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Abstract

In this thesis we study the problem of evolving a hierarchy of categories that best organize
the documents in a collection under soft (preferential) and hard (necessary) constraints,
using a massive knowledge graph. The evolved categorization should be neither under-
specified nor over-specified and capable of adapting to the user preferences and temporal
changes in the knowledge graph. Under-specified categories can result when an insufficient
number of categories is used to describe the documents in the collection. Meanwhile, over-
specified categories result when too many categories are used to describe the documents
in the collection. Under-specified organization usually arises when adopting an existing
set of categories and forcing the document collection to fit under them. For example,
the organization the of Reuters news articles [84] into the category structure provided by
20NewsGroup [1] results in an under-specified organization. Over-specified organization
can result when every important keyphrase in a document is promoted as a category for
that document. For example, making use of all Hashtags from Twitter could result in
too many keyphrases to describe the document collection thus provide an over-specified
organization. Apart from addressing these two problems, this thesis also presents a few
ideas for evolving a categorization that adapts to the user interests and changes to the

knowledge graph over time.

Using the concepts from the knowledge graph as candidate categories, we model the
problem of category identification for a document as that of inferring binary labels in
an Associative Markov Networks (AMN)[139]. The AMN based framework allows us to
encode global and local features, including user preferences, and allows us to optimally
assign categories for each document in the collection. To learn the user preferences and to
improve the system accuracy, we propose an Active Learning model in the AMN frame-

work. In Active Learning, we present many ideas for identifying uncertain categories and

iii



documents, and discuss a framework for joint Active Learning in the category-document
space. While category identification for each document serves as a high recall step, it
suffers from the over-specified organization problem. This is then addressed through
our category summarization framework using Submodular Mixtures. By defining various
submodular coverage, diversity and quality control barrier functions over the knowledge
graph structure, we present a technique for learning to summarize the over-specified cat-
egories into a smaller set of categories. While the above technique is based on supervised
learning, in this thesis we also present ideas for unsupervised techniques using Sampling
and Expectation Maximization, for identifying a smaller DAG structured categories for

organizing the document collection

Since short texts (for example, tweets, reviews, and the like) are becoming abundant
nowadays, organizing them effectively is important to many downstream applications
such as retrieval, ranking, search, etc. However, short texts are different from long text
documents due to very limited context they contain. This makes organization of short
texts challenging. In this thesis we present a novel technique for expanding them in such
a way that the expansion improves the accuracy of the downstream application, including

short text organization.
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Chapter 1

Introduction

As digital data grows in the form of news, blogs, web pages, scientific articles, books,
images, sound, video, tweets, quotes, and so on — which we collectively term “digital doc-
uments” — the need for effective organization of the documents into hierarchical categories
becomes self-evident and imperative. Such an organization will be useful in a number
of downstream applications in Information Retrieval (IR), Natural Language Processing
(NLP) and Machine Learning (ML), such as diversification of search results, exploratory

search, entity disambiguation, tag cloud generation and e-Catalog creation.

1.1 Challenges in Evolving Categorization

For effective organization, it is very important to create a right set of categories that
represent the contents in the collection. Imagine a collection with thousands of articles
on various topics. In order to set up a good categorization system, we need to first
develop a set of categories that can effectively represent the documents in the collection.
Categories that are generic, such as News, Entertainment, Technical, Politics, Sports, and
such others might not be of much use. Each of such categories accumulates thousands of
articles and searching for the required piece of information continues to be challenging.
On the other hand, fine grained category creation needs domain experts and is a laborious

task. Hence identifying the right set of categories becomes the foremost challenge.



1.1.1 Under-specified Organization

One option for category selection is to make use of predefined category systems. For
example, categories from Reuters RCV1 Text Collection [84], Yahoo Directories' or DMOZ
[47] can be adopted and the existing documents in the collection can be assigned into
these categories. We conducted an experiment by choosing predefined categories from
the 20NewsGroup [1] dataset. We learned a classifier using Support vector machines
(SVM) classifier by using the 20NewsGroup training set and then used it to classify the
Reuters-21578 [115] documents. The Table 1.1 shows the distribution of document over
these categories. The resulting distribution of the documents over the categories is highly
skewed. Some of the categories are assigned very few articles and some too many articles.
This happens because a very small number of categories is relevant to the document
collection. We term this scenario an under-specified organization, in which the number of
categories are too small to effectively cover the documents in the collection. This indicates

that adoption of predefined categories may not work in many situations

1.1.2 Over-specified Organization

Predefined categories can pose another challenge — over—specified organization. When the
number of predefined categories are too many for the document collection, each document
is assigned in its own category which lead to very sparse and less interpretable catego-
rization. For example, if we take several thousand predefined Wikipedia? categories and
classify a few thousand documents from the 20NewsGroup collection using them, many
of the categories are assigned to very few or no documents. We conducted an experiment
by running WikipediaMiner® system on 20NewsGroup document collection and inspected
the categories assigned. WikipediaMiner assigned approximately 9000 categories, of which
40% had less than two documents, 80% had less than 5 documents and only 2% had more
than 10 documents categorized under them. The skew and sparsity of the document

distribution across the categories happens due to very large number of categories are

'https://en.wikipedia.org/wiki/Yahoo! _Directory
’https://en.wikipedia.org
3http://wikipedia-miner.cms.waikato.ac.nz/



20NewsGroup Categories | % RCV1-v2 ||20NewsGroup Categories| % RCV1-v2
documents documents
alt.atheism 0 rec.sport.hockey 2.5
comp.graphics 4.5 sci.crypt 1
comp.os.ms-windows.misc 0 sci.electronics 4.4
comp.sys.ibm.pc.hardware 4 sci.med 3.5
comp.sys.mac.hardware 2.3 sci.space 8.7
comp.windows.x 0 soc.religion.christian 4.8
misc.forsale 22 talk.politics.guns 1
rec.autos 10.2 talk.politics.mideast 1
rec.motorcycles 0 talk.politics.misc 16.8
rec.sport.baseball 13.3 talk.religion.misc 0

Table 1.1: Distribution of Reuters RCV1-v2 documents on 20NewsGroup categories

used to describe the document collection and such a categorization may not be useful for

downstream applications.

1.1.3 Intent Coverage

Users of a categorization system may want to include personal preferences while creating
the categories. That is, one may want less fine grained categories in some areas and more
fine grained categories in other areas. For example, an institute from the field of computer
science may not wish to categorize publications down to the level of individual bacteria
or genes, even though there are documents in their collection discussing classification
algorithms for bacteria or genes. The institute may prefer to categorize all its documents

into computer science sub-fields. The opposite could be true for an institute from the

field of bio technology.




1.1.4 Temporal Relevance

Another practical challenge in a predefined or fixed category system is the maintaining
of the temporal relevance of the category system. The categories that can accommodate
the documents in the collection today may need more categories tomorrow when new
documents are added to the collection. A good categorization system should detect the
emergence of these new categories and evolve the classifier to accommodate the new cat-
egories. For example, a digital library at present may not have any documents regarding
“Computer Vision”. However, as time progresses, it may accumulate a large number of
documents on “Computer Vision”. A good document organization system should detect

this and organize those documents under a new category “Computer Vision”.

This thesis describes techniques that can enable the overcoming of the challenges men-
tioned above. Before describing our approach, we review the literature on document

categorization techniques

1.2 The Literature on Document Organization

To the best of our knowledge, the holistic approach in building an organization specific
digital document organization procedure introduced in this thesis is new. Previous work
on document organization can be broadly identified under the following areas: Document
Classification, Knowledge Mining and Topic Modeling. We now discuss the literature on

cach of these area.

1.2.1 Document Classification

Document classification is the act of dividing a set of input documents into two or more
classes in which each document can be said to belong to one or multiple classes. These
classes are generally predefined. ML techniques [164] are employed to automatically build
a classifier by learning from a set of pre-classified documents that represent the charac-

teristics of the classes. This approach has an advantage over the knowledge engineering



approach of the manual definition of a classifier by domain experts, due to consider-
able savings in terms of expert labor power and straightforward portability to different

domains.

When categorizing a document, a computer program often treats the document as a “bag
of words”. It does not attempt to process the actual information as information extrac-
tion does. Rather, categorization only counts words that appear and, from the counts,
characterizes the main topics that the document covers. By using supervised learning
algorithms [31], the objective is to learn classifiers from known examples (labeled docu-
ments) and to perform the classification automatically on unknown examples (unlabeled
documents). During the training phase, a set of labeled documents are prepared, in which
each document is manually assigned one or more classes from a set of predefined classes.
In the training process, the ML algorithms build a model and learn its parameters which
will maximize the likelihood of the training data. Next, by using the learned models, new
documents are classified. During this inference stage, new documents are assigned labels
from the predefined set of labels. However, this time the computer program assigns the

labels without the need for manual intervention.

Various document categorization techniques have been proposed in the literature for su-
pervised classification tasks. Some of the widely used techniques are discussed briefly

below.

1.2.1.1 Dectsion Trees

Decision tree methods rebuild the manual categorization of the training documents by
constructing well-defined true/false queries. The queries are in the form of a tree structure
in which the nodes represent questions and the leaves represent the corresponding category
of documents. After the tree is created, a new document can easily be categorized by
putting it in the root node of the tree and letting it run through the query structure until
it reaches a certain leaf. Notable decision tree algorithms are ID3 [111], C4.5 [112], CART
[23], CHAID [72], MARS [57] and Conditional Inference Trees [65]



1.2.1.2 k-Nearest Neighbors

In this approach, the categorization of a document is performed by comparing the category
frequencies of the k - nearest documents (neighbors)[39]. The majority category from the

k nearest documents is assigned as the category of the document that is being categorized.

The training examples are vectors in a multidimensional feature space, each with a pre-
defined class label. The training phase of the algorithm consists only of the storing of the

feature vectors and class labels of the training samples.

In the classification phase, k is a user-defined constant, and an unlabeled vector (a query
or test point) is classified by assigning the label that is most frequent among the k training

samples that are nearest to that query point.

1.2.1.3 Bayesian Methods

One of the early document classification techniques is Naive Bayes. The naive part of
the Naive Bayes classifier is the assumption of word (that is feature) independence, which
means that the word order is irrelevant and consequently that the presence of one word
does not affect the presence or absence of another word. This still remains a popular
(baseline) method for text categorization, the problem of judging documents as belonging
to one category or the other (such as spam or legitimate, sports or politics, and the like.)
with word frequencies as the features. With appropriate preprocessing, it is competitive

in this domain with more advanced methods including SVM [135].

1.2.1.4 Neural Networks

Neural networks consist of many individual processing units termed as neurons, which
are connected by links that have weights that allow neurons to activate other neurons.
Different neural network approaches have been applied to document categorization prob-
lems [35, 80, 93]. While some of them use the simplest form of neural networks, (known
as perception), which consist only of an input and an output layer, others build more

sophisticated neural networks with a hidden layer between the other two.
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1.2.1.5 Regression-based Methods

In this method the training data are represented as a pair of input/output matrices in
which the input matrix is identical to our feature matrix A and the output matrix B which
consists of flags that indicate the category membership of the corresponding document
in matrix A. Thus B has the same number of rows as A (namely m) and ¢ columns in
which c¢ represents the total number of categories defined. The goal of the method is to
find a matrix F that transforms A into B’ (by simply computing B’ = A x F') so that
B’ matches B as well as possible. The matrix F' is determined by applying multivariate

regression techniques.

1.2.1.6 Vector-based Methods

One of the simplest categorization methods is the centroid algorithm. During the learning
stage only the average feature vector for each category is calculated and set as the centroid
-vector for the category. A new document is easily categorized by finding the centroid-

vector that is closest to its feature vector

SVM [135] is a very popular state-of-the art document classification technique that is used
to classify documents into positive and negative classes. It is a discriminative classifier
that is formally defined by a separating hyperplane. In other words, given labeled training
data (labeled with predefined classes), the algorithm outputs an optimal hyperplane that
categorizes new documents. The operation of the SVM algorithm is based on the finding
of the hyperplane that offers the largest minimum distance to the training documents.
The optimal separating hyperplane maximizes the margin of the training data. New
documents are then predicted to belong to a category based on the side of the hyperplane
that they fall on. Inherently, SVM classifiers are binary classifiers ~which means that they
classify documents into one of the two classes (yes/no.) However techniques such one-
versus-one, one-versus-all can be employed to extend the SVM classifiers to multi-class

document classification.



1.2.2 Knowledge Mining

Knowledge mining seeks to extract useful information from unstructured textual data
through the identification and exploration of interesting patterns, phrases and concepts.
It fosters strong connections with natural language processing, data mining, ML,IR and
knowledge management. The field of knowledge/information mining has received a lot of
attention due to the ever- increasing need for the managing of the information that resides
in the vast amount of available documents. Researchers have proposed many approaches
that would enable the processing of the textual content in a document in order to extract
the concepts and categories from it. Below we describe some of the prominent methods

of category identification by using knowledge extraction techniques.

1.2.2.1 Keyphrase-based Methods

Keyphrase extraction weighs word n-grams or syntactic phrases that appear in a document
according to their statistical properties. The resulting category terms are restricted to
phrases that occur in the document, and may be prone to error because semantic relations
are ignored. To overcome this problem, a successful approach is to engage a controlled
vocabulary such as Wikipedia (Freebase [19], MeSH?*, and DBPedia 7] are other possible
vocabularies) to map the keyphrases to concepts in the vocabulary. Works done by
Medelyan et al. [95] and Ferragina et al. [53] use keyphrase extraction techniques and

link them to the Wikipedia titles as the topics for the document.

1.2.2.2 C(Clustering-based Methods

Wartena et al. [148] consider topic detection without any prior knowledge of the category
structure or possible categories. Keywords are extracted and clustered on the basis of
different similarity measures by using the induced k-bisecting clustering algorithm. Eval-
uation on Wikipedia articles shows that clusters of keywords correlate strongly with the

Wikipedia categories of the articles. In addition, they find that a distance measure that is

‘https://www.nlm.nih.gov/mesh/



based on the Jensen-Shannon divergence of probability distributions outperforms the co-
sine similarity. In particular, a newly proposed term distribution that takes co-occurrence

of terms into account yields the the best results.

Petkos et al.[108| present a document-pivot algorithm for topic detection, that is, it clus-
ters documents and treats each cluster as a topic. This work modifies a previous version
of a common document-pivot algorithm by considering specific features of tweets which
are strong indicators that a particular sets of tweets belong to the same cluster. It also

considers the granularity of topics when performing topic detection and ranking topics.

1.2.2.3 Pattern Mining Methods

Wu et al.[152] present an approach for Topic Detection and Tracking(TDT) on the basis
of the credible association rule (CAR). This paper considers topic detection without any
prior knowledge of category structure or possible categories. Topic features are selected
primarily on the base of CAR. This paper first uses the TF-IDF evaluation parameters to
select a small amount of features as a feature pre-selection set for topic features selection
and then applies the CAR and maximal cliques mining algorithm [18] in order to cluster
features into topics. Topics are typically represented by a cluster of words that contribute

to topic accuracy.

TopCat (Topic Categories) [36] is a technique that is used to identify topics that recur in
articles in a text corpus. Natural language processing techniques are used to identify key
entities in individual articles, thus representing an article as a set of items. This allows
the authors to view the problem in a database/data mining context: identifying related
groups of items. This paper presents a method to identify related items on the basis of
traditional data mining techniques. Frequent itemsets are generated from the groups of

items, followed by clusters formed with a hypergraph partitioning scheme.

1.2.2.4 NLP-based Methods

NLP produces technologies to analyze, and generate text in natural language. NLP

techniques along with some statistical techniques can be employed in topic detection in
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text-based documents. Carthy et al. [29, 30| present lexical chains to build effective topic
tracking systems. A lexical chain is a sequence of related words in the text, spanning
short or long distances. Lexical chaining is a method of grouping lexically related terms

into lexical chains by using simple NLP techniques.

Nallapathi et al. [103] present a semantic language modeling approach to model news
stories in the Topic Detection and Tracking (TDT) task. They build a unigram language
model for each semantic class in a news story. They also cast the link detection sub-task
of TDT as a two-class classification problem in which the features of each sample consist
of the generative log-likelihood ratios from each semantic class. They then compute a
linear discriminant classifier by using the perceptron learning algorithm on the training

set.

Benhardus et al. [13] present outlines methodologies of detecting and identifying trend-
ing topics from streaming data. Term frequency-inverse document frequency analysis and
relative normalized term frequency analysis are performed on the documents in order to
identify the trending topics. Relative normalized term frequency analysis identifies uni-
grams, bigrams, and trigrams as trending topics, while term frequency-inverse document

frequency analysis identifies unigrams as trending topics.

Cordobes et al. [37] present techniques that are based on graph similarity in order to
classify short texts by topic. They build graphs from the input texts, and then use the
properties of these graphs to classify them. The basic principle is that every piece of text
(a sentence) can be represented as a graph. Essentially, for a given text this proposal uses
the words in the text as graph vertices and creates weighted edges between the words.
The authors have considered different ways of assessing weights on the edges. A simple
option is that the weight would represents the frequency with which both words occur
together in the text. Another more sophisticated (and complex) method is one in which
this frequency is weighted by the distance between the words in the syntactic tree of the
text. The hypothesis of the authors is that graphs that belong to the same topic have
a common representative structure (topic reference graph). For text classification, they
look for the similarities between the graph that is generated for a given text and different

topic reference graphs.
Chen et al. [33] present algorithms for topic detection by using named entities, nouns
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and verbs as cue patterns in order to relate news stories and topics. A two-threshold
scheme that is proposed determines the relevance (irrelevance) between a news story and
a topic cluster. Look ahead information deals with ambiguous cases in clustering. The
least-recently-used removal strategy models the time factor in such a way that older and
unimportant terms will have no effect on clustering. This work shows that nouns and verbs
and the least-recently-used removal strategy outperform other models. The performance
of the named-entity-only approach decreases slightly. However it has no overhead of the

nouns-and-verbs approach with the least-recently-used removal strategy.

1.2.2.5 Interactive Methods

In order to aid the ML development, researchers have explored the visualizing of specific
ML algorithms, including Naive-Bayes [11], decision trees [5], SVMs [27]|, and HMMs [41].
A previous study by Ware et al. has shown that such tools can produce better classifiers
than automatic techniques [147]|. These visualizations and interaction techniques are tied
to specific algorithms. Researchers have also developed more general techniques that

apply across algorithm types. Some notable techniques are highlighted below.

Godbole et al. [58] present the HIClass (Hyper Interactive text Classification) system,
which is an interactive text classification system that combines the cognitive power of hu-
mans with the power of automated learners so as to make statistically sound classification
decisions. HIClass is based on active learning principles and has aids for detailed analysis

and fine tuning of text classifiers while exerting a low cognitive load on the user.

Talbot et al. [138] present EnsembleMatrix, an interactive visualization system that
presents a graphical view of confusion matrices to help users understand the relative
merits of various classifiers. EnsembleMatrix allows users to directly interact with the
visualizations in order to explore and build combination models. They evaluate the effi-
cacy of the system and the approach in a user study. Results show that users are able
to quickly combine multiple classifier that operate on multiple feature sets in order to
produce an ensemble classifier with an accuracy that approaches the best-reported per-

formance classifying images in the CalTech-101 dataset.
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1.2.3 Topic Modeling

Topic models provide a convenient way to analyze large quantities of unclassified text.
A topic contains a cluster of words that frequently occur together. A topic model can
connect words with similar meanings and distinguish between uses of words with multiple
meanings. In this section, we highlight some of the well known techniques for topic

identification in the topic modeling paradigm.

1.2.3.1 Latent Semantic Analysis (LSA)

Dumais et al. [50] present LSA®, a technique in natural language processing, (distribu-
tional semantics, in particular,) of analyzing relationships between a set of documents and
the terms they contain by producing a set of concepts that are related to the documents
and the terms. LSA assumes that words that are close in meaning will occur in similar
pieces of text. A matrix that contains word counts per paragraph (rows represent unique
words and columns represent each paragraph) is constructed from a large piece of text and
a mathematical technique that is known as singular value decomposition (SVD®) is used
to reduce the number of rows while the similarity structure among columns is preserved.
Words can then be compared by taking the cosine of the angle between the two vectors
(or the dot product between the normalization of the two vectors)that are formed by any
two rows. Values close to 1 represent very similar words while values close to 0 represent

very dissimilar words.

1.2.3.2 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA)” [64], which is also known as probabilistic
latent semantic indexing (PLSI) is a statistical technique that analysis the two-mode and
co-occurrence data. In effect, one can derive a low-dimensional representation of the
observed variables in terms of their affinity to certain hidden variables, (as is seen in

LSA,)from which PLSA evolved.

Shttps://en.wikipedia.org/wiki/Latent_semantic_analysis
Shttps://en.wikipedia.org/wiki/Singular_value_decomposition

"https://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis
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Compared to standard LSA which stems from linear algebra and downsizes the occurrence
tables (usually via a singular value decomposition), PLSA is based on a mixture decom-
position that is derived from a latent class model. The main goal of PLSA to identify
and distinguish between different contexts of word usage without recourse to a dictionary
or thesaurus. It includes two important implications: Firstly, it allows for disambigua-
tion e polysemy,( that is, words with multiple meanings). Secondly, it discloses topical

similarities by grouping words that share a common context.

1.2.3.3 Latent Dirichlet Allocation (LDA) and Its Derivatives

LDA [17] is a technique in text mining which is based on statistical (Bayesian) topic
models and is very widely used. LDA is a generative model that in some sense tries to
mimic the writing process. In LDA, each document is modeled as a mixture of topics,
and each topic is a discrete probability distribution that defines how likely each word is
to appear in a given topic. These topic probabilities give a concise representation of a
document. This is similar to probabilistic latent semantic analysis (pLSA), except that in
LDA the topic distribution is assumed to have a Dirichlet prior. In practice, this results
in more reasonable mixtures of topics in a document. In these techniques, a “document”

is a “bag of words” with no structure beyond the topic and word statistics.

Researchers have proposed several other models that are based on LDA for specific sce-
narios; Some of the popular models include finding bursty topics [45], on-line LDA [4],
author-topic analysis [132], supervised topic models [94, 162, 113|, Latent Dirichlet co-

clustering [126] and time variant topic models [146].

1.2.3.4 Correlated Topic Model

The LDA model assumes that the words of each document arise from a mixture of topics,
each of which is a distribution over the vocabulary. A limitation of LDA is the inability
to model topic correlation even though, for example, a document about genetics is more
likely to be also about disease than X-ray astronomy. This limitation stems from the

use of the Dirichlet distribution to model the variability among the topic proportions. In
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the correlated topic model [16], the topic proportions exhibit correlation via the logistic
normal distribution [3]. The authors derive a mean-field variational inference algorithm
for approximate posterior inference in this model. However, this becomes complicated
by the fact that the logistic normal is not conjugate to the multinomial. The authors
show that gives a better fit than LDA on a collection of OCRed articles from the journal
Science and provides a natural way of visualizing and exploring this unstructured data

set and others.

1.2.3.5 Hierarchical Topic Models

Hierarchical Topic Models learn to organize the topics according to a hierarchy in which
more abstract topics are near the root of the hierarchy and more concrete topics are
near the leaves. Several hierarchical topic model techniques have been proposed by the

researchers, which are highlighted below.

One of the popular hierarchical topic models, hLDA [15], is based on the Nested Chinese
Restaurant Process (NCRP [15]). In NCRP it is assumed that there are an infinite
number of infinite-table Chinese restaurants in a city. One restaurant is identified as the
root restaurant, and on each of its infinite tables is a card with the name of another
restaurant. This structure repeats infinitely many times. Each restaurant is referred
to exactly once. The restaurants in the city are organized into an infinitely branched,
infinitely-deep tree. Note that each restaurant is associated with a level in this tree. The
root restaurant is at level 1, the restaurants referred to is on its tables; cards are at level 2,
and so on. hLDA generate a mixture distribution on topics using an NCRP prior. Topics
are joined together in a hierarchy by using the NCRP. The generative process picks a topic
according to their distribution and generates words according to the word distribution for

the topic.

Hierarchically Supervised LDA (HSLDA) [107] takes advantage of hierarchical supervision
(that is labels). The HSLDA model is based on the intuition that the hierarchical context
of labels provides valuable information about labeling. HSLDA jointly models documents
and responses by drawing response variable realizations from a normal distribution, and

generates label responses using a hierarchy of conditionally dependent probit regressors
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[107]. In the joint modeling of each document, both empirical topic distribution and
whether the parent label is applied to the document determine whether a label is to be
applied. The HSLDA model views word-multinomials (topics) as global constructs and

links them to hierarchy nodes through per-label topic distributions.

Slutsy et al. [128] present a Tree Labeled LDA (tLLDA) algorithm to infer topic by
models using its manually compiled ontology, DMOZ. The algorithm takes advantage of
the hierarchical nature of the DMOZ ontology and infers topic models by jointly modeling
word and ontology node assignments for documents. More precisely, the tLLDA model

estimates a single word-multinomial for each node of the target ontology.

The Pachinko Allocation Model (PAM) [85] captures arbitrary, nested, and possibly sparse
correlations between topics using a directed a cyclic graph (DAG). The leaves of the
DAG represent individual words in the vocabulary, while each interior node represents a
correlation among its children, which may be words or other interior nodes (topics). PAM
provides a flexible alternative to Correlated Topic Models (CTM) [16], which captures

correlations only between pairs of topics.

1.2.3.6 Non-Negative Matriz Factorization (NMF)

A highly-effective alternative to LDA is to use Non-NMF [82]. NMF refers to an unsuper-
vised family of algorithms from linear algebra which simultaneously perform dimension
reduction and clustering. Given a non-negative input matrix, which describes a set of
items using a fixed number of features, NMF produces a factorization of the input matrix
to reveal the meaningful “ latent features” that are hidden in the data. Each item can be
viewed as being built up from these latent features, and NMF allows us to identify clusters
of items that share the same latent features. In the context of textual data, in which our
items are documents, the input matrix will be a document-term matrix that describe the
frequency of each term (word) in each document. The goal of NMF is then to uncover the
latent features that correspond to the themes or topics that are most prominent across

the entire corpus [61].
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1.3 Our approach

Next we outline our approach of building a categorization system addressing the challenges
stated earlier. We start with the motivation for building such a system (in fact we highlight

what are the shortcomings in the existing systems) and thereafter outline our techniques.

1.3.1 Motivation

The motivation for our work, which is the adaptive organizing of digital documents, comes
from the need for effective categorization systems in order to organize, search and extract
information, and address the challenges that are described in Section 1.1. Although vast
amount of literature on document classification, topic modeling and knowledge extraction

techniques exist, no single technique addresses all the challenges listed in Section 1.1.

The supervised document classification techniques are highly effective and widely used.
However, they require a good amount of training data and a predefined set of class labels.
As the number of class labels increases, the effort to prepare the training data increases
and soon becomes prohibitively expensive. Moreover, coming up with the right number of
class labels is a bigger challenge. None of the document classification algorithms described
in Section 1.2.1 address this problem. They assume that the labels and training data are

predefined.

On the other hand, topic modeling techniques attempt to identify the topics from the
dataset, in an unsupervised manner. Since the topics are represented as a collection of
words, additional effort is required in order to produce semantically and grammatically
meaningful names for these topics. Although the topic names can be produced in an
automated fashion [81] often-times they need manual correction. The topics discovered
by the topic models are sensitive to the data; when more documents are added to the
dataset, the topics (that is, word distributions over the topics) change. Moreover, topic
models often produce word distributions that are difficult to interpret. For example, in
our experiments in creating categories for a document collection, LDA produced many
topics such as {report , official, said , ask , told , made , comment , time, way, come,

try,... }, which could not be assigned any meaningful title/label.
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Knowledge mining approaches (Section 1.2.2) have shown good promise in identifying
per-document categories. Combining the local (per-document) category information with
the global (corpus) categories is a challenging task. Simply collating the categories from

each document leads to over-specified organization.

In order to address the challenges of document organization (listed in Section 1.1) and to
leverage the strengths of various categorization/classification/topic identification meth-
ods, we propose a framework that can evolve an adaptive document organization tech-
nique. Inspired by the works of Medelyan et al. [95] and Ferragina et al. [53], coupled
with advances in the collaboratively built Knowledge Bases (such as Wikipedia, DMOZ,
DBPedia, and the like) we propose a multistage document organization methodology with
each stage solving a specific sub-problem and making use of the knowledge bases in these
stages to achieve desired goal. The framework that we introduce can incorporate different
types of document classification, topic modeling and knowledge mining techniques as fea-
tures. It can also learn a suitable linear mixture of them. The framework is also capable
of incorporating user preferences and adapting to the changes in the category distribution

in a growing collection of documents.

The availability of a right Knowledge Base is very important for our approach to work.
The Knowledge Base must be exhaustive enough to cover the vocabulary of the document
collection. Today, Knowledge Bases such as Wikipedia, Ohsumed, DBPedia, Linked Open
Data, and the like have become popular. They contain enormous amount of information
that is curated by human contributors.The effective utilization of these Knowledge Bases
can offer many benefits in the organizing of digital documents. (i) The concepts in these
Knowledge Bases can help to organize the digital artifacts. (ii) Rich context is available for
each concept in the Knowledge Base which makes the organization of digital documents
more meaningful. (iii) The vast coverage of concepts in these Knowledge Bases can
encompass the terminology of nearly any digital collection. (iv) These knowledge bases

keep growing in new concepts from the contributions of the community members.
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1.3.2 Multistage Document Organization

Our multistage document organization process is depicted in Figure 1.1. Each rectangular
box represents a stage that solves a specific sub-problem of the bigger problem - document
organization. The functionality of each of these stages is briefly described below and

discussed in detail in subsequent chapters.

1.3.2.1 Assoctating Concepts with Digital Documents Using a Knowledge
Graph

At this stage, using a novel technique, concepts from a knowledge graph are associated
with the digital documents. We construct a knowledge graph from Knowledge Bases
such as Wikipedia by creating the concept nodes and relationship edges between them.
For each digital artifact (document, video transcript, and the like) in the collection, we
construct an AMN of concepts from the knowledge graph. The AMN node potentials
measure how good a concept node is for the digital artifact, and the edge potentials
measure the strength of the relationship between the concepts. The static and dynamic
node potentials of AMN can incorporate various measures such as document similarity
(Cosine, Jaccard, BM25, and the like), decision values from various classifiers (SVM,
decision trees, and the like), topic model affinity and user preferences. The edges help
to share the information between the nodes. A MAP inference that uses binary node
labels gives the association of the concept nodes to the digital artifacts. We also present
techniques to prune the irrelevant nodes from the AMN by using query and language

models to improve the inference time.

1.3.2.2 Active Learning for Document Organization

In order to learn user preferences, it is important to provide feedback to the system. This
feedback tells the system whether it has associated right concepts from the knowledge
graph with the digital artifacts. Based on this feedback, the system learns a model so

as to incorporate user preferences. In order to receive feedback on the most uncertain
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cases of concept association,we develop uncertainty sampling techniques for active learn-
ing. We show that our AMN inference problem can be converted to a margin based
classification problem by which the notion of distance from the margin can be realized for
the uncertainty sampling principle of active learning. In addition, we also present joint
active learning in the document and the concept space in order to seek feedback on most

uncertain pairs of document-concept association.

1.3.2.3 Daversification of Concept Association

Due to the associative property of AMN, a digital artifact usually gets associated with
many similar concepts. A post-facto diversification of concepts that are associated with
an artifact is needed to (i) get rid of very similar concepts, and (ii) retain a diverse set of
concepts in an artifact. It is natural to diversify the concepts using the concept graph that
is used for AMN because it already possesses the required features and signals. We devel-
oped a diversification technique that is based on bi-convex optimization of the relevance
and the divergence of concepts that are associated with a digital artifact. Our exper-
imental results show that in diversification, the technique performs better than several

baseline techniques.

1.3.2.4 Summarization of Concept Hierarchies via Submodular Mixtures

In order to address the problem of proliferation of fine grained concepts that are associated
with the digital collection, we study the problem of summarizing concept hierarchies over a
given set of artifacts. Unlike previous works, we directly pose the problem as a submodular
optimization problem on a concept hierarchy by using objects as features.The desirable
properties of the chosen concepts include object coverage, specificity, concept diversity,
and concept homogeneity, each of which, we show, is naturally modeled by a submodular
function. Other information, that is provided for example,by unsupervised approaches
such as LDA and its variants, can also be utilized by defining a submodular function
that expresses coherence between the chosen concepts and this information. We use a
large-margin framework to learn convex mixtures over the set of submodular components.

We empirically evaluate our method on the problem of organizing articles for Wikipedia
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disambiguation pages using human generated clustering as ground truth. We find that our
framework improves upon several baselines according to a variety of standard evaluation
metrics such as the Jaccard Index, F1 score and NMI. Moreover, our framework can be

scaled up easily to extremely large scale problems.

1.3.2.5 Unsupervised Methods for Concept Hierarchy Summarization

The previous section presented a technique to generate a set of summary concepts in a
supervised learning framework. It needed a labeled training data in order to learn the
submodular mixture. We used the Wikipedia disambiguation pages as our training data.
However, in other collections, it may become laborious to prepare the training data. In
order to overcome this difficulty, we explore other techniques in an unsupervised setting
so that a DAG structured summary of concepts that can best describe the collection can
be learned. Given a collection of artifacts with fine-grained concept assignment, and a
massive concept hierarchy in the form of a DAG, we infer a sub-DAG as a summary
DAG that has the maximum likelihood of generating the collection. The concept DAG
is modeled as a Markov Network in order to generate the artifacts in the collection. It
specifies a joint probability distribution over the observed artifacts in the collection. We
learn this distribution through Gibbs sampling. Thereafter we estimate the importance
of concepts that are based on the marginal probabilities of the concept nodes and its
children, in order to rank the concepts. The top K ranked nodes along with the edges
between them form a sub-DAG. As in the previous case, we evaluate this method on the

Wikipedia disambiguation pages.

1.3.2.6 FEzxpanding Short Texts in a Task Specific Way and Organization

We present a method for the expanding of short texts using a “universal corpus” (such
as Wikipedia, Ohsumed) of documents, for the better organization of short texts. Our
method uses a derivative free algorithm called BOBYQA to iteratively reduce the loss
function of the task using the short texts. In each iteration, an expansion candidate is
generated and the task is evaluated with the candidate expansion text. Based on the

result of the evaluation, a quadratic approximation of the loss function is computed and
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further minimized using the trust region technique. This makes each iteration improve
the short text expansion. As a result, we learn a model to expand the short text by

4

mapping it to the best possible article from the “ universal corpus” . Our experimental
results on the short text classification task show that our method improves over several

baselines and existing methods.

1.4 Demonstration of Document Organization using Our

Approach

In this section we demonstrate the application of our method to an automatic document
organization problem. For this, we extracted approximately 150 technical articles under
science tracks from 10 subjects (Computer Science, Chemistry, Computational Biology,
Micro Biology, Genetics, Physics, Electricity, Logic (Mathematics), Algebra, and Number
Theory) from different sources (DOAJ and arXiv). We associated categories for each
article using our AMN framework (Block 1 in Figure 1.1; Chapter 2). Wikipedia was
used as Knowledge Base during this experiment. While associating concepts from the
Wikipedia with the articles, we also added user preferences to limit the categories to only
those under science in Wikipedia (constraints were added for Arts, Music like categories
and their descendant categories in the Wikipedia category hierarchy). With the help of
our proposed active learning technique (Block 2; Chapter 3) we provided some feedback
to the system so as to improve the accuracy of categorization. We then applied our
diversification algorithm to the associated categories so that each document was associated
with 20 categories (Block 3; Chapter 4) at the most. Thereafter, using our proposed
submodular category summarization technique (Block 4; Chapter 5), we summarized to
100 categories (we used weights learned from our earlier disambiguation page generation
experiments that are described in Chapter 5.) The Figure 1.2 shows the summarized 100
categories in the form of a word cloud. The font size of the category names indicates the

number of documents organized under them. (Color does not indicate anything.)

The major categories under which documents were organized were Genetics, Physics,
Chemistry, Mathematical-Science, and the like. Our careful observation of the documents

in the collection and the categories that were discovered by our approach shows that,
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Figure 1.2: Categories discovered by our method from the collection of technical articles
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these categories represent the documents in the collection very well.

In order to compare quantitatively, we adopt the consistency measure used by Rolling et

al. [116] as follows:

2|AN B|

Consistency = m

where A and B are the categories/topics that the two systems assign.

We took top 20 categories suggested by our system for consistency computation. Since we
formed the document collection by sampling the documents from 10 different categories,
we know the true categories for this document collection. We then manually went through
the selected 20 categories from our system and marked them whether they correspond to
any of the true categories or not. We could now compute the consistency between the
categories discovered by our method and the true categories using the above formula. We

observed a consistency of 75%.

1.4.1 Comparison with LDA topics

LDA being one of the predominantly used techniques in discovering topics from a col-
lection of text documents, it is an interesting experiment to compare the outputs of our
technique with LDA. Since LDA topics are probability distribution over words, it becomes
challenging to compare the outputs. We adopt three simple strategies to overcome this

problem:

1. We run LDA on 150 documents and generate 20 topics. We then extract the key-
words from the LDA discovered topics and project them as the categories for those
documents. The keywords are the high probability words from the topics. Figure
1.3 shows the word cloud of top 100 categories (keywords), drawn using aggregate
probabilities of the keywords across the topics as the font size. Visual inspection
and comparison of this word cloud with the one generated from our method (Figure

1.2) shows that the categories suggested by our method appear reasonably closer
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Figure 1.3: Keywords from the topics detected by LDA from the collection of technical

articles

to the true categories (categories from which we had sampled the documents) than

the LDA suggested categories.

As in the previous case, to compute the consistency metric, we took the top 20
categories (as described above) from the LDA topics and marked them whether they
correspond to any of the true categories or not. We observed that the consistency

between the LDA categories and the true categories is 50%.

We believe that the consistency is low because of the following reasons:

e While the LDA groups coherent topical terms together, each term is able to
express some characteristics of the topic, and hence cannot stand by itself as
a topic always. Meanwhile in our method, the Wikipedia guided fine-grained
category assignment and category summarization is able to capture better se-

mantic categories and their labels.

e Aggregating keyword probabilities from the LDA topics is essentially equivalent

to finding high frequency words from the document collection. Projecting these
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Figure 1.4: Keywords from the topics detected by LDA from the collection of technical

articles along with 1M Wikipedia articles

words as the categories may not necessarily be a good choice of categories for

the entire collection.

e The collection having merely 150 documents is not large enough for the LDA

algorithm to discover 20 topics. (In the next experiment we address this issue

by running LDA on 1 million Wikipedia articles.) On the contrary, our method

is able to discover the categories for a small collection, and as well as a large

collection. This happens due to the fine-grained categories being summarized

to the right level of generalization by considering the coverage of documents in

the collection.
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2. One of the drawbacks of the previous experiment is that the size of the document
collection used for running the LDA is very small (i.e, 150 documents). To over-
come this problem, in this experiment, we included about one million Wikipedia
articles sampled randomly from 5M articles and then ran LDA on it. The number
of topics for LDA was set to 1000. We then took the topics assigned to 150 of
our DOAJ /arXiv documents and discovered the categories for them exactly as done
in the last experiment. Figure 1.4 shows the word cloud drawn for the categories

discovered by this method. We observed a consistency of about 45% in this case.

Below we discuss our observations on these results:

e Similar to the observations done in the previous case, top probability word

from the LDA topic alone is not sufficient to make up a good category name.

e Since we included 1M Wikipedia articles while running the LDA, the word
distribution for the topics predominantly comes from the Wikipedia articles.
Due to this, the top word of a topic may not be entirely relevant to the small set
of 150 DOAJ/arXiv document collection. We do not encounter such problems
in our proposed method, since it operates at granular level while assigning

categories to the documents and then summarizes it to the right level.

3. In this method, we use 10 high probability words from each of the LDA topic
(discovered by running LDA on 150 DOAJ/arXiv documents, with 20 topics) to
form a term-weighted Lucene query and search a Lucene index that we created
using the Wikipedia 2012 articles dump. The title of the first article returned by

the search is used as the topic name. We call this method as the Lucene-first method.

Similar to the previous cases, we draw in Figure 1.5 a word cloud of these categories
by taking the Lucene assigned score to the top result. Again, visual inspection
and comparison to the word cloud from our method indicates that the categories
suggested by our method matches much more closely with the true categories than
the Lucene-first method. The consistency of the Lucene-first discovered topics with
the true categories is about 35% — indicates that this method is not effective. We
observed that in the most of the cases, the Lucene query returns fine-grained article

names as the categories, since they match most of the query terms. Since more
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Figure 1.5: Lucene-first article names (as categories) obtained by querying Lucene index
of Wikipedia articles with term-weighted query by taking high probability 10 words from
topics detected by LDA from the collection of technical articles

generic articles (such as Physics, Chemistry) do not contain all those detailed terms
from the LDA topic, they fail to figure in the top search result. Meanwhile, in our
method, the summarization step effectively generalizes the fine-grained categories

into generic ones.

1.4.2 Comparison with Lau et al. work

One of the well known work on automatic labeling of topic models is by Lau et al.
[81]. In this work authors develop a system for associating LDA topics with Wikipedia
article titles that act as textual (and human interpretable) labels for the LDA topics. We
attempted to implement the system described by the authors in our setting and compared
the results with our technique along similar lines to the previous cases (described in section
1.4.1), using the consistency measure. Due to lack of training data, and non-availability

of some of the sub-systems, we were not able to get good quality results from the Lau
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et al. approach. We observed a consistency value of 35% for the discovered topics. In
addition, like in the previous cases, the system generated fine-grained article names as
the topic names, which failed to capture the generic topics (such as Physics, Chemistry,
etc.). Meanwhile, our method, due to the summarization step, effectively generalized the

fine-grained categories into generic categories.

1.5 Other Applications of Our Research

Apart from document organization, the algorithms and framework that were developed
as part of our research can be applied to numerous other applications.Some of these

applications are highlighted below.

1.5.1 Automatic Table of Content Suggestion

Although we confine our thesis mainline to the organization of digital documents, we
think that the proposed techniques can also be helpful in other types of settings such
as automatic suggestion of table of contents (ToC) for a collection of chapters. In this
case, we can reformulate the problem as the organizing of chapters under summarized
categories as a ToC. Each chapter has a rich context (section headings, description text,
and the like.), which can be used to associate sections/chapters to various concepts from

the Knowledge Base. Summarizing these concepts at different levels can generate a ToC.

1.5.2 Wikipedia Style Disambiguation Page Generation

Given a collection of articles that span different categories, but with similar titles, au-
tomatically generate a disambiguation page for those titles by using Wikipedia category
hierarchy® as a category DAG. Disambiguation pages’ on Wikipedia are used to resolve
conflicts in article titles which occur when a title is naturally associated with multiple

articles on distinct categories. Each disambiguation page organizes articles into several

8http://en.wikipedia.org/wiki/Help:Categories
“nttp://en.wikipedia.org/wiki/Wikipedia:Disambiguation
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groups, in which the articles in each group pertain only to a specific category. Disam-
biguation may be seen as paths in a hierarchy leading to different articles that arguably
could have the same title. For example, the title Apple!® can refer to a plant, a company,
a film, a television show, a place, a technology, an album, a record label, and a news paper
daily. The problem then, is to organize the articles into multiple groups in which each
group contains articles that are similar (categories) and has an appropriately discerned
group heading. This can be achieved by applying our techniques (concept association
via AMN framework (Chapter 2) and topic summarization using submodular framework

(Chapter 5)

1.5.3 Refinement Search and Navigation

It is very common to show “tags” along with search results (for example Google news.)
These tags help in providing the broad category overview of underlying search results or
articles. They guide the user to refine their search by following those tags. By applying
our technique, we can generate tags that honor various quality criteria that are discussed

in our thesis.

1.5.4 e-Catalog Creation

Electronic catalogs (e-catalogs) in a digital library yield the categorical segregation of
articles and help the user to drill down a category hierarchy to search an article. Our
technique can identify e-catalog categories. We can recursively apply our technique to
generate category hierarchy on the fly. To start with, our technique can present top K
topics as the first level of categories in the e-catalog. After the user chooses a partic-
ular category, we can dynamically regenerate further K topics by considering only the

documents that are categorized under the chosen category.

1.5.5 Tag Cloud Generation

A Tag Cloud pictorially shows the K topics of the underlying corpus by using different

font sizes. Our technique can generate those tags meaningfully (honoring various quality

Ohttp://en.wikipedia.org/wiki/Apple_(disambiguation)
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criteria.)

1.6 Contributions of This Thesis

The major contributions of this thesis are the development of:

e A framework for the evolution of an adaptive document organization approach that

can:

— address the document organization challenges that are described in Section
1.1, that is, under/over-specified categorization, intent coverage and temporal

relevance of document organization:

— incorporate outputs of different types of document classification, topic mod-
eling and knowledge mining techniques as features and learn a suitable linear

mixture of them:

e A generic algorithm —that is based on AMN — order to enable matching, such as
documents and topics, news and advertisements, videos and course contents, and
so on.By applying this algorithm we demonstrate how every digital artifact is as-
sociated with the relevant concept nodes from the knowledge graph. In addition
to identifying the right concept nodes in order to organize the collection, we also
consider user interests in the identification of the concept nodes. Users may input

their preferences and provide feedback to the model/system.

e Active learning techniques that enable the finding of the most uncertain document
and category pairs in an AMN. With the help of these techniques, we demonstrate
the identification of the most uncertain document-category pairs in the seeking of
user feedback. This feedback is then added as constraint in the AMN framework so

that future category identification honors user preferences and restrictions.

e A diversification technique using a knowledge graph. The application of this tech-
nique in order to diversify the associated categories to the documents is presented

in this thesis. Apart from this application, the technique is also applicable to other
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settings such as the diversification of search results, diversification of sentences in a

summarization task, and the like.

e A learning framework for the summarizing of a DAG-structured category hierarchy
by using submodular mixtures. Unlike that which is seen in previous works, we
directly pose the problem as a submodular optimization problem on a concept hier-
archy by using documents as features.The desirable properties of the chosen concepts
include document coverage, specificity, concept diversity, and concept homogeneity;,

each of which, we show, is naturally modeled by a submodular function.

e A method (based on EM and Gibbs sampling) that enables the generation of the
most representative DAG of concepts (or categories) that represent the document
collection. Given a collection of artifacts with fine-grained concept assignment, and
a massive concept hierarchy in the form of a DAG, we show how to infer a sub-DAG

as a summary DAG that has the maximum likelihood of generating the collection.

e A short text expansion technique that can be applied on several ML, NLP and
IR tasks on short texts (such as short text classification, clustering, entity disam-
biguation, and the like) without using task specific heuristics and domain-specific
knowledge for expansion. At the same time, our technique is capable of learning to
expand short texts in a task-specific way. That is, the same technique that is applied
to expand a short text in two different tasks is able to learn to produce different

expansions depending upon what expansion benefits the task’s performance.

1.7 Organization of This Thesis

The rest of the thesis is organized as shown in Figure 1.6

Chapter 2: Describes a framework to associate concepts from a knowledge graph with

documents.

Chapter 3: Introduces methods for identification of most uncertain document-category

pairs in order to seek user feedback in a uncertainty based active learning setup.
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Chapter 4: Presents a method for diversification of category assignment to the documents

using a knowledge graph.

Chapter 5: Describes a framework to summarize a DAG-structured category hierarchy
by using submodular mixtures. This framework allows us to create corpus (document
collection) level categories from the per-document categories, by using the summarization

technique.

Chapter 6: Presents a DAG-structured organization of documents through unsupervised

methods- EM and Sampling techniques.

Chapter 7: Describes a framework to expand short texts in a task specific way, such that
using the expanded texts, the performance of the task (such as document organization,
classification, clustering, and the like) improves. The framework is generic enough to be

adapted by many ML NLP and IR tasks.

In Chapter 8 we conclude our research work and make closing remarks.
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Chapter Summary

When faced with the task of organizing and managing a large digital library of documents
through an automatic text categorization system, the immediate challenge is that of the
choice of categories itself. We expect that categories would be collectively representative
of the documents in the digital library. A completely automated approach to category
creation from the underlying collection could be prone to myopic or noisy category cre-
ation. On the other hand, a completely manual approach to the creation of categories
could be cumbersome and expensive. Through this work, we propose an intermediate so-
lution, by which a global, collaboratively developed Knowledge Graph of categories can be
adapted to a local document categorization problem effectively. We present a principled
approach in order to develop an organization-specific, multi-class, multi-label document
classification system from scratch. We model our classification problem as one of inferring
structured labels in an Associative Markov Network (AMN), in which the label space is
derived from a global category catalog. By incorporating the outputs of various classi-
fication techniques (such as SVMs, Topic Models, Knowledge Mining, and the like) as
dynamic features in AMN along with the document similarity measures (such as Jaccard,
Cosine, BM25, and the like) as static features, we present a novel framework for learning
to associate categories with documents. We evaluate our approach using document col-
lections from Reuters RCV1-v2 and arXiv with Wikipedia as a global catalog and show

that our techniques are effective and practical.
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2.1 Introduction

With the growth of digital data in the form of news, blogs, web pages, scientific articles,
books, images, sound, video, social networks and so on, the need for effective catego-
rization systems to organize, search and extract information becomes self-evident and

imperative.

A natural question in building a categorization system is “what should the representative
categories be?” Imagine a digital library in an academy (or an organization) with thou-
sands of articles on various topics. If a librarian wants to set up a good categorization
system, he or she has to first come up with a set of categories that can effectively represent
the documents in the library. Categories that are generic such as News, Entertainment,
Technical, Politics, Sports, and the like might not help. Each of such categories accumu-
lates thousands of articles and searching for the required piece of information continues to
be challenging. On the other hand, fine grained category creation needs domain experts

and is a laborious task.

The next option for the librarian is to look for some predefined category systems. For
example, categories from Reuters RCV1-v2 Text Categorization Test Collection!, Yahoo
Directories? or DMOZ? can be adopted and one could hope to fit the existing documents in
the library into these categories. How good is such an adoption? For example, Wikipedia
Miner? [95] assigns categories to a document on the basis of (a) a similarity between
the document content and the category description and (b) the coherence between cate-
gory. We conducted an experiment on the Reuters-21578 data set. For a sample of the
Reuters documents, we identified categories for each using Wikipedia-Miner and tabu-
lated the results in Table 2.1. Interestingly, in some cases (Doc ID 5036 and 5038)the
categories of Reuters and Wikipedia-Miner are different form each other. In other cases,
Wikipedia-Miner categories are very fine grained. This indicates that adoption of prede-

fined categories may not work well in all cases.

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/1yr12004_rcviv2_README.

htm
2http://dir.yahoo.com/
Shttp://www.dmoz.org/
‘https://github.com/dnmilne/wikipediaminer/wiki
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Doc Reuters Categories WikipediaMiner Categories

ID

5038 australia, usa Jiffy Lube, Automotive industry, Motor oil

5037 soybean, oilseed, corn, Soybean, Maize, United States Department of
grain, ussr, usa Agriculture, Wheat, Agriculture

5036 usa Hepatitis B, Hepatitis, Hepatitis B vaccine, Vaccine,

Merck & Co.
5027 money-supply, usa Money supply, Moving average, Federal Reserve
System, Money, Economist

Table 2.1: Categories from Reuters versus categories from Wikipedia

There is another practical issue with a predefined category system. FEven though the
category system contains most of the categories that can cover the documents in the
digital library (known as technical coverage), it may not have intent coverage. In other
words, the librarian may not want fine grained categories in some areas and may want
it in some other areas. For example, an institute that works in the filed of computer
science may not wish to have fine grained categories of Bacteria’s or Genes even though
there are documents about classification algorithms for bacteria or gene classification in
its digital library. It may simply require to categorize all such documents under a single
category termed Bio-Informative. However, it may wish to have fine grained categories
in the Machine Learning area such as Classification, Clustering, Active Learning, Kernel
Learning, and the like. The opposite case may be true for an institute that works in the

filed of Bio Technology.

Another practical challenge in a predefined or fixed category system is maintaining tempo-
ral relevance of the category system. The categories that can accommodate the documents
in a digital library today may need more categories in future when new documents are
added to the library. A good categorization system should detect the emergence of these
new categories and evolve its classifier to accommodate the new categories. The primary
reasons for failing to achieve temporal relevance are the assuming of fixed categories and

failing to update the categories to reflect the evolution of new concepts in a growing
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document collection.

To summarize, adopting a predefined category catalog from an existing classification sys-
tem (such as the Reuters text classification dataset) may not be always suitable. Such
a strategy could lead to (i) under or over specific categories (ii) failure to capture user

intention: and (iii) failure to evolve with time.

All these practical issues in designing a document categorization system lead us to con-
ceptualize an alternative strategy that could solve these problems. We propose to define
an evolving global catalog of possible categories where each category is accompanied by
some description of that category. It is not unreasonable to construct such catalogs. In
fact, we have already collaboratively built knowledge bases such as Wikipedia which can
function as a global catalog of categories. Wikipedia’s five million articles cover the ter-
minology required of nearly any document collection [95], which could render it a good
candidate for Global Category Catalog (GCC). Next we need sound techniques to adopt
this global catalog to our local collection of documents. In this chapter, we propose a
technique to solve this problem by learning a model that would project the documents
into a localized subset of the global categories by capturing various signals from the doc-
uments, categories and possibly the structural knowledge in the global category catalog.
In Figure 2.1 we pictorially depict the principle that forms the basis of our categorization
system. We compare our system against existing algorithms and baselines and show that

our approach is effective and practical.

2.1.1 Background

Text classification/categorization is an area in machine learning which is studied well
under a variety of settings such as supervised, unsupervised,semi-supervised, and active

learning.

Supervised text categorization entails learning from “training” data, in which predefined
category labels are manually assigned to a set of documents. Various classifiers that are
YN 7

under headings such as “parametric”, “non-parametric”’, “generative", “discriminate”, and

the like have been extensively studied by many researchers. Multi-label text classification
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Figure 2.1: Categorization Triangle: Global Category Catalog may over-fit the local

documents; Localization of the global catalog is needed to adapt the user perspective of

categorization of documents in to the digital library.

systems allow the assignment of multiple category labels to a new document.For the con-
struction of classification models, several multi-label learning algorithms [59, 144, 69] have
been designed so that the correlation between classes can be exploited. The supervised
learning techniques make use of labeled examples to learn the model parameters. The
only input to our approach is the knowledge graph we present methods to evolving the

model on the basis of feedback from the user.

Rousu et al. [118] present a hierarchical classification system that has a predefined class
hierarchy. Their classification model is a variant of the Maximum Margin Markov Network

framework, in which the classification hierarchy is represented as a Markov tree.

Text categorization systems that adopt unsupervised learning, identify topics or labels
without requiring manual labeling of the data. A significant amount of work on clustering
of texts [165, 130, 148] exists and text has found practical applications such as in the
clustering of search results (http://clusty.com/). Approaches to unsupervised learning,
such as LDA[17] CTM][16], PAM|85|, NMF|6] identify topics as a group of prominent
words. The topic of each cluster usually remains implicit in these approaches, though it

would of course be possible to apply any keyword extraction algorithm to the resulting
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clusters in order to find the characteristic terms. The determining of the right number of
clusters, as well as the discovering of several hundred topics by using these techniques is
challenging. In addition, finding a good representative and a grammatically correct topic

name for a group requires additional effort.

Semi-supervised learning [32] uses a large amount of unlabeled data, along with labeled
data to build classifiers. Since semi-supervised learning requires less human effort and
is more accurate in some cases, it is of great interest both in theory and in practice.
Many algorithms that make use of unlabeled data have been proposed [124, 32, 163|.
Transitive learning, which is a special case of semi-supervised learning uses unlabeled data
during training and classifies the unlabeled data using the learned model; it does not have
any in-built mechanisms to classify unseen data. In some sense, our text categorization
algorithm also makes use of unlabeled data, but it does not follow the semi-supervised
setting. Moreover, we augment our semi-supervised learning approach with active learning

(discussed in detail in Chapter 3) and update our model based on user feedback.

2.2 Formal Problem Statement and Solution Proposal

We now formally define our problem and the approach we developed to solve it.

2.2.1 Problem Definition

We assume that a global catalog of categories (GCC?) C' = {CZ}Z{ has been built with
some description for each category. We further assume that an organization receives
documents in batches D1, Ds, ..., which, we believe, is a fair assumption. For example,
organizations receive weekly, /monthly periodicals/or /magazines, an academic institute
library receives reports or these at the end of the semester/year, and the like. The
organization needs to adopt the global category catalog and logically build an organization
specific category catalog C°" C (' and at the same time, evolve some models to classify

all d; € D; into C°™9. We assume the following major sub tasks specifically:

5For example, categories and article titles from the Wikipedia can form a GCC.
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In this study, a simple yet very effective method using SVM (Support Vector Machine) and RVM (Relevance Vector
Machine) classifier that leads to accurate cancer classification using expressions of two gene combinations in
lymphoma data set is proposed.

MICRO array data analysis has been successfully applied in a number of studies over a broad range of biological
disciplines including cancer classification by class discovery and prediction , identification of the unknown effects of a
specific therapy , identification of genes relevant to a certain diagnosis or therapy and cancer prognosis. The
multivariate supervised classification techniques such as Support Vector Machines (SVMs) and Relevance Vector
Machine (RVMs) ...

'Supervised learning Jikes RVM| _-Micro Array- Least squares support vector machine| | Multivariate analysis, | Gene therapy
EDocument Classification Ranking SVM | |Array programming| ‘Archaeological sub-disciplines! [Breast cancer classification

Regularization perspectives on support vector machines| |[Relevance Vector Machine' Support Vector Machine| [Data Sets'j

Binary Classifier| [Hormone therapy| Radiation therapy |SVM company| Cancer| |Biology| Drug discovery Neuroscience

Figure 2.2: Document with detected keywords and candidate categories (only few shown)

1. Given batches of documents D, Ds, ..., identify C°"Y C C through a combination of

feature design and user feedback.

2. Evolve a multi-label, multi-class document categorization model to categorize doc-

uments into C°79,

The eventual goal is to accurately identify suitable categories {C,...Cr. } for every input

document d; € D; Vi, .

If one could learn an SVM classifier for every category in the GCC, identifying all suitable
categories for a document would entails the identifying of the classifiers label that the doc-
ument as positive. However, learning these classifiers is prohibitively expensive because
the GCC is usually very large (for example Wikipedia has five million titles) making it
impractical to learn a model (like SVM) for every category in the GCC upfront. Hence
it is a challenging task to develop a classification system that can subset the millions of
categories that suit an organization. We attempt to solve this problem using a suite of

active learning and knowledge propagation techniques that we explain next.

2.2.2 Our Approach

It has been observed that a document that is tagged with a category is expected to

contain features such as keywords or/phrases that are indicative of that category [95].
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For example, the text shown in Figure 2.2, contains several words or/phrases that are
indicative of some of the category titles in the GCC (Wikipedia in our examples). We
refer to such categories as candidate categories. However, some of these features could
be either (a) misleading or (b) not relevant in determining the “interesting categories”.
As an illustration of (a), consider in Figure 2.2, the category “Jikes RVM”, which means
Java JVM and is not relevant to the document. Thus, the word “RVM” is misleading as
a feature. On the other hand, though the category “Cancer” is relevant to the document,
the user may want to restrict the choice of categories to the computer science domain, and
may therefore not be interested in categories such as “Cancer’, thus creating a case for (b).
Our goal is to develop a personalized categorization system that has the capacity to evolve
and learn the accurate identification of only relevant categories. This can be achieved by
incrementally learning a classifier for each class, on the basis of user feedback. We expect
the classifier training to result in feature weights such that the effect of the misleading
and irrelevant features that are described above is minimized. This will eventually result
in as many classifiers as the cardinality of C'°"9, which is, in the worst case, the same as C'.
In order to avoid the overhead of invoking the classifier for each class from C°"9 on every
input document, we apply some simple index-based filters that discard categories from
C°"9 which have little or no relevance to the document. We refer to the resulting smaller

subset of categories as the candidate categories and denote this set by C*¢ C "9,

It has been observed that the categories that are assigned to a document either exhibit
semantic relations such as “is-a”, and “association”® or tend to be frequently assigned to-
gether (that is,they tend to co-occur) in a particular instance of the classification exercise.
For example, with the Reuters RCV1V2 dataset, we observe that all pairs of categories
that co-occur even once in the training dataset, co-occur at least in 7% of the documents.
In fact, the co-occurrence of all category pairs is significant at 95% significance level. In

8

other instances of classified data such as DMOZ" or the Yahoo! categories®, we make

an additional observation that co-occurring categories exhibit semantic relations such as
154 7

is-”, or “association”. For example, the category “Linear Classifier” is related to cate-

gories like "Kernel Methods in Classifiers’, “Machine Learning”, and the like are observed

Shttp://marciazeng.slis.kent.edu/Z3919/44association.htm
"The open directory project at http://www.dmoz.org
8http://www.dir.yahoo.com
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Semantic Relation Description Example Categories

synonym Categories that mean exactly or SVM and Support Vector
nearly the same. Machines; Optimization and

Mathematical Optimization;

association An association signifies the SVM and Kernel Methods;

connection between two categories.| Optimization and Constraint

It can be unidirectional when one Programs;

category includes the other within
its description, or bidirectional
where both categories use each

other in their descriptions.

is-a 15-a is a consumption relationship Decision Trees and
between categories, when one Classification Algorithms;
category A is a subclass of another Linked List and Data
category B. Structures;

Table 2.2: Co-occurring categories and the relations that they exhibit

to occurrence as labels for a document on “Classifiers”. Another illustration, is that of
the categories “Supervised Learning” and “Document Classification” which exhibit a large
amount of overlap in their textual descriptions. Table 2.2 lists examples of co -occurring

categories and the relations they exhibit according to the Wikipedia catalog.

To summarize, we identify two types of informative features to identify relevant categories
for each document: (i) a feature that is a function of the document and a particular
category, such as the category-specific classifier scoring function evaluated on a document
and (ii) a feature that is a function of two categories, such as their co -occurrence frequency
or the textual overlap between their descriptions. We find that the Markov Network (MN)
[119], is a very natural manner of modeling these two types of features. Next, we provide

a more detailed description of our modeling of this problem as a Markov Network.

For every input document d, we construct a MN of the candidate categories C°"¢, such

that each node represents a candidate category C; € C and edges represent the asso-
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ciation between the categories. Modeling inter-category relations through edges serves
two important purposes in our approach: i) When a new organization starts categorizing
documents, the classifier models are initially not tuned. The only information that is
available to the categorization system is the category description. It is not practical to
assume a that comprehensive description will be available for every category. In such
cases, the relationships between the categories can help to propagate descriptions across
categories through their neighbors. ii) As a part of the learning of the model parameters,
the system solicits user feedback on some of the suggested categories for a document.
Based on the feedback, the category specific model (classifiers such as SVM) is updated.
The category relationships help in propagating the learning to the neighbors. This reduces
the amount of feedback that is needed to learn model parameters. We will illustrate both

these advantages in our experimental section.

Our aim is to learn to assign a binary label (0/1) for every category node C; in the
above MN. Label 1 indicates that the category C; is valid for the document d and 0
indicates invalid. The collective assignment of labels for all the nodes in the Markov
network produces relevant categories for the document d. As we will see later in the
thesis, optimal assignment of these labels can be achieved through MAP inference using

Integer Linear Programming.

Since the categories that are assigned to a document happen to be related with each other,
we employ a Markov Network variant that is known as an AMN [139]. The subsequent
sections explain our techniques of modeling the categorization problem in AMN with other
classifiers (such as SVM) and similarity functions that act as node features in the AMN

framework.
In algorithm 1, we present the steps of our overall category discovery process.

Figure 2.3 illustrates the overall process of evolving a personalized classifier. The Per-
sonalized Classifier component detects and assigns personalized categories for the input
documents by using GCC, Constraints and other Model Parameters. The Active Learner
component chooses selected documents and categories therein in order to solicit user feed-
back. The feedback is used to update the constraints and learn the personalization model

parameters.
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Algorithm 1 Batch Category Discovery Process

1:

10:

Input : Global Category Catalog (C}...Cy), Document batch D;, Previously learned
Model parameters 6°

Output : Categories relevant to each document d; € D;, Updated Model parameters

6)t+1

for all d, € {D,} do

Retrieve categories from GCC and prune uninteresting categories for d;
Build an Associative Markov Network (AMN) over categories from the global
category catalog
Compute node potentials ¢; and edge potentials v;; using the model parameters
0" and the structural constructs
Perform 0/1 inference on the above AMN. Assign all categories labeled as 1 to
document d;

end for

Seek feedback on the Category assignment from the user (In Chapter 3 we present a
joint Active Learning technique over the Document and Category space to select the
most uncertain document-category pairs for seeking feedback and hence reduce the
cognitive load on the users.)

Solicit user feedback F' for selected documents and categories and update model pa-

rameters, using learner £

6t+1 —y (‘9757 F)
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Figure 2.3: Architecture of evolving personalized categorization system.

The important notations that used in this chapter are listed below:

d or d;|Single input document; d - document vector; Dy, D, ... batches of input documents.

C; |Category in GCC represented by the N hode in the Markov Network (MN)

x; |Feature vector for it node (C;) in the MN

T ith feature in the feature vector x;

x;; |Feature vector for the edge connecting it and jth node in the MN

x |Set of all node and edge feature vectors in the MN

y; |Set of all node labels in the MN

y |Set of all node labels in the MN

¢; |Node potential of i node in the MN

¢i; |Edge potential of the edge connecting i and jth node in the MN

Table 2.3: Notations used in this chapter

2.3 Building the Personalized Classifier Model

We now describe the our technique for building a personalized document organization
system. We start with the background on Markov Network, Associate Markov Networks,
and then describe solving our problem of associate categories with the documents using

these techniques.
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2.3.1 Markov Random Field

A Markov Random Field, also known as Markov Network is an undirected graph with a
set of cliques C and a clique potential ¢, which is a non-negative function that is associated
with each ¢ € C. In the context of classification, we consider conditional MRFs which

define the distribution

o HCG(C ¢c (Xca yc)
P(Y|X) B Zy’ HcE(C ch (XCa y,c) (2.1>

where x. and y. are the features and labels of nodes in the clique c¢. Here, the potential
¢. is a mapping from features and labels to a positive value. The higher the value, the
more likely it is that the labels y. are correct for the features x.. The denominator in
equation 2.1 is called the partition function,( usually denoted by Z,) and is essentially a

sum of all possible labeling s.

2.3.2 Associative Markov Network

To simplify the problem, the size of the cliques is usually restricted to either one or two.
This results in a pairwise MRF',in which only the node and edge potentials are considered.

For a pairwise MRF with the set of edges E, equation 2.1 simplifies to

Plyfx) = 5 [0 G [T G w0.) (2:2)

Note, here the node features x; are computed by considering the node description and the

input document text. Hence the distribution mentioned above is for a given document d.

Again, Z denotes the partition function given by Z = Zy, [T (xiv) 1Y (xij,yg,y;-).
Note that in equation 2.2, there is a distinction between the node features x; € R% and

the edge features x;; € R%.

2.3.3 Building the AMN Model from Categories

For a given document d, we create a MN G = (N, E),the nodes N are the candidate
categories from the global category catalog. Edges are added on the basis of the relation-

ships between the categories. The relationship can be inferred from techniques as simple
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as capturing the jaccard/cosine similarity between the descriptions of categories C; and
C; or it can be more complex semantic relationships. We assume that there exists good

measures to identify relationships between categories.

In an AMN, only node and edge potentials are considered. For an AMN that has a set of
nodes N and edges F, the conditional probability of label assignment to nodes is given
by 2.2. We use notation x; to denote a set of node features for C; and x;; to denote the
set of edge features for the edge that connects C; and Cj. y; and y; are the binary labels
for nodes C; and Cj.

Note, here the node features x; are computed by considering the node description and the

input document text. Hence the distribution mentioned above is for a given document d.

The use of the log-linear model is a simple method to define the potentials ¢ and v .

In this model, a weight vector wy, is introduced for each class label k = 1..K. The node

potential ¢ is then defined as logy (x;,y;) = W - x; where k = y; . Accordingly, the edge

potentials are defined as logy (xij, v, y;) = WP - x;; where k = y; and | = y;. Note that

there are different weight vectors w* € R% and wh! € R% for the nodes and edges.

By using the indicator variables y¥ we can express the potentials as

K

loge (xi,y:) = » (Wi -x;) yf (2.3)
k=1

Mw

logt) (%55, Yi, ¥j) - Xi5) YLy (2.4)

k:l

where y¥ is an indicator variable which is 1 if node p; has label k and 0, otherwise.

To bring in the notion of association, we introduce the constraints w*! = 0 for k # [ and
whk >= (. This results in ¢ (x;;,k,1) = 1 for k # [ and ¥ (x;, k, k) > 1. The idea here
is that the edges between the nodes with different labels should be penalized over edges

between equally labeled nodes.

The objective is to maximize P (y|x), which is equivalent to maximizing log P (y|x). By

substituting equations 2.3 and 2.4, the objective becomes

maxzz whx;) yf + Z Z > yly] log Z (x) (2.5)

i=1 k=1 (ij)eE k=1

49



Note that the partition function Z only depends on w and x, but not on the labels y,

hence need not be computed while solving the above optimization problem.

2.3.4 Inferring Categories for a Document

The problem of inference is the determining of the most relevant categories for a new input
document. That is, a subset of nodes (that is, categories) from G which has the highest
probability of being relevant to the input document, has to be selected. To model this
selection, we attach a binary label {0,1} to a node. A node C; with label 1 is considered
to be a valid category for the input document it is considered to be invalid if its label is
0. Node and edge potentials are calculated with K=2, as shown in equations (2.3) and

(2.4).

Correctly determining the categories for the input document is equivalent to solving the

optimization problem in (2.6).

maxz Z (wﬁ : xz) yf + Z Z (wf : Iij) yfj (2.6)

y? =1 Vi with Filter Constraints

The variables yfj represent the labels of two nodes that are connected by an edge. The

last two inequality conditions are a linearization of the constraint yfj =yk A y;?;

Filter Constraints, which are explained in section 2.5, are the user imposed constraints
which force a category not to be selected for a document. Adding filter constraints rather
than filtering out the categories before constructing the AMN itself, allows the propagation
of the influence to the neighboring nodes. For example, if category A is strongly related to
category B (that is, the edge potential between A and B is high), adding a filter constraint

on category A, also forces category B to not be selected for the document during the

50



inference. This happens naturally in AMN because, the MAP inference attains maximum
value when the strongly associated neighboring nodes get similar labels. This is one of the

main reasons for modeling the category identification problem using the AMN framework.

If we have a budget T on the number of categories to be chosen for a document, we can
add the constraint S~  (y}) < T. Then, (2.6) yields the top T categories for the input
document. However, we strongly recommend not to apply a the budget constraint at
this stage. This is because, due to the associative nature of AMN, if categories A and
B are strongly related and the category A is selected for a document, then it is highly
likely that category B will also be selected. Hence, AMN does not enforce diversity in
the selection of the category. Due to this, selecting only those categories that are relevant
to the top T is likely to include very similar categories. We recommend applying the
diversity or summarization techniques that are discussed in Chapters 4 and 5 respectively

in the selection of T" diverse categories at the document or the collection level.

2.3.5 Learning Feature Weights

We now discuss the formulation of objective function for learning feature weights and

then present a technique for optimizing the objective function.

2.3.5.1 Objective Function

The standard approach to learning the weights w given N training examples (x,y) is to
maximize the log (y|x), with an additional regularization term.Here y denote the true
node labels. A method that is proposed by Taskar et al. [139] is the maximizing of the
margin of confidence in the true label assignment y over any other assignment y # y.
They show that the margin-maximization criterion provides significant improvements in
accuracy over a range of problems. In this approach, the quadratic program (QP) takes

the following form:

1
argmin 3 |wl|* + c&

W?E

s.t. WXy + & > maxwXy + (N —y.yn); we>0 (2.7)
y
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Algorithm 2 Cutting Plane Algorithm for Learning Feature Weights
1: Input : Training set (x,¥y) with N examples

2: Qutput : Feature weights w

3: Randomly initialize w® and £©)

4 K={}

5: while Improvement in the objective value in Eq 2.7 is significant do

6: kY = maxwXy + (N —y.¥n)
y

n

K=KuU{x®}
8: Compute w1 by solving the following QP

1
argmin = ||w|” + c¢
we o 2
st. wXy+&>k; Vi €K

w, >0

9: end while

2.3.5.2 Cutting Plane Algorithm for Learning Feature Weights

Taskar et al.[139], present a technique for solving 2.7 using its dual form which has a
variable for each normalization constraint in Equation 2.6 and two variables for each of
the inequality constraints. By substituting the dual variables into the constraints of the
primal form, a QP is formed and solved for w. With a large AMN graph (with several
thousand nodes and tens of thousand edges, solving this QP becomes challenging using
the QP solvers that are available in the public domain. Here we present a cutting plane
style algorithm |74] to directly solve the QP Equation 2.7 in the primal form, in Algorithm
2.

The algorithm starts with a random w and computes the loss augmented inference (LAI)
value £ for the current weights w®). It maintains all the LAI values seen until the
current step t, that is K = {K(O)...K(t)}. A new value of w(* is computed by applying

the constraints over all the values of K = {5(0)...,%(”}. This is because a weight vector
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w1 that fits the training examples better than the previous weight vectors (W(O) ...W(t))
will have w DXy + ¢ values that are at least as large as the previous LAI values K =
{K(O)...K(t) } The constraint set grows in each iteration, improving the weight vector. The

iteration stops when the improvement in the objective value is less than the threshold.

2.3.5.3 Handling Unbalanced Classes

Our training data is highly skewed. Usually a document will have only a few relevant
categories. Hence, most of the category nodes in AMN will have the label 0 and only a
few will have the label 1. For example, in the Reuters RCV1-v2 collection we have 642
categories, whereas, most of the documents belong to less than 15 categories. Hence the
AMNSs that are constructed for such documents will have 642 nodes, of which less than
15 nodes will have label 1 and the rest will have label 0. In order to handle this skew in
the training data, we explored two strategies, namely, (i) penalty variation and (ii) node

boosting.

Penalty Variation We introduce two hyper parameters C),, and C,, that award different
penalties for a label 1 mismatch and a label 0 mismatch in the max-margin training

objective:

1
min 3 [w||* + c€
s.t. wXy + & > maxwXy + C, (N' —y'.y1)
y

+Cn (NO - yoi’\g) 7 We 2 0

where N! and N are the total number of 1s and Os in the training examples;
yl.yl are the total number of disagreements between the actual label 1s and the
inferred label 1s. Similarly y°.y9 are the disagreements between the actual label
Os and the inferred label Os. Empirically we have observed that training with this
technique is highly sensitive to the hyper parameters C, and C,. Setting C,, = 1 and
C, = (# nodes with label 0) / (# nodes with label 1) generally yields better results.
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Node Boosting In this technique, we replicate all nodes that are labeled 1 (and edges
that are labeled 11) multiple times in the training examples, so that the total number of
nodes that are labeled 1s and Os is almost equal. We use this modified AMN for training
as well as for inference. Empirically we have found this technique to be far more useful

than the previous one.

2.3.6 Personalization of Classification

Personalization is the process of learning to categorize by using categories that are of
interest to an organization. As discussed in previous sections, the AMN classifier suggests
categories by virtue of solving the inference problem in (2.6). When the AMN classifier
is initially deployed, the categories that are suggested depend completely on the static
features. It is quite possible for the system to suggest categories that may not be ac-
ceptable to the user(s).The following are plausible reasons: for this i) The description for
each category in the global catalog is not exhaustive. ii) the static node features are not
discriminative across categories, leading to inter category confusion and iii) the user may

not be interested in certain (classes of) categories.

Personalization is achieved by soliciting feedback from a human oracle about the system
suggested categories and by using it to retrain the system parameters. The feedback is
solicited as “correct”, “incorrect” or “never again” for the categories that are assigned to a
document by the system. In the next few sections we describe how this feedback is used

to train our model for personalization.

2.4 Feature Engineering for Personalization

We now present discussion on creating node and edge features for the AMN.

2.4.1 Node Features

Node features in AMN determine the relevance of a category to the input document d.
We divide the node features x; into two types: i) dynamic node features x¢ and ii) static

node features x{. The node feature vector becomes x; = [x{;x7].
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2.4.1.1 Dynamic Node Features

The dynamic node features aid in the personalization of GCC. These feature values are
computed using the category specific classification model that is trained from the user
feedback that is available for the documents that have been examined thus far. Essentially,
we learn an SVM model for every category on the basis of our active learning and user
feedback setting which we explain in detail in Chapter 3. It is possible to consider the
use of other machine learning models such as decision trees, logistic regression, and the
like. Our choice of SVM was based partly on the fact that all of our baselines employ
SVMs and partly on the fact that SVMs are known to yield high accuracies. We employ
the decision function of the classifier as a node feature in the AMN. The SVM decision
function for each category node takes the document d (as a TF-IDF vector),as input and
evaluates P, (d) = w(, d + be,, where w¢, and be, are the SVM parameters that are
learned for the category C;. The output of the SVM decision function is positive if Cj is
relevant to the document d and negative if not relevant. We also treat the output of the
decision function as being 0 if the SVM model is not available for the category C;. We
introduce two features in the node feature vector x; namely, SV M?! and SV M°, which

are denoted using the notation SV M} and SV M}.

The feature value is computed as follows:

Vile, (d)  if Po(d) >0

0 Otherwise

SVM; =

SVMO - _%PCi (d> Zf PCi (d) <0

0 Otherwise

~v; is the damping factor, which reflects the confidence in the SVM classifier for the category
C;. We believe that when the classification system is initially deployed, the SVM models
are not sufficiently trained. Hence, the SVM feature values might not initially provide
reliable signals in deciding the relevance of a category to the input document. As the
categorization system matures by active learning and user feedback, the SVM models get

trained such that we can begin to trust the SVM score progressively. We can control this
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through the damping factor ~;, which increases for a category along with the amount of
feedback that is received for that category. We define v; to be:

0 if con fidence (Pg,) < T

Yi =

confidence (Pg,) otherwise
where T is the user defined threshold, and con fidence (Pg,) is the (o — estimator of the
F1 score of Pg, which is computed as proposed by Joachims [70]. These estimators are
developed on the basis of the idea of the leave-one-out estimation of error the rate. How-
ever, leave-one-out or cross validation estimation is a computationally intensive process.
On the other hand, £a — estimator [70] can be computed at no extra cost immediately
after training every Svme, by using the slack variables &; in the SVM primal objective

and «; Lagrange variables in the SVM dual formulation.

Due to the associative property of AMN, the SVM parameters that are learned for a node
can also influence the label assignments of its neighbors. In other words, if there is a
strong edge potential between categories C; and C, the SVM score propagates from Cj
to C;. This helps in correct detection of the label of node C; even though there may not
be a trained SVM classifier available for node C;. The example in Figure 2.4 illustrates
the knowledge propagation between closely associated (that is, with high edge potential)

nodes. This is precisely that which we want to model using an AMN.

2.4.1.2 Static Node Features

The values of static features do not change as the system evolves. Global features aid
in capturing the structural similarity through the combination of different kernels. In
the absence of local features, global features help in determining the similarity between a
node and the input document. This situation arises when the system is initially deployed
in an organization and has not learned any organization specific model parameters. We
considered standard kernels such as Bag of Words kernels, N-gram kernels and Relational

kernels in our setup.
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Binary Classification (0.3) O
Jikes RVM (0.6)

Support Vector Mgchine (0.93) Supervised Learning (0.65)
.39 .

Chgmotherapy (0.32)

Relevance Vector Machine (0.89) =
0.0 ()| Radiation

DNA Microarray (0.3)

g Breast Cancer
Classification (0.75)

Drug Therapy (0.41)

Protein Microarray (0.18)

Array Programming (0.14)

Figure 2.4: Knowledge Propagation: 1. Nodes B and C with label 1 force the strongly
associated neighbor node A to assume label 1. The knowledge from node B and C prop-
agates to node A. 2. Though node I seems to be valid for the document (with high node
potential), given the context, it is not. Strongly associated neighbors of I, that is, nodes
J, K, L, and M which have low node potentials force the node I to attain label 0. Again
knowledge flows from J, K, L, and M to I.
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2.4.2 Edge Features for Knowledge Propagation

Edges between categories in a Markov Network represent some kind of association be-
tween them. An Edge feature vector (x;;) contains feature values that encourage the
categories C; and C;which are connected by the edge to have the same label if there is a
strong relationship between them. The strength of the relationship is discovered through
combinations of multiple Kernels. Let K; (C;, C;) - - - Ka (C;, C;) be M Kernels that mea-
sure the similarity between C; and C;. Example Kernels include Bag-of-Words Kernel,
Bi-gram Kernel, Trigram Kernel, Relational Kernel, and the like. Further we assume
(without loss of generality) that these Kernels return normalized values (between 0 and
1). We define the feature vector x;; as having M features that signal y; = 1, y; = 1
and M features that signal y; = 0, y; = 0. The feature vector x;; is defined as follows
Vi<m<M
x;; [m] = K, (C;, C;) x (log ¢ (x;,1) +log ¢ (x5, 1))

Xij [M + m] = Km (CMCJ) X (lOggO(X“O) + lOgSD (Xjao))

Note that log ¢ (x;, 1) is the node potential of C; when it is labeled 1 and log ¢ (x;,0) is
the node potential when it is labeled 0. Essentially, when the similarity between nodes
C; and Cj is high, these features collectively favor label 1 on the nodes C; and C}, and

label 0 otherwise.

2.5 Personalization from Category Constraints

2.5.1 Filter Constraints

In the process of personalizing the global catalog, users can indicate (through feedback)
that a category C; when suggested by the system should never reappear in the future
categorization, because the organization is not interested in that category. For for ezample
an organization working in the core area of computer science may not be interested in
detailed categorization of cancers, even though there may be some documents that contain
the classification algorithms for different types of cancers. The system remembers this

feedback as a filter constraint. By filter constraint for a category C;, we mean the inference
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Mali%wy (0.12)

0.3

Breast Cancer
Classification (0.75)

Drug Therapy (0.41)

Figure 2.5: Constraint Propagation: By applying the "never again" constraint on node
N, the label of Node n is forced to 0. This forces labels of strongly associated neighbors
(O,P,Q,R) to 0. This is due to the AMN MAP inference, which attains maximum when

the labels of these neighbors (with high edge potentials) are assigned label 0.

that is that is subject to a constraint set that includes ¢ = 1 as in Equation 2.6. If
categories C; and C are related, we would expect the effect of this constraint to propagate
from C; to C} and encourage y? to also become 1. As shown in the example in Figure 2.5,
if the user suppresses the category Cancer by introducing a hard constraint, the AMN
inference will try to suppress the related categories as well. This is precisely what we

want to model using an AMN.

2.5.2 Bulk Constraints

The key activity in the evolution of the classifier is timely feedback by the users,which
enables the training of the the node specific classifiers in the AMN. This involves the
inspecting of the categories that are assigned by the system to the documents and provid-
ing of the feedback “Correct”, “Incorrect” or “Never again”. This can become a laborious
task when the number of categories that needs to receive feedback increases. In order to
reduce the cognitive load in providing the feedback, we developed a few tools along with

the Graphical User Interface (GUI).

These tools help the user to filter the assigned categories on the basis of the node potential

threshold, and the descendants/ancestors of a particular category. Multiple filter criteria
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can be combined using “AND”, “OR”, and “NOT” logical operators. Users can then apply
feedback to all the filtered category at once in a bulk fashion. This reduces the cognitive

load on the users.

The tool also facilitates the users to get all the neighbors of a category node and exercise
bulk feedback on them. This is useful when we require to filter out an out of domain
categories. For instance, in the example in Figure 2.4, if the user wants to apply “Never
again” constraints to the category “Cancer” and all its related categories, it can be done
all at once by choosing all the neighbors. In addition, users can also select neighbors that
have a strong association with the category by thresholding on the edge potentials. This
is useful when applying constraints to the strongly associated neighbor categories of a

category.

2.6 Candidate Category Selection

Thus far we had conveniently disregarded the problem of spotting important keywords or
phrases from the text of input documents that can map to candidate categories. How-
ever, this is an important phase in the identification of the the right choice of candidate
categories. We refer to this phase as the candidate selection phase, and further identify
two stages within this phase: (i) keyphrasing : identifying important words and phrases
from the input document and (ii) candidate detection : selecting a set of categories from

GCC that relate to these phrases or words.

2.6.1 Keyphrasing

This stage identifies words or phrases that contribute significantly to identifying the doc-
ument’s categories. We consider nouns (and sequence of nouns) to be more important in
detecting a category. After POS tagging the input document, we select the phrases as a
sequence of words that have noun (and adjectives if any)as a POS tag. Once the phrases

are detected, we compute the importance of a phrase p as

C
Importance (p) = count (d,) x log (1 + log (|c01|mt (C )))
p
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where count (d,) = number of occurrences of the phrase p in input the document,
count (C},) = the number of category titles the contain the phrase p and |C| =the total
number of categories in GCC. All phrases with importance greater than a threshold are

considered as key phrases.

2.6.2 Candidate Detection

Key phrases that are detected in the previous step are used to look up an index of category
titles and descriptions in order to retrieve candidate categories. At this stage, we do not
disambiguate the retrieved categories. Irrelevant categories (with incorrect meaning with
regard to input document’s context) get low node feature values and are eliminated during

AMN inferencing.

2.6.3 Temporal Relevance

Evolving personalized categorization system over time has two dimensions: (i) evolving
the classifier when new documents with new categories (which exist in KnG) are seen by
our system, and (ii) evolving C°"% when new categories are added to KnG. For the first
case, assuming that the collaboratively built knowledge graph KnG is upto- date with all
the categories, our spotting phase identifies the features in the document corresponding
to the new categories and adds them to the candidate categories. If these categories get
label 1 during the inference, they are considered to be part of C°"9. For the second case,
the challenge lies in updating the already classified documents with the new categories
added to KnG. One strategy of handling this could be to look at the neighborhood of
newly added categories in KnG, retrieve the already classified documents having categories
present in this neighborhood and reassign categories to these documents by repeating our

inference algorithm.

2.7 Experiments and Evaluation

We now evaluate our proposed approach using various datasets and compare it against

other methods. We start with describing our experimental setup, evaluation methodology,
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and finally discuss our results.

2.7.1 Global Category Catalog (GCC)

We extract Wikipedia Category/Page titles and add them to our GCC. We also construct
a description text for each category in the GCC from the first few paragraphs (gloss)
of Wikipedia’s page. In the case of Wikipedia categories, we concatenate glosses from
multiple pages that are classified under that category. We also carry over the structural

constructs that are available in Wikipedia (such as inlinks, outlinks, titles, and the like)

to our GCC.

2.7.2 Datasets

Although several benchmark text classification datasets (such as 20NewsGroups,
Ohsumed, Reuters, and the like) exist, our choice of datasets was based on the existence
of at-least 100 class labels in the dataset. We report experiments on one existing

benchmark dataset and another manually curated dataset, described below.

2.7.2.1 Reuters RCV1-v2

The Reuters RCV1-v2 collection consists of 642 categories and a collection of 804,414
documents that are multi-labeled. These documents are further classified into a training
set that consist of 23,149 documents and a test set with 781,265 documents. We find the

category set of the Reuters RCV1-v2 collection to be quite coarse-grained.

2.7.2.2 Technical Documents From arXiv.Org

The arXiv is an archive for electronic preprints of scientific papers in various fields which
can be accessed online. Using the Amazon S3 service, we downloaded approximately 600
documents from arXiv in the field of computer science. The purpose of this experiment
was to evaluate the fine-grained class labels that are obtained from the GCC. A group of
human labelers manually labeled these documents and we evaluated the performance of

our system.
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2.7.3 Evaluation Methodology

We report our results in two different settings: (i) a warm start setting and (ii) a cold

start setting.

2.7.3.1 Warm Start Experiments

In this setting, we assume that the librarian has a fair idea of the categories that she needs
and has identified them apriori. Such a setting helps us demonstrate how, on a standard
classification dataset, the Markov network helps to propagate inferred information from
a category to other related categories. We performed warm start experiments on the
Reuters RCV1-v2 collection. While the AMN model exploits inter-class correlation, the
per-class SVM model incorporates feedback on document labels more directly. In the
absence of an inter-class correlation, our model degenerates to a multi-class SVM classifier.
To demonstrate this, we report experiments with two different strategies for sampling

documents: (i) clustered sampling and (ii) random sampling.

Experiments on correlated categories (Clustered Sampling) In this setting, we
selected 66 pairs of related Reuters categories,which spanned 96 categories. For example,
the categories MANAGEMENT and MANAGEMENT MOVES are related. So are LA-
BOR and LABOR ISSUES. Two categories were considered to be related if the number
of training documents that carry both labels, exceeded a certain threshold. Our clustered
sampling entailed sampling of documents that were labeled with both categories in any
of the 66 pairs. We picked 5000 training documents and 2000 test documents using this
clustered sampling procedure. We further divided the training set into 100 batches of 50
documents each. We iterated through the batches and in the k" iteration, we trained our
model (SVMs, ~;, AMN feature weights) using training documents from all batches upto
the k" batch. For each iteration, we performed AMN inference on the sample 2000 test
documents. In Figure 2.6, we report the average F1 score of the test sample for each of

the 100 iterations.

The curves that are labeled EVO-* correspond to the F1 score of our system whereas the

curves labeled mSVM-* are for the F1 score of a plain multi -class SVM. These graphs
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are plotted for experiments with different choices (0.1, 1, 10, 100) of the SVM hyper-
parameter C. As we expect, after approximately 20 iterations, some of the better-trained
SVMs start propagating their learning to their correlated neighbors (enforced by AMN),
thus boosting the overall F'1 score. In other words, the learning rate in our model is faster
than that of a plain SVM model. Hence, with fewer training examples we can achieve
the same level of accuracy/recall as that of a plain multi -class SVM that is trained on

significantly more examples.
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Figure 2.6: Comparison of average (macro) F1 scores of our system (EVO) with SVM on

different ¢ values

Experiments on uncorrelated/loosely correlated categories (Random Sam-
pling) When there is no correlation or very little correlation between the categories,
the AMN will not contribute much to the inference. To study this case, we selected
all the Reuters categories and randomly sampled 2000 test documents from the Reuters
standard test split and 5000 training documents from the training split.The rest of the

evaluation procedure is the same as that in the previous case.

Figure 2.7a shows the average F1 score over 100 iteration. Since there is not much
correlation between the categories, in most of the iterations, F1 score of our model (EVO)

follows the F1 score of multi -class SVM (mSVM). Due to the presence of small number
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Figure 2.7: Comparison of avg (macro) F1 scores of our system (EVO) with SVM (random

sampling)

of correlated categories in the test set, we see a small increase in the F1 score after

approximately 40 iterations.

Figure 2.7b depicts the average F1 scores of EVO and mSVM over the entire Reuters

collection of test and train documents. EVO performs approximately 2 to 5% better.

2.7.3.2 Cold Start Experiments

In this setup, we assume that the librarian does not have any predefined categories to
start with and would like to adapt the categories from GCC. We evaluated this case by
sampling 263 technical documents from different streams of Computer Science in the arXiv
publications repository. With the help of eight human annotators, we assigned categories
to each document by using the vocabulary of Wikipedia article names. Each annotator
annotated approximately 32 documents. These annotators were asked to assign between
1 to 15 categories for each document with the category vocabulary (Wikipedia article
names) limited computer science domain. On an average, they assigned 6.5 categories per

document.

We carried out five fold cross validation with 210 training documents in each fold and 53
test documents. In each fold we trained our model (SVMs, ;, AMN feature weights) using
the training set and evaluated consistency, precision and recall on the test set. During the
training phase, we also applied localization techniques by which we recorded feedback for

the system suggested categories in three forms:“Correct”“Incorrect” and * Never again”.
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Number of Documents 263
Total Categories Discovered by Human Labelers 1054
Total Categories Discovered by EVO 819
Common Categories between EVO and Human Labelers 353
Total Categories Discovered by Wikipedia Miner 1943
Common Categories between Wikipedia Miner and Human Labelers 368
average Consistency over all docs by EVO 37.69%
average Consistency over all docs by Wikipedia Miner 24.56%

Table 2.4: Cold Start experiment results and comparison with WikipediaMiner

We measured the consistency [116] as:

214N B
| Al + | B

Consistency =

where A and B are the total number of categories that the two systems assign (in this

case, one is our system and the other is the human labeler.)

Table 2.4 shows the overall consistency of our system with human annotators. We have
also compared the consistency with the Wikipedia Miner system. Note that, in some cases
WikipediaMiner may generate a category that is relevant to the input document, but out
of the computer science domain. We have treated such labels as incorrect because, we are
interested in evolving an organization specific categorization system, which is the goal of

this chapter.

In Figure 2.8 we compare the F1 scores of all the documents with WikipediaMiner. In
this experiment, we picked up arxiv documents one by one, generated categories and
recorded user feedback for 10 categories. We computed the F1 score for each document
by considering the number of categories that were retrieved by our system and those that
were entered by the human annotators. As is evident from Figure 2.8, our system performs

better than Wikipedia Miner due to its learning ability and propagation of learning to
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Figure 2.9 shows the time required by EVO to generate the categories of each of the

documents.

We also tried to compare our work with CTM [16], but CTM took an unacceptably long

time (approximately 90 hours) to converge in a setting in order to discover approximately

1000 categories. Most of the categories that were discovered by CTM did not make much

sense. Hence we do not consider CTM and similar unsupervised techniques to be suitable

to solve our problem.
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2.8 Conclusion

In this chapter, We presented an approach for the evolving of an organization specific
multi-label document categorization system by adapting a global category catalog in to
a local document collection. The resulting catalog not only fits the documents in the
digital library, but also caters to the perceptions of users in the organization. We address
this by learning an organization specific document categorization meta-model using an
Associative Markov Networks by blending the static features that exploit the structural
similarities between the categories in the global category catalog and the input document
and the dynamic features that help in learning discriminative models such as SVM in
an AMN setup along with user defined constraints that help in localization of the global

category catalog. In the process we also curate the training data.
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Chapter Summary

Evolving a document categorization (described in previous chapter) involves the training
of the system with user feedback (“correct”, “incorrect”, and “never again”) as explained in
the previous chapter. This training can pose a large cognitive load on the user, if the user
has to provide feedback on every category of every document. To reduce this cognitive load
and to achieve greater accuracy with fewer training labels (that is, feedback) we present
a novel joint Active Learning technique in this chapter,in order to jointly select document
and category pairs for feedback. Unlike previous approaches in which active learning is
used to select a set of documents to seek labels, our approach selects a set of document-
category pairs to seek feedback. That is, it jointly selects documents and categories
that are most useful in seeking feedback. We adopt uncertainty based techniques for
active learning which have been successfully used in many applications in the literature.
We propose many techniques to identify the most uncertain categories for a document
from the Markov Network which is constructed as explained in the previous chapter.
We compare our joint active learning model with other uncertainty based models that
are proposed in the literature and show that it performs better in learning to categorize

documents with fewer feedbacks/labels thus reducing the cognitive load on the users.
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3.1 Introduction

In the previous chapter we presented a technique using the AMN framework to automati-
cally organize digital documents with the help of a global category catalog. The algorithm
assigns a set of categories to each document by running MAP inference on the category
AMN. During the process, some noisy categories are assigned to the document due to
the following reasons: (i) When the categorization system is initially deployed, we believe
that the dynamic node features of AMN (which consists of scores from many different
classifiers) would not have been sufficiently trained. Hence, the dynamic feature values
might not initially provide reliable signals in deciding the relevance of a category to the
input document. This leads to the noisy category assignment. (ii) Until the dynamic node
features are trained for the users interests/preferences, they can score the categories as
relevant to the documents, even though the user does not wish to have those categories.
We consider such categories also as noisy categories, even though they are relevant to the
contents of the document. In order to minimize the assignment of noisy categories to the
documents, we need to train the dynamic features (essentially, the classifiers at the nodes
that provide classification scores as dynamic feature values) by providing feedback (which
acts as labels) to indicate if the assigned categories are “relevant” or “not relevant” to the

documents.

Providing feedback involves inspecting every category that is assigned to every document
and marking it “relevant” or “irrelevant”. This is a tedious and resource -intensive (time
and human effort) job. In order to reduce the cognitive load, researchers have developed
“active learning”, which is a family of machine learning methods that may prioritize (or
query) the data instances to be labeled for training by a human annotator (or an oracle).
Research has shown that active learning can achieve higher accuracy with fewer labeled

examples than passive learning (commonly known as supervised learning.)

In passive/supervised learning, the goal of a learner is to infer an accurate predictor from
labeled training data. The labeled training data are examples of input-output pairs (x,
y): the output (or label) y represents the correct answer to a question that is associated
with the input x. For example, in our categorization problem, the label y is the “relevant”

or “not relevant” answer to whether a particular category x which is assigned to the
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document is correct or not. These labeled examples are collected prior to the learning
(training) process. The intention is to deploy a learned predictor to predict the labels of
input instances x that are encountered in the future. The goal of the learner, during the
training process, is to infer such a predictor from the training data which is accurate with

respect to these future input instances.

Active learning models a slightly different framework in which the initially available data
does not have any labels, that is, each training data point is simply an input x without
an associated label y. The goal of the active learner is the same as that of a passive
learner: to infer an accurate predictor of labels from inputs. However, the active learner
is allowed to request the label y of any particular input x in the training data. These
requests can be made sequentially, so as to adapt to the results of previous label requests.
In our categorization problem, this function of the active learner can be considered to be
a request to the to identify user whether a particular category assignment to a particular
document is correct or not!. This interactive process of building up a (partially) labeled
data set may continue for some time, but eventually a predictor (dynamic features, that
are the node specific classifiers in the AMN model) must be returned by the active learner

for use in predicting the labels of future input instances.

The most commonly used query framework in active learning is uncertainty sampling
[83]. In this framework, an active learner queries the instances for which it is least
certain in the aspect of the manner of labeling. This approach is often straightforward for
probabilistic learning models [125]. Several of the proposed algorithms [141, 58, 97] adopt
uncertainty based principles for active learning. Dan Roth et al. [117], present global and
local margin based techniques for active learning in the structured output spaces with
multiple interdependent output variables. Aron Culotte et al. [38], present a new active
learning paradigm which not only reduces the number of instances that the annotator

must label, but also assesses how difficult each instance is to annotate.

Due to the simplicity and effectiveness of the uncertainty sampling technique, we adopt
this method for active learning in our problem. We propose several strategies for the

active learner to identify the most uncertain categories for a document using the AMN

Tt is also possible to ask the user to label the whole document. For each such labeled document, we

can store category-document assignment as correct.
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framework that is described in the previous chapter. We then develop a new technique for
joint active learning on the document space and the category space, in which the system
identifies the most uncertain document-category pairs as a query and seeks user feedback
the for it. Based on this feedback, the system learns a model for categorize the documents
under the right categories (honoring user preferences/interests) from the global category

catalog. In the following sections, we formally describe our active learning approach.

3.2 Deciding Uncertain Categories

We will first define some basic concepts and then delve deeper into our techniques for

active learning.

e Uncertain Node: A category node C; in AMN is more uncertain than node Cj if

lpr (yi=1) —pr(y: =0)| < |pr(y; = 1) —pr(y; = 0)|.

e Influencing Node: A category node C; in AMN is an influencing node if there exists

a node C; in the neighborhood of C; such that y; = k if y; = k for k € {0,1}.

e Inveigled Node: A category node C; in AMN is an inveigled node if there exists a
node C; in the neighborhood of C; such that y; = k if y; = k for k € {0,1}.

3.2.1 Notion of Label Flipping

Let Y = [y1---,4i, - yn] be the labeling of all n nodes in the AMN that yields the
solution to the inference problem in (2.6). Each y; = 0 or 1. Consider flipping the label

of the " node to ¥;, where 7, = . Let Y; = [y}, -y, =7, y,] be the

labeling that is obtained by re-running the inference in equation (2.6) after this flip.

The quantity AY; =n—>3"",  (v;,v.), (where ¢ is the Kronecker delta function) indicates
the number of label flips in Y; with respect to Y which is a result of the flipping of the
label of the i** node.
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If the flipping of label y; in Y results in flipping of y; in Y;, then there exists a path in
the MN from node C; to C; on which every node’s label is flipped in Y;. That is, if Cj, is
a node on such a path, then y, =7, Vk.

Let C; be the node the label of which was flipped due to the flipping of C;’s label. We
know that due to the Local Conditional Independence property of MN, C;; L CyA\ tj3unbr(j) |
Chbr(j) where nbr (j) is the set of neighbors of node j; the label of node C; will change only
if one of its neighbors’ labels changes. Let C}% be one of neighbors. We can recursively
apply the same argument for C;. Eventually we should get the node C; in this recursion,

which indicates that there is a path.

Computing Y; for every node is computationally expensive. We need to run MAP in-
ference once for every node after fixing its label. Hence we present an approximated
algorithm. For each node we flip its label and estimate if this results in flipping of any of
its neighbors’ labels. If it does, then we repeat the procedure for all the neighbors’ whose
labels have flipped. Algorithm 3 outlines this procedure. Empirically we have found that

the approximation error is less than 5%.

A feature space and a hyperplane in separates instances (nodes) with label 1 from instances

that have label 0 and pass through the origin.

Consider a node C; that is labeled 1 after the MAP inference. Let Nbry (C;) be the
neighbors of C; which are labeled 0 and Nbry (C;) be the neighbors that are labeled 1.

We know that w'.x; +w''. 3.\ o

k3

) Xij > wix; + w0, > ieNbm (¢ Xig- This is due to
MAP inference at node C;. Otherwise C; would have been assigned label 0. Using simple
algebraic manipulations, we can re-write this expression as W.X; > 0, where W = w! — w?
, wh = [whoyw!] | w0 = [ww®; 0] and X; = [Xi;Zjerro(Ci)Xij;ZjENbrl(Ci) Xij |-
Note that we use the symbol ;" to concatenate the vector elements according to Matlab
notation. 0 is a vector of zeros. The expression w.X; > 0 represents the half space that
is separated by the hyperplane which is specified by w, and passes through origin in the
feature space of X;. Similarly we can show that the node x; labeled 0, resides in the half

space w.X; < 0.

If a node C; has higher AY; than a node C}, then C; is more influencing than Cj.
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Algorithm 3 Flip-Test Score Generation
1: function FLIP TEST SCORER(C,y,w)

2: Input : AMN of categories C' = (C4...C,,), inferred labels y = (y;, ..., yn), feature
weights w = (w2, wl, w?, wl)

3: Output : Flip-Test score for every node

4: Initialize R [C;] =0 Vi = 1..n

5: for all C; € C do

6: Initialize queue ) with C;

7: Initialize V' = {0}

8: R[C]) =1

9: while @ not Empty do

10: T =Q.pop() > Pick next item from queue
11: Flip the label of T
12: for all N; € Nor(T)and N; ¢ V' do
13: Let z; = label of N; and Z; =~ z;, flipped label of N,

p=w?.2;.6 (2;,0) + wh.2;.6 (2,1) +
L4 Z (wg.xij.é (2:,0).9(24,0)
JENbr(N;)

+ wi.xij.é (Zi, 1) 0 (Zj, 1) )

& =uw’.x;.0 (%, 0) + wk.;.6 (Z;,1) +

15: Z (wg.xij.é (Z:,0) .0 (2,0)
JENbr(N;)
w20 (7,1).0 (2, 1))

16: if ¢ > ¢ then

17: Flip the label of N;

18: R[C)|=R[C;]+ 1

19: Q.push (N;) > Add N; to queue

20: end if

21: end for

22: Add T to V

23: end while

24: end for
return R

25: end function
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If we imagine a hyperplane as in Theorem 3.2.1, all the categories that have label 0 are on
one side of the hyperplane and those that have label 1 are on the other side. Nodes that
are closer to the hyperplane are considered to be more confusing than the one that are far
away. Nodes that are close to the hyperplane that has edges with other nodes, that are
also close to but on the same side, are more likely to pull over the neighbors to the other
side of the hyperplane if those nodes are moved to the other side of the hyperplane (that
is, flipping the label). On the other hand, nodes that are far away from the hyperplane are
less likely to pull over the neighbors along with them because those neighbors themselves

have strong node potentials.

If a node C; labeled 1 (or 0) in AMN has strongly associated neighbors that are labeled
0 (or 1), it is more likely to be an uncertain node than a node with neighbors that have

identical labels.

Consider two nodes C;, C; with a strong edge between them. Case 1: Let both of them
have the same label, for example 1. Let p = |pr (y; = 1) — pr (y; = 0)|. We can estimate
p in terms of potentials as p o< |(w), — w0) .x; + wl.x;;|. Case 2: Let both the nodes have

different labels, for example y; = 1,y; = 0. In a manner similar to the previous case, we

0
n

can estimate p’ oc |(w) — w?) .x;|. Clearly, p’ < p. According to Definition 3.2, nodes in

Case 2 are more uncertain than in Case 1.

A node with y; = 1 and logy (x;,1) < loge (x;,0) is more likely to be an inveigled node.
So is a node with y; = 0 and logy (z;,0) < logp (z,1).

Consider an AMN without any edges. If logp (x;,1) < logy (x;,0),then MAP inference
assigns label 0 to it. However, when edges are considered, MAP inference assign label 1,
that is, y; = 1. This implies that the node C;’s label changes on the basis of its neighbors’
labels. As per Definition 3.2, C; is an inveigled node.

A node that has a lower margin distance

m; = wl.xi + wn. E Xij — UJOX7; + woo. E Xij
JENbri(z;) JENbro(z;)

1S more uncertain.

Consider the hyperplane w as defined in Theorem 3.2.1. The distance of a point 7; from

wW. T
— 2
llw]|

this hyperplane is given by . By ignoring the denominator (because it is common for
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Figure 3.1: Document Category Bipartite Graph

all points) we have the distance ocw.7;. By expanding and rearranging the terms, this
expression reduces to m;. Therefore,the lower the m;,the closer is the point to hyperplane

w, and hence more uncertain.

Our active learning strategy is to seek feedback for nodes that are influencing,

inveigled, and uncertain.

We prepare a ranked list of nodes (with the most uncertain node at the top) to seek
feedback. Influencing and Inveigled nodes are placed at the top of the list. If there are

many such nodes, we order them according to the margin distance m;.

3.3 Deciding Uncertain Documents

In the previous section, we identified the most uncertain categories for each document to

be categorized. We now make use of this to identify the most uncertain documents.

The association between documents and categories can be represented as a bipartite graph
as is shown in Figure 3.1. Documents are shown on the left side and categories on the

right side. Fach document is connected to its L most uncertain categories.

Our approach is to select a subset of documents that results in the maximum coverage of
the most uncertain categories. Specifically, we solve the following optimization problem

to identify the uncertain documents.
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argmax Z a;y; + Z biz; (3.1)
Y,z

st. Y z=P (3.2)
Z z; > y; Vi connected to j (3.3)
0<z <1 (3.4)
0<y; <1 (3.5)

Vieland j€J

where, I is the set of indices of categories J is the set of indices of documents, and:
e qa; is the gain that is associated with selecting the ;th category C;. We choose this to
be the maximum uncertainty score of C;. The uncertainty score of C; is the margin

distance [141] from the margin that is introduced in Theorem 3.2.1.

e b; is the gain that is associated with selecting the jth document d;. We choose this
to be the uncertainty score of d; = f (Ch,...,Cy); for some function f of related
categories. For for example, a simple version of f can be the one that chooses the

score of the most uncertain category that is connected to d;.

e z; €{0,1} and y; € {0, 1} will be the integer solution at optimality.

P is the number of documents for which the user is willing to give feedback.

Feedback is sought from the user for the documents with z; = 1. Note that for ecach
document, feedback is sought only for those categories that are identified as the most

uncertain in Section 3.2.

3.4 Incorporating Feedback for Personalization

Based on the feedback provided by the user, we learn and update the per-class SVM

models. For instance,the user may mark category C; as correct for document d and C}
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Figure 3.2: Interface for category generation and feedback

as incorrect. We subsequently treat document d as a positive example for C; and as a
negative example for C;. We update Svmg, and Svmg, by including d as an additional
training example. This gives us updated SVM parameters (w¢,, bc,) and (Wcj, bcj) which
we incorporate in the SVM decision functions (the dynamic node features described in
Section 2.4.1.1) for subsequent categorization. Periodically, we also retrain the AMN so
that the weights for the SVM features are recomputed as the individual SVM models

mature and start to stabilize.

Figure 3.2 presents snapshots of the interface of our system in order to solicit user feedback.
In the snapshot on the left side, the user can enter text (or choose one from a collection)
and ask the system to suggest candidate categories. In the snapshot on the right side, the
system lists categories for feedback in decreasing order of uncertainty. User can provide
feedback by choosing one of the options: “Correct”, “Incorrect”, “Never Again”. (Note, in

the GUI, we refer to categories as Facets)

3.5 Experiments and Evaluation

In this section we evaluate the effectiveness of our proposed active learning method by
comparing it against other methods from the literature and show that our method is

superior in the aspect of the evaluation metric.
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3.5.1 Preparation

To evaluate our proposed method of active learning, we construct an AMN over categories
for each document using the techniques that are presented in the previous chapter. As in
the last chapter, we report our experimental results of the Reuters RCV1-v2 collection.
This collection consists of 642 categories and a collection of 804,414 documents that are
multi-labeled. These documents are further classified into a training set that consists of

23,149 documents and a test set with 781,265 documents.

We construct the AMN over categories for each Reuters document using the GCC that
is built from Wikipedia as explained in the previous chapter. These AMNs are used to

validate our active learning techniques that are explained in Sections 3.2 and 3.3.

3.5.2 Evaluation Methodology

We compare the effectiveness of our active learning algorithm with the HIClass system [58|
by Godbole et al. and Simple-Margin, MaxMin-Margin, Ratio-Margin algorithms by Tong
et al. [141]. The techniques proposed by Tong et al. are based on the margin distance
in a two class SVM classifier. We extend this to a multiclass scenario by aggregating the

margin distances for multiple classes.

In these evaluations, as in our warm start tests, we obtained 5000 training documents
randomly from Reuters training split and divided them into 100 batches of 50 documents
each. In each iteration, we added the next batch and trained our model. However, the
feedback was recorded only for 10 most uncertain documents and five most uncertain
categories for each document as suggested by our active learning algorithm. Based on the
feedback, the documents were treated as positive or negative examples for the categories
and the underlying SVMs were retrained. Thereafter, we retrained the AMN model

parameters.

In cases of HIClass, Simple-Margin, MaxMin-Margin and Ratio-Margin, in each iteration,
we obtained 10 most uncertain documents from the current batch as suggested by the

respective algorithms. For all those documents we picked up five categories with the lowest
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Figure 3.3: Comparing our Active Learning technique with others

SVM decision values as the most uncertain categories. Further we recorded feedback and

retrained our model parameters as in the previous case.

3.5.3 Result Discussion

From the results in Figure 3.3a we observe that, with our combined active learning logic
over the document and category space, we are able learn at a faster rate and with an
improved F1 score. Viewing the results from the perspective of the amount of feedback
needed to achieve a required level of F1 score, we observe in Figure 3.3b that, with our
technique, we need a significantly lower amount feedback, resulting in a lowers cognitive

load on the user.

3.6 Conclusion

We presented an approach for joint active learning in the document-category space by
using uncertainty sampling techniques. We showed how uncertain, influencing and invei-
gled nodes can be identified in a category AMN, from which the most uncertain categories
can be presented as a query to the user. Instead of querying the users for the uncertain
categories for each document, we presented a joint active learning technique to identify
the most uncertain documents and categories together as document-category pairs. Our
experimental results of the Reuters RCV1-v2 document collections showed that our pro-

posed active learning approach outperforms several other baselines and methods.
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Chapter Summary

With the Associative Markov Network (AMN) based framework for category assignments
to the documents (introduced in Chapter 1 and 2), many categories that are closely related
to each other get assigned to a document. This is due to the “associative” property of
AMNs. Even though the categories are relevant to the document, a large set of similar
categories make it harder to bring out the diversity in the category distribution of the
document. Moreover, when there is a budget (K) constraint on the number of categories
that can be associated to a document, it becomes extremely important to produce a diverse
but relevant set of categories in the precious top K positions. This calls for addressing two
types of needs: (i) producing relevant categories for documents and (ii) selecting a set of
K diverse categories to satisfy different classes of information needs. In this chapter, we
present a novel technique using a Biconvex optimization formulation as well as adaptations
of existing techniques from other areas, for addressing these two problems simultaneously.
We propose a graph based iterative method to choose diversified categories. We evaluate
these approaches on the QRU (Query Representation and Understanding) dataset used
in SIGIR 2011 workshop as well as on the AMBIENT (Ambiguous Entities) dataset and
present results on generating diversified query results. We also compare these approaches
against other online systems such as Surf Canyon, Carrot2, Fxalead and DBpedia and

empirically demonstrate that our system produces competitive results.
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4.1 Introduction

The Associative Markov Network (AMN) based category identification results in associ-
ation of bunch of similar categories to a document. This is due to the “associative” or
“attractive” edge potentials property of the AMN. The MAP inference on AMN encour-
ages strongly related neighbor nodes in the graph to attain similar labels. Hence, a node
that is labeled 1 strongly influences its related neighbors also to get label 1. Due to this,
a digital document usually is assigned with many categories of similar nature. For exam-
ple, This poses a few challenges for the automatic document classification system. (i) A
large group of similar categories naturally eclipse the smaller groups and suppress them
from being evident on the documents. (ii) When the categories are used by downstream
applications/stages (for example, categories are used for summarization in the next Chap-
ter) similar categories provide restricted information for the subsequent consumers (iii)
When there is a budget constraint on the number of categories assigned to a document,
and similar categories provide redundant information content;then the assigned categories
should be diverse enough to cover the topics of the document. This calls for presenting a
diversified but relevant set of categories in the top k positions. Note that, in this chapter
we consider each category assigned to a document as describing some aspect (concept)

related to the document.

We present an original method as well as adaptations of some existing methods to solve
this problem. In our proposed method, we construct a category graph with the categories
as its nodes and edges indicating their similarity. This graph is same as the graph created
in the earlier chapter (Chapter 2). We define two sets of similarity functions; one set of
similarity functions measure the similarity between category nodes and the document, and
another set of similarity functions measure the similarity between pairs of category nodes.
During the training step, we learn a function of the feature weights to combine the features.
One possibility is to apply AMN learning technique presented in Chapter 2. However,
AMN training does not explicitly account for diversity in the inferred categories. Inspired
by the works on GCD [48] and MMR [28|, we develop a new technique for diversifying the
ranking of categories. As part of this technique, we propose an algorithm — Rel-Div — to
learn the node and edge weights of the category graph interactively by solving a biconvex

optimization problem. At inference time, we solve a submodular optimization problem to
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choose k diverse nodes and present them as the categories for the document.

Even though this chapter describes the Rel-Dev technique, one of the goals of this chapter
is also to empirically study the weight learning techniques from AMN and Rel-Dev. That
is, we can either use AMN training technique or Rel-Dev bi-convex optimization technique
to learn the node and edge feature weights. Inferring categories of the document can then
be done in two different ways: (i) do the AMN inference without budget constraint and
then apply submodular optimization presented in Rel-Dev technique to choose k diverse
categories; or (ii) directly apply the submodular optimization technique in Rel-Dev to
the entire set of categories. Empirically we find that first approach works better due
to the AMN’s associative property doing a good job in first identifying all the relevant
categories of the document, thereafter diversifying using Rel-Dev technique eliminates the
redundant categories. In addition, the bi-convex optimization technique weight learning in
Rel-Dev suffers from a local minimum problem, which deteriorates the quality of inferred
categories. However, AMN weight learning objective function is convex for binary variable

case and hence finds optimal weights.

In the Rel-Dev technique, we identify categories relevant to the document, yet diverse
among themselves, using a set of node features — as in Chapter 2 — derived from publicly
available internet encyclopedia. Though we used Wikipedia as the source, we believe that
the repository can be easily extended to accommodate other catalogs like YAGO and

Freebase.

We compare Rel-Dev approach with other diversification approaches (which were applied
not necessarily to solve the same problem as ours) such as variants of GCD [48], Affinity
Propagation [55],[56]. We evaluated results on benchmark queries from the SIGIR 2011
workshop’s QRU (Query Representation and Understanding) dataset and the AMBIENT
data sets. In addition, we compare the diversity results of our approach against those of
other online systems such as Surf Canyon, Carrot2, Exhaled and DBpedia. Note that, in
these experiments, we apply our Rel-Dev technique to the problem of diversifying search
results of a query, Though this problem is different from the category diversification
problem that we are dealing with, it allows us to compare our technique with baselines

and other approaches on the benchmark datasets.
We summarize our contributions as: 1) Top-K diversity ranking using a graph based

85



approach. 2) Iterative Graph weight learning technique - A new iterative technique for
learning the node and edge weights for a category graph by solving a biconvex optimization

problem.

4.2 Prior Work

Most of the prior research has focused on generating diversified result urls. The approach
presented by Swaminathan et al. [137] filters initial search results and covers diversified
topics based on bag of words measures. Yisong and Joachims [158] train a model using
Struct SVM and encode diversity as a penalty function (this is penalty for not covering
certain topics). Most recently, Brandt et al. [22] and Raman et al. [114] proposed an
approach for dynamic ranking and then group URLs with similar intentions. Debey et
al. [48] formulate the problem of ensuring diversity as that of identifying relevant urls
which are most likely to be visited by the random surfer. We propose a new approach
for interpretation generation. A report [63] by M.A Hearst claims that clustering based
on similarity measure may not always result in meaningful interpretations or labels. So,
instead of dynamically generating labels, we pick labels or relevant interpretations for
a query from the pool of wail able labels. We use Wikipedia as a primary source to
capture these interactions along with their semantic relations. Hahn et al. [62] and
Ben et al. [12] produce Wikipedia pages as search results and align the search results
along a set of fine grained attributes/facets. In our work, facets (which we refer to
as interpretations) are neither predefined nor necessarily fine grained. Moreover, as we
will see, our interpretations need not be restricted to Wikipedia entities. Closest to our
approach is the approach of Hao et al. [91]. They apply page ranking technique on the

graph constructed using query log statistics to obtain diversified interactions.

4.3 Diversified Category Selection

We now formally define our problem statement and then discuss our proposed approach

to solve it.
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4.3.1 Diversification Problem Definition

Given a set C of m categories and a document d, we define a function H(d,C) that returns
a subset of categories S C C, that are relevant to the document d. Let S = {c¢;...c,,}.
H(d,C) a matching function that retrieve the categories S which are syntactically and/or
semantically related to the document d. It helps reducing the search space of our algo-
rithm. In its simplest form, H(d,C) can just return C' without performing any matching,
which is not generally useful. A better form of H(d,C) can just do a keyword based
look up on C without applying any sophisticated retrieval technique. On the other hand,
H (d,C) can become as sophisticated as the AMN based category association technique
descried in Chapter 2. Our goal is to choose a set of k categories from S and we assume
that to best satisfy the topical coverage of the document, the k categories associated with

the document should be diverse yet highly relevant to the document d.

4.3.2 The Training Algorithm

We expect groups of categories in .S to be related to each other via some semantic relations.
We initially construct a category-relation graph using c;...c,. We refer to this graph
as an Interpretation Graph, since the categories in this graph are obtained as various
interpretations of the document. While the nodes are categories from S, each edge is
a relation between the categories. A relation could be one of synonymy, hyponymy,
meronymy, homonymy, and the like. These relations could be obtained from external

catalogs such as Wikipedia, Wordnet [100], and the like.

Each node in the graph is assigned a score which represents the relevance of the category
to the document d. We use the notation b to represent the column vector (of size n x 1)
containing all the node relevance scores. The weight on an edge represents the degree of
similarity between the two nodes connected by that edge. We use the notation C' (of size
n X n) to represent the matrix of edge scores reflecting similarity between pairs of nodes.
Note that, each column C? of the matrix C represents an category ¢; and the cell values
in that column indicate the similarity of category ¢; with the other categories. The scores
in b are used to ensure that the subset of £ categories are relevant to the document d,

whereas the similarity scores in C' are used to ensure diversity in the subset of k categories.
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We assume that we are provided training data, consisting of documents and their correct
categories. Our goals in training are to 1) develop a model for the node score b, 2) develop
a model for the edge potentials C' and 3) learn parameters of these models such that the
set of k relevant yet diverse nodes obtained from the graph using b and C' are consistent
with the training data. Thus, implicit in our third goal is the following sub-problem,
which is also our query time inference problem: 4) compute a subset of k best categories

using b and C, that represent k diverse, but relevant categories.

4.3.2.1 Modeling Node Potentials (b)

In order to build a learning model for b, it is important to define a good set of features
that characterize the node’s (category’s) relevance to the document. Let Ny |y (d,S) be
a set of |N| category independent node features. Each feature Ny (d,S) evaluates the
relevance of categories in S to the document d and returns a vector of scores. These
feature functions are problem specific and crafted carefully to bring out the relevance

between document and categories (such as term overlaps, n-gram matches, and the like.).

The node potential vector b is obtained by combining the scores returned by individual
feature functions Ny (d, S). One of the obvious choices is to use Logistic Regression® [155].

That is,
1

14 e ZithweNp(d Sl

bli] =

The weight vector W1 = [wl...w| NI} is learned through supervised training explained in

Section 4.3.2.3.

4.3.2.2 Modeling Edge Potentials (C)

To learn the edge potentials, it is important to define a good set of features that measure
the similarities between every pair of nodes and return similarity scores. Higher the score,
more similar are the nodes. Let Cy ¢ (S) be the set of |C] edge features that evaluate

similarities between categories in S and each returns a n x n matrix of scores. These

'Even though other options are possible here, we restrict to Logistic Regression in this chapter.
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feature functions are problem specific and crafted carefully to bring out the similarities

between the categories.

The edge potential matrix C' is obtained as C' = Z'ﬂl ArCr (S) where 0 < Ay <1 and
> A; > 1Vf. The weight vector \T = [)\1...)\|C|} is learned through supervised training

explained in Section 4.3.2.3.

4.3.2.8 Learning Feature Weights W1 \T

We now introduce a Proposition that sets a premise for learning the feature weights.
The intuition behind this approximated equality comes from the fact that, two similar
categories should have similar relevance score with the document and we are interested

in selecting k diverse categories.

Proposition 1:

k
by C¥ (4.1)
j=1

for sufficiently large k diverse categories, where, C' is the matrix C'with the columns scaled

so that the diagonal cell values match the relevance value, that is, C'(4,7) = b(i). The
th

values i;...ij, represent indices of k columns of matrix C. Hence, C'% is the i; column of

matrix C.

Let ¢; be one of these k diverse categories. If the categories cj ...c; are similar to ¢,
then, b[i] = b[j1] = ... ® b[jp] and C[i,1] = Cli,51] = ... = C[i,j,] =& 1 and C[t] = 0,
t ¢ ji...jp- But, we know that C'[i,4] = b[i]. That implies, b [j1] = C [i, j1], b [j2] = C [i, ja],

.. bljp] = Ci, jp]. When we take the summation on all diverse k categories, the Equation

4.1 holds.

The following example illustrates the Proposition 1. Consider the matrices b, C, and C

as shown in the Figure 4.1.

It has nine categories numbered from 1 to 9. The categories with same color code in-
dicates that they are similar. The categories numbered 1,4,8 are similar (same color

coded). Similarly, categories 2,6,9 and 3,5,7 are similar. Suppose we want to select
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C 1 2 3 4 5 6 7 8 ) b C" 1 2 3 4 5 9
4 1 10210117 0810131034/ 0410703 0.6 1 106!004{006/056/0.08100310.16106310.09
o 0.2 1 02|04 |01|06|02)04)05 0.2 2 (0.12) 0.2 | 0.10.28]0.06]0.06]0.08]0.36|0.27
3(/0.11f{ 02| 1 | 0.2]065/ 0107|0302 0.5 3 (0.07(0.04f 0.5|0.14{0.39(0.01|0.28|0.27|0.06
4/ 080402 1 ]01(02]03(04]03 0.7 4 |048/0.08| 0.1 | 0.7 |0.06(0.02({0.12|0.36(0.09
g|0.13] 0.1 065/ 01| 1 |02]04]03]02 0.6 5 |0.08]0.02|0.33]0.07| 0.6 |0.02]0.16|0.27|0.06
/034 06(01)02]02| 1 ]03(01]02 0.1 6 |(02(0.12(0.05/0.14{0.12| 0.1 |0.12]|0.09|0.06
71 04102]07[03]04]03| 1 ]02]01 0.4 7 [0.24|0.04{0.35|/0.21|0.24|{0.03| 0.4 |0.18|0.03
g/07]04/03)04]03(01)02( 1 |03 0.8 8 (0.42(0.08(0.15|/0.28(0.18(0.01|0.08| 0.9 |0.09
g/ 03]09[02]03]02]02]01]03] 1 0.3 9 |0.18|0.18| 0.1 |0.21|0.12|0.02|0.04|0.27| 0.3

Figure 4.1: Ilustration of Proposition 1

three diversified categories, we expect one category to come from each color code. As
per the Proposition 1, the first category to be selected is the category number 8. This
is because, the column numbered 8 in €' has maximum similarity to the vector b. The
next category to be selected is the category number 7. Because, as per the Proposition 1,
the sum of columns 8 and 7 in C' has maximum similarity to the column b. Suppose we
select column 4 instead of column 7, then we are not selecting diversified categories. In
that case, sum of columns 8 and 4 (which have similar distribution) does not increase the
similarity to the column b. Based on the similar argument, the third category selected

should be category numbered 6. Thus, we select three diversified categories.

Based on the above proposition, we present an algorithm to learn weights W7 and A\
iteratively in a supervised learning setup. The training data is provided in a vector r (of
size n x 1) such that r[i] = 1 if the category ¢; is relevant to the document (and one of
diverse categories), otherwise, r [i] = 0. Note that, the quantity Cr represents the sum of

k columns (assuming k& number of 1s in 7) and is the RHS of Equation 4.1.

Our training objective is to learn AT and W7 such that Equation 4.1 holds. Formally, the

problem being solved is:

1 -
argmin Dl ———7) 2 Cyr (4.2)
A1 AW w N 1+e 2 welNg zf:

where D (z,y) is a distance measure between x and y. (for example, KL Divergence,

Euclidean, and the like.); C ¢ is the normalized C as in Proposition 1.
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Applying the coordinate descent technique, we learn the weights W7 and AT iteratively
using two steps outlined in Equation 4.3 and Equation 4.4, each of them convex in the

respective optimization variables, hence our optimization problem is biconvex.

(t—1) wétq)

div-step: Learn /\§t), /\S), ... holding w; ... constant, by solving:

1 -
argmin D ( Z )\gf)Cfr) (4.3)

(t—1) ’
A1,A2,... 1+6_ngg NQ f

rel-step: Learn wgt), wét), ... holding )\gt_l), /\gt_l), ... constant, by solving:

argmin D (é ZAS&‘”CW) (4.4)
7

t b
W1 ,Wa,... 1+efzgwé)Ng

In div-step, we learn AT by holding W7 fixed and honoring Equation 4.1. In rel-step, we
learn W7 by holding AT fixed. The relevance and divergence is enforced during training

through the vector r.

We learn node and edge feature weights iteratively by recognizing and assigning weights
to prominent node and edge features that satisfy queries of different types. Having all
statistically driven computation of weights for edge features can minimize the side effect
of poor node features and likewise computing weights for node features can decrease the

consequences of poor edge features.

Algorithm 4 outlines the training procedure. I*, I~ are the set of relevant and irrelevant

categories for each document d in the ground truth that is used for training.

4.3.3 Query-time Inference

For a new document d,the inference problem is to choose k diversified categories. Using
H (d,C) we reduce the search space drastically and get the set S. Otherwise, we need to
run our inference on entire set C, which is very expensive. We then compute the node
and edge feature matrices for all defined node and edge features. These individual feature
matrices are then combined (using AT and W7T) to obtain vector b and matrix C. Based
on Proposition 1, our inference objective is to choose k columns from the matrix C such
that their sum is as close as possible to b. Formally, the problem being solved is:

k
argmin D (b, ZC‘”) (4.5)
j=1

i1k
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where 7;...7; are indices of k£ columns of C.

Determining the exact solution (that is, ¢1...75, columns) to the above optimization problem
turns out to be computationally infeasible. Hence, we adopt an approximate solution
based on submodular optimization. The choice of submodular optimization comes from
the the fact that a greedy algorithm selecting an item in each iteration that maximizes
the submodular objective is able to provide 1 — 1/e approximation guarantee. That is,
the inferred categories from the greedy algorithm in the worst case is approximately 63%

inferior to the optimum set of categories that an optimum algorithm can infer.

A set function f is said to be submodular if for any element v and sets A C B C V' \ {v},
where V' represents the ground set of elements, f (AU {v}) —f(A) > f(BU {v}) — {(B).
This is called the diminishing returns property and states, informally, that adding an
element to a smaller set increases the function value more than adding that element to a

larger set.

Our goal in Rel-Div inference is to find a subset T of k categories which are both relevant
to the document and diversified among themselves. To this end, we propose the following

optimization problem (we use the subscript ¢ to indicate ;th element, that is, b; = b][i],

Ciy = C[i,j]):

argmax quz‘bi — Z b;,C; b, (4.6)
IT|=k ieT ijeT

where v is a positive regularization parameter that defines the trade-off between the two
terms, and T consists of the indices of the k categories that will be returned in the ranking
list. The vector ¢ = C - b. Intuitively, its ¢ the element ¢; measures the importance of
¢; . To be specific, if ¢; is similar to many categories (high C;; (j = 1,2,....,)) that are
relevant to the document (high b; (j = 1,2,...)), it is more important than the categories
whose neighbors are not relevant. For example, if ¢; is close to the center of a big cluster

relevant to the document, the value of ¢; is large.

Intuitively, in the above maximization, the first term measures the weighted overall rel-
evance of 7 with respect to the query, and ¢; is the weight for ¢; . It favors relevant

categories from big clusters. In other words, if two categories are equally relevant to the
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document, one from a big cluster and the other isolated, by using the weighted relevance,
we prefer the former. The second term measures the similarity among the categories
within 7 . That is, it penalizes the selection of multiple relevant examples that are very
similar to each other. By including this term in the objective function, we seek a set of

categories which are relevant to the document, but also dissimilar to each other.

Algorithm 5 describes a greedy inference procedure. At each step we pick one column from
C that minimizes the distance in Equation 4.5 most. This is achieved by the first part
(>",c7 @ibi) of Equation 4.6 (maximizing the dot product ensures maximum similarity.)
However, we also ensure that the picked column is most diverse from the already selected
biCiyb; ) of

columns in the previous steps. This is achieved by the second part (ZZ ieT

Equation 4.6. At the end of k steps we will have k£ diverse, but relevant documents.

Algorithm 4 Training
1: Input: Set of training data instances {d,I", 1=, Ny, Cf,r}

2: Output: W¥and AT

3: initialize variables W7%and A\
4: learn initial W using Logistic Regression > uses {d, ™, 1~ Ny}
> C, C'f used below are normalized C, C; as in Proposition 1

5: while not converged(|b— Cr|) do

6: b= compute relevance matrix using W1 and I+
7. find AT so that D (b, > )\fé'fr) is minimized
> W is fixed

8  p=2;A 1O
9: find W'so that D (W, p) is minimized
> AT is fixed
10: end while
return (WT, )\T)
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Algorithm 5 Inference
1: Input: Document d, Category catalog C, AT, W', N;,Cy

2: Output: k diverse interpretations

3: Generate S = H (¢,C) and build a graph using documents in S = {ey, .., e,}
4: Compute b using W' and node features Ny jn| (¢,S)

5: Compute C' = 3" A;Cy (S) and normalize as in Proposition 1

6: R={0} © set of selected indices

7. Q = {i1,..,in} > indices to select

8: for i1 =1to k do

0 argmax ) icrie 4ibi = 2 jerupe biCisbi

10: R :CkR U {ck}

11: end for

return k interpretations representing £ columns Ry, ..., R|p

4.4 Experimental Evaluation

To validate our approach, we want to empirically evaluate the effect of diversity brought in
by our technique. Hence, we evaluate our approach on diversity tasks from the literature,
which focus on measuring the diversity factor in the result of a technique. To this end,
we restrict our evaluation to the query/search result diversification task, which has been
used in many works [48, 55| in the literature. Though the search result diversification
is not the goal of our research (nevertheless our technique can used for the same task,)
and validating our approach on this task provides us a few benefits: (i) These tasks are
specifically designed for measuring the diversity aspect of the result, hence allowing us
to validate and benchmark our approach on diversity (ii) The datasets introduced by
these tasks are publicly accessible and human curated. That is, for every search query
the diverse set of search results have been provided by the human judges (iii) We can use
other methods that have reported their results on these datasets as baselines and compare

our method against them.

In the subsequent sections we give an overview of the datasets that we use, our evaluation

methodology and baselines compared.
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4.4.1 Dataset

The QRU dataset used in SIGIR 2011 contains 100 TREC queries with diversified search
results. These search results are formed by running the query against Google search engine
and hand picking the diverse set of results by the human annotators. Since querying
Google search engine through API is not open to the public and the Google search engine
diversifies its own search results, we avoid using the Google search result to evaluate
our algorithm. We restricted our space of query results to Wikipedia entities. We also
experimented with ambiguous queries from the AMBIENT dataset which consists of 40
one word queries. These queries are in fact Wikipedia disambiguation page titles. This

also made us to make use of Wikipedia articles as the corpus for querying.

4.4.2 Preprocessing

To validate our approach, we make use of the Wikipedia articles as corpus. Each
Wikipedia article is associated with a text description created by the authors. We use
this description to create a reverse index using Lucene 2. The queries from QRU and
AMBIENT datasets are used to retrieve the articles matching the query. We employed a
keyword based Lucene search to query articles. We then created a complete graph of
articles returned as the query results. Node features were defined to measure the overlap
between the query terms and article terms. And, edge features were defined to measure
the overlap (similarities) between a pair of articles (N-gram match, distance between the

articles in Wikipedia category graph, and the like.)

To train and validate the system, we need true diversified results for the queries (QRU
and AMBIENT.) To generate this ground truth, we employed 8 human annotators who
initially ran the query against Wikipedia articles (using Lucene) and manually assigned
a category for every query result. For example, for the query “Ambient”, the categories
assigned to the query result were “music”, “album”, ‘physics’, and the like. We limited the
number of query results to 100 for each query. For each query, top 15 diversified results

were identified by hand picking top search results spanning different categories.

’https://lucene.apache.org/
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Figure 4.2: Comparison with external systems

Precision(%) Recall(%) NDCG-1A(%)
@5 | @10| @10| @5| @10| @10| @5 | @10 | @10
Rel-Div [91.13|89.93(89.83(7.02|13.85| 20.4 | 48.9 | 59.47 | 69.7
21 M-Div 89.87|84.27|84.32(16.74|12.71|18.88| 49.71| 62.68| 67.39
& | M-Div-NI | 83.75] 80 80 |6.83(12.81]119.35]42.48|60.88| 66.52
AFP 783 |1 769 | 80.7 | 6.3 | 124 | 181 | 342 | 38.8 | 47.6
— | Rel-Div |96.05| 92.3 (90.67|7.33|14.57|21.61(32.12| 48.72| 63.1
5 M-Div 96.15|94.15|93.56( 7.43| 14.37|21.61|32.41| 47.49| 58.09
g M-Div-NI | 96.2 | 93.58|93.19| 7.33 | 13.87| 21.11| 22.93 | 43.59| 55.84
< AFP 88.4 1909 | 923 | 6.9 | 13.6 121.47]32.09| 459 | 55.1

Table 4.1: Results of different approaches
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4.4.3 Evaluation Methodology

The interpretations for each query are marked as relevant or irrelevant and each inter-
pretation is assigned one or more categories. The system is trained on 30 percent of the
queries and tested on the rest. We evaluated results on queries of length one or two. The
relevance of any result to the query is measured using precision at different positions and
the diversity is estimated using NDCG-IA [2]. Recall measurement is tricky since it. It
is practically not possible to manually inspect all Wikipedia entities and determine how
many are actually relevant for a query. Hence we based our recall on the candidate inter-
pretations generated. We manually counted the number of relevant interpretations present
in the candidate interpretations and measured how many of these relevant interpretations

appeared in the top k interpretations.

In our experiments, we also consider a couple of other approaches to diversification, which
have been reported in literature, though used in other problem settings. These include

variants of GCD [48| and affinity propagation |55, 56].

e M-Div : Uses page rank matrix M as in GCD instead of the C;, matrix.

e M-Div-NI : Similar to M-Div, but node and edge weights are learned indepen-

dently, without any iterations. This acts as GCD implementation.

e AFP:Exemplar nodes of Affinity propagation are taken as interpretations.

4.4.4 Comparison with Other Approaches

While experimenting with our proposed approach, we found best performance when the
distance D in the div-step was chosen to be the KL-divergence and the D in the rel-step
was chosen as the Euclidean distance. In Table 4.1, we compare the proposed diversifi-
cation algorithm against M-Div, M-Div-NI and AFP on precision, recall and NDCG-TA

measures.

We observed that our Ranking algorithm Rel-Div performs on par with (and sometimes

even better than) M-Div and M-Div-NI. However, one of the major advantage of our
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method compared to M-Div and M-Div-NI is that, we need not calculate the inverse of
C, matrix, which is a computationally intensive process for a large dimension matrices.
We conclude from the results that the Rel-Div performs consistently better than other
approaches when both relevance and diversification are considered across all types of

queries.

4.4.5 Comparison Against Other Systems

We compare the diversity in search result using our approach against those from four other
systems, viz., carrot2, SurfCanyon, Exalead and DBPedia. The queries were directly fed
to these system (through the respective web interface) and top 15 results were collected.
With help of 8 human annotators, we assigned categories to each of the query results. Then
the NDCG-IA metric is computed to compare the diversity aspect of these algorithms. We
observed that the Rel-Div approach produces high diversity in the search results, which

is evident from the Figure 4.2.

Note that, these external systems use their own corpus created by crawling the Web.
Hence they are neither limited to Wikipedia article search nor they all have identical
crawled corpus. Hence comparing these systems with Rel-Dev is tricky. Annotating each
search result with a broad category (such as “music”, “football”, and the like) helps us

neutralize the differences in their corpus and apply NDCG-IA metric as fairly as possible.

4.5 Conclusion

In this chapter we presented a body of techniques for generating top k diversified categories
for a document using some internet encyclopedia, (in particular, Wikipedia was used in
the experiments that were reported). Our approach is hinged on catering to two needs of
the user, viz., that all the categories are relevant and that they are as diverse as possible.
We addressed this using a number of node features and edge features and learn these
feature weights together interactively. We present experimental evaluations and find that
our approach performs well on both the fronts (diversity and relevance) in comparison to

existing techniques and publicly accessible systems.
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Chapter 5

Category Summarization®

Summarization of
category hierarchies via r] pom
submodular mixtures
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*Published: “Multi-Topic Summarization in DAG-Structured Topic Hierarchies via Submodular Mix-
tures”, Ramakrishna Bairi, Ganesh Ramakrishnan, Rishabh Iyer, and Jeff Bilmes. In Proceedings of
the Association for Computational Linguistics/Asian Federation of Natural Language Processing (ACL-

IJCNLP), Beijing, China, 2015.
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Chapter Summary

In this chapter we study the problem of summarizing DAG-structured category hierar-
chies over a given set of documents. The need for summarizing categories arises due
to the large number of categories accumulated from all the documents in the collection.
To get a smaller set of categories that are still representative of the documents in the
collection, we need a sound summarization technique, which is the primary topic of this
chapter. Other example applications of our proposed technique include automatically
generating Wikipedia disambiguation pages for a set of articles, and generating candidate
multi-labels for preparing machine learning datasets (for example, for text classification,
functional genomics, and image classification). Unlike previous work, which focuses on
clustering the set of documents using the category hierarchy as features, we directly pose
the problem as a submodular optimization problem on a category hierarchy using the
documents as features. Desirable properties of the chosen categories include document
coverage, specificity, category diversity, and category homogeneity, each of which, we
show, is naturally modeled by a submodular function. Other information, provided for
example by unsupervised approaches such as LDA and its variants, can also be utilized by
defining a submodular function that expresses coherence between the chosen categories
and this information. We use a large-margin framework to learn convex mixtures over the
set of submodular components. We empirically evaluate our method on the problem of
automatically generating Wikipedia disambiguation pages using human generated clus-
tering s as ground truth. We find that our framework improves upon several baselines
according to a variety of standard evaluation metrics including the Jaccard Index, F1

score and NMI, and moreover, can be scaled to extremely large scale problems.
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Figure 5.1: Category Summarization overview. On the left, we show many documents
related to Apple. In the middle, a Wikipedia category hierarchy shown as a category
DAG, links these documents at the leaf level. On the right, we show the output of our
summarization process, which creates a set of summary categories (Plants, Technology,
Companies, Films, Music and Places in this example) with the input documents classified

under them.

5.1 Introduction

Several real world machine learning applications involve hierarchical categorization of
topics for a set of objects. Objects could be, for example, a set of documents for text
classification, a set of genes in functional genomics, or a set of images in computer vision.
One can often define a natural category hierarchy to categorize these objects. For example,
in text and image classification problems, each document or image is assigned a hierarchy
of labels — a baseball page would be assigned the labels “baseball” and “sports.” Moreover,
many of these applications, naturally have an existing category hierarchy generated on

the entire set of objects [118, 10, 160, 127, 143].

Given a DAG-structured category hierarchy and a subset of objects, we investigate the
problem of finding a subset of DAG-structured categories that are induced by that subset
(of objects). This problem arises naturally in several real world applications. For exam-

ple, consider the problem of identifying appropriate label sets for a collection of articles.
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Several existing text collection datasets such as the 20 Newsgroup!, Reuters-21578% work
with a predefined set of categories. We observe that these category names are overly
general (too abstract)? for the articles categorized under them. On the other hand, tech-
niques proposed in our previous chapters (Chapter 2, Chapter 3) and by systems such
as Wikipedia Miner [101] and TAGME [53] generate several labels for each article in
the dataset that are highly specific to the article. Collating all labels from all articles
to create a label set for the dataset can result in a large number of labels and become
unmanageable. Our proposed techniques can summarize such large sets of labels into a
smaller and more meaningful label sets using a DAG-structured category hierarchy. This
also holds for image classification problems and datasets like ImageNet [43]. We use the
term summarize to highlight the fact that the smaller label set semantically covers the
larger label set. For example, the categories Physics, Chemistry, and Mathematics can be

summarized into a category Science.

A particularly important application of our work (and the one we use for our evaluations
in Section 5.5) is the following: Given a collection of articles spanning different topics, but
with similar titles, automatically generate a disambiguation page for those titles using the
Wikipedia category hierarchy? as a category DAG. Disambiguation pages® on Wikipedia
are used to resolve conflicts in article titles that occur when a title is naturally associated
with multiple articles on distinct topics. Each disambiguation page organizes articles
into several groups, where the articles in each group pertain only to a specific category.
Disambiguation s may be seen as paths in a hierarchy leading to different articles that
arguably could have the same title. For example, the title Apple® can refer to a plant, a
company, a film, a television show, a place, a technology, an album, a record label, and a
newspaper daily. The problem then, is to organize the articles into multiple groups where
each group contains articles of similar nature (topics) and has an appropriately discerned
group heading. Figure 5.1 describes the category summarization process for creation of

the disambiguation page for “Apple”.

http://qwone.com/~ jason/20Newsgroups/
2http://www.daviddlewis.com/resources/testcollections/reuters21578/
3Category Concept is more abstract than the category Science which is more abstract than the category

Chemistry
‘http://en.wikipedia.org/wiki/Help:Categories
Shttp://en.wikipedia.org/wiki/Wikipedia:Disambiguation
Shttp://en.wikipedia.org/wiki/Apple_(disambiguation)
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The choice of Wikipedia disambiguation page creation application to demonstrate our
summarization technique is in line with the focus of this thesis — automatic categorization
of documents. The disambiguation page can be thought of as an organization of various
Wikipedia articles into different categories. Hence, automatic generation of Wikipedia dis-
ambiguation page is equivalent to automatic organization of digital documents. However,
this particular choice of application gives us several benefits: (i) Wikipedia disambigua-
tion pages are human curated categorization of articles and thus act as a sound dataset
for the evaluation of our technique; (ii) The categories assigned to individual Wikipedia
articles too are human curated. This reduces the noise in category assignment to the
documents that gets introduced while applying techniques from Chapter 2, Chapter 3 or
other systems such as TAGME and WikipediaMiner. Thus the error observed during our
experiments reflects the error coming from the summarization technique, and is free from

the errors introduced through document category association process.

All the above mentioned problems can be modeled as the problem of finding the most rep-
resentative subset of category nodes from a DAG-Structured category hierarchy. We argue
that many formulations of this problem are natural instances of submodular maximization,
and provide a learning framework to create submodular mixtures to solve this problem. A
set function f(.) is said to be submodular if for any element v and sets A C B C V' \ {v},
where V' represents the ground set of elements, f(AU {v}) —{(A) > {(BU{v}) — {(B).
This is called the diminishing returns property and states, informally, that adding an
element to a smaller set increases the function value more than adding that element to
a larger set. Submodular functions naturally model notions of coverage and diversity in
applications, and therefore, a number of machine learning problems can be modeled as
forms of submodular optimization |75, 78, 104, 68, 86, 88|. In this chapter, we investigate
structured prediction methods for learning weighted mixtures of submodular functions to
summarize categories for a collection of objects using DAG-structured category hierar-

chies. Throughout this chapter we use the terms “topic” and “category” interchangeably.

5.1.1 Related Work

To the best of our knowledge, the specific problem we consider here is new. Previous

work on identifying categories can be broadly categorized into one of the following types:
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a) cluster the objects and then identify names for the clusters; or b) dynamically identify
topics (including hierarchical) for a set of objects. LDA [17] clusters the documents and
simultaneously produces a set of topics into which the documents are clustered. In LDA,
each document may be viewed as a mixture of various topics and the topic distribution
is assumed to have a Dirichlet prior. LDA associates a group of high probability words
to each identified topic. A name can be assigned to a topic by manually inspecting the
words or using additional algorithms [96, 72]. LDA does not make use of existing topic
hierarchies and correlation between topics. The Correlated Topic Model [16] induces a
correlation structure between topics by using the logistic normal distribution instead of the
Dirichlet. Another extension is the hierarchical LDA [15], where topics are joined together
in a hierarchy by using the nested Chinese restaurant process. Nonparametric extensions
of LDA include the Hierarchical Dirichlet Process [140| mixture model, which allows
the number of topics to be unbounded and learned from data and the Nested Chinese
Restaurant Process which allows topics to be arranged in a hierarchy whose structure is
learned from data. In each of these approaches, unlike our proposed approach, an existing

topic hierarchy is not used, nor is any additional object-topic information leveraged.

The pachinko allocation model (PAM)[85] captures arbitrary, nested, and possibly sparse
correlations between topics using a DAG. The leaves of the DAG represent individual
words in the vocabulary, while each interior node represents a correlation among its chil-
dren, which may be words or other interior nodes (topics). PAM learns the probability
distributions of words in a topic, subtopics in a topic, and topics in a document. We
cannot, however, generate a subset of topics from a large existing topic DAG that can act

as summary topics, using PAM.

HSLDA [107] introduces a hierarchically supervised LDA model to infer hierarchical labels
for a document. It assumes an existing label hierarchy in the form of a tree. The model
infers one or more labels such that, if a label [ is inferred as relevant to a document, then
all the labels from [ to the root of the tree are also inferred as relevant to the document.
Our approach differs from HSLDA since: (1) we use the label hierarchy to infer a set of
labels for a group of documents; (2) we do not enforce the label hierarchy to be a tree as
it can be a DAG; and (3) generalizing HSLDA to use a DAG structured hierarchy and

infer labels for a group of documents (for example, combining into one big document) also
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may not help in solving our problem. HSLDA will apply all the relevant labels to the
documents as per the classifier that it learns for every label. Moreover, the “root” label
is always applied and it is very likely that many labels near the top level of the label

hierarchy are also classified as relevant to the group of documents.

Wei and James [14] present a hierarchical multi-label classification algorithm that can
be used on both tree and DAG structured hierarchies. They formulate a search for the
optimal consistent multi-label as the finding of the best sub graph in a tree/DAG. In our
approach, we assume, individual documents are already associated with one or more topics
and we find a consistent label set for a group of documents using the DAG structured

category hierarchy.

Medelyan et al. [95] and Ferragina et al. [53] detect topics for a document using Wikipedia
article names and category names as the category vocabulary. These systems are able to
extract signals from a text document and identify Wikipedia articles and/or categories
that optimally match the document and assign those article/category names as topics for
the document. When run on a large collection of documents, these approaches generate

enormous numbers of topics, a problem our proposed approach addresses.

5.1.2 Our Contributions

While most prior work discussed above focuses on the underlying set of documents,
(for example, by clustering documents), we focus directly on the topics/categories. In
particular, we formulate the problem as subset selection on the set of categories within a
DAG while simultaneously considering the documents to be categorized. Our method can
scale to the colossal size of the DAG (1 million categories and 3 million correlation links
between categories in Wikipedia). Moreover, our approach can naturally incorporate
outputs from many of the aforementioned algorithms. Our approach is based on submod-
ular maximization and mixture learning, which has been successfully used in applications
such as document summarization [87| and image summarization [142|, but has never

been applied to category identification tasks or, more generally, DAG summarization.

We introduce a family of submodular functions to identify an appropriate set of categories

from a DAG structured hierarchy of categories for a group of documents. We character-
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ize this category appropriateness through a set of desirable properties such as coverage,
diversity, specificity, clarity, and relevance. Each of the submodular function components
we consider are monotone, thereby ensuring a near optimal performance obtainable via
a simple greedy algorithm for optimization.”. We also show how our technique naturally
embodies outputs of other algorithms such as LDA, clustering, and classifications. Finally,
we utilize a large margin formulation for learning mixtures of these submodular functions,

and show how we can optimally learn them from training data.

Our approach demonstrates how to utilize the features collectively in the document space
and the category space to infer a set of categories. From an empirical perspective, we
introduce and evaluate our approach on a dataset of around 8000 disambiguation s that
was extracted from Wikipedia and subsequently cleaned using the methods described in
the experimentation section. We show that our learning framework outperforms many of

the baselines, and is practical enough to be used on large corpora.

5.2 A Preliminary on Submodular Functions

Since this chapter heavily relies upon submodular functions and their properties, we give
a brief introduction to the submodular functions in this section. The concepts presented
in this section have been extensively studied in the literature, documented, and applied
to many problems. Some of those concepts that are applicable to our work presented in

the chapter have been reproduced in section for the completeness of reading.

5.2.1 Introduction

A submodular function is a set function. It has diminishing returns property. That is,
the gain in the function value when an element is added to a subset is more than (or at
the least equal to) the super-set. That is, as the set size increases, the increase in the

function value by adding an additional element to it decreases.

"A simple greedy algorithm [105] obtains a 1 —1/e approximation guarantee for monotone submodular

function maximization
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Let f:2Y — R, be a set function and let n = |V|. The function f is called submodular

if f(A)+ f(B)> f(AUB)+ f(ANDB),forall A, BCV.
f is called monotone if f(A) > f(B) whenever A D B.

Equivalent definition (that can be deduced from the previous definition) is a follows: For

any ACBCVandx eV \B, f(BU{z})— f(B) < f(Au{z}) — f(A).

The above definition shows the property of diminishing returns mentioned earlier.

5.2.2 Operations Preserving Submodularity

In this section we define a few operations on submodular functions that preserver sub-

modularity, and have been used in this chapter.

1. Non-negative weighted combinations of submodular functions are submodular. That
is, if fi,fe, -+, fx, are submodular and aq, ag, - - - , ay are non-negative numbers, the

function g(S) = S2F | o, fi(S) is submodular.

2. If f is a submodular function on V, and T C V, then the function defined by
g(S) = f(SNT) is also submodular.

3. If f is a submodular function on V', and 7" C V, then ¢(S) = f(SUT) is submodular.

4. If f is monotonic, then the function ¢(S) = min(f(95), ¢), where c is a real number,

is submodular.
5. If fis a submodular function on V', then ¢g(S) = f(V '\ S) is also submodular.

6. Application of a concave function to a submodular function preserves submodularity.
That is, if f is a submodular function on V, and ¢ is a concave function, then

g(S) = o(f(S)), where S C V' is a submodular function.

5.2.3 Submodular Function Optimization

Submodular functions look similar to both convex and concave functions. From the defi-

nition of submodularity, these functions look more like concave functions (i.e., they have
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non-increasing discrete derivatives). On the other hand, like convex functions, submodu-

lar functions are more convenient for minimization problems than maximization.

Submodular minimization problem is to find an optimal subset S that will minimize a
submodular function f, i.e., argmingcy f(S). This minimization without subject to any
constraints is computable in polynomial time. However, Svitkina et al. [136] show that
adding constraints like cardinality lower bound makes it NP hard and give approximation

solutions with polynomial lower bounds.

On the other hand, maximization of submodular functions arg maxgcy f(S5) is NP-hard
[105]. Greedy approximation algorithms are generally used to solve this problem in poly-
nomial time with some approximation guarantees. In the following list we summarizes
the approximation lower bounds that have been shown in the literature, and that are

applicable to the kind of submodular functions used in this chapter.

e If the function is monotone, non-negative submodular with no constraints,
Nemhauser et al. [105] show that a simple greedy algorithm gives 1 — 1/e
approximation guarantee. They also show that the same approximation guarantee

holds good with a cardinality constraint.

e If the function is non-monotone, symmetric submodular function, Feige et al. [51]

show that a randomized set algorithm gives 1/2 approximation in polynomial time.

e For unconstrained, arbitrary submodular functions Buchbinder et al. [24] give 1/2

approximate polynomial time algorithm.

5.3 Problem Formulation

Let G (V, E) be the DAG structured category hierarchy with V' categories. These cate-
gories are observed to have a parent child (isa) relationship forming a DAG. Let D be
the set of documents that are associated with one or more of these categories. The mid-
dle portion of Figure 5.1 depicts a category hierarchy with associated documents. The
association links between the documents and categories can be hard or soft. In case of a

hard link, a document is attached to a set of categories. Examples include multi-labeled
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documents. In case of a soft link, a document is associated with a category with some
degree of confidence (or probability). Furthermore, if a document is attached to a cate-
gory t, we assume that all the ancestor categories of ¢ are also relevant for that document.
This assumption has been employed in earlier works [15, 14, 118] as well. Given a budget
of K, our objective is to choose a set of K categories from V', which best describe the
documents in D. The notion of best describing categories is characterized through a set of
desirable properties — coverage, diversity, specificity, clarity, relevance and fidelity — that
K categories have to satisfy. The submodular functions that we introduce in the next
section ensure these properties are satisfied. Formally, we solve the following discrete
optimization problem:

S* € argmax Zwifi(S) (5.1)

SCVi|S|<K

where, f; are monotone submodular mixture components and w; > 0 are the weights

associated with those mixture components. Set S* is the summary categories scored best.

It is easy to find massive (that is, size in the order of million) DAG structured cate-
gories hierarchies in practice. Wikipedia’s category hierarchy consists of more than 1M
categories (categories) arranged hierarchically. In fact, they form a cyclic graph [159].
However, we can convert it to a DAG by eliminating the cycles as described in the supple-
mentary material. YAGO [133] and Freebase [19] are other instances of massive categories
hierarchies. The association of the documents with the existing category hierarchy is also
well studied. Systems such as WikipediaMiner [101], TAGME [53] and several annotation
systems such as SegTag 46|, Wikify [98], TaxonomyKernels |25] attach categories from
Wikipedia (and other catalogs) to the documents by establishing the hard or soft links

mentioned above.

Our goal is the following: Given a (ground set) collection V' of categories organized in
a pre-existing hierarchical DAG structure, and a collection D of documents, chose a size
K € Z, representative subset of categories. Our approach is distinct from earlier work
(for example, [71, 17]) where typically only a set of documents is classified and categorized

in some way. We next provide a few definitions needed later in the chapter.

Definition 1: Transitive Cover I'): A category ¢ is said to cover a set of documents

['(t), called the transitive cover of the category ¢, if for all documents i € I'(¢), either i
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is associated directly with category ¢ or with any of the descendant categories of ¢ in the
category DAG. A natural extension of this definition to a set of categories T is defined as
I(T) = Uer ().

Definition 2: Truncated Transitive Cover (I'*): This is a transitive cover of category
t, but with the limitation that the path length between a document and the category ¢ is

not more than «. Hence, |I'*(¢)| < |['(¢)].

While our problem is closely related to clustering approaches, which consider the set of
documents directly, there are some crucial differences. In particular, we focus on produc-
ing a clustering of documents where clusters are encouraged to honor a pre-defined DAG
structured category hierarchy. Existing agglomerative clustering algorithms focusing on
the coverage of documents may not produce the desired clustering. To understand this,
consider six documents d1, d2 ...d6 to be grouped into three clusters. There may be
multiple ways to do this depending upon multiple aggregation paths present in the cat-
egory DAG: ((d1, d2), (d3, d4), (d5, d6)) or ((d1, d2, d3), (d4, d5), (d6)) or ((d1, d2,
d3, d4), (db), (d6)) or something else. Hence, we need more stringent measures to prefer
one clustering over the others. Our work addresses this with a variety of quality criteria
(coverage, diversity, specificity, clarity, relevance and fidelity, which are explained later
in this chapter) that are organically derived from well established submodular functions.
And, most importantly, we learn the right mixture of these qualities to be enforced from
the data itself. Furthermore, our approach also generalizes these clustering approaches,
since one of the components in our mixture of submodular functions is defined via these
unsupervised approaches, and maps a given clustering to a set of categories in the hier-

archy.

5.4 Submodular Components and Learning

Summarization is the task of extracting information from a source that is both small in
size but still representative. Our problem is different from traditional summarization tasks
since we have an underlying DAG as a category hierarchy that we wish to summarize in
response to a subset of documents. Thus, a critical part of our problem is to take the

graph structure into account while creating the summaries. Below, we identify properties

110



we wish our summaries to posses.

Coverage: A summary set of categories should cover most of the documents. A document
is said to be covered by a category if there exists a path from the category, going through
intermediary descendant categories, to the document, that is, the document is within the

transitive cover of the category.

Diversity: Summaries should be as diverse as possible, that is, each summary category
should cover a unique set of documents. When a document is covered by more than one
category, that document is redundantly covered, for example, “Finance” and “Banking”

would be unlikely members of the same summary.
Summary qualities also involve “quality” notions, including;:

Specificity /Clarity /Relevance/Coherence: These quality measures help us choose
a set of categories that are neither too abstract nor overly specific. They ensure that
the categories are clear and relevant to the documents that they represent. When addi-
tional information such as clustering (from LDA or other sources) and tagging (manual)
documents is available, these quality criteria encourage the chosen categories to show
resemblance (coherence) to those clustering/tagging in terms of transitive cover of docu-

ments they produce.

In the section below, we define a variety of submodular functions that capture the above
properties, and we then describe a large margin learning framework for learning convex

mixtures of such components.

5.4.1 Submodular Components

We now investigate various classes of submodular functions (which we call, the submodular

components)

5.4.1.1 Coverage Based Functions

Coverage components capture the “coverage” of a set of documents.
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e Weighted Set Cover Function: Given a set of categories, S C V, define I'(5)
as the set of documents covered — for each category s € S, I'(s) C D represents the
documents covered by category s and I'(S) = Uses'(s). The weighted set cover func-
tion, defined as f(S) = > cps) wa = w(I'(S)), assigns weights to the documents
based on their relative importance (for example, in Wikipedia disambiguation, the

different documents could be ranked based on their priority).

e Feature-based Functions: This class of function represents coverage in feature
space. Given a set of categories S C V, and a set of features U, define m,(5) as
the score associated with the set of categories S for feature u € U. The feature set
could represent, for example, the documents, in which case m,(S) represents the
number of times document wu is covered by the set S. U could also represent more
complicated features. For example, in the context of Wikipedia disambiguation,
U could represent TFIDF features over the documents. Feature based functions
are then defined as f(S) = >, .y ¥(my(S)), where ¢ is a concave (for example,
the square root) function. This function class has been successfully used in several

applications |77, 149, 150].

5.4.1.2 Simailarity based Functions

Similarity functions are defined through a similarity matrix S = {s;;};jev. Given cat-
egories 7,7 € V, similarity s;; in our case can be defined as s;; = |I'(¢) N ['(j)], i.e the

number of documents commonly covered by both ¢ and j.

e Facility Location: The facility location function,  defined as
f(S) = > ,cymaxXjessi;, is a natural model for k-medoids and exemplar

based clustering, and has been used in several summarization problems [142, 149].

e Penalty based diversity: A similarity matrix may be used to express a form
of coverage of a set S but that is then penalized with a redundancy term, as in
the following difference: f(S) = D icyico S — ADics Djes, Sij 189]). Here A €
[0,1]. This function is submodular, but is not in general monotone, and has been
used in document summarization [89], as a dispersion function [21], and in image

summarization [142].
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5.4.1.3 Quality Control (QC) Functions

QC functions ensure a quality criteria is met by a set S of categories. We define the quality
score of the set S as [, (S) = ). ¢ fq(s), where f, (s) is the quality score of category s
for quality ¢. Therefore, F,, (S) is a modular function in S. We investigate three types of
quality control functions: Category Specificity, Category Clarity, and Category Relevance.

e Category Specificity: The farther a category is from the root of the DAG, the
more specific it becomes. Categories higher up in the hierarchy are abstract and less
specific. We therefore prefer categories low in the DAG, but lower categories also
have less coverage. We define fspecificity (S) = s, where s, is the height of category
s in the DAG. The root category has height zero and the “height” increases as we
move down the DAG in Figure 5.1.

For example, in Figure 5.2, fipecificity (A)) = 0, fipecificity (B)) = 1, and so on.

Root \/Ai h=0

B h-1

.4

‘/ -

\C h=2

‘n h=3

‘\I,)/
Document

Figure 5.2: Specificity example

e Category Clarity:  Category clarity is the fraction of descendant categories
that cover one or more documents. If a category has many descendant cate-

gories that do not cover any documents, it has less clarity. Formally, foarity(s) =

Ztedescendants(s) [[F(t) >O]]
|descendants(s)|

, where [.] is the indicator function.

For example, in Figure 5.3, fearity (B) = 1, because, all the descendants of category
B are covering some of the documents. Meanwhile, fejaity (C) = 1/7 = 0.143, since

only one of the descendant category F is covering some documents.
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Figure 5.3: Clarity example

e Category Relevance: A category is considered to be more related to a docu-
ment if the number of hops needed to reach the document from that category is
lower. Given any set A C D of document, and any category s € V', we can define

frelevance (s]A) = argmin, {a : A CT(s)}.

For example, in Figure 5.4, ficevance (B) = 2, because, it takes 2 hops to reach a
document from the category B. Meanwhile, fielevance (C') = 3, since it takes 3 hops

to reach a document from the category C.
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Figure 5.4: Relevance example

e QC Functions As Barrier Modular Mixtures: @ We introduce a modular
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function for every QC function as follows

. 1 if the height of category s is at least «
specificity (S) =
0 otherwise

for every possible value of a. This creates a submodular mixture with as many com-
ponents as the number of possible values of . In our experiments with Wikipedia,
we had « varying from 1 to 120 stepping by 1, adding 120 modular mixture com-

ponents. Similarly, we define,

1 if the clarity of category s is at least 3
B _
fclarity (S) -

0 otherwise

for every possible (discretized to make it countably finite) value of 5. And,

ljelevance (8) = fCUV (S|F’y (S))
where fooy (+) is the coverage submodular function and s|X indicates coverage of a

category s over a set of documents X.

All these functions (modular and submodular terms) are added as mixture compo-
nents in our learning framework to learn suitable weights for them. We then use
these weights in our inference procedure to obtain a subset of categories as described
in 5.4.2. We show from our experiments that this approach performs better than

all other approaches and baselines.

5.4.1.4 Fidelity Functions

A function representing the fidelity of a set S to another reference set R is one that gets a
large value when the set S represents the set R. Such a function scores inferred categories
high when it resembles a reference set of categories and/or item clusters. The reference
set in this case can be produced from other algorithms such as k-means, LDA and its

variants or from a manually tagged corpus. Next we describe one such fidelity function.

e Category Coherence: This function scores a set of categories S high when the

transitive cover (Definition 1) produced by the categories in S resembles the clusters
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of documents produced by an external source (k-means, LDA or manual). Given
an external source that clusters the documents, producing T clusters Lq, Lo, ..., Lt

(for T' categories), category coherence is defined as:

€s
teT
where,
-1

1 1

Wre = | 5+ 5
Wpy Wiy
It nL

ot IT(k)]
. _ [D(k) N Ly

wk,t ’Lt|

Note that, wivt > 0 and w,z,t > 0 are the precision or recall of the resemblance
and wy, is the F1 measure. If the transitive cover of categories in S resembles the
reference clusters L; exactly, we attain maximum coherence (or fidelity). As the
resemblance diminishes, the score decreases. The above function f(S) is monotone

submodular.

5.4.1.5 Mixture of Submodular Components:

Given the different classes of submodular functions above, we construct our submodular
scoring functions F,,(-) as a convex combinations of these different submodular functions

fi, f2y- -+, fm, above. In other words,

m

i=1

where w = (wy,...,wy), w; > 0,>,w; = 1. The components f; are submodular and
assumed to be normalized: that is, f;(0)) = 0, and f;(V) = 1 for monotone functions and
maxacy fi(A) <1 for non-monotone functions. A simple way to normalize a monotone
submodular function is to define the component as f;(S)/f;(V). This ensures that the
components are compatible with each other. Obviously, the merit of the scoring function

F,(-) depends on the selection of the components.
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5.4.2 Large Margin Learning

We optimize the weights w of the scoring function F,,(-) in a large-margin structured
prediction framework. In this setting, we assume we have training data in the form of pairs
of a set of documents, and a human generated summary as a set of categories. For example,
in the case of Wikipedia disambiguation, we use the human generated disambiguation
pages as the ground truth summary. We represent the set of ground-truth summaries
as § = {51,5s, -+ ,Sn}. In large margin training, the weights are optimized such that
ground-truth summaries S are separated from competitor summaries by a loss-dependent

margin:
F,(S) > Fu(S) +L(S"), vVS8e8,58eY\S, (5.3)

where L£(-) is the loss function, and where ) is a structured output space (for
example ) is the set of summaries that satisfy a certain budget B, that is,
Y ={8 CV:|5 < B}). We assume the loss to be normalized, 0 < £(S5") < 1,VS' C V,
to ensure that mixture and loss are calibrated. Equation (5.3) can be stated as
F,(S) > maxgey [F,(S") + L(S)],VS € § which is called loss-augmented inference. We

introduce slack variables and minimize the regularized sum of slacks [86]:

i F,(S")+ L(S)] — F,(S
wzofﬂiurﬁlzl ge;g[rsrlg/([ (%) (5] (%)

A
+ ol (54)

where the non-negative orthant constraint, w > 0, ensures that the final mixture is
submodular. Note a 2-norm regularizer is used on top of a 1-norm constraint ||wl|[; = 1
which we interpret as a prior to encourage higher entropy, and thus more diverse mixture
distributions. Tractability depends on the choice of the loss function. The parameters

w are learned using stochastic gradient descent as presented by Tschiatschek et al. [142].

5.4.3 Loss Functions

A natural choice of loss functions for our case can be derived from cluster evaluation
metrics. Every inferred category s induces a subset of documents, namely the transitive
cover I'(s) of s. We compare these clusters with the clusters induced from the true

categories in the training set and compute the loss.
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In this chapter, we use the Jaccard Index (JI) as a loss function. Let S be the inferred

categories and T' be the true categories. The Jaccard loss is defined as

| I e OO
Ljaccard(sa T) - k J I?eaTX |F (S) ur (t)|

where k = |S| = |T'| is the number of categories. When the clustering produced by the
inferred and the true categories are similar, Jaccard loss is 0. When they are completely

dissimilar, the loss is maximum, that is, 1. Jaccard loss is a modular function.

5.4.4 Inference Algorithm: Greedy

Having learned the weights for the mixture components, the resulting function F,(S) =
Yo wifi(S) is a submodular function. In the case when the individual components
are themselves monotone (all our functions in fact are), F,(S) can be optimized by the
accelerated greedy algorithm [102]. Thanks to submodularity, we can obtain near optimal
solutions very efficiently. In case the functions are all monotone submodular, we can

guarantee that the solution is within 1 — 1/e factor from the optimal solution [105].

The Algorithm 6 outlines the greedy inference procedure for submodular function opti-
mization. It starts with an empty set A (step 3). At each step, the algorithm selects
a category that gives the maximum marginal increase in the submodular function score
(step 5). This category is then added to the set A (step 6). The marginal increase in
the submodular score «y is computed (step 7) and compared against the threshold. If this
increase is less than the threshold or if the size of set A has reached the budget (step 8),

the algorithm terminates.

5.5 Experimental Results

To validate our approach, we make use of Wikipedia category structure as a category DAG
and apply our technique to the task of automatic generation of Wikipedia disambiguation
pages. The choice of Wikipedia disambiguation page creation application helps us to
demonstrate our summarization technique, which is one of the key stages in handling

the over-specified problem that is being addressed in this thesis. The disambiguation
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Algorithm 6 Greedy Submodular Inference
1: Input : Wikipedia Category DAG G (V, E)as a BN, Document collection D with

observed categories
2: Output : Set of categories
3 A= {0}
4: repeat
5: e = argmazy w;f; (e)

c€V\A i

6: A=AU{e}
oy =2 wifi(A) = Ywifi (A\{e})
8: until ~y ;Threshold allld |A| <Budget

return A

page can be thought of as an organization of various Wikipedia articles into different
summary categories. Each Wikipedia article is associated with multiple categories by
the editors of the articles. Taking all the categories from all the articles listed under a
disambiguation page and adding them as disambiguation group titles will result in too
many groups, which is equivalent to the over-specified problem in document organization
described in Section 1.1.2. However, this particular choice of application gives us several
benefits: (i) Wikipedia disambiguation pages are human curated categorization of articles
and thus act as a sound dataset for the evaluation of our technique; (ii) The categories
assigned to individual Wikipedia articles too are human curated. This reduces the noise in
category assignment to the documents that gets introduced while applying techniques from
Chapter 2, Chapter 3 or other systems such as TAGME and WikipediaMiner. Thus the
error observed during our experiments reflects the error coming from the summarization
technique, and is free from the errors introduced through document category association

process.

We pre-processed the category graph to eliminate the cycles in order to make it a DAG.
Each Wikipedia disambiguation page is manually created by Wikipedia editors by group-
ing a collection of Wikipedia articles into several groups. Each group is then assigned a
name, which serves as a category for the group. Typically, a disambiguation page segre-
gates around 20-30 articles into 5-6 groups. Our goal is to measure how accurately we can

recreate the groups for a disambiguation page and label them, given only the collection
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of articles mentioned in that disambiguation page (when actual groupings and labels are

hidden).

5.5.1 Datasets

We parsed the contents of Wikipedia disambiguation pages and extracted disambiguation
page names, article groups and group names. We collected approximately 8000 disam-
biguation pages that had at least four groups on them. Wikipedia category structure is
used as the category DAG. We eliminated few administrative categories such as “Hidden
Categories”, “Articles needing cleanup”, and the like. The final DAG had approximately
1M categories and 3M links.

5.5.2 Evaluation Metrics

Every group of articles on the Wikipedia disambiguation page is assigned a name by the
editors. Unfortunately, these names may not correspond to the Wikipedia category names.
For example, one of the groups on the “Matrix” disambiguation page has a name “Business
and government” and there is no Wikipedia category by that name. However, the group
names generated by our (and baseline) method are from the Wikipedia categories (which
forms our category DAG). In addition, there can be multiple relevant names for a group.
For example, a group on a disambiguation page may be called “Calculus”, but an algo-
rithm may rightly generate “Vector Calculus”. Hence we cannot evaluate the accuracy of
an algorithm just by matching the generated group names to those on the disambiguation
page. To alleviate this problem, we adopt cluster-based evaluation metrics. We treat
every group of articles generated by an algorithm under a category for a disambiguation
page as a cluster of articles. These are considered as inferred clusters for a disambigua-
tion page. We compare them against the actual grouping of articles on the Wikipedia
disambiguation page by treating those groups as true clusters. We can now adopt Jaccard
Index, Fl-measure, and NMI (Normalized Mutual Information) based cluster evaluation
metrics described in IR book [123]. For each disambiguation page in the test set, we

compute every metric score and then average it over all the disambiguation pages.
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5.5.3 Methods Compared

We validated our approach by comparing against several baselines described below. We
also compared two variations of our approach as described next. For each of these cases
(baselines and two variations) we generated and compared the metrics (Jaccard Index,

Fl-measure and NMI) as described in the previous section.

e KMgoes: K-Means algorithm run on articles as TF-IDF vectors of words. The
number of clusters K is set to the number of true clusters on the Wikipedia disam-

biguation page.

o KMedgocs: K-Medoids algorithm with articles as TF-IDF vectors of words. The

number of clusters are set as in KM ggs.

o KMed;opics: K-Medoids run on categories as TF-IDF vectors of words. The words
for each category is taken from the articles that are in the transitive cover of the

category.

e LDAyocs: LDA algorithm with the number of topics set to the number of true
clusters on the Wikipedia disambiguation page. Each article is then grouped under

the highest probability topic.

e SMML,.,,: This is the submodular mixture learning case explained in section
5.4.1.5. Here we consider a mixture of all the submodular functions governing
coverage, diversity, fidelity and QC functions. However, we exclude the similarity
based functions described in section 5.4.1.2. Coverage based functions have a time
complexity of O (n) whereas similarity based functions are O (n?). By excluding
similarity based functions, we can compare the quality of the results with and with-
out O(n?) functions. We learn the mixture weights from the training set and use
them during inference on the test set to subset K categories through the submodular

maximization (Equation 5.1).

© SMMLc oy sim: This case is similar to SMML,,, except that, we include similarity
based submodular mixture components. This makes the inference time complexity

O (n?).
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Figure 5.5: Comparison of techniques

We do not compare against HSLDA, PAM and few other techniques cited in the related

work sections because they do not produce a subset of K summary topics, and hence they

are not directly comparable with our work.

5.5.4 FEvaluation Results

We show that the submodular mixture learning and maximization approaches, that is,

SMMLc,, and SMMLcy s outperform other approaches in various metrics. In all these

experiments, we performed 5 fold cross validation to learn the parameters from 80% of

the disambiguation pages and evaluated on the rest of the 20%, in each fold.

In Figure 5.5a we summarize the results of the comparison of the methods mentioned

above on Jaccard Index, F1 measure and NMI. Our proposed techniques SMML,,, and

SMML¢oy i sim outperform other techniques consistently.

In Figures 5.5b and 5.5¢ we measure the number of test instances (that is, disambiguation

queries) for where each of the algorithms dominate (win) for the evaluation metrics.
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In 60% of the disambiguation queries, SMML.,, and SMMLc, sim approaches produce
higher JI, F1 and NMI than all other methods. This indicates that the clusters of articles
produced by our technique resembles the clusters of articles present on the disambiguation

page better than other techniques.

From Figures 5.5b and 5.5¢ it is clear that O (n) time complexity based submodular
mixture functions (SMMLc,, ) perform on par with O (n?) based functions (SMMULeoy - sim ),
but at a greatly reduced execution time, demonstrating the sufficiency of O (n) functions
for our task. On the average, for each disambiguation query, SMML., took around
40 seconds (over 1M categories and 3M edges DAG) to infer the categories, whereas
SMML¢oy i sim took around 35 minutes. Both these experiments were carried on a machine

with 32 GB RAM, Eight-Core AMD Opteron(tm) Processor 2427.

5.6 Conclusions

We investigated a problem of summarizing categories over a massive category DAG such
that the summary set of categories produced represents the objects in the collection.
This representation is characterized through various classes of submodular (and mono-
tone) functions that captured coverage, similarity, diversity, specificity, clarity, relevance
and fidelity of the categories. Through this summarization we are able to reduce a large
number of categories that get accumulated from all the documents in a document collec-

tion, thus addressing the “over-specified” categorization problem.
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Chapter 6

Unsupervised Methods for Category DAG Creation*

Unsupervised methods =R u-v;
for category hierarchy — —
summarization — [

] O 40

Document Organization

*Published: “Beyond clustering: Sub-DAG Discovery for Categorizing Documents”, Ramakrishna
Bairi, Mark Carman, Ganesh Ramakrishnan, In Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management (CIKM ’16). ACM, Indianapolis, USA, Oct 24-28, 2016.
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Chapter Summary

In this chapter we study the problem of generating DAG-structured category hierarchies,
in an unsupervised setting, over a given set of documents associated with “importance”
scores. In the previous chapter, we studied a technique for summarizing a set of cate-
gories through submodular mixture learning, which was a supervised technique. In this
chapter we present a few unsupervised techniques for generating a DAG-structured cate-
gory hierarchy to address the “over-specified” problem of document categorization. As in
the previous chapter, we can use this technique for automatically generating Wikipedia
disambiguation pages for a set of articles having click counts associated with them. Here
we pose the problem as that of finding a DAG structured generative model that has maxi-
mum likelihood of generating the observed "importance"scores for each documents where
document are modelled as the leaf nodes in the DAG structure. Desirable properties of
the categories in the inferred DAG-structured hierarchy include document coverage and
category relevance, each of which, we show, is naturally modeled by our generative model.
We propose two different algorithms for estimating the model parameters. One by mod-
eling the DAG as a Bayesian Network and estimating its parameters via Gibbs Sampling;
and the other by estimating the path probabilities using the Expectation Maximization
algorithm. As in previous chapter, we empirically evaluate our method on the problem of
automatically generating Wikipedia disambiguation pages using human generated clus-
tering s as the ground truth. We find that our framework improves upon the baselines
according to the F1 score and Entropy that are used as standard metrics to evaluate the

hierarchical clustering.
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6.1 Introduction

With the exponential growth of digital artifacts (such as texts, images, and the like,)
particularly on the Web, hierarchical organization of these artifacts is becoming increas-
ingly important to manage the data. Many machine learning applications in several
domains such as document processing, functional genomics, image processing, etc., deal
with hierarchical organization of documents, genes, images, etc., in their respective do-
mains. The underlying hierarchical structure identifies the relationships of dependence
between different categories and provides valuable sources of information for categoriza-
tion. For example, in document classification problems, a baseball document would be
assigned the hierarchy of labels — “baseball” | “team sports” and “sports.” Although con-
siderable research has been conducted in the field of hierarchical document categorization
[118, 10, 160, 127, 143], little has been done on automatic organization of artifacts (doc-

uments) using a Knowledge Graph.

Many techniques have been proposed for category hierarchy creation for organizing digital
artifacts. While supervised techniques [49, 134, 60, 42| try to learn the hierarchy from
the labeled examples, unsupervised methods [113, 107, 15] try to infer the hierarchy from
the data (artifacts) itself, without recourse to human generated labels. Another class
of research [122, 67| has been actively looking into adapting a gen etc “global” category
hierarchy (such as Wikipedia/Freebase/DBPedia concept hierarchy) into a specific “local”
categorization. These methods are able to associate the artifacts (text documents) with
the closely matching concept nodes from the “global” category hierarchy. The matched
concept nodes thus become categories for the artifacts. These methods not only asso-
ciate curated category names from the “global” category hierarchy, but also bring in rich
semantics for the categories from the “global” hierarchy. This motivates us to focus on
this class of approaches for category hierarchy generation in our current work. It is easy
to find massive (that is, size in the order of millions) DAG structured category hierar-
chies in practice. Wikipedia’s category hierarchy consists of more than 1.5M categories
(categories) arranged hierarchically. YAGO [133| and Freebase [19] are other instances of

“global” category hierarchies.

It is very common to have some sort of “importance” weights/scores associated with the
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artifacts in a collection. For example, in a web page collection, each web page may have
a click count (the number of times the page has been viewed or accessed) associated
with it. In Hierarchical tag visualization [129] applications, leaf tags may have document
counts (number of documents assigned to the tag) associated with them. And, in an
advertisement collections, each advertisement may have a revenue or cost associated with
it. The existing methods for category identification [49, 134, 60, 42, 113, 107, 122, 67| do
not focus on the hierarchy generation from the artifact importances. To reflect the artifact
importance in the choices of category nodes of the hierarchy, we propose novel approaches
to hierarchy generation. Specifically, we propose a generative model for explaining the
observed artifact importances based on the hierarchy structure and apply Gibbs sampling

and EM methods to estimate the parameter of these models.

As in the last chapter, we focus on the following problem: Given a DAG-structured
category hierarchy and a collection of artifacts with associated importances, we investigate
the problem of finding a sub-DAG of DAG-structured categories that are induced by the
artifacts. This problem is motivated from the following real world applications (repeated

here from the last chapter for the continuity of reading):

e Automatic generation of hierarchical disambiguation page for Wikipedia: Given a
collection of articles spanning different categories but with similar titles, automati-
cally generate a hierarchical disambiguation page for those titles using the Wikipedia
category hierarchy!. This problem is explained in detailed in the last chapter, and
is also used in our evaluations in 6.6. However, there is one major addition in the
current chapter — “click count”. Each article in Wikipedia has an associated click
count, which tells how many times that article has been opened and read. Currently,
Wikipedia does not consider this while grouping articles on a Disambiguation page,
since Disambiguation pages are created manually. Our proposed approach is able
to leverage this information while generating the hierarchical groups automatically.
Figure 6.1 describes the process of category DAG creation for the disambiguation

page for the term “Apple”.

e Handling over-specified categorization: Techniques proposed by systems such as

Wikipedia Miner [101] and TAGME [53] generate several labels for each article in

http://en.wikipedia.org/wiki/Help:Categories
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Figure 6.1: Overview of sub-DAG selection: Documents with the importance scores as-
sociated as leaf nodes of DAG-structured category hierarchy is given as input to our
method. We generate a sub-DAG from the DAG-structured category hierarchy such that
the documents generated from this sub-DAG (using the estimated parameters) will have

the distribution of importance scores as close as possible to the observed distribution.

the dataset from the Wikipedia (pages and categories) and are highly specific to the
article. Collating all labels from all articles to create a label set for the dataset can
result in a large number of labels and become unmanageable. We need a hierarchy
of these labels to manage the dataset better. Our proposed techniques can discover
a suitable label hierarchy (as a sub-DAG) from such large sets of labels using a

“global” DAG-structured category hierarchy (such as Wikipedia).

We model the above problems as that of finding the most representative sub-DAG of
category nodes from a DAG-Structured category hierarchy. We model this as a two step
process. During the first step, we build a generative model that is able to produce the
observed importance scores for the artifacts from the DAG-Structured category hierarchy:.
In this process, certain category nodes in the DAG-Structured category hierarchy become
more important than other nodes for generating the observed importance scores for the
artifacts. In the second step, we collect those important nodes and the edges that connect
them (possibly indirectly) from the DAG-Structured category hierarchy to produce a sub-
DAG. The first step is akin to high recall step, where the entire DAG-Structured category
hierarchy is used to generate the importance scores. Meanwhile, the second step is akin

to the high precision step where a few nodes that contribute maximally to the generation
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of importance scores are selected.

6.1.1 Related Work

Previous works on hierarchical organization can be broadly classified into two groups: (i)

hierarchical clustering and (ii) hierarchical topic modeling

The hierarchical clustering based algorithms [161] groups the documents at different levels.
At the lower most level, every document is in its own group and at the top level, all
documents are in one groups. To form the next level, most similar groups in the current

level are merged.

The specific problem we consider here is different from hierarchical clustering. In our
problem, we try to generate a hierarchy of labels as a sub-DAG from an existing DAG
that can best describe the observed documents. This problem has several differences from
hierarchical clustering: (i) The clustering uses category hierarchy as the features than
the documents. (ii) It can naturally associate the labels to the clusters from the category
hierarchy. (iii) a sub-DAG of label space (category) along with the documents categorized
under them are output. (iv) the sub-DAG of categories identified by our algorithm likely

to generate the observed counts/scores at the leaf level.

Topic model based techniques group high probability words in each identified topic. Topics
can form a hierarchy in which topics at top levels group very abstract words compared

to the topics at lower levels. Notable algorithms in hierarchical topic models include

Hierarchical LDA [15], Pachinko Allocation Model (PAM)[85], HSLDA [107].

Hierarchical LDA [15] presents the nested Chinese restaurant process (nCRP), a stochastic
process that assigns probability distributions to ensembles of infinitely deep, infinitely
branching trees of topics. Here, documents are modeled as paths down a random tree,
and the preferential attachment dynamics of the nCRP leads to clustering of documents
according to sharing of topics at multiple levels of abstraction. Hierarchical Dirichlet
Process [140] is a nonparametric generalization of Latent Dirichlet Allocation (LDA),
where the number of topics can be unbounded and learned from data. In these approaches,
unlike our proposed approach, an existing topic hierarchy is not used, and the existing

artifact-topic information is not leveraged.
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The Pachinko Allocation Model (PAM)[85] models documents as a mixture of distribu-
tions over a single set of topics, using a directed acyclic graph to represent topic co-
occurrences. Each node in the graph is a Dirichlet distribution. At the top level there is
a single node. Besides the bottom level, each node represents a distribution over nodes
in the next lower level. The distributions at the bottom level represent distributions over
words in the vocabulary. However, the difficulty is in generating a subset of topics from
a large existing topic DAG that can act as summary topics due to the presence of too

many nodes leading to prohibitively long execution time.

Perotte et al. proposed a hierarchically-supervised topic model (HSLDA) [107| combining
LDA model with the classification algorithm. They make use of hierarchical structure of
ICD (International Classification of Diseases) codes during learning step. The hierarchy
is assumed to be in the form of a tree. During the training phase, constraints they
impose constraints so that the predicted code forms a path from the root to the leaf. Our
approach differs from HSLDA since: (1) we use the label hierarchy to infer a set of labels
for a group of documents; (2) we do not enforce the label hierarchy to be a tree as it
can be a DAG; and (3) we do not have labeled data ( We use the ground truth from the
Wikipedia disambiguation dataset only for evaluating the algorithm, and not for training

the model.)

6.1.2 Our Contributions

Our approach is based on generative models which have been successfully used in applica-
tions such as document modeling [151], but have to the best of our knowledge never been
applied to sub setting a category DAG to create a sub-DAG describing the document
collection. By modeling the DAG-structured category hierarchy as a Markov network, we
introduce a procedure to estimate the marginal probabilities of the nodes in generating
the observed grouping of the documents along with their importance scores 2. Our ap-
proach is based on Gibbs sampling with path constraints to ensure root-to-leaf path for
every document is maintained. Unlike other methods [107, 17, 85, 151] we do not observe

the words in the documents. The co-occurrence statistics of the leaf level categories in

2if documents don’t have importance scores associated with them then their importance is simply set

to be the same
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the documents drive the sampler to sample common ancestors more frequently, thus in-
creasing the marginal probabilities of those nodes. While the path sampling approaches
[15, 73] fail in the case of massive DAG-structured hierarchies (such as Wikipedia category
hierarchy,) due to extremely large number of paths, our approach is able to do local sam-
pling (within the Markov Blanket). We also present an EM based method to estimate the
expected importance of every edge in the DAG-structured category hierarchy based on
the importance scores of the documents. Using the expected importance of edges in the
DAG we propose a technique for a sub DAG generating. From an empirical perspective,
we introduce and evaluate our approach on a dataset of around 800 disambiguation s that
was extracted from Wikipedia and subsequently cleaned using the methods described in
the experimentation section. We show that our method outperforms other baselines, and

is practical enough to be used on large corpora.

6.2 Problem Formulation

Let G(V; E) be the DAG structured category hierarchy with V' categories. As in the last
chapter (Chapter 5), we assume these categories to have a parent child (is-a) relationship,
forming a DAG. Let D be the set of documents that are associated with one or more of
these categories. The left part of Figure 6.1 depicts a category hierarchy with associated
documents. If a document is attached to a category t, we assume that all the ancestor
categories of ¢ are also relevant for that document. This assumption has been employed
in earlier works [15, 14, 118] as well. Furthermore, we assume that there exists a function
associating importance scores with every document node. Examples of scores can be click
counts of the documents, number of likes given to the document, and the like. Given a
budget of K, our objective is to choose a DAG of K categories from G(V; E), which best
describes the documents in D. The notion of best describing categories is characterized
through a generative process which can generate the observed importance scores at the

document nodes.

In this work we expect the user to input the value for K. One possible way to choose
the number of categories is by visually inspecting the hierarchy formed and ensuring that

properties of hierarchy (such as tree width, depth, sparsity, etc.) are within the acceptable
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limits. But soon this can become unmanageable for larger datasets. To get some hint
about K, we can plot the Entropy or F1 score for various values of K as shown in Figure
6.4 in our experimental section, and choose the value of K at which the curve starts

plateauing.

As in the last chapter (Chapter 5), we make use of Wikipedia’s category hierarchy as a
massive DAG. It consists of more than 1M categories (categories) arranged hierarchically.
In fact, they form a cyclic graph [159]. However, we can convert the graph to a DAG by
eliminating the cycles ®. Systems such as WikipediaMiner [101], TAGME [53] and several
annotation systems such as [98, 25| attach categories from Wikipedia (and other catalogs)

to the documents.

Our goal is the following: Given,

1. A DAG-structured category hierarchy G (V; E) associated with the categories and

documents, over V =V, in-

Vcategories

ategories U Vgoeg nodes, which contains ‘

’ and ‘VC

ternal nodes (categories) denoted: ¢y, ..., ¢ leaf nodes

ategories

Vcategories
(documents) denoted: dy, ..., d
‘ Veategories ’

2. A function associating scores with each of the document nodes: Count(d;) € N.
Note, we assume without loss of generality, the scores to be positive integers. Any set
of positive real number scores can be appropriately scaled and rounded to produce

integer scores.
Estimate a model that can predict the observed scores, that is:

1. Associate a Bayesian Network over binary variables with the structure given by the
DAG above, (that is, let X; be a binary variable corresponding to node ¢; and Y;

be a binary variable corresponding to node d;).

2. Determine the parameters of a Bayesian Network, that is, P(X;|parents(X;)) and
P(Y;|parents(Y;)) such that the leaf nodes have marginal probability proportional
to their scores, that is, P(Y; = 1) = Count(d,;)/ >, Count(dy).

3our cycle detection and elimination algorithm is described in Appendix A
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3. Construct a sub-DAG of K nodes by first selecting the K nodes from the Bayesian
Network that have maximum marginal probability and entropy over its children and
then interconnecting them with the edges from the DAG. These nodes contribute

most in predicting the observed score.

In order to train the network we generate training data assenting the leaf variables (that
is, documents) don’t co-occur and have frequency given by their counts. That is, we
generate example data for learning the network as unit vectors of the form: — (Y3, ..., Yy) =

(0,..,0,1,0,...) = where P(Y; = 1) = Count(d;)/ >_; Count(d;)

6.3 Gibbs Sampling based Parameter Estimation

Given a DAG structured category hierarchy G = (V, E) and a set of documents (with
importance scores) attached as the leaf nodes in the category DAG, we assume a Bayesian
Network (BN) with category nodes. Our goal is to first estimate the parameters of this
BN such that, a generative process using this BN to assign to the binary leaf nodes
(documents) is able to produce the desired marginal distribution given by the observed
document scores. With this we mean that, repeated sampling of nodes from this BN
(with the estimated parameters) is able to produce the leaf node (document) the number
of times proportional to its importance score. After estimating the parameters of the
BN, in the next step, we produce a ranking of the category nodes using their marginal
probabilities and entropy over their children to construct a sub-DAG of K nodes with
approximately the same marginal distribution over the leaves. This step is described in

Section 6.5. In this section, we focus on estimating the parameters of the BN.

Let X = (X,)ev be a set of random variables indexed by the category nodes V. For a
BN with respect to G, its joint probability density function can be written as a product

of the individual density functions, conditioned on the parent variables:

p(z) = Hp (20 | Zn(w)) (6.1)

veV

where 7 (v) is the set of parents of v.

133



Here p (x) is the probability of observing a particular assignment of categories to a docu-

ment. Specifically,

n

p(Xi=m1,... Xo =) = [[p (X0 = 20 | Vienw) X; = ) (6.2)

v=1
All the observations z; are binary, taking values 0 or 1. If z; = 1, the i** category is
assigned to the document; otherwise, it is not assigned to the document. Hence, there

will be 27 number of parent configurations for any category X;.

Once the parameter 6 of this BN, that is, p (xv ‘ xﬂ(v)) for all the categories in the G has
been estimated, the likelihood of observing the document collection D from this BN can
be computed as:

X\@ Z Z log = Ty ‘ er(v) = .Z‘Tr(v))) (6.3)

deD veV

Given a assignment of valves to the variables in a BN, a Gibbs sampler simply iterates
over each latent category X;(note that there is one BN for each document) sampling a new

value for the variable according to its posterior distribution:

X; ~ Bernoulli (P), where (6.4)
P=p(Xi=1]X) (6.5)
1-P=p(X,=0|X_,) (6.6)

Here X _; denotes all nodes in the BN except for X;.

The conditional independence property of a BN states that any two nodes (u, v) are

conditionally independent given a set of variables z which d-separates them:

The Markov Blanket of node v, denoted MB(v), is the minimal set of nodes which d-
separates node v from all other nodes. Using this property, Equation 6.5 and 6.6 simplify
to:
P=p(Xi=1]Xmsu) (6.8)
1—P=p(Xi=0|Xmse) (6.9)
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Furthermore, the conditional distribution of one variable given all others is proportional

to the joint distribution:

p(xjler, ... 21, i1, L) X (21,0, Tp)

“Proportional to” in this case means that the denominator is not a function of x; and
thus is the same for all values of z;; it forms part of the normalization constant for the

distribution over x;.
Applying this principle to Equation 6.8, we have

p(X;=1|X_) xp (Xi7XMB(i)) (6.10)

Using the factorization stated in Equation 6.1 and 6.2, we have

p(Xi=1] X)) <p(X;=1, Xmpw) (6.11)
occp (Xi=11X0) I 2 (Xe| Xew)
kechildren(:)

Similarly, p(X; =0 | X_;) is computed. Note that, the normalization constant is com-

puted by samples summing the right side of Equation 6.11 for X; = 1 and X; = 0.

The Gibbs Sampler samples repeatedly from the posterior in Equation 6.11. When the
Gibbs Sampler reaches a steady state, we would have estimated the parameters of the

BN, that is, p (ZL‘U | xﬂ(v)) forallv e V.

The Algorithm 7 describes the Gibbs Sampling. The logarithm interactively samples the
categories for the documents as per the posterior distribution in Equation 6.11. In order
to reflect the importance scores of the documents in the posterior estimation, we create
M =3, count(d)instances of the BN one for each of the training examples.Similar to
the collapsed Gibbs sampler for the LDA [131] we create counters to hold the number of
times a category is sampled for a document (lines 7-13). Repeatedly sampling the latent

categories for the documents as per the estimated posterior (from the counter values
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accumulated so far) and then updating the counters based on the samples observed,
makes the estimated posterior converge to its true posterior (lines 15-32.) To ensure root
to leaf path in the categories sampled for a document, we enforce two constraints during

the sampling (line 28):

e Set Xy = 1 if there exist a child X, of X; such that Xy = 1, but all of its parents

are set to 0, that is, Xgrx) =0
This constraint ensures that the parent category is set to 1 if there is a child whose
all parents are set to 0.

e Set Xy = 0 if there does not exist a child X, of X; such that Xz, =1

This constraint ensures that, parent is set to 0, if none of its children are set to 1

The process of sampling and updating counters is done until we observe stability in the
log likelihood [131]. At the termination the algorithm computes the posterior probability

distribution, which reflects the BN parameters.

Algorithm 7 Gibbs sampling for modeling click counts
1: Input : DAG structured category hierarchy G(V, E)

2: observed categories for documents {C4, ..., C,, }

3: importance scores for documents {n1, ..., 7, }

4: Output : Parameters of BN

5: Create training instances by repeating documents:

6: D={dy1,....d1p,do1,...,doy, ...}

7. Let Xy € {0,1} denote the current assignment of category random variable X; for
document d € D

8: Let Xy € {0, ..., 2171 — 1} be a variable representing the configuration of parents
of X, in document d.

9: > Set observed categories and all ancestors to true:

10: Set Xy =11if X; € Cy VvV X; € 7°(Cy)

11: Initialize Xy ~ Uniform({0,1}) foralld € D and i € V

12: Initialize counts:
Nig =21 Xai = 1A Xariy = J)
Ny =220 1(Xam(iy = J)
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13: for d € D do

14: for i€V do

15: if X; ¢ latentVariableSet(d) then

16: continue

17: end if

18: > Remove current assignment to Xy from N;;
19: J = Xin(i)

20: if X4 =1 then

21: Niyj=N;;—1

22: end if

23: N;y=N;—1

> Re-sample Xy;

24: Xg; ~ Bernoulli (P), where

_ 1(Xgp=0
P o Biy H 527%1)’“ K (1 = Brrwy) e =0)

kechildren(:)
o _ Nigtao
and where [3;; = N o
25: Constrain Xy in the following cases:

e Set Xdz' =1if

3 Xax = 1 AVigr@y Xar =0

kechildren(:)
e Set Xy =0 if

= Xdk =1

kechildren ()

> Add new assignment of Xy to N;;

26: if X4 =1 then
27 N;y=N;;+1
28: end if

29: N;=N;+1

30: end for
31: end for

32: If not converged, goto 13

From the Gibbs Sampler’s samples (or from the posterior distribution) we compute the
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marginal probabilities of every category node in the G (V; E) as

N; .
(X)) = ; J _ Number of documents with X; =1 (6.12)
Pt = > Niy N Total number of documents ’
i

This probability estimate reflects the importance of a category node and will be used to
determine the appropriate sub DAG using an algorithm outlined in section 6.5. Before
presetting the sub DAG selection algorithm, we present another approach based on EM

to estimate the importance scores of the category nodes in the next Section.

6.4 EM based Parameter Estimation

Unlike the previous approach where we treated the DAG as a BN, in this approach we focus
on the paths in the DAG from the root to the leaves. We assume that the probability of
generating a document at the leaf node is proportional to the product of edge probabilities
on the path. Given the category DAG with documents having importance scores at the
leaf level, our goal is to estimate the edge probabilities. The leaf nodes’ (documents’)
importance scores are observed. The probabilities of paths (categories) leading to the
leaf nodes from the root are hidden. We want to estimate the probability of a path
given the observations. In the Figure 6.2 we illustrate edge parameters which are the
conditional probabilities. Given an edge going from node j to k, the probability of the
edge is the probability of reaching node k given the node j. Similarly, the probability of
reaching a leaf document node [ given the category node u is probability of edge going
from u to [. We segregate these two probabilities in order to model the category-category
and document-category assignments. We estimate these probabilities (parameters of the
model) by applying the EM algorithm. Before describing E and M steps, we list the

notations that we use:
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R Y
rigure u.4:

F Q]
7y = pCklp)

2?*
Q‘u

B, = Pl
o Multiple paths over
1 multiple nodes

Ilustration of path and edge parameters

P A path from the root to a category having only
documents. Note, a path consists of only category nodes.
ey Lth e e
start(P) Starting node of path P
end(P) Ending node of path P
m(P) Length of path P
[ A leaf node, which is a document.
(4, k) An edge between the categories j and k. The category j
is the parent of category k.
p (Pl Probability of a path P given a leaf node I.
e = p (k|7) Probability of edge (7, k). In other words, probability of
reaching child &k from the parent j.
O = p (I|k) Probability of generating document [ from a given

category k.

Oyp = p (I|P) = p (l|end (P))

Probability of generating document [ for a given path P.
It is same as the probability of generating [ from the last

category ‘end(P)’ of path P.

Ny

The importance score of the leaf (document) node {.

Table 6.1: Notations used in this section
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6.4.1 E-Step:

In E step, we estimate p (P|l), the probability of path P to a given leaf node (document)
l. Using Bayes rule, this can be written as:

P p(P)
“W“;mwmm>

The probability of a path can be decomposed as the product of probabilities of edges on
the path. Applying this to the above equation gives us the following quantity.

m(P)
Oyp 1:[ To()|o(i—1)

p(PIl) =——— (6.13)

> Oup IT o1
Y i=1

While estimating the E step (that is, p (P|l)), the edge probabilities 7); and ©;p are held

at the values estimated from M step.

6.4.2 M-Step:

In M step, we estimate the edge probabilities 7; and ©;p by holding the path probabil-
ities p (P|l) at the values estimated from E step. That is,

ZZ:NZ (Z p(Pl)
P(j,k)EP
;= 6.14
TSN Y p(Pl) .
I Pep
NS e
O prend(P)=end(p) (6.15)

YN > p (P|I")

I prend(r)=endp)

The E and M steps are repeated until the convergence, at which the model parameters

would have been estimated.
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6.4.3 Downward-Upward Algorithm

Estimating model parameters 74; and ©yp in EM algorithm (in equations 6.13,6.14,6.15)
requires enumerating all the paths in the DAG. In a moderately big DAG, the number
of paths can be prohibitively large to process on a computer. For for example, the cat-
egory DAG in Wikipedia covering the documents in “Ambient” disambiguation page has
approximately 20 billion paths. Allocating memory to store all the path probabilities and
iterating through all the paths for computing various quantities on a moderate capac-
ity computer (16 core, 32 GB RAM) proves to be impossible. This leads us to discover
a‘Downward-Upward’ algorithm (inspired by Inside-Outside algorithm [8]) to efficiently
compute the edge probabilities 7 ; and ©;p, without enumerating all the paths. At each
EM step, the “Downward-Upward” algorithm first traverses the DAG from root to leaves
and then from leaves to the root, by propagating aggregated quantities downwards and

then upwards.

By substituting Equations 6.14 and 6.15 into Equation 6.13 we get

;sz% 2. (p“‘” (llend (P)) IT p*“V (SI?‘))

P:(4,k)eP (r,s)eP

P (klj) =

2Nz 2 (P(H) (llend (P)) IT p*V (S|T))

l P:jeP

where z; = >_p Y (Ilend (P")) [T p“ Y (s|r) and t is the iteration index.
7)/

(r,s)eP’

We define two functions « (j) and S (j) as follows:

e «(j) is the total probability of reaching node j from the root node through all the

paths from root to j. It can be recursively defined as

> p(jla)a(a) if jis not the root node
a(j) = { ecparents(j) (6.17)

1 if 7 is the root node

This can be calculated efficiently by making one pass from the root to the leaves,

accumulating the values at each node.
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e [3(j) is the fraction of value flowing to node j from the leaf node [ through all the

paths between 7 and [. It can be recursively defined as

> p(bl7) B(7) if jis not a leaf node
B(j) = { bechildren()) (6.18)
N

o if 7 is a leaf node

This can be calculated efficiently by making one pass from the leaves to the root,

accumulating the values at each node.

The equation 6.16 can be rewritten in terms of o and [ as follows:

@ (11 (7) PV (klj) B (k)
P (k1) a () B (j)
_ -n (k)
B(5)

(6.19)

The proof is given in Appendix B.

Note that, mg; = tlimp(t) (k|j) and ©yp = tlimp(t) (Ilend (P))
— 00 — 00

Algorithm8 outlines the Downward-Upward algorithm.

Algorithm 8 Downward-Upward Algorithm

1

2:

3:
4:

ot

Initialize edge probabilities uniformly

while not converged do
Downward Propagation: Compute « for each leaf node as in Equation 6.17
Upward Propagation: Compute 8 for each node as in Equation 6.18
Update edge probabilities as in Equation 6.19

end while

From the estimated edge probabilities we further compute the marginal probabilities of

every category node X; in the G (V; F) as

p(X) = ali) (6.20)



This probability score reflects the importance of a category node. Combining this score
with the entropy of the children, we rank and chose top K category nodes as explained

in next section.

6.5 Constructing Sub-DAGs

Once the marginal probabilities {p (X,)}L‘jl of category nodes {X,}'ZZ'1 of the DAG
G (V; E) have been estimated using the Gibbs Sampling (Equation 6.12) or EM based
(Equation 6.20) algorithms, we determine the importance of a category node X; through
its marginal probability and how important its children are. If a node has high marginal
probability and all its children too have high marginal probabilities, then we score such
a node highly. Naturally, entropy of children s’ marginal probabilities is an indication of

how informative are the children of a node. Formally we define the entropy over a node

X,’s children as follows:

H(X;) = > p(Xe)log (p (X))
kechildren(x;)

p(Xy) is the normalized marginal probabilities of children(X;), that is,

P(Xp) = ZP(Xk)
jechildren(x;)

p(X5)

The rank of a node X is defined as follows:

r(X;) = p(X;) x H (X;)

Given a budget K, we choose top K ranked nodes and create edges between the nodes X;
and X if X; is ancestor of X; in DAG G (V; E). This produces a sub-DAG of K nodes that
is compact and representative of the of the document collection. In the experimentation

section we give a heuristic to estimate the value of K from the training set.
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6.6 Experimental Results

To validate our approach, we make use of the Wikipedia category structure as a category
DAG and apply our technique to the task of automatic generation of Wikipedia disam-
biguation pages. We pre-processed the category graph to eliminate the cycles in order to
make it a DAG. In Appendix A we outline this procedure. Each Wikipedia disambigua-
tion page is manually created by Wikipedia editors by grouping a collection of Wikipedia
articles into several groups. Each group is then assigned a name, which serves as a cat-
egory for the group. Typically, a disambiguation page divides around 20-30 articles into
5-6 groups. Figure 6.3 shows the disambiguation page for “Apple”. Our goal is to measure
how accurately we can recreate the groups for a disambiguation page and label them,
given only the collection of articles mentioned in that disambiguation page (when actual

groupings and labels are hidden.)

6.6.1 Datasets

We parsed the contents of Wikipedia disambiguation pages and extracted disambiguation
page names, article groups and group names. For each article, we extracted click count
information from Wikipedia’s click count logs. We collected approximately 800 disam-
biguation pages that had at least four groups on them. Wikipedia category structure is
used as the category DAG. We eliminated few administrative categories such as “Hidden
Categories” , “Articles needing cleanup” , and the like. The final DAG had approximately
1M categories and 3M links.

Using disambiguation page title as a keyword query, we retrieved all the Wikipedia ar-
ticles having those keywords in their title. For each of these articles, we also extracted
click counts from the click-logs published by Wikimedia. We eliminated about 30% of the
articles having low click counts. Remaining articles are then added to the disambigua-
tion page. Note that, for these added articles, we do not know the actual group in the
disambiguation page they belong to. Hence, we do not use these articles while comput-
ing the metrics (described in next section.) We only use the articles that are grouped
under a disambiguation page by the human editors. However, adding queried articles are

important because: (i) more data makes our Gibbs sampling and EM based algorithms
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Apple (disambiguation) —

o~ tal
From Wikipedia, the free encyclopedia UL
The apple is the pomaceous edible fruit of a temperate-zone deciduous tree.
Apple, apples or APPLE may also refer to:
. <"J Group-1
potany [edi] ] "
Heading

* fdaius, the genus of aii appies and crabappies
* Cashew apple, the fruit that grows with the cashew nut
* Custard apple, several fruits
* Love apple:
* Tomato

e a e ST

= Syzygium samarangense, a piant species in

+ Mammee apple (disambiguation)
* May apple (Podophylium peltatum) —

+ Qak apple, a type of gall that grows on oak trees

Articles grouped under

* Rose apple (disambiguation), several fruits
+ Thorn apple (disambiguation):

s Crataegus species

*+ Datura species
= Wax apple (Syzygium samarangense)

« Hedge apple (Maclura pomifera)

—

Companies [edi]

« Apple Inc., a US-based consumer electronics and software company founddd in 19

Group-2

Heading

= Apple Corps, a multimedia corporation founded in the 1960s by The Beatle

= Apple Bank, an American bank in the New York City area
= Apple Leisure Group, an American travel and hotel management company

Articles grouped under
Group-2

Film and television [edit]

« The Apple (1980 film), a 1980 musical science fiction film
« The Apple (1998 film), by Samira Makhmalbaf

* "The Apple" (Star Trek: The Original Series), a 1967 episode from the second series

Music [edit)

= Apple Records, a record label founded by the Beatles
= Apple (band), a British psychedelic rock band

* The Apples (Scottish band), an early 1990s Scottish indie-dance band
* The Apples (Israeli band), a mid 2000s Israeli funk band

= Apple (album), a 1990 album by Mother Love Bone

« Apple, a 2001 album by Parasense

= "Apple", a 2015 song by Gain from Hawwah

* "The Apple", a song by the rapper Eminem

Figure 6.3: Wikipedia disambiguation page for
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produce better results, and (ii) in practice (during inference time) we are only given a
disambiguation keyword and our task is to generate the disambiguation page for it. We

then have to query the Wikipedia articles using the the disambiguation keyword.

6.6.2 FEvaluation Metrics

While the Wikipedia disambiguation page data set provide a large collection of human
labeled data, it poses two challenges for the evaluation of our methods; (i) Every group
of articles on the Wikipedia disambiguation page is assigned a name by the editors. Un-
fortunately, these names may not correspond exactly to the Wikipedia category names.
For example, one of the groups on the “Matrix” disambiguation page has a name “Busi-
ness and government” and there is no Wikipedia category by that name. However, the
group names generated by the automated method are these of the Wikipedia categories
(which forms our category DAG). In addition, there can be multiple relevant names for
a group. For example, a group on a disambiguation page may be la belled “Calculus” ,
but an algorithm may correctly assign it to “Vector Calculus”. (ii) While the Wikipedia
disambiguation page group names (in most of the cases) form a single level hierarchy, our
methods create a DAG structured hierarchical group names. Hence we cannot evaluate
the accuracy of the automated methods just by matching the generated group names to
those on the disambiguation page. To alleviate this problem, we adopt cluster-based eval-
uation metrics. We treat every category node of the sub DAG generated by our algorithm
as a cluster of articles. All articles in this cluster are reachable from a path originating
form the category node. These are considered as inferred clusters for a disambiguation
page. We compare them against the actual grouping of articles on the Wikipedia disam-
biguation page by treating those groups as true clusters. We can now adopt hierarchical
cluster evaluation metrics — F- Score measure and Entropy — from the works of Zhao et
al. [161]. For each disambiguation page in the dataset, we compute every metric score

and then average it over all the disambiguation pages.
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6.6.2.1 F-Score metric

F-Score measure identifies for every class of documents, a node in the hierarchical DAG
that best matches it. Note that in our setup, the class of a document is the group name
under which the document is listed on the Wikipedia disambiguation page. The match of
a cluster to the class is measured using the F) value that combines the standard precision
and recall functions used in information retrieval. Specifically, given a particular class L,
of size n, and a particular cluster S; of size n; , suppose n] documents in the cluster S;

belong to L,, then the F; value of this class and cluster is defined to be

F(L.,S;)=2%R(L,,S;) *x P(L,S;)/ (R(Ly, S;) + P(L, S;))

where R(L,,S;) = n;./n, is the recall value and P(L,,S;) = n;./n; is the precision value
defined for the class L, and the cluster S;. The F-Score of class L, is the maximum F
value seen at any node in the DAG G. That is,

FScore(L,) = max F(L,,S;) (6.21)
The F-Score of the entire DAG is computed as the sum of the individual class specific

F-Scores weighted according to the class size. That is,

C

F'Score = Z fr FScore(L,)

n
r=1

where ¢ is the total number of classes. If the clustering solution is perfect, then every
class has a corresponding cluster containing the same set of documents in the resulting
hierarchical DAG. This results in perfect F-Score of one. In general, the higher the F-Score

values, the better the clustering solution is.

Note that, this metric does not consider the DAG size or structure while computing
F-Score. Hence it is trivially possible to maximize F-Score in our algorithm just by out-
putting entire DAG-structured hierarchy, instead of finding optimal sub-DAG. To over-

come this, we also evaluate on another metric -an Entropy based measure.

147



6.6.2.2 Entropy metric

In the F-Score measure, evaluation of the overall quality of a hierarchical DAG takes place
from a small subset of its nodes. To overcome this problem, Entropy measure is defined,
which takes into account the distribution of the documents in all the nodes of the tree.

Given a particular node S, of size n,., the entropy of this node is defined to be

7

1 ~ni
E(S,) = Zﬁlog&

log q — N, N,

where ¢ is the number of classes in the dataset and n’ is the number of documents of the
ith class that were assigned to the r hode. Then, the entropy of the entire DAG G is

defined to be
E(G)=> -E(S,) (6.22)

p
r=1
where p is the number of non-leaf nodes of the DAG G. In general, the lower the entropy

values the better the clustering solution is.

6.6.3 Methods Compared

Closest to our technique is a score propagation technique [56, 156] where each node passes
scores to its parent nodes by equally dividing the message among its parents. Equal
division is one of the schemes where every node thinks all its parents are equally likely
(akin to a uniform prior), which is acceptable in the absence of any other information
to differently weight the parents. Note that in our work we do not look into the text of
documents/category nodes, hence we do not have any other information on the likelihood
of a parent. The scores originate from the leaf (document) nodes and propagate upwards
towards the root. The leaf nodes are initialized with the score values equal to their
importance counts. After the score propagation passing algorithm stabilizes, the marginal
probability of a node is proportional to the total amount of score passed through that
node. Since the scores originate from the document nodes and are initialized to the
importance scores of the documents, the marginal probabilities of the nodes reflect the
importance scores of the documents. We then apply our ranking method to rank and build

a sub-graph as explained in Section 6.5. We call this technique as “Equal-Weighting.”
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Figure 6.4: Average F1 and Entropy scores vs DAG size (higher the F1 better; lower the
Entropy better)

We call our method that we described in Section 6.3, which is based on treating the DAG
structured hierarchy as a Bayesian Network and estimating its parameters via Gibbs
sampling as “Bayes Net”. And, the method described is Section 6.4, which is based on
sampling paths and estimating parameters based on EM as “PathEM”

6.6.4 FEvaluation Results

Our first evaluation is based on the F1 metric. Figure 6.4 first half shows the F1 metric
for various values of top K ranked nodes, that is, sub-DAG of size K nodes. This is the
average F'1 score from 800 disambiguation pages. In Figure 6.5 we show the F1 scores
for the DAGs of 4 disambiguation pages. By construction, the F1 score monotonically
increases with the size of the DAG. Hence, the more nodes we add to the DAG, the better
is the F1 score. Therefore, we should not compare the maximum F1 scores of different
algorithms, which obviously well all be equal (a DAG of maximum size.) The F1 scores
initially increase rapidly due to the clustering formation that takes place with the addition
of each node to the DAG, improving the F1 score. After a certain size (around K = 15)
the addition of new nodes does not change the clusters and F1 measures that rapidly
due to the max F1 in Equation 6.21 has already found a good node that clusters the
documents close to the true clusters. Hence F1 scores start plateauing. Therefore, we

recommend to compare the techniques for the range K = 15 to 20.

The Bayes-net method performs better than PathEM, which in turn performs better than

Message-passing. Since the Gibbs sampling employed in Bayes-net is able to come out of
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Figure 6.5: F1 scores of DAGs of 4 Disambiguation pages at various DAG sizes (higher

score is better)

local minimum due to the sampling nature, it performs better than PathEM, which often
gets stuck into local minimum. Message-passing performs poorly due to the assumption
it makes in dividing the messages equally among the parents. This assumption does not
seem to perform well because, often a particular parent is more important than other
parents. For for example, the category “Sports” is more relevant parent to the category

“Soccer” than the parent category “21st Century Players.”

Next we evaluate techniques using the Entropy based measure. The right part of the
Figure 6.4 shows the Entropy metric for various values of top Knodes, that is, sub-DAG
of size K nodes. This is the average Entropy score from 800 disambiguation pages. In
Figure 6.6 we show the Entropy scores for the DAGs of 4 disambiguation pages. Entropy
score initially decreases (smaller the Entropy score, better) up to K around 15 and then
starts to increase. Due to the clustering formation improves with the addition of each

node initially, the Entropy score starts to decline. However, when more nodes are added
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Figure 6.6: Entropy scores of DAGs of 4 Disambiguation pages at various DAG sizes

(lower score is better)

(that is, as K increases beyond 20) the later nodes do not induce as good clusters as
initial nodes, making the overall Entropy score in Equation 6.22 to increase. However,
with large K (greater than 40 or 50) we observe decrease in Entropy once again due to
the the addition of “fine-grained” (close to the leaf) categories, which are often associated
with single document, resulting in very low Entropy, thus reducing the overall Entropy in
Equation 6.22. Therefore, we recommend to compare different techniques around the first
mini ma that happens around K = 15. At this K value, we see that Bayes-net performs
better than PathEM, which performs better than Message-passing, the reason being the

same as explained earlier in F1 measure case.

Figure 6.7 shows an output (sub-DAG) of Bayes-net algorithm run on the “Ambient”

disambiguation page.
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Figure 6.7: Sub-DAG (of Wikipedia categories) generated for “Ambient” disambiguation
page by BayesNet algorithm.

6.7 Conclusion

We investigated a problem of generating a sub-DAG of categories over a massive DAG-
structured category hierarchy such that the sub-DAG produced represents the importance
scores of the documents. This representation is characterized through a generative model
that learns its parameters such that, repeated sampling of a path ending in a document
from the sub-DAG is able to generate the distribution of observed importance scores.
Like in the previous chapter, through this work we are able to reduce a large number of
categories that get accumulated from all the documents in a document collection, thus

addressing the “over-specified” categorization problem.
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Chapter 7

Organization of Short Texts via Expansion*

Expanding short texts in
a task specific way

= | = =

Short Texts

Expanded Texts

*Published: “A Framework for Task-specific Short Document Expansion”, Ramakrishna Bairi,
Raghavendra Udupa, Ganesh Ramakrishnan, In Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management (CIKM ’16). ACM, Indianapolis, USA, Oct 24-28,
2016.
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Chapter Summary

Collections that contain a large number of short texts are becoming increasingly common
(for example, tweets, reviews, and the like.) As these collections grow in number and
size, effectively organizing them becomes an important activity. Document organization
and other analytical tasks (such as classification, clustering, and the like.) involving short
texts could be challenging due to the lack of context and owing to their sparseness. An
often encountered problem is low accuracy on the task!. A standard technique used in the
handling of short texts is expanding them before subjecting them to the task. However,
existing works on short text expansion suffer from certain limitations: (i) they depend
on domain knowledge to expand the text; (ii) they employ task-specific heuristics; and
(iii) the expansion procedure is tightly coupled to the task. This makes it hard to adopt
a procedure, designed for one task, into another. We present an expansion technique —
TIDE — that can be applied on several Machine Learning, NLP and Information Retrieval
tasks on short texts (such as short text classification, clustering, entity disambiguation,
and the like) without using task specific heuristics and domain-specific knowledge for
expansion. At the same time, our technique is capable of learning to expand short texts
in a task-specific way. That is, the same technique that is applied to expand a short text
in two different tasks is able to learn to produce different expansions depending upon
what expansion benefits the task’s performance. To speed up the learning process, we
also introduce a new technique called block learning. Our experiments with classification
and clustering tasks show that our framework improves upon several baselines according
to the standard evaluation metrics which includes the accuracy and normalized mutual

information (NMI). .

!Hereafter, we use the term task to refer to the short text organization. However, the task can very
well mean other ML/IR tasks such as classification, clustering, etc. Our technique presented in this

chapter is very generic and can be applied to any of these tasks
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7.1 Introduction

With the rapid development of the Internet, Web users are generating an increasing
number of short texts, including tweets, search snippets, product reviews and the like.
Successfully processing them becomes increasingly important to many IR and Machine
Learning applications. However, short texts are quite different from the traditional doc-
uments due to their being short and sparse. Hence, conventional machine learning and
IR algorithms cannot apply to short texts directly. Owing to lack of context in the short
text, it becomes challenging to build a representative feature vector to use it in a ma-
chine learning task such as document organization, classification, clustering, ranking or

searching, to name a few.

Note that, although this thesis is a study on the organization of digital documents (which
include short texts too,) in this Chapter we treat it as an IR/ML task. The techniques
presented in this Chapter are applicable to almost any IR/ML task, including document
organization. Hence we do not make a distinction here. Throughout this Chapter, we use

the term task to refer the document organization task and any other ML /IR task.

Existing approaches [109, 34, 20, 121, 157] attempt to address challenges associated with
analytic tasks on short texts by introducing more context through expansion techniques.
Broadly, these approaches follow one of two techniques. The first one is to employ a
search engine (for example, Google) or an IR system (for example, Lucene?, Solr?) to use
the short text as a search query and expand the short text using the top search results
[20, 121, 157]. The other technique is to build a topic space and to project each short
text into that space. These topics enrich the context of the short text [122, 9, 109, 34].

Although querying search engines using short texts can produce good expansions, it may
not be an ideal solution for many applications, given its online nature and given restricted
programmatic access to search engines. Though querying a local IR system is fast, we
learn from experiments that the top result that is returned by the search engine or the

IR system may not always be the best for the task.

’https://lucene.apache.org/
3http://lucene.apache.org/solr/
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Using a predefined topic space may not be a feasible solution because there may not be
predefined topics/taxonomy for certain applications, domains and languages. A solution
that is based on latent topic space is preferable because the latent topics can be generated
from a large corpus that is available in the domain of an application. However, solutions
that are based on topic space are restricted to certain types of applications. It is difficult
to generalize these solutions in different types of applications. For example, though tasks
such as classification of short texts can be efficiently solved by these approaches [109, 34|,
the approaches may not be suitable for tasks on learning to rank short texts. Primar-
ily, this is due to the bag-of-words model assumption that these approaches make while
expanding the short texts, that is, the pseudo topic names that are appended to each
short text as additional words help the classifiers to learn discriminative weights for each
class, thus boosting the classification accuracy. However, if the task is the retrieval and
ranking of short texts, the solution of adding pseudo topic names may not help. One of
the main characteristics of our approach is that we do not make such assumptions, thus

our approach generalizes well to other tasks.

A large body of research has been directed at using sources of structured semantic knowl-
edge such as Wikipedia, DBPedia and WordNet for document expansion |9, 122, 66, 52,
54, 90]. On the other hand, distributional semantic approaches are based on the intuition
that words appearing in similar contexts tend to have similar meanings. One such ap-
proach is word vectors—also referred to as word embeddings— which has recently seen
a surge of interest since new ways of computing them efficiently [99, 106] have become
available. Word embeddings provide a way to expand documents by attaching average or
augmented word vectors of the terms in the document [154]. While all these approaches
provide ways to expand short texts, the expansion itself is independent of the task that

uses them; there is no guarantee that such an expansion would benefit the task.

To address these shortcomings we develop an approach that has the following characteris-
tics: (i) It makes fewest assumptions about the task; the task should be able to consume
the suggested expansions and produce a measurable performance metric (such as task
accuracy), nothing else. (ii) It uses an expansion technique that generalizes well across
different tasks. (iii) It expands the short texts selectively, that is, a short text is expanded

only if such an expansion helps the task; otherwise, it is not expanded. Blindly expanding
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all the short texts — as done in earlier approaches — in fact degrades the task’s perfor-
mance. (iv) It is able to learn a model that produces the expansions specific to the task.
However, the features used by the model generalizes well to all the tasks, thus making the
approach applicable to many tasks. In section 7.2.3 we present different classes of feature
functions which can be used across multiple tasks. Figure 7.1 depicts overall architecture
of our approach/framework. As in many earlier approaches [109, 34] we use a corpus
that contains relevant long text articles. In section 7.3.3, we comment more on choosing
the right corpus. Using short text as a query, a language model or an IR system initially
selects K long texts from the corpus as expansion candidates. Our observation shows that
we can usually find the best long text for expansion within the top 10 — 20 results. We
then learn an expansion model that is specific to the task (by taking task’s performance
metric as an input) for selecting one of the K candidate long texts as the expansion of
the short text. The goal of learning is to produce a mapping of the short texts to the long
texts which best improves the task accuracy. Note that the framework only requires an
accuracy value from the task and does not exploit any other characteristics of the task or

domain. Hence the framework is applicable to a wide variety of tasks.

In particular, our framework learns a best mapping function M : {tshort} xT — {tlong}
to maximize the task 7 accuracy. We can present this function in an alternate form as
M (tshort) = irgmaoé Sim (tshort’ Yong: T)
long©
which is a mapping function that finds a maximally similar long text tlong to a short text
tshorts given the task 7. The similarity Sim(-) is captured through a variety of functions

that are designed from the IR, topic model and embedding techniques and generalize well
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to many tasks. The function M needs to be learned specific to the task. There are no
additional training data for learning M. We have designed a novel learning technique
to learn M jointly with the task during the training phase of the task, thus making M
task specific. In section 7.2.4, we elaborate our learning technique using a derivative-free
optimization technique that is known as BOBYQA (Bound Optimization BY Quadratic

Approximation) [110] along with our proposed block learning approach.

Our contributions can be summarized as follows:

A framework for task-specific document expansion that can be adopted by many

machine learning tasks that deal with the short texts

The introduction of various classes of task agnostic feature functions (IR, topic

model and embedding based features)

A technique for learning a model over task agnostic features, using the task’s data

through the task itself, thus learning to expand a short text in a task-specific way.

A Block learning technique for learning feature weights in blocks

7.2 Learning Task-specific Document Expansion

7.2.1 Problem Formulation

Let D, = {si}?zl be a set of n short texts, where s; is the representation of ith short text.
For example, s; can be a TF-IDF vector representation of the short text, or it can simply

be a bag of words. The exact form of s; is task-specific.

Let T (Ds) be a task that operates on the short texts Dy. For example, T can be a
classification task and Dy is a set of short texts for training and testing the classifier. The
underlying assumption is that task 7 can be run on the data D, and produce a measurable
result that indicates the goodness of the task, such as the accuracy of the task. In the
classification task example that is mentioned above, we can measure the accuracy of the

classifier that is trained on the training set and validated on the test set.

158



Other examples of the tasks include Clustering of short texts, Named Entity Recognition

in short texts and Categorization of short texts using Wikipedia, to name a few.

Let € (T (Dy)) be the empirical error in performing task 7. For example, in the classifica-
tion task, £ could be a “misclassification rate”; in the clustering task, it could be “degree
of clustering disagreement”. Furthermore, we assume that the error can be scaled to the

[0,1] interval so that we can simply compute the accuracy of the task 7 as 1 — & ().

A standard technique to improve the accuracy of the task 7 is to expand the short
texts Dy into bigger texts. Let D, = {e;}._, be the expanded short texts, where e; is a

th

representation for the expanded i"* short text. For example., e¢; can be a TF-IDF vector

that represent the expanded text.

Our aim is to present a technique that expands the short texts D, into long texts D, such
that, performing the task 7 on these expanded texts best improves the task accuracy
(this equivalently reduces the task error rate.) Formally, by applying our technique, it is

possible to achieve the following with a maximum difference between RHS and LHS.

E(T (D.)) <&E(T (Dy)) (7.1)

To perform the expansion, we assume the existence of a right universal corpus C of articles.
Such a corpus has to contain a large amount of articles in the domain of short texts, which
covers the topics and concepts present in the short texts. These articles provide contexts
to the short texts and help in expanding them. We refer to these articles as long texts.
Our goal is to identify the best possible long text [; € C for every short text s;. This
long text [; is then used to expand the short text s;. We use the operator @ to represent
the expansion process of obtaining an expanded text representation of a short text from
a long text. That is, e; = s; @ [;. The exact process of this expansion depends on the
task. For example, @ may be a union of s; and e;, or it may be a weighted average of TF
vectors. Mapping short texts {s;}._, to long texts {/;}_, is done in such a way that the
task using the expanded short texts will have maximum improvement in accuracy. This
makes the short text mapping/expansion task-specific. That means that the same short

text may map to different long texts in different tasks, depending upon which mapping
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makes the task better. However, our framework for expansion remains the same making

it task agnostic.

In particular, we present a technique in this chapter to discover a mapping of I; = M (s;)
to a long text I; € C for every short text s; € D, , such that Equation 7.1 is satisfied with

maximum margin. Formally, we solve the following optimization problem.

M = arg/\r/rllax ~
st. E(T (Ds® M (Dy))) =E (T (Dy)) +7 (7.2)
720

where D, = {e;}; , = D, ® M (D;) = {s; ® M (s;)};,

An optimum mapping M increases the difference between & (T (Ds ® M (Dy))) and
E (T (Dy)), thus maximizing the margin 7. Solving this optimization problem turns out
to be difficult. In the following Sections we present a technique for approximately the
solution to the optimization problem above. Our experiments on benchmark datasets
show that our approach is very effective in practice and can produce results that are

close to optimal.

7.2.2 Learning framework

Finding optimal mapping to solve Equation 7.2 is a combinatorial search problem. There
are |C ||DS| possible mappings of short texts s; € D, to long texts [; € C. However, not
all of these mappings are meaningful. For example, mapping a short text on ‘soccer”
to an article on “photosynthesis” makes very little sense. To be a semantically correct
expansion, the short text and its mapped long text have to be topically similar. Many
IR techniques [92| have been successful in retrieving and ranking documents for short
queries. They adopt language modeling techniques [79] to map short text queries to long
text articles. This makes the language modeling approach a possible approximation to

solve Equation 7.2.
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In the language modeling approach to information retrieval, a multinational model p (w|l;)
over terms is estimated for each document /; in the collection C to be indexed and searched.
This model is used to assign a likelihood to a short text s; = (wq,ws,...,w,,). In the
simplest case, each short text term is assumed to be independent of the other short text
terms, so that the short text likelihood is given by p(s;|l;) = [[ie; p (wk|l;). After the
specification of a document prior p(l;), the a posterior i probability of a document is given

by: p(l;]s;) < p(sill;)p(l;), and is used to rank the documents in collection C.

The language model approach has the following limitations in mapping a short text s; to
a long text [;: (i) it always produces the same mapping irrespective of the task; (ii) it does
not take the task accuracy into account while mapping; and (iii) our observations show

that the top ranked result of a language model need not always be the best mapping.

In order to overcome these limitations, we propose a two-step process for mapping. First,
we use a language model to retrieve the top K candidate for the mapping of long texts
{zf € C}szl for every short text s;. Second, we define a mapping M, to map a short text
s; to the best long text [; from the K candidate long texts, such that using /; to expand s;
best improves the accuracy of the task. M,, is computed by solving the following linear

model:

l; = M,y (s;) = argmax wagbf (si,1)
le{lfec}kil f
where, ¢; is a feature function that measures the similarity between a short and a long
text and wy is the weight of that feature function in the mixture of features. A bunch of
feature functions designed from the proven methods of IR, topic model and embedding
techniques are explained in Section 7.2.3. These feature functions are then combined by
f=(# of features)

learning weights W = [wy] f=1 for them in a task-specific manner, which is

explained in Section 7.2.4.

7.2.3 Classes of Feature Functions for Mapping

In the below sections, we define a variety of feature functions that measure the similarity
of a short text to a long text. We group them into three classes: (i) IR based, (ii) Topic
Model based, and (iii) Embedding based.
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In the following sections we use the notations s and [ to represent short and long texts,

respectively, and || to denote the length of . We drop the subscript i for brevity.

7.2.3.1 IR Based Features

IR-based features compute the relevance of a short to a long text using standard doc-
ument similarity functions such as BM25, Cosine, and Bigram. These functions have
been successfully adopted by the information retrieval community in order to retrieve
documents using short queries [92]. Accordingly, we define features such as @pmas (S,1) =
BM25 (s,1),Pcosine (s,1) = COSINE (s,1), and @pigram (s,1) = BIGRAM (s,1) to compute

the similarity between a short and a long text.

7.2.3.2 Topic Model-based Features

Topic models such as LDA [17] have been successful in discovering hidden topic distri-
butions in a text corpus. Earlier works [120] have shown that matching texts based on
the similarity models with hidden topics yield better results. Based on these findings, we
define a set of topic model-related functions to compute the similarity between a short
and a long text. To discover the topics, we run LDA on the articles in the corpus C. Let
T; be the z'thtopic discovered by the topic model and V; be the set of top words in T;. Let
tf(w; 1) be the term frequency of term w in long text [ . We define the following topic

model based feature functions:

e Topic Score is defined as:
1
o1, (s,1) = Tl > tf(w; )
weV;
It measures the relevance of a long text [ to the topic 7;. Although this feature is
not a function of short text s, it helps to measure the relevance of a long text [ in
the topic space of the corpus, which by construction includes the topic space of the

short texts. For each topic T;, one such similarity function is created.
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e Differential Topic Score is defined as

ban(s) = 3 (w1

1l
It measures the similarity of a long text [ to the topic words without considering
the words in the short text s. The intuition here is that, we want to eliminate the
part of the score that comes from matching words between short text s and long
text [. Since IR-based feature functions already capture that, we want to get the
score that solely comes from matching the long text to the topic 7T;. Note that for

every topic T;, we define one feature function ¢4, .

Note that for the topic model based functions to be effective, it is very important to have
a corpus with a topic distribution that represents the topic distribution of the short texts.

More discussion on this is deferred to Section 7.3.3

7.2.3.3 Embedding-based Features

Word embeddings [99, 106] are vector representations of terms, and are computed from
unlabeled data, that represent terms in a semantic space where the proximity of vectors
can be interpreted as a semantic similarity. Word embed dings have been shown to
produce good results in many works [76, 40| in the comparing of semantic similarities
between terms, sentences, paragraphs, and documents. Inspired by these results, we
define a bunch of feature functions that are based on the publicly available, pre-trained
word vectors that are known as word2vec [99]. In the following sections, we use v (w) to

represent a low dimension vector representation of word w in the word2vec setting.

e Word2Vec Score is defined as

Guzo(s,1) = ﬁ Z Z (tf(w; s) x tf(w; 1) x max {O,v (w) ev (w/> })

wes ' el

It measures the term-level similarity between a short text s and a long text [ by
incorporating semantic similarity that is measured by the distance between the word

vectors for those terms.
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e Word2Vec Topic Score is defined as

gbw%tl (3 l

HHV'ZZ(tfwz ) x max {0,07 (w) oo (w') })

This function is an extension of the “Topic Score” function to the semantic space.
Here we measure the relevance of a long text [ to the topic T; by comparing the
term-level semantic similarities that are measured by the distance between the word

vectors for those terms.

e Word2Vec Differential Topic Score is defined as

¢zu2vdt,(3 l) |l||V\ |Z Z (tfwl XmaX{OU ( ) ( />}>

This is an extension of the “Differential Topic Score” function to the semantic space.
It measures the semantic similarity of a long text [ to the topic T; through the word

vectors, without considering the terms in the short text s.

7.2.3.4 Selective Expansion via the Bias Feature

Our observation shows that not all short texts need to be expanded to improve the
accuracy of the task. Forcing expansion on all short texts sometimes reduces the task
accuracy. In order to enforce selective expansion, we introduce a Bias feature. The bias

feature is always set to -1
¢bias(sal) = -

A short text is expanded only if

Z 'lUbef (Sv l) + wbias¢bias (37 l) Z 0
f

That means, similarity score between short and long text has to be above some threshold

to force mapping/expansion

wagbf (Sal) Z Whias
f
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7.2.4 Task-specific Learning of Mixture Weights w;

Feature weights wy are learned for a given task such that expanding short texts using
the mappings obtained from wy best improves the task accuracy. Let £ (7 (D.)) be the
loss function that is defined for task 7. It measures the empirical loss of the task on the
expanded texts D.. By varying wy, the mapping of short texts to long texts changes,
which in turn changes the expansions D;, affecting the loss function. Our aim is to learn
wy such that the loss £ is minimized for the task 7. Formally, we solve the following

optimization problem:

argminl (7 (D.))

w

—argmint (T ({s: & M, (s)}7,)) (7.3)

w

The form of loss function £ is task dependent and unknown to us. It can be convex
or non-convex; linear or non-linear; or can be extremely complex and non differentiable
(for example, an output of a deep neural network.) Since our framework has to be task
agnostic, we cannot make any assumptions about the form of loss function. Hence we use

a derivative-free optimization technique that is known as BOBYQA [110]

BOBYQA solves bound constrained optimization problems without using derivatives of
the objective function, which makes it a derivative-free algorithm. The algorithm solves
the problem using a trust region method that forms quadratic approximation models of
the objective function by interpolation. One new point is computed on each iteration,
usually by solving a trust region sub problem subject to the bound constraints, or al-
ternatively, by choosing a point to replace an interpolation point so as to promote good
linear independence in the interpolation conditions. BOBYQA constructs the quadratic

approximation models by the least Frobenius norm updating technique.

For a non-convex loss function £, BOBYQA finds a solution that is at the local minimum.
One of the standard techniques used to overcome the local minimum problem is to adopt
random restarts. That is, we start with a random assignment of the weights wy and run
the BOBYQA procedure with that assignment as the starting value. By repeating this
procedure multiple times with a different random initialization each time, and picking a
solution that produces the least value for £, we can possibly avoid a local minimum and

achieve better solutions.
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7.2.5 Alternate Minimization for Task-specific Learning

In this section we throw some insights into the learning that takes place with BOBYQA.
Solving Equation 7.3 with BOBYQA involves evaluating the task 7 on the given set of
expanded documents. In particular, evaluation of £ involves fitting of the task parameters
to the data first and then comparing the task results with the ground truth. It is important
to distinguish the task-specific parameters from our model parameters. Let © be the
parameters of the task (for example, in a classification task, © is word/feature weights,
and in a clustering task O is cluster membership.) and W be our model parameters for
the expanding of the short texts. The key idea in using BOBYQA is to learn © and W
jointly, such that optimal task results are achieved through the optimal mapping of the
short texts to the long texts. The procedure for this joint learning is outlined in Algorithm

9.

Considering a loss regularized framework for task 7 and the model parameters W of our
framework, the optimal task parameters ©* are learned from the data (expanded texts)
by optimizing the following objective shown in Step 4. Here R is the regularizer, and
L7 is the task-specific loss function (for example, hinge loss in SVM classification task).
Note, L1 is different from the loss function £ that our framework uses to learn W. In the
next step (Step 5), BOBYQA approximates the loss function £ to a quadratic function
Lg, using the interpolation technique. During this process, BOBYQA evaluates the loss
function £ at multiple points (W) using the task parameters ©*. In Step 6, the quadratic
function Lg is optimized to find the optimum parameters W*. The updated weights W
then produce new mappings/expansions for the short texts. The procedure repeats until

no further update happens to W within the tolerance limit set in BOBYQA.

7.2.6 Practical BOBYQA: The Block Learning Approach

Minimizing the loss function £ using BOBYQA results in multiple evaluations of the
function £ during quadratic approximation and the trust region growing/shrinking steps
by BOBYQA. Each evaluation of £ calls for the execution of task 7. For certain tasks,
this evaluation can be time/resource intensive. For example, for a classification task,

computing the classification loss for a given dataset involves training the classifier in the
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Algorithm 9 Joint learning of our model parameters W and task parameters ©
(train)

Require: Corpus C, Short Texts Training Set D
p(AeV) Taglc T

, Short Texts Development Set

Ensure: Model parameters W
- feat
1: Randomly Initialize W = [wf];zgnum catures)
2: while not converged do

3: Find K candidate mapping long texts for every short text in p(train) ,q pldev)

M, (s;) = argmax wagbf (si,1)
le{lfec}kK=1 f

4: Learn task parameters ©

©* = argminR (©) + C Z Lr(e;0,W)
) .
é))ED(tlraun)

where e; = s; ® My, (s;) is the feature vector of the expanded text

5: Quadratically approximate oo L(e;© W) to Lg (W;D(dev), @*). This

(dev)
s; €D
approximation happens in BOBYQA.

6: Learn our model parameters W by minimizing the quadratic function L

W* = argmin

i e o (1521 €)

7. end while
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training split and then evaluating it on the test split. If the dataset size is very large, it
may take a good amount of time to train the classifier. Hence, it becomes important to

reduce the number of loss function evaluations.

The number of loss function evaluations depends upon the number of variables in the
optimization problem, that is, the dimension of the weight vector W. In order to improve
the learning (of weights wy) time of the algorithm, we need to reduce the number of
task evaluations, without reducing the number of features. In the following section we

introduce a novel technique called “Block Learning” to achieve this.

In block learning, we divide our entire set of features into groups of smaller number of
features called “blocks” and learn the weights one block at a time. Each block is a set
of features of a particular class. For example, IR features constitute the 1st block, topic
model features constitute the 2nd block and so on. The learning starts with block-1 where
the BOBYQA finds optimum weights for the features in block-1. Then we move on to
block-2, where BOBYQA learns weights for the features in block-2. At this stage, we treat
block-1 as an additional feature and learn one weight for it. Next, we learn weights for
features in block-3 using BOBYQA. Now, block-1 and block-2 together are treated as an
additional feature and one weight is learned for it. The effective weights of each feature is
the product of weights learned during its block and the additional feature weights learned
during the subsequent blocks. This is depicted in Figure 7.2. The weight for feature f1 is
w1 X by X by, where w; is the feature weight learned by BOBYQA during the first block;
by is the weight learned for the entire block-1 by treating block-1 as an additional feature;
and by is the weight learned for the entire block-1 and block-2 by treating block-1 and
block-2 together as an additional feature. Similarly, weights for the other features are

calculated.

The main advantage of block learning is that, at a time, BOBYQA has to optimize only
those variables in a block along with one more variable for previous blocks. This reduces
the number of evaluations of loss function £ that BOBYQA makes, speeding up the
learning process. Though block learning is not equivalent to learning all weights together,
empirically, we observe that the task accuracy with expansion using block learned weights
is at par with the accuracy from the expansion that uses weights learned with all features

together. However, the total number of BOBYQA evaluations are significantly reduced
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Figure 7.2: Block-learning approach.

with block learning, thus reducing the learning time.

7.3 Experiments and Evaluations

In order to evaluate our approach, we compare our work with several baselines and earlier
works in the literature, which describe the handling of short texts. We demonstrate the
effectiveness of our approach on two different ML tasks: classification and clustering.
Our experimental results show that the proposed approach produces results that are
comparable to the state-of-the-art techniques and that it is generic enough for application
to many ML tasks. We have named our approach as TIDE (Task-speclfic short Document

Expansion), which has been used throughout these experiments and evaluations.

Note that we demonstrate the effectiveness of our approach on classification and clus-
tering tasks. Although classification and clustering are not the goals of this thesis, as

mentioned in the introduction, our approach is applicable to any IR/ML task, includ-
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ing document organization. However, classification and clustering tasks have benchmark
datasets and other methods/baselines to compare against, making them a suitable choice

for the evaluation.

7.3.1 Short Text Tasks

In this chapter, we evaluate classification and clustering tasks for short texts. Though
our technique can be applied to other types of ML tasks, we find that classification and
clustering tasks on short texts have a good presence in the literature, which gives us an
opportunity to use the standard data sets and compare against the baselines and earlier
works. In these tasks, we represent short and long texts as TF-IDF vectors. To expand
a short text s; using a long text [;, we smooth the TF-IDF vector of the short text using
that of the long text in the following manner: e; = as; + (1 —a)l; The 0 < a < 1lisa
smoothing parameter that controls how much importance has to be given to short text
and long texts. When o = 1, only the short text used; when a = 0, only the long text is
used. The value of « is learned as part of the optimization in Equation 7.3. That is, we

optimize the following to learn w and «:

argminL (T (D))

w,o

=argminl (T ({as; + (1 — ) My, (si)}iey))

wW,o

Using BOBYQA and the block learning machinery that is explained in Section 7.2.4, the

optimization problem above is solved for w and .

7.3.2 Datasets

We report our experimental results on several benchmark datasets used in the literature

for classification and clustering tasks. We give an overview of the datasets, below.

7.3.2.1 Reuters21578

Reuters21578 dataset [115] is a collection of news articles. Each article has a short title

and a long description of the news. All articles are classified into various topics. We take
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the articles classified as “Corn” or “Wheat” and consider their titles as short texts. The
task here is to classify the short titles into the Corn or Wheat class. The choice of these
two classes is due to their high inter-class confusion while classifying short titles. We use
the long descriptions (without the title in it) from the articles to form the universal corpus
C. The corpus is then indexed using Lucene software. Using Lucene as an IR system,
we retrieve the top K candidate long texts by using the title as a short text query. The
weights w; are learned in order to choose a mapping long text for every short text such

that expanding the short text by using the long text improves the classification accuracy.

In this dataset, we know the true long text for a short text (title), which is the long
description of that news article. Using this true mapping we can compute a best classifier
using the true long texts of the short texts. This helps us to compare our technique

against the true expansion.

7.3.2.2 News Dataset from TagMyNews

TagMyNews* datasets is a collection of datasets of short text fragments that are used for
the evaluation of the topic-based text classifier. One of the dataset from this collection
is the News dataset. This is a dataset of = approximately 32K English news articles
that is extracted from RSS feeds of popular newspaper websites (nyt.com, usatoday.com,
reuters.com). Each news snippet has a title and a very short (one or two lines) description
of the news event. Every news snippet is classified into one of the following categories:
Sport, Business, U.S., Health, Sci&Tech, World and Entertainment. We use the titles and

the short descriptions as the short texts for the classification task.

7.3.2.3 Web-Snippets

Web-Snippets [109] dataset has around 12K short web search snippets that are classified
into seven classes. Out of this, 10K short texts are used to train the classifier and 2K for

testing.

‘http://acube.di.unipi.it/tmn-dataset/
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7.3.2.4 ODPTweets

ODPtweets® is a large-scale Twitter dataset with nearly 25 million tweets that are catego-
rized in the structure of the Open Directory Project (ODP). This dataset was used for the
tweets classification task in WWW by Zubiaga et al. [166]. The categorization of tweets
is inferred from the links that they point to. From the ODP style category structure that
is associated with each tweet, we extracted the top-level ODP category as the category of
the tweet. For example, for one of the tweets, the ODP category structure associated is
“Computer/Software /Programming/Java”. The top-level category is “Computer” in this
case, which we associate with the tweet as the true category. There are 15 top-level cat-
egories in this dataset (Computer, Health, and the like). For each of these categories, we
extracted around 600 tweets using Twitter API. We then discarded tweets that contained
only junk characters or less than three words or non English tweets. This gave us as a

collection with around 500 tweets in each category.

7.3.2.5 StackOverflowQuestions

We use the challenge data published in kaggle.com® [153] that contains questions that are
posted by the users on stackoverflow.com’. This dataset consists of 3,370,528 questions
posted on stackoverflow.com from July 31, 2012 to August 14, 2012. In our experiments,

we randomly select 20,000 question titles as short texts from 20 different tags, as done by

Xu et al. [153].

7.3.3 Corpus

Choosing the right universal corpus is very important. First, the universal corpus, as its
name implies, must be large and rich enough to cover a lot of words, concepts, and topics
that are relevant to the task problem. Second, this corpus should be consistent with the
training and future unseen data that the task will deal with. This means that the nature of

universal data (for example, patterns, statistics, and their co-occurrence of them) should

Shttp://www.zubiaga.org/datasets/odptweets/
Shttp://www.kaggle.com/
"http://www.stackoverflow.com/
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be observed by humans to determine whether or not the potential topics analyzed from
this data can help in making the task more robust. For example, the universal corpus has

to help make the classifier more discriminate.

Today, Wikipedia is known as the richest online encyclopedia written collaboratively by a
large number of contributors around the world. A huge number of documents are available
in various languages and are placed in a organized structure which inspires the WWW,

IR, and NLP research communities to use it as a large corpus [44].

Another data collection that can be used as a universal corpus in the medical domain is
Ohsumed/MEDLINE. Unlike Wikipedia, Ohsumed only includes medical abstracts. This

corpus can be used for tasks in the medical domain.

We use Wikipedia articles as a universal corpus C of long texts for experiments with
TagMyNews, Web-snippets, ODPTweets and Stack Over flow Questions datasets. We use
the Lucene software to index these articles and retrieve the top K candidate long texts
using short texts as queries. The weights w; are learned such that expanding the short
texts using the long texts (Wikipedia articles) improves the classification and clustering

accuracy.

7.3.4 Robustness Analysis of Our Approach

One of the important characteristics of our approach is its robustness in the noise in the
corpus. Unlike other approaches [20, 121, 157] our method does not force expansion on
all the short texts. Expansion is done only if that helps improving the performance of the
task. When a different corpus (one from a different domain) or a noisy corpus is used,
it may not provide the right long texts for the expansion and, hence, expansion may not
boost the performance of the task. In our experiments, we demonstrate the robustness
of our method against the noisy corpus from the following three scenarios: (i) a wrong
corpus (ii) a corpus that is partially relevant or has noise and (iii) a corpus that contains
the short texts themselves. In the third scenario, we show that our method is capable
of avoiding the selection of short texts from the corpus for expansion, whereas, other
IR-based expansion techniques result in the selection of short texts themselves from the

corpus for the expansion, which does not help the task to improve the performance.
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Expt#| Dataset Short Text Corpus

1 |Reuters21578| News Title Articles from entire Reuters21578 collection
2 |Web-Snippets Snippet Wikipedia articles
3 TagMyNews |Title + RSS feed Wikipedia articles
4 ODPTweets Tweet Wikipedia articles

5 TagMyNews | Title + RSS feed|Wikipedia articles + all short texts from the dataset

6 TagMyNews |Title + RSS feed Wikipedia articles + Ohsumed

7 TagMyNews |Title + RSS feed Ohsumed

Table 7.1: Experiments for the classification task using different datasets and corpora

7.3.5 Evaluation Methodology

All the ML tasks are carried out by expanding the short texts and by measuring the
improvement in the task’s performance. We compare our expansion technique against
various baselines and previous works. The two baselines we compare against are (i) IR

system-based expansion and (ii) Word2Vec-based expansion

In an IR system based expansion, the long text articles in the corpus are initially indexed.
Using the short text as a query, the top ranked result from the IR system is used to

expand the short text. In our experiments, we used Lucene as the retrieval system.

In Word2Vec based expansion, a word vector for every word in the short text is obtained
using the word2vec tool. The average word vector is then computed from all these word

vectors and appended to the short text to produce a long/expanded text.

7.3.5.1 Methodology for Classification Task

There are various criteria that can determine the effectiveness of a classification task;
however, precision, recall, and accuracy are most often used. We choose accuracy (macro
accuracy in case of multi-class classification) to measure the performance of the task,

though other criteria may equally be used. In fact, it does not matter which criteria
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Accuracy (%) % Short
Exptif Texts
Short | Lucene |Word2Ve¢ TIDE Comparing | Actual
Text First Technique Not
Only Expanded
1 85.8 87.2 67.5 91.6 - 92.1 14
2 62.1 76.8 52.9 84.2 82.2 (Phan - 8
[109])
85.3 (Chen [34])
3 71.3 73.7 56.3 81.3 |80 (Vitale [145])| - 11
4 39.4 41.3 21.2 47.8 - - 0
5 71.3 71.8 56.3 81.1 - - 0
6 71.3 73.1 56.3 81 - - 10
7 71.3 62.3 56.3 70.1 - - 92

Table 7.2: Accuracy comparison of classification task (Note, TIDE is our approach)

we choose because the goal of our experiments is to demonstrate an improvement in the

task’s performance using our technique and not to judge the task itself.

The datasets described in Section 7.3.2 are divided into train and test splits according
to the previous works using those datasets. We use 25% of the data from the test split
as the development set and the remaining as the test set for evaluation. During the
training phase, the model parameters (of both our framework and classier) are optimized
by training the classifier on the expanded short texts from the training set and measuring
the accuracy on the expanded short texts from the development set. In the testing phase,

expanded short texts from the test set are classified and accuracy is measured.

We report the results for the task using the SVM classification algorithm, however, we

observed a similar behavior when using other classification algorithms.
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7.3.5.2 Methodology for Clustering Task

We test our algorithm on the Stack Over flow Questions dataset. The clustering perfor-
mance is evaluated by comparing the clustering results of short texts with the tags/labels
provided by the text corpus. The accuracy [26] and NMI metrics|92| are used to evaluate

the clusters.

Since the focus our investigation is to demonstrate the improvement in the clustering
accuracy through our expansion technique rather than the clustering method, we used the
standard k-means algorithm (which, is also the algorithm used in the work we compare

against.)

7.3.6 Results and Discussion

Next we present and discuss our results on classification and clustering tasks, and also

compare them with baselines and other methods.

7.3.6.1 Classification Accuracy

To investigate the accuracy improvement of a short text task using our approach, we
have designed several experiments, as shown in Table 7.1. For each of these experiments
Table 7.1 shows the dataset, the short texts, and the universal corpus used. Experiments
1-4 show expansion using the right corpus and 5-7 show the robustness of our approach

against the incorrect or noisy corpus.

Table 7.2 shows classification accuracies of our method against other baselines. In the
case of Reuters21578 (Experiment 1) we use Reuters21578 articles as the corpus. That
means, the true expansion of the short text (title) is present in the corpus. We consider
the body of a news article as the true expansion of the news title. This experiment lets
us investigate how close our approach can perform to the true (oracle based) expansion.
Interestingly, we observe that our method achieves 91.6% accuracy which is close to the

true expansion accuracy of 92.1%.
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In Experiment 5, the corpus contains exact short texts from the dataset as short articles.
The IR method retrieves these short texts as top results due to the high matching score
and, hence, does not help the expansion. Experiment 6 has the corpus with the noise:
Wikipedia articles mixed with Ohsumed articles. We observe that the Wikipedia articles
provide the right candidates for expansion, whereas Ohsumed articles are irrelevant (noise)
for the news snippets in the TagMyNews dataset. The IR method does a good job of
selecting only relevant candidates for the expansion from the corpus and discards the
noisy candidates. In addition, our model assists in the selecting of expansion texts, which
improves the task accuracy. Experiment 7 has an irrelevant corpus for the expansion.
As we can see from the results, Lucene First (an IR method) is forced to choose a best-
matching candidate for the expansion. Meanwhile, forcing this expansion reduces the
task accuracy. However, our model’s selective expansion strategy makes the short texts
not expand in such scenarios. As shown in Table 7.2, the percentage of short texts not

expanded is up to 92% in this case.

Table 7.2 also shows comparison of classification accuracies reported in short text classifi-
cation techniques from the literature with our method. In most of the cases, our method
performs at par with other techniques or beats them. In comparison to [34], we perform
slightly worse. Note that, we carried our experiments on the same datasets published by
Chen et al. [34]. We believe that the drop in classification accuracy in our system is due
to the differences between the corpus used in our method and that used by Chen et al.
[34]. The seed words that are used for crawling the Wikipedia and the process of building
the corpus are not clear from the descriptions given by Chen et al. [34]. We used all
the Wikipedia articles in our experiments; however, we believe that the accuracy of our

method would improve if we build a focused crawler to generate more relevant corpus.

7.3.6.2 Clustering Accuracy and NMI

The results of the clustering task are shown in Table 7.3. We observe that our method
beats all the baselines and performs at par with Xu et al. [153]. The Lucene First and
Word2Vec-based expansions do not consider the clustering accuracy and NMI during ex-
pansion, our method, however does. This leads to better task performance when compared

to these baselines.
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Baselines/Comparing techniques|Accuracy (%) NMI(%)
Short Text Only 26.3 30.2
Lucene First 38.8 40.1
Word2Vec 11.4 13.6
Jiaming Xu et al. [153] 51.1 49
TIDE 50.8 02.4

Table 7.3: Accuracy and NMI comparison of clustering task (TIDE is our approach)

Note that the framework and features used for the clustering task is same as that of the
classification task. Hence, we state that our framework is task agnostic. However, it
learns to expand the short texts for the classification and the clustering tasks in a way
that improves the task’s performance. This makes our framework powerful for adoption

by many IR/ML/NLP tasks that deal with short texts.

7.3.6.3 Effect of Block Learning

In the next set of experiments, we investigate the effect of the block learning mechanism.
For the classification task, we run the experiments with and without block learning in
order to investigate (i) the amount of time that block learning saves and (ii) the effect
on classification accuracy. Figure 7.3 shows that in some cases there are 30% lesser
task evaluations with block learning, with a marginal drop in the classification accuracy.
Note that we report the saving in training time w.r.t. the number of task evaluations,
because the absolute time for a task depends upon various factors such as the size of
the dataset, the task training/validation methodology, and the like. Interestingly, in the
case of TagMyNews, we observe a slight increase in the classification accuracy with block
learning. We believe that this is because of our model settles for a local minimum in a
high-dimensional feature space when all the features are used together as one block (no
block learning). Meanwhile, when block learning is employed, the reduction in the feature

space dimension helps to find better solutions.
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Figure 7.3: Block Learning: Reduction in the number of task evaluations and impact on

accuracy

7.3.6.4 Feature Ablation

In this section we investigate the usefulness of different classes of feature functions through
feature ablation tests. We start with only IR features and then incorporate topic model
and embedding features one by one. We then compare how the learning of expansion
improves the classification task accuracy with the addition of these features. Figure 7.4
shows the improvement in classification ac curacies as we add different classes of features.
IR based features alone are able to achieve a gain of around 5% in accuracy over Lucene
first, followed by another 4 to 5% gain through topic model-based features. While IR
features can be computed very easily, topic model features (TM) require a one time com-
putation of the topic distribution of the corpus from LDA or similar mechanisms. There is

a marginal improvement when word2vec features (W2V) are used. In these experiments,
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Figure 7.4: Feature Ablation Results

we use pre-built word vectors (of 300 dimension) published by Google. Experiments using

word vectors trained from the corpus and of different dimensions will be part of our future

work.

The choice of adding IR features, followed by TM features, and then W2V features comes
from our observation that IR+TM features produced better task accuracy than IR+W2V
features. However, when all the tree classes of features were combined, we observed the

best improvement in the accuracy.

7.3.6.5 Random Restart Results

To overcome the problem of the local minimum with our approach, we adopt a standard
technique of random restarts. In this section we investigate the effect of random restarts
on the classification accuracy of the task by plotting the best classification accuracy that is
observed so far against the number of random restarts. Figure 7.5 shows the improvement

in the accuracy over multiple random restarts. We observe that in approximately 65 to 75

180



Accuracy vs Random Restarts

0.85
0.84

cy
o o
0 00
N W

0.81

_/

0.79
0.78
0.77
0.76

Classification Accura
o
(o]

N N o0 0« I ™~ O MmO D

LN N N 00 «
MmN < < F DN N n W wWwwWN
Random Restarts

T ~NO MO O < SO N O O N N X
I " NN NN M N N 0 60 0 0 O O O

Figure 7.5: Classification Accuracy improvement with Random Restarts in experiments

using Web-snippets dataset (Experiment 2)

random restarts, we reach the maximum task improvement that can be achieved by our

method.

7.4 Conclusion

In this work we presented a technique for learning to expand short texts in a task-specific
way. The expansion is such that the task accuracy best improves when expanded texts
are used. We do not make any assumptions regarding the tasks except that the task can
be evaluated with the expanded texts. Hence, our technique can be adopted to expand
short texts for any task. To learn task-specific expansion, we presented several classes of
mapping feature functions: IR, topic model and embedding-based. Using a derivative-free
optimization technique known as BOBYQA, we presented the efficient learning of feature

weights in a block learning fashion.
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Chapter 8

Conclusion

In this thesis we studied the problem of evolving a hierarchy of categories that best
organize the documents in a collection under soft (preferential) and hard (necessary) con-
straints, using a massive knowledge graph. The evolved categorization system addressed
four important challenges: (i) under-specified organization, (ii) over-specified organiza-

tion, (iii) intent coverage, and (iv) temporal relevance.

Under-specified categories can result when an insufficient number of categories is used to
describe the documents in the collection. For example, the organization the of Reuters
news articles into the category structure provided by 20NewsGroup results in an under-
specified organization. Our experiment to classify Reuters RCV-v1 using 20NG categories
resulted in an highly skewed distribution of the documents over the categories. Some of
the categories were assigned very few documents and others too many. This happened

due to very small number of categories being relevant to the document collection.

We addressed the problem of under-specified categorization by associating fine-grained
categories with every document. In order to achieve this, we proposed a solution by adopt-
ing a global, collaboratively developed knowledge graph of categories (such as Wikipedia)
to a local document categorization problem effectively. We presented a principled ap-
proach to evolve an organization-specific, multi-class, multi-label document classification
system starting from scratch (Chapter 2). We modeled our classification problem as that
of inferring structured labels in an Associative Markov Network (AMN), where the label
space was derived from a global knowledge graph of categories. By incorporating the out-

puts of various classification techniques (such as SVMs, Topic Models, Knowledge Mining,
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and the like) as dynamic features in AMN along with the document similarity measures
(such as Jaccard, Cosine, BM25, and the like) as static features, we presented a novel

framework for learning to associate categories with the documents.

Associating fine-grained categories with every document in a collection posed another
challenge: over-specified categorization. When the number of categories are too many for
the document collection, then each document is assigned in its own category leading to

very sparse and less interpretable categorization.

In order to overcome the over-specified categorization, we proposed a novel technique of
summarizing DAG-structured category hierarchies over a given set of documents (Chapter
4.) The summarization produced a smaller set of categories that are still representative
of the documents in the collection. We posed the problem as a submodular optimization
problem on a category hierarchy using the documents as features. We proposed many de-
sirable properties for the chosen categories which included document coverage, specificity,
category diversity, and category homogeneity, each of which, we showed can be modeled
as a submodular function. We showed that other information provided, for example by
unsupervised approaches such as LDA and its variants, could also be utilized by defining
a submodular function that expressed coherence between the chosen topics and this in-
formation. We used a large-margin framework to learn convex mixtures over the set of
submodular functions. Using greedy inference procedure we showed how to generate a

summary category set describing the document collection.

In addressing over-specified organization, we also presented ideas for unsupervised tech-
niques using Sampling and Expectation Maximization, for identifying a smaller DAG
structured categories for organizing the document collection (Chapter 6.) Given a collec-
tion of documents with fine-grained concept assignment, and a massive concept hierarchy
in the form of a DAG, we inferred a sub-DAG as a summary DAG that best represented
the collection. We modeled the category DAG as a Markov Network for generating the
documents in the collection and specified a joint probability distribution over the observed
documents in the collection. Through Gibbs sampling we learned this distribution. There-
after we estimated the importance of categories based on the marginal probabilities of the
category nodes and their children in order to rank the categories. By taking top K ranked

nodes along with the edges between them, we formed a sub-DAG.
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In order to address the third challenge of document organization, the intent coverage, we
proposed personalization techniques for associating categories with documents (Chapters
1 and 2.) Personalization is done by seeking user feedback on the system generated
document-category pairs. The feedback is then translated into hard and soft constraints
which are applied during AMN inference for category association with the documents. To
reduce this cognitive load and to achieve greater accuracy with fewer training labels (that
is, feedback) we presented a novel joint Active Learning technique, in order to jointly
select document and category pairs for feedback. We showed that our technique is able
to learn to categorize documents with fewer feedbacks/labels thus reducing the cognitive

load on the users.

The final challenge, the temporal relevance, is naturally addressed in our techniques due
to the usage of collaboratively developed Knowledge Bases (such as Wikipedia) as the
vocabulary for the categories. Since the Knowledge Bases that we use in our framework
are kept up-to- date with all the categories (by the collaborative editors,) we are able
to spot new categories and associate them with the documents when new topics emerge
in the document collection. We also proposed ideas for updating already categorized

documents when new categories are added to the Knowledge Bases.

Apart from addressing these four challenges, we also presented a technique for diversifying
the category assignments to the documents using knowledge graphs (Chapter 4.) This
becomes important when there is a budget constraint on the number of categories that can
be associated to a document. In order to produce a diverse but relevant set of categories in
the precious top K positions, we presented a novel technique using a Biconvex optimization

formulation which is a graph based iterative method for choosing diversified categories.

Another important contribution of this thesis is the organization of short texts (Chapter
7.) Short texts are quite different from the traditional documents due to their shortness
and sparseness. Hence, our earlier developed methods could not be applied directly on
short texts. We presented a method for expanding short texts using a “universal corpus”
(such as Wikipedia, Ohsumed) of documents, for the better organization of short texts.
Our method used a derivative free algorithm called BOBYQA to iteratively reduce the loss
function for the task over the short texts. In each iteration of the algorithm we generated

an expansion candidate and then evaluated the task with the candidate expansion text.
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Figure 8.1: Summary of this thesis

Based on the result of the evaluation, we computed a quadratic approximation of the loss
function and further minimized using a trust region technique. This made each iteration
to improve the short text expansion optimally. As a result, we learned a model to expand

the short text by mapping it to the best possible article from the “universal corpus”.

Although we confined our experimental studies to organize digital documents in this the-
sis, the proposed techniques may be useful in other settings as well. For example, it will
be an interesting study to apply our techniques for automatic table of content (ToC)
suggestions; Wikipedia style disambiguation page generation and the like. In case of ToC
generation, we can reformulate the problem as that of organizing chapters under summa-
rized categories as ToC. Each chapter has a rich context (section headings, description
text, and the like), which can be used to associate sections/chapters to various concepts
from the Knowledge Base. Summarizing these concepts at different levels can generate
ToC. Similar analogy can be made with other examples and cases. However, we leave

these studies for future work.

In Figure 8.1 we summarize the organization of all these techniques and show how they
are interconnected. This figure also shows the different conferences in which each of these

sub-problem is published.

Finally, we developed an end-to-end system by piecing together all of these sub-systems
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and built a categorization system . For this, we extracted about 150 technical articles
under Science tracks (Computer Science, Chemistry, Computational Biology, Micro Biol-
ogy, Genetics, Physics, Electricity, Logic (Mathematics), Algebra, and Number Theory)
from DOAJ and arXiv collections. We associated categories for each article using our
AMN framework (Chapter 2) with Wikipedia as the Knowledge Base. While associating
concepts from Wikipedia to the articles, we also added user preferences (constraints) to
limit the categories to only those under “Science” in Wikipedia. Using our active learning
technique (Chapter 3) we provided some feedback to the system to improve the accuracy
of the categorization. We then applied our diversification algorithm (Chapter 4) to the
associated categories so that each document is associated with at most 20 categories.
Thereafter, using our proposed submodular category summarization technique (Chapter
5), we summarized the set of categories down to 100 categories. The Figure 8.2 shows
the summarized 100 categories in the form of a tag cloud. The font sizes of the category

names indicate the number of documents organized under them.
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Appendix A

Cycle Detection and Breaking

The Wikipedia category hierarchy graph is not a DAG. There are several cycles in the
category hierarchy. In order to perform Bayesian analysis (Chapter 6) and summarization
(Chapter 5) on this hierarchy, we need to first convert it to a DAG. Our semantic inter-
pretation of the hierarchy is that, in every path from root to leaf, a category higher up in
the path is more general than the categories below it. For example, category “Science” is
more general than category “Physics”. Representing this relationship as a directed edge
A — B, where A is more general (an ancestor category) than B (a descendant category,)
we say that there should not be any edge of the form B — A on the entire path. Pro-
grammatically verifying if A is more general than B for any two given categories lying on
a path and appropriately ordering them for eliminating the cycles is a research problem
by itself. A simpler heuristic to get rid of a cycle is to delete the very first edge on a path
that connects a descendant category to an ancestor category forming a cycle. The Figure
A.1 shows an example illustrating this procedure. The rationale behind choosing such
an edge is that, a more specific category cannot be a parent (or ancestor) of less specific

(equivalently, more generic) category.

The Algorithm 10 outlines our cycle detection and elimination procedure. It traverses
all the paths starting at every node, checking if any of the paths end up in the starting
node itself, hence forming a cycle. If such a path exists, the edge that returns to the
starting node of the path is deleted to break the cycle. Since the algorithm traverses in
a breadth first fashion, it guarantees that the very first edge on the path that connects a
descendant category to an ancestor category gets dropped. On the Wikipedia (2012 Oct
dump) category graph, our algorithm detected and eliminated 1766 cycles.
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Algorithm 10 Cycle Detection and Elimination
1: Input : Wikipedia Category Graph with Cycles

2: Output : Wikipedia Category DAG (without cycles)

3: Let [C}, (s, ....C,] be the ordered list of Wikipedia categories visited during the
Breadth First traversal of Wikipedia categories starting from the root node.

4: for 1 =1..n do

5: Let [C},, C,,, ....C; ] be the ordered list of Wikipedia categories visited during the

Breadth First traversal of Wikipedia categories starting from C;
6: for j=1,.1, do

7 if C; € {children of C;} then
8: Delete edge C; — C;
9: end if

10: end for

11: end for
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While other approaches such as finding minimum number of edges to eliminate all the
cycles in the hierarchy, or employing NLP based techniques for finding/correcting the vio-
lations of “general—specific” ordering to eliminate the cycles are possible (which of course
need further investigations,) we restrict our strategy to the above mentioned heuristic in

this thesis.
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Appendix B

Proof of Equation 6.19

The quantity a(j) is the probability of reaching node j from the root . This is evident
from the definition in Equation 6.17

The quantity 5(j) in Equation 6.18 is the expected importance score that propagates
through node j from all the leaf nodes. That is, if we propagate the importance scores
N, € [0,1] from the leaf nodes upwards by dividing the scores proportional to the edge

probabilities, the amount of score that reaches the node j through all the paths is given

by 8(j)-

Note that, in the numerator of Equation 6.19, all paths in P pass through the edge (7, k).

Hence P can be re-written as follows:
P=UR (j,k)®V

where U is the set of paths ending at node j and V is the set of edges starting at node k.
The operator ® is the cross join between the set of paths. For example, if i has two paths

p1 and py, and V has two paths ¢; and go, then U x V has four paths {p1q1, p1g2, P2q1, P2g2 }-

Any function f over P can be decomposed over U and V as follows:
5t~ (L) < (T
peEP ueU veY

Applying this principle to the Equation 6.16, we can re-write it as follows:

SNy (p“‘” (llend(P))< > [T p* (SIT)> pi=Y (klj)< > [T pt (SIT)>>
p(t) (klj) = l u:endu)=;(r,s)eU y:start(v)=k(r,s)eP

lesz% (P(“) (llend(P))< 2. [I pt=" (SIT))( 2. II pt=" (Slr)>>

uendu)=;(rs)eu v:start(v)=;(r,s)eP
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Bringing the part which is independent of [ outside the summation, we get:

< >l p<t—1>(s|r>)p<t—”<k|j> (;m%(ﬂt-”(uend(m)( > p<t—1><s|r>)>

u:endu)=;(r,s)eU v:start(v)=k(r,s)eP

p(t) (k|J) = <

3 T pt—v (s|,-)> (%:Nl%, <p(t1) (l|elld(P))< > [T ptt=Y (Sl’f'))))

u:end u)=;(r,s)eU y:start(v)=;(r,s)eP

Note, Z; = «a(l). Substituting this in the above equation, we get:

< 2 Il p”‘”(ﬁl?“))!)“‘”(klj) (;% <p(t‘1)(llend(7’))< 2 II p“‘”(é‘l?‘))))

_ u:end(u)=;(rs)eu vstart(V)=k(r,s)eP
" (klj) = :
S I UGl ) [ S&E (D Ulend(P) | X TT pUY (shr)
u:endu)=;(r,s)eU l v:start(v)=;(r,s)eP

_ a()p"Y (k1) B(k)
a(4)B ()
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