application performance degradation. In the case of dynamic VM consoli-

dation schemes, overall VM migration overhead is measured in terms of the number

of migrations required for consolidation [45,82,90]. Such measure is shown in detail

to be an over-simplification of the total migration overhead in Chapter 6.

7. Goal/Objective: Energy-aware VM placement and consolidation works primar-

ily set the objective to minimize the overall power consumption of data center and

improvement of server resource utilization by increasing the VM/workload packing

efficiency using minimum number of active servers. With the consolidation process

comes the trade-off between application performance (and hence, SLA) and power

consumption. With given importance on SLA violations, some of the works consider

the cost of reconfiguration primarily due to VM live migrations and thus incorporate

this cost in the objective function modeling. Moreover, some the works further focus

on automated and coordinated management frameworks with the VM consolidation

as an integral component of the proposed frameworks. Network-aware VM place-

ment and migration policies primarily target on minimization of overall network

traffic overhead within the data center. The obvious way to achieve such goal is to
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place VMs with large amount of traffic communication in neighboring servers with

minimum network delays and enough available bandwidth, most preferably in the

same server where the VMs can communicate through memory rather than network

links. With this goal in mind, VM placement and migration problem is generally

modeled as mathematical optimization framework with minimization objective func-

tion. Such objective function can be a measure of total amount of network traffic

transferred with the data center, or network utilization of the switches at the differ-

ent tiers of the network architecture. Since VM placement and migration decision

needs to be taken during run-time, reduction of the placement decision time (i.e.,

problem solving time or algorithm execution time) is also considered as an additional

objective.

8. Solution Approach: Given the above-mentioned placement constraints and ob-

jectives, VM placement and migration are in fact NP-complete problems since they

require combinatorial optimization to solve them. As a consequence, solution ap-

proaches apply various heuristic methods ranging from simple greedy algorithms to

metaheuristic strategies and local search methods so that the algorithms terminate in

a reasonable amount of time. Such heuristics are not guaranteed to produce optimal

placement decisions; however from time constraint perspective, exhaustive search

methods are not practical, especially considering the scale of modern data centers.

Greedy approaches such as First Fit Decreasing (FFD) and Best Fit Decreasing

(BFD) are very fast in producing results but are not guaranteed to produce optimal

solutions. Metaheuristics such as Ant Colony Optimization (ACO), Genetic Algo-

rithms (GA), and Simulated Annealing (SA) work on initial or existing solutions and

refine them to improve on objective function value. Nevertheless, adaptation and

utilization of these problem solving techniques are still open to explore to address

the VM placement and migration problems given various physical constraints.

9. Evaluation/Experimental Platform: Evaluation methodologies have direct im-

pact on the performance and practicality of the research works, most importantly

in the competency analysis. Proposals that primarily have theoretical contributions

mostly apply simulation based evaluation to focus highly on the algorithmic and

complexity aspects. This, however, makes sense given the complexity and scale of
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modern data centers and the hosted applications. On the other hand, works in-

volving various workload patterns and application characteristics have attempted to

validate their proposed placement policies using real test beds, experimental data

centers, or on emulated platforms, and have reported various run-time dynamics

across different performance metrics, which otherwise would be impossible to report

through simulation-based evaluations. However, such evaluations are performed on

small-scale test beds with 10 to 20 physical machines and thus, do not necessarily

forecast the potential behavior and performance for large scale data centers.

10. Competitor Approaches: Comparison of the performance among various com-

petitor placement approaches highly depends on the assumptions and goals of the

competitors. Intelligent VM placement and migration policies at data center level is

relatively new area of research and as a consequence proposed approaches are often

compared to other placement policies that are agnostic to certain placement con-

straints, network traffic, and network topologies, and have different objectives set in

the underlying algorithms.

11. Workloads: Because of the lack of enough VM workload data sets from large scale

Cloud data centers or other production data centers due to their proprietary nature,

statistical distribution-based VM load (compute resource and network bandwidth

demands) generation is the most common approach adopted in the simulation-based

evaluations. Among others, Normal, Uniform, Exponential, and Poisson distribu-

tions are usually used. Such synthetic workload data characterize randomness based

on particular trend (e.g., through setting mean and variance in case of normal dis-

tribution). Subject to accessibility, workload traces from real data centers of often

used to feed data to the simulation based evaluation to imply the effectiveness of

the proposed approaches in real workload data. Evaluations based on experimental

test beds mostly use real time workload data generated from the applications that

are deployed and run in the test bed servers. Although such test beds can capture

realistic behaviors of applications and systems, suffer from scalability issues in the

domain of VM placement and consolidation.

12. Evaluation Performance Metrics: Depending of the goals of the VM place-

ment and migration solutions, various performance metrics are reported in existing
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research works that can be broadly categorized into energy efficiency, resource uti-

lization, and SLA violations. It is also common to use specific objective function or

cost value that captures the overall performance of the evaluated methods. Place-

ment schemes that have multiple objectives, often try to balance between network

performance gain and energy consumption reduction, and report evaluations based

on both traffic volume reduction and number of active servers or electricity power

consumption in data centers. From energy savings point of view, minimization of

the number of active servers in data center through VM consolidation is always an

attractive choice.

Figure 3.2 provides a categorization of the various published research works based

on the addressed and analyzed subareas of the VM placement problem and the ultimate

objectives of the VM placement and migration strategies.

VM Placement, Migration, 
and Consolidation Data-aware VM Placement

Traffic-aware VM Placement and 
Migration

Application-aware VM Placement

HPC-aware VM Placement

Energy Efficient  VM Migration

Traffic-aware inter-cloud VM 
Migration

Multi-objective VM Migration

Network Topology-aware VM 
Migration

Multi-tenant Network sharing VM 
Migration

Figure 3.2: Categorization VM Placement, Migration, and Consolidation Approaches
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3.3 A Survey on the State-of-the-art Virtual Machine Man-

agement Strategies

This section presents a thorough review, analysis, and remarks on some of the recent

notable research works on VM management in the following subsections. Table 3.2 il-

lustrates the most significant aspects of the reviewed research projects that are highly

relevant to the VM placement, migration, and consolidation strategies.

3.3.1 Traffic-aware VM Placement and Migration Techniques

Network Topology-aware VM Cluster Placement in IaaS Clouds

Georgiou et al. [51] have investigated the benefits of user-provided hints regarding inter-

VM communication patterns and bandwidth demands during the actual VM placement

decision phase. The authors have proposed two offline VM-cluster placement algorithms

with the objective to minimize the network utilization at physical layer, provided that the

physical server resource capacity constraints are met. VM deployment request is modeled

as Virtual Infrastructure (VI) with specification of the number and resource configuration

(CPU core, memory, and storage demands) of VMs, bandwidth demands of inter-VM

communication within the VI, modeled as Virtual Links (VLs), as well as possible anti-

colocation constraint for pairs of VMs. The underlying physical infrastructure is modeled

as a homogeneous cluster of servers organized according to the PortLand [91] network

architecture. The authors have argued that conventional tree-like network topologies often

suffer from over-subscription and network resource contention primarily at the core top-

levels, leading to bottlenecks and delays in services, PortLand network architecture can

play a significant role in effective management of computational resources and network

bandwidth in Cloud data centers.

The authors have also presented a framework comprising of two layers: physical in-

frastructure consisting of homogeneous servers organized as PortLand network topology

and a middleware on top of the infrastructure. The middleware layer is composed of the

following two main components: Planner and Deployer. As input, the Planner gets VM

deployment request as VI specification (in XML format), and possible suggestions regard-

ing desired features in VI from user as well as the current resource state information of the

infrastructure layer, executes the VM placement algorithms to determine the VM-to-PM

and VL-to-physical link mappings, and finally passes over the placement decision to the
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Deployer. The Deployer can be a third-party provided component that takes care of the

VMs deployment on the physical layer components.

With the goal of minimizing network utilization of the physical layer during the VI

deployment decision, the authors have proposed two algorithms based on greedy approach.

The first algorithm, Virtual Infrastructure Opportunistic fit (VIO) tries to place the com-

municating VMs near to each other in the physical network. Starting with a sorted list

of VLs (in decreasing order of their bandwidth demands) connecting the VMs, the VIO

picks up the front VL from the list and attempts to place the VMs connected by the VL

in the nearest possible physical nodes (preferably in the same node when anti-colocation

is not set), provided that physical node resource capacity constraints, network link band-

width capacity constraints, as well as user provided constraints are met. In case VIO

reaches a dead-end state where the VL at hand cannot be placed on any physical link,

VIO employs a backtracking process where VLs and corresponding VMs are reverted back

to unassigned state. Such VL placement inability can occur due to three reasons: (1) No

physical node with enough resource is found to host a VM of the VL, (2) No physical

path with enough bandwidth is found to be allocated for the VL, and (3) Anti-colocation

constraint is violated.

Backtracking process involves de-allocation of both server resource and network band-

width of physical links. In order to limit the number of reverts for a VL and terminate the

algorithm with a reasonable amount of time, a revert counter is set for each VL. When

the maximum amount of reverts has been reached for a VL, the VI placement request

is rejected and the VIO terminates gracefully. The second algorithm, Vicinity-BasEd

Search (VIBES) based on the PortLand network architecture characteristics, tries to de-

tect an appropriate PortLand neighborhood to accommodate all the VMs and VLs of the

requested VI, and afterward applies VIO within this neighborhood. In order to identify

fitting neighborhood, VIBES exploits PortLand’s architectural feature of pods (cluster of

physical nodes under the same edge-level switch). The authors also presented formula

for ranking all neighborhoods based on the available resources in the servers and band-

width of the physical links within each neighborhood. VIBES starts with the pod with

the most available resources and invokes VIO. Upon rejection from VIO, VIBES expands

the neighborhood further by progressively merging the next most available pod to the set

of already selected pods. The search for a large enough neighborhood proceeds until a
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neighborhood with enough available resources is found or the search window is growing

beyond a customizable maximize size in which case the VI placement request is rejected.

Performance evaluation of VIO and VIBES is conducted through simulation of phys-

ical infrastructures and compared against network-agnostic First Fit Decreasing (FFD)

algorithm. Online VI deployment and removal is simulated using three different data flow

topologies: Pipeline, Data Aggregation, and Epigenomics [13]. The simulation results

show that the proposed algorithms outperforms FFD with respect to network usage: VIO

trims down the network traffic routed through the top-layer core switches in the PortLand

architecture by up to 75% and incorporation of VIBES attains a further 20% improve-

ment. The authors have also suggested future research directions such as optimization of

the power usage of network switches through exploitation of reduced network utilization,

testing VIO and VIBES for other network topologies such as BCube [54] and VL2 [52].

Stable Network-aware VM Placement for Cloud Systems

With focus on communication pattern and dynamic traffic variations of modern Cloud

applications, as well as non-trivial data center network topologies, Biran et al. [16] have

addressed the problem of VM placement with the objective to minimize the maximum

ratio of bandwidth demand and capacity across all network cuts and thus maximize un-

used capacity of network links to accommodate sudden traffic bursts. The authors have

identified several important observations regarding network traffic and architectures: (1)

due to several factors such as time-of-day effects and periodic service load spikes, run-time

traffic patterns undergo high degree of variations, and (2) modern data centers are archi-

tected following non-trivial topologies (e.g., Fat-tree [5] and VL2 [52]) and employ various

adaptations of dynamic multi-path routing protocols.

Considering the above-mentioned points, the authors presented two VM placement

algorithms that strive to satisfy the forecasted communication requirements as well as

be resistant to dynamic traffic variations. The authors have introduced the Min Cut

Ratio-aware VM Placement (MCRVMP) problem and formally formulated using the In-

teger Quadratic Programming model considering both the server side resource capacity

constraints and network resource constraints evolving from complex network topologies

and dynamic routing schemata. Since the MCRVMP problem definition works only for

tree topology, the authors have also proposed graph transformation techniques so that

MCRVMP can be applied to other complex network topologies, for example VL2 and
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Fat-tree. Considering the fact the MCRVMP is a NP-hard problem, the authors have pro-

posed two separate heuristic algorithms for solving the placement problem and compared

these against optimal and random placements. Both the proposed VM placement heuris-

tic algorithms utilize the concept of Connected Components (CCs) of the running VMs

in the data center. Such a CC is formed by the VMs that exchange data only between

themselves or with the external gateway (e.g., VMs comprising a multi-tier application)

and thus clustering VMs in this way helps minimize the complexity of the problem. First

algorithm, termed 2-Phase Connected Component-based Recursive Split (2PCCRS) is a

recursive, integer programming technique-based algorithm that utilizes the tree network

topology to define and solve small problem instances on one-level trees. By adopting a

two-phase approach, 2PCCRS places the CCs in the network and then expands them to

place the actual VMs on the servers. Thus, 2PCCRS reduces the larger MCRVMP prob-

lem into smaller sub-problems and solves them using mixed integer programming solver

in both the phases. Second algorithm, called Greedy Heuristic (GH) entirely avoids using

mathematical programming and greedy places each VM individually. Similar to 2PCCRS,

GH works in two phases. In the first phase, GH sorts all the traffic demands in decreasing

values and sorts all CCs in decreasing order based on the accumulated traffic demands

among the VMs within a CC. In the second phase, GH iteratively processes the ordered

traffic demands by placing each VM on the physical server that results in minimum value

of the maximum cut load values.

The efficiency of the proposed algorithms is evaluated in two phases. In the first phase,

2PCCRS and GH algorithms were compared to random and optimal placement approaches

with focus on placement quality in terms of worst and average cut load ratio and solution

computation time. As reported by the authors, for small problem instances both 2PC-

CRS and GH reach worst case and average cut load ratio very close to optimal algorithm

with nearly zero solving time; whereas for larger problem sizes, 2PCCRS significantly

outperforms GH, while requiring much higher solving time due its use of mathematical

programming techniques. In the second phase, the authors have validated the resilience

of MCRVMP-based placements under time-varying traffic demands with NS2-based sim-

ulations focusing on the percentage of dropped packets and average packet delivery delay.

Simulation results show that with no dropped packets, both 2PCCRS and GH can absorb

traffic demands up to three times the nominal values. Furthermore, placements produced
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by the 2PCCRS algorithm have average packet delivery delays lower than GH-based ones

due to the less loaded network cuts.

The authors have also remarked that the proposed MCRVMP problem formulation is

not meant for online VM placement where new VM requests are served for data center

having already placed VMs. In addition, the authors have ignored the potential VM mi-

gration costs entirely. As per future works, the authors have indicated potential extension

of MCRVMP by incorporating traffic demand correlation among VMs to further cut down

the amount of dropped packets and by preventing MCRCMP to produce solutions with

very high local compute-resource overhead due to inter-memory communications.

Scalability Improvement of Data Center Networks with Traffic-aware VM

Placement

Meng et al. [85] have addressed the scalability problem of modern data center networks

and proposed solution approaches through optimization of VM placement on physical

servers. Different from existing solutions that suggest changing of network architecture

and routing protocols, the authors have argued that scalability of network infrastructures

can be improved by reducing the network distance of communicating VMs. In order

to observe the dominant trend of data center traffic-patterns, the authors have claimed

to have conducted a measurement study in operational data centers resulting with the

following insights:

1. There exists low correlation between average pairwise traffic rate and the end-to-end

communication cost,

2. Highly uneven traffic distribution for individual VMs, and

3. VM pairs with relatively heavier traffic rate tend to constantly exhibit the higher

rate and VM pairs with low traffic rate tend to exhibit the low rate.

The authors have formally defined the Traffic-aware VM Placement Problem (TVMPP)

as a combinatorial optimization problem belonging to the family of Quadratic Assignment

Problems [80] and proved its computational complexity to be NP-hard. TVMPP takes

the traffic matrix among VMs and communication cost matrix among physical servers

as input, and its optimal solution would produce VM-to-PM mappings that would result

in minimum aggregate traffic rates at each network switch. The cost between any two
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communicating VMs is defined as the number of switches or hops on the routing path

of the VM pair. The authors have also introduced a concept of slot to refer to one

CPU/memory allocation on physical server where multiple such slots can reside on the

same server and each slot can be allocated to any VM.

Since TVMPP is NP-hard and existing exact solutions cannot scale to the size of

current data centers, the authors have proposed two-tier approximate algorithm Cluster-

and-Cut based on two design principles:

1. Finding solution of TVMPP is equivalent to finding VM-to-PM mappings such that

VM pairs with high mutual traffic are placed on PM pairs with low-cost physical

links and

2. Application of the divide-and-conquer strategy.

The Cluster-and-Cut heuristic is composed of two major components: SlotClustering

and VMMinKcut. SlotClustering partitions a total of n slots in the data center into k

clusters using the cost between slots as the partition criterion. This component produces

a set of slot-clusters sorted in decreasing order of their total outgoing and incoming cost.

The VMMinKcut partitions a total of n VMs into k VM-clusters such that VM pairs

with high mutual traffic rate are placed within the same VM-cluster and inter-cluster

traffic is minimized. This component uses the minimum k-cut graph algorithm [105]

partition method and produces k clusters with the same set of size as the previous k

slot-clusters. Afterwards, Cluster-and-Cut maps each VM-cluster to a slot-cluster and for

each VM-cluster and slot-cluster pair, it maps VMs to slots by solving the much smaller

sized TVMPP problem. Furthermore, the authors have shown that the computational

complexity of SlotClustering and VMMinKcut are O(nk) and O(n4), respectively, with

total complexity of O(n4).

The performances evaluation of Cluster-and-Cut heuristic is performed through trace-

driven simulation using hybrid traffic model on inter-VM traffic rates (aggregated incoming

and outgoing) collected from production data centers. The results show that Cluster-and-

Cut produces solution with objective function value 10% lower than its competitors across

different network topologies and the solution computation time is halved.

However, the proposed approach considers some assumptions that cannot be hold in

the context of real data centers. TVMPP does not incorporate the link capacity constraints
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that can lead to VM placement decisions with congested links into the data center [16].

Furthermore, Cluster-and-Cut algorithm places only one VM per server that can result

in high amount of resource wastage. Additionally, it is assumed that static layer 2 and

3 routing protocols are deployed in the data center. Finally, VM migration overhead

incurred due to the offline VM shuffling is not considered.

Through discussion the authors have indicated the potential benefit of combining the

goals of both network resource optimization and server resource optimization (such as

power consumption or CPU utilization) during the VM placement decision phase. They

also emphasized that reduction of total energy consumption in a data center requires com-

bined optimization of the above-mentioned resources. The authors have also mentioned

potential of performance improvement by employing dynamic routing and VM migration,

rather than using simple static routing.

3.3.2 Network-aware Energy-efficient VM Placement and Migration Ap-

proaches

Multi-objective Virtual Machine Migration in Virtualized Data Center Envi-

ronments

Huang et al. [62] have addressed the problem of overloaded VM migration in data cen-

ters having inter-VM communication dependencies. Indicating the fact that most of the

existing works on VM migrations focus primarily on the server-side resource constraints

with the goal of consolidating VMs on minimum number of servers and thus improving

overall resource utilization and reducing energy-consumption, the authors have argued

that VMs of modern applications have mutual communication dependencies and traffic

patterns. As a result, online VM migration strategies need to be multi-objective focusing

both on maximizing resource utilization and minimizing data center traffic overhead. Fol-

lowing a similar approach as in [63], the authors have presented three stages of the joint

optimization framework:

1. Based on the dominant resource share and max-min fairness model, the first opti-

mization framework tries to maximize the total utilities of the physical servers; in

order words tries to minimize the number of used servers and thus reduce power

consumption,
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2. Considering the complete application context with inter-VM traffic dependencies,

the second optimization framework strives to minimize the total communication

costs among VM after necessary VM migrations, and

3. Based on the above two frameworks, the third optimization framework combines the

above goals subject to the constraints that the allocated resources from each server

is not exceeded its capacity and the aggregated communication weight of a server is

lower or equal to its bandwidth capacity.

The authors have further proposed a two-stage greedy heuristic algorithm to solve the

defined optimization problem: Base Algorithm and Extension Algorithm. The Base Algo-

rithm takes as input the set of VMs, set of servers, and the dominant resource share of user

servers, and the set of overloaded VMs. Then, it sorts the overloaded VMs in decreasing

order of their dominant resource share before migration. After incorporation of application

dependencies (i.e., inter-VM communication dependencies), the Extension Algorithm se-

lects candidate destination server for migration to the server with the minimum dominant

resource share and application-dependent inter-VM traffic. The VM migration effect is

computed as the impact based on both distance effect and inter-VM traffic pattern-based

network cost after migration. For each overloaded VM, the total communication weight is

computed as the sum of all related inter-VM communication weights and the overloaded

VM is migrated to the server with minimum migration impact.

The authors have shown simulation-based evaluation of the proposed multi-objective

VM placement approach with comparison to AppAware [106] application-aware VM mi-

gration policy. The following four different network topologies are used as data center

network architecture: Tree, Fat-Tree [5], VL2 [52], and BCube [54]. Data center server

capacity, VM resource demand, and inter-VM traffic volume is generated synthetically

based on normal distribution with varying mean. The results show that the achieved

mean reduction in traffic of the proposed algorithm is higher for BCube compared to Tree

topology. Compared to AppAware, the proposed algorithm can achieve larger reduction in

data center network traffic volume, by generating migrations that decreased traffic volume

transported by the network up to 82.6% (for small number of VMs). As per average impact

of migration, it decreases with the increase of server resource capacity. It is attributed that

since the multiplier factor in the migration impact formulation includes dominant resource

share of the migrating VM and it is decreased after migration. However, with the increase
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of VM resource demands, the average impact of migration is increased. This is attributed

for the fact that the demand of VMs has a direct impact on the inter-dependencies among

the VMs of multi-tier applications. Finally, with the increase of inter-VM communication

weights, the average impact of migration increases since communication weights influence

the cross-traffic burden between network switches.

Communication Traffic Minimization with Power-aware VM Placement in

Data Centers

Zhang et al. [132] have addressed the problem of static greedy allocations of resources

to VMs, regardless of the footprints of resource usage of both VMs and PMs. The authors

have suggested that VMs with high communication traffic can be consolidated into min-

imum number of servers so as to reduce the external traffic of the host since co-located

VMs can communicate using memory copy. With goal of minimizing communication traffic

within a data center, the authors have defined dynamic VM placement as an optimization

problem. The solution of the problem would be a mapping between VMs and servers,

and such a problem is presented to be reduced from a minimum k-cut problem [130] that

is already proved to be NP-hard. Since an idle server uses more than two-third of the

total power when the machine is fully utilized [73], the authors set power-consumption

minimization as a second objective of their proposed VM placement scheme.

The authors have provided formal presentation of the optimization problem using

mathematical framework that is set to minimize the total communication traffic in the

data center, provided that various server-side resource constraints should be satisfied.

Such problem can be solved by partitioning the VMs into clusters in such a way that

VMs with heavy communication can be placed in the same server. As a solution, the

author proposed the use of K-means clustering algorithm [130] that would generate VM-

to-server placement mappings. Utilizing the K-means clustering approach, the authors

proposed a greedy heuristic named K-means Clustering for VM consolidation that starts

by considering each server as a cluster. Such cluster definition has got some benefits:

1. The number K and the initial clusters can be fixed to minimize the negative impact

from randomization,

2. There is an upper-bound for each cluster that corresponds to the capacity constraints

of each server, and
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3. Fixed clusters can reduce the number of migrations.

In each iteration of the K-means Clustering for the VM Consolidation algorithm, the

distance between a selected VM and a server is determined. Using this, the VM is placed

in the server with minimum distance. This step is repeated until every VM has a fixed

placement on its destination server. The authors have further reported that the greedy

algorithm has a polynomial complexity of O(tmn), where t is the number of iterations, n

is the number of VMs, and m is the number of servers in the data centers. The authors

have further presented algorithms for computing the distance between a VM and a cluster,

and for online scenarios where greedy heuristic handles new VM requests.

Performance evaluation based on simulation and synthetic data center load character-

istics is reported with superior performance gain by the proposed algorithm compared to

its three competitors: (1) random placement, (2) simple greedy approach (puts the VM on

the server which communicates most with current VM), and (3) First Fit (FF) heuristic.

Both the random placement and FF heuristics are unaware of inter-VM communication.

The results show that the proposed greedy algorithm achieved better performance for both

performance metrics: (1) total communication traffic in data center and (2) number of

used server (in other words, measure of power cost) after consolidation. For the online VM

deployment scenario, the clustering algorithm is compared against greedy algorithm and

it is reported that the greedy algorithm can perform very close to the clustering method

where the number of migrations is significantly larger than the greedy method and the

greedy method can deploy new VM requests rapidly without affecting other nodes.

As for future work directions, the authors expressed plan to introduce the SLA to

approach a better solution where the data center can provide better performance for the

applications because of less communication traffic. This metric would be included in the

cost model. Furthermore, the migration cost would be taken as a metric of the proposed

distance model.

Energy-aware Virtual Machine Placement in Data Centers

Huang et al. [63] have presented a joint physical server and network device energy con-

sumption problem for modern data centers hosting communication-intensive applications.

The authors have staged several data center facts in order to signify the importance of

multi-objective VM placement:
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1. Increasing deployment of wide spectrum of composite applications consisting of mul-

tiple VMs with large amount of inter-VM data transfers,

2. Continuous growth in the size of data centers,

3. Existing VM placement strategies lack multiple optimizations, and

4. Rise of electricity cost.

In response to the above issues, the authors have investigated the balance between

server energy consumption and energy consumption of data center transmission and switch-

ing network.

The multi-objective VM placement problem is modeled as an optimization problem

in three stages. Considering server resource capacities (CPU, memory, and storage) and

VM resource demands, the first optimization framework is targeted on VM placement

decisions that would maximize server resource utilizations and eventually reduce energy

consumption (by turning idle servers to lower power state, e.g., standby) following pro-

portional fairness and without considering inter-VM communication pattern. The second

optimization framework considers inter-VM data traffic patterns and server-side band-

width capacity constraints, and is modeled as a Convex Programming Problem that tries

to minimize the total aggregated communication costs among VMs. Finally, the energy-

aware joint VM placement problem is modeled using fuzzy-logic system with trade-off

between the first two objectives that can be in conflict when combined together. The

authors have further proposed a prototype implementation approach for the joint VM

placement following a two-level control architecture with local controllers installed in ev-

ery VM and a global controller at the data center level responsible to determining VM

placement and resource allocations.

As solution approach, the authors have put forward two algorithmic steps: VMGroup-

ing and SlotGrouping. VMGrouping finds VM-to-server mappings such that VM pairs

with high traffic communication are mapped to server pairs with low cost physical link.

Such VM-to-server mappings are modeled as Balanced Minimum K-cut Problem [105]

and a k-cut with minimum weight is identified so that the VMs can be partitioned into

k disjoint subsets of different sizes. Afterwards, SlotGrouping maps each VM group to

appropriate servers in closest neighborhood respecting the server side resource constraints.
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The authors have validated the proposed multi-objective VM placement approach us-

ing simulation-based evaluation under varying traffic demands, and load characteristics

of VMs and physical servers using normal distribution under different means as well as

for different network architectures, such as Tree [5], VL2 [52], Dcell [55], and BCube [54].

Focusing on the formulated objective function value and total data center traffic volume as

performance metrics, the proposed joint VM placement policy is compared against random

placement and First Fit Decreasing (FFD) heuristic-based placement policies. The results

show that the joint VM placement achieves higher objective values and much reduced traf-

fic flow (up to 50% to 81%) compared to other approaches, resulting in lower communica-

tion cost and resource wastage. In order to assess performance from energy-consumption

reduction point of view, the proposed placement approach is compared against Grouping

Genetic Algorithm (GGA) [2], FFD, two-stage heuristic algorithm [56], random placement,

and optimal placement considering the number of used PMs as performance metric. It is

reported that the proposed energy-aware joint placement method achieves better perfor-

mance over random placement, GGA, and the two stage heuristic algorithm, and inferior

performance over FFD and optimal placement. Such performance pattern is rationalized

by the trade-offs between multiple objectives (i.e., minimizing both resource wastage and

traffic volume simultaneously) that the joint VM placement policy strives to achieve.

In this research work, the authors have brought about a very timely issue of balancing

both energy- and network-awareness while VM placement decisions are made. Most of

the existing works focus on either one of the objectives, not both at the same time.

However, this work has not considered the impact of the necessary VM live migrations and

reconfiguration on both the network links and hosted applications performance, which can

have substantially detrimental effects on both applications SLAs and network performance

given that the new VM placement decision requires large number of VM migrations.
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3.3.3 Network- and Data-aware VM Placement and Migration Mecha-

nisms

Coupled Placement in Modern Data Centers

Korupolu et al. [72] have addressed the problem of placing both computation and data

components of applications among the physical compute and storage nodes of modern vir-

tualized data centers. The authors have presented several aspects that introduce hetero-

geneity in modern data centers and thus make the optimization problem of compute-data

pairwise placement non-trivial:

1. Enterprise data centers evolve over time and different parts of the data center can

have performance variations (e.g., one network switch can be more recent than others

and have lower latency and greater I/O throughput),

2. Wide spread use of multi-purpose hardware devices (e.g., storage devices with built-

in compute resources), and

3. Large variance of the I/O rates between compute and data components of modern

applications.

Taking into considering the above factors, the Coupled Placement Problem (CPP) is

formally defined as an optimization problem with the goal of minimizing the total cost

over all applications, provided that compute server and storage node capacity constraints

are satisfied. The cost function can be any user defined function and the idea behind it is

that it captures the network cost that is incurred due placing the application computation

component (e.g., VM) in a certain compute node and the data component (e.g., data block

or file system) in a certain storage node. One obvious cost function can be the I/O rate

between compute and data components of application multiplied by the corresponding

network distance between the compute and storage nodes.

After proving the CPP as a NP-hard problem, the authors proposed three different

heuristic algorithms to solve it:

1. Individual Greedy Placement (INDV-GR), following greedy approach, tries to place

the application data storage sorted by their I/O rate per unit of data storage where

storage nodes are ordered by the minimum distances to any connected compute

node. Thus, INDV-GR algorithm places highest throughput applications on storage

nodes having the closest compute nodes.
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2. Another greedy algorithm, Pairwise Greedy Placement (PAIR-GR) considers the

compute-storage node affinities and tries to place both compute and data components

of each application simultaneously by assigning applications sorted by their I/O rate

normalized by their CPU and data storage requirements on storage-compute node

pairs sorted by the network distance between the node pairs.

3. Finally, in order to avoid early sub-optimal placement decisions resulting due to

the greedy nature of the first two algorithms, the authors proposed Coupled Place-

ment Algorithm (CPA) where CPP is shown to have properties very similar to the

Knapsack Problem [101] and the Stable-Marriage Problem [83]. Solving both the

Knapsack and the Stable-Marriage Problem, the CPA algorithm iteratively refines

placement decisions to solve the CPP problem in three phases:

(a) CPA-Stg phase where data storage placement decision is made,

(b) CPA-Compute phase where computation component placement decision is taken

provided the current storage placements, and

(c) CPA-Swap phase that looks for pairs of applications for which swapping their

storage-compute node pairs improves the cost function and performs the swap.

The performance of INDV-GR, PAIR-GR, and CPA is compared against the optimal

solutions through simulation-based experimentation. The authors have used CPLEX ILP

solver for small problem instances and MINOS solver based on LP-relaxation for larger

problems. Cost function values and placement computation times are considered as per-

formance metrics and the experiments are carried out across four different dimensions:

1. Problem size/complexity through variations in simulated data center size,

2. Tightness of fit through variations of mean application compute and data demands,

3. Variance of application compute and data demands, and

4. Physical network link distance factor.

Through elaborate analysis of results and discussion, the proposed CPA algorithm

is demonstrated to be scalable both in optimization quality and placement computation

time, as well as robust with varying workload characteristics. On average, CPA is shown to

produce placements within 4% of the optimal lower bounds obtained by LP formulations.
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However, the optimization framework takes some simplistic view of the application

models and resource capacity constraints. Firstly, the CPP has considered each applica-

tion as having one compute and one data storage components whereas modern applications

usually have composite view with multiple compute components with communications

among themselves as well as communication with multiple data storage components. Sec-

ondly, on the part of compute resource demand, only CPU is considered whereas memory

and other OS-dependent features make the problem multi-dimensional [48]. Thirdly, no

assumption is made regarding the overhead or cost of reconfiguration due to the new

placement decision, in which VM migrations and data movement would be dominating

factors. Finally, no network link bandwidth capacity constraint is no taken into account

during the CPP formulation. Nonetheless, the authors have pointed out couple of future

research outlooks: inclusion of multi-dimensional resource capacity constraints and other

cost models focusing on different data center objectives like and energy utilization.

Network- and Data Location-aware VM Placement and Migration Approach

in Cloud Computing

Piao et al. [100] have addressed the problem of achieving and maintaining expected per-

formance level of data-intensive Cloud applications that need frequent data transmission

from storage blocks. The studied scenario is focused on modern Cloud data centers com-

prising of both compute Clouds (e.g., Amazon EC2) and storage Clouds (e.g., Amazon S3)

where hosted applications access the associated data across the Internet or Intranet over

communication links that can either be physical or logical. Moreover, the authors have

suggested that under current VM allocation policy, the data can be stored arbitrarily and

distributed across single storage Cloud or even over several storage Clouds. Furthermore,

the brokers allocate the applications without consideration of the data access time. As a

consequence, such placement decisions can lead to data access over unnecessary distance.

In order to overcome the above-mentioned problem, the authors have proposed two

algorithms based on exhaustive search: VM placement approach and VM migration ap-

proach. For both the solutions, the per application data is modeled as a set of data blocks

distributed across different physical storage nodes with varying distances (either logical or

physical) from physical compute nodes. Network speed between physical compute node

and storage node is modeled using Speed(s,∆t) function that depends on the size of the
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data s and packet transfer time slot ∆t. Finally, for each physical compute node, the cor-

responding data access time is formulated as the sum of product of each data block size

and the inverse of the corresponding network speed value. The VM placement algorithm

handles each new application deployment request and performs an exhaustive search over

all the feasible compute nodes to find the one with minimum data access time for the

corresponding data blocks for the submitted VM, subject to the compute node resource

capacity constraints are satisfied. The VM migration algorithm is triggered when the

application execution time exceeds the SLA specified threshold. In such a situation, a

similar exhaustive search over all the feasible compute nodes is performed to find the one

with minimum data access time for the corresponding data blocks for the migrating VM,

subject to the compute node resource capacity constraints as satisfied.

The efficacy of the proposed algorithms is validated through simulation based on the

CloudSim [21] simulation toolkit. The evaluation is focused on the average task completion

time and the proposed algorithms are compared against the default VM placement policy

implemented in CloudSim 2.0, namely VMAllocationPolicySimple that allocates the VM

on the least utilized host following a load-balancing approach. The simulation is setup

with small scale data centers comprising of 3 VMs, 3 data blocks, 2 storage nodes, and 3

compute nodes with fixed resource capacities. It is shown that the proposed approaches

needed shorter average task completion time, which is emphasized as due to the optimized

location of hosted VMs. In order to trigger the proposed VM migration algorithm, the

network status matrix is changed and as a consequence some of the VMs are migrated to

hosts that resulted in lower average task completion time.

Besides considering very simplistic view of federated Cloud data centers, the proposed

VM placement and migration algorithms take an exhaustive search approach that may not

scale for very large data centers. Moreover, the experimental evaluation is performed in a

tiny scale and compared with a VM placement that is fully network-agnostic. Furthermore,

VM migration or reconfiguration overhead is not considered in the problem formulation

or solution schemes.

As for future work directions, the authors suggested inclusion of negotiation between

service provider and user in terms of data access time to guarantee SLA enforcement. In

order to avoid some users’ tasks always occupying a faster network link, priority-based

scheduling policy is recommended through extension of the payment mechanisms.
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3.3.4 Application-aware VM Placement and Migration Strategies

Communication-aware Scheduling for Parallel Applications in Virtualized Data

Centers

Takouna et al. [114] have introduced the problem of scheduling VMs that are part of

HPC applications and communicate through shared memory bus (when placed in the same

server) and shared networks (when placed in different servers). The authors have identified

some limitations of existing VM placement and migration approaches with regards to the

HPC and parallel applications:

1. VM placement approaches that optimize server-side resources (e.g., CPU and mem-

ory) are unaware of the inter-VM communication patterns, and as a result are less

efficient from network utilization and ultimately from application performance point

of view, and

2. Recent network-aware VM placement approaches focus on optimal initial VM place-

ment and overlook the real-time communication patterns and traffic demands, and

thus are not reactive to changes.

In order to address the above shortcomings, the authors have proposed communication-

aware and energy-efficient VM scheduling technique focusing on parallel applications that

use different programming models for inter-VM communication (e.g. OpenMP and Mes-

sage Passing Interface (MPI)). The proposed technique determines the run-time inter-VM

bandwidth requirements and communication patterns and upon detection of inefficient

placement, reschedules the VM placement through VM live migrations.

In order to handle potential VM migration requests, the authors have presented a

brief overview of the system framework consisting of VMs with peer-VM information (i.e.,

VMs that have mutual communication) and a central Migration Manager (MM). HPC

jobs are executed in individual VMs and each VM have a list of its peer-VMs at run-

time. It is the responsibility of the MM to determine the communication pattern of the

whole parallel application. It is further assumed that each physical server have enough

free resources (10% to 20% of CPU) to handle potential VM migration. The authors have

further proposed an iterative greedy algorithm, namely Peer VMs Aggregation (PVA) that

would be run by the MM upon getting migration requests from VMs. The ultimate goal

of the PVA algorithm is to aggregate the communicating VMs with mutual traffic into
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the same server so that they can communicate through the shared memory bus, so as to

reduce the inter-VM traffic flow in the network. This would both localize the traffic (and

thus reduce network utilization) and minimize the communication delays among VMs with

mutual communication dependencies (and thus improving application performance). The

PVA algorithm is composed of the following four parts:

1. Sort: The MM ranks the VMs that are requesting migration in a decreasing order

based on the number of input/output traffic flows while ignoring the requests of VMs

assigned on the same server),

2. Select: MM selects the highest ranked VM to be migrated to the destination server

where its peer VMs are assigned,

3. Check: MM examines the feasibility of VM migrations to the destination servers in

terms of server resource (CPU, memory, and network I/O) capacity constraints, and

4. Migrate: If MM finds the server suitable for the migrating VM, it directly migrates

the selected VM to that server; otherwise the MM tries to migrate a VM from the

destination server to free enough resources for the selected VM to be placed in the

same server of its peer VMs (in that case the selected VM should also be suitable

to be migrated). However, if the destination server does not host any VM, the MM

can assign the selected VM on a server that shares the same edge switch with the

server of its peer VMs.

The PVA approach is reported to minimize the total data center traffic significantly by

reducing the network utilization traffic by 25%. The authors have claimed to have imple-

mented the network topology and memory subsystem on the popular CloudSim simulation

toolkit [21] and used the NAS Parallel Benchmarks (NPB) as HPC application which is di-

vided into two groups: kernel benchmarks and pseudo-applications [113]. While compared

to CPU utilization-based random placement algorithm, PVA is reported to have aggre-

gated all the VMs belonging to an application into the same server and thus produced

perfect VM placement after determining the traffic pattern of the communicating VMs.

Moreover, the proposed approach have been shown to have outperformed the CPU-based

placement in terms of reducing network link utilization through transferring inter-VM

communication from shared network to shared memory by aggregating communicating

VMs. In addition, the application performance degradation is computed and compared
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against the ideal execution time of the individual jobs and it is reported that 18% of the

VMs suffer performance degradation while using PVA, whereas 20% performance degra-

dation is experienced in the case of CPU-based placements.

Though PVA approach mentions where to migrate a VM, it does not make it clear when

a VM requests for migration. Moreover, the associated VM migration overhead is not taken

into account. Furthermore, it would not be always the case that all the VMs consisting of

a parallel/HPC application can be aggregated into a single server. Finally, the evaluation

lacks the reporting of the energy-efficiency aspect of the proposed approach. The authors

have presented a few future research work directions: (1) performance evaluation using

different number of VMs for each application and (2) comparison with communication-

and topology-aware VM placement approaches.

Application-aware VM Placement in Data Centers

Song et al. [109] have presented an application-aware VM placement problem focusing

on energy-efficiency and scalability of modern data centers. The authors have pointed out

several factors of modern data center management:

1. Increasing use of large-scale data processing services deployed in data centers,

2. Due to the rise of inter-VM bandwidth demands of modern applications, several

recent network architecture scalability research works have been conducted with the

goal of minimizing data center network costs by increasing the degree of network

connectivity and adopting dynamic routing schemes,

3. Focusing on energy- and power-consumption minimization, several other recent works

proposed mechanisms to improve server resource utilization and turning inactive

servers to lower power states to save energy, and

4. Existing VM placement tools (e.g., VMware Capacity Planner5 and Novell PlateSpin

Recon6) are unaware of inter-VM traffic patterns, and thus can lead to placement

decisions where heavily communicating VMs can be placed in physical servers with

long distance network communication.

Similar to the works by Huang et al. [63], this work has expounded a VM placement

problem based on proportional fairness and convex optimization to address the combined

5VMware Capacity Planner, 2014. http://www.vmware.com/products/capacity-planner
6Novell PlateSpin Recon, 2014. https://www.netiq.com/products/recon/

http://www.vmware.com/products/capacity-planner
https://www.netiq.com/products/recon/
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problem of reducing energy-consumption and data center traffic volume in order to improve

scalability. During the problem formulation, both server-side resource capacity constraints

and application-level inter-VM traffic demands are considered. However, given the problem

definition, no algorithm or placement mechanism is presented in the work in order to solve

the problem. Furthermore, simulation-based evaluation is presented and it is claimed

that the combined VM placement algorithm outperforms random and FFD-based VM

placement algorithms.

Application-aware VM Migration in Data Centers

Shrivastava et al. [106] have addressed the load balancing problem in virtualized data

centers trough migration of overloaded VMs to underloaded physical servers such that the

migration would be network-aware. The authors have argued that when VMs (part of

multi-tier applications) are migrated to remove hot spots in data centers can introduce

additional network overhead due to the inherent coupling between VMs based on commu-

nication, especially when moved to servers that are distant in terms of network distance.

With the goal of finding destination servers for overloaded VMs that would result in min-

imum network traffic after the migration, the authors have formulated the VM migration

as an optimization problem and proposed a network topology-aware greedy heuristic.

The proposed optimization problem is called application-aware since the complete ap-

plication context running on top of the overloaded VM is considered during the migration

decision. A view of the interconnections of the VMs comprising a multi-tier application is

modeled as a dependency graph consisting of VMs as vertices and inter-VM communica-

tions as edges of the graph. The authors have also modeled the network cost function as a

product of traffic demand of edge and network distance of the corresponding host servers,

where such network distance can be defined as latency, delay, or number of hops between

any two servers. Furthermore, server-side resource capacity constraint is also included in

the problem formulation.

Since such optimization problem is NP-complete, the authors have proposed a greedy

approximate solution named AppAware that attempts to reduce the cost during each

migration decision step while considering both application-level inter-VM dependencies

and underlying network topology. AppAware has the following four stages:
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1. Base Algorithm: for each overloaded VM in the system, the total communication

weight is computed and based on this the overloaded VMs are sorted in decreas-

ing order, and then for each feasible destination server, the migration impact factor

is computed. The impact factor gives a measure of the migration overhead based

on the defined cost function due to the potential migration. Finally, the base al-

gorithm selects the destination host for which the migration impact factor is the

minimum, provided that the destination host has enough resources to accommodate

the migrating VM.

2. Incorporation of Application Dependency: this part of AppAware computes the to-

tal cost to migrate a VM to a destination server as the sum of its individual cost

corresponding to each of its peer VM that the migrating VM has communication.

3. Topology Information and Server Load: this part of AppAware considers network

topology and neighboring server load while making migration decisions since a phys-

ical server that is close (in terms of topological distance) to other lightly loaded

servers would be of higher preference as destination for a VM due to its potential

for being capable of accommodating it dependent VMs to nearly servers.

4. Iterative Refinements: AppAware is further improved by incorporating two exten-

sions to minimize the data center traffic. The first extension computes multiple

values of the migration impact over multiple iterations of the AppAware base al-

gorithm and the second extension further refines upon the previous extension by

considering expected migration impact of future mappings of other VMs for a given

candidate destination server at each iteration.

Based on numerical simulations, the authors have reported performance evaluation of

AppAware by comparing with the optimal solution and Sandpiper black-box and grey-box

migration scheme [127]. Run-time server-side remaining resource capacity (CPU, mem-

ory, and storage) and VM resource demands are generated using normal distribution,

whereas inter-VM communication dependencies are generated using normal, exponential,

and uniform distributions with varying mean and variance. Since the formulated migra-

tion problem is NP-hard, the performance of AppAware and Sandpiper are compared with

optimal migration decisions only for small scale data centers (with 10 servers) and Ap-

pAware is reported to have produced solutions that are very close to the optimal solutions.
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For large data centers (with 100 servers), AppAware is compared against Sandpiper and it

is reported that AppAware outperformed Sandpiper consistently by producing migration

decisions that decreased traffic volume transported by the network by up to 81%. More-

over, in order to assess the suitability of AppAware against various network topologies,

AppAware is compared to optimal placement decisions for Tree and VL2 network topolo-

gies. It is reported that AppAware performs close to optimal placement for Tree topology,

whereas the gap is increased for VL2.

AppAware considered server-side resource capacity constraints during VM migration,

but it does not consider the physical link bandwidth capacity constraints. As a conse-

quence, subsequent VM migrations can cause network links of low distance to get con-

gested.

3.4 Summary and Conclusions

This chapter has presented the most notable features of the recent research works on

VM management, in particular VM placement, migration, and consolidation with vari-

ous optimization goals, including network cost and energy consumption reduction, and

optimization of resource utilization. It has also presented a detailed taxonomy of VM

management that can help analyze other research works in this area. A detailed survey

and analysis has also been presented with tabular format so facilitate comparison on the

similarities and differences of the studied works.
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Chapter 4

Multi-objective Virtual Machine

Placement

This chapter presents a multi-objective Virtual Machine (VM) placement approach

for virtualized data center environments with the goal of minimizing both server power

consumption and resource wastage. The VM placement problem is modeled as an in-

stance of a combinatorial optimization problem which is computationally NP−hard. A

modified Ant Colony Optimization (ACO) metaheuristic-based VM placement algorithm

is proposed, incorporation with a balanced resource utilization capture method across mul-

tiple resources, such as CPU, memory, and network I/O. Simulation-based performance

evaluation demonstrates superior performance of the proposed approach compared to repre-

sentative VM placement strategies where the proposed technique reduces resource wastage

up to 89% and power consumption up to 16%.

4.1 Introduction

As outlined in Chapter 1, inefficient use of resources and high energy consumption are

two of the main challenges in large-scale data center management. In order to address these

issues, this chapter presents a technique for modeling multi-dimensional server resource uti-

lization and an online Virtual Machine (VM) placement strategy focusing on consolidated

VM cluster deployment. The proposed VM placement algorithm is application-agnostic

and adapts Ant Colony Optimization (ACO) metaheuristic to navigate the search space ef-

fectively within a reasonable amount of time, making it suitable for online or real-time VM

placement scenarios. The proposed placement algorithm strives to consolidate VMs into a

87
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minimum number of servers (homogeneous) with the goal of minimizing the accumulated

energy consumption and server resource wastage across multiple resource dimensions.

Underutilization of computing resources is one of the main reasons for high resource

wastage in enterprise data centers. Furthermore, inefficient use is one of the key factors

for the extremely high energy consumption, because of the narrow dynamic power range

of physical servers— completely idle servers consume about 70% of their peak power us-

age [42]. Virtualization technologies enable data centers to address the problems of energy

and resource inefficiencies by hosting multiple VMs in a single server, where hosted VMs

share the underlying physical resources. One of the main applications of virtualization

technology in enterprise data centers is VM Consolidation, a strategy to consolidate a

group of VMs into a minimal number of servers (homogeneous) to achieve better uti-

lization and reduce resource wastage [123]. Due to the non-proportional power usage of

servers, consolidated VM placement, which requires a minimal number of servers, even-

tually results in reduced energy consumption. In addition to these obvious advantages,

consolidated VM placement has other benefits, such as data center physical space mini-

mization, maintenance automation, and reduced labor costs.

Applications deployed in Clouds vary in their resource demands perspectives— some

applications require balanced resources including cluster computing and mid-range databases,

whereas others require high processing power, such as web servers and batch processing,

and others require higher memory capacities for applications such as high performance

databases and large deployment of enterprise applications. In order to meet the diversi-

fied resource demands of customer applications, Infrastructure-as-a-Service (IaaS) Cloud

providers such as Amazon, Google, and Microsoft offer various categories of predefined

VMs with different amounts of resources across multiple dimensions (such as CPU, mem-

ory, and network bandwidth), as well as custom VMs, for which customers can choose the

amount of resources for their VM instances1. Such multi-dimensionality of resources adds

extra complexity to the problem of reducing the number of servers used. Exhausting the

available resource in a particular dimension (e.g., CPU) causes a server to be unable to

accommodate more VMs whereas the available resources in other dimensions (e.g., mem-

ory and network bandwidth) are sufficient to meet other VM requirements. This causes

1Google Cloud Platform— Compute Engine, 2016. https://cloud.google.com/compute/

https://cloud.google.com/compute/
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resource fragmentation in active servers and, as a consequence, wastes large amounts of

server resources in the data center.

VM categories offered by IaaS Clouds include general purpose instances with balanced

resources that can be used to host regular Internet applications, as well as VMs with opti-

mized resources focusing on specific types of applications. VMs with optimized resources

often demonstrate the pattern of complementary amounts of resources across different di-

mensions. Table 4.1 shows typical Amazon EC2 instances2 (VMs) categorized into three

classes along with the number of Virtual CPUs (vCPU) and main memory (GiB) capacity.

The General Purpose instances offer balanced resources, whereas Compute Optimized and

Memory Optimized instances offer higher CPU and memory capacities, respectively. It

is clear from Table 4.1 that Compute Optimized instance models c4.xlarge, c4.2xlarge,

c4.4xlarge, and c4.8xlarge have almost double the amount of vCPU and half the amount

of memory compared to Memory Optimized models r3.large, r3.xlarge, r3.2xlarge, and

r3.4xlarge, respectively. These VM instance types demonstrate the explicit pattern of

complementary resource demands that can be exploited by VM placement policies to

achieve higher server resource utilization across multiple dimensions and reduce overall

server resource wastage. A higher degree of server resource utilization will eventually

enable Cloud providers to accommodate larger numbers of VMs in the data centers as

resource wastage is minimized, and thus foster the achievement of higher scalability. Fur-

thermore, as argued in Section 4.2, improvement of overall utilization through consolidated

VM placement helps to keep the number of active servers at a minimal number, and thus

reduce energy consumption.

Most of the existing studies on energy-aware consolidated VM placement techniques ap-

ply simple greedy heuristics such as First Fit Decreasing (FFD) [121,127], Best Fit [88,107],

and Best Fit Decreasing [10]. As explained in the next section, VM consolidation is in

fact an NP-hard combinatorial optimization problem [17] and greedy approaches are not

guaranteed to generate near-optimal solutions. Moreover, most of these approaches use in-

appropriate mean estimators that fail to capture the multi-dimensional aspect of resource

utilization. Other studies [60, 117] utilize Constraint Programming (CP) to achieve high

VM packing efficiency; however, by the use of CP, the proposed frameworks effectively

restrict the domain of possible values for the total number of servers and VMs, and thus

2Amazon EC2 Instance Types, 2016. https://aws.amazon.com/ec2/instance-types/

https://aws.amazon.com/ec2/instance-types/
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Table 4.1: Typical Amazon EC2 Instance (VM) Types

Instance Category Model # of vCPU Memory (GiB)

General Purpose

m4.large 2 8
m4.xlarge 2 16
m4.2xlarge 8 32
m4.4xlarge 16 64
m4.10xlarge 40 160

Compute Optimized

c4.large 2 3.75
c4.xlarge 4 7.5
c4.2xlarge 8 15
c4.4xlarge 16 30
c4.8xlarge 36 60

Memory Optimized

r3.large 2 15.25
r3.xlarge 4 30.5
r3.2xlarge 8 61
r3.4xlarge 16 122
r3.8xlarge 32 244

can address only limited search space. Other studies [11,12] ignore the multi-dimensional

aspect of VM resource demand and consider only one type of resource for consolidation

(primarily CPU demand), ignoring other crucial resources, such as main memory and net-

work I/O; whereas over-commitment of these resources, specially memory can effectively

degrade the performance of hosted applications. Furthermore, simple mean estimators for

deriving scalar form of the multi-dimensional resource utilization (e.g., L1-norm) fail to

achieve balanced resource utilization, and in effect, degrade the performance of consolida-

tion techniques [46,50,127].

In contrast, the approach presented in this chapter considers multi-dimensional server

resource capacities and VM resource demands in the system model, and focuses on bal-

anced resource utilization of servers for different resource types in order to increase overall

server resource utilization. The consolidated VM cluster placement is modeled as an in-

stance of the Multi-dimensional Vector Packing Problem (MDVPP) and the ACO [35]

metaheuristic is adapted to address the problem, incorporating an extended version of the

vector algebra-based multi-dimensional server resource utilization capture method [88].

Simulation-based evaluation shows that the proposed multi-objective consolidated VM

placement algorithm outperforms four state-of-the-art VM placement approaches on sev-

eral performance metrics.

The proposed multi-objective consolidated VM cluster placement approach can be

applied in several practical scenarios including the following:



4.1 Introduction 91

1. During the initial VM deployment phase when Cloud providers handle customers’

requests to create VMs in the data center.

2. Intra-data center VM cluster migration. Such situations can arise during data center

maintenance or upgrade when a group of active VMs needs to be moved from one

part of a data center to another (using either cold or live VM migration).

3. Inter-data center VM cluster migration. Such situations can arise when Cloud con-

sumers want to move VM clusters from one Cloud provider to another (inter-Cloud

VM migration). Other applications of inter-data center VM migration are situations

like replications and disaster management.

The key contributions of this chapter are the followings:

1. The Multi-objective Consolidated VM Placement Problem (MCVPP) is formally de-

fined as a discrete combinatorial optimization problem with the aims of minimizing

the power consumption and resource wastage.

2. A balanced server resource utilization capture technique across multiple resource

dimensions based on vector algebra. This utilization capture technique is generic

that helps in utilizing complementary resource demand patterns among VMs and

can be readily integrated to any online or offline VM management strategies.

3. Adaptation of the ACO metaheuristic to apply in the problem domain of VM place-

ment, incorporation of balanced resource utilization through heuristic information,

and eventually, formulation of a novel ACO- and Vector algebra-based VM Placement

(AVVMP) algorithm as a solution to the proposed MCVPP problem.

4. Simulation-based experimentation and performance evaluation are conducted of the

proposed VM placement algorithm taking into account multiple scaling factors and

performance metrics. The results indicate that the proposed consolidated VM place-

ment approach outperforms the competitor VM placement techniques across all per-

formance metrics.

The remainder of this chapter is organized as follows. The next section introduces the

mathematical frameworks formulated to define the multi-objective VM placement problem

and associated models used in the proposed placement approach. Section 4.3 provides a
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brief background on ACO metaheuristics. The proposed AVVMP multi-objective VM

placement algorithm is presented in Section 4.4, followed by a performance evaluation and

analysis of experiemental results in Section 4.5. Finally, Section 4.6 concludes the chapter

with a summary of the contributions and results.

4.2 Multi-objective Consolidated VM Placement Problem

This section begins by presenting the mathematical framework modeled to define the

multi-objective consolidated VM placement problem (MCVPP). Next, it presents the

proposed vector algebra-based mean estimation technique to capture multi-dimensional

resource utilization of physical machines. Furthermore, it provides relevant models to

estimate resource utilization and wastage, and power consumption of physical machines,

which are utilized later in the proposed ACO- and vector algebra based VM placement

(AVVMP) algorithm.

4.2.1 Modeling Multi-objective VM Placement as a MDVPP

In computational complexity theory, MDVPP is categorized as an NP−hard combina-

torial optimization problem [17] where m number of items, each item j having d weights

w1
j , w

2
j , . . . , w

d
j ≥ 0 (j = 1, . . . ,m and

∑d
l=1w

l
j > 0), have to be packed into a minimum

number of bins, each bin i having d capacities W 1
i ,W

2
i , . . . ,W

d
i > 0 (i = 1, . . . , n), in

such a way that the capacity constraints of the bins for each capacity dimension are not

violated [22]. The bin capacity constraint for any particular dimension l means that the

combined weight of the items packed in a bin in dimension l is less than or equal to the

bin capacity in that dimension. In the research literature, the consolidated VM placement

problem is often referred to as an instance of the Multi-dimensional Bin Packing Problem

(MDBPP), which has different capacity constraints than that of MDVPP. As an illustra-

tion, for a 2-dimensional bin of length A and width B containing s number of items each

having length aj and width bj , the capacity constraints of MDBPP can be expressed by

the following equation:
s∑
j=1

aj × bj ≤ A×B. (4.1)



4.2 Multi-objective Consolidated VM Placement Problem 93

Already 
placed item

Height

Bin

√

Length

Already 
placed VM

X

MEM

Physical Machine

X

√

CPU

√

√

New items can be placed 
anywhere in the remaining place

(a) (b)

New VMs cannot be 
placed in these places

New VMs can 
be placed only 

in this place

A1

A2

A3

Figure 4.1: (a) 2-Dimensional Bin Packing Problem, and (b) 2-Dimensional VM Packing
Problem.

On the other hand, in the case of MDVPP, the capacity constraints would be as follows:

s∑
j=1

aj ≤ A and
s∑
j=1

bj ≤ B. (4.2)

The MCVPP problem is in fact an instance of MDVPP, as defined in the later part of

this section. The difference is further illustrated in Figure 4.1, which shows the constraints

of the packing problems for two dimensions. In the case of 2-dimensional bin packing in

Figure 4.1(a), any unused 2-dimensional space is available for placing new items. However

in the case of 2-dimensional VM packing, modeled as 2-dimensional vector packing, in

Figure 4.1(b), areas A1 and A2 cannot be used for placing new VMs, since for these areas

the CPU and memory capacities of the physical machine, respectively, are used up by the

VM that is already placed. Any new VM placement request must be fulfilled by using

area A3, for which both CPU and memory capacities are available.
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Table 4.2: Notations and their meanings

Notation Meaning

VM Virtual Machine
VMS Set of VMs in a cluster
VMi An individual VM in set VMS
Nv Total number of VMs in a cluster
vmList Ordered list of VMs in a cluster

PM Physical Machine
PMS Set of PMs in a data center
PMp An individual PM in set PMS
Np Total number of PMs in a data center
pmList Ordered list of PMs in a data center

RC Single computing resource in PM (CPU, memory, network I/O)
RCS Set of computing resources available in PMs
RCl An individual resource in set RCS
Nr Number of resource types available in PM

Cp Resource Capacity Vector (RCV) of PMp

Up Resource Utilization Vector (RUV) of PMp

Di Resource Demand Vector (RDV) of VMi

x VM-to-PM Placement Matrix
y PM Allocation Vector
f1 MCVPP Objective Function

τ Pheromone matrix
τ0 Initial pheromone amount
η Heuristic value
δ Global pheromone decay parameter
∆τ Pheromone reinforcement

Problem Definition

The Physical Machines (PMs) or servers in the data center are modeled as bins and

the VMs as items to pack into the bins. Let PMS denote the set of Np homogeneous PMs

and VMS denote the set of Nv VMs to be deployed in the data center. The set of Nr

types of resources available in the PMs is represented by RCS. Table 4.2 provides a list of

important notations used throughout this chapter.

Each PMp (PMp ∈ PMS ) has a Nr-dimensional Resource Capacity Vector (RCV)

Cp = 〈C1
p , . . . , C

l
p, . . . , C

Nr
p 〉, where C lp denotes the total capacity of resource RCl in PMp.

Similarly, each VMi (VMi ∈ VMS ) is represented by its Nr-dimensional Resource Demand

Vector (RDV) Di = 〈D1
i , . . . , D

l
i, . . . , D

Nr
i 〉, where Dl

i denotes the demand of resource RCl

by VMi. The Resource Utilization Vector (RUV) Up = 〈U1
p , . . . , U

l
p, . . . , U

Nr
p 〉 of PMp is
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computed as the sum of the RDVs of the hosted VMs:

U lp =
∑

∀i:xi,p=1

Dl
i (4.3)

where x is the Placement Matrix that models the VM-to-PM placements and is defined

as follows:

xi,p =


1, if VMi is placed in PMp;

0, otherwise.

(4.4)

Another decision variable PM Allocation Vector y is introduced, where each element

yp equals 1 if PMp is hosting at least 1 VM, or 0 otherwise:

yp =


1, if

∑Nv
i=1 xi,p > 0;

0, otherwise.

(4.5)

The goal of the AVVMP algorithm is to place the VMs in the available PMs in such

a way that: 1) resource utilization of active PMs is maximized across all dimensions;

and 2) power consumption of active PMs is minimized. A careful analysis of the above

two objectives reveals that both can be captured by a single Objective Function (OF)—

minimization of the number of active PMs. Any placement decision that results in the least

number of active PMs has the highest resource utilization across all dimensions compared

to other placement decisions that require greater numbers of active PMs. Moreover, since

available models for server power consumption primarily focus on CPU utilization [42],

with a given number of VMs having specific CPU demands, it can be concluded that

any placement decision that needs the least number of active PMs will have minimum

energy consumption compared to others. Therefore, the OF f1 is formulated as a single

minimization function on y:

minimize f1(y) =

Np∑
p=1

yp. (4.6)

Finally, the PM resource capacity constraint is expressed as follows:

Nv∑
i=1

Dl
ixi,p ≤ C lp, ∀p ∈ {1, . . . , Np}, ∀l ∈ {1, . . . , Nr}. (4.7)
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Table 4.3: Example multi-dimensional VM resource demands and corresponding scalar
values using mean estimator based on L1-norm

VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8

CPU 10 61 5 14 49 17 13 19

MEM 19 7 54 18 37 18 25 20

L1-norm 29 68 59 32 86 35 38 39

The above constraint (4.7) ensures that the resource demands of all the VMs assigned

to any PM do not exceed its resource capacity for each individual resource. The following

constraint guarantees that a VM is assigned to at most one PM:

Np∑
p=1

xi,p ≤ 1,∀i ∈ {1, . . . , Nv}. (4.8)

4.2.2 Modeling Multi-dimensional Resource Utilization based on Vector

Algebra

Capturing the net effect of placing VMs with multiple resource demands in PMs with

multiple resource capacities is one of the most important factors for any VM consolidation

algorithm, since saturation of only one resource type can lead to no further improvement

in utilization while leaving other types of resources underutilized. Existing solutions either

use some sort of mathematical modeling to convert the multi-dimensional resource into

scalar form [46,127], or consider only one type of resource while ignoring others [10]. Flaws

in capturing the net effect of multi-dimensional resources lead consolidation algorithms

(especially deterministic approaches) to solutions which fail to optimize overall resource

utilization and as a result, they are energy-inefficient. Mean estimator based on L1-norm

used in several recent studies on VM placement and consolidation [45,46], and the flaw of

using L1-norm to convert multiple resource demand vector into scalar form is demonstrated

next using an example placement. Anomalies in other mathematical approaches can be

found in [88].

Table 4.3 shows 8 VMs with their corresponding CPU and memory demands in terms

of percentage of CPU and memory capacities of the PMs, along with the values of L1-

norm (2 types of resources are used to simplify the demonstration). Traditionally, vec-

tor packing problems are solved using fast heuristic algorithms [76] and FFD is among

the most efficient [97]. Using mean estimator based on L1-norm, the FFD heuristic
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Figure 4.2: (a) FFD placement based on L1-norm mean estimator and (b) Alternative
placement with less resource wastage.

first sorts the VMs into decreasing order of their L1-norm values, producing the list

〈VM5, VM2, VM3, VM8, VM7, VM6, VM4, VM1〉. Then, it takes out the first VM from the

list (VM5) and tries to place it in the first PM PM1 that can accommodate VM5 (Figure

4.2(a)). Next, FFD takes out the second VM from the list (VM2) and tries to place it in

the first PM again. However, this time PM1 cannot accommodate VM2, since the CPU

demand of VM2 is 61, which is greater than the available CPU capacity of 51 of PM1. As

a result, FFD tries to place VM2 in the second PM that can accommodate VM2. Subse-

quently, FFD takes the next VM from the sorted list and tries to place in a PM starting

from the first one. Figure 4.2(a) shows the consolidated placement of the 8 VMs produced

by the FFD heuristic using mean estimator based on L1-norm, which requires 3 PMs with

significant resource wastage. In contrast, an an alternative placement focusing on com-

plementary resource utilization is shown in Figure 4.2(b), which requires only 2 PMs with

much less resource wastage. This example reveals one feature of efficient consolidation—

balanced utilization of resources across all dimensions.
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Figure 4.3: Balanced resource utilization using vector algebra.

In order to capture both balanced and overall resource utilization, the vector algebra-

based complementary resource utilization capture technique [88] is augmented and in-

tegrated in the proposed ACO-based solution. Three main resources are considered in

the model in the context of consolidated VM placement in Cloud data centers: CPU,

memory (MEM), and network I/O (NIO). Storage resources are considered to be pro-

vided on-demand through storage backbones such as Network Attached Storage (NAS)

and Storage Area Network (SAN) (e.g., Amazon EBS3).

PM’s normalized resource capacity is expressed as a unit cube (Resource Cube), with

the three dimensions representing three types of resources (Figure 4.3). Resource-related

information are expressed as vectors within the resource cube: The resource capacity

vector (RCV) represents the total capacity of PM and the resource utilization vector

(RUV) represents the current resource utilization of PM, which is computed by vector

addition of the normalized resource demand vectors (RDVs) of the hosted VMs (4.3).

After placing a VM in the PM, the RUV is represented by RUV = Cî+Mĵ +Nk̂, where

C, M , and N are the combined resource demands (normalized) of the hosted VMs in the

dimension of CPU, MEM, and NIO, and î, ĵ, and k̂ are the unit vectors along those three

resource dimensions, respectively.

The Projection Vector (PV) of RUV on RVC is computed by multiplying the unit

vector along RCV (right term) with the magnitude of projection of RUV on RVC (left

3Amazon Elastic Block Store (EBS), 2016. https://aws.amazon.com/ebs/

https://aws.amazon.com/ebs/


4.2 Multi-objective Consolidated VM Placement Problem 99

term):

PV =
1√
3

(C +M +N)

(
1√
3
î+

1√
3
ĵ +

1√
3
k̂

)
=

(
C +M +N

3

)
î+

(
C +M +N

3

)
ĵ +

(
C +M +N

3

)
k̂.

(4.9)

To capture the degree of imbalance in current resource utilization of a PM, Resource

Imbalance Vector (RIV) is used, which is computed as the vector difference between RUV

and PV:

RIV = (C −H) î+ (M −H) ĵ + (I −H) k̂ (4.10)

where H = (C +M + I)/3. When selecting among VMs for placement in a PM, the VM

that shortens the magnitude of RIV most is the VM that balances the resource utilization

of the PM maximum across different dimensions. The magnitude of RIV is given by the

following equation:

‖RIV ‖ =
√

(C −H)2 + (M −H)2 + (I −H)2. (4.11)

For normalized resources utilization, C, M , and N fall in the range of [0, 1], and therefore,

‖RIV ‖ has the range [0.0, 0.82]. This ‖RIV ‖ is used to define the heuristic information for

the proposed AVVMP algorithm along with the overall resource utilization of PM (4.18).

4.2.3 Modeling Resource Utilization and Wastage

The overall resource utilization of PM p is modeled as the summation of the normalized

resource utilization of each individual resource type:

Utilizationp =
∑
l∈RCS

U lp (4.12)

where RCS is the set of available resources (in this case, RCS = {CPU,MEM,NIO}) and

U lp is the utilization of resource l ∈ RCS (4.3).

Similarly, resource wastage is modeled as the summation of the remaining (unused)

resources (normalized) of each individual resource type:

Wastagep =
∑
l∈RCS

(1− U lp). (4.13)
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4.2.4 Modeling Power Consumption

Power consumption of physical servers is dominated by their CPU usage and can be

expressed as a linear expression of current CPU utilization [42]. Therefore, the electricity

energy drawn by a PM p is modeled as a linear function of its CPU utilization UCPU
p ∈

[0, 1]:

E(p) =


Eidle + (Efull − Eidle)× UCPU

p , if UCPU
p > 0;

0, otherwise

(4.14)

where Efull and Eidle are the average energy drawn when a PM is fully utilized (i.e., 100%

CPU busy) and idle, respectively.

Due to the non-proportional power usage (i.e., high idle power) of commodity physical

servers, servers that do not host any active VM are considered to be turned to power save

mode (e.g., suspended or turned off) after the VM deployment. Therefore, these servers

are not considered in this energy consumption model. Therefore, the estimate of total

energy consumed by a VM placement decision x is computed as the sum of the individual

energy consumption of the active PMs:

E(x) =
∑

p∈PMS

E(p). (4.15)

4.3 Ant Colony Optimization Metaheuristics

In the last two decades, ants have inspired a number of methods and techniques,

among which the most studied and the most successful is the general purpose optimization

technique known as Ant Colony Optimization (ACO) [38]. ACO takes inspiration from

the foraging behavior of some ant species. These ants deposit a chemical substance named

pheromone on the ground in order to mark some favorable paths. Other ants perceive

the presence of pheromone and tend to follow paths where pheromone concentration is

higher. This is a colony-level behavior of the ants that exploits positive feedback, termed

autocatalysis, can be utilized by the ants in order to find the shortest path between a food

source and their nest [32]. Similar to the behaviors of natural ants, in ACO a number of

artificial ants build solutions to the optimization problem at hand and share information

on the quality of these solutions via a communication mechanism that is similar to that

used by real ants [35].
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Figure 4.4: After visiting cities a and b, an ant is currently in city c and selects the next
city to visit among unvisited cities d, e, and f based stochastically on the associated
pheromone levels and the distances of edges (c, d), (c, e), and (c, f).

Since the ACO metaheuristics are computational methods rather than specific con-

crete algorithms, the ACO approach is best understood by using an appropriate example

problem, such as the classical Traveling Salesman Problem (TSP). The problem statement

of TSP is as follows— a set of cities is given where the inter-city distances for all the cities

are known a priori and the objective is to find the shortest tour by visiting each city once

and only once. Generally, the problem is represented using a graph, where each vertex

denotes a city and each edge denotes a connection between two cities.

When applied to TSP, a number of artificial ants are put in different cities randomly

and each ant walks through the TSP graph to build its individual TSP solution. Each

edge of the graph is associated with a pheromone variable that stores the pheromone

amount for that connection, and the ants can read and modify the value of this variable.

ACO is an iterative algorithm that incrementally refines previously-built solutions. In

every iteration, each ant builds a solution by simulating a walk from the initial vertex to

other vertices following the condition of visiting each vertex exactly once. At each step of

the solution-building process, the ant selects the next vertex to visit using a probabilistic

decision rule based on the associated pheromone concentration and the distance between

cities. For example, in Figure 4.4, the ant is currently in city c and cities a and b are

already visited. The next city to visit is chosen from the cities d, e, and f . Among

these cities, the ant can select any city, say city d, with a probability proportional to the
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pheromone level of the edge (c, d) and inversely proportional to the distance between cities

c and d. Each such edge of the graph that the ant chooses in every step in its tour denotes

a solution component and all the solution components that the ant selects to complete its

tour make up a solution. When all the ants finish building their solutions (i.e., tours),

the pheromone levels are updated on the basis of the quality of the solutions, with the

intention of influencing ants in future iterations to build solutions similar to the best ones

previously built.

The first ACO algorithm is known as the Ant System (AS) [37] and was proposed in

the early 90s. Since then, a number of other ACO algorithms have been introduced. The

main differing characteristic of the AS algorithm compared to later ACO algorithms is

that in AS, at the end of each cycle, each ant that has built a solution deposits an amount

of pheromone on the path depending on the quality of its solution. Later, Dorigo et al. [36]

proposed Ant Colony System (ACS), where the random-proportional rule is updated and a

local pheromone update rule is added to diversify the search performed by the subsequent

ants during an iteration. Stützle et al. [111] presented Max-Min Ant System (MMAS), an

improvement over the original AS. Its characterizing elements are that only the best ant

updates the pheromone trails and that the value of the pheromone is bounded within a

predefined range [τmin, τmax].

4.4 Proposed Solution

This section starts by presenting the motivation for using an ACO metaheuristic-

based approach for solving the MCVPP problem. Then, it presents the adaptation of

the algorithmic features of the ACO so that it can be applied in the context of VM

cluster placement in a data center. Finally, a detailed description of the proposed AVVMP

algorithm is provided.

4.4.1 Motivation for Applying ACO for Consolidated VM Placement

ACO metaheuristics have been proven to be efficient in various problem domains and

to date have been tested on more than one hundred differentNP−hard problems, including

discrete optimization problems [35]. The overall empirical results that emerge from the

tests show that, for many problems, ACO algorithms produce results that are very close to

those of the best-performing algorithms, while on others they are the state-of-the-art [38].
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In [76] and [17], the authors have shown, based on experimental results, that for the one-

dimensional Bin Packing Problem adapted versions of the ACO algorithms can outperform

the best performing Evolutionary Algorithms (EAs) on this problem, especially for large

problem instances. As presented in Section 4.2, the MCVPP is in fact an instance of the

MDVPP, which is also an NP−hard combinatorial optimization problem. For NP−hard

problems, the best-known algorithms that guarantee to find an optimal solution have

exponential time worst-case complexity and, as a result, applications of such algorithms

are infeasible for large problem instances, such as consolidated VM cluster placement in

Cloud data centers. In such cases, ACO algorithms offer to produce high-quality solutions

in polynomial time complexity.

4.4.2 Adaptation of ACO Metaheuristic for Consolidated VM Place-

ment

Since ACO metaheuristics are computational methods rather than specific concrete

algorithms, the application of these metaheuristics requires appropriate representation of

the problem at hand to match the ACO scenario and appropriate adaptation of ACO

features to address the specific problem. In the original ACO metaheuristics [36], the

authors proposed the use of pheromone values and heuristic information for each edge of

the graph in the TSP and ants walking on the graph to complete their tours guided by

the pheromone and heuristic values converging towards the optimal path.

Since consolidated VM placement modeled as MDVPP does not incorporate the notion

of graph and path in the graph, each VM-to-PM assignment is considered as an individual

solution component in place of an edge in the graph in its TSP counterpart. Thus, each

artificial ant of the AVVMP algorithm produces a solution composed of a list of VM-to-PM

assignments instead of a sub-graph. Pheromone levels are associated with each VM-to-PM

assignment representing the desirability of assigning a VM to a PM ((4.16) and (4.23))

instead of each edge of the graph, and heuristic values are computed dynamically for each

VM-to-PM assignment, representing the preference of assigning a VM to a PM in terms

of both overall and balanced resource utilization of the PM (4.18).

Figure 4.5 illustrates the AVVMP solution construction process for a single ant using

an example where four VMs need to be deployed in a data center. The ant starts with

the first PM and computes probabilities for the placement of each of the four VMs using a

probabilistic decision rule presented in (4.20) (Figure 4.5(a)). When the ant has selected
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Figure 4.5: Illustration of an ant’s VM selection process through example.

the first VM to place in the PM, it recomputes the probabilities of selecting each of the

remaining VMs using the probabilistic decision rule (Figure 4.5(b)). The probabilities

can differ in this step since this time PM1 is not empty and the remaining VMs utilize

the multi-dimensional PM resources differently compared to the empty PM case in Figure

4.5(a). When the first PM cannot accommodate any of the remaining VMs (Figure 4.5(c)),

the ant considers the next PM and starts placing a VM from the set of remaining VMs

using the same approach. This process continues until all the VMs are placed in PMs

(Figure 4.5(d)).

After all the ants have finished building complete solutions, the best solution is iden-

tified based on the OF f1 (4.6). The whole process is repeated multiple times until a

predefined terminating condition is met. In order to increase the extent of exploration of

the search space and avoid early stagnation to a sub-optimum, after each cycle the best

solution found so far is identified and the pheromone levels of the solution components are

reinforced.
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Figure 4.6: AVVMP algorithm with associated models.

4.4.3 AVVMP Algorithm

Figure 4.6 shows the main components of the proposed AVVMP VM placement al-

gorithm. Taking the VM cluster to deploy in the data center as input, the controller

component spawns multiple ant agents and passes each ant a copy of the input. The over-

all AVVMP scheme utilizes the various resource- and energy-related models formulated in

Section 4.2. The ant agents run in parallel and produce VM placement plans (solutions)

and pass them to the controller. The controller identifies the best solution, performs nec-

essary updates on shared data, and activates the ant agents for the next iteration. Finally,

when the terminating condition is met, the controller outputs the so-far-found best VM

placement plan.

The pseudocode of the AVVMP algorithm is shown in Algorithm 4.1. Ants depositing

pheromone on solution components is implemented using a Nv × Np pheromone matrix

τ . At the beginning of each cycle, each ant starts with an empty solution, a set of PMs,

and a randomly shuffled set of VMs [lines 6-12]. The VM set is shuffled for each ant

to randomize the search in the solution space. From lines 15-28, all the ants build their

solutions based on a modified ACS rule.
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In every iteration of the while loop, an ant is chosen randomly [line 16] and is allowed

to choose a VM to assign next to its current PM among all the feasible VMs (4.21). In this

way, parallel behavior among ants is implemented using sequential code. If the current

PM is fully utilized or there is no feasible VM left to assign to the PM, another PM is

taken to fill in [lines 18-20]. In lines 21-23, the chosen ant uses a probabilistic decision rule

termed pseudo-random-proportional rule (4.20) that is based on the current pheromone

concentration (τi,p) on the 〈VM,PM〉 pair and heuristic information (ηi,p) that guides the

ant to select the VMs that lead to better PM resource utilization and in the long run,

a lower value of the OF f1 (4.6) for the complete solution. Thus, the 〈VM,PM〉 pairs

that have higher pheromone concentrations and heuristic values have higher probability

of being chosen by the ant. When an ant is finished with all the VMs in its VM list, the

number of PMs used for VM placement is set as the OF f1 for its solution and the ant is

removed from the temporary list of active ants (antList) [lines 25-26].

When all the ants have finished building their solutions (i.e., a cycle is complete), all

the solutions computed by the ants in the current cycle are compared to the so far found

global-best-solution (GBS) against their achieved OF (f1) values (4.6). The solution that

results in the minimum value for f1 is chosen as the current GBS [lines 29-34].

At line 35, the pheromone reinforcement amount is computed based on (4.24). The

amount of pheromone associated with each 〈VM,PM〉 pair is updated to simulate the

pheromone evaporation and deposition according to (4.23) [lines 36-40]. The algorithm

reinforces the pheromone values only on the 〈VM,PM〉 pairs that belong to the GBS.

After the global pheromone update, the whole process of searching new solutions is

repeated. The algorithm terminates when no further improvement in the solution quality

is observed for the last nCycleTerm cycles [line 41]. The various parts of the AVVMP

algorithm are formally defined in the remaining part of this section.
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Algorithm 4.1 AVVMP Algorithm
Input: Set of PMs PMS and their RCV Cp, set of VMs VMS and their RDV Di, set of ants
antSet. Set of parameters {nAnts, nCycleTerm, β, ω, δ, q0}.
Output: Global-best-solution GBS.
Initialization: Set parameters, set pheromone value for each 〈VM,PM〉 pair (τi,p) to τ0 [4.16],
GBS← ∅, nCycle← 0.

1: repeat
2: for each ant ∈ antSet do {Initialize data structures for each ant}
3: ant.solution← ∅
4: ant.pmList← PMS
5: ant.p← 1
6: ant.vmList← VMS
7: Shuffle ant.vmList {Shuffle VM set to randomize search}
8: end for
9: antList← antSet

10: nCycle← nCycle+ 1
11: while antList 6= ∅ do
12: Pick an ant randomly from antList
13: if ant.vmList 6= ∅ then
14: if FVant(ant.p) = ∅ then {Take new PM if current one is unable to host another VM}
15: ant.p← ant.p+ 1
16: end if
17: Choose a VM i from FVant(ant.p) using probabilistic rule in (4.20) and place in PM p
18: ant.solution.xi,p ← 1
19: ant.vmList.remove(i)
20: else{When all VMs are placed, then ant completes a solution and stops for this cycle}
21: ant.solution.f ← p
22: antList.remove(ant)
23: end if
24: end while
25: for each ant ∈ antSet do {Find global-best-solution for this cycle}
26: if ant.solution.f < GBS.f then
27: GBS← ant.solution
28: nCycle← 0
29: end if
30: end for
31: Compute ∆τ {Compute pheromone reinforcement amount for this cycle}
32: for each p ∈ PMS do {Simulate pheromone evaporation and deposition}
33: for each i ∈ VMS do
34: τi,p ← (1− δ)× τi,p + δ ×∆τi,p
35: end for
36: end for
37: until nCycle = nCycleTerm{AVVMP ends if it sees no improvement for nCycleTerm cycles}

Definition of Pheromone and Initial Pheromone Amount

At the beginning of any ACO algorithm, the ants start with a fixed amount of initial

pheromone for each solution component. In the original proposal for the ACS metaheuris-

tic [36], the initial pheromone amount for each edge is set to the inverse of the tour length

of the TSP solution produced by a baseline heuristic (namely the nearest neighborhood

heuristic) divided by the number of cities in the problem. This effectively captures a

measure of the quality of the solution of the referenced baseline algorithm. Following
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a similar approach, the initial pheromone amount for AVVMP is set to the quality of

the solution produced by a reference baseline algorithm FFDL1 (FFD heuristic based on

L1-norm mean estimator):

τ0 ← PEFFDL1 (4.16)

where PEFFDL1 is the Packing Efficiency (PE) of the solution produced by the FFDL1

heuristic. The PE of any solution sol produced by an algorithm is given by:

PEsol =
Nv

nActivePM
. (4.17)

Definition of Heuristic Information

During a solution-building process, the heuristic value ηi,p represents the measure of

benefit of selecting a solution component 〈i, p〉. This is effectively the ”greedy” part of the

solution-building process that each ant exercises to improve the overall solution quality by

choosing one solution component among all the feasible solution components. As the goal

of AVVMP is to reduce the number of active PMs by packing VMs in a balanced way, the

heuristic value ηi,p is defined to favor both balanced resource utilization in all dimensions

and higher overall resource utilization:

ηi,p = ω × (−log10‖RIVp(i)‖) + (1− ω)× Utilizationp(i) (4.18)

where ‖RIVp(i)‖ is the magnitude of RIV of PM p after assigning VM i to it (4.11).

The negative of the logarithm of ‖RIVp(i)‖ is taken to give higher heuristic values to the

〈i, p〉 pairs that result in smaller magnitudes of RIV. Utilizationp(i) is the overall resource

utilization of PM p if VM i is assigned to it and is computed as the summation of the

normalized resource utilization across all dimensions after assigning VM i:

Utilizationp(i) =
∑
l∈RCS

(U lp +Dl
i). (4.19)

Finally, ω ∈ [0, 1] is a parameter that trades off the relative importance of balanced versus

overall resource utilization as per the definition.

For normalized resource capacities (CCPU = CMEM = CNIO = 1), it has already

been shown that ‖RIV ‖ falls in the interval [0.0, 0.82] (Section 4.2.2). However, since

the logarithm of zero is undefined, the interval [0.001, 0.82] is used in the experimental
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evaluation. Given this interval of ‖RIV ‖, the expression −log10‖RIV ‖ results in the

interval [0.086, 3.0] which is compatible to Utilizationp in terms of metric, which results

in the interval [0.0, 3.0].

Pseudo-random Proportional Rule

When constructing a solution (Algorithm 4.1, line 21), an ant k selects a VM s to be

assigned to PM p using the following pseudo-random proportional rule [36]:

s =


arg maxi∈FVk(p){τi,p × [ηi,p]

β}, if q ≤ q0;

S, otherwise

(4.20)

where q is a random number uniformly distributed in [0, 1], q0 is a parameter in interval

[0, 1], ηi,p is the heuristic value for assigning VM i to PM p (4.18), τi,p is the current

pheromone value associated with the 〈i, p〉 pair (4.23), β is a non-negative parameter that

determines the relative importance of pheromone amount versus heuristic value in the

decision rule, and S is a random variable selected according to the probability distribution

given by (4.22) below. FVk(p) defines the list of feasible VMs for ant k to assign to PM p

(i.e., VMs that are not assigned to any PM yet and do not violate the resource capacity

constraint of p given by (4.7):

FVk(p) =

i
∣∣∣∣∣∣
∑

p∈PMS

xi,p = 0
∧
U lp +Dl

i ≤ C lp for ∀l ∈ RCS

 . (4.21)

The pseudo-random proportional rule works as follows: when q ≤ q0, then the 〈i, p〉

pair that results in the highest τi,p × [ηi,p]
β value is chosen as the solution component

(termed exploitation), otherwise a VM i is chosen with probability Pk(i, p) using the

following random-proportional rule (termed exploration):

Pk(i, p) =


τi,p×[ηi,p]β∑

u∈FVk(p)
τu,p×[ηu,p]β , if i ∈ FVk(p);

0, otherwise.

(4.22)

In the above random-proportional rule, the pheromone value for a VM-PM pair (τi,p) is

multiplied by the corresponding heuristic value (ηi,p) in order to favor the VMs which

cause higher PM resource utilization (both for balanced and overall utilization) and which

have greater values of pheromone.
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Global Pheromone Update

In order to favor the solution components of the GBS for subsequent iterations and

simulate pheromone evaporation, the global pheromone update rule is applied on the

pheromone values for each 〈i, p〉 pair according to the following equation:

τi,p ← (1− δ)× τi,p + δ ×∆τi,p (4.23)

where δ is the global pheromone decay parameter (0 < δ < 1) and ∆τi,p is the pheromone

reinforcement applied to each of the 〈i, p〉 pairs that constitute the GBS solution, and its

value depends on the quality of the solution in terms of PE:

∆τi,p =


PEGBS, if 〈i, p〉 ∈ GBS;

0, otherwise.

(4.24)

4.5 Performance Evaluation

This section presents the performance evaluation of the proposed AVVMP VM place-

ment algorithm compared to other energy and utilization-aware VM cluster placement ap-

proaches from the existing literature. Because of the lack of access to large-scale testbeds

and real Cloud infrastructures, as well as the ease of reproducibility, the evaluation is

conducted on simulation-based experimentation. The simulated environment models the

data center as a cluster of homogeneous PMs with three physical resource capacities: CPU,

main memory, and network I/O. The VM cluster to deploy is modeled as a collection of

VMs with synthetically-generated resource demands for CPU, memory, and network I/O.

4.5.1 Algorithms Compared

The following existing studies from the literature are compared to the proposed AVVMP

algorithm:

• Max-Min Ant System-based VM Consolidation (MMVMC): An adapted version of

Max-Min Ant System (MMAS) metaheuristic for solving consolidated VM cluster

placement problems [46].
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• Vector Algebra-based Greedy Algorithm (VecGrdy): A greedy algorithm for solving

consolidation that uses vector algebra for mean estimation of multi-dimensional re-

sources [88].

• Volume-based First Fit Decreasing (FFFVol): A modified version of the FFD algo-

rithm that uses volume-based mean estimator [127].

• First Fit Decreasing (FFFL1) based on L1-norm: Another version of the modified

FFD algorithm often used as a baseline algorithm for packing problems [44].

Both MMVMC and FFDL1 use mean estimator based on L1-norm to capture the multi-

dimensional aspect of the VM resource demands to a single scalar value. VecGrdy, on the

other hand, although it captures the aspect of balanced resource utilization in multiple

dimensions, employs a greedy approach, and therefore, is not guaranteed to explore the

search space effectively and approach close to near-global optimal solutions.

4.5.2 Simulation Setup

The simulated data center consists of a cluster of homogeneous PMs and the VM

resource demand for each resource type is expressed in percentage of the total resource

capacity of PM. VM resource demands are generated using reference values, where Ref =

z% indicates that each randomly-generated VM resource demand Dl falls in the interval

[0, 2z] for l ∈ {CPU,MEM,NIO} [3]. As explained in Section 4.1, Clouds host various types

of applications ranging from CPU-intensive to memory-bound and bandwidth-hungry, and

offer different categories of VMs with different amounts for available resource types such

as high-CPU, high-memory, etc. In order to capture these factors in the experiments,

random VM resource demands are generated across three dimensions: CPU, memory, and

network I/O. This approach can generate VMs with uniform resource demands, as well as

VMs with complementary resource demands in different dimensions, and thus is aligned

with the VM resource pattern presented in Table 4.1.

Since Clouds deploy high-end servers and try to host as many VMs as possible in

each active server to increase resource utilization, the simulation is conducted for the

scenarios where expected average PE would be more than 2, otherwise there would not

be much scope for VM consolidation, which will result in little benefit of using specialized

algorithms. Therefore, reference values of Ref = 5%, 10%, 15%, 20%, 25%, and 30% are
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considered, with their corresponding expected average PE of 20, 10, 6.7, 5, 4, and 3.3,

respectively.

The AVVMP parameters used for the performance evaluation are determined by sen-

sitivity analysis presented in the remaining part of this section. Parameters for the other

algorithms are taken as reported in the respective papers. For the purpose of simulation,

Eidle and Efull were set to 162 watts and 215 watts, respectively, as used by Gao et al. [50].

The simulation was conducted through 100 independent simulation runs and each run was

repeated 100 times. The results were generated after taking their average.

AVVMP Parameter Sensitivity Analysis

The optimal values of the AVVMP algorithm parameters used for the performance

evaluation were measured by rigorous parameter sensitivity analysis in the preliminary

phases of the experiment and the results are summarized in Table 4.4. Figure 4.7 presents

changes of OF value (f1) (4.6) across different AVVMP parameters.

As can be seen from Figure 4.7(a), the number of ant agents (nAnts) for AVVMP is

gradually increased from 1 to a maximum of 10 and the minimum value of the OF f1

is first achieved when nAnts = 5 and further increase of the number of ants does not

improve the solution quality. Although it may apparently seem that with the increase in

the number of ants for the search process, the solution quality would improve; this may

not necessarily be the case for ACO-based algorithms [35]. A natural explanation for this

behavior can be derived from the different aspects of the ACO metaheuristic itself. Due

to the Stigmergy [39] property of this multi-agent-based scheme (i.e., stimulation of the

agents by their combined performance), ACO-based algorithms have the added advan-

tage of Synergistic Effect [36] (i.e., an effect arising from multiple agents or entities that

produces an effect greater than the sum of their individual effects) on the quality of the

solutions, which is achieved by the shared pheromone information in AVVMP algorithm.

As a consequence, a small number of ants can produce high quality solutions. Having

said that, the search process for the ant agents is guided by the heuristic component of

the ACO-based algorithms. The phenomenon that AVVMP algorithm finds best solution

with only 5 ants and further increase in the number of ants does not improve the solu-

tion quality persuasively indicates the effectiveness of the proposed vector algebra-based

balanced resource utilization capturing technique (4.11), which is incorporated into the

proposed heuristic formulation (4.18).
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Table 4.4: ACS parameters used in AVVMP algorithm evaluation

nAnts nCycleTerm β δ q0 ω

5 5 2 0.5 0.8 0.5

A similar result has been found for nCycleTerm (Figure 4.7(b)), where starting from

1, increasing the number of tries in cases of no improvement in solution quality effectively

enables AVVMP to find a better solution. However, increasing nCycleTerm beyond 5

does not provide any further improvement. Figure 4.7(c) shows how β influences the

OF by increasing the relative importance of heuristic value over pheromone level in the

probabilistic decision rule (4.20). For β < 2, pheromone level has more influence compared

to heuristics value and, therefore, ants in AVVMP suffer from early stagnation. AVVMP

achieves the best solution for β = 2 and for higher values, the heuristic part dominates

the probabilistic decision rule and as a result, AVVMP is affected more by its greedy

component, and, as a consequence, the solution quality degrades.

The OF values achieved for different values of global pheromone decay parameter δ

are shown in Figure 4.7(d). For δ = 0.5, AVVMP achieves the best result for the OF f1.

However, for δ < 0.5, both the global pheromone delay is slower and the pheromone depo-

sition for the solution components of the so-far-best solution is lower, and, therefore, ants

fail to converge to a better solution. On the other hand, for δ > 0.5, the global pheromone

delay is quicker and the solution components of the so-far-best solution have higher depo-

sition of pheromone, and as a result, the ants experience early stagnation. Figure 4.7(e)

presents the solution quality for various values of q0 parameter which determines the rela-

tive importance of the exploitation of already-found good solution components versus the

exploration of new solution components. As the figure suggests, for q0 < 0.8, a greater

amount of exploration impedes timely convergence to good solutions and AVVMP has the

best result for q0 = 0.8. However, going beyond 0.8 results in too much exploitation and,

as a result, causes stagnation. Finally, Figure 4.7(f) shows the sensitivity of parameter ω

that determines the relative importance between balanced and overall resource utilization

of PMs for computing the heuristic value in (4.18). As the result implies, the best OF

value is achieved for ω = 0.5 when equal weight is given to balanced and overall utiliza-

tion, and the solution quality worsens when more importance is given to either of the two

factors compared to the other.
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Figure 4.7: AVVMP parameter sensitivity analysis.

Performance Evaluation Metrics

In order to assess the quality of the consolidated VM placement decisions produced

by the evaluated algorithms, the number of PMs needed (i.e., active PMs) to place the

VM cluster is considered as one of the performance metrics— the reduced number of PMs

results in reduced capital cost as well as reduced physical space to host the VM cluster.

VM packing efficiency PE (4.17) is another performance metric that indicates the VM con-

solidation capability of each placement algorithm. The power consumption of the active

PMs hosting the VMs computed according to the overall power consumption model (4.15)

is another important performance metric that represents the energy-related cost incurred

by the placement algorithms and hence, the level of energy efficiency for each placement

approach. High utilization of server resources is another goal of multi-objective placement

algorithms and VM placement that reduces the total residual (unused) resources in active
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servers across CPU, memory, and network I/O effectively increases server resource uti-

lization. The overall resource wastage metric is measured as the summation of resource

wastage for all active PMs (4.13). Finally, the solution computation time for a VM place-

ment algorithm is another important performance metric that determines the feasibility

and scalability of the algorithm, specially for online decision making scenarios.

Simulation Environment

The algorithms are implemented in Java (JDK and JRE version 1.7.0) and the simu-

lation is conducted on a Dell Workstation (Intel Core i5-2400 3.10 GHz CPU (4 cores), 4

GB of RAM, and 240 GB storage) hosting Windows 7 Professional Edition.

4.5.3 Scaling VM Cluster Size

In order to assess the performance of the placement algorithms with increasing size of

the problem, in this part of the experiment the VM cluster size (Nv) was initially set to

100 and gradually increased up to 2100, each time adding 400 more VMs to the cluster.

The Ref value for VM resource demand was set to 15%, so that on average 5 to 6 VM

could be hosted by a single PM.

Table 4.5 details the values of various performance metrics for the simulated VM

placement algorithms for each of the six VM cluster sizes. The results clearly indicate the

superior performance of AVVMP compared to other placement algorithms for all cluster

sizes: it requires the lowest number of PMs to host the VMs in the clusters, achieves the

highest VM packing efficiency, and incurs the least power consumption in the data center.

In order to better visualize the improvement achieved by AVVMP compared to other

approaches in terms of energy efficiency, Figure 4.8 depicts a bar chart representation of the

percentage of improvement in overall power consumption of AVVMP over its competitors.

As the chart shows, VM placement decisions produced by AVVMP result in 11-12% less

power consumption compared to FFDL1 and FFDVol across all cluster sizes, whereas it

is 4-8% for VecGrdy and 3-4% for MMVMC. This is because both FFDL1 and FFDVol

are simple greedy heuristics, whereas VecGrdy places VMs focusing on balanced resource

utilization and MMVMC utilizes the ACO metaheuristic to refine the solution through

multiple iterations. As a result, VecGrdy and MMVMC produce placement plans with

fewer PMs and thus, achieve higher energy efficiency.
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Table 4.5: Placement performance metrics across various VM cluster sizes (Nv)

# of VM Algorithm # Active Achieved Power Con.
PM PE (Watt)

100
MMVMC 18 5.56 3769.66
VecGrdy 19 5.26 3931.66
FFDVol 20 5.00 4093.66
FFDL1 20 5.00 4093.66
AVVMP 17 5.88 3607.66

500
MMVMC 85 5.88 17835.35
VecGrdy 87 5.75 18159.35
FFDVol 95 5.26 19455.35
FFDL1 96 5.21 19617.35
AVVMP 82 6.10 17349.35

900
MMVMC 153 5.88 32112.65
VecGrdy 156 5.77 32598.65
FFDVol 172 5.23 35190.65
FFDL1 173 5.20 35352.65
AVVMP 148 6.08 31302.65

1300
MMVMC 220 5.91 46035.23
VecGrdy 230 5.65 47655.23
FFDVol 246 5.28 50247.23
FFDL1 248 5.24 50571.23
AVVMP 210 6.19 44415.23

1700
MMVMC 288 5.90 60141.85
VecGrdy 301 5.65 62247.85
FFDVol 321 5.30 65487.85
FFDL1 319 5.33 65163.85
AVVMP 273 6.23 57711.85

2100
MMVMC 353 5.95 73770.52
VecGrdy 370 5.68 76524.52
FFDVol 394 5.33 80412.52
FFDL1 397 5.29 80898.52
AVVMP 340 6.18 71664.52

Figure 4.9 shows a bar chart representation of the overall normalized resource wastage

(4.13) of the active PMs needed by each placement algorithm for different VM cluster

sizes. It is evident from the chart that AVVMP significantly reduces the resource wastage

compared to other algorithms: 57-71% over FFDL1, 57-72% over FFDVol, 36-59% over

VecGrdy, and 26-44% over MMVMC. This is because AVVMP tries to improve the overall

resource utilization with preference to consolidating VMs with complementary resource

demands in each server, and thus reduces resource wastage across different resource dimen-

sions. Another pattern can be observed from the figure: the resource wastage reduction of

AVVMP over other algorithms improves with larger cluster sizes. This is again attributed

to the fact that with a higher number of VMs, AVVMP has more flexibility to match VMs
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Figure 4.8: Percentage of improvement of AVVMP in power consumption over other
approaches across different VM cluster sizes (best viewed in color).
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Figure 4.9: Total resource (normalized) wastage of active PMs for placement algorithms
across different VM cluster sizes (best viewed in color).

with complementary resource demands to pack them more efficiently in order to reduce

residual server resources across multiple resource dimensions.

4.5.4 Scaling VM Resource Demands

In this part of the experiment, the reference value for the VM resource demands (Ref)

was initially set to 5% and gradually increased up to 30%, each time with an increase

of 5. Increase of Ref broadens the range of randomly-generated VM resource demands,

and therefore results in more diverse VMs in terms of resource demands across multiple

dimensions. Therefore, larger values of Ref will cause VM clusters to have larger as well

as smaller VMs. For all Ref values, the VM cluster size was fixed to 1300.
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Table 4.6: Placement performance metrics across various resource demands (Ref)

Ref Algorithm # Active Achieved Power Con.
PM PE (Watt)

5%
MMVMC 69 18.84 14643.08
VecGrdy 77 16.88 15939.08
FFDVol 84 15.48 17073.08
FFDL1 84 15.48 17073.08
AVVMP 67 19.40 14319.08

10%
MMVMC 142 9.15 29934.15
VecGrdy 151 8.61 31392.15
FFDVol 165 7.88 33660.15
FFDL1 165 7.88 33660.15
AVVMP 137 9.49 29124.15

15%
MMVMC 220 5.91 46035.23
VecGrdy 230 5.65 47655.23
FFDVol 246 5.28 50247.23
FFDL1 248 5.24 50571.23
AVVMP 210 6.19 44415.23

20%
MMVMC 303 4.29 62946.31
VecGrdy 319 4.08 65538.31
FFDVol 330 3.94 67320.31
FFDL1 328 3.96 66996.31
AVVMP 291 4.47 61002.31

25%
MMVMC 380 3.42 78885.38
VecGrdy 403 3.23 82611.38
FFDVol 400 3.25 82125.38
FFDL1 401 3.24 82287.38
AVVMP 361 3.60 75807.38

30%
MMVMC 486 2.67 99522.46
VecGrdy 543 2.39 108756.46
FFDVol 520 2.50 105030.46
FFDL1 512 2.54 103734.46
AVVMP 467 2.78 96444.46

Table 4.6 shows various performance metrics for AVVMP and competitor placement

policies for six Ref values. It is obvious from the data that AVVMP outperforms other

algorithms for all the cases. It also shows that AVVMP achieves PE near the expected

average values. Furthermore, it can be observed that packing efficiency drops with the

increase of Ref value for all algorithms; this is because higher Ref values cause greater

number, of larger VMs to be generated on average, which reduces the packing efficiency

of the PMs.

Figure 4.10 shows the improvements in overall power consumption of AVVMP over

other approaches for different Ref values. VM placement decisions produced by AVVMP
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Figure 4.10: Percentage of improvement of AVVMP in power consumption over other
approaches across different demand levels of VMs (best viewed in color).
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Figure 4.11: Total resource (normalized) wastage of active PMs for placement algorithms
across different demand levels of VMs (best viewed in color).

result in 7-16% less power consumption compared to FFDL1 and FFDVol across differ-

ent VM resource demand levels, whereas the reduction is 7-11% for VecGrdy and 2-4%

for MMVMC. One interesting observation from this chart is that AVVMP achieves com-

paratively better performance over MMVMC and VecGrdy for larger reference values

(i.e., larger VM sizes), whereas it achieves comparatively better performance over FFD-

based algorithms for smaller reference values (i.e., smaller VM sizes). The reason is that

metaheuristic-based solutions have more flexibility to refine the solutions for smaller VM

sizes (i.e., when higher numbers of VMs can be packed in a single PM) compared to larger

VM sizes. On the other hand, for larger reference values, FFD-based greedy solutions

achieve comparatively higher overall resource utilization and need relatively fewer active

PMs.
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The overall resource wastage (normalized) for the placement algorithms for different

VM sizes is shown in Figure 4.11. From the figure it can be seen that, AVVMP incurs

much less resource wastage compared to other approaches: 37-89% over FFDL1, 40-89%

over FFDVol, 47-82% over VecGrdy, and 20-48% over MMVMC. This is because AVVMP

tries to improve the overall resource utilization with preference to consolidating VMs with

complementary resource demands in each server, and thus reduces resource wastage across

different resource dimensions. Another pattern which can be observed from the figure is

that the resource wastage reduction of AVVMP over other algorithms is higher for smaller

VM sizes. This is attributed to the fact that when VMs are of smaller sizes (i.e., for smaller

Ref values), each PM can accommodate a higher number of VMs and, therefore, AVVMP

has more flexibility to choose VMs with complementary resource demands to consolidate

them more efficiently with the goal of minimizing residual server resources across different

resource dimensions.

4.5.5 AVVMP Decision Time

In order to assess AVVMP for time complexity, a simulation was conducted to measure

VM cluster placement computation time for larger cluster sizes and various VM sizes, and

the results are plotted in Figure 4.12.

It can be observed that the computation time increases non-linearly with the number

of VMs in the cluster and the growth is smooth for each of the different Ref values,

even though the search space for the problem grows exponentially with the number of

VMs. Moreover, for the same number of VMs, AVVMP requires relatively more time to

compute placement decisions for larger Ref values. This is to be expected, since for larger

Ref values, higher numbers of larger VMs are generated and to accommodate the larger

VMs more PMs are needed. As a result, this increases nActivePM , which contributes to

solution computation time.

Furthermore, as the figure suggests, for a cluster of 4000 VMs AVVMP requires a

maximum of 30 seconds to compute optimized VM placement decisions and this time is

much less for smaller clusters, such as 1.4 seconds for 1000 VMs. In addition, since AVVMP

utilizes ACO, a multi-agent-based computational method, there is potential for parallel

implementation [98] of AVVMP, where the ant agents can run in parallel in multiple Cloud

nodes in order to reduce the solution computation time significantly.
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Figure 4.12: AVVMP’s placement decision time for large problem instances (best viewed
in color).

4.6 Summary and Conclusions

The rapidly increasing energy costs of data centers is emerging as a great challenge for

infrastructure management, specially for large-scale data centers such as the Clouds. Vir-

tualization technologies provide efficient methods to provision computing resources in the

form of VMs so that multiple VMs can share physical resources in a time-sharing (e.g.,

CPU) and space-sharing (e.g., memory) manner, and thus consolidate VMs to ensure

higher resource utilization and lower energy consumption. However, the consolidation of

VMs with single resource demands is already an NP−hard problem and multiple resource

demands increase the complexity of the solution approaches. This chapter has presented

several motivating factors for consolidated VM placement in large-scale virtualized data

centers and several aspects of server resource utilization and consolidation. It has pro-

posed mathematical models to formally define the consolidated VM cluster placement

problem and techniques for capturing balanced server resource utilization across multi-

ple resource dimensions. It has further proposed a metaheuristic-based consolidated VM

cluster placement algorithm that optimizes both server energy consumption and resource

utilization.

Simulation-based performance evaluation has been presented by comparing the pro-

posed technique with some of the techniques proposed in the recent literature. The results

suggest that the proposed method outperforms other methods by significantly reducing
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both data center energy consumption and server resource wastage. Finally, evaluation of

time complexity of solution computation and arguments on the feasibility and effectiveness

of the algorithm for large data centers have also been presented.

The VM placement approach proposed in this chapter does not take into consider-

ation the inter-VM communication traffic while making placement decisions, because it

is assumed that the VMs in the cluster do not have communication dependency among

themselves. The next chapter addresses the problem of online, network-aware VM cluster

placement where VMs have communication correlations among each other. In particular,

the VMs are considered to be part of composite applications accompanied by their as-

sociated data components with defined communication relationships with the VMs. The

overall placement decisions consider the simultaneous placement of VMs and data compo-

nents with the objective of localizing the data traffic in order to reduce network overhead

on the data center network.



Chapter 5

Network-aware Virtual Machine

Placement

This chapter addresses the problem of online, network-aware placement of Virtual

Machines (VMs) and associated data blocks, comprising composite Cloud applications, in

virtualized data centers. The placement problem is formally defined as an optimization

problem which is shown to be NP−hard. As a solution, a fast greedy heuristic is proposed

for network-efficient, simultaneous placement of VMs and data blocks of a multi-component

application with the goal of minimizing the network traffic incurred due to the placement

decision, while respecting the computing, network, and storage capacity constraints of data

center resources. The proposed placement scheme strives to reduce the distance that data

packets need to travel in the data center network and eventually help in localizing network

traffic and reducing communication overhead in upper-layer network switches. Extensive

performance evaluation across several scaling factors reveals that the proposed approach

outperforms the competitor algorithms in all performance metrics by reducing the network

cost by up to 67%, and network usage of core and aggregation switches by up to 84% and

50%, respectively.

5.1 Introduction

The previous chapter has presented an online Virtual Machine (VM) cluster placement

approach with the goal of minimizing resource wastage and energy consumption. The

VMs in the cluster are considered to be independent from each other in terms of mutual

traffic communication. Complementary to the previous approach, this chapter addresses

123
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the problem of online, network-aware VM cluster placement in virtualized data centers

along with associated data components where VMs are interrelated to each other and to

the data components based on mutual communication requirements. Such VM clusters

and their data components are modeled as composite applications and the placement of

such multi-component applications is formally defined as an optimization problem. The

proposed greedy heuristic performs simultaneous placement of VMs and data blocks with

the aim of reducing the network overhead on the data center network infrastructure due

the placement decision, while at the same time respecting the computing, network, and

storage capacity constraints of the data center resources. The application model and

solution scheme are developed as generic and not restricted to any particular application

type or data center architecture.

As presented in Chapter 1, after the emergence of Cloud Computing, data centers are

facing rapid growth of network traffic and a large portion of this traffic is constituted of the

data communication within the data center. Cisco’s Global Cloud Index [25], an annual

assessment and future projection of global network traffic trends, shows that the Cloud

traffic will dominate the global data center traffic flow in the near future. It forecasts

that, while data center network traffic will triple from 2014 to 2019, global Cloud traffic

will more than quadruple within the same timeframe. Moreover, it projects that the total

volume of global data center traffic will grow steadily from 3.4 zettabytes in 2014 to 10.4

zettabytes by 2019 and three-quarters of this traffic will be generated due to the data

communication within the data centers (Figure 5.1).

This huge amount of intra-data center traffic is primarily generated by the application

components that are coupled with each other, for example, the computing components

of a composite application (e.g., MapReduce) writing data to the storage array after

it has processed the data. This large growth of data center traffic may pose serious

scalability problems for the wide adoption of Cloud Computing. Moreover, as a result of

the continuously rising popularity of social networking sites, e-commerce, and Internet-

based gaming applications, large amounts of data processing have become an integral part

of Cloud applications. Furthermore, scientific processing, multimedia rendering, workflow,

and other massive parallel processing and business applications are being migrated to the

Clouds due to the unique advantages of their high scalability, reliability, and pay-per-

use business model. Furthermore, the recent trend in Big Data Computing using Cloud
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resources [8] is emerging as a rapidly growing factor contributing to the rise of network

traffic in Cloud data centers.

One of the key technological elements that has paved the way for the extreme success

of Cloud Computing is virtualization. Modern data centers leverage various virtualization

technologies (e.g., machine, network, and storage virtualization) to provide users with

an abstraction layer that delivers a uniform and seamless computing platform by hiding

the underlying hardware heterogeneity, geographic boundaries, and internal management

complexities [133]. By the use of virtualization, physical server resources are abstracted

and shared through partial or full machine simulation by time-sharing, and hardware and

software partitioning into multiple execution environments, known as Virtual Machines

(VMs), each of which runs as a complete and isolated system. This allows dynamic

sharing and reconfiguration of physical resources in Cloud infrastructures that make it

possible to run multiple applications in separate VMs with different performance metrics.

It also facilitates Cloud providers to improve utilization of physical servers through VM
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multiplexing [84] and multi-tenancy, i.e., simultaneous sharing of physical resources of the

same server by multiple Cloud customers. Furthermore, it enables on-demand resource

pooling through which computing (e.g., CPU and memory), network, and storage resources

are provisioned to customers only when needed [73]. By utilizing these flexible features

of virtualization for provisioning physical resources, the scalability of data center network

can be improved through the minimization of network load imposed due to the deployment

of customer applications.

On the other hand, modern Cloud applications are dominated by multi-component

applications such as multi-tier applications, massive parallel processing applications, sci-

entific and business workflows, content delivery networks, and so on. These applications

usually have multiple computing and associated data components. The computing com-

ponents are usually delivered to customers in the form of VMs, such as Amazon EC2

Instances1, where the data components are delivered as data blocks, such as Amazon

EBS2. The computing components of such applications have specific service roles and

are arranged in layers in the overall structural design of the application. For example,

large enterprise applications are often modeled as 3-tier applications: the presentation tier

(e.g., web server), the logic tier (e.g., application server), and the data tier (e.g., relational

database) [115]. The computing components (VMs) of such applications have specific

communication requirements among themselves, as well as with the data blocks that are

associated with these VMs (Figure 5.2). As a consequence, the overall performance of

such applications heavily depends on the communication delays among the computing

and data components. From the Cloud providers’ perspective, optimization of network

utilization of data center resources is tantamount to profit maximization. Moreover, effi-

cient bandwidth allocation and reduction of data packet hopping through network devices

(e.g., switches or routers) reduce the overall energy consumption of network infrastruc-

ture. On the other hand, Cloud consumers’ concern is to receive guaranteed Quality of

Service (QoS) of the delivered virtual resources, which can be assured through appropriate

provisioning of requested resources.

Given the issue of the sharp rise in network traffic in data centers, this chapter deals

with the scalability of data center networks using a traffic-aware placement strategy of

1Amazon EC2 - Virtual Server Hosting, 2016. https://aws.amazon.com/ec2/
2Amazon Elastic Block Store (EBS), 2016. https://aws.amazon.com/ebs/
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multi-component, composite application (in particular, VMs and data blocks) in a virtu-

alized data center in order to optimize the network traffic load incurred due to placement

decisions. The placement decisions can be made during the application deployment phase

in the data center. VM placement decisions focusing on other goals than network efficiency,

such as energy consumption reduction [12, 46], and server resource utilization [48, 50], of-

ten result in placement decisions where VMs with high mutual traffic are placed in host

servers with high mutual network cost. In contrast, this chapter focuses on placing mu-

tually communicating components of applications (such as VMs and data blocks) in data

center components (such as physical servers and storage devices) with lower network cost

so that the overall network overhead due to the placement is minimal. With this placement

goal, the best placement for two communicating VMs would be in the same server, where

they can communicate through memory copy, rather than using the physical network links.

Moreover, advanced hardware devices with combined capabilities are opening new

opportunities for efficient resource allocation focusing on application needs. For example,

Dell PowerEdge C8000 servers are equipped with CPU, GPU, and storage components

that can work as multi-function devices. Combined placement of application components

with high mutual traffic (e.g., VMs and their associated data components) in such multi-

function servers will effectively reduce data transfer delay, since the data accessed by the

VMs reside in the same devices. Similar trends are found in high-end network switches

(e.g., Cisco MDS 9200 Multiservice switches) that are equipped with additional built-in
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processing and storage capabilities. Reflecting these technological development and multi-

purpose devices, this research work considers a generic approach in modeling computing,

network, and storage elements in a data center so that placement algorithms can make

efficient decisions for application component placement in order to achieve the ultimate

goal of network cost reduction.

Most of the existing studies on network-aware VM placement and relocation primarily

focus on run-time reconfiguration of VMs in the data center with the purpose of reducing

the traffic overhead [33, 85, 106, 114, 126]. These works suggest the use of the VM live

migration technique in order to achieve the intended optimization. However, given the

fact that VM live migrations are costly operations [78], the above-mentioned VM relo-

cation strategies overlook the impact of necessary VM migrations and reconfiguration on

hosted applications, physical servers and network devices. Complementary to these stud-

ies, the research presented in this chapter tackles the problem of network-efficient, online

placement of composite applications consisting of multiple VMs and associated data com-

ponents along with inter-component communication patterns in a data center consisting

of both computing servers and storage devices. The proposed solution does not involve

VM migration since the placement decision is taken during the application deployment

phase.

An online VM placement problem, particularly focusing on a data center designed

based on the PortLand network topology [91], is presented in [51] and two heuristics are

proposed for reducing network utilization at the physical layer. However, this work does

not involve any data component for VM-cluster specification, which is a rapidly increasing

trend in modern, multi-component Cloud applications. In contrast, the composite appli-

cation and data center models, as well as the application placement strategy proposed in

this chapter, are generic and not restricted to any particular application or data center

topology. Some data location-aware VM placement studies can be found in [100] and [72],

however, these studies model the applications as a single instance of VM, which is an

oversimplified view of today’s Cloud or Internet applications, that are mostly composed

of multiple computing and storage entities in multi-tier structure with strong communica-

tion correlations among the components. Based on these insights, this chapter considers

a much wider VM communication model by considering the placement of application
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environments, each involving a number of VMs and associated data blocks with sparse

communication links between them.

This research addresses the allocation, specifically the online placement of compos-

ite application components (modeled as an Application Environment), requested by the

customers to be deployed in Cloud data center focusing on network utilization, with con-

sideration of the computing, network, and storage resources capacity constraints of the

data center. In particular, this chapter makes the following key contributions:

1. A Network-aware Application environment Placement Problem (NAPP) is formally

defined as a combinatorial optimization problem with the objective of network cost

minimization due to placement. The proposed data center and application environ-

ment models are generic and not restricted to any specific data center topology and

application type or structure.

2. Given the resource requirements and structure of the application environment to

be deployed, and the information on the current resource state of the data center,

this research work proposes a Network- and Data location-aware Application envi-

ronment Placement (NDAP) scheme, a greedy heuristic that generates mappings for

simultaneous placement of the computing and data components of the application

into the computing and storage nodes of the data center, respectively, focusing on

the minimization of network traffic, while respecting the computing, network, and

storage capacity constraints of data center resources. While making placement de-

cisions, NDAP strives to reduce the distance that data packets need to travel in

the data center network, which in turn, helps to localize network traffic and reduces

communication overhead in the upper-layer network switches.

3. Performance evaluation of the proposed approach is conducted through extensive

simulation-based experimentation across multiple performance metrics and several

scaling factors. The results suggest that NDAP successfully improves network re-

source utilization though the efficient placement of application components and sig-

nificantly outperforms the algorithms compared across all performance metrics.

The remainder of this chapter is organized as follows. Section 5.2 formally defines

the multi-component application placement problem (NAPP) as an optimization problem,

along with the associated mathematical models. The proposed network-aware, application
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Figure 5.3: Application environment placement in data center (best viewed in color).

placement approach (NDAP) and its associated algorithms are explicated in Section 5.3.

Section 5.4 details the experiments performed and shows the results, together with their

analysis. Finally, Section 5.5 concludes the chapter with a summary of the contributions

and results.

5.2 Network-aware VM Cluster Placement Problem

While deploying composite applications in Cloud data centers, such as multi-tier or

workflow applications, customers request multiple computing VMs in the form of a VM

cluster or a Virtual Private Cloud (VPC) and multiple Data Blocks (DBs). These com-

puting VMs have specific traffic flow requirements among themselves, as well as with the

data blocks. Such traffic flow measures can be supplied as user-provided hints or expected

bandwidth requirements, depending on the application type and its characteristics. The

remainder of this section formally defines this composite application environment place-

ment as an optimization problem. Figure 5.3 presents a visual representation of the

application placement in a data center and Table 5.1 provides the various notations used

in the problem definition and proposed solution.
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Table 5.1: Notations and their meanings

Notation Meaning

VM Virtual Machine
DB Data Block
AN AE node (either a VM or a DB)
VMS Set of VMs in an AE
DBS Set of DBs in an AE
ANS Set of ANs (ANS = {VMS ∪DBS}) in an AE
Nv Total number of VMs in an AE
Nd Total number of DBs in an AE
VL Virtual Link
VCL Virtual Computing Link that connects two VMs
VDL Virtual Data Link that connects a VM and a DB
vclList Ordered list of VCLs in an AE
vdlList Ordered list of VDLs in an AE
Nvc Total number of VCLs in an AE
Nvd Total number of VDLs in an AE
Nvn Average number of NTPP VLs of a VM or a DB
BW (VMi, VMj) Bandwidth demand between VMi and VMj

BW (VMi, DBk) Bandwidth demand between VMi and DBk
CN Computing Node
SN Storage Node
DN(AN) DC node where AN is placed
CNS Set of CNs in a DC
SNS Set of SNs in a DC
Nc Total number of CNs in a DC
Ns Total number of SNs in a DC
cnList Ordered list of CNs in a DC
snList Ordered list of SNs in a DC
PL Physical Link
PCL Physical Computing Link that connects two CNs
PDL Physical Data Link that connects a CN and a SN
DS(CNp, CNq) Network distance between CNp and CNq

DS(CNp, SNr) Network distance between CNp and SNr

BA(CNp, CNq) Available bandwidth between CNp and CNq

BA(CNp, SNr) Available bandwidth between CNp and SNr

f2 NAPP Objective Function

5.2.1 Formal Definition

An Application Environment is defined as AE = {VMS,DBS}, where VMS is the set

of requested VMs: VMS = {VMi : 1 ≤ i ≤ Nv} and DBS is the set of requested DBs:

DBS = {DBk : 1 ≤ k ≤ Nd}. Each VM VMi has specification of its CPU and memory

demands represented by VMCPU
i and VMMEM

i , respectively, and each DB DBk has the

specification of its storage resource demand denoted by DBSTR
k .
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Data communication requirements between any two VMs and between a VM and a

DB are specified as Virtual Links (VLs) between 〈VM, VM〉 pairs and 〈VM,DB〉 pairs,

respectively, during AE specification and deployment. The bandwidth demand or traffic

load between VMi and VMj is represented by BW (VMi, VMj). Similarly, the bandwidth

demand between VMi and DBk is represented by BW (VMi, DBk). These bandwidth

requirements are provided as user input along with the VM and DB specifications.

A Data Center is defined as DC = {CNS, SNS}, where CNS is the set of computing

nodes (e.g., physical servers or computing components of a multi-function storage device)

in DC: CNS = {CNp : 1 ≤ p ≤ Nc} and SNS is the set of storage nodes: SNS = {SNr :

1 ≤ r ≤ Ns}. For each computing node CNp, the available CPU and memory resource

capacities are represented by CNCPU
p and CNMEM

p , respectively. Here available resource

indicates the remaining usable resource of a CN that may have already hosted other VMs

that are consuming the rest of the resources. Similarly, for each storage node SNr, the

available storage resource capacity is represented by SNSTR
r .

Computing nodes and storage nodes are interconnected by Physical Links (PLs) in the

data center communication network. PL distance and available bandwidth between two

computing nodes CNp and CNq are denoted by DS(CNp, CNq) and BA(CNp, CNq), respec-

tively. Similarly, PL distance and available bandwidth between a computing node CNp and

a storage node SNr are represented by DS(CNp, SNr) and BA(CNp, SNr), respectively. PL

distance can be any practical measure, such as link latency, number of hops or switches,

and so on. Furthermore, this data center model is not restricted to any fixed network

topology. Therefore, the network distance DS and available bandwidth BA models are

generic and different model formulations focusing on any particular network topology or

architecture can be readily applied in the optimization framework and proposed solution.

In the experiments, the number of hops or switches between any two data center nodes is

used as the only input parameter for the DS function in order to measure the PL distance.

Although, singular distances between 〈CN,CN〉 and 〈CN,SN〉 pairs are considered in the

experiments, link redundancy and multiple communication paths in data centers can be

incorporated in the proposed model and placement algorithm by the appropriate definition

of distance function (DS) and available bandwidth function (BA), respectively.
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Furthermore, DN(VMi) denotes the computing node where VMi is currently placed,

otherwise if VMi is not already placed, DN(VMi) = null. Similarly, DN(DBk) denotes

the storage node where DBk is currently placed.

The network cost of placing VMi in CNp and VMj in CNq is defined as follows:

Cost(VMi, CNp, VMj , CNq) = BW (VMi, VMj)×DS(CNp, CNq). (5.1)

Likewise, the network cost of placing VMi in CNp and DBk in SNr is defined as:

Cost(VMi, CNp, DBk, SNr) = BW (VMi, DBk)×DS(CNp, SNr). (5.2)

Given the AE to deploy in the DC, the objective of the NAPP problem is to find

placements for VMs and DBs in CNs and SNs, respectively, in such a way that the overall

network cost or communication overhead due to the AE deployment is minimized. Hence,

the Objective Function (OF) f2 is formulated as follows:

minimize
∀i:DN(VMi)
∀k:DN(VMk)

f2(AE,DC) =

Nv∑
i=1

( Nv∑
j=1

Cost(VMi, DN(VMi), VMj , DN(VMj))+

Nd∑
k=1

Cost(VMi, DN(VMi), DBk, DN(DBk))

)
.

(5.3)

The above AE placement is subject to the constraints that the available resource

capacities of any CN and SN are not violated:

∀p :
∑

∀i:DN(VMi)=CNp

VMCPU
i ≤ CNCPU

p . (5.4)

∀p :
∑

∀i:DN(VMi)=CNp

VMMEM
i ≤ CNMEM

p . (5.5)

∀r :
∑

∀k:DN(DBk)=SNr

DBSTR
k ≤ SNSTR

r . (5.6)
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Furthermore, the sum of the bandwidth demands of the VLs that are placed on each

PL must be less than or equal to the available bandwidth of the PL:

∀p∀q : BA(CNp, CNq) ≥
∑

∀i:DN(VMi)=CNp

∑
∀j:DN(VMj)=CNq

BW (VMi, VMj). (5.7)

∀p∀r : BA(CNp, SNr) ≥
∑

∀i:DN(VMi)=CNp

∑
∀k:DN(DBk)=SNr

BW (VMi, DBk). (5.8)

Given that every VM and DB placement fulfills the above-mentioned constraints (5.4

- 5.8), the NAPP problem defined by the OF f2 (5.3) is explained as follows: among all

possible feasible placements of VMs and DBs in AE, the placement that has the minimum

cost is the optimal solution. Therefore, NAPP falls in the category of combinatorial

optimization problems. In particular, it is an extended form of the Quadratic Assignment

Problem (QAP) [80], which is proven to be computationally NP−hard [18].

5.3 Proposed Solution

The proposed network-aware VM and DB placement approach (NDAP) tries to place

the VLs in such a way that network packets need to travel short distances. For better

explanation of the solution approach, the above models of AE and DC are extended by

addition of some other notations.

Every AE node is represented by AN , which can either be a VM or a DB, and the set

of all ANs in an AE is represented by ANS. Every VL can be either a Virtual Computing

Link (VCL), i.e., V L between two VMs or a Virtual Data Link (VDL), i.e., VL between a

VM and a DB. The total number of VCLs and VDLs in an AE is represented by Nvc and

Nvd, respectively. All the VCLs and VDLs are maintained in two ordered lists, vclList and

vdlList, respectively. While VM-VM communication (VCL) and VM-DB communication

(VDL) may be considered closely related, they differ in terms of actor and size. As only

a VM can initiate communications, VCL supports an ”active” duplex link, while VDL

supports a ”passive” duplex link. More precisely, the bandwidth demands of VDLs are

multiple orders larger than those of VCLs.

Every DC node is represented by DN , which can either be a CN or a SN . All the CNs

and SNs in a DC are maintained in two ordered lists, cnList and snList, respectively.
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Every PL can be either a Physical Computing Link (PCL), i.e., PL between two CNs or a

Physical Data Link (PDL) i.e., PL between a CN and a SN.

The proposed NDAP algorithm is a greedy heuristic that first sorts the vdlList and

vclList in decreasing order of the bandwidth demand of VDLs and VCLs. It then tries to

places all the VDLs from the vdlList, along with any associated VCLs to fulfill placement

dependency, on the feasible PDLs and PCLs, and their associated VMs and DBs in CNs

and SNs, respectively, focusing on the goal of minimizing the network cost incurred due

to placement of all the VDLs and associated VCLs. Finally, NDAP tries to place the

remaining VCLs from the vclList on PCLs, along with their associated VMs and DBs in

CNs and SNs, respectively, again with the aim of reducing the network cost incurred.

As mentioned in Section 5.2, NAPP is in fact an NP−hard, combinatorial optimization

problem similar to QAP and [103] have shown that even finding an approximate solution

for QAP within some constant factor from the optimal solution cannot be done in poly-

nomial time unless P=NP. Since greedy heuristics are relatively fast, easy to understand

and implement, and very often used as an effective solution approach for NP-complete

problems, a greedy heuristic (NDAP) is proposed as a solution for the NAPP problem.

The straightforward placement of an individual VL (either VDL or VCL) on a preferred

PL is not always possible, since one or both of its ANs can have Peer ANs connected by

Peer VLs (Figure 5.4(a)). At any point during an AE placement process, a VL can have

Peer ANs that are already placed. The peer VLs that have already-placed peer ANs are

termed need-to-place peer VLs (NTPP VLs), indicating the condition that placement of

any VL also requires the simultaneous placement of its NTPP VLs and the average number

of NTPP VLs for any VM or DB is denoted by Nvn. The maximum value of Nvn can be

Nv +Nd− 1, which indicates that the corresponding VM or DB has VLs with all the other

VMs and DBs in the AE. Since, for any VL placement, the corresponding placement of its

NTPP VLs is an integral part of the NDAP placement strategy, first the VL placement

feasibility part of the NDAP algorithm is described in the following subsection and the

remaining four subsections describe other constituent components of the NDAP algorithm.

Finally, a detailed description of the final NDAP algorithm is provided, along with the

pseudocode.
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Figure 5.4: (a) Peer VL and NTPP VL, and (b-f) Five possible VL placement scenarios
(best viewed in color).

5.3.1 VL Placement Feasibility

During the course of AE placement, when NDAP tries to place a VL that has one or

both of its ANs not placed yet (i.e., DN(AN) = null), then a feasible placement for the

VL needs to ensure that (1) the VL itself is placed on a feasible PL, (2) its ANs are placed

on feasible DNs, and (3) all the NTPP VLs are placed on feasible PLs.

Depending on the type of VL and the current placement status of its ANs, five different

cases may arise that are presented below. The NDAP placement algorithm handles these

five cases separately. Figure 5.4(b)-(f) provide a visual representation of the five cases,

where the VL to place is shown as a solid green line and its NTPP VLs are shown as solid

blue lines.

VDL Placement: When trying to place a VDL, any of the following three cases

may arise:

Case 1.1: Both the VM and DB are not placed yet and their peers VM1, DB1, and

VM2 are already placed (Figure 5.4(b)).
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Case 1.2: DB is placed but VM is not placed yet and VM ’s peers VM1 and DB1 are

already placed (Figure 5.4(c)).

Case 1.3: VM is placed but DB is not placed yet and DB’s peer VM1 is already placed

(Figure 5.4(d)).

VCL Placement: In the case of VCL placement, any of the following two cases may

arise:

Case 2.1: Both the VMs (VM1 and VM2) are not placed yet and their peers VM3,

DB1, VM4, and DB2 are already placed (Figure 5.4(e)).

Case 2.2: Only one of the VMs is already placed and its peers VM3 and DB1 are

already placed (Figure 5.4(f)).

In all the above cases, the placement feasibility of the NTPP VDLs and VCLs of the

not-yet-placed VMs and DBs must be checked against the corresponding PDLs and PCLs,

respectively (5.7 & 5.8).

5.3.2 Feasibility and Network Cost of VM and Peer VLs Placement

When NDAP tries to place a VM in a CN, it is feasible when (1) the computing and

memory resource demands of the VM can be fulfilled by the remaining computing and

memory resource capacities of the CN, and (2) the bandwidth demands of all the NTPP

VLs can be satisfied by the available bandwidth capacities of the corresponding underlying

PLs (Figure 5.5(a)–(b)):

VMPeerFeas(VM,CN) =


1, if Eq. 5.4 & 5.5 holds and, DN(AN) 6= null and

BW (VM,AN) ≤ BA(CN,DN(AN)) for ∀AN ;

0, otherwise.

(5.9)

When NDAP tries to place two VMs (VM1 and VM2) in a single CN, it is feasible

when (1) the combined computing and memory resource demands of the two VMs can be

fulfilled by the remaining computing and memory resource capacities of the CN, and (2)

the bandwidth demands of all the NTPP VLs of both the VMs can be satisfied by the
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Figure 5.5: Placement of (a) VDL and (b) VCL along with NTPP VLs (best viewed in
color).

available bandwidth capacities of the corresponding underlying PLs:

VMPeerFeas(VM1, VM2, CN) =



1, if Eq. 5.4 & 5.5 holds for (VM1 + VM2) and,

∀AN : DN(AN) 6= null and,

BW (VM1, AN) +BW (VM2, AN) ≤ BA(CN,DN(AN));

0, otherwise.

(5.10)

The network cost of a VM placement is measured as the accumulated cost of placing

all of its NTPP VLs:

VMPeerCost(VM,CN) =
∑

∀AN :DN(AN)6=null∧BW (VM,AN)>0

Cost(VM,CN,AN,DN(AN)). (5.11)

5.3.3 Feasibility and Network Cost of DB and Peer VLs Placement

When trying to place a DB in a SN, it is feasible when (1) the storage resource demand

of the DB can be fulfilled by the remaining storage resource capacity of the SN, and (2)

the bandwidth demands of the NTPP VLs can be satisfied by the available bandwidth
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capacities of the corresponding underlying PLs (Figure 5.5(a)):

DBPeerFeas(DB,SN) =


1, if Eq. 5.6 holds and, DN(AN) 6= null and

BW (AN,DB) ≤ BA(DN(AN), SN) for ∀AN ;

0, otherwise.

(5.12)

The network cost of any DB placement is measured as the total cost of placing all of

its NTPP VLs:

DBPeerCost(DB,SN) =
∑

∀AN :DN(AN)6=null∧BW (AN,DB)>0

Cost(AN,DN(AN), DB, SN). (5.13)

5.3.4 VM and Peer VLs Placement

Algorithm 5.1 shows the subroutine for placing a VM and its associated NTPP VLs.

First, the VM -to-CN placement is accomplished by reducing the available CPU and mem-

ory resource capacities of the CN by the amount of CPU and memory resource require-

ments of the VM and setting the CN as the DC node of the VM [lines 1–3]. Then, for each

already-placed peer AN of VM (i.e., any AN that has non-zero traffic load with VM and

DN(AN) 6= null), it is checked if the selected CN is different from the computing node

where the peer AN is placed, in which case the available bandwidth capacity of the PL

that connects the selected CN and DN(AN) is reduced by the amount of the bandwidth

demand of the corresponding NTPP VL [lines 4–8]. In those cases where the selected CN

is the computing node where the peer AN is placed, the VM can communicate with the

peer AN through memory copy instead of passing packets through physical network links.

Afterwards, the NTPP VL is removed from the vclList or vdlList, depending on whether

it is a VCL or VDL, respectively, in order to indicate that it is now placed [lines 9–13].

5.3.5 DB and Peer VLs Placement

Algorithm 5.2 shows the subroutine for placing a DB in a SN and its associated

NTPP VLs. First, the DB-to-SN placement is performed by reducing the available storage

capacity of the SN by the amount of the storage requirements of the DB and by setting

the SN as the DC node of DB [lines 1–2]. Then, for every already-placed peer AN of DB

(i.e., any AN that has non-zero traffic load with DB and DN(AN) 6= null), the available

bandwidth capacity of the PDL that connects the selected SN and DN(AN) is reduced by

the amount of the NTPP VL’s bandwidth requirement [lines 3–5], and lastly, the NTPP

VL is removed from the vdlList to mark that it is now placed [lines 6–7].
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Algorithm 5.1 PlaceVMandPeerVLs
Input: VM to place, CN where VM is being placed, set of all ANs ANS, vclList, and vdlList.

1: CNCPU ← CNCPU − VMCPU

2: CNMEM ← CNMEM − VMMEM

3: DN(VM)← CN
4: for each AN ∈ ANS do
5: if BW (VM,AN) > 0 ∧DN(AN) 6= null then
6: if DN(AN) 6= CN then
7: BA(CN,DN(AN))← BA(CN,DN(AN))−BW (VM,AN)
8: end if
9: VL← virtualLink(VM,AN)

10: if VL is a V CL then
11: vclList.remove(VL)
12: else
13: vdlList.remove(VL)
14: end if
15: end if
16: end for

Algorithm 5.2 PlaceDBandPeerVLs
Input: DB to place, SN where DB is being placed, set of all ANs ANS, and vdlList.

1: SNSTR ← SNSTR −DBSTR

2: DN(DB)← SN
3: for each AN ∈ ANS do
4: if BW (AN,DB) > 0 ∧DN(AN) 6= null then
5: BA(DN(AN), SN)← BA(DN(AN), SN)−BW (AN,DB)
6: VL← virtualLink(AN,DB)
7: vdlList.remove(VL)
8: end if
9: end for

5.3.6 NDAP Algorithm

The pseudocode of the final NDAP algorithm is presented in Algorithm 5.3. It receives

the DC and AE as input and returns the network cost incurred due to the AE placement.

NDAP begins by performing necessary initialization and sorting the vdlList and vclList

in decreasing order of their VLs’ bandwidth demands [lines 1–2]. Afterwards, it iteratively

takes the first VDL from the vdlList (i.e., the VDL with the highest bandwidth demand)

and tries to place it (along with its VM and DB, and all NTPP VLs) in a PDL among the

feasible PDLs so that the total network cost incurred due to the placement is minimum

[lines 3–34] (Figure 5.5(a)). As explained in Section 5.3.1, there can be three cases for this

placement, depending on the current placement status of the VDL’s VM and DB.

When the VDL matches Case 1.1 (both VM and DB are not placed), for each feasible

CN and SN in DC (5.9 & 5.12), it is checked if the bandwidth demand of the VDL can

be satisfied by the available bandwidth of the corresponding PDL connecting the CN and



5.3 Proposed Solution 141

Algorithm 5.3 NDAP Algorithm
Input: DC and AE.
Output: Total network cost of AE placement.

1: totCost← 0
2: Sort vdlList and vclList in decreasing order of VL’s bandwidth demands
3: while vdlList 6= ∅ do {NDAP tries to place all VDLs in vdlList}
4: VDL← vdlList[0];minCost←∞;VM ← VDL.VM ;DB ← VDL.DB; selCN ← null; selSN ← null
5:
6: if DN(VM) = null ∧DN(DB) = null then {Case 1.1: Both VM and DB are not placed}
7: for each CN ∈ cnList ∧ VMPeerFeas(VM,CN) = 1 do
8: for each SN ∈ snList ∧DBPeerFeas(DB,SN) = 1 do
9: if BW (VM,DB) ≤ BA(CN,SN) then

10: cost← BW (VM,DB)×DS(CN,SN) + VMPeerCost(VM,CN) +DBPeerCost(DB,SN)
11: if cost < minCost then minCost← cost; selCN ← CN ; selSN ← SN endif
12: end if
13: end for
14: end for
15: if minCost 6=∞ then BA(selCN, selSN)← BA(selCN, selSN)−BW (VM,DB) endif
16:
17: else if DN(VM) = null ∧DN(DB) 6= null then {Case 1.2: VM is not placed and DB is already placed}
18: for each CN ∈ cnList ∧ VMPeerFeas(VM,CN) = 1 do
19: cost← VMPeerCost(VM,CN)
20: if cost < minCost then minCost← cost; selCN ← CN endif
21: end for
22:
23: else if DN(VM) 6= null ∧DN(DB) = null then {Case 1.3: VM is already placed and DB is not placed}
24: for each SN ∈ snList ∧DBPeerFeas(DB,SN) = 1 do
25: cost← DBPeerCost(DB,SN)
26: if cost < minCost then minCost← cost; selSN ← SN endif
27: end for
28: end if
29:
30: if minCost =∞ then return −1 endif {Feasible placement not found}
31: if selCN 6= null then PlaceVMandPeerV Ls(VM, selCN) endif {For Case 1.1 and Case 1.2}
32: if selSN 6= null then PlaceDBandPeerV Ls(DB, selSN) endif {For Case 1.1 and Case 1.3}
33: totCost← totCost+minCost; vdlList.remove(0)
34: end while
35:
36: while vclList 6= ∅ do {NDAP tries to place remaining VCLs in vclList}
37: VCL← vclList[0];minCost←∞
38: VM1 ← VCL.VM1;VM2 ← VCL.VM2; selCN1 ← null; selCN2 ← null
39:
40: if DN(VM1) = null ∧DN(VM2) = null then {Case 2.1: Both VMs are not placed}
41: for each CN1 ∈ cnList ∧ VMPeerFeas(VM1, CN1) = 1 do
42: for each CN2 ∈ cnList ∧ VMPeerFeas(VM2, CN2) = 1 do
43: if CN1 = CN2 ∧ VMPeerFeas(VM1, VM2, CN) = 0 then continue endif
44: if BW (VM1, VM2) ≤ BA(CN1, CN2) then
45: cost← BW (VM1, VM2)×DS(CN1, CN2)
46: cost← cost+ VMPeerCost(VM1, CN1) + VMPeerCost(VM2, CN2)
47: if cost < minCost then minCost← cost; selCN1 ← CN1; selCN2 ← CN2 endif
48: end if
49: end for
50: end for
51: if minCost 6=∞ then BA(selCN1, selCN2)← BA(selCN1, selCN2)−BW (VM1, VM2) endif
52:
53: else if DN(VM1) 6= null ∨DN(VM2) 6= null then {Case 2.2: One of the VMs is not placed}
54: if DN(VM1) 6= null then swap values of VM1 and VM2 endif {Now VM1 denotes the not-yet-placed VM}
55: for each CN1 ∈ cnList ∧ VMPeerFeas(VM1, CN1) = 1 do
56: cost← VMPeerCost(VM1, CN1)
57: if cost < minCost then minCost← cost; selCN1 ← CN1 endif
58: end for
59: end if
60:
61: if minCost =∞ then return −1 endif {Feasible placement not found}
62: PlaceVMandPeerV Ls(VM1, selCN1) {For Case 2.1 and Case 2.2}
63: if selCN2 6= null then PlaceVMandPeerV Ls(VM2, selCN2) endif {For Case 2.1}
64: totCost← totCost+minCost; vclList.remove(0)
65: end while
66:
67: return totCost
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SN. If it can be satisfied, the total cost of placing the VDL and its associated NTPP VLs

is measured (5.11 & 5.13). The 〈CN,SN〉 pair that offers the minimum cost is selected for

placing the 〈VM,DB〉 pair and the available bandwidth capacity of the PDL that connects

the selected 〈CN,SN〉 pair is updated to reflect the VDL placement [lines 6–15]. When

the VDL matches Case 1.2 (VM is not placed, but DB is placed), the feasible CN that

offers minimum cost placement is selected for the VM and the total cost is measured [lines

17–21]. In a similar way, Case 1.3 (VM is placed, but DB is not placed) is handled in lines

23–28 and the best SN is selected for the DB placement.

If NDAP fails to find a feasible CN or SN, it returns −1 to indicate failure in finding

a feasible placement for the AE [line 30]. Otherwise, it activates the placements of the

VM and DB along with their NTPP VLs by using subroutines PlaceVMandPeerV Ls

(Algorithm 5.1) and PlaceDBandPeerV Ls (Algorithm 5.2), accumulates the measured

cost in variable totCost, and removes the VDL from vdlList [lines 31–33]. In this way, by

picking the VDLs from a list that is already sorted based on bandwidth demand, and trying

to place each VDL, along with its NTPP VLs, in such a way that the incurred network cost

is minimum in the current context of the DC resource state, NDAP strives to minimize

the total network cost of placing the AE, as formulated by the OF f2 (5.3) of the proposed

optimization. In particular, in each iteration of the first while loop (lines 3–34), NDAP

picks the next highest bandwidth demanding VDL from the vdlList and finds the best

placement (i.e., minimum cost) for it along with its NTPP VLs. Moreover, the placement

of the VDLs is performed before the placement of the VCLs, since the average VDL

bandwidth demand is expected to be higher than the average VCL bandwidth demand

considering the fact that the average traffic volume for the 〈VM,DB〉 pairs is expected to

be higher than that for the 〈VM, VM〉 pairs.

After NDAP has successfully placed all the VDLs, then it starts placing the remaining

VCLs in the vclList (i.e., VCLs that were not NTPP VLs during the VDLs placement).

For this part of the placement, NDAP applies a similar approach by repeatedly taking the

first VCL from the vclList and trying to place it on a feasible PCL so that the network

cost incurred is minimum [lines 36–65] (Figure 5.5(b)). This time, there can be two cases,

depending on the placement status of the two VMs of the VCL (Section 5.3.1).

When the VCL matches Case 2.1 (both VMs are not placed), for each feasible CN in

DC (5.9), it is first checked if both the VMs (VM1 and VM2) are being tried for placement
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in the same CN. In such cases, if the combined placement of both the VMs along with their

NTPP VLs is not feasible (5.10), NDAP continues checking feasibility for different CNs

[line 43]. When both VMs placement feasibility passes and the bandwidth demand of the

VCL can be satisfied by the available bandwidth of the corresponding PCL connecting the

CNs, the total cost of placing the VCL and its associated NTPP VLs is measured (5.11

& 5.13) [lines 44–48]. When both the VMs are being tried for the same CN, they can

communicate with each other using memory copy rather going through physical network

links and the available bandwidth check in line 44 works correctly, since the intra-CN

available bandwidth is considered to be unlimited. The 〈CN1, CN2〉 pair that offers the

minimum cost is selected for placing the 〈VM1, VM2〉 pair and the available bandwidth

capacity of the PCL connecting the selected 〈CN1, CN2〉 pair is updated to reflect the VCL

placement [lines 47–51]. When the VCL matches Case 2.2 (one of the VMs is not placed),

the feasible CN that offers the minimum cost placement is selected for the not-yet-placed

VM (VM1) and the total cost is measured [lines 53–59].

Similar to VDL placement, if NDAP fails to find feasible CNs for any VCL placement,

it returns −1 to indicate failure [line 61]. Otherwise, it activates the placements of the

VMs along with their NTPP VLs by using subroutine PlaceVMandPeerV Ls (Algorithm

5.1), accumulates the measured cost in totCost, and removes the VCL from the vclList

[lines 61–65]. For the same reason as for VDL placement, the VCL placement part of the

NDAP algorithm fosters the reduction of the OF (f2) value (5.3).

Finally, NDAP returns the total cost of the AE placement, which also indicates a

successful placement [line 67].
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5.4 Performance Evaluation

This section describes the performance of the proposed NDAP algorithm compared to

other algorithms, based on a set of simulation-based experiments. Section 5.4.1 gives a

brief description of the evaluated algorithms, Section 5.4.2 describes the various aspects of

the simulation environment, and the results are discussed in the subsequent subsections.

5.4.1 Algorithms Compared

The following algorithms are evaluated and compared in this research:

Network-aware VM Allocation (NVA)

This is an extended version of the network-aware VM placement approach proposed

by [100], where the authors consider already-placed data blocks. In this version, each

DB ∈ DBS is placed randomly in a SN ∈ SNS. Each VM that has one or more VDL is

then placed according to the VM allocation algorithm presented by the authors, provided

that all of its NTPP VLs are placed on feasible PLs. For any remaining VM ∈ VMS, it is

placed randomly. All the above placements are subject to the constraints presented in (5.4

- 5.8). In order to increase the probability of feasible placements, DB and VM placements

are tried multiple times and the maximum number of tries (Nmt) is parameterized by a

constant which is set to 100 in the simulation.

Time Complexity: For the above-mentioned implementation, the worst-case time com-

plexity of NVA algorithm is given by:

TNVA = O(NdNmt) +O(NvNcNvn) +O(NvNmt). (5.14)

Since Nmt is a constant and the maximum number of VMs (Nv) and DBs (Nd) in an AE

is generally much less than the number of computing nodes (Nc) in DC, the above time

complexity reduces to:

TNVA = O(NvNcNvn). (5.15)

Memory Overhead: Given that NVA starts with already-placed DBs, and VM place-

ments are done in-place using no auxiliary data structure, the NVA algorithm itself does

not have any memory overhead.
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First Fit Decreasing (FFD)

This algorithm begins by sorting the CNs in the cnList and the SNs in the snList in

decreasing order based on their remaining resource capacities. Since CNs have two different

types of resource capacity (CPU and memory), L1-norm mean estimator is used to convert

the vector representation of multi-dimensional resources into scalar form. Similarly, all

the VMs in the vmList and the DBs in the dbList are sorted in decreasing order of their

resource demands. FFD then places each DB from the dbList in the first feasible SN of

the snList according to the First First (FF) algorithm. Next, it places each VM from the

vmList in the first feasible CN of the cnList along with any associated NTPP VLs. All

the above placements are subject to the constraints presented in (5.4 - 5.8).

Time Complexity: For the above implementation of the FFD, the worst-case time

complexity of FFD algorithm is given by:

TFFD = O(NclgNc) +O(NslgNs) +O(NvlgNv) +O(NdlgNd) +O(NdNs) +O(NvNc). (5.16)

Since in a typical setting the number of VMs (Nv) and DBs (Nd) in an AE is much less

than the number of CNs (Nc) and SNs (Ns) in DC, the above term reduces to:

TFFD = O(NclgNc) +O(NslgNs) +O(NdNs) +O(NvNc). (5.17)

Memory Overhead: Since merge sort [28] is used in FFD to sort cnList, snList,

vmList, and dbList, and Nc is usually greater than each of Ns, Nv, and Nd in a typical

setting, it can be concluded that the memory overhead for the sorting operation is O(Nc).

Apart from sorting, the placement decision part of FFD works in-place without using any

additional data structure. Therefore, the memory overhead of FFD algorithm is given by:

MFFD = O(Nc). (5.18)

Network- and Data-aware Application Placement (NDAP)

The NDAP algorithm is implemented primarily based on the the description presented

in Section 5.3 and follows the execution flow presented in Algorithm 5.3. The final NDAP

algorithm utilizes the feasibility check (5.9, 5.10, & 5.12), network cost computation (5.11

& 5.13), and the placement subroutines (Algorithm 5.1 & 5.2).
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Time Complexity: All of these NDAP components need to go through a list of NTPP

VLs for the corresponding VM or DB, and in the implementation, this list is stored in

an array. Therefore, the time complexity for each of these NDAP components is O(Nvn).

So, for the above-mentioned implementation, the running time of the NDAP algorithm

(referring to pseudocode in Algorithm 5.3) is the sum of the time needed for sorting vdlList

and vdlList (T2), the time needed for placing all the VDLs in vdlList (T3-34), and the time

needed for placing all the remaining VCLs in vclList (T36-65). The time complexity for

placing a single VDL (considering three cases) is given by:

T6-33 = O(NcNsNvn) +O(NcNvn) +O(NsNvn) +O(Nvn)

= O(NcNsNvn).
(5.19)

Therefore, the time complexity for placing all the VDLs is:

T3-34 = O(NvdNcNsNvn). (5.20)

Similarly, the time complexity for placing all the remaining VCLs is:

T36-65 = O(NvcN
2
cNvn). (5.21)

Therefore, the worst-case time complexity of NDAP algorithm is given by:

TNDAP = T2 + T3-34 + T36-65

= O(NvdlgNvd) +O(NvclgNvc) +O(NvdNcNsNvn) +O(NvcN
2
cNvn).

(5.22)

Memory Overhead: For this implementation of the NDAP algorithm, merge sort is

used in order to sort vdlList and vclList [line 2, Algorithms 5.3]. Given that AEs are typ-

ically constituted of a number of VMs and DBs with sparse communication links between

them, it is assumed that Nvd = Nvc = O(Nv) since Nvd and Nvc are of the same order.

Therefore, the memory overhead for this sorting operation is O(Nv). Apart from sorting,

the placement decision part of NDAP [lines 3–67] works in-place and no additional data

structure is needed. Therefore, the memory overhead of NDAP algorithm is given by:

MNDAP = O(Nv). (5.23)

The detailed computational time complexity analyses presented above may be further

simplified as follows. While the number of computing nodes outweighs the number of stor-

age nodes in a typical DC, they may be assumed to be of the same order, i.e., Ns = O(Nc).

Moreover, the size of a typical DC is at least a multiple order higher than that of an AE.

Hence, it may also be assumed that Nv, Nd, Nvc, Nvd, Nvn = o(Nc). From (5.15, 5.17, &



5.4 Performance Evaluation 147

5.22), it can be concluded that the running times of the NVA, FFD, and NDAP algorithms

are O(Nc), O(NclgNc), and O(N2
c ), respectively, i.e., these are linear, linearithmic, and

quadratic time algorithms, respectively. Regarding the overhead of the above-mentioned

algorithms, although there are variations in the run-time memory overhead, considering

that the input optimization problem (i.e., AE placement in DC) itself has O(Nc) memory

overhead, it can be concluded that, overall, all the compared algorithms have an equal

memory overhead of O(Nc).

For all the above algorithms, if any feasible placement is not found for a VM or DB,

the corresponding algorithm terminates with failure status.

5.4.2 Simulation Setup

Data Center Setup

In order to address the increasing complexity of large-scale Cloud data centers, net-

work vendors are developing network architecture models focusing on the resource usage

patterns of Cloud applications. For example, Juniper Networks Inc. in their ”Cloud-ready

data center reference architecture” suggest the use of Storage Area Networks (SANs) inter-

connected to the computing network with converged access switches [65], as shown in Fig-

ure 5.6. The simulated data center is generated following this reference architecture with

a three-tier computing network topology (core-aggregation-access) [71] and a SAN-based

storage network. Following the approach presented in [72]), the number of parameters is

limited in simulating the data center by using the number of physical computing servers

as the only parameter denoted by N . The quantity of other data center nodes are derived

from N as follows: 5N/36 high-end storage devices with built-in spare computing resources

that work as multi-function devices for storage and computing, 4N/36(= N/9) regu-

lar storage devices without additional computing resources, N/36 high-end core switches

with built-in spare computing resources that work as multi-function devices for switching

and computing, N/18 mid-level aggregation switches, and 5N/12 (= N/3 + N/12) ac-

cess switches. Following the three-tier network topology [71], N/3 access switches provide

connectivity between N computing servers and N/18 aggregation switches, whereas the

N/18 aggregation switches connects N/3 access switches and N/36 core switches in the

computing network. The remaining N/12 access switches provide connectivity between

N/4 storage devices and N/36 core switches in the storage network. In such a data center
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Figure 5.6: Cloud-ready data center network architecture (source: Juniper Networks Inc.).

setup, the total number of computing nodes (CNs) Nc = N + 5N/36 +N/36 = 7N/6 and

the total number of storage nodes (SNs) Ns = 5N/36 + 4N/36 = N/4.

Network distances between 〈CN,CN〉 pairs and between 〈CN,SN〉 pairs are measured

as DS = h×DF , where h is the number of physical hops between two DC nodes (CN or

SN) in the simulated data center architecture as defined above, and DF is the Distance

Factor that implies the physical inter-hop distance. The value of h is computed using the

analytical expression for tree topology as presented in [85], and DF is fed as a parameter

into the simulation. the network distance of a node with itself is 0, which implies that

data communication is done using memory copy without going through the network. A

higher value of DF indicates greater relative communication distance between any two

data center nodes.

Application Environment Setup

In order to model composite application environments for the simulation, multi-tier

enterprise applications and scientific workflows are considered as representatives of the

dominant Cloud applications. According to the analytical model for multi-tier Internet

applications presented in [115], three-tier applications are modeled as comprised of 5 VMs

(Nv = 5) and 3 DBs (Nd = 3) interconnected through 4 VCLs (Nvc = 4) and 5 VDLs
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Figure 5.7: Application environment models for (a) Multi-tier application and (b) Scientific
(Montage) workflow.

(Nvd = 5) as shown in Figure 5.7(a). In order to model scientific applications, Montage

workflow composed of 7 VMs (Nv = 7) and 4 DBs (Nd = 4) interconnected through 5

VCLs (Nvc = 5) and 9 VDLs (Nvd = 9) is simulated following the structure presented

in [67] (Figure 5.7(b)). While deploying an application in the data center, user-provided

hints on estimated resource demands are parameterized during the course of the exper-

imentation. Extending the approaches presented in [85] and [106], computing resource

demands (CPU and memory) for VMs, storage resource demands for DBs, and bandwidth

demands for VLs are stochastically generated based on normal distribution with parame-

ter means (meanCom, meanStr, and meanV LBW , respectively) and standard deviation

(sd) against the normalized total resource capacities of CNs and SNs, and the bandwidth

capacities of PLs, respectively.

Simulated Scenarios

For each of the experiments, all the algorithms started with their own empty data

centers. In order to represent the dynamics of the real Cloud data centers, two types of

events are simulated: (1) AE deployment and (2) AE termination. With the purpose of

assessing the relative performance of the various placement algorithms in states of both

higher and lower resource availability of data center nodes (CNs and SNs) and physical
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links (PCLs and PDLs), this experiment simulated scenarios where the average number of

AE deployments doubles the average number of AE terminations. Since during the initial

phase of the experiments the data centers are empty, algorithms enjoy more freedom

for the placement of AE components. Gradually, the data centers become loaded due

to the higher number of AE deployments compared to the number of AE terminations.

In order to reflect upon the reality of application deployment dynamics in real Clouds

where the majority of the Cloud application spectrum is composed of multi-tier enterprise

applications, in the simulated scenarios, 80% of the AE deployments were considered to

be enterprise applications (three-tier application models) and 20% were considered as

scientific applications (Montage workflow models). Overall, the following two scenarios

were considered:

Group Scenario: For all the placement algorithms, AE deployments and termina-

tions were continued until any of them failed to place an AE due to the lack of feasible

placement. In order to maintain fairness among algorithms, the total number of AE de-

ployments and terminations for each of the placement algorithms were equal and the same

instances of AEs were deployed or terminated for each simulated event.

Individual Scenario: For each of the algorithms, AE deployment and termination

were continued separately until it failed to place an AE due to the failure to find a feasible

placement. Similar to the group scenario, all the algorithms drew AEs from same pools

so that all the algorithms worked with the exactly same instances of AE for each event.

All the experiments presented in this paper are repeated 1000 times and the average

results were reported.

Performance Evaluation Metrics

In order to assess the network load imposed due the placement decisions, the average

network cost of AE deployment was computed (using OF f2 according to (5.3)) for each

of the algorithms in the group scenario. Since the cost functions (5.1 & 5.2) are defined

based on the network distance between DC nodes and the expected amount of traffic

flow, they effectively provide measures of the network packet transfer delays, and imposed

packet forwarding load and power consumption for the network devices (e.g., switches and

routers) and communication links. With the aim of maintaining a fair comparison among

the algorithms, the average cost metric was computed and compared in the group scenario

where all the algorithms terminated when any of them failed to place an AE due to the
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feasible resource constraints (5.4 - 5.8) in DC. As a consequence, each algorithm worked

with the same instances of AE at each deployment and termination event, and the average

cost was computed over the same number of AEs.

In order to measure how effectively each of the algorithms utilized the network band-

width during AE placements, the total number of AE deployments in empty DC was

measured until the data center was saturated in the individual scenario. Using this perfor-

mance metric, the effective capacity of the DC resources utilized by each of the placement

algorithms was captured and compared. Moreover, this performance metric also captures

the degree of convergence with solutions (i.e., successful placements of AEs) of the place-

ment algorithms in situations when networking and computing resources within the data

center components (e.g., servers and switches) are strained. This is due to the fact that

the placement algorithm that deploys higher number of AEs compared to other algorithms

demonstrates higher degree of convergence, even at times of resource scarcity.

In order to assess how effectively the placement algorithms localized network traffic

and, eventually, optimized network performance, the average network utilization of access,

aggregation, and core switches were measured in the group scenario. In this part of the

evaluation, the group scenario was chosen so that when any of the algorithms failed to

place an AE, all the algorithms halted their placements with the purpose of keeping the

total network loads imposed on the respective data centers for each of the algorithms the

same. This switch-level network usage assessment was performed by scaling the mean and

standard deviation of the VLs’ bandwidth demands.

Finally, the average placement decision computation time for AE deployment was

measured for the individual scenario. Average placement decision time is an important

performance metric to assess the efficacy of NDAP as an online AE placement algorithm

and its scalability across various factors.

All the above performance metrics were measured against the following scaling factors:

(1) DC size, (2) mean resource demands of VMs, DBs, and VLs, (3) diversification of work-

loads, and (4) network distance factor. The following subsections present the experimental

results and analysis for each of the experiments conducted.
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Figure 5.8: Performance with increasing N : (a) Network cost and (b) Number of AEs
deployed in DC (best viewed in color).

Simulation Environment

The algorithms are implemented in Java (JDK and JRE version 1.7.0) and the simu-

lation was conducted on a Dell Workstation (Intel Core i5-2400 3.10 GHz CPU (4 cores),

4 GB of RAM, and 240 GB storage) hosting Windows 7 Professional Edition.

5.4.3 Scaling Data Center Size

In this part of the experiment, the placement qualities of the algorithms with increasing

size of the DC were evaluated and compared. As mentioned in Section 5.4.2, N was used

as the only parameter to denote DC size, and its minimum and maximum values were set

to 72 and 4608, respectively, doubling for each subsequent simulation phase. Therefore,

in the largest DC there were a total of 5376 CNs and 1152 SNs. The other parameters

meanCom, meanStr, meanV LBW , sd, and DF were set to 0.3, 0.4, 0.35, 0.5, and 2,

respectively.

Figure 5.8(a) shows the average cost of AE placement incurred by each of the three

algorithms in the group scenario for different values of N . From the chart, it is quite

evident that NDAP consistently outperforms the other placement algorithms at a much

higher level for the different DC sizes and its average AE placement cost is 56% and 36%

less than NVA and FFD, respectively. Being network-aware, NDAP checks the feasible

placements with the goal of minimizing the network cost. FFD, on the other hand, tries

to place the ANs in DNs with maximum available resource capacities and, as a result, has

the possibility of placing VLs on shorter PLs. Finally, NVA has random components in

placement decisions and, thus, incurs higher average cost.

From Figure 5.8(b), it can be seen that the average number of successful AE deploy-

ments in the individual scenario by the algorithms increases non-linearly with the DC
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size as more DNs and PLs (i.e., resources) are available for AE deployments. It is also

evident that NDAP deploys a larger number of AEs in the data center compared to other

algorithms until the data center is saturated with resource demands. The relative per-

formance of NDAP remains almost steady across different data center sizes— it deploys

around 13-17% and 18-21% more AEs compared to NVA and FFD, respectively. This

demonstrates the fact that NDAP’s effectiveness in utilizing the data center resources is

not affected by the scale of the data center.

5.4.4 Variation of Mean Resource Demands

This experiment assessed the solution qualities of the placement algorithms when the

mean resource demands of the AEs increased. Since the AE is composed of different com-

ponents, the mean resource demands were varied in the two different approaches presented

in the rest of this subsection. The other parameters, N , sd, and DF , were set to 1152,

0.4, and 2, respectively.

Homogeneous Mean Resource Demands

The same mean (i.e., meanCom = meanStr = meanV LBW = mean) was used to

generate the computing (CPU and memory) resource demands of VMs, storage resource

demands of DBs, and bandwidth demands of VLs under normal distribution. The exper-

iment started with a small mean of 0.1 and increased it up to 0.7, adding 0.1 at each

subsequent phase.

The average cost for AE placement is shown in Figure 5.9(a) for the group scenario. It

is obvious from the chart that NDAP achieves much better performance compared to other

placement algorithms— on average it incurs 55% and 35% less cost compared to NVA and

FFD, respectively. With the increase of mean resource demands, the cost incurred for each

algorithm increases almost at a constant rate. The reason for this performance pattern

is that when the mean resource demands of the AE components (VMs, DBs, and VLs)

increase with respect to the available resource capacities of the DC components (CNs,

SNs, and PLs), the domain of feasible placements is reduced, which causes the rise in the

average network cost.

Figure 5.9(b) shows the average number of AEs deployed in empty data center with

increasing mean for the individual scenario. It can be seen from the chart that the number

of AEs deployed by the algorithms constantly reduces as higher mean values are used to
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Figure 5.9: Performance with increasing mean (homogeneous): (a) Network cost and (b)
Number of AE deployed in DC (best viewed in color).

generate the resource demands. This is due to the fact that when resource demands

are increased compared to the available resource capacities, the DC nodes and PLs can

accommodate fewer AE nodes and VLs. One interesting observation from this figure is

that FFD was able to deploy fewer AEs compared to NVA when the mean was small.

This can be attributed to the multiple random tries during AN placement by NVA, which

helps it to find feasible placements, although at a higher average cost. Overall, NDAP was

able to place larger numbers of AEs compared to other algorithms across all mean values:

10-18% and 12-26% more AEs than NVA and FFD, respectively.

Heterogeneous Mean Resource Demands

In order to assess the performance variations across different mean levels of resource

demands of AE components, this experiment set two different mean levels L (low) and H

(high) for mean VM computing resource demands (meanCom for both CPU and mem-

ory), mean DB storage resource demands (meanStr), and mean VL bandwidth demands

(meanV LBW ). L and H levels were set to 0.2 and 0.7 for this simulation. Given the two

levels for the three types of resource demands, there are eight possible combinations.

Figure 5.10(a) shows the average network costs of the three algorithms for the eight

different mean levels (x axis of the chart). The three different positions of the labels are

set as follows: the left-most, the middle, and the right-most positions are for meanCom,

meanStr, and meanV LBW , respectively. As the chart shows, NDAP performs much

better in terms of incurred cost than the other algorithms for each of the mean combina-

tions. Its relative performance is highest for combinations LHL and LHH, incurring on

average 67% and 52% lower costs compared to NVA and FFD, whereas its performance

is lowest for combinations HLL and HLH incurring on average 42% and 25% lower costs
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Figure 5.10: Performance with mixed levels of means (heterogeneous): (a) Network cost
and (b) Number of AEs deployed in DC (best viewed in color).

compared to NVA and FFD, respectively. The reason for this pattern is the algorithmic

flow of NDAP as it starts with the VDLs placement and finishes with the remaining VCLs

placement. As a consequence, for relatively higher means of DB storage demands, NDAP

performs relatively better.

A similar performance trait can be seen in Figure 5.10(b), which shows that NDAP

places more AEs in DC compared to other algorithms. An overall pattern demonstrated

by the figure is that when the meanStr is high (H), the number of AEs deployed is reduced

for all algorithms compared to the cases when meanStr is low (L). This is because the

simulated storage resources are fewer compared to the computing and network resources of

DC with respect to the storage, computing, and bandwidth demands of AEs. Since NDAP

starts AE deployment with the efficient placement of DBs and VDLs, on average it deploys

17% and 26% more AEs compared to NVA and FFD, respectively, when meanStr = H;

whereas this improvement is 9% for both NVA and FFD when meanStr = L.

5.4.5 Diversification of Workloads

The degree of workload diversification of the deployed AEs was simulated by vary-

ing the standard deviation of the random (normal) number generator used to generate

the resource demands of the components of AEs. For this purpose, initially the sd pa-

rameter was set to 0.05 and gradually increased by adding 0.05 at each simulation phase

until a maximum of 0.5 was reached. The other parameters, N , meanCom, meanStr,

meanV LBW , and DF , were set to 1152, 0.3, 0.4, 0.35, and 2, respectively.

As shown in Figure 5.11(a), the average network cost for NDAP is much lower than

that for the other algorithms when the same number of AEs is deployed (as the simulation

terminates when any of the algorithms fail to deploy an AE in the group scenario) as,
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Figure 5.11: Performance with increasing standard deviation of resource demands: (a)
Network cost and (b) Number of AEs deployed in DC (best viewed in color).

on average, it incurs 61% and 38% less cost compared to NVA and FFD, respectively.

Moreover, for each algorithm, the cost increases with the increase of workload variations.

This is due to the fact that for higher variation in resource demands, the algorithms

experience reduced scope in the data center for AE component placement as the feasibility

domain is shrunk. As a consequence, feasible placements incur increasingly higher network

cost with the increase of the sd parameter.

In the individual scenario, NDAP outperforms other algorithms in terms of the num-

ber of AEs deployed across various workload variations (Figure 5.11(b)) by successfully

placing on average 12% and 15% more AEs compared to NVA and FFD, respectively. Due

to the random placement component, overall NVA performs better than FFD, which is

deterministic by nature. Another general pattern noticeable from the chart is that all the

algorithms deploy more AEs for lower values of sd. This is due the fact that for higher

values of sd, resource demands of the AE components demonstrate higher variations, and

as a consequence, the resources of the data center components become more fragmented

during the AE placements, and thus, the utilization of these resources is reduced.

5.4.6 Scaling Network Distances

This experiment varies the relative network distance between any two data center nodes

by scaling the DF parameter defined in Subsection 5.4.2. As the definition implies, the

inter-node network distance increases with DF and such situations can arise due to higher

delays in network switches or due to geographical distances. Initially, the DF value was

set to 2 and increased to 16. Other parameters, N , meanCom, meanStr, meanV LBW ,

and sd, are set to 1152, 0.3, 0.4, 0.35, and 0.5, respectively.

Since network distance directly contributes to the cost function, it is evident from Fig-

ure 5.12(a) that the placement cost rises with the increase of the DF parameter in a linear
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Figure 5.12: Performance with increasing distance factor (DF ): (a) Network cost and (b)
Number of AEs deployed in DC (best viewed in color).

fashion for the group scenario. Nevertheless, the gradients for the different placement

algorithms are not the same and the rise in cost for NDAP is much lower than for other

algorithms.

Figure 5.12(b) shows the average number of AEs deployed in the data center for each

DF value for the individual scenario. Since network distance does not contribute to any of

the resource capacities or demands (e.g., CPU or bandwidth), the number of AEs deployed

remains mostly unchanged with the scaling of DF . Nonetheless, by efficient placement,

NDAP outpaces other algorithms and successfully deploys 18% and 21% more AEs than

NVA and FFD, respectively.

5.4.7 Network Utilization

This part of the experiment was conducted for the purpose of comparing the network

utilization of the placement algorithms at the access, aggregation, and core switch levels

of the data center network. This was done by stressing the network in two different scaling

factors separately: the mean and the standard deviation of the VLs bandwidth demand

meanV LBW and sdV LBW , respectively. In order to ensure that the computing and

storage resource demands (of VMs and DBs, respectively) did not stress the computing

and storage resource capacities (of the CNs and SNs, respectively), the meanCom and

meanStr parameters were kept at a fixed small value of 0.05, and the standard deviation

sdComStr for both computing and storage resource demands is were to 0.1. The other

parameters, N and DF , were set to 1152 and 2, respectively.
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Figure 5.13: Average network utilization with increasing mean VL bandwidth demand:
(a) Access switch, (b) Aggregation switch, and (c) Core switch (best viewed in color).

Scaling Mean Bandwidth Demand

This part of the experiment stressed the data center network for the group scenario

where all the algorithms terminate if any of the algorithms fail to place an AE. Application

of the group scenario for this experiment ensured that the total network loads imposed

for each of the placement algorithms were the same when any of the algorithms failed.

Initially, the mean VL bandwidth demand meanV LBW was set to 0.1 and raised to 0.7,

in steps of 0.1. The standard deviation of VL bandwidth demand sdV LBW was kept

fixed at 0.3.

Figure 5.13 shows the average network utilization of the access, aggregation, and core

switches for different meanV LBW values. It is evident from the charts that, for all

the switch levels, NDAP incurs minimum average network utilization, and compared to

NVA and FFD, NDAP placements on average result in 24% and 16% less network usage

for access layer, 49% and 30% less network usage for aggregation layer, and 83% and

75% less network usage for core layer. This represents the fact that NDAP localizes

network traffic more efficiently than other algorithms and achieves incrementally higher

network efficiency at access, aggregation, and core switch levels. Furthermore, as the

figure demonstrates, the results reflect a similar trend of performance to the results of
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Figure 5.14: Average network utilization with increasing standard deviation of VL band-
width demand: (a) Access switch, (b) Aggregation switch, and (c) Core switch (best
viewed in color).

average network cost for placement algorithms presented in the previous subsections. This

is reasonable, since network cost is proportional to the distance and bandwidth of the

VLs and greater network distance indicates the use of higher layer switches during a VL

placement operation. Therefore, these results validate the proposed network cost model

(5.1 & 5.2) in the sense that indeed the cost model captures the network load perceived by

the network switches. It can also be observed that the utilization for each switch increases

with increasing meanV LBW . This is due to the fact that meanV LBW contributes to

the average amount of data transferred through the switches, since meanV LBW is used

as the mean to generate the VLs bandwidth demands.

Diversification of Bandwidth Demand

This experiment is similar to the above one, however, here the standard deviation of

VLs bandwidth demands (sdV LBW ) was scaled rather than the mean. Initially, sdV LBW

was set to 0.05 and gradually increased to 0.5, in steps of 0.05. The mean VLs bandwidth

demand meanV LBW was set to 0.4.

The results of this experiment are shown in Figure 5.14. The charts clearly demon-

strate the superior performance of NDAP, which causes minimum network usage across

all switch levels. In addition, compared to NVA and FFD, it has on average 26% and 16%
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Figure 5.15: NDAP’s placement decision time while scaling (a) Data center size
(N), (b) Homogeneous mean (mean), (c) Heterogeneous mean (meanCom, meanStr,
meanV LBW ), (d) Diversification of workload (sd), and (e) Distance factor (DF ).

less network usage for the access layer, 50% and 30% less network usage for the aggre-

gation layer, and 84% and 75% less network usage for the core layer. Furthermore, the

figure shows that the network utilization for each algorithm at each layer across different

sdV LBW values does not fluctuate much. This is due to the fact that, although the vari-

ation of VLs’ bandwidth demand increases with increasing sdV LBW , the overall network

load levels do not change much, and as a result, the average network loads perceived by

the network switches at different layers differ within a small range.

5.4.8 NDAP Decision Time

In this part of the experiment, the time taken by NDAP for making AE placement

decision was measured in order to assess the feasibility of using NDAP for real-time,

online placement scenarios. Figure 5.15 shows the average time needed by NDAP for

computing AE placements in the individual scenario by scaling all the above-mentioned
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scaling factors. For each of the scaling factors, other parameters were set similar to the

corresponding preceding subsections (Subsections 5.4.3-5.4.6).

From Figure 5.15(a), it can be seen that NDAP’s run-time increases non-linearly with

increasing data center size (other parameters were set as in Section 5.4.3). As explained in

Section 5.4.1, the time complexity of the proposed NDAP algorithm is at best quadratic

in terms of the number of CNs in the data center (O(N2
c )) and this graph effectively con-

forms to the complexity analysis. It is evident from the figure that for small to medium

data centers, NDAP’s decision-making time is in the range of a small fraction of a sec-

ond, whereas for the largest data center simulated with N = 4608 (i.e., several thousand

servers), NDAP needs only about 0.7 second. Furthermore, it can be observed from Fig-

ure 5.15(b)-(e) that NDAP’s run time remains largely unaffected by other scaling factors

and the run time is within the range of 0.03-0.06 second for N = 1152. From the above

results and discussion, it can be concluded that NDAP is suitable for online AE placement

scenarios, even for large data centers.

5.5 Summary and Conclusions

With the growing complexity of modern Internet applications and the increasing size

of data, network resource demands in large data centers, such as Clouds, are becoming

increasingly complex. Rising bandwidth requirements among application components are

causing increasing pressure on the underlying communication infrastructure, making it

a key area of performance bottleneck. This chapter has addressed the issue of network-

focused, multi-component application placement in large data centers and formally de-

fined it as an optimization problem. After presenting the constitutional components of

the proposed network- and data-aware application placement approach, it has proposed

NDAP, a fast greedy heuristic that performs simultaneous deployment of VMs and data

components while respecting computing, network, and storage resource requirements and

capacity constraints with the goal of minimizing the network cost incurred due to the

placement decision. NDAP has been developed as a generic application placement heuris-

tic, which is application type-agnostic, so that it can be used for a wide range of multi-tier

or composite applications.

Moreover, a detailed analysis on the computational complexity for each of the compared

algorithms in terms of run-time and memory overhead has been presented. Analysis has
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revealed that the proposed NDAP algorithm has quadratic time complexity, which is

slightly higher than those of the compared algorithms (linear and linearithmic), and the

memory overheads are the same for each of the algorithms.

Furthermore, an extensive simulation-based performance evaluation has been pre-

sented, and the results demonstrate the superior performance of NDAP over competi-

tor approaches across multiple performance metrics and scaling factors. NDAP reduces

the network cost by up to 67% and successfully deploys up to 26% more applications

compared to other approaches. The effectiveness of NDAP in minimizing the overall

communications overhead has been validated for two different representative application

environments: multi-tier and scientific (Montage) workflows. In addition, among all the

placement algorithms, NDAP achieves best network utilization by reducing network usage

of core, aggregation, and access switches by up to 84%, 50%, and 26%, respectively. Fur-

thermore, the feasibility of applying NDAP in online or real-time scenarios for large-scale

data centers has been demonstrated by performance evaluation, which has shown that

NDAP requires only a fraction of a second to make effective multi-component application

placement decisions.

While online VM placement strategies, such as the ones presented in this chapter and in

the previous one, can optimize VM placement at the initial deployment phase, active VMs

can exhibit variations in run-time resource usage during VM life cycle due to potential

workload variations. Moreover, Clouds are dynamic environments where VMs are created

and terminated in the data centers based on customer requests. As a result, physical

server resources become fragmented over time, which eventually reduces overall resource

utilization and hosting capacity of the data center. Such run-time underutilization of

computing resources is one of the main reasons for very high resource wastage and power

consumption. The next chapter addresses this run-time underutilization problem and

proposes a multi-objective dynamic VM consolidation scheme utilizing VM live migration

technique. Since VM migration has non-negligible impact on hosted applications and data

center components, a migration overhead estimation model is also presented by taking into

account realistic migration parameters.



Chapter 6

Multi-objective, Decentralized

Dynamic Virtual Machine

Consolidation

This chapter deals with the problem of offline, migration impact-aware, multi-objective

dynamic Virtual Machine (VM) consolidation in the context of large-scale virtualized data

center environments. The problem is formulated as an NP-hard discrete combinatorial

optimization problem with simultaneous objectives of minimizing resource wastage, power

consumption, and VM migration overhead. As solution approach, a VM live migration

overhead estimation technique is proposed, which takes into account pragmatic migration

parameters and overhead factors. In order to tackle scalability issues, a hierarchical, decen-

tralized dynamic VM consolidation framework is presented that helps to localize migration

related network traffic and reduce network cost. Moreover, a multi-objective, dynamic

VM consolidation algorithm is proposed by utilizing the Ant Colony Optimization (ACO)

metaheuristic, with integration of the proposed VM migration overhead estimation tech-

nique. Comprehensive performance evaluation makes it evident that the proposed dynamic

VM consolidation approach outpaces the state-of-the-art offline, migration-aware dynamic

VM consolidation algorithm across all performance metrics by reducing the overall power

consumption by up to 47%, resource wastage up to 64%, and migration overhead up to

83%.

163
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6.1 Introduction

The previous two chapters presented two online VM placement strategies focusing on

optimization of resource utilization, energy efficiency, and network load in data centers.

Complementary to those VM placement strategies, this chapter presents an offline, de-

centralized, dynamic VM consolidation framework and an associated VM consolidation

algorithm, leveraging the VM live migration technique with the goal of optimizing the

run-time resource utilization and energy consumption within the data center, while at

the same time minimizing the associated VM live migration overhead required to achieve

the consolidation. In order to increase scalability and reduce migration overhead, servers

are grouped into clusters based on mutual network cost of data communication and VM

consolidation is performed within each group separately. Moreover, in order to reduce

the overall migration impact on the hosted applications and the data center network, VM

migration overhead estimation models are presented using realistic parameters. Further-

more, a multi-objective, dynamic VM consolidation algorithm is proposed by adapting

the Ant Colony Optimization (ACO) metaheuristic coupled with the proposed migration

overhead estimation models.

While online VM placement and allocation techniques, such as the one presented in

Chapter 4 and Chapter 5, have potentials to optimize placement decisions at the time

of VM initiation, active VMs exhibit variations in actual resource usage during the VM

life cycle due to workload variations. Furthermore, due to the features of on-demand re-

source provisioning and a pay-per-use business model, VMs are created and terminated

dynamically and, as a consequence, data center resources become fragmented, which leads

to degradation of server resource utilization and overall hosting capacity of the data cen-

ter. Such underutilization of computing resources is one of the main reasons for high

resource wastage in enterprise data centers. A recent measurement study [30] shows that

VMs in Google data centers only utilize around 35% and 55% of the requested CPU

and memory resources. Moreover, due to the narrow dynamic power range of physical

servers, underutilized servers cause non-proportional power consumption in data centers.

Another measurement study showed that even completely idle servers consume about 70%

of their peak power usage [42]. Both the problems of run-time server resource wastage and

power consumption can be addressed by improving server resource utilization through the

application of dynamic VM consolidation.
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Unlike the consolidated VM cluster placement problem presented in Chapter 4, the

Dynamic VM Consolidation problem focuses on run-time environments where VMs are

active and already hosted by servers in the data center. Consolidation of such VMs are

achieved by the VM live migration operations [26, 93], where a running VM is relocated

from its current host to another server while it is still running and providing service to its

consumers [123]. After the consolidation of the VMs, servers that are released by migrating

their hosted VMs to other servers are turned to lower power states, such as standby or

turned off, in order to save energy. Moreover, such consolidation improves the overall

resource utilization of the active servers and resource wastage is minimized. Besides these

obvious advantages, dynamic VM consolidation has other benefits such as data center

physical space minimization, maintenance automation, and reduced labor costs.

Nonetheless, this adds additional complexity to the consolidation operation since the

current placement of the VMs needs to be considered while VM migration decisions are

made. This is because VM migration operations incur migration impact or cost on both

the hosted applications and data center components, such as the host server and com-

munication network [122]. As a consequence, any efficient dynamic VM consolidation

must consider both the gain achieved by consolidating the VMs into a reduced number of

servers and the overhead of the necessary VM migrations needed to achieve the consoli-

dation. Therefore, such dynamic VM consolidation techniques need to be multi-objective,

where they opt for maximizing the gain of energy saving and resource utilization, as well

as reducing the cost or overhead of necessary VM migrations.

Most of the existing works on multi-objective dynamic VM consolidation try to rear-

range active VMs into the minimum number of servers in order to save energy, by turning

the idle servers to lower power states while reducing the number of VM migrations needed

to perform the VM consolidation operation [12, 43, 45, 82, 90, 94]. A profound limitation

that exists in these approaches is that every VM migration is considered equivalent in

terms of migration cost or overhead. Experimental studies [122,124] on VM live migration

shows that a migrating VM experiences performance degradation during its total migra-

tion time. For example, performance analysis on migrating a VM that hosts a web server

reveals that the server throughput can drop by 20% during the migration period [26].

Moreover, a VM live migration operation results in a VM down period (formally, VM
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downtime) during which the services hosted by the VM remain unavailable to the con-

sumers [93]. Furthermore, VM migration causes extra energy consumption for the servers

and network devices, as well as generation of additional network traffic for transferring

VM memory pages.

In an environment where different categories of applications are hosted by the running

VMs, such as Cloud data centers, VMs exhibit high variations in their resource usage

patterns and performance footprints. As a consequence, different VM migrations have

different performance overhead both on the hosted services and on the data center compo-

nents. A recent study [128] has attempted to consider the VM migration cost while making

consolidation decisions by incorporating a couple of VM properties into its consolidation

scoring method. However, it overlooked data center properties, such as migration link

bandwidth and network costs, as well as the dynamic nature of VM migration. Moreover,

the evaluation is based solely on score values, rather than realistic properties. Therefore,

dynamic VM consolidation approaches need to consider realistic measures of individual

VM migration costs or overheads for making practical and efficient consolidation decisions.

Contrary to the existing methods mentioned above, the approach presented in this

chapter considers various migration parameters relating to VMs and data center compo-

nents in order to estimate extent of realistic migration overheads. Such migration param-

eters and overheads are adopted from the insights demonstrated by previous measurement

studies [4, 78, 120] on VM live migration in order to ensure the estimation technique is

as pragmatic as possible. Such a realistic measure has obvious benefits over simplistic

measures, such as the number of migrations, in that it can reveal the VM migrations

that are beneficial for containing the migration overhead to a limited extent while at the

same time improving server resource utilization. This is important since, in a dynamic

data center environment, there can be instances where two or more VM migrations may

have lower migration overhead than a different individual VM migration, an occurrence

which it cannot be determined with a simplistic measure that considers only the number

of migrations.

Moreover, the migration overhead estimation method is further integrated with the

proposed multi-objective, dynamic VM consolidation algorithm that generates migration

plans for the VMs running in the data center. The primary benefit of this methodology is



6.1 Introduction 167

that it adopts a practical approach to quantifying the cost or impact of each VM migra-

tion in the data center that can be readily integrated with any other dynamic VM con-

solidation technique. Furthermore, unlike many of the existing studies [12,82,90,94] that

suggest greedy heuristics, the proposed dynamic VM consolidation technique adapts the

multi-agent-based Ant Colony Optimization (ACO) metaheuristic that works, in multiple

iterations, based on solution refinement method. Utilization of such a refinement-based

metaheuristic helps the algorithmic procedure to avoid early stagnation at local optima.

Furthermore, in order to address the scalability issue of data center-wide dynamic

VM consolidation, a hierarchical, decentralized dynamic VM consolidation framework is

proposed where the servers of the data center are grouped into clusters and it is recom-

mended that VM consolidation operations be performed individually within the clusters.

A network cost-aware cluster formation approach is suggested in this chapter in order to

localize the VM migration related network traffic within the lowest level of the network

topology. This clustering approach has the advantage that migration-related network

traffic does not travel through upper-layer network switches, and thereby avoiding data

center network clogging. Moreover, such traffic does not need to travel long distances and

therefore reduces the related network cost. Having said that, the proposed framework is

not restricted to any cluster formation approach and any other dynamic clustering tech-

nique can be readily integrated with the framework, as well as with the dynamic VM

consolidation algorithm.

The proposed techniques and strategies for multi-objective dynamic VM consolidation

are built upon some assumptions regarding the data center environment. The migration

overhead estimation technique assumes that the active memory size and page dirty rate

of each VM running in the data center are known a priori. In a virtualized data cen-

ter, this information can be made readily available by utilizing virtualization Application

Programming Interfaces (APIs), such as Red Hat libvirt1, or using virtualization tools,

such Red Hat virt tools2. It is further assumed that the inter-server network distance

and available network bandwidth for performing VM live migrations are also known prior

to the migration overhead estimation. Such network information can be measured using

network tools, for example, the iPerf 3 network testing tool can be used to measure the

1libvirt: The virtualization API, 2016. http://libvirt.org/
2virt tools: Open Source Virtualization Management Tools, 2016. http://virt-tools.org/
3iPerf, 2016. https://iperf.fr/

http://libvirt.org/
http://virt-tools.org/
https://iperf.fr/
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maximum achievable bandwidth on IP networks, and the MTR4 network monitoring tool

can measure the end-to-end network distance in terms of number of hops or in terms of

delay in packet forwarding.

Moreover, it is assumed that the hypervisors (e.g., Xen [9], KVM [70], etc.) running in

the data center servers are homogeneous. This is important to ensure the compatibility of

the VM live migration operations among servers. In such an environment, it is presumed

that several hypervisor properties relating to the VM live migration operation are already

known, such as the remaining dirty memory threshold and the maximum number of rounds

for the pre-copy migration. Furthermore, the dynamic VM consolidation algorithm takes

into account the current resource demands of the active VMs in the data center, such as

the CPU, main memory, and network I/O. In addition, the consolidation algorithm also

needs to know the usable resource capacities of the server running in the data center.

Last but not least, it is assumed that the data center network topology is already known

for successful application of the proposed hierarchical, decentralized VM consolidation

framework.

The key contributions of this chapter are as follows:

1. The Multi-objective, Dynamic VM Consolidation Problem (MDVCP) is formally

defined as a discrete combinatorial optimization problem with the objective of min-

imizing data center resource wastage, power consumption, and overall migration

overhead due to VM consolidation.

2. VM migration overhead estimation models are proposed with consideration of real-

istic migration parameters and overhead factors in the context of the pre-copy VM

live migration technique. The estimation models are not restricted to any specific

VM consolidation method and can be readily integrated to any online or offline

consolidation strategies.

3. A hierarchical, decentralized VM consolidation framework is proposed to improve

the scalability of dynamic VM consolidation in the context of medium to large-scale

data centers.

4. A novel ACO-based, Migration overhead-aware Dynamic VM Consolidation (AMD-

VMC) algorithm is put forward as a solution to the proposed MDVCP problem. The

4MTR, 2016. http://www.bitwizard.nl/mtr/

http://www.bitwizard.nl/mtr/
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AMDVMC algorithm is integrated with the recommended decentralized consolida-

tion framework and utilizes the proposed migration overhead estimation models.

5. Extensive simulation-based experimentation and performance analysis is conducted

across multiple scaling factors and several performance metrics. The results suggest

that the proposed dynamic VM consolidation approach significantly optimizes the

VM allocations by outperforming the compared migration-aware VM consolidation

techniques across all performance metrics.

The rest of this chapter is organized as follows. The next section introduces the multi-

objective, dynamic VM consolidation problem and presents the necessary mathematical

frameworks to model it as a combinatorial optimization problem. Section 6.3 describes the

proposed VM live migration estimation models, the hierarchical, decentralized dynamic

VM consolidation framework, and the ACO-based multi-objective, dynamic VM consol-

idation algorithm. Section 6.4 presents the performance evaluation and analysis of the

results where the proposed dynamic VM consolidation approach is compared with other

state-of-the-art approaches. Finally, Section 6.5 concludes the chapter with a summary of

the contributions and results.

6.2 Multi-objective, Dynamic VM Consolidation Problem

By the use of dynamic VM consolidation, active VMs are live migrated from one server

to another to consolidate them into a minimal number of servers in order to improve overall

resource utilization and reduce resource wastage. Servers released by this process can be

turned to lower power states (such as suspended or turned off) with the goal of minimizing

the overall power consumption. For example, in Figure 6.1, 10 VMs are running in 5

servers, each having an overall resource utilization of not more than 65%. The VMs can

be reassigned to be consolidated into 3 servers resulting in higher utilization and, in this

way, 2 servers can be released and turned to lower power state to save energy.

However, dynamic VM consolidation at run-time is not merely a vector packing prob-

lem, such as the consolidated VM placement problem as presented in Chapter 4, since it

needs to consider the current VM-to-server placements and the impact of necessary VM

migrations on the performance of the hosted applications and the data center network [26].

Current dynamic VM consolidation approaches [45,82,90] try to pack VMs into a minimal
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Figure 6.1: Improving resource utilization and energy consumption through dynamic VM
consolidation.
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Figure 6.2: VM live migration decision based on VM characteristics.

number of servers while reducing the number of migrations. However, the overhead of

a live VM migration varies, based on some specific characteristics of the migrating VM

and the corresponding network link used for migrating VM memory pages from the source

server to the destination server. For example, a VM with 2 GB memory will be migrated

faster than a VM with 4 GB memory, given that the other conditions are exactly same and,

thus it needs less migration time and also requires fewer memory pages to be transferred

from the source server to the destination server (Figure 6.2). For these reasons, merely



6.2 Multi-objective, Dynamic VM Consolidation Problem 171

considering the number of migrations needed for consolidation is an oversimplified metric

to measure the impact of the necessary VM migrations. Therefore, in order to estimate

the overhead or impact of the overall VM migrations required for achieving a particular

VM consolidation state, it is important to estimate a realistic measure of the overhead of

a single VM migration.

Given the above insights into the dynamic VM consolidation technique, the remaining

part of this section formally defines the MDVCP problem with the necessary notations

and models.

6.2.1 Modeling Multi-objective, Dynamic VM Consolidation as a Com-

binatorial Optimization Problem

This subsection presents the mathematical framework for representing the dynamic

VM consolidation problem as a discrete combinatorial optimization problem.

Let PMS denote the set of active servers or Physical Machines (PMs) in a data center

and VMS denote the set of active VMs running on those PMs. RCS represents the set of

d types of resources available in each PM. Table 6.1 provides the various notations used

in the problem definition and proposed solution.

Each PM p (p ∈ PMS) has a d-dimensional Resource Capacity Vector (RCV) Cp =

{Crp}, where Crp denotes the total capacity of resource r (r ∈ RCS) of p. Similarly, each

VM v (v ∈ VMS) is represented by its d-dimensional Resource Demand Vector (RDV)

Dv = {Dr
v}, where Dr

v denotes the demand of resource r (r ∈ RCS) of v. Moreover,

memory page dirty rate and current host PM for a VM v are denoted by vdr and vhp,

respectively.

The set of VMs hosted by a PM p is denoted by HVp. The Resource Utilization Vector

(RUV) of p is denoted by Up = {U rp}, where U rp denotes the utilization of resource r

(r ∈ RCS) and is computed as the sum of the RDVs of its hosted VMs:

U rp =
∑
v∈HVp

Dr
v. (6.1)

In this modeling, the data center is not restricted to any fixed network topology. Net-

work distance and available network bandwidth used for VM live migration operations

between any two PMs p1 and p2 are represented by DS(p1, p2) and BA(p1, p2). This net-

work distance can be any practical measure, such as the number of hops or switches or
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Table 6.1: Notations and their meanings

Notation Meaning

v Individual Virtual Machine
VMS Set of active VMs in a data center
vcpu CPU demand of a VM v
vmem Memory demand of a VM v
vdr Page Dirty Rate of a VM
vhp Host PM of a VM
Nv Total number of VMs in a data center
V Set of active VMs in a PM cluster
Nvc Number of VMs in a PM cluster

p Individual Physical Machine
PMS Set of active PMs in a data center
HVp Set of VMs hosted by PM p
Np Total number of PMs in a data center
P Set of PMs in a PM cluster
Npc Number of PMs in a cluster

r Single computing resource in PM (e.g., CPU, memory, network I/O)
RCS Set of computing resources available in PMs
d Number of resource types available in PM

DS(p1, p2) Network distance between PMs p1 and p2
BA(p1, p2) Available bandwidth between PMs p1 and p2
OG(v, p) Overall gain of assigning VM v to PM p
UGp(v) Utilization gain of PM p after VM v is assigned in it
MO(v, p) Migration overhead incurred due to transferring VM v to PM p
f3 MDVCP Objective Function

MD Amount of VM memory (data) transferred during a migration
MT Total time needed for carrying out a VM migration operation
DT Total duration during which VM is turned down during a migration
NC Network cost that will be incurred for a migration operation

MEC Energy consumption due to VM migration
MSV SLA violation due to VM migration
MM Migration map given by a VM consolidation decision

network link latency in the communication path between p1 and p2. Thus, the network

distance DS and available bandwidth BA models are generic and different model formula-

tions focusing on any particular network topology or architecture can be readily applied in

the optimization framework and proposed solution. Although singular distance between

two PMs is considered here, link redundancy and multiple communication paths in data

centers can be incorporated in the proposed model and the consolidation algorithm by

appropriate definition of the distance function (DS) and the available bandwidth function

(BA).

Given the above models and concepts, the objective of the MDVCP problem is to

search for a VM migration decision for all the VMs in the data center that maximizes the
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number of released PMs (that can be turned to lower power states) at a minimal overall

migration overhead, while respecting the PM resource capacity constraints. Therefore,

the Objective Function (OF) f3 of the MDVCP problem can be expressed as follows:

maximize f3(MM) =
nReleasedPMφ

MO(MM)
(6.2)

where MM is the Migration Map for all the VMs in the data center which is defined as

follows:

MMv,p =


1, if VM v is to be migrated to PM p;

0, otherwise.

(6.3)

MO(MM) represents the overall migration overhead of all the VM migrations denoted by

migration map MM which are necessary for achieving the consolidation and is expressed

by (6.13). Details on measuring an estimation of the migration overhead (MO(MM)) is

presented in the next section. And, φ is a parameter that signifies the relative importance

between the number of released PMs (nReleasedPM) and migration overhead (MO) for

computing the OF f3.

The above-mentioned OF is subject to the following PM resource capacity constraints:

∑
v∈VMS

Dr
vMMv,p ≤ Crp ,∀p ∈ PMS,∀r ∈ RCS. (6.4)

The above constraint ensures that the resource demands of all the VMs that are migrated

to any PM do not exceed PM’s resource capacity for any of the individual resource types.

And, the following constraint guarantees that a VM is migrated to exactly one PM:

∑
p∈PMS

MMv,p = 1,∀v ∈ VMS. (6.5)

For a fixed number of PMs in a data center, maximization of the number of released PM

(nReleasedPM) otherwise means minimization of the number of active PMs (nActivePM)

used for hosting the Nv VMs. Moreover, as argued in Chapter 4, Subsection 4.2.1, min-

imization of the number of active PMs otherwise indicates minimization of the power

consumption and resource wastage of the active PMs in a data center, as well as maxi-

mization of packing efficiency (PE). Thus, the above OF f3 models the addressed MDVCP

problem as a multi-objective problem. Moreover, it is worth noting that f3 represents an
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expression of multiple objectives with potentially conflicting goals— it is highly likely that

maximization of the number of released PMs would require VM migrations that have large

migration overhead. Therefore, any solution, to be efficient in solving the MDVCP prob-

lem, would require it to maximize the number of released PMs with minimal migration

overhead.

Within the above definition, the MDVCP is represented as a discrete combinatorial

optimization problem since the objective is to find a migration map (i.e., the optimal

solution) from the finite set of all possible migration maps (i.e., solution space) that gives

maximum value for the OF f3. Furthermore, it is worth noting that the search space of

the problem increases exponentially with Nv and Np. Effectively, the MDVCP problem

falls in the category of NP−hard problems for which no exact solution can be obtained

in realistic time.

6.3 Proposed Solution

A dynamic VM consolidation mechanism requires running VMs to be migrated and

consolidated into fewer PMs so that empty PMs can be turned to lower power states in

order to save energy. However, VM live migration impacts hosted applications, requires

energy to transfer VM memory pages, and increases network traffic. Furthermore, these

migration overheads vary from VM to VM, depending on several migration related pa-

rameters, such as VM memory size and the available bandwidth of the network link used

for the migration. Therefore, dynamic VM consolidation schemes need to know a measure

of the overhead for each VM migration in order to reduce the overall migration impact.

In light of the above discussion, this section first presents a VM live migration overhead

estimation model considering the relevant migration parameters. Secondly, in order to im-

prove scalability of the dynamic VM consolidation algorithm and reduce network traffic

incurred due to required VM migrations, a PM clustering scheme is presented that groups

PMs in the data center based on the inter-PM network distances and dynamic consoli-

dation being performed within each cluster locally. Finally, the migration impact-aware

dynamic VM consolidation algorithm (AMDVMC) is proposed by utilizing the various

models presented in this chapter and in Chapter 4.
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6.3.1 VM Live Migration Overhead Estimation

VM Live Migration [26] is a powerful feature of virtualization platforms that allows an

active VM running live application services to be moved around within and across data

centers. As presented in Section 2.4, compared to Static or Cold VM Migration [112],

where the VM to be migrated is turned off and merely a configuration file is transferred to

the destination PM to restart the VM, live migration ensures that the VM remains running

during most of the migration duration and experiences a shorter downtime during which

the hosted services become unavailable. However, live migration techniques may result in

higher total migration time since VM memory pages are transferred from the source PM to

the destination PM, either in multiple iterations [26] or on-demand based on page fault at

the destination PM [61,131]. Nevertheless, because of the obvious benefit of uninterrupted

service and shorter VM downtime, live migration is widely used for VM management and

dynamic reconfiguration in production data centers.

Nonetheless, VM live migration has a negative impact on the performance of applica-

tions running in a VM during the migration duration, on the underlying communication

network due to the traffic resulting from transferring VM memory pages, as well as energy

consumption due to carrying out the migration operation [78]. These migration overheads

can vary significantly for different application workloads due to the variety of VM config-

urations and workload patterns. For example, previous measurement studies on VM live

migration demonstrated that VM downtime can vary significantly among workloads due to

the differences in memory usage patterns, ranging from 60 milliseconds for a Quake 3 game

server [26] to 3 seconds in the case of high-performance computing benchmarks [92]. An-

other experimental study showed that applications hosted by migrating VMs suffer from

performance degradation during the whole migration duration [124]. As a consequence, it

is important to identify the relevant parameters that affect the migration process and the

migration overhead factors that result from the process. To this end, the remaining part

of this subsection presents a brief overview of the VM live migration process and details

on the proposed migration overhead estimation models.

Single VM Migration Overhead Estimation

Among the various VM live migration techniques (Subsection 2.4.1), Pre-copy VM

Migration has been the most popular and widely used as the default VM migration sub-

system in modern hypervisors, such as XenMotion [26] for Xen Server and VMotion [93] for
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Figure 6.3: Pre-copy VM live migration techniques and factors that affect migration im-
pact.

VMware ESXi Server. In this technique, the migrating VM continues to run in the source

PM while the VM memory pages are iteratively transferred from the source to the destina-

tion (Figure 6.3). After a predefined number of iterations are completed, or a pre-specified

amount of dirty memory remains to be transferred, or any other terminating condition

is met, the VM is stopped at the source, the remaining memory pages are moved to the

destination and, finally, the VM is restarted in the destination PM. The obvious benefits

of this technique are the relatively short stop-and-copy phase and, therefore, shorter VM

downtime compared to other live migration techniques, and higher reliability as it retains

an up-to-date VM state in the source machine during the migration process. However,

pre-copy migration can require longer total migration time since memory pages can be

transmitted multiple times in several rounds depending on the page dirty rate and, for the

same reason, it can generate much higher network traffic compared to other approaches.

Therefore, given the migration parameters (e.g., VM memory size and page dirty rate)

that affect VM live migration, it is necessary to estimate measures of migration overhead

factors properly (e.g., total migration time and VM downtime) in order to decide which

VMs to migrate for dynamic consolidation so as to reduce the overhead incurred due to

the migration operation.

VM Migration Parameters There are several migration parameters that affect mi-

gration performance and, hence, the accuracy of migration overhead estimation [4]:

1. VM Memory Size (vmem): In the first iteration, the pre-copy migration scheme

transfers the whole VM memory from the source PM to the destination PM and,
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thus, the duration of the first iteration is directly proportional to the memory size.

As a result, the memory size impacts the total migration duration and on average,

this duration varies linearly with the memory size. Moreover, a larger memory

indicates that more network traffic will be generated for performing the migration

operation.

2. VM Page Dirty Rate (vdr): After the first iteration, only the memory pages that are

modified (i.e., dirty) during an iteration are copied from the source to the destination

PM in the next iteration. Thus, a higher page dirty rate causes more data transfer

per iteration and results in a longer total migration duration. Furthermore, a higher

page dirty rate indicates that more memory pages need to be transferred in the last

transfer round and, as a consequence, this increases the VM downtime.

3. Migration Link Bandwidth (BA): For each of the pre-copy migration data transfer

rounds, a higher link bandwidth will enable faster data transmission and shorten

the round duration. As a result, both the total migration time and VM downtime

will be reduced. Thus, the migration link bandwidth is inversely proportional to the

total migration time and VM downtime.

4. Migration Link Distance (DS): Since VM migration causes a non-negligible amount

of data transfer through the communication network, it incurs a traffic overhead on

the network links of the data center. In this context, the migration link distance can

refer to the physical distance that migration-related data needs to be transferred

or the latency/delay in data communication from the source PM to the destination

PM. Therefore, the migration link distance has a direct effect on the overall network

overhead for the migration.

Apart from the above-mentioned general parameters, the VM migration impact can

vary based on two migration configuration parameters of the specific hypervisor:

1. Threshold value for the remaining amount of dirty memory (DVth), and

2. Maximum number of rounds for the pre-copy migration algorithm (max round).

When the pre-copy migration process reaches either of the above two points, the VM is

stopped, the remaining dirty memory is transferred, and the VM is restarted in the desti-

nation PM (termed stop-and-copy phase). However, for a data center with homogeneous
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hypervisors, these two parameters can be considered predefined and fixed and, therefore,

these are considered as constants in the proposed overhead estimation model.

Migration Overhead Factors Given the above migration parameters, the proposed

model estimates the following four migration overhead factors that contribute to overall

migration overhead:

1. Migration Data Transferred (MD): As the pre-copy migration process involves mul-

tiple rounds for sending dirtied memory in the previous rounds from the source to

the destination, the total amount of data transferred due to the migration can be

equal to or greater than the VM memory size. This factor has a direct impact on

the energy consumption and network overhead incurred due to the migration.

2. Migration Time (MT ): This implies the total duration for the migration from the

initiation of the migration process to the point when the migrated VM has started

running in the destination PM. This is an important element of the overall migration

impact since the migrating VM suffers from performance degradation during the

migration duration [12].

3. VM Downtime (DT ): This represents the time duration for which the VM would be

halted and the hosted service would be unavailable to the consumers. VM downtime

is composed of the time duration needed for the stop-and-copy phase to transfer the

remaining dirty memory in the last iteration and the time spent in resuming the VM

at the destination PM (Section 2.4).

4. Network Cost (NC): The network cost or overhead of a VM migration is modeled

as the product of the total data (i.e., memory pages) transferred (MD) from the

source PM to the destination PM during the migration process and the network

distance (DS) between PMs. Since data center networks are usually designed in a

hierarchical fashion (e.g., tree topology [5]), VM migrations that involve transmis-

sion of migration data through higher layer network switches (e.g., core/aggregation

switch) incur more network cost compared to migrations that involve data transmis-

sion among PMs under the same access switches.

The model for estimating single VM migration overhead follows the internal operational

steps of the pre-copy migration technique and extends the VM live migration performance
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modeling presented by Liu et al. [78]. The algorithmic steps of the process (VMMigOv-

erhead) is presented in Algorithm 6.1. As input, it takes the above-mentioned migration

parameters and the destination PM, and computes estimates for the above-mentioned mi-

gration overhead factors. The algorithm starts by initializing MD and MT to zero which

store the estimates of the total data to be transmitted and time duration for the whole

migration process.

After setting ps to the current host PM of the VM, the VMMigOverhead algorithm

checks whether the source and destination PMs are the same [lines 1–2]. If yes, then it

sets DT and NC to zero and terminates, since there is no memory data transfer in this

case [lines 3–6].

If the source and destination PMs differ, it sets DV0 to the VM memory size which

indicates that the whole memory will be transmitted during the first round as per the

pre-copy migration technique [line 7].

In each migration round [lines 8–19], the model estimates the time duration of the

round (Ti) by dividing the memory data to be transferred (DVi) in this round (which

is estimated in the previous round) by the available bandwidth (BA) of the migration

network link [line 9]. It also estimates the size of the Writable Working Set (WWS) for

the next round and deducts it from the memory size that is expected to be dirtied in

this round in order to estimate the memory data that will be transmitted in the next

round [lines 10–12]. The WWS is deducted since it represents the memory pages that

are modified very frequently and are skipped during the pre-copy rounds. And, µ1, µ2,

and µ3 are model parameters that can be learned through benchmarking and learning

techniques (e.g., linear regression). Table 6.2 shows the values of these parameters used

for the purpose of performance evaluation. Details on this derivation and parameter values

can be found in the original paper [78].

If the estimate of the memory data to be transferred in the next round goes below

the predefined threshold (DVth) or is greater than the memory data that is estimated to

be transferred in this round [line 13], then it indicates that the termination condition is

met and the next round would be the stop-and-copy phase of the migration process. For

that round, it estimates the size of the memory data to be transferred, the duration of the

stop-and-copy phase, and the VM downtime (DT ) [lines 14–16]. Finally, the algorithm

estimates the total memory data to be transferred (MD) and the migration duration (MT )
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Algorithm 6.1 VMMigOverhead Algorithm

Input: vmem, vdr, BA, DS, and p.
Output: MD, MT , DT , and NC.
Initialization: MD ← 0; MT ← 0.

1: ps ← vhp

2: if ps = p then {Check whether the source PM and destination PM are the same}
3: DT ← 0
4: NC ← 0
5: return
6: end if
7: DV0 ← vmem {In the first iteration, the whole VM memory is transferred}
8: for i = 0 to max round do
9: Ti ← DVi/BA(ps, p) {Estimate the time duration for this pre-copy round}

10: κ← µ1 × Ti + µ2 × vdr + µ3
11: Wi+1 ← κ× Ti × vdr {Estimate the size of WWS for the next round}
12: DVi+1 ← Ti × vdr −Wi+1 {Estimate the migration data size for the next round}
13: if DVi+1 ≤ DVth ∨DVi+1 > DVi then {Check if termination condition is met}
14: DVi+1 ← Ti × vdr
15: Ti+1 ← DVi+1/BA(ps, p)
16: DT ← Ti+1 + Tres {Estimate the duration of VM downtime}
17: break
18: end if
19: end for
20: for i = 0 to max round do
21: MD ←MD +DVi {Estimate the total memory data transfer}
22: MT ←MT + Ti {Estimate the total migration time}
23: end for
24: NC ←MD ×DS(ps, p) {Estimate network cost for the migration}

by accumulating the memory data size and the time duration for each of the rounds,

respectively [lines 20–23], as well as the network cost as a product of the total memory

data and the network distance between the VM’s current host PM (ps) and the destination

PM (p) [line 24].

Finally, the unified Migration Overhead MO for migrating a VM v from its current host

(vhp) to the destination PM p is modeled as a weighted summation of the estimates of the

above-mentioned migration overhead factors computed by algorithm VMMigOverhead:

MO(v, p) = α1 ×MD(v, p) + α2 ×MT (v, p) + α3 ×DT (v, p) + α4 ×NC(v, p) (6.6)

where α1, α2, α3, and α4 are input parameters that indicate the relative importance of

the contributing migration overheads and α1, α2, α3, α4 ∈ [0, 1] such that
∑4

i=0 αi = 1. In

order to keep the migration overhead within a fixed range of [0, 1] so that it is compatible
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to be integrated into dynamic VM consolidation mechanisms, all the contributory factors

MD, MT , DT , and NC are normalized against their maximum possible values before

feeding them to compute the migration overhead MO.

Modeling Energy Consumption due to Migration

In a large data center with hundreds or thousands of running VMs, dynamic VM

consolidation decisions can involve a large number of VM migrations. As a result, energy

consumption due to the migration decisions should be taken into account and migration

decisions that require a lower amount of energy consumption should be given preference

over those that require higher energy. Since VM live migration is an I/O intensive task,

the energy is primarily consumed due to the memory data transfer from the source to

the destination. This data transfer involves the source PM, the destination PM, and the

network switches. This work utilizes the energy consumption model presented by Liu et

al. [78]. Here, the energy consumption by the switches is not taken into account due to the

inherent complexity of the switching fabric. Moreover, since the data transmitted by the

source and received by the destination are equal, it can be assumed that that the energy

consumption by the two ends is the same. Therefore, the total energy consumption due

to a single VM migration is shown to be linearly correlated with the amount of memory

data transmitted from the source to the destination:

MEC(v, p) = γ1 ×MD(v, p) + γ2 (6.7)

where γ1 and γ2 are model parameters. The specific values of these parameters used

for the evaluation are shown in Table 6.2 and are taken as reported by Liu et al. [78].

When migration data (MD) is measured in Megabytes, the migration energy consumption

(MEC) is estimated in Joules.

Modeling SLA Violation due to Migration

Since the applications hosted by a migrating VM experience performance degradation

during the course of the migration operation, it is important to estimate the corresponding

SLA violation and take this into consideration for any VM consolidation operation [12].

Obviously, VM consolidation decisions that result in fewer SLA violations compared to

others are preferable in terms of migration overhead. An experimental study [124] on the

impact of VM migration on an application demonstrates that performance degradation
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depends on the application behavior, particularly on the number of memory pages modified

by the application (i.e., page dirty rate). Furthermore, the study suggests that, for the

class of web-applications, the average performance degradation can be estimated at around

10% of the CPU utilization during the migration operation. Therefore, the SLA violation

due to a VM migration is modeled as follows:

MSV (v, p) = σ × vcpu ×MT (v, p). (6.8)

where σ is an input parameter that indicates the percentage of performance degradation

due to the migration.

Overall VM Migration Impact due to Dynamic VM Consolidation

For medium to large data centers, an offline, dynamic VM consolidation operation

can require multiple VM migrations in order to achieve the desired consolidation. With

the single migration overhead estimation models presented above, he estimates of the

aggregated VM migration overhead factors are defined below:

1. Each VM migration data (MD) implies the amount of VM memory data that is

needed to be transferred from the source PM to the destination PM and this data

amount is directly proportional to the amount of energy needed for performing the

migration operation. Therefore, the estimate of the aggregated migration data that

will be transferred due to the VM migrations represented by a particular migration

map MM is given by:

MD(MM) =
∑

〈v,p〉∈MM

MD(v, p). (6.9)

2. Since the applications, which are hosted by a VM, experience performance degra-

dation during the period of VM migration (MT ) and therefore, the corresponding

SLA violation is proportional to the migration time, the aggregated migration time

for all the VM migrations represented by migration map MM is modeled as follows:

MT (MM) =
∑

〈v,p〉∈MM

MT (v, p). (6.10)
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3. For any VM performing live migration, the services provided by the hosted appli-

cations remain unavailable to the consumers during the total period of the VM’s

downtime. In order to reflect on the overall service outage of the migrating VMs,

the aggregated VM downtime is measured as the accumulated downtime of all the

migrating VMs given by migration map MM :

DT (MM) =
∑

〈v,p〉∈MM

DT (v, p). (6.11)

4. The network cost (NC) that is incurred due to each VM migration implies the

amount of additional network traffic and the corresponding energy consumption by

the network switches due to the migration operation. Therefore, the network costs

are considered additive and the aggregated network cost for a particular migration

map MM is given by:

NC(MM) =
∑

〈v,p〉∈MM

NC(v, p). (6.12)

Given the above estimation models for single VM migration overhead factors, the

overall migration overhead for a particular dynamic VM consolidation plan (or MM) for a

group or cluster of PMs is modeled as the accumulated overhead of all the necessary VM

migrations within that group or cluster:

MO(MM) =
∑

〈v,p〉∈MM

MO(v, p). (6.13)

Similarly, the estimate of the aggregated migration energy consumption for migration

map MM is computed as the summation of the migration energy consumption of the

individual VMs:

MEC(MM) =
∑

〈v,p〉∈MM

MEC(v, p). (6.14)

And, the estimate of aggregated SLA violation for all the VM migrations given by a

migration map MM is defined as follows:

MSV (MM) =
∑

〈v,p〉∈MM

MSV (v, p). (6.15)
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Figure 6.4: Clustering data center servers based on network proximity.

6.3.2 Hierarchical, Decentralized, Dynamic VM Consolidation Frame-

work

This subsection presents a hierarchical, decentralized, dynamic VM consolidation frame-

work. In order to achieve scalability, PMs in a data center are grouped into smaller clusters

and the dynamic VM consolidation operation is performed separately within each clus-

ter. With the goal of reducing the network overhead incurred due to the necessary VM

migrations resulting from dynamic VM consolidation operation, PM clusters are formed

based on the network cost of data communications among the PMs. The network cost can

be derived through practical measures, such as the one presented in Section 5.2. In this

proposed framework, the number of switches in the data communication path among the

PMs is considered as a measure of the network distance and, based on this definition, PMs

under the same access switch are grouped as an individual cluster (Figure 6.4). However,

such hierarchical, decentralized framework and the VM consolidation algorithm are not

restricted to this particular cluster formation approach and any other static or dynamic

cluster formation techniques can be readily integrated with this framework. Cluster for-

mation based on network proximity ensures that VMs are migrated to short distant target

servers and this then limits the overall migration impact on applications and data center

network. This is reflected in the network cost incurred due to the migration decision.

Figure 6.5 presents an overview of the hierarchical structure of the framework. Each

PM in a cluster runs a Local Agent that collects VM related information, such as a list of

hosted VMs (HVp) and their resource usage (Dv). The Global Controller is the topmost
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Figure 6.5: A Hierarchical, Decentralized Dynamic VM Consolidation Framework.

entity that has a global view of the data center, including the list of PM (PMS) and network

information (DS and BA), and is responsible for cluster formation decisions. The Global

Controller periodically sends cluster related information to each of the Cluster Controllers,

such as a set/list of PMs in a cluster (P ). Within each cluster, the Cluster Controller

periodically receives information of the hosted VMs from each of the Local Agents and

forms a cluster-wide list of VMs (V ) hosted by the PMs. Within each cluster, the Cluster

Controller periodically receives information on the hosted VMs from each of the Local

Agents and forms a cluster-wide list of VMs (V ) hosted by the PMs. When a triggering

event occurs for the offline, dynamic VM consolidation operation (e.g., periodic or resource

utilization threshold-based), each Cluster Controller runs the dynamic VM consolidation

algorithm for its cluster and issues the necessary VM migration commands to the respective

hypervisors. Global controller and cluster leader selection decision can be made either

using static configuration or dynamic cluster leader selection algorithms [34,79]. However,

this aspect is beyond the scope of this chapter.
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6.3.3 Migration Overhead-aware, Multi-objective Dynamic VM Consol-

idation Algorithm

This subsection presents the migration impact-aware, multi-objective dynamic VM

consolidation algorithm (AMDVMC) based on the Ant Colony System (ACS) metaheuris-

tic [36] that iteratively refines migration plans in order to maximize the OF f3 (6.2).

The ACO-based metaheuristic is chosen as a solution for the MDVCP problem because

of its proven effectiveness in the field of combinatorial optimization and polynomial time

complexity [40]. The main components of the proposed AMDVMC algorithm are shown

in Figure 6.6. As input, it takes the PM cluster along with the hosted VMs, and the

AMDVMC consolidation scheme makes use of the single and overall VM migration over-

head models presented in Subsection 6.3.1, as well as the various resource and energy

related models presented in Subsection 4.2.3 and Subsection 4.2.4. Within the scheme,

the AMDVMC Controller creates multiple ant agents and delivers every ant an instance

of the input PM cluster. The ants run in parallel, compute solutions (i.e., VM migration

maps MM = {〈v, p〉}), and pass the maps to the Controller. Each migration map consists

of a list of VM-to-server migration commands (〈v, p〉) for all the VMs in the cluster. For

the migration commands where the source and the destination PMs are the same, all the

migration factors and overhead for these VMs would be zero and would not contribute to

the overall migration overhead. The AMDVMC Controller then detects the best migration

map based on the OF f3 (6.2), updates the shared pheromone information, and executes

the ants once again for the next cycle. Finally, when the predefined stop condition is met,

the controller outputs the so-far-found best migration map.

Adaptation of ACO Metaheuristic for AMDVMC

Following a similar adaption performed for the AVVMC algorithm proposed for solv-

ing the multi-objective consolidated VM cluster placement problem (MCVPP) presented

in Subsection 4.4.2, each VM-to-PM migration within a cluster is considered as an indi-

vidual solution component for adapting the ACS metaheuristic [36] in order to solve the

multi-objective dynamic VM consolidation problem. However, from the perspective of

the solution-building process of ACS metaheuristic, there are two fundamental differences

between the MCVPP problem outlined in Chapter 4 and the MDVCP problem defined in

this chapter:
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Figure 6.6: AMDVMC algorithm with associated models.

1. The initial data center states of MCVPP and MDVCP are not the same: in the

case of MCVPP, VMs are initially unassigned and the PMs are considered empty

whereas in the case of the MDVCP, VMs are already assigned to their host PMs and

therefore the PMs are not empty.

2. In the case of MCVPP, each VM-to-PM assignment provides some benefit in terms of

resource utilization but does not have any associated overhead or negative impact,

whereas for the MDVCP, migrating a VM to a PM other than its current host

provides some benefit in terms of resource utilization, but at the same time, incurs

migration overhead.

Without any loss of generality in the ACS’s solution-building process, the first differ-

ence is addressed by considering that the VMs are initially pulled out of the host PMs and

kept in a virtual VM pool and, in this way, the PMs can be considered virtually empty.

As for the second difference, both the OF f3 (6.2) and the heuristic information (6.17) are

updated in order to reflect the differences.
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It is worth noting that by the use of such adaptation, as well as the resource capacity

and migration-related constraints defined in Section 6.2.1, the proposed VM consolida-

tion approach effectively prevents the occurrences of unfavorable situations, such as a VM

migrates between two PMs continually or cascading VM migrations. The addressed VM

consolidation problem is formulated using strong constraints so that the modeled scenario

can be a reflection of VM consolidation operations in real world settings. VM migra-

tion constraints are represented by formulations 6.3 and 6.5 which express that any VM

within the data center can be migrated to at most one destination server during a VM

consolidation round. This constraint effectively prevents the occurrence of situations such

as a particular VM is selected for multiple migrations. Furthermore, situations such as

cascading VM migrations can never arise as well since the proposed AMDVMC consolida-

tion algorithm ensures that any VM migration decision is taken only when the destination

server has enough resource capacities to host the migrating VM. Cascading VM migrations

can occur in cases when migration of a VM from its current host to a destination server

requires other VM migration(s) from that destination server to third server(s) in order to

make room for the initial VM migration. However, the proposed adaptation of the ACO

metaheuristic for solving the dynamic VM consolidation problem effectively prevents any

possibilities of such situations.

Pheromone values are associated to each VM-to-PM migration that denotes the de-

sirability of migrating a VM to a target PM (6.16 & 6.22) and are implemented using

an Nv × Np pheromone matrix τ . During the solution-building process, heuristic values

are computed dynamically for each VM-to-PM migration, which represents the preference

of migrating a VM to a target PM in terms of both PM resource utilization and VM

migration overhead (6.17). In an ACO cycle, each ant agent generates a solution (migra-

tion map) comprising of a list of VM-to-PM migrations. At the end of each cycle, the

best solution is identified based on the OF f3 (6.2) value and the pheromone levels of the

solution components are updated so as to navigate the search space more effectively and

shun early stagnation to a sub-optimal.

The AMDVMC Algorithm

The pseudocode of the proposed AMDVMC algorithm is shown in Algorithm 6.2. It

starts with a list of PMs (P ) in a cluster along with the set of hosted VMs (V ) and the

relevant parameters as input, and generates a migration map (MM) as output. At the



6.3 Proposed Solution 189

beginning of each cycle, each ant starts with an empty migration map, a set of empty

PMs having total resource capacities similar to the PMs in P (generated by subroutine

EmptyPMSet), and a set of VMs having total resource demands similar to the VMs in

V (generated by subroutine CopyVMSet), and shuffles the VMs in vmList [lines 2–7].

Ants work with empty PMs and the VMs are considered to be not-yet-placed in order

to facilitate consolidation of VMs with the goal of maximizing resource utilization and

eventually, minimizing energy consumption by increasing the number of released PMs.

Moreover, when assigning VMs to PMs, ants take into consideration where the VMs

are currently hosted and the corresponding migration overhead is taken into account for

making the migration decisions. And, shuffling the VMs of vmList adds randomization in

the subsequent search process.

Within lines 11–21, all the ants generate their migration maps (solutions) using a

modified ACS rule (6.19). In each while loop iteration, an ant is chosen randomly [line

12]. If the ant has at least one VM in its vmList, it chooses a VM-to-PM migration from

all the feasible VM migration options for the VM in vmList, adds the 〈VM,PM〉 pair in

its migration map (MM), and removes the VM from its vmList [lines 13–16]. Otherwise,

the ant has finished making migration decisions for all the VMs and it computes the OF

(f3) value for its solution according to (6.2) and the ant is removed from antList [lines

17–20].

When all the ants have completed building their solutions, the while loop ends and the

new Global-best Migration Map (GBMM) is identified by comparing the existing GBMM

with the newly computed migration maps [lines 23–29]. Thereafter, the pheromone rein-

forcement amount is computed based on the quality of the GBMM [line 31] accordingly

to (6.23) and the pheromone matrix is updated by simulating pheromone evaporation

and deposition for each 〈VM,PM〉 pair accordingly to (6.22) [lines 32–36]. The algorithm

reinforces the pheromone values only on the 〈VM,PM〉 pairs that belong to the GBMM .

Finally, the algorithm checks whether there has not been any improvement in the

quality of the solution for the last nCycleTerm cycles or a total of nResetMax cycle resets

have occurred [line 37]. If it finds improvement, the search process repeats; otherwise, the

algorithm terminates with the current GBMM as output. The nResetMax parameter is

used to set an upper bound on the number of cycle resets so that AMDVMC does not
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Algorithm 6.2 AMDVMC Algorithm
Input: Set of PMs P and set of VMs V in the cluster, set of ants antSet. Set of parameters
{nAnts, nCycleTerm, nResetMax, ω, λ, β, δ, q0, a, b}.
Output: Global-best migration map GBMM .
Initialization: Set parameter values, set pheromone value for each 〈VM,PM〉 pair (τv,p) to τ0
[(6.16)], GBMM ← ∅, nCycle← 0, nCycleReset← 0.

1: repeat
2: for each ant ∈ antSet do {Initialize data structures for each ant}
3: ant.mm← ∅
4: ant.pmList← EmptyPMSet(P )
5: ant.vmList← CopyVMSet(V )
6: Shuffle ant.vmList {Shuffle VMs to randomize search}
7: end for
8:

9: nCycle← nCycle+ 1
10: antList← antSet
11: while antList 6= ∅ do
12: Pick an ant randomly from antList
13: if ant.vmList 6= ∅ then
14: Choose a 〈v, p〉 from set {〈v, p〉|v ∈ ant.vmList, p ∈ ant.pmList} according to (6.19)
15: ant.mm← ant.mm ∪ 〈v, p〉 {Add the selected 〈v, p〉 to the ant’s migration map}
16: ant.vmList.remove(v)
17: else{When all VMs are placed, then ant completes a solution and stops for this cycle}
18: Compute the objective function (OF) value for ant.mm.f3 according to (6.2)
19: antList.remove(ant)
20: end if
21: end while
22:

23: for each ant ∈ antSet do {Find global-best migration map for this cycle}
24: if ant.mm.f3 > GBMM.f3 then
25: GBMM ← ant.mm
26: nCycle← 0
27: nCycleReset← nCycleReset+ 1
28: end if
29: end for
30:

31: Compute ∆τ based on (6.23) {Compute pheromone reinforcement amount for this cycle}
32: for each p ∈ P do {Simulate pheromone evaporation and deposition for this cycle}
33: for each v ∈ V do
34: τv,p ← (1− δ)× τv,p + δ ×∆τv,p
35: end for
36: end for
37: until nCycle = nCycleTerm or nCycleReset = nResetMax {AMDVMC ends either if it

sees no progress for consecutive nCycleTerm cycles, or a total of nResetMax cycle resets have
taken place}

run indefinitely. The remainder of this section formally defines the various parts of the

AMDVMC algorithm.

Definition of Pheromone and Initial Pheromone Amount: ACO algorithms [35]

start with a fixed amount of pheromone value for each of the solution components. For

each solution component (here each 〈v, p〉 migration pair), its pheromone level provides a
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measure of desirability for choosing it during the solution-building process. In the context

of AMDVMC, a fixed and uniform pheromone level for each of the solution components

means that, at the beginning, each VM-to-PM migration has equal desirability. Following

the approach used in the original ACS metaheuristic [36], the initial pheromone amount

for AMDVMC is set to the quality of the migration map generated by the referenced L1

norm-based First Fit Decreasing (FFDL1) baseline algorithm:

τ0 ← fFFDL1. (6.16)

Definition of Heuristic Information: Heuristic value provides a measure of prefer-

ence for selecting a solution component among all the feasible solution components during

the solution-building process. For the AMDVMC algorithm, heuristic value ηv,p indicates

the apparent benefit of migrating a VM v to a PM p in terms of the improvement in the

PM’s resource utilization and the overhead incurred for migrating v to p. However, an

increase in a PM’s resource utilization provides a positive incentive for improving the qual-

ity of the overall migration decision, whereas the migration overhead works as a negative

impact since it reduces the quality of the migration decision according to the OF f3 (6.2).

Therefore, the heuristic value ηv,p for selecting 〈v, p〉 migration is measured as follows:

ηv,p = λ× UGp(v) + (1− λ)× (1−MO(v, p)) (6.17)

where UGp(v) is the utilization gain of PM p after placing VM v in it and is computed as

follows:

UGp(v) = ω × (−log10‖RIVp(v)‖) + (1− ω)× Utilizationp(v) (6.18)

where ‖RIVp(v)‖ is the magnitude of the Resource Imbalance Vector (RIV) of the PM p

after assigning the VM v to it (4.11), Utilizationp(v) is the overall resource utilization of

the PM p if the VM v is assigned to it (4.19), and ω ∈ [0, 1] is a parameter that trades

off the relative importance of balanced versus overall resource utilization; and MO(v, p) is

the migration overhead incurred due to transferring the VM v to the PM p as expressed

in 6.6. Finally, λ ∈ [0, 1] is a parameter that sets the relative weight between the achieved

utilization gain and migration overhead incurred as per the definition. In order to ensure

metric compatibility for the heuristic formulation (6.17), both the utilization gain UG and

migration overhead MO are normalized against their maximum values.
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Pseudo-random Proportional Rule: During the migration map generation process

(Algorithm 6.2, line 14), an ant k uses the following probabilistic decision rule [36] to

select a VM v to be migrated to PM p:

s =


arg maxv∈FMk(vmList,pmList){τv,p × [ηv,p]

β}, if q ≤ q0;

S, otherwise

(6.19)

where q ∈ [0, 1] is a uniform random number, q0 ∈ [0, 1] is an input parameter, ηv,p

is the heuristic value for 〈v, p〉 migration (6.17), τv,p is the current pheromone value of

〈v, p〉 pair (6.22), β is a non-negative parameter that trades off between the significance

of the pheromone amount and the heuristic value in the decision rule, and S is a ran-

dom variable selected according to the probability distribution given below by (6.21).

FMk(vmList, pmList) defines the set of feasible migrations (〈v, p〉) for ant k based on the

VMs in vmList and PMs in pmList (i.e., VM migrations that do not violate the resource

capacity constraint of target PM p given by 6.4):

FMk(vmList, pmList) =
{
〈v, p〉

∣∣∣∀l ∈ RCS,∀v ∈ vmList, ∀p ∈ pmList : U lp +Dl
v ≤ C lp

}
.

(6.20)

The above-mentioned decision rule works as follows: when q ≤ q0, then the 〈v, p〉 pair

that results in the largest τv,p × [ηv,p]
β value is selected and added to the migration map

(exploitation), otherwise a 〈v, p〉 pair is chosen with probability Pk(v, p) using the following

random-proportional rule (exploration):

Pk(v, p) =


τv,p×[ηv,p]β∑

〈u,p〉∈FMk(vmList,pmList)
τu,p×[ηu,p]β , if 〈u, p〉 ∈ FMk(vmList, pmList);

0, otherwise.

(6.21)

The above random-proportional rule uses the pheromone values (τv,p) of each 〈v, p〉 pair

multiplied by the corresponding heuristic value (ηv,p) so as to prefer 〈v, p〉 pairs that

improve PM resource utilization (both balanced and overall) and incur lower migration

overhead, as well as having larger pheromone values.

Global Pheromone Update: With the aim of favoring the VM-to-PM migrations that

constitute the GBMM so that the ants can be better guided in the following iterations,
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the pheromone level of each 〈v, p〉 pair is updated using the following rule:

τv,p ← (1− δ)× τv,p + δ ×∆τv,p (6.22)

where δ is the global pheromone decay parameter (0 < δ < 1) and ∆τv,p is the pheromone

reinforcement applied to each 〈v, p〉 pair that make up the GBMM. The value of the

reinforcement is measured based on the quality of the solution in terms of the OF (f3)

value:

∆τv,p =


f3(GBMM), if 〈v, p〉 ∈ GBMM;

0, otherwise.

(6.23)

6.4 Performance Evaluation

This section presents the performance evaluation of the proposed AMDVMC algorithm

through simulation-based experimentation where the results are compared to both migra-

tion impact-unaware and migration impact-aware dynamic VM consolidation algorithms.

Subsection 6.4.1 provides description of the algorithms compared, Subsection 6.4.2 ex-

plains the simulation setup, and finally, the results and their analyses are presented in the

subsequent subsections.

6.4.1 Algorithms Compared

The following VM consolidation algorithms are implemented and compared in this

performance evaluation:

First Fit Decreasing based on L1-norm (FFFL1)

The FFFL1 algorithm is used as the baseline algorithm for the performance evaluation.

This algorithm does not take into account the current VM-to-PM placements and it is,

therefore, a migration impact-unaware algorithm. Scalability is ensured by running FFDL1

separately for each PM cluster as presented in the previous subsection. For each cluster,

VMs are considered to be pooled out of the PMs and sorted in decreasing order of their

resource demands. The L1-norm mean estimator is utilized to represent the three different

resources (CPU, memory, and network I/O) into a scalar form. Thereafter, FFDL1 places

each VM from the sorted list in the first feasible PM in the cluster following the First

Fit (FF) approach. The VM placements are subject to the resource capacity constraints
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presented in (6.4) and (6.5). When the dynamic consolidation is performed for all the PM

clusters, data center-wide performance metrics (resource, power, and migration overhead)

are accumulated using the pre-defined formulations (4.13), (4.15), and (6.9–6.15).

Time Complexity: For the above-mentioned implementation, the worst-case time com-

plexity for the FFDL1 algorithm is given by:

TFFDL1 = O(NvclgNvc) +O(NvcNpc). (6.24)

For the cases of average Cloud data centers, Npc is expected to be greater than lgNvc.

With this assumption, the above equation can be reduced to the following:

TFFDL1 = O(NvcNpc). (6.25)

Memory Overhead: Given that merge sort [28] is used in FFDL1 implementation,

then the memory overhead for sorting the VMs in a cluster would be O(Nvc). Apart from

sorting, the placement decision part of FFDL1 works in-place without using any additional

data structure. Therefore, the overall memory overhead of the FFDL1 algorithm is given

by:

MFFDL1 = O(Nvc). (6.26)

Max-Min ant system-based Dynamic VM Consolidation (MMDVMC)

The MMDVMC algorithm [45] is an offline, dynamic VM consolidation algorithm

that is executed in a random neighborhood of PMs based on an unstructured Peer-to-

Peer network [125]. It aims to increase the number of released PMs and the variance

of the scalar valued PM used capacity vectors, and reduce the number of necessary VM

migrations within each neighborhood of the data center. It utilizes the Max-Min Ant

System (MMAS) [111] to solve the dynamic consolidation problem where multiple ant

agents iteratively refine migration plans. This algorithm runs for nCycles cycles and

in each cycle a total of nAnts ant agents compute solutions. In each cycle, every ant

selects the VM migrations that eventually maximize the defined objective function value.

At the end of each iteration, the cycle-best migration plan is determined and compared

against the existing global-best plan in order to identify the new global-best migration

plan. Finally, pheromone values are updated for each VM-PM pair using a pheromone

update rule that bounds that pheromone values with a pre-defined range of [τmax, τmin].

The algorithm runs for a pre-defined number of iterations and returns that final global-best
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migration plan. The relevant parameter values for the algorithm are taken as reported

in the original paper [45]. The MMDVMC algorithm takes into account the number of

VM migrations as a measure of migration overhead or impact, which is analyzed as an

oversimplified measure in Section 6.3.1. Similar to FFDL1, data center-wide performance

metrics (resource, power, and migration overhead) are accumulated over all the clusters

using the pre-defined formulations (4.13), (4.15), and (6.9–6.15).

Time Complexity: From the algorithmic pseudocode presented in the original paper

[45], the worst-case time complexity of MMDVMC algorithm can be given by:

TMMDVMC = O(nCycles.nAnts.Nvc.Npc.Nvc)

= O(nCycles.nAnts.N2
vc.Npc).

(6.27)

Furthermore, considering the ACO parameters as constants, the worst-case time complex-

ity can be simplified to the following:

TMMDVMC = O(N2
vc.Npc). (6.28)

Memory Overhead: Since MMDVMC has used the MMAS metaheuristic, it has a

memory overhead of O(NvcNpc) for maintaining pheromone information. Moreover, it has

another O(nAnts) memory overhead for managing nAnts ant agents. Furthermore, in

every iteration, each ant agent computes its own migration plan, using its local list of PMs

for a cluster with their associated hosted VMs, and modifies the VM-to-PM assignments.

As a consequence, each ant agent has another O(NvcNpc) memory overhead due to the

local information of a cluster. Therefore, the overall memory overhead of MMDVMC is

given by:

MMMDVMC = O(Nvc.Npc) +O(nAnts.Nvc.Npc)

= O(nAnts.Nvc.Npc).
(6.29)

Considering the number of ants is fixed, the memory overhead is simplified as follows:

MMMDVMC = O(Nvc.Npc). (6.30)

ACO-based Migration impact-aware Dynamic VM Consolidation (AMDVMC)

The proposed AMDVMC algorithm is implemented based on the description presented

in Section 6.3.3 and follows the execution flow presented in Algorithm 6.2. The PMs in

the data center are grouped into PM clusters, as presented in Section 6.3.2, and dynamic

VM consolidation is performed by executing the AMDVMC algorithm in each cluster
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separately. Finally, data center-wide performance metrics (resource, power, and migration

overhead) are accumulated over all the clusters using the pre-defined formulations (4.13),

(4.15), and (6.9–6.15).

Time Complexity: The time complexity for initializing the ant-related data structures

(lines 2–7) is T2–7 = O(nAnts.Nvc). The complexity of the migration map generation

process for each of the ants is O(Nvc.Npc). Therefore, the time complexity of the mi-

gration maps generation for nAnt (lines 11–21) would be T11–21 = O(nAnts.Nvc.Npc).

Thereafter, the new GBMM identification part [lines 23–29] requires T23–29 = O(nAnts)

time. Finally, the pheromone update part [lines 31–36] has T31–36 = O(Nvc.Npc) time com-

plexity. Therefore, the overall time complexity for a single ACO iteration can be given

by:

TAMDVMC1
= T2–7 + T11–21 + T23–29 + T31–36

= O(nAnts.Nvc) +O(nAnts.Nvc.Npc) +O(nAnts) +O(Nvc.Npc)

= O(nAnts.Nvc.Npc).

(6.31)

And, finally the repeat-until loop can run for a maximum of O(nCycleTerm.nResetMax)

times. Therefore, the worst-case time complexity of AMDVMC algorithm can be given

by:

TAMDVMC = O(nCycleTerm.nResetMax.nAnts.Nvc.Npc). (6.32)

Furthermore, considering the ACO parameters as constants, the worst-case time complex-

ity can be simplified to the following:

TAMDVMC = O(Nvc.Npc). (6.33)

Memory Overhead: Similar to MMDVMC, AMDVMC has an O(NvcNpc) memory

overhead for maintaining the pheromone information that represents all possible VM-

to-PM migration preferences in the cluster and another O(nAnts) memory overhead for

managing nAnts ant agents. In addition, in every iteration, each ant agent generates its

migration map using its local list of PMs in the cluster with their associated hosted VMs

and updates the VM-to-PM placements. As a result, each ant agent has an additional

O(NvcNpc) memory overhead for managing local information of the cluster during each

iteration. Therefore, the overall memory overhead of AMDVMC algorithm is the following:

MAMDVMC = O(nAnts.Nvc.Npc). (6.34)
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Considering the number of ants is fixed, the memory overhead is simplified as follows:

MAMDVMC = O(Nvc.Npc). (6.35)

6.4.2 Simulation Setup

Data Center Setup

The simulated data center consists of Np homogeneous PMs with three-dimensional

resource capacities: CPU, memory, and network I/O. The total resource capacities of the

PMs are set as 5.0 GHz, 10 GB, and 1 Gbps. Absolute values of PM resource capacities

are simulated so that the migration overhead factors can be measured using the proposed

migration overhead estimation model. The power consumption for an active PM is cal-

culated according to the power consumption model presented in (4.14) and the values for

Eidle and Efull in the model are set to 162 watts and 215 watts, respectively, as used by

Gao et al. [50].

Given the fact that three-tier tree network topology with core-aggregation-access switch

levels are predominantly used in production data centers [71], PMs in the simulated data

center are interconnected with each other using three-tier tree network topology, as shown

in Figure 6.4, where each of the network switches have 8 ports. The maximum bandwidth

capacity of the inter-PM communication links used for the VM migrations is set to 1 Gbps,

and the available bandwidths of such links at run-time are synthetically generated using

random numbers from the normal distribution with a mean (MeanBW ) of 0.05 and a stan-

dard deviation (SDBW ) of 0.2. The network distance between any two PMs is measured

as DS = h×DF , where h is the number of physical hops (specifically, network switches)

between any two PMs in the simulated data center architecture as defined above, and

DF is the Distance Factor that implies the physical inter-hop distance. The value of h is

computed using the analytical expression for tree topology as presented in [85], and DF is

fed as a parameter to the simulation which is set to 2 for the performed experiments. The

network distance of a PM with itself is 0 which implies that data communication is done

using memory copy without going through the network. A higher value of DF indicates

greater relative communication distance between any two data center nodes.

Before the dynamic consolidation operation, Nv number of VMs are considered to

be running and are distributed randomly among the Np PMs in a load balanced mode.
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Such an initial data center state is simulated in order to provide an incentive for the of-

fline consolidation operation so that there is scope for the algorithms to improve resource

utilization and reduce energy consumption. The VM resource demands for CPU, mem-

ory, and network I/O are also synthetically generated using random numbers from the

normal distribution with variable mean MeanRsc and standard deviation SDRsc. The

corresponding VM page dirty rates (vdr) are generated using uniform random numbers

from the range [0, PR ∗vmem], where PR is the ratio of maximum possible page dirty rate

and VM memory size, and it is set to 0.25 for the whole simulation. Thus, the VM page

dirty rate (vdr) is effectively parameterized in the simulation by the VM memory demand

(vmem) and this eliminates the need for another parameter.

Table 6.2 summarizes the values of the parameters used in various formulations for the

VM migration overhead estimation presented in Section 6.3.1. Specifically, the values of

the remaining dirty memory threshold (DVth), the maximum number of pre-copy migration

rounds (max round), the coefficients for WWS computation (µ1,µ2, and µ3), and the VM

resume time (Tres) are taken as reported from the original paper [78] and are used in

Algorithm 6.1. The coefficients of VM migration energy consumption (γ1 and γ2) are used

in (6.7) and their values are taken as reported in by Liu et al. [78]. The coefficients for

computing the overall VM migration overhead MO (α1, α2, α3, and α4) are used in (6.6)

and each of them is set to 0.25 in order to give each of the overhead factors equal weight.

The overhead factors are normalized against their maximum possible values before using

in formulation (6.6), where the maximum values are identified by conducting preliminary

experiments. The percentage of SLA violation (σ) during the migration duration is used

in (6.8) and set to 0.1 as reported in a previous experimental study [124].

Finally, Table 6.3 shows the optimal values for the input parameters used for the pro-

posed ACO-based, Migration overhead-aware Dynamic VM Consolidation (AMDVMC)

algorithm, including those for the ACO metaheuristic. These values are determined by

rigorous parameter sensitivity analysis conducted during the preliminary phase of the

experiment, similar to those presented in Subsection 4.5.2. Input parameters for other

consolidation algorithms are taken as reported in the respective papers. All the experi-

ments presented in this paper have been repeated 1000 times and the average results are

reported.
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Table 6.2: VM migration-related parameters used in the simulation

Constants/Values Meaning

DVth = 200(MB) Remaining dirty memory threshold

max round = 20 Maximum number of rounds of pre-copy migration

µ1 = −0.0463 Coefficients for computing Writable Working Set
µ2 = −0.0001
µ3 = 0.3586

Tres = 20(ms) Time needed to resume a VM in the destination PM

α1 = 0.25 Coefficients for computing overall VM migration overhead
α2 = 0.25
α3 = 0.25
α4 = 0.25

γ1 = 0.512 Coefficients of VM migration energy computation
γ2 = 20.165

σ = 0.1 Percentage of SLA violation during migration

Table 6.3: ACS parameter values used for the AMDVMC algorithm in evaluation

nAnts nCycleTerm nCycleMax β δ q0 ω λ φ

5 5 100 1 0.3 0.8 0.5 0.05 1

Performance Evaluation Metrics

The quality of the consolidation decisions produced by the algorithms are compared

across several performance metrics. Each dynamic VM consolidation has two types of

performance factors: gain factors and cost factors.

The gain factors indicate the benefit or profit that can be achieved by a particular

consolidation. The first gain factor reported in the results is the number of released PMs

in the data center (nReleasedPM). The consolidation decision that releases the maximum

number of PMs effectively consolidates the running VMs in the minimum number of active

PMs. The PMs released in this process can be turned to lower power states to reduce power

consumption in the data center, or can be utilized to accommodate further VM requests,

which effectively improves the capacity of the data center, and eventually, maximizes profit.

Another closely related performance metric shown in the results is the packing efficiency

(PE) given by Equation (4.17). The PE indicates the average number of VMs packed

or consolidated in each of the active PMs. Therefore, as the term and the formulation

suggest, it effectively captures each algorithm’s efficiency in packing or consolidating the

running VMs in the active PMs.

The overall power consumption (measured in KW) of the active PMs according to

formulations (4.14) and (4.15) is reported as the third gain factor in this evaluation. This
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is one of the most important performance indicators for any consolidation scheme, which is

directly proportional to the operating cost of hosting the running VMs in the data center,

since reduction of the power consumption is equivalent to saving on the electricity costs

of data center operation. The last factor reported in this category is the overall resource

wastage (normalized against the total resource capacity of PM) of the active PMs after

the VM consolidation. This factor is measured as the accumulated resource wastage of the

PMs that are active after the consolidation where the individual PM’s resource wastage

(normalized) is measured according to formulation (4.13). Reduction in resource wastage

indicates efficiency in resource utilization in the data center, and thus the consolidation

that causes the least amount of resource wastage is to be preferred over others.

The cost factors reported in this evaluation are the migration overhead factors and

associated metrics for achieving a particular dynamic VM consolidation in the data center.

As described in earlier sections, dynamic VM consolidation achieved by VM live migrations

has adverse effects on the hosted applications and on the data center itself. The measures

of the cost factors incurred due to a particular consolidation decision, represented by

migration map MM , are captured primarily by the four aggregated migration overhead

factors presented in Section 6.3.1: the estimate of aggregated migration data transmitted

(memory) across the data center due to the VM migrations MD(MM) (6.9) in terabytes

(TB), the aggregated migration time MT (MM) (6.10) and the aggregated VM downtime

DT (MM) (6.11), both in the number of hours, and the aggregated network cost NC(MM)

(6.12). Obviously, for all of these cost factors, the VM consolidation decision that results in

the lowest overhead factors will be preferable over others. Moreover, the overall migration

overhead MO(MM) (6.13) is also reported as a unified metric that captures the overall

migration impact of a consolidation. Furthermore, an estimate of the aggregated migration

energy consumption MEC(MM) (in Kilo Joules) by the data center components (6.14)

and an estimate of the aggregated SLA violation MSV (MM) (6.15) of hosted applications

due to VM migrations are reported.

All the above performance metrics are measured against the following scaling factors:

(1) DC size (Np), (2) mean resource demands of VMs (MeanRsc), and (3) diversification

of workloads (SDRsc). The following subsections present the experimental results and

analysis for each of the experiments conducted.
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Simulation Environment

The algorithms are implemented in Java (JDK and JRE version 1.7.0) and the simu-

lation is conducted on a Dell Workstation (Intel Core i5-2400 3.10 GHz CPU (4 cores), 4

GB of RAM, and 240 GB storage) hosting Windows 7 Professional Edition.

6.4.3 Scaling Data Center Size

This part of the experiment demonstrates the quality of the VM consolidation decisions

produced by the algorithms with increasing problem size— the number of PMs (Np) in

the data center is set to 64 and increased to 4096 in stages, in each step by doubling

the previous value. The number of VMs running in the data center is derived from the

simulated number of PMs: Nv = 2 ∗ Np. As for the other parameters, MeanRsc and

SDRsc are set to 0.05 and 0.2, respectively.

Figure 6.7 shows the four gain factors mentioned above that resulted from the VM

consolidation decisions produced by the algorithms for different data center sizes. The

average number of PMs released by the algorithms for each Np value is plotted in Figure

6.7(a). As the figure demonstrates, on average, FFDL1, MMDVMC, and AMDVMC

algorithms release 42%, 23%, and 36% of the PMs, respectively, for different data center

sizes. FFDL1, being migration-unaware, consolidates the VMs without any regard to the

current VM-to-PM placements and, therefore, releases the maximum number of PMs.

MMDVMC, on the other hand, releases the least number of PMs, given that it tries to

keep the number of VM migrations minimal at the same time. Finally, the performance

of the proposed AMDVMC algorithm lies between the other algorithms by releasing 15%

fewer PMs compared to FFDL1 and 63% more PMs than MMDVMC. This is also reflected

in Figure 6.7(b) where it can be observed that AMDVMC achieves an average PE of 3.1,

whereas FFDL1 and MMDVMC achieve PEs of 3.5 and 2.6, respectively.

Similar performance patterns are demonstrated in Figure 6.7(c) and Figure 6.7(d)

which show the average power consumption (4.15) and the normalized resource wastage

(4.13) of the active PMs after consolidation, respectively. It can be seen from the figures

that both the power consumption and the resource wastage increase at the same rates

as the number of PMs (Np) are increased in the data center. Furthermore, compared to

MMDVMC, the consolidation decisions produced by AMDVMC result in, on average, 13%

less power consumption and 42% less resource wastage, respectively, whereas compared to
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Figure 6.7: Performance of the algorithms with increasing Np: (a) Number of Released
PMs, (b) Packing Efficiency, (c) Power Consumption, and (d) Resource Wastage (best
viewed in color).

FFDL1, AMDVMC incurs 9% more average power consumption and 38% more resource

wastage. Therefore, it is evident from these results that AMDVMC performs better in

terms of power consumption and resource wastage compared to the other migration-aware

approach, whereas the migration-unaware approach beats AMDVMC in these metrics.

Figure 6.8 shows the four primary cost factors of dynamic consolidation decisions

produced by the algorithms for various data center sizes. The estimate of the aggregated

amount of VM memory data to be transmitted across the data center due to VM migrations

is plotted in Figure 6.8(a). As the figure depicts, the data transmission rises sharply

for FFDL1 with the increasing number of PMs. This is due to the fact that FFDL1

is migration-unaware and therefore, causes many VM migrations that result in a large

amount of VM memory data transmission. MMDVMC, being multi-objective, tries to

reduce the number of migrations and therefore, causes a lower amount of migration related

data transmission. Lastly, AMDVMC is also a multi-objective consolidation approach

which takes the estimate of memory data transfer into account during the solution-building

process and as a consequence, it incurs the least amount of data transmission relating

to VM migrations. Figure 6.8(b) shows the percentage of improvement of AMDVMC

compared to FFDL1 and MMDVMC for this performance metric. In summary, on average,
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Figure 6.8: Performance of the algorithms with increasing Np: (a) Aggregated Migration
Data Transmission, (b) Improvement of AMDVMC over other algorithms in Aggregated
Migration Data Transmission, (c) Aggregated Migration Time, (d) Improvement of AMD-
VMC over other algorithms in Aggregated Migration Time,(e) Aggregated VM Downtime,
(f) Improvement of AMDVMC over other algorithms in Aggregated VM Downtime,(g)
Aggregated Network Cost, (h) Improvement of AMDVMC over other algorithms in Ag-
gregated Network Cost (best viewed in color).

AMDVMC resulted in 77% and 20% less migration data transmission compared to FFDL1

and MMDVMC, respectively.



204 Multi-objective, Decentralized Dynamic Virtual Machine Consolidation

For aggregated migration time (6.10) and total VM downtime (6.11), a similar perfor-

mance pattern can be found from Figure 6.8(c) and Figure 6.8(e), respectively, where both

the values increase at a proportional rate with the increase of Np. This is reasonable since

the number of VMs (Nv) increases in proportion to the number of PMs (Np), which in

turn contributes to the proportional rise of aggregated migration time and VM downtime.

Figure 6.8(d) and Figure 6.8(f) show the relative improvement of AMDVMC over FFDL1

and MMDVMC for these performance metrics: on average, AMDVMC caused 84% and

85% less aggregated migration time, and 85% and 43% less aggregated VM downtime

across all data center sizes, respectively.

Figure 6.8(g) shows the estimate of aggregated network cost (6.12) due the VM migra-

tions for the consolidation decisions. The figure shows that for both FFDL1 and MMD-

VMC, the network cost increases sharply with the number of PMs in the data centers,

whereas it increases slowly for AMDVMC. This is due to the fact that FFDL1 is migration

overhead-unaware and MMDVMC, although it is in a way migration-aware, forms neigh-

borhoods of PMs randomly for performing consolidation operations and therefore, does

not take any network cost into account while making migration decisions. The relative

improvement of AMDVMC over FFDL1 and MMDVMC is shown in Figure 6.8(h) and on

average, the improvements are 77% and 65%, respectively.

Figure 6.9(a) presents a summary of the overall migration overheads incurred by the

algorithms as per formulation (6.13) where on average, AMDVMC incurs 81% and 38%

less migration overhead compared to FFDL1 and MMDVMC, respectively. Furthermore,

the estimate of aggregated migration energy consumption (6.14) and SLA violation (6.15)

are shown in Figure 6.9(b) and Figure 6.9(d), respectively. Since such energy consumption

and SLA violation depend on the migration-related data transmission and migration time,

respectively, these figures have similar performance patterns as those of Figure 6.7(a) and

Figure 6.7(c), respectively. Finally, Figure 6.9(c) and Figure 6.9(e) present the relative

improvement of AMDVMC over other algorithms where in summary, compared to FFDL1

and MMDVMC, on average AMDVMC reduces the migration energy consumption by 77%

and 20%, and SLA violation by 85% and 52%, respectively.

From the results and discussions presented above, it can be concluded that, for all three

compared algorithms, both the gain factors and the cost factors increase at a proportional
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Figure 6.9: Performance of the algorithms with increasing Np: (a) Overall Migration Over-
head, (b) Aggregated Migration Energy Consumption, (c) Improvement of AMDVMC over
other algorithms in Aggregated Migration Energy Consumption, (d) Aggregated SLA Vio-
lation, (e) Improvement of AMDVMC over other algorithms in Aggregated SLA Violation
(best viewed in color).

rate with the size of the data center (Np). In comparison to the migration-aware MMD-

MVC approach, the proposed AMDVMC scheme outperforms MMDVMC on both gain

factors and cost factors by generating more efficient VM consolidation plans that result

in reduced power consumption, resource wastage, and migration overhead. On the other

hand, FFDL1, being migration-unaware, generates VM consolidation plans that result in

lower power consumption and resource wastage compared to AMDVMC; however, this is

achieved at the cost of much higher migration overhead factors.

6.4.4 Scaling Mean Resource Demand

In order to compare the quality of the solutions produced by the algorithms for various

sizes of the active VMs, this part of the experiment starts with a mean VM resource
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Table 6.4: Number of VMs (Nv) for corresponding MeanRsc values

MeanRsc Np Nv

0.05 1024 2048
0.10 1024 1843
0.15 1024 1638
0.20 1024 1434
0.25 1024 1229
0.30 1024 1024

demand (MeanRsc) of 0.05 and increases it up to 0.3, raising it each time by 0.05. The

maximum value for MeanRsc is kept at 0.3 in order to ensure that the VMs are not too

large compared to the PM so that there will be little scope for performing consolidation

operations. Moreover, multi-dimensionality of resource types reduces the scope of VM

consolidation. Otherwise, if on average, one VM can be assigned per PM, there is no

way of consolidating VMs and releasing PMs to improve power and resource efficiency.

The number of PMs (Np) in the simulated data center is set at 1024 and the number of

simulated active VMs (Nv) in the data center is derived from the number of PMs using

the following formulation:

Nv = Np ∗ (0.55−MeanRsc)/0.25. (6.36)

Table 6.4 shows the different values for Nv produced by the above equation for each

MeanRsc value. This approach ensures that for the initial states, on average, each

PM hosts two VMs when MeanRsc = 0.05 and with a gradual increase of MeanRsc,

the average number of VMs hosted by each PM is reduced up to a point where, when

MeanRsc = 0.30, each PM hosts one VM. Such an approach creates initial states such

that there is scope for VM consolidation so that the efficiency of VM consolidation algo-

rithms can be compared. The standard deviation of VM resource demand SDRsc is set to

0.2.

The four gain factors for each of the algorithms for the various means of VM resource

demand are plotted in Figure 6.10. It can be observed from Figure 6.10(a) that the

number of PMs released by the algorithms gradually increases as the MeanRsc increases.

This is due to the fact that the number of VMs in the data center decreases with the

increase of MeanRsc and as a result, more PMs are released by the algorithms even though

the VM size increases. On average, FFDL1, MMDVMC, and AMDVMC have released

45%, 26%, and 38% of PMs in the data center, respectively, across different values of
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Figure 6.10: Performance of the algorithms with increasing MeanRsc: (a) Number of
Released PMs, (b) Packing Efficiency, (c) Power Consumption, and (d) Resource Wastage
(best viewed in color).

MeanRsc. In contrast to Figure 6.10(a), the packing efficiency PE for all the algorithms

decreases consistently with the increase of MeanRsc (Figure 6.10(b)). This makes sense

since PM’s packing efficiency is reduced when packing larger VMs. On average, FFDL1,

MMDVMC, and AMDVMC achieve PEs of 2.7, 2.0, and 2.4, respectively. Furthermore,

Figure 6.10(c) shows a bar chart representation of the power consumption of data center

PMs after the VM consolidation decisions. It can be observed from the chart that, for all

the algorithms, power consumption reduces with the increase of MeanRsc. Since, with the

increase of mean VM resource demands, the algorithms release more PMs, which means

that the VMs are packed into a reduced number of active PMs, this causes reduction

in power consumption. On average, compared to MMDVMC, AMDVMC reduces the

power consumption by 13%, whereas compared to FFDL1, it incurs 11% more power

consumption.

And, a bar chart representation of the resource wastage of active PMs in the data

center is shown in Figure 6.10(d). It can be seen from the chart that with the increase

of MeanRsc, resource wastage is reduced gradually for MMDVMC. This indicates that

MMDVMC can utilize multi-dimensional resources better for larger VMs compared to
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smaller VMs. However, in the case of FFDL1 and AMDVMC, the resource wastage grad-

ually reduces for smaller VM sizes. On average, compared to MMDVMC, AMDVMC

reduces resource wastage by 34%, whereas compared to FFDL1, it incurs 42% more re-

source wastage. Therefore, it can be concluded from the results that, similar to the

results for scaling Np, for the gain factors, the AMDVMC algorithm outperforms the

migration-aware MMDVMC algorithm, while AMDVMC performs poorly compared to

the migration-unaware FFDL1 algorithm.

Figure 6.11 presents the four primary cost factors of dynamic VM consolidation deci-

sions generated by the algorithms for different means of VM resource demands. Figure

6.11(a) shows how the estimate of aggregated migration data transmission (6.9) values with

respect to MeanRsc. FFDL1, being migration-unaware, requires an increasing amount of

migration-related data transmission as MeanRsc increases. This is due to the fact that,

with the increase of MeanRsc, memory sizes of the VMs also increase, which in turn con-

tributes to the rise of migration data transmission (Algorithm 6.1). MMDVMC, on the

other hand, though considers minimizing the number of migrations, it does not consider

the VM memory sizes while making migration decisions and assumes every VM migration

to have the same migration overhead, and as consequence, its aggregated migration data

transmission also increases with the increase of VM sizes. Lastly, in the case of AMD-

VMC, the estimate of aggregated migration data transmission is reduced with the increase

of MeanRsc. This is because AMDVMC considers the estimate of migration data trans-

mission (6.9) as a contributory factor for the migration overhead estimation and takes this

migration overhead factor into account while making VM consolidation decisions. As a

result, with the increase of MeanRsc (consequently, VM memory sizes) and decrease of

Nv (as per Table 6.4), AMDVMC makes efficient selections of VMs for migration that in

turn reduces the aggregated migration data transmission. The relative improvement of

AMDVMC over FFDL1 and MMDVMC is depicted in Figure 6.11(b) which can be sum-

marized as follows: on average, AMDVMC incurs 82% and 43% less aggregated migration

data transmission compared to FFDL1 and MMDVMC, respectively.

Similar performance traits can be observed from Figure 6.11(c) and Figure 6.11(e).

These figure show the estimates of aggregated migration time (6.10) and VM downtime

(6.11) that results from the VM consolidation decisions made by the algorithms. With

the increase of MeanRsc and VM memory sizes, both aggregated migration time and
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Figure 6.11: Performance of the algorithms with increasing (MeanRsc): (a) Aggregated
Migration Data Transmission, (b) Improvement of AMDVMC over other algorithms in
Aggregated Migration Data Transmission, (c) Aggregated Migration Time, (d) Improve-
ment of AMDVMC over other algorithms in Aggregated Migration Time,(e) Aggregated
VM Downtime, (f) Improvement of AMDVMC over other algorithms in Aggregated VM
Downtime,(g) Aggregated Network Cost, (h) Improvement of AMDVMC over other algo-
rithms in Aggregated Network Cost (best viewed in color).

VM downtime increase for FFDL1 and MMDVMC, whereas these values decrease for

AMDVMC. This is due to the same reason as explained for migration data transmission
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metric. Furthermore, Figure 6.11(d) and Figure 6.11(f) depict the relative improvement

of the proposed AMDVMC algorithm over its competitors which can be summarized as

follows. On average, AMDVMC reduces the aggregated migration time by 88% and 59%

compared to FFDL1 and MMDVMC, respectively and it reduces the aggregated VM

downtime by 89% and 63% compared to FFDL1 and MMDVMC, respectively, across all

VM sizes.

The estimate of aggregated network cost (6.12) for each of the algorithms for different

values of MeanRsc is presented in Figure 6.11(g). As the chart shows, the network cost

for FFDL1 and MMDVMC increase gradually with the increase of MeanRsc. This is due

to the fact that with the increase of MeanRsc, VM memory sizes also increase and the

network cost is proportional to the amount of migration data transmission. It can be

further observed that the network cost for AMDVMC decreases with respect to MeanRsc.

This is again credited to the network cost awareness property of AMDVMC algorithm.

Figure 6.11(h) shows the relative improvement of AMDVMC over FFDL1 and MMDVMC

in terms of network cost for various VM sizes and on average, the improvements are 82%

and 79%, respectively.

A summary of the overall migration overhead according to formulation (6.13) for var-

ious MeanRsc values is presented in Figure 6.12(a). It can be seen from the figure that

AMDVMC incurs 85% and 61% less migration overhead compared to FFDL1 and MMD-

VMC, respectively. Figure 6.12(b) and Figure 6.12(d) present the estimate of aggregated

migration energy consumption (6.14) and SLA violation (6.15) due to the VM consol-

idation decisions for each algorithm for various VM sizes. The figures show that, for

FFDL1 and MMDVMC, both migration energy consumption and SLA violation increase

with the increase of MeanRsc. This is due the fact that both FFDL1 and MMDVMC do

not take into account the migration overhead factors while making consolidation decisions

and therefore, the values of these metrics increase with the increase of VM memory sizes.

Relative improvement of AMDVMC over FFDL1 and MMDVMC are presented in Figure

6.12(c) and Figure 6.12(e). In summary, compared to FFDL1 and MMDVMC, AMDVMC

reduces the aggregated migration energy consumption by 82% and 42%, respectively and

SLA violation by 89% and 64%, respectively.
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Figure 6.12: Performance of the algorithms with increasing MeanRsc: (a) Overall Mi-
gration Overhead, (b) Aggregated Migration Energy Consumption, (c) Improvement of
AMDVMC over other algorithms in Aggregated Migration Energy Consumption, (d) Ag-
gregated SLA Violation, (e) Improvement of AMDVMC over other algorithms in Aggre-
gated SLA Violation (best viewed in color).

In light of the above results and discussion it can be summarized that, with the gradual

increase of mean VM resource demand (MeanRsc) and corresponding decrease of the num-

ber of VMs (Nv), the power consumption and resource wastage of the data center slowly

reduces for both FFDL1 and MMDVMC, whereas for AMDVMC the power consumption

slowly reduces, but the resource wastage slightly increases. However, with the increase of

MeanRsc, the cost factors consistently increase for both FFDL1 and MMDMVC, whereas

they remain almost steady for AMDVMC. When compared with the migration-aware

MMDMVC approach, the proposed AMDVMC algorithm outpaces MMDVMC on both

the gain and cost factors, thereby indicating the superior quality of the VM consolidation



212 Multi-objective, Decentralized Dynamic Virtual Machine Consolidation

Table 6.5: Number of VMs (Nv) for corresponding SDRsc values

SDRsc Np Nv

0.05 1024 2048
0.10 1024 1843
0.15 1024 1638
0.20 1024 1434
0.25 1024 1229
0.30 1024 1024

plans produced by AMDVMC. In contrast, the FFDL1 algorithm produces VM consol-

idation plans that require less power consumption and resource wastage compared to

AMDVMC; however, this migration-unaware approach results in much higher migration

overhead.

6.4.5 Diversification of Workload

This part of the experiment was conducted to assess the VM consolidation decisions

generated by the algorithms by diversifying the workloads of the VMs in the data center.

This was done by varying the standard deviation of the VM resource demands (SDRsc),

where the initial value is set to 0.05 and gradually increased up to 0.3, with an increment of

0.05 each time. The maximum value for SDRsc was kept at 0.3 so that the VM’s resource

demand for any resource dimension (e.g., CPU, memory, or network I/O) was not too

large compared to the PM’s resource capacity for the corresponding resource dimension

and by this way it helps to keep scope of consolidation. Similar to the approach presented

in the Subsection 6.4.4, the number of PMs (Np) in the data center was kept at 1024

and the number of VMs (Nv) was derived from the number of PMs using the following

formulation:

Nv = Np ∗ (0.55− SDRsc)/0.25. (6.37)

Table 6.5 shows the different values for Nv produced by the above equation for each SDRsc

value. The mean VM resource demand MeanRsc was set to 0.05.

Figure 6.13 presents the four gain factors for the algorithms while scaling the stan-

dard deviation SDRsc of VM resource demand. It can be observed from Figure 6.13(a)

that, with the increase of workload diversification, the number of released PMs gradually

decreases for FFDL1 and AMDVMC, whereas an opposite trend is found for MMDVMC.

This can be explained as follows. Since FFDL1 works with the greedy strategy of First

Fit, when the variation in the amount of resource demands for different resource types
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Figure 6.13: Performance of the algorithms with increasing SDRsc: (a) Number of Re-
leased PMs, (b) Packing Efficiency, (c) Power Consumption, and (d) Resource Wastage
(best viewed in color).

increases, placement feasibility for the VMs decreases, and as a consequence, FFDL1 re-

quires relatively more active PMs for higher SDRsc values. However, MMDVMC utilizes

the MMAS metaheuristic [111] which is a iterative solution refinement method and there-

fore, can be effective even though resource demand variation is high. And in the case

of the proposed AMDVMC, it utilizes the ACO metaheuristic [36] and at the same time

being multi-objective, it also aims at reducing the migration overhead, and as a result,

its performance, in terms of gain factors, reduces with the increase of SDRsc (which ef-

fectively increases the VM memory size for some VMs in the data center). Nevertheless,

when the algorithms are compared, on average the proposed AMDVMC outperforms the

MMDVMC algorithm by releasing 79% more PMs, whereas it release 14% fewer PMs

compared to the migration-unaware FFDL1 algorithm.

With the increase of SDRsc, the packing efficiency of the algorithms gradually de-

creases as reflected in Figure 6.13(b). This is due to the fact that, with the increase of

SDRsc, there is a higher probability of generating VMs with higher resource demands

across the resource dimensions, which reduces the packing efficiency of PMs in the data

center. Similar to the number of released PMs, the performance of the proposed AMD-

VMC lies between those of its competitor algorithms. On average, FFDL1, MMDVMC,
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and AMDVMC achieve PEs of 4.1, 2.1, and 3.3, respectively. Figure 6.13(c) and Figure

6.13(d) depict power consumption and resource wastage (normalized) of the active PMs

in the data center after the VM consolidation. Both figures demonstrate similar perfor-

mance patterns for the algorithms across the SDRsc values as in Figure 6.13(a). For

FFDL1 and AMDVMC, since the number of active PMs increases with the increase of

SDRsc, both power consumption and resource wastage gradually increase with respect to

SDRsc. However, this is not the case with MMDVMC which reduces both power con-

sumption and resource wastage with respect to SDRsc. Finally, on average, compared to

MMDVMC, AMDVMC reduces the power consumption and resource wastage by 28% and

48%, respectively whereas, compared to FFDL1, it incurs 20% more power consumption

and 66% more resource wastage.

Therefore, it can be concluded from the above results for gain factors that, similar to

results for scaling Np and MeanRsc, AMDVMC outperforms migration-aware MMDVMC

algorithm, while the migration-unaware FFDL1 outdoes AMDVMC.

The four primary cost factors of dynamic VM consolidation with increasing diversity of

workloads are shown in Figure 6.14. The estimate of aggregated migration data transmis-

sion (6.9) is depicted in Figure 6.14(a). Both for the FFDL1 and MMDVMC algorithms,

migration data transmission increases as the VM workload increases. With the increase

of SDRsc, more VMs tend to have larger memory sizes and as a consequence, migration

data transmission for the FFDL1 algorithm increases steadily. In the case of MMDVMC,

it is worth noting that it improves the gain factors steadily with the increase of SDRsc,

and this is achieved at the cost of steady increase of migration data transmission and other

cost factors. And, for the proposed AMDVMC algorithm, the migration data transmis-

sion slightly increases up to SDRsc = 0.2, and thereafter it decreases. The increase for

the cases when SDRsc ≤ 0.2 is explained by the fact that, as SDRsc increases, the VM

resource demands (including VM memory size) increases probabilistically, which in turn

raises the migration data transmission. However, with the increase of SDRsc, the number

of VMs (Nv) decreases according to (6.37), and AMDVMC, being migration overhead-

aware, can reduce the migration data transmission for the relatively smaller number of

VMs when SDRsc > 0.2. Figure 6.14(b) shows the performance improvement by AMD-

VMC over FFDL1 and MMDVMC. In summary, compared to FFDL1 and MMDVMC, on

average AMDVMC requires 68% and 40% less migration data transmission, respectively.
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Figure 6.14: Performance of the algorithms with increasing SDRsc: (a) Aggregated Mi-
gration Data Transmission, (b) Improvement of AMDVMC over other algorithms in Ag-
gregated Migration Data Transmission, (c) Aggregated Migration Time, (d) Improvement
of AMDVMC over other algorithms in Aggregated Migration Time,(e) Aggregated VM
Downtime, (f) Improvement of AMDVMC over other algorithms in Aggregated VM Down-
time,(g) Aggregated Network Cost, (h) Improvement of AMDVMC over other algorithms
in Aggregated Network Cost (best viewed in color).

Figure 6.14(c) and Figure 6.14(e) present the aggregated migration time (6.10) and

VM downtime (6.11) for the algorithms across various values of SDRsc. It is evident

from the figures that the performance patterns are similar to those for migration data
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transmission (Figure 6.14(a)). Since both aggregated migration time and VM downtime

are proportional to VM memory size, the above-mentioned explanation for migration

data transmission metric also applies to these performance metrics. Figure 6.14(d) and

Figure 6.14(f) depict bar chart representations for the relative performance improvement

of AMDVMC over FFDL1 and MMDVMC that can be summarized as follows: on average,

AMDVMC requires 77% and 55% less aggregated migration time and 79% and 59% less

aggregated VM downtime compared to FFDL1 and MMDVMC, respectively, across all

VM workload ranges.

Figure 6.14(g) shows the estimate of network cost (6.12) for different workload types.

The network costs for both FFDL1 and MMDVMC algorithms increase sharply with the

increase of SDRsc since network cost is proportional to the migration data transmission,

and both FFDL1 and MMDVMC are network cost oblivious. AMDVMC shows a similar

performance pattern to that of Figure 6.14(a) and the same explanation applies for this

performance metric as well. The relative performance improvement of AMDVMC over the

other algorithms is presented in Figure 6.14(h). AMDVMC, being network cost-aware,

incurs 78% and 68% less network cost than do FFDL1 and MMDVMC, respectively, on

average across all SDRsc values.

The uniform migration overhead (6.13) for all the algorithms is presented in Figure

6.15(a). In summary, the uniform migration overhead of AMDVMC is 73% and 57% less

than FFDL1 and MMDVMC, respectively. Figure 6.15(b) and Figure 6.15(d) depict the

estimate of aggregated migration energy consumption (6.14) and SLA violation (6.15) due

to consolidation decisions across various SDRsc values. Since migration-related energy

consumption and SLA violation are proportional to migration data transmission and VM

migration time, respectively, these two performance metrics display similar performance

patterns to those of Figure 6.14(a) and Figure 6.14(c), respectively. Figure 6.15(c) and

Figure 6.15(e) show bar chart representations of the relative improvement achieved by

AMDVMC over other algorithms for aggregated migration energy consumption and SLA

violation, respectively, which can be summarized as follows. When compared to FFDL1

and MMDVMC, AMDVMC incurs 68% and 40% less migration energy consumption, and

79% and 58% less SLA violation, respectively.

In view of the above results and analysis, it can be concluded that with the grad-

ual increase of the diversification of workload (SDRsc) and a corresponding decrease in
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Figure 6.15: Performance of the algorithms with increasing SDRsc: (a) Overall Migration
Overhead, (b) Aggregated Migration Energy Consumption, (c) Improvement of AMDVMC
over other algorithms in Aggregated Migration Energy Consumption, (d) Aggregated SLA
Violation, (d) Improvement of AMDVMC over other algorithms in Aggregated SLA Vio-
lation (best viewed in color).

the number of VMs (Nv), the power consumption and resource wastage of the data center

slowly increase for both FFDL1 and AMDVMC, whereas these metrics decrease for MMD-

VMC. However, all the cost factors increase rapidly for both FFDL1 and MMDVMC with

the increase of workload diversification, while these factors remain largely unchanged for

AMDVMC across workload variations. When compared to the migration-aware MMD-

VMC, the proposed AMDVMC algorithm outperforms MMDVMC for both gain and cost

factors. On the other hand, the migration-unaware FFDL1 algorithm achieves higher

efficiency on power consumption and resource wastage than AMDVMC, however this is

gained at the cost of very high migration overhead factors.
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6.4.6 AMDVMC Decision Time

This part of the experiment was conducted in order to assess the feasibility of the

proposed AMDVMC algorithm for performing offline, dynamic VM consolidation for data

center environments discussed in the problem statement (Section 6.2). As presented in

Subsection 6.3.2, scalability of the proposed dynamic VM consolidation is ensured by run-

ning the consolidation operation under the proposed hierarchical, decentralized framework

where each cluster controller is responsible for generating VM consolidation decisions for

its respective PM cluster. Therefore, when implemented using the decentralized frame-

work where the proposed AMDVMC dynamic VM consolidation algorithm is executed by

the cluster controllers separately and simultaneously for their respective PM clusters, it is

the cluster size that has a potential effect on the solution computation time rather than

the total number of PMs in the data center. Figure 6.16(a) shows AMDVMC’s decision

time for cluster sizes between 8 and 48. It can be observed that decision time increases

smoothly and non-linearly with the cluster size, each time doubling the time for an addi-

tional 8 PMs in the cluster, even though the search space grows exponentially with Npc.

For a cluster of size 48, the decision time is around 15.4 seconds which is quite a reasonable

run-time for an offline algorithm.

Figure 6.16(b) and Figure 6.16(c) show the solution computation time while scaling

the mean (MeanRsc) and standard deviation (SDRsc) of VM resource demand for cluster

size Npc = 8. It can be observed from the figures that, in both instances, the decision

time reduces with the increase of MeanRsc and SDRsc. This is due to the fact that, in

these instances, the number of VMs in the data center (Nv) declines with the increase of

MeanRsc and SDRsc (Table 6.4 and Table 6.5), which reduces the solution computation

time. In summary of these two cases, AMDVMC requires at most 0.05 second for com-

puting consolidation plans. Therefore, when implemented using the proposed hierarchical,

decentralized framework, it can be concluded that the proposed AMDVMC algorithm is

a fast and feasible technique for offline, dynamic VM consolidation in large-scale data

centers.

In order to assess the time complexity of AMDVMC for scenarios where the decentral-

ized computation is not available, the solution computation time for a centralized system

was also measured and analyzed. For this purpose, VM consolidation decisions for each
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Figure 6.16: AMDVMC’s VM consolidation decision time for decentralized implementa-
tion while scaling (a) PM cluster size (Npc), (b) Mean of VM resource demand (MeanRsc),
and (c) Diversification of VM workload (SDRsc).

of the PM clusters were computed in a centralized and single-threaded execution envi-

ronment and the solution computation time for individual clusters were accumulated and

reported in this evaluation. Figure 6.17 shows the average time needed by such central-

ized implementation of the AMDVMC algorithm for producing dynamic VM consolidation

plans for the various scaling factors.

It can be observed from Figure 6.17(a) that the AMDVMC solution computation

time increases smoothly and non-linearly with the number of PMs in the data center

(Np). It is evident from the figure that for a medium sized data center comprising 1024

PMs, AMDVMC requires around 4.3 seconds for computing the VM consolidation plan

whereas for the largest data center simulated in this experiment with 4096 PMs (i.e.,

several thousand physical servers), AMDVMC needs around 30 seconds. Moreover, since

AMDVMC utilizes the ACO metaheuristic which is effectively a multi-agent computation

method, there is the potential for parallel implementation [98] of AMDVMC algorithm

where individual ant agents can be executed in parallel in multiple Cloud nodes that can

reduce the VM consolidation decision time significantly.

Furthermore, Figure 6.17(b) and Figure 6.17(c) show that the solution computation

time of AMDVMC reduces with increasing MeanRsc and SDRsc, respectively. This is

also due to the above-mentioned fact that the number of VMs reduces with increasing
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Figure 6.17: AMDVMC’s VM consolidation decision time for centralized implementation
while scaling (a) Data center size (Np), (b) Mean of VM resource demand (MeanRsc),
and (c) Diversification of VM workload (SDRsc).

mean and standard deviation of VM resource demands accordingly to (6.36) and (6.37),

respectively. In summary of these two cases, AMDVMC requires at most 6.4 seconds

for computing consolidation plans. Therefore, it can be concluded that, for centralized

execution, the proposed AMDVMC algorithm is perfectly applicable for computing offline,

dynamic VM consolidation plans for large-scale data centers.

6.5 Summary and Conclusions

Resource optimization has always been a challenging task for large-scale data center

management. With the advent of Cloud Computing, and its rapid and wide adoption,

this challenge has taken on a new dimension. In order to meet the increasing demand of

computing resources, Cloud providers are deploying large data centers, consisting of thou-

sands of servers. In these data centers, run-time underutilization of computing resources is

emerging as one of the key challenges for successful establishment of Cloud infrastructure

services. Moreover, this underutilization of physical servers is one of the main reasons

for power inefficiencies in such data centers. Wide adoption of server virtualization tech-

nologies has opened opportunities for data center resource optimization. Dynamic VM

consolidation is one of such techniques that helps in rearranging the active VMs among

the physical servers in data centers by utilizing the VM live migration mechanism in order
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to consolidate VMs into a minimal number of active servers so that idle servers can be

turned to lower power states (e.g., standby mode) to save energy. Moreover, this approach

helps in reducing the overall resource wastage of the running servers.

This chapter has addressed a multi-objective dynamic VM consolidation problem in

the context of large-scale data centers. The problem was formally defined as a discrete

combinatorial optimization problem with necessary mathematical models with the goals of

minimizing server resource wastage, power consumption, and overall VM migration over-

head. Since VM migrations have non-negligible impacts on hosted applications and data

center components, an appropriate VM migration overhead estimation mechanism is also

suggested that incorporates realistic migration parameters and overhead factors. More-

over, in order to address the scalability issues of dynamic VM consolidation operations for

medium to large-scale data centers, a hierarchical, decentralized VM consolidation frame-

work was proposed to localize VM migration operations and reduce their impacts on the

data center network. Furthermore, based on ACO metaheuristic, a migration overhead-

aware, multi-objective, dynamic VM consolidation algorithm (AMDVMC) was presented

as a concrete solution for the defined run-time VM consolidation problem, integrating it

with the proposed migration overhead estimation technique and decentralized VM consol-

idation framework.

In addition, comprehensive simulation-based performance evaluation and analysis have

also been presented that demonstrate the superior performance of the proposed AMDVMC

algorithm over the compared migration-aware consolidation approaches across multiple

scaling factors and several performance metrics, where the results show that AMDVMC

reduces the overall server power consumption by up to 47%, resource wastage by up to

64%, and migration overhead by up to 83%. Lastly, the feasibility of applying the proposed

AMDVMC algorithm for offline dynamic VM consolidation in terms of decision time has

been demonstrated by the performance evaluation, where it is shown that the algorithm

requires less than 10 seconds for large server clusters when integrated with the proposed

decentralized framework and a maximum of 30 seconds for large-scale data centers when

executed in centralized mode.
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Chapter 7

Conclusions and Future Directions

This chapter summarizes the research works on multi-objective Virtual Machine (VM)

management presented in this thesis and outlines the notable research findings. Further-

more, it discusses open research problems and highlights a number of future research di-

rections.

7.1 Conclusions and Discussion

Cloud Computing, a very recent paradigm shift in information technology industry, is

growing rapidly with the goal of providing virtually infinite amount of computing, storage,

and communication resources, where customers are provisioned these resources according

to their demands using a pay-per-use business model. The rapidly growing customer

demands for Cloud resources are responded by the Cloud providers with the deployment

of large-scale data centers across the globe. These data centers incur very high investment

and operating costs for the compute, storage, and network devices, as well as for the

associated energy consumption. Moreover, because of the huge energy usage, such data

centers leave large carbon footprints and thereby, adversely affects the environment. As

a consequence, efficient management of resource utilization and energy consumption are

crucial for ensuring the ultimate success and sustainability of Cloud Computing.

This thesis has investigated the problems of underutilization of data center resources

and high energy consumption in the context of large-scale virtualized data centers. It has

presented several aspects of utilizing server virtualization technologies to address the issues

of resource utilization and energy consumption. Several Virtual Machine (VM) placement

223
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and consolidation strategies, both online and offline, are proposed that can be utilized by

the data center resource management system.

In the context of large-scale enterprise data centers, resource optimization through effi-

cient VM placement and consolidation is a complex problem due to the multi-dimensionality

aspect of server resources, complex structure of modern applications, and dynamic nature

of data center environments. In fact, as discussed in the contributory chapters, both the

problems of VM placement and consolidation, with the goal of reducing resource wastage,

energy consumption, and VM management overhead, are instances of NP−hard combi-

natorial optimization problems. In order to tackle the identified research issues associated

with efficient and scalable VM placement and consolidation, this thesis has achieved all

the research objectives delineated in Chapter 1. A summary of the research findings and

insights obtained from the contributions are discussed below.

Chapter 3 has presented an extensive analysis, taxonomy, and survey of the state-

of-the-art VM management techniques, strategies, and policies, with focus on diversified

optimization goals in relation to dynamic, virtualized data centers. This review on the

existing research works and technologies has facilitated to identify the limitations, open

issues, and future challenges in the field of VM management, and paved the way for

determining the research direction undertaken in this thesis.

In Chapter 4, the multi-objective VM cluster placement problem has been modeled

using an optimization framework that helps in representing the multiple objectives in a

unified method. It is concluded from the mathematical representation that both the ob-

jectives of minimizing the overall server resource wastage and power consumption can be

captured only by reducing the number of servers (homogeneous) used for the VM clus-

ter placement. This indicates that consolidated VM cluster placement eventually helps

solving the multi-objective placement problem. Moreover, it is also identified that sophis-

ticated techniques for capturing server resource utilization, such as the proposed vector

algebra-based method, helps in obtaining a uniform mean of the multi-dimensional server

resource utilization. Such unified mean estimation approach has the benefit that it can be

integrated with specialized VM management techniques with little or no adaptation. An-

other conclusion derived from this chapter is that the VMs offered by the Cloud providers

demonstrate resource patterns that online VM placement techniques can exploit to opti-

mize various goals. Moreover, it is identified in this chapter that, the consolidated VM
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placement problem being NP−hard, application of metaheuristics, such as Ant Colony

Optimization (ACO), can effectively generate good quality solutions within polynomial

time bound. This further implies that, with appropriate adaption, metaheuristic-based

solution approaches have potential to be applicable and efficient for other optimization

problems in the context of large-scale infrastructures.

Chapter 5 has presented another online VM placement approach focusing on network

efficiency, while taking into account data communication among the VMs. The chapter

has presented an observation that a major portion of modern Cloud applications have

complex structures with multiple components, including VMs for computation and data

blocks for storage, where such components usually have mutual communication dependen-

cies among themselves. Considering this property of composite Cloud applications, the

research presented in this chapter has concluded that simultaneous placement decisions

of the VMs and the data blocks in data center components (such as servers and storage

devices), taking into account of their mutual communication structure, have potential to

improve network scalability. Being informed on the prospective communication require-

ments among application components, placement decisions have the capacity to work

as preemptive measures for run-time network congestion and communication disruption.

The addressed placement problem, being very closely related to the Quadratic Assignment

Problem (QAP), is computationally hard and the proposed heuristic has been shown to

be fast enough to compute efficient placement decisions, even for large data centers. The

solution approach has emphasized on the localization of network traffic among the appli-

cation components within the communication network, which have eventually helped in

reducing the traffic load in the upper-layer network switches. This observation validates

the conclusion that network-aware VM placement decisions have potential to provide ben-

efit, which is complementary to the traditional developments on network architectures and

routing protocols.

In addition to optimized VM placement during initial deployment, Chapter 6 has shown

that dynamic VM management can further improve data center resource utilization and

energy efficiency at run-time. Leveraging VM live migration technique, the proposed dy-

namic VM consolidation approach has been shown to improve resource utilization and

power consumption, while keeping the overall migration overhead or impact minimal.

One insight observed from the discussion presented in this chapter is that the impact of
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a VM live migration operation depends on several migration parameters and therefore,

live migration-based VM management policies should consider such parameters in order

to make efficient decisions. Another important observation from this chapter is that cen-

tralized dynamic VM consolidation can suffer from scalability issues for center-wide con-

solidation. Since dynamic VM consolidation involves relocating VMs from current hosts

to other servers that cause non-negligible amount of data transmission across the data

center, decentralization is a necessary approach for designing scalable and efficient VM

consolidation techniques. Furthermore, being a combinatorial optimization problem, the

search space of the multi-objective dynamic VM consolidation grows exponentially with

the number of active VMs and the proposed ACO metaheuristic-based solution approach

has demonstrated to be efficient in balancing between potentially conflicting optimization

goals and applicable as an offline approach in terms of time complexity in the context of

Cloud data centers.

7.2 Future Research Directions

Cloud Computing, being a very dynamic environment, is rapidly evolving and opening

new directions for further research and development. Moreover, VM management is a

broad area of research, in particular in the context Cloud Computing. Based on the

insights gained from the research presented in this thesis, the following open research

challenges are identified.

• Cloud environments allow their consumers to deploy any kind of applications in an

on-demand fashion, ranging from compute intensive applications, such as High Per-

formance Computing (HPC) and scientific applications, to network and disk I/O

intensive applications, such as video streaming and file sharing. Co-locating similar

kinds of applications in the same physical server can lead to resource contentions for

some types of resources, while leaving other types of resources underutilized. More-

over, such resource contention will have adverse effect on application performance,

thus leading to Service Level Agreement (SLA) violations and profit minimization.

Therefore, it is important to understand the behavior and resource usage patterns of

the hosted applications in order to efficiently place VMs and allocate resources to the

applications. Utilization of historical workload data and application of appropriate

load prediction mechanisms need to be integrated with dynamic VM management
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techniques in order to minimize resource contentions among applications, and in-

crease resource utilization and energy efficiency of the data centers.

• Incentive-based VM migration and consolidation is yet another direction for future

research in the area of Cloud Computing. Appropriate incentive policy can be formu-

lated for Cloud consumers to trade off between incentive and SLA violation, which

in turn will motivate Cloud providers to optimize infrastructure resources by special-

ized VM placement, migration, and consolidation strategies with the goal of saving

energy and improving resource usage.

• VM migration coupled with VM profiling can be an efficient method for dynamic

VM consolidation with simultaneous objectives of reducing energy consumption and

resource wastage, as well as maintaining application performance. VM profile data

can help consolidation policies to select appropriate VMs in order to reduce SLA

violations. Since a diverse range of applications are deployed in Cloud data cen-

ters, different applications can have different performance requirements and levels

of tolerance to SLA violations. Therefore, VM management policies can utilize such

profile data to make efficient VM migration decisions in order to optimize resource

utilization, while ensuring a minimal performance degradation.

• Deployment and management of composite applications comprising multiple com-

puting (e.g., VMs) and data components (e.g., data blocks), where inter-component

communication requirements are not sufficiently specified or are not known a priori

at all, is an interesting problem that needs much attention. The primary challenges

associated with such application management are appropriate modeling of the ap-

plications at hand and accurate prediction of the communication requirements, pat-

terns, and structures. The problem is further complicated due to frequent variations

in workloads experienced by modern applications and dynamic scaling of application

components. Lastly, overprovisioning of network resources can potentially lead to

network congestion, performance degradation, and SLA violations. Therefore, it is

highly desirable that the run-time management system would be resilient enough to

cope with the application dynamics.

• Incorporation of efficient network resource utilization in Cloud infrastructures, while

making VM management decisions, is expected to be highly efficient. In particular,
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placement of Cloud applications, with defined communication patterns focusing on

both server resource optimization and network cost reduction, is an unexplored area

that has high potential for further research and development. In this way, an overall

VM management framework can be designed and implemented that will be aware of

both server and network resource utilization, as well as power consumption.

• Widespread use of virtualization technologies, high speed communication, increased

size of data and data centers, and above all, the broad spectrum of modern ap-

plications are opening new research challenges in network resource optimization.

Appropriate combination and coordination of the online and offline VM placement

and migration techniques with the goal of efficient network bandwidth management

is one of the key areas for future research.

• VM migrations towards resource optimization as a continuous process, while tak-

ing into account migration impact, is another direction for future research. Such

migrations can be effectively applied to move around VMs to release underloaded

servers, so that they can be turned to lower power states to save energy. Also,

VM migrations can be applied to offload overloaded servers in order to reduce per-

formance degradation and maintain SLA. In such continuous optimization process,

appropriate VMs can be selected by utilizing the VM migration overhead estimation

approach proposed in Chapter 6 in order to achieve certain objectives, such as load

balancing and SLA management.

• Periodic and threshold-based reconfiguration of application’s virtual components us-

ing VM migration and reallocation, with focus on network traffic localization, can

be an effective strategy for data center resource optimization. Such offline optimiza-

tion technique must employ appropriate resource demand forecasting method, both

for computing (e.g., CPU utilization) and network resources (e.g., bandwidth us-

age). In addition, VM migration and reconfiguration overhead can have significant

impact on the performance of the hosted applications, as well as on the underly-

ing communication substrate. Incorporation of reconfiguration overhead estimation

with offline optimization techniques, focusing on multiple objectives, will produce

pragmatic VM migration schemes, trading off between resource usage optimization

and reconfiguration overhead.
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