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Summary

Accretion discs are the mechanism that allow rotating compact objects to gradually increase
their mass. Most current investigations assume a simplified picture where the disc is
smooth, planar, circular and aligned with the spin axis of the central object. Previous
research using both analytical and numerical approaches have shown that relaxing these
four assumptions reveals physical effects that strongly impact the evolution of accretion
discs. This includes the phenomenon of disc ‘tearing’, where the rotation of the compact
object is able to tear the misaligned disc into independently precessing rings. In this work
we investigate the evolution of an accretion disc where the orbital plane is misaligned to
the spin axis of a rotating black hole using three-dimensional numerical simulations.

We find that disc tearing is common to all geometrically thin strongly inclined accretion
discs (independent of their disc thickness and viscosity ratio), and hence may be a general
phenomenon. In the case where communication in the disc is controlled by pressure forces
and the disc is weakly misaligned, our three-dimensional simulations demonstrate that the
misalignment of the disc forms an oscillatory tilt profile with a non-zero misalignment at
the inner edge — suggesting that any jets that may be launched from inclined discs are
not necessarily aligned to the spin axis of the black hole. We demonstrate that general
relativistic effects are the critical component needed to reveal this oscillatory profile.

We explore the relevance of tearing discs to observable phenomenon by considering low-
frequency quasi-periodic oscillations measured from low mass X-ray binaries. These obser-
vational features are commonly explained by a model that invokes a discrete, precessing
disc structure similar to those generated naturally in our simulations. We simulate a
strongly inclined accretion disc with parameters derived from the low-mass X-ray binary
XTE J1550-564, producing structures that precess with a rate comparable to those inferred
from observations.

Finally, we investigate the evolution of geometrically thick accretion flows by considering
a torus formed during a tidal disruption event. We demonstrate that such a torus may
be unstable to the hydrodynamic Papaloizou-Pringle instability, leading to the formation
of non-axisymmetric density structures and accretion of the torus. In the case of a torus
formed with an initially weak magnetic field, we consider whether this instability may drive
accretion before the magnetorotational instability establishes. Scaled to the parameters of
a typical tidal disruption event this suggests a super-Eddington mass accretion within the
first few hours of disruption. In the context of current observations, this suggests outflows
or winds are likely.
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Chapter 1

Introduction

Accretion discs form when gas with angular momentum falls towards a point mass (e.g.
a neutron star, which dwarf, black hole or star). As the lowest energy orbit for a partic-
ular angular momentum is circular and gas is dissipative, the resultant orbit is naturally
circular and is only defined by its distance from the massive object. This gas will have
a range of angular momenta, generating a range of orbits at different distances from the
object, ultimately forming a disc. Accretion is facilitated through the local and turbulent
dissipation of energy and subsequent angular momentum transport, most likely driven by
the magnetorotational instability (Balbus and Hawley, 1991). This process reduces the
energy of the gas at a particular orbit, driving gas inwards, towards the central object. As
the gas moves inwards the associated angular momentum is transported outwards, until
most of the mass is close to the central object and a small amount remains at large radius
with most of the angular momentum (Pringle, 1981).

Accretion discs are some of the most luminous objects in the Universe due to the large
amount of energy they liberate from the accreting material. In young stars, proto-planetary
discs lead to planet formation. For more massive objects, accretion discs around black holes
are able to launch powerful, high velocity jets (⇠ the speed of light). These jets are common
across the full range of black hole masses, from low-mass X-ray binaries (with black hole
masses ⇠10 M�) through to active galactic nuclei (with masses ⇠106-108 M�) where the
jets may extend to spatial scales that are comparable to the size of the host galaxy (for
example, Centaurus A). Around smaller black holes, the disc itself may be steadily supplied
from a companion star while around larger black holes it may be the result of a transient
gravitational interaction like a tidal disruption event, where a star is shredded as it wanders
too close to a black hole or the accretion of gas and dust by an active galactic nuclei.

Most investigations into accretion discs assume that they are aligned with the spin of the
compact object — that is, the angular momentum vector of the disc is parallel with the spin
vector of the compact object. However, consideration of observed X-ray binaries suggests
that this should not necessarily be the case, with the degree of misalignment measured by
the angle between the black hole spin vector and accretion disc angular momentum vector.
In black hole low mass X-ray systems, the orbit of the companion donating material may be
misaligned to the black hole spin (Jonker and Nelemans, 2004). As the angular momentum
of the accretion disc is shared with the misaligned star, this would generate an accretion
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disc that is misaligned to the spin of the black hole. Close to the black hole, where
general relativistic effects are strongest, space-time is distorted (‘frame-dragging’) by the
rotation of this massive object. This induces precession into orbits of nearby material,
known as Lense-Thirring precession (Lense and Thirring, 1918). This effect acts on the
misaligned disc, warping it such that the misalignment angle varies with distance from the
black hole (Bardeen and Petterson, 1975). Theoretical studies also suggest that warping
of misaligned accreting material can be driven by stars, when the magnetic field of the star
is misaligned to the stellar spin axis (Lai, 1999) or from tidal forces from a companion star
(Papaloizou and Terquem, 1995). Additionally, material that is aligned may be warped
through radiation warping (Pringle, 1996).

The evolution of the disc and ultimately how long it takes to accrete is controlled by the
rate of angular momentum transfer. This process and the profile of the disc as a function
of radius is strongly affected by the presence and magnitude of a warp (e.g. Pringle, 1992).
For small inclination warps (. 15

�), previous analytical work found that the profile of
an inclined disc around a rotating black hole is oscillatory, with a misaligned inner edge
(Ivanov and Illarionov, 1997; Lubow, Ogilvie, and Pringle, 2002). This finding has strong
implications for any jets that may be launched from the innermost edge as they would not
necessarily be aligned with the black hole spin — although alignment is often assumed by
observational techniques used to measure the black hole spin. At higher misalignments
(e.g. & 30

�), analytical models can no longer be used and three-dimensional simulations
must be employed. Recent simulations of strongly misaligned discs demonstrate that the
disc may break into distinct, independently precessing structures rather than maintaining a
continuous warped disc (Nixon et al., 2012). These ‘breaking’ and ‘tearing’ discs currently
provide the only mechanism in accretion disc theory to generate discrete, precessing disc
structures.

Numerous observations confirm both disc warping and precession occurs in nature. For
example, the binary star system HK Tau has protoplanetary discs around both stars and
both are misaligned with respect to the binary orbit (McCabe et al., 2011). Recent obser-
vations of the protoplanetary system TW Hydrae shows evidence of a shadow on the outer
disc, with geometric constraints and timing of this shadow suggesting it comes from the
precession of an inner misaligned disc section (Debes et al., 2017). Additionally, CO ob-
servations of HD 142527 imply the disc may be broken into two sections that are strongly
misaligned with each other (& 70

�, Casassus et al., 2015). Disc precession (and hence
a misaligned disc) is also used to explain long X-ray periods in low mass X-ray binary
systems like Her X-1 (e.g. Larwood, 1998). Both neutron star and black hole low mass
X-ray binaries exhibit quasi-periodic oscillations, complex phenomena that have long been
associated with Lense-Thirring precession (e.g. in neutron stars Stella and Vietri 1998 and
type-C low-frequency quasi-periodic oscillations Ingram, Done, and Fragile 2009). Finally,
observations of water maser emission also demonstrate the presence of warped discs —
e.g. observations from V778 Cyg are consistent with an edge on warped disc (Babkovskaia
et al., 2006).
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Relaxing the assumption that the accretion disc and compact object spin are aligned
reveals interesting physics and raises questions about the evolution of such discs. Are
warped discs a transient or steady state? Do three-dimensional simulations agree with the
current analytical predictions of disc evolution? Do the numerical methods that are used
to simulate the evolution of warped discs agree? Is it possible to continuously generate the
precessing structures that are made when a disc at large misalignments tears? Are these
precessing structures related to observational features? If they are, can this be confirmed
with simulations? Do these findings extend to geometrically thick accretion flows?

In this work we constrain ourselves to the case of a misaligned accretion disc around a
rotating black hole. We begin by reviewing the relevant literature on misaligned accretion
discs with both analytical and numerical approaches. We introduce the observational
history of quasi-periodic oscillations and tidal disruption events, both of which will be
considered in later chapters. This is followed by a summary of the numerical technique used
and a brief description of the particular features that we employ from our numerical code
Phantom. Future directions and a summary chapter complete this work. We consider
four broad topics to better understand misaligned accretion flows:

In Chapter 3 the behaviour of a geometrically thin, inclined disc around a black hole is
investigated at a variety of inclinations. At small inclinations, we compare to previous ana-
lytical results, validating our method. At higher inclinations, we confirm the phenomenon
of disc ‘breaking’ and ‘tearing’, where the disc is observed to separate into distinct, pre-
cessing planes. We consider these results in the context of previous three-dimensional
simulations that use a different numerical technique.

In Chapter 4 we consider the evolution of a warped disc around a rotating black hole
in direct comparison to a previously published simulation that uses a different numerical
technique. We compare the evolution of the disc when the techniques are modelling the
same physics (i.e. a code comparison) as well as when more accurate physics is included.
We compare our results using a similar visualisation method to the previously published
work to better demonstrate our comparison. We additionally show that although a disc
with the previously published parameters is not expected to tear, one at suitably higher
inclination will.

In Chapter 5 we investigate the connection between the precessing structures found in
tearing disc simulations with observations. We focus on quasi-periodic oscillations observed
in low mass X-ray binaries where the compact object is a black hole. Observations of these
features suggest that not only do they come from the innermost region of the accretion
disc (where the precessing features are found in our simulations) but they are also likely
to be strongly related to the precession of at least one discrete disc structure. We conduct
simulations that have parameters based on the low mass X-ray binary J1550-564 and focus
on simulating physically motivated tearing behaviour. A power density spectrum analysis
is used in an attempt to compare directly to observations.
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In Chapter 6 we finally consider the limit of a geometrically thick accretion in the form
of a torus. Around a rotating black hole, these are likely to form after a black hole and
star gravitationally interact in a tidal disruption event when the gas is able to circularise
but not cool efficiently. We show that an idealised version of such a torus is unstable
to the hydrodynamical Papaloizou-Pringle Instability and as such, should display non-
axisymmetric perturbations. With three-dimensional simulations we consider the potential
effect on the light-curve that is observed from such events.

1.1 The equations of accretion disc evolution

We begin by deriving the fundamental equations to describe the evolution of accretion
discs. For convenience, we use cylindrical-polar coordinates with radius R, azimuthal
angle �, height z, using r to refer to the spherical radius. We assume that the disc is
geometrically thin, equivalent to defining that the properties in the disc may be integrated
in the z direction such that properties per unit surface can be considered rather than per
unit density and assume axisymmetry. For example, the surface density, ⌃(R, t), may be
expressed in terms of the density ⇢ with

⌃ =

1

2⇡

Z
2⇡

0

Z
+1

�1
⇢dzd�. (1.1)

This allows the continuity equation to be expressed in terms of ⌃ as (Pringle, 1981)

@⌃

@t
+

1

R

@

@R
(R⌃vr) = 0, (1.2)

where vr is the radial component of the velocity vector v. The Navier-Stokes equation can
be written as

@v

@t
+ (v ·r)v = �1

⇢
(rP �r · �)�r�, (1.3)

where � is the stress tensor, P the pressure and � the gravitational potential. The left
side of this equation represents the momentum that is advected into the fluid through
velocity gradients, and the right side the collaborative effect of pressure forces, viscous
stress forces and gravity. Here the viscosity is assumed to be a shear viscosity such that it
only acts in the R� direction. Following Lodato (2008), we consider the three components
of Equation 1.3 in turn, beginning with the centrifugal balance in the disc (the r component
of Equation 1.3). Using the cylindrical definition of r and noting that the gradient of �
has no component in the r direction, this reduces to

@vR
@t

� v2�
r

= �1

⇢
(rP �r�) |R. (1.4)
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The radial velocity is much smaller than the azimuthal component, so this is discarded in
a first order approximation. For the right hand side, the sound speed, c

s

(R), of the gas is
defined as

c2
s

⌘ dP

d⇢
. (1.5)

The sound speed is assumed to be much slower than the azimuthal velocity such that
the effects of radial pressure gradients may be neglected — in practice, these effects are
included in the initial conditions of our simulations to ensure the disc is started as close to
equilibrium as possible. Additionally, for gas around a point with mass M the Newtonian
gravitational potential is described by �(r) = �GM/r. Here we assume that the gas is not
self-gravitating, such that the mass of the disc is much less than the mass of the central
mass M . With these two definitions, Equation 1.4 may be solved for the azimuthal velocity
of the gas, giving

v� =

r
GM

R
. (1.6)

Using the cylindrical R here recognises our assumption that the disc is geometrically thin,
such that R ⇡ r for most of the gas. Thus the velocity of material around a central
potential of mass M is Keplerian (v� = vk). From the above definition it also follows that
the Keplerian angular velocity is ⌦k =

p
GM/R3 and the angular momentum per unit

area is L(R) = ⌃

p
GMR.

The hydrostatic balance of the gas can be considered with the z component of Equation 1.3.
Here vz is also considered to be negligible so that pressure forces are purely balanced by
the z component of the potential:

1

⇢

@P

@z
= �d�

dz
. (1.7)

As before, the z position above the mid-plane of the of the gas in the disc is much smaller
than the distance from the central potential. Using trigonometry, the right hand side of
the above equation may be re-written as d�/dz = GMz/R3 (see Figure 2, Lodato, 2008).
Assuming vertically isothermal, barotropic gas (i.e. P = c2

s

(R)⇢), the hydrostatic balance
may thus be expressed as

c2
s

⇢

@⇢

@z
= �⌦

2

kz. (1.8)

Assuming that the sound speed of the gas is independent of z, the above equation may be
integrated through the thickness of the disc (in the z direction) to give the description of
the density in the disc

⇢(z) = ⇢
0

e(�z2/2H2
), (1.9)

where ⇢
0

is an integration co-efficient and we have introduced the scale height H of the
gas, defined by H ⌘ c

s

/⌦k. Because this definition may be re-written as H/R ⌘ c
s

/v�,
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Figure 1.1: Viscous evolution of a ring of matter with mass m. Mass is transported inwards as
angular momentum is transported outwards. Here x = R/R0 where R0 is the initial location of

the ring and ⌧ = 12⌫t/R2
0 (Figure 1, Pringle, 1981).

the assumption that the disc is geometrically thin is equivalent to stating that the sound
speed is much slower than the azimuthal speed (which we assumed earlier).

Finally, we consider the azimuthal component of Equation 1.3. Integrating in the z direc-
tion, this may be expressed as

⌃

✓
@v�
@t

+

vRv�
R

+ vR
@v�
@R

◆
=

1

R2

@

@R
(R2TR�). (1.10)

In this form, the right hand side of the above equation represents the torque exerted by
viscous forces, where TR� is the integral of �R� in the z direction. These stresses may be
re-written using �R� = ⇢⌫⌦0, where ⌫ is the kinematic viscosity of the gas and ⌦

0 is the
derivative of ⌦ with respect to the radius. Assuming that the viscosity is independent of
z,

TR� =

Z
�R�dz = ⌫R⌃

d⌦

dR
. (1.11)

If a Keplerian disc is assumed with vk and ⌦k as defined above, Equations 1.2 and 1.10 can
be combined to produce a single equation describing the evolution of the surface density
profile in the disc.

@⌃

@t
=

3

R

@

@R

 
R1/2@(⌫⌃R

1/2
)

@R

!
. (1.12)
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Importantly, Equation 1.12 shows that the evolution of the surface density profile is con-
trolled exclusively by the present surface density and the kinematic viscosity ⌫. The nature
of this description further implies that when a discontinuity is present in ⌃ it will generate
viscous torques in radially neighbouring regions. If the disc is discretised radially into
annuli, the internal torque of an inner annulus on the adjacent outer annulus is expressed
as

G(R) = �2⇡⌫⌃R3

d⌦

dR
. (1.13)

This description has two implications. First, any discontinuities in ⌃ tend to be smoothed
out as the torques in the disc are proportional to the radial gradient of the angular momen-
tum. Second, because accretion discs have a decreasing ⌦ profile with radius, G > 0 and
angular momentum is transported outwards as the surface density evolves. Figure 1.1
demonstrates this behaviour with the canonical ring spreading test (Lynden-Bell and
Pringle, 1974; Pringle, 1981). Starting with a narrow ⌃ profile with mass m, the sur-
face density is evolved with a chosen kinematic viscosity ⌫. As angular momentum is
transported outwards mass is transported inwards, resulting in accretion of the matter and
an increase of ⌃ at the inner edge. As Equation 1.12 demonstrates, the kinematic viscosity
entirely governs the evolution of the surface density. As such, accurately representing the
viscosity is necessary to model the evolution of accretion discs.

1.2 Viscosity in the disc

Turbulence in the disc is thought to drive these viscous torques and thus angular momen-
tum transfer, but what drives the turbulence? For accretion discs around black holes,
hydrodynamic and self-gravitating instabilities have been explored to try and explain
this (Balbus, 2003; Lodato, 2008), but these do not generate sustained accretion on the
timescales required (Balbus, 2003). In black hole accretion discs, the most likely under-
lying mechanism for the viscous transport of angular momentum is turbulence generated
through the magnetorotational instability (MRI, Balbus and Hawley, 1991). In accretion
discs not considered here, angular momentum transport may be primarily driven by other
mechanisms including (but not limited to) tidally induced spiral shocks due to a compan-
ion (e.g. Livio and Spruit, 1991) and magnetically induced protoplanetary disc winds (e.g.
Hasegawa et al., 2017).

1.2.1 The magnetorotational instability (MRI)

Continuous accretion discs naturally meet the two criteria to be unstable to the MRI (e.g.
Balbus and Hawley, 1998);

d⌦2

dlnR
< 0 and B 6= 0, (1.14)
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where ⌦ is the angular velocity profile, R the radius and B the magnetic field in the disc.
The first of these represents a decreasing angular velocity profile as the radius increases —
naturally met by Keplerian discs that are differentially rotating. The second is a non-zero
magnetic field both in the plane of the gas motion (the azimuthal direction) and the plane
perpendicular to this (the z direction).

The instability can be conceptualised by considering two parcels of gas, situated adjacent
to each other in the disc at slightly different radii as shown in Figure 1.2. The presence
of the magnetic field means that these gas particles are connected by a magnetic tension.
As the gas parcels orbit throughout the disc the inner one will do so faster due to the an-
gular momentum profile, thus increasing the magnetic tension between them. The tension
pulls backwards on the inner mass and forwards on the outer mass, transferring angular
momentum from the inner to the outer mass. This transfer moves the inner mass onto a
smaller orbit (decreasing the radius), the outer mass onto a larger orbit and increases the
tension between the two masses. Increasing the magnetic tension then repeats the angular
momentum transfer, moving the masses and increasing the tension again — hence the run-
away nature of the MRI (Balbus and Hawley, 1991; Balbus and Hawley, 1998). Because
this process requires the masses to be able to be moved further apart, the initial magnetic
field must be weak rather than strong. The growth rate of the MRI is independent of this
initial field strength, found to be 0.75 times the orbital frequency (Balbus and Hawley,
1991). As the viscosity in the disc is driven by the MRI, this mechanism is ultimately
responsible for accretion of the material in the disc and the evolution of the surface density
profile and so should be modelled accurately in numerical simulations.

1.2.2 The ↵ model

Modelling the full magnetohydrodynamics (MHD) that generates turbulence which drives
viscosity is difficult both analytically and numerically. Out of this difficulty, the ↵ pre-
scription was developed using dimensional analysis (Shakura and Sunyaev, 1973). The ↵

parameter represents the internal stresses in units of local pressure, equivalent to dictating
the rate at which angular momentum is transported. Because the transport of angular
momentum results in accretion, ↵ thus controls the evolution time scale of the disc. It is
related to the kinematic viscosity averaged perpendicular to the plane of the disc, ⌫, by

⌫ = ↵c
s

H, (1.15)

where c
s

is the sound speed in the disc and H the scale-height as defined previously. In this
formulation, 0  ↵  1 and is often assumed to be constant throughout the disc (although
it is not required to be, see King, Pringle, and Livio, 2007; Lodato, 2008). The development
of the ↵ parametrisation implies two features about the nature of the turbulence: first that
the largest turbulent eddies are smaller than the disc thickness H and second that there
are no shocks (i.e. the viscous flow speed is not supersonic, Pringle, 1981). The advantage
of this parametrisation is that it allows simulations to be conducted that can mimic the
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Figure 1.2: Conceptual representation of the MRI with spring tensions. m
i

and m
o

represent
gas parcels and an inner and outer radius (r

i

and r
o

). Differential rotation increases tension T in
the spring, transferring angular momentum from the inner to the outer mass and decreasing the
inner while increasing the outer radius. This movement of the gas increases the tension, resulting

in a run-away process (Figure 16, Balbus and Hawley, 1998).

effect of viscosity without actually simulating the full MHD turbulence thought to generate
viscosity. The disadvantage of this approach is that it does not reveal anything about the
nature of viscosity in accretion discs.

The actual value of ↵ for a given disc can be estimated through observations (as it dictates
the evolution timescale of the disc) and from simulations that include effects of the MRI.
However, the observationally inferred values of ↵ ⇡ 0.1 � 0.4 are more than an order of
magnitude higher than those measured from simulations (King, Pringle, and Livio, 2007).
The discrepancy between these estimates was likely to be due to scaling issues, vertical
boundary condition problems and grid size (resolution) issues (King, Pringle, and Livio,
2007). While it is likely that these problems can be solved using global accretion disc
simulations (particularly those with a domain large enough that any boundary effects do
not compromise the disc evolution) these are computationally challenging.

Until this point we have considered discs that are aligned to the black hole spin vector,
however a similar analysis of warped discs demonstrates that the discrepancy between the
estimate of ↵ by observations and numerical simulations exists for these discs as well (King
et al., 2013).
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Figure 1.3: A side on depiction of an aligned (upper) versus misaligned (lower) accretion
disc. Here the red vector represents the black hole spin and the green the local angular
momentum vector of the accretion disc. The right-most disc represents the predicted
steady state profile of a misaligned disc, known as the Bardeen-Petterson Effect (Bardeen

and Petterson, 1975).

1.3 Warped accretion discs

The equations presented in § 1.1 inherently assume that angular momentum is transferred
strictly in the radial direction. In the case where the central potential is a rotating black
hole, this is equivalent to assuming that the spin vector of the black hole is parallel to the
angular momentum vector of the accretion disc (which is perpendicular to the surface of
the disc). The upper panel of Figure 1.3 demonstrates this configuration, which we refer to
as an aligned disc. In the case where the disc is misaligned instead, the angular momentum
transfer is not restricted to the plane of the black hole spin and the evolution of the disc
becomes more complex.

The formation of a disc tilted to the black hole spin may occur naturally during low mass
X-ray binary (LMXB) formation. As the larger star undergoes a supernova and forms a
black hole or neutron star, an angular momentum kick can be given to the less massive
companion (Jonker and Nelemans, 2004). This angular momentum kick inclines the orbit
of the companion relative to the initial alignment, assumed to be in the spin plane of
the more massive object. As the accretion disc is formed from material donated from
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the companion, inclining its orbit forces the outer edge of the disc to be similarly inclined.
Population synthesis models have shown that two-thirds of these systems should form with
a small inclination (. 10

�), but that the rest have larger inclinations, with & 90

� possible
but rarer (Fragos et al., 2010). Martin, Tout, and Pringle (2010) consider this formation
scenario for the micro-quasar GRO J1655-40 which has an observed misalignment, finding
that a natal kick of only a few tens of km/s would be required.

Maccarone (2002) found in systems such as LMXBs that the alignment timescale for a
disc that is inclined to the black hole spin is at least on the order of the lifetime of the
system itself (as angular momentum transferred through the disc is much smaller than the
angular momentum of the black hole). This suggests that when a misaligned disc is formed
it should be observable and indeed, misaligned discs have already been invoked to try and
explain some features of LMXBs. For example, in binaries like GRO J 1655-40 and SAX
J 1819-2525, misalignment between the disc and black hole has been offered as a potential
explanation for the misalignment between the outer disc and the observed jets (Hjellming
and Rupen, 1995; Greene, Bailyn, and Orosz, 2001; Fragile, Mathews, and Wilson, 2001).
Importantly, stronger misalignments have been observed, with an inclination of & 55

�

found for V4641 Sgr (Orosz et al., 2001).

Observational measurements of black hole spin often assume that there is no inclination
between the jet and the inner disc plane (that launches the jet): the X-ray continuum spec-
tral fitting method assumes this (e.g. Shafee et al., 2006) and the Fe K spectral line method
would be more accurate with an inclination measure (e.g. Brenneman and Reynolds, 2006).
The position of the inner disc here is inferred assuming alignment with the outer disc (e.g.
upper panel of Figure 1.3), as there is currently no method to measure the position of
the inner disc independently. However, the Bardeen-Petterson Effect would invalidate this
when the outer disc is misaligned to the black hole (lower panel of Figure 1.3). Although
the assumptions made during observations are justified and current techniques are not able
to isolate the position of the inner disc, this may be able to be taken into account in future
observations.

1.3.1 Torques in warped discs

In the case of a misaligned accretion disc around a rotating black hole, the rotation intro-
duces the Lense-Thirring torque, defined per unit area as

T = L⇥⌦

p

, (1.16)

where L is the angular momentum vector of the disc per unit area with L = ⌃R2

⌦l and l is
the local angular momentum unit vector. The Lense-Thirring frequency is represented by
⌦

p

with a magnitude defined by the black hole spin parameter a as |⌦
p

| = 2G2M2a/(c3R3

).
Here M is the mass of the compact object, c is the speed of light and G is the gravitational
constant. The spin vector and angular momentum vectors are indicated in red and green in
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Figure 1.3, respectively. The misalignment angle of the disc is defined as the angle �(R, t)

formed between these two vectors (also referred to as the inclination angle). Inferring
from Figure 1.3, the Lense-Thirring torque is zero in the case of an aligned disc where
� = 0. However for a misaligned disc, the torque is non-zero and thus misaligned flows
will respond to the rotation of a black hole.

The right side of the lower panel of Figure 1.3 shows the predicted disc profile where
the inclination angle varies as a function of radius. This steady warped disc profile was
introduced by Bardeen and Petterson (1975) by considering the competition between the
Lense-Thirring torque and the viscous torques holding the disc as one continuous structure.
At small radii, where the Lense-Thirring torque is strongest (T / R�3) the disc aligns
with the black hole spin. At large radii, where the torque is weakest the disc maintains
its original misalignment. This picture is completed by connecting the two regions with a
smooth, continuous disc as in Figure 1.4 (Bardeen and Petterson, 1975). Additionally, as
Figure 1.4 also describes the twist of the disc, �(R, t), defined as the angle made by the
angular momentum vector away from the spin vector axis in a plane perpendicular to the
tilt vector. The disc is most twisted in the innermost radii as the Lense-Thirring precession
is fastest in this region. With these Euler angles, the local angular momentum vector can
be described as

l(R, t) = (cos � sin�, sin � sin�, cos�). (1.17)

This profile of an aligned inner region, smooth transition and a misaligned outer region has
formed the foundation of the understanding of tilted accretion discs. Subsequent studies
found that the equations employed by Bardeen and Petterson (1975) did not conserve
angular momentum but found that the general profile is still consistent (Papaloizou and
Pringle, 1983; Kumar and Pringle, 1985).

The strongest implication of the Bardeen-Petterson profile applies to the direction of jets
that may be launched from the inner disc. As the jet is launched it will share the angular
momentum of the disc, meaning that it will be launched perpendicular to its surface. In the
case of a disc with an aligned inner edge, this coincides with the direction of the black hole
spin and the outer disc (as is often assumed in observations). In the case of a misaligned
disc and assuming the jet is still launched from the inner region, the jet direction will still
be parallel to the spin (as the inner edge is aligned through the Bardeen-Petterson Effect)
but will not necessarily align with the outer disc. This is in line with current observational
findings, where the direction of jets in Seyfert galaxies does not appear to correlate to the
inclination of the disc (Kinney et al., 2000).

1.3.2 Viscosity in warped discs

For aligned discs, viscosity was restricted to the plane of the black hole spin. However,
warping of the disc complicates this because the viscosity in the disc must also seek to
smooth the warp. In this case, the viscous forces that seek to flatten the disc generate
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Figure 1.4: Relaxing of the inner disc into the black hole spin plane as predicted by Bardeen and
Petterson (Figure 3, 1975). The misalignment angle � is measured between the black hole spin and
disc angular momentum vectors, with the twist angle � measured between an axis perpendicular

to those and the angular momentum vector.

torques that induce local precession of the gas (Papaloizou and Pringle, 1983). This results
in a disc that is smoothed faster than the viscous timescale, such that the warp will evolve
faster than the disc is accreted.

Viscous effects in a warped disc can be treated in the same way as the traditional viscosity,
⌫, by introducing directional viscosity components for the radial and vertical communica-
tion of angular momentum. Here, ⌫

1

represents the component parallel to the local radial
plane and ⌫

2

the component perpendicular to the local radial plane. A third term ⌫
3

is
introduced due to precessional torques. In the case of an aligned disc, ⌫

2

= ⌫
3

= 0 and
⌫
1

reduces to ⌫. As before, these components can be related to the Shakura and Sunyaev
(1973) parameters using the formulation in Equation 1.15 (i.e. ⌫

1

= ↵
1

c
s

H, ⌫
2

= ↵
2

c
s

H

and ⌫
3

= ↵
3

c
s

H).

1.3.3 Precession of orbits in warped discs

Inclining the disc also complicates the orbits of gas in the inner region. Due to general
relativistic effects, rather than traversing a purely circular (or elliptical) orbit, material
orbiting around a rotating compact object traces out small epicycles. These epicycles
can be decomposed into the radial and vertical direction and described by the radial and
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Figure 1.5: Apsidal (left) and nodal (right) precession across one orbit. In both cases, traversing
from A to B is one orbital cycle; traversing from A to C is an epicycle and B to C is the associated

precession (adapted from Figure 1 of Belloni and Stella, 2014).

vertical epicyclic frequencies, respectively. Figure 1.5 describes the relation of these to the
orbital frequency, ⌫� (time taken to complete an orbit of 2⇡ in the orbital plane). In the
plane, the radial epicyclic frequency, ⌫r, is determined from the time taken to return to
the radius at apocenter (e.g. A!C). But the orbit precesses during this time (B!C, left
panel of Figure 1.5) with the apsidal precession frequency ⌫� � ⌫r. Apsidal precession of
the orbit is independent of its inclination or the spin of the compact object, so also occurs
in aligned discs around non-rotating black holes.

Even in misaligned discs, apsidal precession is restricted to the plane of the orbit. Nodal
precession of the orbits is similar (right panel, Figure 1.5) but only occurs for inclined
orbits. Out of the orbital plane the vertical epicyclic frequency is found from the time
taken to cross the line of nodes again (this is the same as crossing the projection of the
orbital plane, A!C in the right panel). The vertical epicyclic frequency, ⌫✓, determines
the nodal precession frequency ⌫� � ⌫✓. As we shall see in Chapters 3 and 4, accounting
for both nodal and apsidal precession in simulations is critical to correctly recovering the
evolution of warped accretion discs around rotating black holes.

1.3.4 Timescales in warped discs

In an aligned disc there are three important timescales, each defined as a function of the
radius R. The first is the dynamical time scale, constrained by the time it takes for material
to complete an orbit:

tdynamical =
1

⌦(R)

. (1.18)

The second is the sound-crossing timescale, defined by the time taken for material to
communicate over the distance R as (e.g. Papaloizou and Lin, 1995)

t
s

⌘ R

c
s

(R)

. (1.19)
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The timescale over which material accretes in the disc is governed by the rate of angular
momentum transfer that is controlled by ⌫. For a warped disc ⌫ is treated in three com-
ponents, however the accretion rate is only dependent on ⌫

1

, acting in the radial direction.
Thus the accretion timescale can be written as

taccretion ⇠ R2

⌫
1

, (1.20)

reducing to R2/⌫ for an aligned disc. In the case of warped discs, there are three additional
timescales to consider. The timescale for a warp to diffuse in the disc is controlled by the
angular momentum transfer perpendicular to the radial plane (⌫

2

) as

twarp diffusion ⇠ R2

⌫
2

. (1.21)

The timescale to damp such a warp (i.e. the diffusion time across the thickness of the disc)
is can be expressed as (Lubow and Ogilvie, 2000)

tdamp =

1

↵
1

⌦

. (1.22)

Misaligned discs will also experience precession, either due precession of the individual
orbits or from external forces (e.g. Lense-Thirring precession). The magnitude of the
precessional torque is proportional to the magnitude of the Lense-Thirring frequency, given
as ⌦p = |⌦p|. The precession timescale may be expressed as

tprecession ⇠ 1

⌦p(R)

. (1.23)

The behaviour of an accretion disc can be informed by careful consideration of these
timescales and by comparisons between them — for example, when the accretion timescale
acts faster than the warp diffusion or sound crossing timescales, we would expect a mis-
aligned disc to accrete material before it is able to align with the spin of the black hole.

1.3.5 Analytical studies

Figure 1.6 shows the cross section of fluid (represented by the grey boxes) orbiting in a
warped disc. In this representation, the neighbouring rings of fluid are most strongly mis-
aligned at this instant of the orbit (Lodato and Pringle, 2007). After another quarter of
an orbit however the neighbouring rings of fluid will almost be aligned (i.e. the relative
warp is weakest when the disc crosses the z = 0 plane). Thus as the material in a warped
disc orbits, it cycles through regions of strong and weak misalignment with its neighbour-
ing region. The arrows in Figure 1.6 show the radial pressure gradient that occurs when
neighbouring rings of fluid are misaligned. The strength of this pressure gradient is de-
pendent on the misalignment of the neighbouring rings — thus as material orbits around
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Figure 1.6: Horizontal pressure gradients experienced by gas during its orbit. The shaded area
has higher pressure, with arrows showing the direction of horizontal pressure gradients induced by
the warp. As the gas orbits it feels a strong radial pressure gradient at the regions shown here, but
none where the disc crosses the z = 0 plane. Thus the gas experiences an oscillating radial pressure

gradient which induces epicyclic motions in the gas (Figure 10, Lodato and Pringle, 2007).

a warped disc, it experiences an oscillating radial pressure gradient that is dependent on
the strength of the warp (Papaloizou and Pringle, 1983). This description assumes that
the warp is linear (as represented in Figure 1.6), that the disc is near-Keplerian and that
there are no large scale magnetic fields that will affect the evolution of the disc.

The result of this oscillating radial pressure gradient is the wave propagation of the warp.
The radial pressure gradient drives epicyclic motions in the gas, generating a torque in the
disc and launching a wave that communicates the presence of a warp. The turbulence in
the disc (from the MRI) that is required for accretion damps this wave propagation. Two
regimes of warp propagation can be described through comparison of the warp propaga-
tion timescale (Equation 1.19, which communicates the warp) and the damping timescale
(Equation 1.22, which slows down communication of the warp). By using the ↵ parameter
to describe the viscosity in the disc, these two regimes may equivalently be described by
comparison of ↵ to H/R. In the case where ↵ . H/R the warp propagation is described
as ‘wave-like’ and in the case where ↵ & H/R the warp propagation is ‘diffusive’.

Diffusive regime: ↵ & H/R

In thin discs communication of warps is governed by diffusion (Papaloizou and Pringle,
1983). This means that disturbances in the disc are smoothed out (diffused) over time.
The evolution of the angular momentum in the disc is described by (Pringle, 1992; Ogilvie,
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1999; Nixon and King, 2012):
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Here the first term represents the viscous diffusion of mass. The second term, involving
⌫
2

, represents the diffusion of the tilt of the disc. The third term describes the advection
of angular momentum (inwards or outwards, depending on its sign), thus representing the
advective torque. The first cross term represents the precessional torque which causes
successive rings of material in the disc to precess and only occurs when the disc is tilted
(Ogilvie, 1999). The final cross term represents the external torque from the black hole
rotation, and causes the angular momentum vector for each discrete ring in the disc to
precess around the spin vector of the black hole.

Simulations that assume properties of the disc can be described as a function of the radius
only (a ‘1D’ formulation) were conducted in this regime most recently by Nixon and King
(2012). In comparison to previous studies, they included an external torque provided by
Lense-Thirring precession and the ⌫

3

term in Equation 1.24 above as well as non-linear
fluid effects specified in Ogilvie (1999). In doing so, they found that it is possible for the
disc to break into distinct planes, identified by a steepening of the tilt profile. Breaking was
observed most clearly at � ⇡ 45

�, suggesting that it was due to non-linear effects. As the
misalignment in systems that are likely to be in the diffusive regime (such as LMXBs) is a
long lasting property of the system, they concluded that disc breaking should be considered
when interpreting observations and considering the accretion rate of these systems (Nixon
and King, 2012). Finally, when jets are launched from such a disc (not taken into account
in these simulations), they are unlikely to be aligned with the outer disc.

In this regime, the relationship between the radial and perpendicular viscosity components
for small warp amplitudes was found by Ogilvie, 1999 (and confirmed by Lodato and Price,
2010) to be

⌫
2

⌫
1

=

1

2↵2

4(1 + 7↵2

)

4 + ↵
, (1.25)

for linear warps. Additionally, Ogilvie and Dubus (2001) found that the ↵ component due
to precessional torques can be related by

↵
3

=

3(1� 2↵2

)

2(4 + ↵2

)

. (1.26)
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Figure 1.7: Oscillations in the inclination of the disc as a function of the radius, predicted by
Ivanov and Illarionov (Figure 2, 1997). The different lines represent the effect of different viscosity

values, with lines 1-3 corresponding to ↵ = 0.01, 0.1, 1.0, respectively.

Bending wave regime: ↵ . H/R

In thicker (but still geometrically thin) discs the communication of warps is governed
by pressure forces, travelling with the half sound speed of the disc as a bending wave
(Papaloizou and Pringle, 1983). In these discs, disturbances are transmitted as waves,
separating into two travelling waves (one moving outwards and one moving inwards in the
disc). In this regime, the conservation of horizontal angular momentum (i.e. in the plane
of the unwarped disc) suggests (Lubow and Ogilvie, 2000):

⌃R2

⌦

@l

@t
=

1

R

@G

@R
+T, (1.27)

where T represents the magnitude of the Lense-Thirring torque. The internal viscous
stresses in the disc evolve via
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Here the  and ⌦ refer to the horizontal epicyclic and orbital frequencies of the gas in the
disc. Further simplifications of these equations assume that the inclination is small enough
to be considered linear. Ivanov and Illarionov (1997) found under these conditions that
the disc should have an oscillatory profile close to the black hole, and that the innermost
edge of the accretion disc should not be aligned to the black hole spin. This is shown in
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Figure 1.8: First identification of ‘disc breaking’, simulated by Larwood et al. (1996, Figure 7).
Initially inclined at 45�, despite this SPH simulation using 17500 particles it is still able to show a

final state where the disc separated into two distinct planes.

Figure 1.7 and was also studied in depth by Lubow, Ogilvie, and Pringle (2002). These
oscillations are dependent on the opposing signs of the precession frequencies and so are
limited to the case around a prograde black hole — for example, the precession frequencies
that describe the behaviour around a binary or a retrograde black hole have opposing signs,
and so this effect will not occur in these systems. The linear theory presented here cannot
be extended beyond small inclination angles, although Ogilvie (2006) has extended this to
the weakly non-linear regime.

As in the diffusive case, the resultant disc profile has implications for jets that are launched
from the disc. As jets are launched along the angular momentum vector of the disc at the
innermost edge, if this is not aligned with the black hole spin the jet may be misaligned
to the disc and the black hole spin. The analytical approach thus suggests that depending
on the regime, jets may be misaligned to either the outer disc (as in the case of diffusive
discs) or to both the black hole spin and the outer disc (in the case of wave-like discs).
This is wholly contradictory to an aligned disc, which effectively assumes that the outer
and inner disc are both aligned with the jet of the black hole. Current observations are
restricted to assume that jets are parallel to the spin, regardless of the disc alignment.

1.3.6 Simulations

Two main numerical techniques are used to investigate accretion disc evolution in 3D; grid
based and particle methods. As each method is useful in a particular disc regime, simula-
tions are naturally grouped by their techniques. Broadly speaking, grid based simulations
are able to include magnetic fields allowing viscosity to be driven through the MRI but
are restricted to lower inclinations. By contrast, smoothed particle hydrodynamics (SPH)
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Figure 1.9: First simulations looking at larger disc inclinations by Nelson and Papaloizou (2000,
Figure 12). The profile of aligned inner region, smooth transition and misaligned outer region at
smaller inclinations confirms the Bardeen-Petterson effect (see Figure 1.4). The rapid increase in

the tilt at R = 1 is suggestive of disc breaking in the high inclination simulations.

simulations use the ↵ model to represent viscosity in the disc and are able to explore large
disc/black hole misalignments.

Particle method

Due to its formalism SPH is ideal for investigating flows with complex geometries and can
be used for accretion disc simulations in either the bending-wave or diffusive regimes. Using
this technique, the effect of large inclinations in the disc was first studied by Larwood et
al. (1996). Their simulations made use of 17500 particles and considered disc inclinations
up to 45

�. Despite the relatively low resolution, solid body precession (where the disc
precesses as a whole) was found for most of their simulations. Additionally, as shown in
Figure 1.8, they found that the disc may be broken into distinct planes defined by their
tilt due to differential precession. Although they considered an accretion disc around a
binary, this behaviour is similar to what would be expected in black hole discs.

Investigations into the Bardeen-Petterson Effect using SPH simulations continued with
Nelson and Papaloizou (2000). They conducted simulations with inclinations of 10� and
30

�, starting with the whole disc fully inclined to the black hole spin and using a post-
Newtonian approximation. For a variety of disc thicknesses and ↵ values they found
behaviour that was consistent with the Bardeen-Petterson description. Figure 1.9 shows
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Figure 1.10: Density rendering of the first three-dimensional simulation ex-
hibiting disc ‘tearing’ using the SPH code Phantom (Figures 1 and 2, Nixon

et al., 2012).

their general findings for initial inclinations of 10� and 30

�: inner regions are aligned to
the black hole spin, the outer regions maintained their original misalignment and there
exists a smooth transition between the two. Their simulations, even at low inclinations,
showed no evidence of the oscillatory behaviour predicted by Ivanov and Illarionov (1997).
While the source of this discrepancy is unclear, Nelson and Papaloizou (2000) suggested
that ‘non-linear effects lead to the damping of these short wavelength features’, however
later work by Lubow, Ogilvie, and Pringle (2002) found that the wavelengths of these
oscillatory modes are comparable to the disc scale height. Specifically in the case of the
larger inclination simulations (� = 30

�) Nelson and Papaloizou (2000) noted that:

“... a disc which is forced to maintain a non-linear warp due to severe mis-
alignment will tend to break into two or more disconnected pieces, rather than
maintain a smoothly warped structure ...”

Despite identifying a steepening of the disc tilt, Nelson and Papaloizou (2000) were unable
to find clear evidence for disc breaking as in Larwood et al. (1996). By comparison, the
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simulations by Nelson and Papaloizou (2000) made use of at most 2 ⇥ 10

5 particles (an
order of magnitude larger than Larwood et al., 1996).

Higher resolution simulations of accretion discs at high inclination have been conducted
using 2 ⇥ 10

6 particles by Nixon et al. (2012). In this case, the disc was initially inclined
at 60

�. Figure 1.10 shows two of these simulations; the upper panel with an initially low
inclination (10�) shows results consistent with previous work. The lower panel shows an
initially strongly misaligned disc (60�), where the disc was observed to break multiple times
— the disc ‘tears’ into precessing rings of gas. These rings were generated in the same
way as disc breaking; the Lense-Thirring torque generated by the rotation of the black hole
overcomes the viscous torques holding the disc together. In the case of highly inclined discs,
Nixon et al. (2012) found that this is sufficient to ‘tear’ successive rings of material off the
disc (from the inner edge outwards). These rings precessed effectively independently, given
that the precession rate is a strong function of radius. As they precessed, neighbouring
rings developed opposing angular momenta and thus directly cancelled angular momentum,
leading to a mass accretion rate that was an order of magnitude higher than for an aligned
disc (Nixon et al., 2012). Disc breaking has subsequently been found in simulations of
circumbinary discs (Nixon, King, and Price, 2013; Facchini, Lodato, and Price, 2013).
Nixon et al. (2012) additionally explored enhanced accretion due to counter-rotating disc
structures in the context of active galactic nuclei.

The location of where the disc breaks was estimated by comparing the Lense-Thirring
torque and the viscous stresses that maintain the disc as a continuous, smooth structure.
Nixon et al. (2012) derived that this should occur, for diffusive discs, around
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Rg, (1.29)

where Rg = GM/c2 is the gravitational radius. The above expression implies that the disc
is more likely to break at a lower viscosity, high spin and large misalignments. However,
Equation 1.29 assumes that the ↵ parameter here describes all three components in the
viscosity formulation — neglecting ↵

2

and ↵
3

. Doğan et al. (2015) examined the validity of
this approximation in the context of a binary system. They found that it was less accurate
for small ↵ (as ↵

2

becomes significant). Taking into account the contributions from the
vertical viscosity, they found agreement between the breaking radius in simulations and
the full analytical expectation. Thus Equation 1.29 should only be used as a guide for the
expected break radius.

Grid-based method

Numerical simulations that use grid based techniques have been restricted to small incli-
nations (. 15

�) and (in general) thicker discs. However they are able to generate viscosity
through the MRI and include general relativistic effects. Fragile and Anninos (2005) and
Fragile et al. (2007) conducted some of the first of these simulations, constructing a disc
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Figure 1.11: Volume visualisation of the density at 0, 1, 2, 4 7 and 10 orbits of a torus tilted at
15�. This disc was simulated with an MHD grid-based code and showed evidence of an oscillatory

inner region (Figure 2, Fragile et al., 2007).

inclined at 15

� with aspect ratio H/R ⇠ 0.1, nested with poloidal magnetic field loops.
Figure 1.11 represents the typical disc evolution of such a simulation, identifying a non-
zero tilt at the inner edge. Fragile et al. (2007) also suggested that there is evidence of an
oscillatory disc profile (see Figure 1.11, fourth panel) however this was not a steady profile
as predicted by Lubow, Ogilvie, and Pringle (2002) and these simulations did not show
evidence of the Bardeen-Petterson alignment in the inner regions. Importantly, their disc
also displayed solid body precession (where the entire disc precesses with a shared preces-
sion frequency), behaviour that served as inspiration for geometric models of quasi-periodic
oscillations (discussed in § 1.4).

In contrast to this, Sorathia, Krolik, and Hawley (2013) found evidence of the Bardeen-
Petterson Effect. They conducted two simulations to allow a comparison, where the only
difference was that their first simulation was hydrodynamical and the second was fully
magnetohydrodynamical. To simplify the more complicated MRI driven simulation, a full
GR treatment was avoided and a post-Newtonian approximation was employed. In both
simulations there was evidence of alignment in the inner regions, but stronger and faster
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alignment occurred for the MRI simulation. These simulations suggested that alignment
was independent of the viscosity prescription used, but that modelling of the general rela-
tivistic terms (which is approximated when using a post-Newtonian potential but exact in
the previous works) may be responsible for the different profiles.

The most recent simulations that employ full GR and MRI have confirmed the results
that have not found Bardeen-Petterson alignment: Zhuravlev et al. (2014) and Morales
Teixeira et al. (2014) conducted separate simulations of tilted accretion discs, but neither
found evidence of the Bardeen-Petterson Effect in the prograde case. In line with analytical
predictions (e.g. Figure 6 of Lubow, Ogilvie, and Pringle, 2002), there was evidence of (at
least partial) alignment in the retrograde case. The most recent of these simulations, by
Morales Teixeira et al. (2014), was noted for being the thinnest simulation of its type to
date, with an aspect ratio of H/R ⇠ 0.08 that was comparable to the effective ↵ generated
in the simulation. The authors noted that although there was no evidence of Bardeen-
Petterson alignment, there were indications of solid body precession.

A common theme in the discussion presented by Sorathia, Krolik, and Hawley (2013) and
Morales Teixeira et al. (2014) was that because the stresses generated by the MRI were
not isotropic, they cannot be consummate with the ‘isotropic ↵’ description. The lack
of isotropy in ↵ was demonstrated from their simulations by showing the horizontal and
vertical ↵ components were not equal (Sorathia, Krolik, and Hawley, 2013), and measuring
the local value of ↵ as a function of position in the disc (Figure 14 Morales Teixeira et al.,
2014). As discussed by Nixon (2015), as ↵ is an averaged quantity the significance of these
measurements on local scales is not clear. Additionally, it was possible that the simulations
by Sorathia, Krolik, and Hawley (2013) may not have fully resolved the MRI (see section
2.2 of Morales Teixeira et al., 2014). This entire discussion also rests on the definition of
‘isotropic viscosity’, a phrase which appears to be interpreted ambiguously in the literature.
From its original definition, isotropic viscosity references the isotropic nature of the rate
of shear — i.e. isotropic viscosity does not imply isotropic torques (see the discussion in
Nixon and King, 2015). From this definition it follows that the viscosity components ⌫

1,2,3

are not the same (⌫
1

6= ⌫
2

6= ⌫
3

). However, this appears to be the hypothesis investigated
by Sorathia, Krolik, and Hawley (2013), Morales Teixeira et al. (2014) and others.

A similar study considering the evolution of an inclined disc was conducted by Krolik
and Hawley (2015). As with previous simulations, the viscosity in their simulation was
derived entirely from the MRI driven turbulence. To reduce the computational cost of their
simulation, they chose to make use of a post-Newtonian approximation to model the black
hole rotation effects. As discussed in Sorathia, Krolik, and Hawley (2013), this allowed
them the freedom to use a black hole spin parameter that was as high as they liked because
these effects scale linearly. Krolik and Hawley (2015) thus choose a � 1.05 so that the
effects of precession could be observed over a short simulation time (25 orbits at R = 10).
This made their simulation almost identical to Sorathia, Krolik, and Hawley (2013), except
that they had more mass in the outer regions to combat difficulties found by the previous
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Figure 1.12: Left: the evolution of the disc tilt as a function of radius, scaled in radian/⇡ (the
negative reflects an arbitrary definition). Right: the evolution of the disc twist as a function of
radius, scaled in radian/⇡. In both panels, the disc property is scaled by colour across the figure

and evolves from bottom to top. Adapted from Figures 2 and 3 of Krolik and Hawley (2015).

authors. Shown in Figure 1.12, their simulation showed strong evidence of the Bardeen-
Petterson Effect, with the inner disc aligned and connected by a smooth transition to the
outer, misaligned disc. Although inclined at only 12

�, the authors estimated that the disc
should break by considering the diffusive analytical disc breaking criteria (Equation 1.29).
This discrepancy about whether the disc should break or not was used to strengthen the
argument that the ↵ viscosity used in SPH simulations is not equivalent to a full, MHD
turbulence driven accretion disc description. This discrepancy is addressed in detail in
Chapter 4.

Liska et al. (2017) conducted the most recent numerical investigation of a misaligned disc
around a black hole. These grid simulations were notable because of their extremely high
resolution (up to ⇠1 billion cells) despite being restricted to ⇠110 orbits at the inner edge
at 12.5R

g

. Each simulation started with a torus inclined at 30� around a black hole with
a = 0.9375 with either a weak (� = 100) or strong magnetic field. In either case, Liska
et al. (2017) identified a jet launched perpendicular to the inner torus, expansion of the
outer edge and solid body precession of the torus. In the weak field simulations, the inner
edge of the torus remained misaligned to the black hole spin such that the jet was also
misaligned and precessed with the torus. In the strong field case, the inner edge of the
torus was pulled into alignment with the black hole spin and was thus parallel with the
relativistic jet that was produced. Although the torus in these simulations was shown to
be precessing (and indeed, the behaviour observed was invoked as a method of generating
quasi-periodic oscillations, see § 1.4), the resolved simulations show swift alignment and
the rate of precession decreases significantly after ⇠150-200 orbits at the inner edge of their
moderately resolved simulations (their Figure 1, panels e and f).
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1.3.7 Warped discs summary

Although many authors have contributed to the investigation of warped accretion discs,
discrepancies in the literature remain. We summarise these into three main points:

First, discrepancies exist between the analytical and numerical studies concerning the
Bardeen-Petterson Effect. At moderate inclinations, some simulations clearly found the
Bardeen-Petterson Effect (e.g. Krolik and Hawley, 2015) while some do not (e.g. Zhuravlev
et al., 2014) despite using similar methods to simulate the disc. At smaller inclinations,
oscillations in the tilt profile of a wave-like disc have been predicted by both Ivanov and
Illarionov (1997) and Lubow, Ogilvie, and Pringle (2002), but are yet to be shown in
numerical simulations (e.g. Nelson and Papaloizou, 2000).

Second, higher inclination simulations have revealed disc tearing behaviour but only in the
diffusive regime. Is it possible for wave-like discs to also show this behaviour? If so, do
the rings have similar properties (e.g. thickness) or are these properties constrained by the
disc properties? Is enhanced accretion from tearing discs generic to all accretion discs?

Finally, the validity of the ↵ model has been challenged with grid based simulations by
Sorathia, Krolik, and Hawley (2013), Morales Teixeira et al. (2014) and Krolik and Hawley
(2015). While their simulations showed important small scale behaviour of the disc viscos-
ity, this challenge appears to be based on an ambiguity in the literature. If correct, this
may call into question the purely hydrodynamical approach that is commonly adopted by
particle methods.

1.4 Quasi-periodic oscillations

Direct observational evidence of tearing accretion discs around black holes is currently not
possible (but see Casassus et al., 2015, for observations of a potentially strongly inclined,
broken proto-planetary disc). Thus to understand the connection between tearing discs in
nature and the theoretical work previously discussed, indirect observational features must
be considered. Black hole low mass X-ray binaries (LMXBs) are an ideal candidate for
this as there is observational and theoretical motivation to suggest that the accretion disc
in these systems are tilted (discussed in § 1.3). Hence, we should expect that the Lense-
Thirring precession can influence the evolution of the disc in these systems. Additionally,
LMXBs are part of a group of objects that generate quasi-periodic oscillations (QPOs). As
discussed below, observations and theoretical work on QPOs strongly suggest that Lense-
Thirring precession is responsible for driving these currently unexplained phenomena.

QPOs are detected as oscillations in the X-ray, optical and infrared lightcurves from a num-
ber of astrophysical objects, including LMXBs, active galactic nuclei, cataclysmic variables
and ultra-luminous X-ray sources (Gribbin, Feldman, and Plagemann, 1970; Patterson,
Robinson, and Nather, 1977; Joss, Avni, and Rappaport, 1978; van der Klis et al., 1985;
Strohmayer et al., 2003; Gierliński et al., 2008). They represent rapid oscillations in the
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Figure 1.13: Power density spectra of GRO J1655-40 identifying a type-C low-frequency QPO
at 18Hz and a high-frequency pairing at 300Hz, 450Hz (Figure 9 of Belloni and Stella 2014, see

also Motta et al. 2014b).

flux with an amplitude of up to 20% (in type-C QPOs, but can be as low as 10% in type-
B). Given this nature, they are found by generating a power density spectrum (PDS) from
the observed lightcurve and often multiple lightcurves are stacked together. An example
is shown in Figure 1.13, with observed QPOs identified with arrows by their characteristic
‘bump’ in the PDS.

Two clues as to the origin of QPOs are fairly well established. First, because their fre-
quency is so rapid these oscillations must be occurring within 60Rg of the compact object
(Axelsson, Hjalmarsdotter, and Done, 2013). Second, as QPOs are observed in such a wide
variety of sources, they must be generated from the accretion disc itself as this is the only
common feature. This then implies that the mechanism that drive QPOs must originate
in the innermost part of an accretion flow, where relativistic effects are strongest. Addi-
tionally, QPOs are strongest around stellar mass black holes in X-rays. Although QPOs
observed in non-relativistic objects (such as those in cataclysmic variables) are observa-
tionally similar to those from black hole and neutron star binaries, they are likely to be
caused by a different mechanism (Kluźniak, W. et al., 2005).

The nature of QPOs is further complicated by observations indicating that they fall into
distinct types. Broadly, QPOs are split into high- and low-frequency with subcategories
within the low-frequency group (type-A, -B and -C). In any given LMXB, both or either of
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these types may be observed individually or simultaneously. Figure 1.14 shows a summary
of the QPOs observed in the LMXB J1550-564 from 1999 to 2015, indicating some of
the possible combinations of simultaneous QPOs. Because high- and low-frequency QPOs
have such distinct observational characteristics, they are often assumed to originate from
different mechanisms and are thus treated separately. In black hole LMXBs, only type-C
QPOs are currently associated with Lense-Thirring precession.

The measurement of a precise frequency (e.g. for each QPO in Figure 1.13, the width of
the bump) has fundamental implications for the structure of an accretion disc. Current
disc theory models the accretion disc as a smooth, continuous whole. But how does a
smooth, flat structure produce a rapid variation in the flux? How does it do so at two (or
three) different frequencies simultaneously? The implication is that there must be some
inhomogeneity in the region of the disc from where QPOs are sourced. Indeed, some of
the first explanations of QPOs considered ‘blobs’ of material above and below the disc
plane (in neutron star LMXBs, Stella and Vietri, 1998). We will show that disc tearing
provides a natural method to prevent the continuous, smooth nature predicted in discs as
gas inclined to the rotation of the black hole spin breaks into discrete structures due to the
rotation induced torque. We briefly summarise the relevant points of current observations
to better understand the potential connection between tearing discs and QPOs, focusing
on those from LXMBs which have a black hole as the compact object.

1.4.1 Observations of high frequency QPOs

High-frequency QPOs (HFQPOs) in LMXBs occur with frequencies &60 Hz and have some
analogies with HFQPOs from accreting neutron stars (where they were first detected,
van der Klis, 2006). When observed, they do not always take the same frequency (e.g.
Figure 1.14) but sometimes do — this suggests that the preferred frequencies are set by
some fundamental parameters of the system (Belloni, 2010). Owing to their high frequency,
HFQPOs are often associated with the orbital frequency near the inner edge of the accretion
disc. HFQPOs are difficult to detect in black hole LMXBs, and as such have been found in
only a few sources (Belloni, Sanna, and Méndez, 2012). Deeper comparison of these QPOs
with their neutron star (NS) counterparts show that they are probably not the same as in
NS sources (Belloni and Motta, 2016; Motta et al., 2017).

In black hole binary systems, HFQPOs can also be seen in pairs with particular ratios
between the observed frequencies. Remillard et al. (2002b) found that these ratios are
constant to within about 15% as the source changes flux (but this is not true for neutron
star LMXBs, Remillard and McClintock, 2006). Often reported is the ‘3:2’ ratio, however
Belloni, Méndez, and Homan (2005) show that this ratio sits somewhere between ⇡1.3-3.0
and other ratios are reported (e.g. GRS1905+105, Morgan, Remillard, and Greiner, 1997;
Strohmayer, 2001). Although HFQPOs can be observed simultaneously with their low-
frequency counterparts, (Remillard and McClintock, 2006) suggest that it is difficult to
demonstrate correlation between the two. By contrast, Stella and Vietri (1998) and Stella
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and Vietri (1999) have shown a strong connection between type-C and HFQPOs. Using this
relationship, Motta et al. (2014b) and Motta et al. (2014a) were able to use simultaneously
observed QPOs to estimate properties of the black hole. More recently, Belloni, Sanna, and
Méndez (2012) have discussed the possible connections between HFQPOs and the different
types of LFQPOs.

1.4.2 Observations of low frequency QPOs

Low-frequency QPOs (LFQPOs) are found at frequencies generally less than 30 Hz. These
QPOs are observed to be stable and to vary on timescales of minutes (Muno et al., 2001).
As depicted in Figure 1.13, they have have a large amplitude and can be narrow (with a
coherence of Q > 10, where Q is measured as the ratio of the frequency and the variance of
the QPO Remillard and McClintock, 2006). Phase lags of LFQPOs suggest that analogous
to neutron star systems, there are three subtypes; type-A, -B and -C (Casella, Belloni,
and Stella, 2005). These three subtypes are further identified by their timing properties,
coherence, centroid frequency, energy bands and where they are observed in the hardness-
intensity diagram (discussed in § 1.4.3). We note that there is observational suggestions of
further, anomalous QPOs (e.g. Remillard et al., 2002a) but do not discuss them here.

Type-A LFQPOs

Perhaps the most poorly understood of the LFQPOs, type-A were originally classified by
Wijnands, Homan, and van der Klis (1999) and have since been observed in only a handful
of systems (as of 2016 about 10 have been found; Motta, 2016). They are found between
⇡6.5-8Hz (Belloni and Stella, 2014). As they are broader and weaker than the other QPOs,
they require the data to be averaged over a long time period to be identified (e.g. Homan
et al., 2001).

Type-B LFQPOs

Type-B LFQPOs are observed during the transition from the hard to soft state and are
associated with relativistic jets (e.g. Motta et al., 2015). They are often interpreted as an
indication of a transition in the disc as they follow type-C LFQPOs by less than a second
(Motta, 2016). In cases where transitions between the subtypes of LFQPOs occur, type-B
are always involved (e.g. B!C or B!A, Nespoli et al., 2003). Additionally, while the
disc goes from hard to soft (and vice versa) there are often multiple transitions from and
to type-B QPOs involving both type-A and -C QPOs. In contrast to the other LFQPOs,
observations of type-B are fitted with a Gaussian shape (because they exhibit jitter, Belloni,
2010). These LFQPOs are currently restricted to ⇡0.8-6.4Hz (Belloni and Stella, 2014)
but are only observed between ⇡4-6Hz at high flux (Belloni, 2010). They are characterised
most strongly by where they appear in the hardness-intensity diagram and their strong
peak (see Figures 1.15 and 1.16). Finally, the strength of type-B QPOs shows a tight
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Figure 1.14: Summary of QPO observations using RXTE data for J1550-564. The red points
represent low-frequency and the blue high-frequency (simultaneous observations are not indicated).

The Reference ID and authors are found below in Table 1.1.

Table 1.1: Corresponding references for Figure 1.14.
Reference ID Authors Frequencies (Hz) Type

1 Cui et al. (1999) 82mHz - 4 Hz Low
2 Remillard et al. (1999) 185, 161, 238 High

Remillard et al. (1999) 2.6 - 13.1 Low
3 Wijnands, Homan, and van der Klis (1999) 5 - 7 Type-A

Wijnands, Homan, and van der Klis (1999) 3, 6, 12, 18 Type-B
4 Sobczak et al. (2000) 0.084 - 18.81 Low
5 Homan et al. (2001) 1 - 18, 16 - 18 Low

Homan et al. (2001) 102 - 284 High
6 Kalemci et al., 2001 65 High

Kalemci et al. (2001) 0.36 - 4.1 Low
7 Miller et al. (2001) 185, 249 - 276 High
8 Remillard et al. (2002a) 6 Type-A

Remillard et al. (2002a) 5 - 6 Type-B
Remillard et al. (2002a) 0.1 - 10 Type-C
Remillard et al. (2002a) 182 - 209 High

9 Remillard et al. (2002b) 184, 276 High
Remillard et al. (2002b) 280, 270 High

10 Rodriguez et al. (2004) 0.1 - 6 Type-C
11 Li et al. (2013) 0.08 - 20 Low
12 Motta et al. (2014a) 5, 13 Low

Motta et al. (2014a) 183 High



1.4. Quasi-periodic oscillations 31

Figure 1.15: Evolution of LMXBs on the hardness-intensity diagram with the locations of each
particular type of QPO (Figures 1 and 7 of Motta, 2016; Belloni, 2010, respectively).

dependence on viewing inclination that is different to the dependence on type-C QPOs
(Motta et al., 2015).

Type-C LFQPOs

Type-C LFPQOs are the most commonly observed and well documented of the LFQPOs
and were first defined by Wijnands, Homan, and van der Klis (1999). They are observed
up to ⇡30Hz and are more similar to type-A than to type-B LFQPOs (e.g. the disc state
they can be observed in, Figure 1.15). They are found by their strong and narrow peaks
and are seen to drift in frequency and strength on timescales of a few days. In contrast to
the other LFQPOs, type-C are observed in multiple states including the low hard state,
the high soft state and the ultra-luminous state, discussed below (Motta, 2016).
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Figure 1.16: Example PDS showing the different LFQPOs and power law slopes. PDS 1 corre-
sponds to the LHS, PDS 2 to the high flux LHS with type-C QPOs present, PDS 3 to the SIMS
state with type-B QPOs, PDS 4 to the HSS with type-A QPOs present and PDS 5 to the softest
state. These data are taken from the 2002/2003 outburst of GX 339-4 and the PDS are shifted in

power so that they can be distinguished (Figure 3, Belloni, 2010).

1.4.3 Connection to disc states

The relationship between different types of LFQPOs is further understood by their re-
lationship to the disc state, indicated by the position on the hardness-intensity diagram
(HID, also known as a ‘q’ or ‘turtle-head’ diagram, Homan et al., 2001). The ‘hardness’
of the system is measured as the ratio between counts in two particular energy bands, and
when plotted against the total counts from the system reveals a particular evolutionary
path over the course of a several months. Figure 1.15 shows a schematic of the evolution
of a LMXB and the right hand panel of Figure 1.18 an observed HID. In the HID, the
high-soft state exhibits a soft spectrum with thermal emission from the accretion disc and
the low-hard state a hard spectrum driven by Comptonised or synchrotron self-Compton
emission (Done, Gierliński, and Kubota, 2007). We note that although the generic path
through the HID is the same for many objects, the actual path taken differs between
objects and sometimes even for the same object during different outbursts.
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Transition through the different states is understood to be constrained by the mass ac-
cretion rate and is defined mostly by the position in the HID (while the HIMS to SIMS
and SIMS to HSS transitions are defined by features in the PDS). The cycle begins with
the object in quiescence in the low hard state (LHS) in the lower right region of the HID.
The luminosity increases, tracking the object up the right hand side of the HID. This
movement marks the highest mass accretion rate and is followed by the the transition into
the hard/soft intermediate states (HIMS/SIMS), travelling to the left on the HID. In the
softest, most luminous state (hard soft state, HSS) the hardness is observed to fluctuate,
with the object zig-zagging across the left hand side of the HID. As the luminosity then
decreases the hardness increases, evolving back through the HIMS at a lower luminosity,
then returning to the LHS. The difference in PDS as the object evolves is documented
in Figure 1.16, where each different LFQPO has a distinct observational signature. As
indicated by the coloured regions in Figure 1.15, the different sub-types of QPOs are only
observed in particular places in the evolution.

Type-C QPOs are predominantly observed in the LHS, HIMS and the softest, most lumi-
nous part of the HSS (indicated by the green regions in Figure 1.15). As the flux increases
in the LHS, the characteristic frequencies of the LFQPOs also increase (Belloni and Stella,
2014). Although it is not clear what initiates the decrease in hardness and movement into
the HIMS, it is here that emission from the thermal disc component is observable (Belloni,
2010). Although the HIMS is often seen as an extension of the LHS, due to the blurred
transition between the two and similar LFQPOs, they are distinct.

Type-B LFQPOs are seen exclusively in the narrow SIMS region (indicated by the blue
region in Figure 1.15). This state is characterised by lower variability in the HID and only
a small increase in the softness in the spectrum. This transition also roughly corresponds
to the launching of relativistic jets (crossing the ‘jet line’, Belloni and Motta, 2016).

Type-A QPOs are observed in a state slightly softer than the SIMS (indicated by the coral
region in Figure 1.15). As the object zig-zags through this region transitions are observed
between the three types of LFQPOs but are thought to pass through type-B. Additionally,
most HFQPOs are observed around this hardness at higher luminosity.

1.4.4 QPO models

Models attempting to explain the driving mechanism of QPOs are broadly grouped into
geometric and instability models. The instability models invoke a range of oscillatory be-
haviours (e.g. see Tagger and Pellat, 1999; Titarchuk and Fiorito, 2004; Varnière, Tagger,
and Rodriguez, 2012; Cabanac et al., 2010, for a few examples). However, these models are
largely ruled out because they do not predict the observed dependence on viewing inclina-
tion of LFQPOs (Motta et al., 2015). Here the two main geometric models are introduced
followed by an interpretation using tearing discs.
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The relativistic precession model

This model associates the fastest of the paired HFQPO with the orbital frequency, the
slower HFQPO with the periastron frequency and the LF type-C QPO with the nodal
precession at a particular radius (Stella and Vietri, 1998; Stella and Vietri, 1999). With
these relations, this model effectively assumes that each type of QPO is sourced from a self
luminous blob of material at a known radius. This is modelled physically as a test particle
at a characteristic radius (Stella and Vietri, 1998). As a result, if three frequencies are
simultaneously observed they can be used to solve for the spin and mass of the black hole
as well as the radius that the QPOs are sourced from — as used by Motta et al. (2014b)
to precisely measure the mass and spin of the black hole GRO J1566-40. In the case where
only two QPOs are observed, this model may be combined with dynamical mass estimates
to constrain the spin of the black hole (Motta et al., 2014a) or even to place limits on the
mass and spin (Ingram and Motta, 2014). Notably, the results of this model appear to
predict a lower spin than the values that are observed using other methods (although these
have their own issues, for example the Fe K↵ method assumes that the disc and the black
hole are aligned). This model has recently been extended by Franchini, Motta, and Lodato
(2016) to assume that the LFQPO is produced at the innermost edge of a hot, precessing
inner flow (similar but distinct from the rigid disc model, see below). This interpretation
assumes that the rate of precession of this extended flow can be approximated by the rate
of precession at the inner edge (true for a narrow flow with no radial extent).

The rigid precession model

The rigid precession model focuses on the mechanism driving type-C LFQPOs and is
built on the framework introduced by the truncated disc model (concerning disc states,
transitions and correlations between spectral and timing properties). It was introduced by
Done, Gierliński, and Kubota (2007) and built on by Ingram, Done, and Fragile (2009) and
Ingram and Done (2011) (but see Ichimaru, 1977; Esin, McClintock, and Narayan, 1997;
Poutanen, Krolik, and Ryde, 1997). This model is distinct from the relativistic precession
model because it assumes that the frequency driving the LFQPO is generated from the
precession of a radially extended structure with a shared precession frequency, weighted
across the structure. Figure 1.17 depicts the inner and outer disc structure invoked in this
model. Both regions are misaligned to the black hole spin, with the inner region exhibiting
solid body precession. As the inner structure precesses, it alternately casts bright and dark
patches on the outer disc (the rainbow region in Figure 1.17). The patches appear to orbit
on the outer disc with the precession rate of the inner structure, projecting to an observer
a bright-dark-bright-dark pattern in the flux. The rainbow colour scheme on Figure 1.17
indicates the expected red- and blue-shift that an observer will see due to the rotation
of the outer disc (Ingram and Done, 2011). As the size of this inner precessing structure
decreases, the frequency drifts to higher values (Ingram, Done, and Fragile, 2009). Within
the context of the truncated disc model, Ingram and van der Klis (2013) describe the
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Figure 1.17: Description of the double peaked lightcurve generated using the truncated disc
model (Ingram et al., 2016, Figure 11). The grey outer disc is alternately brightened/darkened
due to geometric obscuration from the inner, red disc. The rainbow colour scheme indicates the
blue-/red-shift experienced by the observer. Here, the orange inner disc corresponds to the grey

‘X’s in Figure 1.18.

source of the broad-band noise as changes in the radiation from the inner region which is
ultimately controlled by changes in the mass accretion rate from the outer disc.

The evolution of the truncation radius of the thin disc is closely tied to the evolution
through the HID, and ultimately controls the size of the rigidly precessing inner thick (hot)
disc. In the LHS it is implied that the disc is cool, geometrically thin and is truncated at
some radius larger than the innermost stable orbit (ISCO). Within this disc exists a hot,
thick flow that is able to precess as a solid body (Ingram, Done, and Fragile, 2009). As the
object evolves up the right-hand side of the HID, the mass accretion rate increases while
the truncation radius moves inwards (Done, Gierliński, and Kubota, 2007). This leads
to increased illumination of the inner hot flow by cooler photons from the disc, leading
to steeper spectra (Ingram and van der Klis, 2015). The transition from hard to soft
occurs when the truncation radius of the outer disc is consummate with the ISCO (Done,
Gierliński, and Kubota, 2007). Additional confirmation of this model has been recently
achieved by Ingram et al. (2016) using Fe-line modelling: continuum photons that are
reflected off the outer disc are distorted by relativistic effects, as one side of the disc has
material approaching the observer and the other side receding from the observer. This
should lead to rocking of the Fe-line between blue- and red-shifted over a characteristic
timescale. Ingram et al. (2016) found this rocking and showed that i) it must be driven by
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Figure 1.18: Evolution in the hardness intensity diagram (right) explained using tearing processes
in the disc (left) (Figure 1, Nixon and Salvesen, 2014). Here the thickness of the black line describes
the mass accretion rate experienced through the disc (not the disc thickness), with the continuous
lines showing a Shakura-Sunyaev disc and the discontinuous a torn disc. The green lines indicate a
steady jet, the red a transient jet and the black hole is described by the central circle with an arrow
in the direction of its spin. The inner components evolve from hot, low density gas (grey ‘X’s) to
a corona (purple shading). Here, the grey ‘X’s correspond to the orange inner disc in Figure 1.17.

Lense-Thirring precession, ii) any changes in the line profile must be caused by geometric
variations in the structures generating this feature and iii) this feature was created by two
distinct oscillating lightcurve signals, confirming the geometry proposed in Figure 1.17.
Additionally, as this model depends entirely on the geometry of the system, it naturally
explains the observed strong dependence on viewing inclination (Schnittman, Homan, and
Miller, 2006; Heil, Uttley, and Klein-Wolt, 2015; Motta et al., 2015).

Despite agreement with observations, this model has difficulties due to its phenomenological
origin: there is no mechanism described to generate this inner region that is disconnected
from the outer disc or to explain the dynamic evolution of its outer radius. Additionally,
it is not clear how the transition from a thin, cool accretion disc to a hot thick inner
region co-exist in such a short radial extent. As depicted in Figure 1.17, the inner region
must be sufficiently thin to allow for two bright patches on the outer disc but their model
predicts it should be hot and thick (or there must be ‘a very large misalignment between
the disc and inner flow’, Ingram et al., 2016). A further difficulty is that the history of the
truncated model dates back to a single simulation that is only conducted for one quarter
of a precession (see Figure 1.11 and Figure 16 of Fragile et al., 2007), and so the long term
evolution of this model is yet to be validated by numerical simulations.
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A disc tearing interpretation

Although not strictly a geometric model, disc tearing has also been used to interpret the
development and evolution of LFQPOs. Figure 1.18 shows a potential evolution pathway
through the HID motivated by a misaligned disc undergoing tearing, proposed by Nixon
and Salvesen (2014). In this model, type-C QPOs are generated in the LHS and LHS/HIMS
by the warping of the inner edge of the inwardly accreting outer disc. Transition into the
HIMS is represented by tearing from the outer disc and the formation of a hot corona. As
some material is able to cool and form an inner disc, gas is able to form structures down
to the ISCO, launching jets and marking the transition into the SIMS. Over time, the disc
is able to cool completely and form a warped, connected disc as it moves into the HSS.
The system returns through the HIMS as this disc accretes, leaving behind a low density,
hot gas component aligned with the black hole spin that is ready for another cycle.

1.4.5 QPOs summary

Despite having been observed for more than 45 years, the mechanism that drives QPOs is
still not fully understood. Careful analysis of these observations has revealed a number of
features that must be addressed by any model that seeks to explain how they arise:

• The relationship between the mechanisms that drive different types of QPOs: ob-
servations suggest that they are caused by different phenomena. However, they are
all sourced from a similar region in the disc and in the case of LFQPOs, transitions
occur between each type. Although this suggests different phenomena for each type
of LFQPO, it may also possible that they are caused by related processes.

• The particular locations where each sub-type of QPO appears in the HID and hence
how they relate to the current disc state: e.g. type-C LFQPOs may be found when
the disc is very hard or soft, but do not appear in the SIMS. What does this imply
about the disc structure in these regions and its dynamic evolution?

• The analytical relationship between the observed frequencies and fundamental prop-
erties like the black hole mass and spin: the relativistic precession model sometimes
allows an analytic approach to be used to measure these properties, but the measure-
ments are not often in agreement with other observations. Contrastingly, the rigid
precession model assumes a different relationship but to date this model has not yet
been used to measure properties of the disc. As QPOs are sourced from the inner-
most region of the disc, there must be a strong relationship between the frequencies
observed and the properties of the black hole.

• The observed frequencies imply discrete disc structures: current disc models predict
that the disc should be continuous from the outer edge through to the inner edge,
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and it is currently unclear how a continuous disc is able to produce multiple ob-
servable frequencies. QPOs fundamentally imply that the inner region of the disc is
inhomogeneous rather than continuous and smooth.

Of the models that have been put forward to consider LFQPOs, we consider the relativistic
precession model and the truncated disc model. Each of these models associates type-
C LFQPOs with the nodal precession due to frame dragging around a spinning black
hole. While the relativistic precession model associates this with a characteristic radius
(which also drives the high frequency QPO pairing), the truncated disc model connects
this with the averaged precession of an extended torus. While both models have their own
advantages, neither are able to address all of the above questions.

1.5 Geometrically thick flows

Until this point we have focused on geometrically thin accretion flows around low mass
black holes. Thick flows or tori may be expected in scenarios like tidal disruption events
around supermassive black holes, where the relative inclination of the encounter to the
black hole spin has a significant effect on the subsequent evolution. Tidal disruption events
occur when the trajectory of a star (typically modelled as a solar mass type star) takes it
close enough to a supermassive black hole for the gravity of the black hole to dominate
the local gravity of the star. The star is disrupted and shredded into a stream of material
as it passes through pericenter, with approximately half the mass of the star remaining
bound to the black hole. The debris stream continues to orbit, returning to the black hole
at a predictable rate. Through (presumably) shock interactions, eventually the debris gas
circularises into a disc/torus (depending on the cooling rate) and accretes onto the black
hole.

The inclination of the orbit of the incoming star relative to the black hole spin is not prede-
termined. As a result, both apsidal and nodal precession are relevant to the circularisation
process. Discussed below, including the effects of apsidal precession causes the head of
the stream to intersect its own tail, leading to faster circularisation. However, including
nodal precession causes the orbits to precess around, preventing the self crossing of the
stream and delaying circularisation. We thus focus on the scenario where the original orbit
of the star has a small inclination to the black hole spin such that nodal precession is
not significant. We also note that the Papaloizou-Pringle instability (introduced below) is
independent of any inclination to the black hole spin.
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1.5.1 Light curves from tidal disruption events

Tidal disruption events occur when a star enters the tidal radius, Rt of the black hole.
This radius is defined by the star (M⇤) and black hole masses as (Phinney, 1989)

Rt = R⇤(M/M⇤)
1/3, (1.30)

with the depth of the stars penetration measured with the parameter � = Rt/Rp (such
that tidal disruption events occur when � > 1), where Rp is the pericentre radius. In
the case that a star is disrupted, half of the star mass remains bound to the black hole
(Lacy, Townes, and Hollenbach, 1982; Rees, 1988). Phinney (1989) found the expected
mass accretion rate onto the black hole at late times by considering the specific energy of
the star. Before disruption, the range of specific energies of the gas is narrow and does
not vary greatly from the specific energy at the centre of mass of the star. During the
disruption, the orbits of the gas are ‘squeezed’ together (Lodato, King, and Pringle, 2009),
destroying the hydrostatic balance of the star and broadening the range of specific energy
of the gas. As a result, after the disruption that material that has negative specific energies
is bound to the black hole. Using the Kerplerian period of the gas T , the energy of this
gas can be expressed as (e.g. Lodato, King, and Pringle, 2009)

E = �1
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Assuming that the returning debris loses both angular momentum and energy faster than
it orbits the black hole, the material accretes quickly and observational features like flares
are expected (and observed, Gezari et al., 2012), with initial accretion rates predicted to be
super-Eddington (Evans and Kochanek, 1989; Loeb and Ulmer, 1997). Following Lodato,
King, and Pringle (2009), the mass accretion rate ˙M may be estimated as (Rees, 1988;
Phinney, 1989)

˙M =
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dE
T�5/3. (1.32)

When the star has a uniform energy distribution this reduces to a t�5/3 dependence on
the mass accretion rate, and if the mass accretion rate controls the luminosity the same
dependence is expected in the light curve.

The usefulness of this prediction is demonstrated in Figure 1.19, where the grey line shows
the t�5/3 prediction as compared to the observed light curve in multiple optical bands for
the disruption PS1-10jh. Amongst others, Gezari et al. (2012) have used this profile as a
fit to identify tidal disruption events. Figure 1.19 also demonstrates that this t�5/3 profile
is only true at late times, with the luminosity initially rising to a peak. Subsequent to
the original derivation presented above, Lodato, King, and Pringle (2009) showed that the
predicted steepness of the curve also depends on the internal structure of the star before it
is disrupted, namely the nature of the energy distribution. Guillochon and Ramirez-Ruiz
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Figure 1.19: Optical light curves of the tidal disruption event PS1-10jh. Here the discrete points
represent the observations, the solid lines a least squares best fit of a numerical model of a tidal
disruption event to each band and the grey line represents the t�5/3 decay prediction (Figure 2

from Gezari et al., 2012).

(2013) further demonstrated that the bound core of the star is more likely to survive during
shallower encounters (i.e. with a shallower impact parameter �), so the penetration factor
is also important to determining the subsequent evolution.

The above derivation inherently assumes that the stellar debris around the black hole is
able to circularise, form a disc (requiring that it efficiently cools) and viscously accrete
before the returning stellar debris arrives. This may be a difficult task, as it requires the
timescales between the circularisation, viscous accretion and radiative cooling processes to
co-operate (Evans and Kochanek, 1989). For example, a disc will form if the time taken to
circularise is less than the time for the gas to accrete. Of the circularised gas, a thin disc
will only form when the cooling timescale is also shorter than the circularisation timescale
(as assumed by Cannizzo and Gehrels, 2009; Shen and Matzner, 2014). If instead the
gas cannot cool faster than it circularises, a geometrically thick torus evolves (e.g. Loeb
and Ulmer, 1997; Coughlin and Begelman, 2014). In either case, the rate of accretion is
governed by the development of the MRI. As stars have an initially weak magnetic field,
this may take quite a few orbits to become established. For a ratio of magnetic field and
gas pressure of � ⇠ 100, we estimate it should take almost 3 orbits for parameters given
by Bonnerot et al. (2016) (see § 6.7, Equation 6.9).
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Figure 1.20: Surface density evolution of a TDE where P
star

=2.8hr and the gas is not allowed
to cool efficiently. The white point denotes the black hole, the dashed circle is the circularisation

radius and the dotted circle is semi-major axis of star (Figure 5, Bonnerot et al., 2016).

Piran et al. (2015) summarised one of the major difficulties when considering tidal dis-
ruption events: ‘why do we see only 1% of the expected energy?’. Predictions suggested
that the luminosity from these encounters should be super-Eddington, where the luminos-
ity is driven by the accretion of the remnant (e.g. Evans and Kochanek, 1989; Komossa,
2015). However recent observations of optical disruption events demonstrated the observed
temperature and bolometric luminosity are much lower than this (Piran et al., 2015). Ad-
ditionally, if shocks are the dominant mechanism used to circularise the gas during a
disruption, they must be capable of dissipating a lot of energy and should thus be quite
luminous themselves. Piran et al. (2015) argued that the shocks during the circularisa-
tion process rather than the accretion of the remnant itself were the major source of the
luminosity, with a model that fits an observed peak luminosity. By contrast, Ayal, Livio,
and Piran (2000) suggested that the shocks may heat gas enough to unbind it, resulting
in a less massive structure around the black hole after the disruption. Poutanen et al.
(2007) proposed that wind loss may reduce the mass accretion rate at any time during the
remnant’s evolution, perhaps explaining the difference between the prediction and obser-
vation. Finally, Shen and Matzner (2014) suggested that if a disc forms it is able to expand
beyond the disruption radius in order to conserve angular momentum, with the outer ma-
terial eventually accreting faster than the stellar feedback rate. The difference between the
observed and predicted luminosity may also be an indication of optically thick outflows;
as material accretes at a super-Eddington rate, winds or jets may be powered, reducing
the luminosity observed — consistent with observations that show jets (e.g. Gezari et al.,
2012). These jets may carry energy away from the black hole (Komossa, 2015).

1.5.2 Simulations of TDEs

The spatial scales and mass ratios involved in tidal disruption events make them particu-
larly challenging to simulate. In terms of spatial scales, the star initially is compact but
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after disruption is stretched into an isolated, low density stream. This range of length-
scales is well suited to SPH, so many simulations have been conducted using this method.
However the typical mass ratios (say a 1M� star encountering a 106M� black hole) com-
bined with a parabolic orbit adds more difficulty; these ratios lead to very small, fast
orbits around the black hole which are computationally expensive. In an attempt to miti-
gate these difficulties, often the stars initial orbit is altered to be eccentric (e.g. Bonnerot
et al., 2016; Hayasaki, Stone, and Loeb, 2013) or the mass ratio between the star and the
black hole is decreased. In the former case, more debris naturally ends up on a bound orbit
than in the parabolic case, such that it is easier for the star to circularise (it has to lose
less energy) and the disc that forms is more massive than would be expected.

Recent simulations by Bonnerot et al. (2016), Hayasaki, Stone, and Loeb (2013) and Sh-
iokawa et al. (2015) explored the circularisation of the torus including the effects of rel-
ativistic precession from the black hole rotation. Figure 1.20 displays a representative
simulation demonstrating the effect of apsidal precession, where the gas was additionally
not able to cool efficiently. As the star was disrupted around the black hole, apsidal pre-
cession of the orbits lead to self-crossing of the streams (second panel). Shocks that were
induced at the stream crossings heat the gas, increasing its thermal energy and leading to
faster circularisation of the gas. The resulting torus was ‘thick’ (in the sense that the aspect
ratio H/R ⇠1), with a cross section shown in Figure 1.21. Additionally the material was
highly eccentric. Using a post-Newtonian description of the relativistic effects, Shiokawa
et al. (2015) found that a relatively small difference in the apsidal precession angle of 10�

is enough to lead to stream intersections of 90�. Although including apsidal precession led
to faster circularisation of the gas, if the incoming gas was on a misaligned orbit nodal
precession may prevent self-crossing of the streams entirely and thus delay circularisation
(Hayasaki, Stone, and Loeb, 2013). Guillochon and Ramirez-Ruiz (2015) suggested that
the effect of nodal precession would even delay any luminous signal from a TDE for years
in the case of a 107M� black hole. Recent work by Franchini, Lodato, and Facchini (2016)
assumed that in the case that a misaligned disc can form, it would globally precess and
may produce a modulation in the light curve. Using a 1D code (similar to that used in
Lubow, Ogilvie, and Pringle, 2002) they simulated the evolution of a wave-like disc with
typical TDE parameters; e.g. the disc extends from the innermost stable orbit to the cir-
cularisation radius. Their simulations confirmed that such discs can globally precess but
over time align due to viscous dissipation of the induced warp. While the initial precession
of such discs may cause quasi-periodic features in the light curves from TDEs, such a signal
has only been tentatively found in one TDE (Swift J1644, Reis et al., 2012).

Recent simulations have also focused on the evolution of the stream after the initial dis-
ruption. Coughlin et al. (2016) showed that as the stream moved away from the black hole
it was able to collapse into clumps due to self-gravity. As the debris returned the mass
accretion rate was punctuated by these clumps, a potentially observable phenomenon (e.g.
the G2 cloud, Saitoh et al., 2012). Guillochon and McCourt (2017) conducted the first
simulations of tidal disruption events including magnetic fields for a variety of encounters.
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Figure 1.21: Cross section of a thick torus that forms after a TDE,
including apsidal precession and when the gas is not allowed to cool effi-

ciently (R
t

= 0.5AU, Figure 8, Bonnerot et al., 2016).

They found that the stellar debris that falls back is mostly strongly magnetised by the time
it reaches the black hole. Additional simulations of magnetised disruptions by Bonnerot,
Rossi, and Lodato (2017) have focussed on the stream evolution, where they showed that
the presence of strong magnetic stresses could cause gas to accrete ballistically rather than
circularise into a disc. In the case of gas that inefficiently cools, they again found the
formation of a geometrically thick torus.

1.5.3 The Papaloizou-Pringle instability (PPI)

Loeb and Ulmer (1997), Coughlin and Begelman (2014), Ulmer (1999), and Strubbe and
Quataert (2009) argued that a geometrically thick structure like that shown in Figure 1.21
is the fate of a tidal disruption remnant, rather than a geometrically thin accretion disc.
However, the subsequent evolution of the torus may be complicated by the Papaloizou-
Pringle instability (PPI, Papaloizou and Pringle, 1984). This hydrodynamic instability
requires i) the torus have well defined inner and outer boundaries (i.e. it is pressure
supported and not accreting from the inner edge) and ii) that the profile of the specific
angular momentum is shallow. As we will show in Chapter 6, it is possible that tori formed
from tidal disruption events meet these criteria and are thus are unstable to the PPI.

Goldreich, Goodman, and Narayan (1986) found that the PPI is caused by communication
between waves generated inside the torus from its boundaries: both the inner and outer
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edges generate two surface waves, one travelling in the direction of the fluid flow and one
travelling in the opposing direction. When the reverse wave from the inner edge has the
same phase velocity as the forward wave from the outer edge, they are able to communicate
angular momentum and energy. This communication ultimately results in a decrease of
angular momentum at the inner boundary and an increase of angular momentum at the
outer boundary. This redistribution of angular momentum is a run-away effect, with the
growth of this instability occurring on the orbital timescale at the density maximum of the
torus (Papaloizou and Pringle, 1984).

Damping of the PPI is easily achieved by accretion through the inner boundary (Blaes,
1987). As material accretes onto the central object through this boundary, angular mo-
mentum is advected out of the inner region. When the rate at which this occurs is faster
than angular momentum can be communicated outwards in the torus the instability damps
(Blaes, 1987). Evidence of the PPI is thus not expected in simulations investigating the
MRI in thick discs (H/R ⇠ 1, effectively tori), as they are accreting and hence prevent the
PPI. The PPI can also be avoided by specific choices of angular momentum profiles (see
Papaloizou and Pringle, 1985; Glatzel, 1987).

1.5.4 Growth rate of the PPI

Here we summarise the method used to determine how quickly the PPI develops in a torus
with a given radial extent. As we shall see, the growth rate of this instability is determined
purely by the location of the inner and outer boundaries of the torus. The dimensions of
the torus are in turn a product of how the torus is formed. As we are focussing on a torus
formed after a tidal disruption event, we also calculate the growth rate of the PPI in a torus
with the same physical parameters as the torus shown in Figure 1.20. A comparison of this
growth rate to the growth rate of the magneto-rotational instability motivates Chapter 6.

A full analytical description of the PPI can be found in Blaes and Glatzel, 1986 with a
simpler analysis presented by Pringle and King (2014). They assume a cylindrical flow
of incompressible fluid, neglect any self gravity or z dependence and assume an angular
velocity profile of the form

⌦(R) = ⌦

0

✓
R

0

R

◆
2

, (1.33)

where R is the cylindrical radius and ⌦

0

is the angular velocity at the radius of maximum
density R

0

. The frequency ! of a mode with azimuthal wavenumber m is then a solution
of the following equation (e.g. Blaes and Glatzel, 1986),
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where the effective gravity is defined according to

g(R) =

GMR
0

R3


1� R

R
0

�
, (1.35)

with M as the mass of the central object and R
+

and R� denoting the outer and inner
edge of the torus, respectively.

Recalling that this instability is driven by interactions from the boundaries, it follows
that the solutions to Equation 1.34 are determined purely by the choice of the inner and
outer radii. Two of the four solutions to Equation 1.34 are real, representing stable modes
(Blaes and Glatzel, 1986). The two remaining solutions correspond to unstable modes, one
growing and one decaying. For the growing unstable mode, the growth rate is found from
the imaginary component of the frequency, Im(!), and depends on the wavenumber m.

For the torus shown in Figure 1.20, the radial extent corresponds to a dominant mode
of m = 1 and the associated growth rate is ! & 0.5⌦. Although this is smaller than
the growth rate for the MRI (0.75⌦, Balbus and Hawley, 1998), the PPI develops and
saturates within ten or so orbits at R

0

. In the scenario of a tidal disruption event the
initial magnetic field in the torus is quite weak, requiring ⇡ 3 orbits to establish accretion
through the MRI. In this case then, it may be possible for the PPI to grow alongside the
MRI and develop over-densities before the MRI has established itself.

1.5.5 Simulations of the PPI

As the PPI manifests itself in radially narrow and wide tori differently, simulations are
naturally grouped by the type of torus simulated. In a thin torus, the PPI is demonstrated
by the formation of over-densities (historically referred to as ‘planets’) and in a wide
torus with a spiral pressure wave. Initial progress was made by Hawley (1987) simulating
a radially slender torus with a grid based code. He demonstrated the growth of isolated
modes in such a torus and the structure of the mode was as predicted by theory (Goldreich,
Goodman, and Narayan, 1986). Further to this, he discussed how the instability transports
angular momentum through the formation of over-densities, causing the torus to spread
radially. In each case, his simulations ended when the torus was broken up by the presence
of these planets.

In the case of radially wide tori, saturation (when the density perturbations stop growing
further) occurs in the form of spiral pressure waves (Blaes and Hawley, 1988; Hawley, 1991).
Zurek and Benz (1986) investigated the redistribution of specific angular momenta in wider
tori using SPH, parameterising the specific angular momentum profile with l(r) / rq. They
showed that the damping criteria of accretion for the PPI is equivalent to redistributing the
angular momentum profile. Figure 1.22 summarises their findings in terms of the evolution
of the specific angular momentum profile; tori that are stable to the PPI show no significant
evolution while those that are unstable show a dramatic change. Here a stable torus is
represented with q & 0.25 and an unstable torus with q . 0.25 (in Figure 1.22 the stable
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Figure 1.22: Power law-fit (where l = Brq) of the specific angular momentum profile. Here the
solid and dotted lines are tori started with l / r0 and the dashed line has l / r0.3 (Figure 3 of

Zurek and Benz, 1986).

Figure 1.23: Figure 14 of Mewes et al. (2016), demonstrating the possible movement of a central
black hole in response to the development of the PPI in a tilted torus. At each timestep the dot
represents the location of the black hole and the scaled vector the direction of its spin vector. Each
timestep is equally spaced to show that the movement of the black hole is much greater at the end

of the simulation, when the PPI is saturating.
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torus has q ⇡ 0.3 and the unstable with q = 0). The tori that start in a configuration
that is unstable to the PPI tend to a stable configuration within about two orbits. These
simulations confirmed the original specific angular momentum stability criteria (q = 0.25,
Papaloizou and Pringle, 1984).

The PPI has also been revived in the context of gravitational waves and even QPOs.
Mewes et al. (2016) conducted numerical simulations of the tilted torus that formed after
the merger of two black holes. Immediately after this merger the torus was able to have
a mass up to 16% of the new black hole mass and is regarded to be geometrically thick.
In the case that such a torus was unstable to the PPI, its development of over-densities
would cause the black hole to move in response to the PPI. An example of this possible
movement is shown in Figure 1.23, and the authors postulated that such motion may be
observable as quasi-gravitational waves (i.e. gravitational waves that are not the direct
result of a merger, Mewes et al., 2016). Further to this, Kiuchi et al. (2011) suggested that
the PPI may form in tori made during �-ray bursts. Finally, although the PPI has also
been invoked to understand QPOs (§ 1.4), there are a number of open questions about this
interpretation. Dönmez (2014) suggested that the over-densities that formed in a torus
around a black hole resulted in an oscillatory mass accretion rate, leading to an oscillatory
light curve. However, observations suggest that some QPOs are strongly a function of
the black hole spin while the PPI is not affected by this (from both the analytical work
summarised above and from simulations like Mewes et al., 2016). The strong observed
geometric dependence ruled out LFQPOs (Motta et al., 2015), but frequencies that are
consummate with HFQPOs have not yet been generated with this method (Dönmez, 2014).
Finally, because the PPI only occurs once in a torus (i.e. once the angular momentum is
redistributed and the torus is accreting, the torus is stable to the PPI), this interpretation
offers no explanation for the consistent nature of QPOs or their ability to drift in frequency
during observations.

The effect of magnetic fields on the development of the PPI in thick tori has recently
been examined by Bugli et al. (2017). They consider two simulations, one including the
MRI and the other purely hydrodynamical and where both are initialised with random
perturbations (rather than seeding the dominant m = 1 mode). Their simulations suggest
that the inclusion of the MRI completely inhibits the PPI from developing as accretion is
driven immediately (for the ratio of gas to magnetic pressure of 100, i.e. a weak field).

1.5.6 Tidal disruption events and the Papaloizou-Pringle instability sum-
mary

The formation of a geometrically thick torus from a tidal disruption event is expected when
the material is able to circularise faster than it is able to radiatively cool (e.g. Bonnerot
et al., 2016). When this torus accretes before the rest of the stellar debris returns to the
black hole, the light curve observed is expected to take the form of t�5/3 (Phinney, 1989)
consistent with observations (Gezari et al., 2012, e.g.). The assumption that the torus is



48 Chapter 1. Introduction

able to circularise and accrete quickly depends on competition between the viscous, cooling
and circularisation timescales (Evans and Kochanek, 1989) and both a geometrically thin
or thick structure is supported in the literature.

In the event that a torus does form and it is not able to cool efficiently, it may be susceptible
to the Papaloizou-Pringle instability (Papaloizou and Pringle, 1984). In a torus with
parameters expected after a tidal disruption event (i.e. a radially wide torus) the dominant
m = 1 mode has a growth rate comparable to that of the MRI, but the PPI saturates after
only a few orbits (e.g. Zurek and Benz, 1986). Additionally, as magnetic fields in stars are
weak the initial strength of the magnetic field in the torus is expected to be small, such that
the MRI will take a number of orbits to establish itself. Previous numerical simulations
show that the development of the PPI drives angular momentum redistribution and suggest
that it may be responsible for angular momentum transport (e.g. Hawley, 1987; Zurek and
Benz, 1986). In the case that a tidal disruption remnant is susceptible to the PPI, it may
thus be possible for angular momentum transport to be driven by the PPI before the MRI
is established in the torus.

In the case of a highly inclined encounter, nodal precession may significantly delay the
circularisation process and the above scenario may not occur (Guillochon and Ramirez-
Ruiz, 2015). Additionally, strongly magnetised tori that are susceptible to the PPI may
form during a �-ray burst (although Wen and Dong, 2011, suggests that this does not
prevent the PPI from occurring). We thus restrict the discussion of the PPI in tori from
tidal disruption events to those which have low inclination encounters, are able to circularise
quickly and have an initially small magnetic field, such as simulated by Bonnerot et al.
(2016).
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Numerical methods

Both grid and particle based methods are commonly used for numerical simulations of
astrophysical fluids. The difference in these methods stems from their interpretation of
the governing equations of motion; particle methods are derived from the Lagrangian
representation and grid based from the Eulerian. Practically this means that grid based
simulations discretise the problem onto a grid of small volumes and consider the inflow
and outflow of material between these volumes. In contrast, particle methods discretise
the problem on to particles of fixed mass which carry the properties of the fluid as they flow.
As highlighted in the literature review, each of these methods have particular advantages
and disadvantages when applied to the problem of accretion discs.

Grid based methods are able to incorporate both magnetic fields to generate the magneto-
rotational instability (MRI, e.g. Fragile et al., 2007) and full general relativistic (GR, e.g.
Morales Teixeira et al., 2014) effects. However, conservation of properties like mass, angular
momentum and energy can be compromised when the flow of material is misaligned to the
grid used to define the simulation (Robertson et al., 2010). This is especially important
when considering the evolution of high inclination discs, as material that starts aligned to
the grid will inevitably become misaligned. As a result grid based simulations of inclined
accretion discs are generally restricted to small inclinations where this effect is small (e.g.
Krolik and Hawley, 2015). The most recent grid based simulations with an inclined disc
consider an inclination of 30

� for ⇠ 110 orbits at the innermost edge of the disc (with
R

in

= 12.5R
g

, Liska et al., 2017).

While grid based methods must make use of adaptive meshes or nested grids (called ‘tur-
duckening’, Mewes et al., 2016), particle methods naturally have higher resolution in the
inner regions of the disc where it is needed. Additionally, due to their formulation they
conserve properties like the linear and total angular momentum exactly (as accurately as
the time-stepping method allows). Importantly, conservation of these properties is inde-
pendent of the inclination of the disc, making this method well suited to highly inclined
discs. However, existing SPH simulations are not able to include full GR effects or magnetic
fields (e.g. Nixon et al., 2012). Instead, they make use of a post-Newtonian approximation
to include GR effects from the rotation of the black hole and use the ‘isotropic ↵’ viscosity
model.
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We use smoothed particle hydrodynamics to conduct simulations of misaligned accretion
discs, making use of its advantages for strongly misaligned flows. We use the publicly
available smoothed particle magnetohydrodynamics code phantom (Price et al., 2017).

In this chapter we introduce the fundamentals of SPH, the main features implemented in
phantom and the limitations we anticipate with this numerical technique. This chapter is
based primarily on the extensive review Price (2012) and the companion paper to phantom

(Price et al., 2017). Extensions of phantom specific to this work include the addition of a
velocity correction for a rotating black hole (the equivalent of Equation 2.53, discussed in
Chapter 3), developing analysis routines to measure azimuthally averaged properties and
two setup routines (the first for warped discs and the second for tori). A 1D SPH code
was written (from scratch) to demonstrate the importance of artificial viscosity (see the
Sod shock tube example, Figures 2.2 and 2.3). The tests documented in Sections 2.2.4
and 2.2.5 have been published in Nealon, Price, and Nixon (2015) and additional code
development is described in the chapter that it is relevant to.

2.1 Smoothed particle hydrodynamics

2.1.1 Discretising properties onto particles

Smoothed particle hydrodynamics (SPH) was introduced by Lucy (1977) and Gingold
and Monaghan (1977). It is a Lagrangian particle method used to solve the equations
of hydrodynamics. The fluid to be simulated is discretised onto a set of representative
particles with each one assigned properties like mass, density, position, velocity and energy.
The movement of the particles is dictated by the equations of motion and they carry their
properties with them as they move.

For each particle in the fluid, the properties that are allowed to evolve (e.g. density,
pressure and energy) depend on the neighbouring particles and in turn, their properties
(by neighbouring particles, we mean the particles that are close to the particle of interest).
To illustrate the fundamental SPH calculation, we consider how to calculate the density
for the example particles shown in Figure 2.1 where a particle at a location of high density
is indicated in red and one at low density location in green. As density is just mass divided
by volume, the relative positions and masses of the particles can be used to determine the
local density. For example, the more tightly packed particles in the red region represent
a higher density than those in the green region. As the density at a particular particle is
mostly influenced by its closest neighbours, the contribution of particles should be weighted
so that the nearby neighbours have the greatest influence and the furthest have the least.
In Figure 2.1, this weighting is indicated by gradient in the shaded region around the
particles. These concepts are brought together in the SPH density summation, where the



2.1. Smoothed particle hydrodynamics 51

Figure 2.1: Particles representing a fluid. A high density region is indicated at the red particle
and a low density region at the green particle, with the shaded regions representing the relative
smoothing length. The gradient in the shaded regions indicates the weighting of the kernel function

(based on Figure 1c of Price, 2012).

density ⇢ at the location of particle a is calculated by

⇢a =

X

b

mbW (ra � rb, ha). (2.1)

Here the subscript b refers to the neighbour particles that are included in the summation,
each with mass m. The kernel W is a weighting function that specifies the contribution
of each neighbouring particle based on the distance ra � rb and is constrained by the
smoothing length h, a characteristic length related to the particle spacing. The smoothing
length determines the distance over which the contribution of the particles should be
weighted. In the example Figure 2.1 this is indicated by the size of the shaded regions,
with the less dense (green) region having a larger smoothing length and hence larger region
than the more dense (red) region. The smoothing length is then dependent on the density,
suggesting the following description for equal mass particles (i.e. ma = mb = m) in
three-dimensions:

ha = hfact

✓
m

⇢a

◆
1/3

. (2.2)

Here hfact is a factor in units of the mean local particle spacing. The final component to
complete the density calculation is the kernel that decides the weighting of the neighbour
particles. The kernel must satisfy a number of specific properties in order to be useful
(from here we refer to W (ra � rb, ha) as Wab(ha)):

1. The kernel must be a positive function that decreases smoothly towards zero at larger
distances.
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2. The kernel must be symmetric (Wa,b = Wb,a) so that the influence of a neighbouring
particle depends on its distance, not position.

3. At small distances between particles, the gradient of the kernel must be shallow so
that if the nearest neighbours move slightly the density estimate does not change
much.

4. The magnitude of the kernel function is normalised using
Z

V
Wab(ha)dV

0
= 1. (2.3)

Although a Gaussian profile satisfies all of these properties, it requires that all neighbours
in the fluid contribute to the density for each particle — even though those that are far
away do not contribute very much. For the green and red example particles in Figure 2.1,
this would mean that all the particles in the domain are used in the density calculation,
despite it being mostly determined by only the particles in the shaded regions. This leads
to kernel functions that have a similar profile to a Gaussian but with ‘compact support’
that tend to zero within a few smoothing lengths. By comparison, these functions have
an O(NneighboursN) computational cost rather than an O(N2

) computational cost (com-
putational cost is the a measure of the time taken to complete a step in the computation
and is strongly a function of the resolution in the simulation). Here Nneighbours represents
the neighbour particles that are included within the compact radius (within the shaded
regions) and N is the total number of particles. The cubic spline kernel is one of the most
commonly used (e.g. the M

4

B-spline, Monaghan and Lattanzio, 1985), where the kernel
is set to

Wab(ha) = �
w(q)

hda
, (2.4)

with the parameter q defined by

q ⌘ |ra � rb|
ha

, (2.5)

and d as the number of dimensions. The normalisation constant � depends on d (e.g.
� = 2/3, 10/(7⇡) or 1/⇡ in 1, 2 or 3 dimensions). The function w(q) is described by

w(q) =

8
>>><

>>>:

1

4

(2� q)3 � (1� q)3, 0  q  1;

1

4

(2� q)3, 1  q  2;

0, q � 2.

(2.6)

The M
4

kernel is used in our subsequent work but we note that kernels with a larger
compact support radius (e.g. that go out to more than 2h) have been shown to be more
accurate (Dehnen and Aly, 2012) and other kernels have been explored (e.g. Wendland,
1995; Morris, 1996). With Equations 2.1 and 2.2 and an appropriate kernel we can thus
calculate the density at the position of any particle in the fluid. This calculation is the
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core of SPH, as the calculation of other properties like the pressure and velocities depend
on the density.

2.1.2 General form and identities used in SPH

The SPH density summation introduced in Equation 2.1 is an example of using an interpo-
lation function. If we consider a scalar property A, a more general interpolation function
is given by

A(r) =

Z
A(r

0
)�(r� r

0
)d3r0, (2.7)

where r is the position and � is the Dirac delta function. The delta function may then be
replaced with a kernel function that has a width determined by h, where W ! � as h ! 0

such that
A(r) =

Z
A(r0)W (r� r

0, h)d3r0 +O(h2). (2.8)

The last term here represents the error that has been introduced by using a finite kernel
and is discussed below. To discretise this so that it may be applied to a set of particles,
the integral is replaced by a summation and the mass element ⇢dV with the particle mass
m. The scalar field on particle a may then be computed using

A(r)a ⇡
NX

b

mb
Ab

⇢b
Wab(ha). (2.9)

It is clear that if A is replaced by ⇢, the above equation reduces to Equation 2.1. The
importance of this general form is that it is differentiable and can be extended to vectors
(A rather than A), prompting the following useful identities (e.g. Price, 2012):

rA(ra) ⇡
NX

b

mb
Ab

⇢b
rWab(ha), (2.10)

A(ra) ⇡
NX

b

mb
Ab

⇢b
Wab(ha), (2.11)

r ·A(ra) ⇡
X

b

mb
Ab

⇢b
·rWab(ha). (2.12)

These relations may be used to write the equations of motion in SPH form (further useful
general vector identities are given in Equations 76 - 81 of Price, 2012). We also introduce
some important relations for the kernel function (quoting in three-dimensions, e.g. Price,
2012):

raWab = r̂abFab, (2.13)
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where
Fab ⌘ �

h4a
w0
(q), (2.14)

and the related term Gab ⌘ �2Fab/|rab|. For completeness we also include the expression
for the derivate of the kernel with respect to the smoothing length, used in subsequent
calculations as

@Wab(ha)

@ha
= � �

h4a

⇥
3w(q) + qw0

(q)
⇤
. (2.15)

2.1.3 Governing equations in SPH form

Along with the density, we must also be able to calculate the accelerations, pressures and
energies of particles. Here we use the above identities to write the equations of motion and
the energy equation in SPH summation form — although they may be derived directly
from Equation 2.1 and the discretisation of the Lagrangian. The latter method guarantees
conservation of total angular and linear momentum that we will confirm below. Addition-
ally, in this work we do not make use of magnetohydrodynamics or cooling so these terms
are not included. For now, we also consider the equations of motion without dissipation.

We begin by considering the density formulation in Equation 2.1. In constructing this,
the total mass of the system was implicitly conserved because the mass on each particle
is fixed. Because the continuity equation is another representation of the conservation of
mass, we can show that the density summation is equivalent to a discretised version of the
continuity equation. Starting with the continuity equation for a particle a (e.g. Monaghan,
2012; Price, 2012)

d⇢
a

dt
= �⇢a(r · v)a
= va ·r⇢a �r · (⇢ava). (2.16)

Using the general summation in Equation 2.9, this may be re-written as

d⇢
a

dt
= va ·

X

b

mbraWab �
X

b

mb

⇢b
(⇢bvb) ·raWab,

=

X

b

mb(va � vb) ·raWab. (2.17)

Recalling that Wab(ha) = W (ra � rb, ha), this is just the derivative of Equation 2.1 and
confirms that the continuity equation is inherently contained in the original SPH density
summation. The equations of motion for compressible hydrodynamics (ignoring dissipation
terms for the moment) can be written as

dv

dt
= �rP

⇢
+ aext. (2.18)
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The aext term represents the acceleration due to external forces per mass, although we
are neglecting terms related to self gravity and sink particles in this work (compared to
Equations 24 and 25 from Price et al., 2017). In the case of a compact central object with
a gravitational potential �, the acceleration from this external body is

aext = �r�. (2.19)

In SPH summation form, the equations of motion are then expressed as

dv

a

dt
= �

X

b

mb


Pa

⌦a⇢2a
raWab(ha) +

Pb

⌦b⇢
2

b

raWab(ha)

�
+ aext,a. (2.20)

For the adaptive smoothing length introduced above (where the smoothing length of each
particle is a function of the density and changes during the course of a simulation), the
convenient summation term ⌦a is defined (in three-dimensions) as

⌦a ⌘
"
1 +

ha
3⇢a

X

b

mb
@Wab(ha)

@ha

#
. (2.21)

The full set of governing equations are completed with an equation to control changes in
energy of each particle, ua. Ignoring any cooling terms completely and viscous and shock
heating for now, the energy is evolved through

du

dt
= �P

⇢
(r · v). (2.22)

The above equation is written in SPH form as

dua
dt

=

Pa

⌦a⇢2a

X

b

mbvab ·raWab(ha), (2.23)

where we have introduced vab = va � vb.

2.1.4 Conservation properties

As mentioned before, the governing equations in SPH form can be derived from just the
density summation and the Lagrangian (e.g. see Price, 2012). This relationship dictates
that the governing equations should exhibit translational and rotational symmetries: be-
cause the Lagrangian and density estimate are invariant to translations, the total linear
momentum of the particles should be conserved. Similarly, they are invariant to rotations
so the total angular momentum should also be conserved. Finally, because the Lagrangian
is symmetric with respect to time and invariant to translations in time, the total energy
of the system should also be conserved. We can show analytically that this is true by
considering the time derivative of each of these in turn. Firstly, the total linear momentum
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(Price, 2012),

d

dt

X

a

mava =

X

a

ma
dv

a

dt
= �

X

a

X

b

mamb

✓
Pa

⇢2a
+

Pb

⇢2b

◆
raWab = 0. (2.24)

The final part of this identity makes use of the symmetry of the kernel gradient (Equa-
tion 2.13 implies that raWab = �raWba). Using a similar method and recalling that
(ra ⇥ rb) = �(rb ⇥ ra), the total angular momentum is also conserved:

d

dt

X

a

ra ⇥mava =

X

a

ma

✓
ra ⇥ dv

a

dt

◆
= �

X

a

X

b

mamb

✓
Pa

⇢2a
+

Pb

⇢2b

◆
ra ⇥raWab = 0.

(2.25)

Finally, the (dissipationless) specific energy e =

1

2

v2 + u, is used to confirm conservation
of the total energy E as

dE

dt
=

X

a

ma
dea
dt

= �
X

a

X

b

mamb


Pa

⌦a⇢2a
vb ·raWab(ha) +

Pb

⌦b⇢
2

b

va ·raWab(hb)

�
= 0.

(2.26)

Although we can show algebraically that these properties are conserved, in practice they
are only conserved to the accuracy of the time-stepping scheme that is employed. It is
these conservation properties that makes SPH particularly useful for misaligned flows;
conservation of angular and linear momentum is independent of the inclination of the gas.

2.1.5 Errors and derivatives

The general form introduced in Equation 2.7 is exact when the kernel function used is a
� function. However, when we chose to use a different kernel with a finite radius an error
of order h2 is introduced. This is confirmed using a Taylor series expansion (Benz, 1990;
Monaghan, 1992), relying on the symmetry of the kernel to eliminate the error terms with
odd powers. The error associated with the density approximation can thus be reduced by
increasing the number of particles (the resolution in the simulation) which decreases the
smoothing length, h.

In order to truly be second order accurate, Price (2012) state that the two following
conditions should be satisfied:

X

b

mb

⇢b
Wab ⇡ 1; and

X

b

mb

⇢b
(rb � ra)Wab ⇡ 0. (2.27)

However, the amount to which these conditions are satisfied is determined by the distribu-
tion of particles within the kernel as well as the ratio of the smoothing length to particle
spacing. In general, a regular distribution of particles that are modelled with the com-
monly used kernels (e.g. the M

4

kernel introduced in Equation 2.6) lead to these being
well approximated. However, the error introduced by implementing a discrete summation
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with a kernel also results in errors in the calculation of the gradient of O(h2), and these
are generally bound by the same criteria (quantified using a Taylor series expansion, see
Price, 2012).

A full Taylor series expansion of the discrete summation version of the gradient function
identifies the particular form of these errors (e.g. see section 4.4 of Price, 2012). It is
thus possible to remove the O(h2) error in the calculation of the gradient by subtracting
the well defined error terms. While it is tempting to implement this in order to calculate
a more accurate gradient, the error is only reduced in the linear regime and it has been
shown that retaining the error instead leads to a significant advantage: the O(h2) error
is positive, meaning that particles feel a small repulsive force. Poorly arranged particles
simulated with this small repulsive force from the error will try to re-arrange themselves to
a more regular arrangement, as this represents a lower energy state. A better arrangement
of particles means that the above criteria (Equation 2.27) are better satisfied, which leads
to a better estimate in the gradient terms. Examples showing the effect of keeping versus
removing the O(h2) error term for calculating derivatives can be found in Figure 4 of Price
(2012) and Monaghan (2005).

Second derivatives calculated using compact kernels are not particularly accurate. Instead,
second derivatives (for a scalar A) are calculated with (Brookshaw, 1985);

r2Aa ⇡ 2

X

b

mb

⇢b
(Aa �Ab)

Fab

|rab| . (2.28)

Conceptually, this is the same as the first derivative of the kernel function divided by the
particle spacing. The advantage of this form is that it automatically meets the equivalent
criteria listed above and so provides a good density estimate. Equivalent terms for vector
second derivatives can be found in Español and Revenga (2003) and Monaghan (2005).

2.1.6 Shock capturing and dissipation terms

The equations that have been introduced so far do not include any dissipation, but this is
essential in order to correctly capture shocks. The jump that is present across a shock in
gas properties (for example, density) are effectively instantaneous. This physical scenario
cannot be well resolved in any code; in grid simulations the shock should be modelled
across one cell and in particle simulations there would be so few particles that it is similarly
poorly resolved. In order to models shocks numerically then, the shock is smoothed over
some length-scale by the implementation of shock capturing dissipation terms. In SPH,
shock capturing dissipation terms were first introduced by Monaghan (1997) but have been
extended by Price and Monaghan (2004) and Price and Monaghan (2005) to MHD and by
Laibe and Price (2014) to dust-gas mixtures. Two terms are introduced into the energy and
momentum equations; ⇧shock is a dissipation term that is used to give a correct entropy
increase at a shock front and ⇤shock is a viscous shock heating term used in the energy
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equation. These terms are defined by an introduced artificial viscosity which acts to damp
the particle motion and smooth shocks.

The qAV
a artificial viscosity term is in turn defined by two artificial viscosity parameters,

↵AV and �AV. The qAV
a term is described as (Price et al., 2017)

qAV
a =

8
<

:
�1

2

⇢avsig,avab · r̂ab, vab · r̂ab < 0,

0, vab · r̂ab � 0.
(2.29)

Here the signal velocity, vsig,a is defined as

v
sig,a = ↵AV

a c
s,a + �AV|vab · r̂ab|. (2.30)

The artificial viscosity ↵AV is distinct from the disc viscosity ↵, as the artificial viscosity
coefficient is strictly introduced to accommodate shocks. This artificial viscosity term takes
values between 0 and 1, but typically a minimum value of ↵AV

min = 0.1 is used to ensure
that the shock is being modelled correctly. To ensure that these dissipation terms only act
at the location of shocks and there is little dissipation in the absence of shocks, Morris and
Monaghan (1997) introduced a switch that evolves ↵AV according to

d↵AV
a
dt

= max(�r · va, 0)� ↵AV
a � ↵AV

min
⌧a

, (2.31)

where ⌧ = �decayh/vsig and �decay = 0.1. The first term increases the viscosity at the
location of shocks and the second term decreases it exponentially over the timescale ⌧ .
Other switches have been proposed (e.g. Cullen and Dehnen, 2010). The �AV term is used
to prevent approaching particles from penetrating each other and is independent of the
choice of ↵AV. As previous studies have shown (see Meru and Bate, 2011; Meru and Bate,
2012) and as we shall confirm in Chapter 3, using �AV � 2.0 is particularly important for
accurately recovering shocks when waves are propagating in an accretion disc.

In SPH form, the Navier-Stokes equations read (and including dissipation for shocks)

dv

a

dt
= �

X

b

mb


Pa

⌦a⇢2a
raWab(ha) +

Pb

⌦b⇢
2

b

raWab(hb)

�
+⇧shock,a + aext,a. (2.32)

The dissipation from shocks is encapsulated in the ⇧shock term which is in turn described
using the qAV

a artificial viscosity terms with

⇧

a
shock ⌘ �

X

b

mb


qAV
a

⌦a⇢2a
raWab(ha) +

qAV
b

⌦b⇢
2

b

raWab(hb)

�
. (2.33)
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A similar term is required in the energy equation in order to dissipate the jump in energy.
The term ⇤shock is added to the energy equation such that

dua
dt

=

Pa

⌦a⇢2a

X

b

mbvab ·raWab(ha) + ⇤shock,a. (2.34)

This term is expressed as

⇤shock,a = � 1
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. (2.35)

where the first term is the viscous shock heating and the second is the thermal conductivity
(note here we ignore terms relating to artificial resistivity). For the thermal conductivity,
the value ↵u = 1.0 is used and the signal velocity is distinct from Equation 2.30 (see Price,
2012). For problems that do not involve self-gravity, we use the following signal velocity
for the conductivity term

vusig =

s
|Pa � Pb|

⇢̄ab
. (2.36)

The importance of these shock terms is demonstrated by the canonical Sod shock tube
test shown in Figures 2.2 and 2.3. The initial conditions for the 1D Sod shock specify an
ideal gas with zero velocity with a pressure ratio of 10 and a density ratio of 8 on either
side of the shock. When artificial viscosity is not included the particles adjacent to the
shock become noisy and there is a characteristic blip in the energy and pressure due to
the contact discontinuity. Inclusion of the artificial viscosity smooths the particles around
the shock and including conductivity removes the temperature jump problem, providing
a better comparison to the exact solution (shown in red). The low resolution results in
Figures 2.2 and 2.3 are obtained using a 1D code but are analogous to the 3D examples in
Figures 8 and 9 in Price (2012) and in Price et al. (2017).

2.1.7 Physical viscosity

Contributions from bulk and shear viscosity are included with a viscous stress tensor. The
compressible Navier-Stokes equations can be written in tensor notation for each particle
as

dvia
dt

= �1

⇢

@Sij
a

@xja
+⇧shock,a + aext,a (2.37)

with the viscous stress tensor, S, given by

Sij
a =


Pa �

✓
⇣a � 2

3
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@vja
@xia

!
. (2.38)
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Figure 2.2: Sod shock tube example with negligible viscosity and conductivity terms. The
red line shows the exact solution and the particles are in black.
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Figure 2.3: The same as Figure 2.2 but including the artificial viscosity terms and the switch
described in Equation 2.31. The red line shows the exact solution and the particles are in
black. Both of these tests were demonstrated with a 1D code but equivalent tests can be

found in Price et al. (2017).



2.1. Smoothed particle hydrodynamics 61

Here the bulk viscosity is ⇣, shear viscosity ⌘ and the Kronecker-delta function �. To
calculate the influence of the viscous stress tensor the derivatives in Sij

a must be evalu-
ated and then the derivative of this is taken in the compressible Navier-Stokes equation
(Equation 2.37) — this can be accomplished by either taking the first derivative twice or
by taking a direct second derivative. The contribution to the energy equation from viscous
heating, ⇤visc, alters the energy equation to read

dua
dt

=

Pa

⌦a⇢2a

X

b

mbvab ·raWab(ha) + ⇤shock,a + ⇤visc,a. (2.39)

The two different methods of taking the derivatives required in Equation 2.37 and 2.38 lead
to two different expressions for the viscous heating term ⇤visc, described in depth below.

Physical viscosity with two first derivatives

In this method the first derivative is taken twice, introduced by Flebbe et al. (1994) and
Watkins et al. (1996). The Navier-Stokes equation thus becomes

dvia
dt

= �
X

b

mb

"
Sij
a

⌦a⇢2a
rj

aWab(ha) +
Sij
b

⌦b⇢
2

b
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aWab(ha)

#
+⇧

i
shock,a + aiext,a. (2.40)

In order to guarantee energy conservation and a positive definite entropy increase from
dissipative terms, the equation below is used to calculate the velocity gradients:

@via

@xja
=

1

⌦a⇢a

X

b

mbv
i
abrj

aWab(ha). (2.41)

With this description, Sij can be computed from Equation 2.38 and the viscous heating
term can be written as (Price et al., 2017)

⇤visc,a =
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, (2.42)

where ⇣⌫ = ⇣/⇢ and ⌫ = ⌘/⇢. Although this method is straightforward, it requires an
extra six values to be stored in the stress tensor for each particle (taking into account
symmetries).

Physical viscosity with direct second derivatives

Here the derivatives in the stress tensor and the Navier-Stokes equation are computed in
one step with a second derivative. Following Español and Revenga (2003), this can be
achieved by introducing two new variables ⌧ and . These are defined using the bulk and
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shear viscosity terms such that

⌧ =

5

4

⇣
⇣ +

⌘

3

⌘
and  =

1

12

(5⌘ � 3⇣) . (2.43)

The Navier-Stokes equation can then be re-written with these terms as
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and these are then used to define the viscous heating term directly as

⇤visc,a =

⌧a
⇢a

X

b

mb(vab · r̂ab)2Gab(ha) +
a
⇢a

X

b

mb(vab)
2Gab(ha). (2.45)

The advantage of this method is that it does not require any additional storage (whereas
the previous method does). Español and Revenga (2003) used this method and Price et
al. (2017) reported that little difference has been found between the two methods. As a
result we use the latter method in our calculations where physical viscosity is applied (e.g.
physical viscosity is used in our simulations exclusively in Chapter 5).

2.1.8 Summary of governing equations

The main equations used to move the particles and that dictate the evolution of their
properties are listed here, starting with the density summation (continuity equation) and
the smoothing length;

⇢a =

NX

b

mbWab(ha) and ha = hfact

✓
ma
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◆
1/3

. (2.46)

The equations of motion including shock and viscosity terms reads as
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raWab(ha) +
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Here the shock capturing dissipative term ⇧shock,a is defined in Equation 2.33. Including
contributions from viscous and shock heating, the energy equation becomes

dua
dt

=

Pa

⌦a⇢2a

X

b

mbvab ·raWab(ha) + ⇤shock + ⇤visc,a, (2.48)

with ⇤shock defined in Equation 2.35 and ⇤visc,a with either Equation 2.42 or 2.45.
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2.1.9 Equation of state

This set of equations is completed with an appropriate equation of state. For an ideal gas,
this is given by

Pa = (� � 1)⇢aua, (2.49)

where c
s

=

p
�P/⇢ and � is the ratio of specific heats. For a locally isothermal fluid with

P = c2
s

⇢ (most commonly used throughout this work) this reduces to

Pa = c2
s,a(Ra)⇢a, (2.50)

where R is the radius from the central object. By assuming a mean molecular weight of
the gas we could calculate the temperature, however this is not considered here. We note
that in locally isothermal case, the energy of each particle ua does not evolve through
Equation 2.48, but is instead calculated by Equation 2.49. The above equations are solved
for a set of particles using the SPH code phantom, described below.

2.2 Phantom

We use phantom, an efficient low-memory smoothed particle magnetohydrodynamics
(SPMHD) code. The current full details of this code can be found in Price et al. (2017).
phantom has been used for a number of astrophysical problems over most of the last
decade, including (but not limited to) studies of turbulence (Price and Federrath, 2010;
Liptai et al., 2017), simulations that include a mixture of dust and gas (Dipierro et al.,
2015; Dipierro et al., 2016) and non-ideal MHD problems (Wurster, Price, and Ayliffe,
2014; Wurster, Price, and Bate, 2017). From these studies phantom includes the ability
to model self-gravity, dust-gas mixtures, MHD (ideal and non-ideal), H

2

chemistry and
situations where mass is injected into the simulation.

In the case of accretion disc problems, phantom has been used to investigate the evolution
of warped discs (Lodato and Price, 2010), strongly inclined discs around a black hole (Nixon
et al., 2012; Nixon, King, and Price, 2012), inclined discs around a binary (Nixon, King,
and Price, 2013; Facchini, Lodato, and Price, 2013), binaries with inclined planets (Martin
et al., 2014a; Martin et al., 2014b; Martin et al., 2016) and the formation of discs through
tidal disruption events (Bonnerot et al., 2016; Coughlin et al., 2016; Coughlin et al., 2017).

We use a few standard features and parameters across most of our simulations. Unless
otherwise stated, we make use of the M

4

cubic spline with hfact = 1.2. We use individual
time-stepping (where particles are evolved on the longest time-scale possible) to speed up
the code, noting that this means that total energy is expected to be less well conserved
(Price et al., 2017). In the chapters relating to accretion discs we use the Morris-Monaghan
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↵AV viscosity switch but in later chapters we use the default Cullen and Denhen switch
(the Morris and Monaghan, 1997, switch was the default at the beginning of this work
and we wanted to be consistent across accretion disc simulations). The simulations in
Chapters 3 and 4 use a locally isothermal equation of state, Chapter 5 globally isothermal
and Chapter 6 an adiabatic equation of state. When physical viscosity is explicitly modelled
it is calculated with direct second derivatives. Modelling of the ↵ parameter is accomplished
from the numerical viscosity (and thus depends on ↵AV, discussed below). Time integration
in phantom uses the velocity Verlet method (a leapfrog integrator, Verlet, 1967; Price et
al., 2017).

The two features of phantom that are most important to the evolution of accretion discs
around rotating black holes are how the Lense-Thirring precession and disc viscosity are
modelled. Tests for these can be found Nealon, Price, and Nixon (2015) and Price et
al. (2017) but are included here for completeness. Here we describe the general setup
and analysis that is common to the following chapters and how these two features are
represented in phantom.

2.2.1 Arranging the particles

The initial conditions require the positions and velocities of the particles to be specified.
These are then used to calculate properties like the density on each particle before the
simulation is started. For an accretion disc, the particles are set with a purely azimuthal
velocity and a specified surface density profile. In the case of the torus, the particles are
initialised on a grid with zero velocity (and no external potential) and relaxed to allow the
particles to settle to a lower energy state.

Constructing a disc

For an accretion disc the initial particle positions are generated using a Monte Carlo
placement method. This is constrained by the surface density profile for an accretion disc
aligned with the black hole spin (Lynden-Bell and Pringle, 1974),

⌃(R) = ⌃
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!
, (2.51)

where the scaling parameter ⌃

in

is the surface density at the inner edge and the index
p constrains the steepness of the surface density profile. In turn, each particle is given a
random radius and angle in the x-y plane. From this position the sound speed is calculated.
In the case that the disc is isothermal,

c
s

(R) = c
s,in

✓
R

R
in

◆�q

. (2.52)
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where the index q relates to the disc thickness profile and the sound speed at the inner
edge c

s,in is related to ⌃

in

. Assuming the disc is Keplerian, the scale height at each radius
(H = c

s

/⌦k) can then be estimated. The z position of each particle is then chosen randomly
but restricted to be ±3

p
2H from the z = 0 plane such that the density perpendicular to

the disc has a truncated Gaussian profile.

Once the positions are set, the value of ⌃
in

is found by assuming the disc to be non self-
gravitating, corresponding to a mass ratio between the disc and black hole of ⇠10�4. This
assumed ⌃

in

value is used to construct and calculate the mass of the disc by discretising it
into concentric rings. The total mass of the disc divided by the number of particles then
determines the mass of each particle.

The velocities of the particles are set to give centrifugal balance, assuming that the vertical
and radial velocities are zero. In the case of a non-rotating black hole, this reduces to the
almost Keplerian expression

v� =

s
GM

r
+

1

⇢
rP . (2.53)

The equivalent expression for a rotating black hole is introduced in Chapter 3. Once the
particles have been set up with the correct surface density profile, sound speed and radial
velocity they are rotated through the inclination �. The inclined positions (x0, y0, z0) and
velocities (v0x, v0y, v0z) are related to the aligned (x, y, z) and (vx, vy, vz) through

x0 = x cos� + z sin�, v0x = vx cos� + vz sin�,

y0 = y, v0y = vy,

z0 = �x sin� + z cos�, v0z = �vx sin� + vz cos�.

(2.54)

After this rotation the velocity of the particles must be corrected to take into account
the rotation of the black hole, discussed in depth in Chapter 3. The setup routine also
calculates the ↵AV required for the calculated hhi/H value to achieve the specified ↵

SS

in
the disc.

Constructing a torus

The properties of the particles in a torus are constrained by the radius of the maximum
density, R

0

, the shape factor d, and the maximum density. The sound speed of particles
in the torus is constrained by the maximum density, ⇢

max

, using (Papaloizou and Pringle,
1984)

⇢
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2d

◆�n
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where n = (� � 1)

�1 is the polytropic index, R
0

is the cusp radius (radius of maximum
density), A is the polytropic constant and d is a shape factor that determines the cross
section of the torus. Before constructing the torus, the mass of each particle is estimated
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by summing the mass in spherical shells using the density prescription (Papaloizou and
Pringle, 1984)
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⇢
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� 1
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#
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Here ✓ is the angle above the z = 0 plane. The total mass found is then divided by the
number of particles to give the particle mass.

Rather than being arranged randomly, here the particles are set up on concentric shells.
Each shell has a grid in z and � superimposed on it, with a particle located at the in-
tersections of these grids. The separation of the shells in radius, �r, as well as the grid
density in �z and �� are all tuneable parameters. The number of shells is determined by
constructing the first shell at R

0

, then constructing each shell at r + �r outwards with
decreasing density, stopping when the density is less than zero. This process is repeated
starting at R

0

and moving inwards to build the inner half of the torus.

Velocities are added to the particles after the torus is built. The velocities are set to
balance pressure gradients using

v2� =

GMR
0

r2
, (2.57)

where r2 = x2+y2 is the cylindrical radius (tori do not have any z velocity dependence). In
general, because the tori is set up on a regular grid it is necessary to evolve it in a ‘relaxing
potential’ first — particles naturally do not like being arranged on a grid, and this process
allows them to relax to their preferred, lower energy arrangement. In this case, the initial
velocities are all set to zero and the torus is evolved using the effective potential

�relaxing = � 1

R3

+

R
0

2r2
, (2.58)

where the centrifugal force balances both the pressure gradient and the gravity of the
central point mass. This evolution continues until the potential of energy of the torus ceases
fluctuating, which normally takes less than five orbits at R

0

. After relaxing, velocities are
added according to Equation 2.57 and the potential updated to that of a point mass.

2.2.2 Comparing 3D simulations to 1D solutions

To measure the evolution of the surface density, tilt and twist profiles of an accretion
disc we follow an averaging process described in Lodato and Price (2010). The disc is
discretised into N concentric spherical shells, with constant radial thickness given by �R =

(R
out

� R
in

)/N . The averaged value of each property in the ith shell is then found by
summing over the k particles in that shell and then dividing by k. For example, the
surface density is described by (Lodato and Price, 2010)

⌃i =

P
k mk

⇡ [(Ri +�/2)2 � (Ri ��/2)2]
, (2.59)
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where k represents the number of particles in the ith shell. Similarly, the average angular
momentum components (and thus the tilt and twist of the disc) is calculated by

li =

P
k mkrk ⇥ vk

|Pk mkrk ⇥ vk| . (2.60)

Averaging the disc properties azimuthally like this reduces them to a radial dependence,
allowing them to be compared to 1D codes (such as that used in Chapter 3). Direct
comparison is achieved by ensuring that the 1D code and simulations are output at the
same time in the disc evolution.

This method is then extended to measure properties as a function of azimuthal angle.
Here the disc is split into M azimuthal wedges, with an angular width �� = 2⇡/M . The
averaged properties inside the jth wedge is again determined by averaging over the particles
contained within it. For example, the radially averaged density is given by

⇢j =

P
k ⇢k
k

, (2.61)

where k is the number of particles in the wedge. Radially averaging the particles allows
properties such as the density perturbation from the mean density to be plotted as a
function of the azimuthal angle.

2.2.3 Disc viscosity

We recall that the disc viscosity (parameterised by ↵) controls the evolution of the accretion
disc completely and thus modelling it correctly is critical. As described by Lodato and Price
(2010), there two ways to accomplish this. In either case, we seek to have a parameter ↵

SS

that can be set at run-time so that the viscosity in the disc can be specified. We note that
despite following convention, the notation here becomes confusing: ↵ is the disc viscosity,
↵
AV

is the artificial viscosity included in the numerical method to accommodate shocks
and ↵

SS

is the viscosity parameter set at run time in simulations. In this section we are
describing two methods to ensure that ↵ and ↵

SS

are the same. Testing the validity of
these two approaches to modelling the disc viscosity with phantom is the topic of Lodato
and Price (2010), so we do not conduct a test here — in particular, see their Figure 4.

Using the Navier-Stokes viscosity to represent disc viscosity

The more direct method is to calculate the viscous terms directly from the Navier-Stokes
equations. In this case, the parameter ↵

SS

is specified and defines the kinematic viscosity
for each particle as

⌫a = ↵
SS

c
s,aHa, (2.62)
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where Ha is the scale-height of the disc. The scale-height is calculated by assuming Kep-
lerian rotation such that

Ha =

c
s,a

⌦(Ra)
. (2.63)

The advantage of this method is that the shear viscosity is directly defined and is indepen-
dent of the smoothing length. However, because of the approximation used, this method
must be restricted to situations where the orbits are near Keplerian and the radius Ra is
physically meaningful (e.g. this method cannot be used around binary stars, Price et al.,
2017). Additionally, Lodato and Price (2010) showed that some bulk viscosity needs to be
included in order to capture shocks correctly and to prevent particle interpenetration.

Using numerical viscosity to represent disc viscosity

The second method used to represent disc viscosity relates the numerical viscosity imposed
in the Navier-Stokes equations to the bulk and shear viscosity of the fluid (Artymowicz
and Lubow, 1994; Murray, 1996). Español and Revenga (2003) showed that
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This form allows Equation 2.33 to be re-written in terms of Navier-Stokes terms. In
other words, the ⇧shock terms are the same as the Navier-Stokes viscosity with a constant
ratio between the bulk and shear viscosity (Murray, 1996; Español and Revenga, 2003;
Monaghan, 2005; Jubelgas, Springel, and Dolag, 2004; Lodato and Price, 2010; Meru and
Bate, 2012). In this form, qAV

a is redefined as
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(2.65)

Making use of the above Español and Revenga (2003) identity, this means the bulk and
shear viscosity can be written as (e.g. Lodato and Price, 2010)

⌫AV ⇡ 1

10

↵AVvsigh, (2.66)

⇣AV
⌫ ⇡ 1

6

↵AVvsigh. (2.67)

The above form may be used to represent the Shakura and Sunyaev (1973) viscosity by
using the artificial viscosity (that was introduced to accommodate shocks) ↵AV directly.
However, to do so the following needs to be assumed (Lodato and Price, 2010):

1. Viscosity should be applied to both approaching and receding particles (rather than
just approaching).
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2. The signal velocity is altered to vsig = c
s

.

3. Constant ↵AV is set and shock detection switches are turned off (so that the artificial
viscosity is constant for all particles).

4. The viscosity term is scaled by the factor h/|rab|.
The resultant prescription for the ↵

SS

viscosity is thus

↵
SS

⇡ 1

10

↵AV hhi
H

, (2.68)

where hhi is the shell averaged smoothing length (i.e. the average smoothing length as
a function of radius). For accretion discs, it is common to desire that ↵ be constant
throughout the disc (Lodato and Pringle, 2007). Since ↵AV is a constant, this can be
achieved by forcing the radial dependence of hhi and H to be the same. The radial
dependence of H is determined from its relation with the sound speed and angular velocity
profile such that

H =

c
s

⌦

/ R3/2�q, (2.69)

where q determines the profile of the sound speed. The shell averaged smoothing length
can be related to the density such that its radial dependence is

hhi / ⇢�1/3 /
✓
⌃

H

◆�1/3

/ R(p�q)/3+1/2. (2.70)

Equating these dependencies, we thus require that 3/2 � q = (p � q)/3 + 1/2 for ↵ to
be constant with radius. We adopt the convenient choice of p = 1.5 and q = 0.75 (i.e.
hhi / H / R3/4), unless otherwise stated.

2.2.4 Simulating wave-like accretion discs

To confirm that we can correctly describe the propagation of warps in the wavelike regime,
we use the test described by Fragner and Nelson (2010). They simulated a wavelike accre-
tion disc with a point mass potential and compared to a 1D calculation, finding agreement
at the ⇠ 10% level. We choose to compare to this 1D solution instead of the solution from
Equations 1.27 and 1.28 because the linear solution from Fragner and Nelson (2010) allows
the surface density to evolve, as occurs in our 3D simulations.

We conduct a simulation using the same parameters cited in figure 1 of Fragner and Nelson
(2010). Here H/R = 0.03, ↵ = 0.001 and an initial disturbance of 5� is used. In this case
we do not drive the evolution with Lense-Thirring precession, so that we can isolate the
behaviour due to warp propagation only. Our results are shown in Figure 2.4 using 10

6

and 10

7 particles. As the disc evolves, the disturbance splits into two waves travelling at
half the sound speed (as predicted by Papaloizou and Lin 1995); one inward and the other
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Figure 2.4: Evolution of bending waves in a disc, not subject to Lense-Thirring precession. The
green (106 particles) and red (107 particles) lines show the results from our 3D simulation. The
black line shows the results from the 1D code of Fragner and Nelson (Figure 1, 2010), using the
same initial parameters. The agreement between these two solutions confirms that SPH can be

used to describe the evolution of warp propagation in the wavelike regime.

outward. By the end of the simulation these have fully separated and are beginning to
interact with the boundaries.

The SPH solution shows the same behaviour as the 1D solution, and increasing the resolu-
tion reduces the discrepancy. However, at late times near the inner edge of the disc there
is increasing disagreement, most likely due to differences in the inner boundary condition.
For example, in the 1D code assumptions must be made about the surface density profile at
the inner boundary that are generated self-consistently in the 3D simulation. Although we
are not able to resolve these differences, we note that the lower resolution test conducted in
3D by Fragner and Nelson (2010) using 20,000 particles experiences a similar discrepancy
at the inner edge and that the propagation of the wave (represented by the radial location
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of the two peaks) is consistent with the 1D solution. This test confirms that phantom

can be used to describe the propagation of warps in the wavelike regime.

2.2.5 Modelling Lense-Thirring precession

In phantom, the precession effects due to the rotation of the black hole are modelled
using a post-Newtonian approximation. In other words, we use the Newtonian potential
due to a point mass and subsequently add a first order correction (in v/c) to mimic the
effect of the black hole rotation. In our notation, this is represented by the external forces
expressed as

aext = �r�+ v ⇥ h, (2.71)

where � = �GM/r. The second term is the gravo-magnetic acceleration and is propor-
tional to the spin of the black hole. This term is estimated using a dipole approximation
with

h ⌘ 2S

R3

� 6(S · r)r
R5

, (2.72)

where S = a(GM)

2

k/c3 and k is a unit vector parallel to the black hole spin. A com-
plication to the implementation in the code is that we use a leapfrog integrator in the
‘Velocity-Verlet’ form, where the positions and velocities of the particles are updated from
time tn to tn+1 according to

v

n+ 1
2
= v

n
+

1

2

�tan, (2.73)

x

n+1

= x

n
+�tvn+ 1

2 , (2.74)

v

n+1

= v

n+ 1
2
+

1

2

�tan+1. (2.75)

However, the acceleration caused by Lense-Thirring precession depends on velocity. Thus
(2.75) becomes implicit. This can be easily solved by writing the corrector step in the form

v

n+1

= v

n+ 1
2
+

1

2

�tan+1

pos +

1

2

�t
�
v

n+1 ⇥ h

n+1

�
, (2.76)

where a

n+1

pos contains the position-dependent terms. This forms a set of three linear equa-
tions for each component of vn+1, that we solve analytically by inverting the resulting 3 x
3 matrix.

We also perform a simple test of the Lense-Thirring precession. We simulate a disc con-
sisting of test particles with no viscosity and zero sound speed (i.e. ↵ = c

s

= 0) subject to
Lense-Thirring precession. The initial velocities are set including a correction due to the
Lense-Thirring precession, discussed in depth in Chapter 3, and the disc is inclined at 30�.
We then calculate the precession in the disc as a function of the radius using the procedure
outlined in Appendix A.
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Figure 2.5: Precession timescale measured from an inviscid and pressureless 3D disc as a function
of radius (black circles), compared to the expected Lense-Thirring precession (red line). Rin = 4Rg.

Figure 2.5 shows the comparison between the precession measured from our disc and the
predicted precession in the disc, given by t

precession

= R3/(2a). We find agreement within
measurement uncertainties throughout the disc.

2.3 Limitations

The accuracy of all numerical techniques is dictated by the resolution and time-stepping
scheme used. As we showed in this chapter, calculation of variables like the density is
accurate to O(h2), so we can repeat the simulation at multiple resolutions to quantify the
effect of this error. While the time-stepping scheme does introduce an error in the conserved
variables, phantom conserves linear and angular momentum to machine precision when
all particles are evolved on the same time-step (and a relative error of ⇠ 10

�3 in total
energy when individual time-steps are used Price et al., 2017).

Particle methods offer a clear advantage for investigating highly inclined discs, as they do
not suffer from orientation issues found in mesh-based approaches. However, magnetohy-
drodynamic simulations of tearing regions using particle methods is currently untenable,
as there is low resolution at the location of the disc break (by definition) but accurate
simulations including magnetic effects require extremely high resolution. These restric-
tions present a major problem: particle methods are able to simulate at inclinations that
result in tearing but cannot include magnetic effects, while grid based methods are able
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to include magnetic effects but cannot accurately simulate at such high inclinations. This
limits us to using purely hydrodynamic simulations currently, and although this is justified
in low inclination discs (as we will show in Chapter 4) this has not yet been confirmed in
tearing discs.

phantom is specifically limited by its ability to represent relativistic effects, as it currently
implements a post-Newtonian approximation. Whilst this approximation is valid at mod-
erate distances from the black hole, the rate of precession . 10Rg can be incorrect by up
to 50%. A full general relativistic implementation is outside the scope of this work.

The physical extent of the discs were are able to simulate is also problematic, as a larger
disc is more computationally expensive for the same resolution. In Chapter 5 we consider
applying our findings to low mass X-ray binaries, which have discs that are of the order
of the separation of the binary (1000s of R

g

). Although this is far too large to simulate,
in Chapter 3 we discuss that on the condition that the outer radius is large enough to
demonstrate tearing, the disc behaviour we identify is independent of the location of the
outer radius. On this basis we expect our results to be consistent with discs that have a
larger radial extent than we can currently simulate.

The final major limitations faced in this work were computational. As discussed in later
chapters, the accretion disc must have an outer radius well outside the tearing radius and
be well resolved (hhi/H . 1) in order to demonstrate tearing — but these are compet-
ing requirements as increasing the outer radius for a given number of particles decreases
the resolution in the disc. Compounding this problem, hundreds of orbits at the inner
edge are required to observe the evolution of the disc, making the simulations computa-
tionally expensive. In Chapter 3 achieving a compromise between these requirements was
manageable, but in Chapter 5 this caused major difficulties.
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Chapter 3

On the Bardeen-Petterson Effect in
black hole accretion discs

Does the Bardeen-Petterson Effect occur in numerical simulations of inclined discs? There
is currently no consensus. Here we re-examine the evolution of inclined discs and hence
the behaviour of the Bardeen-Petterson Effect using the SPH code Phantom. Comple-
mentary to previous numerical studies, we focus on the disc regime where communication
of disturbances in the disc is governed by pressure waves. As previous analytical stud-
ies in this regime have been restricted to the linear inclinations, this chapter begins by
considering small inclinations before moving on to larger, non-linear inclinations.

Two mechanisms that may prevent the Bardeen-Petterson Effect from occurring are consid-
ered. First, the possible misalignment of the inner disc due to the development of a steady
state oscillatory tilt near the black hole as predicted analytically by Lubow, Ogilvie, and
Pringle (2002). Second, we investigate the ability of the disc to accrete material misaligned
from large radii, comparing to previous simulations by Fragile et al. (2007).

The possibility of disc tearing is investigated in the non-linear regime. Focussing on a
similar study by Nelson and Papaloizou (2000), we quantify the resolution criteria for disc
breaking. Complementary to a study by Nixon et al. (2012) in the diffusive regime, we
consider the mass accretion rate of broken and tearing discs. Finally, we investigate the
location of the tear and the width of the rings torn.

A caveat is that we do not consider magnetic fields, despite it being widely accepted that
magnetorotational instability (MRI) is the controlling mechanism for viscosity in the disc
(Balbus and Hawley, 1991). However, magnetic fields have been shown to have little
effect on the geometrical evolution (Sorathia, Krolik, and Hawley, 2013) meaning this
can be accurately approximated by a viscous evolution (or by the ‘↵ model’). Following
Nelson and Papaloizou (2000), we adopt a post-Newtonian approach instead of general
relativity (GR). One of the findings of this chapter is that this approximation must be
considered carefully in order to capture the combination of relativistic effects that lead to
tilt oscillations.
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Figure 3.1: The steady state tilt profile found by LOP02, as in their Figure 3 and shown to
the same time (at eight equally spaced times) but with a logarithmic scale for clarity in the inner
region. The original apsidal and nodal frequencies are used in the left panel (Equations 3.5 and 3.6)
with the same sign. In the right panel we have reversed the sign of the nodal frequency so the
precession frequencies have different signs, and there are no oscillations present in this steady state
(similar to LOP02, Figure 6). Here the tilt is shown as a fraction of the maximum tilt, the initial

condition is shown with the dashed line and Rin = 4Rg.

3.1 Does the Bardeen-Petterson effect hold in the wavelike
regime?

We consider three possible ways that the Bardeen-Petterson effect may be violated in
wavelike discs. Firstly, radial oscillations in the tilt of the disc may prevent the disc from
aligning at the inner edge. Secondly, the smooth transition between aligned and misaligned
material may be broken if the disc tears, as has been observed in the diffusive regime (Nixon
and King, 2012; Nixon et al., 2012). Finally, it may not be possible for the disc to find a
steady state if the disc is relatively thick and the viscous time is short.

3.1.1 Is the inner disc aligned?

Lubow, Ogilvie, and Pringle (2002) (LOP02) considered warps in geometrically thin, almost
Keplerian discs described by a surface density ⌃(R) and angular velocity ⌦(R). The scale
height of the disc is given by H(R) ⌘ cs/⌦, where cs(R) is the sound speed in the disc.
Their description is one dimensional in the sense that the total angular momentum in
the disc L is a function only of the cylindrical radial coordinate, R. The disc is then
discretised into a series of rings, each described by the orientation of its tilt and twist
angle. The tilt angle � is measured from the z-axis, and if this angle varies with radius
the disc is considered to be warped. The twist angle � is measured from an axis that is
perpendicular to the z-axis, and similarly, if the twist angle varies with radius the disc
is twisted. These two angles can be related to the unit angular momentum vector by
l = L/L = (cos � sin�, sin � sin�, cos�) (Pringle, 1996).

We assume an ↵ disc viscosity where ⌫ = ↵csH (Shakura and Sunyaev, 1973). For accretion
discs with ↵ . H/R, the warp propagates as a dispersive wave (Papaloizou and Pringle,
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1983; Papaloizou and Lin, 1995). Assuming that the disc is nearly Keplerian and not
self-gravitating, the equations of motion describing the wave propagation are (Lubow and
Ogilvie, 2000; Lubow, Ogilvie, and Pringle, 2002)

⌃R2

⌦

@l

@t
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1

R

@G
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+T, (3.1)
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Here  is the radial epicyclic frequency, G represents the internal horizontal torque in the
disc and T is the external torque per unit area. LOP02 chose a complex representation
where the warp is given by W = lx + ily and the internal torque as G = Gx + iGy. This
allows Equations 3.1 and 3.2 to be rewritten as

⌃R2

⌦


@W

@t
� i

✓
⌦

2 � ⌦

2

z

2⌦

◆
W

�
=

1

R

@G

@R
, (3.3)

@G

@t
� i

✓
⌦

2 � 2

2⌦

◆
G+ ↵⌦G =

PR3

⌦

4

@W

@R
. (3.4)

These equations describe the propagation of a warp in the linear regime, and were solved
numerically by LOP02 to find the steady state shape of the disc around a Kerr black hole.
In this case the apsidal and nodal precession frequencies in the disc (scaled by ⌦) can be
approximated to first order from the Kerr metric as (Kato, 1990)
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where Rs = 2GM/c2 and a is the black hole spin. These frequencies are used in the
solution by inserting them directly into Equations 3.3 and 3.4. An example of the solution
by LOP02 is shown in the left panel of Figure 3.1, with the same parameters used in
their work. The steady state solution is formed from the interaction of the ingoing and
the outgoing bending waves, where the outgoing waves are created by the reflection of
the ingoing waves at the inner boundary (LOP02). Here the oscillatory behaviour of the
steady state near the inner edge is clear, as is the non-zero tilt at the inner edge.

It is known that the relative signs of the apsidal and nodal frequencies determines whether
the solution is oscillatory or not (Ivanov and Illarionov, 1997). The frequencies used by
LOP02 have the same sign, leading to radial oscillations in the steady state tilt profile.
We confirm that the oscillatory profile is dependent only on the signs of the frequencies
by changing the sign of ⇣LOP (equivalent to modelling a retrograde black hole, see LOP02,
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Figure 6) in the right hand panel of Figure 3.1. The two solutions evolve in the same
manner with the exception of the oscillations near the inner edge.

While one is free to set the precession frequencies directly when solving Equations 3.3 and
3.4, in 3D the nodal precession can be induced directly (e.g. using the post-Newtonian
description of Lense-Thirring precession from a spinning black hole) and the apsidal pre-
cession (i.e. Einstein precession) arises indirectly from the central potential. Hence, it is
possible for the choice of potential to preclude oscillations from the steady state solution
in 3D simulations. It is then not surprising that simulations that do not take the apsidal
precession into account as above also do not report tilt oscillations (Sorathia, Krolik, and
Hawley, 2013). However, simulations by Nelson and Papaloizou (2000) did make use of a
potential that resulted in apsidal and nodal precession frequencies with the same sign but
did not find oscillations. Here we use high resolution simulations along with a potential
that leads to precession frequencies of the same sign to investigate this discrepancy.

3.1.2 When does the disc break?

The derivation of Equations 3.1 and 3.2 assumes that the inclination of the disc is linear.
From previous results in the non-linear regime we would anticipate that the disc may break
when the external torque applied to the disc is stronger than the internal torque. Here
the internal disc communication is governed by a combination of pressure and viscosity.
The viscous torque that acts between successive, discrete rings in the disc is given by
(Lynden-Bell and Pringle, 1974)

G = 3⇡⌫⌃(GMR)

1/2. (3.7)

Lense-Thirring precession causes the rings that make up the disc to precess. Per unit area
on the disc, this torque is given by (e.g. Nixon et al., 2012)
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where Rg = GM/c2, a is the black hole spin and � is the angle between the plane of the
disc and the direction of the black hole spin. If the external torque applied to the disc is
greater than the internal torque maintaining the disc, the rings will precess independently
faster than the disc is able to communicate the precession (Nixon et al., 2012). This will
result in the disc being separated and breaking, perhaps into differentially precessing rings.
Assuming that the disc has no initial warp and that internal communication is dominated
by viscosity, a comparison of the above torques predicts a maximum radius that it is
possible for this to occur (Nixon, King, and Price, 2013)
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This approximate relationship places an upper bound on the breaking radius of the disc
at a given angle. For the typical parameters used in this paper, we have H/R = 0.05,
Rout = 40Rin, ↵ = 0.01 and a = 0.9. At the outer edge of the disc, the above relation then
reduces to

Rbreak . 180 (sin�)2/3Rg. (3.10)

This predicts that tearing may occur in the disc for inclinations of more than 6

�. At this
inclination or greater one would expect the discs to break rather than align. However, in
the bending wave regime that we consider here, the internal communication is dominated
by pressure. In this case we can estimate the radius at which the disc will break by
comparing the sound crossing and the precession timescales in the disc. Following Nixon,
King, and Price (2013) and assuming that the disc is inviscid (and hence not taking into
account any wave damping) we find that

Rbreak,t .
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H

◆
2/3

Rg. (3.11)

As Equation 3.10 predicts a smaller breaking radius than Equation 3.9, we expect the disc
to break closer to the black hole than Equation 3.9.

3.1.3 Can the disc accrete misaligned?

A further assumption made in developing Equations 3.1 and 3.2 was that the viscous
timescale in the disc is much larger than any other timescale, equivalent to assuming that
the disc is replenished from radii outside the computational domain, or ↵ ⌧ H/R (Lubow,
Ogilvie, and Pringle, 2002). This implies that the surface density profile does not change
during the evolution of these equations, which is valid until the warp reaches the outer
boundary. We can quantify this approximation during the evolution of the equations by
considering the ratio of the wave and viscous timescales (as in Lodato and Pringle, 2006;
Facchini, Lodato, and Price, 2013)
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For ↵ < H/R ⌧ 1, the above relation implies that the viscous time is much greater than the
sound crossing time that the warp communicates, so we can neglect mass accretion. Indeed,
LOP02 neglected the evolution of the surface density profile completely in their solution,
equivalent to assuming no mass is accreted at all. However for their disc H/R = 0.1030,
and so it is not clear whether this assumption holds. Additionally, the viscous time can be
written as

t⌫ =

1
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✓
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R

◆�2

. (3.13)

In this form, it is clear that increasing the aspect ratio of a disc results in a significant
decrease in the viscous time. At a given radius R, when the viscous timescale is comparable
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to (or smaller than) the precession timescale at that same radius, accretion dominates. In
thick discs (or tori) it may then be possible for the material in the outer disc to be accreted
before it has a chance to align. The tilt profile in this case will not reach a steady state
but instead be determined by the inward flux of angular momentum. Thus in relatively
thick discs no tilt oscillations would be expected.

3.2 Numerical Method

3.2.1 Potentials

We make use of two gravitational potentials in this work. The first was previously intro-
duced by Nelson and Papaloizou (2000), referred to as the Einstein potential (see their
Equation 8). In our notation, with r as the spherical radius, it is given as

�E(r) = �GM

r

✓
1 +

3Rg

r

◆
. (3.14)

This potential was introduced because it prevents the gravitational force tending to infinity
as the radius decreases. However, it also results in the correct apsidal precession frequency
at large distances from the black hole and has the same sign as the nodal frequency (Nelson
and Papaloizou, 2000). This is in contrast to the standard Keplerian potential

�(r) = �GM

r
. (3.15)

The standard potential (3.15) was used in all of the non-linear simulations, except for
Figures 3.2–3.5 where (3.14) was used.

While a full GR treatment would be preferred, it is outside the scope of this work. However,
the precession frequencies modelled using the Einstein potential are within ⇠ 10% outside
of ⇠ 10R

g

(we demonstrate this later, see Figure 5.1). Inside of this radius, care needs
to be taken as both the apsidal and nodal precession frequencies underestimate the values
predicted by the Kerr metric (the worst is the apsidal precession at the ISCO, which is
roughly half of the expected value). By contrast, we will demonstrate that the Keplerian
potential (i.e. Equation 3.15) is less accurate in modelling the precession frequencies.

3.2.2 Precession Frequencies

We calculate the apsidal and nodal precession frequencies in our disc using the standard
(Newtonian) definitions for the epicyclic and vertical frequencies,

2 = 4⌦
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), (3.16)
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Following Nelson and Papaloizou (2000), we compute these using an effective potential
that takes in to account the right hand side of Equation 2.71,
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This potential accounts for both the normal Keplerian potential and the correction due to
the v ⇥ h term, where �(r) could be represented by either Equation 3.14 or 3.15. Firstly
considering the Einstein potential, using Equations 3.16 and 3.17 the post-Newtonian ap-
sidal and nodal precession frequencies (scaled by ⌦) are given by
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As the signs of the apsidal and nodal precession frequencies here are the same throughout
the disc, this potential will allow an oscillatory profile to develop. Considering now a
standard post-Newtonian potential, given by Equation 3.15, we find the apsidal and nodal
precession frequencies to be (again scaled by ⌦)

⌘PN =

3S

2

p
GMr3/2 � 4S

, (3.22)

⇣PN =

�4S

2

p
GMr3/2 � 4S

. (3.23)

Here we note an important difference with respect to the solution used by LOP02. As the
signs of the precession frequencies here are opposite, the steady state tilt profile will not
have oscillations if the potential in Equation 3.15 is used.

3.2.3 Initial Conditions and Scope

Unless otherwise stated, the discs presented all made use of 107 particles, and simulations
with 10

6 and 10

5 were also conducted to check convergence. We note that each time
the resolution is changed between simulations with otherwise the same parameters, the
artificial viscosity is altered according to the scaling described in Lodato and Price (2010)
so that the discs have the same ↵SS independent of which resolution is used. The locally
isothermal sound speed in the disc was set to cs(R) = cs,in(R/Rin)

�q and the surface
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Simulation � (�) a ↵ ↵AV

PS1 30 0.1 0.01 0.395
PS2 30 0.1 0.03 1.186
PS3 30 0.3 0.01 0.395
PS4 30 0.3 0.03 1.186
PS5 30 0.5 0.01 0.395
PS6 30 0.5 0.03 1.186
PS7 30 0.7 0.01 0.395
PS8 30 0.7 0.03 1.186
PS9 30 0.9 0.01 0.395
PS10 30 0.9 0.03 0.186
A1 0 0.9 0.01 0.395
A2 15 0.9 0.01 0.395
A3 30 0.9 0.01 0.395
A4 45 0.9 0.01 0.395
A5 60 0.9 0.01 0.395
A6 90 0.9 0.01 0.395
A7 120 0.9 0.01 0.395
A8 150 0.9 0.01 0.395

Table 3.1: Simulation parameters, including the spin (a) and Shakura and
Sunyaev (1973) viscosity (↵) and artificial viscosity (↵

AV

). Unless otherwise
noted, the accretion discs also had H/R = 0.05, an outer radius of 40Rin

and made use of 107 particles.

density profile ⌃(R) = ⌃in(R/Rin)
�p, where p = 3/2 and q = 3/4 to give a constant ↵

viscosity in the disc and uniform resolution (Lodato and Pringle, 2007). Each disc was
initially set up aligned to the black hole spin, with the particles arranged using a Monte
Carlo placement method. Each particle was then rotated (with respect to the centre of
mass) by the inclination angle and assigned a velocity according to the following expression
derived from Equation 2.71,

v� =

v4k
c3

"s

a2 +
R3

R3

g
� a

#
cos(�), (3.24)

where vk is the Keplerian orbital velocity. The discs were therefore initially tilted to the
black hole spin, but not warped. The results presented below have time shown in orbits
at the inner edge and show the tilt as a function of radius only. This was found from the
simulations using the method outlined in Section 3.2.6 of Lodato and Price (2010) where
we used N = 300 spherical shells (see Chapter 2). For all of the simulations the inner
radius was set as Rin = 4Rg, in order to compare to the LOP02 1D code. At small radii
we note that the absence of GR limits the validity of our results, and indeed the need to
carefully account for relativistic effects is one of our findings.
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Figure 3.2: Time evolution of the angle between the disc plane and the black hole spin as a
function of radius in a 3D disc subject to Lense-Thirring precession, using similar parameters
to Lubow, Ogilvie, and Pringle (2002) and the same times as in Figure 3.1. The shape of this
profile depends sensitively on the surface density at the inner edge and hence on resolution (see

Figure 3.4). The right panel shows a zoom-in of the inner disc.

Figure 3.3: Cross-section view of the steady-state tilt oscillation formed in a disc initially inclined
at 15

� to the black hole spin (spin axis is vertical with respect to the page, i.e. along the z axis).
The colour scale shows density with white being high density. Disc parameters are the same as in

Figure 3.2, but with a larger initial inclination.

3.3 Results

3.3.1 Tilt Oscillations

We first investigated whether or not the tilt oscillations predicted by Lubow, Ogilvie, and
Pringle (2002) are physical using 3D simulations. The disc is initiated with a constant
misalignment of 3�, within the linear regime required by Equations 3.1 and 3.2. We chose
parameters for our simulation similar to that of Lubow, Ogilvie, and Pringle (2002), with
the exception of the surface density profile, the black hole spin and the disc thickness.
Additionally, we made use of the Einstein potential outlined in Equation 3.14, in order
to get precession frequencies of the same sign (Equations 3.19 and 3.20). We set p = 1.5

and q = 0.75 so that the disc is uniformly resolved, as discussed in Section 3.2.3. The
disadvantage is that this results in lower amplitude oscillations in the 1D code. To combat
this we encourage larger amplitude oscillations by increasing the spin to a = 0.9 and
decreasing the disc thickness to H/R = 0.05. The evolution of the tilt as a function of
radius is shown in Figure 3.2 from a simulation employing 10

7 particles.
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Figure 3.4: Resolution study showing the inclination (tilt angle) and surface density (in units of
c4/G2M) as a function of radius at the final time of the disc shown in Figure 3.2, using 10

5 (long
dashed green), 10

6 (short dashed red) and 10

7 (solid black) particles. Increasing the resolution
better resolves the surface density profile at the inner edge, which strongly affects the final tilt

profile found.

One of the main differences between this simulation and those conducted by Nelson and
Papaloizou (2000) is the angle of inclination. While our 3

� initial tilt was well in the
linear regime required by the analytic description in Equations 3.1 and 3.2, the minimum
inclination used by Nelson and Papaloizou (2000) was 10

�. We explore the effect of non-
linear inclinations in this potential by misaligning the same disc at 15�. Figure 3.3 shows a
cross section of density in the inner disc from this calculation. The tilt profile after ⇠ 600

orbits is qualitatively similar to Figure 3.2, showing the same evolution. The quantitative
tilt evolution is resolution-dependent, but nevertheless a non-zero tilt and oscillations were
found at both medium (106 particles) and high (107 particles) resolution.
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Figure 3.5: The effect of bulk viscosity on the final tilt of the accretion disc. The solid, black
line uses the same parameters as simulation E1 of Nelson and Papaloizou (2000), with 5.2 ⇥ 10

4

particles and has no bulk viscosity. Bulk viscosity is used with both the red (short dashes, 5.2⇥10

5

particles) and green (long dashes, 5.2 ⇥ 10

6 particles) lines. At higher resolution and with bulk
viscosity tilt oscillations are resolved, but the innermost parts of the disc remain unconverged.

Here Rg = 0.04 and the disc has been evolved until the warp has reached the outer edge.

Figure 3.4 shows a resolution study of the tilt and surface density profiles using 10

5, 106

and 10

7 particles. The main artefact of low resolution is that accretion occurs faster and as
a result there is less mass at the inner edge in the lower resolution calculations. Comparison
of the surface density profiles indicates that ⌃(R) is not fully converged near the inner edge,
which has a dramatic effect on the tilt profiles. However, in all discs there is a non-zero
tilt at the inner edge and in the 10

6 and 10

7 discs radial oscillations are observed. The
wavelength of these oscillations is consistent with the criteria given by Lubow, Ogilvie, and
Pringle (2002). Even using the precession frequencies and surface density profiles in the
1D code that are appropriate to the 3D simulations (Equations 3.19 and 3.20) still does
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Figure 3.6: Structure of the disc with a = 0.9 and ↵ = 0.03 at increasing numerical resolution
(left to right). At low resolution the Bardeen-Petterson Effect is observed, similar to the results
of Nelson and Papaloizou (2000), but at high resolution the disc distinctly tears into two separate

sections. The colour indicates density, with white being highest.

not provide a close match with the 3D results. It is not clear if this discrepancy is due
to non-linear fluid effects, e.g. as discussed by Nelson and Papaloizou (2000), or simply
requires higher resolution calculations to obtain numerically converged results. However it
is clear that with the appropriate potential and system parameters, the disc can display
radial tilt oscillations as predicted by Ivanov and Illarionov (1997) and LOP02.

Despite the resolution-dependence of our results, we were still able to observe tilt oscilla-
tions at resolutions used by Nelson and Papaloizou (2000) so long as Einstein precession
was accounted for. We further investigated whether this might be due to the differences in
the artificial viscosity parameters used, as we set the Von Neumann-Richtmyer viscosity
coefficient �AV

= 2.0 (a term that prevents particle interpenetration and is important in
describing shocks, see Price 2012) for all of our simulations whilst Nelson and Papaloizou
(2000) used �AV

= 0. A nonzero �AV viscosity is required to prevent particle penetration
(Monaghan, 1989) and the absence of bulk viscosity is known to be problematic in disc
simulations (Lodato and Price, 2010). Thus with �AV

= 0, the simulations of Nelson
and Papaloizou (2000) might not have captured the wave interactions that create the tilt
oscillations and the absence of bulk viscosity. To check this we conduct a low-resolution
simulation equivalent to simulation E1 of Nelson and Papaloizou (2000) and �AV

= 0.
Figure 3.5 shows the results (black solid line), compared to an equivalent simulation with
�AV

= 2 (red dashed line) and also compared to a higher resolution simulations. At high
resolution we find tilt oscillations regardless of the value of �AV (green solid and blue
dotted lines) but we find that using �AV

= 0 can indeed erase the tilt oscillations at low
resolution. The lower panel of Figure 3.5 shows that this is not simply due to the effect
on ⌃(R), since two of the calculations show very similar surface density profiles but rather
different evolutions of the inner disc tilt.
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Figure 3.7: Resolution length as a fraction of the disc scale height (hhi/H) for the three resolu-
tions (105 in green long dashes, 106 in short red dashes and 10

7 in solid black) shown in Figure 3.6.
As disc breaking occurs on length scales smaller than the scale height of the disc, the lowest reso-
lution simulations here cannot resolve breaking behaviour (as the resolution length is greater than
the scale height throughout the disc). The two higher resolution simulations are able to resolve

this behaviour.

3.3.2 When does the disc break?

Bardeen-Petterson Alignment

A second possible violation of the Bardeen-Petterson picture may be that the disc breaks
instead of maintaining a smooth transition between an aligned inner disc and a misaligned
outer disc. In order to investigate this, we simulate a range of discs at 30

� whilst varying
↵ and a according to the list PS1-10 in Table 3.1. Here, for simplicity, we make use
of a standard potential given by Equation 3.15, and hence do not expect any oscillatory
behaviour.

Figure 3.6 shows a 3D rendering of density in one such simulation with a = 0.9 and
↵ = 0.03 at three different resolutions (PS10). Except for the potential used, this disc has
similar parameters to simulation E3 of Nelson and Papaloizou (2000) which made use of
52, 000 particles across a larger radial extent than our simulations, representing a lower
resolution than any of those shown in Figure 3.6. At our lowest resolution (left panel of
Figure 3.6), we also observe the inner disc aligning and smoothly transitioning to an outer,
misaligned disc (see their Figure 12). However, at higher resolutions this behaviour is no
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Figure 3.8: Disc tearing for different spin and viscosity combinations, with the same initial tilt
of 30� and 10

5 particles shown in green (wide dashes), 106 particles shown in red (dashes) and 10

7

particles shown in black (solid). At the lowest resolution we observe the Bardeen-Petterson effect
complete with a smooth transition for most discs. Increasing the resolution results in disc tearing
(Bardeen-Petterson alignment) independent of our choice of viscosity or spin. As we do not include

the affect of Einstein precession, we do not observe radial tilt oscillations in these discs.

longer observed — the disc instead breaks into two distinct sections, with the inner disc
aligned with the black hole spin and the outer disc remaining misaligned.

Figure 3.7 shows that resolving disc breaking is mainly a question of resolving the disc
scale height. For the lowest resolution simulations the resolution length is greater than the
scale height of the disc and hence disc breaking (on a length scale smaller than H) cannot
be resolved and a smooth transition is observed. By contrast, the two higher resolutions
are able to resolve disc breaking. Figure 3.8 shows the same resolution study performed
in Figure 3.6 for all of our discs at 30

�, where the green line shows simulations that made
use of 10

5 particles, red shows 10

6 and black shows 10

7 particles. The discs are shown
after 1500 orbits at the inner edge, allowing the warp to propagate all the way to the outer
radius. Increasing the spin of the black hole increases the rate at which the innermost part
of the disc aligns.

Across all of the parameters chosen here, increasing the resolution changes the behaviour
from the smooth tilt profile observed by Nelson and Papaloizou (2000) to a steepening
of the tilt profile and ultimately a disc that is broken into distinct sections. The higher
resolution results show an aligned inner edge, a misaligned outer edge and a sharp tilt



3.3. Results 89

profile connecting these, representing a break in the disc. The discs simulated with lower
spins appear to steepen and tear faster than those with higher spin as the break occurs
further out (and hence a longer precession time). This is observed most clearly between
the low viscosity, high spin cases. At a = 0.5, the tilt steepened and the disc tore before
the end of the simulation. For the disc with a = 0.7, the tilt began steepening near the
end of the simulation but was not able to separate, whilst at a = 0.9 the disc has not yet
begun steepening. We have confirmed that this is the case by extending the high resolution
simulations of the a = 0.9 case, and indeed observed steepening to occur at later times.

As with the previous simulations, Figure 3.8 demonstrates that the simulations are not
fully converged, especially when considering the low spin cases (a < 0.5). For these discs,
the discrepancy in the inner tilt is again due to the mass accreted at the inner edge of the
disc. At low resolutions the inner part of the disc is accreted faster, resulting in less mass
near the inner edge. The same Lense-Thirring torque then acts on less mass, and is thus
not able to align the disc to the same extent. At increasing spins this effect is observed
less, as the higher spin provides a larger torque and so even the lowest resolution discs are
able to align. In the discs with a < 0.5, increasing the resolution leads to a more distinct
tear in the disc suggesting that our results are consistent. Hence we can be confident that
these discs do tear, and present an upper limit on the radius at which this occurs. As the
tearing occurs outside of the radius where oscillations were found in Section 3.3.1, using
similar parameters, this behaviour should not be affected by our choice of potential.

Disc Tearing

To investigate the dependence of disc tearing on the misalignment between the disc and
the black hole spin in the wavelike regime we simulated a suite of discs at different in-
clinations. We again make use of the traditional post-Newtonian approximation given by
Equation 3.18. We held ↵ = 0.01 and a = 0.9 constant and varied the inclination of the
disc between 0

� (aligned) and 150

�, noted in Table 3.1 with A1-8. Figure 3.9 shows these
simulations after more than 1500 orbits measured at the inner edge. Each disc was initially
tilted but not warped. As the simulation progressed, a warp evolved in response to the
Lense-Thirring torque and in the higher inclination cases resulted in the disc breaking.

At 15

� (top right of Figure 3.9) the disc was observed to smoothly align to the spin of
the black hole. At the end of the simulation, the tilt of the disc was consistent with the
Bardeen-Petterson effect and is similar to results seen in previous simulations at 10

� by
Nelson and Papaloizou (2000). Extending the lower resolution version of this simulation
(with 10

6 particles) for twice as long shows that the disc continues to align with the black
hole spin, implying that the steady state for this disc is full alignment. Inclining the disc at
30

� also did not yet result in disc tearing, however this is because for this particular choice
of viscosity and spin this simulation has not been run long enough (see Section 3.3.2)

For discs at higher inclinations (& 45

�; second, third and fourth rows of Figure 3.9), the
inner section of the disc was found to align within 50 orbits and a smooth transition was
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Figure 3.9: 3D renderings of discs that were initially misaligned with the black hole spin at various
angles, with each simulation using 10

7 particles and shown after ⇠ 1500 orbits. The inability of
the discs inclined by more than � & 45

� to communicate the Lense-Thirring precession causes the
formation of discrete rings which ‘tear’ and precess effectively independently before undergoing
direct cancellation of angular momentum and rapid accretion. The black hole spin in each of these
images is vertical with respect to the page (i.e. along the z axis). The same density scale is used

as in Figure 3.6.
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Figure 3.10: Instantaneous mass accretion (a direct output of phantom) of the 0

�, 15�, 30�,
45

�, 60�, 90�, 120� and 150

� discs run with 10

6 particles and time measured in orbits. The bin
width is 10 times the orbit timescale and a logarithmic scale is used for convenience. In line with
previous results, inclining the disc to the black hole results in mass accreting faster by almost an

order of magnitude.

Figure 3.11: Comparison of the breaking radius measured from the discs inclined at 30

� with
our prediction of Rbreak (upper; assuming that ↵ = 0.02) found by considering the torques in the
disc (Equation 3.9) and Rbreak,t (lower) by comparing the sound crossing and precession timescales
(Equation 3.11). Here the black points represent simulations using 10

7 particles and the red points
simulations with 10

6 particles.
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formed between this and the outer region of the disc. This transition then steepened
until the disc broke into two sections that were connected by precessing rings of material.
Multiple rings of material were torn off from the outer, misaligned disc and each was
observed to precess effectively independently. Towards the end of the simulations, up to
two rings were precessing at the same time (for example, 120� disc of Figure 3.9) and were
present for up to ⇠ 400 orbits. Eventually each of these rings settled with and increased
the inner, aligned region of the disc. The disc inclined at 90� (right hand panel in third row
of Figure 3.9) also developed precessing rings of material that were accreted. However, for
this inclination no inner aligned disc was observed and the rings of material were accreted
directly onto the black hole.

Figure 3.10 shows the instantaneous mass accretion rate by the discs at different angles
(one of the default outputs that Phantom generates, calculated by the particles that
move inside the specified inner edge). It can be seen that inclining the disc to the spin of
the black hole increases the rate of accretion by more than an order of magnitude when
compared to an aligned disc, similar to previous findings (Nixon et al., 2012). The discs
that form an inner aligned disc and precessing rings have even higher accretion rates, as
the inner disc is continually fed by the rings as they align. In each case except the disc
inclined at 90

�, either the inner region aligns or a radially small, inner aligned disc forms
(e.g. 45�, 60� and 120�). The aligned inner region provides constant mass accretion to
the black hole, with any features from the interaction of the broken discs superimposed
on this (e.g. the complementary behaviour of the 60� and 120� cases in Figure 3.10). The
90� case represents an exception to this; as no innermost aligned disc forms all the mass
accreted is a result of the interaction between the rings, leading to a chaotic mass accretion
rate. When taken in context with the results in the diffusive regime (Nixon et al., 2012),
Figure 3.10 implies that regardless of whether the disc is thin or thick, mass accretion is
faster when the disc is inclined.

Disc tearing has also been observed in the wavelike disc regime for circumbinary discs
inclined at high angles (Facchini, Lodato, and Price, 2013). In a simulation of a circumbi-
nary disc inclined at 60�, their disc separates into two sections and the inner one precessed
effectively independently of the outer disc. As their disc is thicker than ours (H/R = 0.1)
and has a higher viscosity (↵ = 0.05), we would anticipate that a strong external torque
would be required to tear the disc, and we observe their disc does tear at a smaller radius
than any of ours.

Location of tearing radius

The disc is expected to tear when the Lense-Thirring torque is larger than the internal
communication in the disc. If the internal communication in the disc is governed by
viscosity, the torques given in Section 3.1.2 can be used to estimate the upper breaking
radius given in Equation 3.9. However in our simulations the disc internal dynamics are
dominated by pressure rather than viscosity, hence Equation 3.11 may be more appropriate.



3.3. Results 93

log R/Rin

lo
g 

W
id

th
 o

f t
he

 ri
ng

/R
in

0.4 0.6 0.8 1

0

0.5

1

Figure 3.12: The solid line shows the expected width of each ring of gas torn off in our simula-
tions, calculated by comparing the precession timescale to the distance that the wave can travel
(Equation 3.26). The circles show the measured ring widths from the simulations, where black
circles indicate short lived rings and red circles rings that are stable for more than ⇠ 20 orbits.

As the Lense-Thirring torque has a radial dependence, it is largest in the inner most parts
of the disc and it is reasonable that these discs will break at a radius smaller than pre-
dicted by Equation 3.9. Figure 3.11 shows a comparison of the estimated break radius for
the simulations inclined at 30

� compared to the prediction from Equation 3.9 (upper line;
assuming that ↵ = 0.02, the average for our simulations) and from Equation 3.11 (lower
line). We find that the disc does break at radii lower than our prediction from the viscous
torques alone, and that the breaking radius is intermediate between the predictions from
Equations 3.9 and 3.11, indicating that the torques in our discs lie between these two ex-
tremes. The increasing uncertainties at low spin correspond to the decreasing convergence
of our simulations due to mass accretion at the inner edge, seen in Figure 3.8.

The discrepancy between the predicted and the observed breaking radius appears to occur
at all inclinations. Using Equation 3.9, the breaking radius for the 60

� disc is found to
be Rbreak ⇠ 41Rin which is greater than Rout. However this disc is observed to break (at
R . 18Rin), in line with the results of Figure 3.11. If we now consider the 15

� disc, it is
predicted to break at Rbreak ⇠ 18Rin but from the simulation we do not observe tearing.
This could occur if the actual tearing radius is less than Rin, consistent with the previous
results.
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Figure 3.13: The timescales in our PS9 simulation (left) and a disc that is four times thicker
(right). The precession timescale does not change much between the thin and thick discs, however
the sound crossing and viscous timescales decrease as the disc becomes thicker. The decrease in
viscous time means that the thicker disc is able to accrete misaligned material, preventing the

development of a steady state.

Width of the rings

The rings that are torn off during the simulations appear to be much wider than those
found in the diffusive regime (Nixon et al., 2012), some up to �R/H(R) ⇠ 25 (where �R

represents the ring width). It is possible for rings to form when the disc is able to break
and differential precession is present, such as when the disc is subjected to Lense-Thirring
precession. We therefore expect the width of the ring to be determined by a relative
comparison between the sound crossing and precessional timescales in the disc. We can
approximate this by letting �R be the distance that a wave can travel in a precession time
such that Z

2

cs
dR / tp, (3.25)

across the ring. If we assume that the inner edge of the ring is at Rin, ring = R ��R/2,
the outer edge at Rout, ring = R + �R/2 and use the expression for the sound speed, we
get

R3 / a

(q + 1)

"
1�

✓
Rin, ring

Rout, ring

◆q+1

#
Rout, ring

cs(Rout, ring)
, (3.26)

where R is the radius that a ring of thickness �R occurs at. Figure 3.12 compares the
width of the rings measured from the simulations to this prediction. Although there are
large uncertainties in the measurements the general trend of increasing ring width with R

is reproduced.

3.3.3 Can the disc accrete misaligned?

Previous simulations of tilted accretion discs in the wavelike regime have not identified
disc tearing when the disc is subjected to Lense-Thirring precession. The results of these
thicker discs have found that the disc warps in the inner region, with a non-zero tilt at the
inner edge, and then precesses as a solid body (Fragile and Anninos, 2005; Fragile et al.,
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Figure 3.14: Our thick disc simulation, similar to that of Fragile et al. (2007) except that it is
initialised at 30

� and run for ten times longer. This disc is not observed to tear, as expected, but
warping is observed in the inner regions and higher mass accretion than our thin disc. This figure

is shown with the same density scale as Figures 3.6 and 3.9.
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Figure 3.15: The final tilt profile of our thick disc simulation. Misaligned accretion occurs at the
inner edge, causing a non-zero tilt and preventing a steady state from being formed. The inner

edge features are not steady like the results of Figure 3.3.
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2007). To examine this behaviour, we conduct a single simulation of a thick disc. We use
the same parameters as PS9, but with an aspect ratio four times the initial value, such
that H/R = 0.2 at the inner edge. This disc is similar to the simulation of Fragile et al.
(2007), except that it has twice the initial tilt (and does not include magnetic fields).

The timescales for this disc are shown in the right of Figure 3.13. Comparison with the
timescales from PS9 (left) shows that although the precession timescale has not changed
appreciably, the viscous and sound crossing timescales have decreased substantially. In
the outer half of the disc we note that the viscous timescale is the shortest, allowing the
material located there to be accreted to the inner regions faster than it can align. This
leads to material being accreted before it can align with the spin of the black hole, causing
a non-zero tilt at the inner edge of the disc. A comparison between the mass accretion of
this disc and our thinner PS9 simulation shows that there is more mass accreted by the
thicker disc.

Simulating to approximately the same time as quoted by Fragile et al. (2007), we observe
the thick disc to warp in the inner regions but not to tear. At this time in our thin disc
simulations we also do not observe tearing, so we continue the simulation until approxi-
mately 200 orbits according to the time units specified by Fragile et al. (2007) (10 times
longer than their lower resolution simulation). The results at this time are shown in Fig-
ure 3.14 and 3.15. We do not observe the large increase in the disc tilt at the inner edge
that was found by Fragile et al. (2007) (see their Figure 12), however in their paper this
is attributed to plunging streams which we also do not observe. Presumably this is due to
our use of the post-Newtonian approximation in Equation 3.18.

As the disc is four times thicker than our simulation PS9, ⌫ increases by a factor of 16
(even though ↵ does not change). This increases the internal torque in the disc by the
same factor (see Equation 3.7), but the external torque applied is the same as for our disc.
This should make it much harder to tear the disc, and when we calculate the breaking
radius using Equation 3.9 we find that it would be R/Rin ⇠ 3, inside the region where
misaligned accretion is occurring. Indeed, from our results in Section 3.3.2, we would not
expect this disc to tear at all.

3.4 Discussion

Despite using up to 10

7 particles, the simulations that have been presented are not yet con-
verged. As shown in Figure 3.6 and comparison of our results with Nelson and Papaloizou
(2000), increasing the resolution strongly affects the behaviour the disc displays. However,
features like disc tearing and radial oscillations are present in both the medium and high
resolution simulations and so we can draw conclusions about the qualitative behaviour.
Additionally, whilst increasing the resolution decreases the breaking radius, it does so by
a smaller amount each time, so we are confident that the measured tearing radii for our
non-linear simulations is an upper limit and that our results are close to being converged.
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The main point of discussion is why our results differ to those found by Nelson and Pa-
paloizou (2000). The two main factors are the numerical resolution and the viscosity pa-
rameter �AV. Simulations we performed at comparable resolution to Nelson and Papaloizou
(2000) showed similar behaviour — namely a smooth transition between the aligned and
misaligned regions. However, when we increased the resolution we found that the be-
haviour changes and these discs tear into two disconnected sections (the main criterion
being to adequately resolve the disc scale height). This implies that low resolution is the
primary reason that prevented Nelson and Papaloizou (2000) from observing disc tearing.
However, we also showed that the inclusion of a � viscosity, even at low resolution, recovers
steady-state oscillations in the tilt of the disc midplane with respect to the black hole spin
axis similar to those predicted by the linear theory of Ivanov and Illarionov (1997) and
LOP02. This is in contrast to the findings in Nelson and Papaloizou (2000), where it was
suggested that the tilt oscillations were short wavelength features which could be damped
out by non-linear effects. As shown by our 15

� simulation and in agreement with LOP02,
we found that the wavelength of the radial oscillation is of the order of the radius (R) and
is not damped out by such effects.

The tilt oscillations that were found at linear inclinations do not match the description
of the results obtained with the 1D code by LOP02, and increasing the resolution does
not reduce the discrepancy. The difference is likely due to the 1D code assuming that the
viscous timescale is negligibly large. In Section 3.3.3 it is found that the mass accretion is
not necessarily negligible, as for discs with a larger aspect ratio we found it is possible for
the material to accrete to the inner regions of the disc faster than it is able to align. This
causes the disc to accrete misaligned material, which prevents a steady state from being
formed and confirms that it is not possible to produce a tilt profile such as that described
by the Bardeen-Petterson effect if the viscous time is too short (as predicted by Lodato and
Pringle 2006). Recently the thinnest discs in relativistic simulations have been completed
by Morales Teixeira et al. (2014), with H/R = 0.08. Their retrograde simulation showed
partial alignment at the inner edge, but their prograde simulations displayed an inner edge
tilt that was greater than the initial condition. It is also noted that the strength of the
tilt oscillations depends on the disc thickness, and so thick discs (and tori) would display
weak oscillations.

Despite demonstrating that the location of the disc break is resolved (see Figure 3.8), the
interaction of the rings in our simulations with tearing is not. Each interface between
adjacent rings is only described by a small number of particles (necessarily, as this is
a region of relatively low density). As a result, the interaction of neighbouring rings is
governed by poorly resolved particles with relatively large smoothing lengths. A method
to improve this is not clear as increasing the global resolution will increase the sharpness
of the break (e.g. Figure 3.8) but will not lead to more particles between rings (as low
density is defined by few particles). Because the initial tear and breaking of the disc is
resolved, this only affects our estimated mass accretion rate profiles (Figure 3.10) and the
width of the rings formed in our simulations (Figure 3.12).
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With the exception of the points at a = 0.1, the simulations in Figure 3.11 have the same
dependence on the spin as in the lower black line, representing the comparison between
the sound crossing and precession timescales where the radius is proportional to a2/3. At
low spin the location of the break does not appear to be related to either criterion, but
the breaking behaviour here is different (e.g. see Figure 3.11, top panels). At such a low
spin the external torque is much weaker, and the breaking here is potentially caused by
non-linear effects other than the Lense-Thirring torque — e.g. Lodato and Price (2010)
demonstrated disc breaking in a strongly misaligned disc but with no external potential or
forcing.

Perhaps the main caveat of our simulations is that we use an ↵ viscosity to model the discs.
Whilst a comparison between a purely hydrodynamical disc (with no explicit viscosity) and
one where the viscosity is controlled by the MRI has shown that the behaviour of the disc
is largely controlled by the hydrodynamic evolution (Sorathia, Krolik, and Hawley, 2013),
for a complete picture of the disc evolution we should include magnetic fields to self-
consistently generate a turbulent viscosity through the MRI. However it is not yet clear
how the MRI will respond in the presence of a warp, especially at large angles. Additionally,
we assume that our discs are vertically isothermal. Heating of the disc due to warping may
further complicate this picture (Ogilvie, 2003).

For tilt oscillations and efficient wave transport to occur we require H/R > ↵ (Papaloizou
and Lin, 1995; Ivanov and Illarionov, 1997). Black hole accretion discs are often expected
to be geometrically thin and have ↵ ⇠ 0.1 (King, Pringle, and Livio, 2007). However,
for discs which are accreting either at very sub-Eddington (. 0.1LEdd) or near-Eddington
(& LEdd) rates, the disc may become geometrically thick (Narayan and Quataert, 2005).
So the simulations presented here may be most relevant to the low luminosity state of
X-ray binaries where the disc can be thick and ↵ may be significantly smaller than its
usual outburst value (Smak, 1984; Meyer and Meyer-Hofmeister, 1984). They are also
relevant to AGN accreting at rates greater than Eddington and to the discs formed in tidal
disruption events where the initial star orbit can be highly misaligned and the disrupted
material infalling at super-Eddington rates (see Chapter 6).

Finally we must take into account that the outer edge of the simulations presented here
(160R

g

) is much smaller than the actual size of the disc (e.g. in X-ray binaries, 1000s of
R

g

are expected). In simulations which have a smaller outer radius than simulated here,
the breaking/tearing behaviour is not converged. As the outer radius of the disc decreases
to the tearing radius, the inner gas that should tear does not have enough of a mass
anchor to tear off and solid body precession is instead observed — we emphasise that this
behaviour is the result of the choice of outer boundary and is thus a numerical rather than
physical effect in this case. The outer radius chosen in these simulations is large enough to
allow converged tearing behaviour. As breaking/tearing cannot occur outside the breaking
radius (i.e. where the internal viscous stresses are much stronger than the external torque
and the disc can communicate the precession faster than it occurs) the outer disc is only



3.5. Conclusion 99

expected to warp slowly over time. We thus expect the tearing and breaking behaviour
observed in these simulations to be consistent with discs that have a larger outer boundary.

3.5 Conclusion

In this work we have re-examined the Bardeen-Petterson effect in 3D using hydrodynamical
simulations of accretion discs subject to Lense-Thirring precession, in the regime where
warps propagate in a wavelike manner (↵ . H/R). Our detailed conclusions are as follows:

1. The Bardeen-Petterson picture of an aligned inner disc smoothly connected to a mis-
aligned outer disc occurs only at low inclinations and only when Einstein precession
is not accounted for. Using high resolution calculations, we find both steady state
oscillations in the disc tilt (when Einstein precession is included) and that discs break
when they are relatively thin and highly misaligned to the black hole spin.

2. We recover steady tilt oscillations for the first time in a 3D hydrodynamics code, as
predicted by LOP02. However, as the 1D code developed by LOP02 assumes that
mass accretion is negligible, discrepancies remain between the predicted tilt profile
and our 3D results.

3. Tilt oscillations are also present at higher inclinations (15�), showing that non-linear
effects do not necessarily damp this behaviour.

4. Disc ‘tearing’ or ‘breaking’, rather than a smooth transition between spin-aligned and
spin-misaligned parts of the disc, appears to be an inevitable outcome for accretion
discs inclined to the black hole spin by more than a few degrees. This occurs regard-
less of whether the propagation of bending waves is governed by pressure forces or
viscous stresses.

5. Tearing of the disc leads to rings that precess effectively independently. As in the
diffusive regime, this can lead to direct cancellation of angular momentum and hence
faster accretion. The main difference in the wavelike regime is that the rings are
wider, with the width determined by the ratio of precession to sound crossing time
rather than the disc scale-height.

6. The Bardeen-Petterson effect cannot occur in discs where the viscous time is com-
parable to the alignment time. In this case the disc material is accreted misaligned.
Hence it is possible to have discs that are misaligned with respect to the black hole
spin even in the absence of tilt oscillations, but this can only occur at high ˙M (i.e.
for thick discs).

7. Mass accretion rates can be enhanced by an order of magnitude or more when the
disc is inclined with respect to the black hole spin. This occurs regardless of whether
the disc is thick or thin.
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Chapter 4

Apsidal precession, disc breaking and
viscosity

The most recent simulation considering the behaviour of a tilted disc around a rotating
black hole was conducted by Krolik and Hawley (2015), shown in Figure 1.12. This simu-
lation used a grid-based numerical approach, focussing on the evolution of the disc inclined
at 12

� to the black hole spin. After ⇠ 25 orbits at R = 10R
g

, the authors confirm the
Bardeen-Petterson Effect: they find their disc has reached a steady state where the inner
disc is aligned to the black hole spin and there is a smooth transition to the outermost, mis-
aligned disc. However, these simulations did not take into account apsidal precession, an
important effect discussed in the previous chapter. The relevance of this precession term,
the viscosity description and the validity of the disc breaking approximation is investigated
by focussing on a hydrodynamic comparison with their simulation.

First we explore the initial conditions needed to recreate their simulation. Using Phan-

tom, the hydrodynamic evolution of this accretion disc is compared directly to their fully
MHD driven simulation. In this initial simulation — as in theirs — the effect of apsidal
precession is neglected so that any difference must be due to the viscosity formulation. In
order to quantify these differences, the evolution of the disc is displayed in the same way
as in their paper.

This simulation is then repeated but including the effects of apsidal precession — in Chap-
ter 3 this effect was argued to be critical to the disc evolution. The differences between this
second simulation and the initial simulation demonstrates the effect of either neglecting or
considering the apsidal precession. This comparison demonstrates precisely how important
it is to take these effects into account, even if it is at extra computational expense.

Finally, we consider disc breaking. The original simulation by Krolik and Hawley (2015)
does not show any evidence of disc breaking, in line with the approximation discussed in
the previous chapter. To confirm that disc breaking is possible, we repeat their simulation
with a much higher inclination of 30�.
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Figure 4.1: Surface density profile (in units of c4/G2M) of the initial
condition used for all simulations, chosen to match KH15.

4.1 Simulations

4.1.1 Disc parameters

We match our initial disc setup to the recent simulation by KH15 for the purpose of
comparison. We thus adopt an isothermal disc with sound speed set to cs(R) = cs,inR

�q

and a surface density profile ⌃(R) = ⌃

in

R�p. We conducted simulations with 10

5, 106 and
10

7 particles to check for convergence, and the results are presented with 10

7 particles.

As in KH15, the disc spans R
in

= 4 to R
out

= 40, with aspect ratio H/R
in

= 0.06 and
central density ⌃

in

= 0.1504 at the inner edge. To match the surface density profile after
relaxation and the scale height, we set p = �1 and q = 0. As we model the physical
viscosity using the method described in Lodato and Price (2010), this results in an ↵

viscosity that varies slightly with R.

KH15 confirm their disc is in the bending wave regime by measuring both waves travelling
at 0.5cs and the viscosity parameter ↵ directly from their simulation. We seek to enforce
this in our simulations by setting ↵ such that ↵ ⇡ 0.12 at R = 5 and ↵ ⇡ 0.049 at R = 10,
very similar to the values of 0.1 and 0.05 measured at the same locations in KH15. We note
that this comparison is not exact because in our hydrodynamic simulation we are setting
the ↵ values using the artificial viscosity included to capture shocks (e.g. Equation 2.68)
with a forced dependence on the radius that comes from the q value used, while Krolik
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Figure 4.2: Surface density in units of c4/G2M (left) and tilt (right) after
25 orbits when apsidal precession is neglected.

and Hawley (2015) measure theirs directly from the MHD induced turbulence (and so no
such dependence is forced). With this description, H/R . ↵ when R & 7, suggesting that
most of the disc will be in the bending wave regime.

The spin parameter a is set from the requirement that the Lense-Thirring precession fre-
quency is 1/15⇥ the orbital frequency at R = 10 (KH15). As discussed in Sorathia, Krolik,
and Hawley (2013), this constraint is made for numerical convenience as it can only be
achieved with a non-physical value of a � 1.05 — a higher spin means precession affects
occur faster for the same dynamical time when compared to a low spin case, so the simu-
lation does not have to be run for as long. In these simulations, we chose the spin to be
the maximum physical value of a = 1.0 (although in reality the spin is likely to saturate at
a value somewhat lower than this). We note that this (minor) discrepancy appears in our
results in that the black hole torque appears to affect the disc more slowly than observed
in KH15.

4.1.2 Initial conditions

We arrange the particles in the disc using a Monte Carlo placement method, with the disc
aligned to the black hole spin. The disc is then allowed to relax for 12.5 orbits at R = 10

in this plane (12.4 orbits were conducted in KH15). Figure 4.1 shows the surface density
profile at this time, showing that most of the mass is in the outer regions. Our disc shows
the same features as KH15 (see their Figure 1) but has a slightly lower mass. We use
this disc as the initial condition for each of our subsequent simulations, to allow direct
comparison with KH15. We produce the same surface density profile for the discs that
include apsidal precession by repeating this process with the full effective GR potential.

The disc inclination �(R) is the angle between the local angular momentum vector of the
disc and the z axis (defined by the black hole spin). For each simulation, the particles
are rotated through a constant inclination angle �, so the disc is tilted but not warped.
The black hole torque is then applied using either the Keplerian or effective GR potential
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Figure 4.3: Twist, measured in radians/⇡, as a function of time and ra-
dius ignoring apsidal precession. This figure, assuming the same precession

physics, should be compared with Figure 2 of KH15.

Figure 4.4: Tilt, measured in radians/⇡, as a function of time and ra-
dius ignoring apsidal precession. This figure, assuming the same precession
physics, should be compared with Figure 3 of KH15. Note KH15 define the

tilt to be the negative of our definition.
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Figure 4.5: Surface density in units of c4/G2M (left) and tilt (right) after
25 orbits when apsidal precession is included.

as appropriate (for details see Chapter 3). We use units such that G = M = 1 and
Rg = GM/c2 = 1 and define our timescale with orbits at R = 10.

4.2 Results

We conduct two simulations with the only difference being the modelling of the precession
frequencies (Nealon, Price, and Nixon, 2015). Both simulations implement Lense–Thirring
precession, but the first simulation uses a Keplerian potential (as in KH15) while the second
simulation includes the effects of apsidal precession by using the effective GR potential.
The discs are inclined at � = 12

� and run for an additional 12.5 orbits from the initial
condition described in § 4.1.2, as described in KH15.

4.2.1 Apsidal precession neglected

The right panel of Figure 4.2 shows the tilt as a function of radius for the simulation with a
Keplerian potential, i.e. where apsidal precession is neglected. The start of the simulation
is marked by a sharp disturbance in the tilt and surface density profiles as the black hole
torque is applied, but this wave damps within 4.5 orbits and the rest of the disc evolution is
gradual (this initial disturbance occurs in all of the simulations reported). Our disc evolves
in the same manner described by KH15; the inner edge aligns with the spin of the black
hole, and there is a smooth transition to the outer region which remains misaligned. The
left of Figure 4.2 shows the surface density profile of our disc. Similar to KH15, there is
little evolution of the surface density profile when apsidal precession is neglected. To allow
direct comparison, we also show figures plotted in the same way as in KH15 such that
Figures 4.3 and 4.4 are directly comparable to Figures 2 and 3 of their MHD simulation.
The maximum values of the tilt and twist measured from our simulation are within 15% of
theirs and the evolution of our disc is in qualitative agreement. The comparison between
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Figure 4.6: Twist, measured in radians/⇡, as a function of time and radius
in a disc including apsidal precession.

Figure 4.7: Tilt, measured in radians/⇡, as a function of time and radius
in a disc including apsidal precession.
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Figure 4.8: Density rendering of warped accretion discs inclined at 12

� (left) and 30

� (right) to
the black hole spin (spin axis is vertical in the plane of the page, i.e. along the z axis). Evidence

of disc breaking is seen only in the high inclination case.

our ↵-disc simulations neglecting apsidal precession and the magnetohydrodynamical sim-
ulation of KH15 confirms that an ↵-disc simulation gives similar results to an MHD one.
That is, in at least this case MHD discs and pure ↵-discs show equivalent results (Sorathia,
Krolik, and Hawley 2013 found a similar result).

4.2.2 Apsidal precession included

Figures 4.5, 4.6 and 4.7 show our results for discs with the same initial setup as § 4.2.1,
but this time with the full effective GR potential, so that apsidal precession is explicitly
present. Here, in contrast to simulations which neglect it, we see that the inner edge of the
disc remains misaligned. The tilt of the disc then decreases to a minimum around R ⇠ 9.5

before increasing with radius. The outer edge of this disc differs from that of the previous
case (also seen in the tilt comparison), suggesting that a larger disc is required to prevent
the outer boundary affecting the disc evolution.

The marked differences in the simulation results with and without apsidal precession show
that including apsidal precession is crucial to give even qualitatively correct results.

4.2.3 Breaking discs

Nixon, King, and Price (2012) showed that one can estimate the radius at which a disc
may break by equating the Lense–Thirring precession torque with the internal viscous
torque. This initial investigation neglected the additional viscous torque arising from a
warp. Using this simplified criterion for � = 12

� would give R
break

. 20, suggesting
that the disc should have broken, contrary to the numerical results of both ourselves and
KH15. But this conclusion is wrong: neither of these simulations is in the diffusive regime
where this criterion would apply. The relevant criterion for the wavelike regime involves
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a comparison of the sound crossing and precession timescales (Nealon, Price, and Nixon,
2015) and shows that the disc should not break, as found in the simulations.1

We address the question of whether the disc can break by simulating a disc with the same
initial mass distribution, but this time with an inclination of 30�, again for 12.5 orbits and
using the effective GR potential. As the disc evolves the inner edge tilt decreases from
the initial 30� but does not fully align with the black hole. The tilt then increases sharply
around R ⇠ 10.5, suggesting a break in the disc, before decreasing gradually at larger
radii. Figure 4.8 shows a density rendering of the 30

� disc at the end of the simulation,
compared to the warped 12

� disc. For the high inclination disc, the separated innermost
disc is only slightly misaligned, whilst the inner edge of the outer disc is inclined at ⇠ 30

�.

4.3 Discussion

The striking differences that occur between simulations of warped wavelike discs that
include or ignore the effects of apsidal precession confirm that it has a strong impact on the
disc evolution. The inner edge of the disc is altered completely (from aligned to misaligned)
and the oscillatory behaviour observed is consistent with previous analytical (Ivanov and
Illarionov, 1997; Lubow, Ogilvie, and Pringle, 2002) and numerical (Nealon, Price, and
Nixon, 2015) studies. We therefore conclude that GR effects like this must be modelled
accurately in simulations. This is achievable by either an appropriate post-Newtonian
approximation, as used here (Nealon, Price, and Nixon, 2015), or a GR treatment (e.g.
Fragile et al., 2007; Morales Teixeira et al., 2014).

The comparison between our hydrodynamic simulation and the MHD simulation of KH15
confirms that the disc dynamics can indeed be captured by hydrodynamics with an ↵ vis-
cosity. To date, Morales Teixeira et al. (2014) have completed the thinnest disc simulation
with both GR and MHD taken into account, with an aspect ratio of H/R ⇠ 0.08. However,
this simulation was still in the bending wave regime as the viscosity parameter measured
from the simulation was ↵ ⇠ 0.01. In contrast, SPH simulations have already studied the
diffusive regime, with H/R ' 0.01 and ↵ ' 0.1 (Nixon et al., 2012). GRMHD simulations
to date have been unable to simulate discs which would have been expected to undergo
disc breaking or tearing. For the disc parameters used in the simulations presented in this
paper, we show that disc breaking is possible when the disc is inclined at � & 30

�.
1
Even in the diffusive regime, Doğan et al. (2015) showed that at small inclinations or when ↵ is small,

it is unreasonable to neglect vertical viscosity when estimating the internal torque in the disc. As these

discs have low inclination and ↵ ⇠ 0.03, it would be crucial to include the vertical torque in the breaking

criterion if this simulation was diffusive (Doğan et al., 2015).
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4.4 Conclusion

We have conducted hydrodynamical simulations of accretion discs in the bending-wave
regime with an ↵ viscosity. By comparing with the MHD simulation of KH15, we con-
firmed that hydrodynamical simulations using an ↵ viscosity capture the dominant evolu-
tion of warped accretion discs, showing results that are remarkably similar to the MHD
simulations. We have shown that modelling the apsidal precession in the disc strongly
affects its evolution. Simulations that do not take apsidal precession into account cannot
give the correct disc evolution, which has nonzero disc tilt at the inner edge, and stable
tilt oscillations with radius in the central disc regions. Finally, as expected, for the disc
parameters chosen by KH15 we find no breaking, but demonstrate that a disc with the
same parameters but a larger inclination does break.
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Chapter 5

Quasi-periodic oscillations

Despite being first observed more than 45 years ago, the complete physical processes that
drive quasi-periodic oscillations (QPOs) is still unknown. These rapid oscillations in the
flux observed from low mass X-ray binaries (LMXBs), active galactic nuclei and even cata-
clysmic variables are revealed in power density spectra (PDS). Observations have identified
that there are several sub-types of QPO, distinguishable by different timing properties and
each associated with a different disc state.

These observations lead to two important conclusions. First, QPOs must be sourced from
the innermost part of the accretion disc where general relativistic effects are strongest.
Second, the nature of QPOs (simultaneously observable frequencies that are distinct from
one another) suggests that the disc is not a smooth, continuous structure as suggested
by current accretion disc theory. Although numerous models exist to explain QPOs, we
propose that disc tearing provides a natural mechanism to generate the inhomogeneous
disc that is implied by observations. The major strength of this model is that it only
requires that we relax the assumption that the disc is aligned to the black hole spin. The
simulations in previous chapters have identified precessing structures generated at tens of
Rg, as proposed from observations of QPOs. We thus seek to understand the potential
connection between QPOs and disc tearing.

This chapter focuses on conducting a simulation that demonstrates tearing and generates
a PDS that is comparable to observations. Practically, this requires that the simulations
resolve the scale height of the disc, have a radius larger than the breaking radius and that
the simulation be conducted for as long as possible. We thus choose parameters for the
simulations that attempt to satisfy the above requirements and in order to compare to
observations, physical parameters related to the LMXB XTE J1550-564.



112 Chapter 5. Quasi-periodic oscillations

5.1 Connecting tearing discs and QPOs

The main goal of this chapter is to consider the connection between disc tearing and
LFQPOs. This has challenges in both the numerical modelling of the disc and how the
simulation is related back to observations, so we break the chapter into two main sections.
The first concerns a physically motivated simulation that demonstrates disc tearing. Once
we have simulated a disc that meets this criteria, we explore how we may measure a PDS
from this simulation. Finally, we consider the accuracy of our simulations and whether we
can make any comment on the different sub-types of LFQPOs. We split this process into
the following set of questions:

1. Can a disc with the parameters of a LMXB (i.e. spin, black hole mass and viscosity)
undergo disc tearing?

2. Our previous simulations have not demonstrated sustained tearing. Can this simu-
lation show that tearing is a repeatable (or alternatively, one-off) event?

3. Using the dynamics of the gas, do the structures formed precess with a frequency
consistent with observed LFQPOs?

4. As phantom currently does not generate something like this directly, how can we
measure a PDS from our simulations?

5. Can we simulate the disc for long enough to have resolved tearing behaviour and
enough precessions to measure a PDS with any significance?

6. How do the results of our PDS compare to observations of QPOs?

7. How do the approximations we have made affect our findings (e.g. our use of a
post-Newtonian approximation)?

8. Although we focus on the most commonly observed type-C QPOs, is there any scope
to relate tearing rings to type-A or -B QPOs?

As each simulation informs the subsequent simulations, this chapter is necessarily laid out
in chronological order. In § 5.2 - 5.5 we begin by quantifying how accurate our post-
Newtonian approximation is for calculating the nodal, apsidal and orbital frequencies (in
comparison to the Kerr metric), describing the approximate method we use to calculate the
luminosity in the disc, how we can use this to generate a PDS and the initial conditions
that are common to each simulation. In § 5.6 - 5.7 we describe the results from each
set of simulations in turn that use these methods. In § 5.8 we introduce a method to
measure the precession of the gas and a new method to generate a PDS, both using the
existing simulation data. Finally, in § 5.9 we discuss the high resolution simulations that
are continuing during the submission of this work and in § 5.11 our conclusions.
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5.2 Precession frequencies

The Stella and Vietri (1998) model associates the three fundamental frequencies experi-
enced by an eccentric, tilted orbit with the three observed types of QPO. Here, the fastest
high-frequency QPO (HFQPO) is generated by the orbital frequency near the innermost
stable orbit. In the limit for a test particle in the Kerr metric, this is given by (e.g. Kato,
1990)
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The lower HFQPO is associated with the difference between the radial oscillation and
orbital frequencies, given at the same radius as
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Finally, the LFQPO is represented by the Lense-Thirring precession frequency (i.e. the
nodal precession frequency), given by the difference in the orbital and vertical oscillation
frequencies to be
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Because we use a post-Newtonian approximation, these frequencies in our simulations
are not reproduced exactly. Instead, these frequencies are determined by our choice of
potential. From Chapter 3, using the Einstein potential the equivalent expressions are
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Figure 5.1 shows a comparison of these three frequencies in both the free particle approx-
imation and from the Einstein potential that is used in subsequent simulations. When
applying the relativistic precession model (RPM) it is assumed that the emission for all
three QPOs is sourced from the same radius. With the set of three equations then, the
mass (encapsulated in Rg) and the spin of the black hole can be measured precisely if three
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Figure 5.1: Comparison of the orbital, apsidal and nodal precession frequencies in the limit of
a test particle in the Kerr metric and for the post-Newtonian potential used in Phantom for a
10M� black hole with a = 0.5. Outside of ⇠10Rg the potential we use compares well to expected

frequencies, but any frequencies measured from inside of this should be treated carefully.

simultaneous QPOs are observed. This process is outlined in Motta et al. (2014a), with
precision up to a ± 0.01, but can also be completed when only two simultaneous QPOs
are observed by using observational estimates of the mass (Motta et al., 2014b). We note
that the precession frequencies for a globally precessing torus differ from these (except in
the limit when the ring is extremely narrow), such that any observations that fit the above
set of frequencies cannot be sourced from an extended torus. In this case, the precession
frequency is dictated by the weighted average of the precession frequencies of the gas in
the torus. Recently, Franchini, Motta, and Lodato (2016) argued that the rigid precession
model was equivalent to the test particle approximation at the innermost stable orbit.

5.3 Luminosity in the disc

Building on simulations in previous chapters, here the requirement is to generate a power
density spectrum (PDS) from a light curve. Observationally these are calculated by mea-
suring the net flux from the system as a light curve and then taking a Fourier transform.
The frequency of the oscillations (if roughly constant) is then revealed in local peaks of the
PDS. To mimic this from our simulations requires two independent steps; the material in
the simulation needs to be luminous (generating the flux), followed by ray-tracing taking
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into account obscuring material to measure the flux that made it to the observer. Cur-
rently, Phantom does not have either of these features, and their full implementation is
not in the scope of this work. Instead, we consider how these may be approximated using
existing features in Phantom; the first consideration is the emission from the disc.

We approximate the luminosity emitted by the disc with the energy that is liberated during
the heating of shocks and through the compression of gas - that is, the sum of the shock
energy and compressive work. This approximation represents the energy that is discarded
when the disc is modelled isothermally, so is equivalent to making the disc luminous rather
than allowing the gas to heat up. A major motivation for this implementation is that
it is straight-forward because the framework to calculate these values already exists in
Phantom. In SPH form, this energy is represented by the the terms on the right hand
side in Equation 2.48.

This energy is then summed across all the particles in each time-step (only including
positive contributions from the compressive work), giving the net luminosity as a function
of time. Summing the energy this way inherently assumes that the disc is optically thin
so any bright part of the disc (whether ‘visible’ along an observers line of sight or not) is
represented in the light curve. This method additionally assumes that cooling is instant,
as no delay is implemented between heating of the gas and the luminosity increasing.
The validity of this opacity assumption is investigated later in § 5.8.2. Figure 5.2 shows
the emitted luminosity using this method (right panel) alongside the density in the same
simulation (left panel). The strength of this approximation is that it efficiently traces out
the location of the precessing rings (as they are always experiencing shocks due to their
interactions with the neighbouring rings) and the developing innermost disc without much
contribution from the outer, undisturbed disc. As these are the features that we want to
focus on, the method appears justified.

The simulations in this chapter are assumed to be isothermal (as opposed to locally isother-
mal as in the previous chapters). Simulations completed by Nixon, King, and Price (2012)
tested the effect of this assumption on the structures that form during tearing by conduct-
ing the same simulation with an isothermal and an adiabatic equation of state (their figures
7 and 8). In the case of the adiabatic simulation the rings that form are less well defined
and more gas is present between the rings in a tenuous corona. For typical parameters in
LMXB systems we anticipate behaviour somewhere between these two approximations, and
thus more gas to form a corona-like structure in the tearing region than we demonstrate
here.

5.4 Generating a power density spectrum

The light curve data is output at each time-step as calculated by Phantom. Because
Phantom adjusts the time-step as it runs to be the longest possible, these are not neces-
sarily equally spaced. As a result, we use the Lomb-Scargle method (Lomb, 1976; Scargle,
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Figure 5.2: Column density (in blue) and luminosity approximation (in red) in a test simulation,
where we assume that the dissipated energy is radiated instantly in an optically thin approximation.
The strength of this model is that it traces the location and interaction of the rings but ignores

the outer disc.

1982) to calculate the PDS, as this method is designed for unevenly spaced data. The
specific code used comes from Press et al. (1993) and a test is documented in Appendix B.
Here the luminosity as a function of time is used as the input, and so the power that is
output represents the frequencies of any oscillatory behaviour in the light curve. As tear-
ing disc behaviour is also associated with the mass accretion rate, we also consider PDS
generated from this metric calculated in the same way as the light curve.

In the case that a feature is measured in the PDS, we need to quantify its significance to
identify whether it is likely to be physical or not. Observational work quantifies features by
fitting Lorentzian (or Gaussian, as required) profiles to features in the PDS and measuring
the significance of these features (e.g. see Belloni, Psaltis, and van der Klis, 2002) —
often achieved using the publicly available XSPEC package. This process assumes that
the data has been retrieved observationally but of course, this is not true for our data. For
a first measure we instead conservatively choose to calculate the significance using the null
hypothesis straight from the generated PDS. This significance may be easily calculated
from the PDS because the Lomb-Scargle method is already normalised, such that the
false-alarm probability that any given peak with a particular power z is given by

P (> z) = 1� (1� e�z
)

M , (5.7)

where M is the number of independently sampled frequencies. This relation provides an
estimate for the significance level of a peak z in the PDs. We note this method applied to
this problem will only provide an indication of whether features are significant or not and
that a proper treatment, using statistical methods (e.g. Bayesian statistics), is ultimately
required.
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No. a ↵ �� H/R R
in

R
out

p, q tf (sec)
S1 0.1 - 0.9 0.03 - 0.3 30, 60 0.02, 0.05 ISCO 30 1.5, 0.75 0.5
S2 0.1 - 0.9 0.03 - 0.3 30, 60 0.02, 0.05 30 100 1.5, 0.75 0.5
S3 0.1 - 0.9 0.03 - 0.3 30, 60 0.02, 0.05 ISCO 30 0, 0.75 0.5
S4 0.5 0.1 60 0.01 4.233 100 0, 0.75 4.0
S5 0.5 0.1 60 0.01 4.233 100 p, 0 20.0
S6 0.5 0.1 60 0.01 4.233 100 p, 0 25.0
S7 0.5 0.1 60 0.01 4.233 100 p, 0 ?
S8 0.5 0.1 60 0.01 6.0 100 p, 0 ?

Table 5.1: Summary of parameters used in the simulations described in § 5.6 - 5.9. Where
multiple values are listed where we have performed a parameter sweep. In simulations 4-7, the p
value is determined by the solution to the steady state solution described in § 5.7.1. Simulations

7 and 8 are not yet completed.

5.5 Initial conditions

The simulations presented here have three competing requirements: the resolution, size of
the disc and length of the simulation. From Chapter 3, resolving at least the scale height
of the disc was demonstrated to be crucial to recover tearing behaviour. However, the
outer edge of the disc needs to be sufficiently larger than the breaking radius such that
material being torn does not pull the outer edge of the disc with it (and precesses as a solid
body). These two requirements directly conflict each other: for a given number of particles,
increasing the size of the disc decreases the resolution and we are limited by the number
of particles. Finally, in order to measure the frequency in a PDS from a structure in the
simulation it must complete as many full precessions as possible. Indeed, PDS derived from
observations make use of minutes if not hours of data which is computationally prohibitive.
This final requirement competes with the first two; running the simulation for a long
time means we need a large outer edge (to avoid any problems from the outer boundary)
but having a large disc that has enough particles to be resolved is difficult. Finding a
compromise between these three requirements while generating the tearing behaviour to
be linked with QPOs motivates the parameters of the simulations in this chapter.

In order to compare to observations, we chose parameters appropriate to the LMXB J1550-
564. This object displays both HF and LFQPOs and has been observed numerous times
(see Figure 1.14 and Table 1.1 for a summary). We thus chose a nominal spin of a = 0.5

and a black hole mass of 10M� (Steiner et al., 2011). The outer radius of the disc ideally
would extend to the same order as the binary separation (⇠105 - 106R

g

), but this is far too
large to simulate with current resources. Instead, we consider material inside R

out

= 100Rg

and ensure that the duration of our simulation is not compromised by effects from this
boundary. As discussed in Chapter 3, we do not anticipate that this will change the tearing
behaviour dramatically.

The subsequent (more than 200) simulations use different combinations of surface density
profiles (controlled by p, q), aspect ratios (H/R) and inclinations (�). These parame-
ters are summarised in Table 5.1 with simulations identified using S1-S8 throughout the



118 Chapter 5. Quasi-periodic oscillations

text. Associated light curves and PDS not presented here are included in Appendix B for
completeness.

5.6 Initial parameter sweeps

The initial set of simulations were ambitiously designed to examine the effect of changing
spin, disc thickness, viscosity and inclination. In an attempt to make the simulations
computationally efficient, the disc was split by radius into an inner and outer section. The
inner section went from the innermost stable orbit for the given spin to an outer radius of
30Rg, and the outer disc continued from here through to an outermost radius of 100Rg. For
a given number of particles this method allowed much greater resolution than simulating
the disc as a whole and (particularly the outer disc simulations) were comparably faster.

Inner disc simulations (S1)

An example of the inner disc simulations is shown in Figure 5.3. In most of these simula-
tions, strong warping of the disc leads to the formation of an almost aligned, high density
ring. The panels of Figure 5.3 visually demonstrates that this ring experiences apsidal
precession and this structure is quite luminous (recall Figure 5.2). Despite experiencing
strong warping, these discs did not display any tearing. The breaking radius for these discs
with a = 0.5 and � = 60

� is ⇡40Rg, larger than the outer radius. The lack of tearing con-
firms previous findings that the location of the outer edge relative to the breaking radius is
critical to modelling tearing correctly, suggesting that global disc simulations are required.
The PDS generated from the mass accretion rate and the light curves of these simulations
did not show any significant features (Figure B.3 displays a representative sample).

Outer disc simulations (S2)

To make the outer disc appear to be an extension of the inner disc, the surface density
profile was constructed to be continuous with the inner disc (shown in Figure 5.4) by
changing the definition of the radius where the sound speed and surface density profile
initial values were chosen in the code. In all of these simulations, the inner edge of the disc
warped but did not experience any tearing. Additionally, any consistency between the inner
and outer disc simulations was lost as the disc evolved: the surface density profiles, tilt and
twist at the shared boundary did not evolve similarly as anticipated. As in the matching
inner disc simulations, the PDS generated did not show significant features (Figure B.4).

A shared feature of the inner and outer disc simulations was a steep decrease in the lu-
minosity of the disc at the start of each simulation (also seen in Figure 5.6 in the first
0.1 seconds). This sharp drop in luminosity represents material being accreted as the ini-
tial conditions relax because the surface density profiles chosen do not represent that of a
steadily accreting disc. In these simulations, the profile of the surface density and sound
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Figure 5.3: Apsidal precession identified in our inner disc simulations, where this simulation has
a = 0.9, ↵ = 0.3, H/R = 0.02 and � = 60

� and the view is looking down the spin vector of the
black hole. Capturing this motion suggests that apsidal precession may also be important here but

that high local resolution is required.

speed were chosen to give a constant ↵ throughout the disc, but this is not the same as
modelling a steadily accreting disc and thus caused the initial decrease in the light curve.
In other words, our numerically motivated choice for the surface density profile was re-
sponsible for the sharp drop in luminosity and it is not a physical effect. In our future
simulations we instead consider a surface density profile that corresponds to a constant
mass accretion rate, which should not suffer from this feature.

Second parameter sweep (S3)

After the previous two parameter sweeps were completed, a coding error in the implemen-
tation of the luminosity sum was discovered. As the outer disc simulations did not show
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Figure 5.4: The evolution of the surface density between our matched inner and outer disc simu-
lations (§ 5.6) confirms that global, radially extended disc simulations must be used to investigate
disc tearing. The upper panel represents the initial condition and the lower panel the end of the

simulation, where the discs are no longer consistent.

any interesting physical behaviour dynamically (i.e. the inner edge warped slightly but
did not agree with the the behaviour of the outer parts of the inner disc simulations, see
Figure 5.4), only the inner disc simulations were repeated. In an effort to reduce the initial
jump in the light curve, the profile of the surface density was altered to one suitable for a
constant mass accretion rate, ˙M . By recalling that ˙M = ⌫⌃, but ⌫ = ↵csH, ↵ / hhi/H,
and cs / R�q,

˙M / ⌃hhics / R�pR(p�q)/3+1/2R�q
= R�2/3p�4/3q+1/2. (5.8)

This constrains p = 3� 2q for a constant mass accretion rate. Using tests of aligned discs,
for these simulations we found that any reasonable choice that matched this criteria effec-
tively eliminated the initial steep decrease in the light curve. The combination of p = 0 and
q = 0.75 provided the slowest mass accretion rate and so was chosen for these simulations.
These simulations showed the same behaviour as the previous inner disc simulations (1),
including the apsidal precession at high spins. Despite the corrected luminosity implemen-
tation, the PDS generated did not show any obvious features (Figure B.5). Confirming
further the need for large disc simulations, these are considered next.
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5.7 Large disc simulations

Rather than conduct a parameter sweep of large disc simulations, we instead focus on
a single simulation with associated features in the PDS before expanding the parameter
space. For these simulations, using R

out

= 100Rg was found to have both a resolved
disc using 10

6 particles and be large enough to be able to simulate for a few seconds of
physical time. Decreasing this outer radius did not increase the resolution significantly but
increasing it restricted the final run time considerably.

First large disc simulation (S4)

Figure 5.5 shows the column density evolution of the first large disc simulation, Figure 5.6
the luminosity and Figure 5.7 the associated PDS. A warp propagates outwards from the
inner region and a small ring is immediately formed, less than 10Rg wide with an inclination
of ⇡ 30

�. This ring is repeatedly destroyed and reformed as the warp propagates to the
outer edge. At 1.5 seconds, the inner ring has stabilised and is aligned to the black hole spin.
Narrow rings are subsequently ripped off the outer disc, precess briefly and then collapse
onto the inner ring. At 2 seconds a large ring rips off and completes a full precession before
aligning and increasing the inner disc. The final 0.5 seconds of the simulation show the
inner ring to be steady and no indication of further tearing events. The evolution of this
disc demonstrates tearing in an ‘inward-outwards’ sense — a ring is ripped off the the outer
disc, precesses independently, accretes and this process repeats at a larger radius.

The steep drop in the initial part of the light curve in Figure 5.6 was previously removed by
choosing a more physically motivated surface density profile. In this case, the simulation
was mistakenly initialised with p = 1.5, q = 0.75 and so the steep decrease returned. The
prominent peaks in the early part of the light curve occur with a separation of ⇡ 0.3

seconds. Each of these peaks corresponds to the increase in shocks when a ring is being
torn off, suggesting that these rings are ripped off the outer disc at a particular rate (but
not at the same radius each time, so the rings do not have the same precession frequency).
However, after the initial tearing (till about 1.5 seconds) the behaviour in the light curve
changes — material is being ripped from the outer disc at larger radii, and so the frequency
with which they are ripped decreases. This change in tearing behaviour raises an important
question about the initial condition: these simulations have been initialised with material
inside the breaking radius that has not yet torn. Whilst this may occur in a physical
system if heating and cooling are taken into account, our simulations do not. Rather, we
would expect material to start misaligned at a large radius and be torn as it moves inwards
through the breaking radius.

The PDS shown in Figure 5.7 identifies an unexpected HF feature at 500 Hz and an
associated harmonic at 250 Hz. Assuming that this is caused by free particle motion,
we can estimate that this frequency must be generated by orbital material at a radius of
⇡ 5Rg. This measurement agrees well with theory, and so we tentatively identify a HF
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Figure 5.5: Column density rendering of the first large disc simulation (S4), with the black
hole spin vertical on the figure. As in our previous tearing simulations, tearing occurs from the
inside edge of the disc to larger and larger radii (in an inside-out fashion). We conclude that
this behaviour is an artefact of our initial conditions and thus use different initial conditions for

subsequent simulations. Times are scaled to a black hole mass of 10M�.

QPO from these simulations. The validity of the identification of this feature is discussed
in later sections.

This simulation highlights the need for longer duration simulations. Although we would
expect HF features to have a higher power than LF features in a given amount of time, it
was not necessarily anticipated that HF features would be demonstrated in these simula-
tions. The focus here however is on LF features, so for future simulations we consider how
we can increase the duration of the simulations to ensure that the LF features are repeated
enough periods to be represented in the PDS.
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Figure 5.6: Simulated light curve derived from Figure 5.5 (S4). Here each peak is
associated with a ring tearing in the inner region (e.g. first panel, Figure 5.5).
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Figure 5.7: PDS derived from the full light curve from Figure 5.5 (S4). A HF
feature is identified around 500 Hz with a harmonic at 250 Hz but no clear LF

features are apparent.
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5.7.1 Steady disc simulations

To increase the length of the simulation, we consider adding mass at large radii to mimic
the effect of material accreting from a radius larger than the outer edge of our disc. This
is achieved by injecting mass near the outer edge of the disc, with some material given a
negative radial velocity (accreting) and some given a positive radial velocity (to conserve
momentum). To represent a constant mass accretion rate, this material is added with
the rate that mass is lost at the inner radius. To achieve this we utilised setup routines
developed by Chris Nixon that calculate the surface density profile for a constant mass
accretion rate and the rate of injection required to achieve this.

Recalling that the requirement for a constant mass accretion rate is ˙M = ⌫⌃, the mass
accretion rate must be consistent with both the ⌫(R) and ⌃(R) profiles. A given q pa-
rameter sets both the sound speed and scale height at the inner edge of the ⌃ profile. A
first guess is made for ˙M and ⌫ is calculated on a 1D grid using ⌫ = ↵⌦H2, assuming
Keplerian rotation. This allows the profile of ⌃ to be estimated, but because an arbitrary
guess was made for ˙M it is not scaled correctly. From the unscaled ⌃ profile the mass of
the disc is estimated and then used to scale both ⌃ and ˙M to the required mass of the
disc. The scaled ⌃ profile is then allowed to relax on the 1D grid for a prescribed amount
of the viscous time at the outer edge of the disc (we use 10%) and then both ˙M and ⌃ are
again rescaled to the required disc mass. Once the ⌃ profile is defined the positions and
velocities of the particles are set using a Monte Carlo approach. In previous chapters the
contributions from the pressure gradients and external forces were set using analytical ex-
pressions, but here they must be interpolated from the results of the 1D code. Finally, the
positions and velocities are rotated through the inclination angle � as described previously
in § 2.2.1.

For our simulations, a compromise of q = 0 was found to be a relatively fast setup and
a reasonable surface density profile. As the surface density profile is disrupted as soon as
tearing begins, its actual profile is not critical to the evolution of the disc.

Second large disc simulation (S5)

We implement a large disc simulation with two changes from the previous simulation
(S4). Firstly, mass is injected at R

inject

= 70Rg to ensure a constant mass accretion rate.
Secondly, the inner edge of the disc is started at a larger radius of 40Rg, larger than
the estimate of the breaking radius. The combination of these two changes means that
the simulation can be conducted for ⇡20 seconds (keeping in mind effects from the outer
boundary), but the first 10 of these only show material moving inwards to the tearing
region. The length of this simulation corresponds to approximately 64 orbits at the outer
edge or 0.73 of a precession at the outer edge. Even conducting the simulation for this
long, the results at later times need to take into account the location of the outer disc.
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Simulating for any longer would certainly require a larger outer radius, compromising the
already marginal resolution.

Figure 5.8 shows the column density evolution of this simulation. In the first 10 seconds
the outer disc precesses to a more face-on orientation and the inner edge of the disc moves
towards ⇡30Rg. At ⇡8 seconds, the first indication of tearing appears as the surface
density decreases around 40Rg. At 9 seconds, the ring has fully separated, precessing as a
complete ring for 1.7 seconds. By 11.7 seconds, this ring separates into two smaller rings,
and as the inner one precesses faster they have opposing inclinations by 12.2 seconds. The
inner ring splits, forming two smaller, inner rings that quickly precess separately and then
collapse into an inner, aligned disc. The outer of the original rings splits into two rings that
precess together and reform into a large, precessing ring by 14.1 seconds. At 15.5 seconds
this ring has completed a full precession and interacts strongly with the outermost disc
before completely separating into two rings that collapse and align with the inner region
before 18 seconds. This inner disc continues undisturbed for the rest of the simulation, and
although no more tearing is observed the first signs of another tearing event are present
by ⇡22 seconds.

As the disc evolves in Figure 5.8, the particles that are injected in the original disc plane
become increasingly visible as the disc precesses around but the region they are injected
into does not. While these particles are injected with the intent to feed the outer disc
so that the simulation can run for a longer time, their presence confuses the simulation.
However, the simulation is not run for a full viscous time (i.e. the time it would take
the entire disc to accrete). This means that by the end of the simulation, the majority
of the disc has not been accreted. But this was one of the initial reasons for including
the injecting particles; to try and keep enough mass outside the tearing radius to allow
tearing to continue. Including these particles does not change the simulation as much as
we thought, but including them confuses it. As a result, we do not include these in future
simulations.

Figure 5.9 shows the light curve for this simulation, with the large peak around 11 seconds
representing the first large ring tearing off the outer disc and the second peak a large ring
merging event. When compared to the light curve that has an ‘outward-inwards’ tearing
behaviour in Figure 5.6, the contrast is stark. In this case, each time a large ring separates
into smaller rings there is a large, broad peak in the light curve rather than the numerous,
distinct peaks seen in the previous simulation. The large initial drop in luminosity has
been successfully avoided by using the steady state initial condition.

The lack of modulating features in the light curve leads to a featureless PDS, shown in
Figure 5.10. Given that a tearing ring is observed in this simulation, the lack of features
in the PDS suggests that the amplitude of the light curve features is not high enough or
there are not enough repeated features (irrespective of their amplitude) for the PDS to
identify a frequency on the simulation timescale. However, the HF feature is maintained
(500 Hz and its associated harmonic at 250 Hz). The PDS shown in Figure 5.10 also shows
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Figure 5.8: Column density rendering of the second large disc simulation (S5), with 10

6 particles
and the black hole spin vertical on this figure. Particles start with an inner radius of 40Rg and
move inwards through the tearing radius during the first 10 seconds of the simulation. Major
tearing events are observed at 9 and 12 seconds, with a final one developing at 25 seconds. The
ring of particles extending from the top-left to bottom-right in each panel are the injected particles

— these particles are not included in subsequent simulations.
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Figure 5.9: Simulated light curve from Figure 5.8 (S5). Here the two peaks are
associated with the onset of tearing and when the inner ring present at 15 seconds
merges with the innermost disc, corresponding to the shocks experienced by the gas

during these events.
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Figure 5.10: PDS derived from the lightcurve of Figure 5.8 (S5). As the black line
shows the PDS from the entire light curve and the red shows the PDS from after
the onset of tearing, we conclude that the high frequency features found in the PDS

are not associated with tearing or precessing gas.
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Figure 5.11: Density rendering of our final large disc simulation (S6), with 10

6 particles and
the black hole spin vertical on this figure. Particles start with an inner radius of 40Rg and move
in during the first 10 seconds of the simulation. Major tearing events are observed at 9 and 12
seconds, with a final one developing at 25 seconds. This simulation confirms that tearing is a

repeatable process, as material continues to be fed from the outer disc.
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Figure 5.12: Simulated light curve derived from Figure 5.11 (S6). As this curve
is qualitatively similar to Figure 5.9 only the region after tearing has commenced is
shown. Again, the peaks are associated with strong shocks in the gas as a ring is

formed or destroyed.
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Figure 5.13: PDS derived from the final large disc in Figure 5.11 (S6). Again HF
features around 500 Hz are identified (although we dismiss this, see Figure 5.14) as

well as a potential broad feature around 1.5 Hz.
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the PDS calculated from two different time frames in the light curve; the total simulation
and the region only after tearing has commenced. A comparison of these shows that the
HF feature is generated mainly during the start of the simulation — before any significant
material has reached the inner region to develop an inner disc. This suggests that the HF
feature is produced by particles that are not part of the ring or disc structures (i.e. orbits
of individual particles that are not resolved).

Third large disc simulation (S6)

The final large disc simulation at this resolution brings together the initial conditions of the
previous simulation but does not include particle injection. Figure 5.11 shows the column
density evolution of this disc, similar in most regards to S5, with the initial signs of a
second tearing event at 25 seconds. This simulation demonstrates the physical behaviour
we are hoping to show: tearing events are capable of producing disconnected precessing
structures and material around the inner edge and these tearing events repeat as long as
there is material in the outer disc. Figure 5.12 and Figure 5.13 show the corresponding
light curve and PDS, again similar to the previous simulation. Again, a HF feature is
identified but in this case a potential LF feature is apparent ⇡1.5 Hz.

The distinct HF feature at ⇠500 Hz is so rapid, it can only be caused by the orbital
frequency (see Figure 5.1). However, solving Equation 5.4 indicates this must be sourced
from particles ⇠5Rg, well inside of the structure observed in the simulations (which has an
inner edge at ⇡10R

g

). Further investigation, shown in Figure 5.14, identifies that this is
probably caused by low resolution particles inside the inner disc. This figure identifies the
edge of the innermost disc of gas ending at about 10R

g

, but individual particles exist inside
this region as they are accreted through the ISCO (at 4.233R

g

). As they are individual
particles, they are low resolution, causing them to be highly dissipative and hence luminous
(four orders of magnitude more luminous than the gas in the surrounding ring). The
luminosity inside the inner ring is thus due to numerical rather than physical reasons.
Because they are just about to be accreted, their motion is strongly restricted to be in
tight orbits, hence the narrow feature identified in the powerspectra. This fits with the
PDS analysis (Figure 5.10) suggesting that the HF feature was generated before there was
significant material in the inner region: individual particles were being accreted from the
inner edge of the outer disc more than 20Rg from the black hole. As solitary particles,
they were particularly low resolution and thus bright. These particles present a difficult
problem: at higher resolution there will be fewer of them inside the inner disc, but they
will be as luminous (if not more) because the local resolution will be lower. A potential
solution to this would be to cut out the luminosity generated by particles with a large
smoothing length, but this would have to be considered for future implementations. We
thus disregard the HF features measured from these simulations as a numerical rather than
physical feature.
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Figure 5.14: The source of our HF features in the PDS is particles in the innermost region that
are artificially bright due to poor resolution. The particles have been coloured with the logarithm
of the luminosity in a distinct colour scheme for clarity, showing the luminosity distribution in the
inner disc. The particles inside the main ring structure are three orders of magnitude more luminous
than the particles in the ring, and contribute disproportionately to the luminosity distribution.

The LF feature tentatively identified in Figure 5.13 cannot be straightforwardly associated
with nodal precession. Firstly, although previous simulations have identified shocks in the
disc due to apsidal precession, it is not obvious that nodal precession must lead to shocks
— the inner structure could be nodally precessing and not luminous in our naive optically
thin luminosity approximation. Secondly, even if this is a signature of nodal precession,
there are not enough precessions for this feature to be significant. For the S6 simulation
only 5 precessions are visually evident. However, each time there is a tearing event the size
of the inner disc and hence the precession frequency changes, and so even these precession
events occur with varying frequency. Extending the simulation even further to try and
measure more precessions becomes hard to justify, as the outer disc boundary is already
beginning to affect the simulation with the current duration (⇡25 seconds).

5.8 A different approach to measuring the precession

The previous sections have demonstrated at least two limitations of the current luminosity
approximation outlined in § 5.3. First, the innermost part of the disc is populated with
particles that have an artificially high luminosity because they are poorly resolved. While
these particles are strongly identified in the PDS, they are not connected to an extended
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structure in the simulation. Future use of the luminosity approximation must mitigate
contributions from such particles.

Second, it appears that the luminosity approximation does not necessarily demonstrate
what we are hoping to measure. As it highlights shocks, it easily picks up the tearing and
reformation of rings and discs. However, we are trying to measure the sustained precession
of an inner disc — a structure that is not necessarily undergoing shocks. Indeed, the inner
disc is only luminous when material is feeding it and hence increasing the outer radius.
To measure a consistent frequency in the PDS the innermost disc should have a constant
outer radius, and so we would want to measure it when it is not being fed and thus not
luminous. Apsidal precession, as identified in the high resolution inner disc simulations
(e.g. Figure 5.2) is identified by this luminosity approximation but only when the inner
part of the disc is very well resolved and even then, it is not present in the PDS we measure
from these simulations.

Finally, the validity of the opacity approximation is not clear, especially as the disc is
assumed to be isothermal. The difficulty with these two assumptions is illustrated when
considering neighbouring precessing rings. With the current approximations, these rings
will be non-luminous when their angular momenta are similar, but as the inner one pre-
cesses around faster the luminosity will increase until they have opposing angular momenta
(and shocks are occurring). As the inner ring continues to precess the luminosity will de-
crease until they have similar angular momenta again. Whilst this suggests a mechanism
for the disc to have oscillations in the luminosity, this scenario is not physical and is unique
to highly resolved isothermal tearing simulations. In a physical system, the gas should heat
up as it shocks, generating a corona and invalidating the approximation that the disc is
optically thin. In this case, fluctuations in the luminosity can only be generated by taking
into account obscuration by less luminous material. This method has the advantage that
it is closer to the accepted emission mechanism for producing type-C QPOs (e.g. Ingram
et al., 2016).

These three considerations motivate the development of a different method to measure
precession in the simulations and to identify this in a PDS. We consider measuring the
precession of the gas in the disc dynamically and modifying the luminosity approximation
to try to take into account the above three considerations.

5.8.1 Measuring the precession dynamically

As outlined in § 2.2.5, the rate of precession in the disc may be measured directly from the
angular momentum components of the particles. The precession frequency of the material
is determined directly from the rate of the twist, �, and when considered as a function of
radius can identify if a structure is precessing as opposed to free particles. The obvious
strength of this method is that because it uses the dynamics of the gas it is independent of
the luminosity approximation. This means that it can be used to independently verify any
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features that may be found in the PDS that is generated from our synthetic lightcurves,
although it cannot yet be used to create a PDS currently.

As in previous chapters, the disc is discretised radially into shells and the twist measured
as a function of time for each shell (an example of this from Chapter 3 can be found in
Figure A.1). With the twist, �(r), in the disc at a particular radius given as a function of
time, the precession frequency of the gas ⌫

gas

at a particular radius is given by

⌫
gas

=

1

2⇡

d�(r)

dt
. (5.9)

The precession frequency was measured from the slope of the twist (d�(r)/dt) using a
centred differences scheme, requiring at least three sequential points to measure a positive
slope. When a negative slope was measured (i.e. sampling was across distinct precession
periods, this occurs twice in the example of Figure A.1) the result was discarded. This
method returns the frequency as a function of time for each radius (i.e. azimuthally
averaged radial bin) but in the following figures is shown as the frequency as a function of
radius for each time-step for clarity. We stress here that the previous simulations have not
changed or been repeated, rather we are conducting a different analysis.

Figure 5.15 shows the frequency and surface density from S6 at a few representative time-
steps. The innermost, noisy region reveals the frequencies of individual particles at ⇡10
Hz. The smooth curve at ⇠20Rg documents the inner precessing structure, with frequen-
cies of consistently .5 Hz. The lack of a corresponding feature at these low frequencies
in Figure 5.13 confirms that the current simulations are not able to identify precessing
structures in a PDS. The resolution used, the luminosity approximation or the duration of
the simulation may all be responsible for the lack of features.

5.8.2 Luminosity projection with obscuration

Although consideration of the angular momentum components confirms that the inner disc
is precessing, it cannot be used to generate a PDS. In an effort to assess the viability of
approximating the disc as optically thin, we consider measuring the luminosity of the disc
in a way that takes into account obscuration. Motivated by oscillations in the light curve
being generated by obscuration from precessing structures, this light curve would take into
account when cooler, less luminous material passes between the inner bright disc and the
observer.

Here we use the rendering function of the visualisation tool splash (Price, 2007) to gen-
erate a light curve that includes the effects of obscuration. First, the luminosity was
displayed with 3D surface rendering, producing a luminosity surface (discussed in depth in
Price, 2007). The same process was used to render a density surface in previous chapters
(e.g. Figure 3.9). In splash this is achieved by ray tracing through the particles and
tying the optical depth to the local density. This choice means that low luminosity regions
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Figure 5.15: Comparing the precession frequency of the gas with the surface density profile
and the visual structure in the disc. Precessing structures can be identified by sections of the
disc precessing at a shared frequency (e.g. top panel). The higher frequencies (& 5 Hz) with a
discontinuous frequency profile are generally associated with gas between disc structures. In the
final panel, these frequencies vary on short timescales despite little change in the disc structure.
The lower frequencies (⇠1 Hz) are associated with a continuous frequency-radius profile, i.e. a
radially extended structure. This comparison demonstrates that the PDS we generate with the
luminosity approximation in § 5.3 cannot distinguish between precessing structures (e.g. rings) or

precessing gas (i.e. the gas between the rings).



5.8. A different approach to measuring the precession 135

appear as transparent and high luminosity regions as opaque. Second, these visualisations
were written to an ascii file as a pixel map using the ‘splash to ascii’ feature. Because
the visualisations are rendered, these pixel maps only include luminous regions that are
naturally visible to the observer while less luminous regions or luminous regions on the
far side of the disc are not included. Finally, the values in each pixel map were summed
giving a total luminosity for each output file that is visualised. Thus the total luminosity,
including viewing dependence and the effects of obscuration, could be generated without
re-running the simulation. The difficulty with this method is its use of visualisation out-
puts from Phantom; these outputs are only generated every 0.02 seconds (of physically
scaled time), so our PDS can only consider frequencies slower than this and so we cannot
consider the HF features anymore. However, this places the upper limit on the frequencies
we measure of 50 Hz so we can still investigate LFQPOs.

Third large disc (S6) with obscuration

To test the new approach proposed above, a number of subtly different variations of the
light curve with obscuration from S6 were used to generate PDS. To quantify the effect
of low resolution, artificially bright particles, a PDS with all particles was compared to a
PDS excluding particles with smoothing length h > 2.0 (Figure B.6). This comparison still
identifies that the low resolution, luminous particles contribute significantly to the PDS
generated. From here onwards we use the smoothing length criteria to try to eliminate the
contributions from these particles in the simulated PDS.

PDS using only well resolved particles (h < 2.0) were generated from different sections of
the light curve and from different isolated regions of the disc, shown in Figures 5.16 and 5.17.
From these light curves we conclude that the greatest contribution to the shape of the PDS
comes from the material in the inner 25Rg during the first tearing episode. Importantly,
this is before the formation of the first inner ring, confirming that the PDS features we
measure from the full lightcurve are not due to the precession of the innermost structure.
The PDS generated from the second half of the light curve, where this structure is present,
does not show any clear features.

Figure 5.18 shows PDS generated from different viewing inclinations, finding little differ-
ence in the PDS for each inclination. If the features being measured are indeed a geometric
effect, then an strong change would be expected between inclinations. Because this is not
the case, we conclude that the luminous particles that are being identified must not be
obscured at any point, independent of the viewing inclination.

From the three above approaches to calculating the PDS we have shown that the largest
contribution to the shape of the PDS is from the inner 25Rg, before an inner ring has
formed and before precessing rings obscure the viewing of the central region. Particles
in this region are luminous because they are lower resolution, despite our attempts to
remove low resolution particles from the simulation by introducing a smoothing length
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Figure 5.16: PDS from S6, including the effects of obscuration (see text), from different sections
of the light curve (Figure 5.12) indicated in the insets. The red line represents the PDS from the
full light curve, so the closer the match between this and the PDS in black the more this section of
the light curve contributes to the full PDS. The best comparison in the upper, middle and upper,
right panels suggest that the features in the PDS come mainly from the initial tearing event rather

than subsequent precessions of rings.

restriction. Discarding the first half of the light curve (where these particles make their
largest contribution) demonstrates no clear features in the PDS.

In a final attempt to mitigate the impact of the lowest resolution particles, we introduce
an artificial bright source at the centre of the simulation (where the black hole is). This
source is given a constant luminosity that is two orders of magnitude larger than the
highest luminosity generated in the simulation (not including the particles discarded by
the smoothing length restriction). We repeat the process of generating a light curve with
obscuration using splash and a pixel map as before. Here, the flux measured at each step
can conceptually be thought of as light not blocked by the disc structures between the
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Figure 5.17: PDS from S6, including the effects of obscuration, from different sections of the disc
indicated in the insets as the black sections of the disc. The red line represents the PDS from the
full disc, so the closer the match between this and the PDS in black the more this section of the
disc contributes to the full PDS. The better comparison in the upper panel suggests that the PDS

features are mainly driven by gas in the inner regions.
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Figure 5.18: PDS from S6, including the effects of obscuration from different viewing inclinations
of the disc indicated by the inset. Because changing the inclination results in little change in the
calculated PDS, the features being measured by the PDS must not be a geometric effect — this is
at odds with our understanding of both LFQPOs and our interpretation from our simulations.
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Figure 5.19: Simulated light curve from Figure 5.11 but including an artificial, bright
point source at the centre of the simulation. A viewing point is assumed and the
lightcurve is generated by measuring the obscuration of this bright source by the pre-
cessing rings (tearing does not occur in the first ten seconds so there is no obscuration).
This method is similar to representations of LFQPO models (e.g. Ingram et al., 2016)

and does not depend on the interactions between the rings.
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Figure 5.20: PDS generated from the light curve shown in Figure 5.19, which includes
obscuration and an artificial luminosity source. As with all the other PDS generated
with obscuration, the disc is viewed at an inclination with maximum obscuration. A

tentative LF feature is identified ⇠2 Hz.
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artificial bright source and the observer. Figure 5.19 shows the resultant light curve in this
case; there is no tearing and thus no obscuration before 10 seconds but each subsequent
dip in the light curve is caused by a ring passing in front of the artificial source.

We generate a PDS from this light curve, including our smoothing length restriction to
avoid low resolution particles and only considering the second half of the light curve.
Figure 5.20 shows that despite all the difficulties that we have tried to mitigate, the PDS
is again inconclusive. We repeat the analysis described above by generating PDS from
different sections of the light curve, different regions of the disc and at different viewing
inclinations (Figures 5.21, 5.22 and 5.23). These results confirm that the features in the
PDS are mainly generated from the innermost 25Rg only when tearing is occurring — the
region that is predominantly sampled in Figure 5.20.

As Figure 5.20 does display our most physically motivated PDS, we try to use our previously
described significance test to see if any of the potential features are statistically significant.
The broad feature at ⇡2 Hz in particular is consistent with our findings from the dynamical
measurements, and visually it appears as though it may be significant. Because here our
data are evenly sampled we assume that the number of independent frequencies sampled
is equal to the original number of data points that were used to calculate the PDS (i.e.
M=length of data sampled). We solve Equation 5.7 for the power that would be required
for p = 0.5, 0.05 and 0.01. These significance levels are included in Figure 5.24, showing
the low-frequency region of Figure 5.20 with linear scales. Here we identify that the feature
at ⇡2 Hz is not significant while 0.42, 0.61 and 0.87 Hz are. These features at <1 Hz may
correspond to the precessing structures identified using the dynamic analysis in Figure 5.15.
However, these features are only identified in a single simulation — these would need to be
reproduced at higher resolution in order to be confirmed. Additionally, we have not tried
to take into account the broad trend of increasing power at low frequencies (e.g. the fit
that is in Figure 1.13), and so we additionally expect more noise at lower frequencies due
to low sampling. As a result, we do not consider the features identified in Figure 5.24 as
significant.

Underlying this entire analysis is the acknowledgement that the simulation may simply
not be long enough to clearly measure precessing features or high enough resolution. For
example, the light curve in Figure 5.19 only shows five distinct dips that are attributable
to a precessing structure. The effect of the length of the simulation can only be quantified
by simulating for longer, but we are already constrained by the strict balance between the
outer edge, the resolution and the length of the simulation. We next consider increasing
the resolution of our simulations to shift this constraint.

5.9 High resolution simulations (S7 and S8)

The previous discussion of low resolution particles prompts a resolution study, as at higher
resolution these particles should have a smaller effect. Up to this point, the simulations
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Figure 5.21: PDS from S6, including the effects of obscuration with an artificial luminosity
source, from different sections of the light curve (Figure 5.19) indicated in the insets. The red line
represents the PDS from the full light curve, so the closer the match between this and the PDS
in black the more this section of the light curve contributes to the full PDS. The better match
to sections of the lightcurve that involve tearing demonstrate that this method of measuring the
lightcurve (e.g. upper, left panel compared to lower, middle panel) only takes into account the

precessing gas (as opposed to Figure 5.16 which models the tearing gas instead).

made use of a maximum of 106 particles. In each simulation the tearing is only marginally
resolved — that is, the simulations are conducted at the minimum resolution to guarantee
tearing. This criteria means that resolution effects cannot be investigated by going to
lower resolution, as the behaviour of the disc will be different and tearing will not occur.
Importantly, although tearing is resolved with the current number of particles, this not
necessarily true for the individual rings. As a result, at higher resolution the rings generated
will be qualitatively similar but narrower and will last longer (as they do not interact
with neighbouring rings as strongly). This will affect the frequencies measured from our
simulation, and so is an important consideration.

S6, which does have structures precessing at ⇡1-2 Hz, is repeated at an increased resolu-
tion of 107 particles (S7). Simulating for the same physical time as the lower resolution
simulation (e.g. ⇠20 seconds) is extremely computationally expensive with 107 particles.
On the Swinburne g2 cluster with the current computational resources (16 cores) it was
estimated this would take more than a year for the simulation to be completed. In an
effort to conduct the simulation faster we made use of the Monarch cluster, where up to 24
cores are available. With these resources the simulation was still estimated to take more
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Figure 5.22: PDS from S6, including the effects of obscuration with an artificial luminosity
source, from different sections of the disc indicated in the insets as the black sections of the disc.
The red line represents the PDS from the full disc, so the closer the match between this and the
PDS in black the more this section of the disc contributes to the full PDS. Here we again confirm

that the gas in the innermost section drives the features in the PDS.
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Figure 5.23: PDS from S6, including the effects of obscuration and an artificial luminosity
source from different viewing inclinations of the disc indicated by the inset. The strong inclination
viewing dependence of this method is more physically motivated than our previous method (e.g.

Figure 5.18).
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Figure 5.24: Significance of low-frequency features identified in the PDS in Figure 5.20. The
significant features identified at 0.42, 0.61 and 0.87 Hz are tentatively associated with the structures

precessing at <1 Hz, measured dynamically in Figure 5.15.

than 9 months and was not likely to reveal more precessions of the innermost material —
rather we expect it to better resolve the interaction of the rings.

As the slowest part of the simulation is the orbits just outside the ISCO, a final simulation
is initiated with the same parameters as S6 but a larger inner radius (S8). The lower
resolution simulations suggest the inner truncated disc has an inner radius of ⇡ 8Rg (e.g.
Figure 5.15) and at higher resolution this is expected to move further inwards. Choosing
an inner radius that compromises the inner edge of the disc will affect the frequencies
measured, so a conservative value of R

in

= 6Rg was chosen for this final simulation. This
simulation is predicted to take a shorter time than S7, but precisely how much shorter is
difficult to gauge.

At the time of submission, these simulations were incomplete (they have approximately 8
seconds of tearing behaviour). In the context of the analysis that has been completed for
the lower resolution cases, we note that these simulations are not guaranteed to generate
a PDS with a significant LF feature.

5.10 Summary of QPO simulations

Here we summarise the findings from the (more than 200) simulations that we have con-
ducted to try and show the connection between tearing discs and QPOs. Although the
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high resolution simulations are continuing, we have identified the following important con-
siderations for future work:

• Long duration, high resolution simulations appear unavoidable in order to demon-
strate the connection between QPOs and tearing in discs.

• The general behaviour of the disc is demonstrated to be consistent with our previous
simulation; material tears off the outer disc, cascading into precessing rings that in-
teract and accrete onto the black hole. This process is demonstrated to be repeatable
and the gas in the rings precesses with the frequencies expected from observations
(although slightly lower than these).

• If the resolution is high enough in the inner parts, apsidal precession is demonstrated
in the inner regions (although not yet measured in the PDS).

• The artificially high luminosity contribution from low resolution particles must be
taken into account or preferably eliminated.

• Features in the PDS can be confirmed dynamically, using precession timescales esti-
mated from the twist in the disc.

• A cooling prescription is important here as the tearing process is expected to generate
hot gas with a range of cooling rates. From previous work the gas that cools slowly
will form a corona while the gas that cools quickly will form a disc. Without a cooling
prescription, this behaviour cannot be included.

Despite what we have learnt using the luminosity approximation, this work suggests that
future investigations may require a more sophisticated method of generating and measuring
flux in the disc (i.e. detailed radiation transfer calculations), which is currently not possible
with phantom.

5.11 Conclusions

Although the simulations shown in this chapter do show discrete, precessing disc structures
that may be associated with LFQPOs, it is difficult to identify such features in the PDS
due to the relatively short simulation time. While we are able to identify the precession
of gas in the inner region after the initial tearing using a PDS, we are not able to confirm
any significant features. Here we recall and respond to the questions posed in § 5.1:

1. We have demonstrated that a disc with the parameters of an observed LMXB and
strongly inclined can undergo disc tearing. Here we assumed a large inclination to
guarantee disc tearing, but using the previous analytical estimates tearing is permit-
ted in these systems at lower inclinations as well. Additionally, although we cannot
simulate the full radial extent of the disc (e.g. the order of the binary separation),
we do not expect this to affect the tearing behaviour significantly.
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2. Our simulations confirm that tearing from the outer disc is a repeatable phenomenon:
material starts outside the tearing region, moves inwards on the viscous timescale
and then a new ring is torn off the outer disc. As shown by simulations S5 and
S6 (and by the high resolution simulations that are still running) the behaviour is
repeatable as long as material continues to be supplied from the outer disc.

3. Dynamical measurements from the rings produced in our simulations confirm that
they do precess with frequencies consistent with LFQPOs — we note however, that
the range of frequencies observed from this particular LMXB mean that any frequency
less than ⇠30 Hz is consistent with observations. Importantly, although the tearing
from the outer disc is numerically resolved, the interactions between the rings are
not. As a result, we expect the frequencies that we measure from higher resolution
simulations to be different from what we have shown here.

4. We have explored a few different methods of generating a PDS. Initially, we consid-
ered the luminosity of the disc itself, approximated by the energy liberated through
shock heating and compressive work. This was motivated by the ease with which it
could be implemented into the code and our initial tests that indicated it highlighted
the tearing, interacting rings but ignored the outer disc. However, while this method
is a good indicator for when the rings are interacting, it does not model the precession
of an individual ring well and had significant issues from poorly resolved particles.
Our second method included a luminosity source at the centre of the simulation and
considered the change in flux from this point as the precessing rings passed in front of
it. This method has the advantage that it is more closely aligned with the accepted
model for type-C QPOs. Additionally, we demonstrated that the PDS generated
using this method only represented features due to precessing structures, measured
features from the inner regions specifically and showed a strong viewing dependence.

5. Observations of QPOs in nature have minutes or more of data with which to sample
the PDS. This is currently not possible with our computational resources, but we were
able to generate ⇠10 seconds of tearing disc/precessing rings behaviour. Within this,
we observe a handful of precessions of each given ring but note that this behaviour
is not yet resolved — although each ring tearing off the outer disc is resolved, the
interactions between the rings is not. We are currently conducting simulations with
107 particles in an effort to better resolve this and thus the frequencies with which
the rings precess. However this will still not yield more than 5 or so precessions
before the end of our simulation, and it is not clear that this is enough to generate
a meaningful PDS.

6. From the PDS we are able to generate, there are no features we would consider as
significant enough to compare to observations of LFQPOs. The potential reasons for
this have been highlighted in the previous point.

7. Our use of a post-Newtonian approximation mainly affects the frequencies measured
in the inner ⇠10R

g

. Outside of this region, the approximation is close enough to the
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analytically derived expression such that the Lense-Thirring precession is accurate
and tearing should not be affected. Additionally, the apsidal precession demonstrated
in our inner disc simulations shows that this effect is adequately modelled for our
purposes. As HFQPOs are sourced from the innermost regions of the disc where the
post-Newtonian approximation is less accurate, any measurement of these from our
simulations must be treated carefully.

8. Although observations of QPOs motivate separate mechanisms for type-A, -B and
-C QPOs, the simulations shown here generate many precessing structures that all
have distinct properties (e.g. the rings are necessarily radially narrow). This tempts
the question: are the different types of LFQPOs related to the different precessing
structures driven by disc tearing? This remains a question for future work.

The most physically motivated PDS generated in this chapter did not contain any sig-
nificant features. While this may suggest that tearing discs are not related to LFQPOs,
we have discussed the limitations and numerical difficulties of the simulations we have
presented. Until these are resolved — in particular, the number of precessions measured
in our simulations — tearing discs remain a possible explanation for LFQPOs. In future
work we intend to consider the results from our high resolution simulations (§ 5.9) as well
as moving to a more physically motivated method of measuring the luminosity. As simu-
lating on physical timescales of minutes continues to be untenable, we will also continue
to consider different methods that may be used to generate a PDS that may be compared
directly to observations.
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Chapter 6

Thick accretion tori

We finally consider the evolution of geometrically thick structure around a compact rotating
object, beginning by considering a large cloud of turbulent gas that is set to engulf a black
hole. We show that when the cloud is inclined to the black hole spin it is possible to
generate rings of precessing gas, as in the simulations of inclined accretion discs.

Second, we consider a torus formed during a tidal disruption event. Bonnerot et al. (2016)
simulated the evolution of tidal disruption events taking into account apsidal precession
with different cooling efficiencies. They confirmed that including the effects of apsidal
precession allowed the gas to circularise rapidly, as the head of the stream of disrupted gas
intersected the tail of the stream each time it passed through pericentre. These intersections
lead to shocks and heating of the gas and, in the case where the gas was not able to cool
fast enough, the formation of a torus.

We will demonstrate in this chapter that when this torus is not already accreting, the in-
nermost region of such a remnant is unstable to the Papaloizou-Pringle instability (PPI).
This instability generates non-axisymmetric perturbations in the density of the torus. Al-
though accretion of this torus will ultimately be driven by the magnetorotational instability
(MRI), the initial magnetic field in the torus is weak because it comes from the disrupted
star. Previous work has suggested that in this case it will take ⇡3 orbits for the MRI
to saturate and result in significant accretion (see § 6.7). However, in the torus we are
considering the PPI has a comparable growth rate and saturates by accretion through the
inner edge. We are thus interested in whether this instability can drive accretion during
the narrow window where the MRI is growing but not yet established.

To investigate the connection between the PPI and the initial accretion of tidal disrup-
tion remnants, we begin by considering the evolution of a radially narrow torus that is
Papaloizou-Pringle unstable and confirm that the PPI is capable of driving angular mo-
mentum transport. We consider a circularised version of the tidal disruption remnant by
Bonnerot et al. (2016) to investigate whether the PPI is capable of causing significant
accretion before the MRI is likely to be established in these geometrically thick tori.
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Figure 6.1: Non-rotating black hole engulfing a cloud inclined at 60

�. The black hole is located
at the origin and time is in units at Rg (i.e. an orbit at R = 1 takes 2⇡), distances are in code
units. As this scenario is equivalent to approaching a rotating black hole at zero-inclination, direct

comparison with Figure 6.2 demonstrates the effect of inclining the black hole spin.
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Figure 6.2: Same as Figure 6.1 except the black hole here is rotating. Inclining the black hole
spin demonstrates the formation of rings, which should lead to the development of a truncated
inner disc. This scenario produces more shocks such that the gas circularises faster, in agreement

with Bonnerot et al. (2016).
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6.1 The interaction of a cloud with a rotating black hole

To begin considering non-disc structures around rotating black holes, we investigated the
effect of Lense-Thirring precession on a cloud of gas. These simulations were based on
work by Lucas et al. (2013) who simulated misaligned streamers of stars around Sgr A*.
Lucas et al. (2013) conducted SPH simulations of an elliptical cloud engulfing a rotating
black hole, finding a possible source for the two misaligned rings of stars that surround the
black hole at the centre of the galaxy.

We start with a similar setup to Lucas et al. (2013), but move the initial cloud closer to
the black hole so that the effects of nodal precession are more pronounced. We thus set
the pericentre of the orbit at R

p

= 10R
g

and shrink the cloud to have a width of 20R
g

and length 50R
g

. The gas in the cloud is modelled as adiabatic with no shock heating or
compressive work (i.e. a co-moving isothermal frame) and gas is initialised as turbulent
using the turbulent velocity fields available with Phantom. As in Lucas et al. (2013) we
use 3⇥106 particles. In both cases we incline the cloud to the black hole spin, but in the
non-rotating case with a = 0 the evolution would be equivalent at any inclination.

Figures 6.1 and 6.2 shows the evolution of these clouds. In the case of the non-rotating
black hole the cloud circularises and forms a disc quickly. However, in the case with a
rotating black hole there is evidence of rings in the second and third panels. These rings
are formed as the incoming material precesses with a common rate, but their interactions
are the same as in the tearing disc case explored earlier. Angular momentum is cancelled
more efficiently than in the non-rotating case, resulting in a comparatively smaller final
disc. Additionally, this disc is not aligned with the original inclination of the cloud. This
comparison confirms that even in the case of accreting material that has not formed a disc,
precessing rings of gas can still be formed from misaligned material. The interaction of
these rings ultimately leads to the formation of an inner, aligned disc that feeds the black
hole but this occurs on timescales much faster than in the aligned case.

The difficulty with these simulations is that a cloud like this would have been disrupted
and formed a disc well before it gets to such a small radius. As misaligned gas moves
through the tearing region, our simulations in Chapter 5 (e.g. Figure 5.11) demonstrate
that a single, radially wide ring of gas will rip off, cascading into many smaller interacting
rings. This behaviour is not demonstrated in these simulations because of our choice of
initial conditions.

6.2 The Papaloizou-Pringle instability

We instead consider the simulation from Bonnerot et al. (2016) as a physically motivated
scenario which generates a geometrically thick torus. The cross section from the remnant
in this simulation was shown in Figure 1.21. The thick, puffy nature of this cross section is
due to the combination of shock heating and numerical viscosity. As the shocks heat the
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gas it cannot cool efficiently, increasing the aspect ratio (H/R) and puffing up the torus.
Additionally, the numerical viscosity that accommodates these shocks leads to spreading,
particularly at the edges of the torus. Because the numerical viscosity is resolution depen-
dent, at higher resolution we expect the torus to have spread less and be more compact
(while the aspect ratio should remain consistent). Although this is a purely hydrodynamic
simulation, the weak initial magnetic field of the star means that the magneto-rotational
instability (MRI) is not likely to be established yet such that the torus is not expected to
be accreting.

The torus described above already meets some of the criteria for the Papaloizou-Pringle
instability (PPI), but the final criteria is that the slope of the specific angular momentum
profile, l / rq, be shallow such that q < 0.25. We measure the slope of the specific angular
momentum profile in the innermost 0.5 AU of the remnant from Bonnerot et al. (2016),
finding that 0 . q . 0.1. Thus the innermost region of the torus is Papaloizou-Pringle
unstable in the case when it is not accreting and more compact than the result from
Bonnerot et al. (2016) (as would be expected at higher resolution).

We recall for a given mode m, the growth rate ! of the PPI satisfies (Blaes and Glatzel,
1986)

(! +m⌦(R�))
2
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, (6.1)

where R� is the inner edge, R
+

the outer edge and ⌦(R) and g(R) have particular de-
scriptions given in § 1.5.3. In the case of a radially thick torus with say, R� = 0.8R

0

and
R

+

= 1.6R
0

, the above equation gives that the m = 1 grows fastest with Im(!) ⇡ 0.5⌦
0

.

To understand how angular momentum may be transported by the PPI we initially consider
the evolution of a radially narrow torus for two reasons; for a given number of particles
a radially narrow torus will have a higher resolution and we can use a radially narrow
torus as a ring spreading test (recall Figure 1.1). We set R� = 0.9R

0

and R
+

= 1.1R
0

for
this thin torus, with an almost circular cross section (rather than the stretched out cross
section in Figure 1.21). Figure 6.4 shows the solutions to Equation 6.1 for different modes
m for this torus, suggesting that the fastest growing mode for our thin torus simulation is
the m = 3 mode with a growth rate of Im(!) ⇡ 0.3 per orbit.

6.2.1 Growth of the PPI in a thin torus

We start by studying the development of non-axisymmetric perturbations in a radially
thin, vertically thick torus. To compare as closely as possible to the description assumed
to derive Equation 6.1, we consider a radially narrow torus with G = M = 1, R

0

= 1.0,
R

+

= 1.1 and R� = 0.9 (orbital times below are specified at R
0

). The left-most panels
of Figure 6.3 show the initial torus structure. The density and pressure of the torus are
assigned by assuming a polytropic equation of state P = A⇢� and (Papaloizou and Pringle,
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where the maximum density

⇢
max

=


GM

(n+ 1)AR
0

✓
d� 1

2d

◆�n
, (6.3)

is used to specify A. Here r is the radius in spherical coordinates, R
0

describes the
cylindrical radius of maximum density, ✓ is the angle that describes the height out of
the plane and n = (� � 1)

�1 is the polytropic index. The factor d = (R
+

+ R�)/(2R0

)

determines the profile of the cross section, where values close to unity correspond to a
circle. For our radially thin torus we specify an almost circular cross section given by
d = 1.01. In code units, we chose a maximum density ⇢

max

= 2.5⇥10

�9, but the evolution
of the torus is independent of this choice. We repeated the simulation using 3.0 ⇥ 10

5,
2.3⇥10

6, 1.6⇥10

7 and 1.25⇥10

8 particles. At the lowest resolution the vertical thickness
is resolved by approximately two smoothing lengths and in the highest resolution case by
ten.

Following Zurek and Benz (1986), the particles in the torus were initially given zero veloc-
ity and relaxed in an effective potential that accounted for both the gravitational potential
and the pressure forces due to the initial specific angular momentum profile. The torus
was allowed to relax in this potential until the potential energy stopped oscillating, cor-
responding to 5 orbits at R

0

. Subsequently the particles were given orbital velocities and
then seeded with the fastest growing mode. Figure 6.4 shows the growth rates from Equa-
tion 6.1 for this choice of R� and R

+

, from which we see that m = 3 is the fastest growing
mode. Seeding was achieved with a small azimuthal perturbation in density ⇢, given by
⇢ = ⇢

0

[1 +B cos(m�)], where ⇢
0

is the original density, B is the amplitude of the pertur-
bation and � is the azimuthal angle. To achieve this the particles were shifted in position
by �� = �B sin(m�

0

)/2, where B = 0.05 and �
0

is the original azimuthal angle (e.g. Price
and Bate, 2007). We use a Keplerian gravitational potential with an accretion boundary
of R

acc

= 0.1 for the lower two resolutions and R
acc

= 0.2 for the highest resolution sim-
ulation, within which particles are removed from the simulation. The central object has
M = 1 in code units.

The time evolution shown in Figure 6.3 shows the formation of three over-densities cor-
responding to the m = 3 mode, which co-rotate with the fluid at the orbital velocity at
R

0

. After 2.5 orbits (fourth panel from left) these over-densities reach their maximum
radial width, with evidence of strong shocks at high resolution. The PPI saturates (fourth
panel), and the over-densities become less prominent (fifth panel) as the torus continues to
evolve and spread radially. The shocks generated by this instability are particularly clear
in the x-z cross-section (bottom row) and are confirmed by plotting the divergence of the
velocity field.
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Figure 6.4: Growth rate calculated from Equation 6.1 for a few azimuthal wavenumbers m when
R� = 0.9R0, R+ = 1.1R0. The fastest growing mode (Im(!) ⇡ 0.3⌦0 for m = 3) is used to seed

the radially narrow torus in Figure 6.3.

To confirm that the growth of the density perturbations in our simulation matches Equa-
tion 6.1, we consider particles in the x-y cross-section, with �0.05 < z < 0.05. We compute
the average density, ⇢

mean

, from all the particles in this ring. The properties of the particles
in the torus are then radially averaged in a method analogous to the azimuthal averaging
described in Lodato and Price (2010), where we divide the torus into N = 45 azimuthal
bins such that each bin represents �� = (360/N)

�
= 9

�. The deviation from the mean
density in each bin j as a function of azimuthal angle is calculated with (⇢j�⇢

mean

)/⇢
mean

.
We measure the density variation at each timestep and identify the maximum as the lo-
cation of the over-density — as these co-rotate with the fluid, this occurs at a different
azimuthal angle at each timestep. Figure 6.5 shows the maximum density variation as a
function of time for different numerical resolutions (see legend) compared to the expected
growth rate (purple line). We estimate the average growth rate using a least squares fit
between 0.1 and 3.0 orbits, measuring Im(!)/⌦

0

= 0.5± 0.19 from the simulations (with
the uncertainty derived from the lowest resolution case). Taking into account the assump-
tions of compressibility and cylindrical flow used to derive Equation 6.1, we consider our
measured growth rate to be consistent with the analytical prediction of Im(!)/⌦

0

⇡ 0.3.
We additionally visually confirm that the motion of the over-densities is on the orbital
timescale, which is consistent with the analytical prediction of Re(!)/⌦

0

= m. The ‘dip’
observed around 1 orbit is caused by mixing of unstable modes with stable oscillations of
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Figure 6.5: Resolution study showing the amplitude of the non-axisymmetric density perturba-
tion as a function of time from the thin torus simulation. Purple line shows the expected mode
growth from Equation 6.1 for the fastest growing (m = 3) mode. The instability grows on the
orbital timescale, saturating after approximately 3 orbits. Comparing the average growth in the

first two orbits we find numerical convergence in the growth rates.

the torus, and also affects our time averaged growth rate measurement. The amplitude
of the perturbations saturates after 2.5 orbits in agreement with Figure 6.3. The linear
growth phase (first two orbits) is converged for even moderately low resolution, but high
resolution is needed for the saturation phase due to the interacting shocks.

6.3 Does the Papaloizou-Pringle instability lead to angular
momentum transport?

The radial spreading that occurs in Figure 6.3 suggests that the PPI may be capable of
generating angular momentum transport. Figures 6.6 and 6.7 quantify this, showing the
surface density ⌃(R) as a function of radius in the thin ring and the measured effective ↵

parameter.

To measure the viscosity, ⌫, in the thin torus, which has contributions from both the
artificial viscosity in the code and any viscosity generated by the PPI, we use the same
technique utilised in Lodato and Price (2010). That is, we match the surface density
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Figure 6.6: Evolution of the surface density from the thin ring simulation (dashed line), matched
to the corresponding evolution of Equation 6.4 (solid line) at the same time. Spreading suggests
angular momentum transport may generated by the PPI in a radially thin torus, measured in

Figure 6.7.

evolution in the 3D simulations to the solution of the 1D disc diffusion equation (Pringle,
1992)

@⌃

@t
=

3

R

@

@R


R1/2 @

@R

⇣
⌫⌃R1/2

⌘�
. (6.4)

We measure the ‘effective ↵’ using a root-finding algorithm, where we minimise the dif-
ference between the evolution of ⌃ (modelled by Equation 6.4) of the 1D code and our
simulation at corresponding times using a finite difference method as outlined in Lodato
and Price (2010). We follow the process outlined in Section 4.2.1 of Lodato and Price
(2010) in order to quantify the difference between the 1D code and the simulation at a
given time step, finding the best fit between surface density in the 1D code and the surface
density in the 3D code, using bins within a radial range of ±0.05 around the maximum in
the radial surface density profiles.

We set ⌃ = 0 as the inner boundary condition for the 1D code at R = 0.5 as in Lodato
and Price (2010) and set the same condition far away from the outer edge of the torus at
R = 5. As the ⌃ profile of the relaxed ring cannot be described by a simple power law,
the initial ⌃ profile was interpolated directly from the thin torus simulation. The aspect
ratio H/R (where H is measured from the standard deviation of particle position in the
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Figure 6.7: The ‘effective ↵’ measured from the ring spreading in Figure 6.6 at our four highest
numerical resolutions (increasing from right to left). We find a spreading which is independent of
numerical viscosity, with a Shakura-Sunyaev ↵ ⇡ 0.07. Here the green line indicates the expected

first-order scaling of the artificial viscosity terms.

z direction) varies between 0.04 � 0.045 during the first 4 orbits, so we adopt an average
value of H/R = 0.0425. Figure 6.6 shows the comparison between the 1D code and the
simulation after three orbits of our highest resolution simulation.

Unlike Lodato and Price (2010), we expect ↵ to vary with time as the PPI develops.
Hence we measure ↵n at every tenth of an orbit, tn, which represents the average viscosity
prior to that time. As the PPI develops the effective viscosity remains roughly constant
for 2 orbits, where it steeply increases and reaches a maximum by 2.5 orbits — when
shocks are strongest in the simulation. The effective viscosity then decreases, returning to
a constant value by 3 orbits. Figure 6.7 shows the effective ↵ after the PPI has developed
and saturated (i.e. at three orbits) as a function of resolution measured at R

0

. This
effective ↵ has contributions from both the resolution dependent numerical viscosity and
the physical viscosity generated by the PPI. Figure 6.7 demonstrates that the viscosity in
the torus is approximately independent of vertical resolution. As the viscosity derived from
the higher resolution simulations has a weaker resolution dependence than expected from
artificial viscosity only (green line in Figure 6.7), we conclude there is a physical origin for
this viscosity that is related to the PPI with an effective ↵ ⇡ 0.07. These simulations also
indicate that we require the ratio of the shell-averaged smoothing length to scale height
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hhi/H . 0.1 in the majority of the torus to guarantee that the rate of spreading in the
torus does not change significantly with resolution.

6.4 Redistribution of the specific angular momentum

Figure 6.8 demonstrates the redistribution of specific angular momentum throughout the
course of our thin torus simulation. We follow the method presented in Zurek and Benz
(1986), where the specific angular momentum is parameterised by l / rq. The specific
angular momentum in the torus is measured as a function of the radius by Equation 2.60
for each time-step. We then fit the l(r) profile using a least squares fit to find the q value
at each time-step, with uncertainty from the fitting procedure. We find that the q value
saturates at q ⇡ 0.25, shown by the purple dashed line in Figure 6.8. This is in agreement
with Zurek and Benz (1986) (presented in Figure 1.22), despite their wider torus and our
modern implementation of SPH.

6.5 Does the Papaloizou-Pringle instability lead to ballistic
accretion?

We consider whether the PPI is able to drive angular momentum transport through ballistic
accretion. This would occur if the motions of the gas become so eccentric that the gas is
forced onto an orbit where it accretes straight into the black hole, so we begin by measuring
the eccentricity of the gas e, given by

e =

v ⇥ (r⇥ v)

GM
� r

|r| . (6.5)

The magnitude of the eccentricity can be equivalently written as

|e| =
r
1 +

2E|L|2
G2M2

, (6.6)

where E is the sum of the kinetic and potential energy of the orbit and L is the angular
momentum. Figure 6.9 shows the eccentricity measured with either method for our high
resolution simulation for the first three orbits. In the case that orbits are eccentric we
expect |e| = 0, however this is not the case even for our initial condition (black line). This
is because the orbits in a torus, while being circular, are only Keplerian at R

0

(at R = 1

here). The deviation from Keplerian is larger the further from R
0

, explaining our initial
condition where |e| ⇡ 0 at R

0

but |e| & 0.1 at the inner and outer edges. This application
of Equation 6.6 is thus misleading, because when applied to a torus it cannot directly show
where orbits are circular. However, we know that the orbits in our initial condition are
circular (we set them as such), so we take the profile at t = 0 to be at least indicative
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Figure 6.8: Evolution of the specific angular momentum profile (where l / rq) for the highest
resolution radially narrow tori simulation. Here the purple dashed line represents a saturated
profile with q = 0.25. Following the method of Zurek and Benz (1986) we confirm that saturation
of the PPI is equivalently achieved by redistribution of the specific angular momentum in the torus.

Radius

|e|

1 2 3 4 5
0

0.5

1 0 orbits
1 orbit
2 orbits
3 orbits

Figure 6.9: |e| measured from the high resolution radially narrow torus simulation. This method
does not work for non-Keplerian orbits, as the circular orbits in the initial condition are not

represented by |e| = 0.
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of circular orbits. For R > R
0

, at later times the torus spreads to much larger radii but
effectively maintains the initial profile of increasing |e| to the outer torus edge. For R < R

0

however, the profile deviates between 0.4 < R < 0.8, suggesting that material in this region
may no longer be on circular orbits. Consideration of the final panel in Figure 6.3 confirms
this; at the inner edge of the torus there are shock structures reaching inwards from the
torus edge. While this suggests that there is eccentricity in the innermost part of the torus,
this does not confirm ballistic accretion is occurring.

In an attempt to confirm that the torus is accreting ballistically we investigate the particles
that have been accreted. We identify the ⇡1500 particles that have accreted by three orbits
in our high resolution simulation and track them backwards to find their initial positions. In
the initial condition these particles all appear to hug the inner edge of the torus, consistent
with accretion driven by viscosity (i.e. the particles at smaller radii in are accreted first).
In the context of the interpretation from Figure 6.9, this suggests that material at the
inner edge is being caught up in shocks, made slightly eccentric and accreted.

We finally consider the orbits of those individual particles that are accreted. Tracing them
throughout the full evolution of the torus shows no eccentric motion visible in their orbits.
This suggests that if the gas is driven to be eccentric by the PPI, it is not a large effect when
compared to the shock structures that are generated. Interestingly, tracing the evolution
of some randomly chosen particles demonstrates that particles are able to move radially
inwards but then change their motion (still in the same orbital direction) and begin moving
outwards. Such motion and the shocks found demonstrates that the PPI is driving complex
mixing of the gas, which is ultimately what redistributes the angular momenta. We thus
conclude that although the PPI does drive some eccentric motion at the inner edge, this
is a small effect and ballistic accretion is not the main accretion mechanism.

6.6 Are TDE remnants unstable to the PPI?

Finally, we consider the 1M� remnant of a TDE around a non-rotating 10

6M� black hole,
calculated by Bonnerot et al. (2016). This TDE has a penetration factor of � = 5 where �

is the ratio of the tidal to pericentre radii, an eccentricity of e = 0.8 and the final evolution
after eight orbital periods is shown in their figure 8. We measure the specific angular
momentum profile, l(r) / rq inside R ⇠ 0.5 AU using the method outlined in Zurek
and Benz (Figure 4, 1986) and find that 0 . q . 0.1. Although the torus formed from
the TDE remnant is not yet axisymmetric, the specific angular momentum distribution
confirms that if the innermost material circularised it would be susceptible to the PPI.

We construct a circularised version of the remnant by assuming a torus with a similar
cross section and specific angular momentum profile. Similar to our thin torus, we set the
particles initially on concentric shells around R

0

= 0.5 AU, using d = 1.15 and with the
number of shells and particles per shell dependent on the resolution (we used 1⇥10

5, 1⇥10

6
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Figure 6.10: Growth rate calculated from Equation 6.1 as a function of azimuthal wavenumbers
m for the tidal remnant torus simulation. In this case m = 1 is the fastest and only unstable mode,

which is seen in Figure 6.11.

and 1 ⇥ 10

7 particles, respectively). This torus was relaxed into hydrostatic equilibrium
using the relaxing potential as previously, until the potential energy ceased oscillating.

We then set the torus in orbit in a Keplerian potential with a 106M� central object and
added an m = 1 density perturbation using the method described in § 6.2.1 (with amplitude
B = 0.05). While the m = 1 mode is the fastest (and only) growing mode for a radially wide
torus (see Figure 6.10), a non-axisymmetric density structure with this mode is already
present in the remnant produced by Bonnerot et al. (2016) (their Figure 5). Additionally,
if simulated with no added perturbation we find that the m = 1 mode develops. Again we
use a Keplerian potential, but here with an accretion boundary at R

acc

= 0.1 AU.

In comparison with the torus formed by Bonnerot et al. (2016) our torus is more compact
(top panels, Figure 6.11). Although the original simulation by Bonnerot et al. (2016) has
already spread close to the innermost stable orbit of the black hole, the rate of spreading is
enhanced by the artificial viscosity included in their simulation. Taking this into account,
a more compact torus than they have produced is expected when simulated with a higher
resolution, justifying our more compact version. The cross-sectional extent of our torus
is also constrained by the torus being in hydrostatic equilibrium. Rather than precisely
matching the specific angular momentum measured from the remnant, we adopt constant
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specific angular momentum (i.e. q = 0) — both are unstable to the PPI (Papaloizou and
Pringle, 1984; Zurek and Benz, 1986).

Figure 6.11 shows the time evolution of the density cross section of this torus. Within
the first three orbits (measured at R

0

) an asymmetry develops but is not yet accompanied
by appreciable spreading. The instability continues to grow, and by five orbits a shock
has developed that extends from the inner to outer edges. By this stage the outer radius
has spread by ⇡10% at the location of the over-density. The PPI continues to grow and
the torus reaches its maximum size by six orbits, when the PPI visually saturates. By
seven orbits both the strength of the shock and the asymmetry of the outer edge decrease,
although the over-density remains (the partial remnants may be seen in the lower panels
of Figure 6.11). The x-z plane cross section (right hand side) also shows the effects of
the shocks at the outer edge of the torus. While the torus has not spread much in the
z direction, it has doubled its radial extent (although the inner edge is constrained by
our choice of accretion radius). For a TDE remnant that does circularise, this simulation
suggests that the PPI develops within a few orbits, creating over-densities that remain
even after the instability has saturated.

Figure 6.12 shows the mass that falls within the accretion boundary of the high resolution
TDE simulation over ⇠ 20 orbits scaled with the black hole and star parameters specified
in Bonnerot et al. (2016). Within the first five orbits this leads to a mass accretion rate of
⇠100M�/yr — this is well before the MRI is expected to be able to drive significant mass
accretion (however, see § 6.7).

With the average mass accretion rate while the PPI is active but not yet saturated (e.g.
around 5 orbits), the luminosity of the accreting material can be estimated using

L = ✏ ˙Mc2. (6.7)

When the PPI is constraining the accretion rate the luminosity is found to be L ⇡ 1.1⇥10

48

erg/s, assuming ✏ = 0.1. This is ⇠104 times larger than the Eddington luminosity for such
a black hole (L

Edd

= 1.28⇥ 10

44 erg/s).

6.7 Which instability drives initial accretion?

The PPI growth rate for the only unstable mode in the tidal disruption remnant torus is
⇠0.5⌦

0

. As this is slower than the growth rate of the MRI (0.75⌦
0

), it would be expected
that the faster growth of the MRI would mean that accretion is initially driven through this
mechanism. However, the initial magnetic field in the torus formed from a tidal disruption
event is expected to be around the same magnitude as that for a star, ⇠1 G. This weak
initial field means that the MRI will have to grow for many orbits before accretion can be
established. During this time the PPI may be able to saturate and hence drive accretion.
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Figure 6.11: Development of the PPI in a torus that is initially similar to a tidal disruption
remnant of a 1M� star around a 10

6M� black hole. The cross-sectional density evolution from
our initial condition until ten orbits (at R0 = 0.5 AU) is shown on a similar scale to Figure 8 of
Bonnerot et al. (2016). As in our previous simulation there is significant spreading in the radial

direction due to the PPI.
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Figure 6.12: Mass accretion rate as a function of time in the tidal disruption remnant simulation
shown in Figure 6.11. Accretion is primarily driven by the growth and saturation of the Papaloizou-
Pringle instability in the remnant where the m = 1 mode dominates. The mass accretion rate is

super Eddington ( ˙MEdd = (✏/0.1)⇥ 2.1⇥ 10

�2 M�/yr).

We thus consider the saturation timescales of both the PPI and the MRI to be indicative
of the timescale for significant angular momentum transport. Figure 6.13 shows these
timescales for a range of initial magnetic field strengths. We measure the saturation of the
PPI in the tidal disruption remnant as the time taken for strong shocks to develop. We
consider the equivalent of Figure 6.5 for this torus in our high resolution simulation (with
1⇥10

7 particles) and identify when the density variation stops increasing (the equivalent of
⇡1.8 orbits in Figure 6.5). The uncertainty in this measurement (represented by the blue
shaded region in Figure 6.13) is estimated by repeating this process for the simulation with
1⇥10

6 particles, as our lowest resolution simulation does not display any clear saturation.
The maximum field strength required to establish the MRI will occur when the Alfvén
speed and sound speed are comparable. However the MRI can be established at lower
fields strengths that this, shown recently by Bugli et al. (2017) and in cases where there
is zero net flux (e.g. Hawley, 2001). As a result, we consider weaker magnetic fields where
the ratio between the gas and magnetic pressure � ⇠ 100. The magnetic field required for
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saturation in this case is

B
sat

⇡ 1

10

H⌦

p
4⇡⇢, (6.8)

⇡ 7.1⇥ 10

5 G
✓

H

4.5⇥ 10

12 cm

◆✓
⌦

5.6⇥ 10

�4 s

◆✓
⇢

6.31⇥ 10

�7 g cm3

◆
1/2

.

Using the maximum density and scale-height from the simulation in Figure 6.11 the mag-
netic field strength required is B

sat

⇡ 7.1⇥ 10

5 G. The saturation timescale for the MRI,
t
MRI

, in terms of the initial magnetic field B
initial

is thus

t
MRI

=

1

0.75⌦
0

ln

✓
B

sat

B
initial

◆
. (6.9)

The comparison in Figure 6.13 demonstrates that for reasonable initial magnetic fields, the
PPI does not grow fast enough to cause accretion before the MRI saturates. For example,
in the case of the tidal disruption remnant shown in Figure 6.11 with an initial magnetic
field of 1 G, the growth rate above suggests that the MRI will saturate in less than 3 orbits.

In the case that the PPI has already generated a density perturbation before it is damped
by the MRI, this structure remains (e.g. the lower panels of Figure 6.11). Thus as the MRI
reaches its saturation value and begins to drive accretion, we anticipate that the remnant
will accrete as normal but retaining any structure generated by the growing PPI.

6.8 Discussion

Informed by the resolution study of the thin ring simulation in Figure 6.7, we would consider
the simulation of the tidal remnant with hhi/H ⇡ 0.05 to be resolved. A resolution study
(Figure 6.14) suggests that the converged mass accretion rate would be ⇠4 times lower than
that shown in Figure 6.12, despite Figure 6.5 and 6.7 suggesting that the development of
the PPI is fully resolved.

Assuming that a converged mass accretion rate is less than one order of magnitude lower
than measured from our highest resolution simulation (a conservative estimate based on
Figure 6.12), the mass accretion rate due to the PPI is still calculated to be 103 times
Eddington. The initial simulation by Bonnerot et al. (2016) also assumed an elliptic rather
than parabolic orbit which increases the mass accreted while decreasing the time over which
it is accreted, compounding our over-estimate of the mass accretion rate. However, even
taking these into account we still predict a super-Eddington mass accretion rate due to the
PPI.

For the measured super-Eddington luminosity we expect that strong outflows would de-
velop. These may be either in the form of an expanding Eddington-limited spherical bubble
(Loeb and Ulmer, 1997) or in the form of strong winds (Lodato and Rossi, 2011). Although
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Figure 6.13: Timescale for saturation as a function of initial magnetic field strength of the
Papaloizou-Pringle (blue) and magnetorotational instabilities (black) expected in the tidal disrup-
tion remnant shown in Figure 6.11. Although the PPI grows at a competitive rate to the MRI, it

is unable to drive the initial accretion in the torus.

these outflows may drive radiative feedback, the current observations of TDEs (with the
t�5/3 fallback rate) do not suggest this is the case.

The original simulation by Bonnerot et al. (2016) assumed an elliptical rather than parabolic
orbit such that our mass accretion is likely to be an overestimate. This choice means that
the entire star forms into the torus rather than the . 50% expected from theoretical pre-
dictions, making our mass accretion rate roughly an order of magnitude larger than it
should be. The accretion timescale is also shorted by the elliptical orbit (by a factor of
⇡ 0.03 for e = 0.8), further compounding our overestimate. However, even while taking
these differences into account (and the lower mass accretion rate discussed above) we still
predict a super-Eddington mass accretion rate — suggesting a high mass accretion rate
remains likely for parabolic encounters.

An interesting corollary of our work is the behaviour of the mass accretion rate after the
PPI has saturated. In the early evolution of the torus when accretion is driven by the
PPI, does the rate of accretion lead to self regulation or self-damping of the instability?
As accretion due to numerical viscosity becomes important in our simulations around this
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Figure 6.14: Mass accretion rate of the torus simulated in Figure 6.11 at three different resolu-
tions. Even though the behaviour of the PPI is resolved in our simulations, the mass accretion rate
generated from it is not yet and may be lower by a factor of ⇠4 (but not low enough to suggest a

sub-Eddington mass accretion rate).

point, this is difficult to consider with our current simulations, but may be worth exploring
in future work.

6.9 Conclusions

We have investigated the evolution of circularised tori with well defined inner and outer
boundaries, similar to the compact discs formed by the tidal disruption of stars around
a supermassive black hole. We demonstrate unmagnetised remnants of tidal disruption
events are unstable to the m = 1 mode of the Papaloizou-Pringle instability. We find
that this instability drives ring spreading and angular momentum transport that may be
parameterised in terms of a Shakura-Sunyaev ↵ viscosity. As the accretion in a tidal
disruption event will be driven by the MRI after a few orbits, these accretion rates are not
expected to be sustained for a long time.
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Chapter 7

Conclusions

We have considered the evolution of accretion flows around a rotating compact object
where the angular momentum vector of the flow is misaligned to the compact object spin
vector. While misaligned accretion discs are expected and observed in different types of
compact objects, we restrict ourselves to accretion discs around rotating black holes and in
particular, those in low mass X-ray binaries. We have shown that relaxing the assumption
of aligned accretion and taking into account general relativistic effects leads to a greater
diversity of accretion flows — rather than just being flat, continuous and accreting on the
viscous timescale, geometrically thin discs may have tilt oscillations or be torn into discrete,
precessing rings. In the geometrically thick case, we considered an aligned torus that is
formed after a tidal disruption event including general relativistic effects and demonstrated
the rapid development of non-axisymmetric perturbations. After modelling these features
using simulations we considered their observational consequences.

In Chapter 3 we considered the generic evolution of a geometrically thin, wave-like inclined
accretion disc around a rotating black hole, complementing previous studies in the diffusive
regime by Nixon et al. (2012). For the first time using three-dimensional simulations, at
small inclinations we demonstrated the tilt profile of the disc settles into an oscillatory
steady state with a misaligned inner edge — in agreement with analytical predictions.
Importantly, the misaligned inner edge suggests that if a jet is launched from such a disc
it will not necessarily be aligned with the black hole spin. At larger inclinations between
the black hole spin and accretion disc we confirmed the phenomenon of disc breaking and
tearing was possible in the wave-like regime. The differential precession of these precessing
rings causes initially adjacent rings to develop opposing angular momenta, leading to rapid
angular momentum cancellation and an enhanced accretion rate. In comparison to a fully
aligned disc, we demonstrated that the mass accretion rate could be increased by up to an
order of magnitude. In hand with the previous work in the diffusive regime this suggested
that it is inevitable that strongly misaligned discs will tear and have an enhanced mass
accretion rate.

In Chapter 4 we continued small inclination discs, conducting a comparison to a similar
grid based simulation of a warped accretion disc by Krolik and Hawley (2015). For the
disc parameters chosen we confirmed that purely hydrodynamic simulations using the
isotropic ↵ viscosity model represented an equivalent evolution to a full MHD treatment.
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We then (again) demonstrated that GR effects like apsidal precession are critical to the
disc evolution, recovering tilt oscillations and a misaligned inner edge when this effect was
included. Finally, we clarified the applicability of the analytic disc tearing criterion by
demonstrating that a disc with the parameters chosen by Krolik and Hawley (2015) can
tear only at higher inclination.

Although we have confirmed that it is inevitable for strongly misaligned discs to tear,
computational restrictions mean that the long term behaviour of tearing remains poorly
understood. Is disc tearing a steady behaviour or isolated to a particular disc state (or
transition between states)? In strongly misaligned discs that experience tearing, how does
this affect observational estimates of the mass accretion rate? How is tearing affected by
relaxing the assumptions made in our simulations (e.g. a locally isothermal equation of
state)? At low inclinations the oscillatory tilt profile recovered is a steady state, so how
much does this affect observations that measure the black hole spin while assuming the
disc is aligned? What range of physically motivated parameters result in tilt oscillations?
Do we expect tilt oscillations to be an observable phenomenon?

In Chapter 5 we attempted to demonstrate a relationship between disc tearing and quasi-
periodic oscillations in low mass X-ray binaries. We argue that the features from observa-
tions including the radius in the disc that QPOs are understood to be generated from, the
strong geometric dependence of low-frequency QPOs and the frequencies with which they
occur are suggestive of the tearing rings that are generated in our simulations. The nature
and the frequency range of low-frequency QPOs suggests that the accretion disc must be
misaligned and be inhomogeneous. Tearing discs provides a natural mechanism to generate
structures that meet both of these criteria. We focussed on simulations with parameters
that were physically motivated from the LMXB XTE J1550-564, confirming that disc tear-
ing could i) generate the structures that are inferred by current phenomenological models
of LFQPOs, ii) that this process was repeatable and not a function of our initial conditions
and iii) that these structures precessed at approximately the rate expected by observations.
We developed a crude light curve implementation that included the effects of obscuration
to measure the luminosity observed from this system and hence a power density spectrum.
We demonstrated that this method was capable of representing features that occurred from
the innermost precessing structures rather than the initial tearing phase. Despite these
developments we were unable to produce a feature in a power density spectrum that was
both resolution independent and significant. We discuss in depth the numerical (rather
than physical) constraints that we attribute this to.

Simulations to demonstrate the connection between tearing discs and quasi-periodic oscilla-
tions are particularly computationally demanding, requiring long duration high resolution
simulations with a large radial extent. Additionally, in order to measure any kind of
luminosity from such a simulation is complex and requires careful consideration. This in-
vestigation in particular would benefit from significant code development, including using
a physically motivated cooling model (previous simulations have shown that this is likely
to lead to the formation of a corona, see Figure 3 of Nixon and Salvesen, 2014). Correctly
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modelling radiation transfer is also expected to alter the disc evolution, so is also suitable
to be included. To measure a power density spectrum accurately from our simulations,
ideally an implementation that models both obscuration and reflection should also be used.
Finally, irrespective of whether the disc is in the diffusive or wave-like regime, inclining
the disc has strong observational consequences. LMXBs are expected to be in the wave-
like regime while they are in the hard state (Ingram, Done, and Fragile, 2009) where tilt
oscillations are found in our simulations. These oscillations manifest in the spatial region
where high-frequency quasi-periodic oscillations are understood to be sourced, but these
are observed in a different disc state. Do tilt oscillations represent a potential avenue for
these quasi-periodic oscillations?

In Chapter 6 we considered the evolution of a torus formed after a tidal disruption event.
Bonnerot et al. (2016) simulated the evolution of a tidal disruption where apsidal precession
was taken into account and the gas cooled inefficiently, finding rapid circularisation and
the formation of a thick torus. We demonstrated that when this torus was not already ac-
creting it was unstable to the Papaloizou-Pringle instability. We considered the subsequent
evolution of a circularised, more compact version of the remnant. The instability developed
quickly in the remnant, preventing the torus from staying circularised. Using a radially
narrow torus we showed that this instability was capable of driving angular momentum
transport but that particularly high resolution was required to isolate this from the effects
of numerical viscosity. Applied to our simulation of the tidal disruption remnant, this sug-
gested that the mass accretion rate when the torus first forms depends on this instability.
As the magnetorotational instability in such a torus would take ⇠3 orbits to develop from
the initial weak magnetic field, we concluded that the Papaloizou-Pringle instability may
drive some mass accretion rate in the early life of the torus. Initial accretion driven from
the PPI rather than the MRI may be possible in tori that have a particularly weak initial
magnetic field, such as after a tidal disruption event.

All of the simulations in this work were purely hydrodynamical. We demonstrated for
the evolution of warped, geometrically thin discs with low inclinations warps that this is
equivalent to a full MHD treatment. However, in the high inclination case where tearing
occurs no such comparison is available. In simulations that exhibit tearing it is difficult
to be as confident that our approaches are equivalent because of the inherent difficulty in
resolving the regions between precessing rings, the rings themselves and their interactions
(even when the tearing region in the disc may be resolved well). It is not intuitively clear
how the presence of magnetic fields would affect the evolution of the tearing rings — would
their tearing be delayed? Would magnetic fields alter the communication between the rings
(and hence the mass accretion rate)? Thus including magnetic fields in tearing simulations
is ultimately important, however their implementation in a simulation that uses particle
methods remains particularly challenging. Additionally, simulations of tori would benefit
from the inclusion of MHD as we could then directly quantify the competition between the
development of the PPI and the MRI, and hence their impact on the accretion rate.



172 Chapter 7. Conclusions

Finally, the applicability of the post-Newtonian approximation to model general relativistic
effects used in this work should be examined carefully. At larger radii where tearing occurs,
the approximation agrees well with GR predictions such that disc tearing is not expected
to be affected by including full GR. However, the approximation is not particularly good
inside ⇡10Rg, where tilt oscillations are found. The inclusion of a full GR description is
thus expected to alter the shape of the oscillatory tilt profile, but it is not immediately
clear by how much. The evolution of tidal disruption events would be reproduced more
accurately in full GR, as those that have been simulated so far with Phantom can only
include the effects of apsidal precession (e.g. Bonnerot et al., 2016). With GR, these could
be extended to investigate the effects of nodal precession on the circularisation process
and in the event that a torus or disc did form, whether it exhibits global precession. A
full GR implementation is currently being developed for Phantom, so the validity of this
approximation could be tested in the near future.
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Appendix A

Measuring disc precession

Here we outline how the precession in the disc was measured from the simulations and show
some example results. In order to analyse the properties of the discs from the simulations,
we discretise the disc into a set of thin spherical annuli and average the properties of
interest across the particles in each of these bins. This process is described in detail in
Section 3.2.6 of Lodato and Price (2010). The twist, �(R), in our disc at a given radius is
found by considering the unit angular momentum vectors at each radius bin in the disc.
With lx(R), ly(R) and lz(R) being the unit vectors in the Cartesian coordinate system, we
assign

�(R) = tan

�1

✓
ly(R)

lx(R)

◆
, (A.1)

for each radial annulus. This is repeated at every time step, so that we have a description
of the twist as a function of time at each radial bin in our simulations. An example of
the twist in this format is in Figure A.1. Here the twist is increasing in the disc when the
gradient is positive. As the disc twists through a full 2⇡ radians, the twist then jumps
back to zero because Equation A.1 does not take into account the cumulative twist angle.

The precession time can be measured from Figure A.1 directly by recording how long it
takes for the disc to twist all the way around, equivalent to finding when the twist drops
back to zero. This can be approximated by working out the gradient of the twist as a
function of time and then using it to calculate the precession time in the disc. This is
equivalent to calculating

t
p

= 2⇡

✓
d�

dt

◆�1

. (A.2)

Because this calculation has been done at each radial annulus, we now have the precession
time as a function of the radius in the disc, averaged over the length of the simulation. An
example of this was shown in Figure 2.5.

The above analysis does not take the inclination of the disc into account. This disc was
inclined at 30

�, but this angle did not come into our expression for tp or explicitly in our
analysis from the twist. As outlined in the derivation by Larwood et al. (1996), the Lense-
Thirring precession is independent of the inclination between the disc and the black hole
spin. Repeating the above analysis with discs at other angles confirms this.
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Figure A.1: An example of the description of twist in the disc as a function of time at a given
radius. Here the time is plotted in orbits measured at the inner edge.
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Appendix B

Simulated power density spectra

B.1 PDS Test

To test the program written to calculate the power density spectra (PDS) is correct, here
the code is tested against some fake data. The data, g(t), is constructed using

g(t) = sin(t) + sin(2t) + cos(4t) + cos(5t), (B.1)

where t is randomly sampled. This should result in frequencies detected at 1, 2, 4 and 5
Hz. When scaled by 2⇡, this suggests frequencies of 0.159, 0.318, 0.637 and 0.795. The
PDS generated in Figure B.2 identifies frequencies at 0.159, 0.318, 0.637 and 0.795. Here
the black line represents the full PDS and the red a coarser, binned PDS. The small feature
around 2 Hz is noise, rather than a harmonic.

B.2 Power density spectra

We present additional power density spectra produced from the parameter sweeps S1 - S3
(see Table 5.1). Each parameter sweep covers the 36 combinations of viscosity parameter
↵ = 0.03, 0.1, 0.3, black hole spin parameter a = 0.1, 0.5, 0.9, disc inclination � = 30

�, 60�

and aspect ratio H/R = 0.02, 0.05. Figures B.3-B.5 show results for � = 30

�, H/R = 0.02

for all values of viscosity and spin, but these results are representative of the full parameter
sweep. In each figure, the PDS calculated from the luminosity approximation (in the
optically thin limit, without the effects of obscuration) is presented in black and the PDS
calculated from the mass accretion rate is presented in red. The lowest frequency in the
PDS is set by the length of the simulation and the highest by the orbital frequency at
the innermost stable orbit, not including general relativistic corrections. Figure B.6 shows
PDS for simulation S6 (see Figure 5.11) including the effects of obscuration comparing with
and without poorly resolved particles, demonstrating the influence that poorly resolved
particles have on the PDS features.
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Figure B.1: Mock data used to test that the PDS technique works. The data is constructed from
Equation B.1, using random values for t.
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Figure B.2: The PDS derived from Figure B.1 using our implementation of the Lomb-Scargle
method.
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Figure B.3: Power spectra from both mass accretion rate and luminosity from the inner disc
simulations (S1). Despite these simulations showing visual evidence of precession, nothing signifi-
cant is present in the powerspectra. Here H/R = 0.02 and � = 30

�, but these results are typical
for the other combinations of parameters.
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Figure B.4: Power spectra from both mass accretion rate and luminosity from the outer disc
simulations (S2). These simulations show no signs of tearing, so it is not surprising that nothing
significant is present in the powerspectra. Here H/R = 0.02 and � = 30

�, but these results are
typical for the other combinations of parameters.
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Figure B.5: Power spectra from both mass accretion rate and luminosity from the inner disc
simulations (S3). Despite these simulations showing visual evidence of precession, nothing signifi-
cant is present in the powerspectra. Here H/R = 0.02 and � = 30

�, but these results are typical
for the other combinations of parameters.
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