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Abstract

This thesis discusses the impact of finite spatial and dimensional resolution of the velocity

fields provided by most experimental measurement techniques, on the accuracy of the turbulent

dissipation rate in channel flows. These characteristics introduce a bias error in the calculated

turbulent dissipation rate, leading to its underestimation and consequentially an overestimation

of the Kolmogorov length scale, the accuracy of which is critical in turbulence research.

To investigate the effect of finite spatial resolution, velocity fields obtained from direct

numerical simulation (DNS) of a turbulent channel flow are spatially filtered successively

along each of the three Cartesian directions and the effect of spatial filtering along each

direction on the turbulent dissipation rate is reported. The analysis reveals that spatial filtering

along the wall-normal direction has the largest effect on turbulent dissipation rate in the near

wall region, while the spatial filtering along only the stream-wise direction has the least effect.

The truncation error in the gradient calculation scheme is found to have a large effect on the

accuracy of dissipation in the near wall region, it’s fractional contribution at large wall-normal

filter sizes is as high as 40% of the total error.

All the components of the velocity gradient tensor needed to calculate the turbulent

dissipation rate cannot be directly determined in most experimental techniques due to their

limited dimensional resolution capabilities. In such cases, the missing components are

modelled using various formulations. The dissipation calculated from unfiltered DNS velocity

fields by using the existing formulations from literature is found to be highly inaccurate in the

near-wall region when the compared with the true value. A new model has been developed to

estimate dissipation accurately in the near wall region when a limited number of components

of the velocity gradient tensor are obtained from any experimental technique which provides

either 2 component 2 direction (2C-2D) or 3 component 2 direction (3C-2D) velocity field

measurements. When the dissipation is calculated using the new model, with the derivatives



iv

calculated from the unfiltered DNS data, it has a maximum error of 20% of true value in the

entire channel while the maximum error in Kolmogorov length scale was 5% of the true value.

The net error in the turbulent dissipation rate and Kolmogorov length scale due to limited

spatial and dimensional resolution of velocity fields provided by any experimental technique

which invole spatial filtering, was estimated by spatially filtering velocity fields at resolutions

typical of various experimental techniques and then employing the existing and new models

to calculate dissipation. The error introduced due to spatial filtering alone was found to be the

dominant source of error in dissipation as compared to the error introduced due to the use

of various models. The error arising from the use of the models depends on the size of the

measurement volume and the choice of an appropriate model for wall-bounded flows can thus

vary with Reynolds number and size of the measurement volume.
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Introduction

"Big whirls have little whirls that feed on their velocity,

and little whirls have smaller whirls and so on to viscosity

- in the molecular sense.",

These poetic lines by Richardson (1922) succinctly summarise the turbulent kinetic energy

cascade in fluid flows, where the kinetic energy first enters turbulence through the process

of production, at the largest scales, and is transferred successively to smaller scales, up to

the scales at which Reynolds number (Re) is small enough (∼ O(1)) for molecular viscosity

to be effective in dissipating the turbulent kinetic energy (Pope, 2001). This placement of

dissipation at the end of the energy cascade, the rate of which is determined by production of

turbulent kinetic energy in a statistically stationary flow, makes the rate of production (P)

and dissipation (ε) the source and sink of turbulent kinetic energy respectively, each playing a

fundamental role in the study of turbulent flow processes.

The dissipation rate of turbulent kinetic energy is primarily a small-scale phenomenon,

hence it’s accurate determination is critical for the modelling of many small-scale processes

(Gerolymos and Vallet, 2016; Lee and Reynolds, 1987; Sreenivasan and Antonia, 1997).

For example, models of chemical and turbulent mixing processes in tanks and combustion

chambers rely on the accurate determination of the mean turbulent dissipation rate and its

distribution across the domain of interest. (Delafosse et al., 2011; Doron et al., 2001; Gabriele

et al., 2009; Sharp and Adrian, 2001; Sheng et al., 2000).

Wall-bounded turbulent flows in general and turbulent boundary layers (TBL) in particular

have received a lot of attention due to their importance in the determination of efficiency and

safety of many industrial systems. A deeper understanding of the mechanisms of turbulent

transport of momentum and Reynolds stresses requires the study of budgets of Reynolds
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stresses and turbulent kinetic energy, which amongst other quantities, need the accurate

determination of turbulent dissipation rate.

In the domain of numerical simulation of turbulent flows, Reynolds Averaged Navier

Stokes (RANS) equations based solvers employ turbulence models which often require accu-

rate determination of turbulent dissipation rate for their validation. Large Eddy Simulations

(LES) resolve the large scales in a flow and model the effect of small, unresolved scales

using various sub-grid scale (SGS) models; the validation of these models is dependent on the

accurate determination of turbulent dissipation rate in various flow configurations.

The dissipation rate of turbulent kinetic energy can be obtained by direct numerical

simulation (DNS) of the governing Navier-Stokes equations for fluid flow. DNS requires

accurate resolution of the entire range of length and time scales in a flow; from largest

to the Kolmogorov scale. The range of scales in a flow increase with Reynolds number,

the computational costs of DNS scaling with ∼ Re3 (Davidson, 2015), as a result, these

simulations are limited to simple configurations and to Reynolds numbers which much lower

than those encountered in industrial and natural flows.

Due to the high computational costs associated with the DNS of turbulent flows, high

Reynolds number turbulence research is often conducted with the aid of experimental mea-

surements which have their own challenges. The velocities obtained from every measurement

technique have associated errors and uncertainties, the analysis of these errors and corrections

to be applied to the measured velocities have been the subject of extensive research (Abdel-

Rahman et al., 1987; Comte-Bellot, 1976; Corrsin, 1963; Forliti et al., 2000; Huang et al.,

1997). Even in the limit of no measurement errors in the velocity, the accuracy of dissipation

determined from experimental measurements is affected by two factors:

1) Velocity fields obtained from experimental measurements are spatially filtered due to the

finite size of the probe or measurement volume (Spatial filtering).

2) Most measurement techniques provide velocity fields from which limited components

of the velocity gradient tensor can be obtained (Limited dimensionality); in such cases, the

turbulent dissipation rate is determined with the aid of models which are found to provide an

inaccurate estimate of dissipation in wall-bounded flows.



Introduction xxv

Spatial filtering and limited dimensionality of the measured velocity fields, which are

characteristics common to most measurement techniques, thus lead to a bias error in the

turbulent dissipation rate obtained from experimental measurements. Although some literature

is available which addresses some or all of these issues for various flows (Antonia et al., 1991;

Bertens et al., 2015; Buxton et al., 2011; Xu and Chen, 2013), little information is available on

the loss in accuracy of the dissipation (and hence Kolmogorov length scale) in wall-bounded

flows.

Aims

The present study aims to determine the error induced in the turbulent dissipation rate (and

the associated quantities) due to spatial filtering and limited dimensionality of the velocity

fields obtained from experiments on wall-bounded turbulent flows. Channel flows being

homogeneous along the stream-wise and span-wise directions, are a canonical case of wall-

bounded turbulent flows, hence for the present study, the velocity fields sourced from DNS of

a channel flow by Kitsios et al. (2015) will be used to:

• determine the error introduced in the turbulent dissipation rate due to spatial filtering as

a function of filter size along each of the Cartesian directions.

• evaluate the accuracy of the turbulent dissipation rate calculated by various existing

models which are used when limited components of the fluctuating velocity gradient

tensor can be determined directly from measurements.

• determine the combined effect of both spatial filtering and limited dimensionality on

the accuracy of the turbulent dissipation rate as a function of wall-normal distance.

Outline

The thesis is organized as follows:
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• Chapter 1 is a brief overview of the existing research on the effect of spatial filtering

and limited dimensionality on turbulent flow measurements with a specific focus on

dissipation.

• Chapter 2 presents the distribution of the mean turbulent dissipation rate in a channel

flow calculated from DNS data and investigates the contribution of various velocity

gradients to dissipation in wall-bounded flows.

• Chapter 3 describes the filtering technique and other numerical methods used in this

study.

• Chapter 4 discusses the effect of spatial filtering on the accuracy of the turbulent

dissipation rate as a function of wall normal distance.

• Chapter 5 analyses the effectiveness of various existing models in accurately estimating

dissipation in channel flows.

• Chapter 6 evaluates the net error in dissipation due to both spatial filtering and limited

dimensionality.

• Chapter 7 provides a summary of the entire study and presents the conclusion from the

findings of this research.



Chapter 1

Challenges in Determination of

Turbulent Dissipation Rate from

Experiments

Accurate determination of the turbulent dissipation rate from experimental measurements

poses certain challenges. Apart from measurement noise, experimental measurements provide

velocity fields which are spatially filtered and in most cases, are of limited dimensionality.

The existing research on the effect of these aspects on the accuracy of turbulent dissipation

rate is discussed in the following sections.

1.1 Effect of finite size of the measurement volume

Ideally, any measurement obtained from experiments should be point values, but the size of

the measurement length in case of say, the wire in hot-wire anemometry and the interrogation

window volume in case of PIV measurement techniques like planar particle image velocimetry

(PIV), dual plane stereoscopic PIV (DPSPIV) or tomographic PIV (TPIV) is finite (and will

be generically referred to as the measurement volume in the text henceforth). Due to the

finite size of the measurement volume, velocities obtained from experimental measurements

are an average over that volume, as a result, the information from length scales smaller than

the size of the measurement volume is filtered out. Dissipation of turbulent kinetic energy

takes place at the smallest scales in the flow, the Kolmogorov length scale (η) (Kolmogorov,
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1941), measurement at such length scales is challenging, especially at large Reynolds numbers

where the ratio of largest to smallest scales in the flow is substantial. It might be possible to

employ very large experimental facilities and very small measurement volume to attenuate

the problem of spatial filtering, but for most experimental facilities, spatial filtering of the

velocity field is unavoidable, as a result, the velocity obtained from measurement volumes of

finite size is an average over length scales which are several times larger than the Kolmogorov

length scale. An average over lengths much larger than the Kolmogorov length scale filters

out a substantial contribution to dissipation from small-scale turbulent velocity fluctuations

(Buxton et al., 2011) which results in an underestimation of the turbulent dissipation rate

(Antonia et al., 1994).

One dimensional (1D) spatial filtering in hot-wires (Chin et al., 2009; Corrsin and Kovasz-

nay, 1949; Frenkiel, 1949; Philip et al., 2013; Segalini et al., 2011; Uberoi and Kovasznay,

1953; Wyngaard, 1968), and two dimensional (2D) and three dimensional (3D) spatial filtering

in PIV measurements (Atkinson et al., 2014; Buxton et al., 2011; Saikrishnan et al., 2006)

have been the subjects of intense research. Studies on the effect of spatial filtering on velocity

spectra and dissipation are well documented for different shear flows. Saikrishnan et al.

(2006) highlighted that spatial averaging filters out small-scale structures and smooths the

velocity fields thereby underestimating the instantaneous velocity gradients, resulting in an

underestimation of the turbulent dissipation rate. Atkinson et al. (2014) demonstrated that a

noiseless PIV measurement would underestimate the Reynolds stresses and turbulent velocity

fluctuations, leading to an attenuation of the velocity power spectra at high wave-numbers.

Since a substantial proportion of dissipation takes place in the high wave-number regime

(small length scale fluctuations), the attenuation of velocity power spectra due to spatial

filtering leads to an underestimation of the turbulent dissipation rate.

Data obtained from PIV measurements has been extensively used in determination of the

turbulent dissipation rate (Baldi et al., 2002; Bertens et al., 2015; Buxton et al., 2011; De Jong

et al., 2009; Delafosse et al., 2011; Doron et al., 2001; Gabriele et al., 2009; Saarenrinne

and Piirto, 2000; Sharp and Adrian, 2001; Sheng et al., 2000). Buxton et al. (2011) studied

the effect of PIV interrogation window size on fine-scale turbulence by spatially filtering

the velocity fields obtained from DNS of a two-dimensional mixing layer. They reported
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that the intermittency of dissipation is greatly reduced due to spatial filtering. Along with

measurement noise, the errors in velocity derivatives due to spatial filtering introduced

artificial compressibility into the results due to non-zero divergence (∇ ·U) of the measured

velocity fields and presented a skewed picture of the dynamics of dissipation.

The study of Saarenrinne and Piirto (2000) revealed that an interrogation window size

of the order of Kolmogorov length scale is needed for accurate estimation of the turbulent

dissipation rate. The inability of most experimental techniques to provide adequate resolution

of the flow, particularly at high Reynolds numbers, make the accurate measurement of

turbulent dissipation rate from experimental measurements a challenging task. For example,

the experiments in the Princeton Superpipe (Hultmark et al., 2012) employed a hot-wire with

the smallest wire size in the world in terms of Kolmogorov length scale (η) and are still

not able to achieve a probe size smaller than 10η , thus filtering a substantial portion of the

dissipation spectrum. Additionally, it should be noted that the natural choice for expressing

the interrogation window size is in terms of Kolmogorov length scale, but in flows where it is

difficult to know the Kolmogorov length scale in advance, the optimal window size has to be

determined iteratively.

Existing studies on the determination of the error introduced in the turbulent dissipation

rate due to the finite size of the measurement volume are performed for either isotropic

turbulence (Bertens et al., 2015; Xu and Chen, 2013), stirred tanks (Baldi et al., 2002;

Delafosse et al., 2011; Gabriele et al., 2009; Sheng et al., 2000) or in regions far away from

walls (Doron et al., 2001), while limited information is available for wall-bounded flows.

Wall-bounded turbulent flow research is important due to its criticality in the design of many

engineering systems. Wall-bounded turbulence is known to be highly anisotropic, large-scale

anisotropy in the velocity gradients due to the presence of the wall, leads to finite anisotropy

even in the smallest scales (Oberlack, 1997). The anisotropy of wall-bounded turbulence in

general and the associated dissipation rate tensor in particular, have been reported in numerous

studies (Gerolymos and Vallet, 2016; Lee and Reynolds, 1987; Mansour et al., 1988; Mazellier

and Vassilicos, 2008, 2010). The anisotropy of wall-bounded turbulence has been attributed

to the inhomogeneity in the wall-normal direction which is introduced by the mean flow

(Buschmann and Gad-el Hak, 2006), the no-slip condition at the wall (Lumley, 1979) and
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wall-echo (the reflective effect of the wall on pressure) (Chang III et al., 1999; Gerolymos

et al., 2013; Kim, 1989). Hanjalic and Launder (1976) deduced that the isotropic part of the

dissipation tensor is zero at the wall and varies as the square of the distance from the wall;

thus most dissipation in the near wall region is contributed from the anisotropic part of the

dissipation rate tensor. Due to this anisotropy in the near wall region, it is anticipated that

the dissipation obtained from spatially filtered data will introduce an anisotropic error, i.e.

it will depend on the direction of filtering. Hence, a structured approach of quantifying the

error introduced in dissipation due to spatial filtering of the velocity fields along each of the

stream-wise, wall-normal and span-wise directions is warranted.

1.2 Effect of limited dimensionality

In order to address the challenge posed by limited dimensionality to the accurate determination

of dissipation from experimental data, let us look at the equation for turbulent dissipation

rate.(Eq. 1.1)

ε = 2ν
〈
si j · si j

〉
(1.1)

here ⟨·⟩ denotes the ensemble averaging, ν is the kinematic viscosity and si j is the strain rate

tensor associated with the instantaneous turbulent velocity fluctuations and is given by

si j =
1
2

(
∂u′i
∂x j

+
∂u′j
∂xi

)
(1.2)

where u′i is the turbulent fluctuating velocity along the direction xi. Combining Eq. 1.1 and

Eq. 1.2 and expansion of the terms leads to the equation of the mean turbulent dissipation rate

(Eq.1.3)
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ε = ν

〈
2
(

∂u′1
∂x1

)2

+2
(

∂u′2
∂x2

)2

+2
(

∂u′3
∂x3

)2

+

(
∂u′1
∂x2

)2

+

(
∂u′2
∂x1

)2

+

(
∂u′3
∂x1

)2

+

(
∂u′1
∂x3

)2

+

(
∂u′2
∂x3

)2

+

(
∂u′3
∂x2

)2

+2
(

∂u′1
∂x2

∂u′2
∂x1

)
+2
(

∂u′1
∂x3

∂u′3
∂x1

)
+2
(

∂u′2
∂x3

∂u′3
∂x2

)〉
(1.3)

When the alignment of the co-ordinate system is such that x1 = x, x2 = y and x3 = w and

u′1 = u′, u′2 = v′ and u′3 = w′; the equation of the mean turbulent dissipation rate is expressed

as Eq. 1.4.

ε = ν

〈
2
(

∂u′

∂x

)2

+2
(

∂v′

∂y

)2

+2
(

∂w′

∂ z

)2

+

(
∂u′

∂y

)2

+

(
∂v′

∂x

)2

+

(
∂w′

∂x

)2

+

(
∂u′

∂ z

)2

+

(
∂v′

∂ z

)2

+

(
∂w′

∂y

)2

+2
(

∂u′

∂y
∂v′

∂x

)
+2
(

∂u′

∂ z
∂w′

∂x

)
+2
(

∂v′

∂ z
∂w′

∂y

)〉
(1.4)

Thus accurate measurement of all nine components of the fluctuating velocity gradient tensor

is needed in order to directly determine turbulent dissipation rate from the velocity fields.

Most experimental techniques provide velocity fields which are either 1 component 1

direction (1C-1D)[Hot Wire Annemometry (HWA)], 2 component 2 direction (2C-2D) (Planar

PIV) or 3 component 2 direction (3C-2D) (Stereoscopic PIV). In these cases, indirect methods

are used which are models based on simplifying assumptions like homogeneous and/or

isotropic turbulence (Doron et al., 2001; Elsner and Elsner, 1996; Saarenrinne and Piirto,

2000; Sheng et al., 2000). The most successful models available in the literature are presented

in the following sections.

Local Isotropy Model

Kolmogorov (1941) formulated the theory of local isotropy which states that at infinite

Reynolds number, small-scale turbulence is locally isotropic, i.e. it is statistically invariant

under translations, rotations, and reflections of the coordinate system. Hence statistically,
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isotropic turbulence is uniform in all directions. Hinze (1975) derived the derivative equiva-

lences satisfied in isotropic turbulence, given in Eq. 1.5.

〈(
∂u′1
∂x1

)2
〉

=

〈(
∂u′2
∂x2

)2
〉

=

〈(
∂u′3
∂x3

)2
〉

〈(
∂u′1
∂x2

)2
〉

=

〈(
∂u′2
∂x1

)2
〉

=

〈(
∂u′2
∂x3

)2
〉

=

〈(
∂u′3
∂x2

)2
〉

=

〈(
∂u′3
∂x1

)2
〉

=

〈(
∂u′1
∂x3

)2
〉

= 2

〈(
∂u′1
∂x1

)2
〉

〈
∂u′1
∂x2

∂u′2
∂x1

〉
=

〈
∂u′2
∂x3

∂u′3
∂x2

〉
=

〈
∂u′3
∂x1

∂u′1
∂x3

〉
=−1

2

〈(
∂u′1
∂x1

)2
〉

(1.5)

Substituting Eq. 1.5 in Eq. 1.3 we get the formulation of dissipation for isotropic turbulence

(εISO, Eq. 1.6).

εISO = 15ν

〈(
∂u1

∂x1

)2
〉

(1.6)

When data is obtained using experimental techniques like single wire hot-wire annemome-

tery (1C-1D), local isotropy of the smallest length scales in the flow is generally assumed and

the dissipation is calculated using Eq. 1.6 (Elsner and Elsner, 1996).

Local axisymmetry model

George and Hussein (1991) proposed that small-scale turbulence can be considered to be

locally axisymmetric. The prescribed derivative equivalence conditions to be satisfied in

turbulence assumed to be axisymmetric about the x1 direction are presented in Eq. 1.7
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∂x2

)2
〉
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)2
〉
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=
1
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)2
〉
+

1
3

〈(
∂u′2
∂x3

)2
〉
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∂u′3
∂x2

〉
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1
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− 1
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∂u′3
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2
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∂u′1
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(1.7)

The 2C-2D formulations of dissipation were derived by George and Hussein (1991) by

using the derivative equivalence relations in Eq. 1.7 to model the unknown terms. When

measurements are performed in the 1-2 plane, the formulation of dissipation based on the

assumption of local axisymmetry of turbulence about the x1 axis is given by Eq. 1.8.

εLA = ν

〈(
∂u′1
∂x1

)2

+8
(

∂u′2
∂x2

)2

+2
(

∂u′1
∂x2

)2

+2
(

∂u′2
∂x1

)2

+4
(

∂u′1
∂x2

∂u′2
∂x1

)〉
(1.8)

Weak local isotropy model

Doron et al. (2001) modelled the dissipation in coastal ocean bottom boundary layer from

2C-2D PIV data by assuming weak local isotropy of turbulence. The model is based on the

assumption that the out-of-plane cross gradients (gradients along directions perpendicular

to the velocity component) are equal to the average in-plane cross-gradients (Eq. 1.9),

these assumptions are weaker than those used in the local-isotropy model as they assume

equivalence of only the cross-gradients.



8 Challenges in Determination of Turbulent Dissipation Rate from Experiments

〈(
∂u′1
∂x3
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〉

=
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∂x3

〉
=

〈
∂u′1
∂x2

∂u′2
∂x1

〉
(1.9)

Using the assumption of weak local isotropy of turbulence, Doron et al. (2001) presented

the formulation of dissipation which is given by Eq. 1.10

εWI = ν

〈
4
(

∂u′1
∂x1

)2

+4
(

∂u′2
∂x2

)2

+3
(

∂u′1
∂x2

)2

+3
(

∂u′2
∂x1

)2

+4
(

∂u′1
∂x1

∂u′2
∂x2

)
+6
(

∂u′1
∂x2

∂u′2
∂x1

)〉
(1.10)

The adequacy of each of the above three models to estimate dissipation in wall-bounded

flows will be discussed in chapter 5.

1.3 Combined effect of spatial filtering and limited dimen-

sionality

Xu and Chen (2013) studied the effect of filter size on the turbulent dissipation rate in isotropic

turbulence and reported that the accuracy of the turbulent dissipation rate calculated using

above-described models decreases with increasing spatial filtering; although no information

was provided on the individual contributions of spatial filtering and limited dimensionality

to the error in the turbulent dissipation rate obtained from experiments. The effect of spatial

filtering on the accuracy of the above described models is unknown and will depend on the

response of error introduced in each of the derivative terms in Eq. 1.3 due to spatial filtering.

An estimate of bias error introduced in dissipation (ε) and Kolmogorov length scale (η)

due to both spatial filtering and limited dimensionality is needed for the analysis of these
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quantities and the dynamics of dissipation and turbulent kinetic energy. The existing studies

on the impact of spatial filtering and limited dimensionality on the accuracy of turbulent

dissipation rate are available only for simple flows without strong mean shear and away from

any boundaries. Given that the nature of wall-bounded turbulence is characterized by strong

anisotropy and inhomogeneity in the near wall region, even at the smallest scales; there is a

strong need to investigate the individual and combined effect of spatial resolution and limited

dimensionality on the accuracy of turbulent dissipation rate in wall-bounded flows.





Chapter 2

Channel Flow DNS dataset

Three-dimensional velocity fields obtained from DNS of fully developed turbulent channel

flow by Kitsios et al. (2015) have been used to study the effect of spatial filtering and limited

dimensionality on the turbulent dissipation rate in wall-bounded flows. The effects on the

accuracy of the turbulent dissipation rate were evaluated by considering the unfiltered DNS

data as the reference case. Details of the DNS are provided in section 2.1 and the dissipation

for the baseline DNS case is presented in section 2.2

2.1 Description of the DNS database

The code used to generate the DNS data used in the current study solved the incompressible

isothermal Navier-Stokes equations in spectral space. The simulation domain is oriented such

that the stream-wise, wall-normal and span-wise directions are along the cartesian x,y and

z directions respectively. The discretization is performed by using a collocated Chebyshev

discretization in the wall-normal (y) direction, and Fourier expansions in the wall-parallel x-z

plane. The code solves for the wall-normal vorticity and the Laplacian of the wall-normal

velocity, further details of the code can be found in Kitsios et al. (2015).

The friction velocity based Reynolds number, Reτ = uτh/ν = 950 where uτ =
√

τw/ρ is

the friction velocity, τw is the wall shear stress, ρ is the fluid density and h is the channel half

width.

The domain and grid properties are listed in Table 2.1. The simulation domain was a

rectangular box with the x,y,z extents of Lx, Ly and Lz respectively while Nx,Ny, and Nz
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Table 2.1 Numerical details of DNS dataset

Reτ (Lx,Ly,Lz) (Nx,Ny,Nz) (∆x+,∆y+min,∆y+max,∆z+)

945 (π,2,π/2) (384, 385, 384) (7.8, 0.03, 7.6, 3.9)

are the corresponding grid points along those directions. The uniform grid spacings along

stream-wise x and span-wise z directions expressed in viscous/wall units (normalized by

viscous length scale, ν/uτ ) are ∆x+ and ∆z+ respectively. The grid along the wall normal

(y) direction was non-uniform having minimum grid spacing at the wall (∆y+min) and the cell

spacing increasing until it approaches the maximum spacing (∆y+max) at the channel centerline.

2.2 Turbulent Dissipation in Channel Flow

To ensure the accuracy of the computed gradients, the joint probability distribution function

(PDF) distribution of ∂u/∂x and −(∂v/∂y+ ∂w/∂ z) was evaluated. Ideally, these terms

should be equal in an incompressible flow since their difference is the divergence (∇ ·U)

which is zero in an incompressible flow. The gradients were computed in the spectral space.

To mimic the accuracy and method of the gradient calculations in the DNS computations, the

gradients along the stream-wise and span-wise directions were computed by performing a

Fourier transform of the velocity fields along those directions, calculating the derivatives in

Fourier space and performing an inverse Fourier transform of the derivatives to convert the

data back to physical space. A similar approach was employed for calculating derivatives

along the wall-normal direction, except that the transformation was into spectral space by

performing Chebyshev polynomial fits of the velocity fields along the wall-normal direction.

Since the terms of the joint PDF are equal in the ideal case, their ideal distribution should be

a distribution with minimal spread around the 45o line. The accuracy of calculated gradients

was ensured by confirming that the joint-PDF is close to the ideal which is demonstrated

in Fig. 2.1; the joint-PDF for one random field, which has 384 x 385 x 384 ≈ 5.7 x 107

grid points. Since the ideal value of divergence (∇ ·U) for incompressible flow is zero,
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the accuracy of derivatives can be estimated by calculating the mean, median and standard

deviation of divergence, the values of these quantities for the same field as the one used to

plot the joint-PDF were −2.71 x 10−12,5.586 x 10−5 and 8.12 x 10−3 respectively, since the

velocity data available was in single precision which has 7 decimal digits of precision, hence

the accuracy level of the calculated gradients was deemed acceptable.

Fig. 2.1 Joint PDF of ∂u/∂x and −(∂v/∂y+∂w/∂ z) of one DNS field

We have seen in the equation used to calculated the mean turbulent dissipation rate

(Eq.1.4), that the turbulent dissipation rate is composed of 12 terms which are calculated by

multiplying different terms of the fluctuating velocity gradient tensor taken two at a time.

Since these terms would be consistently evaluated and presented throughout the current text,

the contribution of various terms to turbulent dissipation rate is non-dimensionalised and

expressed using notation in Eq. 2.1, and presented in Fig. 2.2
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Dii = 2ν

〈(
∂u′i
∂xi

)2
〉

ε

Ci j = ν

〈(
∂u′i
∂x j

)2
〉

ε
i ̸= j

Mi j = 2ν

〈(
∂u′i
∂x j

)(
∂u′j
∂xi

)〉
ε

i ̸= j

(2.1)

Fig. 2.2 Fractional contribution of various velocity gradient terms to dissipation

The contribution of various terms to dissipation is consistent with the observations from

channel flow DNS of Antonia et al. (1991). As expected, the flow in the near wall region

is highly anisotropic, the contribution to dissipation mainly comes from (∂u′/∂y)2 (C12)

, (∂w′/∂y)2 (C32) and (∂u′/∂ z)2 (C13) in the region y+ ≤ 20; the dissipation exhibits an

isotropic distribution only in the region y+ ≥ 200.

Kolmogorov length scale (η) is the characteristic length scale at which most of the

turbulent dissipation takes place (Kolmogorov, 1941) and is given by Eq. 2.2.

η =
(
ν

3/ε
)1/4

(2.2)
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Fig. 2.3 Distribution of dissipation and Kolmogorov length scale along the channel height for
unfiltered velocity fields

Fig. 2.3 presents the distribution of turbulent dissipation rate ε and Kolmogorov length

scale η (expressed in wall units) in the wall-normal direction (from wall to channel center-

line). The minimum Kolmogorov length scale (η) calculated using the reference DNS dataset

velocity fields is ∼ 2+ units and is almost constant till a wall height of ∼ 10+ units. The

turbulent dissipation rate varies from ∼ 0.24+ units at the wall to ∼ 0+ units at the channel

center-line. The contribution of dissipation in different regions of the flow to total dissipation

in the channel is evaluated with the help of integral fraction (χ), which is defined as the net

dissipation from wall to a wall-normal distance, expressed as a fraction of the dissipation in

the entire channel (Eq. 2.3). The distribution of χ as a function of wall-normal distance is

shown in fig. 2.4.

χ(y) =

∫ y

0
ε(y) dy∫ h

0
ε(y) dy

(2.3)

Thus, 50% of the total dissipation in the channel takes place between the wall and a wall-

normal distance of y+ ∼ 50, while at y+ ∼ 400, the corresponding value is 90%. Thus any

error in the dissipation in the near wall region would have a large impact on the overall error
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Fig. 2.4 Distribution of Integral fraction (χ) along the channel height for DNS dataset

in dissipation. The distribution of dissipation along the wall-normal direction is a function

of Reynolds number (Lee and Moser, 2015) and the applicability of the results that will be

presented for the current study, to different Reynolds numbers, is discussed in Chapter 7.



Chapter 3

Computational Methodology

This chapter provides the details of the computational method used for spatially filtering the

DNS velocity fields and the method used for evaluating the velocity gradients of spatially

filtered velocity fields. The details of gradient calculation methods for filtered velocity fields

is provided in Section 3.1. Section 3.2 discusses the existing methods used for spatially

filtering the velocity fields followed by details of the numerical method of the selected spatial

filtering technique.

3.1 Gradient computation methods

The choice of gradient computation scheme for the filtered fields should mimic the ones often

used to compute gradients of the velocity fields obtained through experiments. Extensive

research on the choice of the appropriate gradient calculation scheme to be used for data

obtained through PIV measurements is available in the literature (Foucaut and Stanislas,

2002; Fouras and Soria, 1998). The choice of gradient scheme can have a significant impact

upon the velocity gradient tensor, vorticity and the dissipation distribution calculated from

experimental measurements as discussed by Fouras and Soria (1998). Foucaut and Stanislas

(2002) analyzed the spectral response of various gradient calculation schemes and concluded

that a second-order central difference scheme is appropriate for evaluating the derivatives

obtained from PIV measurements of velocity fields. They demonstrated that the use of

higher order schemes would result in high random error transmission (from measurements);

thus no significant gains can be achieved by using higher order schemes. Given that the
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second-order central difference scheme is the most common choice of gradient computation

method for most experimental data, it will be used to calculate the velocity gradient tensor

(hence dissipation) from the filtered velocity fields. To mimic the experimental measurements,

the velocity fields obtained are filtered onto a grid with uniform grid-spacing, hence the

second-order central difference scheme corresponds to uniform grid spacing and is given by

Eq. 3.1.

∂ui

∂xi

∣∣∣∣
x
=

ui(x+∆x)−ui(x−∆x)
2∆x

+O(∆x2) (3.1)

Here ui is the velocity along the direction xi and ∆x is the uniform grid spacing along that

direction.

3.2 Spatial filtering technique

The quantities measured using different experimental techniques are an average over the size

of the measurement volume. Most spatial filtering methods attempt to mimic this volume

averaging to study the effect of spatial filtering on turbulent quantities but differ in the method

of calculating the averages (Atkinson et al., 2014; Buxton et al., 2011; Philip et al., 2013;

Saikrishnan et al., 2006; Segalini et al., 2011; Xu and Chen, 2013). The appropriateness of

these methods for the current study was evaluated and is described below.

3.2.1 Study of spatial filtering methods

Saikrishnan et al. (2006) calculated the average velocity inside a filter kernel by taking a

simple average of all the DNS grid points that lie inside that kernel. Although this technique

is effective when the averaging is performed along the directions where the spacing between

DNS grid points is uniform, as can be seen in Fig. 3.1, a simple average (which is calculated

by assigning uniform weighing to all the grid points) along the directions having a large

variation in grid spacing will give an erroneous result (Atkinson et al., 2014). Thus, for the

current case, a simple averaging approach of filtering the velocity fields cannot be performed

along the wall-normal direction which has non-uniform DNS grid point spacing. To remove
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Fig. 3.1 Schematic of clustering of grid points within the filter window (green box) in the
near wall region

the bias due to non-uniform grid spacing, Atkinson et al. (2014) computed the filtered velocity

fields by applying a volume weighting to the contribution of each cell of DNS velocity field.

The averaging operation along a single direction x can be represented schematically by Fig.

3.2. The corresponding mathematical formulation for one-dimension is given by Eq. 3.2,

which can be easily extended to three dimensions.

Fig. 3.2 Schematic representation of volume weighted averaging filter

g̃VA =
ne

∑
i=ns

Wi gi (3.2)

where g̃VA is the filtered value of the quantity g calculated using the volume-weighted

averaging method (filtered quantities are denoted by a ∼ throughout the text), W (i) = ∆xi/ fx

is the weight corresponding to the DNS grid point i, ∆xi is the length of overlap of DNS cell

with the filter of length fx along the direction of averaging x (Fig. 3.2), while ns and ne are

the first and last DNS grid points overlapping with the filter centered at x.
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The volume weighted averaging method of calculating the mean velocity, as described

above, was used to calculate a velocity field filtered along the y-z direction with a filter size of

f+y x f+z = 8 x 8. The resultant mean true turbulent dissipation rate for the filtered velocity

field, ε̃+, is presented in Fig. 3.3. A comparison of distribution of dissipation rate along the

channel height for the filtered and unfiltered fields revealed that the volume averaging method

of spatial filtering introduces spurious fluctuations in the filtered mean turbulent dissipation

rate along the y-direction. These fluctuations were found to be the result of small numerical

errors introduced in the filtered velocity field due to the difference in the average calculated

by the volume weighted averaging method and the true value; this error is a function of grid

spacing, corroborated by the fact that the location of fluctuations was a function of the grid

spacing and did not change with the number of samples used to calculate the average.

Fig. 3.3 Comparison of the mean turbulent dissipation rate calculated from unfiltered velocity
fields with velocity fields spatially filtered using volume weighted averaging method with
filter of size f+x x f+y x f+z = 8 x 8 x 8

A different method of averaging was considered, observing that for the canonical case

of averaging along a single direction, say along the length of the wire in HWA, the actual

averaging operation can be represented by a box filter Eq. 3.3 (Philip et al., 2013)

g̃(x) =
1
fx

∫ fx/2

− fx/2
g(x+ s)ds (3.3)

which can be easily extended to 2 and 3 dimensions.
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Along the lines of Segalini et al. (2011), the integration operation in Eq. 3.3 was replaced

by numerical integration using the Simpson’s method. The original Simpson’s method requires

equidistant grid points and was used for the current analysis. To distribute the grid points

equally in the domain, the DNS velocity field had to be interpolated along the y-direction

where the DNS grid points have a non-uniform distribution. Since the DNS computations

were performed by performing Chebyshev polynomial fits along the wall-normal direction, the

interpolation of the data onto a uniform grid was performed using the same method, ensuring

that the interpolation is spectrally accurate. Another requirement of Simpson’s method is

the need of an odd number of grid points along the direction of integration. Five grid points

overlapping with the filter window along the y-direction ensured a compromise between

the requirement of an adequate number of points in the near-wall region and minimising

computational costs of the filtering operation.

Fig. 3.4 Comparison of the mean turbulent dissipation rate for filtered and unfiltered velocity
fields. The filtering operation is performed by applying a box-filter (Eq. 3.3) and using the
numerical integration method, the filter size is f+x x f+y x f+z = 8 x 8 x 8

The distribution of the mean turbulent dissipation rate for the filtered velocity fields

(ε̃+) along the wall-normal (y) direction, calculated using the numerical integration filtering

method, was smooth with absence of any spurious fluctuations (Fig. 3.4), hence the numerical

integration technique was the filtering method adopted for spatial filtering in the remainder of

the study. In most experimental measurement techniques like PIV, the adjacent interrogation
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windows overlap with the each other as this reduces the grid spacing. A high overlap between

adjacent windows has been reported to result in increasing the noise in the gradients due to the

resulting large statistical correlation between adjacent grid points for higher overlap fractions.

An overlap of 50% of PIV window size is the most common choice of grid resolution for PIV

measurements as it is a balance between statistical independence between grid points and

grid resolution of the data. The current study mimics this and the grid spacing in the filtered

velocity fields corresponds to 50% overlap of windows along the direction of filtering.



Chapter 4

Effect of Spatial Filtering on Dissipation

We have seen in Chapter 1 that velocities obtained from experimental measurements are

spatially filtered when the size of the measurement volume is larger than the smallest scales in

the flow. To study the effect of spatial filtering on the accuracy of the turbulent dissipation rate

calculated from the spatially filtered velocity fields, high-resolution velocity fields obtained

from the DNS dataset 2 were spatially filtered using the method described in Chapter 3. The

turbulent dissipation rate was calculated from the filtered velocity fields (ε̃) using Eq. 1.4; the

second-order central difference scheme was employed to calculate the velocity gradients as

discussed in Chapter 3. Velocity gradients calculated using any finite difference method have

an associated truncation error which is dependent on the order of accuracy of the scheme and

grid spacing. Often, for PIV measurements the grid spacing is a function of the filter size for

a fixed overlap ratio, as a result, the truncation error becomes a function of the filter size, thus

introducing an additional error along with the error in turbulent dissipation rate due to spatial

filtering. A mathematical analysis of the effect of truncation error on dissipation is presented

in Section 4.1.

In wall-bounded flows, the distribution of terms contributing to dissipation being anisotropic

especially in the near wall region (Chapter 2), the effect of spatial filtering on turbulent dis-

sipation rate is expected to be an anisotropic function of filter size along each of the three

Cartesian directions. The current study, therefore involves the analysis of the effect of spatial

filtering along each of the wall-normal, span-wise and stream-wise directions separately,

which is discussed in Section 4.2, Section 4.3 and Section 4.4 respectively.
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4.1 Effect of truncation error on turbulent dissipation rate

Following an approach similar to Foucaut and Stanislas (2002), the velocity gradient calcula-

tion is considered to be equivalent to the application of a filter. Thus the calculation of the

velocity gradient tensor from spatially filtered velocity fields is the result of the application of

the central derivative filter (C ) over the spatial filter (F ).

Ignoring the constant coefficients, each term in the equation for turbulent dissipation

rate (Eq. 1.4) can be generically expressed in the form
(
∂u′i/∂x j

) (
∂u′k/∂xl

)
(The round

brackets around the terms imply that there is no summation over the repeated indices). The

corresponding term calculated from the filtered velocity fields can be expressed in the form

shown by Eq. 4.1.

(
∂ ũ′i
∂x j

)(
∂ ũ′k
∂xl

)
= C

[
F
(
u′i
)
,x j
]
C
[
F
(
u′k
)
,xl
]

(4.1)

Eq. 4.1 is presented in a simplified form in Eq. 4.2, the details of which are provided in

appendix A.

(
∂ ũ′i
∂x j

)(
∂ ũ′k
∂xl

)
= F

(
∂u′i
∂x j

)
F

(
∂u′k
∂xl

)
+ γ (4.2)

where the first term on the right-hand side of Eq. 4.2 is the result of applying spatial filtering

to the true velocity gradient tensor and subsequently calculating the product corresponding

to the left-hand side; while γ is the non-linear error term present due to the truncation error

introduced by the finite difference scheme and is dependent on the filter size.

Thus using any finite difference scheme for calculating the velocity gradients and hence

the turbulent dissipation rate from spatially filtered velocity fields introduces a non-linear

truncation error in the turbulent dissipation rate. In absence of any truncation error (i.e. γ ≈ 0),

the true filtered mean turbulent dissipation rate (ε̃T ) is given by Eq. 4.3.
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ε̃T = ν

〈
2
[
F

(
∂u′

∂x

)]2

+2
[
F

(
∂v′

∂y

)]2

+2
[
F

(
∂w′

∂ z

)]2

+

[
F

(
∂u′

∂y

)]2

+

[
F

(
∂v′

∂x

)]2

+

[
F

(
∂w′

∂x

)]2

+

[
F

(
∂u′

∂ z

)]2

+

[
F

(
∂v′

∂ z

)]2

+

[
F

(
∂w′

∂y

)]2

+2
[
F

(
∂u′

∂y

)
F

(
∂v′

∂x

)]
+2
[
F

(
∂u′

∂ z

)
F

(
∂w′

∂x

)]
+2
[
F

(
∂v′

∂ z

)
F

(
∂w′

∂y

)]〉
(4.3)

Hence, ε̃T is the dissipation calculated when the velocity gradients in the equation of the

turbulent dissipation rate (Eq. 1.4) are calculated by spatially filtering the unfiltered velocity

gradient fields obtained in Chapter 2, thus having no associated truncation error.

The difference ε̃ − ε̃T is the contribution of truncation error to the total error in turbulent

dissipation rate due to spatial filtering and Γ (Eq. 4.4) is the truncation error expressed as

a fraction of the net error in the turbulent dissipation rate calculated from spatially filtered

velocity fields.

Γ =
ε̃ − ε̃T

ε − ε̃
(4.4)

where ε̃ and ε are the turbulent dissipation rate calculated from filtered and unfiltered velocity

fields respectively.

Since the truncation error is dependent on the finite difference scheme employed and the

filter size, the contribution of truncation error to the total error in turbulent dissipation rate

will be taken into consideration when evaluating the effect of spatial filtering.

4.2 Effect of filter size in the wall-normal (y) direction

To study the effect of spatial filtering in the wall-normal direction, the filtered velocity

fields were obtained for a range of wall-normal filter sizes ( fy). The grid spacing in the

filtered velocity fields corresponds to a 50% overlap in the direction of filtering, unless stated

otherwise.
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Atkinson et al. (2014) have evaluated the effect of PIV-like filtering on velocity power

spectra and demonstrated that the response of power spectra (and hence the turbulent dissipa-

tion rate) to spatial filtering along any one direction is affected by the filter size along the other

directions. To this end, the effect of filter size along the wall-normal direction ( fy) is evaluated

for three different combinations of span-wise ( fz) and stream-wise ( fx) filter sizes. The filter

widths (expressed in wall units and rounded off to the nearest integer), are shown in table

4.1. Since the spatial filtering along the wall-normal direction is usually encountered when

using PIV techniques, the choice of filter sizes along the three directions are based on the

most frequently used interrogation window sizes for typical laboratory scale PIV experiments

of turbulent wall-bounded flows.

Table 4.1 Filter size combinations used for study of the effect of spatial filter size in the
wall-normal direction ( f+y ), the quantity in brackets is the corresponding grid spacing

f+x (∆̃+
x ) f+y (∆̃+

y ) f+z (∆̃+
z )

0 (8)
8 (4) 12 (6) 16 (8) 20 (10) 24 (12)

0 (4)
16 (8) 12 (6)
16 (8) 20 (10)

where, ∆̃+
x , ∆̃

+
y , ∆̃

+
z are the grid spacings along the x, y, and z directions respectively. The case

with filter width f+x = 0, f+z = 0 is the case where no filter is applied along the stream-wise (x)

and span-wise(z) directions, hence for this case, the grid spacings along those directions are

the same as the reference DNS grids.

Case (i) Study of the effect of filter size in wall-normal direction with no

filtering along x and z directions f+x = 0, f+z = 0

Fig. 4.1 presents the profiles of the mean turbulent dissipation rate in viscous units (ε+) for

various wall-normal filter sizes, the profile of the mean dissipation rate from the unfiltered

velocity field from Chapter 2 is included for reference. The difference between the dissipation

rate obtained from true and spatially filtered velocity fields is not surprisingly a function of

the wall normal distance. To gain a better insight into the effect of wall-normal filter size
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Fig. 4.1 Profiles of the mean turbulent dissipation rate in wall-units ε+ for the unfiltered case
(black) and various wall-normal filter sizes ( f+y ); f+x = 0, f+z = 0

on turbulent dissipation rate, the change in normalized dissipation rate (rε , Eq. 4.5) with

increasing wall-normal filter size, is presented at different wall-normal locations, in Fig. 4.2.

rε =
ε̃

ε
(4.5)

The largest effect of the filter size in the wall-normal direction on the accuracy of the

mean turbulent dissipation rate is in the near wall region, the loss in accuracy of dissipation

with increasing the wall-normal filter size decreases with increasing distance from the wall.

The effect of wall-normal filter size on normalized Kolmogorov length scale (rη = η̃/η),

presented in Fig. 4.3, is consistent with the earlier observations. The penalty on the accuracy

of η is largest in the near wall region; the overestimation of η at y+ = 20 increases from

~5% of the true value for the wall-normal filter size of f+y = 8, to ~30% for f+y = 24; the

corresponding values at y+ = 100 are ~1% and ~9%, respectively.

As described in Section 4.1, the truncation error of gradient calculation scheme affects the

accuracy of dissipation calculated from the filtered velocity fields. The fractional contribution

of truncation error to the total error in dissipation, Γ (Eq. 4.4), is presented in Fig. 4.4. The

negative values of truncation error imply that it leads to an underestimation of dissipation. The
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Fig. 4.2 Effect of increasing the filter size in the wall-normal direction
(

f+y
)

on normalized
dissipation (rε ) at various wall-normal locations; f+x = 0, f+z = 0

Fig. 4.3 Effect of increasing the filter size in the wall-normal direction
(

f+y
)

on normalized
Kolmogorov length scale (rη ) at various wall-normal heights; f+x = 0, f+z = 0
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fractional contribution of the truncation error to the total error in dissipation is larger in the near

wall region, ranging from 15%- 38% of the total error at y+ = 20. The fractional contribution

of truncation error to the total error due to spatial filtering clearly shows that spatial filtering

is the dominant source of error at most wall-normal locations with the exception of the region

very close to the wall where their contributions from spatial filtering and truncation error are

similar for large wall-normal filter sizes.

Fig. 4.4 Contribution of truncation error to the total error is dissipation for various wall-normal
filter sizes ( f+y ); f+x = 0, f+z = 0

Often when investigating dissipation, we are concerned not necessarily with local dis-

sipation but total dissipation in the entire flow domain. One way to represent the relative

contribution of local error is via the cumulative error from the wall which is expressed as a

fraction of the total error in the entire channel by Integral error ξ̃ (y) (Eq. 4.6).

ξ̃ (y) =

∫ y

0
(ε − ε̃) dy∫ h

0
(ε − ε̃) dy

(4.6)

Profiles of ξ̃ for various wall-normal filter sizes in Fig. 4.5 reveal that the error due to

spatial filtering up to the wall-normal height of y+ = 200 is responsible for a substantial

proportion (~90%) of the total error in turbulent dissipation in the entire channel. The error
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Fig. 4.5 Profiles of integral error (ξ̃ ) for various wall-normal filter sizes
(

f+y
)
, f+x = 0, f+z = 0

contributed by filtering in the measurement volume closest to the wall ranges from ~20%

to ~30% of the total error for various wall-normal filter sizes. An accurate estimate of the

turbulent dissipation rate from experiments clearly warrants the need to maintain small size

of the measurement volume in the wall-normal direction, especially in the region responsible

for a large fraction of total error in the entire channel (y+ < 200 for the current Reynolds

number), or in the region where most of the turbulent kinetic energy is dissipated (y+ < 400

for the current Reynolds number) .

To investigate the effect of spatial filtering on various terms in the equation of the mean

turbulent dissipation rate (Eq. 2.1) and the corresponding effect on the total dissipation rate

in the entire channel, we define rc as the ratio of filtered value to the true value of each

component of dissipation and αr as the contribution of error in various terms of turbulent

dissipation rate to the total error (Eq. 4.7).

rc =
c̃
c

αr =
c̃− c
ε̃ − ε

c = Di j,Ci j,Mi j (4.7)

Fig. 4.6 presents the distribution of αr for f+y = 8 and f+y = 24. The profiles in Fig.

4.6 are restricted to y+ ≤ 300 since the largest error in turbulent dissipation rate occurs in
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Fig. 4.6 Contribution of error in various gradient terms to the error in dissipation (αr) for
different wall-normal filter sizes ( f+y = 0); f+x = 0, f+z = 0

this region. In regions away from the wall y+ > 50, the fractional contribution of error in

the wall-normal derivative terms ( (∂u′/∂y)2 (C12), (∂w′/∂y)2 (C32) and (∂v′/∂y)2 (D22))

increases with the filter size in the wall-normal direction, while the contribution from the

remaining terms decreases.

Fig. 4.7 Effect of increasing the filter size in the wall-normal direction
(

f+y
)

on αr (solid
lines) and rc (dashed)
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The plots of rc and αr are presented in Fig. 4.7 for the top three contributors to the

error in the near wall region ((∂u′/∂y)2 (C12), (∂w′/∂y)2 (C32) and (∂u′/∂ z)2 (C31)); the

corresponding plots of the remaining terms are provided in Appendix B, Fig. B.1. The plots

of C12 and C32 reveal that the wall-normal derivative terms have the largest penalty to their

accuracy (∼ 55% of the true value at y+ = 20), while their contribution to the total error

either remains the same or increases. The effect of filter size in the wall-normal direction

on the terms containing velocity derivatives along the span-wise and stream-wise directions

was similar to that of C13; a relatively small rise in the error with increasing filter size in

the wall-normal direction, while their fractional contribution to the total error in dissipation

reduced. This demonstrates that the net response of error in the turbulent dissipation rate to

wall-normal filter size is primarily dictated by the behavior of wall-normal derivative terms.

Case (ii) Study of the effect of filter size in wall-normal direction with spa-

tial filtering along x and z directions f+x , f+z = 16,12 and f+x , f+z = 16,20

Fig. 4.8 Effect of increasing the filter size in the wall-normal direction on normalized Kol-
mogorov length scale (rη ) at various wall-normal heights: (a) f+x = 16, f+z = 12, (b) f+x = 16,
f+z = 20
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The effect of only filter size in the wall-normal direction on the mean turbulent dissipation

rate (and on the corresponding variables), as seen in Section 4.2, shows little change in

trend with the introduction of filtering along the stream-wise and span-wise directions. Fig

4.8 shows the effect of filter size in wall-normal direction on the normalized Kolmogorov

length scale when the velocity data is spatially filtered along both stream-wise and span-wise

directions. Comparison with the plots of rη for the case of spatial filtering along wall-normal

direction alone (Fig. 4.3), reveals that there is an increase in error in the Kolmogorov length

scale due to the introduction of spatial filtering along the stream-wise and span-wise directions,

the reduction in the accuracy of the Kolmogorov length scale being larger in the near-wall

region for large wall-normal filter sizes.

To gain an insight into the overall effect of spatial filtering on dissipation, we define

integral ratio (Eq. 4.8).

β̃ (y) =

∫ y

0
ε̃ dy∫ y

0
ε dy

(4.8)

The integral ratio at channel mid-height is the total dissipation in the entire channel for

the spatially filtered fields expressed as a fraction of the true value and is presented in Fig. 4.9.

The smallest length scale in the flow, which is in the range of minimum Kolmogorov length

scale (ηmin) in the flow domain is often a quantity of interest in turbulence research. For wall

bounded flows, the minimum Kolmogorov length scale is on the wall, where the dissipation

is maximum. The minimum Kolmogorov length scale in the channel calculated from the

filtered velocity fields expressed as the corresponding value calculated from the un-filtered

fields (η̃min/ηmin) is presented in Fig. 4.9.

The effect of wall-normal filtering shows little difference in the trends with the introduction

of filtering along the other two directions. However, the error in minimum Kolmogorov

length scale and the total turbulent dissipation rate in the entire channel increases with the

introduction of filtering along the stream-wise and span-wise directions.
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Fig. 4.9 Consolidated results of the effect of filtering along wall-normal direction on the error
in total dissipation in the channel (β̃ (h)) and minimum Kolmogorov length scale (η̃min/ηmin)

4.3 Effect of filter size in the span-wise (z) direction

Following an approach similar to the study of the effect of filter-size in the wall-normal

direction, the effect of varying the span-wise filter sizes was studied for three combinations of

stream-wise (x) and wall-normal (y) filter sizes, the filter size combinations used in this study

are listed in table 4.2.

Table 4.2 Filter size combinations used to study the effect of filter size along the span-wise
direction ( f+z ) direction, the quantities in brackets are the corresponding grid spacings

f+x (∆̃+
x ) f+y (∆̃+

y ) f+z (∆̃+
z )

0(8) 0(4)
0 (4) 8 (4) 12 (6) 16 (8) 20 (10)0 (8) 8 (4)

24 (12) 24 (12)

The f+y = 0 is a special case when data is filtered along the span-wise and stream-wise

directions. Since the original DNS grid in the wall-normal direction is non-uniform, the

DNS data was interpolated onto a uniform grid using Chebyshev interpolation (since such an

interpolation in the wall-normal direction would be spectrally accurate as is demonstrated in
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Chapter 2). The grid spacing in the wall-normal direction, for this particular case is ∆̃+
y = 4

(the smallest grid-size in the wall-normal direction in the previous case).

Case (i) Study of the effect of filter size in span-wise direction with no

spatial filtering along x and y directions f+x = 0, f+y = 0

Fig. 4.10 Profiles of the mean turbulent dissipation rate in wall-units ε+ for the unfiltered
case (black) and various span-wise filter sizes ( f+z ), f+x = 0, f+y = 0.

The profiles of the mean turbulent dissipation rate (ε+) (Fig. 4.10) do not show any

significant difference in the trend with increasing span-wise filter size ( f+z ). The plots of

rε v/s f+z (Fig. 4.11) indicate that the loss in accuracy of turbulent dissipation rate with

increasing span-wise filter size ( f+z ) is more severe in the near wall region (y+ ≤ 100), most

likely due to the small Kolmogorov length scale in that region leading to larger filtering of the

relevant scales (Fig. 2.3).

The fractional contribution of truncation error to the total error in dissipation (Γ) is largest

in the near wall region (Fig. 4.12). Unlike the case of increasing wall-normal filter size,

there seems to be a very small variation in the fractional contribution of truncation error with

increasing span-wise filter size.
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Fig. 4.11 Effect of increasing the filter size in the span-wise direction
(

f+z
)

on normalized
dissipation (rε ) at various wall-normal locations; f+x = 0, f+z = 0

Fig. 4.12 Contribution of truncation error to the total error in dissipation for various span-wise
filter sizes( f+z ); f+x = 0, f+y = 0
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Fig. 4.13 Profiles of Integral error (ξ̃ ) for various span-wise filter sizes
(

f+z
)
; f+x = 0, f+y = 0

The profiles of integral error (ξ̃ ) for various span-wise filter sizes (4.13), show that a large

proportion of the total error in turbulent dissipation rate in the entire channel (∼ 90%) comes

from spatial filtering in the span-wise direction below wall-normal distances of y+ = 100 to

y+ = 200 for all span-wise filter sizes.

Fig. 4.14 Contribution of error in various terms to the error in dissipation (αr) for different
span-wise filter sizes ( f+z ); f+x = 0, f+y = 0
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Fig. 4.15 Effect of spatial filter size in the span-wise direction ( f+z ) on normalized Kolmogorov
length scale (rη ) at various wall-normal heights: (a) f+x = 0, f+y = 0, (b) f+x = 0, f+y = 8, (c)
f+x = 24, f+y = 24

The contribution of error in various terms in the equation of turbulent dissipation rate to

the total error in the turbulent dissipation rate due to spatial filtering (αr) are presented in Fig.

4.14 for span-wise filter sizes of f+z = 4 and f+z = 20. The terms involving derivatives in the

direction of filtering ((∂u′/∂ z)2 (C13), (∂v′/∂ z)2 (C23) and (∂w′/∂ z)2 (D33) have a drastic

rise in contribution to the total error in dissipation, a result similar to the observation in the

case of wall-normal filtering. At the wall-normal height of y+ ≈ 200 for the filter size of

f+z = 20, the net contribution of error in the span-wise derivative terms is ≈ 70% of the total

error in dissipation due to filtering in the span-wise direction.

Case (ii) Study of the effect of filter size in span-wise direction with spa-

tial filtering along x and y directions f+x , f+y = 0,8 and f+x , f+y = 24,24

The effect of span-wise filter size on Kolmogorov length scale (rη ) for various stream-wise

and wall-normal filter sizes is shown in Fig. 4.15. The Kolmogorov length scale shows greater

sensitivity to span-wise filtering in the near wall region as compared to the regions away from
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the wall, although the penalty of increasing span-wise filter size is less severe as compared to

the effect of increasing the wall-normal filter size. The increase in error in the Kolmogorov

length scale (Fig. 4.15) due to spatial filtering in the span-wise direction is still largest in

the near-wall region. The trends do not change drastically with the introduction of filtering

in the wall-normal and stream-wise directions, however there is a drastic increase in the

overestimation of the Kolmogorov length scale with increase in the filter size in wall-normal

( f+y ) and stream-wise directions ( f+x ), an observation reiterated from consolidated plots of

the integral ratio at channel half width (β̃ (h)) and the ratio of minimum Kolmogorov length

scales for filtered and unfiltered fields (Fig. 4.16).

Fig. 4.16 Consolidated results of the effect of filtering along span-wise direction on the error
in total dissipation in the channel (β̃ (h)) and minimum Kolmogorov length scale (η̃min/ηmin)

4.4 Effect of filter size in the stream-wise (x) direction

The filter sizes used for studying the effect of stream-wise filter size are shown in table 4.3. It

was observed during the studies that the error in dissipation is a relatively weak function of

the filter size along the stream-wise direction ( f+x ) as compared to filter sizes along the other

two directions, hence the filter sizes are increased in steps of 8+ units for this study.
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Table 4.3 Filter size combinations used for study of the effect of filter size in the stream-wise
direction ( f+x ) direction, the quantities in brackets are the corresponding grid spacings

f+x (∆̃+
x ) f+y (∆̃+

y ) f+z (∆̃+
z )

0 (8) 16 (8) 24 (12) 32 (16)
0 (4) 0 (4)
8 (4) 8 (4)

24 (12) 16 (8)

Case (i) Study of the effect of filter size in stream-wise direction with no

spatial filtering along y and z directions f+y = 0, f+z = 0

Fig. 4.17 Profiles of the mean turbulent dissipation rate in wall-units ε+ for the unfiltered
case (black) and various stream-wise filter sizes ( f+x ), f+y = 0, f+z = 0.

Profiles of the mean turbulent dissipation rate in wall-units (ε+) for various stream-wise

filter sizes are presented in Fig. 4.17. Since the case of f+y = 0 corresponds to the velocity

fields interpolated along the wall-normal direction on to a uniform grid with grid spacing

∆̃+
y = 4 and use of central difference scheme, the profile of ε+ for this case indicates that

almost all the underestimation of dissipation in the near-wall region is due to the coarse grid

interpolation and the corresponding truncation error.

As compared to the case of wall-normal filtering (Fig. 4.2), the magnitude of decrease

in the values of normalized dissipation rate (rε ) with increasing stream-wise filter size (Fig.
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4.18) indicates that the error in the turbulent dissipation rate is a relatively weak function of

the stream-wise filter size.

Fig. 4.18 Effect of increasing the filter size in the stream-wise direction ( f+x ) on normalized
dissipation rate (rε ); f+y = 0, f+z = 0

Increasing the stream-wise filter size has a peculiar effect on the normalized turbulent

dissipation rate as observed in Fig. 4.18. With the introduction of filtering along the stream-

wise direction, the underestimation of the turbulent dissipation rate does not continuously

decrease with increasing wall-normal distance.

To isolate the contribution of spatial filtering alone, we compare the profiles of the

normalized true dissipation rate (rεT = ε̃T/ε , Fig. 4.19) with the corresponding profiles of

the normalized dissipation rate (rε , 4.18). The underestimation of the turbulent dissipation

rate due to only spatial filtering increases with the wall-normal distance (Fig. 4.19), peaks

around y+ ≈ 100 and then starts decreasing again. The increase in underestimation of the

turbulent dissipation rate due to spatial filtering in the stream-wise direction alone is most

likely caused by spatial filtering of the relevant length scales and the peculiar behavior seen in

the normalized dissipation rate in Fig. 4.18 is a combination of the filtering of length scales

and the truncation error, which is maximum close to the wall (Fig. 4.20).

The profiles of integral error (ξ̃ ) for various stream-wise filter sizes (Fig. 4.21) show that

the contribution of error in dissipation in the regions away from the wall to the total error in

the turbulent dissipation rate increases with increasing stream-wise filter size.
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Fig. 4.19 Effect of spatial filtering alone on normalized turbulent dissipation rate (rεT ) for
various stream-wise filter sizes ( f+x ), f+y = 0, f+z = 0.

Fig. 4.20 Contribution of truncation error to total error for various stream-wise filter sizes
( f+x ), f+y = 0, f+z = 0
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Fig. 4.21 Profiles of integral error (ξ̃ ) for various stream-wise filter sizes ( f+x ), f+y = 0, f+z =
0

Fig. 4.22 Effect of increasing the filter size in the stream-wise direction ( f+x ) on αr (solid
lines) and rc (dashed)
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Similar to the observations in previous sections, a substantial proportion of increase in

total error in the turbulent dissipation rate (Fig. 4.22) is due to increase in the error in terms

involving velocity derivatives in the direction of filtering ((∂u′/∂x)2 (D11), (∂v′/∂x)2 (C21)

and (∂w′/∂x)2 (C31).

Case (ii) Study of the effect of filter size in stream-wise direction with spa-

tial filtering along y and z directions, f+y , f+z = 8,8 and f+y , f+z = 24,16

Fig. 4.23 Effect of increasing the filter size in the stream-wise direction direction ( f+x ) on
normalized Kolmogorov length scale (rη ) at various wall-normal heights : (a) f+y = 0, f+z = 0,
(b) f+y = 8, f+z = 8, (c) f+y = 16, f+z = 24

The trend of increase in the error in Kolmogorov length scale with increasing stream-wise

filter size ( f+x ) changes drastically for large wall-normal and span-wise filter sizes as seen

from profiles of normalized Kolmogorov length scale (rη ) presented in Fig. 4.23. While for

small wall-normal filter size of f+y = 8 the increase in error with increasing distance from
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the wall is still observed in the buffer layer along with a slight increase in the error at each

wall-normal location, the increase in error with wall-normal distance is not observed for the

filter size of f+y x f+z = 24x16.

Fig. 4.24 Consolidated results of the effect of filtering along stream-wise direction on the error
in total dissipation in the channel (β̃ (h)) and minimum Kolmogorov length scale (η̃min/ηmin)

The consolidated plots of β̃ (h) and η̃min/ηmin (Fig. 4.24) reiterate the observations from

consolidated plots for wall-normal (Fig. 4.9) and span-wise filtering (Fig. 4.16). When

velocity data is spatially filtered along all the three directions, the wall-normal filter size has

the largest impact on the accuracy of the turbulent dissipation rate. Any technique targeted

at estimating the effect of spatial filtering on the turbulent dissipation rate for wall-bounded

flows should take into consideration this anisotropic impact of filter size dissipation.





Chapter 5

Effect of Dimensionally Limited Data on

Dissipation

We have seen in Chapter 1 that most measurement techniques provide dimensionally limited

velocity fields data which is either 1C-1D, 2C-2D or 3C-2D; only a few components of the

velocity gradient tensor can be calculated from such measurements. In the absence of some

of the components of the velocity gradient tensor, various models are employed to calculate

the turbulent dissipation rate. This chapter discusses the effectiveness of various models in

accurately calculating the turbulent dissipation rate in wall-bounded flows.

In the current chapter, high accuracy velocity gradients of unfiltered DNS velocity fields

from Chapter 2 have been employed to evaluate the accuracy of various models. Attempts

at improving the existing 2C-2D velocity field formulations have been presented in Section

5.1 along with the derivations of the 3C-2D velocity field formulations based on the existing

models. A new model with improved near wall performance has been developed in Section 5.2

with a demonstration of its effectiveness in accurately calculating dissipation in wall-bounded

flows.

5.1 Existing models

5.1.1 Local axisymmetry model

The 2C-2D formulation of dissipation for turbulence which is axisymmetric about the x1

direction was presented Chapter 1 (Eq. 1.8). The existing formulation of dissipation based on
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the local axisymmetry assumption generally assumes turbulence to be axisymmetric about the

stream-wise (x) direction (Antonia et al., 1991). Substituting x1 = x, x2 = y and x3 = z in Eq.

1.8 we get the 2C-2D formulation of dissipation for the current domain orientation (Eq. 5.1)

εLA−2x = ν
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)2
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(
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where εLA−2x is the formulation of dissipation for 2C-2D velocity fields calculated by assum-

ing axisymmetry of turbulence about the stream-wise (x) direction.

As we have seen in Chapter 2, the wall-normal distribution of various terms in the

equation for turbulent dissipation rate (Fig. 2.2) indicates that the near-wall turbulence is

highly anisotropic. Since the wall-normal gradients of the velocity components are one of

the largest contributors to dissipation in the near-wall region, dissipation in the near-wall

region is over-estimated by the existing formulation based on the assumption of axisymmetry

about the stream-wise (x) direction (Antonia et al., 1991) (Fig. 5.1). This assumption fails

in the near-wall region probably due to the presence of the wall, as the impermeability and

no-slip condition at the wall results in large wall-normal gradients of velocity components as

compared to their gradients along other directions; thus leading to failure of the assumption

of axisymmetry of turbulence about the x direction.

Due to the absence of the wall in the wall-parallel x-z plane, a more suitable assumption

could be that of axisymmetry of turbulence about the wall-normal (y) direction. The derivative

equivalence relations to be satisfied when assuming axisymmetry of turbulence about wall-

normal (y) direction (Eq. 5.2) are obtained by substituting x1 = y, x2 = z ,x3 = x and u1 = v,

u2 = w, u3 = u in the derivative equivalence relations for turbulence which is axisymmetric

about the x1 direction (Eq. 1.7).
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The missing terms in an x− y plane, 2C-2D measurement are (∂u′/∂ z)2, (∂v′/∂ z)2,

(∂w′/∂ z)2, (∂w′/∂x)2, (∂w′/∂y)2,(∂u′/∂ z)(∂w′/∂x) and (∂v′/∂ z)(∂w′/∂y). Modelling

the missing terms by using Eq. 5.2, the 2C-2D formulation of dissipation, based on the

assumption of axisymmetry of turbulence about the wall-normal (y) direction (εLA−2y) is

obtained (Eq. 5.3).
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When 2C-2D measurements are available, the x-y (stream-wise - wall-normal) plane is the

most appropriate choice of measurement plane as it enables direct determination of (∂u′/∂y)2,

the largest contributor to dissipation in the near wall region (Fig. 2.2). In case of 3C-2D

measurements, all the three velocity components can be measured in a planar 2D field, thus

the gradients of every velocity component can be obtained along two directions by using this

technique. For any wall-normal measurement plane (x-y or y-z), all the wall-normal gradients

can be directly determined from measurements. As a result of this, the choice of measurement

plane expands to both the wall-normal x-y and y-z planes for 3C-2D measurements.
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The missing terms are modelled in a manner similar to the 2C-2D case. A 3C-2D

measurement in the y-z plane cannot determine the terms (∂v′/∂x)2 and (∂w′/∂x)2 in the

equation of the turbulent dissipation rate (Eq. 1.4). When assuming axisymmetry of turbulence

about the x-axis, the corresponding derivative equivalence relations (Eq. 1.8) have only one

equation relating the above-mentioned terms. As a result, it is not possible to derive the

formulation of dissipation for y-z plane measurements by assuming axisymmetry of turbulence

about the x-axis. The formulations for the remaining three possible combinations are given by

Eq. 5.4-Eq. 5.6.
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where, εLA−3X−xy and εLA−3Y−xy are the x-y plane, 3C-2D velocity field formulations of

dissipation based on the assumption of local axisymmetry of turbulence about x and y

axis respectively. Similarly, εLA−3Y−yz is formulation when turbulence is assumed to be

axisymmetric about the y-axis and the measurements are performed in the y-z plane.
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5.1.2 Weak local isotropy model

The 2C-2D formulation of dissipation based on the weak local isotropy model (εWI−2xy) was

presented in Eq. 1.10 in Chapter 1. Similar to the case of the local axisymmetry model, the

3C-2D velocity field formulations for the current model has been derived for both the wall-

normal x-y and y-z measurement planes. The unknown terms, in either case, are derived by

modelling them by assuming weak local isotropy of turbulence which is based on the simple

assumption that the out-of-plane cross gradient terms are equal to the average of the in-plane

cross gradient terms (Eq. 1.9). The 3C-2D formulations of dissipation for measurements in

x-y (εWI−3xy) and y-z (εWI−3yz) planes are given by Eq. 5.7a and Eq. 5.7b respectively.
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5.1.3 Evaluation of performance of the existing models

Similar to Chapter 4, Eq. 4.5, normalized turbulent dissipation rate calculated by using

the models is defined as rm
ε = εm/ε , where the superscript m signifies that the quantity is

estimated using a model. Profiles of rm
ε are presented in Fig. 5.1 for 1C-1D (local isotropy

assumption) and 2C-2D (local axisymmetry assumption and weak local isotropy assumption)

velocity field formulations of the existing models.

The local axisymmetry assumption based model provides a slightly better estimate of

dissipation when the turbulence is assumed to be axisymmetric about the wall-normal (y)

direction as compared to the estimate of dissipation calculated by assuming axisymmetry
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Fig. 5.1 Distribution of the normalized turbulent dissipation rate (rm
ε ) along the channel height

for 1C-1D and 2C-2D velocity field formulations based on local isotropy, local axisymmetry
and weak local isotropy assumptions; rm

ε = 1 (black dash)

of turbulence about the stream-wise (x) direction. The weak local isotropy model, although

more erroneous than the local axisymmetry model in the near wall region (y+ < 30), gives an

almost perfect estimate of dissipation above y+ ≈ 80 for the 2C-2D formulation.

Fig. 5.2 Distribution of the normalized turbulent dissipation rate (rm
ε ) along the channel height

for 3C-2D velocity field formulations based on local axisymmetry and weak local isotropy
assumptions; x-y plane formulation
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Fig. 5.3 Distribution of the normalized turbulent dissipation rate (rm
ε ) along the channel height

for 3C-2D velocity field formulations based on local axisymmetry and weak local isotropy
assumptions; y-z plane formulation

The dissipation estimated by 3C-2D formulations of local axisymmetry and weak local

isotropy models for x-y and y-z measurement planes are given in Fig. 5.2 and Fig. 5.3

respectively. The y-z plane formulation of the weak local isotropy model gives a better

estimate of dissipation than the corresponding x-y plane formulation in the near wall region.

The estimate of dissipation based on the assumption of local axisymmetry of turbulence about

y-axis has a smaller maximum error as compared to the corresponding value based on the

assumption of axisymmetry about the x-axis (Fig. 5.3). Consistent with observations from

the comparison of 2C-2D velocity formulations, the weak local isotropy formulation gives

an accurate estimation of dissipation above a distance of y+ ∼ 50 from the wall for 3C-2D

velocity field formulations.

5.2 Local homogeneity model

The existing models clearly fail to provide an accurate estimate of dissipation in the near-

wall region, especially for the 2C-2D case. We have seen in Chapter 2 (Fig. 2.4) that a

substantial proportion of dissipation in the channel (∼ 50%) takes place in the near wall

region, hence the near-wall poor performance of the local axisymmetry assumption and weak
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local isotropy assumption based models is not desired as it leads to a larger error in the

minimum Kolmogorov length scale (which is on the wall) and the total turbulent dissipation

rate in the entire channel.

A new model was derived to improve the estimate of dissipation, especially in the near-

wall region by noting that the estimation of dissipation by the weak local isotropy assumption

based formulations is inaccurate mainly in the near wall region while providing an accurate

estimate in regions away from the wall. As seen in Chapter 2, the near wall anisotropy of

dissipation is a result of the relatively large magnitude of wall-normal gradients of fluctuating

velocity components as compared to the magnitude of their gradients along the stream-wise

and span-wise directions. The anisotropy of velocity gradients leads to failure of the weak

local isotropy model in the near-wall region since it assumes homogeneity between x-z, y-z

and x-y planes, as seen from the weak local isotropy model assumptions ( Eq. 1.9). The x-z

plane being a wall-parallel plane, the assumption of homogeneity in this plane can be assumed

to be independent of the homogeneity in the wall-normal x-y and y-z planes. Thus the new

formulation was derived by assuming local homogeneity in the x-z plane independently of the

homogeneity in the wall-normal x-y and y-z planes (i.e. by assuming equality of only the x-z

plane cross-derivative terms) while maintaining the other assumptions of weak local isotropy

model (Eq. 5.8).
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The 2C-2D and 3C-2D formulations of dissipation derived based on the new local homo-

geneity model are given by Eq. 5.9 and Eq. 5.10 respectively.
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where, εLH−2xy is the 2C-2D velocity field formulation while εLH−3xy and εLH−3yz are respec-

tively, the x-y and y-z plane, 3C-2D velocity field formulations of dissipation based on the

assumption of local homogeneity.

The normalized turbulent dissipation rate, normalized Kolmogorov length scale and

integral ratio calculated using the 2C-2D and 3C-2D formulations of local homogeneity

assumption based model are compared with the corresponding quantities for the weak-local

isotropy model in Fig. 5.4 and Fig. 5.5 respectively. The local homogeneity model provides

an improved estimate of dissipation at the wall as compared to the local axisymmetry and

weak local isotropy models, while the weak local isotropy model is still more accurate in

regions away from the wall (y+ > 100).

Since the local homogeneity model performs well in the viscous sub-layer and the weak

local isotropy model in the region y+ > 100, an improved estimate of dissipation can be

obtained by calculating a weighted sum of the local homogeneity and the weak local isotropy

formulations as given by Eq. 5.11.
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εBl = b · εLH +(1−b) · εWI (5.11)

where b is the blend function given by Eq. 5.12

b(y+) = 1 y+ < 2

b(y+) = (50− y+)/48 2 ≤y+ ≤ 50

b(y+) = 0 y+ > 50 (5.12)

The maximum error in dissipation estimated using the new blend formulation is ∼ 25%

for 2C-2D velocity fields (Fig. 5.4) while it is ∼ 11% and ∼ 13% respectively for the 3C-2D

velocity field x-y and y-z plane formulations (Fig. 5.5).

Fig. 5.4 Profiles of the normalized turbulent dissipation rate (rm
ε ), normalized Kolmogorov

length scale (rm
η ) and Integral ratio (β m) calculated using 2C-2D velocity field formulations

of local homogeneity assumption, weak local isotropy assumption and blend formulation

The current choice of the blend function giving 100% weighting to the local homogeneity

model near the wall (y+ < 2) and to weak local isotropy model in the region y+ > 50 is the

simplest choice as it varies linearly from 1 at y+ = 2 to 0 at y+ = 40. As can been seen from
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Fig. 5.5 Profiles of the normalized turbulent dissipation rate (rm
ε ), normalized Kolmogorov

length scale (rm
η ) and Integral ratio (β m) calculated using 3C-2D velocity field formulations of

weak local isotropy assumption, local homogeneity assumption and blend formulation; solid
lines (x-y plane formulation), dashed (y-z plane formulation)

Fig. 5.4 and Fig. 5.5, a more complex non-linear weighing function would give a better

estimate of dissipation for the present case, but such a function would require choosing an

additional co-efficient in the non-linear function which would depend on the flow. Since the

success of such a choice cannot be determined apriori in experiments, only results for the

simple linear blend function have been presented here, even though more complex choices

are possible.

We have seen in Chapter 4, that the total error in dissipation for the entire channel is given

by the value of the integral ratio (Eq. 4.8) at channel mid-height (β m(h)). The total error in

dissipation calculated by the blend formulation for 2C-2D velocity fields is ∼ 0.8% of the

total dissipation in the channel (Fig. 5.4), while it is ∼ 5.5% and ∼ 8.5% respectively for the

3C-2D velocity field x-y and y-z plane formulations (Fig. 5.5).

The Kolmogorov length scale estimated by the blend formulation has a maximum error of

5.35% of the true value for the 2C-2D velocity fields while it is 2.96% and 3.05% respectively

for 3C-2D velocity field x-y and y-z formulations (Fig. 5.5).





Chapter 6

Combined Effect of Spatial Filtering and

Limited Dimensionality on Turbulent

Dissipation Rate

We have discussed in Chapter 1 how spatial filtering and limited dimensionality are character-

istic to velocities obtained from most experimental measurements. This chapter quantifies the

combined error in turbulent dissipation rate due to spatial filtering and limited dimensionality.

The net error in the turbulent dissipation rate calculated from data provided by most

experimental measurements is affected by both spatial filtering and limited dimensionality.

We have seen in chapter 4 that the error in each term in the equation of the turbulent dissipation

rate (Eq. 1.4) depends on the size of the filter in each direction. Taking into consideration the

fact that the formulations of dissipation based on different models are developed by assuming

equivalence of various products of velocity gradients (chapter 5), we can conclude that the

ability of various models to accurately estimate the dissipation calculated from 3C-3D data is

dependent on the accuracy of the equivalence relations. Due to the anisotropic response of

the error in various terms of the fluctuating velocity gradient tensor to the filter size along

each direction, the pre-defined equivalence relations will not hold true in filtered fields. As a

result, the accuracy of the turbulent dissipation rate calculated by the models will depend on

the size of the measurement volume (length of the wire in case hot-wire anemometry and the

interrogation window volume in case of PIV measurement techniques).
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In order to evaluate the net error in turbulent dissipation rate, velocity fields were spatially

filtered at resolutions equivalent to the typical measurement volume size in experiments and

the dissipation was calculated using the various models described in Chapter 5. The sections

below present the accuracy of the turbulent dissipation rate and Kolmogorov length scales for

various spatial filter sizes and formulations based on 1C-1D, 2C-2D and 3C-2D formulations

based on different models.

6.1 1C-1D Velocity Fields

In hot-wire anemometry, the most common orientation of the wire is employed along the

span-wise direction since it allows the measurement of the stream-wise derivative of the

stream-wise velocity from its temporal gradient by applying Taylor’s hypothesis (Atkinson

et al., 2014). Additionally, we have seen in Chapter 4 that the error introduced in the turbulent

dissipation rate due to spatial filtering is most sensitive to the filter size wall-normal direction;

hence when one component of velocity can be measured using a single hot-wire, the span-wise

orientation of the wire is the most appropriate choice. Thus, in order to evaluate the net

error in turbulent dissipation rate and Kolmogorov length scale due to spatial filtering and

limited dimensionality when 1C-1D data is available from measurements from techniques

like HWA, velocity fields were spatially filtered in the span-wise direction to mimic the effect

of increasing the wire length.

The effect of increasing the wire length ranging from 4+ to 20+ wall units has been

studied. Since the data is assumed to be present in the form of 1C-1D velocity fields, the

normalised dissipation rate rm
ε̃
= ε̃m/ε and normalised Kolmogorov length scale, rm

η̃
= η̃m/η

are calculated using the local isotropy model (Eq. 1.6) and presented in Fig. 6.1; the

superscript m denotes that the dissipation has been calculated using a model and the ∼

indicates that the velocity fields were spatially filtered.

Since the DNS grid has a spacing of (∆x+ = 4), the cases corresponding to (l+ = 4) do

not involve any spatial filtering in the span-wise direction. The difference between Unfiltered

(l+ = 4) and (l+ = 4) case is the use of accurate derivatives from Chapter 2 in the former and

central difference scheme for the gradient calculation in the latter case. The spatial filtering
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Fig. 6.1 Effect of span-wise wire length(l) on normalised dissipation rate (rm
ε̃

) and normalised
Kolmogorov length scale (rm

η̃
) calculated using the local isotropy formulation

in span-wise direction due to finite wire length has the largest effect on the accuracy of the

turbulent dissipation rate and the Kolmogorov length scale in the near wall region. The largest

impact of wire-length on dissipation is seen in the region above y+ ∼ 30. The inaccuracy of

both, the turbulent dissipation rate and the Kolmogorov length scale in the near wall region is

due to the inaccuracy of the local isotropy model which is demonstrated by the values of both

these quantities for the Unfiltered (l+ = 4) case.

When using data obtained from experiments, it is useful to get an estimate of the error

in dissipation and minimum Kolmogorov length scale calculated from experimental data.

These errors are calculated assuming that the error in velocity due to end conduction effects

in the hot-wire anemometer is negligible, which requires the length to diameter ratio of the

wire to be greater than 200 (Philip et al., 2013). Table 6.1 presents effect of wire length on

β̃m (Eq. 4.8), the integral ratio of dissipation at channel mid-height, calculated for spatially

filtered fields using the local isotropy model and η̃m
min/ηmin, the ratio of the corresponding

minimum Kolmogorov length scale to the true value; the corresponding 3C-3D velocity field

data is provided for reference. A large proportion of the error in the estimated Kolmogorov

length scale can be attributed to the truncation error in the central difference scheme which is
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proved by the fact that the effect of wire length on Kolmogorov length scale is negligible in

the near-wall region and the entire error in the Unfiltered case is the truncation error.

Due to the inadequacy of local isotropy model to accurately estimate the dissipation

calculated using 3C-3D velocity fields, especially in the near wall region, the minimum

Kolmogorov length scale estimated by local isotropy model is almost twice the true minimum

Kolmogorov length scale. The net error in dissipation for the entire channel is ∼ 50% of the

true value.

Table 6.1 Consolidated results of net effect of wire length and use of the 1C-1D velocity field,
Local Isotropy Formulation (ISO) formulation

l+
β̃m η̃m

min/ηmin

3C-3D 1C-1D 3C-3D 1C-1D

4 0.896 0.542 1.058 2.092

8 0.859 0.524 1.066 2.126

12 0.807 0.504 1.078 2.164

16 0.756 0.482 1.092 2.209

20 0.708 0.459 1.107 2.261

An alternative approach to get an approximate estimate of the Kolmogorov length scale

near the wall can be obtained by noting that the gradients of all the fluctuating velocity

components in the stream-wise (x) and span-wise (z) directions are zero at the wall due to the

no-slip condition. Since ∂u′/∂x = 0 and ∂w′/∂ z = 0 are zero at the wall, continuity equation

leads to ∂v′/∂y = 0 at the wall. Thus, the only terms contributing to dissipation at the wall

are (∂u′/∂y)2 and (∂w′/∂y)2. We can see from plots of the Kolmogorov length scale for the

unfiltered fields (Fig 2.2) that in the near-wall region (y+ < 10), the Kolmogorov length scale

is almost constant and the largest contributors to dissipation in that region are the non-zero

terms at the wall, viz (∂u′/∂y)2 and (∂w′/∂y)2. Applying the local homogeneity assumption

(Eq. 5.8) to model the term (∂w′/∂y)2, we get a 1D local homogeneity approximation for

dissipation in the viscous sub-layer as

ε1D−LH = 1.5

〈(
∂u′

∂y

)2
〉

(6.1)
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Since a measurement at y+ = 8 using a hot-wire anemometer would lead to spatial-

filtering only along the span-wise direction, the error due to spatial filtering along the wall-

normal direction would be eliminated by such a measurement. Not considering the effect

of measurement noise and under the assumption of negligible end-conduction effects, the

minimum Kolmogorov length scale estimated by such a measurement and application of Eq.

6.1 is given in table 6.2 for a range of wire lengths. Thus, if one can get an accurate estimate

of the viscous length scale, an accurate estimate of minimum Kolmogorov length scale ηmin

can be potentially obtained in the near-wall region.

Table 6.2 Estimate of minimum Kolmogorov length scale expressed as a fraction of the
true value calculated using Eq. 6.1, the stream-wise velocity is assumed to be measured
using a hot-wire anemometer at y+ = 8 and the wall-normal derivative is calculated using the
second-order central difference scheme

l+ η̃m
min/ηmin

4 1.035
8 1.040
12 1.047
16 1.056
20 1.066

6.2 2C-2D Velocity Fields

For 2C-2D and 3C-2D velocity fields, the net effect of spatial filtering and limited dimension-

ality is presented for select spatial resolutions typical to PIV measurements and are given in

table 6.3.

Profiles of normalised dissipation (rm
ε̃

) and normalised Kolmogorov length scale (rm
η̃

) for

the different models discussed in Chapter 5 is presented in Fig. 6.2-Fig. 6.5 for various sizes

of the measurement volume.

Due to underestimation of the turbulent dissipation rate due to spatial filtering, the models

which overestimate the dissipation and underestimate the Kolmogorov length scale in the

unfiltered fields (viz. local axisymmetry and weak local isotropy models) counter the effect

of spatial filtering and seemingly perform better near the wall as compared to the Blend

formulation. The near wall values of rm
η̃
= η̃m/η show that even with the use of models, the
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Table 6.3 Interrogation window/spatial filter sizes and grid spacing of the velocity fields used
to evaluate net error in the turbulent dissipation rate due to limited dimensionality and spatial
filtering in experimental measurements using PIV

f+x , f+y , f+z ∆+
x ,∆

+
y ,∆

+
z F+ = 3

√
f+x · f+y · f+z

8, 8, 8 8, 4, 4 8
16, 8, 20 8, 4, 10 14
16, 16, 12 8, 8, 6 15
24, 24, 8 12, 12, 4 17
16, 24, 20 8, 12, 10 20
24, 24, 20 12, 12, 10 23
32, 24, 16 16, 12, 8 23

Fig. 6.2 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using 2C-2D velocity field

Local axisymmetry-x formulation for various measurement volume sizes

error in Kolmogorov length scale is more sensitive to wall-normal filter size. The reduction in

accuracy of the Kolmogorov length due to increasing the stream-wise and span-wise filter

sizes is small at small wall-normal filter sizes, thus the wall-normal filter size should be

restricted to small values in order to minimize the error in Kolmogorov length scale.

Table 6.4 presents the consolidated results of net error in turbulent dissipation rate for 2C-

2D velocity fields. The values of normalised minimum Kolmogorov length scale (η̃m
min/ηmin)
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Fig. 6.3 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using 2C-2D velocity field

Local axisymmetry-y formulation for various measurement volume sizes

Fig. 6.4 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using 2C-2D velocity field

Weak local isotropy formulation for various measurement volume sizes

and the integral ratio (β̃m) as calculated using different models are presented; the correspond-

ing values for 3C-3D fields have been included for reference.
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Fig. 6.5 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using 2C-2D velocity field

Blend formulation for various measurement volume sizes

Table 6.4 Consolidated results of 2C-2D velocity field formulations of various models: LA-
x,LA-y: Local Axisymmetry about x, Local Axisymmetry about y; WLI : Weak Local Isotropy;
Bl : Blend

f+x , f+y , f+z
β̃m η̃m

min/ηmin

3C-3D LA-x LA-y WLI Bl 3C-3D LA-x LA-y WLI Bl

8,8,8 0.799 1.167 1.020 0.916 0.807 1.100 0.974 0.987 0.897 1.051

16,8,20 0.634 0.976 0.856 0.780 0.684 1.142 1.004 1.014 0.921 1.080

16,16,12 0.583 0.822 0.759 0.608 0.567 1.297 1.189 1.220 1.126 1.284

24,24,8 0.502 0.642 0.604 0.461 0.443 1.419 1.402 1.435 1.367 1.516

16,24,20 0.446 0.626 0.619 0.457 0.441 1.523 1.435 1.467 1.393 1.547

24,24,20 0.420 0.593 0.558 0.427 0.410 1.527 1.440 1.476 1.396 1.553

32,24,16 0.420 0.578 0.516 0.411 0.394 1.495 1.430 1.471 1.389 1.545

A comparison of values of integral ratio (β̃m) for various formulations with the 3C-3D

velocity field values show that the performance of models is dependent on the interrogation

window size. The weak local isotropy and blend formulations underestimate the minimum

Kolmogorov length scale at small interrogation window sizes as compared to the correspond-

ing 3C-3D values while overestimating it at larger sizes. The use of models on spatially

filtered fields thus introduces an uncertainty in the turbulent dissipation rate as the use of
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models cause a change in magnitude and sign of the error with the filter size. The error in

dissipation and Kolmogorov length scale due to limited dimensionality increases with spatial

filtering, thus increasing the net error.

6.3 3C-2D Velocity Fields

The plots of normalised dissipation and Kolmogorov length scale calculated using the x-y

plane, 3C-2D formulations of different models are presented in Fig. 6.6-Fig. 6.9 for various

filter sizes, while the corresponding plots for y-z plane are presented in Fig 6.10-Fig 6.12.

As compared to the corresponding 2C-2D formulations, the errors introduced by the 3C-

2D formulations are larger atleast in the near wall region. The larger near wall error of

3C-2D formulations can be attributed to the fact that 3C-2D formulations provide a more

accurate estimate of turbulent dissipation rate, indicated by the values for unfiltered cases, the

overestimation of dissipation in the near-wall region by the 2C-2D formulations counters the

underestimation of dissipation due to spatial filtering, thus leading to smaller near-wall error.

Fig. 6.6 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using x-y plane Local

axisymmetry-x formulation: 3C-2D velocity fields
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Fig. 6.7 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using x-y plane Local

axisymmetry-y formulation: 3C-2D velocity fields

Fig. 6.8 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using x-y plane Weak local

isotropy formulation: 3C-2D velocity fields

The y-z plane 3C-2D formulations (table 6.6) consistently overestimate the minimum

Kolmogorov length scale and underestimate the total dissipation in the channel as compared

to the 3C-3D values, resulting in a reduced net error in both the quantities. Additionally,
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Fig. 6.9 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using x-y plane Blend

formulation: 3C-2D velocity fields

Fig. 6.10 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using y-z plane Local

axisymmetry-y formulation: 3C-2D velocity fields

error in dissipation calculated using the y-z plane formulations show reduced sensitivity to

filter size as compared to the error in dissipation calculated using the corresponding x-y plane

formulation.
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Fig. 6.11 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using y-z plane Weak local

isotropy formulation: 3C-2D velocity fields

Fig. 6.12 Profiles of the normalised turbulent dissipation rate (rm
ε̃

) and normalised Kolmogorov
length scale (rm

η̃
) for various measurement volume sizes calculated using y-z plane Blend

formulation: 3C-2D velocity fields
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Table 6.5 Consolidated results for x-y plane 3C-2D velocity field formulations of various
models

f+x , f+y , f+z
β̃m η̃m

min/ηmin

3C-3D LA-x LA-y WLI Bl 3C-3D LA-x LA-y WLI Bl

8,8,8 0.799 0.851 0.652 0.847 0.775 1.100 0.971 1.132 0.970 1.116

16,8,20 0.634 0.732 0.557 0.723 0.660 1.142 0.997 1.162 0.996 1.147

16,16,12 0.583 0.580 0.483 0.582 0.556 1.297 1.212 1.405 1.209 1.354

24,24,8 0.502 0.438 0.377 0.447 0.435 1.419 1.467 1.668 1.453 1.583

16,24,20 0.446 0.436 0.392 0.448 0.437 1.523 1.493 1.699 1.481 1.614

24,24,20 0.420 0.411 0.354 0.416 0.405 1.527 1.497 1.708 1.486 1.622

32,24,16 0.420 0.397 0.327 0.398 0.386 1.495 1.490 1.703 1.479 1.615

Table 6.6 Consolidated results for y-z plane 3C-2D velocity field formulations of various
models

f+x , f+y , f+z
β̃m η̃m

min/ηmin

3C-3D LA-y WLI Bl 3C-3D LA-y WLI Bl

8,8,8 0.799 0.919 0.870 0.875 1.100 1.094 1.063 1.082

16,8,20 0.634 0.686 0.694 0.685 1.142 1.138 1.104 1.130

16,16,12 0.583 0.685 0.620 0.630 1.297 1.271 1.253 1.256

24,24,8 0.502 0.623 0.542 0.557 1.419 1.370 1.374 1.357

16,24,20 0.446 0.506 0.457 0.464 1.523 1.482 1.475 1.467

24,24,20 0.420 0.493 0.442 0.448 1.527 1.486 1.478 1.471

32,24,16 0.420 0.518 0.459 0.463 1.495 1.451 1.447 1.437





Chapter 7

Discussion and Conclusions

Most flows of importance encountered in industry and nature are in the high Reynolds

number regime. As a result, a substantial proportion of turbulent flow research is aimed at

understanding the behaviour of turbulence in the high Reynolds number regime. We have

seen in Chapter 1 that the turbulent dissipation rate is determined in high Reynolds number

flows by employing experimental measurements. The accurate determination of the turbulent

dissipation rate from experimental measurements is a challenging task due to the inherent

spatial filtering and the limited dimensionality of the velocity fields provided by them. Any

experimental measurement technique inherently involves spatial filtering of the smallest scales

in the flow when the finite size of the measurement volume is much larger than the smallest

length scales in the flow (of the order of Kolmogorov length scale), which is often the case

for high Reynolds number flows where the Kolmogorov length scales are much smaller than

the size of measurement volume for most laboratory scale experiments. Due to the spatial

filtering of the length scales smaller than the measurement volume, in absence of measurement

noise, the dissipation calculated from experimental measurements is underestimated and the

corresponding Kolmogorov length scale is overestimated. The inability of most experimental

measurement techniques to provide all the components of the velocity gradient tensor makes

the application of simplifying assumptions necessary, most of which are often not suitable

for every flow configuration. Thus when dissipation and the corresponding quantities are

determined from experiments, they have an inherent bias error. In absence of an estimate of

this bias error, experimentalists cannot determine the appropriate size of measurement volume

needed to maintain the error levels within certain limits.
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As discussed in Chapter 1, the existing research on determining the error in turbulent

dissipation rate and Kolmogorov length scale is limited to free-shear flows. The anisotropy of

near-wall turbulence makes the dynamics of turbulence in wall-bounded flows different from

free-shear flows, especially in the near-wall region; the extension of existing results based

on free-shear flows to wall-bounded flows is not straightforward. An estimate of the bias

errors in dissipation and Kolmogorov length scale, as well as the validation of the capability

of existing models to determine dissipation in wall-bounded turbulent flows was needed.

The present analysis has revealed that the spatial filtering due to the finite size of the

measurement volume results in a greater underestimation of dissipation close to the wall

as compared to the region away from it. The minimum Kolmogorov length scale in the

flow can be overestimated by as much as 50% of the true value for moderate sizes of

measurement volume (< 12+ units). Unsurprisingly, the gradients of velocity components

along the direction of filtering are most affected by spatial filtering, as a result, the error

in turbulent dissipation rate due to spatial filtering depends on the size and orientation of

the measurement volume. A substantial proportion of dissipation in wall-bounded flows

is found to be anisotropic (Chapter 3), the largest contribution to dissipation in the near

wall region coming from wall-normal derivatives of fluctuating velocity components. The

anisotropic nature of dissipation, combined with the effect of spatial filtering on various

velocity components, makes the error in dissipation due to spatial filtering a stronger function

of the size of the measurement volume along the wall-normal direction as compared to its

size along the other directions. An increase in the filter size in the wall-normal direction

beyond y+ ≈ 12, is found to result in a large error in the minimum Kolmogorov length scale

(∼ 30%) and the total turbulent dissipation rate in the channel (∼ 60%). The underestimation

of dissipation due to spatial filtering along the span-wise and wall-normal directions is largest

at the wall and decreases with the wall-normal distance while peaking in the log-layer for

stream-wise filtering (Fig. 4.19, Chapter 4).

The truncation error in the finite difference schemes used to calculate the derivatives is

found to be another major source of error in the near wall region which further increases the

underestimation of the turbulent dissipation rate. Its fractional contribution to the total error

in dissipation is found to increase with the size of measurement volume (if a constant window
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overlap is maintained), and in the near wall region, this contribution can be as large as 50% of

the total error for large filter sizes in the wall-normal direction. A reduction in truncation error

warrants the reduction of the spacing of velocity vectors in experiments by either reducing

the size of the measurement volume or increasing the fractional overlap between adjacent

measurement volumes, the latter reduces the statistical independence of each measurement.

Various existing models that are employed to estimate the turbulent dissipation rate when

dimensionally limited data from experiments is available, overestimate the dissipation in

the near-wall region in most cases. A new model to estimate dissipation when only 2C-2D

and 3C-2D data is available has been developed (Section 5.2). This model is based on the

assumption of local homogeneity and is demonstrated to be an improvement over the existing

models in accurately estimating the dissipation in the entire channel for unfiltered velocity

fields.

The investigation into the total error in turbulent dissipation rate due to spatial filtering and

limited dimensionality in Chapter 6 revealed that spatial filtering is a major source of error in

both the turbulent dissipation rate and the Kolmogorov length scale. Given the fact that the

accuracy of various models is dependent on the correctness of derivative equivalence relations

which are the basis of the models, and the anisotropic nature of error introduced into the

velocity gradient tensor due to spatial filtering skews the derivative equivalence relations; the

accuracy of the dissipation calculated by the models as compared to the 3C-3D value, varies

with the size of the measurement volume along each direction. Apriori tests on the accuracy

of models at a different Reynolds number and measurement volume size may not provide

an accurate estimate of the error introduced by these models. In general, the models which

locally overestimate the turbulent dissipation rate act to reduce the local underestimation of

dissipation due to spatial filtering, although this is usually not enough to eliminate the entire

underestimation of dissipation due to spatial filtering.
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Challenges in the determination of dissipation from high Reynolds num-

ber flow measurements

The turbulent dissipation rate (in wall-units) and the corresponding integral fraction (χ , Eq.

2.3) calculated from DNS of the channel flows for friction Reynolds number in the range

Reτ ≈ 180−5200 (Lee and Moser, 2015) are presented in Fig. 7.1. The profiles of dissipation

for various Reynolds numbers indicate that the dissipation in the near-wall region is a strong

function of Reynolds number at low Reynolds numbers, indicated by the large jump in

dissipation (∼ 50%) at the wall upon increase in friction Reynolds number from Reτ = 180

to Reτ = 950 as compared to corresponding value (∼ 16%) when Reynolds number increases

by a similar factor from Reτ = 950 to Reτ = 5200. An increase in Reynolds number leads

to an increase in the wall-normal gradient of dissipation, especially in the near-wall region.

As seen in Chapter 4, the large wall-normal gradient of dissipation is responsible for large

near wall error due to spatial filtering in the wall-normal direction. Thus, an increase in the

wall-normal gradient of dissipation due to an increase in the friction Reynolds number will

lead to a rise in the error in dissipation due to spatial filtering in wall-normal direction for the

same filter size in wall units.

Fig. 7.1 Turbulent dissipation rate in wall units and integral fraction (χ) for a range of
Reynolds number obtained from channel flow DNS of Lee and Moser (2015)
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An estimate of the effect of increased near wall error in dissipation on the total error in

dissipation can be obtained for different Reynolds numbers by observing the plots of integral

fraction (χ) for various Reynolds numbers from Fig. 7.1; selected values of χ are presented in

table 7.1. The profiles of χ show that the fractional contribution of the near-wall dissipation

(y+ < 50) to the total dissipation in the channel decreases with increasing Reynolds number.

Table 7.1 Distribution of dissipation in channel flow for various Reynolds number

Reτ χ@y+ = 50 y+@χ = 0.9 y+/h+@χ = 0.9

180 0.71 104 0.58

950 0.49 415 0.44

2000 0.42 800 0.40

5200 0.39 1800 0.35

The values in table 7.1 indicate that with an increase in Reynolds number, the contribution

of dissipation in the viscous region (y+≤ 50) to the total dissipation does not reduce drastically

at large Reynolds numbers. The distance from the wall (in viscous units) up to which 90% of

turbulent kinetic energy is dissipated, increases with Reynolds number, although it decreases

in terms of the fraction of the channel height. Hence, if the physical size of the channel is

not changed, an increase in Reynolds number would result in most of the dissipation in the

channel occurring closer to the wall. Although the trend of increase in error in turbulent

dissipation rate with an increase in size of measurement volume is expected to remain the

same with increasing Reynolds number, the redistribution of dissipation along the wall-normal

direction might change the distribution and the magnitude of the error due to spatial filtering

in the turbulent dissipation rate and Kolmogorov length scale obtained from experimental

measurements at different Reynolds number. We have seen in Chapter 6 that the accuracy of

dissipation estimated by the models is dependent on the degree of spatial filtering, hence it is

expected to decrease with increasing Reynolds number, thus increasing the overall error is the

turbulent dissipation rate due to both spatial filtering and limited dimensionality.
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Conclusions

The turbulent dissipation rate and Kolmogorov length scale determined from experimental

measurements inherently involve a bias error which is introduced due to the finite size of the

measurement volume and limited dimensionality of the velocity fields. An estimate of the

magnitude and the nature of this bias error in wall-bounded flows was needed, which was the

aim of the current research work.

The error introduced in dissipation and the corresponding derived quantities due to spatial

filtering is dependent on the size and orientation of the measurement volume. The accuracy

of these quantities is most affected by the size of the measurement volume in the wall-normal

direction. There is a large jump in the error when the wall-normal size of measurement

volume is increased beyond y+ ≈ 12 units and it is advised to limit the wall-normal size of

the measurement volume within this value. The spatial filtering in the wall-normal direction

is due to both, the filtering of the small length scales of the flow and the averaging of the

anisotropic part of the dissipation rate tensor, hence any method that estimates the effect of

spatial filtering on dissipation should take this fact into consideration. Any other wall-bounded

flow which has similar anisotropy along other (stream-wise and span-wise) directions, will

exhibit a similar behaviour of error and this anisotropy of the velocity gradient tensor (hence

the dissipation rate tensor) will differ from that presented in this thesis.

The various existing models available in the literature, which are used when dimensionally

limited data is available, provide an inaccurate estimate of dissipation and Kolmogorov

length scale in the near-wall region, often overestimating the turbulent dissipation rate. The

maximum error introduced in dissipation due to the use of various existing models alone

ranges from ≈ 80% to ≈ 150% of the true value. A new model has been developed which

provides an improved estimate of dissipation, the maximum error in dissipation estimated by

this model for the unfiltered velocity fields is limited to ≈ 10% of the true value, while the

error in total dissipation in the entire channel is within 9% of the true value.

The local isotropy model, which used when 1C-1D data is available from measurement

techniques like hot-wire anemometry, presents a poor estimate of the minimum Kolmogorov

length scale in the flow (at the wall), over-predicting the value by 120% for wire length of
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20+ units in the absence of measurement noise. A modification of the local homogeneity

assumption based model, combined with the measurement of wall-normal gradient of stream-

wise velocity close to the wall (at y+ = 4) and span-wise orientation of the wire (which results

in spatial filtering only in the span-wise direction) can estimate the minimum Kolmogorov

length scale within 7% of the true value for the same wire length, providing a quick estimation

of the smallest length scales in a flow for 1C-1D velocity measurements. The underestimation

of dissipation due to spatial filtering is reduced when using models like local axisymmetry

and weak-local isotropy which overestimate the dissipation in the near-wall region for the

unfiltered case for unfiltered 2C-2D and 3C-2D velocity fields. The degree of reduction of

underestimation of dissipation due to spatial filtering, due to the use of these models depends

on the size of measurement volume along each direction. The overestimate of minimum

Kolmogorov length scale when calculated using the new blend formulation can be maintained

within 20% by limiting the wall-normal filter size below 16+ units.

An analysis of error in dissipation and Kolmogorov length scale for various sizes of

measurement volumes and different models suggests that, for current Reynolds number, a

2C-2D PIV measurement obtained by restricting the wall-normal measurement volume size

to f+y < 12 and application of the newly-derived blend formulation would lead to an error

within 10% of the true value in Kolmogorov length scale and within 30% of the true value in

the total dissipation in the channel. The corresponding values for the 3C-2D formulation are

35% and 15% while they are 20% and 12% respectively, for the 3C-3D velocity fields.

With an increase in Reynolds number, the error due to spatial filtering is expected to

increase due to increase in the near-wall gradients. Maintaining the error in dissipation due to

spatial filtering within the same limits as low Reynolds number flow experiments is expected

to become an increasingly challenging task with increasing Reynolds number. This fact must

be taken into consideration when employing the guidelines from the current work for different

Reynolds number and flow configurations.





Appendix A

Formulation of True Error in Dissipation

due to Spatial Filtering

Ignoring the constant coefficients, each term in the equation for turbulent dissipation rate (Eq.

1.4) can be expressed in the form
(
∂u′i/∂x j

)(
∂u′k/∂xl

)
. If the spatial filter is denoted by the

operator F , the filtered fluctuating velocity components can be expressed as F (u′i).

The calculation of spatial derivatives from the velocity field can be considered as appli-

cation of the derivative filter (Foucaut and Stanislas, 2002). Let C be the central derivative

operator. The calculation of velocity gradient tensor of the filtered velocity field using the

central derivative scheme can thus be represented by the successive application of the spa-

tial filter F and the central derivative filter C on the unfiltered velocity field. The term(
∂ ũ′i/∂x j

)(
∂ ũ′k∂xl

)
can then be expressed as in Eq. A.1.

(
∂ ũ′i
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)(
∂ ũ′k
∂xl

)
= C

[
F
(
u′i
)
,∆x̃ j

]
C
[
F
(
u′k
)
,∆x̃l

]
(A.1)

where ∆x̃ j is the grid spacing of the filtered velocity field along the direction x j.

Since both the central derivative filter and spatial filter are linear operators, their order of

application can be interchanged and was verified mathematically. Eq. A.1 thus becomes

(
∂ ũ′i
∂x j

)(
∂ ũ′k
∂xl

)
= F

[
C
(
u′i,∆x j

)]
F
[
C
(
u′k,∆xl

)]
(A.2)

The central difference formula for calculation of derivatives can be expressed in the form

given by Eq. A.3
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C
(
u′i,∆x j

)
=

∂u′i
∂x j

+ et
(
u′i,∆x j

)
(A.3)

where et is the operator denoting the truncation error associated with the truncation of the

Taylor series expansion of velocity component u′i along the direction x j.

Combining Eq. A.2 and Eq. A.3 we get Eq. A.4

(
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(A.4)

Eq. A.5 is obtained by resolving the terms in brackets in Eq. A.4 by applying the additivity

property of linear operators.
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∂ ũ′k
∂xl

)
=

{
F

[
∂u′i
∂x j

]
+F

[
et
(
u′i,∆x j

)]}{
F

[
∂u′k
∂xl

]
+F

[
et
(
u′k,∆xl

)]}
(A.5)

Upon further simplification, we arrive at Eq. A.6.
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Thus we can see from Eq. A.6 that, truncation error of the finite difference scheme

introduces a non-linear error in each term of dissipation equation, which is dependent on both,

the spatial filtering operation and truncation error in the finite difference scheme. To simplify

Eq. A.6, all the terms associated with truncation error are consolidated into a single term

γcd−nl (Eq.A.7)
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[
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where γcd−nl is the error introduced purely due to truncation error in individual velocity

gradients and γ = 0 when there is no truncation error associated with the gradient calculation.
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Thus every term in Eq. 1.4 can be presented in the simplified form given by Eq. A.8

(
∂ ũ′i
∂x j

)(
∂ ũ′k
∂xl

)
= F

(
∂u′i
∂x j

)
F

(
∂u′k
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+ γ (A.8)
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Results

B.1 Effect of Spatial Filtering: Contribution of error from

various components

B.1.1 Effect of filter size in the wall-normal direction
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Fig. B.1 Effect of increasing the filter size in the wall-normal direction
(

f+y
)

on αr (solid
lines) and rc (dashed)
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B.1.2 Effect of filter size in the span-wise direction
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Fig. B.2 Effect of increasing the filter size in the span-wise direction
(

f+z
)

on αr (solid lines)
and rc (dashed)



B.1 Effect of Spatial Filtering: Contribution of error from various components 89

B.1.3 Effect of filter size in the stream-wise direction
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Fig. B.3 Effect of increasing the filter size in the stream-wise direction ( f+x ) on αr (solid
lines) and rc (dashed)
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