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Abstract 

The main aim of the thesis is to expand the scope of the element-free Galerkin (EFG) 

method in its application to linear elastic fracture mechanics (LEFM). Specific objectives 

include an accurate assessment of the stress intensity factors (SIFs) for variety of loading and 

material combinations, and the study of crack propagation in isotropic and composite 

materials. The present study also deals with modelling interacting cracks that are frequently 

encountered in fracture of brittle materials.    

 Two new techniques within the framework of the EFG method have been developed 

based on the crack closure integral (CCI) to compute the SIFs: CCI with a local smoothing 

(CCI-LS) technique and modified crack closure integral (MCCI) technique. The first scheme 

involves extraction of displacement and stress at few locations near a crack tip, and 

construction of a smooth variation of these parameters in conformity with the crack tip 

solutions using a suitable smoothing technique. The CCI-LS technique has also been applied 

to extract the SIFs in FGMs. The second technique is based on computing crack closure 

forces at some nodes ahead of a crack tip and multiplying with corresponding crack opening 

displacements (CODs) to determine the potential energy release rate and the SIFs. A novel 

approach to extract the crack closure forces accurately within the framework of EFG method 

is proposed. In addition to these techniques, classical SIF extraction methods like the 

displacement and stress methods have also been used to extract the SIFs. The extracted SIFs 

are compared with those obtained using the popular M-integral technique to highlight the 

differences. The dependence of the computed SIFs accuracy, using both the techniques, on 

nodal density, local refinement at the crack tip, domain of influence and order of Gauss 

integration have been examined. Varieties of problems including crack face loading and 

thermal loading have been solved to demonstrate the simplicity and the efficiency of these 

techniques.  

 A new variant of the EFG method has been proposed to address the problem of crack 

propagation through non-homogenous materials. This method eliminates the difficulty 

associated with the selection of the enrichment functions that are dependent on material 

properties and location of the crack tip. The SIFs and CODs obtained using this method, for a 

range of material combinations and interfaces, are compared with published results. The 

criterion suitable for study of crack propagation has also been investigated. There are a 

number of criteria to study crack propagation through brittle materials. Noting the 
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computational advantages offered by the maximum tangential principal stress (MTPS) 

criterion, it has been selected for the study of the crack propagation in bi-material and 

composite materials. To facilitate its application, a scheme has been given first to obtain the 

T-stress and then apply it to bi-materials. Further, the criterion has been amended by bringing 

in the differences in crack growth resistances. This criterion has been applied to particle-

reinforced composites to carry out study at the microscale. Effects of inter particle distance, 

crack growth resistances of matrix and particle, and location of the initial crack with respect 

to the particle on the crack path has been presented.  

 To model multiple interacting cracks, an EFG scheme based on multiple crack weight 

(MCW) function coupled with level set method has been proposed. Case studies involving 

crack-crack, crack-microcrack, interface crack-microcrack interaction, and crack propagation 

have been presented to demonstrate the efficiency of the scheme. This too has been applied to 

show its usefulness for problems involving knee and crack tip singularities during step-by-

strep propagation of a starter crack.  

Keywords: EFG method, SIF, CCI, MCCI, crack propagation, non-homogenous, crack 

interaction.   
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Chapter 1 Introduction 

1.1 Motivation  

The history of engineering is full of reports on failed structures, which are directly 

attributed to initiation and propagation of cracks. In many cases, they have been compounded 

by the presence of geometric discontinuities such as holes, inclusions, material 

discontinuities, stress corrosion, thermal loading and fatigue. A US national committee 

estimated the cost of damages due to fractures to be around 4% of the gross national product 

(Aliabadi & Rooke, 1991). It is vital, therefore, to develop methods that enable the control 

and monitoring of the origin and growth of cracks in machines and structural elements. 

Although more attention was directed initially toward experiments and analytical 

investigations, the focus shifted later more toward numerical methods. This was facilitated by 

the emergence of sophisticated and better modelling techniques and decreasing cost of 

computational hardware. The development of numerical methods has been driven by the need 

to decrease developmental costs and increase the reliability of a component and the accuracy 

of the final solutions. Most engineering problems are governed by a set of ordinary or partial 

differential equations or integral equations. It is a challenge to solve the equations that are 

subject to the exacting boundary and initial conditions, and to mimic the observed behaviour 

of the system under live conditions. 

There is a host of numerical methods to analyze problems of deformation mechanics. 

Some of the well-established and proven methods are the finite element method (FEM), the 

finite difference method (FDM), the boundary element method (BEM) and the meshfree 

methods (MMs). The origin of these methods can probably be traced to the fundamental 

theoretical work by Courant et al. (1928) using finite differences. FEM has proven to be the 

more widely used method when compared to FDM and BEM in modelling fracture in the past 

four decades.  

In the case of crack propagation, optimization, and large deformation problems, the 

aspect of meshing in the FEM became tedious and it increased the computational effort. This 

provided impetus for the development, almost in parallel, of MMs and the eXtended Finite 

Element Method (XFEM) (Nicolas et al., 1999). In the XFEM, shape functions are enriched 

by known crack-tip solutions in order to model the displacement and singular stress field 



- 2 - 

 

around a crack-tip accurately; the Heaviside function is used to introduce discontinuity in the 

crack edges away from the crack tip. In the MMs, only points/nodes are to be added, which 

helps to eliminate the problems associated with meshing. The addition of nodes is much 

easier than the addition of elements, thus offering advantages for the analysis by the MMs. 

Further, field singularity can be easily handled because the shape functions of the MMs are 

higher order continuous (Nguyen et al., 2008). Therefore, they are convenient in the study of 

moving boundary value problems associated with crack propagation, wave propagation, large 

deformation, and phase transformation among others.  

There are many variations of MMs, based on the way the shape functions are 

developed. The origin of the MMs can be traced to the 1970s when Smoothed Particle 

Hydrodynamics (SPH) (Lucy, 1977; Gingold & Monaghan, 1977) was used to solve 

astrophysical problems. The element-free Galerkin (EFG) (Belytschko et al., 1994) method, 

which is used to solve solid mechanics problems, is one of the popular formulations in this 

class. When it comes to modelling cracks, there are two popular approaches within the 

framework of the EFG method: (1) The first approach is the Partition-of-unity approach 

based on the XFEM. In this approach, additional degrees of freedom are introduced to model 

the crack. The meshfree version of it is known as the eXtended element-free Galerkin 

(XEFG) method (Ventura et al., 2002). (2) The second approach consists of modifying the 

weight functions of nodes whose domains of influence consist of a crack tip.  

Much of the initial developments of the MMs related to crack problems have been 

driven by applications of the principles of linear elastic fracture mechanics (LEFM) in actual 

practice. The crucial parameter in this connection is the stress intensity factor (SIF). Only a 

few techniques based on J-integral (Rice, 1968), such as interaction integral/M-integral (Yau 

et al., 1980) find their applications frequently in MMs. In contrast, there are variety of 

techniques available in FEM and BEM, such as the displacement method (Chan et al., 1970), 

stress method (Watwood, 1969), the stiffness derivative procedure (Parks, 1974), and the 

crack closure integral technique (Rybicki & Kanninen, 1977; Raju, 1987; Sethuraman & 

Maiti, 1988; Maiti, 1992). The interaction integral offers advantages in isolating the 

individual modes. However, it cannot work without the knowledge of the auxiliary 

displacement and stress field solutions, which are obtained through analytical solutions. 

Further, they become costlier in the presence of loading on the crack edges, for example, as 

seen in thermo-mechanical problems, crack face pressure loading situations, etc.  
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The crack closure integral (CCI), based on Irwin‘s original CCI, is attractive due to its 

simplicity and ability to separate the modes in a mixed-mode problem. CCI is seldom used in 

MMs because they require accurate computation of the asymptotic crack-tip stress field and 

crack opening displacements (CODs). The basic stress analysis procedure to compute the 

tractions cannot be implemented because the region close to the crack tip is prone to 

numerical error. To overcome this issue, Singh et al. (1988) presented a universal crack 

closure integral (UCCI) technique for adoption in the FEM. It stipulates Gaussian integration 

over a fraction of the region away from the crack tip to reduce the numerical error. In the 

BEM, Mukhopadhyay et al. (1999) have suggested a scheme based on the local smoothing of 

the stress and displacement fields before the integration in order to achieve the same goal. 

These schemes based on the CCI, can be easily extended to functionally graded materials 

(FGMs) because the crack-tip stress and the COD field variation are similar to those of 

isotropic and homogenous materials. A scheme based on the CCI does not exist for MMs. 

Whether such a scheme can give rise to any advantages is worth investigating. 

Another technique based on the CCI is the virtual crack closure technique (VCCT) or 

modified crack closure integral (MCCI). It has been in existence since the time of early 

applications of the FEM to fracture mechanics (Rybicki & Kanninen, 1977; Raju, 1987; 

Ronald, 2002). The MCCI gives the total energy release rate, which includes the effects of 

higher order terms of the Williams‘ stress field expansion. The interaction integral, on the 

other hand, gives the energy release rate associated only with the first term of the stress field 

expansion.  

The MCCI technique calculates the strain energy release rate (SERR) using crack 

closure forces and the CODs. Although the CODs can be obtained easily, the computation of 

the real crack closure forces requires special considerations. Therefore, the adoption of the 

MCCI in the MMs is not straightforward. Previously, Guiamatsia et al. (2009) implemented 

the MCCI method by using a high stiffness spring at the crack tip, within the framework of 

the EFG method, in order to determine crack closure forces during the modeling of 

delamination of composite lamintaes. Later, Chang et al. (2011) constructed an auxiliary finite 

element mesh around the crack tip to compute the crack closure forces. These techniques are 

not fully based on MMs and they add extra complexity for studying a problem of extending 

crack. There is a need to examine how the MCCI can be adopted in MMs. 
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A crack embedded in isotropic and homogenous material has a square root singularity 

at the crack tip. Modelling such cracks has been the central focus in most studies. In reality, 

there are abundant situations with variable order singularity at a point in a domain, for 

example, at the tip of a two-dimensional crack that meets at an angle to a material interface, 

at the knee of a kinked crack, at the tip of a notch with a small-included angle, and so on. The 

fracture of composite materials may also be considered as consisting of variable order 

singularity as crack propagates. Although fracture is mainly dominated by matrix failure in 

the transverse directions at the macro scale (Fig. 1.1(a)), the actual failure at a lower scale 

might be a combination of matrix failure, fiber fracture and interface decohesion (Fig. 

1.1(b)). Therefore, further understanding of this type of a fracture is possible through analysis 

at the micro scale. 

  

Fig. 1.1 SEM images showing typical damage in carbon fiber/epoxy composites: (a) matrix 

cracks in transverse plies; (b) magnified region of a matrix crack revealing debonding at the 

fiber/matrix interface. The composite was loaded under tension along the 0° fibers (Valentin 

et al., 2015). 

Modelling crack growth through non-homogenous materials using the partition-of-

unity approach based eXtended element-free Galerkin (XEFG) method is difficult because 

the enrichment functions change depending on the material under investigation, the location 

of the crack tip, and the type of loading (Mohammadi, 2012). The alternative approach in 

which the nodal weight functions are modified also pose difficulties because additional nodes 

have to be selectively added along the newly formed crack faces/edges, as a crack propagates 
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further. Any variant of the EFG method, which is capable of overcoming some of these 

difficulties, may help to broaden the scope of the MMs.  

In the LEFM, the study of crack growth is an important issue. Crack propagation at 

the micro scale would often involve interface crack growth and crack kinking out of an 

interface. The existing criteria for predicting the kinking angle based on the energy release 

rate (He & Hutchinson, 1989), or the zero mode II SIF - 0IIK   (Akisanya & Fleck, 1992) 

requires huge computational effort using the EFG method. The maximum tangential stress 

(MTS) criterion (Erdogan & Sih, 1963; Yuuki & Xu, 1992), which is popular for the same 

application in isotropic materials does not have such shortcomings. It requires only the 

evaluation of the SIFs to predict the direction of initial crack growth. It is well known that the 

accuracy of prediction of crack propagation angle depends not only on the SIFs but also on 

the higher order terms of Williams‘ eigenfunction expansion of the crack-tip stress field. The 

effect of the second term, T-stress, is particularly well known (Kang, 1994). The extraction of 

T-stress and an assessment of its effect on the kinking angle of interface crack have not yet 

been reported using the MMs. Even the application of stress-based criterion with the 

inclusion of the effect of T-stress remains unexplored. This has also provided some 

motivation for the present work. 

Structural/machine elements may give rise to multiple cracks in service due to stress 

corrosion, creep, impact loading, thermal loading, fatigue, and the like. Often, these cracks 

interact with each other. Their modelling by the MMs is a problem. Only few studies (Duflot 

& Nguyen-Dang, 2004; Duflot, 2006; Muravin & Turkel, 2006; Singh et al., 2010; Barbieri et 

al., 2012; Shi et al., 2013), which are restricted to the analysis of homogenous and isotropic 

materials, have been reported so far. Any methodology that can help to model crack-crack 

interaction, crack-microcrack interaction and crack-interface crack interaction will further 

broaden the scope of the MMs.  

1.2 Objectives 

In light of the above, the present study has been carried out with the following objectives: 

1) To develop a CCI technique for adoption in the XEFG method and to validate its 

suitability for isotropic and FGMs under mechanical and/or thermal loadings.  
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2) To develop a method to extract crack closure forces accurately to implement the 

MCCI technique in the MMs to extract the SIFs. 

3) To formulate a new variant of the EFG method that can be used to model crack 

growth in bi-materials and particulate composites under quasi-static loading.  

4) To modify, if needed, the existing crack-kinking criterion appropriately to model an 

interface crack propagation in particle-reinforced composites and to apply it in 

conjunction with the proposed EFG method. 

5) To develop a scheme to model multiple interacting cracks using the EFG method.  

1.3  Outline of the thesis 

The relevant literature is reviewed in Chapter 2. This includes an introduction to level-

set methods. In Chapter 3, the formulation of the EFG method and its variants, in order to 

solve the boundary value problem is given. The properties of the shape functions of the EFG 

method and the difficulties associated with integration of the weak form of the governing 

equation are discussed. Chapter 4 presents the application of the crack closure integral 

technique to extract the SIFs for isotropic and functionally graded materials under 

mechanical, crack-face and thermal loadings. The extracted SIFs are compared with the 

results obtained by the popular M-integral and other techniques. Chapter 5 describes a MCCI 

that is useful to extract the SIFs. In connection with the calculation of MCCI, the 

computation of nodal forces and crack opening displacements are discussed. A parametric 

study that involves the size of the nodal domain of influence, the nodal density, and the order 

of Gauss integration on the accuracy of the SIFs is shown. Chapter 6 presents crack 

propagation in particle-reinforced composites by a variant of the EFG method. An accurate 

and simple way to find the kinking angle of an interface crack is elaborated, and case studies 

are presented. Chapter 7 describes a new procedure to model multiple interacting cracks 

through the level-set method. Several problems, including interface crack and microcrack 

interactions are studied. Finally, the main conclusions and future scope of this work are 

presented in Chapter 8.  
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Chapter 2 Literature Review 

2.1 Introduction 

In this chapter, a brief development of the MMs is presented. Some aspects of the MMs 

that contrast with the features of the MMs are presented. The aspect of variable order 

singularity of a crack tip is discussed. Various techniques that are popular in FEM to extract 

the SIFs are reviewed. Mechanisms of crack propagation are included to highlight the issues 

that need special attention to enable application of the MMs in fracture studies. The level-set 

methods (LSM) that can be helpful in studying crack propagation problems are also 

presented.  

2.2 Meshfree Methods 

Although the FEM has been routinely used to model crack and its propagation, it gives 

rise to difficulties because of the need for meshing and re-meshing. The eXtended finite 

element method (XFEM) (Belytschko & Black, 1999; Nicolas et al., 1999; Bordas & Moran, 

2006; Dunant et al., 2007; Bordas et al., 2008) circumvents the difficulties associated with the 

meshing through the usage of Heaviside function and crack-tip enrichment functions. The 

development of the MMs has been driven largely by the difficulties associated with finite 

element meshing and re-meshing.  

There are many formulations of the MMs. The first of them is SPH (Lucy, 1977; 

Gingold & Monaghan, 1977). It was developed to solve the astrophysical problems, and has 

been later applied to fluid dynamic problems (Monaghan, 1982; Bonet & Kulasegaram, 

2000). In the area of solid mechanics, it was used to solve the impact problem (Libersky et 

al., 1993). The original SPH lead to numerical instability and therefore improvements have 

been proposed (Johnson & Beissel, 1996; Bonet & Lok, 1999; Dilts, 2000; Dilts, 2000). The 

SPH and its corrected versions are based on the strong form. 

Many variants of the MMs that are based on the weak form were developed after 

1990. The diffuse element method (DEM) (Nayroles et al., 1992) and the EFG method 

(Belytschko et al., 1994) were based on the Bubnov–Galerkin method. On the other hand, the 

meshless local Petrov–Galerkin (MLPG) method that was developed by Atluri and Zhu 

(1998) is based on the local weak form. Although the DEM had some shortcomings, it later 
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became a popular MM in the area of solid mechanics. The reproducing kernel particle 

method (RKPM) (Liu et al., 1995), based on wavelets, was developed a year later after the 

EFG method. The EFG method, DEM and RKPM require higher order Gauss integration 

because of the non-polynomial nature of their shape functions. In order to overcome this 

issue, a linearly conforming point interpolation method (LC-PIM) that is based on the 

polynomial basis functions has been introduced by Liu (2001).  

There are also other variants of the MMs, such as particle-in-cell (PIC), which can be 

used in both the strong and weak forms. The PIC method, when applied to the strong form, is 

called finite-volume particle-in-cell method (Munz et al., 1999). The PIC method, based on 

the weak form, is called material point method (Bardenhagen et al., 2000). Similarly, RKPM 

also has two versions: the collocation strong form (Liu et al., 1995) and the weak form 

(Aluru, 2000).  

The review articles (Fries & Matthies, 2004; Shaofan & Liu, 2008; Nguyen et al., 

2008) provide formulations of the versions of the MMs mentioned above. When compared to 

the popular FEM, the advantages of the EFG method are (Nguyen et al., 2008; Liu, 2010) as 

follows: 

1. h and p adaptivity is much simpler than in FEM. Adding nodes ensures the 

adaptivity of both h and p (Gavete et al., 2002; Xiaoying et al., 2012). 

2. Since adding nodes is not computationally costly, problems with moving 

boundaries associated with crack propagation, wave propagation, and phase 

transformation can be treated easily. 

3. Impact and large deformation problems can be handled easily. 

4. It ensures higher order continuity of the shape functions.  

5. It has non-local interpolation character.  

6. Retrieving stresses (post-processing) at any arbitrary point is simple, unlike the 

FEM. 

7. To represent discontinuity in domain, it is not necessary to have nodes lying exactly 

on the boundary.  

Although the MMs have many advantages over mesh-based methods, it also has some 

drawbacks: 

1. The shape functions are non-polynomial in nature, and higher order Gauss point 

integration is needed to compute the stiffness matrix accurately. 
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2. The imposition of essential boundary conditions is difficult because the shape 

functions lack the Kronecker delta property. 

3. The computational speed is significantly slower than the FEM. 

4. The system stiffness matrix is asymmetric depending on the weak form. 

2.3 Importance of fracture mechanics 

In the first half of the 20
th

 century, the design criteria for structures were based on the 

yield stress or ultimate stress. Based on this, engineers usually set a high factor of safety 

(FoS) to ensure a safe design. However, it was found that materials failed even when the 

applied stress were much less than the gross stress that would cause failure during tensile 

testing (Roylance, 2001). It was later recognized that embedded cracks lead to an 

amplification of stress. The fracture, therefore, occurs at a load below the expected level. Fig. 

2.1 shows a liberty ship, which was the first all-welded cargo ship, mass-produced in the 

Unites States during the Second World War. Altogether 2,751 ships were built, only two 

remain now. Subsequently, many hypotheses (Inglis, 1913; Griffith, 1921) have been put 

forward by researchers to explain such catastrophic failures due to cracks.  

 

Fig. 2.1 Failure of the Liberty ship due to a crack initiated at the weld (http://www-

g.eng.cam.ac.uk/125/1925-1950/tipper3). 

Irwin (1948) introduced the concept of SIF and related it to the energy release rate 

based on Westergaard‘s solution (1939) for the crack-tip stress field in brittle materials. Since 

http://www-g.eng.cam.ac.uk/125/1925-1950/tipper3
http://www-g.eng.cam.ac.uk/125/1925-1950/tipper3
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then, the SIF has become an important parameter to assess the damage tolerance in brittle 

materials.  

Fig. 2.2 shows the geometry of a crack subjected to uniform remote loading. It has an 

asymptotic stress field ahead of the crack tip, the magnitude of which reaches infinity at the 

crack tip. Irwin showed that the singular stress field around a crack tip could be described in 

terms of the SIFs in a particular mode (Fig. 2.3).  

 

  

 

 

Fig. 2.2 Stress field ahead of the crack tip. 

2.3.1 Fracture modes 

 The stress distribution ( , )ij r   can be expressed as  

    ( , )
2

ij ij

K
r f O r

r
   


 (2.1) 

where K  is the stress intensity factor and  ijf   is a function of   only.  

 

Fig. 2.3 Fracture modes. 



- 11 - 

 

For a crack in a homogenous material, the stress distribution has a square root 

singularity at the crack tip. The effect of loading and the geometry on the crack-tip stress 

field is included in the SIF parameter. Due to this, the stress field is characterized by a single 

parameter—SIF. In reality, plastic deformation occurs due to high stresses close to the crack 

tip where a linear elastic solution is no longer strictly valid. However, if the plastic zone size 

is small, the relation mentioned above can still be used to describe the stress state that occurs 

ahead of the crack tip.  

 The mode I crack driven by the tensile stress corresponds to the opening mode. The 

mode II and mode III crack correspond to in-plane and out-of-plane shear modes, 

respectively. The relation between the individual mode SIF and its corresponding energy 

release rate, in an isotropic material, is given by 

 

2 *

2 *

2

/

/

/ 2

I I

II II

III III

G K E

G K E

G K 







 (2.2) 

where iK , I, II and IIIi  , are individual mode SIFs.   is the shear modulus, and *E is given 

by 

 
 

*

2

plane stress

/ 1 plane strain

E
E

E 


 



 (2.3) 

where E  is Young‘s modulus and ν  is Poisson‘s ratio. The total energy release rate for a 

combined mode problem is as follows  

 I II IIIG G G G    (2.4) 

2.4 Modelling fracture of materials 

For a crack in an isotropic and homogenous material, the crack-tip stress field has a 

fixed singularity of order 1/2. It is different for bi-materials and composites. A crack 

propagating through a non-homogenous material (Fig. 2.4) has crack-tip stress field 

characterized by a complex order of singularity, which depends on the location of the crack 

tip with respect to the various material phases and the adjoining material properties.  

In general, the stresses around the crack tip are proportional to 1r 

 and are non-linear 

functions of  .   is called the order/strength of the singularity.   depends on material 
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properties, the location of the crack tip, and the orientation of the crack with respect to the 

material interface, if any.  

 

Fig. 2.4 Crack propagation through the composite with a zoomed view of the region around 

the crack tip showing different materials. 

2.4.1 Isotropic and functionally graded materials 

Most of the metals and glass are examples of isotropic materials. Although the 

individual grains are anisotropic, the property is homogenous at the macro level. If the 

material properties vary spatially and smoothly, they are called FGM. FGMs have a 

heterogeneous microstructure with no sharp discontinuity in material properties.  

 

Fig. 2.5 A crack in an isotropic functionally graded material. 

The concept of FGMs was introduced in Japan during a space plane project in 1984. 

Such a material was required to withstand a very high temperature gradient of 1000 K across 

a section of less than 10mm, and a surface temperature of around 2000 K (AZoM.com, 

2015). FGMs were used as thermal barriers in weight-critical applications in the nuclear 

industry and in bioengineering applications (Marin, 2005; Mortensen & Suresh, 1995; 
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Cherradi et al., 1994; Neubrand & Rode, 1997). An overview of the various aspects of FGMs, 

with emphasis on their fracture behaviour is presented by Shanmugavel et al. (2012).  

If Young‘s modulus and Poisson‘s ratio vary spatially with ( , )x yx  (Fig. 2.5), in the 

absence of body forces, the Airy stress function ( )F x satisfies the following equation 

(Eischen, 1987). 

 
2 2 * 2 2 * 2 2 * 2

2

* 2 * 2 2 * 2 *

2 1 1 2 1 2 1 1

1 ( ) 1 ( ) 1 ( )
2 0

( ) ( ) ( ) ( )

F F F F

E x E x x E x x x E x x

                  
           

             

x x x

x x x x
 (2.5) 

where 
*( )E x  and *( ) x  are given by 

 

*

2

*

( ) plane stress
( )

( ) / (1 ( ) ) plane strain

( ) plane stress
( )

( ) / (1 ( )) plane strain

E
E

E 




 


 




 



x
x

x x

x
x

x x

 (2.6) 

It has been shown that for such piecewise differentiable material property variations, 

the stress function is identical to the case of the crack in an isotropic and homogenous 

material (Jin & Noda, 1994) whose crack-tip stress field in a two-dimensional situation is 

given by 
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  

   

   
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 (2.7) 

and the displacement field is given by  

 

   

   

1 1 1

1 2 2

1

2π

1

2π

I II

I II

tip

I II

I II

tip

r
u K g K g

r
u K g K g

 


 


   

   

 (2.8) 

where  / 2 2tip tip tipE   . tipE  and tip  are Young‘s modulus and Poisson‘s ratio at the 

crack tip. 

 The functions  I

ijf   and  II

ijf    , 1,2i j  ,  I

ig   and  II

ig   1,2i   

(Anderson, 1995) are the universal functions of  , which are the same for the isotropic and 
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homogenous materials. Similar to the case of homogenous and isotropic materials, the crack-

tip stress field in FGMs has a square root singularity too, that is, 0.5 .  

The crack embedded in a homogenous material is relatively simpler than the cases 

that include cracks lying along the material interface or whose tip is at the interface 

(Akisanya & Fleck, 1997; Reedy, 2000; Mohammed & Liechti, 2000; Labossiere et al., 

2002). In such cases, the crack-tip stress field consists of a superposition of two singular 

fields. The orders of singularity can be either two unequal real numbers  1 2   or a pair of 

complex conjugates 
1 2λ λ iλ   (Zhen & Zhigang, 2007). In some special cases, the two 

unequal real numbers may degenerate to a single value.  

2.4.2 Bi-material 

 

Fig. 2.6 Crack inclined toward material interface at an arbitrary angle. 

When the crack is inclined at an angle to a material interface (Fig. 2.6), the order of 

singularity    is a variable, which is the root of a transcendental equation (Bogy, 1971) . It 

depends on the angle    at which a crack meets the interface and the material properties 

characterized by Dundurs‘ parameters,   and   .  

 

   

   

   
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1 2 2 1

1 2 2 1

1 2 2 1

1 2 2 1

1 1

1 1

1 2 1 21

2 1 1

   


   

   


   

  


  

   
  

   

 (2.9) 
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where   is the shear modulus of the material and 1  and 2  are Poisson‘s ratios of the two 

materials.  

Fig. 2.7 shows the contours of the order of singularity for a crack meeting at an angle 

45o  to the material interface. This contour plot shows four regions separated by dark 

lines. For various material combinations characterized by the Dundurs‘ parameters,   and 

,  the order of singularity varies. In the upper-left and lower-right regions of the plot, the 

roots of the transcendental equation are unequal real numbers. The larger root  1  is 

labelled horizontally and the smaller root  2  
vertically. In such a case, the stress field is 

given by 

  
 

 
 

 
1 2

1 21 2,
2π 2π

ij ij ij

k k
r

r r
 

        (2.10) 

where 1k  and 2k  are stress intensity coefficients that correspond to the order of singularity 1  

and 2 , respectively.  1

ij   and  2

ij   1,2i   are functions of ζ . 

 

Fig. 2.7 Orders of singularity for different combinations of materials (Zhen & Zhigang, 

2007). 

In the upper-right and lower-left regions, the roots are a pair of complex conjugates

 1,2 i    . The real part   is plotted by solid curves and the imaginary part   is plotted 

by dashed curves. The dark curves indicate that the roots are equal numbers. 

(a) Bi-material interface crack: As a special case, when the crack lies along the interface 

0 or 180o o   as shown in Fig. 2.8, the roots are a pair of complex conjugates given by 
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 In the case of a bi-material interface crack (Rice, 1988; Hutchinson & Suo, 1992), the 

stress state is given by 

 1 1

( ) ( )
Re Im ( )

m m

ij ijm iε iε

ij m i j

f ζ g ζ
ζ r r T δ δ O r

r r
         K K  (2.12) 

where 1 2K iKK    (complex SIF) and mT  is the T-stress for material m, m = 1 and 2. T-

stress is the first non-singular stress term of the Williams‘ eigenfunction expansion of a 

crack-tip stress field. The angular functions ( )m

ijF ζ  and ( )m

ijG ζ  are given in the work by 

Hongjun at al. (2012). The stresses 22ζ  and 12ζ  along the interface in front of the crack tip 

(Fig. 2.8) are given by 

 1 2
22 12 0( )

2π

iε

ζ

K iK
ζ iζ r

r



  σ  (2.13) 

 

Fig. 2.8 Interface crack. 

(b) Crack perpendicular to the interface: Another special case arises when 90oω  , the two 

orders of singularities degenerate to one single value (Zak & Williams, 1963; Lu & Erdogan, 

1983; Chen, 1994). It can be obtained by solving the following equation: 

  
 

 
 

2
2

2

2
cos π 1

1 1

β α α β
λ λ

α β

 
  

 
 (2.14) 

2.5 SIF extraction techniques 

The most important parameter that facilitates the application of the principles of LEFM 

into actual practice comprises of the SIFs and energy release rate (ERR). While interaction 

integral/M-integral serves as a routine method to extract the SIFs in the MMs, several other 
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methods such as the stress method, the displacement method and the CCI have been used 

frequently in the FEM and BEM to compute the SIFs. The ERRs are related to the SIFs.  

The problems that involve crack face loading due to pressure or temperature are rarely 

studied by MMs. Such problems occur in hydraulic fracturing of the dam (Qing et al., 2009), 

oil pipelines, subsea production risers and flowlines (Cerkovnik & Akhtar, 2013) subjected to 

high temperatures and pressures that can range from 70 to 100 MPa. The pipe walls are 

usually thick, with a radius-to-thickness ratio of below 3. Most often, the fluid inside the pipe 

is corrosive and causes pitting. Often, a crack will quickly nucleate at this pit and lead to 

failure (Fig. 2.9). In such cases, determination of the SIF is necessary to check the safety of 

the element. 

 

Fig. 2.9 Pipe with internal crack. 

The evaluation of SIFs in the presence of crack edge loading requires special 

consideration. The usage of the interaction integral involves an extra term in the integral, the 

computations of which are relatively cumbersome when compared to the methods based on 

the displacements and the CCI.  

2.5.1 Stress method 

The stress method is the simplest and earliest of the methods used to extract the SIFs 

(Watwood, 1969). In this method, the stress is computed at location cr , which is ahead of the 

crack tip, and is then compared with the theoretical solution for SIF calculation (Fig. 2.10). 

The mode I SIF can be obtained by  

 
22|2

cI c rK r ζ   (2.15) 
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where ( 22| cr
ζ ) is computed at cr , ahead of the crack tip ( 0ζ  ). Similarly, mode II SIF can be 

computed by computing the shear stress, 12| cr
ζ ahead of the crack tip. 

 

Fig. 2.10 Stress field ahead of the crack tip.  

2.5.2 Displacement method 

 In the displacement method (Chan et al., 1970), the COD obtained numerically behind 

the crack tip is related to the theoretical COD solution according to Eq. (2.16), in order to 

extract the SIF. The theoretical solution for COD for a Mode I crack can be written as follows. 

 

 
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cos cos
2

=
2 2π

sin cos
2

COD I
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ζ
κ- ζ

u K r

v ζμ
κ- ζ

 
  
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  
 
 

 (2.16) 

where κ  is the Kolosov's constant, κ ν   for plane strain, and κ ν ν       for 

plane stress. μ  is the shear modulus. 

Generally, the COD is measured within a distance of 5% of the crack length a  behind 

the crack tip (Fig. 2.11), for an estimation of Mode I SIF. The SIF is given by
 

 
2 2π

( 1)

cCOD|r

I

c

μv
K

κ+ r
  (2.17) 

where cr  
is the location behind the crack tip where CODv  is evaluated. IIK  is also found 

following a similar procedure using the sliding or CODu  for the mode II problem. 

 The COD is important not only in connection with the evaluation of the SIFs in the 

LEFM, but also in deciding on the extension of a crack in elastic plastic material. 
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Fig. 2.11 COD behind the crack tip. 

The displacement method and the stress method are the simplest of the methods used 

to extract the SIFs. Between these two, the displacement method gives superior results 

because the numerical method‘s formulation is mostly based on the displacement 

approximation. The accuracy of the SIFs obtained through these methods is dependent on the 

mesh or nodal density. 

Another simple method to extract the SIFs within the framework of the FEM is 

stiffness derivative (Parks, 1974) procedure. It involves modifying the mesh in the region 

surrounding a crack tip in the crack extension direction in order to obtain the SIFs.  

2.5.3 J-integral 

The J-integral is a path-independent integral around the crack tip. It was first 

developed by Rice (1968). It is given by 
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where W is the strain energy density, in  ( 1 2
ˆ ˆ1,2;i n n i n j   ) is the component of the unit 

normal vector of the line contour   (Fig. 2.12), and iu  denotes the displacement. The J-

integral is also called 1J  integral. In general, the kJ  integral can be written as  
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Fig. 2.12 J-integral contour for a crack. 

For linear elastic materials, 1J  integral is the potential energy release rate (PERR) 

associated with a crack  1J J G  . For 2D problems, the 1J  integral can be split into two 

terms (Cherepanov, 1979) that correspond to each mode: 

 1

I IIJ J J   (2.20) 

where IJ  and IIJ  are the mode I and mode II energy release rates. In the same fashion, 2J  

integral is also expressed as  

 
2 2 I IIJ J J   (2.21) 

From Eq. (2.20) and Eq. (2.21), the individual mode SIF can be obtained through the 

following relations: 
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 (2.22) 

However, computing 2J  integral is tricky because it involves singular terms when the 

sampling points lie in the region close to the crack tip, because 2n  is non-zero.  

One of the popular approaches to compute SIFs is to decompose the mixed-mode 1J  

integral (Kitagawa et al., 1976; Rigby & Aliabadi, 1998). It was first successfully applied 
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using dual BEM (Portela et al., 1992). This was then extended to the 3D case by Huber et al. 

(1993). This decomposing technique is tedious because the stress, strain and the displacement 

corresponding to each mode has to be extracted.  

The other popular technique is based on the Betti‘s reciprocal theorem. In this case, 

auxiliary stress and displacement fields are employed to determine the SIFs (Huber et al., 

1993; Wen & Aliabadi, 1995; Gosz & Moran, 2002). This technique is advantageous over the 

technique of decomposing the symmetric and anti-symmetric terms of the displacement and 

the stress. Moreover, the SIFs IK  and IIK  can be calculated independently.  

Nikishkov et al. (1987) converted the contour integral to domain integral and 

calculated the SIFs. Later, the idea of adopting auxiliary stress and displacement field 

solutions to calculate the SIFs was executed in planar and non-planar cracks (Moran & Shih, 

1987; Gosz & Moran, 2002). This technique is popularly known as the M-integral or 

interaction domain integral method. M-integral is widely used in the extraction of mixed-

mode SIFs in the MMs.  

In addition to these techniques, there exist other methods such as the body force 

method (Nisitani & Chen, 1987; Nisitani & Chen, 1992) for the computation of SIFs. 

2.5.4 Crack closure integral 

Irwin showed that the PERR associated with formation of new surfaces due to an 

extended crack is equal to the specific work required to close the extended crack. This 

became the basis for the calculation of the CCI.  

The following crack closure integrals give the expression for computing PERRs in 

mode I (GI) and mode II (GII): 
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 (2.23) 

where IG  and IIG are mode I and mode II energy release rates, respectively. The stresses and 

displacements are shown in Fig. 2.13. The total energy release rate G
 
is the sum of IG

 
and 

IIG . The SIFs associated with the individual modes can be extracted using Eq. (2.2). 
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Fig. 2.13 Self-similar crack extension. 

The integral in Eq. (2.23) can be evaluated by numerical integration or Gauss 

quadrature using the computed displacements and stresses. Because of steep gradients in 

stress near the crack tip, it is necessary to divide the span Δa  into a large number of 

divisions, and to use a high order of Gauss quadrature to obtain good accuracy. Table 2.1 

shows the percentage of error in SIF calculation using Gauss integration for various Gauss 

order and cell divisions. As the number of divisions Ndiv and order of Gauss quadrature 

increases, the error in the SIF calculation decreases. 

Table 2.1 The percentage of error in SIF calculation using Gauss integration (Singh et al., 

1988). 
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 In order to minimize the numerical error associated with the integration, Singh et al. 

(1988) proposed mid-fractional domain integration in the BEM and termed it as the UCCI. 

The Gauss integration over a certain fractional domain can be written as  
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 where   is a constant that depends on the fractional length of the domain and can be 

obtained from Eq. (2.24). The crack-tip stress field and crack opening displacement near the 

tip can be written as 
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where K  is the SIF, CODC  equals  24 / 1E   for plane strain and 4 / E  for plane stress. 

The energy release rate for a small crack extension of length a  using Eq. (2.25) can be 

written as  
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The integral in Eq. (2.26) can be simplified to 
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  is obtained from Eq.(2.27) by choosing a suitable span 1r  to 2r  as  
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where 
1

V sin
2ir i i    and sin i

i

r

a
 


. For the mid half of the domain ranging from 

1 / 4r a   to 2 3 / 4r a  ,  is equal to 3. 

 Table 2.2 shows the percentage of error in the SIF using BEM calculation by 

Gauss integration over the mid-half domain for various Gauss order and cell divisions. The 

error in the SIF calculation is significantly reduced by performing the integration over a 
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fractional domain. As long as the crack-tip stresses and displacements are extracted within a 

reasonable level of accuracy, the UCCI method gives the SIFs with very good accuracy.  

Table 2.2 The percentage of error in SIF calculation using Gauss integration over the mid-

half domain (Singh et al., 1988). 

 

Alternative approach to improve the accuracy of the SIFs 

When the crack-tip stresses and CODs are not smooth, a smoothing function of a 

known variation can be used to smoothen out the field variation (Maiti et al., 1997). Various 

smoothing functions that depend upon the displacement variation, such as linear, quadratic, 

and asymptotic variation using a quarter point compatible with square root singularity in the 

BEM, have been suggested.  

MCCI or VCCT 

 The MCCI or VCCT is routinely used within the context of the FEM. In this method, 

the crack closure forces are extracted using the stiffness matrix and nodal displacement. Fig. 

2.14 shows a four-node quadrilateral FE mesh in the region around the crack tip, which is 

used to compute the crack-tip nodal force and the crack opening displacement. The mode I 

and mode II components of the SERR IG  and IIG  are then calculated using the following 

relation: 
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where a  is the length of the elements at the crack front and xF  and yF  are the nodal forces 

at the crack tip (nodal point i). The CODs behind the crack tip are calculated from the nodal 

displacements at the upper crack face and the lower crack face. 

 

Fig. 2.14 Modified crack closure integral in FEM. 

 Eq. (2.29) is very convenient to extract the mixed-mode SIFs, because it does not 

involve cumbersome computations. The crack face loading due to pressure or temperature 

can also be easily handled by the MCCI. Moreover, the energy release rate associated with 

the MCCI includes the contribution due to a singular term plus the higher order terms. The 

direct adoption of the method in the MMs is beset by only the problem of computation of the 

crack closure forces to implement the MCCI technique. 

 Since the variation of the crack-tip stress and displacement fields are the same for the 

isotropic and functionally graded materials, the expressions given in this section are 

applicable to the latter group of materials. 

2.6 Crack Propagation Criteria 

There are many theories (Kumar, 2013) to predict the direction of crack extension. It 

can be broadly classified into categories: stress and energy based criterions. The crack 

propagates when the stress or the maximum energy release rate along the crack extension 

direction reaches a critical value.   
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2.6.1 Maximum tangential stress (MTS) criterion 

The MTS criterion was proposed by Erdogan and Sih (1963). They proposed that the 

crack extension would occur from the crack tip in the radial direction perpendicular to the 

direction of maximum tangential stress (MTS). The criterion was based on the stress field 

approximated by the first term of the Williams' stress function expansion given by Eq. (2.7). 

The direction of crack extension ( )c MTSζ  is given by the following condition: 
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where ζζζ  is the tangential stress around the crack tip. Substituting Eq. (2.7) in Eq. (2.30), 

( )c MTSζ
 
can be expressed in terms of SIFs as 
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The condition for the crack to propagate in the ( )c MTSζ  direction is given by 
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where cζ  is the critical stress. It is a material property that can be obtained from pure Mode I 

fracture tests where   
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K
ζ

πr
  (2.33) 

IcK  is the Mode I fracture toughness and cr  is the radial distance from the crack tip at which 

ζζζ  is computed using Eq. (2.32).  

The MTS criterion does not take into account the higher order terms of the 

eigenfunction expansion. Therefore ( )c MTSζ  is not a principal direction when more than one 

term (singular term) of the Williams' stress function expansion is used to predict the direction 

of crack extension.  
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2.6.2 Maximum tangential principal stress (MTPS) criterion 

 According to the MTPS criterion, a crack extends in a radial direction corresponding 

to the maximum tangential principal stress on a circle of finite radius from the crack tip. This 

extension occurs when this maximum reaches a critical value, which is defined as a material 

constant. It can be easily obtained from mode I fracture tests.  

 

Fig. 2.15 MTS and MTPS criteria. 

When a finite number of terms of the Williams‘ eigenfunction expansion are used to 

express the crack-tip stress field, the condition 0ζζζ ζ    does not give a principal 

direction. There is a direction close to this and is given by 0r  , which corresponds to a 

principal direction. The corresponding tangential stress is a principal stress. According to the 

MTPS criterion, the crack extends in the ( )c MTPSζ  direction, which is given by 0r  . The 

condition for the onset of extension is given by ζPζ  (Fig. 2.15), which reaches a critical value 

cζ  (Maiti & Smith, 1983a). cζ  is equal to, / 2Ic cK πr , where cr  is the radius of the circle 

considered for plotting. This is also called the shear stress criterion. 

2.6.3 Maximum tangential strain (MTSN) criterion 

  This criterion was first proposed by St.Venant (Timoshenko, 1953). It has received 

considerable attention; this has been accepted as a theory of failure. This theory was later 

successfully adapted in the study of the failure of concrete (Wu, 1974). When applied to an 

elliptical angled crack problem, along the line of the MTS criterion, the MTSN criterion cζ  

(Maiti & Smith, 1983a) yielded results that matched published data (Wu & Chang, 1978; 

Chang, 1981). It was also applicable to slit cracks (Maiti & Smith, 1983b). 
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 The variation of tangential strain can be obtained from the asymptotic stress field in 

the region close to the crack tip using Hooke‘s law. Alternatively, the strain field can also be 

obtained from the numerical simulation by multiplying the strain-displacement matrix with 

the displacement vector. This computed strain would include the effects due to both singular 

and non-singular terms. According to the MTSN criterion, the crack initiates when the 
max

ζζε  

reaches the critical value that can be obtained from the mode I test. 

2.6.4 Minimum strain energy density (SED) criterion 

The strain energy density criterion was proposed by Sih (1974). According to this 

criterion, a crack extends in a radial direction from the crack tip corresponding to the 

minimum strain energy density W  on a circle of finite radius from the crack tip. The 

extension occurs when the minimum SED value reaches a critical value, which is a material 

parameter. The total strain energy is given by 
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where V  is the volume of the body. The strain energy density is given by 
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where 3 4κ ν   for plane strain, and    3 / 1κ ν ν    for plane stress. Substituting Eq. 

(2.7) in Eq.(2.35), the SED can be expressed as  
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where  
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Since the SED function poses singularity, Sih proposed another function  S ζ  that is 

independent of the radius r , given by 

   S ζ Wr  (2.38) 

The direction of the crack extension ( )c SEDζ  is given by the following condition. 
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By combining Eq.(2.37), (2.38), and (2.39), the direction of crack propagation ( )c SEDζ
 

can be obtained by solving the following equations: 
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 (2.40) 

Eq. (2.40) can be solved to determine the direction of crack extension when the SIFs 

are known. The material parameter cS  is obtained from Mode I fracture test, as follows: 
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Fig. 2.16 shows crack paths predicted by four criteria, MTS, MTPS, MTSN, and SED, 

for an elliptical crack with / 0.2b a  . The crack paths predicted by each of the criterion are 

different; the difference between them increases with an increase in the inclination of the 

crack to the loading angle. For instance, for 75β= o , the crack extension direction predicted by 

the SED criterion is very different from those obtained by the MTS, MTPS and MTSN 

criteria.   
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Fig. 2.16 Crack paths predicted by four criteria (Maiti & Smith, 1983a). 

2.7 Interface Crack-Kinking Criterion 

A propagating crack in non-homogenous materials often encounters the material 

interface. The crack may propagate along the interface or kink into the adjoining materials, 

depending upon the loading angle and the properties of the adjoining material. The criteria 

governing the kinking out of an interface are different from those used to determine the crack 

propagation angle in homogenous materials. There are three popular criteria to predict the 

interface crack kinking angle. 

2.7.1 maxG  criterion 

He and Hutchinson (He & Hutchinson, 1989) proposed that the kink angle ω  of an 

interface crack (Fig. 2.17(a)) is dictated by the maximum ERR ( maxG ) of the kinked crack. In 

order to find the maximum energy release rate  mω mω maxG G G , the crack is extended by 

Δa  in various directions ζ , as shown in Fig. 2.17(b). The direction ζ , which corresponds to 

the maximum energy release rate mωG  is the angle of crack propagation ω  into the material 

m  (#1 or #2).  



- 31 - 

 

 

(a)                                       (b) 

Fig. 2.17 (a) Interface crack. (b) Kinking of an interface crack. 

The tendency of the interface crack to kink out of the interface or to grow along it is 

determined by the following ratio: 

 mω I

m I

f f
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where 
m

fΓ  and 
I

fΓ  are the fracture toughness of the adjoining material m and the interface, 

respectively. The ERR IG  along the interface and ERR mωG  along the kinking angle ω  are 

related to SIFs and is given by  
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where 
*

mE  is the Young‘s modulus of the material m (#1 or #2). The crack is likely to 

penetrate the homogenous neighboring material if the inequality in Eq. (2.42) holds. 

Otherwise, it is likely to extend along the interface. 

This theory can also be extended to an arbitrary crack located in any material. The 

crack extends in the direction of the maximum energy release rate. In order to find the energy 

release rate  G ζ , the crack is extended by Δa  in various directions, ζ , as shown in Fig. 

2.18. The cζ  corresponding to the maximum energy release rate 
max

ζG  is the crack 

propagation direction.  
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Fig. 2.18 Crack extension Δa  to find the energy release rate  G ζ . 

The crack propagates when 
max

ζG  reaches the critical energy strain energy release rate 

cG . That is, 

     
max

ζ cG G  (2.44) 

where 
2 */c IcG K E ; IcK  is the critical SIF of the material.  

  Although the energy-based criterion can be used to determine both the crack-kinking 

angle and the load that leads to initiation of interface crack kinking, it requires substantial 

computational effort. This is because the criterion requires multiple analyses to generate a 

variation of the ERR with the possible kinking direction ζ.  In general, for an accurate 

computation of ERR, Δa  of the kinked crack is kept very small when compared to the parent 

interface crack.  

2.7.2 0IIK   criterion 

The 0IIK 
 
criterion, proposed by Akisanya and Fleck (Akisanya & Fleck, 1992), 

stipulates that the interface crack kinks in the direction that corresponds to zero mode II SIF 

of the kinked crack. The mixed-mode SIFs of a kinked crack of length Δa  is related to the 

parent crack (He & Hutchinson, 1989; Akisanya & Fleck, 1992) by the following relation.   

 (Δ ) (Δ ) Δiε iε

I II mK iK c a d a gT a   K K   (2.45) 
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where c , d  and g  are complex functions that are dependent on material parameters α , β , 

and the kink angle, ω .  

 Given the complex functions c , d , and g , the complex SIF of the interface crack, 

calculated from the interaction integral or from any other SIF extraction technique is 

substituted in the Eq. (2.45) to determine ω . In the absence of the data of c , d , and g , the 

kinked crack of length Δa  is extended in various directions, ζ . The kink angle ω

corresponds to the direction in which mode II SIF of the kinked crack is zero.  

2.7.3 MTS criterion 

Yuuki and Xu (1992) proposed that the interface crack would extend in the direction 

of the maximum tangential/hoop stress given by the singularity term; they did not consider T-

stress in their analysis. The angle ζ  corresponding to 
max

ζζζ  gives the kinking angle ω . The 

tangential/hoop stress variation for an interface crack is given by 
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where 1 2K iK K  is a complex SIF associated with an interface crack, cr  is radius at which 

tangential stress is determined, and ε  is oscillation index parameter defined by 
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ψ̂  is the phase angle defined by 
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 where L  is some fixed value, and usually set close to 100 mμ . 

Although, 0IIK 
 
and the MTS criterion are used to determine the kinking angle, they 

cannot be used to judge whether crack would kink or grow along the interface. Only when the 

interface is assumed to be tough, the crack can be forced to propagate into the adjoining 

material. Eq. (2.42) is still needed to ascertain the direction of crack propagation. 
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Fig. 2.19 shows a Brazil-nut-sandwich specimen made of aluminum and epoxy, which 

is used to determine the kink angle of an interface crack. The experimental results are 

compared with the kink angle of an interface crack obtained using the three criteria in Fig. 

2.20. It is observed that the MTS criterion performs better than the two other criteria. 

 

Fig. 2.19 Brazil-nut-sandwich fracture specimen (Kang, 1994). 

 The MTS criterion is the simplest among all the criteria, but does not take into 

account T-stress. It is well known that in non-homogenous materials the first non-singular 

term (T-stress) of the Williams‘ expansion affects the crack propagation angle (Kang, 1994). 

When T-stress is taken into account, the 
max

ζζζ  based on the MTS criterion is no longer the 

principal stress.  

 

Fig. 2.20 Comparison of kinking angle obtained using three criteria, with the 

experimental results in brazil-nut-sandwich specimen (Kang, 1994). 
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2.8 Level-Set Methods 

The LSM was developed by Osher et al. (1988) to model the motion of interfaces or 

moving boundaries. It has been used in a wide range of applications (Sethian, 1999). The 

combination of LSM and the numerical method such as the XFEM or MMs provided a 

simple way of implicitly tracking crack growth in two and three dimensions (Xiaoying, 

2010). The level-set data that corresponds to a crack is generally stored at FE nodes or 

meshfree nodes. These values are updated using evolution equation when crack propagates.  

There are different techniques to track crack propagation using level sets, which can be 

classified into four groups. In the first group, the level-set values stored in the background 

grid points are updated using the solution of an evolution equation, the Hamilton–Jacobi PDE 

(Moёs et al., 2002; Gravouil et al., 2002; Sukumar et al., 2002). In the second group, 

algebraic relations between the coordinates of a given point, the coordinates of the crack 

front, and the crack advance vector is stored as level-set data and used to track crack 

propagation (Stolarska et al., 2001). The third group is based on the vector level set (Ventura 

et al., 2002; Ventura et al., 2003), in which the information about magnitude of the distance 

of a point to the crack curve and its sign is stored. The fourth group tracks the crack by 

algebraic and trigonometric equations that involve the initial value of the level-set functions 

and the crack advance vector. The first and the fourth group suit any 3D tracking of crack 

growth. An efficient crack-tracking algorithm in the framework of MMs has been presented 

by Zhuang et al. (2011; 2012).   

A 3D crack has two level-set functions (Fig. 2.21)—normal and tangential level set—

defined at each background grid point. The normal level set φ( )x  corresponds to the signed 

normal distance from the crack surface to the grid point. Therefore, the set φ( ) = 0x  describes 

the surface that contains the crack. The tangential level set ς( )x  corresponds to signed 

distance of the crack front from a given grid point. Therefore, the set ς( ) = 0x  describes the 

crack front curve. Therefore, it becomes easy to track the crack with these two level sets 

without explicit representation. 

In the case of a 2D crack, a single level-set function (normal level-set- φ( )x ), is 

sufficient for crack description because the crack front is just a point. The third group of the 

method based on the vector level set is particularly suitable for 2D cracks. It does not require 

the solving of the evolution PDE. When a crack propagates, the vector level-set function and 



- 36 - 

 

the crack-tip location are updated using simple algebraic equations. Since the MMs allow 

modeling of curved cracks with ease, it becomes all the more advantageous to combine them 

with the vector level set to track any crack extension. 

 

Fig. 2.21 Level-set methods for a 3D crack. 

The vector level-set function ( )f x  in a 2D case is defined on a narrow band of nodes, 

as shown in (Fig. 2.22). Usually, the level-set values are stored in the grid points that coincide 

with nodes and fall within a distance of fr  from the crack line. The fr  is usually related to 

the domain of influence Id ; it is slightly bigger than the Id
 
for a regular node in the MMs.  

 

Fig. 2.22 Level-set method for a 2D crack. 
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In the case of a 2D crack, a compound object ( )f x  is defined by Ventura et al. (2002)  

such that it consists of vector level set and Heaviside function of ( )f x   

 
( ) { ( ), ( ( ))}
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Tf H f
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x f x x

f x x x
 (2.49) 

where x  is the foot of perpendicular from x  to the crack curve. The signed distance function 

required for representing the crack can be computed using 

 ( ) ( ) ( ( ))f H fx f x x  (2.50) 

 During the calculation of the stiffness matrix, the signed distance at grid points has to 

be extrapolated to any generic point p , which can be a Gauss point. This is done by 

identifying the grid point closest to p  (Fig. 2.23(a)). Then the signed distance ( )pf x  (Fig. 

2.23(b)) is then given by 
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where I  is the node closest to p  and ˆ ( )If x  is the normalized vector distance of point Ix  to 

the crack. As the crack propagates, the level-set values are easily updated using geometric 

expressions in the background grid points (Ventura et al., 2002). 

    

Fig. 2.23 (a) Gauss point p near the crack line. (b) Vector extrapolation. 

2.9 Closure on the review 

The literature review indicates a variety of ways of exploiting MMs. Most of the 

techniques that have been used for extraction of the SIFs are based on the J-integral 
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technique. Many other techniques such as the displacement method, the stress method, and 

the CCI technique are much simpler than this approach, and are routinely used in the FEM 

and BEM. The use of such techniques in MMs to extract the SIFs has not yet been studied. 

Further, whether the cases of crack face loading and thermal loading can be incorporated 

easily into these methods, for extraction of the SIFs, needs fresh examination. 

Crack propagation study through non-homogenous materials is greatly facilitated by 

MMs. The criteria that are usually employed in such investigations are based on the energy 

criterion of fracture mechanics. This method is computationally expensive for the study of the 

kinking of an interface crack. Even the criterion 0IIK   belongs to the same category. The 

other criterion, which offers some advantages, is the MTS criterion. It can help in reducing 

the computational cost. However, this criterion is not sufficient on its own to study the 

kinking of an interface crack. How this criterion can be made sufficient is an issue open to 

investigation. 

In the case of homogenous and heterogeneous materials, the first non-singular term or 

T-stress has significant influence on the direction of crack propagation. In order to evaluate 

the influence of the T-stress using EFG methods, it is first necessary to develop suitable 

methods for extraction of T-stress in the case of bi-materials, particulate composites, and 

functionally graded materials. In addition, it is necessary to evaluate the influence of this T-

stress on the direction of crack propagation. The method of predicting the direction of crack 

propagation by considering that the crack-tip stress field is given by a combination of the 

singular and non-singular terms is the same as the prediction based on the MTPS criterion or 

the zero shear stress criterions.   

LSMs greatly reduce the effort in tracking the extension of a crack. Whether LSM can 

be combined with crack modelling techniques in the realm of the EFG method and adopted to 

model multiple interacting cracks needs fresh investigations. Keeping all these in view, the 

present investigations have been carried out with the objectives given in section 1.2.  
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Chapter 3 Element-free Galerkin Method 

3.1 Introduction 

In this chapter, the details of the element-free Galerkin (EFG) method are described. 

The properties of the shape functions, which are obtained using the moving least-squares 

technique, are discussed. Although the EFG method is called a meshfree method, it is not 

truly devoid of a mesh. A background mesh is needed for integration. Some aspects of 

integration are discussed in this chapter. A preliminary case study that shows the effect of the 

number of Gauss points, the nodal density, and the domain of influence on the accuracy of 

the solution is presented.  

In the later part of this chapter, different methods of modelling cracks by using the EFG 

method are presented. The issues related to the use of the XEFG method to model fracture in 

a non-homogenous material are discussed. Finally, the formulation of the interaction integral 

to extract the SIFs is described.  

3.2 Parameters of the EFG Method  

The key parameters that affect the solution in the EFG method are the domain of 

influence, nodal density and order of Gauss integration. The study of these parameters is 

crucial to understanding and controlling the approximating errors.  

3.2.1 Doman of influence and its size 

Fleming (1997) defined domain of influence as a region on which a node exerts 

influence. Fig. 3.1(a) shows three nodes with circular domains of influence of support sizes

1 2,d d  and Id . Id
 
is size of the domain of influence/support of node I . This is also known as 

the dilatation parameter. It is analogous to the element size in the FEM. The bigger the 

domain of influence, the bigger will be the bandwidth of the global stiffness matrix. In 

general, Id  is kept neither large nor too small; it is related to the average nodal spacing ( ) 

by Id  . A larger value of Id  will increase the bandwidth and artificially smoothen out 

the solution. This is not preferable, especially, in the region that contains a crack tip. On the 

other hand, a smaller Id  leads to ill conditioning of the stiffness matrix. Fig. 3.1(b) shows 
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different shapes of the domain of influence. In a particular problem, it can be of any shape 

and size. Circular domains of influence have been widely employed (Fig. 3.2).  

 

(a)      (b) 

Fig. 3.1 (a) Domain of influence. (b) Shape of the domain of influence. 

The size of the domain of influence is usually constant or varied in a domain. For 

example, the nodal domain of influence is relatively small when a node is close to a crack tip 

or lies in a region where the gradient in the field variable (for example, displacement) is very 

high. This is done to capture the displacement variation accurately. In the case of a regular 

nodal discretization with no refinement for modelling a crack, α  has been chosen ranging 

from 1.75 to 2.5 (Fig. 3.2) (Organ et al., 1996; Muravin & Turkel, 2006; Muthu et al., 2013; 

Tuan & Fei, 2014).  

 

Fig. 3.2 Id  for a node in the case of a regular nodal discretization. 

3.2.2 Weight function 

Weight/window or the kernel functions are necessary to obtain the shape functions. 

They provide a local behavior to the solution. Weight functions have compact support 

associated with it. They are continuous and positive in their support. Weight functions tend to 
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be used with a support domain associated with a point of interest whereas a domain of 

influence is associated with a node. Functional forms of the weight function that are 

commonly used for interpolation are 

Cubic Spline 
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 Quartic spline 
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Conical formula 
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Exponential function 
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Negative exponential function 
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  (3.5) 

where /I Is r d  and Id  are the domain of influence. The parameter  affects the shape of 

the exponential functions.  

In the case of 2D problems, circular and rectangular shapes for generally used as 

weight functions. In this work, the circular shape of Id  is used. The distance Ir  of a 

sampling/Gauss point at location x  from a node at location Ix  is given by  

 I Ir  x x   (3.6) 
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3.2.3 Nodal Density and Gaussian integration 

Increasing the nodal density increases the order of the approximating nodal shape 

functions (Xiaoying et al., 2012). Unlike the FEM, the EFG method gives both h-adaptivity 

and p-adaptivity as the nodal density is increased. Therefore, it is difficult to control the error 

in the EFG method. In addition, the shape functions are rational functions; they behave more 

like non-polynomial functions in the case of non-uniformly distributed nodes. In order to 

demonstrate this effect, a set of six nodes in  0,1x  was considered by Dolbow et al. 

(1999), as shown in Fig. 3.3. 

 

Fig. 3.3 1D non-uniform grid (Dolbow & Belytschko, 1999). 

Fig. 3.4 shows the shape function, its first derivative, and the square of the derivative at 

the 4
th

 node. The square of the derivative is considered for the plot because it appears in the 

computation of the stiffness matrix. It can be observed that the derivative and the square of 

the derivative are complex functions and therefore, demands a high order of Gauss 

integration for an accurate evaluation of the stiffness matrix.  

 

Fig. 3.4 Shape function, derivative, and square of the derivative for node 4 (Dolbow & 

Belytschko, 1999). 
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In order to understand the effect of Gaussian integration on the accuracy, a rational 

function that behaves as a regular type of EFG shape function, was considered by Dolbow et 

al. (1999). It is of the form given by  

   2

3 2

0 1 0

3 2
0 1

1

f

   


     
 

  

 (3.7) 

 

In order to integrate the function in Eq.(3.7) accurately, two cases were considered. In 

the first case, an integration cell that covers the entire span was used. In the second case, the 

span was subdivided into two sub-intervals[ 1,0] [0,1]  . Table 3.1 shows that the accuracy 

is high if the number of subdivided background cells is higher. It can be further improved by 

increasing the order of Gauss integration.  

Table 3.1 Comparison of Gauss quadrature accuracy (Dolbow & Belytschko, 1999). 

 

 

        (a)               (b) 

Fig. 3.5 (a) Shape function. (b) Its derivative (Fries & Matthies, 2004). 
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Fig. 3.5(a) shows the variation of the shape function, and Fig. 3.5(b) shows the 

derivative of the shape functions for a 1D domain with 11 equally spaced nodes. Although 

the nodes can be arranged randomly inside the geometry, the computational efforts involved 

in integrating the derivatives of shape functions in regular nodal distribution are less than that 

of non-uniform distribution. Therefore, a regular nodal distribution that results in smooth 

variation of shape functions and its derivatives is preferred over irregular nodal distribution.   

3.3 Shape Function 

The shape functions of the EFG method are obtained by the moving least-squares 

(MLS) interpolation technique (Lancaster & Salkauskas, 1981). The term ―moving‖ in MLS 

refers to the varying coefficients with spatial coordinates. There are many variants of least 

squares for interpolation of data (Onate et al., 1996): the standard least-square method, the 

fixed least-square method, and the multiple fixed least-squares method. These techniques are 

based upon minimization of the residual, which is a weighted square of the error at any point. 

The residual is given by 

  
2

1

( ) ( )
N

h

I I

I

w u u


 J x x   (3.8) 

where ( )iu x  is the actual value at node I  and ( )h

Iu x  is the approximated value. N  is the 

total number of nodes that influence the node Ix  . w is the weight function. 

 Let us consider 1D formulation of the EFG method, which can be generalized to 

higher dimensions. The approximated field variable ( )hu x  at any generic point x  can be 

represented by  

 ( , ) ( ) ( )h

I Iu x x x x Ρ a   (3.9) 

Where ( )xa  is the coefficient vector given by  0 1 2( ) ( ) ( ) ( ) ... ( )T

mx a x a x a x a xa  and 

( )xΡ  is a standard complete polynomial of order m . It is given by 

   2

0 1 2( ) ( ) ( ) ( ) ... ( ) 1 ... m

mx P x P x P x P x x x x     Ρ   (3.10) 
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( )xΡ  and ( )xa  when substituted in Eq. (3.8), gives rise to 
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In order to find the unknown coefficients, the residual J  is minimized with respect to each 

unknown coefficient of vector ( )xa  
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This results in 
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Eq. (3.13) can be rearranged to yield 
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where 
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For example, in a 1D system with a linear basis-  ( ) 1x x Ρ ,  xA  and  xB will be  
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Replacing the term  xa  in Eq. (3.9) with the solution of  xa  from Eq. (3.14), ( )hu x  can 

be written as  

    
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h T

I I

I

u x x x u
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where      
1

( )T Tx x x x


   Φ P A B .  I x  is the MLS shape function associated with 

node I .  

 An important term during the derivation of the MLS shape function is the moment 

matrix  xA . Its size is m m . The size of the polynomial basis vector ( )T xP  is m . This 

matrix should be inverted whenever the MLS shape function  I x  is to be calculated at 

any point x . For example, if the polynomial basis is quadratic   21T x x x   P , that is, 

3m  , then the moment matrix is given by  
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  (3.18) 

Since the derivation of the shape function and its derivative involves the inversion of 

the moment matrix  xA  at each Gauss point during the computation of the global stiffness 

matrix, the computational cost of the EFG method becomes enormous. Secondly, the domain 

of influence Id  has to be increased depending upon the size of the polynomial  T xP  vector. 
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This is done to avoid the occurrence of a singular moment matrix. For example, if 2m  , 

then the number of nodes ( N ) within a domain of influence must be at least equal to 

 2m N   . When N increases, the bandwidth of the stiffness matrix also increases. 

Consequently, the computational costs increase drastically with the increase in the 

polynomial basis. Therefore, in this work, a linear basis is chosen and efforts are made to 

increase the accuracy without any significant increase in the computational cost. 

3.4 Properties of the Shape Function 

The shape functions obtained through the MLS technique differ from the FEM shape 

functions in some aspects.  

3.4.1 Approximants 

Although shape functions are built upon the concept of partition-of-unity (PU), they do 

not interpolate like the shape functions of the FEM. They do not possess the Kronecker delta 

property. At every node, there are more than one shape function that have values other than 

zero. This feature makes imposition of essential boundary conditions (EBC) difficult and, 

hence, adds more computational cost.  

3.4.2 Non-polynomial nature of the shape functions 

Although the weight functions can be polynomial in nature, the resulting shape 

functions are non-polynomial (Askes et al., 2003). The derivatives are even more non-

polynomial in nature. This becomes a problem in integrating the expressions of the weak 

form (Hegen, 1996). However, for a regular nodal discretization, the shape functions and its 

derivatives can be treated as polynomial-like functions (Section 3.2.3).  

3.5 Imposition of Dirichlet Boundary Conditions 

One of the difficulties associated with the EFG method is imposition of Dirichlet or 

EBCs due to the lack of Kronecker delta property for the shape functions. A number of 

techniques have been proposed to overcome this problem. It is to be noted that there would 

be loss in the convergence order for most of the imposition techniques (Han & Meng, 2002). 

3.5.1 Boundary collocation 

This is the simplest approach when it comes to imposing the EBC in the framework of 

MMs (Mukherjee & Mukherjee, 1997). However, using this technique, one cannot enforce 
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the EBC at points other than nodal locations (Atluri & Shen, 2002). If the displacement value 

Igu is to be imposed at node, I, at the location Ix , then an extra row and column will be added 

in the global stiffness matrix  K , given by 

 
1

... ...

... ( ) ( ) ( ) ...

... ...

Ii I i I i I gx x x u

  
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      
     

  (3.19) 

where ( ) : 1,2,...,i Ix i n   are shape functions of the n nodes that influence the point Ix .  

3.5.2 Lagrange multiplier 

This concept of Lagrange multipliers (Belytschko et al., 1996) is derived from the 

equality constrained optimization problem. The EBC are the constraints. The minimization 

problem becomes a saddle point problem (Brezzi, 1974). A new set of interpolation 

functions, such as FE shape functions, are needed for the Lagrange multipliers.  

The Lagrange multiplier technique introduces additional unknowns in the system. 

Because of this, the final matrix structure becomes
T

G

G 0

 
 
 

, where K  is the global stiffness 

matrix, and G  is due to Lagrange multipliers. The final structure is no more positive definite 

(because of zeros on the main diagonal.). Therefore, equation solvers that take advantage of 

positive definiteness no longer be used (Belytschko et al., 1994; Lu et al., 1994). 

3.5.3 Penalty approach 

EBC can also be weakly imposed by a penalty formulation (Noguchi et al., 2000). 

The main advantage of the penalty method is that it does not introduce additional unknowns 

in the system. However, the choice of the penalty parameter p  is important. A very high 

value of p may lead to ill conditioning of the resulting stiffness matrix.  

3.5.4 Nitsche’s method 

Nitsche‘s method (Babuška et al., 2002; Fernández-Méndez & Huerta, 2004) is an 

improvement of the penalty method. In this method, a number of terms are added to the weak 

form, depending on the problem considered. The value of p  can be small and, thus, ill 

conditioning of the resulting stiffness matrix is avoided. It is claimed that this method is 

superior to both, the Lagrange multiplier and the penalty method. 
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3.5.5 Finite element coupling 

The sole aim of coupling the MMs and FEM is to avoid the difficulties in imposing 

the EBC. Since FE shape functions possess the Kronecker delta property, this coupling might 

seems effective. However, the challenge remains in modelling the interface as shown in Fig. 

3.6, because the derivatives become discontinuous. Several approaches to overcome this issue 

exist (Rabczuk et al., 2000): the master-slave coupling approach (Johnson, 1994; Belytschko 

et al., 2000), compatibility coupling (Belytschko et al., 1995), the bridging domain coupling 

method (Belytschko & Xiao, 2004), coupling with Lagrange parameters (Hegen, 1996; 

Rabczuk & Belytschko, 2006), and hybrid approximation (Sauer, 2000). If a point lies inside 

a domain in which the EBC have to be imposed, such a coupling would be even more costly 

computationally.  

 

Fig. 3.6 Coupled meshless finite element method. 

In addition to the approaches mentioned above, there are also other complex 

approaches (Fries & Matthies, 2004) such as the Transformation method (Chen et al., 1997; 

Chen & Wang, 2000), singular weighting functions (Kaljevic & Saigal, 1997) and 

D‘Alembert‘s principle (Gunther & Liu, 1998) to overcome the problem associated with the 

imposition of EBCs.  

3.6 System of Equations for Elastic Problems 

In this work, only two-dimensional problems are considered and, therefore, the effect 

of mode III in the case of crack problems is neglected. Nevertheless, the formulations 

presented here can be easily extended to 3D problems. Consider a 2D geometry subjected to 

traction t  and the EBC u  as shown in Fig. 3.7. It shows the background mesh for 

integration and nodal distribution. There are four nodes that are in the support domain of the 
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point x . The governing partial differential equation for 2D solid mechanics problem is given 

by  

 d + = 0T
L σ b   (3.20) 

where  1 2

T
b bb  is the body force vector and  11 22 12

T
  σ is the stress vector. 

The operator dL  is given by 
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Fig. 3.7 EFG method discretization with background mesh for integration. 

For this 2D problem, the Galerkin weak form in the presence of Lagrange multipliers ( ) for 

the constraints is given by  
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  (3.22) 

The last two terms arise due to the adoption of Lagrange multipliers. It can be viewed as the 

force required to impose the condition u u  on u  .  
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For an isotropic material, the material property matrix  is given by 
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  (3.23) 

 where E  is the Young‘s modulus and   is the Poissons‘ ratio. 

The displacement approximation at any generic point x  in terms of MLS shape 

functions is given by  
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where nS  is the set that contains the nodes in the support domain of point x . It is to be noted 

that at node location Ix , ( )h

I Iu x u  . This is because the MLS shape functions lack the 

Kronecker delta property. dL u can be further simplified using Eq. (3.24) as follows 
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In order to impose the boundary conditions, the Lagrange multiplier is expressed by  

 ( ) ( )I I u

I S

N


 x x x   (3.26) 

where S  is the set containing the nodes whose shape functions are used to interpolate at the 

location x  (Fig. 3.8). ( )IN x  in Eq. (3.26) in one dimensional FEM shape functions or 

Lagrange interpolation functions 

 

Fig. 3.8 Boundary on which the EBCs are imposed. 

 
. Substituting Eqs. (3.24), (3.25) and (3.26) in Eq. (3.22), the following equation is 

obtained. 
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Eq. (3.27) can be alternatively represented as  

  
T[ ] [ ] 0T T     U KU G F G U q   (3.28) 

Since U  and   are arbitrary, Eq. (3.28) gives  

  
T 0

     
    

     

K G U F

G q
  (3.29) 
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 It is clear from Eq. (3.29) that the stiffness matrix in the EFG method will be much 

larger than the FEM stiffness matrix, for the same nodal degrees of freedom, because of the 

presence of the G  matrix. The efficiency of the solution depends significantly on the number 

of nodes on which the EBCs are imposed.  

3.7 Numerical Study: Rectangular Cantilever 

 A numerical study is conducted considering a cantilever subjected to external load P

(Fig. 3.9). This is done to understand the effect of Gaussian integration, nodal density and 

domain of influence on the accuracy of the solution. The specific data considered are the 

length of the cantilever, L = 48 m, the height of the cantilever, D = 12 m, Poisson‘s ratio,  = 

0.3, Young‘s modulus, 
7 23 10 /E N m  , and load, 

2
21000

2 4

D
P y

I

 
  

 
; the thickness of 

the cross section is unity. 

 

Fig. 3.9 Rectangular cantilever subjected to external load P . 
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The exact solutions are available in the work by Timoshenko and Goodier (1970). The 

displacement in the x  direction  

    
2

26 3 2
6 4

x

Py D
u L x y

EI


  
      

  
  (3.31) 

where 
3 /12I D  is the area moment of the inertia of the rectangular cross section beam. 

The displacement in the y  direction 

       
2

2 23 4 5 3
6 4

y

P D x
u y L x L x x

EI
 

 
      

 
  (3.32) 

The stress at any generic point on the cantilever is given by 
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     
   

  (3.33) 

Initially, a coarser discretization of 11 5  nodes (Fig. 3.10(a)) with a background 

mesh (Fig. 3.10(b)) is used to solve the problem. The domain of influence Id  is set to three 

times the nodal spacing ( 3α   ). 

 

Fig. 3.10 (a) Nodal discretization. (b) Background mesh. 

The deformed shape obtained using the 4 4  Gauss point quadrature is shown in Fig. 

3.11. The normal and shear stresses obtained are compared with the theoretical stress values 
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(Fig. 3.12). Although there is a good match between the computed and the theoretical normal 

stress, there is a mismatch between the computed and theoretical shear stress. The mismatch 

does not reduce with an increasing order of Gauss integration. 

 

Fig. 3.11 Deformed geometry with a structured nodal discretization. 

 

Fig. 3.12 Position / 2x L  (a) Normal stress; (b) Shear stress. 

Next, the nodal discretization is increased to 31 11 , as shown in Fig. 3.13(a). The 

background mesh for integration coincides with the nodes. A Gauss quadrature of order 4 4  

is used to obtain the results. The computed shear stress plot (Fig. 3.13(b)) at / 2x L  shows 

a better agreement with the theoretical results. In order to quantify the results, the strain 

energy error  errorS  is measured. It is given by 

     
1/2

1

2

T
EFG theory EFG theory

errorS d   


 
    
 
   (3.34) 



- 56 - 

 

where  is the plane stress material property matrix. 
EFG  and 

theory  are the computed and 

theoretical strain matrices, respectively.  

 

Fig. 3.13 (a) Nodal arrangement with background mesh. (b) Shear stress at / 2x L . 

The effect of an unstructured nodal discretization has also been studied. While the 

structured nodal discretization has regular nodal spacing, the present unstructured nodal 

discretization does not have a truly random nodal spacing. The unstructured nodal 

discretization have been generated by the Delaunay triangulation of the domain (Fig. 3.14). 

Inter-nodal distance in the structured mesh and average nodal spacing in the unstructured 

mesh are comparable parameters for this study.  

 

Fig. 3.14 Deformed geometry with an unstructured nodal discretization. 

Table 3.2 shows a comparison of the errors in strain energy with different Gauss 

quadratures. 31 11  nodes have been used in the structured mesh. The  (scaling factor) is 

set to three. The average nodal spacing in the unstructured mesh is 1m. The average nodal 

spacing of the unstructured mesh is kept slightly lesser than that of the structured mesh nodal 

spacing. The same regular background mesh is used for the structured and unstructured 
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meshes. As the order of Gauss quadrature increases, the errorS  in both the structured and 

unstructured nodal discretization decreases. However, the error in the case of structured mesh 

is lesser than the unstructured mesh.  

Table 3.2 Strain energy error with Gauss quadrature. 

Gauss Point 

Quadrature 

errorS  

Structured Unstructured 

1×1 0.1103 7.11E+27 

2×2 1.04E-04 1.07E+06 

4×4 8.95E-05 0.1028 

10×10 8.94E-05 0.0310 

Table 3.3 shows the variation of error in the strain energy with size of the domain of 

influence. 31 11  nodes have been used in the structured mesh. The average nodal spacing of 

the unstructured mesh is 1m. A Gauss quadrature of 4 4  is used in the background mesh for 

integration of the weak form. The error in strain energy errorS  decreases with the increase in 

the size of the domain of influence ( ) for the structured discretization. However, the 

behavior oscillates in the case of the unstructured arrangement of nodes.  

Table 3.3 Strain energy error with domain of influence ( Id  ). 

Scaling factor ( ) 
errorS  

Structured Unstructured 

1.5 0.0122 5.74E-04 

2 0.0012 1.17E-04 

3 8.95E-05 0.1028 

5 4.40E-05 0.1198 

The maximum domain of influence ( ) cannot be arbitrarily increased. A very high 

  leads to a larger bandwidth of the global stiffness matrix. In problems that involve a crack, 

a large   leads to a spread of the error in the region around the crack tip. This is not 

desirable in the computation of SIFs. There are many criteria for the selection of . Most of 

them are based on ensuring an invertible moment matrix (Liu, 2010; Guiamatsia et al., 2009).  
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Table 3.4 shows the strain energy error with the increase in the nodal density. A 

background mesh that coincides with the nodes is used for integration in the structured and 

unstructured discretizations. A Gauss quadrature of the order 4 4  is used in the integration 

cells. The  (scaling factor) is set as 3m. This is done to show the poor results of the 

unstructured mesh despite the usage of relatively higher nodal spacing. As the nodal density 

increases, errorS
 
decreases in the structured discretization. However, such convergence is not 

observed in the case of the unstructured discretization. 

Table 3.4 Strain energy error with nodal density. 

errorS  

Nodal density 

(Structured) 
Structured 

Nodal density 

(Average nodal 

distance) 

Unstructured 

11×5 0.0015 3 0.0785 

21×11 1.61E-04 2 0.0034 

31×11 8.95E-05 1 0.1028 

51×26 2.17E-05 0.65 6.2435 

Based on the observations above, it can be concluded that the pattern of errorS
 
is 

relatively random for an unstructured discretization. This is mainly attributed to an increase 

in the non-polynomial nature of the MLS shape functions that arise out of unstructured nodal 

arrangement. In such case, a very high order of Gauss quadrature is needed for accurate 

integration. This makes the process computationally more cumbersome. Therefore, only 

structured discretization is used in the advanced studies in this thesis.  

3.8 Modelling Cracks 

There are two popular approaches to model strong discontinuities that arise out of the 

crack in the EFG method: (1) Modification of the weight function and (2) Enrichment using 

special functions through the PU approach. 

3.8.1 Modification of the weight function 

The first technique to account for strong discontinuities in the MMs is the visibility 

method. In this technique, a node is considered a point source of light and the crack is treated 
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as an opaque object. Fig. 3.15 shows the domain of weight functions of nodes in the presence 

of a crack according to the visibility method. 

 

Fig. 3.15 Visibility method. 

Any line from a node to a generic point is imagined to be line-of-sight (LOS). If a 

LOS is intercepted by a crack, then the nodal weight function has zero value at that point. 

This method has the following advantages: (1) It is a very simple technique and does not 

involve much computational cost; and (2) Modelling a 3D crack is also simpler. 

The disadvantage of this technique is that there is an artificial lengthening of the crack 

(Nguyen et al., 2008). In addition, the computations near the crack tip are not smooth because 

a crack is modelled using discontinuous functions. 

In order to overcome these shortcomings, the diffraction method has been proposed 

(Rabczuk, 2013). It stipulates continuous modelling of a crack (Fig. 3.16). This facilitates 

smooth computations. In this technique, the principle of diffraction of light from a point 

source provided the basis for the decision of what the domain of influence of a nodal weight 

function would be. 

 

Fig. 3.16 Diffraction method. 
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 The modified distance 
Ir  of a generic point in the diffracted region is amplified by a 

factor, as given below. 

 

 1 2
0

0

s + s ( )
= s ( )

s ( )

λ

Ir
 
 
 

x
x

x
  (3.35) 

where x  is the sampling point, Ix  is the node and cx  is the crack tip. 0s ( ) = - Ix x x , 

1 cs = -Ix x  and 2 cs ( ) = -x x x . The parameter λ  is either to 1 or 2. For the present study 

2λ   was employed throughout. The advantages of the diffraction method are (1) cracks are 

modelled with continuous functions, (2) there is no artificial lengthening of the crack. 

In the diffraction approach, the stress singularity at the crack tip is not properly 

captured. The maximum stress shifts to a small distance behind the crack tip, which leads to 

an artificial shortening of the crack. In addition, modelling a 3D crack becomes a 

cumbersome process.  

In order to extend the diffraction method to 3D cracks, the transparency method has 

been developed (Rabczuk, 2013). It is also based on the smooth modelling of the weight 

function around the crack tip (Fig. 3.17).  

 

Fig. 3.17 The transparency method. 

In this method, the modified distance 
Ir  of a generic point from the source node is 

given by 

 c
0

c

s ( )
= s ( ) d

s

λ

I Ir
 

  
 

x
x   (3.36) 

where 0s ( ) = - Ix x x
 
and cs ( )x is the distance between the crack tip and the intersection 

point of LOS with the crack line. The parameter cs  sets the distance at which the crack 
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segment behaves completely like an opaque object. The crack tip behaves like a transparent 

point and the transparency diminishes as one moves away from the crack tip on the crack 

line.  

 The contours of the weight functions along with the surface plot of the shape function, 

for three methods, are shown in Fig. 3.18. 

 

Fig. 3.18 Altered weight function of the visibility, diffraction, and transparency methods, 

with corresponding shape functions (Belytschko et al., 1996; Rabczuk, 2013). 

There are also other methods such as the ―see-through‖ method and the ―continuous 

line‖ method. The ―see-through‖ method proposed by Terry (1994) was used to model 

features such as interior holes and is not suitable for cracks. The ―continuous line‖ (Duarte & 

Oden, 1996; Krysl & Belytschko, 1997) is also based on ensuring continuous shape 
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functions; however, it artificially shortens the crack significantly. Modifications were 

proposed to increase the accuracy of the solutions (Rabczuk, 2013). 

3.8.2 Extrinsic PU enrichment (XEFG method) 

In the eXtended element-free Galerkin (XEFG) method, the displacement 

approximation is done using a PU approach by enriching the MLS shape functions. The 

Heaviside function is used to describe the displacement discontinuity, and Williams‘ 

expansion is used to reproduce asymptotic displacement variation in the region around the 

crack tip. 

 
enr

( ) ( ) ( )

( ) = Φ ( ) Φ ( ){ H( ( ))}+ Φ ( ) ( , )
j b

4

I I I I I Ik k

I w I w I w k=1

f r 
  
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x x x

u x x u x a x x b ξ   (3.37) 

where ( )f x  is the signed distance function from the crack line.  

The Heaviside or jump-enriched function H( ( ))f x  and branch-enriched function 

enr ( )r,ξ  are given by 
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  (3.38) 

where r  and ζ  are the coordinates of x in the polar reference frame centered at the crack tip. 

The set ( )w x  includes all the nodes in the support domain of a point located at x, ( )bw x  is the 

subset of branch-enriched nodes, and ( )jw x  the subset of jump-enriched nodes. Fig. 3.19 

shows geometry with a crack and adjacent nodal point locations. 

 The enrichment functions change with materials. The common type of enrichment 

functions used for isotropic materials and FGMs (Ventura et al., 2002) are 

 
enr ( , ) [ sin , cos , sin sin , cos sin ]

2 2 2 2

ζ ζ ζ ζ
r ζ r r r ζ r ζξ   (3.39) 
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Fig. 3.19 Enriched nodes in the XEFG method. 

In the case of a crack meeting at an angle oblique to the bi-material interface, 
enr ( , )r ζξ  is 

given by (Bouhala et al., 2013) 
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  (3.40) 

1λ  and 2λ  are roots of a transcendental equation given by (Bogy, 1971). Eq. (3.40) is only 

applicable when the roots are real. The branch enrichment function is more complicated and 

consists of 16 functions when the roots are complex. 

For an interface crack, 
enr ( , )r ζξ  is given by (Sukumar et al., 2004) 
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  (3.41) 

where ε  is the oscillation index parameter, and is given by 
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Fig. 3.20 Various locations of the crack tip at (a) isotropic and homogenous mediums; (b) the 

material interface at an arbitrary angle; (c) the interface parallel to it; and (d) orthotropic and 

homogenous mediums. 

 One of the difficulties associated with the use of the XEFG method is the 

implementation of appropriate enrichment functions, which depends upon the location of the 

crack tip, the orientation of the crack, and the material properties. Fig. 3.20 shows various 

locations of crack tips. For case (a), the enrichment functions given by Eq. (3.39) are 

sufficient. Eq. (3.40) is suitable for case (b), where the crack tip meets the material interface. 

For a crack parallel to the interface (c), the enrichment functions given by Eq. (3.41) are 

suitable. If the crack tip lies in an orthotropic medium, as shown in configuration (d), then the 

enrichment functions are as follows (Ghorashi et al., 2011). 

        enr 1 2 1 2
1 1 2 1 2( , ) [ cos , cos , sin , sin ]

2 2 2 2

ζ ζ ζ ζ
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where      
2 2

cos sin sinj jx jyg s s       and j  is given by 
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with 1,2j  . In the above equations jxs  and jys  are real and imaginary parts of the 

characteristic roots js  of the fourth-order partial differential equation (Lekhnitskii, 1963) 

given by 

  4 3 2

11 16 12 66 26 222 2 2 0s s s s        (3.45) 
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where  is the compliance matrix. It was shown by Lekhnitskii that the roots of the above 

equation are always complex or purely imaginary.  

 The XEFG method is based on an extrinsic enrichment scheme, in which the 

additional functions are incorporated through the PU approach. There is another scheme 

based on intrinsic enrichment, in which the extra functions are added to the polynomial basis

( )x
Ρ , which is normally required for constructing the EFG method shape functions. 

Fleming et al. (1997) used this scheme to model cracks. The disadvantage of this method is 

that it increases the computational cost because all the nodes in the domain are enriched. 

Duflot& Nguyen-Dang (2004) proposed a meshfree method based on intrinsic enrichment of 

kernel functions. This approach is relatively cheaper computationally, but less accurate.  

3.9 Domain Form of J-Integral  

The J-integral was developed by Rice (1968) to potential energy release rate for a crack. The 

contour form of J-integral is given by 
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Eq. (3.46) can also be written as  

 
1 ,1

0
lim ( δ )

ss
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where / 2ij ijW    is the strain energy density, ij  is the Kronecker delta, and in  is the unit 

outward normal to the contour  . A contour integral   is defined such that 

 1 ,1( δ )j ij i jW u m qd


    (3.48) 

where o c s c        . jm  is the unit outward normal vector at point to the 

corresponding contour (Fig. 3.21). q  is a smooth function such that 1q   on s  and 0q   

on o . There are many forms of the q  function (Anderson, 1995; Kim & Paulino, 2003). The 

following q  function is used. 
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where  ,ctip ctipx y  is the coordinate of the crack tip and  1 2,x x  is the coordinate of the 

sampling point. 
sd  is the half of the length of the integral domain (Fig. 3.22). 

 

Fig. 3.21 Contour Integral to a domain form of the integral. ( j jm n  on o  and j jm n   on 

s ). 

As 0s  , Eq. (3.48) can be rewritten as 
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In the absence of crack face loading, Eq. (3.50) becomes 
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The first term in Eq.(3.51) is zero because 0q   on o . The second term is equal to the J-

integral because j jm n   on s . That is, 
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Applying the divergence theorem to Eq.(3.52), the domain form of the J-integral is obtained 

  
 

,1 1 , ,1 1 ,( δ ) ( δ )ij i j j ij i j j
A A

J u W qdA u W q dA       (3.53) 

Eq.(3.53) is the most general form of the equivalent domain J-integral.  
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Fig. 3.22 Square integral domain for calculation of J-integral. 

In the present work, a square domain of size sd  , centered at the crack tip, is used to 

compute the domain form of J-integral. The size of the square domain ( 2 sd  ) usually ranges 

from 10% to 25% of the crack length. 

3.9.1 Interaction Integral for Isotropic materials 

The interaction integral were developed by Yau et al. (1980) to separate different 

modes associated with a crack field. This was developed by considering the first term in the 

Eq.(3.53) that arises due to heterogeneity. It can be written as   

  
 

,1 1 , , ,1 , ,1 , 1( δ ) ( δ )nonh ij i j j ij j i ij j i j j j
A A

I u W qdA u u W qdA         (3.54) 

In the absence of the body force , 0ij j  . Since , 1 ,1δj jW W , the derivative of the strain 

energy density is given by  

  
 

,1 ,1 ,1
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2
ij ij ijkl kl ijW       (3.55) 

For an isotropic and homogenous material, ,1 0ijkl  . The 
nonhI  expression in Eq. (3.54) will 

become zero under small strain assumption ,1 ,1ij i ju   . 
nonhI  is not zero for non-homogenous 

materials such as FGMs. It is also not zero when the crack tip is close to a material interface.  

Let us consider two independent fields: the actual field  , ,u ε σ  and the auxiliary field

 , ,aux aux aux
u ε σ . The J-integral of the superimposed fields can be written as  

  
 

,1 ,1 1 ,

1
( )( ) ( )( )

2

s aux aux aux aux

ij ij i i ik ik ik ik j j
A

J ζ ζ u u ζ ζ ε ε δ q dA
 

      
 

  (3.56) 
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For an isotropic and homogenous material, the auxiliary stress and displacement field 

solution is given in Appendix A. Eq. (3.56) can be decomposed into three terms  

  
 

s auxJ J J M    (3.57) 

where J  is given by Eq. (3.53), auxJ  can be written as  

  
 

,1 1 ,( δ )aux aux aux aux

ij i j j
A

J ζ u W q dA   (3.58) 

The M-integral is given by  

  
 

,1 ,1 1 ,( )aux aux aux

ij i ij i ik ik j j
A

M ζ u ζ u ζ ε δ q dA    (3.59) 

The M-integral is also known as the interaction integral. In the presence of crack face loading 

(Matthew et al., 2005) and thermal loading (Amit & Jeong, 2008), Eq. (3.59) is modified to 

the following  

  
 

,1 ,1 1 ,

,1 j,1
Γ Γ

( )

(Δ ) ) Γ
c C

aux aux aux

ij i ij i ik ik j j
A

aux aux

ij ij j
A

M ζ u ζ u ζ ε δ q dA

ζ α T δ qdA t u qd
 

   





 
 (3.60) 

For a 2D problem, the M-integral is equal to  

  
 

*

(2 2 )aux aux

I I II IIK K K K
M

E


  (3.61) 

where *E  is E  for plane stress and 
2/ (1- )E ν  for plane strain. IK  is evaluated by setting 

aux

IK to unity and 
aux

IIK  to zero. Similarly IIK  is evaluated by setting 
aux

IIK to unity and 
aux

IK  

to zero.  

3.9.2 Interaction Integral for crack in an orthotropic material  

The auxiliary functions in case of a crack in an orthotropic material are given in 

Appendix B (Ghorashi et al., 2011). The M-integral is then equal and is given by  

  
 

 11 12 222 2aux aux aux aux

I I I II I II II IIM e K K e K K K K e K K     (3.62) 

where 
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 (3.63) 

 The SIFs can be obtained by considering the two states: state 1: 1, 0aux aux

I IIK K  ; 

and state 2: 0, 1aux aux

I IIK K  . Then, the following systems of linear algebraic equations are 

solved to obtain the SIFs. 

  
 

(act,state )

11 12

(act,state )

12 12

2

2

I

I II

II

I II

M e K e K

M e K e K

 

 
 (3.64) 

3.9.3 Interaction Integral for bi-material interface crack  

In case of an interface crack in bi-materials (Fig. 3.23) subjected to mechanical and 

thermal load, ΔT , the interaction integral is given by  

  
 

2 2

,1 ,1 1 , ,1

1 1

( ) (Δ )
m m

aux aux aux aux

ij i ij i ik ik j j m kk
A A

m m

I ζ u ζ u ζ ε δ q dA θ ε T qdA
 

       (3.65) 

 

Fig. 3.23 Interaction integral for interface crack. 

aux

ijζ ,
aux

ikε  and 
aux

iu  are obtained from the crack-tip solutions for an auxiliary state with an 

interface crack (Appendix C). The complex SIF can be computed through the following 

relation, 

  
 

1 2 1 2 2 2

2

(1/ 1/ )(2 2 )

2cosh (π )

* * aux auxE E K K K K
M

ε

 
  (3.66) 

ε is the bi-material oscillatory parameter given by, 
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ln ln

2 1 2

κ μ μβ
ε

π β π κ μ μ

   
    

    
 (3.67) 

where mμ  is the shear modulus and mκ  is the Kolosov‘s constant, m = 1 and 2. mκ
 
is 

 3 4 mν  in the case of plane strain and    3 / 1m mν ν   in the case of plane stress.  

 The stress intensity factor amplitudes, 1K  and 2K , associated with an interface crack 

are different from mode I and mode II SIFs for a crack in isotropic and homogenous 

materials. The dimension of 1 2K iKK  
 
is

0.5MPa(m) iε
; the dimension of mode I ( IK  ) or 

mode II SIF ( IIK ) is 
0.5MPa(m) .  

 For a crack tip impinging at an angle to the material interface, the explicit expression 

of the interaction integral to compute the SERR or the SIFs is not available in the literature. 

Further, the expression for CCI cannot be easily defined. In such situations, the SIFs can be 

still determined using the stress or displacement methods, provided the crack-tip 

displacement field solutions are available. 

3.9.4 Interaction Integral for a crack close to a material interface 

When a crack is close to the interface of a material, as shown in Fig. 3.24, nonhI  in the 

Eq. (3.53) is not zero. The interaction integral I  is given by 

  
 

 

 

,1 ,1 1 ,

,1 ,1 1 ,

aux aux aux

ij j ij j jk jk i i
A

aux aux aux

ij j ij j jk jk i iA

I u u q dA

u u qdA

   

 





    

    
 (3.68) 

 

Fig. 3.24 Crack close to a material interface. 

The second term in Eq. (3.68) is nonhI . It can be expanded as follows  
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 , ,1 , ,1 , 1 , 1 , ,1 ,1

aux aux aux aux aux aux

nonh ij i j ij i j ij j i ij j i ij i ij ij ij
A

I u u u u qdA               (3.69) 

Note that , ,1 0aux

ij i ju   and , ,1 0aux

ij i ju   because of equilibrium conditions in the absence of 

body forces and , 1 , ,1

aux aux

ij j i ij i iju   
 
because of the symmetry of the auxiliary stress tensor, 

Eq.(3.69) can be further simplified to give 

  
 

 , 1 ,1

aux aux

nonh ij j i ij ij
A

I u qdA      (3.70) 

 Defining 
0aux tip aux

ij ijkl klS  , where 
tip

ijklS  is the compliance tensor at the crack tip, and 

noting that 
, 1 ,1 ,1 ,1 ,1 ,1

1
( ) ( )

2

aux aux aux aux tip aux tip aux

ij j i ij j j ij ij ij ijkl kl ij ijkl klu u u S S             due to symmetry 

of the stress field, Eq. (3.70) can be further simplified to  

  
 

,1( )tip aux

nonh ij ijkl ijkl kl
A

I S S qdA    x   (3.71) 

Substituting Eq. (3.71) for Eq. (3.68), the following expression is obtained:  

  
 

 ,1 ,1 1 , ,1( )aux aux aux tip aux

ij j ij j jk jk i i ij ijkl ijkl kl
A A

I u u q dA S S qdA        x        (3.72) 

  

 Eq. (3.72) is advantageous because it is valid for materials with continuous variation 

in properties, as is in the case of FGMs, and discontinuous variation in the material 

properties, as is in the case of bi-materials. More details of the derivation are presented in Yu 

et al. (2009). 

3.10 EFG Procedure 

 The algorithm for the procedure of the EFG method based on the weak formulation is 

outlined in Fig. 3.25. The primary difference between the FEM and the EFG method is 

generation of the approximation shape functions. Secondly, in the case of the XEFG method, 

the construction of the strain field equation takes into account the enrichment functions. 

Thirdly, the imposition of boundary conditions in the EFG method is not trivial, as is in the 

case of FEM.  

 All the analysis in the present study are carried in the MATLAB2013A (8.1.0.604) 

under the license number 724504 environment. 
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Fig. 3.25 Flowchart for the EFG method. 

3.11 Closure  

In this chapter, the formulation of the EFG method has been given. Method parameters 

such as the order of Gauss integration, size of the domain of influence and nodal density are 

studied in order to control the error in the solutions. A 2D case study concerning a bending 

problem is presented in order to study the effects of these parameters on the accuracy of the 

solution. It is observed that an irregular nodal discretization leads to an increase in the non-
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polynomial behavior of the shape functions. This leads to unnecessary accumulation of errors 

during the numerical integration. Therefore, a regular nodal discretization is preferable; it has 

been used in the subsequent analysis. 

Different methodologies available to model a crack in a material has been presented. 

Modelling crack propagation in a non-homogenous material using the XEFG method is 

difficult if analytical solutions for the crack-tip stress field are not available.  

The interaction integrals that are useful in the determining of the SIFs in varieties of 

situations have been presented. Wherever possible, the SIFs obtained by the interaction 

integral are kept as benchmark solution. A flowchart of the full procedure of the EFG method 

has been presented. 
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Chapter 4 Computing Stress Intensity Factors  

4.1 Introduction 

In this chapter*, a method that exploits the advantages of both the crack closure integral 

(CCI) and MMs to evaluate the SIFs is given. The variations of elastic singular fields near the 

crack tip are modelled using mathematical approximation and the SIFs are extracted. Since it 

is relatively straightforward, with an element-free discretization, to obtain (1) the traction 

along any radial direction from the crack tip, and (2) the crack opening displacement (COD) 

from the enriched nodal displacement field, the calculation of energy release rate associated 

with crack extension can be easily obtained with the XEFG method. This offers a possibility 

of applying the CCI to crack problems easily.  

The CCI is combined here with a local smoothing technique (Maiti et al., 1997) to arrive 

at simpler expressions for calculation of the SIFs, eliminating the need for integration. This 

approach helps to improve the accuracy of the computed SIFs obtained using the original 

CCI. Various straight crack problems including those involving external traction on the crack 

faces and loading with a temperature gradient, are studied using the proposed CCI technique 

and the results are compared with other techniques such as M-integral, displacement method 

and stress method. In addition, a problem involving a curved crack in an infinite medium is 

studied to show the performance of the various schemes. 

4.2 CCI with Local Smoothing Technique 

 The following crack closure integrals give the expression for computing SERRs in 

mode I (GI) and mode II (GII): 

Δ

Δ 0
0

Δ

Δ 0
0

1
lim ( ) (Δ )

2Δ

1
lim ( ) (Δ )

2Δ

a

I yy COD
a

a

II xy COD
a

G ζ x v a x dx
a

G η x u a x dx
a





 

 





                              (4.1) 

where IG  and IIG are mode I and mode II energy release rates.  

  *This chapter contains most of the details from the two papers that are published: 
N. Muthu, S.K. Maiti, B.G. Falzon, I. Guiamatsia. "Computation of stress intensity factors in functionally graded materials using partition-of-unity 

meshfree method" The Aeronautical Journal, 1253-1277; 116(1186):2012. 

N. Muthu, S.K. Maiti, B.G. Falzon, I. Guiamatsia. "A Comparison of Stress Intensity Factors Obtained Through Crack Closure Integral and Other 
Approaches using Extended Element-Free Galerkin Method" Computational Mechanics, 587-605; 52: 2013. 
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 Fig. 4.1 shows a crack of length a  and a virtual crack advance of Δa . For an elastic 

material, the potential energy release rate or strain energy release rate (SERR) during crack 

extension is equal to the energy required to close the crack by the same distance. 

 

Fig. 4.1 Self similar virtual crack extension. 

 The integral in Eq.(4.1) can be evaluated by resorting to numerical integration like 

Gauss quadrature from the computed values of displacements and stresses. However, because 

of steep gradients in stress near the crack tip, it is necessary to divide the span Δa  into a 

large number of divisions and use a high order of Gauss quadrature, to obtain a good 

accuracy. In the MMs, the virtual crack extension length Δa  can be set by the user and is 

equal to the size of crack tip elemental in the FEM. Typically Δa  is kept within 1 5%a  

(Maiti, 1992; Sethuraman & Maiti, 1988).  

 The advantage of the MMs when computing the SIFs through the CCI is linked to the 

smoothness of the MLS shape functions. Because of this property, the stress field can be 

evaluated more accurately at any location in the domain, as opposed to the FEM where the 

stresses are most accurate at the Gauss/Barlow points. 

 In this work, the COD varies as a square root function of distance from the crack tip 

because of the enrichment functions. Substituting x  by a , the COD variation can be 

expressed as  

 

1

=
COD u u uCOD COD

COD v v vCOD COD

u a b cu u

v a b cv v
a





 

 

 
      

      
      

  

  (4.2) 
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where { }COD CODu ,v T
 is the COD vector. In the above expression, the unknown coefficients 

, ,i i ia b c  =i u,v  can be calculated from the displacement values at nodes , 1j j   and 2j   as 

shown in Fig. 4.2. The COD at the crack tip ( j ) is assumed zero. The nodes 1j  and 2j   

are located at a distance of / 4a  and a , respectively, behind the crack tip. Thereby the 

COD variation in the span, a , is obtained as follows: 

 
2 1 1 2= 2( - 2 )(1 / ) (4 - ) 1 / ,0j j j j

COD COD COD COD CODa a a            u u u u u   (4.3) 

where { }COD COD CODu ,vu T
. 

 

Fig. 4.2 Locations at which displacements and tractions are computed for mode I SIF. 

 The tractions x xyt η  and 
y yyt ζ , along the crack plane, vary as a function of 1/ x  

due to the local enrichment functions and its variation ahead of the crack tip can be expressed 

as follows: 

 

1

= 1/ /
x x x

y y y

t t tx

y t t t

a b ct
x a

t a b c
x / a

 
    

    
     

 

  (4.4) 

The above constants can be obtained from the computed traction, yt , at locations

1, 2j j   and 3j  . 
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  (4.5) 
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The approximated traction field is not affected significantly by the choice of the points 

at which tractions are obtained. This effect is studied in a later section. The three points 

selected to evaluate the traction coefficients are equally distributed along the span a  and are 

located at some distance from the crack tip or point of singularity, where the evaluated value 

would be less accurate.  

The local smoothing technique consists of taking the average traction over the crack 

extension length and yields a simpler expression for the CCI. The average value is given by  

 
Δ

0

1
= dx = ( 2 2 / 3 )
Δ

a

avg

y y ty ty tyt t a + b + c
a 

  (4.6) 

To conform to the singularity variation, the local traction is normalized and is assumed 

to have the form:  

 = / 2 / Δavg

y yt t ( x a )   (4.7) 

Eq. (4.3) and (4.7) are substituted into Eq. (4.1) to obtain the mode I SIF. The Mode II 

SIFs can also be obtained in a similar fashion. The expressions for mode I and II SIFs are 

given by   

 

2 1

2 1

0.5 [ (4 / 3 / 4) ( 8 / 3)]

0.5 [ (4 / 3 / 4) ( 8 / 3)]

avg j j

I y COD COD

avg j j

II x COD COD

G  t v π v π

G  t u π u π

 

 

   

   
  (4.8) 

Similar expressions for IG  and IIG  for the classical EFG method can be obtained 

without enrichment. This method can be easily extended to crack problems in 3D. In this case, 

the CCI with local smoothing can be applied for the calculation of the SIFs at a point on the 

crack front considering a local plane normal to the crack front. The span, a , could then be 

taken in the local normal direction.  

4.2.1 Crack Face Loading 

 Most of the literature deals with load-free crack surfaces. The crack faces loaded with 

traction are considered here. Consider a body with a crack, described by cΓ ( c+ c-Γ Γ ), as 

shown in Fig. 4.3. The body is subjected to displacement constraints u  on Γu  part of the 

boundary. Traction t  is applied on tΓ  part of the boundary. The upper and lower crack edges 

are subjected to tractions et   and et   respectively. 
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Fig. 4.3 Domain subjected to constraints with crack face traction. 

A self-similar expansion of the crack is shown in Fig. 4.4. If the crack faces are 

subjected to constant external traction et , as the crack extends from = 0x  to = Δx a , the 

newly formed crack faces will also be subjected to this traction. The COD will be larger 

compared to the case when the crack faces are traction free.  

 

Fig. 4.4 Crack face subjected to loading. 

In such a case, additional energy is released during crack extension due to crack face 

loading. This extra energy released is equal to additional energy required to close the crack 

which is given by,  

 
0

1
.

2

a

e e CODdx



 W t u   (4.9) 

The extra energy release rate, during crack extension, is given by 
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where 
T

e { , }I IIG GG . The additional work by the external load is then added to Eq. (4.8) to 

yield the expression for the SERRs in the presence of crack face loading: 

 

2 1 2 1

2 1 2 1

0.5 [ (4 / 3 / 4) ( 8 / 3)] 0.5 [( 2 ) / 3]

0.5 [ (4 / 3 / 4) ( 8 / 3)] 0.5 [( 2 ) / 3]

avg j j avg j j

I y COD COD ey COD COD

avg j j avg j j

II x COD COD ex COD COD

G t v π v π t v v

G t u π u π t u u

   

   

     

     
  (4.11) 

4.2.2 Thermal Loading 

 In the case of thermal loading, the mechanical strain is related to total strain by  

 
*( Δ )m t

ij ij ijε ε α Tδ    (4.12) 

where 
m

ijε  is the mechanical strain, 
t

ijε  is the total strain, α  is the coefficient of thermal 

expansion and ΔT  is the temperature difference. The stress developed is related to strain by 

the standard fourth order constitutive tensor. 

 m

j ijkl klζ εi
  (4.13) 

 The computed stresses are smoothed by the local smoothing scheme described earlier 

to obtain a new average traction including the thermal effects, Δ

avg

Tt , Substituting into Eq. (4.6) 

yields the required mode I and II SERRs. 

 

2 1

Δ

2 1

Δ

0.5 [ (4 / 3 / 4) ( 8 / 3)]

0.5 [ (4 / 3 / 4) ( 8 / 3)]

avg j j

I y| T COD COD
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G  t v π v π

G  t u π u π

 

 

   

   
  (4.14) 

Upon any crack extension, the newly formed crack edges OB (cf. Fig. 4.2 and Fig. 4.4) 

are subjected to crack face loading due to the thermal traction. The contribution of this 

thermal traction to the energy release rate has been accounted for in Eq.(4.14). As the crack 

tip advances from O to B, if the temperature field over the span OB before and after the crack 

extension remains the same. Under such circumstances, the thermal field does not contribute 

to any extra work (Mukhopadhyay et al., 1999). 

The CCI with local smoothing technique is an energy-based approach just like the J-

integral or interaction integral. It is derived from Irwin‘s two-step crack closure method. In 

order to calculate SERR associated with a crack extension two geometries are analyzed. In 

the first case, the geometry with a given crack is analyzed and the strain energy Ui
 is 

calculated. In the second case, the same geometry with the given crack extended in-plane by 

an infinitesimal amount Δa  (Fig. 4.4) is analyzed and the strain energy U f  is calculated. The 
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SERR G  is then obtained through  U U / t .Δi f aG   , where t  is thickness of specimen. 

Since the two energies Ui
 and U f  contain similar order of error, the SERR is obtained with a 

good accuracy because of the finite difference process involved. The CCI method is also 

based on the same approach; it offers good accuracy and it helps to eliminate the need for any 

calculation of Ui
 and U f  without any loss of accuracy of the SERR, hence the SIFs. 

4.3 Results for Isotropic Materials 

 In this section, the CCI in conjunction with the local smoothing technique has been 

applied to a number of crack problems involving thermal-mechanical loadings and crack face 

pressure loading. The SIFs computed using the proposed CCI method and other standard 

methods are compared with the results available in the literature. 

All the materials considered here are isotropic with Young's modulus 210E GPa  

and Poisson's ratio 0.3ν  . The domain of influence is kept as 1.75 times the nodal spacing 

unless otherwise mentioned.  

4.3.1 Mixed-Mode Edge Crack in Finite Plate 

 

Fig. 4.5 Mixed-mode edge crack (a) Geometry. (b) Nodal Discretization. 

 The dimensions of the plate(Fig.4.5(a)) are Width, 7w  m (width) and Length

16 / 7L w . The plate contains an edge crack and is subjected to a traction of 1MPa . It is 

discretized with 15 33  nodes. Wilson (1969) gave the solution as 34IK  MPa m  and
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4.55IIK  MPa m . Here the SIFs have been obtained using five techniques: the CCI with 

local smoothing, the CCI without local smoothing, the M-integral, the displacement method 

and te stress method. 

 The crack opening displacement (COD), required for the displacement method, can be 

obtained by the jump and branch enriched nodal degrees of freedom. This is given by 

  
 

2 Φ Φ
j b

COD COD COD I I I I 1

I w ( ) I w ( )

= r 

 

  
       

  
 

x x

u u u x a x b  (4.15) 

For the CCI calculations, the span (Δa ) was kept as 0.01a . For the CCI without local 

smoothing, numerical integration as per Eq. (4.1) is performed over the span a  . As the 

displacement fields and stress fields are non-polynomial in nature ahead of crack tip, sub-

domain integration is preferred. The span Δa is divided into 5 sub-domains and 5-point Gauss 

integration scheme in each sub-domain is used to evaluate the integral. 

In relation to evaluation of the M-integral, a square domain with an edge length of 

0.25a  centered at the crack tip is considered. For the displacement and stress methods, the 

COD and stress are evaluated at 0.01a  ahead of the crack tip and 0.01a  behind the crack tip 

respectively.  

Table 4.1 shows the mode I and II SIFs obtained using different techniques. It is 

observed that the local smoothing technique reduces the error associated with the CCI by 

around 2.5%. 

Table 4.1 Mixed-mode SIFs for edge crack subjected to shear traction. 

SIF extraction techniques ( )IK MPa m  ( )IIK MPa m  

CCI with local smoothing 
34.01 

(0.03%) 

4.50 

(-1.09%) 

CCI without local smoothing 
33.14 

(-2.53%) 

4.39 

(-3.52%) 

M-integral 
33.72 

(-0.82%) 

4.48 

(-1.54%) 

Displacement method 
34.77 

(2.26%) 

4.48 

(-1.54%) 

Stress method 
34.79 

(2.32%) 

4.56 

(0.22%) 
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Influence of nodal density 

 Table 4.2 shows the effect of nodal density on the SIFs obtained using the CCI 

techniques. Good results are obtained even with moderate nodal density (15 33 ). 

Table 4.2 Mixed-mode SIFs for edge crack subjected to shear traction. 

Nodal Density 

CCI with local 

Smoothing 

CCI without 

local smoothing 

IK  IIK  IK  IIK  

8 17  
33.07 

(-2.74%) 

4.33 

(-4.83%) 

32.23 

(-5.21%) 

4.22 

(-7.25%) 

15 33  
34.01 

(0.03%) 

4.50 

(-1.10%) 

33.14 

(-2.53%) 

4.39 

(-3.52%) 

29 65  
34.48 

(1.41%) 

4.55 

(0.00%) 

33.64 

(-1.06%) 

4.44 

(-2.42%) 

36 81  
33.91 

(-0.27%) 

4.48 

(-1.54%) 

33.01 

(-2.91%) 

4.36 

(-4.18%) 

The error in the SIFs does not monotonically reduce as the nodal density increases. 

This sort of observation has been also repeated by Xiaoying et al. (2012) and Gavete et al. 

(2002). Addition of nodes in the MMs involves both h- and p-adaptivity. This requires 

additional background cells for an accurate integration. This also increases the computational 

cost. 

Influence of Gauss quadrature 

 

Fig. 4.6 XEFG discretization with enriched nodes around the crack. 

 The shape functions of the EFG/XEFG method are non-polynomial in nature. 

Additionally, the presence of enrichment terms requires a higher order Gauss quadrature. 
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Therefore, the region around the crack is divided into triangular cells to facilitate sub domain 

integration as shown in Fig. 4.6. It is recommended that a moderate order of quadrature, 

(>11
th

 order), be used for integration near the crack tip. 

  

Fig. 4.7 Convergence of SIF with order of quadrature (a) Mode I. (b) Mode II. 

Fig. 4.7 shows the convergence of the SIFs with increasing quadrature order for 

triangular cells. The mode I and mode II SIFs are obtained for six different orders of Gauss 

quadrature: 5, 7, 8, 11, 13 and 15. Three plots are shown in each figure that correspond to 

different values of virtual crack extension length, Δa . As the order of quadrature increases, 

the % error in SIF tends to zero.  

Influence of nodal domain of influence ( Id ) 

  

Fig. 4.8 Variation of SIFs with Id  (a) Mode I. (b) Mode II. 

The optimal domain of influence/dilation parameter depends on the problem 

considered. It should be large enough to avoid ill conditioning of the moment matrix. 
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However, too large a value of Id  will result in smearing of the field solution (Rabczuk et al., 

2004). In addition, it increases the bandwidth of the stiffness matrix. Fig. 4.8 shows variation 

of the mode I and mode II SIFs with dilation parameter. The SIFs error obtained using the 

CCI with local smoothing is minimum within the range of 1.65 to 2
 
times the nodal spacing.  

Effect of fitting points on the SIFs 

The effect of changing the location of the fitting points to model the displacement and 

traction field on the accuracy of the SIFs has been studied. The displacement variation is 

obtained according to Eq. (4.2). Table 4.3 shows the mode I and mode II SIFs, for different 

virtual crack extension lengths, calculated at random locations ahead of the crack tip for 

traction approximation. The relative standard error (RSE) is less than 0.26%. In Table 4.4, the 

SIFs are calculated by varying the fitting point locations for displacement approximation. The 

RSE is less than 0.066%. The traction variation is obtained according to Eq. (4.4).  

Table 4.3 Effect of changing the fitting points for traction approximation on SIF. 

Fitting points 

location 

Δa  

0.01a  0.02a  0.03a  0.05a  

IK  IIK  IK  IIK  IK  IIK  IK  IIK  

[0.25, 0.5, 0.75] 34.010 4.500 34.400 4.520 34.500 4.522 34.419 4.515 

[0.25 0.75 0.9] 34.013 4.498 34.386 4.516 34.500 4.521 34.492 4.521 

[0.1 0.3 0.8] 34.037 4.500 34.485 4.521 34.659 4.530 34.555 4.519 

[0.4 0.5 0.6] 34.021 4.499 34.408 4.517 34.498 4.520 34.374 4.513 

[0.5 0.65 0.95] 33.987 4.497 34.291 4.511 34.386 4.516 34.620 4.535 

Rel. std error 0.048% 0.026% 0.180% 0.078% 0.252% 0.101% 0.258% 0.171% 

 

 

 

 

 



- 85 - 

 

Table 4.4. Effect of changing the fitting points for displacement approximation on SIF. 

Fitting points 

location 

Δa  

0.01a  0.02a  0.03a  0.05a  

IK  IIK  IK  IIK  IK  IIK  IK  IIK  

[1/16,1] 34.034 4.499 34.440 4.517 34.554 4.521 34.402 4.509 

[1/9,1] 34.031 4.499 34.436 4.517 34.550 4.521 34.404 4.512 

[1/4,1] 34.010 4.500 34.400 4.520 34.500 4.522 34.418 4.515 

[1/3,1] 34.023 4.499 34.429 4.519 34.551 4.523 34.431 4.517 

[1/2,1] 34.020 4.500 34.438 4.519 34.556 4.525 34.457 4.521 

Rel. std error 0.020% 0.010% 0.040% 0.022% 0.059% 0.029% 0.051% 0.066% 

Effect of sub-domain integration on SIFs obtained by CCI 

 Table 4.5 and Table 4.6 show the effect of increasing the order of the Gauss 

quadrature and length of sub-domains on the mode I and mode II SIFs obtained by the CCI. 

The accuracy increases with increase in the number of sub-domains and order of Gauss 

quadrature. In order to limit the error to 2%, the stresses and displacements needs to be 

calculated at many points. To help in selecting the order of quadrature and number of 

subdomain, the errors below 2% given in bold in Tables 4.5 and 4.6. However, for all 

subsequent case studies 10 sub-domains along with 5
th

 order Gauss quadrature is used to 

evaluate the CCI.  

Table 4.5 % error in mode I SIF with varying order of Gauss quadrature and number 

of subdomains. 

No of Sub-domains 

Gauss points 

1 2 4 5 7 10 

1 -19.135% -11.274% -6.297% -5.194% -3.885% -2.868% 

2 -13.647% -7.988% -4.526% -3.756% -2.838% -2.121% 

5 -8.691% -5.126% -2.976% -2.529% -1.921% -1.465% 

10 -6.209% -3.715% -2.203% -1.865% -1.459% -1.156% 

20 -4.471% -2.721% -1.671% -1.421% -1.153% -0.924% 
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50 -2.944% -1.847% -1.191% -1.038% -0.856% -0.697% 

100 -2.179% -1.409% -0.929% -0.815% -0.712% -0.653% 

200 -1.659% -1.112% -0.744% -0.674% -0.638% -0.485% 

500 -1.171% -0.838% -0.629% -0.535% -0.547% -0.497% 

Table 4.6 % error in mode II SIF with varying order of Gauss quadrature and number of    

subdomains. 

No of Sub-domains 

Gauss points 

1 2 4 5 7 10 

1 -20.470% -12.495% -7.398% -6.268% -4.927% -3.886% 

2 -14.905% -9.130% -5.585% -4.796% -3.855% -3.121% 

5 -9.846% -6.200% -3.998% -3.516% -2.916% -2.451% 

10 -7.305% -4.752% -3.207% -2.857% -2.444% -2.134% 

20 -5.525% -3.736% -2.659% -2.404% -2.130% -1.897% 

50 -3.963% -2.842% -2.171% -2.013% -1.826% -1.664% 

100 -3.182% -2.393% -1.903% -1.785% -1.679% -1.618% 

200 -2.648% -2.086% -1.712% -1.640% -1.604% -1.446% 

500 -2.149% -1.807% -1.596% -1.499% -1.510% -1.459% 

4.3.2 Center Crack in Finite Plate 

Mode I 

A plate with dimensions (Fig. 4.9(a)): 2w = 1m and L/2w = 2 is subjected to tensile traction. 

The plate is discretized with 41 × 81 nodes as shown in Fig. 4.9(b) and the domain of 

influence is set at 1.75 times the nodal spacing.  

It can be seen from Fig. 4.10 that the CCI with local smoothing consistently predicts 

the mode I SIF with a satisfactory level of accuracy, independently of the crack length. It is 

generally as accurate as the M-integral technique and significantly much simpler. 
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 Fig. 4.9 (a) Mode I center crack subjected to tensile load. (b) Nodal Discretization. 

 

Fig. 4.10 Mode I SIF % error for various center crack lengths. 

The mode I SIFs computed with the various techniques are shown in Table 4.7 along 

with relative error with respect to the analytical solution presented in (Murakami, 1987). IK  

by the CCI technique without local smoothing has an error ranging from -6.51% to -1.23%. 

However, the error is significantly reduced to the range -3.81% to 1.36% by applying the 

local smoothing technique. The displacement method gives good results with an error band -

1.32% to 0.74%, the stress method has the band -4.03% to 6.95%. The high band of error 

associated with the stress method is because the current XEFG method is based on the 

displacement approximation. The M-integral gives stable and accurate results with an error 

band -0.58% to 2.95%. 
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Table 4.7 Mode I SIFs for center crack in a finite plate using different techniques. 

/a w
 

Murakami 

(1987) 

( )IK MPa m and % Error  

CCI with 

local 

smoothing 

CCI without 

local 

smoothing 

M-integral 
Displacement 

method 
Stress method 

0.1 
0.399 0.384 0.373 0.411 0.393 0.383 

(-3.81%) (-6.51%) (2.95%) (-1.32%) -4.03% 

0.2 
0.574 0.567 0.553 0.579 0.571 0.578 

(-1.36%) (-3.79%) (0.85%) (-0.56%) 0.61% 

0.3 
0.727 0.722 0.703 0.724 0.725 0.743 

(-0.66%) (-3.28%) (-0.37%) (-0.18%) 2.26% 

0.4 
0.880 0.879 0.856 0.875 0.880 0.913 

(-0.09%) (-2.78%) (-0.58%) (0.00%) 3.67% 

0.5 
1.053 1.057 1.030 1.054 1.055 1.103 

(0.37%) (-2.19%) (0.09%) (0.25%) 4.81% 

0.6 
1.265 1.277 1.244 1.277 1.272 1.342 

(0.92%) (-1.67%) (0.92%) (0.47%) 6.07% 

0.7 
1.558 1.579 1.539 1.573 1.570) 1.666 

(1.36%) (-1.23%) (0.99%) (0.74%) 6.95% 

For smaller size of cracks, the two nodes corresponding to the crack tips influence 

each another. This leads to slightly erroneous estimates of the field variables and the SIF. The 

results are expected to improve with local node refinement near the crack tip. 

 

Fig. 4.11 SIF plot with different nodal density. 

Fig. 4.11 shows the SIF plot with different nodal density for / 0.5a w . The SIFs are 

obtained using different techniques and compared with the reference results (Murakami, 

1987). As seen from the plot, even the lower nodal density (11x21) gives fair results because 
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of the presence of enrichment functions. The oscillatory nature of SIF obtained using the 

stress method almost disappears when the CCI technique along with local smoothing scheme 

is employed. The displacement method also gives good results. The SIFs obtained using 

different techniques becomes stable with increase in the nodal density. 

Mode II 

 The same plate is now subjected to shear load (Fig. 4.12(a)). The plate is discretized 

with 41 81  nodes and the domain of influence is again set at 1.75 times the nodal spacing. 

Fig. 4.12(b) shows the variation in error in the mode II SIF by different techniques 

with crack length. The SIFs are obtained by the five techniques mentioned for the earlier case. 

The results show a trend similar to the case of mode I. Here, too, the error in the SIF by the 

original CCI method is significantly reduced, in most of the cases, by the application of the 

local smoothing technique. 

 

       (a)         (b) 

Fig. 4.12 (a) Mode II crack subjected to shear load. (b) Mode II SIF for various center crack 

lengths. 

The deviation of the computed SIF by the stress and displacement method (Fig. 4.10 

and Fig. 4.12(b)) corresponding to long cracks in plates of finite width may be due to the edge 

effect. When the crack tip is close to the free boundary, some interactions of the crack-tip 

stress field with the boundary, which can be free or loaded, is bound to happen and this can 

lead to errors. Similar situation is likely to happen even in the case of short edge cracks and 
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short internal cracks. The CCI or interaction integral technique may not get affected because 

of the underlying principle of the energy difference process and are preferable in the above 

cases. Out of the two, the CCI technique stands out because of the requirements of 

computation of stresses and displacements at a relatively few locations to obtain the SIFs.   

Table 4.8 shows mode II SIFs and the errors associated with crack length for different 

techniques. The range of errors in the SIF calculation using different methods are: CCI with 

local smoothing -2.12% to 2.40%, CCI without local smoothing -4.72% to 0.05%, M-integral 

-1.96% to 2.75%, displacement method -1.00% to 2.45% and stress method -2.19% to 3.88%. 

Table 4.8 Mode II SIFs for center crack in a finite plate using different techniques. 

/a w
 

Murakami 

(1987) 

( )IIK MPa m and % Error  

CCI with  

local 

smoothing 

CCI without 

local 

smoothing 

M-integral 
Displacement 

method 

Stress 

method 

0.1 
0.601 0.588 0.572 0.615 0.595 0.588 

(-2.12%) (-4.72%) (2.36%) (-1.00%) (-2.19%) 

0.2 
0.845 0.840 0.822 0.852 0.845 0.843 

(-0.60%) (-2.82%) (0.73%) (0.01%) (-0.23%) 

0.3 
1.045 1.046 1.022 1.036 1.050 1.054 

(0.10%) (-2.27%) (-0.84%) (0.43%) (0.85%) 

0.4 
1.238 1.232 1.202 1.214 1.234 1.244 

(-0.46%) (-2.86%) (-1.96%) (-0.27%) (0.53%) 

0.5 
1.429 1.418 1.386 1.410 1.420 1.434 

(-0.75%) (-2.99%) (-1.31%) (-0.60%) (0.39%) 

0.6 
1.622 1.628 1.591 1.635 1.629 1.650 

(0.35%) (-1.94%) (0.76%) (0.42%) (1.73%) 

0.7 
1.855 1.899 1.856 1.906 1.900 1.927 

(2.40%) (0.05%) (2.75%) (2.45%) (3.88%) 

 Effect of Δa on SIF obtained by CCI with local smoothing 

The effect of the virtual crack extension length, Δa , on the accuracy of the mode I 

and II SIFs, obtained using the CCI with local smoothing technique, for various centre crack 

lengths (0.1-0.7) are shown in Fig. 4.13. In order to restrict the error in the SIF within 3%, a 

range for Δa , 0.01 Δ 0.05a a a  , is recommended.  

There can be two primary sources of error while computing the SIFs through the CCI. 

If Δa  is too small, erroneous solutions are used to compute the SIFs. This will lead to poor 

solution. If Δa  is too large, it may include the region outside the K-dominated region. This 
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too will lead to a poor solution. Therefore, neither a large nor a small value of Δa  is 

advisable. 

  

Fig. 4.13 Effect of virtual crack extension length on (a) Mode I SIF. (b) Mode II SIF. 

4.3.3 Angled Crack Centrally Located in a Finite Plate 

 

Fig. 4.14 Mixed-mode center crack subjected to tensile traction. 

Fig. 4.14 shows a plate with dimensions 2 1w  m, / 2 2L w   and / 0.5a w and 

tensile loading of 1MPa at the free end. The plate is discretized with 41 81  nodes. The 

centre crack is inclined at an angle β (in degrees) with x -axis. 

As lower nodal density is used, a modified vector extrapolation described in 

Appendix D is used for the analysis. In this method, the sign needed for the jump enrichment 

at any generic point is calculated based on the level set values of the closest three nodes.  Fig. 

4.15 show the variation of mode I and II SIFs with crack orientation.  
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 Fig. 4.15 Angle center crack subjected to tension (a) Mode I SIF. (b) Mode II SIF.  

The results obtained by using the CCI in conjunction with local smoothing technique 

and M-integral are close and compare well with the results available in the literature. The CCI 

by itself gives inaccurate results for the mode II SIF. However, the local smoothing scheme 

improves the results. The results obtained by the displacement method are also good.  

4.3.4 Mode I Crack Face with Pressure Loading 

Fig. 4.16(a) shows a hollow cylinder, inner radius 1 1r  m and 2 1/ 2r r  , with an inner 

radial crack of length a . The cylinder is subjected to an internal pressure p . Fig. 4.16(b) 

shows the variation of the mode I SIF with crack length. 

 

Fig. 4.16 (a) Hollow cylinder with inner radial crack subjected to pressure loading. (b) Mode 

I SIF for cylinder with an inner radial crack subjected to pressure. 

The geometry is discretized with 20 nodes radially and 144 nodes circumferentially as 

shown in Fig. 4.17(a). The domain of influence varies along the radius in such a way that each 
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node has an average domain of influence of 1.75 times the nodal spacing. Fig. 4.17(b) shows 

the deformed cylinder, with crack face opening under the load. The CCI with local smoothing 

is evaluated by taking into account the pressure loading on the crack edges (Eq. (4.11)). Both 

the CCI with local smoothing and the M-integral technique give accurate results. 

Fig. 4.18 shows the mode I SIF error variation with crack size by the various 

techniques. The CCI technique along with the local smoothing helps to improve the results. 

Further, the results by the CCI method with local smoothing are better than the popular M-

integral technique.  

 

 

          (a)             (b) 

Fig. 4.17 Geometry (a) Nodal discretization with crack front. (b) Hollow cylinder's 

deformation due to pressure loading (scaled). 

 

Fig. 4.18 Mode I SIF error for cylinder with an inner radial crack subjected to pressure. 
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Although there is deviation in the SIF calculated by the stress and displacement 

methods at higher crack lengths, the SIF obtained by the proposed local smoothing scheme 

does not deviate significantly. 

4.3.5 Thermal Loading due to Linear Temperature Variation 

Fig. 4.19 shows a plate with dimensions 1w  m and / 2L w  . The geometry is fixed 

and thermally insulated at the top and bottom edges. A linearly variable temperature field, 

with extreme value oT  = 100o c , is applied. The crack-to-width ratio ( /a w ) is varied from 

0.1 to 0.6. The geometry is discretized with 21 81 nodes. The SIFs obtained are normalized 

with respect to 0 / (1 )EαT w ν . Assuming plane strain conditions, the results are compared 

with those of Hellen et al. (1982) for coefficient of thermal expansion α= 613 10 /o C . E  

and ν  are Young's modulus and Poisson's ratio respectively.  

 

Fig. 4.19 Mode I crack with temperature varying linearly across the width. 

The computed mode I SIFs are shown along with the theoretical results in Fig. 4.20. 

Fig. 4.21 shows the error plots for the SIFs obtained with crack length using different 

techniques. The SIFs obtained are compared with J-integral results by Hellen et al. (1982). 

The results obtained by the CCI with local smoothing technique match closely with the 

reference results. The CCI with local smoothing technique gives good results. Although the 

SIF obtained by the displacement method is inaccurate for / w 0.7a  , still the CCI-LS gives 

stable results. 
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Fig. 4.20 Mode I SIF plot due to thermal load. 

 

Fig. 4.21 Mode I SIF error plot due to thermal load. 

4.3.6 Non Uniform Thermal Loading 

Fig. 4.22 and Fig. 4.23 show an isothermal centre crack (temperature is constant on 

the crack face) and an adiabatic crack (crack faces are considered to be insulated) 

respectively involving a rectangular plate of dimensions: 0.5w  m and / 1L w  . The 

geometry is discretized with 41 41  nodes. /a w  ratio is varied from 0.1 to 0.6. The SIFs 

obtained are compared with the data of Murakami (1987) and Prasad et al. (1994). The 

coefficient of thermal expansion α = 613 10 /o c . 
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The temperature field was enriched ahead of the crack tip as described by Marc 

(2008). The thermo-mechanical cases described in the following sections are solved by 

coupled thermo mechanical analysis (Wang & Zhang, 2011) rather than the two-step analysis, 

thermal analysis followed by mechanical analysis.  

Mode I  

The temperature of the center crack is maintained at 1Θ 0oC  and the periphery of the 

geometry is maintained at 2Θ 100oC  as shown in Fig. 4.22(a). The temperature is constant 

on the crack surface and the outer boundary of the geometry. Assuming plane strain 

conditions, the SIFs obtained were normalized with respect to 2 1(Θ Θ )α - E 2w . E  and α  are 

Young's modulus and coefficient of thermal expansion respectively.  

 

     (a)          (b) 

Fig. 4.22 (a) Mode I center crack. (b) Temperature distribution. 

 A modified absolute enrichment function is used to model the temperature field 

(Moës et al., 2003). The temperature distribution contour is shown in Fig. 4.22(b). Table 4.9 

shows the comparison of the mode I SIF obtained using different methods along with the 

associated relative error with respect to the analytical solution presented by Prasad et al. 

(1994). In the present case, as the crack extends, the newly formed crack edges gets loaded 

normally due to finite temperature existing over the extended region. Eq.(4.14) is used to 

obtain the energy release rates and subsequently the SIFs. 
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Table 4.9 Mode I SIF for isothermal crack in a square plate. 

/a w  
Murakami 

(1987) 

Prasad et al. 

(1994) 

Normalized IK  

CCI with 

local 

smoothing 

CCI without 

local 

smoothing 

M-integral 
Displacement 

method 

0.1 0.271 0.268 
0.262 

(-2.24%) 

0.254 

(-5.22%) 

0.280 

(4.48%) 

0.266 

(-0.75%) 

0.2 0.347 0.347 
0.342 

(-1.44%) 

0.333 

(-4.03%) 

0.349 

(0.58%) 

0.346 

(-0.29%) 

0.3 0.406 0.401 
0.396 

(-1.25%) 

0.385 

(-3.99%) 

0.397 

(-1.00%) 

0.401 

(0.00%) 

0.4 0.453 0.448 
0.442 

(-1.34%) 

0.429 

(-4.24%) 

0.443 

(-1.12%) 

0.449 

(0.22%) 

0.5 0.491 0.491 
0.489 

(-0.41%) 

0.475 

(-3.26%) 

0.488 

(-0.61%) 

0.493 

(0.41%) 

0.6 0.526 0.525 
0.526 

(0.19%) 

0.511 

(-2.67%) 

0.523 

(-0.38%) 

0.530 

(0.95%) 

Mode II 

 

     (a)          (b) 

Fig. 4.23 (a) Mode II center crack; (b) Temperature distribution. 

In this case, in addition to the anti-symmetry with respect to the x -axis, there is also 

symmetry about the y -axis passing through the center. Therefore, the COD decreases 

gradually from the crack tip and it becomes zero at the center. Table 4.10 shows the 

comparison of mode II SIF obtained using different methods along with the relative error 

with respect to the analytical solution presented by Prasad et al. (1994). The temperature 

distribution contour is shown in Fig. 4.23(b).  



- 98 - 

 

Table 4.10- Mode II SIF for adiabatic crack in a square plate. 

/a w  
Murakami 

(1987) 

Prasad et 

al. (1994) 

Normalized IIK   

CCI with 

local 

smoothing 

CCI without 

local 

smoothing 

M-integral 
Displacement  

method 

0.1 0.021 0.018 
0.019 

(5.56%) 

0.019 

(5.56%) 

0.019 

(5.56%) 

0.019 

(5.56%) 

0.2 0.053 0.054 
0.053 

(-1.85%) 

0.052 

(-3.70%) 

0.053 

(-1.85%) 

0.053 

(-1.85%) 

0.3 0.094 0.095 
0.094 

(-1.05%) 

0.092 

(-3.16%) 

0.093 

(-2.11%) 

0.093 

(-2.11%) 

0.4 0.141 0.141 
0.140 

(-0.71%) 

0.137 

(-2.84%) 

0.137 

(-2.84%) 

0.139 

(-1.42%) 

0.5 0.188 0.191 
0.189 

(-1.05%) 

0.186 

(-2.62%) 

0.186 

(-2.62%) 

0.188 

(-1.57%) 

0.6 0.247 0.243 
0.243 

(0.00%) 

0.239 

(-1.65%) 

0.241 

(-0.82%) 

0.241 

(-0.82%) 

The SIFs obtained by the CCI with local smoothing technique and displacement 

method are in good agreement with the results available in the literature except for 

/ 0.1.a w  

4.3.7 Curved crack in an infinite medium 

A curved crack in a plate with width 3w  m and length 4L  m, under tension as 

shown in Fig. 4.24, is studied to demonstrate the effectiveness of the CCI with local 

smoothing. The plate is considered to be isotropic with Young's modulus 300GPaE   and 

Poisson's ratio 0.25ν  . Plane strain conditions are assumed. 

The crack is a circular arc with radius 0.425R  m centered at (0, 0.375). It subtends 

at an angle of 
oβ 28.0725
 at the center. For such a crack configuration ( / 0.067a w ) in an 

infinite medium, the SIFs are given by Gdoutos (1993). The reference results are 0.637IK 

MPa m  and 0.351IIK  MPa m . 

The plate dimensions are taken significantly larger compared to the crack dimensions 

to simulate conditions of an infinite medium. The plate is discretized with 61 81  nodes as 

shown in Fig. 4.25 and the domain of influence is set at 1.75 times the nodal spacing. 
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Fig. 4.24 Curved crack in a plate. 

 

Fig. 4.25 Nodal discretization near the crack. 

The CCI is calculated by considering a virtual crack extension Δa  along the tangent 

at the crack tip (Fig. 4.24). Since Δa  is small compared to the crack length, it can be taken to 

be collinear with a similar span behind the crack tip. The stresses and CODs in global 

coordinates x- y  are transformed to the crack-tip local coordinates 1 1x -y  noting that Δa  

makes an angle β  with the global x-axis. The CCI is calculated using these data. 
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Table 4.11 SIFs for a curved crack in an infinite medium. 

SIF extraction techniques ( )IK MPa m  ( )IIK MPa m  

CCI with local smoothing 
0.656 

(2.98%) 

0.337 

(-3.99%) 

CCI without local smoothing 
0.629 

(-1.26%) 

0.287 

(-18.23%) 

M-integral 
0.647 

(1.57%) 

0.351 

(0.00%) 

Displacement method 
0.633 

(-0.63%) 

0.333 

(-5.13%) 

Stress method 
0.698 

(9.58%) 

0.340 

(-3.13%) 

Table 4.11 shows the mode I and II SIFs obtained using different techniques. The 

local smoothing technique reduces the error associated with CCI. As expected, M-integral 

gives good results. As the CCI with local smoothing gives acceptable SIFs for a curved crack, 

it can be also exploited to study the problems of crack propagation. 

4.4 Functionally graded Materials (FGMs) 

Functionally graded materials are characterized by pre-determined level of gradual 

changes in microstructure and material properties spatially. There is no sharp discontinuity in 

material microstructure and properties. They have been used as thermal barriers in weight-

critical applications, in the nuclear industry and in bio-engineering applications (Cherradi et 

al., 1994; Mortensen & Suresh, 1995; Neubrand & Rode, 1997; Marin, 2005). Their failure is 

often due to cracks originating and propagating from inclusions and voids.  

Delale et al. (1983) observed that the nature of crack tip asymptotic solutions, in non-

homogenous materials with continuous and differentiable material properties, was identical to 

that of a solution for homogenous materials. Erdogan (1983) also pointed out that the square 

root nature of the stress singularity exists at the crack tip in a non-homogeneous medium with 

smoothly varying elastic properties. Furthermore Eischen (1987) examined mixed-mode 

crack problem in non-homogeneous materials using the FEM and confirmed the existence of 

square root singularity stress field around the crack tip. Taking advantage of the situation, it 

is sufficient to locally enrich the region around the crack tip in a non-homogenous medium 

by the crack tip solution for homogenous material. 
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Although, the FEM has been extensively used for modelling damage in the FGMs 

(Tilbrook et al., 2005; Li et al., 1999; Kim & Paulino, 2002), it involves extensive re-meshing 

for crack propagation studies, which is computationally costly. Over the past decade, the 

MMs have been utilized to study the behavior of FGMs (Ching & Yen, 2005; Gilhooley et 

al., 2008). Rao et al. (2003) used the EFG method to obtain the SIFs in a FGM with a crack. 

In the next section, the SIFs are obtained for a number of crack problems using the 

CCI technique with local smoothing. The SIFs were also computed by other standard 

methods. All are compared with the solutions available in the literature. 

4.5 M-integral for FGMs  

The M-integral for FGMs is given by  

      
,1 ,1 1 , ,1 ,1 1 ,( ) ( )aux aux aux aux aux aux

ij i ij i ik ik j j ij i ij i ik ik j j
A A

M ζ u ζ u ζ ε δ q dA ζ u ζ u ζ ε δ qdA         (4.16) 

The first term is identified as 
nonhI . Since ( )aux aux aux aux

ik ik 1j ,j ijkl,1 kl ij ij ij,1 ij ij,1ζ ε δ ε ε +ζ ε +ζ ε , the second 

term in Eq. (4.16) can be simplified to 

 
1 1 1 1 1 1 1

1 1 1

( ) ( )

( )

aux aux aux aux aux aux aux

ij i, ij i, ik ik j ,j ij,j i, ij i, j ij,j i, ij i, j
A A

aux aux aux

ijkl, kl ij ij ij, ij ij,
A

ζ u +ζ u -ζ ε δ qdA= ζ u +ζ u +ζ u +ζ u qdA

ε ε +ζ ε +ζ ε qdA

 


  (4.17)

Based on the way, second term of Eq. (4.16) is simplified, there are many formulations of M-

integral available to compute SIFs in FGMs (Kim & Paulino, 2005). 

4.5.1 Non-equilibrium formulation (M1) 

In the non-equilibrium formulation, the actual and auxiliary states satisfy the 

compatibility condition ( i,1j ij,1u ε ,
aux aux

i,1j ij,1u ε ). However, the actual state satisfies the 

equilibrium condition ( 0ij,jζ  ) but the auxiliary state does not. This helps to simplify Eq. 

(4.16) to the following. 

 
1 1 1 1 1( ) ( )aux aux aux aux aux

ij i, ij i, ik ik j ,j ij,j i, ijkl, kl ij
A A

M= ζ u +ζ u ζ ε δ q dA+ ζ u ε ε qdA     (4.18) 
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4.5.2 Incompatibility formulation (M2) 

In the incompatibility formulation, the actual state satisfies both the equilibrium 

( 0)ij,jζ   and compatibility condition ( i,1j ij,1u ε ) but the auxiliary state satisfies only the 

equilibrium condition ( 0aux

ij,jζ  ). Thereby, the M-integral takes the form 

 
1 1 1 1 1 1( ) ( ( ) )aux aux aux aux aux aux

ij i, ij i, ik ik j ,j ij i, j ij, ijkl, kl ij
A A

M= ζ u +ζ u -ζ ε δ q dA+ ζ u ε ε ε qdA     (4.19) 

The M-integral for a mixed mode problem can also be expressed as follows.  

 
*

(2 2 )aux aux

I I II II

tip

K K K K
M

E


   (4.20) 

where 
*

tipE  is tipE  for plane stress and 
2/ (1- )tip tipE ν  for plane strain. tipE  and tipν  correspond 

to the values at the crack tip. IK  is evaluated from Eq.(4.20) by setting 
aux

IK to unity and 

aux

IIK  to zero, Similarly IIK  is evaluated by setting 
aux

IIK to unity and 
aux

IK  to zero. 

 There is also another formulation based on the actual and auxiliary states satisfying 

the compatibility and the equilibrium conditions, but the auxiliary state does not strictly 

satisfy the constitutive relation of the FGM (Rao & Rahman, 2003). This formulation is 

called CCT formulation in this work. It is to be noted that both the actual and auxiliary states 

in the M1 and M2 formulation, that are discussed, satisfy the constitutive relation of the 

FGM.       

4.6 Results for FGMs 

4.6.1 Mode I edge crack under tensile traction 

A plate with dimensions (Fig. 4.26(a)) 1w  m and L/ 2w  (length-to-width) is 

subjected to tensile loading ( yζ ). The plate is discretized with 21 41  regularly distributed 

nodes as shown in Fig. 4.26(b) .The elastic modulus varies exponentially. 

 
( )

1( ) e εxE x =E   (4.21) 

where 2 1= log( / )ε E E , 1 (0)E E  and 2 (w)E E . The value of 1E  is 1GPa . Although the 

elastic modulus varies, the variation in Poisson's ratio ( ν ) can be considered negligible. 

Therefore ν  is kept constant with a value of 0.3. A plane strain condition is assumed. The 
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crack length a  is varied from 0.2 to 0.6. The SIF for each a  is calculated with different values 

of ε , 0.1, 0.2, 5 and 10.  

  

Fig. 4.26 (a) Edge crack subjected to constant tensile traction. (b) Nodal discretization. 

The SIFs were obtained using five techniques: the CCI with local smoothing (CCI-

LS), the CCI without local smoothing, the M-integral method (non-equilibrium formualtion) - 

M1, M-integral method (incompatibility formulation) - M2, and displacement method. Table 

4.12 shows the comparision of the normalized mode I SIFs ( /I yK ζ πa ) obtained by the five 

methods with results available in the literature (Erdogan & Wu, 1997; Chen et al., 2000). 

While Erdogan & Wu (1997) obtained the results through analytical approach, Chen et al. 

(2000) obtained through EFG method. 

The span Δa  is kept as 0.02a  for the CCI calculations. For the CCI without local 

smoothing, sub-domain integration is performed as the displacement and stress vary 

asymptotically near the crack tip. Δa  is divided into 10 sub-domains and 5-point Gauss 

quadrature is used to evaluate the integral. For calculating M-integral, a square domain with 

an edge length of 0.25a  centered at the crack tip is considered. For the displacement method, 

the COD is evaluated at 0.02a  behind the crack tip. Unless specified, the above-mentioned 

parameters for SIF extraction techniques remain the same.  
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Table 4.12 Mode I SIFs for edge crack subjected to constant tensile traction. 

/a w  
ε  

Normalized mode I SIF 

Erdogan & Wu 

(1997) 

Chen et al. 

(2000) 

 

CCI-LS 

 

CCI 

 

M1 M2 
Displacement 

method 

0.2 

0.1 
1.297 1.32 1.293 1.267 1.322 1.301 1.286 

  
-0.31% -2.31% 1.93% 0.31% -0.85% 

0.2 
1.396 1.419 1.391 1.363 1.417 1.4 1.388 

  
-0.36% -2.36% 1.50% 0.29% -0.57% 

5 
1.132 1.162 1.133 1.109 1.147 1.153 1.138 

  
0.09% -2.03% 1.33% 1.86% 0.53% 

10 
1.002 1.032 1.005 0.983 1.016 1.025 1.01 

  
0.30% -1.90% 1.40% 2.30% 0.80% 

0.3 

0.1 
1.864 1.865 1.865 1.83 1.866 1.83 1.85 

  
0.38% -1.51% 0.43% -1.51% -0.43% 

0.2 
1.85 1.849 1.849 1.814 1.844 1.818 1.838 

  
0.49% -1.41% 0.22% -1.20% -0.11% 

5 
1.37 1.39 1.385 1.357 1.364 1.38 1.384 

  
1.09% -0.95% -0.44% 0.73% 1.02% 

10 
1.229 1.25 1.245 1.219 1.223 1.244 1.245 

  
1.30% -0.81% -0.49% 1.22% 1.30% 

0.4 

0.1 
2.57 2.559 2.575 2.531 2.565 2.502 2.561 

  
0.19% -1.52% -0.19% -2.65% -0.35% 

0.2 
2.444 2.449 2.46 2.418 2.441 2.399 2.449 

  
0.65% -1.06% -0.12% -1.84% 0.20% 

5 
1.748 1.775 1.777 1.743 1.732 1.761 1.774 

  
1.66% -0.29% -0.92% 0.74% 1.49% 

10 
1.588 1.615 1.617 1.585 1.57 1.608 1.614 

  
1.83% -0.19% -1.13% 1.26% 1.64% 

0.5 

0.1 
3.57 3.521 3.539 3.49 3.557 3.453 3.539 

  
-0.87% -2.24% -0.36% -3.28% -0.87% 

0.2 
3.327 3.323 3.336 3.288 3.337 3.268 3.336 

  
0.27% -1.17% 0.30% -1.77% 0.27% 

5 
2.366 2.413 2.411 2.369 2.355 2.406 2.409 

  
1.90% 0.13% -0.46% 1.69% 1.82% 

10 
2.176 2.223 2.22 2.181 2.158 2.225 2.219 

  
2.02% 0.23% -0.83% 2.25% 1.98% 

0.6 

0.1 
5.188 5.073 5.012 4.961 5.078 4.906 5.05 

  
-3.39% -4.38% -2.12% -5.44% -2.66% 

0.2 
4.761 4.786 4.725 4.672 4.758 4.65 4.755 

  
-0.76% -1.87% -0.06% -2.33% -0.13% 

5 
3.445 3.574 3.516 3.465 3.439 3.526 3.524 

  
2.06% 0.58% -0.17% 2.35% 2.29% 

10 
3.212 3.337 3.282 3.232 3.188 3.306 3.287 

  
2.18% 0.62% -0.75% 2.93% 2.33% 
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Fig. 4.27 Absolute % error for (a) 0.1ε=  (b) 0.2ε=  (c) 5ε=  (d) 10ε= .  

Fig. 4.27 also shows the % error in IK  data compared with theoretical results 

(Erdogan & Wu, 1997). The CCI technique without local smoothing gives an error er in the 

range -4.38% and 0.62%. However, the error is slightly reduced by applying the local 

smoothing technique, er now lies between -3.39% and 2.18%. The errors er by the M1 and M2 

integrals lie in the range -2.12% to 1.93% and -5.44% to 2.93% respectively. The 

displacement method has an error range er -2.66% to 2.33%. The errors are indicated below 

the SIFs, the highest absolute errors are underlined.  

4.6.2 Angle crack in plate (Mixed Mode)  

The plate with a crack has dimensions, width w=1m and a length-to-width ratio, 

L/ 2w  . A normal stress of magnitude 
( ( 0.5))

22 e εζ =εE x
, where ε  = 0.001, is applied on the 

top boundary of the plate. The plate is discretized with 21 41  nodes.  
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Fig. 4.28 Angle crack under mixed mode. 

The crack is oriented at an angle of o45  with respect to the x  axis with a normalized 

crack length of / 0.4 2a w= . The elastic modulus varies exponentially. 

 
( ( 0.5))( ) e ε xE x =E 

  (4.22) 

E  is set at1GPa .The mixed mode SIFs are calculated for the following values of 

parameter ε : 0, 0.1, 0.25, 0.5, 0.75 and 1. The Poisson‘s ratio  is kept constant at 0.3. A 

plane strain condition is assumed. The obtained mode I and II SIFs are normalized with 

respect to εE πa , 

 

ˆ

ˆ

I
I

II
II

K
K

εE a

K
K

εE a







  (4.23) 

  Table 4.13 and Table 4.14 show the mode I and II SIFs calculated for various ε , at a 

fixed crack length, respectively. The results are compared with FEM results (Kim & Paulino, 

2003) in the literature. In Table 4.13, it is observed that the SIF based on CCI results are 

significantly improved by the local smoothing technique.  
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Table 4.13 Normalized mode I SIF for angle crack under mixed mode. 

ε  

Normalized mode I SIF 

Eischen 

(1987) 

Kim & 

Paulino 

(2003) 

CCI-LS CCI M1 M2 
Displacement 

method 

0.00 
1.438 1.451 1.409 1.332 1.437 1.436 1.446 

  -2.89% -8.20% -0.96% -1.03% -0.34% 

0.10 
- 1.396 1.355 1.281 1.380 1.382 1.391 

  -2.94% -8.24% -1.15% -1.00% -0.36% 

0.25 
- 1.316 1.279 1.209 1.300 1.304 1.312 

  -2.81% -8.13% -1.22% -0.91% -0.30% 

0.50 
- 1.196 1.163 1.099 1.178 1.187 1.192 

  -2.76% -8.11% -1.51% -0.75% -0.33% 

0.75 
- 1.089 1.059 1.001 1.070 1.081 1.085 

  -2.75% -8.08% -1.74% -0.73% -0.37% 

1.00 
0.984 0.993 0.966 0.913 0.973 0.987 0.989 

  -2.72% -8.06% -2.01% -0.60% -0.40% 

IK  by the CCI method without local smoothing has a difference range (dr) from -8.24% 

to -8.06%. However, dr is significantly reduced to a narrow range -2.94% to -2.72% by the 

application of the local smoothing technique. The displacement method gives excellent 

results with dr in the range -0.40% to -0.30%. dr observed by the M1 and M2 integral 

methods are: -2.01% to -0.96% and -1.03% to -0.60% respectively. 

In Table 4.14, dr associated with the CCI method, -6.13% to -5.64%, is significantly 

reduced to -0.35 % to 0.25% by the CCI-LS technique. The performance of the M1 and M2 

integral is good with dr ranges of 0.75% to 1.32% and 1.32% to 4.23% respectively. The 

displacement method has dr range of -1.55% to -1.13%. 

Table 4.14 Normalized mode II SIF for angle crack under mixed mode. 

ε  

Normalized mode II SIF 

Eischen 

(1987) 

Kim & 

Paulino 

(2003) 

CCI-LS CCI M1 M2 
Displacement 

method 

0.00 
0.605 

 

0.604 

 

0.602 0.567 0.612 0.612 0.595 

-0.33% -6.13% 1.32% 1.32% -1.49% 

0.10 
- 

 

0.579 

 

0.577 0.544 0.586 0.588 0.570 

-0.35% -6.04% 1.21% 1.55% -1.55% 

0.25 
- 

 

0.544 

 

0.543 0.511 0.550 0.555 0.536 

-0.18% -6.07% 1.10% 2.02% -1.47% 

0.50 
- 

 

0.491 

 

0.490 0.462 0.496 0.505 0.484 

-0.20% -5.91% 1.02% 2.85% -1.43% 

0.75 
- 

 

0.443 

 

0.444 0.418 0.447 0.460 0.438 

0.23% -5.64% 0.90% 3.84% -1.13% 

1.00 
0.395 

 

0.402 

 

0.403 0.379 0.405 0.419 0.397 

0.25% -5.72% 0.75% 4.23% -1.24% 
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4.6.3 Mode I edge crack under tensile traction 

 

Fig. 4.29 Composite strip with mode I crack. 

Consider the composite strip with mode I crack as shown in Fig. 4.29. The strip has 

dimensions, 1w  m (width) and L/ 2w   (length-to-width). It has an edge crack of 

/ 0.4.a w=  The   is kept constant 0.3. The variation of elastic modulus is given by 

 1 2 1 2-
( ) tanh( 0.4 )

2 2

E E E E
E x = x - 


   (4.24) 

where 1 =1GPaE  and 2 1/ 3E E = . As   increases, the discontinuity in elastic modulus 

becomes sharper at the crack tip. A plane strain condition is assumed. A tensile traction of

22 = ( ) / (1- )2ζ εE x  , where ε  = 0.001, is applied on the top boundary to maintain uniform 

strain. The plate is discretized with 21 41  nodes. Table 4.15 shows the mode I SIFs obtained 

for different values of εa . A square domain with an edge length of 0.1a  centered at the crack 

tip is considered for the M-integral technique.  

Good results are obtained by the XEFG method. The normalized SIFs 

 2(1- ) / ( = 0)IK E x a  are compared in Table 4.15. The following are the error range er 

by the various methods -5.91% to 0.74% by the CCI-LS method, -6.67% to -0.91% by the 

CCI method, 0.66% to 3.20% by the M1 integral method, -6.70% to 0.66% by the M2 

integral method and -6.07% to 0.56% by the displacement method. All the SIF extraction 
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techniques give rise to higher error as εa   increases. This may be because at higher εa  the 

material behaves more like a bi-material. 

Fig. 4.30 shows the mode I SIFs obtained using the CCI method with local smoothing, 

and M1 and M2 techniques for various values for Dundurs‘ parameter. As material 1 

becomes more complaint compared to material 2, the value of α  increases; the normalized 

mode I SIF also increases. This suggests that the crack has more tendencies to penetrate into 

the compliant material that the stiffer material if the fracture toughness of both the materials 

are the same. 

 

Fig. 4.30 Normalized mode I SIF as a function of the elastic mismatch for = 6εa . 

Table 4.15 Normalized mode I SIF for composite strip. 

εa

 

Normalized mode I SIF# 

Eischen 

(1987) 

Rao & Rahman 

(2003)-CCT 

Rao & 

Rahman 

(2003)-M2 

CCI-LS CCI M1 M2 
Disp. 

method 

0 
2.112 2.133 2.133 2.140 2.100 2.147 2.147 2.133 

   0.33% -1.55% 0.66% 0.66% 0.00% 

2 
2.295 2.304 2.348 2.321 2.283 2.341 2.316 2.317 

   0.74% -0.91% 1.61% 0.52% 0.56% 

4 
2.571 2.589 2.670 2.592 2.553 2.633 2.578 2.587 

   0.12% -1.39% 1.70% -0.42% -0.08% 

6 
2.733 2.769 2.879 2.744 2.707 2.811 2.723 2.738 

   -0.90% -2.24% 1.52% -1.66% -1.12% 

20 
3.228 3.314 3.579 3.118 3.093 3.420 3.092 3.113 

   -5.91% -6.67% 3.20% -6.70% -6.07% 

#The present results are compared with the reference SIF results obtained by CCT 

formulation by Rao & Rahman (2003). 
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4.6.4 Three point bending (TPB) specimen with mode I crack 

 

Fig. 4.31 Mode I crack in TPB specimen. 

Fig. 4.31 shows a mode I crack in a TPB specimen of three material layers. A FGM 

layer that is sandwiched between the two layers of homogenous materials. The specimen has 

dimensions: 1w  m (width) and L/ 5.4w  (length-to-width) with a FGM layer of width 2t=

0.1m . The variation of elastic modulus is assumed as follows 

 

2

1 2 2 1

1

/ 2

( ) ( / 2) / 2 / 2
2 2

/ 2

E , x>w +t

E +E E -E
E x = + x-w , w -t x w +t

t

E , x<w -t





 



  (4.25) 

A plane strain condition is assumed. A concentrated load F =1MPa  is applied (Fig. 

4.31). The specimen is constrained at two locations that are equidistant from the x-axis  such 

that the ratio, hL / 5w  . The poisons ratio   = 0.3. The modulus 1E  is 1GPa . Three 

different crack lengths are chosen: / = 0.45,0.5 and 0.55a w  such that the crack tip is either 

at the material interface or in the middle of the FGM layer. Normalized mode I SIFs as per 

/ 2 / FIK w  are obtained for different 2 1/E E  ratios. The specimen is discretized with 

21 41  nodes.  



- 111 - 

 

The span, Δa , is kept as 0.005a  for the CCI calculations. A square domain with an 

edge length of 0.02a  centered at the crack tip is used for the M-integral technique. The COD 

is evaluated at 0.005a  behind the crack tip in the displacement method. Fig. 4.32 shows the 

absolute % error plot using different techniques compared against published results for 

different /a w  ratios. 

Table 4.16 Normalized mode I SIF for TPB specimen with = 0.45a/w . 

2 1/E E  

Normalized mode I SIF# 

Kim & 

Paulino 

(2003) 

Rao & 

Rahman 

(2003) 

-CCT 

CCI-LS CCI M1 M2 
Displacement 

method 

0.05 
33.04 32.99 33.91 33.35 33.57 33.37 34.49 

  2.63% 0.94% 1.60% 1.00% 4.40% 

0.1 
23.47 23.61 23.80 23.38 23.76 23.62 24.20 

  1.41% -0.38% 1.24% 0.64% 3.11% 

0.2 
17.36 17.28 17.38 17.07 17.45 17.36 17.66 

  0.12% -1.67% 0.52% 0.00% 1.73% 

0.5 
11.65 11.45 11.56 11.34 11.62 11.58 11.71 

  -0.77% -2.66% -0.26% -0.60% 0.52% 

1 
8.13 7.96 8.08 7.92 8.11 8.11 8.17 

  -0.62% -2.58% -0.25% -0.25% 0.44% 

2 
5.24 5.15 5.23 5.12 5.23 5.26 5.29 

  -0.19% -2.29% -0.19% 0.38% 0.87% 

5 
2.54 2.51 2.59 2.53 2.54 2.60 2.62 

  1.97% -0.39% 0.00% 2.36% 3.12% 

10 
1.33 1.31 1.39 1.35 1.32 1.40 1.41 

  4.51% 1.50% -0.75% 5.26% 6.19% 

20 
0.66 0.66 0.70 0.68 0.63 0.70 0.72 

  6.06% 3.03% -4.55% 6.06% 8.82% 

#The present results are compared with the reference SIF results obtained by Kim & Paulino 

(2003). 

Table 4.16, Table 4.17 and Table 4.18 show normalized mode I SIFs obtained for 

various 2 1E /E  ratios. The results are compared with published data (Kim & Paulino, 2003; 

Rao & Rahman, 2003). Kim & Paulino (2003) obtained the results through FEM and Rao & 

Rahman (2003) obtained the results through EFG method. The following are the error range 

er for the SIFs for different a/w  ratios, using the various methods (Fig. 4.32): -5.84% to 

6.06% by the CCI-LS method, -8.38% to 4.37% by the CCI method, 0.00% to 4.95% by the 

M1 integral technique, 0.00% to 7.57% by the M2 integral, and 0.03% to 16.32% by the 

displacement method. Again, the local smoothing scheme improves the results obtained by 

the CCI technique. The SIFs obtained by the displacement method deviate at extreme ratios 

of 2 1/E E . 
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Table 4.17 Normalized mode I SIF for TPB specimen with = 0.5a/w . 

2 1/E E  

Normalized mode I SIF  

Kim & 

Paulino 

(2003) 

Rao & 

Rahman 

(2003) 

-CCT 

CCI-LS CCI M1 M2 
Displacement 

method 

0.05 
31.12 31.53 32.92 32.48 30.98 30.42 32.32 

  5.78% 4.37% -0.45% -2.25% 3.85% 

0.1 
23.92 23.96 24.69 24.33 23.66 23.27 24.25 

  3.22% 1.71% -1.09% -2.72% 1.38% 

0.2 
18.32 18.36 18.56 18.26 18.12 17.87 18.33 

  1.31% -0.33% -1.09% -2.46% 0.03% 

0.5 
12.57 12.30 12.55 12.32 12.48 12.40 12.544 

  -0.16% -1.99% -0.72% -1.35% -0.24% 

1 
9.47 9.21 9.42 9.22 9.44 9.44 9.51 

  -0.53% -2.64% -0.32% -0.32% 0.39% 

2 
7.32 7.34 7.24 7.09 7.31 7.36 7.40 

  -1.09% -3.14% -0.14% 0.55% 1.02% 

5 
5.50 5.47 5.33 5.20 5.47 5.55 5.52 

  -3.09% -5.45% -0.55% 0.91% 0.40% 

10 
4.59 4.62 4.37 4.25 4.55 4.63 4.57 

  -4.79% -7.41% -0.87% 0.87% -0.45% 

20 
3.94 3.99 3.71 3.61 3.93 4.00 3.93 

  -5.84% -8.38% -0.25% 1.52% -0.28% 

Table 4.18 Normalized mode I SIF for TPB specimen with = 0.55a/w . 

2 1/E E  

Normalized mode I SIF 

Kim & 

Paulino 

(2003) 

Rao & 

Rahman 

(2003) 

-CCT 

CCI-LS CCI M1 M2 
Displacement 

method 

0.05 
15.21 15.50 14.43 14.25 14.66 14.16 12.73 

  -5.13% -6.31% -3.64% -6.90% -16.32% 

0.1 
13.73 13.40 13.49 13.30 13.05 12.69 12.54 

  -1.75% -3.13% -4.95% -7.57% -8.68% 

0.2 
12.79 12.16 12.68 12.47 12.40 12.24 12.21 

  -0.86% -2.50% -3.05% -4.30% -4.51% 

0.5 
11.76 11.29 11.76 11.55 11.66 11.62 11.69 

  0.00% -1.79% -0.85% -1.19% -0.61% 

1 
11.15 10.85 11.11 10.89 11.13 11.13 11.22 

  -0.36% -2.33% -0.18% -0.18% 0.64% 

2 
10.62 10.44 10.49 10.28 10.62 10.63 10.73 

  -1.22% -3.20% 0.00% 0.09% 0.99% 

5 
9.96 9.93 9.73 9.53 9.96 9.99 10.05 

  -2.31% -4.32% 0.00% 0.30% 0.94% 

10 
9.50 9.59 9.24 9.04 9.50 9.53 9.57 

  -2.74% -4.84% 0.00% 0.32% 0.71% 

20 
9.12 9.27 8.86 8.67 9.11 9.14 9.16 

  -2.85% -4.93% -0.11% 0.22% 0.38% 
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Fig. 4.32 Absolute % error for (a) / 0.45a w  (b) / 0.5a w  (c) / 0.55a w . 

4.7 Closure  

The classical crack closure integral is augmented with a local smoothing technique to 

remove the abrupt variations in the computed stress and displacement fields near the crack tip. 

Two simple formulas, using tractions and displacements at predefined locations on the crack 

line, have been obtained as expressions for the mode I and mode II SIFs. The possibility of 

computation of the SIFs through the displacement and stress methods, within the framework 

of the XEFG, has been demonstrated. 

 The combined use of the CCI with local smoothing has given rise to simpler method 

of computation of the SIFs. This method is less tedious than the M-integral technique. Simple 

expressions for computation of the SIFs are presented. It gives rise to good accuracy 

consistently for remote loading, thermal loading, and crack face pressure loading. The CCI-

LS technique also performed consistently well for a crack in FGMs when compared with 

results available in the literature.  
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Chapter 5 Modified Crack Closure Integral 

5.1 Introduction 

The modified crack closure integral (MCCI)* or virtual crack closure technique 

(VCCT) has been exploited abundantly in the FEM and, to a lesser extent, in the BEM, to 

extract the SIFs. Its adoption in the MMs is not that straightforward because it requires the 

knowledge of crack closure forces. In this chapter, a novel method to extract the nodal forces 

in the presence of regular nodal discretization in the EFG methods is described. The closure 

forces at the crack tip and at nodes ahead of it are multiplied with the opening displacements 

at the corresponding nodes behind the tip to obtain the strain energy release rates (SERRs). To 

bring out the special issues associated with the adoption, a number of case studies, involving 

crack edge and thermal loadings, are solved. Thereby the procedural details, effectiveness and 

accuracy obtainable are presented. In order to emphasize the effectiveness and accuracy of the 

method, the results obtained by the method are compared with those obtained by the popular 

M-integral technique, analytical solutions and, wherever possible, by the crack closure 

integral with local smoothing (CCI-LS) techniques described in the previous chapter. 

5.2 MCCI for EFG method 

Although the displacement method is a simple technique available to obtain the SIFs, 

their accuracy can be significantly improved by calculations involving energy release rates. 

This was clearly shown in the context of FEM (Maiti, 1992). There are many techniques 

available to calculate the potential energy release rate (PERR) using Eq. (4.1).  

Direct Gauss integration method, Universal Crack Closure Integral (UCCI) technique 

(Singh et al., 1988), CCI-LS technique (Muthu et al., 2013), MCCI/VCCT (Rybicki & 

Kanninen, 1977; Raju, 1987; Sethuraman & Maiti, 1988) etc., are some of the alternatives 

through which PERR, and thereby SIFs, can be obtained. The MCCI technique is particularly 

convenient as it is relatively simple to implement. This technique was successfully applied in 

the realm of fracture mechanics in composites (Falzon et al., 1999). In addition, the SIFs are 

easily separated in a mixed mode problem. 

 

  

*This chapter contains most of the details from the two papers that are published: 
N. Muthu, B.G. Falzon, S.K. Maiti, S. Khoddam. "Modified Crack Closure Integral for Extraction of SIFs in Meshfree Methods" Finite 

Element in Analysis and Design, 25-39; 78: 2014. 
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Fig. 5.1 Crack in a regular nodal discretization. 

The MCCI/VCCT, in the FEM, requires the calculation of crack closure forces and 

corresponding CODs to find the SIFs in the context of the LEFM. In this chapter, a new 

approach for extracting the crack closure forces, for the application of the MCCI technique, 

within the framework of the EFG method is proposed. The CODs are extracted from the crack 

edge nodal displacement solution. Consequently, the PERR, which is a function of nodal 

forces and CODs, is obtained. Consider a crack at an arbitrary angle (Fig. 5.1). A regular 

nodal discretization where the nodes align with the crack line near the crack tip is used.  

In order to compute the crack closure forces, the domain of influence ( Id ) for a node 

j  is split along the crack line as shown in Fig. 5.2(a). The stiffness matrix for one of the 

regions, either the upper or the lower one is obtained. This matrix is multiplied with the nodal 

displacement vector to obtain the crack closure/nodal reaction forces.  

           

(a)             (b) 

Fig. 5.2 (a) Splitting the domain of influence along the direction of the crack front. (b) An 

infinitesimal element in the upper section 
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Fig. 5.2(b) shows the upper section of the node j . The stiffness matrix for the upper 

region, denoted Ω+, is computed by the following equation: 

 
Ω

Ω ( )+ T

IJ I J +
A

tdA; I,J w K B B x   (5.1) 

where B  is a strain-displacement matrix, t  is the thickness and A  is the area enclosed by the 

upper or lower section (Fig. 5.2). Here, it is also a function of the crack front orientation. The 

set Ω ( )+w x  includes only those nodes that are on and above the crack line. Similarly, the 

stiffness matrix, 
Ω-

IJK , for the lower section is computed by considering the nodes on and 

below the crack line. 

The strain-displacement matrix, B , for the classical EFG methods including the 

visibility and the diffraction method is given by  

 

1 i n

std

1 i n

1 1 i i n n

Φ 0 ... Φ 0 ... Φ 0

0 Φ ... 0 Φ ... 0 Φ

Φ Φ ... Φ Φ ... Φ Φ

,x ,x ,x

,y ,y ,y

,y ,x ,y ,x ,y ,x

 
 

   
 
 

B B   (5.2) 

where i  indicates the node number lying either in the top or the bottom segment of the 

domain of influence of the current node j . For the XEFG method, the B  matrix also 

comprises of extra terms due to the enrichment. It is given by 

 

std enr

i k i k,

enr

i,k i k i k,

i k i k, i k i k,

[ | ]

Φ Ψ Φ Ψ 0

0 Φ Ψ Φ Ψ

Φ Ψ Φ Ψ Φ Ψ Φ Ψ

,x x

,y y

,y y ,x x



 
 

  
   

B B B

B
  (5.3) 

where 
enr

i,kB  matrix comprises of the derivatives of the regular shape functions and the 

enrichment functions of the enriched nodes. 

The integral in Eq. (5.1) is calculated by the numerical integration. To facilitate the 

integration either the top or the bottom segment of the circular domain of influence is sub-

divided into smaller triangles (Fig. 5.3). The Gauss point location to suit integration of 8
th

 

order complete polynomial (Dunavant, 1985), are indicated by ‗*‘. X- Y  is the global axis 

and x-y  is the local axis at the crack tip; x  points towards the direction of crack extension.  
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Fig. 5.3 Splitting of upper section into smaller triangles for numerical integration. 

Even if the domain of influence is not circular, the top or the bottom regions of the 

crack line can be sub-divided for an accurate evaluation of the stiffness matrix. It is 

recommended to use higher order integration to calculate the crack forces accurately. The 

Gauss integration is carried out as follows. 

 ( ) ( ) det ( )T T

I J I i J i i i
A

i

tdA = ξ ξ w J ξ t B B B B   (5.4) 

where iξ  is the Gauss point, iw  is the Gauss weight and det ( )iJ ξ is the determinant of the 

Jacobian of the background triangular element at iξ . The nodal force vector is calculated by  

 Ω Ω+  K U F   (5.5) 

where Ω
U  is the nodal displacement vector of the nodes contained in Ω . 

 

Fig. 5.4 Transformation of forces into local axis at the crack tip. 
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The nodal force vector can also be extracted at node 1j+  by following the same 

procedure as mentioned above. The obtained forces are transformed to the local crack tip 

coordinates (Fig. 5.4) through the following relation: 

 

XY{ } [ ]{ }

cos sin

sin cos

xy

ζ - ζ

ζ ζ



 
  
 

F T F

T
  (5.6) 

where 
y{ } { , }x

xy F FF , 
X Y

XY{ } { , }F FF  and ζ  is the angle at which the crack front is 

inclined to the X axis. In the XEFG method, contributions of additional forces due to branch 

enrichment are also taken into account.  

 

Fig. 5.5 Crack closure forces and crack opening displacements. 

The PERR are given by 

 

1
[ ]

2

1
[ ]

2

y j-2 y j-1

I j COD j+1 COD

j,j-2

x j-2 x j-1

II j COD j+1 COD

j,j-2

G F v +F v
χ

G F u +F u
χ





  (5.7) 

where j,j-2χ  is the distance between 
thj  and 

thj-2  nodes (Fig. 5.5). The denominator in 

Eq.(5.7), j,j-2χ , is analogous to the virtual crack extension length, Δa , used for MCCI/VCCT. 

In the FEM, Δa  is the length along the crack line by which the crack is assumed to 

propagate.  
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 A general MCCI equation for extracting the PERR, involving calculation of forces at 

n  nodal points along the crack line can be written as  

 

1

2

1

2

n-1
y j-n+i

I j+i COD

i=0j,j-n

n-1
x j-n+i

II j+i COD

i=0j,j-n

G F v
χ

G F u
χ








  (5.8) 

As n  increases in Eq.(5.8), the accuracy of the PERR increases. This is demonstrated through 

a case study in a later section. 

5.2.1 MCCI in the presence of crack face loading 

In presence of crack face loading, the newly formed crack faces are also subjected to 

loading as shown in Fig. 5.6. Therefore, additional work has to be done to close the extended 

crack.  

 
Fig. 5.6 Newly formed crack faces subjected to crack face loading. 

The PERRs, in such a case, are then given by 

 

1
[( ) ( ) ]

2

1
[( ) ( ) ]

2

y y j-2 y y j-1

I j j-2 COD j+1 j-1 COD

j,j-2

x x j-2 x x j-1

II j j-2 COD j+1 j-1 COD

j,j-2

G F +F v + F +F v
χ

G F +F u + F +F u
χ





  (5.9) 

where j-1F  and j-2F  are the nodal forces due to distributed load ct  on the crack faces.  

 

 



- 120 - 

 

5.2.2 MCCI in the presence of thermal loading 

The mechanical strain, when thermal strain is present, is related to the total strain by  

 
*( Δ )m t

ij ij ijε ε α Tδ    (5.10) 

where 
m

ijε  is the mechanical strain, 
t

ijε  is the total strain, 
*α  is the coefficient of thermal 

expansion and ΔT  is the temperature difference. Therefore, the resulting stiffness matrix is 

given by 

 Ω ( )

Δ

Δ

mech total thermal

IJ IJ IJ

total T

IJ I J +
A

thermal T *

IJ I
A

tdA; I,J w

T

α T tdA

0

 

 

 
 

  
 
 





K K K

K B B x

K B

  (5.11) 

The resulting mechanical stiffness matrix, 
mech

IJK , is then multiplied with the nodal 

displacement vector to obtain the residual nodal forces. 

5.3 Accurate Extraction of the Nodal Force 

Consider a bar of uniform cross section, A , of unit area and of unit length, L , as shown 

in Fig. 5.7. The bar is subjected to a point tensile load, P, of 10 MPa at its end. This problem 

is solved using 1D analysis with displacement ( xu ) set to zero at the origin. 

 

Fig. 5.7 Bar subjected to a point load at the end. 

The bar is discretized with different nodal distributions. The domain of influence ( Id ) 

of each node is constant and is set at 1.75
( 1)

L

n
 where n  is the total number of nodes. Here 

n  is equal to 11.  
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The force at the node of interest, j , can be extracted in two ways (I or II) as shown in 

Fig. 5.8. Either way, the stiffness matrix is established by the following relation  

 
T

l
Adx  K B B   (5.12) 

where 1.75
2( 1)

- +

L
l l l

n
  


.  is the Young's modulus, A  is the area of the cross section 

and Β  is the standard strain-displacement matrix.  

 The goal here is to extract the force accurately at node located at 0.5x= . Four nodal 

discretization arrangements, as shown in Fig. 5.9, are considered for an examination. The 

effect of location of the adjacent nodes around node, j , (darkened node) on the extraction of 

nodal force is studied. The first configuration (a) consist of equally spaced nodes while others 

(b), (c) and (d) have variable spacing. 

 

Fig. 5.8 Splitting the Id  for the node of interest j .  

The force ( F ) at the node j  is extracted using Eq. (5.5). Table 5.1 shows the force 

obtained for different configurations for an applied load P . It is clear that the error in 

computed forces IF  and IIF  is zero for the configuration (a) with equally spaced nodes. The 

error is higher in the case of unstructured distribution of nodes (configuration (b), (c) and (d)). 

The averaged magnitude of the computed force ( F ) shows a relatively lower error. 

Therefore, for all subsequent studies, the average of two parts of forces has been used to 

compute the nodal force. It is given by 

  
1

2

l- l- l+ l+ F K U K U   (5.13) 
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 Fig. 5.9 Different nodal discretization. 

Table 5.1 Force obtained for different nodal discretization.  

Configuration (MN)IF  (MN)IIF  

% error in 

IF  

% error in 

IIF  

Average of  

IF  and II-F  ( F ) 

% error in 

F  

(a) 10.0000 -10.0000 -0.0001% -0.0001% 10.0000 0.0000% 

(b) 10.0055 -9.9959 0.0552% 0.0414% 10.0007 0.0069% 

(c) 10.1957 -9.9034 1.9575% 0.9658% 10.0496 0.4958% 

(d) 10.1148 -10.1148 1.1478% -1.1479% 10.1148 1.1478% 

5.4 Results 

In this section, the developed technique is applied to a number of crack problems 

including crack face pressure loading and thermal-mechanical loading. The PERR, and in turn 

the SIFs, computed using the proposed method and other standard methods are compared with 

the solutions available in the literature. 

The SIFs are extracted using the four techniques: the MCCI technique, the M-integral 

method, the displacement method, and the stress method. The MCCI technique is employed 

here by calculating crack closure forces at the two nodes, in the direction along the crack line, 

and multiplying with the corresponding crack opening displacements. The M-integral is 

calculated using a square domain with edge length of 0.25a . For displacement and stress 

methods, the COD and stress are evaluated at 0.02a  behind the crack tip and at 0.02a  ahead 

of the crack tip respectively.  
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5.4.1 Mixed-mode edge crack in finite plate 

The dimensions of the plate are width 1w  m and / 2L w   (Fig. 5.10(a).) The plate is 

discretized with 41 81  nodes (Fig. 5.10(b)) and it is subjected to traction of 1MPa at the 

upper edge. The crack length a is varied from 0.1w  to 0.8w .. The domain of influence is set 

at 1.75 times the regular nodal spacing ( δ ). The materials are assumed to be isotropic with 

Young's modulus 210E GPa  and Poisson's ratio 0.3ν  . A Gauss integration of 8th order 

is used, in the background triangular cells, for the cases studied.  

 

Fig. 5.10 Mode I edge crack (a) Geometry. (b) Nodal Discretization. 

Table 5.2 and Table 5.3 show the mode I SIFs obtained using the four techniques 

through the visibility and diffraction methods respectively. The results obtained by the MCCI 

and M-integral methods are in good agreement with the reference results (Murakami, 1987) 

for / 0.6a w ; and (Gross & Seelig, 2011) for / 0.6a w . For better understanding, % error 

in the SIFs through the methods of visibility, diffraction and XEFG is plotted in Fig. 5.11(a), 

Fig. 5.11(b) and Fig. 5.12 respectively. 

The stress method gives poor results in all cases. The displacement method too fails 

for the visibility and diffraction methods (Fig. 5.11(a) and Fig. 5.11(b)). However, the 

displacement method gives good results in the XEFG method (Fig. 5.12) because of the 

enrichment functions. Notably, the MCCI approach gives good results, for visibility and 

diffraction methods, despite poor accuracy of the computed COD. The results obtained by the 

CCI-LS technique using 37-point Gauss quadrature in the background cells to suit 13th order 

polynomial in the XEFG method are comparable with the results of the MCCI approach.  

(b) 
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Table 5.2 Mode I SIFs for an edge crack using visibility method. 

/a w  
Murakami (1987) 

Gross & Seeli (2011) 

( )IK MPa m  

MCCI M-integral Displacement method Stress method 

0.1 0.663 0.656 0.526 0.433 0.230 

0.2 1.087 1.068 1.032 0.671 0.521 

0.3 1.612 1.590 1.563 1.048 0.928 

0.4 2.358 2.337 2.310 1.658 1.540 

0.5 3.543 3.493 3.469 2.680 2.510 

0.6 5.529 5.480 5.463 4.548 4.219 

0.7 9.433 9.311 9.321 8.328 5.365 

0.8 19.007 18.775 18.878 18.236 9.020 

Table 5.3 Mode I SIFs for an edge crack using diffraction method. 

/a w  
Murakami (1987) 

Gross & Seeli (2011) 

( )IK MPa m  

MCCI M-integral Displacement method Stress method 

0.1 0.663 0.655 0.537 0.282 0.207 

0.2 1.087 1.066 1.038 0.639 0.467 

0.3 1.612 1.587 1.570 1.032 0.837 

0.4 2.358 2.332 2.318 1.645 1.397 

0.5 3.543 3.488 3.481 2.661 2.292 

0.6 5.529 5.464 5.473 4.506 3.859 

0.7 9.433 9.294 9.336 8.264 4.815 

0.8 19.007 18.701 18.860 18.051 7.978 

 

(a)        (b) 

Fig. 5.11 Mode I SIF % error using different techniques by (a) visibility method. (b) 

diffraction method. 
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Table 5.4 Mode I SIFs for an edge crack using XEFG method. 

/a w  

Murakami (1987) 

Gross & Seeli 

(2011) 

( )IK MPa m  

MCCI M-integral Displacement method Stress method CCI-LS 

0.1 0.663 0.662 0.682 0.687 0.782 0.674 

0.2 1.087 1.074 1.086 1.108 1.222 1.099 

0.3 1.612 1.595 1.634 1.644 1.816 1.639 

0.4 2.358 2.340 2.377 2.405 2.691 2.408 

0.5 3.543 3.498 3.536 3.579 4.007 3.590 

0.6 5.529 5.471 5.555 5.581 6.261 5.610 

0.7 9.433 9.281 9.454 9.504 10.574 9.540 

0.8 19.007 18.541 18.912 19.337 21.173 19.202 

 

Fig. 5.12 Mode I SIF % error by XEFG method using different techniques. 

Another notable feature is that the proposed technique performs better even for 

shorter cracks where the popular M-integral method gives inaccurate results; the errors are 

around 20% for the visibility and diffraction methods. In the XEFG method, the maximum 

error obtained by the CCI-LS technique, MCCI technique and the M-integral method is less 

than 2.1%, 2.5% and 2.9% respectively.  

Number of nodes at which force is extracted  

One of the important parameters to be considered is the number of nodes along the 

crack plane that need to be involved for an accurate estimation of the SIFs. Fig. 5.13 shows 

the accuracy of the SIF plotted against the number of nodes at which the forces are extracted 

for 0.5a/w= .  
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Fig. 5.13 Variation of error with number of nodes for extraction of force. 

It is clear from the plot that at least two nodes are required to calculate the SIFs with 

error within 2 %. The error decreases marginally as the number of nodes, at which forces are 

extracted, are increased. In all the subsequent studies reported, the results are presented based 

on force extracted at two nodes. This is conservative and helps to minimize the computational 

effort.  

Nodal density independency 

It is reported (Belytschko et al., 1994; Ventura et al., 2002) that an increase in the 

nodal density helps to improve the accuracy of the SIFs. In this subsection, the effect of 

increasing the density of nodes, on the accuracy of the SIFs is studied. Fig. 5.14, Fig. 5.15  

and Fig. 5.16 show the effect of increasing the number of nodes, in a regular manner, on all 

the techniques discussed using the methods of visibility, diffraction, and XEFG respectively. 

 
Fig. 5.14 Variation of % error in mode I SIF by visibility method for various nodal densities

 0.5a/w= . 
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As the nodal density increases, the accuracy of the SIFs obtained through the 

displacement and stress methods via the non-enriched EFG method increases steadily. It is 

seen that the M-integral method does not give accurate results for very low nodal density. 

However, its accuracy improves and is steady for the subsequent nodal densities. 

 

Fig. 5.15 Variation of % error in mode I SIF by diffraction method for various nodal densities 

( 0.5a/w= ). 

The MCCI technique, even with low nodal density (11 21  nodes), gives accurate 

results. It is notable that it gives accurate results even if solution for the COD is poor. 

Perhaps, this is because the extracted force at the nodes compensate for the effect of 

inaccurate COD.  

 

Fig. 5.16 Variation of % error in mode I SIF by XEFG method for various nodal densities      

( 0.5a/w= ). 
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In the case of the XEFG method, the SIFs obtained by the displacement method are 

accurate because of the presence of enrichment functions. No technique shows a reliable 

convergent behavior. However, the errors in the SIFs obtained by the M-Integral and MCCI 

techniques are within 2%.  

Influence of order of Gauss quadrature 

 

Fig. 5.17 Variation of % error in mode I SIF % by visibility method for various Gauss order (

0.5a/w= ). 

Xiaoying et al. (2011) reported that an increased number of Gauss points around the 

crack tip improve the accuracy of the SIFs. The influence of increasing the Gauss quadrature 

order in the triangular cells around the crack on the accuracy using different techniques was 

investigated. Fig. 5.17 and Fig. 5.18 show the variation of % error in the SIFs obtained using 

the visibility and the diffraction method with a discretization of 21 41  nodes. It is clear that 

none of the SIF extraction techniques is affected significantly by the integration order in these 

two methods. 

However, in the XEFG method, the SIFs obtained by the stress method and the CCI-

LS method are significantly affected by the integration order (Fig. 5.19). The displacement 

method is affected slightly. As the integration points increase, the accuracy of the SIFs 

increases. The CCI-LS requires relatively higher order of Gauss quadrature for accurate 

computation of the SIFs. The M-integral and the MCCI technique are least affected by it. 



- 129 - 

 

 

Fig. 5.18 % error in mode I SIF by diffraction method for various Gauss quadrature order (

0.5a/w= ). 

 

Fig. 5.19 Mode I SIF % error by XEFG method for various Gauss quadrature order  

( 0.5a/w= ). 

Effect of domain of influence 

Fig. 5.20 shows two different domains of influence ( Id ) for the crack tip node. A 

larger Id  encompasses more nodes. A study was undertaken to explore the minimum number 

of nodes at which the force may be extracted to calculate the SIF accurately for variation of

Id . 
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Fig. 5.20 Id  for a node at the crack tip. 

 

Fig. 5.21 Effect of Id on % error in SIF and number of points for calculation of force by 

visibility method.  

Fig. 5.21 and Fig. 5.22 show the effect of Id and number of points for force 

calculation on the % error in the SIF. It is observed that as /Id δ  increases, closure forces 

should be computed at more nodes along the crack line for accurate calculation of the SIFs. A 

similar trend is also been observed in the XEFG method (Fig. 5.23). 
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To keep the absolute error in the computed SIF within certain level, the number of 

nodes at which the closure forces are to be calculated can be decided from these plots for a 

specific domain size Id . 

 

Fig. 5.22 Id  and number of force extraction points (diffraction method). 

 

Fig. 5.23 Id  and number of force extraction points (XEFG method). 

For all the case studies presented here Id  is taken as 1.75 times the nodal spacing. A 

higher value will result in smearing of the effect of field solution especially around the crack 

tip. However, Id  should be large enough to avoid any ill-conditioning of the moment matrix. 
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Local refinement 

 

Fig. 5.24 Local refinement at the crack tip. 

The effect of nodal refinement near the crack tip on the accuracy of the SIFs has also 

been examined. A typical nodal arrangement is shown in Fig. 5.24.  

Table 5.5 Effect of local refinement on MCCI technique. 

a/w  
Murakami (1987) 

Gross & Seeli (2011) 

Visibility Diffraction XEFG 

(a)  (b) (a) (b) (a) (b) 

0.1 0.663 
0.656 0.661 0.655 0.660 0.662 0.675 

-1.104% -0.371% -1.170% -0.434% -0.081% 1.879% 

0.2 1.087 
1.070 1.072 1.069 1.071 1.065 1.080 

-1.536% -1.362% -1.684% -1.518% -2.033% -0.626% 

0.3 1.612 
1.590 1.594 1.590 1.593 1.587 1.609 

-1.352% -1.148% -1.396% -1.172% -1.576% -0.180% 

0.4 2.358 
2.336 2.341 2.335 2.340 2.328 2.364 

-0.941% -0.734% -0.988% -0.759% -1.285% 0.237% 

0.5 3.543 
3.503 3.513 3.497 3.507 3.477 3.535 

-1.132% -0.855% -1.298% -1.019% -1.854% -0.234% 

0.6 5.529 
5.479 5.488 5.469 5.478 5.431 5.521 

-0.908% -0.743% -1.089% -0.917% -1.765% -0.145% 

0.7 9.433 
9.336 9.349 9.317 9.331 9.246 9.402 

-1.033% -0.892% -1.232% -1.080% -1.979% -0.330% 

0.8 19.007 
18.706 18.702 18.686 18.691 18.497 18.837 

-1.584% -1.605% -1.689% -1.663% -2.683% -0.894% 
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Table 5.5 show the effect of refinement on the accuracy of the SIFs using the 

visibility, diffraction and the XEFGs method for crack sizes varying from 0.1w  to 0.8w . (a) 

and (b) corresponds to 13 13  and 17 17 nodes around the crack tip respectively. The nodes 

associated with a refinement are distributed regularly in the selected region (Fig. 5.24). 

It is clear from the table that, as the refinement increases, the accuracy gets slightly 

better. While refining the zone with regular nodal arrangement near the crack tip, care must 

be taken to ensure that an intermediate node coincides with the crack tip and a row of nodes 

align with the direction of crack extension x . It is observed that the MCCI technique 

performs almost uniformly for all the crack-modelling techniques. 

5.4.2 Centrally located angled crack in finite plate 

Fig. 5.25(a) shows a geometry with dimensions 2 1w  m, / 2 2L w   and / 0.5a w . 

The plate is subjected to uniform tensile load of 1MPa  on the edge. The plate is discretized 

with 41 81  nodes. The crack is inclined at an angle β (in degrees) with x -axis. 

 

    (a)        (b) 

Fig. 5.25 (a) Mixed mode center crack subjected to tensile traction. (b) Nodal discretization 

for a mixed mode crack. 

 Fig. 5.25(b) shows the nodal discretization. A sub-region around the crack tips is 

refined with 13 13  nodes with Id  =1.75δ  where δ  is the inter-nodal distance between the 

refined nodes. 
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Fig. 5.26 Mixed mode SIFs by visibility method. 

 

Fig. 5.27 Mixed mode SIFs by diffraction method. 

The results obtained by various techniques are compared with the reference results 

available in (Murakami, 1987). Fig. 5.26 and Fig. 5.27 show the mode I and mode II SIFs 

obtained by all the extraction techniques using the visibility and diffraction methods 

respectively. The stress method and the displacement method yield poor results. The results 

by the M-integral and the MCCI techniques are in good agreement with the reference results. 
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Although, in the XEFG method, the displacement method gives satisfactory mode I 

SIF, the mode II SIFs are inaccurate (Fig. 5.28). The M-Integral and the MCCI technique 

consistently give accurate results for all the class of EFG methods. 

 

Fig. 5.28 Mixed mode SIFs by the XEFG method. 

5.4.3 Mode I crack face pressure loading 

 

Fig. 5.29 Hollow cylinder with inner radial crack subjected to pressure loading. 

Fig. 5.29 shows a hollow cylinder of inner radius 1 1r  m and 2 1/ 2r r   under internal 

pressure p . There is an inner radial crack of length a . This problem has been examined in 

(Muthu et al., 2013). The geometry is discretized with 25 nodes (radial) by 144 nodes 

(circumferential) as illustrated in Fig. 5.30. The region around the crack tip is refined with 
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13 13  nodes. The domain of influence Id  varies along the radius; spacing is 1.75 times the 

regular nodal spacing. 

 

Fig. 5.30 Nodal discretization with local refinement at the crack tip. 

The modified M-integral including the pressure loading on the crack edges is used for 

the SIF calculation. The MCCI, too, is calculated here by taking into account the pressure 

loading on the crack edges. The displacement method does not require any changes in the way 

the SIF is computed. Fig. 5.31, Fig. 5.32 and Fig. 5.33 show the % error in the SIFs calculated 

using the methods of MCCI, M-integral and displacement under crack modelling through the 

methods visibility, diffraction and XEFG.  

 

Fig. 5.31 SIF variation with crack length for loaded crack using visibility method. 
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Fig. 5.32 SIF variation with crack length for loaded crack using diffraction method. 

The results by the three methods are compared with the reference results (Murakami, 

1987). It is observed that the displacement method gives inaccurate results with almost 35% 

error for the visibility and diffraction methods. In the XEFG method, the results are accurate 

based on the displacement method. Although the M-integral gives slightly erroneous results 

for 2 1(r - r ) 0.2a/ = , it is still accurate for higher crack lengths. The proposed MCCI technique 

seems to perform significantly better in all the three cases.  

 

Fig. 5.33 SIF variation with crack length for loaded crack using XEFG method. 
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5.4.4 Thermal loading (linear temperature variation) 

 Fig. 5.34 shows a plate with dimensions 1w  m and / 2L w  . The plate is fixed and 

thermally insulated at the top and bottom edges. This plate is subjected to a linearly variable 

temperature field varying from -100 and 100 degree Celsius as shown. 

 

Fig. 5.34 Mode I crack with temperature varying linearly across the width. 

The crack size to width ratio ( /a w) was varied from 0.1 to 0.7 and the geometry was 

discretized with 41 161 nodes. The crack tip region was locally refined with 13 13  nodes. 

The SIFs computed were normalized with respect to 0 / (1 )EαT w ν . Assuming plane strain 

conditions, the results are compared with those of Hellen et al. (1982). The coefficient of 

thermal expansion α  is 613 10 /o C .   

 
Fig. 5.35 Mode I SIF variation with crack length using the visibility method. 
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The computed mode I SIFs are compared with the reference results, in Fig. 5.35, Fig. 

5.36 and Fig. 5.37 by the methods of visibility, diffraction and XEFG respectively. 

 

Fig. 5.36 Mode I SIF variation with crack length using the diffraction method. 

 

Fig. 5.37 Mode I SIF variation with crack length using the XEFG method. 

The MCCI was calculated by considering the mechanical reaction force arising due to 

thermal load according to Eq. (5.11). The modified M-integral too takes into consideration of 

the thermal loading. The stress method is excluded from the results as it gave poor results. In 

the presence of enrichment functions, the displacement method yielded good results. The 

MCCI and M-integral techniques give satisfactory results and they are in better agreement 

with the published J-integral results.  
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5.5 Closure 

A simple and accurate way of extracting the mixed-mode stress intensity factors within 

the framework of EFG method using the methods of visibility, diffraction, and the XEFG for 

crack modelling is presented. It involves computing crack closure forces only at two nodes, 

the crack tip, and a node ahead of it, and extraction of opening displacements at two nodes 

behind the crack tip. The effectiveness and special issues associated with the adoption of the 

MCCI/VCCT technique have been brought out through solutions to a variety of crack 

problems including crack face and thermal loadings. The study has facilitated a comparison of 

the performance of the classical displacement and stress methods, and the MCCI/VCCT, with 

the popular M-integral method, CCI-LS technique and the analytical solutions. The accuracy 

of the MCCI/VCCT is consistently good and is comparable to that of the M-integral method. 

The accuracy of the displacement method is acceptable only when it is employed in 

conjunction with the crack-tip enrichment functions. 
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Chapter 6 Crack Propagation through Composites 

6.1 Introduction 

Composite materials are often subjected to extreme mechanical and thermal loading 

conditions that make them susceptible to damage through crack formation. The material is 

non-homogenous, consisting of dissimilar materials or bi-materials separated by interfaces 

(Patrício & Mattheij, 2010). This issue is examined in this chapter. Studies on the modelling 

of fracture of composites range from nanoscale to macroscale. Useful insight into the study of 

fracture may be gained through analysis at the microscale. At this level, the constituent 

materials are represented separately. 

A propagating crack at the microscale may often impinge on the bi-material interface at 

an angle. The associated singular stress field consists of two different orders of singularity, 

which may be either complex conjugates or real (Bogy, 1971; Zhen & Zhigang, 2007). In 

addition, a crack tip that meets an interface of two materials may grow along it or penetrate 

into the neighbouring material. The criterion for such a crack to kink into the neighbouring 

material is different from the criterion governing the crack propagation in a homogenous 

material. The development of a proper numerical method and an efficient approach to predict 

the angle of crack propagation, including kinking of an interface crack, can be very useful in 

the study of fracture of composites. This is also explored in this chapter. 

 Cotterell (1966), Williams et al. (1972), Finnie et al. (1973), Ewing et al. (1974), and 

Ueda et al. (1983) proposed the use of in-plane stress (T-stress) in the power series expansion 

of the stress distribution due to a crack, to determine the crack paths in metals under pure 

mode I loading. Several other investigators (Leevers et al., 1976; Hallback & Nilsson, 1994; 

Smith et al., 2001; Smith et al., 2006) have used the T-stress to predict the crack paths. 

Matvienko (2012) found good agreement between the predicted fracture angles and the 

experimental data for mixed-mode I/II crack growth through Guiting limestone. Ki (1994) 

studied the existing criteria for crack kinking out of the interface and recommended the 

inclusion of the T-stress. There are no studies on crack propagation through bi-materials 

within the framework of the MMs incorporating T-stress. 

 

*This chapter contains most of the details from the two papers that are published: 

N. Muthu, B.G. Falzon, S.K. Maiti, S. Khoddam. "Modelling Crack Propagation in Particle-Reinforced Composites using the Element-Free Galerkin 
Method" in International Conference in Composite Materials, Montreal, 2013. 

Nelson M. Muthu, Surjya K. Maiti and Wenyi Yan. ―Analysis of Cracks in Bimaterials/Composites with Variable Order Singularity using Meshless 

Method‖ in World Congress on Computational Mechanics, Barcelona, 2014. 
N. Muthu, S.K. Maiti, B.G. Falzon, Wenyi Yan. ―Crack Propagation in Non-homogenous materials: Evaluation of Mixed-Mode SIFs, T-stress and 

Kinking angle using a variant of EFG Method‖ Engineering analysis with Boundary Elements (Under review) 
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There are several criteria to determine the instantaneous angle of crack propagation 

when the crack is in a homogenous medium. However only few criteria have been proposed 

to predict this kinking angle in the case of an interface crack (Kang, 1994). The determination 

of the interface crack kinking angle, using the ERR criterion and 0IIK   criterion, requires 

multiple case studies, which is computationally costly. In the MTS criterion given in reference 

(Yuuki & Xu, 1992), the first term of the eigenfunction expansion, or the singularity term, is 

only used to determine the angle of crack propagation. This angle corresponds to the direction 

of maximum tangential principal stress. The crack propagation angle given by the MTS 

criterion does not correspond to a principal direction when higher order terms are also used. 

In such a case, a direction separate from / 0ζζζ ζ    and given by 0r   corresponds to the 

principal direction. This criterion, termed as zero shear stress criterion, or MTPS criterion 

(Maiti & Smith, 1983a), has been shown to be more accurate for homogenous materials. 

Application of such a criterion is convenient because it helps to avoid generating data for 

multiple cases to determine an interface crack kinking angle. Its application to bi-material 

interface cracks is also examined in this chapter. 

6.2 Modified EFG method 

The partition-of-unity scheme is attractive as it reproduces the asymptotic singular 

field around the crack tip. This is achieved by using Williams‘ crack-tip displacement 

solutions (Williams, 1952) as branch enrichment functions in a homogenous and isotropic 

material. The normal and enriched nodes are shown in Fig. 6.1. However, the branch 

enrichment functions 
enr ( , )r ζξ  depend on the nature of the problem considered and may not 

be suitable to study crack propagation in non-homogenous materials.  

 

Fig. 6.1 Normal and enriched nodes. 
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In the second approach, the weight functions associated with each node that affects 

the crack are modified. The visibility and diffraction methods differ in the way the weight 

functions associated with nodes that influencing the crack tip are modified. These methods 

have been discussed in the section 3.8.1. However as the crack propagates more nodes are 

sometimes added along the crack line to avoid ill conditioning of the stiffness matrix.  

 A scheme combining the Heaviside function and the diffraction method of crack 

modelling is proposed in this chapter to study the crack propagation in non-homogenous 

materials. The diffraction method is used to model the crack tip region. The Heaviside 

function helps to avoid the need of adding additional nodes along the crack edges in a 

problem of mixed-mode crack propagation. Consequently, the displacement approximation in 

the case of a crack (strong discontinuity) and inclusion boundary (weak discontinuity) present 

in a geometry (Fig. 6.2) can be written in the following form. 

 
( ) ( ) ( )

( ) = Φ ( ) Φ ( ){ H( ( ))}+ Φ ( ) (x)
j c

I I I I I I I

I w I w I w

f
  

   
x x x

u x x u x a x x c   (6.1) 

where function 
1 1( ) F ( ) F ( )I I  x x x , is employed for displacement continuity across the 

interface with I

(x) (x)

F ( ) Φ ( ) Φ ( )
c c

I I I I

I w I w

δ δ
 

  x x x . Iδ  is the signed distance of node I 

from the interface (Moës et al., 2003). The set ( )cw x  consists of level set nodes enriched with 

displacement continuity function and Ic  is the nodal degree-of-freedom corresponding to the 

enrichment functions. 

 

Fig. 6.2 Nodal discretization for geometry with a crack and an inclusion. 
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 The routinely used polynomial basis p [1 ]x y  for the development of shape 

functions of the EFG method through the MLS technique is again employed. The cubic B-

spline weight function with circular domain of influence is used. For accurate integration 

purposes, the background mesh that intersects the crack is subdivided into triangles (Fig. 6.3) 

using the simple mesh generator program developed by Persson and Strang (2004) such that 

no mesh crisscrosses the crack (Muthu et al., 2013). In the present work, in addition to the 

sub-triangulation, Gauss quadrature of order 13 has been employed in each triangular mesh 

close to the crack tip for good accuracy. The need for such high order of Gauss integration is 

illustrated by case studies in the result section. 

The proposed method may not capture the order of singularity exactly. However, the 

higher order nodal shape functions ensures the accurate and easier computation of the SIFs. 

The computed SIFs are then used to describe the asymptotic stress field around the crack tip 

for predicting the direction of crack extension.  

 

Fig. 6.3 Sub-triangulation for the background mesh.  

6.2.1 Convergence study 

A plate with dimensions: width 1w  m, length to width ratio / 2L w   with an edge 

crack ( 0.5a/w= ) is hsown in Fig. 6.4(a). It is subjected to tractions of 1MPa at the top and 

bottom edges. The domain of influence is set as 1.75 times the regular nodal spacing. The 

materials are assumed isotropic with Young's modulus 210GPaE   and Poisson's ratio

0.3ν  . The actual SIF for this case is 3.543MPa m  (Murakami, 1987). 
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(a)                                      (b) 

Fig. 6.4 (a) A finite plate with an edge crack subjected to uniform tensile load. (b) SIF % 

error with nodal density.  

The % error in the computed SIF using the M-integral is plotted for various nodal 

discretization (Fig. 6.4(b)). This plot shows that the present method decreases the % error in 

SIF with increasing nodal density. It has better accuracy compared to the visibility and 

diffraction methods. The improvement in the accuracy may be attributed to the coupling of 

the diffraction method with the Heaviside enrichment function.  

 

Fig. 6.5 Local refinement at the crack tip. 



- 146 - 

 

The XEFG method performs better compared to the proposed method owing to the 

crack tip enrichment functions. However, when a nodal refinement is used, in the proposed 

EFG method, in the region around the crack tip (Fig. 6.5), there is a significant improvement. 

Fig. 6.6 shows the convergence characteristics in terms % error in the SIF using a coarser 

nodal discretization of 21 41  with various refinements in the region around the crack tip. It 

is observed that even with a very low-density refinement 7 7 , the % error becomes less than 

2%. As the refinement increases, the error decreases and finally converges almost to the 

accurate solution. Thus, the proposed scheme helps to eliminate the need for enrichment 

functions and is advantageous especially for modelling crack propagation through the non-

homogenous materials.    

 

Fig. 6.6 % error in SIF with refinement in the region around the crack tip. 

Selection of domain of influence ( Id ) 

 

Fig. 6.7 Id  for regular nodal discretization. 
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In general, the nodal domain of influence ( Id ) is a function of regular nodal spacing 

distance ( δ ) and scaling parameter α . A larger α  leads to larger number of nodes within the 

domain of influence of node I (Fig. 6.7). Different values of α  have been chosen by the 

previous investigators to model the crack (Organ et al., 1996; Muravin & Turkel, 2006; 

Muthu et al., 2014; Tuan & Fei, 2014). 

To get the optimum values of the scaling parameter α , the error in SIF is plotted for 

various α  (Fig. 6.8). It is observed from the plot that the optimum value of the scaling 

parameter α
 
can range from 1.75 to 2.5. A higher value of α  will spread the effect of nodal 

weight function over a larger zone and increase the bandwidth of stiffness matrix. A very low 

value of α  will result in ill conditioning of the stiffness matrix. In the present study, the α  is 

chosen at 1.75 to keep the bandwidth of the global stiffness matrix without losing the 

accuracy. 

 

Fig. 6.8 Variation of SIF % error with domain of influence ( α ). 

6.3 Criteria for prediction of direction of Crack propagation 

Although the energy-based criterion can be used to determine both the kinking angle 

and the load leading to an initiation of kinking of an interface crack, it requires substantial 

computational effort. This is because the criterion requires multiple analyses to generate a 

variation of the ERR with possible kinking directions ζ  (Fig. 6.9(a) and Fig. 6.9(b)). In 

general, for an accurate computation of ERR, length Δa  of the kinked crack is kept very 

small compared to the parent interface crack.  
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   (a)                                        (b) 

Fig. 6.9 (a) Interface crack. (b) Kinking of an interface crack. 

Yuuki and Xu (1992), on the other hand, proposed that the interface crack would 

extend in the direction of maximum tangential/hoop stress given by the singularity term. 

They did not include T-stress in their analysis. For evaluation of tangential stress ( ζζζ ), a 

circle of finite radius is considered (Fig. 6.10). The orientation angle ζ  corresponding to 

max

ζζζ  gives the kinking direction ω ζ . However, this criterion alone cannot determine 

whether the crack will kink into the material m  or grow along the interface; this requires 

knowledge of the fracture toughness or fracture strength of the constitutive materials and the 

interface plus the values of ERRs along the direction ω  and the interface.  

The zero IIK  criterion, proposed by Akisanya and Fleck (Akisanya & Fleck, 1992), 

stipulates that the interface crack kinks from the tip in the radial direction corresponding to 

0IIK  . The mixed-mode SIFs of a kinked crack length Δa  is related to the parent crack by 

(He & Hutchinson, 1989; Akisanya & Fleck, 1992).    

 (Δ ) (Δ ) Δiε iε

I II mK iK c a d a gT a   K K   (6.2) 

where K is the complex SIF (
1 2K iK K ). c , d  and g  are complex functions that are 

dependent on Dundurs‘ parameters α , β  and kink angle ω .  

 The complex functions c , d , g  and the complex SIF K of the interface crack are 

substituted in Eq. (6.2) to determine ω . In the absence of c , d  and g  data, the kinked crack 

of length Δa  is extended in various directions, ζ . The kink angle ω corresponds to the 

direction at which mode II SIF at the tip of kinked crack Δa . This gives 0rζη   for the 

kinked crack, not the original crack. This is in a sense a posteriori stress field criterion. 
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Similar to the 
max

ζζζ criterion, this criterion too cannot determine whether the crack will 

penetrate or deflect without the knowledge of the individual fracture toughness of the 

constituent materials and the interface plus the ERRs along these directions. 

In order to merge the advantages and overcome some of the difficulties, a criterion 

based on both the stress state and energy release rate is used here to predict the direction of 

kinking and the onset of crack propagation. According to the maximum tangential principal 

stress (MTPS) criterion, a crack extends in a radial direction corresponding to 0rζη   (Maiti 

& Smith, 1983a; Maiti & Smith, 1984). This is based on the classical Rankine‘s maximum 

principal stress theory. The crack propagates when the maximum tangential stress at the 

location reaches a critical value, a property of the material. This is similar to the IIK  = 0 

criterion, but with a difference. In the MTPS criterion, the determination of kink angle ω  is 

based on the a priori stress field due to the parent interface crack. However, in IIK  = 0 

criterion, the kink angle ω  is based on the main crack plus a kinked crack of length Δa . 

 

  Fig. 6.10 Kinking angle of crack in homogenous medium.  

Although the condition in terms of stress may ensure breaking of material ligament 

ahead of the crack tip, the availability of energy must be sufficient for creation of the new 

surfaces. This implies that the stress criterion may indicate the direction of possible extension; 

the actual occurrence is decided by the energy release rate and the fracture toughness of the 

material.  

The advantages of combining the two criteria are: (1) It reduces the need of multiple 

analysis. The potential kink angle ω  is obtained by a single analysis. (2) The effect of T-

stress is included in the stress-based criterion. 
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6.4 Results 

The proposed EFG method has been applied to a number of crack problems under 

mechanical or thermal loadings and the results are presented. A case study on a crack 

propagating towards a bi-material interface followed by further crack growth along the 

interface has also been presented. 

6.4.1 Crack in orthotropic plate 

Fig. 6.11(a) shows a square plate of 0.1a/w=  with a center crack aligned along its axis 

of orthotropy. The plate is subjected to uniform tensile load of 1Pa. The material properties 

correspond to graphite-epoxy combination. A state of plane stress is assumed. 

     

  (a)         (b)     

Fig. 6.11 Centre crack in orthotropic plate (a) Mode I. (b) Mixed mode. 

A 9 9  nodal refinement is used at each crack tip. The mode I SIF obtained using M-

integral is compared with the results published in the literature. The auxiliary functions for 

M-integral are adopted from Sih et al. (1965). A comparison of the normalized SIF, 

/I IK K ζ πa , are presented in Table 6.1. The table shows that the results obtained using 

the proposed method reduces the need for higher nodal density if higher order Gauss 

integration is used. The result does not much improvement beyond Gauss quadrature 

involving 16 Gauss points in the background triangular cells. 
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Table 6.1 Comparison of normalized mode I SIF for a center crack in a finite orthotropic 

plate. 

Method DOFs Elements 
Background 

cells 

Gauss points in the 

triangular cells 
IK  

FEM (Kim & 

Paulino, 2003) 
11702 2001 - - 0.997 

XFEM 

(Asadpoure et 

al., 2006) 

4278 2025 - - 1.018 

XFEM 

(Asadpoure & 

Mohammadi, 

2007)  

4278 2025 - - 1.020 

XEFG 

(Ghorashi et al., 

2011) 

4035 - 1849 13 1.0045 

Present Method 

– I 
3644 - 1614 7 1.0416 

Present Method 

- II 
3644 - 1614 13 1.0161 

Present Method 

- III 
3644 - 1614 16 1.0072 

Present Method 

- IV 
3644 - 1614 37 1.0075 

Present Method 

- V 
3644 - 1614 48 1.0071 

Table 6.2 Comparison of normalized mode I and II SIF for an angled crack in rectangular 

orthotropic plate. 

Method IK  IIK  

Sih et al. (1965), Analytical  0.5 0.5 

Kim & Paulion (2003) – FEM 0.506 0.495 

Asadpoure & Mohammadi (2007) – XFEM 0.514 0.519 

Ghorashi et al. (2011) - XEFG 0.512 0.530 

Atlurei et al. (1975) – FEM 0.484 0.512 

Wang et al. (1980) - FEM 0.485 0.498 

Present method  0.509 0.510 

To further illustrate, an angled crack in a rectangular plate of 2L/w   and 2a=  is 

considered as shown in Fig. 6.11(b). Results presented in Table 6.2 shows a good comparison 
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between the mixed mode SIFs obtained by the present method and the existing results in the 

literature. 

6.4.2 Bi-material interfacial edge crack in finite plate 

  

 

Fig. 6.12 (a) Interfacial edge crack in bi-material plate. (b) Nodal discretization. 

A bi-material plate with an edge crack (Fig. 6.12(a)) with dimensions width 1w  m 

and / 3L w   is considered for the analysis using the proposed EFG method. The normal 

traction at the top and bottom edges is 1MPa. The plate is discretized with 21 61  nodes. The 

domain of influence is 1.75 times the nodal spacing. The material properties employed are:

2 205.8GPaE  ; three ratios of 1 2/ 1,2 and 100E E   are considered. The Poisson's ratio 

0.3ν   is set for both materials. A state of plane stress condition is assumed. The region 

around the crack tip is refined with 13 13  nodes (Fig. 6.12(b)). 

The normalized SIFs ( / ζ πaK ) based on the proposed EFG method obtained for 

crack ratios ( /a w ) varying from 0.1 to 0.7 are compared (Fig. 6.13 and Fig. 6.14) with 

results available in the literature (Murakami, 1987; Matsumto et al., 2000; Mohit et al., 2011). 

These are also compared with those obtained by the XEFG method. Since the XEFG method 

incorporates special functions, the region around the crack tip was not refined with additional 

nodes.  

The SIFs are obtained through the interaction integral using the crack tip auxiliary 

functions for the interface crack. A square domain of side length 0.125a  centered on the 

crack tip is considered as the domain for the interaction integral. The results show that there 

(a) (b) 
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is an excellent agreement with the published results and with those obtained by the XEFG 

method. 

 

Fig. 6.13 Comparison of normalized SIFs for / 11 2E E  . 

 

      (a)                                         (b) 

Fig. 6.14 Comparison of normalized SIFs for (a) 1 2/ 2E E  and (b) 1 2/ 100E E  . 

Fig. 6.14(a) and (b) show the similar comparisons of the normalized SIFs for 

1 2/ 2E E   and 1 2/ 100E E   respectively. The results obtained by the proposed EFG method 

are in slightly in better agreement with those obtained through the XEFG method. This may 

be due to the refinement in the region around the crack tip. It is also observed that the 

computed SIFs deviate slightly from the published results, as the ratio of 1 2/E E  increases. 
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The maximum difference with result of reference (Matsumto et al., 2000) is less than 15% 

with an average error of less than 5%. The difference is more in the case of 
IK . 

6.4.3 Bi-material disk subjected to thermal loading 

Fig. 6.15 shows a bi-material disk subjected to uniform cooling T =-5
o
C. The radius 

( r ) of the disc is 20 mm and the crack length ( 2a ) is 0.5r . The upper material (1) is glass 

with 
o

1 173GPa, 8e -6 / CE    and 1 0.22ν  ; and the lower material (2) is epoxy with 

o

2 22.9GPa, 73e -6 / CE    and 2 0.29ν  . A state of plane strain is assumed.  

 

Fig. 6.15 Bi-material disc with central crack subjected to temperature change T . 

The complex SIF is calculated using the thermal interaction integral involving 

temperature. For the evaluation of the integral, a square domain with edge length of 0.25a  is 

considered. The computed SIF is normalized through  1 2= /iεK iK L ζ πaK  where 

1 1 2 2

* *

2 1

(1 ) (1 )

1/ 1/

ν ν
ζ = T

E E

 


  


 and L a.  Results presented in Table 6.3 show that the present 

method, devoid of enrichment functions, is able to give the SIFs close to the results of Pant. et 

al. (2010) based on enriched EFG method.   

Table 6.3 Normalized complex SIF for central crack in a bi-material disc. 

Normalized SIF Banks-Sills & 

Dolev (2004)-

FEM 

Pant. et al.  

(2010)-EFG 

method 

Present Method 

1K  -0.3466 -0.3523 -0.3574 

2K   0.2389  0.2342  0.2387 
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6.4.4 Crack approaching normal to material interface 

Fig. 6.16 shows a bi-material panel with an internal crack: 

0.1, 3, 10m, ln(10) / 2a/w = L/w = w = w   and 1MPa=  . Material 1 is a functionally 

graded and material 2 is an isotropic and homogenous material. The modulus of material 1 

varies with x  and has value of 
oE . The value of oE  is 1MPa . A state of plane strain is 

assumed. Poisson's ratio 0.3ν  is assumed for both the materials. Two cases are examined: 

Case (1) involves a sharp material discontinuity in Young‘s modulus at 0x  . While material 

1 has the modulus of oE  at the interface 0( 0 )E x E   , material 2 has modulus o2E

0( 0 ) 2E x E  . In Case (2) there is no discontinuity in the Young‘s modulus is considered 

at 0x  , but their derivatives are discontinuous. The moduli of both the materials are oE . 

 

 

 

 

 

Fig. 6.16 Crack terminating normally to material interface 

The normalized mode I SIFs ( I /( )K ζ πa ) for crack tip at A and B are plotted in Fig. 

6.17(a) and Fig. 6.17(b) respectively as the location of crack center C is varied. Crack tip A 

and crack tip B meet the interface when A / 0x w=  and B / 0x w=  respectively. The interface is 

indicated by the dotted line. 

Case (1) – The mode I SIF for the crack tip A increases gradually as the tip approaches the 

interface from the left. When the tip is at a distance of about A / 0.2x w   , i.e., tip is away 

from the interface by the crack size, the SIF starts dropping slowly, then rises rapidly because 

of the influence of the stiffer material 2. It picks up the maximum value when A / 0x w  . As 

soon as it moves into the material 2, the SIF has a sharp jump because of the material 
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influence. Subsequently it drops. For the tip B, the SIF reaches maximum when it is almost 

away from the interface by B / 0.1x w   . On further movement towards the interface, it 

drops to a lower level. As it crosses the interface, the SIFs jump to higher level and it 

continues until it is away from the interface by a distance equal to the crack size. Then it 

drops.  

 
(a)                                                                     (b)  

 

Fig. 6.17 Variation of normalized mode I SIFs with centre of crack c/w at (a) crack tip A and 

(b) crack tip B.  

Case (2) – In the case of the interface with no discontinuity in the modulus, the SIFs for both 

the crack tip A and B increase until they meet the interface. As the crack cross the interface, 

the SIFs at both the tips start dropping. Such a case study was reported earlier by Guo & 

Noda (2008). The present observations on the SIF variation in for both the cases are in 

agreement with the results by Yu et al. (2009).   

6.4.5 Crack normal to material interface 

 

Fig. 6.18 Crack terminating normal to material interface. 
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Fig. 6.18 shows an internal crack subjected to pressure loading, P  in a bi-material 

rectangular plate. The dimensions and loading are: 1/9, 1, 9in (0.2286m)a/w = L/w = w =  

and 1psi (6.895kPa)P = . A state of plane strain is assumed. Table 6.4 shows the properties 

of the materials used. 

Table 6.4 Material properties. 

Material Young‘s modulus ( E ) Poisson‘s ratio ( ν ) 

Aluminum 710 psi ( 68.95GPa ) 0.3 

Epoxy 60.45 10 psi (3.102GPa ) 0.35 

 

Two cases were analyzed: In case (a), the crack is in the compliant material, epoxy. 

The ratio of 2 1/μ μ  is 23.07. The value of order of singularity  , in this case, is 0.6619. In 

case (b), the crack is in the stiff material, aluminium. The ratio of 2 1/μ μ  is 0.043. The value 

of   is 0.1752. The crack opening displacement (COD) profiles behind the interface tip, for 

the two cases, are compared with the published results (Cook & Erdogan, 1972; Maiti, 1992) 

in Fig. 6.19(a) and Fig. 6.19(b). The SIFs for the crack tip are obtained from the numerical 

COD solution using the following relation 

 
1

2 1
1

2 1

2 2( )

(1 2 )( ) (1 2 )(1 )

( )(1 )sin

λ *

COD

*

K π/r λμ v

λ m κ λ mκ
μ μ m

m κ mκ πλ



    


 

  (6.3) 

where CODv  is the COD, r  is the radial distance from the crack tip and 2 1/m=μ μ .   

 

(a)                                          (b) 

Fig. 6.19 COD profile of crack for  (a) 2 1/ 23.07μ μ  .(b) 2 1/ 0.043μ μ  .  
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The COD profile for 2 1/ 23.07μ μ   is in good agreement with the published results 

when the crack is in the stiffer material; it deviated slightly from the existing results very 

close to the crack tip. The COD profile for 2 1/ 0.043μ μ   is found to oscillate close to the 

crack tip and gets stable after a distance of 0.1a  from the crack tip. Such a discrepancy the 

results for 2 1/ 0.043μ μ   was already reported in the literature (Tracey & Cook, 1977; Maiti, 

1992). Maiti‘s solution and Tracy et al.‘s FEM results, differed by -12.5% and 9.97% with 

Cook and Erdogan‘s (1972) solution.  

Hence, it is recommended that CODv  should be computed within a span of 0.1a  to 

0.2a  behind the crack tip for determining the SIFs based on the displacement method. In the 

present studies CODv values are computed at 0.1a . Table 6.5 shows a comparison of SIF 

obtained by the proposed EFG method with the published results. 

Table 6.5 Comparison of normalized SIF 
1( )IK /P a   

Shear modulus ratio 2 1/ 23.07μ μ   2 1/ 0.043μ μ   

Singularity constant 0.5λ   0.6619λ   0.5λ   0.1752λ   

Proposed EFG method 

(2014) 

0.861 

(2.16%) 

4.147  

(0.05%) 

1.478 

(0.14%) 

0.048 

(14.29%) 

Maiti (1992) 0.880 4.149 1.476 0.042 

Cook & Erdogan (1972) 0.882 - 1.355 0.048 

6.4.6 Crack meeting at an oblique angle to the material interface 

Fig. 6.20 shows an edge crack in a rectangular bimaterial plate inclined at an angle 

20
o
 to the x-axis. The dimension and loading details are: 3, 0.5mL/w = w =  and 1MPa=  . 

Poisson's ratio, 0.3ν  , is set for both the materials. A state of plane strain is assumed. The 

ratio of Young‘s moduli ( 1 2/E E ) is 100. In this case, there are two orders of singularity:

1 0.114   and 2 0.071  . A set of eight enrichment functions are needed for an accurate 

modelling using the XFEM or the XEFG method.  

The crack opening displacement ( CODv ) profiles, obtained using the proposed EFG 

method and the FEM are compared in Fig. 6.21(a). There is agreement between the two for 

0.01r  . The EFG method is bound to The results are obtained with 2860 DOFs using the 

proposed EFG method. In the case of FEM, 995596 DOF and 165794 eight-node 

quadrilateral elements are employed in ANSYS to obtain the converged solution. A 

combination of very fine mesh near the crack tip (crack tip element size – 0.005a ) plus a 
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coarse mesh away resulted in higher degrees of freedom for the FEM analysis. The good 

performance of the proposed EFG method is attributed to higher order continuous shape 

functions.  

 

Fig. 6.20 Crack meeting at an angle to the bi-material interface. 

The variation of the ERR ratio /mω IG G  with kinking angle ζ  is shown in Fig. 

6.21(b). As ζ  increases, /mω IG G
 
increases till 

o20ζ=- . Afterwards, it decreases steadily 

until it becomes aligned with the interface (
o70ζ= ).  

 

 (a)                                       (b) 

Fig. 6.21 (a) Crack opening displacement for oblique crack meeting biomaterial interface. (b) 

Variation of the normalized ERR /mζ IG G  with kink angle ζ .  
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This plot shows that the crack is likely to propagate along the radial direction 

o- 20ζ=  as this direction is associated with the maximum energy release rate. The crack will 

extend in the direction provided the / /m I

mω I f fG G Γ Γ  or if the interface fracture toughness 

is assumed to be tough. This is in agreement with the results published in the case of a tough 

interface (Sundararajan et al., 2014). Specifically, it will extend into the adjoining material if 

the interfacial fracture toughness is more than 0.36 times the fracture toughness for material 

2

1
0.36 .

2.814

I

f

f

Γ

Γ

 
   

 
 

6.4.7 T-stress for crack in bi-materials 

The stress state for an interface crack of length, a , is given by  

 1 1

( ) ( )
Re Im ( )

m m

ij ijm iε iε

ij m i j

F ζ G ζ
ζ r r T δ δ O r

r r
K K            (6.4) 

where 1 2K iKK    and mT  is the T-stress for material m, m = 1 and 2. T-stress is the first 

non-singular stress term of the William‘s eigenfunction expansion of a crack tip stress field. 

( )m

ijF ζ  and ( )m

ijG ζ  are angular functions. 

The same interaction integral used to compute the SIFs is invoked to determine the T-

stress using appropriate selection of the auxiliary stresses (
aux

ijζ ), strains (
aux

ikε ) and 

displacements (
aux

iu ) (Sladek & Sladek, 1997). These auxiliary functions are given in 

Appendix E. The T-stress is related to the interaction integral by  

 
*

m
m

IE
T

f
   (6.5) 

where mT  is the T-stress for material m  and f is a point force applied. The same auxiliary 

solutions (i.e. assuming there will be only one material 1m  ) can also be used to determine 

the T-stress for a crack inside an isotropic material. 

Two cases have been considered to illustrate the effectiveness of the proposed EFG 

method in evaluating T-stress. A state of plane strain condition is assumed. In case (a), a bi-

material plate, with a center crack, subjected to a uniform tensile load ζ  is considered (Fig. 
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6.22(a)). The dimensions properties are: / = 2L w , =1mw and 1 2 0.3   . The ratio of 

Young‘s moduli ( 1 2/E E ) is varied from 1 to 10. The T-stress is computed for three different 

crack length ratios ( /a w): 0.15, 0.25 and 0.35.   

Taking note of the suggestion of using a bigger integral domain (Hongjun et al., 2012) 

for T-stress calculation, a square domain with edge length of crack length a , is used. The T-

stress obtained by the proposed approach is in good agreement (Fig. 6.23) with the published 

results (Sladek & Sladek, 1997) for various 1 2/E E  ratios. The computed T-stress is 

normalized by oζ ( T / oB = ζ ), where 

 
2 2 1/ 2

1 2[( ) / ]oζ K K πa    (6.6) 

 

 

 

                            (a)                                       (b) 

Fig. 6.22 (a) Centre crack in bi-material plate. (b) Edge crack in a bi-material strip. 

 

Fig. 6.23 Comparison of normalized T-stress with reference results Sladek et al. (1997) for 

centre crack in bi-material plate subjected to uniaxial tension.  
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A bi-material strip with an edge crack (Fig. 6.22(b)) is examined. The dimensions of 

the strip are: / = 0.5a L , / = 0.1h L  and =10mL . The strip is subjected to point loads, 

=1MNP , as shown in figure. The right end of the strip is fixed. Table 6.6 presents 

comparisons of normalized T-stress, T /( / )P h , with the published results (Hongjun et al., 

2012; Kim & Vlassak, 2006) for different material combinations. The comparison shows a 

good agreement. 

Table 6.6 Comparison of normalized T-stress for different material combinations for 

interafcecrack in bi-material strip.  

1 2/E E  1  2  α  β  

T /( / )P h  

Present EFG 

method 

(Hongjun et al., 

2012) 

(Kim & Vlassak, 

2006) 

7/3 1/3 1/3 0.4 0.1 0.0709 0.0702 0.0709 

20/9 1/4 1/8 0.4 0.2 0.0778 0.0773 0.0784 

4 2/5 2/5 0.6 0.1 0.1301 0.1317 0.1310 

4 1/4 1/4 0.6 0.2 0.1419 0.1410 0.1424 

 

6.4.8 Interface crack kinking angle 

 

Fig. 6.24 Bi-material disc subjected to diametrical compression by point loads. 

To predict the kink angle ω  for an interface crack, a bi-material disc subjected to 

point loads, P , oriented at angle γ  to the crack plane, is considered (Fig. 6.24). The 

dimensions are: r = 40mm and a/r  = 0.25. The material properties are appropriately chosen 

to vary α  and β . 
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The mode-mixity (ψ ) is defined as  

 
-1

2 1= tan ( / )ψ K K   (6.7) 

Fig. 6.25 shows the variation of mode-mixity ( ψ̂ ), where ˆ =ψ -ψ , with the 

compression angle γ  for different material combinations. The variation of ψ̂  with loading 

angle γ  for different oscillation index ε , for 0α  , is shown in Fig. 6.25(a). The results are 

similar to the results of Zhijia et al. (2013). This shows that, as γ  increases, the crack 

experiences higher mode-mixity ψ̂ . ψ̂  for a particular γ  is found to depend on ε ; it 

decreases as ε  decreases. When 0ε  , ψ̂  does not depend on Dundurs‘ parameter, α , (Fig. 

6.25(b)). This suggests that the kinking angle ω  is primarily dependent on ε . By means of 

extrapolation it is found that 
oˆ 90ψ= occurs around 

o28γ  , for small ε  ( 0.01ε  ). This is in 

close agreement with fracture test results of Atkinson et al. (1982).   

 

 (a)                                       (b) 

Fig. 6.25 Variation of mode-mixity ψ̂  with compression angle γ  for (a) 0α   and various ε

(b) 0ε   and various α . 

The variation of interface crack kink angle, ω , with ψ  for various α  when 0β   is 

shown in Fig. 6.26(a). This is plotted without consideration of T-stress. The present results 

are in good agreement with the results obtained using MTS criterion by Yuuki et al. (1992). 

They too showed that ω  depended on ψ  alone when 0ε  . However, He et al. (1989), 

using the energy-based approach, showed that ω  was a function of ψ  and α  when 0ε  . 

As expected, when the T-stress is included to predict ω , for the material combination 

0α   and 0β  , ω  is found to change with /r a  ratio (Fig. 6.26 (b)). There is a maximum 
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difference of around 25
o
 between the predicted kinking angle by plotting the stresses at 

/ = 0.0001r a  and / = 0.05r a . Such a pattern was observed earlier for bi-materials (Kang, 

1994) and functionally graded materials (Kim & Paulino, 2003). The T-stress is negative in 

this case and it decreases the magnitude of the kinking angle. 

Another factor that contributes to the varying kinking angle, ω , with /r a  ratios is 

the  parameter ε . To illustrate the effect of ε , ω  versus 10log ( / )r a  is plotted (Fig. 6.27(a)) 

for different ε  at 
o15γ   without considering the effect of T-stress. It is observed that the 

slope of the plot is higher for a higher oscillation index ε  indicating that it plays an important 

role in determining the kinking angle.  

 

(a)                                         (b) 

Fig. 6.26 Predicted kinking angle ω  with ψ  for (a) various α  without the effects of T-stress 

for 0β   and (b) various /r a  with the effects of T-stress for 0α β  . 

 

(a)                                        (b) 

Fig. 6.27 Variation of kinking angle with /r a  ratios for different material combinations (a) 

without T-stress. (b) with T-stress. 
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The predicted kinking angle changes significantly with the /r a  ratio when the effect 

of T-stress is included (Fig. 6.27(b)). Both T-stress and ε  affect ω  at a particular /r a  ratio. 

It is observed that the crack does not kink for certain /r a  ratios for 0.1ε   ( 0.125ε  and 

10log ( / ) 3r a   , 0.175ε   and 10log ( / ) 2r a   ). This is because on such circles, the 

maximum tangential stress is compressive. Hence, the crack cannot extend as per the 

corollary of Swedlow (1976) given in connection with the MTS criterion that crack 

propagates in the direction corresponding to the maximum tensile stress. However, as /r a  

increases, the maximum tangential stress becomes tensile and kinking becomes a possibility. 

The kink angles significantly vary with /r a when ε  is large  0.1ε  , which was also 

showed by Yuuki and Xu (1992). 

6.4.9 Crack growth in presence of particle reinforcement 

A crack of length a  is assumed to be present in a square plate of side 2mL= . The 

particle is of radius, 2 / = 0.15r L . The geometry is subjected to uniform tension of 

=1MPa.ζ  Two arrangements of particles, Fig. 6.28(a) and Fig. 6.28(b), are studied. A state 

of plane strain condition is assumed. The particle material modulus is 6.43p mE E . The 

particle and matrix Poisson‘s ratio are: 0.17pν   and 0.33mν  . These values correspond to 

silicon carbide (SiC) particle reinforcement in aluminum (Al) matrix.  

                      

        (a)                                        (b) 

Fig. 6.28 (a) Cracked geometry with two particles. (b) Cracked geometry with single particle. 

In the first case (Fig. 6.28(a)), the normalized energy release rate ( / oG G ) is plotted as 

the crack propagates towards the particle starting from a crack size of / 0.4a L  . G  is the 
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actual energy release rate (ERR) for a propagating crack and oG  is the ERR for the same 

geometry in the homogenous matrix of aluminium. A starter crack size of / 0.4a L  is 

chosen based upon the previous work (Muthu et al., 2013), which showed that the particle 

effect on the crack tip stress field is insignificant when the distance of the crack tip from the 

center of the particle is more than 4r. It is to be noted that the visibility method is used to 

model the crack tip in the previous work.  

Inter-particle distance, S , is varied to show its effect on the propagation of mode I 

crack. As the crack approaches the particle, the effect of shielding, i.e. a decrease in / oG G , 

and amplification, i.e. an increase in / oG G , is observed to vary with S . Both the shielding 

and amplification effects are found to enhance with decreasing inter-particle distance (Fig. 

6.29). The step-by-step crack advancement length and the finite radius cr  at which the shear 

stress is plotted are the same ( 2 / 0.04cr L  ).  

 

Fig. 6.29 Variation of normalized energy release rates with /x r  for various S/ r  ratios for 

mode I crack in presence of two particles. 

In the case of single particle reinforcement (Fig. 6.28(b)), the curved crack paths have 

also been determined. As the crack approaches the stiff particle, it gets repelled. The MTPS 

criterion, which includes the effect of the T-stress, has been employed to find the 

instantaneous angle of crack propagation, hence the crack paths (Fig. 6.30(a)).  

The variation of normalized ERR ratio ( / oG G ) is plotted with normalized crack tip 

position ( /x r ) with respect to the particle center in Fig. 6.30(b). The variation of the 

normalized ERRs as the crack propagated shows the shielding and the amplification effects. 
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It is observed that the shielding effect is more pronounced than the amplification effect in the 

material combination and the properties considered. 

 

      (a)                                           (b) 

Fig. 6.30 (a) Crack paths for various /d r  ratios. (b) Variation of normalized energy release 

with /x r  for various /d r  ratio. 

This plot for / 0.6d r   matches closely with results presented by Bush (1997) and 

Zhiyong et al. (2012). The crack experiences a shielding effect as it approaches the particle 

and amplification effect as it moves away from the particle. As /d r  decreases, these effects 

increase. The shielding effect can lead to a toughening mechanism. It is observed that 

parameters like the inter-particle distance and the proximity of crack to the particle may lead 

to a toughening mechanism.  

The shielding effect is highly enhanced for / 0d r=  i.e. for a mode I crack 

approaching the particle. When this crack reaches the interface, it is likely to penetrate the 

particle along 
o0ω=  if the interface fracture toughness is greater than 0.63 times the particle 

fracture toughness  0.63I SiC

f fΓ Γ . Otherwise, it would propagate along the interface. If the 

crack propagates fully through the particle, it may or may not kink into the aluminium matrix 

depending on the /I Al

f fΓ Γ  ratio. The effect of the particle on the crack is reduced as it moves 

away from the particle.  

For / 0.3d r= (Fig. 6.30(a)), the crack propagates through the aluminium matrix up to 

the interface and then extends along the interface. . The full extension is governed by the 

MTPS criteria in conjunction with the maximum energy release rate. It is observed that the 

crack approaches the particle at an angle close to 00  with respect to the interface. It 

propagates after that along the interface and kinks out of the particle-matrix interface. If 
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0.37I Al

f fΓ Γ , the crack kinks into the relatively compliant ( 0.71α  ) aluminium and extend 

as a normal crack in an isotropic and homogenous medium. The composite is assumed to 

contain no flaws. In reality, there may be flaws near the particle-matrix interface. These will 

influence extension of the crack.  

The crack propagation in this particle-reinforced composite involves a wide spectrum 

of possibilities. Depending on the relative interface fracture toughness (
I

fΓ ) with respect to 

the toughness of the two constituent materials and relative position of the crack with respect 

to the particle, fracture patterns may vary from interface cleavage/particle-matrix decohesion 

to particle breakage. The fracture toughness of the interface 
I

fΓ  varies with the contact time 

between the SiC particle and the molten Al matrix during the manufacturing stage (Tham et 

al., 2001). The possibility of occurrence of various patterns of crack propagation studied here 

may help to understand some practical situations. 

It may be emphasized that an accurate modelling of variable order crack-tip 

singularity needs a special treatment. One method is to use the enrichment functions that are 

based upon the analytical solutions, which is only available for few cases. The other method 

is to develop novel shape functions that are able to account for the variable order singularity 

stress fields. The shape functions of quarter point element and variable order singularity 

elements of the FEM (Barsoum, 1976; Maiti, 1992) are examples. Notably, the proposed 

EFG method based on combination of h- (i.e. nodal spacing) and p- (i.e. order of 

approximating field function) refinements can be uniformly applied in all situations.  

In the case of step by step analysis of crack propagation problems, in addition to the 

crack tip singularity there exists a variable order singularity at the knee depending on the 

knee angle. Both these singularities need to be modelled in such analysis. Since there is no 

technique available to take care of the variable order singularity in the EFG method, the 

proposed method can be applied without having to bother about the order of singularity at the 

knee or at the crack tip. 

6.5 Closure 

 The proposed variant of the EFG method gives results of satisfactory accuracy with a 

reduced number of degrees of freedom. It is a feasible method to model crack propagation in 

any material, as it eliminates the need for enrichment functions to model a crack tip field. It 
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can be employed for evaluation of the various LEFM parameters with good accuracy. The 

SIFs obtained for a crack in the case of orthotropic material and bi-material interface crack 

under mechanical or thermal loading are in good agreement with the published results. The 

stress based MTPS criterion, that included T-stress, together with the energy-based approach 

reduces computational effort to determine the direction of kinking of an interface crack. The 

compressive T-stress is found to decrease the magnitude of the kinking angle. Both the T-

stress and radial distance cr  from the crack tip at which the shear stress is evaluated affect the 

kinking angle.  

 In the case of particle-reinforced composites, a wide spectrum of crack propagation 

possibilities exists. The important factors are relative positions of initial crack with respect to 

the particle center, inter particle distance, and fracture toughnesses of the interface and the 

leading material. The tendency for a crack to grow along the interface or kink out of it 

depends on the relative standing of fracture toughness of the interface and that of the 

constituent materials. 
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Chapter 7 Multiple Interacting Cracks 

7.1 Introduction 

Multiple cracks originate in close proximity due to stress corrosion cracking (Kayama 

& Totsuka, 2002; Kayama & Kitamura, 2004), creep (Darzens et al., 2001), thermal fatigue, 

etc., in lap joints and rivets (Kebir et al., 2006), power plant components, nuclear power plant 

cooling systems (Seyedi et al., 2006), etc. An accurate assessment of life prediction requires 

the determination of the stress intensity factors (SIFs) under such situations.  

Previously, Duflot et al. (2004; 2006) modelled multiple cracks by multiplying regular 

weight functions with square root of the distance from the crack tip. Singh et al. (2010) 

proposed a modified intrinsic meshfree method for modelling multiple cracks. They biased 

the enrichment by proximity of the Gauss point to a particular crack tip. Shi et al. (2013) 

demonstrated an accurate modelling of interacting cracks using partition-of-unity based EFG 

method. The enrichment functions used in the approaches above are dependent on crack 

geometry and material properties. Therefore, modelling an interface crack or a reentrant 

corner/wedge crack interacting with other cracks leads to difficulties. To overcome these, 

some of the difficulties, Barbieri et al. (2012) proposed the distance-based enriched weight 

function method. However, they did not validate their method for interacting cracks. Multiple 

crack weight (MCW) technique was introduced by Muravin & Turkel (2006) to model 

multiple interacting cracks. Calculating the parameters of this MCW technique is difficult in 

presence of many arbitrary oriented cracks.        

  In the present chapter, the level set method is used to determine the parameters of a 

modified MCW technique to model interacting cracks. This technique has been applied to 

study kinked cracks that involve reentrant corners and knee singularity. A general procedure 

to model many cracks using diffraction method is described. To illustrate the efficiency and 

accuracy of the proposed approach, a number of case studies, involving multiple crack 

interactions, crack-microcrack interactions, interface crack-microcrack interaction, double 

and triple kinked cracks have been solved. The M-integral/interaction integral is again used 

as the basis to compute the SIFs. The results are compared with reported results in the 

literature.  
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7.2 Multiple Crack weight (MCW) 

In the diffraction method, that has been already discussed in Section 3.8.1, the weight 

function of a node that has crack tip in its domain (
Id ), has its influence over a region 

dictated by the diffraction space associated with a point light source at the node and the crack 

acting as an opaque object. This ensures generation of smooth shape functions, which in turn 

ensures smooth strain field. In the case of single crack (Fig. 7.1), depending on a generic 

point location, ( , )x yg , location of the crack tip ( c
x ) and the nodal location Ix , distance (

rd ) between them is modified as per the relation  

 1 2
0

0

s + s ( )
= s ( )

s ( )

λ

rd
 
 
 

g
g

g
  (7.1) 

where 0s ( ) = - Ix g x . The parameter λ  is 2. 1s  is the distance from the node I at location Ix  

to c
x . 2 ( )s g  is the distance from ( c

x ) to g . In all the case studies in this chapter, a cubic 

weight function, ( )w r  given in the following, is used 

 

2 3

2 3

2 / 3 4 4 , 0.5

( ) 4 / 3 4 4 4 / 3 ,0.5 1

0, 1

r r r

w r r r r r

r

   


     
 

  (7.2) 

where /r Ir d d . Because of Eq. (7.1), the normal circular domain of influence is truncated 

as shown in Fig. 7.1. The shadow region, where ( ) 0w r  , near the crack is caused by the 

higher values of rd .  

 

Fig. 7.1 Diffraction method for a single crack. 
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When multiple cracks are located in close proximity, it is necessary to use very high 

refinement to ensure that no two or multiple crack tips are influenced by a single node. On 

the other hand, the MCW technique enables coverage for multiple crack tips by a single node; 

this decreases the need for high nodal density. Modelling of multiple crack tips through 

diffraction method is possible because of higher order continuous nature of the EFG method 

shape functions derived using the MLS approach. 

Fig. 7.2 shows a case of multiple interacting cracks where all the crack tips are 

located within 
Id  of a node I whose weight function is diffracted around each of the crack 

tips. In the MCW technique, 1s
 
in Eq. (7.1) is modified by  
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

x x
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g g x

  (7.3) 

where 
c

c

nx is the location of crack tip cn  (1 cn n  ). n  is the total number of cracks whose 

tips are influenced by the node I . For instance, in Fig. 7.2, 
1 2 3

1 1 1 1s s s s    and 
2 3s ( ) = - c

g g x

. This definition is slightly different from what was used by Muravin and Turkel (2006).  

 

Fig. 7.2 Multiple crack weight (MCW) technique. 
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A method to compute the parameters 
1s  and 

2s ( )g  is presented in the following. This 

is facilitated by the level set method, which are adopted in the MMs to help study problem of 

crack propagation.  

7.3 Level set method 

7.3.1 Level set description for a 2D crack  

 

Fig. 7.3 Level set description for a crack. 

The level set method is used to represent the crack location. This is facilitated by a 

signed distance function ( )f x , which contains the signed normal distance from a grid point 

x  to the crack. A crack is represented as a zero level set of the function ( )f x (Fig. 7.3). The 

endpoints of the crack, i.e. crack tip locations, are kept in store separately.  

The sign of the level set function ( )f x  is +ve if x  lies above the crack and –ve if it lies 

below the crack. The sign information is given by ( ( ))H f x  where H  is the Heaviside 

function. Since the area of interest is localized to the crack, the level set computations are 

restricted to the region that surrounds the crack. This region is called ‗narrow band‘ and is 

indicated in grey colour (Fig. 7.3). In this work, the narrow band region is denoted by  . The 

crack is identified first and the level set functions are computed at the grid points in a 

predetermined region on both the sides of the crack. In the present work, the half size ( fr ) of 

the narrow band is taken as 1.1 Id  which is slightly bigger than the domain of influence for a 

regular meshfree node. 
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 At every grid point Ix  that lies in the narrow band, a vector level-set function ( )If x  

and the sign of the level set function ( )If x  is stored; for a 2D case, ˆ ˆ( )I I Ix i y j  f x  

where 
Ix  and 

Iy are x and y components of the function ( )f x . Then, the signed distance 

function ( )f x  can be obtained using the relation: ( ) ( ) ( ( ))I I If H fx f x x . A compound 

object ( )If x  defined as ( ) { , , ( ( ))}T

I I I If x y H f  x x  is stored at grid point that lies inside 

the narrow band. If there are N  grid points in the entire geometry, then the structure of the 

level set database is given by  

 

3

. . . .

. . . . {1,2,..., }

. ( ( )) . . .

i

i

i N

x

f y i N

H f


 
 

  
 
  x

  (7.4) 

 Intially all information about level set grid points contains zeroes only. If any grid 

point is found to lie within the narrow band of a starter crack, then these grid points are 

activated and the object ( )f x  is stored at these locations. Let p  denote the set that consist of 

grid points inside  , then ( ) {0,0,0}T

if i p  x  . Consequently, if any element of the third 

row of the object f  is zero, then the corresponding grid point does lie in the narrow band 

region. As the crack extends, the new grid points that fall in the extended narrow band are 

activated with the level set data ( )f x , which are easily obtained by some geometric relations 

for 2D problems (Ventura et al., 2002).  

 

Fig. 7.4 Meshfree node and level set grid points. 
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Generally, the levels set data are stored at the grid points that coincide with the 

meshfree nodes. Since coarser meshfree nodal discretization is used in this work, significant 

error can occur during activation of level set data in the new grid points (Ventura et al., 

2002). Therefore, a background-refined arrangement of grid points with closer spacing, 

different from that of meshfree nodes, is used as storage locations (Fig. 7.4). As the crack 

grows from O to O‘, new grid points are activated. These activated grid points will be added 

to the set p .    

7.3.2 Level set for description for multiple cracks 

 

Fig. 7.5 Level set function for multiple cracks.  

Fig. 7.5 shows the narrow band region for a set of three cracks 1, 2 and 3. The vector 

level-set distance function from a point Ix  that is common to the narrow band of crack 1 and 

2 is shown. The level set object ( )If x for a three-crack system can be represented as 

1 2 3( ) [ ( )] [ ( )] [ ( )]
T

I I I If f f f   x x x x  , where 3( ) {0,0,0}T

If x  since 
Ix  does not lie in 

the narrow band of crack 3. For a set of n  cracks, the structure is given by  

 

1
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3

[ ]

[ ]

[ ]n

n N

f

f
f

f


 
 
 


 
 
  

  (7.5) 
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 Eq. (7.5) is the extension of Eq.(7.4) for the multiple cracks. This level set structure 

contains the information about all the cracks in the given geometry through the grid points 

located in the narrow band region. The narrow band   for a set of n  cracks is given by 

1 2 ... n       , where 
i  is the narrow band region associated with crack i .  

7.3.3 Extrapolating level set function to a generic point 

During the evaluation of global stiffness matrix, it is necessary to determine the sign 

associated with a generic point such as Gauss point corresponding to a particular crack. This 

information is needed for Heaviside enrichment of the nodes that lie in the narrow band. An 

existing way is the use of the closest point projection (Ventura et al., 2002) technique for 

extrapolation. This is done by identifying the grid point Ix  that is closest to the Gauss point

.g  Then, the vector level-set distance function is extrapolated and the sign at g  can be 

obtained using  

 
   

    ( ( )) ( ( ))sign / .

I I I

I Ι I IH f H f

  



v f x x g

g x f x f x v
  (7.6) 

If the level set grid discretization is coarse or slope of the crack increases or the 

magnitude of the current crack advance vector is small, then the extrapolation according to 

Eq. (7.6) will be less precise. To increase the accuracy of the extrapolation, a procedure 

involving triangular coordinates is used as shown in Fig. 7.6. This is done by identifying 

three closest level-set grid points that form a triangle. The triangular or barycentric 

coordinates of Gauss point g  is found; this technique is briefed in Appendix D. The signed 

level-set distance function ( )f g can be found using the following relation 

 
1 1 2 2 3 3( ) ( ) ( ) ( )f L f L f L f  g x x x   (7.7) 

 

Fig. 7.6 Extrapolation based on triangular coordinates. 



- 177 - 

 

The sign at g  is ( ( ))H f g . In the absence of three grid points that form a triangle, the 

1D extrapolation described in Eq. (7.6) is used to determine the sign at g . This extrapolation 

described above can also be used in the case of a curved crack, because the segment of the 

curved crack lying within the triangle can be approximated to a straight segment.   

7.4 Determination of diffracted region 

In the diffraction method, a light ray emitted from a source node diffracts around the 

crack tip and some part of the region behind the crack would form the shadow region. 

Whether a generic point g  falls in the shadow region or not depends upon the position of the 

crack tip, the source node and the location of g . Let line-of-sight (LOS) be a straight line 

drawn from a node I located at 
Ix  to g (Fig. 7.7). Any crack extended infinitely, if it 

intersects the LOS, it is considered as a potential crack. Let cP
 
be defined as set of potential 

cracks labels. Whether a crack labelled 
cn  is a potential crack or not can be obtained through 

the following relation based on sign of the level-set distance function ( )cn
f x corresponding 

to crack
cn . 

 ( ( )) ( ( ))c cn n

IH f H fx g   (7.8) 

( ( ))cn
H f s and ( ( ))cn

H f g can be obtained from Eq. (7.7). The inequality in Eq. (7.8) holds 

true only if node I and g  lies on the opposite sides of a crack labeled
cn .  

 

Fig. 7.7 Barrier crack. 
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 Nevertheless, only some cracks in the set cP  truly intercept the LOS and create a 

shadow in part of the region around the crack tip. Such cracks are termed as barrier cracks in 

this work. The barrier cracks are always subset of potential cracks. 

7.4.1 Single edge crack   

 Fig. 7.7 shows a single edge potential crack labelled 
cn  that is also a barrier crack; the 

LOS vector,  I x g , is intercepted by the crack. A potential crack will become a barrier for 

a particular ( , )Ix g  combination if the LOS vector  I x g lies between the two vectors, 

crack front vector 
cnV and  

c

c

I nx x . This is given by 
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     
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V x g V x x

x x x g x x V

  (7.9) 

where   and  represents cross and dot product respectively. The first expression implies that 

the rotation direction from
cnV  to  I x g  is same as from

cnV to  
c

c

I nx x . The second 

expression implies that the rotation direction from  
c

c

I nx x  to  I x g  is same as from 

 
c

c

I nx x  to 
cnV . Both the expressions of Eq. (7.9) has to be valid for a potential crack to 

become a barrier crack.  

 Geomterically, Eq. (7.8) and Eq. (7.9) holds true only if g  lies in the shadow region. 

Fig. 7.8(a) shows the Boolean of Eq. (7.8) for a source node I at 
Ix  within its 

Id . The ligher 

area indicates the region where Eq. (7.8) is false. However, the darker region denoted by A 

does not lie in shadow as any generic point is directly visible to node I . To make the region 

A lighted, Eq. (7.9)  is invoked. The true shadow region is shown in Fig. 7.8(b). Any point in 

the darker region is not directly visible to the source node I ; therefore weight function of 

node I  gets diffracted in this region. In fact, the same conditions can also be used for 

application of the ‗visibility‘ method of modelling a crack.  

If a crack is a barrier, then  1s I c

c

n
 x x  and  2s ( )

c

c

n
 g g x ; 

1 2s s ( ) g  is the 

shortest route from the node I to g . If it is not a barrier crack, then 
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 1 2 os s ( ) s ( ) I   g g x g . These values are substituted in Eq. (7.1) and Eq. (7.2) to get the 

profile of the weight function of the node I.    

 

                                      (a)                                                                           (b) 

Fig. 7.8 (a) Boolean of Eq. (7.8). (b) Boolean of Eq. (7.8) and Eq. (7.9).   

7.4.2 Double crack 

 In a single crack system, when a crack intercepts LOS, the shortest route has to pass 

through its tip. In the same way, in a multi crack system, when multiple cracks intercept LOS, 

the shortest route may have to pass through many crack tips of barrier cracks. Such tips are 

termed as junctions in this work. To determine whether the route passes through a particular 

tip depends on the location of the source node and/or the previous junctions. 

 Consider an example of a two-crack system, in which the node I at 
Ix  has both the 

crack tips, 1

c
x  and 2

c
x  within its 

Id (Fig. 7.9). In the first step, for ( , )Ix g  combination, both 

the cracks 1 and 2 are potential cracks, but crack 2 is not a barrier crack. The shortest route to 

the g  has to first pass through the crack tip 1

c
x , as it is closer to the 

Ix . Consequently, the 

route kinks at 1

c
x  and tries to reach to the point g . Now, the crack tip 1

c
x  becomes the 

junction i.e. 1

c
x

 
 behaves like a proxy source node.  

A tip of a particular crack can behave only once as a junction; the shortest route cannot 

go through any junction more than once. Let cL  be a set consisting of crack labels whose tips 

behaved as junctions. Initially 
cL  will be a null set.  
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Fig. 7.9 A two-crack system.  

  Since 1

c
x  becomes a junction, the crack 1 is added to the set cL . At this point, the 

problem is redefined i.e. to find the shortest distance between the junction 1

c
x  and g . If a 

straight line is drawn from 1

c
x  to g , it gets obstructed by the crack 2 and the shortest route to 

g  will kink at 
c

2x  which becomes a junction (Fig. 7.10). As there are no cracks to intercept 

the LOS i.e. the ray from 2

c
x  to g , 

2s ( )g  is computed. Therefore, the shortest route consists 

of distances 
1

1s , 
2

1s  and 
2s ( )g . It is to be noted that the crack 2 was not a barrier crack 

initially, but it becomes a barrier for the redefined problem.  

 

Fig. 7.10 Determination of shortest route from a crack tip junction.  
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7.4.3 Procedure to find the diffracted region in case of multiple cracks 

 The problem of determining the parameter 
1s  continues until there are no more cracks 

to obstruct the route. This principle to determine the shortest route from a source node to a 

generic point, in the case of many cracks, remains same as in the case of double cracks.    

General procedure to find the diffracted region 

1. Determine the family of potential cracks cP
 
such that 

c cP L  .  

2. Sort the cP , in the ascending order, based on the proximity of the node ( Ix ) to the crack 

tips. 

3. Loop through all the cracks in the sorted cP . 

a. If a crack labeled 
cn  is a barrier crack, then obtain the new proxy node 

c

nc
x and 

compute 1sn
- ( n  here being the iteration number). 

b. Exit the loop when cP  is a null set or have run through all the cracks in cP . Else, go 

back to step 1. 

4. Calculate 2s ( )g in the end. 

 

Example - A five crack system  

To illustrate this procedure, a five-crack arrangement with the location of source node 

Ix  and Gauss point g  is shown in Fig. 7.11. In the first iteration, a LOS is obstructed by 

crack 1, 4 and 5. Since crack 1 is the closest, the route gets kinked at 1

c
x

 
, which becomes the 

new junction for the next iteration (Fig. 7.11(a)). In the second iteration, the LOS from 1

c
x  to 

g  is gets obstructed first by crack 3; crack 2 does not interrupt LOS. So, the route gets kinked 

again at the tip 3

c
x (Fig. 7.11(b)). In the third iteration, the LOS from  3

c
x  to g  gets obstructed 

by crack 5. Therefore, the route gets kinked at the tip 5

c
x

 
and finally there is no obstruction 

for the LOS from 5

c
x  to g (Fig. 7.11(d)). 
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(a)             (b) 

 

      (c)            (d) 

Fig. 7.11 Shortest distance between node and a sampling point (a) Iteration 1 (b) Iteration 2 

(c) Iteration 3 (d) Iteration 4. 

7.4.4 Test cases 

 Fig. 7.12(a) and Fig. 7.12(b) show the diffracted regions in the case of an arrangement 

of two parallel cracks and four cracks respectively. The solid black line indicates a crack. The 

grey and black asterisk markers indicate the region with non-zero and zero weight function 

associated with source node denoted by s  respectively. The zero weight-function regions 

correspond to the shadow region cast by the crack. For effective working of the procedure 

given in Section 7.4.3, it should be ensured that no source node contains both the crack tips of 

a single crack in its domain of influence.   

In the second case (Fig. 7.12(b)), the source node s  is located just below the crack 1. 

Therefore, the region below the crack 1 is lit i.e. it has non-zero value of the weight function. 
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The region above the crack 1 close to its tip has also non-zero weight function due to 

diffraction.  

 
(a)                                  (b) 

   

Fig. 7.12 Diffracted region in (a) an arrangement of two parallel cracks. (b) an arrangement 

of four cracks.  

To illustrate further, a case of multiple cracks, which are close to each other, with the 

diffracted regions, is shown in Fig. 7.13. 

 

Fig. 7.13 Diffracted region in an arrangement of multiple cracks.  

7.4.5 Kinking of a crack 

 Eq. (7.9) is not applicable for kinked cracks because of the the complexity in 

determining the diffracted region (Fig. 7.14(a) and (b)). In the case of kinked crack, even the 

segments between two kink junctions can affect the LOS. . In other words, the kinks of the 

same crack can act as a barrier for the LOS. In order to determine the shortest route, it 

becomes necessary to check if the LOS from a source node or a kink point including crack tip 

s s 

s 
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such as  , {0,1,2,..., }c k  k nx  to a generic point is obstructed by the segments between two 

kinks.  

 

(a)                                 (b) 

Fig. 7.14 Diffraction in case of kinked crack. 

 We define the k
th

 kink vector 
, , 1V c k c k

k

 x x and express the k
th

 kink segment in the 

parametric form as , 1 , , 1( )c k c k c kt  x x x , where t is a scalar parameter. Similarly, the LOS 

can also be expressed in the parametric form as ( )u s g s , where s  can be a source node or 

kink points and u is a scalar parameter. If the k
th

 kink segment intersects the LOS, then 

, 1 , , 1( ) ( )c k c k c kt u     x x x s g s (Fig. 7.15). The parameters t  and u  can be solved and 

expressed as  

 
        

        

, , ,

, , , , ,

c k 1 c k c k 1

I

c k 1 c k c k 1 c k c k 1

I

t

u

 

  

      

      

x x g s g s x x

x x x x g s x x

  (7.10) 

 

Fig. 7.15 Intersection of two line segments. 

 Fig. 7.16 shows an example of multiple kinking crack labelled 1. The LOS from 
Ix  to 

g  is intercepted by the kink located at , 2c n
x . Geometrically, this means that the kink 



- 185 - 

 

segments 1Vn   and 2Vn  intersects the LOS, and , 2c n
x  is located below the LOS. Whether 

the LOS is intercepted by a kink vector Vk  can be found by the condition 0 1t   and 

0 1u   of Eq. (7.10). Moreover, the sign of the g  ( 1( ( ))H f g ) is required to know if a kink 

points acts as a junction.  

 

Fig. 7.16 Step-by-step crack propagation; g  is below the crack.  

  Consider Fig. 7.17, where the sign of the g  is +ve. The kink segments 2Vn   and 

3Vn  intersects the LOS. , 3c n
x  is located above the LOS, and therefore behaves as a junction. 

In both the cases, the shortest route becomes 
1,1 1,2

1 1 1s s s  . The positioning of kink location 

 , {0,1,2,..., }c k  k nx  with respect to the LOS and the sign of g  with respect to the crack, 

will determine if ,c k
x can act as a junction.    

 

Fig. 7.17 Step-by-step crack propagation; g  is above the crack. 

 In the case of multiple kinks within a 
Id  of node at 

Ix , a particular kink location 

 , {0,1,2,..., }c k  k nx  acts as a junction only if it satisfies 0 1t   and 0 1u   (Eq. (7.10)

) and the following condition. 

 ,k( ( )) ( ( ))cncH H fx g   (7.11) 

where   is equation of the LOS  given by the form 0y-mx-b  ; m  is the slope and b  is the 

y-intercept.     



- 186 - 

 

 For kinked cracks, the general procedure described in Section 7.4.3 is modified by 

taking into account of the intra-crack barriers due to kinks. Based on this, the diffracted 

region for a single and double kinked crack is shown in Fig. 7.18(a) and Fig. 7.18 (b) 

respectively. 

 

(a)                                 (b) 

Fig. 7.18 Diffraction region in case of (a) single crack. (b) double crack. 

 In case of kinking crack, there is also a knee singularity at the kink in addition to the 

crack tip singularity. In order to capture this interaction effect, the diffraction node‘s 

influence is restricted to two kink locations. The procedure described in this section may also 

be used for the straight cracks, but is computationally cumbersome to the procedure described 

in Section 7.4.3  

7.5 Results 

The modified EFG method presented in Section 6.2 has been applied to a number of 

problems involving interacting cracks. The nodal domain of influence ( Id ) is set to 1.75 times 

the regular nodal spacing. The SIFs are obtained using the interaction integral technique in all 

the case studies reported in this section and the results are compared with those in the 

literature.  

7.5.1 Double edge cracks 

Fig. 7.19(a) shows a finite plate with double-edge collinear cracks. The plate is 

subjected to tensile traction of 1MPa. A state of plane strain is assumed. The SIFs are 

calculated for two plate geometries / 1L w   and / 3L w   with crack length-to-width ratio of  

/ 0.8a w  and / 0.9a w . The computed mode I ( IK ) and mode II ( IIK ) SIFs is normalized 
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by ζ πa : ˆ ˆ/( ), /( )I I II IIK K ζ πa K K ζ πa  . Unless specified, the materials are assumed 

to be isotropic with Young's modulus 210E GPa  and Poisson's ratio 0.3ν  . 

 

           (a)                                 (b) 

Fig. 7.19 (a) Double-edge collinear cracks. (b) Nodal Discretization. 

 

Regular nodal discretizations of 21 21  (Fig. 7.19 (b)) nodes for / 1L w   and 21 61  

nodes for / 3L w   are used. This is similar to the nodal discretization used by Muravin et al. 

(2006). However, the bandwidth of the resulting stiffness matrix in the present case is lower 

than the latter due to lower value of Id . The present proposed method does not require higher 

value of Id  due to the utilization of Heaviside enrichment function to model discontinuity of 

the displacement across the crack edges. However, the classical EFG method, where only 

visibility or diffraction method is used, needs extra nodes along the crack edges or higher 

value of Id  to avoid ill conditioned stiffness matrix.  

The normalized mode I SIF ( ˆ
IK ) is compared with the results obtained by the EFG 

method and the analytical solutions of Bowie (1964). The error is computed based on the 

results of Muravin & Turkel (2006). The comparison in Table 7.1 shows that there is an 

excellent agreement though coarser nodal discretization and low Id  is employed in the 

present study.  
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Table 7.1 Comparsion of normalized SIF for double-edge cracks. 

/a w  /L w  

ˆ
IK  

(Muravin & Turkel, 

2006) 

ˆ
IK  

(Bowie, 1964) 

ˆ
IK   

 Present Method 
% Error* 

0.8 1 1.6111 1.5806 1.6085 -0.161 % 

0.8 3 1.5497 1.5649 1.5454 -0.278 % 

0.9 1 2.1326 2.1133 2.1231 -0.446 % 

0.9 3 2.1016 2.1133 2.0993 -0.109 % 

* % error is with respect to results based on Muravin and Turkel (2006) results. 

7.5.2 Four neighbouring cracks  

In this example (Fig. 7.20(a)), a finite plate has four cracks whose crack tips lie in close 

proximity. The plate is subjected to a tensile load of 1MPa. A state of plane strain is assumed. 

The SIFs are calculated for 4L   and crack length-to-width ratio / 0.45a w . There is a 

strong interaction amongst the four crack-tip singular stress fields. In order to capture such a 

complex field accurately, the classical EFG needs a fine nodal discretization in the region 

encompassing the crack tips. However, the MCW function reduces the complexities involved.   

 

(a)                                           (b) 

Fig. 7.20 (a) Finite plate with four cracks under uniform tensile loading. (b) Interaction 

integral domain with Gauss points. 

The end coordinates of cracks B, C and D are (2.2,0.2),(3,1); (2.2,0),(3.2,0); and (2.2,-

0.2),(3,-1) respectively. The singular stress field at the tip of edge crack A interacts strongly 

with the neighbouring crack-tip stress fields of crack B, C and D. The SIFs are obtained using 

interaction integral whose integral domain is a square of edge length 0.2a . The distribution 

of Gauss points for numerical integration is indicated by dots (Fig. 7.20(b)).  
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Table 7.2 shows comparison of the computed normalized mode I SIFs at the tip of 

crack A with the published data by Muravin & Turkel (2006) for three nodal discretizations. 

It is to be noted that satisfactory results are obtained even with a very coarse nodal density 

and low Id . 

Table 7.2 Comparison of normalized SIFs for edge crack interacting with three neighbouring 

cracks. 

Nodal Discretization 
ˆ

IK
 

(Muravin & Turkel, 2006) 

ˆ
IK  

Present Method 
% Error 

21 21  
2.80114 

2.7789 -0.793 % 

41 41  2.7963 -0.171 % 

81 81  2.802 0.032 % 

7.5.3 Cross cracks and star cracks 

Fig. 7.21(a) and Fig. 7.21(b) show cross cracks and star cracks in a square plate of 

size 4w   subjected to bi-axial loads. The normalized mode I SIFs are obtained for various 

/a w  ratios. In order to increase the accuracy and capture the singular field accurately in this 

case, the region around the crack tip is slightly refined. This process is not cumbersome as in 

the case of mesh-based methods. 

  

       (a)                                          (b) 

Fig. 7.21 (a) Cross cracks. (b) Star cracks. 

Table 7.3 shows a comparison of the computed normalized mode I SIF ( ˆ
IK ) for the 

case of cross cracks. The present results are in good agreement with the results obtained by 
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an enriched meshfree method based on the reproducing kernel particle method (RKPM) 

(Barbieri et al., 2012).   

Table 7.3 Comparison of normalized SIFs for cross cracks in square plate. 

/a w  

ˆ
IK  

(Cheung et al., 

1992) 

ˆ
IK  

(Barbieri et al., 

2012) 

ˆ
IK   

 Present Method 
% error* 

0.1 0.8641 0.8655 0.8563 -1.059 % 

0.2 0.88 0.8837 0.8837 -0.002 % 

0.3 0.9092 0.9126 0.9132 0.060 % 

0.4 0.9537 0.967 0.9583 -0.901 % 

0.5 1.0223 1.037 1.0273 -0.938 % 

0.6 1.13 1.145 1.1361 -0.781 % 

0.7 1.2866 1.33 1.3182 -0.884 % 

0.8 1.4857 1.65 1.6550 0.300 % 

0.9 - 2.44 2.4650 1.025 % 

 * % error is with respect to the results of Barbieri et al. (2012) 

Fig. 7.22 shows the comparison of the normalized SIFs for a star crack with the 

results obtained using the EFG method (Muravin & Turkel, 2006) and XFEM (Daux et al., 

2000). ˆ A

IK   /A

IK ζ πa denotes the normalized mode I SIF for crack tip A. ˆ B

IK

 /B

IK ζ πa  and ˆ B

IIK   /B

IIK ζ πa  denotes the normalized mode I and mode II SIFs for 

crack tip B. The comparison shows that the obtained SIFs are in good agreement with the 

published numerical results.  

 

Fig. 7.22 Variation of normalized SIFs for star crack with /a w  . 
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 It is observed that the accuracy of the SIFs increase and converge as we increase the 

density of the nodes in the region around the crack tip.   

7.5.4 Crack-microcrack interaction 

Fig. 7.23(a) shows two stacked microcracks interacting with a macro edge crack in a 

plate under uniform tensile load. The results are obtained for various /h l  ratios. Only the 

semi-stack height ( h ) is varied. The geometric specifications are: 20mmw , / 5L w  , 

/ 0.5a w  and 2 / 0.05l a  . 

  

                    (a)                                               (b) 

Fig. 7.23 (a) Single edge crack with two stacked micro cracks.(b) Nodal discretization. 

The region encompassing the microcracks is refined (Fig. 7.23(b)) to increase the 

accuracy of the normalized SIF ( 0/I IK K ), where 0IK  is the mode I SIF of the macro crack 

without the microcracks.  

 

Fig. 7.24 Comparison of variation of normalized mode I SIF with /h l  ratio. 
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Fig. 7.24 shows that the obtained SIF agrees satisfactorily with the exiting results in the 

literature (Kachanov, 1986; Dutta et al., 1991). There is a shielding effect at the macrocrack 

tip when the distance between the macrocrack and the microcracks are small. The shielding 

effect decreases with the increase in /h l  ratio and vanishes beyond the distance of 3.5 /h l .     

7.5.5 Interface crack-microcrack interaction 

Fig. 7.25(a) shows an interface crack interacting with a microcrack in a bi-material 

plate subjected to uniform tensile load. The geometric specifications of the plate are:

150mmw , / 4 /3L w , / 2 /15a w , / 0.2c a   and 1.27mmh  . The material properties 

of the ceramic-metal bi-material plate correspond to S45C steel ( 1 206GPaE  , 1 0.3ν  ) and 

Si3N4 ( 2 304GPaE  , 2 0.27ν  ). For analysis, plane stress conditions are assumed in this 

case. 

  
      (a)         (b) 

Fig. 7.25 (a) Bimaterial plate with interface crack and micro cracks under tensile loading. (b) 

Normalized ERR variation with /d c ratio. 

The complex SIF ( 1 2K iK ) associated with the interface crack is obtained using the 

interaction integral (Sukumar et al., 2004). The energy release rate for the interface crack is 

related to complex SIF by  

 2

* * *

1 2

1

cosh ( )

1/ 1/ 1/

2 2

1 2

*

K +K
G

E πε

E E E



 

  (7.12) 

where *E  is E  for plane stress and 
2/ (1 )E -ν  for plane strain and β  is one of the Dundurs‘ 

parameters. 
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Fig. 7.25(b) shows the variation of the normalized energy release rate (ERR) 0/G G  

with /d c ratio. 0G  is the ERR of the interface crack in the absence of a microcrack. As the 

microcrack approaches the interface crack tip from the left, the shielding effect is observed. 

0/G G  reaches a minimum when the crack tip 1 is close to the interface crack tip. The ratio 

0/G G  amplifies rapidly as /d c  increases and reaches a maximum when the crack tip 2 

coincides with the interface crack tip. Then, it decreases and reaches close to unity after

/ 4d c  .  

 The effect of shielding or amplification is experienced by the interface crack even 

when the micro crack is at distances h , which is several times its length l . Similar trends 

were also observed by Ouinas et al. (2010).   

7.5.6 Double and triple kinked cracks 

                         
 (a)                                      (b) 

Fig. 7.26 (a) Double kinked cracks. (b) Triple kinked cracks. 

1mma  , / 0.5a w , / 2L w   and 1 2 3 0.04l l l a   . 

Fig. 7.26(a) and Fig. 7.26(b) show double and triple kinked cracks in rectangular 

plates under tension. These kinds of zigzag cracks may develop due to stress corrosion 

cracking. They can also come due to extension of a mixed mode crack. It involves the 

interaction of knee point singular fields with the crack tip singular field. In the first case (Fig. 

7.26 (a)), the first kink OA makes an angle 1 45oζ   with 1x -axis. The second kink AB 

makes an angle 2ζ  with OA. Fig. 7.27 shows the variation of normalized mode I 
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 /IK ζ πa  and mode II SIFs  /IIK ζ πa  with 2ζ  obtained using nodal discretization 

strategies such that the diffraction nodes affect one kink and two kinks locations. The results 

obtained by both the strategies are in agreement with each other except at the extremities of 

the plot.  Perhaps, this may be due to the interaction of kink singularity field with the crack 

tip singularity field.   

 

Fig. 7.27 Normalized mode I and mode II SIF of double kinked crack with 2ζ . 

The normalized mode I SIF reaches its maximum at 2 45oζ    where the mode II SIF is zero. 

This agrees with the maximum tangential stress (MTPS) criterion which dictates that crack 

will propagate in the direction of zero shear stress or 0IIK  . As the kink AB propagates at 

an angle 45o  and the whole crack becomes pure mode I crack. 

Fig. 7.28 shows the variation of normalized mode I and mode II SIFs at the tip C with 3ζ  for 

three values of 2ζ . It is observed from each subplot that the maximum value of mode I occurs 

when 0IIK   at the tip C. This is the angle in which the crack is likely to propagate further. 
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Fig. 7.28 Variation of normalized mode I and mode II SIFs for triple kinked crack problem 

with 3ζ .  

7.5.7 Multiple crack propagation 

 

Fig. 7.29 Plate with two holes and two cracks subjected to tensile displacement.   
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 Fig. 7.29 shows a plate subjected to displacement at the top edge. The plate has two 

holes and two symmetrical cracks. The material properties are E=2×10
5
 N/mm

2
 and 0.3 . 

This problem has been previously studied using FEM (Bouchard et al., 2003; Khoei et al., 

2008) and XFEM (Geniaut & Galenne, 2012). The holes are modelled using level set 

enrichment. MTPS criterion is used to determine the angle of crack propagation. The crack 

extension length or kink length is set to 0.5mm. Two sets of nodal configuration are used: 

40×20 and 32×16 with refinement at the crack tip using 9×9 nodes such that diffraction node 

influences atleast one kink point. 

  

Fig. 7.30 Crack propagation in a plate with two holes. 

 Fig. 7.30  shows the crack paths, predicted by the present EFG method, are in good 

agreement with those obtained using FEM and XFEM. Initially, the crack is attracted by the 

nearest hole and then at certain point, the two cracks are close enough to interact. This 

interaction effect leads to repulsion of the crack, which is well captured by the present 

method. Although the nodal degrees of freedom of the EFG method is significantly lower 

than that of the mesh-based methods, the results are accurate to higher order continuous 

nature of the EFG shape functions. Further, the nodal degrees of freedom are reduced by the 

usage of the diffraction methodology for kinked cracks.     

7.6 Closure 

 In this chapter, the proposed variant of the EFG method is combined with the level set 

method to model problems of interaction of multiple cracks. A general procedure is given to 

determine the parameters of the diffraction method, which plays significant role in modelling 
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these problems, and help to reduce the need for high refinement in the region containing the 

crack tips. A number of case studies have been presented involving crack-crack, crack-

microcrack and interface crack-microcrack interactions. The computed SIFs based on the 

proposed EFG method are in good agreement with the published results. The proposed 

method has been applied to study cases involving double and triple kinked cracks. It can be 

employed along similar lines to examine problems of crack propagation through any medium. 
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Chapter 8 Conclusion 

8.1 Introduction 

In this chapter, a general discussion on the results and suggestion for the future work is 

presented. This is followed by major conclusion of the study. Finally, the contributions of the 

present work are given. 

8.2 Observations and Discussions  

The main thrust of the work is accurate modelling of crack in isotropic, orthotropic, 

functionally graded materials and bi-materials using the element-free Galerkin (EFG) 

method. One of the objectives was to compute the SIFs accurately using the simplest 

methodology possible within the EFG method. The popular interaction integral is routinely 

used within the framework of the meshfree methods (MMs) and guarantees stress intensity 

factors (SIFs) of satisfactory accuracy. However, it involves auxiliary functions that are 

obtained through analytical solutions. Implementing this integral when crack faces are 

subjected to mechanical or thermal loading requires special attention. On the other hand, the 

crack closure integral augmented by the local smoothing technique (CCI-LS) gives SIFs of 

accuracy on par with interaction integral, that too with minimal computational efforts.  

It is observed that the crack-tip stress field obtained through the EFG method does not 

vary smoothly ahead of the crack tip despite using enrichment functions. The local smoothing 

function in the CCI-LS technique helps to smooth the stress field solution by eliminating the 

numerical error and gives the SIFs of good accuracy. Unlike FEM, the stresses and 

displacements can be extracted at any point in the domain due to higher order continuous 

shape functions of the EFG method. This gives a wide possibility of integral spans ( a ) for 

computing the SIFs through CCI-LS. It is recommended that a span of 0.01 0.05a a a    be 

used to restrict the error within 3%. Further, the mode separation is easy using the CCI-LS 

technique. Problems including crack face loading, thermal loading and curved crack are 

solved easily. It also gives satisfactory results for a crack in functionally graded materials 

(FGMs). 

Classical SIF extraction methods like displacement and stress methods have been also 

investigated to compute the SIFs using the EFG method. The computational efforts involved 
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in these methods are minimal and are even less than the CCI-LS technique. However, the 

accuracy of the SIFs obtained depends on parameters such as the nodal density and 

enrichment functions.  

In order to reduce the error associated with numerical integration, higher order Gauss 

integration was employed in the background triangular cells surrounding the crack tip. 

Secondly, a regular nodal discretization was used to minimize the non-polynomial behaviour 

of the EFG method shape functions. Error control during numerical integration is a 

challenging issue in the MMs. Suitable procedures that generate a higher order polynomial-

like shape functions would be beneficial. 

The modified crack closure integral (MCCI) or virtual crack closure technique (VCCT), 

which finds frequent application in FEM has also been developed for the EFG method. Since 

this technique necessitates computation of the crack closure forces lying ahead of the crack 

tip along the crack plane, a novel way has been proposed to extract the nodal forces using 

regular nodal discretization. This involves computing the local stiffness matrix at the nodes, 

corresponding to its semi domain of influence and its multiplication with the nodal 

displacement vector. This method guarantees the SIFs of very good accuracy despite low 

nodal density in the region around the crack tip. This is because the MCCI is based on an 

energy approach. Similar to the CCI, this method also enables easier mode separation, but 

differs in the way it is done. This method gives total energy release rate (ERR) associated 

with the singularity term plus other higher order terms of the Williams‘ eigenfunction 

expansion, while the interaction integral or CCI-LS technique gives the ERR only due to the 

singularity term alone.   

The MCCI can also be easily extended to extract SIFs for a crack in orthotropic media 

and bimaterial interfaces. Computing the nodal forces is currently not possible for an 

irregular nodal discretization in the EFG method. This needs further investigation. Further 

study is also needed to compute the SIFs using MCCI when the crack is close to a material 

interface.  

The present work also focused on modelling crack propagation in non-homogenous 

materials. The usage of partition-of-unity based approaches like extended element-free 

Galerkin (XEFG) method poses difficulties when it comes to modelling crack propagation 

through the non-homogenous materials. This is because the enrichment functions have to be 

modified depending on the location of the crack tip, type of material and loading. In addition, 
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it becomes difficult to use the XEFG method for a new problem that has no analytical 

solution. To overcome these difficulties, a variant of the EFG method, that combines 

Heaviside function and diffraction method, was proposed to handle the problem of varying 

order of singularity. In general, the case studies using coarser nodal discretization show good 

agreement with the other reported results based on the analytical solutions and the FEM. This 

is attributed to the shape functions of the EFG method that are capable of reproducing a 

higher order variation of the field variables.  

Currently, there are no established techniques to determine the order of singularity for a 

variable order singular stress field; thus extracting the ‗stress intensity factors‘ for such cases 

are difficult. This needs further examination.  

When a crack propagates through composites, it often encounters the material 

interfaces and sometimes grows as an interface crack. The T-stress is found to influence the 

instantaneous angle of further crack propagation. In order to include the effect of T-stress, the 

maximum tangential principal stress (MTPS) criterion has been used. It is shown to be 

different from the popular MTS criterion. A criterion based on both the stress and the ERR is 

proposed to predict the crack propagation direction and onset of extension of an interface 

crack. This combination greatly reduces the computational effort. The case study that shows 

crack meandering around the particle in particle-reinforced composites demonstrates the 

scope and effectiveness of the method.  

 To model multiple interacting cracks, a procedure based on level sets within the EFG 

method, using diffraction method, has been suggested. To store the level set data, a 

background grid comprising of closely spaced nodes is constructed. In the case of 

continuously kinking crack, the singularity points like the adjacent knee and the crack tip, the 

interaction is accommodated implicitly. This method reduces the need for high nodal density 

at the crack tips.  

8.3 Conclusions 

The main conclusions of this thesis are as follows: 

1. The % error in the SIFs obtained using the crack closure integral (CCI) technique in 

conjunction with local smoothing technique (CCI-LS) is less than 3%, when compared to the 

theoretical results, if a span of Δa for integration, 0.01 Δ 0.05a a a  , where a  is the crack 
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length, is chosen. The local smoothing, on average, reduces the error in the SIF obtained 

through the original CCI method by 2.5% in the case of isotropic materials. In the case of 

functionally graded materials, the reduction is up to 6.5%.  

2.  The CCI-LS technique allows an easy way of mode separation, with less 

computational effort.  

3. In both the isotropic and functionally graded materials, the displacement method gives 

results of an average error less than 4% using XEFG method. This is attributed to the 

presence of enrichment functions that ensure higher order displacement variation in the 

region around the crack tip. 

4. The performance of the stress method is poor, among all the SIF extraction 

techniques, even in the presence of enrichment functions. The maximum error in the SIF 

increased up to 9.58% in few cases when compared to the published results.     

5. The modified crack closure integral (MCCI) guarantees SIFs of very good accuracy 

even with low nodal density for both the enriched and non-enriched EFG methods. Similar to 

the CCI-LS technique, the MCCI technique also enables easier mode separation. 

6. In general, the accuracy of the SIFs increases with increase in the number of nodes at 

which the closure forces are extracted. For practice, it is sufficient to compute the closure 

forces at two nodes ahead of the crack tip to restrict the error within 2%.  

7. The SIFs obtained by the classical displacement method is poor when a crack is 

modelled by the visibility or diffraction methods. The error sometimes is more than 50%. 

This decrease in the accuracy is due to the absence of enrichment functions. The stress 

method always gives inferior accuracy; error in the SIFs crossed 60% especially for short 

edge cracks.  

8. In spite of the poor displacement solution, the MCCI gives good results. This is 

because it is based on an energy approach. The same holds true for the interaction integral 

which gives good results in spite of poor stress distribution ahead of the crack tip.  

9. An efficient variant of the EFG method was developed to model crack propagation in 

non-homogenous materials. This method gives results of satisfactory accuracy without the 

enrichment functions. This is due to the higher order continuous nature of the EFG method 

shape functions. 
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10. The MTPS criterion combined with the maximum energy release rate criterion 

reduces the computational effort to handle any crack propagation study.  

11. The factors that affect the kinking angle of an interface crack are the T-stress, radius 

of the contour and the oscillation index. The negative T-stress is found to decrease the 

magnitude of the kinking angle. 

12. A wide spectrum of crack propagation possibilities in a single particle reinforced 

composite has been shown. The crack path is dependent on distance of the crack tip from the 

particle, and the interface and the adjoining material toughness. 

13. A procedure to model multiple interacting cracks was developed. It yielded accurate 

results despite lower nodal density.  

14. The procedure developed to handle multiple cracks has been extended to model 

repeated kinking connected with a propagating crack. The accuracy obtained with reduced 

number of degrees of freedom is satisfactory. 

15. The variation of shielding and amplification of the energy release rate for a macro-

crack with its position of a particle inclusion or a micro-crack is in line with the published 

results.     

8.4 Thesis Contributions 

This thesis has contributed to the field of fracture mechanics by: 

1. demonstrating the usefulness of the displacement and stress methods for the extraction of 

the SIF through the EFG method, 

2. developing expressions based on the CCI in conjunction with local smoothing technique to 

compute the SIFs for cracks with edge, or thermal, loading in isotropic and functionally graded 

materials, 

3. developing a MCCI technique to extract the SIFs with good accuracy within the framework 

of the EFG method,  

4. developing a form of the EFG method combining the diffraction method and the Heaviside 

function to analyze problems of variable order singularity,  
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5. showing the computational advantage of the combined MTPS and energy release rate 

criterion to determine the kinking of an interface crack, 

6. showing the influence of the T-stress on the kinking angle of an interface crack, 

7. developing a scheme using the level sets to model multiple interacting cracks, and, above all, 

8. extending the scope of the EFG method.  
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Appendix A  

For an isotropic and homogenous material, the auxiliary stress solution is given by 
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 (A.1) 

The auxiliary displacement solution is given by  
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 (A.2) 

where μ  is the Shear modulus and κ  is the Kolosov‘s constant of the material. 

Appendix B  

For an orthotropic and homogenous material, the auxiliary stress solution is given by 
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The auxiliary displacement solution is given by  
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where ip  and iq  are given by 
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Appendix C  

The auxiliary displacement field can be written as  
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To extract 
IK , the functions 

1f  and 
2f  are 
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To extract 
2K , the functions 

1f  and 
2f  are 
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  and 
'  are given by  
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  and 
'  are given by  
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The auxiliary strain components can be obtained from  
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The derivatives of 1T  and 2T  defined in Equations (C.2) and (C.3) can be written as 
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where 3 2 cos sinT δ ζ θ  and 4 2 cos cosT δ ζ θ . Defining ' ' cos sin
2 2
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The derivatives of auxiliary displacements can be written as  
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where A  and B  are given by 
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The derivatives of the functions  and  are given by  

  
 

1, , 1, 2, , 2,

1, , 2, 2, , 1,

1,1 1, , 1 1, , 1 1,2 1, , 2 1, , 2

2,1 2, , 1 2, , 1 2,2 2, , 2 2, , 2

, ( , )

, ( , )

,

,

α α α α α α

α α α α α α

r ζ r ζ

r ζ r ζ

f D T f C T α r ζ

f C T f D T α r ζ

f f r f ζ f f r f ζ

f f r f ζ f f r f ζ

      

      

   

   

 (C.12) 

The auxiliary stresses (
aux

ij ) can be obtained from the auxiliary strains using the Hooke‘s 

law. 

Appendix D  

In order to calculate the global stiffness matrix, the signed distance at node I  is 

extrapolated to any generic point p . This is done by identifying the closest point close to p  

as shown in Fig. 8.1(a). Then the signed distance is projected as shown in Fig. 8.1(b), which 

is given by 

  
 

( ) = ( ) ( )

ˆH( ( )) = H( ( ))sign( ( ) ( ))

p I I p

p I p I

f f

f f f .f

 x x x x

x x x x
 (D.1) 

where ( )If x  is the signed vector distance function from the crack line and I  is the closest 

node to p . ˆ ( )If x  is the normalized vector distance. 

  

 Fig. 8.1 (a) Gauss point p near the crack line; (b) Vector extrapolation. 

1f 2f
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If the slope m of the crack (AB) line increases, then the extrapolation according to Eq. 

(D.1) will be less precise when lower nodal density is used. In the face of higher slope, the 

extrapolation method has been modified.  

 

 Fig. 8.2 Triangular coordinates of a point p  inside a triangle. 

For any generic point p , the closest three neighbouring nodes that surround the point 

p are identified as shown in Fig. 8.2. Then the distance from the point p and it's sign are 

calculated by  

  
 

p 1 2 3

p p

( ) = ( ) ( ) ( )

H( ( )) = ( ( ))

1 2 3f L f +L f +L f

f sign f

x x x x

x x
 (D.2) 

where iL  in Eq. (D.2) are the triangular/barycentric coordinates of the point p . If three nodes 

that form a triangle are not identified, then the vector extrapolation from the closest point 

method is used. 

Appendix E  

 The auxiliary displacement (
aux

iu ), stresses (
aux

ij ) and strains (
aux

ij ) to determine T-

stress are defined by 
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where f is a point force applied for auxiliary fields, d is a reference length and 
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The auxiliary strains are obtained using  

  
 

( )aux aux
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where ( )ijklS x  is the compliance matrix at the point x .  
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