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Abstract

Due to the growing popularity of indoor location-based services, indoor data management has

received significant research attention in the past few years. However, we observe that the existing

indexing and query processing techniques for the indoor space do not fully exploit the properties

of the indoor space. Consequently, they provide below par performance which makes them unsuit-

able for large indoor venues with high query workloads. In this thesis, we first propose two novel

indexes called Indoor Partitioning Tree (IP-Tree) and Vivid IP-Tree (VIP-Tree) that are carefully

designed by utilizing the properties of indoor venues. The proposed indexes are lightweight, have

small pre-processing cost and provide near-optimal performance for shortest distance and shortest

path queries. We also present efficient algorithms for some fundamental spatial queries such as k

nearest neighbors queries and range queries.

Apart from the fundamental spatial queries, we study a new type of indoor queries, called

the Indoor Trip Planning Query (iTPQ). So far, no specific solutions have been proposed for

iTPQ. Even if outdoor techniques are revised for iTPQ, they fail to process iTPQ efficiently. In

this thesis, we propose an indoor-specific technique, based on the indoor VIP-Tree, called the

VIP-Tree Neighbor Expansion (VNE) method, that also includes new pruning techniques in both

pre-processing and query processing phases. Our experimental results show that our proposed

method VNE outperforms other indoor and outdoor algorithms by several orders of magnitude in

terms of processing time with low indexing cost.

Furthermore, we are also the first to study spatial keyword queries in indoor venues. We

propose a novel data structure called Keyword Partitioning Tree (KP-Tree) that indexes objects

in an indoor partition. We propose an efficient algorithm based on VIP-Tree and KP-Trees to

efficiently answer spatial keyword queries. Our extensive experimental study on real and synthetic

ii



data sets demonstrates that our proposed indexes outperform the existing algorithms by several

orders of magnitude.
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Chapter 1

Introduction

1.1 Overview

Recently spatial databases have received increasing research interests due to its importance in

people’s daily life. Spatial databases are database systems that store the spatial objects like hos-

pitals, schools and parks and provide the support for querying these spatial objects. In a mobile

environment, to query the spatial objects, the crucial part is to identify the locations of mobile

users. Hence, the global positioning system (GPS) [31, 41, 65] is a fundamental part that locates

user locations accurately. According to the user locations, spatial queries take affect to satisfy the

requirements of mobile users such as find the shortest route from the user location to his home.

The widely used spatial queries are finding the spatial objects according to user’s interests. For

example, a person would like to find out the nearby restaurants at lunch time, or a taxi driver wants

to find the nearest petrol station since the car is about to run out of the fuel. A typical example of

spatial queries is illustrated in Fig. 1.1 using the map from Google Maps [2]. There exist a number

of cafes around the area of Monash University Clayton Campus. A mobile user u1 located at the

query point q would like to buy a coffee, however, u1 wants to find the nearby cafes that are not

more than 500 meters far away from his current location. Therefore, a spatial query, specifically

range query, is invoked that forms a circular area indicated by the black circle. As the result, three

cafes are found.

However, research shows that human beings spend more than 85% of their daily lives in indoor

spaces [43] such as office buildings, shopping centers, libraries, and transportation facilities (e.g.,

metro stations and airports). In fact, not many researches have been done in indoor space. In

the outdoor space, the fundamental part of query processing is that locations of mobile users

1
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Figure 1.1: An example of spatial queries

are detected by the global positioning system accurately. While in the counterpart indoor space,

breakthroughs of the indoor positioning technologies (see [58], and its references) have been

made in recent years. Hence, indoor location-based services (LBSs) are expected to boom in the

coming years [3, 4, 82] and some reports suggest that indoor LBSs would have an even bigger

impact than their outdoor counterparts [5].

Fig. 1.2 shows an indoor complex which is formed by a subway station together with more

than 20 buildings like shopping malls and office buildings. The figure shows the floor plan of the

subway station while the exists are numbered. The buildings connect through these exists are not

shown. In spatial networks, this subway station is modelled as a spatial object. However, for a

tourist who wants to find the specific stores like a restaurant and a gym in the indoor space, results

of outdoor spatial queries return the indoor space as a spatial object only while the details inside

the indoor space are omitted. In fact, the indoor space has a large number of unique properties

such as rooms, doors and hallways. With spatial queries in outdoor space, the indoor space is

located, but not the specific room is found. Hence, driven by the limitations of the current outdoor

techniques, there is a huge demand for efficient and scalable spatial query-processing systems for

indoor location data.
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Figure 1.2: An indoor complex [1]

A detailed example in Fig. 1.3 is utilized to explain the major differences between indoor

and outdoor spaces, as well as the spatial queries. The area of Chadstone Shopping Centre is

shown in both Fig. 1.3(a) and 1.3(b). Fig. 1.3(a) is considered as outdoor space, while Fig.1.3(b)

is considered as indoor space. The rooms are represented by polygons or irregular shapes and

doors are not indicated on the map. The shaded areas in Fig. 1.3(b) is the indoor map of that in

Fig. 1.3(a) (Fig. 1.4 and Fig. 1.5 follow the same style as Fig. 1.3). Assume the user is located at

point s (Fendi Chadstone shown in Fig. 1.3(b)) and he wants to go to point t (ALDI Chadstone

shown in Fig. 1.3(b)), a shortest path query is required here. For the outdoor shortest path query in

Fig. 1.3(a), instead of the two points s and t, the alternative points s′ and t′ are identified on spatial

networks. This is because both s and t are located in the indoor venue, hence, the nearby points

on spatial networks are used alternatively. Consequently, the shortest path is shown following the

actual roads. On the other hand, the indoor shortest path query is shown in Fig. 1.3(b). The actual

shortest path shown in blue dashed line passes through the hallways inside the indoor venue. From

these two figures, it clearly shows that spatial queries in spatial networks fails to work properly in

indoor space. Hence, specific query techniques are required for indoor space which is the main

goal in this thesis.

This section is organized as follows. Section 1.2 gives a introduction of a few useful spatial

queries in indoor space. In Section 1.3, we briefly describe the major challenges in this PhD

project followed by the main objectives in Section 1.3. The contributions that we have been made
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(a) Spatial networks (b) Indoor space

Figure 1.3: Difference between indoor and outdoor spaces

to address these challenges are presented in Section 1.5. At last, we present the organizations of

this PhD thesis in Section 1.6.

1.2 Some Useful Indoor Spatial Queries

First, we give the details of some basic queries in indoor space in Section 1.2.1. Then, in Sec-

tion 1.2.2, we present some more advanced queries.

1.2.1 Basic Indoor Spatial Queries

Indoor shortest distance/path queries. Given two indoor points s and t, an indoor shortest

distance/path query is to find the shortest distance/path between these two points following the

indoor floor plans. Take the same example in Fig. 1.3(b), the user wants to go to ALDI Chadstone

from his current location Fendi Chadstone. The shortest path is shown as the blue dash line with

the distance 250 meters.

Indoor k nearest neighbor queries. Given the query point q and a set of spatial objects, an

indoor k nearest neighbor query is to find the k closest objects based on their distances to q. For

example, the user is located in Chadstone Shopping Centre shown in Fig. 1.4(a) indicated by point

q, the restaurants nearby are indicated by the red labels. He wants to find 3 nearest restaurants

during lunch time. An indoor k nearest neighbor query is invoked that return 3 nearest restaurants:

Sushi Sushi, Scroll Ice Cream and PappaRich (ordered by their distances to point q).

Indoor range queries. Given the query point q, a specified radius r and a set of spatial objects,

an indoor range query is to find the spatial objects that the distances to q are less than r. Using the

same query point q as Fig. 1.4(a), the user would like to find the restaurants that are within 100
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(a) Indoor k nearest neighbor query (b) Indoor range query

Figure 1.4: Examples of indoor spatial queries

meters. Hence, two restaurants (Sushi Sushi and Scroll Ice Cream) are returned. Note that in real

case, indoor distance is utilized instead of Euclidean distance shown here.

1.2.2 Advanced Indoor Spatial Queries

Indoor trip planning queries. Given a starting point s, an ending point t and a set of spatial

objects that have been categorized. An indoor trip planning query is to find the shortest path that

starts at s, passes through at least one spatial object in each category and reaches to t. A detailed

example is shown in Fig. 1.5(a). The spatial objects are divided into two categories: restaurants

marked as red labels and clothes shops represented as blue labels. The user located at s wants to

have a lunch first and then goes to a clothes shop before he meets his friend at t. An indoor trip

planning query is to find the shortest path that passes through two spatial objects marked by the

red shaded areas: PappaRich (restaurant) and Sportsgirl (clothes shop).

Indoor keyword queries. Given a query point q and a set of objects with a few keywords, the

indoor keyword queries find the spatial objects that satisfy both spatial and keyword constraints.

In Fig. 1.5(b), the query point is represented by point q. The spatial objects are tagged with

keywords, for example, PappaRich is tagged with “Casual Malaysian chain with smart decor”.

The user located at point q wants to find a salad store, here, salad is the query keyword. Hence,

two Sushi Sushi stores are returned since they contain the keyword “salad” marked by the blue

shaded areas. For PappaRich, though it is closer to point q compared to the Sushi Sushi on the

right side, it is not the result since it does not have keyword “salad”.
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(a) Indoor trip planning query (b) Indoor boolean keyword query

Figure 1.5: Examples of indoor spatial queries

1.3 Major Challenges

Due to the major differences between indoor and outdoor spaces together with the examples of

some popular indoor spatial queries discussed previously, this PhD project has the following chal-

lenges.

1.3.1 Different Representation of Indoor Space

For Euclidean distance, it is represented by a two dimensional space, hence, the distance metric

is the length of the straight line between two points. In spatial networks, a graph is utilized

and the shortest path has to follow the edges in spatial networks. In indoor space, one possible

representation is the door-to-door (D2D) graph [89] that is proposed to model the indoor venue

as a graph. Each node in the graph represents a door, while the edge is created the two doors are

inside the same partition. Fig. 1.6 shows an indoor venue containing 16 indoor partitions and 20

doors.
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Figure 1.6: An indoor venue
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The corresponding D2D graph is shown in Fig. 1.7. Edge weight is omitted for visualization.

The problem is that this graph supports the distance calculations between any two nodes (doors).

In fact, people located in indoor space are always inside the rooms which is known as an indoor

point. However, such indoor points cannot be shown on the graph. Extra techniques are required

to enable the D2D graph to support shortest distance computations between two indoor points

(shortest distance computations between any two indoor points are the fundamental part for spatial

query processing in indoor venues).
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Figure 1.7: D2D graph of the indoor venue

Another representation of indoor space is distance-aware model [62]. The most important

part of distance-aware model is the accessibility graph that considers each indoor partition as a

node and an edge is generated if two indoor partitions share a common doors. Fig. 1.8 shows the

corresponding accessibility graph of the indoor venue in Fig. 1.6. The problem is that the distance

information are not embedded in the graph. Meanwhile, the distance computation is based on

the expansion on the graph, therefore, it faces the problem of scalability. With the increasing

size of indoor venues, the query performance goes down dramatically that has been proved in our

experimental evaluation. Hence, the major difficulty here is that how we are going to represent

and index the indoor space to support efficient query processing.
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Figure 1.8: Accessibility graph of the indoor venue

1.3.2 Requiring Specific Techniques for Querying Indoor Objects

Once we can index the indoor venue properly, to query indoor objects, specific techniques are

required. In Fig. 1.7, It clearly shows that the nodes in the D2D graph have very high out degrees

that makes it different from that in spatial networks. In spatial networks, the average out degree

of a node is about 2.5. However, in indoor space, the out degree can be huge like more than 100
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if one hallway is connected by more than 100 rooms which is normal in some indoor venues like

shopping centres. Hence, the state-of-the-art indexes in spatial networks like ROAD [56] and

G-tree [93] achieve poor performance on the D2D graph.

Apart from the fundamental queries such as shortest distance/path, k nearest neighbor and

range queries, trip planning queries is another important spatial query that is studied in spatial

networks. Trip planning query is proved to be a NP-hard problem, hence, most of the existing

techniques are focusing on heuristic solutions that solve trip planning query in a reasonable time.

For indoor space, as we mentioned earlier, it can be transferred into a D2D graph such that existing

outdoor techniques can be applied. The same problem exists for the techniques handling trip

planning queries in outdoor space due to the unique properties of indoor spaces. Hence, an efficient

algorithm is required to solve trip planning queries in indoor space.

Spatial keyword queries are originally discussed in Euclidean space due to the efficient dis-

tance computations. A few techniques are proposed to solve keyword queries such as the inverted

index and IR-tree. However, the problem is that the indexes can not be utilized indoor space due

to different distance metrics. On the other hand, for the techniques proposed in outdoor space,

they can be revised to solve keyword queries in indoor space according to the D2D graph. The

problem is that they are not originally designed for indoor space so that they are not efficient (The

experimental results show that the revised outdoor techniques are much slower compared to our

proposed technique). Hence, an efficient solution has to be provided to solve the keyword queries

in indoor space.

1.4 Objectives

In this section, we describe the objectives we are going to achieve in this thesis.

1.4.1 Propose an Effective Index Method in Indoor Space

Due to the nature of indoor space, the exisiting outdoor techniques are not efficient for indoor

spatial queries. Hence, in this thesis, we are going to build an unique index for indoor space that

carefully exploit the indoor properties. According to the proposed index, the query processing

algorithms have to be introduced to solve the indoor spatial queries like shortest distance/path, k

nearest neighbors and range queries.
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1.4.2 Propose an Efficient Algorithm for Indoor Trip Planning Queries

To the best of our knowledge, there is no existing techniques that are specifically designed to

handle trip planning queries in indoor space. Though the techniques utilized in outdoor space can

be extended in indoor space based on the D2D graph, the query time is not efficient at all. Hence,

we are going to proposed an efficient algorithm to solve trip planning queries in indoor space.

1.4.3 Propose an Efficient Algorithm for Indoor Keyword Queries

Similar to trip planning queries in indoor space, no work has been done to solve spatial keyword

queries in indoor space. In this thesis, we are going to solve indoor keyword queries by proposing

an effective index for objects in the indoor partition. The number of objects in one indoor partition

may be large, e.g. around 30,000 objects exists in JB Hifi, hence, index is needed for querying

these objects efficiently.

1.5 Contributions

In this section, we briefly discussed the contributions made in this thesis. We proposed novel

indexes that index the indoor venue and the objects inside. Meanwhile, efficient techniques are

introduced to solve several spatial queries in indoor space.

1.5.1 Spatial-only Queries

To handle spatial queries in indoor space, we carefully exploit the properties of indoor space and

proposed an indoor partitioning tree (IP-Tree) that indexing the indoor venue using a tree structure.

To further improve the query performance, extra storage cost is utilized that formulates vivid IP-

Tree (VIP-Tree). A wide range of spatial queries are supported by both IP-Tree and VIP-Tree

such shortest distance/path, k nearest neighbors and range queries. For both IP-Tree and VIP-

Tree, they require low indexing cost, but achieve much better query performance compared to

the existing state-of-the-art indexes in both outdoor and indoor spaces. VIP-Tree achieves near-

optimal efficiency for shortest distance and path queries compared to the distance matrix method

(distances between any two doors are pre-computed, hence, distance computation between two

indoor points are optimal).

As mentioned before, indoor space is not well studies, hence, no datasets are available for ex-

perimental evaluation. We manually built the datasets for over 70 buildings in two indoor venues:



10 CHAPTER 1. INTRODUCTION

Melbourne Central Shopping Centre [6] and Monash University Clayton Campus [7]. We trans-

ferred the floor plan images to machine readable files. Over 40,000 rooms and 40,000 doors have

been indexed for our experiments.

This work was published in Proceedings of the VLDB Endowment (PVLDB) 2017.

1.5.2 Indoor Trip Planning Queries

We are the first one to study Trip Planning Query in indoor space and an exact algorithm is pro-

posed to solve indoor Trip Planning Query (iTPQ) efficiently. An expansion-based method is pro-

posed with a few pruning techniques. The pruning techniques are discussed in both pre-processing

and query processing phase. A large number of unnecessary candidate routes can be pruned ac-

cording to the prune techniques that are proved to be efficient in the experimental section. On the

other hand, the distance computation is based on the proposed index VIP-Tree that ensures the low

indexing cost and efficiency.

For the datasets utilized in the experimental section, the previous indoor venues are used. We

manually added the points of interest into the existing indoor venues and put them into different

categories.

This research appeared in The Computer Journal.

1.5.3 Indoor Keyword Queries

No existing techniques has been proposed for keyword queries in indoor space, hence, we are the

first one to study indoor keyword queries. First, we extend the previous index VIP-Tree to inverted

VIP-Tree (IVIP-Tree) by embedding keyword information on the nodes and using inverted list to

index the objects for the leaf nodes. The experimental evaluation shows that the simple extension

of VIP-Tree outperforms the existing techniques that have been revised to solve indoor keyword

queries. Furthermore, Keyword partitioning tree (KP-Tree) is proposed to index the objects in

one indoor partition. The query processing algorithm is based on IVIP-Tree and KP-Tree. In the

experimental evaluation, KP-Tree is proved to much efficient compared to the existing techniques

such as IR-tree and WIR-tree with a comparable storage cost.

To get the real dataset for the experimental evaluation, we manually built an index for Chad-

stone Shopping Centre [8] that over 400 rooms and 400 doors. 11 real stores belonging to 4

categories are utilized to form the keywords datasets. Nearly 140,000 objects in these 11 stores
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are indexed by storing their product information (keywords) that are used later in our experimental

evaluation.

This work is current under review in International Journal on Very Large Data Bases (VLDBJ).

1.6 Organizations

This dissertation is organized as follows:

• Chapter 2 gives a brief description of the existing techniques that are widely used in spatial

databases.

• Chapters 3, 4, 5 present our research on the indexing and query processing techniques in

indoor space

– Chapter 3 discusses our proposed index, as well as the detailed techniques to answer

shortest distance/path, k nearest neighbors and range queries in indoor space

– Chapter 4 studies a more advanced query called indoor trip planning queries.

– Chapter 5 covers our proposed techniques to solve spatial keyword queries in indoor

space

• Chapter 6 concludes our research, provides several possible directions for future work.
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Chapter 2

Literature Review

2.1 Overview

In this chapter, we provide a brief overview of the related work for each type of queries that

we studied in this thesis. In Section 2.2, we discuss the spatial-only queries such as shortest

distance/path queries in different settings like Euclidean space, spatial networks and indoor space.

Trip Planning Queries is studied in Section 2.3. Finally, existing techniques for keyword queries

are studied in Section 2.4.

2.2 Spatial-only Queries

First, we discuss the spatial-only queries in Euclidean space in Section 2.2.1. After that, the exist-

ing techniques in spatial networks are reviewed in Section 2.2.2. At last, Section 2.2.3 provides a

brief description of the spatial-only query processing algorithms in indoor space. Table 2.1 is the

comparisons of the existing techniques for spatial-only queries that are reviewed in this section.

Note that only static queries are shown in the table.

2.2.1 Spatial-only Queries in Euclidean Space

In Euclidean space, an spatial object is modelled as a two-dimensional object. R-tree [38] is

the fundamental work that is proposed to index and query the objects in Euclidean space. Given

an example in Fig. 2.1, there are 9 objects in the Euclidean space. An object can be a point, a

rectangle, or any shape like o1. For an irregular shape like o1, it is represented by a Minimum

Bounding Rectangle (MBR). After that, objects are sorted and processed one by one to form the

13
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Techniques Euclidean Space Spatial Networks Indoor Space

kNN Range

Shortest
dis-
tance
/path

kNN Range

Shortest
dis-
tance
/path

kNN Range

R-tree [38]
SR-Tree [51]
PK-Tree [80]
PK+Tree [81]
Dijkstra [29]
A* [37]
Labelling-based al-
gorithms [14, 15,
16, 25, 26, 27]
Hierachy-
based tech-
niques [19, 35, 78]
INE [66]
IER [66]
SILC [73]
ROAD [55, 56]
G-Tree [93, 94]
Voronoi-based ap-
proaches [53, 72,
87, 91, 92]
Distance-aware
model [62]

Table 2.1: Comparisons of existing techniques for spatial-only queries
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R-tree shown in Fig. 2.2. A branch-and-bound searching algorithm [70] is employed to query the

objects indexed by R-tree.

o1

o2

o3

o4

o5

o6
o7

o8 o9
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R3
R4

R5

R6

Figure 2.1: Points in Euclidean space

As we can see from Fig.2.2, tree nodes R3 and R4 intersect with each other that causes the

searching process goes to both of the nodes. This is because the query point has the same distance

to R3 and R4 when it is located in the intersection between the MBRs of R3 and R4. To improve the

efficiency of the searching algorithm, a number of variants [18, 48, 51, 74, 80, 81]. SR-Tree [51]

is the enhancement of R-Tree. PK-Tree [80] is proposed according to quadtree, while PK+Tree

[81] is the enhancement of PK-Tree.
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R1 R2

R3 R4 R5 R6

o5, o6 o7, o8, o9

R0:

R1: R2:

R3: R4: R5: R6:

Figure 2.2: R-tree
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2.2.2 Spatial-only Queries in Spatial Networks

For spatial-only queries in spatial road networks, they are divided into three categories: shortest

path query, kNN query and range query. The fundamental work for query processing in road

networks is Dijkstra search algorithm [29], which has been extended to a large number of different

techniques.

For shortest path queries, [68] extended Dijkstra search to a bidirectional version. In his work,

the search process started from both starting and ending points of the query. Once a common node

is reached, a candidate shortest path is generated. Although it improve the performance of the

original Dijkstra search, it is not efficient on a large spatial network. Apart from this, [37] pro-

posed an A* search algorithm, which introduced a heuristic function to estimate the lower bound

of a candidate path for further pruning. A simple heuristic method is using Euclidean distance.

For the current expanding node, compute the Euclidean distance between current node and the

destination. The node that has the minimum estimated distance to the destination is picked before

reaching to the destination. The performance of A* algorithm is highly relying on the heuristic

function. For these methods, they are both index free methods, which means no pre-processing is

needed. However, with the increasing size of spatial networks, the query performance becomes

the bottleneck.

Labelling-based algorithms [14, 15, 16, 25, 26, 27] are then proposed to handle shortest dis-

tance queries in large networks. The main idea is to store shortest information for each node in

pre-processing phase. During the query time, the shortest path between two nodes can be quickly

retrieved based on the shortest path information. However, since for each node in the spatial

networks, a label set is generated, hence, the size of the index is an issue.

Hierarchy is widely used to solve shortest distance/path queries [19, 35, 78]. The main idea

is to extract the graph into different level while details of each level is different. During search

process, high level graphs can be utilized to compute the distances quickly by avoiding processing

the details in the lower level graphs. Contraction hierarchy [35] is an efficient technique that

is proposed to solve shortest distance queries. For every node in the graph, an order is created

according to the importance of the nodes. Based on the node ordering, every node is processed

sequentially to generate the shortcuts. By adding the shortcuts, the query processing can bypass a

large number of intermediate nodes when the source and destination points are far away.

The previous techniques are designed to solve shortest distance/path queries. Next, we are

going to present the existing techniques that solve k nearest neighbors and range queries as well.
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Based on Dijkstra algorithm, Incremental Network Expansion (INE) [66] has been proposed

which is quite similar to Dijkstra algorithm. It is an expansion based method. Starting from a

query point q, the adjacent nodes are processed. During the expansion, objects are accessed and

added to a candidate set until kth nearest object is closer to the query point compared to the current

nearest node that has not been processed. Because of the size of spatial networks, INE does not

scale well. To improve the performance of INE, Incremental Euclidean Restriction (IER) [66]

was proposed that kept pruning the nodes that leaded to a longer distance. These Dijkstra based

algorithms do not require any index. Next, we present the techniques that have unique indexes

built for the spatial networks.

Spatially Induced Link- age Cognizance (S ILC) [73] is such an algorithm which built an index

for every single node in spatial road networks based on their shortest path information. According

to the index of the current processing node and the destination, the next node on the shortest path

can be determined. Therefore, it incrementally added the next node on the shortest path such that

query processing is quite efficient. The problem is that building the index takes a long time and

index size is a problem for large networks. After that, Route Overlay and Association Directory

(ROAD) [55, 56] have been proposed. The main idea is to bypass regions that do not contain

objects by using search space pruning. The graph is partitioned into a number of sub-graphs. Each

sub-graph contains a list of borders that connect with the nodes outside the sub-graph. Distances

between borders are pre-computed. During query processing, if no object exists in the sub-graph,

the sub-graph is bypassed. G-Tree [93, 94] is another index based method, which utilised a

graph partition algorithm to partition spatial road networks. A similar way to partition the spatial

networks like ROAD is utilized while the input graph is partitioned into f > 2 sub-graphs. Each

sub-graph is then recursively partitioned until each sub-graph contains no more than τ > 1 vertices.

Since the spatial network is a sparse graph, the number of borders for each sub-graph is limited.

Hence, the query processing based on G-tree is efficient.

A sample network graph is shown in Fig. 2.3 containing 9 vertices {v1, v2, .., v9} and a set of

edges with edge weights on them. A graph partition method is employed to partition the graph

into a number of subgraphs such as g1 to g6. However, optimal graph partition is proved to be a

NP-hard problem [34], hence, a heuristic method [50] is utilized to perform the graph partition

on the graph.

Based on Fig. 2.3, the corresponding G-tree is shown in Fig. 2.4. The root node g0 indicates

the whole graph, while g1 and g2 represents the subgraphs partitioned from g0. The vertices



18 CHAPTER 2. LITERATURE REVIEW

v3

v1

v2

v4

v5

v6

v7

v9

v8

g1
g2

g3

g1

g4

g5

g6

Figure 2.3: Graph partition

shown at the bottom of each node are the borders that connect the subgraph with the vertices

outside. For each node, a distance matrix is pre-computed to accelerate the query processing

algorithms. According to the G-tree index, a shortest distance query can be solved in n steps

where the maximum n equals to 2 times the height of the tree.
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Figure 2.4: G-tree

Another branch of techniques for queries in spatial net works are Voronoi-based approaches

[53, 72, 87, 91, 92]. For Voronoi-based approaches, spatial road networks were pre-processed

based on the objects, hence, retrieving objects became much faster than the original network.

Take Fig. 2.5 as an example. A voronoi diagram is generate according to the 9 objects {p1, p2,

..., p9} that partitions the space into 9 areas known as voronoi cells, each of which contains an

object. This object is called generator point for the voronoi cell. For any query point q located
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in the corresponding area, the first nearest neighbor is the generate point. Hence, the first nearest

neighbor can be retrieved in O(1) time. An expansion method is utilized to find the k nearest

neighbors based on the voronoi diagram. The problem is that the pre-processing and storage cost

is large. Meanwhile, once the objects set changes, it will result in the re-generation of the voronoi

diagram.

Figure 2.5: Voronoi Diagram

2.2.3 Spatial-only Queries in Indoor Space

Data modelling for indoor space is fundamental for querying indoor space. In [54], a 3D model

is proposed for indoor space but it fails to support indoor distance computations. CityGML [11]

and IndoorGML [12] are XML based methods to model and exchange the indoor space data.

Distance-aware model [62] introduces an extended graph based on an accessibility base (AB)

graph that enables indoor distance computations between two indoor positions. An AB graph

considers each indoor partition as a node, while a common door between two rooms are indicated

by an edge. The direction of the door can be considered as well by using the directed edges on the

graph. However, different from the graph in spatial networks, in the AB graph, distances cannot

be presented. Door-to-door (D2D) graph is then proposed in [85]. In a D2D graph, each node

represents a door in indoor space and an edge is generated if two doors are in the same partition.

The edge weights are the distances between two doors.
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Since GPS technology cannot be applied in indoor space, indoor positioning technology (see [58],

and its references) is developed in recent years to retrieve the accurate user locations. The main

purpose of this thesis is to index and query the indoor space and indoor positioning is another

indoor research area, hence, for the rest of the thesis, we assume that all the index and query algo-

rithms are built on the accurate indoor positions. Indoor positioning data received from RFID is

cleaned using spatio-temporal constraints. Graph based methods [17] take advantages of indoor

constraints to fix cross and missing readings in the raw RFID data. These constraints are also

applied to construct probabilistic trajectories [32] from raw RFID data.

RTR-tree and TP2R-tree [45] are two indoor structures extended from R-tree which index

trajectories of indoor moving objects. In terms of indoor partitions like rooms and hallways, indR-

tree [85] constructs a composite index that indexes indoor entities into different layers with indoor

moving objects stored in the leaf level. For querying indoor data, shortest distance/path, kNN and

range queries are studied under various settings [64, 86, 88, 90]. The most notable techniques

have been discussed in [62, 89]. We present the details since these techniques are highly related

to this thesis.
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Figure 2.6: An indoor venue

Given an indoor venue shown in Fig. 2.6, there are 9 partitions and 11 doors. Different from

the Euclidean distance, the distance between two points in indoor space cannot be the straight line

because people cannot pass through walls. Meanwhile, for two points in the same room and there

are no obstacles between them, Euclidean distance can be used, which makes it different from

network distance. Hence, indoor minimum walking distance [62] is proposed as the distance
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metric. Given two indoor points s and t shown in Fig. 2.6, the distance between these two points

are represented by the bold line that passes point A and door d5.

P5

P7P9

P3 P8 P6

P2

P4

Figure 2.7: Accessability graph

According to the indoor venue in Fig. 2.6, accessibility graph (AB graph) is shown in Fig. 2.7.

Each node indicates an indoor partition, while each edge is created if a door exists in both parti-

tions. For some indoor partitions that contain more than one door like P1 and P3, every door is

shown in the graph. For distance computation based on AB graph, extra computation or storage

cost is needed since the distance are not embedded in the graph. To handle this problem, distance

matrix [62] is proposed.

Fig. 2.8 illustrates how the distance matrix works. It computes the distances between every

two doors in the indoor space, which is d1, d2, ..., d11. To further improve the efficiency, for each

door di, the other doors are sorted based on the distances to di. Since distance matrix requires

O(D2) pre-computation and storage costs where D is the number of doors in the indoor venue, it

cannot scale well with the increasing size of indoor venues.

Figure 2.8: Distance matrix
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2.3 Trip Planning Queries

In indoor space, there is no existing work that are proposed to handle trip planning queries, hence,

we reviewed the techniques that are used to solve trip planning queries in both Euclidean space

and spatial networks. Table 2.2 gives the details of the techniques that are reviewed in this section.

Techniques
Euclidean
space

Spatial
net-
works

Optimal Heuristic TPQ OSR Route Search

[59]
[49]
[57]
LORD
& R-
LORD [77]
PNE [77]

Table 2.2: Comparisons of existing techniques for TPQ queries

Li et. al. [59] propose a new type of query called Trip Planing Query (TPQ) in spatial

databases. A set of points P={p1, p2, ..., pn} are given, and each of the point belongs to a certain

category. Given a starting point ps, a destination point pt and a few categories that the user wants

to visit, the trip planning queries find the shortest path that starts from ps, passes through one

point in each required category and reaches to pt. The brute-force method is to consider all the

possible routes. However, it is proved to be a NP-Hard problem, hence, it is not efficient. Based

on a triangular inequality property of the metric space, two fast approximation algorithms were

studied in [59]. For one greedy algorithm called nearest neighbor algorithm, it incrementally

adds the nearest neighbor of the last vertex added to the route from every category that has not

been visited yet. However, it give a (2(m+1) − 1)-approximation. Minimum distance algorithm is

another greedy algorithm that choose the best point p in each category such that the distance of

the route ps −→ p −→ pt is the shortest among all points in the category. This method achieves

better approximation m-approximation compared to the previous algorithm. An Integer Linear

Programming approach [59] is proposed to further improve the approximation ration compared

to the previous greedy algorithms. A linear approximation bound is achieved.

A variant of TPQ called the Optimal Sequenced Route(OS R) is discussed in [77]. In an

OSR query, a category sequence to be visited is given, hence, OSR problem is not NP-Hard any

more. For the current visiting category, there are at most n candidate routes where n is the number

of points in the current visiting category. A Dijkstra based algorithm is proposed [77] to solve

OSR queries, which is basically an expansion method considering all the possible candidate route.
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After that, the authors propose two algorithms Light Optimal Route Discoverer (LORD) and R-

tree based LORD (R − LORD) to solve OSR in a Euclidean space. LORD has the same flavor as

Dijkstra’s algorithm, but it is a threshold based algorithm. In terms of memory usage, it is proved

to require less workspace compared to the Dijkstra based algorithm. A reverse way is utilized to

build the partial sequenced route starting from the destination points. Only the point that leads to a

route with shorter distance compared to the given threshold is added to the partial route until a full

path is retrieved. To further improve the efficiency of LORD, a R-tree friendly version R-LORD is

introduced. In addition to the point selection rules in LORD, a single range query based on R-tree

is performed to further pruning the possible points to be added to the partial routes.

Apart from Euclidean space, a Progressive Neighbor Exploration (PNE) is discussed to deal

with OSR in spatial networks. The main idea for PNE is that for the last visited point in a candidate

route, the current nearest neighbor among the points belonging to next required category is added.

This is under the intuition that the adding the closer point will lead to a shorter route. To efficiently

handle nearest neighbor search, any existing techniques that solves nearest neighbor problems can

be applied.

Constraint route search is another variant of TPQ. In [49], the route search algorithm is pro-

posed over probabilistic geospatial data that contains spatial and textual information. For a search

query, the user specifies the start and end locations, as well as some textual constraints like restau-

rant, park and river. They proposed several heuristic solutions under the bounded-length and

bounded-probability semantics. After that [57] studied another type of route search that involves

users’ interaction. When the next point is returned to the user, the user has to provide the feedback

whether this point satisfies his requirement. The order of the categories can be specified or partly

specified that makes the solution more flexible.

2.4 Keyword Queries

In this section, we give a brief description of keyword queries studied in Euclidean space (Sec-

tion 2.4.1) and spatial networks (Section 2.4.2) since for indoor space, there is no existing studies

for keyword queries. Given a set of spatial objects and each object contains a list of keywords, for

a query point q, keyword queries find the objects that satisfy both spatial and keyword constraints.

Table 2.3 gives the details of the algorithms discussed in this section.
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Techniques Euclidean space Spatial networks Spatial part Keyword part
[23] grid inverted file
[79] grid inverted file

Inverted R-tree [95] R-tree inverted file
IR2-tree [33] R-tree bitmaps

IR-tree [28, 83] R-tree inverted file
WIR-tree [84] R-tree inverted file

[69] Overlay indexing inverted file
[47] Labelling method inverted file

G-tree [94] G-tree inverted file
DESKS [60] Region structure inverted file

Table 2.3: Comparisons of existing techniques for keyword queries

2.4.1 Keyword Queries in Euclidean Space

Keyword queries are usually discussed in Euclidean space because of the efficiency of distance

computations. A large number of techniques [60, 71, 84] are proposed to solve the problem. We

provide some details of the techniques which are highly related to our problem.
Objects Keywords

o1 t1, t2
o2 t1, t4
o3 t2, t4
o4 t3, t4, t5
o5 t3, t6
o6 t4, t6
o7 t4, t6, t7
o8 t5, t6, t8
o9 t6, t8

Table 2.4: Keywords information

Inverted index [24, 28, 36, 39, 42, 52, 61, 79, 95] is widely used in information retrieval

applications. For each keyword term t, a list is created to store the objects that contains keyword t.

In practice, with limited number of keywords input by the user, it is efficient to perform keyword

search since a few lists have to be involved.

Given a set of objects {o1, o2, ..., o9} in Table 2.4 with 8 keywords {t1, t2, ..., t8}. The

locations of the objects are shown in Fig. 2.1. Fig. 2.9 shows the inverted files for part of the

R-tree in Fig. 2.2. Take node R3 as an example, two objects o1 and o2 are in R3, based on the

keywords of o1 and o2, the inverted file of R3 contains 3 keywords t1, t2 and t4. For t1, both objects

contain the keyword, hence, the object list for t1 is o1 and o2.

However, due to the large amount of objects in the list, spatial indexes are utilized to organize

the objects to speed up the processing. The inverted grid index is proposed in [23, 24, 79] to index

the objects in the list. The problem is that grid-based indexes cannot scale well with the increasing
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o1, o2 o3, o4

R3 R4

Inverted File
t1  o1, o2

t2  o1 

t4  o2 
 

Inverted File t2 o3, o4

t3 o3 

t4 o3 

t5 o4 
 

R1:

R3: R4:

Figure 2.9: Inverted file

number of objects. Fig. 2.10 illustrates how the grid index looks like. For keyword t4, there are 5

objects {o2, o3, o4, o6, o7} containing this keyword. The two dimensional space is then partitioned

into 4 grid cells and the objects are allocated to the grid cell according to their locations.

Inverted R-tree [95] is proposed to solve this problem. For each keyword t, a R-tree is built

based on the objects that contains the keyword t. Inverted R-tree is efficient when the number

of query keywords is small because it needs to process only a few R-trees. For keyword t4, the

inverted R-tree is shown in Fig. 2.11. Since 5 objects containing t4, a R-tree is built for these

objects. For the query keyword t4, only the inverted R-tree for t4 needs to be processed, meanwhile,

part of the objects that contain t4 is processed instead of the large number of objects in total.

However, with the increasing number of query keywords, the performance of Inverted R-

tree degrees significantly. Therefore, information retrieval R-tree (IR2-tree) [33] is proposed

that solves the problem by utilizing signature technique. All the objects are indexed by an R-

tree according to their spatial lcoations. For each node of the R-tree, a signature is assigned

that summarizes the keywords contained in its descendent data entries (objects). During query

processing, once the signature of a node confirms that no objects in the node match the query

keywords, no further processing is needed.

The information R-tree (IR-tree) [28, 83] is proposed as an improved technique compared to

IR2-tree since they have similar tree structures. Instead of signatures, IR-tree utilized inverted

files for each node that maintains the keywords information in the node. Fig. 2.12 shows the IR-

tree according to the R-tree in Fig. 2.2. For leaf node, the inverted files store the object list for
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t1,                …., t4,             …., t8

... ...

o2

o3

o4

o6
o7

Figure 2.10: Grid index under keyword t4

o2, o3, o4 o6, o7

R1 R2

t1,                …., t4,             …., t8

... ...
R0:

R1: R2:

Figure 2.11: Inverted R-tree under keyword t4
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Figure 2.12: IR-tree
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each keyword. For non-leaf node, the keywords in the node is the union of the keywords in the

child nodes. The inverted file for non-leaf node is created as follows. For each keyword t, the

list of child nodes containing t is stored. For example, the root node contains all keywords. For

keywords t3, t4 and t5, they are in both R1 and R2.

Some optimizations are applied to further improve the query processing. WIR-tree [84] uti-

lizes the similar tree structure as IR-tree, but it partitions the objects according to keyword fre-

quencies instead of spatial locations. Use the same object set, a WIR-tree is built in Fig. 2.13.

First, the keywords are sorted in an ascending order according to the frequencies of each keyword.

The sorted keyword list is {t4, t6, t3, t1, t2, t5, t8, t7}. Therefore, the objects are divided into two

sets according to keyword t4, {o2, o3, o4, o6, o7} and {o1, o5, o8, o9}. A parameter α is set to

be the maximum number of objects in a leaf node, and we assume α is 3 here. Hence, there two

objects sets have to be further partitioned according to keyword t6. Consequently, 4 leaf nodes are

created shown in Fig. 2.13. Once the leaf nodes are generated, each leaf node is considered as an

object and they are partitioned according to the keywords sorted by the frequency computed by

the leaf nodes. At last, WIR-tree is built. Compare Fig. 2.11 with Fig. 2.13, both indexes have

the similar structure, but the objects contained in the leaf nodes are different due to the different

grouping methods.

o1 o2, o3, o4

R1 R2

R3 R4 R5 R6

o6, o7 o5, o8, o9

R3: R4: R5: R6:

R0:

R2:R1:

Node Keywords 

   R0  t1, t2, t3, t4, t5, t6, t7, t8

R1  t1, t2, t3, t4, t5 

R2  t3, t4, t5, t6, t7, t8 

R3  t1, t2 

R4  t1, t2, t3, t4, t5 

R5  t4, t6, t7 

R6  t3, t5, t6, t8 
 

Figure 2.13: WIR-tree

2.4.2 Keyword Queries in Spatial Networks

A few techniques [47, 60, 69, 94] are proposed for keyword queries on spatial road networks.

[69] is the first work to address the challenge of keyword queries in spatial networks. A basic

approach is proposed for top-k keyword queries based on the existing state-of-the-art methods

such as IR-tree [28, 83]. Furthermore, an indexing method is introduced by indexing the objects

on each road segments with a detailed algorithm. To improve the efficiency of the query processing
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algorithm, an overlay network is proposed to prune the regions that does not contains any objects

satisfying the keyword constraints. However, with the increasing size of spatial networks, the

query performance downgrades significantly. To handle large spatial networks, [47] designs two

specific methods: A forward search method is proposed when the query keywords are not frequent,

while a forward backward search is performed to handle the query keywords that are frequent.

Both of these two methods are based on the labels built by the 2-hop labelling method.

G-tree [94] is another technique that handles keyword queries in spatial networks. It is a graph

partition technique that partitions the road network graph into sub-graphs and efficiently solves

kNN queries as we discussed before. To solve keyword queries, the keywords information is

embedded for the nodes. A textual function is utilized together with the existing distance function

to efficiently pruning intermediate nodes during query processing.

After that, DESKS [60] considers the direction constraints for keyword queries in spatial

networks. A novel direction-aware index is proposed that groups the objects according to their

distances and directions. Similar to other spatial indexes, this direction-aware index efficiently

prunes a large number of unnecessary objects during query processing. The cached results of

previous keyword queries are utilized to answer new keyword queries as well.

2.5 Conclusion

In this Chapter, we presented a detailed studied for the existing techniques that are utilized to

handle spatial queries in different settings. At first, the indexing and querying processing tech-

niques for spatial-only queries like shortest distance/path, k nearest neighbors and range queries

are discussed. Most of the techniques are focusing in Euclidean space and spatial networks. A

few techniques are proposed to handle spatial queries in indoor space. Apart from the spatial-only

queries, techniques for trip planning queries are discussed. All the techniques are in Euclidean

space and spatial networks since no work has been done in indoor space. At last, spatial keyword

queries are presented. Most of the existing works are in Euclidean space due to the efficiency of

distance computation. There do exist a few techniques for spatial networks, but no techniques

have been proposed in indoor space.
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Chapter 3

VIP-Tree: An Effective Index for

Indoor Spatial Queries

3.1 Overview

Research shows that human beings spend more than 85% of their daily lives in indoor spaces [43]

such as office buildings, shopping centers, libraries, and transportation facilities (e.g., metro sta-

tions and airports). Due to this important fact, the recent breakthroughs in indoor positioning tech-

nologies (see [58], and its references), and the widespread use of smart phones, indoor location-

based services (LBSs) are expected to boom in the coming years [3, 4, 82] and some reports

suggest that indoor LBSs would have an even bigger impact than their outdoor counterparts [5].

Indoor LBSs can be very valuable in many different domains such as emergency services,

health care, location-based marketing, asset management, and in-store navigation, to name a few.

In such indoor LBSs and many others, indoor distances play a critical role in improving the service

quality. For example, in an emergency, an indoor LBS can guide people to the nearby exit doors.

Similarly, a passenger may want to find the shortest path to the boarding gate in an airport, a

disabled person may issue a query to find accessible toilets within 100 meters in a shopping mall,

or a student may issue a query to find the nearest photocopier in a university campus.

Driven by recent advances in indoor location technology and popularity of indoor LBSs, there

is a huge demand for efficient and scalable spatial query-processing systems for indoor location

data. Unfortunately, as we explain next, the outdoor techniques provide below par performance

31
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for indoor spaces and the existing indoor techniques fail to fully utilize the unique properties of

indoor venues resulting in poor performance1.

This chapter is organized as follows. In Section 3.2, the limitations of existing techniques in

both outdoor and indoor spaces are discussed. The main contributions are presented in Section

3.3. The detailed indexing method is proposed in Section 3.4 followed by the query processing

algorithms in Section 3.5. Section 3.6 covers the comprehensive experimental evaluations. A

conclusion is given in Section 3.7.

3.2 Background Information

3.2.1 Limitations of Existing Outdoor Techniques

Techniques for outdoor LBSs cannot be directly applied for indoor LBSs due to the specific char-

acteristics in indoor settings. Referring to the aforementioned examples, briefly speaking, we need

to not only represent the spaces (airport, shopping center) in proper data model but also manage

all the indoor features (lifts, escalators, stairs) and locations of interest (boarding gates, exit doors,

and shops) such that search can be conducted efficiently. Indoor spaces are characterized by in-

door entities such as walls, doors, rooms, hallways, etc. Such entities constrain as well as enable

indoor movements, resulting in unique indoor topologies. Therefore, outdoor techniques cannot

be directly applied on indoor venues.

One possible approach for indoor data management is to first model the indoor space to a

graph using existing indoor data modelling techniques [62, 12] and then applying existing graph

algorithms to process spatial queries on the indoor graph. However, as we demonstrate in our

experimental study, this approach lacks efficiency and scalability – the state-of-the-art outdoor

techniques ROAD [56] and G-tree [93] may take more than one second to answer a single shortest

distance query. This is mainly because the existing outdoor techniques rely on the properties of

road networks and fail to exploit the properties specific to indoor space. For example, the indoor

graphs have a much higher average out-degree (up to 400) as compared to the road networks that

have average out-degree of 2 to 4. Consequently, the size of the indoor graphs is much larger

relative to the actual area it covers. For example, we use the buildings in Clayton campus of

Monash University as a data set in our experiments and the corresponding indoor graph has around

6.7 million edges and around 41, 000 vertices. Compared to this, the road network corresponding

1Published in 43rd International Conference on Very Large Data Bases (VLDB) 2017
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to California and Nevada states consists of around 4.6 million edges and 1.9 million vertices [13].

Thus, specialized techniques are required that carefully exploit the properties of indoor space to

provide efficient results.

3.2.2 Limitations of Existing Indoor Techniques

Adopting the idea of mapping the indoor space to a graph and applying graph algorithms, existing

techniques use door-to-door graph [89] and/or accessibility base graph [62] to process various

indoor spatial queries.

Door-to-door (D2D) graph [89]. In a D2D graph, each door in the indoor space is repre-

sented as a graph vertex. A weighted edge is created between two doors di and d j if they are

connected to the same indoor partition (e.g., room, hallway), where the edge weight is the indoor

distance between the two doors. Fig. 4.1 shows an example of an indoor space that contains 17

indoor partitions (P1 to P17) and 20 doors (d1 to d20). The corresponding D2D graph is shown in

Fig. 3.2(a) where edge weights are not displayed for simplicity. The doors from d1 to d5 are all

connected to each other by edges because they are associated to the same partition P1.

Accessibility base (AB) graph [62]. In an AB graph, each indoor partition is mapped to

a graph vertex, and each door is represented as an edge between the two partitions it connects.

Fig. 3.2(b) shows the AB graph for the indoor space shown in Fig. 4.1. Since partitions P1 and P2

are connected by door d4, an edge labeled as d4 is created between P1 and P2 in the AB graph.

Partitions P1 and P3 are connected by two doors d2 and d3, and thus two labeled edges are created

between P1 and P3. Although an AB graph captures the connectivity information, it does not

support indoor distances.

Distance matrix (DM) [62]. A distance matrix can also be used to facilitate shortest distance/-

path queries. A distance matrix stores the distances between all pairs of doors in the indoor space.

Although this allows optimally retrieving the distance between any two doors (i.e., in O(1)), it re-

quires huge pre-processing cost and quadratic storage which makes it unattractive for large indoor

venues. Furthermore, the distance matrix cannot be used to answer k nearest neighbors (kNN) and

range queries without utilizing other structures such as AB graph and pre-computed door-to-door

distances.

The existing techniques apply graph algorithms on a D2D graph and/or AB graph to answer

spatial queries. For instance, the state-of-the-art indoor spatial query processing technique [62]

computes the shortest distance between a source point s and a target point t (shown as stars in



34 CHAPTER 3. VIP-TREE: AN EFFECTIVE INDEX FOR INDOOR SPATIAL QUERIES

d6

d4

d1
d2

d3

P1

 

d5

d9

d7
d8

d10

d11

d13

d12

d14

d16

d15

d18

d17

d19

d20

P2

P3

P4

P5

P6P6

P7

P8 P11

P9 P10

P12

P13 P16

P14 P15

P17

N1 N2 N3 N4

s

t 

    
Figure 3.1: An indoor venue containing 17 partitions and 20 doors

Fig. 3.1) using Dijkstra’s like expansion on a D2D graph or AB-graph. Although several opti-

mizations are employed in [62], these techniques essentially rely on a Dijsktra’s like expansion

over the entire graph which is computationally quite expensive. Consequently, the state-of-the-art

indoor query processing takes more than 100 seconds to answer a single shortest path query on

the Clayton campus data set used in our experiments.

3.3 Contributions

In this chapter, we propose two novel indoor indexes called Indoor Partitioning tree (IP-Tree) and

Vivid IP-Tree (VIP-Tree) that optimize the indexing by exploiting the properties of indoor spaces.

The basic observation is that the shortest path from a point in one indoor region to a point in

another region passes through a small subset of doors (called access doors). For example, the

shortest path between two points located on different floors of a building must pass one of the

stairs/lifts connecting the two floors. The proposed indexes take into account this observation in

their design and have the following attractive features.

Near-optimal efficiency. Our experimental study on real and synthetic data sets demonstrates

that IP-Tree and VIP-Tree outperform the state-of-the-art techniques for indoor space [62] and

road networks [93, 56] by several orders of magnitude. In comparison with the distance matrix,

that allows constant time retrieval of distance between any two doors at the cost of expensive

pre-computing and quadratic storage, our VIP-Tree also achieves comparable, near-optimal per-

formance for shortest distance and path queries.

Low indexing cost. VIP-Tree and IP-Tree have small construction cost and low storage require-

ment. For example, for the largest data set used in our experiments that consists of around 83, 000

rooms (around 13.4 million edges), VIP-Tree and IP-Tree consume around 600 MB and can be
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Figure 3.2: Indexing Indoor Space

constructed in less than 2 minutes. In contrast, it took almost 14 hours to construct the distance

matrix for a much smaller building consisting of around 2, 700 rooms (around 110, 000 edges).

Low theoretical complexities. Our proposed indexes not only provide practical efficiency but

also have low storage and computational complexities. Table 3.1 compares the storage complexity

and shortest distance/path computation cost of our proposed approach with the distance matrix

which has near-optimal computational complexity. For the data sets used in our experiments, the

average values of ρ and f are less than 4. For our proposed trees, M is the number of leaf nodes

which is bounded by the number of doors D. Note that VIP-Tree has a significantly low storage

cost compared to the distance matrix but has the same computational complexity.

Table 3.1: Comparison of computational complexities. ρ: average # of access doors, f : average
number of children in a node, M: # of leaf nodes, D: # of doors, w: # of edges on shortest path

Storage Shortest Distance Shortest Path

IP-Tree O(ρ2 f 2 M + ρD) O(ρ2 log f M) O((ρ2 + w) log f M)

VIP-Tree O(ρ2 f 2 M + ρD log f M) O(ρ2) O(ρ2 + w)

DM O(D2) O(ρ2) O(ρ2 + w)

High adaptability. Similar to popular outdoor indexes (such as R-tree, Quad-tree, G-tree), our

proposed indexes follow a branch-and-bound structure that can be easily adapted to answer various

other indoor queries not covered in this chapter. For example, the proposed indexes can be used to

answer spatial keyword queries in indoor space by integrating the inverted lists with the nodes of

the tree, e.g., in a way similar to how R-tree is extended to IR-tree [22] to support spatial keyword

queries in outdoor space.
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3.4 Indexing Indoor Space

First, we define some terminology and the data model used in this thesis. An indoor partition

that has only one door is called a no-through partition (e.g., partitions P2, P9 and P10 in Fig. 4.1)

because no shortest path can pass through this partition. A partition which has more than γ doors

is called a hallway partition. γ is a system parameter and is a small value (e.g., in this chapter,

we choose γ = 4). In Fig. 4.1, partitions P1, P5, P12 and P17 are the hallway partitions. All other

partitions are called general partitions. A special indoor entity such as a staircase or an escalator

connecting two floors is considered as a general partition with two doors at its connecting floors.

Similarly, a lift connecting n floors is divided into n − 1 general partitions where each partition

connects two consecutive floors.

Similar to existing work, we use a door-to-door graph [89] to model the indoor space. The

distances between the doors can be set appropriately, e.g., set to zero for a lift/escalator if the

distance corresponds to the walking distance or to a non-zero value if the distance is the travel

time. We remark that such indoor data models can capture all spatial features of indoor space. If

more details of geometric features are required (e.g., texture, color, shape of indoor objects), then

the CityGML [11] data objects can be embedded in each partition. The results generated by our

spatial query processing algorithms can be passed to other applications (e.g., [30, 40]) to provide

visual/landmark-based navigation to the users. Next, we present the details of our indexes.

3.4.1 Indoor Partitioning Tree (IP-Tree)

Overview

The basic idea is to combine adjacent indoor partitions (e.g., rooms, hallways, stairs) to form

leaf nodes and then iteratively combining adjacent leaf nodes until all nodes are combined into

a single root node. Fig. 3.3 shows an IP-Tree of the indoor venue shown in Fig. 4.1 where the

indoor space is first converted into four leaf nodes (N1 to N4). Each leaf node consists of several

indoor partitions. Specifically, N1 = {P1, · · · , P4}, N2 = {P5, · · · , P7}, N3 = {P8, · · · , P12}, and

N4 = {P13, · · · , P17}. The leaf nodes are iteratively merged until root node is formed, e.g., N1 and

N2 are merged to form N5 whereas N3 and N4 are merged to form N6.

Definition 3.4.1. Access door. A door d is called an access door of a node N if d connects it to

the space outside of N (i.e., one can enter or leave N via d). The set of access doors of a node N

are denoted as AD(N).
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In Fig. 4.1, the access doors of N1 are d1 and d6. IP-Tree stores the access doors for each

node in the tree. Fig. 3.3 shows the access doors of each node in the boxes below the nodes, e.g.,

AD(N1) = {d1, d6} and AD(N5) = {d1, d7, d10}. Note that the shortest path to/from a point s in N1

to/from a point t outside of N1 must pass through one of its access doors d1 and d6.
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Figure 3.3: Indoor Partitioning Tree

To efficiently compute shortest distance/path between indoor locations, the IP-Tree stores dis-

tance matrices for leaf nodes and non-leaf nodes. Below, we provide the details.

Distance matrices for leaf nodes. For each leaf node N, the distance matrix stores distances

between every door di ∈ N to every access door d j ∈ AD(N). Fig. 3.3 shows an example of the

distance matrix for the node N1 where the distances between every door di ∈ N1 (i.e., d1 to d6) and

every access door d j ∈ AD(N1) (i.e., d1 and d6) are stored.

To support the shortest path queries, the distance matrix also stores some additional infor-

mation. Specifically, for a leaf node N, in addition to the shortest distance between di ∈ N and

d j ∈ AD(N), the distance matrix also stores a door dk on the shortest path from di to d j. dk is called

the next-hop door for the entry corresponding to di and d j. Specifically, if the shortest path from

di to d j lies entirely inside the node N then dk corresponds to the first door on the shortest path

from di to d j. In Fig. 4.1, the next-hop door on the shortest path from d1 to d6 is d2. Therefore,

in the distance matrix of N1 (see Fig. 3.3), d2 is the next-hop door for the entry of d1 in the row

corresponding to d6. Similarly, d3 is the next-hop door for the entry corresponding to d2 and d6

because d3 is the first door on the shortest path from d2 to d6.

If the shortest path from di to d j passes outside of N then dk corresponds to the first door on

the shortest path that is an access door of at least one leaf node in the tree. Although this scenario

is not common (and Fig. 4.1 does not have an example of it), this is critical to efficiently retrieve

the shortest path between two points. We give a detailed example and reasoning of this later in

Section 3.5.2. Finally, if the shortest path between di and d j does not involve any other door (e.g.,
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d5 to d6), the next-hop door is set as NULL. For better readability, the matrices in Fig. 3.3 show

only non-null values.

Distance matrices for non-leaf nodes. Consider a non-leaf node N that has f children N1,N2, · · · ,N f .

The distance matrix of N stores distances between every access door of its children, i.e., it stores

distances between all doors in ∪ f
i=1AD(Ni). For example, in Fig. 3.3, the distance matrix of the

node N7 stores the distances between AD(N5) and AD(N6), i.e., d1, d7, d10 and d20. Furthermore,

for each entry di and d j in the distance matrix of N, we also store the first door dk ∈ ∪
f
i=1AD(Ni)

on the shortest path from di to d j (called next-hop door as stated earlier). Note that dk in this case

is an access door of the children of N and is not any arbitrary door.

In Fig. 3.3, the entry in the distance matrix of N7 corresponding to d1 and d20 stores d10. Note

that the first door on the shortest path from d1 to d20 (d1 → d2 → d3 → d5 → d6 → d10 → d15 →

d20) is d2 but we maintain d10 in the distance matrix because it is the first door among the access

doors of the children of N7 that is on the shortest path from d1 to d20. The entry corresponding to

d1 and d7 has NULL because the shortest path from d1 to d7 does not contain any access door of

the children of N7.

Constructing IP-Tree

The IP-tree is constructed in a bottom-up manner in four steps: 1) the indoor partitions are com-

bined to create leaf nodes (also called level 1 nodes); 2) the nodes at each level l are merged to

form the nodes at level l + 1. This is iteratively repeated until we only have one node at the next

level; 3) the distance matrices for leaf nodes are constructed; 4) the distance matrices of non-leaf

nodes are created. Next, we describe the details of each step.

1. Creating leaf nodes. Two partitions are called adjacent partitions if they have at least one

common door (e.g., P1 and P2). We iteratively merge adjacent partitions and construct the leaf

nodes by considering the following two simple rules.

i. If a general partition has more than one adjacent hallways, it is merged with the hallway

with greater number of common doors with the general partition. Ties are broken by preferring

the hallway that is on the same floor. If the general partition occupies more than one floors (e.g.,

it is a staircase) or if both hallways are on the same floor, the tie is broken arbitrarily.

ii. Merging of a partition with a leaf node is not allowed if the merging will result in a leaf

node having more than one hallways. This is because the shortest distance/path queries between

points in different hallways are more expensive. This rule ensures that all hallways are in different
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leaf nodes, which allows us to fully leverage the tree structure to efficiently process the queries.

The algorithm terminates when no further merging is possible, i.e., every possible merging will

result in the violation of this rule.

EXAMPLE 1 : In Fig. 4.1, the partitions P2 and P3 are combined with the hallway partition P1.

The partition P4 could be combined with either P5 or P1 because both P1 and P5 have exactly 1

common door with P4 and are on the same floor. We assume that it is combined with P1. Thus, P1

to P4 are combined to form the leaf node N1. Note that the hallway P5 cannot be included in the

leaf node N1 because doing so would violate the rule ii. The partitions P6 and P7 are combined

with P5 to form a leaf node N2. Similarly, P8 to P12 are combined to form the node N3 and P13 to

P17 are combined to construct the leaf node N4. The algorithm stops because no further merging

is possible without violating rule ii. �

2. Merging nodes of the IP-Tree. Let t be the minimum degree of the IP-Tree denoting the

minimum number of children in each non-root node. Algorithm 1 shows the details of merging

the nodes at level l (denoted as Nl) to create the nodes at level l + 1 (denoted as Nl+1) such that

each node has at least t children. Alorithm 1 is iteratively called until Nl+1 contains at most t

nodes in which case all these nodes are merged to form the root node. Below, are the details of the

algorithm.

We define degree of a node Ni at level l + 1 to be the number of level l nodes contained in

Ni. A min-heap H is initialized by inserting all nodes in Nl and the key for each node is set to

its degree initialized to one because no level l nodes are merged yet (line 1). If two nodes have

the same degree, the heap prefers the node which has smaller number of adjacent nodes. This is

because some nodes can only be merged with exactly one other node and such nodes should be

given preferences in merging, e.g., in Fig. 4.1 and Fig. 3.3, N1 is merged with N2 and N4 is merged

with N3 because both N1 and N4 can only be merged with exactly one other node.

Algorithm 1: createNextLevel(Nl, t)
Input : Nl: nodes at the current level l, t: minimum degree
Output : Nl+1: nodes at the next level l + 1

1 insert each Ni ∈ Nl in a min-heap H with key set to Ni.degree = 1;
2 while H.top().degree < t do
3 deheap a node Ni from H;
4 N j ← node with highest number of common access doors with Ni;
5 remove N j from H and merge Ni and N j into a new node Nk;
6 insert Nk in H with key Ni.degree + N j.degree;

7 move nodes from H to Nl+1;
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The nodes are iteratively de-heaped from the heap and merged with one of the adjacent nodes

with a goal to minimize the total number of access doors of the nodes at the parent level. Let

|AD(Ni)| denote the number of access doors of a node Ni and |AD(Ni)∩AD(N j)| denote the number

of common access doors in nodes Ni and N j. If the two nodes Ni and N j are merged into a parent

node N, the number of access doors in the parent node N is |AD(Ni)| + |AD(N j)| − 2 × |AD(Ni) ∩

AD(N j)|. Thus, the nodes that have a greater number of common access doors are given higher

priority to be merged together (line 4). After a node Ni and N j are merged to form a node Nk, the

node Nk is inserted in the heap (line 6). The algorithm stops when the top node in the heap has

a degree of at least t (line 2). This implies that every node in the heap contains at least t level l

nodes, i.e., at least t children.

3. Constructing distance matrices for leaf nodes. Recall that the distance matrix for a leaf

node N stores the distance and the next-hop door on the shortest path between every door di ∈ N

to every access door d j ∈ AD(N). We compute these distances and the next-hop doors using

Dijkstra’s search on the D2D graph. Specifically, for each access door d j of a leaf node N, we

issue a Dijkstra’s search until all doors in the node N are reached. Since the doors of the leaf

nodes are close to each other, this Dijkstra’s search is quite cheap as only the nearby nodes in the

D2D graph are visited.

EXAMPLE 2 : To create the distance matrix of leaf node N1 that contains doors d1 to d6, we first

issue a Dijkstra’s search starting at d1 on the graph shown in Fig. 3.2(a) and expand the search

until all doors d1 to d6 are reached. The distances and next-hop doors are populated in the distance

matrix row corresponding to the door d1. The same process is repeated for the other access door

d6. �

4. Constructing distance matrices for non-leaf nodes. Let leaf nodes be on level 1 of the tree

(the lowest level) and root node be at the highest level of the tree. We construct the distance

matrices of the nodes in a bottom-up fashion, i.e., the distance matrices of all the nodes at level

l are created before the distance matrices of the nodes at level m > l. We construct the distance

matrices of nodes at level l > 1 of the IP-Tree using a graph called level-l graph denoted as Gl.

Level-l graph (Gl). The vertices of Gl correspond to the access doors of the nodes at (l − 1)-th

level of the tree. An edge between two doors di and d j is created in Gl if both di and d j are the

access doors of the same node at (l − 1)-th level. The weight of the edge is dist(di, d j) which has

already been computed when the distance matrices of (l − 1)-th level are computed. Note that Gl
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is a connected graph because, at every level l, all nodes in the indoor space are connected through

common access doors.

d1 d6

d7

d10 d15 d20

d1

d7

d10 d20

(a)

(b)

Figure 3.4: (a) G2: level-2 graph; (b) G3: level-3 graph

Fig. 3.4 shows level-2 and level-3 graphs for our running example. To construct the distance

matrices of level 2 nodes of the tree shown in Fig. 3.3, we use the graph in Fig. 3.4(a) where the

vertices correspond to the access doors of the nodes at level 1 (i.e., leaf nodes) of the tree (e.g., d1,

d6, d7, d10, d15, d20). In G2 shown in Fig. 3.4(a), edges are created between d6, d7 and d10 because

these are the access doors in the same leaf node (see Fig. 3.3). Similarly, to construct the distance

matrices of level 3 nodes, we use the graph shown in Fig. 3.4(b) where the vertices of the graph

are the access doors of level 2 nodes.

The distance matrix of a node N at level l of the tree is then computed using a Dijkstra’s like

expansion on Gl for each door di until all other doors d j in N have been reached. This operation is

quite efficient because i) the graph is significantly smaller than the original D2D graph and ii) the

Dijkstra’s expansion is not expensive because the relevant doors are close to each other in Gl.

EXAMPLE 3 : To construct the distance matrix of node N5, the graph shown in Fig. 3.4(a) is

used. The distance matrix for N5 contains the entries for doors d1, d5, d7 and d10. To populate the

column corresponding to d1, a Dijkstra’s like expansion is conducted at d1 on the graph shown in

Fig. 3.4(a) until all other doors (i.e., d5, d7 and d10) are reached. The entries for other doors are

populated in the same way. �

Storage Complexity

In addition to IP-tree, our algorithms also require the D2D graph to compute the shortest distance/-

path between two points located in the same leaf node of the IP-tree. In this section, we analyse

the storage complexity of IP-Tree.

Let D and P denote the total number of doors and partitions in the indoor space, respectively.

Let M be the number of leaf nodes where M ≤ P. Let ρ be the average number of access doors in
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a node. The total size of all leaf node matrices is O(ρD). This is because the distance matrix for

a leaf node N stores the distance between each door in N to every access door of the node. Note

that each door can belong to at most two leaf nodes because each door is connected to at most two

indoor partitions. Since the average number of access doors is O(ρ), the total storage cost for all

leaf node distance matrices is O(ρD).

Let f be the average number of children for a non-leaf node. Then, the average size of a non-

leaf distance matrix is O(ρ2 f 2). Since each node is merged with at least one other node at the same

level, the total number of nodes at a level l are at most half of the total number of nodes at level l−1.

Hence, the total number of non-leaf nodes in IP-tree is O(M) (bounded by the total number of leaf

nodes). Hence, the total size of all distance matrices of non-leaf nodes is O(ρ2 f 2M). Therefore,

the total storage complexity2 of IP-Tree is O(ρ2 f 2M + ρD). Note that IP-Tree also needs to store,

for each partition Pi, the leaf nodes that contain Pi and the doors connected to it. The total cost of

this is O(D + P). Since P ≤ D (each indoor partition has at least one door), the total complexity of

IP-Tree is O(ρ2 f 2M + ρD).

3.4.2 Vivid IP-Tree (VIP-Tree)

Vivid IP-Tree (VIP-Tree) is very similar to IP-tree except that it stores, for each door di in the

indoor space, the following additional information. Let N be the leaf node that contains the door

di. For every door d j that is an access door in one of the ancestor nodes of N, VIP-tree stores

dist(di, d j) as well the next-hop door dk on the shortest path from di to d j. This information can be

efficiently computed by our efficient shortest distance/path algorithms using IP-tree.

As stated earlier, each door di can belong to at most two leaf nodes. Since the height of the tree

is O(log f M) and the average number of access doors in a node is ρ, VIP-Tree takes an additional

O(ρ log f M) space for each door di. Hence, the total additional cost for all doors is O(ρD log f M).

Therefore, the total storage complexity of VIP-Tree is O(ρ2 f 2M + ρD log f M) as compared to

O(ρ2 f 2M + ρD) cost of IP-Tree.

3.4.3 Discussions

Index update The conditions of the doors may change at different time periods. For example,

some entrances of shopping malls will be closed after trading hours, or the doors will be closed

2Our experiments on three real data sets demonstrate that f and ρ are small in practice (less than 4 for all real data
sets).
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during the renovation. In order to handle these circumstances, our proposed indexes have to be

updated accordingly. Two updates are required which are insertion and deletion. When a new

door di is available, we have to insert this door to the proposed index. First, di is located to the

leaf node. After that, we have to check whether di is an access door. If di is not an access door,

changes only need to be made for the leaf node by adding di to the distance matrix and computing

the distances. On the other hand, if di is an access door, the nodes that consider di as an access

door have to be updated accordingly since di will affect the pre-computed distances. Meanwhile,

the D2D graph of the highest level node affected by di has to be examined since adding di may

affect the distances in the D2D graph. If it does affect the pre-computed distances, then updating

the higher level nodes are required until the D2D graph on current level is not affected. Because

the distance computations are very efficient for IP-Tree and VIP-Tree, tree update is very fast

according to the experimental results. For deletion, similar process can be applied.

Directed doors In some indoor venues, doors are considered as directed doors. For example,

in the airport, passengers can enter the door in security checkpoint, but they cannot go back through

the same door. In order to handle directed doors, we revise the distance matrix in our proposed

indexes. Assume di and d j are two doors in the same partition, users can only enter through di

and leave the partition through d j. For pre-compute distance from di to d j, it is the actual indoor

distances between two doors, however, for pre-computed distances from d j to di, it is set to be the

distance of the path passing through the space outside the partition. If no path exists, the distance

is set to be infinite.

3.5 Indoor Query Processing

In this section, we propose our query processing algorithms for shortest distance queries, shortest

path queries, kNN queries and range queries.

3.5.1 Shortest Distance Queries

Shortest Distance Using IP-Tree

In this section, we present algorithms to compute the indoor shortest distance dist(s, t) between a

source point s and a target point t. When both s and t are located in the same leaf node, dist(s, t)

can be computed using D2D graph (similar to existing approaches). Since s are t are close to each
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in D2D graph, the distance computation is not expensive. Next, we show how to compute dist(s, t)

when both s and t are in different leaf nodes.

Given a point p in the indoor space, we use Partition(p) and Leaf(p) to denote the

partition and the leaf node that contains the point p, respectively. First, we describe how to com-

pute the shortest distance between s and an access door d of the leaf node that contains s, i.e.,

d ∈ AD(Leaf(s)). Although dist(s, d) in this case can be computed using D2D graph, we may

improve the performance by utilizing the distance matrices stored in the leaf nodes. Below, we

describe the details.

Shortest distance between s and an access door d ∈ AD(Leaf(s)). In this chapter, an ac-

cess door d of Leaf(s) that is also a door of Partition(s) is called a local access door of

Partition(s). If the access door d is not a door of Partition(s), it is called a global

access door for Partition(s). Fig. 3.5(a) shows the leaf node N1 which has two access doors

d1 and d6. d1 is a local access door of P1 and d6 is a global access door of P1.

If d is a local access door of Partition(s) then dist(s, d) can be trivially computed. If d

is a global access door, dist(s, d) can be computed as follows.

dist(s, d) = min
∀di∈Partition(s)dist(s, di) + dist(di, d) (3.1)

Since d is an access door of Leaf(s), dist(di, d) can be retrieved from its distance matrix in O(1).

However, the total cost may still be high if the number of doors in Partition(s) is large. We

address this issue by using the concepts of inferior and superior doors of a partition.

Definition 3.5.1. Superior door: Let P be a partition and Leaf(P) be the leaf node containing

the partition P. A door di ∈ P is called a superior door of P if either i) di is a local access door of

P or ii) there exists a global access door d j such that the shortest path from di to d j does not pass

through any other door of the partition P.

The doors that are not superior are called inferior doors. Consider the example of Fig. 3.5(a)

that shows a leaf node containing partitions P1 to P4. The access doors of the node are d1 and

d6 where d1 is the local access door of P1 and d6 is its global access door. The superior doors

of the partition P1 are d1 and d5. d1 is the superior door because it is a local access door of the

partition. d5 is a superior door because the shortest path from d5 to the global access door d6 does

not pass through any other door. The doors d2, d3 and d4 are the inferior doors for partition P1.
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For example, the door d2 is an inferior door because the shortest path from d2 to the global access

door d6 passes through at least one other door of the partition P1.

Intuitively, the shortest path from any point s ∈ P to any global access door d j must pass

through one of the superior doors of P. Therefore, we only consider the superior doors in Eq. 3.1.

In the example of Fig. 3.5(a), the shortest path from s ∈ P to d6 must pass through one of its supe-

rior doors (d1 or d5). Hence, dist(s, d6) = min(dist(s, d1) + dist(d1, d6), dist(s, d5) + dist(d5, d6)).

This significantly improves the cost of computing dist(s, d) because the number of superior

doors is significantly smaller than the total number of doors especially for hallways that contain

many doors. Our experiments demonstrate that the maximum number of superior doors is 4 for all

data sets even for the hallways that contain more than a hundred doors.

Shortest distance between s and all access doors of an ancestor of Leaf(s). Let N be an

ancestor node of Leaf(s). We present an algorithm to compute the distances between s and all

access doors of N. This is a key algorithm used in computing dist(s, t) for two arbitrary points s

and t located in different leaf nodes.

Algorithm 2 shows the details of computing dist(s, d) for every d ∈ AD(N) where N is an

ancestor node of Leaf(s). The basic idea is to first compute the distances from s to all access

doors in Leaf(s) using the superior doors as described above. Then, the algorithm iteratively

retrieves the parent node and computes distances to the access doors of the parent node until the

ancestor node N is reached. Next lemma shows that dist(s, d) for an access door d in N can be

computed using the distances from s to the access doors of its child node.

Lemma 3.5.1. Let Nparent be the current node being processed and Nchild be its child node. Let

d be an access door of Nparent. The shortest path for a point s ∈ Nchild to d must pass through at

least one access door of Nchild.

Proof. Note that an access door d of a parent node Nparent must be an access door of at least one

of its children nodes. If d is the access door of Nchild then the shortest path from s to d must end at

d (which proves the lemma). If d is not an access door of Nchild, then d must be a door outside of

Nchild. Hence, the shortest path from s (which is inside Nchild) to d (which is outside Nchild) must

pass through at least one access door of Nchild. �

If dist(s, di) for every di ∈ AD(Nchild) is known, then dist(s, d) for a door d ∈ AD(Nparent) can

be computed as follows.
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Algorithm 2: getDistances (s,N)
Input : s: source, N: an ancestor node of Lea f (s)
Output : Distances: shortest distance between s and every d ∈ AD(N)

1 Initialize Nparent to be the parent node of Lea f (s);
2 Initialize Nchild to Lea f (s);
3 while Nchild is not the same as N do
4 for each unmarked d ∈ AD(Nparent) do
5 dist(s, d) = min∀di∈AD(Nchild)dist(s, di) + dist(di, d);
6 mark d and then insert dist(s, d) in Distances if d ∈ AD(N);

7 Nchild ← Nparent;
8 Nparent ← parent node of Nparent;

dist(s, d) = min∀di∈AD(Nchild)dist(s, di) + dist(di, d) (3.2)

Note that dist(di, d) is stored in the distance matrix of the node Nparent because both di and d are

the access doors of the children of Nparent. Hence, dist(di, d j) can be retrieved in O(1).
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(b) Illustration of Algorithm 2

Figure 3.5: Shortest distance computation

Although Algorithm 2 is self explanatory, we elaborate it with an example.

EXAMPLE 4 : Consider the example of Fig. 4.1 and Fig. 3.3 and assume that we want to compute

the shortest distances between d2 and every access door of the root node N7 (i.e., d1, d7 and

d20). Leaf(d2) is the node N1. The algorithm assumes that dist(s, d) for every access door d of

Leaf(s) has been computed as described above. For example, dist(d2, d1) = 2 and dist(d2, d6) =

7 have been computed (see Fig. 3.5(b)).

Nparent is initialized to be the parent node of N1 (i.e., Nparent is N5). The shortest distance to

each access door in N5 (e.g., d1, d7 and d10) is then computed based on the distances from d2 to

the access doors in N1. For instance, dist(d2, d7) = min(dist(d2, d1) + dist(d1, d7), dist(d2, d6) +

dist(d6, d7)) = min(2+13, 7+4) = 11. Fig. 3.5(b) illustrates the processing of the algorithm where
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the incoming edges (thick arrows and broken lines) to a door demonstrate a possible path to the

door and the thick arrows show the path that lead to minimum distance, e.g., d7 has two incoming

edges: one from d1 and the other from d6. The shortest distance is dist(d2, d6) + dist(d6, d7) =

7 + 4 = 11 and the edge between d6 and d7 is shown using a solid arrow. Similarly, dist(d2, d10) =

min(dist(d2, d1) + dist(d1, d10), dist(d2, d6) + dist(d6, d10)) = 13.

After dist(s, d) is computed for every access door d of Nparent, the algorithm iteratively re-

trieves the parent node of Nparent to compute distances from s to its access doors (see lines 7

and 8). In Fig. 3.5(b), N7 becomes Nparent and N5 becomes Nchild and the distances to the access

doors of N7 are computed using the previously computed distances to the access doors of N5. For

example, dist(d2, d20) is the the minimum of dist(d2, d1) + dist(d1, d20), dist(d2, d7) + dist(d7, d20)

and dist(d2, d10) + dist(d10, d20). The thick arrows show the shortest path from d2 to each access

door.

If dist(s, d) for a door d in Nparent is already known because d is also an access door for Nchild,

its distance is not needed to be recomputed. Fig. 3.5(b) shows such doors in a rectangle drawn in

broken lines, e.g., dist(d2, d1) is computed at node N1 and it does not need to be recomputed when

nodes N5 and N7 are accessed. In Algorithm 2, we mark each door d for which dist(s, d) has been

computed (line 6) and only compute the distances from s to the doors that are not marked (line 4).

�

Shortest distance between two arbitrary points s and t. Now, we are ready to describe how to

compute dist(s, t) for two arbitrary points s and t located in different leaf nodes Leaf(s) and

Leaf(t).

Lemma 3.5.2. Let LCA(s, t) be the lowest common ancestor node of Leaf(s) and Leaf(t).

Let Ns (resp. Nt) be the child of LCA(s, t) which is an ancestor of Leaf(s) (resp. Leaf(t)).

The shortest path from s to t must path through at least one access door of Ns and at least one

access door of Nt.

Proof. We first show that t lies outside Ns. We prove this by contradiction. Assume that t is inside

Ns. If t is inside Ns then Ns must be a common ancestor of the leaf nodes containing s and t.

However, Ns is the child of the lowest common ancestor of Leaf(s) and Leaf(t). Hence, Ns

cannot be a common ancestor which contradicts the assumption that t lies inside Ns.
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Since t lies outside Ns and s lies inside Ns, the shortest path from s to t must pass through an

access door of Ns (by definition of access doors). Following the same reasoning, the shortest path

from s to t must also pass through an access door of Nt. �

Consider the example of Fig. 4.1 and Fig. 3.3 where s is in N1 and t is in N4, LCA(s, t) is the

node N7, Ns is N5 and Nt is N6. The shortest path between s to t must pass through an access door

of N5 and an access door of N6, e.g., the shortest path in Fig. 4.1 passes through d10 which is an

access door for both N5 and N6.

By using the above lemma, dist(s, t) can be computed as follows.

dist(s, t) = min∀di∈AD(Ns),∀d j∈AD(Nt)dist(s, di) + dist(di, d j) + dist(d j, t) (3.3)

Note that dist(di, d j) is stored in the distance matrix of LCA(s, t) because Ns and Nt are the

child nodes of LCA(s, t) and di and d j are the access doors of Ns and Nt, respectively. dist(s, di)

for every di ∈ AD(Ns) and dist(d j, t) for every d j ∈ AD(Nt) can be computed using Algorithm 2.

Algorithm 3 shows the details of computing dist(s, t) when s and t are in different leaf nodes.

Algorithm 3: dist(s, t) when s and t are in different leaf nodes
1 Ns ← ancestor of Leaf(s) and a child of LCA(Leaf(s), Leaf(t));
2 Nt ← ancestor of Leaf(t) and a child of LCA(Leaf(s), Leaf(t));
3 getDistances(s,Ns); /* Algorithm 2 */;
4 getDistances(t,Nt); /* Algorithm 2 */;
5 return min∀di∈Ns,∀d j∈Nt dist(s, di) + dist(di, d j) + dist(d j, t)

Complexity Analysis. First, we evaluate the cost of Algorithm 2. Let ρ be the average number of

access doors in a node. To compute the distance from s to a door d in a node Nparent, the algorithm

considers paths through all access door in the child node Nchild (see Eq. 3.2). Hence, the cost to

compute the distance of one door at node Nparent is O(ρ) assuming that distances to every access

door in Nchild are known. Hence, the total cost to compute distances from s to all doors in a node

Nparent is O(ρ2). Let h be the number of nodes between Leaf(s) and the node N. The total cost

for computing distances from s to every d ∈ AD(N) is O(hρ2).

Recall that Algorithm 2 also requires computing distances between s and every access door

of Leaf(s). Let α be the average number of superior doors in a partition. The cost to compute

distances from s to every access door in Leaf(s) is O(αρ). Hence, the total cost of Algorithm 2

is O(hρ2 + αρ).
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Now, we evaluate the total cost of Algorithm 3. The cost of line 5 of the algorithm is O(ρ2)

because each of Ns and Nt has O(ρ) access doors. Also, the algorithm makes two calls to Al-

gorithm 2. Therefore, the total cost of the algorithm is the same as that of Algorithm 2, i.e.,

O(hρ2 + αρ). Since α and ρ both are very small values and α ≈ ρ, we simplify the complexity

to O(hρ2). Note that h is bounded by the height of the tree which is O(log f M) where M is the

number of leaf nodes in the tree.

Shortest Distance Using VIP-Tree

The shortest distance computation using VIP-tree is similar except that we modify Algorithm 2

that computes the distances from s to all access doors of an ancestor node N. Let SUP denote the

set of superior doors of Partition(s). Then, dist(s, d) for an access door d of an ancestor

node N is dist(s, d) = min∀di∈SUPdist(s, di) + dist(di, d). Recall that VIP-Tree stores distances

between di to all access doors of its ancestor nodes. Hence, dist(di, d) can be retrieved in O(1).

Let α be the average number of superior doors. The total cost of the modified Algorithm 2

is O(αρ) as compared to O(hρ2 + αρ) cost of the original Algorithm 2 used by IP-tree. For VIP-

Tree, Algorithm 3 uses the modified Algorithm 2 and this reduces the overall cost for VIP-tree to

O(ρ2 + αρ) from O(hρ2 + αρ). This can be simplified to O(ρ2) considering that α ≈ ρ.

3.5.2 Shortest Path Queries

Shortest Path Using IP-Tree

As described earlier, if both s and t are in the same leaf node we use an expansion similar to

Dijkstra’s algorithm on the D2D graph to compute dist(s, t). Thus, the actual shortest path can be

easily maintained during the computation of dist(s, t). Next, we describe how to recover shortest

path when s and t are in different leaf nodes.

During the shortest distance computation (Algorithm 3), we maintain the intermediate doors

on the path accessed by the algorithm. This gives a partial shortest path. For example, in the

example of Fig. 3.5(b), the partial shortest path from d2 to d20 is d2 → d6 → d10 → d20 (see thick

arrows). Next, we describe how to decompose these edges to recover the complete shortest path.

An edge di → d j is called a final edge if the shortest path from di to d j does not contain any

other door. Otherwise, the edge di → d j is called a partial edge. We recursively decompose each

partial edge di → d j on the partial shortest path until each decomposed edge is a final edge. In this

section, when we say a door di is an access door without referring to any specific node, it means
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that di is an access door of at least one node in the tree. Algorithm 4 describes how to decompose

an edge di → d j.

Algorithm 4: Decompose(di → d j)
1 if di and d j both are non-access doors then
2 di → d j is a final edge; /* Lemmas 3.5.4 and 3.5.6 */;

3 else
4 if di and d j both are access doors then
5 N ← the lowest common ancestor of di and d j;

6 else // only one of di and d j is access door
7 N ← leaf node containing di & d j; /* Lemmas 3.5.4 and 3.5.7 */;

8 Let dk be the next-hop door of di and d j in the distance matrix of N;
9 if dk is NULL then

10 di → d j is a final edge; /* Lemma 3.5.3 */;

11 else
12 Return di → dk → d j;

If both di and d j are non-access doors then it can be proved that di → d j is a final edge

(Lemmas 3.5.4 and 3.5.6 in Section 3.5.2). Note that di → d j is either an edge returned by

Algorithm 3 or an edge resulting from decomposition of another edge by Algorithm 4. The proof

is non-trivial and is given in the next section.

If both di and d j are the access doors (line 4 of Algorithm 4), we will use the distance matrix

of the lowest common ancestor node N of Leaf(di) and Leaf(d j). Otherwise, if only one of

di and d j is an access door, we will use the distance matrix of the leaf node N that contains both

di and d j. Lemmas 3.5.4 and 3.5.7 in the next section prove that, for each such edge di → d j

considered by Algorithm 4, we can always find both di and d j in the same leaf node N.

Let N be the node as described above. We look up the distance matrix of N and retrieve the

next-hop door dk for the entry corresponding to di and d j. The shortest path di → d j is then

decomposed to di → dk → d j. If dk is NULL then di → d j is a final edge and does not need to be

decomposed (as we prove later in Lemma 3.5.3).

EXAMPLE 5 : Suppose we want to decompose d10 → d20. The lowest common ancestor of d10

and d20 is N6 (see Fig. 3.3). The next-hop door for d10 and d20 in the distance matrix of N6 is

d15. Therefore, d10 → d20 is decomposed into d10 → d15 → d20. The algorithm then tries to

decompose d10 → d15 using the lowest common ancestor N3 of d10 and d15. The next-hop door of

d10 and d15 in the distance matrix of N3 is NULL. Therefore, d10 → d15 is a final edge. Similarly,

d15 → d20 is also a final edge.

Now, assume we want to decompose d2 → d6. Since only d6 is an access door, we find the

leaf node N1 that contains both d2 and d6. The next-hop door from d2 to d6 in the distance matrix
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of N1 is d3. Hence, d2 → d6 is decomposed to d2 → d3 → d6. d2 → d3 is a final edge because

both d2 and d3 are non-access doors. We decompose d3 → d6 to d3 → d5 → d6 in a similar way

using the distance matrix of N1. d3 → d5 is a final edge because both d3 and d5 are non-access

doors. d5 → d6 is a final edge because the next-hop door for d5 and d6 in the distance matrix of

N1 is NULL. Hence, d2 → d6 is decomposed to d2 → d3 → d5 → d6. �

A key property of Algorithm 4 is that if only one of di and d j is an access door (see line 6) then

there always exists a leaf node N that contains both di and d j. We prove this later in Section 3.5.2.

This property is made possible due to the special way we store next-hop door dk for leaf nodes.

Specifically, recall that if the shortest path from di to d j passes outside of the leaf node N then

next-hop door dk is not any ordinary first door on the shortest path from di to d j but dk is the first

access door on the shortest path from di to d j. As shown in the next example, the above property

cannot be ensured if dk is not selected this way.

d6

d4

d1
d2

d3

N1

 

d5

N2 N3

 

Figure 3.6: Choosing next-hop door for leaf nodes

EXAMPLE 6 : Consider the example of Fig. 3.6 that shows three leaf nodes N1, N2 and N3.

Suppose that we are creating the distance matrix of leaf node N2 that contains two access doors d2

and d5. Assume that the shortest path from d2 to d5 is d2 → d3 → d4 → d5 due to some obstacles

inside N2. Note that d3 is the first door on the shortest path. If we choose d3 as the next-hop door,

the edge d2 → d5 will be decomposed into d2 → d3 → d5. Now, if we try to decompose d3 → d5,

there does not exist any leaf node that contains both d3 and d5 (d3 is a non-access door and d5 is an

access door). Hence, Algorithm 4 will fail to decompose it. To address this, we choose d4 as the

next-hop door which is the first access door on the shortest path. Hence, d2 → d5 is decomposed
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to d2 → d4 → d5. Note that d2, d4 and d5 all are access doors and each edge can be further

decomposed using the distance matrix of the least common ancestor node (at line 4). �

Proof of correctness

In this section, we prove the correctness of Algorithm 4. First we show that di → d j is a final edge

if dk is NULL (line 10).

Lemma 3.5.3. The next-hop door dk for di and d j in the distance matrix of N can only be NULL

if di → d j is a final edge.

Proof. If N is a leaf level node and dk is NULL then there does not exist any other door on the

shortest path from di to d j because the distance matrices for the leaf nodes are computed using the

original D2D graph. Hence, di → d j is a final edge. Next, we show that dk cannot be NULL if N

is a non-leaf node.

We prove this by contradiction. Let the lowest common ancestor node N be a non-leaf node

at level l > 1 of the tree. Recall that the distance matrix of a node N at level l is computed using

the level-l graph Gl. The vertices in Gl are the access doors of the level l − 1 nodes and an edge is

created between two doors di and d j if both doors are the access doors of the same node at level

l − 1. Note that dk can only be NULL if there exists an edge between di and d j in Gl. This implies

that both di and d j are the access doors of the same node N′ at level l − 1 of the tree. However, if

this is the case then N cannot be a lowest common ancestor because N′ is also a common ancestor

at a lower level. �

Next, we need to show that, for each edge di → d j considered by Algorithm 4, the following

two conditions hold: (1) di → d j is a final edge if both di and d j are non-access doors (line 2);

(2) di and d j can both be found in the same leaf node N if only one of di and d j is an access

door (line 7). Note that the edges considered by Algorithm 4 are either the edges on the partial

shortest path maintained during the execution of Algorithm 3 or the edges decomposed earlier by

Algorithm 4 itself. First, we prove the above two conditions for each edge on the partial shortest

path maintained by Algorithm 3.

Lemma 3.5.4. Let di → d j be an edge returned by Algorithm 3. (1) di → d j is a final edge if both

di and d j are non-access doors; (2) di and d j can both be found in the same leaf node N if only

one of the di and d j is an access door.
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Proof. Each of di and d j at line 5 of Algorithm 3 is an access door, e.g., di ∈ AD(Ns) and d j ∈

AD(Nt). Similarly, Algorithm 2 (which is called by Algorithm 3) also considers only the access

doors along the path except when the distance from s (resp. t) to the access doors of Leaf(s)

(resp. Leaf(t)) is to be computed. Hence, the lemma is only applicable for the case when the

distances from s (resp. t) to every access door d j of Leaf(s) (resp. Leaf(t)) are computed.

This is because both doors are access doors for each other edge. We prove the lemma for the case

when distance from s to d j ∈ AD(Leaf(s)) is computed. The proof for the distance from d j to t

is similar.

Note that the shortest path from s to d j is s→ di → d j where di is a door in Partition(s)

(see Eq. 3.1). The edge di → d j contains one access door (d j) and it is easy to see that both di and

d j are in the same leaf node Leaf(s) - this proves (2). Now, we prove (1) by showing that every

edge on the shortest path from s to di is a final edge. Recall that we compute the shortest path

between two points in the same leaf node using a Dijkstra’s like expansion on the original D2D

graph. Hence, every edge on the shortest path from s→ di is a final edge. �

Next, we prove the two conditions for the edges that are obtained as a result of decomposing

another edge by Algorithm 4. First, we show that the two conditions are only applicable to an

edge if it is decomposed by Algorithm 4 using a leaf node N at line 8.

Lemma 3.5.5. Assume we decompose di → d j into di → dk → d j as described in Algorithm 4. If

N is a non-leaf node then di, dk and d j all are access doors.

Proof. Assume that the lowest common ancestor node N of di and d j is at level l > 1 of the tree.

Recall that the distance matrix of nodes at level l > 1 is created using a graph Gl that contains the

access doors of nodes at level l−1. Hence, dk is an access door of a node at level l−1. Note that N

can only be a non-leaf node if both di and d j are access doors. Hence, di, d j and dk all are access

doors. �

Next, we prove the condition (1) for each edge decomposed by Algorithm 4.

Lemma 3.5.6. Assume we decompose di → d j into di → dk → d j as described in Algorithm 4.

Each edge in di → dk → d j satisfies the following: if both doors in the edge are non-access doors

then the edge is a final edge.

Proof. As stated in Lemma 3.5.5, if N is a non-leaf node then di, dk and d j all are access doors

and this lemma is not applicable. Therefore, this lemma only applies when N is a leaf node.
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Since at least one of di and d j is an access door for each partial edge di → d j considered

by Algorithm 4 (Lemma 3.5.4), this lemma is only applicable to either di → dk (assuming di is

a non-access door) or dk → d j ( assuming d j is a non-access door). Without loss of generality,

assume that di is a non-access door. The lemma is not applicable to dk → d j because d j is an

access door. We prove the lemma for di → dk.

Since di is a non-access door and d j is an access door, Algorithm 4 decomposes di → d j by

retrieving the next-hop door dk from the distance matrix of the leaf node N that contains both di

and d j. If dk is an access door (e.g., shortest path from di to d j passes outside of N) then the lemma

is not applicable on di → dk because at least one door is an access door. If dk is not an access door

then it is the next-hop door computed using the original D2D graph for the leaf node N. Hence,

di → dk is a final edge. �

The nex lemma proves the condition (2) for each edge decomposed by Algorithm 4.

Lemma 3.5.7. Assume we decompose di → d j into di → dk → d j as described in Algorithm 4.

Each edge in di → dk → d j satisfies the following: if only one of the doors is an access door then

both doors can be found in the same leaf node.

Proof. As stated in Lemma 3.5.5, if N is a non-leaf node then di, dk and d j all are access doors

and this lemma is not applicable. Therefore, this lemma only applies when N is a leaf node.

If the shortest path from di to d j lies entirely inside N then dk is always inside N. This implies

that di, d j and dk all are inside the same leaf node N. If the shortest path from di to d j passes

outside of N then, as stated earlier, dk is always chosen to be an access door. Since at least one of

di and d j is an access door, the lemma is only applicable to one of di → dk and dk → d j (because

both doors in the other edge are access doors). Without loss of generality, assume that di is a

non-access door. We prove the lemma for di → dk. Since di is a non-access door of the leaf node

N then dk must be an access door of N because the shortest path from di which is inside N cannot

go out of N without passing through an access door of N. Hence, both di and dk can be found in

the leaf node N. �

Complexity Analysis

Let w be the number of doors on the shortest path from s to t. The algorithm needs to find the

lowest common ancestor for O(w) pairs of doors. Finding the lowest common ancestor for a

single pair of doors takes at most O(log f M) - the height of the IP-tree. Hence, the algorithm
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takes O(w log f M) in addition to the cost of shortest distance query. Therefore, the total cost of

the shortest path query is O(w log f M + ρ2 log f M).

3.5.3 Shortest Path Using VIP-Tree

Recall that VIP-Tree stores, for each door di in indoor space, its distance and next-hop door to

every access door d j of each of its ancestor node N. Similar to the leaf node distance matrices, the

next-hop door dk is the first access door on the shortest path from di to d j if the shortest path from

di to d j passes outside of N. In this case, di → d j is decomposed to di → dk → d j and these edges

are further decomposed in a way similar to IP-Tree.

If the shortest path from di to d j lies entirely inside N then dk is the first door on the shortest

path from di to d j. In this case, di → d j is decomposed to di → dk → d j where di → dk is a final

edge and dk → d j can be further decomposed. Note that dk is inside the node N and the next-hop

door for dk → d j can be found because d j is an access door of an ancestor of Leaf(dk).

The worst case cost of the shortest path recovery is O(w log f M) assuming that for each edge

di → d j, the shortest path passes outside of N. This is because in this case the algorithm needs to

find the lowest common ancestor for the decomposed edge dk → d j. However, we remark that this

worst case scenario is very rare in practice and, in almost all cases, the shortest path passes within

N. Hence, the expected complexity of shortest path recovery is O(w). The total expected cost for

shortest path algorithm using VIP-Tree is then O(ρ2 + w).

3.5.4 Querying Indoor Objects

Indexing Indoor Objects. Given a set of objects O, we embed it with IP-Tree and VIP-Tree as

follows. For each object o ∈ O located in a partition P, we record a pointer to the leaf node of

the tree that contains the partition P. Furthermore, for each access door di of a leaf node N, we

maintain the list of objects located in N sorted on their distances from di. This allows efficient

computation of distances from a given query point to the objects in a leaf node.

k Nearest Neighbors (kNN) Queries. Algorithm 5 presents the details of computing kNNs using

our proposed index structures. It is a standard best-first search algorithm widely used on various

branch and bound structures such as R-tree, Quad-tree etc.

The algorithm requires computing mindist(q,N) for different nodes in the tree. mindist(q,N)

is the minimum distance from the query q to any point in the node N. mindist(q,N) is zero

if q is in a partition contained in the sub-tree of the node N. If N does not contain q, then
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Algorithm 5: k Nearest Neighbors
Input : q: query point, k
Output : kNNs

1 dk = ∞; /* dk is distance to current kthNN */;
2 getDistances(q,root); /* Algorithm 2 */;
3 Initialize a heap H with root of the tree;
4 while H is not empty do
5 de-heap a node N from heap;
6 if mindist(q, e) > dk then
7 return kNN;

8 if N is a non-leaf node then
9 for each child N′ of N do

10 if N′ contains objects then
11 insert N′ in heap with mindist(q,N′);

12 else
13 Use objects in N to update kNN and dk;

mindist(q,N) is the minimum distance from q to an access door of the node N, i.e., mindist(q,N) =

min∀d∈AD(N)dist(q, d). A straightforward way to compute mindist(q,N) is to use Algorithm 3.

Next, we show that we could optimize mindist(q,N) for branch and bound algorithms because

these algorithms access the nodes in a particular order.

Lemma 3.5.8. Let N1 and N2 be the two sibling nodes. If N1 contains q then dist(q, di) for any

access door di ∈ AD(N2) is min∀d j∈AD(N1) dist(q, d j) + dist(di, d j).

Proof. Note that the only common points between two sibling nodes may be the common access

doors. If q is located at a common access door di then the proof is obvious. If q is not located

at a common access door then it must be located outside N2 (because q is inside N1). Hence, the

shortest path from q to any access door di of N2 must pass through at least one access door of N1.

Hence, dist(q, di) = min∀d j∈AD(N1)dist(q, d j) + dist(di, d j). �

Note that dist(di, d j) can be retrieved from the distance matrix of the parent node of N1 and

N2.

Lemma 3.5.9. If N1 does not contain q and N2 is a child of N1 then dist(q, di) for any access door

di ∈ AD(N2) is min∀d j∈AD(N1)dist(q, d j) + dist(di, d j).

Proof. Since q is outside N1 and N2 is inside N1, the shortest path from q to a door di ∈ N2 must

pass through at least one access door d j of N1. Hence, dist(q, di) = min∀d j∈AD(N1)dist(q, d j) +

dist(di, d j). �

Note that if dist(q, d j) for every access door d j of N1 is already known, then mindist(q,N2)

can be computed in O(ρ2) using Lemma 3.5.8 or Lemma 3.5.9. Below are the details.
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At line 2 of Algorithm 5, we compute distance from q to each access door of the root node by

calling Algorithm 2. Note that Algorithm 2 computes distances from q to all access doors of each

ancestor node of Leaf(q) in the process. We maintain these distances for each ancestor node

of Leaf(q). Now, when a child node N′ of a node N is to be inserted in the heap at line 11,

mindist(q,N′) can be computed using either Lemma 3.5.8 or Lemma 3.5.9.

Specifically, if N contains q then this implies that at least one sibling Nsib of N′ contains q.

Since we already know distances from q to every access door of Nsib (because it is an ancestor of

Leaf(q)), Lemma 3.5.8 can be applied to compute mindist(q,N′). On the other hand, if N does

not contain q then Lemma 3.5.9 is applied. Hence, mindist(q,N′) can be easily computed in O(ρ2)

for each node accessed by the algorithm.

Range Queries Given a range r, a range query returns every object o ∈ O for which dist(q, o) ≤ r.

The algorithm to process range queries is very similar to Algorithm 5 except that dk is set to r and

all objects in a node N are returned if the furthest object in the node is within the range r.

3.6 Experiments

3.6.1 Experimental Settings

Indoor Space. We use three real data sets: Melbourne Central [6], Menzies building [9] and

Clayton Campus [7]. Melbourne Central is a major shopping centre in Melbourne and consists

of 297 rooms spread over 7 levels (including ground and lower ground levels). Menzies building

is the tallest building at Clayton campus of Monash University consisting of 14 levels (including

basement and ground floor) and 1306 rooms. The Clayton data set corresponds to 71 buildings

(including multilevel car parks) in Clayton campus of Monash University. We obtained the floor

plans of all buildings and manually converted them to machine readable indoor venues. Coordi-

nates of the buildings are obtained by using OpenStreetMap and the sizes of indoor partitions (e.g.,

rooms, hallways) are determined. A three dimensional coordinate system is used where the first

two represent x and y coordinates of indoor entities (e.g., rooms, doors) and the third represents

the floor number. For Clayton data set, the D2D graph also contains edges between the entry/exit

doors of different buildings where the weight corresponds to the outdoor distance between the

doors.

To evaluate the algorithms on even larger data sets, we extend Melbourne Central (denoted

as MC), Menzies building (denoted as Men) and Clayton (denoted as CL) by replication. Table
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Datasets Description # doors # rooms # edges

MC
Melbourne
Central

299 297 8,466

MC-2 2 times MC 600 597 16,933
Men Menzies building 1,368 1,280 56,009
Men-2 2 times Men 2722 2,560 112,062
CL Clayton Campus 41,392 41,100 6,700,272
CL-2 2 times CL 83,138 82,540 13,400,884

Table 3.2: Indoor venues used in experiments

4.2 gives details of the real indoor venues and the larger replicated venues. For example, MC-

2 indicates that a replica of Melbourne Central is placed on top of the original building. CL-2

denotes that each building in the Clayton campus has been replicated to increase its size by two.

The replicas are connected with the original buildings by stairs. The number of edges shown in

Table 4.2 corresponds to the total number of edges in the D2D graph for each indoor space. The

distance matrix used by the state-of-the-art indoor technique cannot be built on the venues larger

than Men-2.

Competitors. All algorithms are implemented in C++ on a PC with 8GB RAM and Intel Core

I5 CPU running 64-bit Ubuntu. We compare our proposed indexes (IP-Tree and VIP-Tree) with

the following competitors.

Distance Matrix (DistMx). As described earlier, the shortest distance and shortest path queries can

be efficiently computed using a distance matrix that materializes distances between all pairs of

doors in the space.

Distance-aware model (DistAw) [62]. We also compare our algorithm with the state-of-the-art

indoor query processing index called distance-aware model (shown as DistAw). For shortest dis-

tance/path queries, DistAw uses only an extended graph based on the accessibility base graph. For

kNN and range queries, DistAw model also proposes to use DistMx to speed up the query process-

ing. In the experiments, we use DistAw++ to denote the algorithm that exploits DistMx (requiring

an additional O(D2) space). We use DistAw to denote the algorithm that does not required DistMx.

ROAD [56] and G-tree [93]. We also compare our algorithm with the state-of-the-art indexes for

spatial query processing on road networks (G-tree and ROAD). These indices are constructed by

passing the D2D graph as input and the query processing algorithms are adapted to suit indoor

query processing. For each indoor venue, we experimentally choose the best value for the param-

eter τ inG-tree.

Queries and Objects. To evaluate the performance for shortest distance/path queries, 10, 000

pairs of source and target points are randomly generated in the indoor space. To evaluate kNN
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and range queries, 10, 000 query points are randomly generated in the indoor space. We use

washrooms in the buildings as the objects (e.g., the query is to find the nearest washroom). The

number of washrooms in Men-2 is 50. We also generate synthetic object sets consisting of 10,

50, 100 and 500 objects - 50 is the default value. We choose a small set of objects because the

kNN queries are more challenging for smaller object sets (as also reported in existing work on

road networks [13]). This is because a larger area is to be explored to compute the kNNs when

the number of objects is small. Furthermore, we believe that the real world scenarios for kNN

queries contain a small number of objects, e.g., ATM machines, washrooms, charging-kiosks etc.

k is varied from 1 to 10 and the default value of k is 5. The range is varied from 50 to 1000 meters

and the default value is 100 meters. The figures report average query processing cost for each

algorithm.
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Figure 3.7: Effect of minimum degree t on VIP-Tree

Choosing t for IP-Tree and VIP-Tree. We evaluated the effect of the minimum degree t (see

Algorithm 1) on our indexes and found that the best performance is achieved for t = 2. Fig. 3.7

shows the index construction cost and query time of VIP-tree on Clayton data set. The construction

time and construction cost increases as t increases mainly because the size of distance matrices

increases which requires more storage and more computation time to materialize the distances.

The size of t does not affect the query time for shortest distance queries mainly because the cost is

independent of the height of the tree – recall that VIP-tree computes shortest distance in O(ρ2) and

ρ is not affected by t. The cost of kNN query increases with t mainly because fewer nodes can be

pruned when t is large which requires the algorithm to access a larger number of nodes. The trend

for IP-tree are similar. In the rest of the experiments, we use t = 2 for our indices. We also found

that the average number of access doors and superior doors is less than 4 for all data sets and the

maximum number is around 8. This provides an insight on why our indices perform exceptionally

well for indoor spaces.
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3.6.2 Indexing Cost
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Figure 3.8: Indexing Cost

Construction time. Fig. 3.8(a) compares the time to construct each index using the accessi-

bility base graph and D2D graph. Since DistAw only uses the extended graph based on the ac-

cessibility base graph, its index construction is not shown. Note that DistAw++ does use DistMx

and its construction cost is the same as DistMx. To construct DistMx, for each door, we use a

Dijkstra’s like expansion until all other doors in the graph have been marked. This requires O(D)

expansions on D2D graph which is quite expensive. Consequently, DistMx has a high construc-

tion cost and it took almost 14 hours to construct DistMx for Men-2 with 2, 738 doors requiring

computing almost 7.5 million shortest distances/paths.

The construction cost for IP-Tree and VIP-Tree is less than 90 seconds even for the largest

data set (CL-2) that consists of more than 83, 000 doors and around 13.4 Million edges in the D2D

graph. As expected, VIP-Tree takes more time than IP-Tree because it needs to compute and store

the distances between each door di to every access door in the ancestor nodes of di. G-tree and

ROAD take around one hour to build the index for CL-2 data set.
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Index size. Fig. 3.8(b) compares the size of different indexes. As expected, DistMx is the

largest index. DistAw has the smallest index size because it only needs the extended graph based

on the accessibility base graph. IP-Tree, VIP-Tree and G-tree have sizes comparable to DistAw

index. The storage cost of VIP-Tree is slightly higher than IP-Tree, which demonstrates that

materializing the distances to the access doors of all ancestors nodes does not increase the storage

cost dramatically but significantly improves the query processing cost as we show later. G-tree

and ROAD consume more space than IP-Tree and VIP-Tree mainly because these are designed

for road networks having a small average outdegree (2 to 4) as compared to the D2D graph which

has a much higher out-degree (up to 400). This results in a larger number of border nodes and

hence consuming more space.

Update cost. We evaluate the update cost of our proposed indexes IP-Tree and VIP-Tree

according to the door insertion and deletion. Fig. 3.9(a) and 3.9(b) shows the results for the update

cost for IP-Tree and VIP-Tree respectively. For the largest dataset CL-2, the update cost for both

operations can be done within 1 second, which is very efficient. Meanwhile, for VIP-Tree, the

update cost is very similar to IP-Tree that proves the efficiency of distance materialization.
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Figure 3.9: Indexing Cost

3.6.3 Query Performance

Shortest distance queries

In Fig. 3.10 we evaluate the algorithms for shortest distance queries on different indoor data sets.

First, we present a simple optimization to improve the performance of DistMx. A straightforward

approach to compute the distance from s to t is to use DistMx to calculate distances between

every door di in Partition(s) and every door d j in Partition(t) and picking the pair

di and d j that minimizes dist(s, di) + dist(di, d j) + dist(d j, t). Let Ds and Dt be the number of

doors in Partition(s) and Partition(t), respectively. This requires checking Ds × Dt
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pairs of doors to retrieve the shortest distance and the cost may be high if Ds × Dt is large. A

simple optimization is to ignore the doors in Partition(s) and Partition(t) that lead to

no-through partitions.

The above optimization significantly reduces the pairs of doors that need to be considered.

Fig. 3.10(a) shows the effect of this optimization where DistMx uses this optimization and DistMx-

- does not use this optimization. The numbers on top of bars correspond to the number of pairs

needed to be considered by each algorithm. As can be seen, this simple optimization significantly

reduces the number of pairs and improves the performance of DistMx by up to several times.

In the rest of the experiments, we use this optimization for DistMx. The numbers for VIP-Tree

correspond to the pair of superior doors to be considered. This number is slightly smaller than the

number of pairs considered by DistMx but the cost is slightly higher because VIP-Tree needs to

first compute distances from s and t to the access doors of the children of lowest common ancestor

which requires more computation.
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Figure 3.10: Shortest Distance Queries

Fig. 3.10(b) compares the performance of all techniques for shortest distance queries. Since

DistMx returns distance between any two doors in the graph in O(1), it gives the best performance.

However, VIP-Tree provides a comparable performance. Note that DistMx has quadratic storage

cost and huge construction cost. Recall that we were not able to construct DistMx for indoor

venues larger than Men-2. VIP-Tree significantly outperforms IP-Tree at the expense of a slightly

higher storage cost. Both VIP-Tree and IP-Tree outperform the other three techniques by several

order of magnitude, e.g., for CL-2 data set, VIP-Tree processes a shortest distance query in around

10 microseconds as compared to ROAD and G-tree that take almost one second to answer a single

shortest path query.
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Shortest path queries

Fig. 3.11 compares the techniques for shortest path queries. We note that the overhead of recov-

ering shortest paths is negligible, i.e., for each algorithm, the cost of shortest distance queries is

similar to the cost of shortest path queries (compare Fig. 3.10(b) and Fig. 3.11(a)).

Next, we evaluate the effect of the distance between s and t on the performance of different

algorithms for the shortest path queries. We use Men-2 to demonstrate the results because this is

the largest data set for which DistMx works. Let dmax be the maximum distance between any two

points in Men-2 building. We divide the distance range [0, dmax] into five intervals (Q1 to Q5)

of equal length l = dmax/5, e.g., Q1 = [0, l], Q2 = [l, 2l], . . . ,Q5 = [4l, 5l]. We then randomly

generate source and target points and allocate them to relevant Qi based on the distances between

them. Hence, the pairs of source and target points corresponding to Q1 have the smallest distances

(within range [0, l]) and the pairs in Q5 have largest distances [4l, 5l].
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Figure 3.11: Shortest Path Queries

Fig. 3.11(b) shows the effect of distances on the performance of different algorithms. The

cost of DistAw increases by almost two orders of magnitude as the distance increases. The cost

for IP-Tree slightly increases from Q1 to Q3 because the lowest common ancestor is at a higher

level when source and target are further from each other. This requires visiting more levels of

the tree resulting in an increased cost. However, the cost does not increase further for Q4 and

Q5 because, in most of the cases for Q3, the lowest common ancestor is already the root node.

A similar behavior can be observed for G-tree and ROAD. The effect of distance is negligible

on DistMx and VIP-Tree because these algorithms require retrieving relevant entries from the

distance matrices which is independent on the distances between the source and target points. A

similar trend was observed for shortest distance queries.
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Figure 3.12: kNN and Range Queries

Querying Indoor Objects

kNN Queries. Fig. 3.12(a), Fig. 3.12(b) and Fig. 3.12(c) evaluate different algorithms by varying

k, the number of objects, and the indoor buildings, respectively. VIP-Tree and IP-Tree perform

equally well. This is because IP-tree computes mindist(q,N) for a node N with the same com-

plexity as that of VIP-Tree due to the optimizations presented in Section 3.5.4. Both VIP-Tree

and IP-Tree outperform the other algorithms by several orders of magnitude. Note that DistAw++

is the existing method that utilizes DistMx to speed up the query processing. Nevertheless, it is

outperformed by our proposed techniques.

Fig. 3.12(b) shows that the cost of all algorithms decreases as the number of objects increases.

This is because kNNs can be found closer to the query point as the number of objects increases.

Hence, the algorithms require exploring a smaller area. On the other hand, the query processing

cost increases for all algorithms as the value of k or the data set size increases.

Range Queries. Fig. 3.12(d) evaluates the performance of different techniques for range queries.

The cost of all algorithms increases with for larger venues mainly because the sizes of the indexes

increase. VIP-Tree and IP-Tree both perform equally well and outperform the other competitors

by several orders of magnitude.
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3.7 Conclusion

In this chapter, we propose two novel indexes, IP-Tree and VIP-Tree, for efficiently processing in-

door spatial queries. We also present efficient algorithms to answer shortest path queries, shortest

distance queries, k nearest neighbors queries and range queries. IP-Tree and VIP-Tree have low

storage requirement, small pre-processing cost and are highly efficient. Our extensive experimen-

tal study on real and synthetic data sets demonstrates that the proposed indexes outperform the

existing techniques by several orders of magnitude.
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Chapter 4

Indoor Trip Planning Queries

4.1 Overview

Location-based services (LBS) are applications that allow mobile users to search for nearby points

of interest and are valuable in many domains, such as building emergency services, recommenda-

tion systems, and navigation systems. To enable LBSs, GPS technology is used to detect the user

locations in outdoor, but it cannot be applied in indoor as an indoor space contains different levels.

There have been breakthroughs in indoor positioning technologies [58] that can locate the user

locations in indoor spaces. Consequently, indoor LBSs are expected to be booming in the coming

years [82, 3, 4].

One of the well known LBSs is Trip Planning Queries (T PQ) that enables users to visit their

desired places with a minimum travel distance. For its counterpart in indoor spaces, indoor TPQ

(iT PQ) is valuable as well since the recent research shows that humans spend more than 85%

of their time in indoor spaces, such as houses/apartments, office buildings and shopping cen-

tres [44]. Fig. 4.1 shows an sample indoor floor plan containing 17 indoor partitions (P1 to

P17). In these partitions, nine indoor points belonging to three categories (e.g. ATMs) are lo-

cated in C1={p1, p2, p3}, C2={p4, p5, p6}, and C3={p7, p8, p9}. Let the two stars ps and pt be

the start and end points of a trip; an iT PQ is to find the shortest route starting from ps, pass-

ing through only one point in each category, and reaching to pt. Thus, a possible route can be

{ps → p1 → p4 → p7 → pt}.

Take people’s daily shopping as an example. A user wants to buy milk, flowers and oranges

after he finishes his work. He drives to the car parking in a shopping centre. Starting from his

current location, he wants to buy all the items and come back to his car using a shortest walking

67
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Figure 4.1: An indoor venue containing 17 partitions, 20 doors and 9 points in 3 categories

distance. Hence, an iTPQ helps him to plan a shortest route. Another example could be borrowing

books from a library. A student wants to borrow a math book, a science fiction and a Japanese

cartoon. An iTPQ provides the shortest route for him to get all these three books and return to the

reception.

iTPQ will be a critical part in indoor LBSs. The problem is that existing technologies focus on

outdoors, and they do not offer efficient processing time for iTPQ. In indoor spaces, no solution

has been proposed to deal with iTPQ.

TPQ is one of the classical problems in spatial road networks, which already has a number of

solutions [59, 20]. Unfortunately, no existing technique is available for indoor spaces. If we apply

any existing TPQ techniques from spatial road networks to indoor spaces, we must adopt a spatial

road network kind of graphs for an indoor setting. In our previous paper [75], we have shown that

if this were to be done, the performance to compute shortest paths in indoor spaces would degrade

significantly. Consequently, to address the problem, we adopt VIP-Tree [75] in this chapter.

In outdoor spaces, most of the research aims to find a heuristic solution for TPQ. One method

focusing on the exact solution is the Progressive Neighbor Exploration (PNE) method [77]. It was

designed to solve the Optimal Sequenced Route (OSR) queries (Note that OSR is a variant of TPQ

which defines the visiting order of categories). However, for OSR queries, PNE is not efficient

in terms of processing time, while TPQ is more complex compared with OSR. Thus, the revised

PNE to handle iTPQ is not efficient that is proved in our experimental section1.

This chapter is organized as follows. Section 4.2 gives the formal definition of indoor trip

planning queries followed by the contributions presented in Section 4.3. A brute-force method is

discussed in Section 4.4. We present our main method in Section 4.5. In Sections 4.6 and 4.7, the

1Published in The Computer Journal
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pruning techniques in both pre-processing and query processing are proposed. The techniques are

evaluated in Section 4.8 and a conclusion is given in Section 4.9.

4.2 Background Information

4.2.1 Problem Definition

Given a set of n indoor points V = {p1,p2,...,pn} and a set of m categories C = {C1,C2,...,Cm}, a

mapping function π: pi −→ C j maps each indoor point pi ∈ V to a category C j ∈ C.

Definition 4.2.1. iTPQ. Given a set R ⊆ C (R = {R1,R2, ...,Rk}), a starting indoor point ps and

an ending indoor point pt, a route τ = {ps, p1, p2, ..., pk, pt} from ps to pt that visits at least one

indoor point of each category in R (∪k
i=1π(pi)) and has the minimum route distance c(τ), is an

Indoor Trip Planning Query (iTPQ).

4.2.2 Limitation of Exisiting Techniques

PNE [77]. The main idea of PNE is to explore nearest neighbors one-by-one and to keep adding

the first nearest neighbor to the last point of the candidate routes. Once a candidate route is pro-

cessed, the current nearest neighbor of second last point is replaced by the next nearest neighbor.

Hence, the efficiency of PNE relies on the method used to find nearest neighbors. PNE is designed

for spatial road networks, and does not consider any properties that only exist in indoor spaces.

Thus, the pruning power for PNE is much lower than our proposed VIP-Tree Neighbor Expansion

(VNE) algorithm. Our experiments show that VNE is much more efficient in all settings compared

to PNE, no matter G-tree or VIP-Tree is utilized for nearest neighbor computations.

PNE [77]+G-Tree [93]. We also compare our method with PNE+G-Tree. G-tree is the state-

of-the-art algorithm for query processing in spatial road networks, such as shortest distance/path,

kNN and range queries. As in [77], PNE can use any existing algorithms in spatial road networks

to find kth nearest neighbor such as IER [67] and VN3 [53]. Logically, we adopt G-Tree with PNE

to process kNN, because G-Tree is the most efficient methods for kNN in spatial road networks.

However, our performance evaluation shows that even PNE combined with the best spatial road

network indexing, G-Tree, cannot beat our proposed method VNE. One reason is that no efficient

pruning techniques are introduced in PNE. Hence, PNE processes most parts of the candidate

routes. Although G-tree is efficient for kNN in spatial road networks, it is not efficient in indoor

spaces.
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PNE [77]+VIP-Tree [75]. The last competitor is PNE combined with our specialised indoor

space indexing, VIP-Tree. As noted in our previous paper [75], VIP-Tree is proven to be much

more efficient than G-Tree, in all accounts in indoor query processing. Hence, using VIP-Tree

with PNE is a sensible solution. However, though VIP-Tree is efficient for indoor kNN queries,

PNE+VIP-Tree is not efficient for iTPQ due to the lack effective pruning techniques in PNE. In the

original paper [77], PNE takes more than twenty seconds to process a OSR with six categories and

twelve points in each category. The computational complexity for OSR is O(ρm) (where ρ is the

average number of points in each category, m is the number of categories), which is much less than

that of TPQ (O(ρmm!)). In the same settings, processing time for TPQ is much longer than that

for OSR. On the contrary, our proposed VNE algorithm performs iT PQ much more efficient than

PNE+VIP-Tree. This demonstrates the need for a specialised iTPQ algorithm for indoor spaces,

which is the aim of this chapter.

4.3 Contributions

In this chapter, we propose a VIP-Tree Neighbor Expansion algorithm to deal with iT PQ. This

includes new pruning techniques applied during the pre-processing phase and the query processing

phase.

Effective pruning techniques. We propose pruning techniques during the pre-processing

phase and the query processing phase. With these pruning methods, VNE avoids to process a large

number of unnecessary candidate routes. In addition, we set a benchmark to show the effectiveness

of the proposed pruning techniques, together with the combination of all techniques.

High efficiency. Our experimental results show that our proposed method VNE outperforms

the other three methods (DBE to be discussed in Section 4.4, PNE+G-tree [93], PNE+VIP-Tree)

by several orders of magnitude. No matter whether G-tree or VIP-Tree is utilized in PNE to find

the nearest neighbors, our VNE algorithm is more efficient and is able to handle all the settings

well.

Low indexing cost. Computing shortest distance/path or kNN is a crucial part in TPQ. G-tree

is the state-of-the-art method in spatial road networks, while VIP-Tree is the counterpart in indoor

spaces. In VNE, we add the information of indoor points in VIP-Tree and we are able apply

the pruning techniques efficiently, although we need a small extra indexing cost. However, our
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experimental results show that, VNE requires a similar indexing cost to the others, but delivers a

much better query processing performance.

4.4 A Dijkstra-based Expansion (DBE)

A naive approach to process iTPQ is to consider all possible routes. The result is the route with the

minimum distance. However, the performance will be very low, since the computational cost is

O(ρmm!). Therefore, we propose an improved version of the naive algorithm that prunes a number

of candidate routes. Algorithm 6 shows the details of this Dijkstra-based approach (DBE). Note

that all distances between any two indoor points is still computed by the point-to-point distance

algorithm, but uses the VIP-Tree for efficiency.

Algorithm 6: DBE Algorithm
Input : ps: a starting point, pt: a ending point, G
Output : τ

1 Initialize a Minheap H = ∅;
2 for pi ∈ V do
3 add τi = {ps, pi} into H;

4 while H is not empty do
5 de-heap (τc, c(τc));
6 if |τc| = m+2 then
7 return τc;

8 else
9 if |τc| = m+1 then

10 add τc=τc+{pt} into H;

11 else
12 for p j ∈ V (π(p j) < ∪

|τ|−1
i=1 π(pi), τ = {ps, p1, p2, ..., p|π|−1}) do

13 add τ = τ + {p j} into H;

At the first stage, a minimum heap H is initialized. Starting from ps, every point pi ∈ V is

added to the candidate routes and is inserted into H together with its route distance. After that,

in each step, a candidate route τc is de-heaped from H. According to the length of τc, there are

three cases. If the length of τc equals to m+2 (lines 6-7), it means that the shortest route in the

candidate set is a complete route that has visited all categories and reached the destination pt.

Note that only the candidate route with the shortest distance is de-heaped from H, thus, this route

is the optimal route and we return this as the query result. If the length of τc equals to m+1 (lines

9-10), pt is added to this route as all categories have been visited but this route has not reached pt.

After that, the new route is inserted into H. In the last case (lines 12-14), since τ visits parts of the

categories only, hence, for point p j that does not belong to any visited categories is added to τ and

τ is inserted into H.
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4.5 Our Approach

In this section, we present our proposed algorithm for processing iTPQ. Firstly, the VIP-Tree is

added with categories information of all points. The query processing algorithm contains two main

functions, particularly first nearest neighbor and next nearest neighbor queries. The algorithm

also features several pruning techniques in both pre-processing phase and query processing phase.

These pruning techniques demonstrate the efficiency of the proposed algorithm as shown in the

performance evaluation section.

Figure 4.2: The process to solve an iTPQ

Fig. 4.2 shows the detailed framework of how to process an iTPQ. Before processing an

iTPQ, the indices are pre-computed for the available indoor venues. An iTPQ represented by

Query(ps, pt,R) is invoked by a user, where ps and pt are the starting and ending points respec-

tively, while R is the categories that the user wants to visit. At the next stage, candidate path

generator keeps generating the candidate path by adding one more point (this point does not be-

long to any visited category of the current path) to the existing path. All distance calculations

are solved by the proposed algorithms based on the indices. After that, we have to check for the

current shortest path, if this path reaches pt, return this path as the result. Otherwise, the pruning

phase are utilized to determine if this path can be pruned. If current path has to be pruned, then

return to candidate path generator to generate the consequential paths. Otherwise, a new shortest

path is retrieved.
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4.5.1 VIP-Tree with Categories

Each indoor point pi ∈ V belongs to a category Ci. The original VIP-Tree does not have any infor-

mation about categories. Hence, the first step is to update VIP-Tree with the category information

of each point.

The update process is divided into two steps. Firstly, for each leaf node, the distance matrix

is updated by adding the distances between every access doors and every point inside the indoor

partitions of the leaf node. The distances can be computed efficiently using the shortest distance

algorithm in [75]. Meanwhile, the D2D graph of this leaf node is updated by adding the edges

between pi and every door inside the indoor partition containing pi. This D2D graph will be used

to compute the distance between two points in the same leaf node.

Secondly, for each non-leaf node, the distances between every access door and every point

inside the indoor partitions of the sub-tree are computed and stored in the distance matrix.

Figure 4.3: VIP-Tree with the Category information

Fig. 4.3 shows the VIP-Tree with the distance matrices for nodes N1, N5 and N7. The in-

door venue shown in Fig. 4.1 contains 9 indoors points that belong to 3 categories: specifically,

VC1={p1, p2, p3}, VC2={p4, p5, p6}, VC3={p7, p8, p9}. In the node, we omit the doors that are

not access doors. The distance matrices shown in Fig. 4.3 display the distances between every

access door and every point inside the partitions contained in the node. Take N7 as an example,

AD(N7)={d1, d7, d20}. N7 contains V={p1, p2,...,p9}. Therefore, the distances matrix of N7 stores

the distances between every di ∈ AD(N7) and every point pi ∈ V .
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4.5.2 Query Processing

In this section, we describe our proposed algorithm to solve iTPQ. The algorithm progressively

builds candidate routes by adding the next nearest neighbor of the last point in the candidate route.

The rationale is that comparing to the points that are far away from the last point, nearby points

are more likely to generate a route in a shorter distance. Thus, an expansion algorithm is used as

shown in Algorithm 7.

Algorithm 7: Query Processing Algorithm
Input : VIP-Tree, ps: a start point, pt: an end point, V: an indoor point set
Output : τ

1 Initialize a Minheap H=∅;
2 for i from 1 to m do
3 p=NN(ps,Ci);
4 add (τ = {ps, p},c(τ)) into H;

5 while H is not empty do
6 de-heap (τc,c(τc)) from H;
7 if |τc|=m+2 then
8 return τc;

9 if |τc|=m+1 then
10 add (τc + {pt},c(τ)) into H;
11 pl ←− last point of τc;
12 p j ←− second last point of τc;
13 p=NextNN(p j, π(pl));
14 add (τc-{pl}+{p},c(τ)) into H;

15 else
16 pl ←− last point of τc;
17 p j ←− second last point of τc;
18 for i from 1 to m do
19 if Ci is not visited in τc then
20 p=NN(pl,Ci);
21 add (τ=τc+{p},c(τ)) into H;

22 else
23 p=NextNN(p j,Ci);
24 add (τc-{pl}+{p},c(τ)) into H;

Algorithm 7 shows the details on how to process an iTPQ. In the initialization phase (lines

1-3), it finds the nearest neighbor of the start point ps within all categories, and forms m candidate

routes. A minimum heap H is initialized to store the candidate routes along with their route

distances. After that, one candidate route τc is de-heaped from H. If the length of τc equals to

m+2 (lines 7-8), it means that this is the query result, since the distances of any routes in the

candidate set are longer than τc. Hence, τc is returned as the query result. On the other hand, if

the length of τc is less than m+2, this route has not reached the destinations yet. Therefore, more

points have to be added according to the following two cases:
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1. |τc|=m+1 (lines 9-14). This means that τc has visited all categories, so the next point is

the destination point pt. Thus, we add pt to τc. On the other hand, in order to cover

all possible routes, we find the next nearest neighbor of p j computed by NextNN(pi,Ci)

(Function NextNN(pi,Ci) is utilized to find the next nearest neighbor of pi in a specified

category Ci) to replaces pl in τc. For the new τc, insert it into H with c(τc).

2. |τc| <m+1 (lines 15-24).

(a) We expand τc to the next category, in which we find the nearest neighbor of the last

point of τc in all unvisited categories. Once the nearest neighbor is found by NN(pi,Ci)

(Function NN(pi,Ci) is utilized to find the nearest neighbor of pi in a specified cate-

gory Ci), it is added to τc, and (τc,c(τ j)) is insert into H.

(b) We then find the next nearest neighbor of the second last point in τc. A candidate route

is updated by replacing the last point with the next nearest neighbor of the second last

point in τc, and this is then inserted into H.

EXAMPLE 7 : We discuss Algorithm 7 in more details using the example of Fig. 4.1 and 4.3. Let

ps and pt be the start and end points, and there are 3 categories (VC1={p1, p2, p3}, VC2={p4, p5,

p6}, VC3={p7, p8, p9}) that will be visited. Fig. 4.1 depicts the contents of the minimum heap H

in each step. In step 1, the first nearest neighbor of ps in 3 categories is computed as p1, p5 and p7.

3 candidate routes are inserted into H and the distance of the shortest route in H is shown in the

first place of the heap. In step 2, the shortest candidate route τc=(ps, p5 : 2) is de-heaped from H.

Since τc has visited one category only, two operations are performed. For the unvisited categories,

NN(p5, C1) and NN(p5, C3) are used to find the first nearest neighbor for p5 in categories C1 and

C3. p1 and p7 is return as the query results. Hence, two candidate paths (ps, p5, p1: 14), (ps,

p5, p7: 15) are inserted into H. For category C2 that has been visited, we use NextNN(ps, C2) to

find the second nearest neighbor of ps in C2, which in this case is p4 (the first nearest neighbor

p5 has been found, hence, the next nearest neighbor is the second nearest neighbor). By replacing

p5 with p4, (ps, p4: 4) is inserted into H. Similarly, this process is repeated until the shortest

candidate route in H has visited 3 categories and the last point is pt. The algorithm returns this

path as the query result. The only requirement for Algorithm 7 is to efficiently perform NN(pi,

Ci) and NextNN(pi, Ci). Hence, we are going to discuss these two functions in more detail.

�
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Step Heap Contents
1 (ps, p5: 2), (ps, p1: 8), (ps, p7: 12)

2
(ps, p4: 4), (ps, p1: 8), (ps, p7: 12), (ps,
p5, p1: 14), (ps, p5, p7: 15)

3
(ps, p7: 8), (ps, p4, p1: 11), (ps, p7: 12),
(ps, p5, p1: 14), (ps, p5, p7: 15), (ps, p4,
p7: 16), (ps, p6: 20)

4

(ps, p4, p1: 11), (ps, p7, p3: 11), (ps, p7:
12), (ps, p5, p1: 14), (ps, p5, p7: 15), (ps,
p4, p7: 16), (ps, p7, p4: 19), (ps, p6: 20),
(ps, p8: 24)

5

(ps, p7, p3: 11), (ps, p7: 12), (ps, p5, p1:
14), (ps, p4, p2: 14), (ps, p5, p7: 15), (ps,
p4, p7: 16), (ps, p4, p1, p7: 18), (ps, p7,
p4: 19), (ps, p6: 20), (ps, p8: 24)

... ...
Final (ps, p4, p1, p7, pt: 32), ...

Table 4.1: Query processing for the example in Fig. 4.1

Function NN(pi,Ci). Given an indoor point pi and a category Ci, NN(pi,Ci) computes the

first nearest neighbor of pi among the points in category Ci. We use a best-first search algorithm,

widely used on various branch and bound structures, such as R-tree, Quad-tree etc. Different from

that in [75], the first nearest neighbor search algorithm is a simplified one. Note that in VIP-Tree

with categories, for any point pi ∈ V , the distances between pi and the access doors AD(Ni) (Ni

is the ancestor node of Leaf(pi)) are pre-computed and stored in the distance matrices in Ni.

However, in [75], only the distances between every object and access doors of the leaf node are

pre-computed. Therefore, NN(pi, Ci) is more efficient. Before we discuss the detailed algorithm

of NN(pi, Ci), we propose an algorithm to compute the distance between any point pi (pi ∈ V) and

any non-ancestor node Ni of pi because the distance between pi and any ancestor node is zero.

Algorithm 8: getDistance(pi, Ni)
Input : pi: an indoor point, Ni: a tree node
Output : dist(pi,Ni) : shortest distance between pi and Ni

1 Initialize NLCA to be the lowest common ancestor node between Leaf(pi) and Ni;
2 Nl ←− the child node of NLCA and the ancestor node of Leaf(pi);
3 if NLCA is the parent node of Ni then
4 Nr ←− Ni;

5 else
6 Nr ←− the child node of NLCA and the ancestor node of Ni;

7 dist(pi,Ni)=mindi∈AD(Nl),d j∈AD(Nr),dk∈AD(Ni)dist(pi, di) + dist(di, d j) + dist(d j, jk);
8 return dist(pi,Ni);

Algorithm 8 illustrates the distance computation between any point pi ∈ V and any non-root

node Ni. Firstly, it locates the lowest common ancestor node NLCA between Leaf(pi) and Ni. In

lines 2 and 3, we find the child nodes of NLCA. Meanwhile, for these two child nodes, they have
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to be the ancestor nodes for Leaf(pi) and Ni, respectively. The shortest distance computation

contains 3 parts: distances between pi and AD(Nl), distances between AD(Nl) and AD(Nr), and

distances between AD(Nr) and Ni.

EXAMPLE 8 : Considering the example of Fig. 4.1 and Fig. 4.3 and assuming that we want to

compute the distance between p1 and N4. In Fig. 4.4, the arrows depict the actual distances that

are pre-computed and stored in the distance matrices, while the dashed lines indicate that two

doors are the same door. The lowest common ancestor node is N7. According to Algorithm 8, the

next step is to find the child nodes of N7 that contains Leaf(pi) and Ni. Consequently, Nl and Nr

are N5 and N6 respectively. It clearly shows that in Fig. 4.4, dist(pi, di) is the distance between p1

and every access doors of N5 which are d1, d7 and d10. dist(di, d j) is the distance between every

access door in N5 and every access door in N6. The last part dist(d j, dk) is the distance between

the access doors in N5 and N4.
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Figure 4.4: getDistance(pi, Ni) computation

�

Algorithm 9 describes how to find the first nearest neighbor given an indoor point pi and a

category Ci. Firstly, a minimum heap is initialized with the root node of the tree and the distance

from pi to root is zero. In each iteration, one node is de-heaped from H. If the distance between

pi and N is larger than dk (the current distance from pi to the first nearest neighbor), p j is returned

as the result (lines 5-6). Otherwise, if N is a non-leaf node (lines 7-12), according to their distance

to pi, we perform two operations. If the distance equals to 0, it means that this node contains pi.
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Algorithm 9: NN(pi,Ci)
Input : pi: an indoor point, Ci: a category
Output : p j: nearest neighbor of pi, p j ∈ Ci

1 dk=∞; /* dk is the distance to current first nearest neighbor */;
2 Initialize a Minheap H with the root of the node;
3 while H is not empty do
4 de-heap N from H;
5 if dist(pi,N) ≥ dk then
6 return p j;

7 if N is a non-leaf node then
8 if getDistance(pi,N) = 0 then
9 for each child node N′ of N do

10 insert N′ into H;

11 else
12 use pk ∈ Ci in N to update p j and dk;

13 else
14 use pk ∈ Ci in N to update p j and dk;

For its child nodes, we insert them into H with their distances to pi. For the non-leaf node with

a non-zero distance, we do not need to expand to its child nodes anymore. For pk in the sub-tree

of N, the distances between pk and every access door of N is pre-computed, hence, we can easily

update the distances between pi and pk. If N is a leaf node, then update p j and dk (lines 13-14).

Since NextNN(p j,Ci) uses the status of NN(p j,Ci), we need to store H and the nearest neighbors

found so far.

Function NextNN(pi,Ci) Given an indoor point pi and a category Ci, NextNN(pi,Ci) com-

putes the next nearest neighbor in category Ci. Based on the saved status, we can perform a next

nearest neighbor search.

Algorithm 10: NextNN(pi,Ci)
Input : pi: an indoor point, Ci: a category, H: a heap
Output : p j: next nearest neighbor of pi, p j ∈ Ci

1 dk=∞; /* dk is the distance to current nearest neighbor */;
2 while H is not empty do
3 de-heap N from H;
4 if dist(pi,N) ≥ dk then
5 return p j;

6 if N is a non-leaf node then
7 if getDistance(pi,N) = 0 then
8 for each child node N′ of N do
9 insert N′ into H;

10 else
11 use pk ∈ Ci in N to update p j and dk;

12 else
13 use pk ∈ Ci in N to update p j and dk;
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Algorithm 10 illustrates the details. Note that, different from OSR queries that have a category

sequence, no sequence is given in iTPQ. In an OSR query, assuming that fifth nearest neighbor of

pi is found, when pi comes up again, it must be finding the sixth nearest neighbor because there

is only one route that ends up with pi and its fifth nearest neighbor. However, for iTPQ, there

are several possible candidate routes that can end with pi and its ith (1 < i < 5) nearest neighbor

as no category sequence is given. As a result, for the saved status that finds the fourth nearest

neighbor, one candidate route tries to find the third nearest neighbor. Therefore, we have to save

the current i nearest neighbors having been found so far. If the next nearest neighbor is computed,

the NextNN(pi, Ni) search does not need to be performed.

4.5.3 Proof of Correctness

In this section, we prove that Algorithm 7 correctly answers iTPQ. This means that Algorithm

7 processes all the candidate routes. Let C={C1, C2, ..., Cm} be the category set that an iTPQ is

going to visit. The start and end points are denoted as ps and pt. Let Csub={C1, C2, ..., Ck} (k < m)

be a subset of C. We use τc to refer to the candidate route that satisfy Csub, τ is an optimal route

that satisfies C. Hence, we get c(τc)≤c(τ).

Algorithm 7 generates and examines all the possible candidate routes that have a shorter dis-

tance compared to the optimal route τ. Note that H is a minimum heap, therefore, in each iteration,

the candidate route with the shortest distance is de-heaped. If the length of the de-heaped candi-

date route equals to m+2, Algorithm 7 stops as the other candidates in H will not generate a shorter

route. Therefore, the candidate routes that are left in H after the algorithm stops will not be used.

We prove that the candidate routes de-heaped from H before τ contain all the possible routes that

have a shorter distance than τ. Lemma 4.5.1 shows the details.

Lemma 4.5.1. For a given iTPQ, Algorithm 7 examines all the candidate routes that have a

shorter distance than the optimal route τ.

Proof. The proof is done by induction on k, the size of the candidate route τc. Firstly, for k=1, we

show that it examines all the candidate routes that start from ps and visit only one category. During

the initialization phase (lines 2-4), the first nearest neighbor of ps in each category is computed.

Take C1 as an example, the first nearest neighbor is p1. There are two cases for τc={ps, p1}. For

the first one, if c(τc)≥c(τ), this means that the candidate routes generated by τc will never have

a shorter distance than c(τ), because of the following two reasons. If p1 is replaced by the next
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nearest neighbor of ps (lines 22-24), the route distance is larger than τc. On the other hand, if τc

appends any point belonging to Ci (Ci,C1, Ci ∈ C). The length of the new routes exceeds the size

which equals to 1 in this case. For the second case, if c(τc)<c(τ). Similarly, there are two ways to

generate candidate paths according to τc. For appending points in different categories, it exceeds

the maximum size, hence, we are not going to discuss. When replacing the last point in τc with

the next nearest neighbor of ps (lines 22-24), if the generated route has a shorter distance than

c(τ), we keep expanding to the nearest neighbor until the distance of generated route is longer

than c(τ) or all points in C1 have been expanded. Once we found the generate candidate has a

longer distance than c(τ), for the rest of the next nearest neighbors, we do not need to consider

since our condition is only applicable for candidates routes that are shorter than c(τ).

Now, we are going to examine the candidate routes that satisfy Csub={C1, C2, ..., Ck} (k < m).

Let Csub1={C1, C2, ..., Ck, Ck+1} (k + 1 < m) be a subset of C. The first k categories in both

Csub and Csub1 are the same. We are going to prove that Algorithm 7 examines all the candidate

routes satisfying Csub1 generated by the candidate routes satisfying Csub. τc={p1, p2, ..., pk} is

the current candidate route de-heaped from H, for every unvisited category, we use NN(pi, Ci) to

find the first nearest neighbor of pk (lines 19-21). After appending the first nearest neighbor to

τc, if the current distance is shorter than τ, it means that this candidate route will be de-heaped

before τ from H. Meanwhile, NextNN(pi, Ci) is utilized to find the nearest nearest neighbor of pk

in the same category until the generate candidate path is longer than τ. This ensures that for each

candidate routes satisfying Csub, we are able to generate all the possible candidate routes satisfying

Csub1 and having a shorter distance than τ. �

4.6 Pruning in The Pre-processing Phase

Our algorithm features two levels of pruning: (i) at the pre-processing phase, and (ii) at the query

processing phase. These pruning techniques are effective to prune candidate routes. In this section,

we are going to discuss three pruning methods in the pre-processing phase.

4.6.1 Partition-based Pruning

Indoor partitions are quite common in an indoor space and indoor points are located within parti-

tions. As a result, one indoor partition may contain several indoor points belonging to one or more

categories. For the indoor points in the same category and located in the same partition, Lemma
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4.6.1 is used to prune part of the edges between these indoor points and the indoor points outside

the partition.

Lemma 4.6.1. Let V1={p1, p2, ..., pi} be a set of indoor points located in the same indoor partition

Pi, ∀pi ∈ V1, π(pi) is the same. D={d1, d2, ..., di} is a set of doors in Pi. For any indoor point

p j located outside Pi, for a candidate route τ={ps,...p j,pk,pn,...,pt} (p j and pn are outside Pi), if

∃pm ∈ V1 − {pk}, ∀d j ∈ D, dist(pm, d j) < dist(pk, d j), τ is pruned.

Proof. Consider a route τ={ps,...p j,pk,pn,...,pt} and an alternative route τa={ps,...p j,pm,pn,...,pt},

where pm ∈ V1 − pk. c(τ)-c(τa)=dist(p j, pk) + dist(pk, pn) − dist(p j, pm) − dist(pm, pn). To prove

c(τ)-c(τa)>0, we need to prove that dist(p j, pk) + dist(pk, pn) > dist(p j, pm) + dist(pm, pn). We

compute two parts of the equation separately (the left and right parts are represented by ∆1 and ∆2

respectively):

∆1=[dist(p j, d jk) + dist(d jk, pk)]+[dist(pk, dkn) + dist(dkn, pn)]

∆2=[dist(p j, d jm) + dist(d jm, pm)]+[dist(pm, dmn) + dist(dmn, pn)]

Let di j be the door in Pi in which the shortest path between pi and p j has to pass through.

Based on the condition that ∃pm ∈ V1 − {pk}, ∀d j ∈ D, dist(pm, d j) < dist(pk, d j), we know that

dist(p j, d jk) + dist(d jk, pk) >dist(p j, d jk) + dist(d jk, pm). As the shortest path between p j and pm

passes through d jm, dist(p j, d jk) + dist(d jk, pm) >dist(p j, d jm) + dist(d jm, pm). According to the

above two equations, we can conclude that dist(p j, d jk)+dist(d jk, pk)>dist(p j, dmn)+dist(dmn, pm).

For the same reason, dist(pk, dkn) + dist(dkn, pn)>dist(pm, dmn) + dist(dmn, pn). Thus, we are able

to prove that ∆1>∆2. This means that for pk to exist in a route τ, c(τ) can be reduced by replacing

pm with pk. Hence, τ is pruned, since it will never be the shortest route. �

EXAMPLE 9 : Consider the example in Fig. 4.5, where the indoor partition P4 has two doors, d5

and d6. For d5, the nearest indoor points inside P4 is p1, while for d6, p1 is the nearest one as well.

Both p1 and p2 belong to category C1. In partition P1, there are two points p4 and p5 belonging

to C2, while in partition P5, one point p7 is located belonging to C3. According to Lemma 4.6.1,

for a given route τ={ps, ..., p4, p2, p7, ...pt}, it is pruned because there exists p1 that is located in

the same partition as p2 and the distances from p1 to every door in P4 is shorter than that for p2.

�

Lemma 4.6.2. Let V1={p1, p2, ..., pi} be a set of indoor points located in partition Pi, ∀pi ∈ V1,

and π(pi) is the same. For pi ∈ V1 and p j ∈ V1, a perpendicular bisection is drawn that divided Pi
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Figure 4.5: π(p1)=π(p2); π(p1),π(p4) , π(p7), π(p4)=π(p5)

into two areas. For a candidate route τ={ps,...pm,pi,pn,...,pt} (pm and pn are inside Pi), if both

pm and pn are in the same half space with p j, τ is pruned 2.

Proof. Consider a route τ={ps,...pm,pi,pn,...,pt} and an alternative route τa={ps,...pm,p j,pn,...,pt},

where π(pi) = π(p j). A perpendicular bisector is drawn for pi and p j. According to the properties

of a perpendicular bisector, for any point pa located in the same area with pi, distance between

pi and pa is shorter than that between p j and pa, and vice versa. Hence, ∀pk in Pi which share

the same area with pi, they are closer to pi than p j. As we want to prove that c(π)-c(πa) < 0,

we compute [dist(pm, pi) − dist(pm, p j)] + [dist(pi, pn) − dist(p j, pn)] < 0. Note that pm/pn is in

partition Pi and both pm and pn are in the same half space with p j. According to the property

of perpendicular lines, dist(pi, pm/pn) < dist(p j, pm/pn). Thus, c(π)-c(πa) < 0 is proven. This

means τ will never be the shortest route, hence, τ is pruned. �

EXAMPLE 10 : Consider the example in Fig. 4.6, p1 and p2 are two indoor points in the same

category located in partition P4. A perpendicular bisector is drawn for these two points denoted as

the dashed line. Two indoor points p10 and p11 are located in P4 as well and π(p1),π(p10),π(p11).

Let τ={ps,...p10,p2,p11,...,pt} and τc={ps,...p10,p1,p11,...,pt}. Note that p10 and p11 are in the

same half space with p1, hence, c(τ)>c(τc). This means τ cannot be the shortest route anymore,

therefore, τ is pruned. �

2Perpendicular bisector is just for an illustration purpose. In practice, we will compute the actual distances to see
whether pm/pn is closer to pi or p j
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Figure 4.6: π(p1)=π(p2),π(p10),π(p11)

4.6.2 Node-based Pruning

VIP-Tree progressively merges indoor partitions [75]. As mentioned before, a node in VIP-

Tree represents a partition that combines several indoor partitions and considers access doors as

the doors of the partition, hence, for each node in the VIP-Tree, it is easy to adapt the pruning

techniques that discussed in Section 4.6.1.

Lemma 4.6.3. Given a tree node Ni in the VIP-Tree and AD(Ni) denotes the access doors of Ni.

Let NPi be the partition representing the combined partitions in Ni and V is a set of indoor points

inside NPi, ∀pi ∈ V , π(pi) is the same. For a candidate route τ={ps,...p j,pi,pn,...,pt} (p j and pn

are outside Ni), if ∃p j ∈ V1 − {pi}, ∀d j ∈ AD(Ni), dist(pm, d j) < dist(pk, d j), τ is pruned.

Proof. Since the proof for Lemma 4.6.3 is similar to that for Lemma 4.6.1, we omit the details. �

4.6.3 Applying Pruning Techniques in VIP-Tree

Algorithm 11 shows how to apply Lemmas 4.6.1, 4.6.2 and 4.6.3 on VIP-Tree. Use Lemma 4.6.1

as an example. If one indoor point p j can be found in the distance matrix of Leaf(p j) between

pi and AD(Leaf(p j)). This means that the distances between any door in the partition and pi

is longer than that for p j. Hence, according to Lemma 4.6.1, once a path contains pi, it will be

pruned. Note that for updating VIP-Tree based on Lemma 4.6.2, although it uses multiple loops,

it is still efficient since the number of indoor points located in the same partition will not be very

large (In our experiments, we have shown that in reality, the number of indoor points in the same
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Algorithm 11: Apply Pruning Techniques in VIP-Tree
1 for every indoor partition Pi do
2 for every indoor point pi inside Pi do
3 if ∀di ∈ Pi, ∃p j ∈ Pi dist(p j, di) < dist(pi, di) then
4 add p j between pi and d j(d j ∈ AD(Leaf(pi))) to distance matrix of Leaf(pi);

/* Lemma 4.6.1 */;

5 for every indoor point p j inside Pi (pi , pk, π(pi) = π(p j)) do
6 if ∃pm, pn, π(pi) , π(pm) , π(pn), dist(pi, pm/pn) < dist(p j, pm/pn) then
7 add pi between pm/pn and AD(Ni) to distance matrix of Leaf(pi); /* Lemma

4.6.2 */;

8 for every node Ni in Combined VIP-Tree do
9 for every indoor point pi inside Ni do

10 if ∀di ∈ AD(Ni), ∃p j ∈ Ni dist(p j, di) < dist(pi, di) then
11 add p j between pi and d j(d j ∈ AD(Ni)) to distance matrix of Ni; /* Lemma 4.6.3 */;

room are very small, therefore, computational cost here is very small). To differentiate the stored

indoor points in the distance matrix, we use different three different tags for three lemmas.

4.7 Pruning in The Query Processing Phase

In this section, we propose three techniques to efficiently prune the candidate routes during the

query processing phase.

4.7.1 3-Candidate Pruning

Given a route τ = {ps, ..., pm−1, pm}(|τ| ≥ 3), any three sequenced points are chosen to form a

sub-route τa = {pi, p j, pk} where π(pi) , π(p j) , π(pk). If we can find a point pm (π(pm) = π(p j))

to form a route τb = {pi, pm, pk} such that c(τa)≥c(τb), hence, τa will never be shorter than τb and

is pruned.

Lemma 4.7.1. Given part of a candidate route τ = {pi, p j, pk}, If ∃di ∈ N(N is a node of VIP-

Tree), ∃pm(π(pm) = π(p j), pm is in N), dist(pi, di) + dist(pk, di) + 2dist(pm, di) ≤c(τ), τ is not an

optimal route.

Proof. Let τa = {pi, pm, pk}, to prove τ is not an optimal route, we have to prove c(τ)≥c(τa). c(τa)

is computed as dist(pi, pm)+dist(pm, pk). As we know dist(pi, pm) ≤ dist(pi, di)+dist(di, pm) and

dist(pm, pk) ≤ dist(pm, di)+dist(di, pk), therefore, it is easy to conclude dist(pi, pm)+dist(pm, pk)≤dist(pi, di)+

dist(pk, di) + 2dist(pm, di). Thus, c(τa)≤ dist(pi, pm) + dist(pm, pk) ≤c(τ). We can conclude that

τ is not an optimal route.

�
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Choosing N and pm. In Lemma 4.7.1, N/pm can be any node/point in the VIP-Tree with

categories. Note that our main goal is to find N and pm that minimize dist(pi, di) + dist(pk, di) +

2dist(p, di). Naturally, if pm is close enough to the shortest path between pi and pk, the cost to

add pm between pi and pk may be minimized. Thus, in the updated VIP-Tree, N is chosen to be

the nodes on the shortest path between pi and pk. The distance between Ni and N j are computed

as min∀di∈AD(Ni),∀d j∈AD(N j)dist(di, d j). Note that in the updated VIP-Tree, we store the distances

between every point pi and AD(Ni)(Ni is an ancestor node of Leaf(pi)). Hence, dist(p, di) can

be retrieved in O(1) time. If N is chosen to be not the lowest common ancestor node between

pi and pk but a node on the shortest path between pi and p j, to compute dist(pi, di)/dist(pk, di),

a door-to-point shortest distance query has to be performed (this is similar to a point-to-point

shortest distance query) while another distance can be retrieved in O(1). On the other hand, for the

nodes on the shortest path, the lowest common ancestor node contains the most number of points,

it is likely to find a point pm that satisfies Lemma 4.7.1. Therefore, N is chosen to be the lowest

common ancestor node.

Since we aim to minimize the distance, after choosing the node N, di is chosen to the one that

minimize dist(pi, di) + dist(di, pk) Note that in the VIP-Tree with categories, for any access door

di in a node Ni, any point pi in Ni is sorted according to dist(di, pi). Therefore, pm is chosen to

be the nearest point to di. Algorithm 12 shows all the details. Note that, if the current p j is the

optimal one, Algorithm 12 returns p j.

Algorithm 12: 3-candidate pruning
Input : τ = {pi, p j, pk}, Ni: a node
Output : pm: a point better than p j

1 Initialize a heap H = ∅;
2 d =c(τ);
3 for every di ∈ AD(Ni) do
4 insert dist(pi, di) + dist(di, pk) into H;

5 while H is not empty do
6 de-heap dist(pi, di) + dist(di, pk);
7 pi ←− nearest point to di in NLCA;
8 if dist(pi, di) + dist(di, pk) ≥ d then
9 return pm;

10 update d and pm;

In query processing phase, if for any 3-candidate sub-route τ={pi, p j, pk}, we can quickly

retrieve the optimal point pm (π(pm) = π(p j)). For any route {pi, p j, pk} that starts from pi and

ends at pk, it is pruned if p j , pm. Let ρ be the number of points in category π(p j), for ρ

routes that starts from pi and ends at pk, only one route is a candidate route. Considering all τc

(|τc| = m + 2) that contains τ (τ does not contain pm), they are pruned. Hence, it prunes a large
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number of possible route. However, find the optimal points pm for any two points pi and pk is time

consuming. Thus, during the query processing phase, we store the current optimal point for two

points in different categories and keep updating it. According to this, any 3-candidate routes that

have a longer distance is pruned.

4.7.2 End Point Pruning

Let three candidate routes τa={ps, p1, p2, p3, pe}, τb={ps, p2, p1, p3, p4, pe}, τc={ps, p3, p1, p2, p4, p5, pe},

these candidate routes are ending with the same point pe. During the query processing, it is quite

common to have a large number of candidate routes. Note that the number of points is m · ρ, and

it is relatively small compared to the number of candidate routes.

Lemma 4.7.2. Let two candidate routes τa= {ps, p1, p2, ..., p j, pe} and τb={ps, p1, p2, ..., pk, pe},

|τa| ≤ |τb|. Ra ⊆ Rb (Ra = ∪
j
i=1π(pi), Rb = ∪k

i=1π(pi))). If c(τa)≥c(τb), τa is pruned.

Proof. To prune τa, we have to prove that for any candidate route τc (|τc|=m + 2), a candidate τd

(|τd |) can be found to be shorter than τc. Let τc = τa + {pe+1, pe+2, ..., pm, pt} and Rc = C − Ra.

Accordingly, τd = τb + {pe+1, pe+2, ..., pm, pt} and Rc = C − Rb. Note that Ra ⊆ Rb, we can

get Rd ⊆ Rc. Since τd add the same points in the same order with τc and c(τa)≥c(τb), hence,

c(τc)≥c(τd). On the other hand, |τd | > m, we delete the points in {pe+1, pe+2, ..., pm, pt} that has

the same category with the points in τb and get a candidate route τd′ (|τd′ | = m + 2). We can get

c(τd)≥c(τd′) since deleting a point in the route result is a shorter route. Finally, we can conclude

that c(τc)≥c(τd′). Hence, for any τc, there exists τd′ that has a shorter distance.

�

EXAMPLE 11 : Take τa and τb as an example. τb visits one more category than τa which is p4.

Assuming that c(τa)≥c(τb) and m=6, let τc={ps, p1, p2, p3, pe, p4, p5, pt} and τd={ps, p2, p1, p3,

p4, pe, p4, p5, pt}. We can get c(τc)≥c(τd). After deleting p4 in τd, τd′={ps, p2, p1, p3, p4, pe, p5, pt}.

Therefore, we can get c(τc)≥c(τd′) that means τa is pruned. �

4.7.3 Lower Bound for Candidate Route

For any candidate route τc that has not visited all categories, if we can predict the route distance

from the last point of τc (pl) to pt by visiting the un-visited categories, it is very effective to prune

a candidate route in an early stage. In this section, we use c(τc)+dist(pl, pt) as the lower bound of
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τc. Note that for one point pi, it may appear a lot of times at the end of τc, even though computing

a single dist(pl, pt) is efficient, we pre-compute dist(pi, pt) (pi ∈ V).

4.7.4 Upper Bound for Optimal Route

In this section, we discuss two fast approximation methods to quickly compute the candidate

routes with length m + 2.

Minimum Distance Algorithm [59]. This is a fast approximation algorithm proposed in [59].

For each category Ci, it computes the point pi (pi ∈ Ci) that minimises the route distance of

{ps, pi, pt}. After retrieving one point from each category, the route starting from ps visits the

retrieved points in a nearest neighbor order. Note that the distances between pi (pi ∈ V) and pt

are pre-computed and we do the same as for ps. Therefore, retrieving a candidate route using

Minimum Distance Algorithm can be computed efficiently.

Minimum Route Expansion. In Section 4.7.1, we mentioned that if one point pi is closer

enough to the shortest path from ps to pt, the cost to add this point to the shortest path is relatively

small. According to this intuition, we proposed a Minimum Route Expansion algorithm to quickly

retrieve a candidate path with length m + 2. Let sp={ps, d1, d2, ..., di, pt} (how to compute the

shortest path can be found in [75]) be the shortest path between ps and pt. For sp, only access

doors on the shortest path is stored because the distances between pi and ADN (N is any ancestor

node of Leaf(pi)) can be retrieved in O(1) time by looking up the distance matrix of N.

Algorithm 13: Minimum Route Expansion
Input : sp: shortest path from ps to pt, VIP-Tree
Output : distance: upper bound for optimal route

1 Initialize distance to dist(ps, pt);
2 for each category Ci do
3 Initialize dc=∞;
4 for each access door di in sp do
5 N ←− node contains di;
6 d = minp j∈N,π(p j)=Ci dist(di, p j);
7 if d < dc then
8 dc = d;

9 distance = distance + 2dc;

10 return distance;

Algorithm 13 shows the details on how to get the upper bound. Note that in line 5, N is not

always the leaf node, it is the actual node that the shortest path passes through. After comparing

the upper bounds computed by Minimum Distance Algorithm and Minimum Route Expansion, the

smaller upper bound is used to prune the candidate routes. Meanwhile, during the query processing
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phase, once a candidate route with m categories has been found, we will use the distance of this

route to update the upper bound.

4.8 Performance Evaluation

4.8.1 Experimental Settings

Indoor Space. We created three real datasets: Melbourne Central [6], Menzies building [9] and

Clayton Campus [7]. Melbourne Central is a major shopping centre in Melbourne and consists

of 297 rooms spread over 7 levels (including ground and lower ground levels). Menzies building

is the tallest building at Clayton campus of Monash University consisting of 14 levels (including

basement and ground floor) and 1280 rooms. Fig. 4.7(a) and 4.7(b) show the floor plans of the first

floor in these two buildings. We use the application in [76] to visualize these two floor plans. The

Clayton dataset corresponds to 71 buildings (including multilevel car parks) in Clayton campus

of Monash University. We obtained the floor plans of all buildings and manually converted them

into machine readable indoor venues. Coordinates of the buildings are obtained by using Open-

StreetMap and the sizes of indoor partitions (e.g. rooms, hallways) are then determined. A three

dimensional coordinate system is used where the first two represent x and y coordinates of indoor

entities (e.g. rooms, doors) and the third represents the floor number. For the Clayton dataset, a

D2D graph also contains edges between the entry/exit doors of different buildings, whereas the

weight corresponds to the outdoor distance between the doors.

(a) Menzies building (b) Melbourne Central

Figure 4.7: Floor plans for two buildings

To evaluate the algorithms on even larger data sets, we extend Melbourne Central (denoted as

MC), Menzies building (denoted as Men) and Clayton (denoted as CL) by replication. Table 4.2

gives the details of the real indoor venues and the larger replicated venues. For example, MC-

2 indicates that a replica of Melbourne Central is placed on top of the original building. CL-2

denotes that each building in the Clayton campus has been replicated to increase its size by two.
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Datasets Description # doors # rooms # edges

MC
Melbourne
Central

299 297 8,466

MC-2 2 times MC 600 597 16,933
Men Menzies building 1,368 1,280 56,009
Men-2 2 times Men 2722 2,560 112,062
CL Clayton Campus 41,392 41,100 6,700,272
CL-2 2 times CL 83,138 82,540 13,400,884

Table 4.2: Indoor venues used in experiments

Competitors. All algorithms are implemented in C++ on a PC with 8GB RAM and Intel Core

I5 CPU running 64-bit Ubuntu. We compare our proposed algorithm (VNE) with the following

competitors.

Dijkstra-based Expansion (DBE). A improved naive algorithm proposed in Section 4.4.

PNE [77]+G-tree [93]. PNE is used to solve OSR queries in spatial road networks. We

revised it to process iTPQ as well. For the nearest neighbor search, the state-of-the-art method

G-tree in spatial road network is employed.

PNE [77]+VIP-Tree [75]. Different from the previous one, PNE is implemented with the

state-of-the-art method VIP-Tree in indoor space.

Queries and Indoor Points. To evaluate the performance of iTPQ, we randomly generated

50 pairs of start and end points. For the indoor points, we use both synthetic and real data. For

the synthetic ones, we set the number of categories to 2, 3, 4, 5, 6, while for the number of indoor

points in each category is set to 10, 20, 30, 40, 50, 60. The bold numbers are the default values. As

discussed before, in an indoor space, the number of indoor points in a category is not large, thus, in

our synthetic setting, maximum number of indoor points is set to be 60. On the other hand, when

a user issues a iTPQ, the number of categories will not be a large value either, hence, we set the

maximum number of categories to 6 – enough for indoor settings. To make the synthetic indoor

points closer to real world scenarios, we vary the number of indoor points in each category. In

each category, the numbers of indoor points are 5, 100, 55, 30, 75 and 45 respectively. For the real

indoor points, we investigated the Monash University Clayton Campus and recorded the indoor

points of 4 categories: printing rooms, restaurants, free study spaces and vending machines. The

numbers of indoor points in these 4 categories are 65, 21, 28, 16.
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4.8.2 Indexing Cost

Construction time. Fig. 4.8(a) shows the construction cost for each method to build the indices

according to the D2D graph and other information, such as rooms and doors. For DBE, as it is an

expansion method, the distances between any two indoor points are computed by VIP-Tree since

VIP-Tree is most efficient to perform indoor point-to-point shortest distance queries. Meanwhile,

PNE+VIP-Tree utilizes VIP-Tree to compute the kNN queries. Therefore, both of these two meth-

ods have to construct VIP-Tree before the actual query processing. G-tree is constructed based

on the D2D graph before it can be used to perform kNN queries used in PNE; Hence, the index

construction time of PNE+G-tree is the time to build G-tree index. Our own method VNE has

to build the VIP-Tree at first. After that, based on the indoor points and the above three lemmas

(Lemma 4.6.1, 4.6.2 and 4.6.3), VIP-Tree will be updated to include the category information.

Therefore, it takes more time compared to the time to build the original VIP-Tree. However,

adding the category information to VIP-Tree after the VIP-Tree is constructed does not increase

the time significantly. Thus, our proposed method takes similar construction times to those of the

other methods. We can see that even for the largest datasets (CL-2) that consists of more than

83,000 doors and more than 13 million edges in the D2D graph, the construction time is less than

90 seconds, which is considered very efficient.

Indexing size. As discussed in previous section, both PNE+VIP-Tree and DBE utilize VIP-

Tree, therefore, the indexing sizes of these two method are actually the same, which are the index-

ing size of the VIP-Tree. For PNE+G-Tree, it’s indexing size is the same as G-tree. The indexing

size of our own method is slightly larger than that for DBE and PNE+VIP-Tree as we add some

extra information in the VIP-Tree. However, the extra information does not take a lot of storage

cost and it is still better than G-tree. Fig. 4.8(b) shows the indexing sizes.

4.8.3 Query Performance

In this section, we compare the query processing time among the four methods by varying the

number of indoor points, number of categories and datasets. We also tested these four methods

using the real indoor points we collected at Monash University Clayton Campus.

Varying number of indoor points. The number of categories is set to be 3, and the dataset

Men-2 is used. Fig. 4.9(a) shows the query processing time when the number of indoor points in

each category changes from 10 to 60. DBE performs very badly as expected. When the number

of indoor points in each category increases to 30, it takes more than 16 minutes to finish, which
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is far from acceptable. PNE+VIP-Tree has the closest query time compared to our method VNE.

It is able to finish the iTPQ is slightly more than 100 seconds when the number of indoor points

increases to 60. PNE+G-tree is slower than PNE+VIP-Tree which is expected because we have

proven that VIP-Tree is much more efficient than G-tree, in terms of indoor kNN query processing

as discussed in our previous paper [75]. Our own method, VNE, performs very well and it takes

approximate 1 second to complete the iITPQ, even though the number of indoors points increases

to 60. Meanwhile, the processing time is quite stable with the increasing number of indoor points

in each category. This is because no matter how many indoor points each category has, the 3-

candidate pruning performs very well to find the optimal 3-candidate sub-routes. For the end

point pruning, it ensures that the candidate routes are pruned, when the end points are the same

and the visited categories are the subsets of the category set representing the longest route.

Varying number of categories. We set the number of indoor points in each category to 30, and

Men-2 is used as the dataset. In Fig. 4.9(b), number of categories are ranging from 2 to 6. When

there are only 2 categories, the three methods except our method finish in several seconds, while

it only takes around 0.2 second for our method. This proves that the 3-candidate pruning and the

end point pruning are effective. With the increasing number of categories, the other three methods

become very slow because 1 category increased results in (m+1)ρ (m is the number of categories

before increasing by 1) times the previous number of possible candidate routes. However, for our

method, since we employ several steps of pruning processes, the increasing number of possible

candidate routes does not increases significantly. Therefore, for 6 categories, the processing time

for our method performs far better than the other competitors.

Varying number of indoor points and categories. The number of indoor points are 5, 100,

55, 30, 75 and 45 respectively. For the ith category, the number of indoor points in this category

is the ith number of indoor points. For example, 4th category has 30 points. The result is shown

in Fig. 4.9(c). Our proposed algorithm is quite stable even though the numbers of indoor points in

each category have a big difference. The processing time is longer than that in Fig. 4.9(b) since

the average number of indoor points in Fig. 4.9(c) is around 50 while it is 30 in Fig. 4.9(b).

Varying datasets. We evaluate the four methods using the six datasets, while setting the

number of indoor points to 30 and number of categories in 3. We exclude DBE in Fig. 4.9(d) since

it always performs very badly. It clearly shows that changing of the datasets does not affect the

query processing time dramatically. This is because the processing time for point-to-point shortest



4.8. PERFORMANCE EVALUATION 93

MC CL
# of
points PT1 PT2 PT3 PT4 PT5 PT6 PT7 ALL PT1 PT2 PT3 PT4 PT5 PT6 PT7 ALL

10 0.5 0.3 21.2 49.8 63.1 20.2 9.1 86.3 0 0 23.1 49.4 64.3 19.3 8.7 87.6
20 1 0.3 22.9 49.1 64.3 19.1 8.2 87.1 0 0 24.9 49.7 64.8 19.8 8.2 89.1
30 1.5 0.3 26.1 50.8 63.5 18.8 7.7 88.3 0 0 27.2 50.1 65.2 19.8 8.0 90.6
40 1.8 0.3 28.3 50.1 65.7 19.2 7.2 89.8 0.1 0 29.5 50.3 65.7 19.2 7.5 91.9
50 2.6 0.3 33.7 51.2 65.1 20.3 6.5 92.5 0.1 0 34.4 51.4 66.3 20.5 7.1 93.6
60 3.3 0.4 37.2 51.7 66.4 21.1 6.4 94.8 0.1 0 37.9 52.3 67.4 21.3 6.8 95.8

Table 4.3: Pruning percentage for MC and CL varying # of points

distance and kNN queries using G-tree/VIP-Tree is quite stable for different datasets. However,

our method is around 1 order of magnitude compared with the other two PNE based methods.

Real indoor points. We use CL dataset in this experiment. The number of indoor points in

the four categories is mentioned in Section 4.8.1. For 2 categories, printing rooms and restaurant.

Free study space is added to form 3 categories. All the 4 categories are used at the end. Fig. 4.10

shows the query processing time. We get the similar result here while using the real indoor points.

This proves that in both synthetic and real settings, our algorithm performs very well and is more

than 1 order of magnitude compared with the other three methods.
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Figure 4.10: Real indoor points

4.8.4 Pruning Efficiency

In the query performance section (section 4.8.3), we have shown that our proposed algorithm VNE

is much more efficient than the competitors. One of the main reason is that we have introduced

the use of pruning techniques to eliminate a large number of candidates. Hence, in this section,

we would like to evaluate the effectiveness of our pruning techniques.
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MC CL
# of
cate-
gories

PT1 PT2 PT3 PT4 PT5 PT6 PT7 ALL PT1 PT2 PT3 PT4 PT5 PT6 PT7 ALL

2 0.5 0.3 25.3 50.5 63.2 18.3 8.9 87.7 0 0 25.3 50.4 66.3 19.2 8.4 89.6
3 1.5 0.3 26.1 50.8 63.5 18.8 7.7 88.3 0 0 27.2 50.1 65.2 19.8 8.0 90.6
4 2.1 0.3 27.4 49.8 65.1 19.2 7.3 89.8 0 0 30.2 49.3 65.8 20.4 7.7 91.6
5 2.5 0.3 28.9 48.4 64.6 19.4 7.9 90.8 0 0 33.9 50.8 66.1 19.8 7.2 93.1
6 3.6 0.4 33.7 49.3 66.5 19.9 8.1 93.5 0.1 0 37.3 52.3 67.1 21.3 6.9 95.4

Table 4.4: Pruning percentage for MC and CL varying # of categories

# of categories PT1 PT2 PT3 PT4 PT5 PT6 PT7 ALL
2 0 0 24.5 50.2 65.6 20.2 9 88.5
3 0 0 26.7 49.7 68.7 19.5 8.2 90.3
4 0 0 29.2 49.5 69.3 19.8 7.7 91.9

Table 4.5: Pruning percentage for real points in CL varying # of categories

In the previous sections, we have explained seven pruning techniques: three pruning tech-

niques used in the pre-processing phase, and the others used in the query processing phase. The

seven pruning techniques are labeled as follows: (i) partition-based pruning Lemma 4.6.1 (PT1),

(ii) partition-based pruning Lemma 4.6.2 (PT2), (iii) node-based pruning (PT3), (iv) 3-candidate

pruning (PT4), (v) end point pruning (PT5), (vi) lower bound pruning (PT6), and (vii) upper bound

pruning (PT7). We have one more label for the combined seven pruning methods, denoted as ALL.

In the evaluation, we would like to see how much each pruning method can do the pruning

job (PT1 to PT7), and how much the combined pruning method (ALL) can prune candidate routes.

For evaluating the effectiveness, we use the percentage number o f pruned routes
number o f total possible routes to represent the

pruned percentage. The higher the percentage is, the more routes are pruned. To evaluate the

effectiveness for the pruning techniques separately, we run the algorithm with only one pruning

technique each time to get the pruned routes. Meanwhile, we randomly generate five synthetic

indoor points each time. For example, five synthetic indoor points are generated when the number

of categories is 3, the number of indoor points is 10. The MC and CL dataset is used in the

experiment. After running the five sets of indoor points, the average percentage is reported.

Table 4.3 shows the prune percentage for MC and CL by varying the number of points, while

Table 4.4 is the results by varying number of categories. For PT1 and PT2, they can only prune a

very small percentage of the total routes. This is because the condition of these two techniques is

that there are at least two points within the same category in the same room. Since in our datasets,

this situation rarely happens, hence, PT1 and PT2 do not prune that much.
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For the MC dataset, it consists of 297 rooms. 30 indoor points is relatively small. When the

number of indoor points increases to 180, it is more likely that two indoor points within the same

category are in the same room. Therefore, we can see that with the increasing number of indoor

points and categories, pruning percentage for PT1 increases. However, for PT2, since it must have

3 points in the same room, the percentage does not increase a lot. Their pruning percentages are

not more than 4%, which is relatively very small. In Table 4.3, although the number of indoor

points increases, the percentage for both PT1 and PT2 is almost 0 as the CL dataset contains more

than 40, 000 rooms that makes it less possible to have two points in the same room.

PT3 works much better than the previous two techniques as it does not rely on single partitions.

In terms of the indexing tree nodes, it contains more points than an indoor partition, and it is more

likely to have two points satisfying Lemma 4.6.3.

For PT4 and PT5, they are the two most effective ones which are expected. For any sub-route

consisting of 3 points, there is only one optimal middle point. This means if there exist n points

in the same category as the category of middle point, n − 1 sub-routes with the same starting/end

points are pruned. For PT5, the condition is not strict. For example, for different candidate routes

ending with the same point and visiting the same categories, only the shortest route is not pruned.

Our experimental results show that these two pruning techniques can prune up to around 50% to

65% which is very effective.

For the rest of the two techniques (PT6 and PT7), they perform quite stable no matter what

the number of categories and the number of indoor points are. On the other hand, when the same

experiments are conducted using the CL dataset, we get a similar result although CL is much

larger than MC. It means that our pruning techniques are scalable. For evaluating PT6, we get the

first route until one of the candidate route τc has reached to the destination. Therefore, for any

candidate route de-heaped later, if the lower bound of the current candidate route is larger than

C(τc), the route is pruned. While for PT7, we compute the upper bound that is the shorter distance

between the routes computed by two heuristic algorithms at the first place. When a candidate route

is de-heaped, it is pruned only if its distance is larger than the upper bound. Since the length of

de-heaped candidate route is shorter than m + 2, it is less likely to be pruned. This is why using

PT7 only does not achieve a good pruning percentage compared with PT6.

The percentage for ALL is around 90% in all the experimental settings, this proves that our

proposed algorithm is quite efficient. Combining all pruning techniques together does not mean

the pruning percentage is the percentage sum of all seven pruning techniques. This is because the
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candidate routes pruned by different pruning techniques have some intersections. On the other

hand, different pruning techniques are able to help each other. For example, combing PT6 and

PT7 achieve much better result because the upper bound computed by PT7 can be utilized at the

start of PT6 such that PT6 takes effects at the beginning, not waiting for a candidate route with

length m + 2 is de-heaped.

For the real indoor points, we evaluate the effectiveness of the pruning techniques as well.

Note that the number of points cannot be changed here, subsequently, we evaluate the real indoor

points based on the different number of categories. The dataset used here is the CL dataset.

Similar results are achieved compared to the synthetic indoor points and the overall pruned routes

are around 90% shown in Table 4.5. As no indoor points are located in the same indoor partition,

nothing is pruned by the partition-based pruning which are PT1 and PT2. For the other pruning

techniques, similar results are achieved because the number of categories and points are in similar

scales compared to synthetic indoor points.

4.9 Conclusion

In this chapter, we studied an new type of indoor query called the Indoor Trip Planning Query

(iTPQ). Our proposed algorithm, called the VIP-Tree Neighbor Expansion (VNE) algorithm, ex-

ploits the features of indoor spaces, such as rooms and hallways. The pruning techniques used

in VNE avoid processing a large number of unnecessary candidate routes. In the experimental

section, we benchmark all the pruning techniques and show the effectiveness of our proposed

pruning techniques. As a result, VNE performs much faster (by several orders of magnitude) than

any competitor algorithms in both synthetic and real datasets in terms of processing time with

low indexing cost. Additionally, VNE produces exact routes as the query results, instead of only

approximation like any other TPQ algorithms for spatial road networks.



Chapter 5

KP-Tree: An Effective Index for

Keyword Queries

5.1 Overview

In this chapter, we study a new type of indoor query, indoor boolean keyword query. Addition

to the spatial-only queries such as shortest distance/path, k nearest neighbors and range queries,

textual information is added to the indoor objects. For example, a pack of biscuits considered as an

indoor objects can be tagged as 1“biscuit, pizza, flavour, creamy”. For an indoor keyword query,

the results are the k closest objects that contain the query keyword as well.

Consider an example in people’s daily life, a person would like to buy a bottle of coke with

raspberry flavour. “coke” and “raspberry” are considered as the query keywords. In a large shop-

ping mall, several stores such as Woolworths and Coles sell raspberry coke, but these objects are

only a small portion compared to the large number of products in the stores. A possible way to

solve this problem is that the techniques handling k nearest neighbors query are utilized. The key-

words of the objects are checked when the object is accessed. However, due to the small ration

of objects containing keywords “coke” and “raspberry”, it is not efficient because in the worst

case, all objects have to be accessed. Another solution is that the objects are indexed based on

the keywords information. The query algorithm only checks the objects that contains the objects.

The problem is that for some frequent keywords, a large number of objects have to be accessed as

well. Furthermore, the objects is not sorted such that all of them have to be accessed to retrieve

the query results.

97
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A few techniques have been proposed to solve the keyword queries in both Euclidean space

and spatial networks. For Euclidean-based methods, they are not applicable to indoor space as the

distance metric in indoor space is the minimum working distance. While for outdoor techniques

that utilize the D2D graph, the efficiency becomes a big issue since we have proved that the state-

of-the-art indexes ROAD and G-tree performs very bad for indoor queries. Driven by this, we

extend our proposed VIP-Tree to solve indoor keyword queries, furthermore, a partition-specific

index KP-Tree is discussed in this chapter to efficiently answer indoor keyword queries.

This chapter is organized as follows. In Section 5.2, we formally define the indoor boolean

keyword queries and a few possible solutions are briefly described based on the existing tech-

niques. In Section 5.3, the proposed index KP-Tree is discussed and the detailed algorithms is

introduced. The detailed experimental evaluations are provided in Section 5.4 followed by the

conclusion in Section 5.5.

5.2 Background Information

5.2.1 Problem Definition

In this chapter, we represent an indoor spatio-textual object o as a spatial point located in an

indoor venue and a set of keywords (terms) from a vocabulary V, represented by o.loc and o.T

respectively. An indoor boolean kNN spatial keyword query (iBkNN-SK) is defined below.

Definition 5.2.1. iBkNN-SK Query. Given a set O of spatio-textual objects, a query object q

where q.loc is the spatial location and q.T is a set of query keywords, an iBkNN-SK is to find k

closest objects to q.loc that contains every keyword in q.T .

Hereafter, whenever there is no ambiguity, we use o to refer to o.loc.

EXAMPLE 12 : Take Fig. 5.1 as an example. A set of spatio-textual objects O = {o1, o2, ..., o12}

are located in the indoor venue. For simplicity, we ignore the labels of doors and partitions.

Assume that a user located at query point q wants to find the nearest object (i.e., k=1) which

contains keywords t1 and t2 (q.T={t1, t2}). The object o5 is returned as the result because it is the

closest object to q containing both t1 and t2. �
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o1(t1, t2)

o2(t1)

o3(t2)
o4(t1, t3)

o7(t3)

o5(t1, t2)

o6(t1, t3)

o8(t3) o9(t3, t4) o12(t3)

o10(t3) o11(t2)

q

iBkNN-SK query k=1, q, q.T={t1, t2}
 

    
Figure 5.1: Example of iBoolean-kNN Query

5.2.2 Some possible solutions

To the best of our knowledge, we are the first to study the spatial keyword queries in indoor

venues. In this section, we briefly discuss how to extend existing indoor/outdoor techniques and

the VIP-tree to answer spatial keyword queries in indoor environment.

Extending Distance-aware Model (DistAw) [62]. The distance aware model is the state-of-

the-art algorithm for indoor query processing. To solve iBkNN queries, we embed the keyword

information with each indoor partition. Specifically, for each indoor partition containing at least

one object, the keyword set of the partition is the union of the keywords of the objects in the

partition. During search process, DistAw uses the accessibility base graph and the keyword set for

each partition to prune the un-necessary partitions.

Extending DistAw++. In DistAw, indoor distances are computed during the expansion process.

[62] utilized distance matrix to materialize indoor distances between any two doors with an extra

O(D2) storage. This results in significant improvements in query processing time. Hence, we

use DistAw++ to indicate a version of DistAw that uses a distance matrix to accelerate the query

processing.

Extending G-tree [94]. As discussed earlier, to adopt outdoor techniques like G-tree, the indoor

space is converted into a D2D graph. G-tree index is then built on this D2D graph. An inverted

list is added for each node of the G-tree to efficiently prune un-necessary nodes during the query

processing.

Extending VIP-Tree. We extend VIP-Tree by adding an inverted list for each node of the VIP-

Tree in a way similar to existing spatial keyword indexes for outdoor techniques such as IR-

tree [28, 83], i.e., for each VIP-Tree node, we store a set of all keywords in its sub-tree. The

modified VIP-Tree is called inverted VIP-Tree (IVIP-Tree).
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Our experimental results (see Fig. 5.6(b) in Section 5.4.3) show that IVIP-tree is up to an

order of magnitude better than all other approaches. This shows the effectiveness and adaptability

of VIP-tree for different settings.

In next section, we propose another novel data structure called KP-tree specifically designed

to handle spatio-textual objects in indoor partitions such as products in supermarkets and books

in a library etc. A KP-tree is created for each indoor partition and allows efficient retrieval of

relevant objects when the search reaches a particular partition. Each indoor partition in the IVIP-

tree is linked to its KP-tree. Our experimental study shows that the KP-Trees further improve the

performance of IVIP-Tree by up to an order of magnitude.

5.2.3 Contributions

In this chapter, we extended the previous VIP-Tree to Inverted VIP-Tree that solves indoor key-

word queries. To further improve the efficiency, we designed keyword partitioning tree (KP-Tree)

that indexes the objects inside the indoor partition.

Low indexing cost. For IVIP-Tree, the construction and storage cost is very small since it

is extended from VIP-Tree. The partition-specific index KP-Tree requires low construction and

storage cost. For example, for the largest dataset used in our experiments that consists of around

30,000 objects, KP-Tree requires only about 3 MBs and can be constructed within 4 seconds.

High efficiency. Among the existing techniques that build the index based on indoor venue

only (objects are indexed based on inverted list), IVIP-Tree, the simple extension of VIP-Tree

performs much better. For the indoor partition specific indexes that build the index for the objects

in each partition and utilized IVIP-Tree for indexing the indoor venue, KP-Tree achieves the best

performance. For the largest dataset that consists of about 140,000 with 60,014 unique keywords,

it takes around 0.1 second for KP-Tree1.

5.3 Keyword Partitioning Tree

Recall that the existing techniques map an indoor venue to a graph where a node represents a

door or a partition. The indoor graph is then traversed to answer the queries and when the search

reaches a partition, the objects in it are retrieved to process the query. Typically, an indoor partition

contains a reasonably large number of objects such as products in a supermarket, books in a

1Under review for The VLDB Journal
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library or medicines in a pharmacy etc. For example, in the real world data set that we use in

experimental study, a single JB Hi Fi store (an entertainment retailer in Australia) contains around

30, 000 different products. To efficiently answer the queries, once the search reaches an indoor

partition, specialized indexes should be employed to efficiently retrieve the relevant objects in the

partition. One possible solution is to use one of the existing approaches (e.g., inverted lists, IR-

tree) to index the spatio-textual objects in a partition. However, we note that these techniques have

certain limitations as explained next.

Inverted lists can be utilized to retrieve relevant objects in a partition. Specifically, for each

door di of the indoor partition and for each keyword t j, an inverted list is created which stores

the objects containing t j in ascending order of their distances from the door di. Fig. 5.2 shows

an example where the indoor partition contains 12 objects and has only one door d1. For each

unique keyword (t1 to t4), an inverted list is created that stores the relevant objects in ascending

order of their distances from d1. These lists can be used to prune some irrelevant objects. Assume

that a query q is located outside the partition where q.T={t1, t4}. Once the search reaches this

partition, the inverted lists of t1 or t4 can be accessed to find the nearest objects containing both

of the keywords. However, many objects in the inverted lists may not contain all query keywords

resulting in sub par performance. For example, the closest object containing both keywords is o2

but this object is located at the end of the inverted lists t1 and t4. In other words, the algorithm

needs to access many irrelevant objects before finding the answer.

o1(t1, t2, t4)

o2(t1,t4)

o3(t2,t4) o4(t1)

o7(t2,t3)

o5(t1)

o6(t1, t3)

o8(t1)

o9(t2,t3,t4) o12(t1)

o10(t4)
o11(t2,t4)

d1

t1  t2 t3 t4
o12  o11  o9  o11 
o8  o9  o6  o9 
o6  o7  o7  o10 
o4  o3    o3 
o5  o1    o2 

o2      o1 
o1       

 Inverted List for d1

Figure 5.2: Inverted List

Another possible approach is to use spatial keyword indexes like IR-Tree [28] for each par-

tition. These indexes typically group spatially close objects into nodes which are further hierar-

chically grouped into parent nodes until a root node is formed. Each node in the tree contains a

summary of all keywords contained in the subtree rooted at this node. During query processing,

a node may be pruned if its summary does not contain all query keywords. Since the objects are

mainly grouped based on their spatial closeness, the keyword summaries may not be very useful

in pruning. This is especially problematic for indoor venues where density of the objects is quite
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high (a small shelf may have hundreds of different products). In Fig. 5.2, assume that a node

groups the objects o1, o2 and o3. The keyword summary of this node would contain all unique

keywords for the partition (i.e., t1 to t4) and, as a result, this node (and all of its ancestor nodes)

lose pruning effectiveness.

We remark that there exist some indexing techniques such as WIR-Tree [84] that aim to index

objects based on the keywords similarity instead of spatial closeness of the objects. However,

these techniques are adversely affected by an object that contains many keywords. Assume that

there exists an object that contains all of the keywords. When this object is grouped with some

other objects in a leaf node, the keyword summary of this leaf node (and each of its ancestor node)

would contain all of the keywords thus losing the pruning ability for the whole branch.

For the sake of only this example, assume that o1 in Fig. 5.2 contains all the keywords t1, t2, t3

and t4. Fig. 5.3(b) shows the corresponding WIR-tree. The object o1 is grouped with o2 in the

node W1 which contains all query keywords. Consequently, the node W1 and all its ancestor nodes

(W3 and W9 lose pruning ability), i.e., every query would need to traverse these three nodes.

R7

t1, t2, t3, t4

R2

t2, t3

R5

t1, t3

R4R1

t1, t4 t2, t4

R3

t1

R6

t4
o4,o5,o8,o12 o10 

o6  o7 o2  o3,o9,o11 

o1 

W9

t1, t2, t3, t4

W2

t2, t3, t4

W5

t2, t3

W4W1

t1, t2, t3, t4 t1, t3

W3

t1, t2, t3, t4

W6

t2, t3, t4

o1,o2 o7  o3,o9,o10,o11o4,o5,o6,o8,o12 

(a) KP-Tree (b) WIR-tree

Figure 5.3: KP-Tree and WIR-tree for the objects in Fig. 5.2 except that we assume o1 contains
all four keywords

In this chapter, we propose a new index called Keyword Partitioning Tree (KP-Tree) to address

the limitations described above. The proposed index has two distinct features that helps addressing

the limitations: 1) objects are grouped mainly based on their keywords; and 2) unlike most of the

existing indexes, objects in KP-Tree are not necessarily indexed at the leaf nodes. Instead, objects

having more keywords are likely to be indexed at intermediate nodes higher in the tree structure

which addresses the problem with indexes like WIR-Tree. For example, Fig. 5.3(a) shows KP-Tree

for the same example for which WIR-Tree was shown. In the KP-Tree, the object o1 is indexed at

the root node, and as a result, its children nodes do not lose pruning capabilities. We present more
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details of KP-Tree in the next section. Note that, for the rest of the chapter, we use the objects in

Fig. 5.2 as represented and do not assume that o1 contains all keywords.

5.3.1 Overview of KP-Tree.

First, we give a brief overview of KP-Tree and some of its properties before formally describing

its construction in next section. Fig. 5.4 is used as an example to illustrate KP-Tree for the objects

in Fig. 5.2. Each node R in KP-Tree consists of a list of keywords represented as R.T . The root

node contains all unique keywords associated with objects in the partition. In Fig. 5.4, R9.T =

{t1, t2, t3, t4}. For every node R, R.T is the union of the keywords contained in its children. For

example, R9.T = R7.T ∪ R8.T . In KP-tree, each object o is attached with a node R if o.T = R.T .

For example, the object o1 is associated with the node R2 because R2.T = o1.T = {t1, t2, t4}.

Similarly, the objects o2 is associated with R1 because it contains t1 and t4. Note that KP-Tree is

different from most of the existing tree structures in the sense that the objects may be associated

with non-leaf nodes. Specifically, KP-Tree has two kinds of nodes: fruitful nodes (shaded nodes)

and fruitless nodes (white nodes). A fruitful node is a node that has some objects attached to it.

On the other hand, a frutiless node does not have any object attached to it. In Fig. 5.4, R9 and R8

are fruitless nodes and all other nodes are fruitful nodes.

A node in KP-Tree is also linked to its pre-computed object and node matrices. An object

matrix records distance from each door d of the partition to each object o attached with the node,

e.g., see the object matrix for R3. A node matrix for a node R records the minimum distance from

each door d to each child node Ri of R. The minimum distance mindist(d,Ri) is the minimum

distance from d to any object contained in the sub-tree rooted at Ri. Consider the node matrix for

R7 in Fig. 5.4. The minimum distance from d1 to R1 is 5 because the minimum distance from d1

to the objects in the sub-tree rooted at R1 (i.e., o2, o4, o5, o8 and o12) is dist(d1, o12) = 5.

The query is processed in a traditional best-first manner using a heap that stores entries ac-

cording to their minimum distances from q where distances are obtained utilizing the distance

matrices. An entry e is pruned if e.T * R.T . For each node retrieved from the heap, its children

that contain all query keywords are inserted in the heap. Furthermore, if the node is fruitful, the

objects associated with it are also inserted in the heap. Consider the query q in our running ex-

ample located on the door d where q.T = {t1, t4} and k = 1. First, the root node R9 is accessed

and its child R7 is inserted in the heap whereas R8 is ignored because it does not contain all query

keywords. Next, R7 is accessed and its child R1 is inserted in the heap with key 5 whereas R2 is
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Figure 5.4: KP-Tree for the objects in Fig. 5.2

ignored. Furthermore, since R7 is a fruitful node, its object o1 is also inserted in the heap with key

32. Next R1 is accessed and its object o2 is inserted in the heap with key 30. Its child R3 is ignored

because it does not contain all query keywords. Finally, the object o2 is retrieved from the heap

and is reported as answer.

The above example illustrates how to process a query considering objects in a single partition.

In Section 5.3.3, we present the details of how the VIP-Tree and KP-Tree are utilized to process

queries in an indoor venue containing many paritions.

5.3.2 Constructing KP-Tree

The KP-Tree is constructed in 4 steps: 1) fruitful nodes are created by grouping the objects having

exactly the same set of keywords; 2) fruitful subtrees are constructed using the fruitful nodes 3) the

KP-Tree is constructed using a keyword graph and the fruitful subtrees constructed in the previous

step; 4) the distance matrices are constructed for each node. Next, we describe the details of each

step.
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1) Constructing fruitful nodes. In this step, the objects that have exactly the same set of keywords

are grouped together to form fruitful nodes. For example, objects o3, o9 and o11 have two keywords

t2 and t4 and they are combined to construct a fruitful node R2. Note that there may be fruitful

nodes that have exactly one object. E.g., o1 is the only object containing t1, t2 and t4 and a fruitful

node R7 is constructed that contains o1. In Fig. 5.4, the shaded nodes are the fruitful nodes.

2) Constructing fruitful subtrees. In this step, the fruitful nodes are hierarchically arranged to

form possibly more than one subtrees. A fruitful subtree satisfies the property that, for each node

R and its parent node Rp, Rp contains all keywords of R, i.e., R.T ⊂ Rp.T . Note that R.T , Rp.T

because each fruitful node constructed at the previous step is associated with a unique set of

keywords. For a node R, there may be more than one fruitful nodes containing all keywords of R.

These nodes are called potential parents for node R. Among these potential parents, we choose a

node Rp to be the parent of R that has the smallest number of keywords. If two potential parents

have the same number of keywords, the node with the smaller number of children is chosen to

be the parent. If two nodes have the same number of keywords and children, ties are broken

arbitrarily.

In Fig. 5.4, the potential parents for R3 are R1, R4 and R7. The node R7 has more keywords

than R1 and R4 and is not considered to be the parent of R3. R1 and R4 both have exactly two

keywords and currently have no child so an arbitrary decision is made and R1 is chosen to be the

parent of R3.

Algorithm 14: Constructing sub-trees
Input : R: a set of fruitful nodes

1 for each node R ∈ R in ascending order of # of keywords do
2 choose a parent node Rp;
3 if Rp is NULL then
4 Set R as the root of its subtree;

5 else
6 set Rp as the parent of R in its subtree;

Algorithm 14 shows the details of constructing fruitful subtrees using a set of fruitful nodes

R. The nodes are accessed in ascending order of their number of keywords, i.e., the subtrees are

constructed in a bottom-up approach. If there is no potential parent for a node R, it indicates that

this node is the root node for a fruitful subtree. For example, in Fig. 5.4, there are no potential

parents for the nodes R4, R5 and R7 and these nodes correspond to the root nodes for three fruitful

nodes. The fruitful subtree rooted at R7 contains the nodes R1, R2, R3 and R6. Note that some

fruitful nodes consist of only one node (e.g., R4 and R5).
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3) Constructing KP-Tree using keyword graph. In this step, the root nodes of the subtrees

constructed in the previous step are used to construct KP-tree (e.g., the nodes R4, R5 and R7 are

taken as input and a KP-Tree is constructed). KP-Tree is constructed in a top-down approach where

each node is split into children such that the overlap (the number of common keywords) between

its child nodes is minimized. We aim to minimize the overlap of keywords among children to

ensure effectiveness of the KP-tree for querying. We use a keyword graph to guide the KP-Tree

construction algorithm. Next, we describe the details – we use node to refer to an entity in the

KP-Tree and vertex to refer to an entity in the keyword graph.

Each root node of the subtrees constructed in the previous step forms a vertex of the keyword

graph. Every pair of vertices that have at least one common keyword are connected to each other by

an edge where the edge weight is the number of common keywords between the two vertices. If the

keyword graph is disconnected, we arbitrarily add edges with weight zero (between disconnected

components) to obtain a connected graph. Considering the example Fig. 5.4 where the root nodes

of the subtrees are R4, R5 and R7 and these correspond to three vertices in the keyword graph. The

vertices corresponding to R4 and R5 are connected to each other via an edge with weight 1 because

the number of common keywords between R4 and R7 is 1. Next, we describe how the keyword

graph is used to construct the KP-Tree.

Initially, a root node of the KP-Tree is created which contains all the keywords. A graph parti-

tioning algorithm is used that cuts the keyword graph into f disconnected components where f is

the maximum number of children for each intermediate node of the KP-Tree. Each disconnected

component of the keyword graph corresponds to one child node which is associated with all the

keywords in this disconnected component. Since the goal is to minimize the overlap of keywords

among the child nodes, the graph partitioning algorithm aims at minimizing the total weight of

the edges that connect the disconnected components. Each node of the KP-Tree is recursively

decomposed using the above procedure until it contains at most α vertices. Since optimal graph

partitioning is NP-Hard, we adopt a famous heuristics algorithm, called the multilevel partitioning

algorithm [50] for graph partitioning.

We illustrate the algorithm using an example assuming that the root nodes of the fruitful sub-

trees at the previous step are {R1,R2, · · · ,R14}. Fig. 5.5(a) shows a sample keyword graph. To

avoid mixup between the nodes in KP-Tree and vertices in the keyword graph, in this example, we

refer to a node of KP-Tree as Ni and a vertex in keyword graph as Ri. The root node N0 contains

all keywords (t1, · · · , t10) of the keyword graph. Assuming f = 2, the graph is partitioned into two
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graphs g1 and g2 as shown in Fig. 5.5(b) minimizing the total weight of the edges connected g1

and g2. The children of N0 in KP-tree are two nodes (N1 and N2) obtained using the disconnected

components, i.e., the node N1 corresponds to g1 and contains all keywords contained in g1 (key-

words t1, · · · , t7) and the node N2 corresponds to g2 and consists of all keywords in g2 (t1, t7, t8, t9

and t10) – the common keywords in N1 and N2 are shown in bold). Next, the children of N1 are

computed by partitioning the graph g1 into g3 and g4. Similarly, the graph g2 is partitioned into g5

and g6 to obtain the children nodes of N2.
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4) Constructing object and node matrices. For each fruitful node R in KP-Tree, an object matrix

is created to store the distances between every door d of the partition P and every object o of the

partition. Consider the indoor partition in Fig. 5.2 which only has one door d1. For node R3 in

Fig. 5.4, the object matrix stores the distances between d1 and the objects o4, o5, o8 and o12.

For each non-leaf fruitful and fruitless node R of the KP-Tree, we also create a node matrix.

Specifically, for each non-leaf node R, the node matrix stores minimum distance mindist(d,Ri)

between every door d of the partition and each child Ri of R where mindist(d,Ri) corresponds to

the minimum distance from d to any object in the subtree rooted at Ri. In Fig. 5.4, the object

matrix for R7 stores mindist(d1,R1) = 5 because the objects in the tree rooted at R1 are o2, o4,

o5, o8 and o12 and dist(d1, o12) = 5 is the smallest distance from d to these objects. Similarly,

mindist(d1,R2) = 12 is also stored in the node matrix. We construct the object and node matrices

in a bottom-up manner. Thus, the minimum distances from d to a node Ri can be efficiently

computed using the object and distance matrices of the children.

Tree update. In real world, due to construction or relocation, items in a shop may change

the location. This requires the proposed index to be updated accordingly. However, the change is

not happened frequently. In the experiment part, we have shown that the tree updating time for
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VIP-Tree is less than one second. Meanwhile, the construction time for KP-Tree is in seconds

which achieves enough efficiency to re-build the index.

5.3.3 Query Processing

We index the indoor venue using IVIP-Tree and, for each indoor partition P, we create a KP-Tree

that indexes the objects inside it. One possible approach to answer indoor boolean kNN (iBkNN)

query is to use an algorithm very similar to our kNN algorithm (Algorithm 5) except that the nodes

of the IVIP-Tree that do not contain all query keywords are ignored and, when the search reaches a

partition P, its KP-Tree is traversed to efficiently retrieve the objects containing all query keywords

and updating kNNs accordingly. However, this approach may be sub optimal as explained below.

Assume a nearest neighbor query q and two partitions P1 and P2 such that mindist(q, P1) <

mindist(q, P2). In this case, the algorithm will first traverse the KP-Tree of P1 to retrieve the

relevant objects from P1. Suppose P1 contains numerous relevant objects but the actual nearest

neighbor is in the partition P2. The algorithm will first retrieve all relevant objects from P1 before

accessing the partition P2 and finding the actual nearest neighbor. In this case, a complete traversal

of the KP-Tree of P1 may be un-necessary and traversing it only partially may improve the perfor-

mance. To achieve this, we propose to use a single min-heap that stores the entries from IVIP-Tree

as well as the entries from different KP-Trees to avoid un-necessarily accessing all objects from a

partition. We present the details below.

Algorithm 15 shows our proposed algorithm to answer indoor boolean kNN (iBkNN) queries.

Similar to our kNN algorithm, dk which refers to the distance of current kthNN is initialized to

infinity. A min-heap H is used to allow accessing the entries of the IVIP-Tree and the KP-Trees in

ascending order of their minimum distances from q. If the de-heaped entry N is a non-leaf node

of the IVIP-Tree, the algorithm inserts every child N′ of N in the min-heap that contains all query

keywords. If the de-heaped entry N is a leaf node of the IVIP-Tree, for each partition Pi of this leaf

node that contains all query keywords, the algorithm inserts the root Ri of the KP-Tree of Pi in the

min-heap with mindist(q,Ri) where mindist(q,Ri) can be efficiently obtained using node matrices

of the node. If the de-heaped entry N is a node of the KP-Tree for a partition, the algorithm inserts

in the min-heap every child N′ of N that contains all query keywords. Furthermore, if N is a

fruitful node, all the objects associated with N that contain all query keywords are also inserted

in the min-heap. Finally, if the de-heaped entry N refers to an object, this object is added to the
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Algorithm 15: indoor boolean kNN query
Input : q: query point, k
Output : kNNs

1 dk = ∞; /* dk is dist. to current kthNN */;
2 getDistances(q,root); /* Algorithm 2 */;
3 Initialize a heap H with root of the IVIP-tree;
4 while H is not empty do
5 de-heap an entry N from heap;
6 if mindist(q,N) ≥ dk then
7 return kNN;

8 if N is a non-leaf node of IVIP-tree then
9 for each child N′ of N do

10 if q.T ⊆ N′.T then
11 insert N′ in heap with mindist(q,N′);

12 if N is a leaf node of IVIP-tree then
13 for each partition Pi in N do
14 Ri ← root node of KP-Tree of Pi;
15 if q.T ⊆ Ri.T then
16 insert Ri in heap with mindist(q,Ri);

17 if N is a node of KP-Tree then
18 for each child N′ of N do
19 if c.T ⊆ N′.T then
20 insert N′ in heap with mindist(N′, c);

21 if N is a fruitful node then
22 for each object o associated with it do
23 if q.T ⊆ o.T then
24 insert o in heap with dist(q, o);

25 if N is an object then
26 add the object to kNN and update dk;
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answer set and dk is updated accordingly. The algorithm terminates when mindist(q,N) for a

de-heaped node N is not smaller than dk.

5.4 Experiments

In this section, we provide the detailed experimental evaluations between our proposed methods

and other competitors.

5.4.1 Experimental Settings

Indoor Venue and Keyword Datasets. We use Chadstone Shopping Centre [8] as the indoor

venue. Chadstone Shopping Centre is the largest shopping centre in Australia with total retail floor

area over 200, 000 m2 and consists of around 530 stores across 4 levels. We obtained the floor

plans of Chadstone Shopping Centre and manually converted them to machine readable indoor

venues. Coordinates of the buildings are obtained by using OpenStreetMap and the sizes of indoor

partitions (e.g., rooms, hallways) are determined. A three dimensional coordinate system is used

where the first two represent x and y coordinates of indoor entities (e.g., rooms, doors) and the

third represents the floor number. To get the object datasets, we choose 11 stores (2 technology

stores, 2 supermarkets, 3 home accessories stores, 2 pharmacies and 2 liquor stores) and extract

the keywords related to the products from their websites. The details for the object sets for each

store are shown in Table 5.1.

Category Store Name

#
unique
prod-
ucts

# unique
keywords

Technology EBGames (EB) 12,848 8,432
JB Hifi (JB) 28,980 22,551

Supermarket
Woolworths
(WO) 11,632 8,641

Coles (CO) 19,079 9,991

Home Ac-
cessaries

Target (TA) 5,866 5,285
Harris Scarf (HA) 5,307 6,793
BigW (BI) 21,682 16,329

Liquor Liquorland (LI) 1,397 1,382
Dan Murphy’s
(DA) 14,364 9,586

Pharmacy Amcal (AM) 7,603 5,573
Chemist Ware-
house (CH) 11,141 7,707

Table 5.1: Details of Stores
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We use these stores to obtain several real world object data sets. Table 5.2 gives the details

of the object data sets. The capital letters denote the category of stores used in the data set. For

example, the data set TS refers to the data set that contains all technology stores (i.e., EB Games

and JB Hifi) and all supermarkets (i.e., Coles and Woolworths). The default data set, TSHLP, is

the biggest data set containing all types of stores and consists of around 140, 000 unique products

(i.e., objects) across 11 different stores.

Dataset Vocabulary size # products
TS 35,803 72,539
TSH 50,056 105,394
TSHLP 60,014 139,899

Table 5.2: Details of keyword datasets

To evaluate our algorithms on larger indoor venues, we use Monash University Clayton Cam-

pus as the indoor venue and, for each of the object datasets in Table 5.2, the stores are allocated to

different indoor partitions in the indoor venues in Clayton campus.

Queries. Queries are generated using the same approach as in [21]. Specifically, we first

randomly choose an object from the dataset and treat its location as the query location. Then, we

randomly choose a specified number of words from the object as the query keywords. If the total

number of objects that contain these query keywords is less than 10, we ignore this query and

repeat the process by randomly choosing another object and keywords from it. This is to ensure

that each iBkNN-SK query returns at least k objects. The value of k varies from 1 to 10 with the

default value set to be 5. The default objects dataset is TSHLP and the default number of keywords

is set to be 3. For each experiment, we run 100 queries generated as described above and report

the average query processing cost.

The indoor spatial keyword query processing techniques rely on two types of indexes: a venue-

level index (e.g., IVIP-Tree) that contains keyword summaries at each node and allows efficient

pruning of irrelevant areas of the indoor venue; and a partition-specific index (e.g., KP-Tree) which

is built for each indoor partition containing objects and allows efficiently obtaining the relevant

objects in the partition. We evaluate our venue-level index and partition-specific index separately

to clearly demonstrate the improvement made by each index. Specifically, in Section 5.4.2, we

demonstrate superiority of IVIP-Tree compared to other venue-level indexes assuming that all

indexes use the same partition-specific indexes. Then, in Section 5.4.3, we compare our partition-

specific index, KP-Tree, with other partition-specific indexes assuming that all techniques use the

same venue-level index (IVIP-Tree).
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Figure 5.6: Effect of # keywords

5.4.2 Evaluating Venue-Level Indexes

Competitors. In this section, we compare the following venue-level indexing techniques assum-

ing that each index including IVIP-Tree indexes the objects in each indoor partition using inverted

lists.

DistAw [62]. As described before, DistAw utilizes the AB graph of the indoor venue and keywords

information is embedded for each partition.

DistAw++. To accelerate distance computations, distance matrix is used to compute the distances

between any two doors in the indoor venue. However, it need O(D2) storage cost for the distance

matrix where D is the number of doors in the indoor venue.

G-tree [94]. We also compare our algorithm with the state-of-the-art technique for query process-

ing in road network (G-tree). G-tree is built on the D2D graph converted from the indoor venue.

G-tree is extended to handle spatial keyword queries by storing summaries of keywords with each

node.

IVIP-Tree and IVIP+KP: IVIP-Tree is our venue-level index which, like other competitors in this

section, uses inverted lists for each indoor partition. We also show the performance of IVIP-Tree

when it uses KP-Tree to index the objects in each partition. This is shown as IVIP+KP in the

figures.

We do not show the results for the construction cost of the venue level indexes because these

are similar to the construction cost shown for spatial only queries in the previous section.

Results. Fig. 5.6, 5.7 and 5.8 show the experimental results for different number of keywords,

varying k and different object data sets for both indoor venues: Chadstone Shopping Center and

Monash University Clayton Campus. Our venue-level index, IVIP-Tree, significantly outperforms

other venue level indexes. When KP-Tree is used for indexing the objects in every partition (i.e.,

IVIP+KP), our technique outperforms all other methods by at least one order of magnitude. This
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Figure 5.8: Effect of object data sets

shows the effectiveness of our venue-level index IVIP-Tree as well as our partition-specific index

KP-Tree. As mentioned earlier, DistAw++ is only available for smaller indoor venues due to the

O(D2) construction time and storage requirement. Therefore, results for DistAw++ are not shown

for the Clayton data set.

Fig. 5.6(a) shows that the querying cost of our techniques increases when the number of key-

words is increased from 1 to 4 and the cost decreases when the number of keywords is further

increased from 4 to 7. This is because, as the number of keyword increases, more nodes of in-

dexes can be pruned as fewer nodes contain all query keywords. On the other hand, the distance

between query to the objects satisfying keyword criteria also increases resulting in an increased

cost. Similar behavior was reported in [21] for some spatial keyword query processing techniques

in Euclidean space.

5.4.3 Evaluating Partition-Specific Indexes

Partition-specific indexes. To evaluate partition-specific indexes, we use IVIP-Tree to index the

indoor venue and use the following techniques to index objects in each partition.
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Figure 5.9: Indexing Cost

Inverted Lists (IL). IVIP-Tree is used to index indoor venue and, for each partition, inverted lists

are created to index objects in the partition.

IR-tree [28]. Indoor venue is indexed by IVIP-Tree and, for each indoor partition, objects are

indexed by IR-tree.

WIR-tree [84]. IVIP-Tree is utilized for indexing the indoor venue and, for each indoor partition,

objects in it are indexed by WIR-tree.

KP-Tree. IVIP-Tree indexes the indoor venue and, for each partition, KP-Tree is used to index

indoor objects.

For each approach, we experimentally determined the best values of the parameters used in the

index. For KP-Tree, the fanout f is chosen to be 64 and the maximum number of fruitful nodes in

the leaf node is set to 32.

Indexing cost. Fig. 5.9 compares the construction time and index size for each indexing technique

for different stores in our data sets (see Table 5.1 for the details of each abbreviation). The stores

on x-axis are listed in increasing order of the total number of unique products in each store. As

expected, inverted lists can be constructed significantly more efficiently as compared to other

approaches because the construction cost mainly consists of sorting each list based on distances
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Figure 5.11: Effect of k

of the objects from each door in the partition The index size of inverted list is also the smallest.

The construction time and index size of KP-tree is comparable with other approaches although a

little higher. For the biggest store (JB HiFi) containing around 30, 000 unique products, KP-tree

is constructed in about 4 seconds and the index size is around 5 MB.

Querying cost. Fig. 5.10, 5.11 and 5.12 show the querying cost of each approach for different

number of keywords, varying k and different object data sets for both indoor venues: Chadstone

Shopping Center and Monash University Clayton Campus. Our proposed partition-specific index,

KP-tree, significantly outperforms other partition-specific approaches for all data sets and settings.

Fig. 5.10 shows the effect of number of keywords on all algorithms. As anticipated, inverted

lists (IL) give the best performance when the query consists of only one keyword. This is because

it requires only checking one list which is already sorted on distances. However, the performance

of IL significantly deteriorates as the number of query keywords increases. The cost of tree based

indexes first increases with the increase in number of keywords and then decreases as the number

of keywords is further increased. As explained earlier, this is because the number of nodes that can

be pruned increases with the increase in number of keywords but, at the same time, the distances

to the k nearest neighbors also increases which requires accessing more nodes of the indexes.
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Figure 5.12: Effect of object sets

5.5 Conclusion

In this chapter, we extend the previous VIP-Tree to IVIP-Tree by embedding keyword information

on the nodes and inverted list is utilized to index the objects in the indoor partitions. After that,

KP-Tree is proposed to build the index for the objects inside one indoor partition. According

to the proposed KP-Tree, a detailed algorithm is developed to solve indoor keyword queries. The

experimental evaluation shows that IVIP-Tree performs better compared to the existing techniques

that do not have specific indexes for objects in the partition. For KP-Tree, it is much efficient

compared to the other algorithms, both indoor indexes and partition-specific indexes.



Chapter 6

Final Remarks

6.1 Overview

In this thesis, we present two efficient indexes for indoor space that support efficient indoor query

processing. Chapter 3 present our research on the indexes for indoor space and efficient algorithms

are proposed to solve the spatial queries like shortest distance/path, k nearest neighbors and range

queries. In Chapters 4 and 5, two more advanced indoor spatial queries are studied: indoor trip

planning queries and indoor boolean keyword queries. This chapter is organized as follows. We

gives the detailed contributions in Section 6.2. Section 6.3 presents two possible directions for

future works.

6.2 Contributions

In Chapter 3, we carefully exploit the unique properties of indoor space and propose the IP-Tree

that indexes the indoor space using a tree structure. To further improve the query processing

efficiency, VIP-Tree is proposed by materilizing the distances. The two proposed indexes achieve

low theoretical complexities. Based on the indexes, efficient algorithms have been studied to solve

shortest distance/path, k nearest neighbors and range queries. During the experimental evaluation,

our proposed indexes outperform the other state-if-the-art techniques in both indoor and outdoor

space by several orders of magnitude.

In Chapter 4, indoor trip planning query is studied. As trip planning query is proved to be NP-

hard, the exact algorithms in spatial networks achieve very low efficiency. In indoor space, due to

the limited number of objects in each category, we proposed a expansion-based algorithms with

117
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efficient pruning techniques. A large number of distances computations are required to solve trip

planning queries, VIP-Tree is utilized to handle the distance computation. Hence, the storage cost

is low since the index of VIP-Tree is used. The experimental evaluation shows that our proposed

algorithms outperform the existing techniques. Meanwhile, the proposed pruning techniques are

proved to be effective due to the large pruned ration of candidate routes.

In Chapter 5, another type of query, indoor boolean keyword query is discussed. Spatial

keyword queries are discussed mostly in Euclidean distances since the efficiency of distance com-

putations. No previous work has been done in indoor space. We perform a simple extension for

VIP-Tree to solve indoor boolean keyword query. Furthermore, KP-Tree is proposed to index the

objects in the indoor partition. An efficient algorithm is developed based on IVIP-Tree and KP-

Tree. In the experimental evaluation, IVIP-Tree, the simple extension of VIP-Tree, outperforms

the techniques according to indoor indexes such as G-tree. Meanwhile, for KP-Tree, it achieves

comparable construction time storage cost compared with the existing indexes such IR-tree and

WIR-tree, but KP-Tree outperforms the other techniques much better.

6.3 Directions of Future Work

In this section, we propose several possible directions for future works.

6.3.1 Query Processing on Both Indoor and Outdoor Space

In this thesis, we have studied a few indoor spatial queries and efficient algorithm have been pro-

posed. In spatial networks, spatial queries are much well studied. However, in real applications,

indoor and outdoor spaces are not seperate. For example, a student park his car in the car parking

area in Monash University Clayton Campus. He wants to go to the lecture theatre in Menzies

building. Assume the student does not have any knowledge about the spatial network in the cam-

pus and the indoor map of Menzies building. If only outdoor technique is utilized, he will lost

after he enters into Menzies building. On the other hand, while only indoor techniques are uti-

lized, he has no idea about how to reach to Menzies building. Hence, an efficient algorithm that

handles both indoor and outdoor space is required. There is an existing research that combines the

spatial network with the D2D graphs transferred from indoor venues [46]. The problem is that the

combined graph is very large, the Dijkstra based algorithm proposed in the paper is not efficient.

No other works have been done on this problem, hence, an efficient algorithm is required.
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6.3.2 Continuous Queries

Continuous query is another important spatial query. In indoor space, it is valuable for vendors.

For example, in a large shopping centre, vendors want to send promotions to the potential cus-

tomers. Meanwhile, vendors do not want to send the promotions to the customers who are far

away since they are less likely to come to the stores. According to vendor locations, we need to

continuously get the customers’ locations in order to send them the promotion information. There

is no existing researches on continuous queries in indoor space yet. Hence, in near future, more

techniques will be proposed on indoor continuous queries.
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