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Abstract

In the era of big data, huge amounts of data are being generated from the internet,
social networks, phone apps, and so on, which creates high demand for powerful and
efficient data analysis techniques. In areas such as collaborative filtering, text analysis,
graph analysis, and bioinformatics, a large proportion of such data can be formulated into
discrete matrices. For example, in recommender systems, users’ shopping history can be
represented as a count/binary item-user matrix, with each entry indicating whether or
not a user has bought an item (or his/her purchase count); In text analysis, a collection
of documents can be represented as a word-document count matrix with the bag-of-words
assumption; In graph analysis, the interactions between the users in a social network be
modelled by an adjacency matrix, each entry of which, for instance, captures whether a
user follows another or how many times a user replies another’s tweets.

Bayesian latent factor models have enjoyed great success in analysing the above kinds
of discrete data, which are probabilistic generative models factorising the parameters of
the distribution that generates data samples with low-dimensional stochastic latent repre-
sentations. It is known that Bayesian latent factor models have appealing advantages on
modelling high-dimensionality, data sparsity and missing data, which are common chal-
lenges in analysing internet generated data. In this thesis, I will elaborate on the details of
the Bayesian latent factor models for multiple applications including text analysis, graph
analysis, and multi-label problems, proposed in my PhD research. The novelties of the
proposed approaches particularly focus on the following directions:

� Incorporating meta-data to help data analysis in the case where a large proportion
of data are unobserved, such as leveraging node attributes to predict missing links
and discovering latent communities in graph analysis.

� Discovering hierarchically structured representations of data, such as learning inter-
pretable correlation structures of topics from text collections;

� Developing efficient inference algorithms that leverage the sparsity of data and meta-
data.

In comparison to many state-of-the-art methods in the above areas, the proposed ap-
proaches have achieved not only better modelling performance and efficiency, but also
preferable interpretability for intuitively understanding those data, which is an increas-
ingly important property in machine learning and data mining.
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Chapter 1

Introduction

In the era of big data, huge amounts of data are being generated from the internet,
social networks, phone apps, and so on. These data create high demand for powerful and
efficient data analysis techniques. This thesis particularly focuses on large-scale, high-
dimensional, sparse, discrete data, which are ubiquitous in many applications, such as
collaborative filtering, text analysis, graph analysis, and bioinformatics. For example:

� In recommender systems, users’ shopping history can be represented as a count/binary
item-user matrix, with each entry indicating whether or not a user has bought an
item (or his/her purchase count). Analysing such data is important for discovering
user preferences and item properties, and making recommendations.

� In text analysis, a collection of documents can be represented as a word-document
count matrix with the bag-of-words assumption. Modelling such bag-of-words data
can help us understand the semantic content of documents.

� In graph analysis, the interactions between the users in a social network be mod-
elled by an adjacency matrix, each entry of which, for instance, captures whether a
user follows another or how many times a user replies another’s tweets. Modelling
those data is essential to tasks such as discovering communities and studying how
information is propagated in social networks.

To analyse the above kinds of data, considerable research efforts have been devoted to
proposing machine learning and data mining tools, among which, Bayesian probabilistic
models have been one of the most important families. A Bayesian model usually learns
the distribution that generates data samples with latent variables, which can be used to
not only analyse data properties but also generate new data samples. My research in
this thesis focuses on a particular series of Bayesian probabilistic models for modelling
data formatted in matrices, i.e., Bayesian Latent Factor Models (BLFMs) [Blei et al.,
2003, Canny, 2004, Mnih and Salakhutdinov, 2008, Zhou et al., 2012a], which factorise the
parameters of the data distribution with low-dimensional stochastic latent representations.
The basic framework of a BLFM can be demonstrated in Figure 1.1. BLFMs are Bayesian
extensions of matrix factorisation, which is a primary approach for data analysis. It is
known that BLFMs have appealing advantages on modelling high-dimensionality, data
sparsity and missing data, which are common challenges in analysing internet generated
data.

In this thesis research, I will present several new developments of BLFMs for discrete
data, such as texts and graphs, focusing on improving existing methods with three general
directions and motivations:

1
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! ≈ ×$ %Y ( )

Figure 1.1: A basic demonstration of a BLFM. X is the data matrix. Y is the distribution
that generates X, which is parametrised by a product of Θ and Φ, the latent representations
of X.
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Figure 1.2: A demonstration of the meta-data of a tweet [Zhao et al., 2018a].

Effectively Leveraging meta-data Given a target data matrix that we would like to
analyse, rich meta-data are usually accessible, which are able to help us obtain improved
modelling performance and get better intuitive understandings of the target data matrix.
Meta-data can serve as critical complementary information especially when the target data
matrix is sparse or contains a large proportion of missing entries. For example, suppose we
would like to understand the content of a tweet shown in Figure 1.2. Given that the length
of the tweet is quite short (i.e., the data vector is very sparse), conventional BLFMs for
text analysis may fail to capture its semantic meanings. However, if a model can leverage
the rich meta-data associated with the tweet such as author, timestamp, word meanings,
it would usually provide better performance. Therefore, one of the major directions of
this research is developing effective approaches for BLFMs to incorporate various kinds of
meta-data for different tasks on analysing discrete data.

Learning hierarchically structured latent representations with interpretability
On the other hand, given the complexity of the target data matrix, it usually requires
complicated data distributions to model it, which can be implemented by imposing hierar-
chically structured latent variables. hierarchically structured latent variables are required
to not only improve modelling accuracy but also obtain better interpretability, which is a
preferable property in many applications such as text analysis. For example, it is known
that one important application of BLFMs for text analysis is discovering latent topics,
which can be interpreted as semantic groups of words. Conventional BLFM approaches
assume topics are independent and learn topics with flat structures of latent variables,
which are not able to capture the structured correlations among topics, such as the ex-
ample shown in Figure 1.3. Therefore, another major direction of this thesis research is
learning interpretable hierarchically structured latent variables to obtain better modelling
performance and better intuitive understandings for text data.
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Figure 1.3: A demonstration of a topic hierarchy on a news article dataset [Zhao et al.,
2018b]. The top orange topic is a general topic about economy connected by three more
specific related topics covering different aspects of economy. The bottom are labels of the
topics. Thicker arrows indicate stronger correlations.

Developing efficient learning algorithms large-scale data Usually, leveraging meta-
data and learning interpretable hierarchically structured latent representations increase
model complexity of BLFMs, which makes the learning of such models non-trivial es-
pecially on big data and prevents applications of those models. Fortunately, internet
generated data such as texts and graphs can usually be formulated into matrices in large
dimensions yet sparse. Therefore, the final direction of this research is developing efficient
Bayesian inference algorithms for BLFMs by leveraging the sparsity in target data and
meta-data.

Given the above three major motivations, the research theme of this thesis can be
briefly summarised as developing BLFMs for discrete data, which are able to: 1) incor-
porate the meta-data [Zhao et al., 2017a,c,b, 2018a,d] to help analyse the target data
matrix, such as predicting missing links and discovering latent communities in graph
analysis by leveraging node attributes; 2) discover hierarchically structured representa-
tions [Zhao et al., 2018c,b], such as learning interpretable topic structures of documents;
3) facilitate efficient inference algorithms [Zhao et al., 2017a,c, 2018d], such as leveraging
data sparsity to speed up the training phrase. On analysing the above kinds of discrete
data, the proposed approaches have achieved not only better modelling performance and
efficiency, but also preferable interpretability, in the areas of text analysis [Zhao et al.,
2017c,b, 2018a,c,b], graph analysis [Zhao et al., 2017a], and multi-label learning [Zhao
et al., 2018d].

1.1 List of Thesis Publications

This thesis includes seven papers accepted for publication in peer-reviewed conference
proceedings or journals. I am the first author and the principle innovator for all papers,
which are listed in reverse chronological order:

1. H. Zhao, L. Du, W. Buntine, M. Zhou, “Dirichlet Belief Networks for Topic Struc-
ture Learning”, in Neural Information Processing Systems (NeurIPS) 2018.

2. H. Zhao, L. Du, W. Buntine, M. Zhou, “Inter and Intra Topic Structure Learn-
ing with Word Embeddings”, in International Conference on Machine Learning
(ICML) 2018.

3. H. Zhao, L. Du, W. Buntine, G. Liu, “Leveraging External Information In Topic
Modelling”, in Knowledge and Information Systems (KAIS) 2018.
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4. H. Zhao, P. Rai, L. Du, W. Buntine, “Bayesian Multi-label Learning with Sparse
Features and Labels, and Label Co-occurrences”, in Artificial Intelligence and
Statistics (AISTATS) 2018.

5. H. Zhao, L. Du, W. Buntine, “A Word Embeddings Informed Focused Topic Model”,
in Asian Conference on Machine Learning (ACML) 2017.

6. H. Zhao, L. Du, W. Buntine, G. Liu, “MetaLDA: A Topic Model that Efficiently
Incorporates Meta information”, long paper in International Conference on Data
Mining (ICDM) 2017.

7. H. Zhao, L. Du, W. Buntine, “Leveraging Node Attributes for Incomplete Relational
Data”, International Conference on Machine Learning (ICML) 2017.

1.2 Summary of Contributions

According to the research areas, the contributions of this thesis are categorised as follows:

Bayesian random graph models with node attributes for graph analysis Bayesian
random graph models [Miller et al., 2009, Zhou, 2015, Caron and Fox, 2017] have been
successfully used in relational graph analysis on the tasks of community detection and
link prediction. However, many existing models rely on the assumption that the majority
of the links of a graph are observed, which is usually unfeasible in practice. How can
we obtain good community detection and link prediction performance when only a tiny
proportion of the links are observed? This research answers this question by developing
models that leverage node attributes, such as user profiles of a social network and au-
thor research interests in a bibliographic graph. In the research of Zhao et al. [2017a],
an effective Bayesian random graph model is proposed, which regresses a node’s latent
representations on its attributes, capturing the effect that nodes with similar attributes
are likely to be assigned to same communities. The elaborated model structure also fa-
cilitates an efficient learning algorithm that utilises the sparsity of both graphs and node
attributes. The proposed model achieves the state-of-the-art link prediction results, es-
pecially with highly incomplete relational graphs. Besides graph analysis, the proposed
“regression to latent representation” idea has been adapted in many other areas such as
text analysis [Zhao et al., 2017c,b, 2018a] in order to improve the performance in the case
where observed data are highly incomplete.

Discovering latent topics with meta-data for text analysis An important appli-
cation of BLFMs is text analysis, where latent factors can be interpreted as distribu-
tions over vocabulary words, known as “topics.” Conventional latent factor models for
texts (i.e., topic models) such as Latent Dirichlet Allocation (LDA) [Blei et al., 2003]
learn topics purely from the content of a text corpus, ignoring the meta-data associated
with documents like labels, authors, timestamps, and words like word embeddings. This
research [Zhao et al., 2017c,b, 2018a] answers the question of how to incorporate such
meta-data into the learning of topics so as to get better modelling performance and inter-
pretability. In the work of Zhao et al. [2017c, 2018a], a general topic modelling framework
is proposed, which efficiently incorporates both document-level and word-level meta-data
in binary form. The intuition of this work is that documents with similar meta-data are
likely to discuss similar topics and words having similar meanings (encoded in word em-
beddings) but different morphological forms are likely to be assigned to the same topics.
For example, words like “dog” and “puppy”, are likely to be in the same topic, even if they
barely co-occur in the corpus. The proposed model achieves significantly better modelling
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results and interpretability, especially on short texts such as tweets and news headlines,
where meta-data play a more significant role. This framework is well-engineered on MAL-
LET1, which is able to run efficiently with multiple threads in multi-core machines on
large-scale datasets. In addition, a focused topic model [Zhao et al., 2017b] is proposed,
capturing the effect that most topics are about a specific concept that can be described by
a few keywords. Therefore, instead of letting a topic be a distribution of all the vocabulary
words, the model allows it to focus on a subset of words and the focusing of topics are
informed by external word embeddings. In this work, besides better performance, the con-
tribution of this work includes the idea of encoding the semantics of topics into the same
space of word embeddings, which is an elegant solution of capturing out-of-vocabulary
words.

Topic structure learning for text understanding Conventional topic models as-
sume topics are independent, which is an unnatural assumption in many text corpora.
To address this limitation, several advances in topic modelling have started exploring the
semantic correlations of topics, which is referred to as the topic structure learning prob-
lem, such as the well-known Correlated Topic Model (CTM) [Lafferty and Blei, 2006] and
nested Chinese Restaurant Process (nCRP) [Blei et al., 2010]. One of the major themes in
this thesis is on discovering interpretable topic structures to obtain better understandings
of texts. In the work of Zhao et al. [2018b], a flexible module is proposed to discover
three-structured topic hierarchies with a novel angle from previous ones, which is com-
patible with many other advanced topic models. In the work of Zhao et al. [2018c], by
going beyond the conventional assumption that topics are semantically indivisible, the
proposed model discovers the fine-grained semantic structures (named “sub-topics”) inside
an individual topic with the help of word embeddings. To my knowledge, this is the first
work that discovers and solves the sub-topic problem in topic modelling. The proposed
approaches enjoy not only better modelling performance on perplexity, topic quality, and
downstream applications like document classification, but also fantastic interpretability.

Sparse Bayesian factor models for multi-label learning Multi-label learning [Gibaja
and Ventura, 2015, Prabhu and Varma, 2014, Jain et al., 2016, Babbar and Schölkopf,
2017] refers to as the problem of learning to assign a subset of relevant labels to each
data sample according to its features, given a large set of candidate labels. Each sample
is thus associated with a binary label vector, which denotes the presences/absences of
the candidate labels. Multi-label learning problems are ubiquitous in a wide variety of
applications, such as image/document tagging, recommender system, and ad-placement.
Sparsity is a key property in multi-label learning. Specifically, the dimension of the labels
can be extremely large, such as millions in many datasets2, while most of the samples only
have a tiny subset of the labels being active, resulting in that label vectors are usually
very sparse. If we consider binary features of samples, the feature vector of an object can
also be very sparse given a high dimensional feature space. In the work of Zhao et al.
[2018d], a model leveraging the sparsity of both label vectors and binary feature vectors
is developed, which leads to a very efficient learning algorithm for multi-label learning.
In addition, by utilising the label co-occurrence information, the proposed model yields
improved prediction accuracies, especially in the case where there is a significant fraction
of missing labels.

1http://mallet.cs.umass.edu
2http://manikvarma.org/downloads/XC/XMLRepository.html

http://mallet.cs.umass.edu
http://manikvarma.org/downloads/XC/XMLRepository.html
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1.3 Thesis Outline

The remaining parts of this thesis are outlined as follows.
Chapter 2 covers the fundamentals of Bayesian analysis, which offers necessary back-

ground knowledge for subsequent chapters. This chapter presents the building blocks for
Bayesian modelling including the choices of data and prior distributions, conjugate priors,
and data augmentation techniques used in this thesis. Moreover, this chapter presents
the unified framework of Bayesian latent factor models, which will be extended in the
models described in the following chapters. In addition, the basics of Bayesian inference
for learning Bayesian models are reviewed as well.

Chapter 3 gives a comprehensive review of the related works of Bayesian latent factor
models in the areas of text analysis, graph analysis, and multi-label learning. Specifically,
for text analysis, various topic models are covered especially for ones with meta-data,
and specialising in modelling short texts, and with deep/neural structures. For graph
analysis, the Bayesian random graph models based on stochastic block models are mainly
covered. For multi-label learning problems, Bayesian methods based on low-dimensional
factorisations are mainly discussed.

In Chapter 4, I will present the proposed Bayesian random graph model of Zhao et al.
[2017a], which incorporates node attributes to improve the performance of link prediction
for graph analysis, especially for the case where a large proportion of links in a graph are
unobserved.

In Chapter 5, I will present the proposed topic models that are able to incorporate
various meta-data such as document labels and word embeddings [Zhao et al., 2017c,
2018a, 2017b]. These models have obtained the state-of-the-art performance especially for
short-text modelling with excellent interpretability.

In Chapter 6, the proposed topic models will be presented, which are able to learn tree-
structured topic hierarchies [Zhao et al., 2018b] and discover fine-grained sub-topics with
word embeddings [Zhao et al., 2018c], respectively, serving as useful tools for intuitively
text understanding.

In Chapter 7, I will introduce the proposed Bayesian latent factor model for the multi-
label problem, which is able to leverage the sparsity of features and labels to facilitate
efficient learning of the model.

Finally, in Chapter 8, I will summarise the content of this thesis, show systematic com-
parisons across the proposed models, re-summarise the contributions of my PhD research,
and discuss the potential research directions.



Chapter 2

Background Knowledge of Bayesian
Analysis

This chapter provides a brief review of the background and some of the advanced tech-
niques of Bayesian analysis, used in this thesis. The notations used in this and the
following chapter (Chapter 3) are listed and described in Table 2.1.

2.1 Overview of Bayesian Analysis

Here the term “Bayesian Analysis” (BA) is used to describe the process of building and
learning Bayesian models for data analysis. In many applications, we usually assume that
data are independent and identically distributed (iid) random variables and Bayesian
models can be used to learn the unknown probabilistic distribution that generates those
random variables.

Suppose a data sample we would like to analyse is x, which is assumed to be generated
from an unknown distribution parametrised by θ: x � p(x j θ) referred to as the data
distribution or data likelihood.

Given a collection of data samples denoted as X, the task of BA is to estimate the
unknown parameter θ, from the posterior distribution, p(θ j X). Instead of searching
for the “right” θ without any constraints, BA usually treats θ as a latent random variable
as well, drawn from the prior distribution : θ � p(θ j α). For the parameter of the
prior distribution, α, one can either treat it as a hyper-parameter of the model or further
impose another prior distribution on top of it. By stacking priors on top of priors, we are
able to build hierarchical Bayesian models.

With Bayes’ theorem, the posterior distribution can be computed as:

p(θ j X;α) =
p(X j θ) p(θ j α)

p(X j α)
=

p(X j θ) p(θ j α)R
p(X j θ) p(θ j α)d�

; (2.1)

where p(X j α) is themarginal distribution with the parameter θ marginalised/integrated
out.

After the model parameters are estimated, an important use of a Bayesian model is to
predict new samples according to the predictive distribution :

p(x� j X) =

Z
p(x� j θ) p(θ j X)d�; (2.2)

where the integral is usually hard to compute and it is common to use Monte Carlo
integration of θ with S samples fθ<s>g1;S sampled from p(θ j X), detailed as follows:

p(x� j X) �
SX
s=1

p(x� j θ<s>)=S: (2.3)

7
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Table 2.1: List of notations used in Chapter 2 and 3.

Type Notation Description

Vector/Matrix

X Collection of objects
x 2 f0; 1gV V dimensional binary vector
x 2 NV V dimensional count vector
x 2 RV V dimensional real-valued vector
x 2 RV+ V dimensional real-valued non-negative vector
xv vth item of x
x:v V � 1 dimensional vector excluding the vth item
x·

PV
v=1 xv

X = [x1; � � � ;xN ] V by N matrix, the ith of which is xi
xij Item on the ith row and jth column
x>, X> Transpose of vector and matrix
w
j
i ; z

j
i jth word in document i and its topic

θ<s> Model parameters obtained from the sth sample
θ(s) Vector in the sth layer in a hierarchical model
x� V dimensional vector presenting a testing sample

Bayesian statistics

p(·) Probability distribution
p(· j ·) Conditional probability distribution

�
iid Independent and identically distributed

 Complete separable metric space
Snt Stirling number of the first kind

Function

�(·) Gamma function
�(·) Dirac delta function
�(·) Logistic function
I(·) Indicator function

Selecting data and prior distributions, and constructing the connections of those dis-
tributions are the main tasks of Bayesian modelling, which is the first step of BA. After a
model is built, the learning of the model is about the inference of the latent variables from
their posterior distributions, referred to as Bayesian inference. Moreover, the process of
drawing samples of the latent variables/model parameters from their prior distributions
down to a data sample is referred to as the generative process of a model, while given the
data samples, the inference of the latent variables/model parameters from their posterior
distributions, which inverts the generative process, is referred to as the inference process
of the model.

In the following sections, the techniques of Bayesian modelling and inference highly
related to this thesis will be elaborated on.

2.2 Bayesian Modelling

The primary task of BA is to approximate the true unknown data distribution. One
feasible way of doing this is to assume the data samples are generated from a known
prescribed probabilistic distribution with unknown parameters, expecting that this dis-
tribution is able to capture the properties of the data and give a good approximation
to the true data distribution by adjusting its parameters. The benefit of this is that
these distributions have been heavily-studied in the literature and the sampling and infer-
ence algorithms have been well-engineered in many programming languages and on many
platforms. Similarly, when building hierarchical models, we can impose prescribed distri-
butions on the latent variables as their prior. Therefore, the task of Bayesian modelling
can be presented as choosing properly prescribed distributions for the data and latent
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variables and connecting them with proper structures1.
In this section, several commonly-used probability distributions are presented, which

are building blocks for hierarchical Bayesian models in this research.

2.2.1 Probability Distributions for Discrete Data

As my research focuses on Bayesian modelling and inference for discrete data, I will mainly
present the distributions that can be used as data distributions for discrete data. Suppose
that the observations of a data sample is V dimensional vector, which can either be binary
x 2 f0; 1gV or count-valued x 2 NV , where N = f0; 1; 2; � � � g. The data collection consists
of N independent and identically distributed (iid) samples, denoted as X = [x1; � � � ;xN ],
meaning that X is a V by N discrete matrix and xi is its ith column.

If x is a binary vector, a common choice is to generate each element of it from the
Bernoulli distribution2.

x � Bern(θ); (2.4)

where θ 2 (0; 1)V .
In a special case of binary data sample, where each sample has only one active observa-

tion, one can generate it from the categorical distribution with the one-hot presentation:

x � Cat(θ); (2.5)

where θ is a probability vector, i.e.,
PV
v=1 �v = 1.

If x is a count-valued vector, one can use the Poisson, negative-binomial, or multino-
mial distributions as the data distribution.

x � Pois(θ); (2.6)
x � NB(r;p); (2.7)
x � Multi(x·;θ); (2.8)

where for Poisson, θ 2 RV+ and R+ = fx : x � 0g; for negative-binomial, r 2 RV+ and
p 2 (0; 1)V ; for multinomial, θ is a probability vector; and x· =

PV
v=1 xv

3.
The comparisons between the above three choices can be summarised as follows:

� For Poisson and negative-binomial distributions, each element of x is individually
generated, i.e. xv � Pois(�v) and xv � NB(rv; pv). While for multinomial, which is
originally a multivariate distribution, all the elements of x are jointly generated.

� When the total count of a data vector x· is known, x � Pois(θ) is equivalent to
x � Multi(x·;θ=�·).

� With only one free parameter, the Poisson distribution does not allow the variance to
be adjusted independently from the mean, while the negative-binomial distribution
consist of one more parameter to model the data variance independently. This prop-
erty of the negative-binomial distribution is important to capture overdispersion,
which usually exists in large-scale, high-dimensional, sparse, discrete data.

1Note that recently, distributions constructed by nonlinear transformations of random noise with deep
neural networks have been used in deep generative models [Kingma and Welling, 2013, Goodfellow et al.,
2014], which are no longer prescribed distributions. The discussion on those models is beyond the scope
of this thesis.

2Hereafter, x � p(x j �) is used to note a data sample drawn from a distribution parametrised by �.
Specifically, x could be a scalar or a vector. If x is a V -dimensional vector, then we have x � p(x j α), where
p(x j α) can be a multivariate distribution (e.g., Dirichlet) or a univariate distribution (e.g., gamma). The
latter case means that each dimension of x, xv, is independently generated from the univariate distribution
with parameter �v. Note that in the case of α = [�0; � � � ; �0], I will denote x � p(x j �0) for convenience.

3Hereafter, I will use · to denote the summation over the elements of a vector or the elements in a
specific dimension of a matrix.
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Table 2.2: Conjugate priors.

Data distribution Prior distribution Posterior distribution
x � Bern(�) � � Beta(�; 1=�) � � Beta(�+ x; � + 1� x)

x � Pois(�) � � Gamma(�; 1=�)4 � � Gamma(�+ x; 1=(� + 1))

x � NB(r; p) p � Beta(�; �) p � Beta(�+ x; � + r)

x � Cat(θ) θ � Dir(α) θ � Dir(α+ x)

x � Multi(x·;θ) θ � Dir(α) θ � Dir(α+ x)

x � Gamma(�; 1=�) � � Gamma(�0; 1=�0) � � Gamma(�0 + �; 1=(�0 + x))

2.2.2 Conjugate Prior Distributions

After presenting the choices of data distributions for discrete data, here I present the
choices of prior distributions. Theoretically, one can use any probability measure as the
prior distribution of a latent variable, as long as it satisfies the constraints, e.g., the pa-
rameters of a multinomial need to be normalised. In practice, people usually take the
following two factors into consideration: whether the prior distributions capture the char-
acteristics of the data and incorporate our prior knowledge, and whether they facilitate
the convenience of inference. For the latter, a common choice is conjugate priors. Con-
jugate priors enable the posterior to have the same algebraic form as the prior, which
significantly reduces the complexity of inference by bypassing the computation of the in-
tegral in Eq. (2.1). With conjugacy, the posterior can also be presented as a prescribed
distribution, which can easily be sampled. Moreover, conjugate priors also give intuitive
demonstrations on how a likelihood function updates a prior distribution. Therefore, con-
jugate priors play an important role in Bayesian inference and are heavily used in this
research.

Several commonly-used conjugate priors of my research are listed in Table 2.2 and take
the conjugacy of the Bernoulli and beta as an example to further demonstrate conjugate
priors as follows: Before seeing any data, we assume that the Bernoulli parameter should
be drawn from the prior distribution, � � Beta(�; �). After observing one sample x, we
can update the model parameter by the posterior, � � Beta(�+ x; � + 1� x), which is a
beta distribution as well. In this example, we can clearly see how a data sample updates
the model parameter with Bayes’ theorem. It can also be observed that the posterior
is affected by both the prior and the data, where if fewer samples are observed or the
data space is sparse, the prior would have a stronger influence on the posterior, while the
uncertainty of the posterior is reduced when more samples are observed.

Now, some important properties of the distributions and relationships between them
are presented, which are frequently-used in this research.

� If a distribution p(x j �) satisfies that x1 � p(x j �1) and x2 � p(x j �2), it has
the summation property. In the above distributions, summation property exists in
Poisson and gamma (with the same scale parameter).

� The gamma distribution satisfies the scaling property, meaning that if x � Gamma(�; 1=�),
then cx � Gamma(�; 1=(c�)).

� The Dirichlet distribution has the aggregation property, meaning that if (x1; � � � ; xV ) �
Dir(�1; � � � ; �V ), then (x1; � � � ; xi + xj ; � � � ; xV ) � Dir(�1; � � � ; �i + �j ; � � � ; �V ).

� Suppose (x1; � � � ; xV ) � Dir(�1; � � � ; �V ), it is equivalent to draw yi � Gamma(�i; 1=�)
(1 � i � V ) and then normalise it: xi = yiPV

i=1
yi
. That is to say, normalising a

4The two parameters are the shape and scale parameters of gamma, respectively.
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vector of gamma distributed variables (with the same scale) ends up with a vec-
tor of Dirichlet variables. Poisson and multinomial have a similar property: y1 �
Pois(�1); � � � ; yV � Pois(�V ) is equivalent to (x1; � � � ; xV ) � Multi(x·; �1=�·; � � � ; �V =�·).

� The negative-binomial distribution can be viewed as a continuous mixture of Poisson
distributions, where the mixing weight is drawn from a gamma distribution, i.e.,
x � NB(r; p) is equivalent to x �

R
��Gamma(r; 1�p

p
) Pois(�)�d�.

Note that for the above distributions with more than one set of parameters, e.g. gamma
and negative-binomial, there are no trivial conjugate priors for both of the parameters.
However, with techniques such as data augmentation, one can relax this constraint and
obtain more flexibility of using conjugate priors, which I will elaborate on in the following
section.

2.2.3 Data Augmentation for Non-Conjugate Priors

Conjugacy gives us inference convenience and intuitive interpretations, but it also limits
the flexibility of building Bayesian models. To relax this limitation, I present the technique
called data augmentation for non-conjugate model constructions. Specifically, suppose
we would like to build a model like x � p(x j �) and � � p(� j �), and p(x j �) is not
conjugate to p(� j �). One can introduce an auxiliary latent variable l such that:

p(l; x j �) = p(l j x; �) p(x j �) = p(x j l; �) p(l j �): (2.9)

With carefully choosing the prior distribution of l so that we can easily sample it from
l � p(l j x; �), we may be able to get the conjugacy between p(l j �) and p(� j �) so as
to sample � conditioned on l and �. This is the basic idea of data augmentation. Next, I
elaborate on the details of data augmentation techniques used in my research.

Data Augmentation for Poisson-Gamma-Gamma Models

Now we consider the following hierarchical Bayesian model:

� � Gamma(a0; 1=b0); (2.10)
� � Gamma(c0; 1=d0); (2.11)
� � Gamma(�; 1=�); (2.12)
x � Pois(�): (2.13)

Given the Poisson-Gamma conjugacy in Table 2.2, we can show that �’s posterior is also
a gamma: � � Gamma (�+ x; 1=(� + 1)). Note that this gamma posterior is conjugate to
the gamma prior of �, which is the scale parameter. Therefore, we can easily figure out
that the posterior of � is a gamma distribution as well: � � Gamma(c0 + �; 1=(d0 + �)).

Now conditioned on � and �, if we marginalise � out, we can get:

p(x j �) /
�(�+ x)

�(�)

�
�

� + 1

��
; (2.14)

which is not conjugate to the gamma prior of �.
The challenge here is the gamma ratio in the above equation, �(�+x)

�(�) , which is also
the Pochhammer symbol for a rising factorial. Fortunately, it can be augmented with an
auxiliary variable t: �(�+t)

�(�) =
Px
l=0 S

x
t �

t where Sxt indicates an unsigned Stirling number
of the first kind [Chen et al., 2011, Teh et al., 2012, Zhou and Carin, 2015]. With t,
Eq. (2.14) can be augmented as:

p(t j �) / �t
�

�

� + 1

��
= �te

� log �+1
�
�
; (2.15)
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which is a gamma-like likelihood and conjugate to p(� j a0; b0).
Therefore, the posterior of � can be written as:

� � Gamma
�
a0 + t; 1=

�
b0 + log

�

� + 1

��
: (2.16)

Now we need to sample t from t � p(t j x; �). Fortunately, the above gamma ratio
is the normalisation term of the posterior of a Chinese Restaurant Process (detailed in
Section 2.2.4) with � as its concentration parameter, x as the number of customers, and
t as the number of tables assigned for those customers. If we only care about the number
of tables, i.e., t regardless of the specific sitting arrangement of an individual customer,
we can sample t by:

t �
xX
i=1

Bern
�

�

�+ i� 1

�
; (2.17)

where �
�+i�1 is the probability of opening a new table for the ith customer. The distri-

bution of t is called the Chinese Restaurant Table (CRT) distribution by Zhou and Carin
[2015]. Adopting this name, this augmentation is referred to as the CRT augmentation.

This CRT augmentation technique enables us to build hierarchical models with gamma
distributions for Poisson-distributed data such as in Zhou et al. [2012b], Hu et al. [2016a],
Zhou et al. [2016] and also my research [Zhao et al., 2018a, 2017c, 2018d]. For example, if
we impose another gamma prior on a0, the same augmentation can be applied to obtain
the gamma posterior of a0. Therefore, multi-layer models can be built by stacking gamma
priors.

Data Augmentation for Multinomial-Dirichlet-Gamma Models

Now I show another data augmentation technique that is related to the CRT one but is
used in the following model:

�v � Gamma(a0; 1=b0); (2.18)
θ � Dir(α); (2.19)
x � Multi(x·;θ); (2.20)

where x 2 NV , θ is a probability vector, and α 2 RV+.
Given the Multinomial-Dirichlet conjugacy in Table 2.2, we can show that �’s posterior

is also a Dirichlet:

θ � Dir(�+ x): (2.21)

If we marginalise θ out, we can get:

p(x j α) /
�(�v)

�(�· + x·)

VY
v=1

�(�v + xv)

�(�v)
: (2.22)

Note that the CRT augmentation helps us deal with the left-hand side (LHS) gamma
ratio. While for the right-hand side (RHS) one, given the fact that this gamma ratio is
a normalisation term of a beta distribution, i.e., Beta(�·; x·), we can introduce a beta-
distributed auxiliary variable p and augment the RHS gamma ratio as follows:

�(�v)

�(�· + x·)
/
Z
p
p�·�1(1� p)x·�1: (2.23)
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Together with the CRT augmentation (for each v, an auxiliary CRT variable tv is
introduced), we can write Eq. (2.23) as:

p(t; p j α) /
VY
v=1

q�v�tvv =
VY
v=1

�tvv e
� log 1

q
�v ; (2.24)

which is conjugate to the gamma prior of �v. Now the posterior of �v is:

�v � Gamma
�
a0 + tv; 1=

�
b0 + log

1

q

��
; (2.25)

where q � Beta(�·; x·).
According to the distributions of the auxiliary variables, this technique is referred to as

the beta-CRT augmentation. Note that in addition to beta-CRT, the CRT augmentation
can also be applied to model a vector of count-valued data:

�v � Gamma(a0; 1=b0); (2.26)
� � Gamma(c0; 1=d0); (2.27)
θ � Gamma(α; 1=�); (2.28)
x � Pois(θ); (2.29)

where x 2 NV .
The major difference between CRT and beta-CRT for modelling a data vector is that

in the former one, θ is unnormalised, while it is normalised probability vector in the latter
one. In some cases, normalised probability vectors are required to avoid the unidentifiable
issue. The beta-CRT augmentation has been heavily-used in building hierarchical models
based on multinomial-Dirichlet of my research, such as in Zhao et al. [2017c, 2018a,c].

Data Augmentation with Pólya-Gamma Auxiliary Variables

The final augmentation technique I present here is the Pólya-Gamma augmentation
proposed by Polson et al. [2013] for the following model:�

e 
�a

(1 + e )b
= 2�beK 

Z
1

0
e�! 

2=2 p(!)d!; (2.30)

where b > 0, K = a� b=2, and the prior distribution of ! is ! � PG(b; 0), and PG denotes
the Pólya-Gamma distribution.

With this augmentation, the LHS binomial-like likelihood is augmented into a Gaussian-
like likelihood, which enables us to impose a Gaussian prior on  . Shown in Polson et al.
[2013], ! has a Pólya-Gamma posterior as well: ! � PG(b;  )5.

Originally, the Pólya-Gamma augmentation is used for logistic regression models such
as:

y � Bern(�(xβ>)); (2.31)

where y is the label of an object with features as x 2 RV , �(a) = 1
1+e�a is the logistic

function, and β 2 RV can be imposed with a normal prior.
The technique can be generalised into negative-binomial regression [Zhou et al., 2012b],

which is a simplified construction of my model of incorporating word embeddings for topic
modelling [Zhao et al., 2018c], shown as follows:

� � Gamma(a0; exβ
>

); (2.32)
y � Pois(�): (2.33)

5Efficient sampling algorithms for PG can be found in Zhou [2018].
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If we marginalise out � in the above model, we can obtain:

p(y j β; a0) /
(exβ

>

)y

(1 + exβ
>

)y+a0
; (2.34)

where the Pólya-Gamma augmentation can be used then.

2.2.4 Stochastic Processes

In addition to probability distributions, stochastic processes are important building blocks
for Bayesian nonparametric models. A stochastic process can be defined as a random
variable collection that is indexed by some mathematical set, that is to say, each random
variable of the stochastic process is uniquely associated with an element in the set. A
Bayesian nonparametric model is a probabilistic model built with stochastic processes,
whose model structure grows in the size with the amount of data.

In addition to probability distributions, stochastic processes are important building
blocks for Bayesian nonparametric models. A stochastic process can be defined, infor-
mally, as a collection of random variables that are indexed by some mathematical set.
That is to say, each random variable of the stochastic process is uniquely associated with
an element in the set. For instance, the indexing set may be positive integers, then the
stochastic process represents a sequence of random variables. The indexing set may be the
2-D real plane, then the stochastic process represents a distribution on a “field.” Stochas-
tic processes are often constructed in mathematical statistics using Poisson processes. If
the indexing set for the process is the set 
, then an inhomogeneous Poisson process on

 can be used to define where the impulses on 
 are, i.e., which countable subset of 

is present in the sample of the process. Alternatively one can place an inhomogeneous
Poisson process on R+ � 
 so that one gets an extra weight 2 R+ (a positive real num-
ber) drawn as well. In this case, the sample from a stochastic process is a countable set
of points (w; t) 2 R+ � 
, and the Poisson process is referred to as a Lévy measure. Ma-
nipulation of these yields a rich set of methods for Bayesian non-parametric theory [Lijoi
and Prünster, 2010].

A Bayesian nonparametric model is a probabilistic model built with stochastic pro-
cesses. This is typically done so that the model structure grows in size with the amount
of data. In general, Bayesian nonparametrics can be a rather broad area, but I limit my
discussion of stochastic processes from an application perspective and especially focus on
gamma processes and Dirichlet processes, which are highly related to my research.

Gamma Processes

Following the description of Zhou [2015], a gamma process [Ferguson, 1973, Wolpert et al.,
2011] can be defined on a product space R+ � 
 as:

G � �P(G0; 1=c0); (2.35)

where 
 is a complete separable metric space, c0 is the concentration parameter, G0 is a
finite and continuous base measure over 
, such that G(Ai) � Gamma(G0(Ai); 1=c0) are
independent gamma variables for a disjoint partition Ai of 
.

The Lévy measure of the above gamma process can be shown as follows:

�(drd�) = r�1e�c0rdrG0(d�): (2.36)

Note that the Poisson intensity of the whole product space is infinite: �(R+�
) =1
while

R
R+�
 r�(drd�) is finite. Therefore, a draw from the gamma process with countably
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infinite atoms, can be expressed as follows:

G0 = 0g0; (2.37)
g0(d�) = G0(d�)=0; (2.38)

�k �
iid g0; (2.39)

G =
1X
k=1

rk�(�k); (2.40)

where 0 = G0(
) is the mass parameter. Note that the number of atoms with weights
greater than � 2 R+ in the prior follows a Poisson distribution Pois(0

R inf
� r�1e�crdr),

the rate of which decreases as � increases. Therefore, a gamma process based model has
an inherent shrinkage mechanism.

In practice, a gamma process with a finite and continuous base measure can be ap-
proximated with a hierarchical model with gamma distributions. Specifically, suppose
we would like to draw a K dimensional vector from the above gamma process, we can
implement it with a truncated model as:

0 � Gamma(a0; 1=b0); (2.41)
rk � Gamma(0=K; 1=c0); (2.42)

where as K !1, the exact gamma process can be recovered. In the implementation, we
usually set K (truncation level) to be large enough to obtained a good approximation to
the truly infinite model.

Dirichlet Processes

Another important stochastic process is the Dirichlet Process (DP) [Ferguson, 1973]. Re-
call that in a draw from a gamma process is: G =

P
1
k=1 rk�(�k). By normalising the

weights �k = rkP
1

k=1
rk
, we can get a process as:

D =
1X
k=1

�k�(�k); (2.43)

which is known as a DP, denoted as D � DP(H0; �0). Here H0 = G0=�0 and �0 = G0(
)
is the concentration parameter.

Intuitively, DP can be viewed as an infinite generalisation of the Dirichlet distribution.
Suppose for any measurable partition (A1; � � � ; AK) of 
, (D(A1); � � � ; D(AK)) is Dirichlet
distributed as follows:

(D(A1); � � � ; D(AK)) � Dir(�0H0(A1); � � � ; �0H0(AK)): (2.44)

Therefore, if the base measure H0 = (h1; � � � ; hK) is a K dimensional discrete prob-
ability vector, then DP becomes a Dirichlet distribution: Dir(�0(h1; � � � ; hK)). On the
other hand, if H0 is a non-discrete distribution, a DP is essentially an infinite dimensional
Dirichlet distribution.

To draw a sample from a DP, two well-known constructions of a DP have been pro-
posed: the stick-breaking construction and the Chinese Restaurant Process construction.
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Stick-breaking construction According to Sethuraman [1994], the stick-breaking con-
struction of a DP, D � DP(H0; �0), is as follows:

Vk � Beta(1; �0); (2.45)
�k �

iid H0; (2.46)

pk = Vk

k�1Y
j=1

(1� Vj); (2.47)

D =
1X
k=1

pk�(�k); (2.48)

where
P
1
k=1 pk = 1.

As its name implies, the stick-breaking construction can be intuitively understood as
a process of breaking a stick with length 1 into pieces: one first breaks the stick into two
pieces at p1 with length V1 and 1 � V1, respectively; then breaks the second piece with
length (1� V1)V2 at p2; ...

Chinese restaurant process construction Also known as the Blackwell-Macqueen
urn scheme [Blackwell et al., 1973], the Chinese Restaurant Process (CRP) construction
asymptotically produces a partition of integers and shows how the samples from a Dirichlet
process exhibit a clustering property [Teh et al., 2005].

For a CRP, C � CRP(H0; �0), suppose (x1; x2; � � � ) are iid samples drawn from it and
(�1; �2; � � � ) are distinct values drawn from the discrete base measure H0. I further denote
nk =

PN
i=1 1xi=�k , where N is the number of samples that have been drawn from the

CRP. Metaphorically, one can interpret the samples of a CRP as the customers coming
into a restaurant, the samples from the base measure are the table numbers, and nk is
the number of customers assigned to the table number �k. The CRP generates the sitting
arrangements of those customers. Specifically, the next, i.e., (n+ 1)th customer’s sitting
arrangement is with the following probabilities:

p(the customer seated at table �k) /
nk

nk + �0
; (2.49)

p(the customer seated at a new table) /
�

N + �0
: (2.50)

From the above process, one can clearly see the clustering property or the so-called “the
rich get richer” phenomenon: if more customers are seated in a table, the next customer
is more likely to be seated in this table.

2.2.5 General Patterns of Hierarchical Bayesian Models

After introducing the commonly-used building blocks of Bayesian models, here I present
several general patterns of constructing hierarchical Bayesian models with those building
blocks, although specific model constructions usually depend on data and applications.

Like many other machine learning models such as deep neural networks, one usually
imposes prior distributions of a Bayesian model to aggregate the information of data with
fewer model parameters and/or incorporate extra knowledge into the model. This research
focuses on the data that can be formatted into a discrete matrix X 2 NV�N , each column
of which is the observation (e.g., features or attributes) of an iid data sample, xi 2 NV .

To analyse such data with a Bayesian model, there are four general patterns for us to
use:

� Single: xi � p(xi j �0). This is the simplest model construction with only one
parameter, meaning that it ignores the variations between the samples and the
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Figure 2.1: Basic framework of BLFMs. The rectangles with solid lines and dash lines are
the data matrix and latent matrices, respectively.

features of a sample. When this pattern is directly applied to data, it usually causes
underfitting. However, this pattern is often applied to generate the top-layer latent
variables of a hierarchical model.

� Matrix: xi � p(xi j θi), θi is a V dimensional vector specific to each sample. This
could be an unrealistic pattern for practical applications because the size of the
parameter space is the same as the size of the data space. Therefore, no aggregation
is conducted.

� Vector: xi � p(xi j θ0), θ0 is a V dimensional vector global to the whole dataset.
With this pattern, one actually ignores the variations between samples but captures
the variations between features. This pattern can be used in tasks like regression
and classification. Moreover, it can also be used to generate the intermediate-layer
latent variables of a hierarchical model.

� Factorisation: xi � p(xi j Φθi), θi is a K dimensional vector, and Φ is a V by K
matrix. This pattern forms the basic framework of Bayesian Latent Factor Model
(BLFM), which is the main research theme of this thesis. I will elaborate on the
details of this pattern in Section 2.2.6.

With the above patterns as well as the probabilistic distributions, one is able to con-
struct hierarchical Bayesian models for complex data analysis, which is the major research
in this thesis.

2.2.6 Bayesian Latent Factor Models

As briefly discussed in Section 2.2.5, Bayesian latent factor models factorise the data
matrix X 2 NV�N with K latent factors into two latent matrices Φ 2 RV�K+ and Θ 2
RK�N+ . Following the notations of matrix factorisation, Φ is the factor loading matrix,
each column of which is a factor encoding the relative importance of each feature; θi is
the factor score vector of sample i, encoding the relative importance of factor in sample
i. As prior distributions are imposed on θi and Φ, a Bayesian model with the above
structures is usually called a BLFM, which has extensive applications in machine learning
and data analysis. Moreover, as θi is individual to each sample, it is usually called the
local variables in BFA, while Φ is the global variables. The basic framework of BLFMs
is intuitively shown in Figure 2.1.

The most important direction of this thesis research is developing extensions and
variations of the above framework of BLFMs for various applications, as well as tackling
the inference problems on large-scale data.
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2.3 Bayesian Inference

Bayesian inference is the inference procedure of the parameters of a Bayesian model from
their posterior distributions. Recall that in Eq. (2.1), the posterior of the model parameter
θ can be obtained by Bayes’ theorem, which is normalised by the marginal distribution.
Therefore, to exactly compute the posterior, we need to calculate the integral in the
marginal distribution, which can be expensive, or usually impossible. Therefore, it calls
for approximate Bayesian inference algorithms to evaluate the posterior. Two of the most
commonly-used approximate Bayesian inference techniques are Markov Chain Monte
Carlo (MCMC) sampling and variational inference. Instead of directly deriving the
posterior distribution, the former approach allows us to obtain samples from the posterior
and the posterior can be characterised by the relevant statistics computed from the sam-
ples. On the other hand, in the latter approach, the intractable posterior is approximated
by the proposed tractable variational distributions, where the approximation is done by
minimising a specific distance between the true posterior and the variational distributions.

In general, the principle of detailed balance used in MCMC methods ensures that the
samples of a Markov chain will eventually converge to the true samples of the posterior.
However, in terms of efficiency and scalability, MCMC methods may take many iterations
to get converged and it is usually hard to conduct MCMC sampling with batches of data.
While for variational methods, the inference problem is transformed into an optimisation
one, which can be done by efficient parallel algorithms. However, it is usually tricky to
find out how well the posterior is approximated, because the performance can be affected
by multiple factors such as the expressiveness of the variational distributions and the local
optimums in the optimisation. Recently, extensive research efforts have been devoted to
improving the efficiency of MCMC methods and the accuracy of variational inference,
such as the approaches of Stochastic Gradient MCMC [Chen et al., 2014] and amortized
variational inference [Kingma and Welling, 2013].

In this section, the basics of a specific kind of MCMC sampling methods, called Gibbs
sampling, are presented. Gibbs sampling is one of the most widely-used Bayesian inference
algorithms and is also primarily used in the later chapters.

2.3.1 Metropolis-Hasting Algorithm

Before going into Gibbs sampling, I briefly present the Metropolis-Hasting (MH) Algo-
rithm [Metropolis et al., 1953, HASTINGS, 1970], which is one of the most important
families of MCMC sampling algorithms. Like other MCMC methods, MH sampling is an
iterative algorithm as well. Suppose that we would like to sample from a multivariate
posterior distribution, p(θ j x), called the target distribution. We first need to choose
a proposal distribution for each dimension of θ, in the form of g(��v j θ;x), which is
expected to be easy to sample and with similar shape as the target distribution.

In each iteration, for the vth dimension of θ, �v, we first sample a new value of it, ��v,
from the proposal distribution. We then calculate the ratio of densities for ��v defined as:

A =
p(��v;θ:v j x) g(�v j �

�
v;θ:v;x)

p(θ j x) g(��v j θ;x)
; (2.51)

where θ:v denotes the dimensions of θ other than �v.
Next, we use A0 = min(A; 1) as the acceptance rate, which is the probability of

accepting ��v as the new value of �v. If ��v is not accepted, �v retains its current value. The
above step is repeated until the sampling is converged.

Compared with Gibbs sampling that I am going to introduce, MH sampling can be
more flexible, because conjugacy is not necessarily required. However, it is not always
easy to choose the right proposal distribution and the acceptance rate might be very
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small in some cases, where there could be huge computation wastes when many samples
are rejected.

2.3.2 Gibbs Sampling

Gibbs sampling [Geman and Geman, 1984] is a special case of MH sampling, where the
conditional posterior distribution of each dimension of � is defined as the proposal distri-
bution:

g(��v j θ;x) = p(��v j θ;x:v): (2.52)

It can be proved that the acceptance rate of Gibbs sampling with this specification
of proposal distribution equals to one, meaning that all candidate values are accepted.
Therefore, compared to MH sampling, Gibbs can be more efficient and one can be freed
from spending effort on searching for the proposal distribution. The intuition behind
Gibbs sampling is that although it is hard to sample directly from the complex full poste-
rior, the conditional posterior may have a simple form, which usually happens in conjugate
models. Compared with general MH sampling methods, Gibbs sampling usually requires
conjugacy. Therefore, one may need a considerable amount of effort to achieve full/local
conjugacy in a model. Section 2.2 provides a detailed introduction to such techniques,
which saves the efforts of conducting Gibbs sampling.

In this thesis research, Gibbs sample has been heavily used in the inference of the
proposed models, mainly because of the following three reasons:

� As the research theme focuses on developing novel models for data analysis, it is
relatively easy to derive Gibbs sampling algorithms of a new model, which facilitates
fast prototype developments.

� With the insights of discrete data studied in this research, the developed Gibbs
sampling algorithms are able to tactfully leverage data properties, such as sparsity.
Therefore, the developed inference schemes can be relatively efficient for moderately
large data.

� With several data augmentation techniques, Gibbs sampling algorithms can be de-
rived for many non-conjugate models, which extends its flexibility and usability.

2.3.3 Characterising Posterior with MCMC Samples

After a Bayesian model is trained with Gibbs sampling (or other MCMC sampling al-
gorithms), we may want to collect samples from the posterior and use the samples to
characterise the posterior. The former can be done by using Mburnin +Mcollection Gibbs
sampling iterations, where we discard the samples in the firstMburnin iterations and collect
a sample in every J iterations in the later Mcollection. Collecting samples from multiple
independent Markov chains (e.g., multiple runs of a model on the same data with differ-
ent initialisations and/or random seeds) is also a possible way to collect samples from the
posterior.

To analyse the posterior and making predictions, we need to use the samples to char-
acterise the posterior. Consider a model of Eq. (2.1), where we can compute the following



Chapter 2 20

properties of the posterior by averaging over S collected samples:

Posterior mean :
SX
s=1

θ<s>=S; (2.53)

Marginal data distribution : p(X j α) =
SX
s=1

p(X j θ<s>)=S; (2.54)

Predictive distribution : p(x� j X) =
SX
s=1

p(x� j θ<s>)=S; (2.55)

where θ<s> is the point estimate of the model parameter with the sth collected sample.

2.4 Summary

In this chapter, the fundamentals of Bayesian analysis, as well as some advanced techniques
like data augmentations have been presented. Specifically, the building blocks of Bayesian
models such as the common-used probability distributions and the conjugate priors have
been elaborated on. I have also covered how to build a model with those building blocks
and the basic framework of Bayesian latent factor models. Finally, how to learn a model
with Bayesian inference has been introduced.
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Related Work of Bayesian Latent
Factor Models for Discrete Data

This chapter elaborates on the research work of Bayesian Latent Factor Models for discrete
data in the areas of text analysis, graph analysis, and multi-label learning, which is highly
related to this thesis research. In Section 2.2.5 in the above chapter, I have briefly discussed
the general framework and notations of BLFMs. Here I elaborate on how specific BLFMs
are built and applied in the above areas.

3.1 BLFM for Text Analysis

3.1.1 Fundamentals

Basic Frameworks

With the bag-of-words assumption, a collection of N documents can be formulated into
a discrete matrix X 2 NV�N , each column of which, xi 2 NV , is the word occurrences of
document i. V is the size of the vocabulary of those documents.

As discussed previously, a typical framework of BLFM with K latent factors for the
above data can be presented as follows:

X � p(X j Φ>Θ); (3.1)

where Φ 2 RV�K+ and Θ 2 RK�N+ are the latent representations.
Note that for a latent factor k, φk 2 RV+ is a distribution/proportion over the words

in the vocabulary, indicating the importance of words. In this way, a latent factor can
be viewed as a semantic concept represented by several representative words with the
largest weights, which is usually called a “topic.” Moreover, φk is usually referred to as
the topic-word distribution/proportion. Therefore, in text analysis, BLFMs has a more
common name, which is topic models. On the other hand, each document i is associated
with a distribution/proportion over the topics, θi 2 RV+, which measures the significance
of the topics in this document and can be referred to as the document-topic distribu-
tion/proportion. With θi, the content of a document can be intuitively demonstrated
with the proportions of topics, yielding an important property of topic models, known as
interpretability.

Two fundamental frameworks of topic models are Latent Dirichlet Allocation (LDA) [Blei
et al., 2003] and Poisson Factor Analysis (PFA) [Canny, 2004, Zhou et al., 2012a]. Actually,
the latter directly follows the above framework, whose generative process of a document

21
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is as follows:

θi � Gamma(�0; 1=�0); (3.2)
φk � Dir(0); (3.3)
xi � Pois(Φθi): (3.4)

Different to PFA, LDA imposes the following prior distributions for � and �:

θi � Dir(�0); (3.5)
φk � Dir(0): (3.6)

Moreover, the standard way of generating a document in LDA is a bit different from
PFA. Suppose document i has x·i =

PV
v xvi words in total and the jth word of it is denoted

as wji . Given θi and Φ, wji is generated as follows:

z
j
i � Cat(θi); (3.7)

w
j
i � Cat(φ

z
j

i

); (3.8)

where zji 2 f1; � � � ;Kg is the topic assignment of word wji .
In the generative process of LDA, the topic assignment of each word is explicitly

generated. If we marginalise out the topic assignments, the generative process can be
written as:

xi � Multi

 
x·i;

[
PK
k �1k�ki; � � � ;

PK
k �V k�ki]PV

v

PK
k �vk�vi

!
1; (3.9)

which is in line with the framework shown in Eq. (3.1).
Another difference between PFA and LDA is that in PFA, the length of a document

is treated as a latent variable generated from x·i � Pois
�PV

v

PK
k �vk�vi

�
, while LDA

assumes that the length is given as an observed variable. Studied in Canny [2004], this
distinction may result in performance differences.

Inference

Learning of a topic model is about the inference of the latent variables, � and � given the
word occurrences of the documents. The commonly-used inference algorithms for topic
models can be categorised into the following categories, briefly discussed as follows:

� MCMC sampling: MCMC sampling, especially Gibbs sampling, is one of the most
popular inference algorithms for topic models. Moreover, by marginalising � and �
out, Gibbs sampling can be done by sampling a word’s topic assignment conditioned
on the topic assignments for the others, known as the collapsed Gibbs sampling
algorithm [Griffiths and Steyvers, 2004, Lijoi and Prünster, 2010], which has been
demonstrated to have good performance in many BLFMs. Although effective, the
vanilla Gibbs sampling for topic modelling is inefficient for large collections of doc-
uments. There are extensive studies on scalable inference algorithms of MCMC
sampling for topic models. The popular ones are: 1) leveraging sparsity of docu-
ments and the space of latent variables, such as in Yao et al. [2009], Li et al. [2014],
Yu et al. [2015]; 2) using Metropolis-Hastings samplers to reduce sampling complex-
ity, such as in Yuan et al. [2015], Chen et al. [2016] 3) using Stochastic gradient
MCMC (SGMCMC) for the global variables (i.e., topic-word distributions) such as
in Patterson and Teh [2013], Ma et al. [2017], Cong et al. [2017].

1In the case of LDA, the normalisation term,
PV

v

PK

k
�vk�vi sums to one, as θi and φk are drawn from

Dirichlet.
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� Variational inference: Mean-field variational inference optimised by coordinate
descent was used in the original paper of LDA [Blei et al., 2003]. In recent years,
there have been extensive studies of improving variational inference for topic models,
from Stochastic Variational Inference (SVI) [Hoffman et al., 2013] that learns the
global variables with batches of data, to recently-proposed amortized inference such
as in Srivastava and Sutton [2017], Miao et al. [2016] that approximates the posterior
by directly encoding a document’s word occurrences.

� Hybrid inference methods: As an individual inference method has its advantages
and disadvantages, it is possible to combine multiple inference methods into a hybrid
algorithm. For example, Cong et al. [2017] used Gibbs sampling and SGMCMC for
the local and global variables in a topic model, respectively and Zhang et al. [2018]
applied amortized inference for local variables and SGMCMC for global variables.

� Other inference methods: As the inference of topic models belongs to the general
problem of learning graphical models, there are many other maximum likelihood
estimate methods other than MCMC sampling and variational inference, such as
the Method of Moments (MoM) in Anandkumar et al. [2012], matrix factorisation
based methods in Arora et al. [2012], and belief propagation based methods in Zeng
et al. [2013].

Evaluations

Accurately and comprehensively measuring the performance of a topic model is still an
open problem being studied. Currently, the evaluations of topic models can be done in
three general aspects: 1) modelling accuracy measured by predicting heldout words; 2)
topic quality; 3) downstream applications such as document classification and clustering.
For the last one, the topic distribution of a document can be used as the features that en-
code the document’s semantic information. Classification and clustering are usually done
by external algorithms such as support vector machines and K-means on those features.
Therefore, the first two aspects are presented.

Predicting heldout words The performance of predicting heldout words can be mea-
sured by perplexity, which is a common metric of text analysis. Computing perplexity
requires estimating the probability of the heldout words given a trained model. Differ-
ent ways of doing this have been developed, the approaches introduced in Wallach et al.
[2009] are commonly-used ones. Concretely, after training a model with the training doc-
uments, we randomly select some words as the observed words and use the remaining
words as the unobserved words in each testing document, then use the observed words to
estimate the predictive probability, and finally compute the perplexity of the unobserved
words. Specifically, suppose that the matrix of the testing documents is X� 2 NV�Ntest ,
which is split into the observed word matrix X�o 2 NV�Ntest and the unobserved word
matrix X�u 2 NV�Ntest , where X� = X�o + X�u. After training a topic model, we obtain
the global topic-word distributions, Φ. Conditioned on Φ, the topic distributions of the
test documents, Θ� 2 RK�Ntest

+ are estimated from the posterior with X�o. Finally, the
perplexity of X�u can be computed as follows:

Perplexity = exp

 
�

1

x�u··

NtestX
i

VX
v

x�uvi log

PK
k �vk�

�
viPV

v

PK
k �vk�

�
vi

!
; (3.10)

where x�u·· =
PNtest
i

PV
v x

�u
vj .
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Topic quality In addition to perplexity evaluation of modelling accuracy, another mea-
surement of topic models is topic quality, which can be captured by the coherence of the
representative words in a topic. Specifically, for topic k, we usually obtain its representa-
tive words by ranking the weights of φk and the coherence of two words can be measured
by the probability that the two words co-occur in a reference corpus. Note that the refer-
ence corpus can be either the target corpus or an external large corpus such as Wikipedia.
Following the above routine, there are several ways of computing topic coherence. In my
research, the Normalised Pointwise Mutual Information (NPMI) Aletras and Stevenson
[2013], Lau et al. [2014] is commonly used, which can be calculated for topic k with top
T words as follows:

NPMI(k) =
TX
j=2

j�1X
i=1

log
p(wj ; wi)

p(wj)p(wi)
=� log p(wj ; wi); (3.11)

where p(wi) is the probability of word i, and p(wi; wj) is the joint probability of words i
and j that co-occur together within a sliding window in the reference corpus.

More introduction on other measurements of topic coherence can be found in Röder
et al. [2015], the authors of which also released a package for computing those measure-
ments2.

Among the extensive research of topic modelling, next sections review three lines of
works that are highly related to this research including models with meta-data, short-text
topic models, and deep topic models.

3.1.2 Topic Models with Meta-Data

Given a corpus, topic models mainly work with the word occurrences of the documents
to discover topics. While, in practice, in addition to word occurrences, various kinds of
meta-data are associated with documents and words in many corpora. At the document
level, labels of documents can be used to guide topic learning so that more meaningful
topics can be discovered. Moreover, it is highly likely that documents with common
labels discuss similar topics, which could further result in similar topic distributions. For
example, if we use authors as labels for scientific papers, the topics of the papers published
by the same researcher can be closely related. At the word level, semantic/syntactic
features are also accessible. For example, there are features regarding word relationships,
such as synonyms obtained from WordNet [Fellbaum, 2012], word co-occurrence patterns
obtained from a large corpus, and linked concepts from knowledge graphs. It is preferable
that words having a similar meaning but different morphological forms, like “dog” and
“puppy”, are assigned to the same topic, even if they may barely co-occur in the modelled
corpus. Recently, word embeddings generated by GloVe [Pennington et al., 2014] and
word2vec [Mikolov et al., 2013], have attracted a lot of attention in natural language
processing and related fields. It has been shown that the word embeddings can capture
both the semantic and syntactic features of words so that similar words are close to each
other in the embedding space. It seems reasonable to expect that these word embedding
will improve topic modelling [Das et al., 2015, Nguyen et al., 2015].

Document Meta-Data

As each document may usually have its specific meta-data, it is natural to use the
document-topic distribution θi to incorporate the meta-data of the ith document. In
general, there are two ways of doing this: the supervised way and the generative way.
In the former way, document meta-data are directly incorporated into the learning of

2http://palmetto.aksw.org

http://palmetto.aksw.org
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document-topic distributions while in the latter, besides generating word occurrences,
another generative process is applied to generate document meta-data, where document-
topic distributions are usually shared in the two generative processes. Moreover, in the
generative way, document meta-data contribute to the learning of document-topic distri-
butions by serving as the evidence together with word occurrences in the posterior. The
example models fall into the two ways are presented as follows.

Supervised way To incorporate document meta-data in a supervised way, Supervised
LDA (sLDA) [Mcauliffe and Blei, 2008] models document labels by learning a generalised
linear model with an appropriate link function and exponential family dispersion function.
But the restriction of sLDA is that one document can only have one label. Labelled LDA
(LLDA) [Ramage et al., 2009] assumes that each label has one corresponding topic and a
document is generated by a mixture of the topics. Although multiple labels are allowed,
LLDA requires that the number of topics must equal to the number of labels, i.e., exactly
one topic per label. As an extension to LLDA, Partially Labelled LDA (PLLDA) [Ra-
mage et al., 2011] relaxes this requirement by assigning multiple topics to a label. The
Dirichlet Multinomial Regression (DMR) model [Mimno and McCallum, 2008] regresses
a document’s Dirichlet parameters on its meta-data document-topic distribution with the
logistic-normal transformation. As full conjugacy does not exist in DMR, a part of the in-
ference has to be done by numerical optimisation. Similarly, in the Hierarchical Dirichlet
Scaling Process (HDSP) [Kim and Oh, 2017], conjugacy is broken as well since the topic
distributions have to be renormalised. Hu et al. [2016a] introduced a Poisson factorisation
model with hierarchical document labels, which may not able to be applied to regular
topic models as the topic proportion vectors are also unnormalised. Recently, Card et al.
[2018] proposed a variational autoencoder based topic model, which incorporates docu-
ment meta-data in the encoder3.

Generative way The generative way is usually used in models that incorporate doc-
ument meta-data that are in complex forms and non-trivial to incorporate, such as
document-document citation graphs and co-author graphs. Moreover, those models usu-
ally follow the general idea of matrix co-factorisations, which factorises both the word-
document matrix and the graph adjacency matrix, with shared latent representations.
For example, Relational Topic Model (RTM) [Chang and Blei, 2009] models an additional
document network by generating it according to the latent topics of the document pairs.
The models in Zhu et al. [2013] and Lim et al. [2013] incorporate document-document
links by generating them according to the document-topic distributions from the Poisson
distribution and the Gaussian Process, respectively. Lim and Buntine [2016] integrated
the way of modelling document links in Zhu et al. [2013] with topic models with hier-
archical Pitman-Yor Process. Moreover, other than using graphs to help analyse texts,
another related topic is using texts to enhance graph analysis, such as in Gopalan et al.
[2014] and Acharya et al. [2015]4.

In my thesis research, I have proposed an efficient supervised way of regressing document-
topic distributions on binary document meta-data in Zhao et al. [2017c, 2018a], detailed
in Chapter 5.

Word Meta-Data

Compared with document meta-data, word meta-data are usually incorporated in topic-
word distributions. In general, a topic model discovers latent topics from the word oc-

3Variational autoencoder based topic models will be presented in Section 3.1.4.
4More details of graph analysis are presented in Section 3.2.
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currences of a corpus, for example, if two words frequently occur in the same documents,
they are expected to be semantically related. Therefore, word meta-data such as word
embeddings, are commonly used to enhance the information of word occurrences. So it is
not hard to imagine that word meta-data are heavily used in modelling short texts, where
the word occurrences are not sufficient enough for a model to learn good topics. Therefore,
while presenting models with word meta-data, the models with word meta-data for short
texts will be mentioned as well. More details of short-text models will be elaborated on
in Section 3.1.3.

Leveraging axillary word features such as word embeddings has been a promising direc-
tion in topic modelling. For example, Latent Feature LDA (LFLDA) [Nguyen et al., 2015]
integrates word embeddings into LDA by replacing the topic-word Dirichlet multinomial
component with a mixture of a Dirichlet multinomial component and a word embedding
component. Fu et al. [2016] proposed Word-Topic Mixture (WTM) model that combines
the idea of LFLDA and Topical Word Embedding (TWE) model [Liu et al., 2015]. In-
stead of generating word types (tokens), Gaussian LDA (GLDA) [Das et al., 2015] directly
generates word embeddings with the Gaussian distribution. [Xun et al., 2016] introduced
an extension combining the idea of GLDA and LFLDA, where a set of indicator variables
are sampled to choose either generating the type of a word or generating the embedding
of a word. GPUDMM [Li et al., 2016] extends Dirichlet Multinomial Mixture [Yin and
Wang, 2014, Jin et al., 2011] with word semantic similarity obtained from embeddings
for short texts. As an extension of GPUDMM, GPUPDMM Li et al. [2017] relaxes the
constraint of DMM that only one topic is active in a document [Nigam et al., 2000] and it
models the active number of topics of a document with the Poisson distribution. Shi et al.
[2018] recently proposed a matrix factorisation based topic models for short text, which
incorporates word-context semantic correlations. The inference of the model is done by a
block coordinate descent algorithm.

In terms of my research on utilising word meta-data, I have developed models that
incorporate either binary [Zhao et al., 2017c, 2018a] or real-valued word embeddings [Zhao
et al., 2017b, 2018c], as well as using word embeddings to help learn more interpretable
topic structures [Zhao et al., 2018c], detailed in Chapter 5 and 6.

Leveraging both Document and Word Meta-Data

To my knowledge, the attempts that jointly leverage document and word meta-data are
relatively rare. For example, meta-data can be incorporated by first-order logic in Logit-
LDA Andrzejewski et al. [2011] and score functions in SC-LDA Yang et al. [2015]. However,
the first-order logic and score functions need to be defined for different kinds of meta-data
and the definition can be infeasible for incorporating both document and word meta-data
simultaneously.

In my research of Zhao et al. [2017c, 2018a], I have developed a more efficient model to
incorporate both document and word meta-data into one joint model and done comprehen-
sive study of how the two kinds of meta-data affect the performance and interpretability
of the model, detailed in Chapter 5.

3.1.3 Short-text Topic Models

With the rapid growth of the internet, huge amounts of text data are generated in social
networks, online shopping and news websites, etc. Those internet-generated texts are usu-
ally short, such as tweets and new headlines, which means that the contextual information
(i.e. the word occurrences or the bag-of-words) in one individual document is insufficient,
causing degraded performance in topic modelling. Many conventional topic models like
LDA discover topics purely based on the contextual information of the target corpus.
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Therefore, they can suffer from large performance degradation over short texts. Many
research effort has been devoted to tackling the sparsity issue in short texts. In addition
to the short-text models with word meta-data in Section 3.1.2, another common strategy
is to first aggregate short texts into clusters and then perform standard topic modelling
techniques over the clusters, which is also known as “pooling.” As the aggregated clusters
contain richer contextual information than the original documents, better topics can be
learned.

As discussed previously, many internet-generated short texts are associated with doc-
ument meta-data such as authors, categories, and timestamps. Therefore, one straight-
forward approach is to aggregate short texts to their meta-data. For example, tweets are
naturally labelled by users and hashtags. It is reasonable to assume that tweets published
by the same users [Hong and Davison, 2010] or with the same hashtags [Mehrotra et al.,
2013] are more likely to talk about similar topics. Another feasible aggregation strategy
is to pool short texts into clusters by their contextual information instead of meta-data,
which involves two main steps: discover latent topics of short texts and do aggregation
according to the topics. For example, the SATM model in Quan et al. [2015] aggregates
short texts with a two-phase generative process. The first phase follows the standard
LDA to generate a set of regular-sized documents (i.e., clusters), and in the second phase
each short text document will be generated from the probability distribution over words
associated with the regular-sized document that the short text belongs to. In the PTM
model [Zuo et al., 2016a], the two steps are learned in a joint way. In the recently de-
veloped MIGA model in Zhao et al. [2019a], document meta-data as well as document
context are used to aggregate short texts in a joint generative process.

Besides the aforementioned aggregation-based models, various models have been re-
cently developed for modelling short texts. For example, Yan et al. [2013] proposed Biterm
Topic Model (BTM), which directly generates word co-occurrences instead of individual
words. Zuo et al. [2016b] developed Word Network Topic Model (WNTM) that learns
the distribution over topics for each word instead of the topics for each document, so as
to tackle the sparsity and imbalance issues in short texts. Recently, Yang et al. [2018]
proposed an approach that jointly models normal documents and the associated short
texts (e.g. a new article and its user comments), showing that the contextual information
in the normal documents can help the learning of the short texts.

The proposed models in this thesis research including Zhao et al. [2017c, 2018a, 2017b,
2018c,b] improve both modelling performance and topic quality on short-text topic mod-
elling, detailed in Chapter 5 and 6.

3.1.4 Deep Topic Models

The term “deep topic models” here is used to denote those models with deep structures,
implemented by either multi-layer Bayesian latent variables or deep neural networks in
the generative and/or inference processes, which become increasingly popular in topic
modelling research.

Multi-layer Bayesian Topic Models

Standard topic models like LDA assume topics are independent, which is an unnatural
assumption in many text corpora. To address this limitation, several advances in topic
modelling have started exploring the semantic structures of topics, which is referred to as
the topic structure learning problem.

Correlated Topic Model (CTM) [Lafferty and Blei, 2006] started the study of capturing
pairwise correlations of topics by the covariance matrix of the normal distribution, which
serves as the prior of document-topic distributions. The correlations discovered by CTM
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Figure 3.1: General framework of deep PFA models.

can be viewed as a flat structure of topics. In the same year, Li and McCallum [2006]
proposed the Pachinko Allocation to discover topic correlations with a directed acyclic
graph (DAG) structure, where the topic nodes occupy the interior levels and the leaves are
words. The nested CRP (nCRP) [Blei et al., 2010] and the nested hierarchical DP [Paisley
et al., 2015] investigate tree-structured topic hierarchies with the extensions to CRP and
HDP, respectively. In a tree-structured topic hierarchy, a topic in a higher layer is supposed
to be more general than a topic in a lower layer, which is a natural way of presenting topic
structures. Kim et al. [2012b], Ahmed et al. [2013] further extended nCRP by either
softening its constraints or applying it to different problems.

Recently, deep extensions of PFA have been proposed such as Gan et al. [2015a], Ran-
ganath et al. [2015], Zhou et al. [2015], Henao et al. [2015], Zhou et al. [2016] to improve
both modelling accuracy and interpretability. Shown in Figure 3.1, those models follow a
common framework, which applies hierarchical factorisations to the topic distribution of
a document. Specifically, in the bottom layer, a PFA framework is applied to generate the
word occurrences of document i, where θ(1)i and Φ(1) are the first-layer document-topic
distribution and topic-word distributions, respectively. Next, θ(1)i is further factorised
with θ(2)i and Φ(2), where whether Φ(1) can be interpreted depends on specific model con-
figurations. From the neural network point of view, θ is the latent representation in each
layer and Φ is the connection weights between two adjacent layers. With this framework,
different models apply different prior constructions of each layer’s latent representations
and connection weights. For example, DPFA [Gan et al., 2015b] uses a binary latent vec-
tor for each document in each layer connected by Gaussian weights, DPFM [Henao et al.,
2015] assumes each document in each layer has a gamma vector with a binary vector
as its focusing indicator, which is drawn from the Bernoulli-Poisson link5, GBN [Zhou
et al., 2015, 2016] uses a vector of gamma variables connected by the weights drawn from
Dirichlet distributions, and DEF [Ranganath et al., 2015] is a general framework of deep
structure on θi, where different constructions of latent representations and connection
weights are used.

With careful designs of the latent representations and the connection weights, besides
improving modelling performance, above deep models are able to discover interpretable

5Detailed in Eq. (3.52).
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topic structures. For example, in the GBN model [Zhou et al., 2015, 2016], Φ(2) 2 RK
1�K2

+

models the weights between the second-layer and the first-layer topics. Therefore, the
second-layer topics can be interpreted by Φ(1)Φ(2).

Although with nice properties, deep structures of those models may complicate the
inference procedures, leading to less scalable performance on large datasets. Therefore,
scalable inference algorithms have been developed for those models, including SGMCMC
in Gan et al. [2015a], Cong et al. [2017], blackbox variational inference in Ranganath et al.
[2015], and amortized variational inference in Zhang et al. [2018].

Different from the above models, my work in Zhao et al. [2018b] studies a deep factori-
sation model on the topic-word distributions instead of the document-topic distributions,
which has several appealing properties over the previous ones, detailed in Chapter 6.

Neural Topic Models

Recently, deep generative models such as Variational Autoencoders (VAEs) [Rezende et al.,
2014] have become increasingly popular for modelling real-valued data, such as images.
The success of VAEs has motivated machine learning practitioners to adapt VAEs to deal-
ing with discrete data as done in recent works [Miao et al., 2016, 2017, Krishnan et al.,
2018, Liang et al., 2018]. Instead of using the Gaussian distribution as the data distribution
for real-valued data, the multinomial distribution has been used for discrete data [Miao
et al., 2016, Krishnan et al., 2018, Liang et al., 2018]. Following Liang et al. [2018], we
refer to these VAE-based models as “MultiVAE” (Multi for multinomial)6. MultiVAE can
be viewed as a deep nonlinear PMF model, where the nonlinearity is introduced by a deep
neural network in the decoder. Compared with conventional hierarchical Bayesian mod-
els, MultiVAE increases its modelling capacity without sacrificing the scalability, because
of the use of amortized variational inference (AVI) [Rezende et al., 2014]. This makes
MultiVAE a good choice for large-scale discrete data.

Compared to the extensive applications in image analysis, VAEs for discrete data
are relatively rare. Miao et al. [2016] proposed the Neural Variational Document Model
(NVDM), which extended the standard VAE with a multinomial likelihood for document
modelling and Miao et al. [2017] further built a VAE to generate the document-topic
distributions in the LDA framework. Srivastava and Sutton [2017] developed an AVI
algorithm for the inference of LDA, which can be viewed as a VAE model, although the
generative process is the same as the original LDA. Card et al. [2018] introduced a general
VAE framework for topic modelling, which is able to incorporate meta-data. Krishnan
et al. [2018] recently found that using the standard training algorithm of VAEs in large
sparse discrete data may suffer from model underfitting and they proposed Nonlinear
Factor Analysis (NFA) with a stochastic variational inference (SVI) [Hoffman et al., 2013]
algorithm initialised by AVI to mitigate this issue. In the collaborative filtering domain,
Liang et al. [2018] noticed a similar issue and alleviated it by proposing MultiVAE with a
training scheme based on KL annealing [Bowman et al., 2016]. Note that the generative
processes of NVDM, NFA, and MultiVAE are very similar but their inference procedures
are different. NFA is reported to outperform NVDM on text analysis [Krishnan et al.,
2018] while MultiVAE is reported to have better performance than NFA on collaborative
filtering tasks [Liang et al., 2018]. Recently, instead of using multinomial likelihood, Zhao
et al. [2019b] proposed a VAE model based on the negative binomial likelihood, which
captures overdispersion in count-valued data.

Although the above neural models have shown great potential on topic modelling,
the deep structures in them are usually not able to be interpreted like in the hierarchical

6In terms of the generative process (encoder), the models in Miao et al. [2016], Krishnan et al. [2018],
Liang et al. [2018] are similar, despite that the inference procedures are different.
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Table 3.1: Notations of SBM.

N the number of nodes
K the number of latent communities

z 2 NN+ the latent community indexes of all nodes
zi 2 f1; : : : ;Kg the latent community index of node i

M 2 RK�K the stochastic block matrix
π 2 RK+ the probability vector over latent communities
πi 2 RK+ the probability vector over latent communities of node i

Bayesian models presented previously. Improving the interpretability of those neural topic
models is still an open yet important research direction.

3.2 BLFM for Graph Analysis

Graph analysis has been an extremely important research area in recent years. Among the
extensive methods in this area, here I will focus on stochastic random graph models [Miller
et al., 2009, Zhou, 2015, Caron and Fox, 2017] based on the Bayesian version of Stochastic
Block Models (SBMs), which have been successfully used in relational graph analysis on
the tasks of community detection and link prediction.

3.2.1 Fundamentals

SBM is a fundamental model for relational graph analysis, firstly introduced in Wang and
Wong [1987] and further developed in Nowicki and Snijders [2001]. In the original SBMs,
there are a finite number of latent communities in a graph, each node of which belongs
to one latent community. The structure of the graph is assumed to be determined by the
latent communities. The basic notations of SBMs are shown in Table 3.1, where mk1k2

gives the connection strength between latent communities k1 and k2. Given z and M, we
can write down the data likelihood of the adjacency matrix of a graph X with N nodes
as:

p(X j z;M) =
N;NY

i=1;j=1

p(Xij j zi; zj ;M); (3.12)

xij � Bern
�
�(mzizj )

�
; (3.13)

where �(�) is a function transforming values on (�1;1) to (0; 1), a common choice of
which is the logistic function �(x) = 1

1+e�x .

Stochastic Block Models

In the Bayesian version of SBMs, one can impose prior distributions of the latent variables
as follows:

π � Dir(α); (3.14)
zi � Cat(π); (3.15)

mk1k2 � Beta(a; b); (3.16)
xij � Bern(mzizj ): (3.17)

Note that SBMs can be applied to both directed (M is asymmetric) and undirected
graphs (M is symmetric). Moreover, SBMs are able to generate assortative/disassortative
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graphs by setting M diagonal/off-diagonal dominant. The word “assortative” describes a
type of network structure where entities tend to connect to entities belonging to the same
latent communities (having similar attributes) while “disassortative” describes the reverse
trend. Assortative structures are commonly observed in relational graphs, for example in
social graphs, people are likely to connect others within the same community and so are
disassortative structures.

As a Bayesian SBM can be viewed as a specific kind of BLFMs, the inference is similar
to the ones introduced in topic models, detailed in Section 3.1.1.

Link Prediction Evaluation

A straightforward idea of evaluating a graph analysis model is to check its performance
on predicting missing links, where some commonly-used measurements are presented as
follows.

AUC-ROC and AUC-PR AUC-ROC and AUC-PR are abbreviations of area under
receiver operating characteristic curve and area under precision recall curve, respec-
tively. Given the probability of a missing link between node i and j predicted by a model,
p(xij = 1), one can get different predictions, by varying a threshold c, as follows:(

xij = 1; if p(xij = 1) > c

xij = 0: otherwise
(3.18)

Given the ground-truth links in the test set, AUC-ROC is created by plotting the true
positive rate (TPR or recall) against the false positive rate (FPR) at various threshold
settings. Similarly, AUC-PR can also be plotted. The TPR, FPR, and precision can be
computed as:

TPR=recall =
true positives

true positives + false negatives
; (3.19)

FPR =
false positives

false positives + true negatives
; (3.20)

precision =
true positives

true positives + false positives
: (3.21)

Higher AUC-ROC or AUC-PR means a model has a better capacity of distinguishing
positive (the existence of a link) and negative (non-existence of a link). According to Davis
and Goadrich [2006], if a curve dominates in precision recall space, it also dominates in
ROC space but the reverse is not guaranteed. While in practice, both measures are usually
reported.

Mean rank and hits@10 For large-scale graphs, computing AUC-ROC or AUC-PR is
intractable, because we need to compute the statistics by iterating over different thresh-
olds. Proposed in Bordes et al. [2013], mean rank and hits@10 are measurements for
information retrieval performance. Given a test node i, one first ranks the all the possible
node pairs of f(i; j)gj=1;��� ;N by p(xi;j = 1). After that, mean rank can be computed by
the average rank of true node pair in the above ranks, while hits@10 calculates wither the
true node pair is ranked within top 10 in the above rank. A lower mean rank is better
while a higher Hit@10 is better.

Mean square error and mean absolute error For weighted networks (count weights
or continuous weights), mean square error (MSE) and mean absolute error (MAE) can be
used to measure the closeness of ground-truth weights and predicted weights.
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In addition to the above measurements, log likelihood and perplexity7, which are
commonly used for evaluating probabilistic models, can also be used in the evaluation of
BLFMs for graph analysis.

3.2.2 BLFMs in the SBM Framework for Graph Analysis

Here the representative BLFMs in line with the framework of SBM for graph analysis are
reviewed. The directions of these models can be summarised as follows:

� Automatically selecting K: The number of latent communities, K, is a parameter
that needs to be set in the original SBMs. The time complexity deteriorates toO(N5)
when doing the model selection with K [Yang and Zhao, 2015]. A popular solution
is to use Bayesian non-parametric techniques automatically choosing K that fits the
data.

� Allowing each node to belong to multiple latent communities: A constraint
of the original SBMs is one node can only belong to one latent community, which
could be an unnatural assumption for many graphs. Various models have been
proposed to relax this constraint.

� Modelling complex structures of latent communities: The original SBMs
usually impose a flat structure on latent communities, which restricts its ability
to model complex factors of relational graphs. Models of discovering hierarchical
structures of latent communities have recently gained popularity.

� Scaling to large-scale graphs: The original SBMs scale quadratically in the num-
ber of nodes, which is intractable with large-scale graphs. Different approaches have
been developed to improve the efficiency of SBMs.

Now the details of some example models are as follows.
Infinite relational model (IRM) [Kemp et al., 2006] relaxes the first constraint of

the original SBM by replacing the parametric Dirichlet distribution with a non-parametric
Griffiths-Engen-McCloskey (GEM) [Pitman et al., 2002] distribution as follows:

π � GEM(�) (3.22)
zi � Cat(π); (3.23)

mk1k2 � Beta(a; b); (3.24)
xij � Bern(mzizj ): (3.25)

Inference of IRM is done by Gibbs sampling in the original paper. Shown in Palla
et al. [2012], the time complexity of computing the likelihood of IRM is O(K2L) where L
is the number of links in the network. This allows excellent scalability of IRM on typical
sparse real-world networks where the number of links is much smaller than the number of
non-links.

Bayesian community detection (BCD) [Mørup and Schmidt, 2012] extends IRM
by making the stochastic block matrix diagonal dominant:

π � GEM(�); (3.26)
zi � Cat(π); (3.27)
k � Beta(b; b); (3.28)

mk1k2 =

(
Beta(a; a); if k1 = k2 = k

BetaInc(a; a; �k1k2); otherwise
(3.29)

7Details in Section 3.1.1.
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where �k1k2 = min(k1Mk1k1 ; k2Mk2;k2) and BetaInc(a; b; �) is the incomplete beta dis-
tribution constrained to the interval (0; �).

Infinite mixed membership model (IMMM) [Koutsourelakis and Eliassi-Rad,
2008] extends IRM with a hierarchical Dirichlet process:

π0 � GEM(�0) (3.30)
πi � DP(�;π0) (3.31)

This extension allows IMMM to assign a node to multiple latent communities and
introduces more sharing among the latent communities.

Mixed membership stochastic block model (MMSB) [Airoldi et al., 2009] aims
to tackle the second constraint of SBMs, by allowing nodes to have mixed memberships:

πi � Dir(α); (3.32)
mk1k2 � Beta(a; b); (3.33)

for each pair (i; j) and i; j = 1; : : : ; N

z
(ij)
i � Cat(πi); (3.34)

z
(ij)
j � Cat(πj); (3.35)
xij � Bern(m

z
(ij)
i

;z
(ij)
j

); (3.36)

where π;α 2 RK+ .
The difference between MMSB and the original SBMs, is that the former assumes each

node has its own probability vector over latent communities while the latter assumes that
nodes share the same probability vector. This difference makes MMSB able to “softly”
assign a node to multiple latent communities. A nested variational EM is proposed for
learning the model. The proposed algorithm is claimed to outperform Gibbs samplers in
terms of memory requirements and convergence rates. Note that in the original MMSB, the
stochastic block matrix is a parameter of the model as well as the Dirichlet concentration
α. Both of them are estimated by a variational EM algorithm. A variation of MMSB
proposed in the original paper is modelling sparsity by down-weighting the probability of
the existence of a link to (1� �) �Mzi;zj where � 2 (0; 1).

Assortative mixed membership stochastic block model (aMMSB) [Gopalan
et al., 2012] is a subclass of MMSB for community detection with the assumption of
assortativity by setting the stochastic block matrix diagonal dominant:

�k � Beta(a; b); (3.37)

mk1k2 =

(
�k; if k1 = k2 = k

�: otherwise
(3.38)

Assortative MMSB with node popularities (AMP) [Gopalan et al., 2013] ex-
tends aMMSB with introducing node popularities:

�i � N (0; �2�); (3.39)
�k � N (0; �2�); (3.40)

xij � Bern
�
�(�i + �j +mzizj )

�
; (3.41)

where �i captures the popularity of node i and �(x) = 1
1+e�x is the logistic function.

The intuition behind AMP is in addition to assortativity, the probability of the exis-
tence of a link between node i and j is determined by their popularities as well, meaning
that two nodes are likely to get connected if they are popular [Papadopoulos et al., 2012].
Taking popularity into account makes AMP outperform aMMSB significantly.
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Hierarchical Dirichlet Process Relational Model (HDPR) [Kim et al., 2013]
extends aMMSB with a hierarchical Dirichlet process (similar to IMMM’s extension to
IRM):

π0 � GEM(); (3.42)
πi � DP(�;π0): (3.43)

Non-parametric latent feature model (NLFM) [Miller et al., 2009] addresses
the first two constraints of SBM by the Indian Buffet Process (IBP) [Ghahramani and
Griffiths, 2006]:

Z � IBP(�); (3.44)
mk1k2 � N (0; �2m); (3.45)

xij � Bern
�
�(z>i Mzj)

�
; (3.46)

where Z 2 f0; 1gK�N , indicating the which communities a node is assigned to.
Compared with MMSB, NLFM applies a different way of solving the second constraint

of SBM. For example, in a social network, a model may discover two latent communities:
athletes and musicians. If a person belongs to the two latent communities at the same
time, it means the person is an athlete and musician in NLFM while an MMSB model
would say the more the person is an athlete, the less he is a musician. Moreover, the
stochastic block matrix in NLFM is drawn from Gaussian distribution, so negative values
are allowed.

As a simple extension is also proposed in the original paper to incorporate the at-
tributes (meta-data) of entities or links:

xij � Bernoulli
�
�(z>i Mzj + �yij)

�
; (3.47)

where yij represents the attribute of the link between i and j and � is the weight associated
with the attribute.

The time complexity of computing the likelihood of NLFM is O(K2N2). Inference of
Z and M is done by Gibbs sampling and Metropolis-Hastings sampling respectively.

Infinite multiple membership relational model (IMRM) [Mørup et al., 2011]
scales up NLFM from O(K2N2) to O(K2L). Recall in NLFM, the probability of the
existence of a link is modelled as:

p(xij = 1) =
1

1 + e�z
>

i
Mzj

: (3.48)

Instead of using the sigmoid function above, IMRM uses a noisy-or function:

p(xij = 1) = 1�
Y
k1;k2

(1�mk1k2)
zk1izk2j = 1� ez

>

i
log (1�M)zj : (3.49)

Then we can rewrite the likelihood as:

p(X) =
Y

(i;j)2X1

�
1� ez

>

i
log (1�M)zj

�xij Y
(i;j)2X0

ez
>

i
log (1�M)zj ; (3.50)

where X1 and X0 are the sets of links and non-links in the observed data, respectively.
The exponent of the second term can be efficiently computed as:

X
k1;k2

log(1�mk1k2)

0
@ NX
i=1

zk1i

NX
j=1

zk2j �
X

(i;j)2X1[X?

zk1izk2j

1
A ; (3.51)
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where X? is the set of unknown links.
If a graph is dominated by non-links, i.e, the graph is sparse, the computation of the

likelihood scales linearly in the number of network links. This property makes IMRM able
to apply in large relational networks. A similar idea is proposed in Zhou [2015] where the
Poisson-Bernoulli link is used to achieve the same goal.

Inference of Z and M is done by the split-merge sampling of IBP and Hamiltonian
Markov chain Monte Carlo (HMC) [Neal et al., 2011] respectively.

Infinite edge partition model (EPM) [Zhou, 2015] assumes each link in a relational
network is generated by a Bernoulli-Poisson link:

xij = I(sij � 1); (3.52)
sij � Pois(�ij); (3.53)

meaning that two nodes are connected if they interact at least once.
Using the Bernoulli-Poisson link gives us two advantages: 1) The binary-modelling

problem is transformed into a count-modelling one, which makes it easier to build hier-
archical Bayesian models. 2) Similar to IMRM, it has a property that if xij = 0 then
s = 0. It means we only need to handle the cases of xij = 1 and this leads to significant
computational savings.

if s is marginalised out, we get:

xij j �ij � Bernoulli(1� e��ij ): (3.54)

The generative process of EPM is:

πi � Gamma(ai; 1=bi); (3.55)
rk � Gamma(0=K; 1=c0); (3.56)

mk1k2 =

(
Gamma(�rk; d); if k1 = k2 = k

Gamma(rk1rk2 ; d); otherwise
(3.57)

xij � Bernoulli(1� e�π
>

i
Mπj ); (3.58)

where ai; bi; 0; c0; � are drawn from gamma distributions.
Described in Section 2.2.4, the construction of r is actually a truncated gamma process.

Therefore, the construction of M can be viewed as an extension of a gamma process, which
automatically learns the number of communities, named hierarchical relational gamma
process in the paper

Infinite latent attribute model (ILA) [Palla et al., 2012, 2015] extends NLFM
with a two-layer hierarchy on latent communities:

Z � IBP(�); (3.59)
πk � GEM(); (3.60)
z0ik � Cat(πk); (3.61)

mkk01k
0

2
� N (0; �2m); (3.62)

xij � Bernoulli

 
�(

1X
k=1

mkz0
ki
z0
kj
)

!
; for zki = 1; and zkj = 1 (3.63)

In ILA, an entity first chooses a set of latent communities (drawn from IBP) and then
chooses one sub-community (drawn from GEM and the categorical distribution) for each
latent community it belongs to. The time complexity of IRA is O(KN2). Inference of
Z and Z0 is done by Gibbs sampling and inference of M is done by Metropolis-Hastings
sampling or slice sampling.
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Models with tree-structured hierarchy Going beyond the two-layer hierarchies, it
is possible to impose tree-structured hierarchies on the latent communities, where a com-
munity can contain sub-communities or be contained by super-communities. The basic
idea of models introduced here is the probability of a link between i and j is determined
by their common ancestor(s) in the tree. Following this basic procedure, various mod-
els are proposed with different tree constructions. Hierarchical random graphs (HRG)
model [Clauset et al., 2008] applies a uniform binary tree on the latent class structure.
Infinite tree-structured model (ITSM) [Herlau et al., 2012] extends HRG by replacing
the binary tree with a uniform multifurcating tree and also drawing the first level latent
class from a CRP. The Mondrian process (MP) is a non-parametric prior distribution over
kd-tree structures. The generative process can be viewed as splicing up a rectangle into
blocks. Roy and Teh [2009] used MP to construct the tree structure that divides entities
into different blocks. Multi-scale community block model (MCSB) [Ho et al., 2011] used
the nested CRP to build the tree structure which releases the limit of binary hierarchies
in MP. Each entity is allowed to belong to the latent communities of a path with different
probabilities, which captures the multi-scale granularity of the hierarchies.

Relationships of above models: Figure 3.2 shows the relationships of the above
models.9/4/2016 knsv.github.io/mermaid/live_editor/#/view/JSUgRXhhbXBsZSBkaWFncmFtCmdyYXBoIFRCCiAgICBBW1NCTSAxOTgwc10gLS0-IEJbSVJNIDIwMD…

http://knsv.github.io/mermaid/live_editor/#/view/JSUgRXhhbXBsZSBkaWFncmFtCmdyYXBoIFRCCiAgICBBW1NCTSAxOTgwc10gLS0-IEJbSVJNIDIwM… 1/1
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IMMM 2008 BCD 2012
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NLFM 2009

IMRM 2011 ILA 2012

MMSB 2008

aMMSB 2012

AMP 2013 HDPR 2013
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ISTM 2012

MPRM 2009 GFTR 2013 BHCD 2013

Figure 3.2: Relations of the discussed BLFMs in the SBM framework. The arrows indicate
the extension relationship.

3.2.3 BLFMs with Meta-Data for Graph Analysis

Now BLFMs with meta-data in the area of graph analysis are reviewed. Note that meta-
data associated with a graph can be either on the links or on the nodes. Here I am
particularly interested in the latter case.

Similar to topic models that incorporate meta-data discussed in Section 3.1.2, the
general idea of incorporating a node’s meta-data in BLFMs is to regress the distribution
over latent communities of the node, i.e., πi on the meta-data. Following this idea,
different ways of constructing the regression have been proposed.

Suppose that each node i in a graph is associated with some meta-data encoded in
yi, which is a L dimensional binary/count-valued/real-valued vector. As denoted before,
πi is a K dimensional vector over the communities for node i. Nonparametric Meta-
data Dependent Relational Model (NMDR) [Kim et al., 2012a] uses the stick-breaking
construction of a DP to incorporate node meta-data as follows:

νi � N (Wyi;�)
8 (3.64)

�ki = �(�ki)
k�1Y
k0

�(��k0i); (3.65)

8Here “�” is used to denote the parameter that is out of interest.
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where �(x) = 1
1+e�x is the logistic function and W 2 RK�L is the regression weight matrix

drawn from the normal distributions.
Hierarchical Dirichlet scaling process (HDSP) [Kim et al., 2012a] generates the proba-

bility vector constructed by normalising a vector of gamma random variables, whose scale
parameters are used to incorporate meta-data:

φi � Gamma
�
�;

1

�(yi)

�
; (3.66)

πi = φi=�·i; (3.67)

where different options of �(x) are proposed.
Proposed in Fan et al. [2017], Node-Information Involved Mixed-Membership Model

(niMM) uses the stick-breaking constructions of DP extending IMMM [Koutsourelakis
and Eliassi-Rad, 2008] with binary node meta-data, as follows:

 ki � Beta

 
1;

LY
l=1

w
yli
kl

!
; (3.68)

�ki �  ki

k�1Y
k0=1

(1�  k0i); (3.69)

where wkl is the weight connecting community k and meta-data l, drawn from the gamma
distribution.

In addition, Node-Information Involved Latent Feature Model (niLF) extends NLFM [Miller
et al., 2009] with binary node meta-data by the stick-breaking construction of IBP, as fol-
lows:

 ki � Beta

 
LY
l=1

w
yli
kl ; 1

!
; (3.70)

�ki �
kY

k0=1

 k0i; (3.71)

zki � Bern(�ki): (3.72)

In Hu et al. [2016a], a summation model is proposed to incorporate binary meta-data,
which generates an unnormalised gamma vector:

�ki � Gamma

0
@ X
l:yli>0

wkl;�

1
A ; (3.73)

where wkl is the weight connecting community k and meta-data l, drawn from the gamma
distribution. This construction can be extended with hierarchical meta-data.

In Zhao et al. [2017a], I have developed a novel way of incorporating binary node
meta-data, which has several advantages over the above ones, detailed in Chapter 4.

3.3 BLFM for Multi-label Learning

3.3.1 Fundamentals

Multi-label learning is a classification problem with unique properties, such as the label
space can be very large and sparse and there can be a large proportion of missing labels
for some samples, which make conventional classification approaches infeasible. Suppose
X 2 RF�N is the feature matrix for N data samples, where F is the number of the feature
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dimensions. For each sample i, there is a vector of labels yi 2 f0; 1gL, where L is the
number of the label dimensions. Y 2 f0; 1gL�N is referred to as the label matrix. The
task of multi-label learning is to predict the labels of a new sample after a model is trained
with the above training data.

An important line of models for multi-label learning is called the label embedding
methods, which project the high-dimensional sparse label vectors of each instance into
a low-dimensional space. However, learning the embedding itself is a computationally
challenging problem, especially when the label matrix is massive. This has led to a lot
of recent interest in embedding based models for multi-label learning that can learn label
matrix embeddings efficiently [Yu et al., 2014, Mineiro and Karampatziakis, 2015]. On
the other hand, it is known that BLFMs, which can be viewed as the Bayesian version of
embedding methods, have advantages of dealing with sparsity and missing data, making
them potential candidates for multi-label learning. A general idea is that each sample
is associated with a set of low-dimensional latent variables (embeddings), which generate
both the label vector and feature vector or generate the label vector conditioned on the
feature vector. As the label matrix is discrete, if we treat the feature matrix as the meta-
data, the techniques of the topic models and graph models with meta-data presented
previously, are able to be applied to solve the multi-label problem.

Given the size of the label matrix, the ranking based measurements of information
retrieval are commonly used as the evaluations of multi-label learning problems, such as
Recall@R and the truncated normalized discounted cumulative gain (NDCG@R). The
two measurements for a testing sample i with the label vector y� can be computed as
follows9:

Recall@R =

PR
r=1 I

�
y�!(r)i = 1

�
min(R; y�·i)

; (3.74)

DCG@R =

PR
r=1 2

I
�
y�
!(r)i

=1

�
� 1

log(r + 1)
; (3.75)

where !(r) 2 f1; � � � ; Lg is the label at rank r, which is obtained by sorting the predictive
probabilities of the labels of a user; I

�
y�u!(r)i = 1

�
indicates whether the label is actually

active for sample i; NDCG@R is computed by linearly normalising DCG@R into [0; 1].
Intuitively, Recall@R measures the number of the R predicted items that are within the
set of the ground-truth items but does not consider the item rank in R, while NDCG@R
assigns larger discounts to lower ranked items.

Next, I will stick on reviewing BLFMs applied in the multi-label learning problem and
present several representative works in this line.

3.3.2 BLFMs for Multi-Label Learning

Kapoor et al. [2012] first introduced a Bayesian model for multi-label learning approxi-
mating a sample’s latent vector via the transformations of its features, which serves as the
means of a normal distribution generating the sample’s labels. This model can be viewed
as a BLFM, whose connections of the latent variables are defined by parametric functions.
Bi and Kwok [2014] introduced a model which regresses a sample’s latent vector on its
feature vector, which generates its labels from the normal distribution, detailed as follows:

θi � N
�
W>xi;Ω

�
; (3.76)

yi � N (θi;�) ; (3.77)
9More metrics can be found at http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html
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where W 2 RF�L is the weights that regress the labels of a sample on its features, drawn
from the normal distribution and the covariance matrix Ω can be used to encode the label
correlations.

One representative example of using the techniques of LDA, PFA and related models
is proposed by Rai et al. [2015], which applies the following process to generate the labels
of sample i with the Bernoulli-Poisson link conditioned on its features:

φk � Dir(�); (3.78)
pki = �(w>

k xi); (3.79)

�ki � Gamma
�
�;

pki
1� pki

�
; (3.80)

mli � Pois(Φθi); (3.81)
yli � I(mli > 0); (3.82)

where �(a) = 1
1+e�a is the logistic function and W 2 RF�K is the weight matrix that

regresses the latent representations of a sample on its features, drawn from the normal
distributions. As the Bernoulli-Poisson link is a good choice for modelling sparse data, it
makes this model be able to capture the sparsity in the label matrix.

Following a similar framework, Xuan et al. [2017] proposed a multi-label learning
model which applies the summation model similar to the one introduce in Eq. (3.73) to
incorporate binary features of samples.

Extending the model of Bi and Kwok [2014], Jain et al. [2017] developed a model with
the introduction of an exposure variable for each label and sample, detailed as follows:

φl � N (�;�); (3.83)

θi � N
�
W>xi;Ω

�
; (3.84)

�ln � Bern(�); (3.85)

yln �

(
Bern(�(φ>l θi)); if �ln = 1

�0; otherwise
(3.86)

where �ln indicates whether label l is exposed or missing in sample i.
Using a similar framework, Gaure et al. further studied the way of incorporating label-

label co-occurrence matrix for the case of zero-shot learning, the general idea of which has
been studied in Mensink et al. [2014].

In this thesis research, I have developed an efficient model for samples with binary
features in multi-label learning, which can be viewed as a variation to the one in shown
in Eq. (3.78). More details of this model will be presented in Chapter 7.

3.4 Summary

This chapter has presented the fundamentals and recent research works in the areas of
text analysis, graph analysis, and multi-label learning, with a focus on Bayesian latent
factor models. Note that each individual area has attracted extensive research interests.
For comprehensive reviews of the methods in these areas other than BLFMs, the readers
are suggested to refer to the review articles in each individual area. From Chapter 4 to 7,
I will present my thesis research in the above areas.
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Bayesian Latent Factor Models for
Relational Graph Analysis

Bayesian random graph models [Miller et al., 2009, Zhou, 2015, Caron and Fox, 2017] have
been successfully used in relational graph analysis on the tasks of community detection
and link prediction. In Bayesian random graph models, a graph is presented as an adja-
cency matrix, which can be factorised by BLFMs with the latent representations of the
nodes. A link between two nodes is generated according to the interactions of their latent
representations.

This research is about leveraging node attributes, such as user profiles of a social
network and author research interests in a bibliographic graph so as to obtain good com-
munity detection and link prediction performance when only a tiny proportion of the
links are observed. This is the case where many existing models cannot perform well. In
the paper of Zhao et al. [2017a], an effective Bayesian random graph model is proposed,
which regresses the latent representations of a node on its attributes, capturing the effect
that nodes with similar attributes are likely to be assigned to same communities. The
elaborated model structure also facilitates an efficient learning algorithm that utilises the
sparsity of both graphs and node attributes. The proposed model achieves the state-of-
the-art link prediction results, especially with highly incomplete relational graphs.

The framework of the above model is shown in Figure 4.1, which can be viewed as
the extension of the basic framework of BLFM shown in Figure 2.1 in Section 2.2.6 of
Chapter 2. Specifically, the proposed model factorises the adjacency matrix of a graph
into two latent matrices: the factor loading matrix (the embeddings of the nodes) and
the factor correlation matrix, where the factor loading matrix is informed by the node
attributes.

Factor 
loading 
matrix 

Factor 
correlation 

matrix
Graph ×≈

Node 
attribute

Factor loading 
matrix ×

Figure 4.1: Model framework of Zhao et al. [2017a]. The blue rectangles with solid lines and
dash lines are the data matrix (the adjacency matrix of a graph) and the latent matrices,
respectively. The red rectangle is the matrix of meta-data (the node attributes).

40
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The proposed model works with attributes that are formulated in binary format. How-
ever, the binarisation process of non-binary attributes will necessarily cause information
loss. Therefore, a possible direction of future research is how to incorporate arbitrary
node attributes yet keep the efficiency of the approach. In addition, how the proposed
incorporation of node attributes improves the efficiency of MCMC sampling is studied,
but whether/how it facilities other inference algorithms such as variational inference is
still unknown, which can be a potential future direction as well.

The major content of this chapter is in the following attached paper:

� H. Zhao, L. Du, W. Buntine, “Leveraging Node Attributes for Incomplete Relational
Data”, International Conference on Machine Learning (ICML) 2017.

The code of this research is released at https://github.com/ethanhezhao/NARM.

https://github.com/ethanhezhao/NARM


Leveraging Node Attributes for Incomplete Relational Data

He Zhao 1 Lan Du 1 Wray Buntine 1

Abstract
Relational data are usually highly incomplete in
practice, which inspires us to leverage side in-
formation to improve the performance of com-
munity detection and link prediction. This paper
presents a Bayesian probabilistic approach that
incorporates various kinds of node attributes en-
coded in binary form in relational models with
Poisson likelihood. Our method works flexibly
with both directed and undirected relational net-
works. The inference can be done by efficient
Gibbs sampling which leverages sparsity of both
networks and node attributes. Extensive exper-
iments show that our models achieve the state-
of-the-art link prediction results, especially with
highly incomplete relational data.

1. Introduction
Relational learning from network data, particularly with
probabilistic methods, has gained a wide range of applica-
tions such as social network analysis (Xiang et al., 2010),
recommender systems (Gopalan et al., 2014b), knowledge
graph completion (Hu et al., 2016b), and bioinformat-
ics (Huopaniemi et al., 2010). Generally speaking, the
goal of relational learning is to discover and analyse latent
clusters of entities (i.e., community detection), and predict
missing links (i.e., link prediction).

The standard approach for modelling relational data is la-
tent factor analysis via matrix factorisation and its varia-
tions. Among the existing approaches, Non-negative Ma-
trix Factorisation (NMF) and the Stochastic Block Model
(SBM) are prominent foundational methods. NMF is usu-
ally used to model relationships between two sets of entities
such as users and movies in collaborative filtering (Mnih
& Salakhutdinov, 2008). While developed independently,
SBM (Wang & Wong, 1987; Nowicki & Snijders, 2001)
can be viewed as an extension of NMF that introduces

1Faculty of Information Technology, Monash University, Aus-
tralia. Correspondence to: He Zhao <he.zhao@monash.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a block matrix to capture the interactions between latent
factors. There have been many Bayesian extensions of
these two methods, relaxing the assumptions and/or intro-
ducing extra components, such as the Infinite Relational
Model (IRM) (Kemp et al., 2006), the mixture membership
stochastic block model (MMSB) (Airoldi et al., 2008), and
the non-parametric latent feature models (NLFM) (Miller
et al., 2009). Poisson Factorisation (PF) (Dunson & Her-
ring, 2005; Zhou et al., 2012), is a popular version of
NMF which models count data with convenient statistical
properties (Gopalan et al., 2014b; 2015). Combining the
ideas of PF and SBM, the infinite Edge Partition Model
(EPM) (Zhou, 2015) and its extensions (Hu et al., 2016b)
have proven successful for relational networks.

When a network has less data, relational learning becomes
more difficult. One extreme case is the cold-start prob-
lem (Lin et al., 2013; Sedhain et al., 2014; Zhang & Wang,
2015), where a node has no observed links, making sugges-
tion of links for that node even more challenging. In such
cases, it is natural to appeal to side information such as
node attributes or features. For instance, papers in citation
networks are often associated with categories and authors,
and users in Facebook or Twitter are often asked to provide
information such as age, gender and interests. It is reason-
able to assume that nodes having similar attributes are more
likely to relate to each other (i.e., homophily, Nickel et al.,
2016). Thus, node attributes serve as important comple-
mentary information to relational data.

There are few Bayesian probabilistic relational models that
are able to leverage side information. For example, NLFM
uses a linear regression model to transform the features of
each node into a single number, which contributes to link
probabilities. However, side information in NLFM can-
not directly influence the latent factors, which gives lit-
tle support for community detection. As an extension of
MMSB, the Non-parametric Meta-data Dependent Rela-
tional (NMDR) model (Kim et al., 2012) incorporates at-
tributes into the mixed-membership distribution of each
node with the logistic-normal transform, which results in
non-conjugacy for inference. Fan et al. (2016) further de-
veloped this idea in the Node information Involved Mix-
ture Membership model (niMM), where side information
is integrated in a conjugate way. Although these mod-
els demonstrate improvement using side information, they
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scale quadratically in the number of nodes and the incorpo-
ration of side information is often complicated.

Several recent methods (Gopalan et al., 2014a; Acharya
et al., 2015; Hu et al., 2016a) extend PF with side informa-
tion using the additivity of the Poisson and gamma distribu-
tions/processes. With improved scalability, the Structural
Side Information Poisson Factorisation (SSI-PF) (Hu et al.,
2016a) models directed unweighted networks with node la-
bels, such as citation networks with papers labelled with
one of several categories. However, its performance re-
mains untested when a node has multiple attributes. More-
over, undirected networks are not handled by SSI-PF.

In this paper we present the Node Attribute Relational
Model (NARM)1, a fully Bayesian approach that models
large, sparse, and unweighted relational networks with ar-
bitrary node attributes encoded in binary form. It works
with Poisson gamma relational models to incorporate side
information. Specifically, we propose the Symmetric
NARM (Sym-NARM) for undirected networks, an exten-
sion of EPM (Zhou, 2015) and the Asymmetric NARM
(Asym-NARM) for directed networks, an extension of PF
(Zhou et al., 2012). The proposed models have several key
properties: (1) Effectively modelling node attributes: the
proposed models are able to achieve improved link predic-
tion performance, especially where training data are lim-
ited. (2) Fully Bayesian and conjugate: the inference
is done by efficient, closed-form Gibbs sampling which
scales linearly in the number of observed links and takes
advantage of the sparsity of node attributes. It makes our
models scalable for large but sparse relational networks
with large sets of node attributes. (3) Flexibility: the pro-
posed models work on directed and undirected relational
networks with flat and hierarchical node attributes.

2. The Node Attribute Relational Model
Here we focus on modelling unweighted networks that can
be either directed (i.e., the relationship is asymmetric) or
undirected. Assume a relational network with N nodes is
stored in a binary adjacency matrix Y ∈ {0, 1}N×N where
yi,j = 1 indicates the presence of a link between nodes
i and j. If the relationship described in the network is
symmetric, then yi,j = yj,i, and if asymmetric, possibly
yi,j 6= yj,i. Node attributes are encoded in a binary matrix
F ∈ {0, 1}N×L, where L is the total number of attributes.
Attribute fi,l = 1 indicates attribute l is active with node
i and vice versa. Although our models incorporate binary
attributes, categorical attributes and real-valued attributes
can be converted into binary values with proper transforma-
tions (Kim et al., 2012; Fan et al., 2016; Hu et al., 2016a).

1Code available at https://github.com/
ethanhezhao/NARM/

2.1. The Symmetric Node Attribute Relational Model

Sym-NARM works with undirected networks. Its genera-
tive process is shown in Figure 1. Instead of modelling the
binary matrix Y directly, it applies the Bernoulli-Poisson
link (BPL) function (Zhou, 2015) using an underlying la-
tent count matrix X. One first draws a latent count xi,j
from the Poisson distribution and then thresholds it at 1 to
generate a binary value yi,j . This is shown in Eqs. (1)-
(3). Analysed in (Zhou, 2015; Hu et al., 2016b;a), BPL
has the appealing property that if yi,j = 0, then xi,j = 0
with probability one. Thus, only non-zeros in Y need to
be sampled, giving huge computational savings for large
sparse networks, illustrated in Section 3 and Section 5.4.

The latent matrix X is further factorised into K latent fac-
tors with a non-negative bilinear model: X ∼ Poi(ΦΛΦT )
where Φ ∈ RN×K+ and Λ ∈ RK×K+ . Φ is referred to as the
node factor loading matrix where φi,k models the strength
of the connection between node i and latent factor k. As
in SBM, the correlations of the latent factors are modelled
in a symmetric matrix Λ, referred to as the block matrix.
Following (Zhou, 2015), we draw Λ from a hierarchical
relational gamma process (implemented with truncation as
a vector of gamma variables) , shown in Eqs. (8) and (9).

One appealing aspect of our model is the incorporation of
node attributes on the prior of φi,k (i.e., gi,k). Shown in
Eq. (5), gi,k is constructed with a log linear combination of
fi,l. hl,k is referred to as the kth attribute factor loading of
attribute l, which influences gi,k iff attribute l is active with
node i (i.e., fi,l = 1). bk acts as an attribute-free bias for
each latent factor k. hl,k and bk are gamma distributed with
mean 1, hence if attribute l does not contribute to latent
factor k or is less useful, hl,k is expected to be near 1 and
to have little influence on gi,k. The hyper-parameter µ0

controls the variation of hl,k.

The intuition of our model is: if two nodes have more
common attributes, their gamma shape parameters will be
more similar, with similar node factor loadings, resulting
in a larger probability that they relate to each other. More-
over, instead of incorporating the node attributes directly
into the node factor loadings, Sym-NARM uses them as the
prior information using Eq. (4), which results in a princi-
pled way of balancing the side information and the network
data. In addition, different attributes can contribute differ-
ently to the latent factors. For example, the gender of an
author may be much less important to co-authorship with
others than the research fields. This is controlled by the
attribute factor loading hl,k in our model.

2.2. The Asymmetric Node Attribute Relational Model

Extending the Beta Gamma Gamma Poisson factorisation
(BGGPF) (Zhou et al., 2012), Asym-NARM works on di-
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yi,j = 1(xi,j>0) (1)

xi,j =
K∑

k1,k2=1

xi,k1,k2,j (2)

xi,k1,k2,j ∼ Poi(φi,k1λk1,k2φj,k2) (3)
φi,k ∼ Ga(gi,k, 1/ci) (4)

gi,k = bk

L∏

l=1

h
fi,l
l,k (5)

hl,k ∼ Ga (µ0, 1/(1/µ0)) (6)
bk ∼ Ga (µ0, 1/(1/µ0)) (7)

λk1,k2 ∼
{

Ga(εrk, 1/a0), if k1 = k2 = k

Ga(rk1rk2 , 1/a0), otherwise
(8)

rk ∼ Ga(γ0/K, 1/c0) (9)
Figure 1. The generative model of Sym-NARM. 1(·) is the indica-
tor function. Poi(·) and Ga(·, ·) stand for the Poisson distribution
and the gamma distribution respectively. Conjugate gamma priors
are imposed on the hyper-parameters: γ0, ε, c0, ci, and a0.

yi,j = 1(xi,j>0) (10)

xi,j ∼
K∑

k

xi,j,k (11)

xi,j,k ∼ Poi(φi,kθj,k) (12)

φi,k ∼ Ga

(
gi,k,

qk
1− qk

)
(13)

qk ∼ Be (c0ε, c0(1− ε)) (14)

gi,k = bk

L∏

l=1

h
fi,l
l,k (15)

hl,k ∼ Ga (µ0, 1/(1/µ0)) (16)
bk ∼ Ga (µ0, 1/(1/µ0)) (17)
θ:,k ∼ DirN (a0

~1) (18)

Figure 2. The generative model of Asym-NARM. DirN (·) and
Be(·, ·) stand for the N dimensional Dirichlet distribution and
the beta distribution respectively. µ0, ν0, a0, e0, f0, c0, ε are the
hyper-parameters.

rected relational networks with node attributes incorpo-
rated in a similar way to Sym-NARM. Figure 2 shows
its generative process. Here the latent count matrix X is
factorised as X ∼ Poi(ΦΘ), where Φ ∈ RN×K+ and
Θ ∈ RK×N+ are referred to as the factor loading matrix
and the factor score matrix respectively. Similar to SSI-PF,
the node attributes are incorporated on the prior of Φ.

2.3. Incorporating Hierarchical Node Attributes

Relational networks can be associated with hierarchical
side information (Hu et al., 2016a). For example, in a
patent citation network, patents can be labelled with the
International Patent Classification (IPC) code, which is a
hierarchy of patent categories and sub-categories. Suppose
the second level attributes are stored in a binary matrix
F′ ∈ {0, 1}L×M whereM is the number of attributes in the
second level. Our models can be used to incorporate hier-
archical node attributes via a straightforward extension: re-

place hyper-parameter µ0 in Eq. (6) with µl,k =
∏M
m δ

f ′l,m
m,k .

This extension mirrors what is done for first level attributes.

3. Inference with Gibbs Sampling
Both Sym-NARM and Asym-NARM enjoy local conju-
gacy so the inference of all latent variables can be done
by closed-form Gibbs sampling. Moreover, the inference
only needs to be conducted on the non-zero entries in Y
and F. This section focuses on the sampling of hl,k (bk),
the key variable in the proposed incorporation of node at-
tributes. The sampling of the other latent variables is sim-
ilar to those in EPM and BGGPF, detailed in (Zhou, 2015;

Zhou et al., 2012). As the sampling for hl,k is analogous
in Sym-NARM and Asym-NARM, our introduction will be
based on Asym-NARM alone.

With the Poisson gamma conjugacy, the likelihood for gi,k
with φi,k marginalised out is:

p(gi,k | xi,·,k) ∝ (1− qk)gi,k
Γ(gi,k + xi,·,k)

Γ(gi,k)
(19)

where xi,·,k =
∑
j xi,j,k and xi,j,k is the latent count. The

gamma ratio in Eq. (19), i.e., the Pochhammer symbol for
a rising factorial, can be augmented with an auxiliary vari-
able ti,k: Γ(gi,k+xi,·,k)

Γ(gi,k) =
∑xi,·,k
ti,k=0 S

xi,·,k
ti,k

g
ti,k
i,k where Sxt in-

dicates an unsigned Stirling number of the first kind (Chen
et al., 2011; Teh et al., 2012; Zhou & Carin, 2015).

TakingO(xi,·,k), ti,k can be directly sampled by a Chinese
Restaurant Process with gi,k as the concentration and xi,·,k
as the number of customers:

ti,k ← ti,k + Bern
(

gi,k
gi,k + i′

)
for i′ = 1 : xi,·,k (20)

where Bern(·) is the Bernoulli distribution. Alternatively,
for large xi,·,k, because the standard deviation of ti,k is
O(
√

log xi,·,k) (Buntine & Hutter, 2012), one can sample
ti,k in a small window around the current value (Du et al.,
2010).

With the above augmentation and Eq. (15), we get:
p(G,H | x:,·,:,T,F) ∝ (21)
N∏

i=1

K∏

k=1

S
xi,·,k
ti,k

e
− log

(
1

1−qk

)
gi,k ·

L∏

l=1

K∏

k=1

h
∑N

i=1 fi,lti,k
l,k

Recall that all the attributes are binary and hl,k influences
gi,k only when fi,l = 1. Extracting all the terms related to
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hl,k in Eq. (21), we get the likelihood of hl,k:

p

(
hl,k

∣∣∣∣
gi,k
hl,k

, t:,k, f:,l

)
∝ (22)

e
−hl,k log

(
1

1−qk

)∑N
i=1:fi,l=1

gi,k
hl,k h

∑N
i=1 fi,lti,k

l,k

where gi,k
hl,k

is the value of gi,k with hl,k removed when
fi,l = 1. The likelihood function above is in a form that
is conjugate to the gamma prior. Therefore, it is straight-
forward to yield the following sampling strategy for hl,k:

hl,k ∼ Ga(µ′, 1/ν′) (23)

µ′ = µ0 +
N∑

i=1:fi,l=1

ti,k (24)

ν′ = 1/µ0 − log (1− qk)

N∑

i=1:fi,l=1

gi,k
hl,k

(25)

Precomputed with Eq. (15), gi,k can be updated with
Eq. (26), after hl,k is sampled.

gi,k ←
gi,kh

′
l,k

hl,k
for i = 1 : N and fi,l = 1 (26)

where h′i,k is the newly sampled value of hi,k.

To compute Eqs. (24)-(26), we only need to iterate over the
nodes that attribute l is active with (i.e., fi,l = 1). Thus,
the sampling for H takes O(D′KL) where D′ is the aver-
age number of nodes that an attribute is active with. This
demonstrates how the sparsity of node attributes is lever-
aged. As the mean of xi,·,k is D/K, sampling the tables
T ∈ NN×K takes O(ND) which can be accelerated with
the window sampling technique explained above.

We show the computational complexity of our and related
models in Table 1. The empirical comparison of running
speed is in Section 5.4. By taking advantage of both net-
work sparsity and node attribute sparsity, our models are
more efficient than the competitors, especially on large
sparse networks with large sets of attributes.

4. Related work
Compared with the node-attribute models such as NMDR
and niMM whose methods result in complicated inference,
our Sym-NARM is much more efficient on large sparse net-
works, illustrated in Table 1.

The most closely related model to our Asym-NARM, also
extending the BGGPF algorithm, is SSI-PF. But it uses the
gamma additivity to construct the prior of node factor load-
ings with the sum of attribute factor loadings. Our model
has several advantages over SSI-PF: (1) The derivation of
Gibbs sampling of SSI-PF requires that each column of
Θ is normalised (Eq. (18)). This limits the application of
SSI-PF to other models such as EPM which is an unnor-
malised model. (2) Shown in Table 1, Asym-NARM en-
joys more efficient computational complexity. (3) Shown

Table 1. The computational complexity for the compared models.
N : number of nodes. K: number of latent factors. L: number
of node attributes. D: the average degree (number of edges) per
node (D � N in sparse networks). D′: the average number
of nodes that an attribute is active with (usually, D′ < N ). For
the models that incorporate node attributes (marked with a *), the
complexity with one level attributes is shown.

Model Complexity
Models with the block matrix

*NMDR (Kim et al., 2012) O(N2K +NKL)
*niMM (Fan et al., 2016) O(N2K2 +NKL)

EPM (Zhou, 2015) O(NK2D)
*Sym-NARM O(NK2D +D′KL)

Models without the block matrix
BGGPF (Zhou et al., 2012) O(NKD)
*SSI-PF (Hu et al., 2016a) O(NKDL)

*Asym-NARM O(NKD +D′KL)

in Section 5, our model is more effective especially when a
node has multiple attributes.

There are also models that extend PF and collective matrix
factorisation (Singh & Gordon, 2008) to jointly factorise
relational networks and document-word matrices such as
(Gopalan et al., 2014a; Zhang & Wang, 2015; Acharya
et al., 2015). Our NARM models incorporate general node
attributes (not only texts) as the priors of the factor load-
ing matrix in a supervised manner, rather than jointly mod-
elling the side information in an unsupervised manner.

Another related area is supervised topic models such as
(Mcauliffe & Blei, 2008; Ramage et al., 2009; Lim & Bun-
tine, 2016). The Dirichlet Multinomial Regression (DMR)
model (Mimno & McCallum, 2012) is the most related one
to ours. It models document attributes on the priors of the
topic proportions with the logistic-normal transform. For
comparison, we propose DMR-MMSB, extending MMSB
with the DMR technique to incorporate side information on
the mixed-membership distribution of each node.

5. Experiments
In this section we evaluate Sym-NARM and Asym-NARM
with a set of the link prediction tasks on 10 real-world re-
lational datasets with different sizes and various kinds of
node attributes. We compare our models with the state-
of-the-art relational models, demonstrating that our models
outperform the competitors on those datasets in terms of
link prediction performance and per-iteration running time.
We report the average area under the curve of both the re-
ceiver operating characteristic (AUC-ROC) and precision
recall (AUC-PR) for quantitatively analysing the models.
Moreover, we perform qualitative analysis by comparing
the link probabilities estimated by the compared models.
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Figure 3. The AUC-ROC (the first row) and AUC-PR (the second row) scores on the undirected networks. The values on the horizontal
axis are the proportions of the training data and each of the error bars is the standard deviation over the five random splits for one
proportion. DMR-MMSB achieves its best performance at K = 5 and 10 on Lazega-cowork and NIPS234 respectively.
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Figure 4. The link probability estimations in NIPS234. Similar to (Zhou, 2015), the nodes are reordered to make a node with a larger
index belong to the same or a smaller-size community, where the disjoint community assignments are obtained by analysing the results
of Sym-NARM. (a) The original NIPS234 network. (e) The topic similarity of the authors, obtained by the pairwise cosine distances of
the topic proportions, with a brighter colour representing a closer distance. (b)-(d) and (f)-(h) Estimated link probabilities with 20% and
80% training data respectively for each compared model.

5.1. Link Prediction on Undirected Networks

For the link prediction task on undirected network data,
we compared our Sym-NARM with two models that do

not consider node attributes, EPM (Zhou, 2015), a state-
of-the-art relational model, and iMMM (Koutsourelakis &
Eliassi-Rad, 2008), a non-parametric version of MMSB,
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and two node attribute models, niMM (Fan et al., 2016),
a non-parametric relational model which has been demon-
strated to outperform NMDR (Kim et al., 2012), and DMR-
MMSB, our extension to MMSB using the Dirichlet Multi-
nomial Regression (Mimno & McCallum, 2012). Sym-
NAMR was implemented in MATLAB on top of the EPM
code and we used the code released by the original authors
for EPM and niMM. iMMM was implemented by Fan et al.
(2016) as a variant of niMM.

The description of the four datasets used is given below:

• Lazega-cowork: This dataset (Lazega, 2001) contains
378 links of the co-work relationship among 71 attor-
neys. Each attorney is associated with attributes such as
gender, office location, and age. After discretisation and
binarisation, we derived a 71× 18 binary node attribute
matrix with 497 non-zero entries.

• NIPS234: This is a co-author network of the 234 au-
thors with 598 links extracted from NIPS 1-17 confer-
ences (Zhou, 2015). We merged all the papers written
by the same author as a document, and then trained a
LDA model with 100 topics. The 5 most frequent topics
were used as the attributes, which gives us a 234 × 100
attribute matrix with 1170 non-zero entries.

• Facebook-ego: The original dataset (McAuley &
Leskovec, 2012) was collected from survey participants
of Facebook users. Out of the 10 circles (i.e., friend
lists), we used the first circle that contains 347 users with
2519 links. Each user is associated with 227 binary at-
tributes, encoding side information such as age, gender,
and education. We got a 347×227 binary node attribute
matrix with 3318 non-zero entries.

• NIPS12: NIPS12 was collected from NIPS papers in
vols 0-12. It is a median-size co-author network with
2037 authors and 3134 links. Similar to NIPS234, we
used the 5 most frequent topics as the attributes for each
author. We got a 2037×100 binary node attribute matrix
with 10185 non-zero entries.

5.1.1. EXPERIMENTAL SETTINGS

For each dataset, we varied the training data from 10%
to 90% and used the remaining in testing. For each pro-
portion, to generate five random splits, we used the code
in the EPM package (Zhou, 2015) which splits a net-
work in terms of its nodes. The reported AUC-ROC/PR
scores were averaged over the five splits. We used the
default hyper-parameter settings enclosed in the released
code for EPM, niMM and iMMM. For our Sym-NARM,
we set µ0 = 1 and all the other hyper-parameters the
same as those in EPM. Note that the models in compari-
son except DMR-MMSB are non-parametric models. For
Sym-NARM and EPM, we set the truncation level large
enough for each dataset: Kmax = 50, 100, 256 for Lazega-

cowork, Facebook-ego and NIPS234, NIPS12 respectively.
For DMR-MMSB, we varied K in {5, 10, 25, 50} and re-
ported the best one. Following (Zhou, 2015), we used 3000
MCMC iterations and computed AUC-ROC/PR with the
average probability over the last 1500. The performance
of iMMM and niMM on NIPS12 and DMR-MMSB on
Facebook-ego and NIPS12 are not reported as the datasets
are too large for them given our computational resources.

5.1.2. RESULTS

The AUC-ROC/PR scores are reported in Figure 3. Over-
all, our Sym-NARM model performs significantly better
than niMM, iMMM, and DMR-MMSB on all the datasets,
and EPM on 3 datasets (except Facebook-ego with large
training proportions). It is interesting that the perfor-
mance of EPM on Facebook-ego gradually approaches ours
when more than 30% training data were used. Note that
Facebook-ego is much denser than the others, which means
the network information itself could be rich enough for
EPM to reconstruct the network and the node attributes
contribute less. However in general, when relational data
are highly incomplete (with less training data), our model
is able to achieve improved link prediction performance.

To illustrate how side information helps, we qualitatively
compared our model with EPM and niMM by estimating
the link probabilities on NIPS234, shown in Figure 4. With
20% training data, EPM does not give a meaningful re-
construction of the original network, but it starts to with
more data presented. The similarity of the authors’ topics
in Figure 4e matches the original network, demonstrating
the usefulness of the topics, but with some error. Using the
topics as the authors’ attributes, our Sym-NARM achieves
reasonably good reconstruction of the network with only
20% training data, further improving with 80% training
data. Although niMM uses the same node attributes, its
performance is not as good and is even outperformed by
EPM with 80% training data.

5.2. Link Prediction on Directed Networks

Here we compared our Asym-NARM (implemented in
MATLAB on top of the BGGPF code) with two models that
do not consider node attributes, BGGPF (Zhou et al., 2012)
and iMMM, and three node-attribute models, niMM, SSI-
PF (Hu et al., 2016a) and DMR-MMSB. We used the fol-
lowing four datasets:

• Lazega-advice: This dataset is a directed network with
892 links of the advice relation among the attorneys.
The node attributes are the same as in Lazega-cowork.

• Citeseer: This dataset2 contains a citation network with
2http://linqs.umiacs.umd.edu/projects/

/projects/lbc/index.html
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Figure 5. The AUC-ROC (the first row) and AUC-PR (the second row) scores on the directed networks. The models with “-l” and “-w”
use the labels and the words as attributes respectively. The models with “-others” in Aminer use the extra attributes. DMR-MMSB
achieves its best performance at K = 10 on Lazega-advice.

4591 links of 3312 papers, labelled with one of 6 cate-
gories. For each paper, we used both the category label
and the presence/absence of 500 most frequent words as
two separate attribute sets. We got a 3312 × 500 word
attribute matrix with 65674 non-zero entries.

• Cora: This dataset2 contains a citation network with
5429 links of 2708 papers in machine learning, labelled
with one of 7 categories. Similar to Citeseer, we used
both the category label and the 500 most frequent words
as two separate attribute sets. We got a 2708×500 word
attribute matrix with 39268 non-zero entries.

• Aminer: The Aminer dataset (Tang et al., 2009) con-
tains a citation network with 2555 papers labelled with
10 categories and 5967 links. We further collected in-
formation of each paper via the Aminer’s API, includ-
ing the authors’ names (2597 unique authors), abstract,
venue, year, and number of citations. For the abstract,
we extract the 5 most frequent topics for each paper in a
similar way to NIPS234. In total, we prepared two sets
of attributes: the labels and the others formed with the
combination of all collected information.

5.2.1. EXPERIMENTAL SETTINGS

For fair comparison, we generated training/testing data
with the code in the SSI-PF package, which splits a network
in terms of its links. We used the default hyper-parameter
settings of BGGPF, SSI-PF, and niMM, provided by the
original authors. Kmax was set to 50 on Lazega-advice
and 200 (same as (Hu et al., 2016a)) on all the other three
datasets. For our Asym-NARM, we set µ0 = 1 and the

other hyper-parameters the same as those used in (Zhou
et al., 2012; Hu et al., 2016a). Following the suggestion of
Hu et al. (2016a), we used 1500 MCMC iterations in to-
tal and the last 500 samples to compute the AUC-ROC/PR
scores. Since Citeseer, Cora, and Aminer are already too
large for niMM, iMMM, and DMR-MMSB to produce re-
sults in reasonable time given our computational resources,
we reported their performance only on Lazega-advice.

5.2.2. RESULTS

Shown in Figure 5a, Asym-NARM gains better results in
terms of AUC-ROC/PR on Lazega-advice in most of the
training proportions. Overall, the node-attribute models
perform better than the models that do not consider node
attributes, showing the usefulness of node attributes. On
the other three datasets, we used different sets of attributes
to study how different attributes influence the performance
of Asym-NARM and SSI-PF.

In general, Asym-NARM performs better than SSI-PF re-
gardless of which set of attributes is used. The performance
of SSI-PF approaches ours in Citeseer with the labels as at-
tributes (indicated by “-l”). But the gap between SSI-PF
and our model becomes larger when the words are used as
attributes (indicated by “-w”). In Cora, SSI-PF with the
words does not perform as well as its non-node-attribute
counterpart, BGGPF, indicating it may not be as robust as
our model with large sets of attributes. To investigate this,
we varied the number of the most frequent words from 10
to 500 for Asym-NARM and SSI-PF on Citeseer and Cora.
With more words, the AUC-ROC/PR score of SSI-PF de-
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Figure 6. The AUC-ROC and AUC-PR scores on the networks with hierarchical attributes. The models with the first level attributes
only, the second level attributes only, and the hierarchical attributes are marked with “-1”, “-2”, and “-h” respectively.

grades increasingly. We further checked the prior of the
node factor loadings in SSI-PF (the variable that incorpo-
rates node attributes and corresponds to gi,k in our model)
and found that the coefficient of variation of each node’s
prior drops dramatically, indicating with more words, SSI-
PF is failing to use the supervised information in the words.

5.3. Link Prediction with Hierarchical Node Attributes

Here we used two datasets with hierarchical node at-
tributes: (1) Cora-hier: a citation network with 1712
papers and 6308 links extracted from the original Cora
dataset3. The papers are labelled with one of 63 sub-areas
(first level) and each sub-area belongs to one of 10 primary
areas (second level), such as “machine learning in artifi-
cial intelligence” and “memory management in operating
systems”; (2) Patent-hier: a citation network with 1461
patents and 2141 links from the National Bureau of Eco-
nomic Research where the hierarchical International Patent
Classification (IPC) code of a patent is used as attributes.

The AUC-ROC/PR scores in Figure 6 show that our Asym-
NARM with hierarchical attributes outperforms the others,
which demonstrates leveraging hierarchical side informa-
tion is beneficial to link prediction. Although SSI-PF also
models the hierarchical attributes, its performance in these
two datasets is not comparable with our model’s.

5.4. Running Time

In this section, we compare the running time of the mod-
els for directed networks (all implemented in MATLAB
and running on a desktop with 3.40 GHz CPU and 16GB
RAM). Using 80% data for training, the running time for
Asym-NARM, SSI-PF, and niMM on Aminer with differ-
ent sets of node attributes is reported in Table 2. Note
DMR-MMSB did not complete with “Authors” and “All”
due to our computational resources. Asym-NARM is about
10 times faster than SSI-PF with all the attributes and about

3https://people.cs.umass.edu/˜mccallum/
data.html

Table 2. The running time (seconds per iteration) of the compared
models on Aminer. AT: the topics extracted from the abstracts.
All: the combination of all the attributes we have.

Attr
Non-zeros
& attr size

Asym-
NARM SSI-PF niMM

DMR-
MMSB
K = 50

Label
2660

2555*10 0.26 0.48 134.11 89.12

AT
12775

2555*100 0.29 0.87 135.22 126.44

Authors
5647

2555*2597 0.33 2.99 136.41 -

All
31273

2555*3058 0.51 5.21 136.14 -

2 times faster with the labels. Thus Asym-NARM is more
efficient, especially with large sets of attributes, supporting
the complexity analysis in Table 1.

6. Conclusion
As a summary of the experiments, Asym/Sym-NARM
achieved better link prediction performance with faster in-
ference. While EPM, a non-node-attribute model, per-
formed well on nearly complete networks, it degraded with
less training data. niMM and DMR-MMSB, extensions to
MMSB with the logistic-normal transform, had similar re-
sults to Sym-NARM but scaled inefficiently. SSI-PF’s per-
formance and scalability were not as good as Asym-NARM
in the presented cases with flat and hierarchical attributes
and it was less effective with larger numbers of attributes.

Thus NARM is a comparatively simple yet effective and
efficient way of incorporating node attributes, including
hierarchical attributes, for relational models with Poisson
likelihood. This leads to improved link prediction and ma-
trix completion for less complete relational data of both di-
rected and undirected networks. With the efficient infer-
ence, our models can be used to model large sparse rela-
tional networks with node attributes.

NARM can easily be extended to multi-relational networks
such as (Hu et al., 2016b) and topic models with document
and word attributes, which is left for our future work.
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Chapter 5

Meta-data Enhanced Topic Models
for Text Analysis

BLFMs have been an important series of tools for text analysis by discovering interpretable
latent topics. Conventional latent factor models for texts (i.e., topic models) such as
Latent Dirichlet Allocation (LDA) [Blei et al., 2003] learn topics purely from the content
of a text corpus, ignoring the associated meta-data, such as document-level meta-data
like labels, authors, timestamps, and word-level meta-data like word embeddings. This
chapter introduces three proposed models on enhancing topic modelling with document
and word meta-data so as to get better modelling performance and interpretability.

In the paper of Zhao et al. [2017c], a general topic modelling framework is proposed,
which efficiently incorporates both document-level and word-level meta-data in binary
form. The intuition of this work is that documents with similar meta-data are likely to
discuss similar topics and words having similar meanings (encoded in word embeddings)
but different morphological forms, like “dog” and “puppy”, are likely to be in the same
topic, even if they barely co-occur in the corpus. The proposed model achieves significantly
better modelling results and interpretability, especially on short texts such as tweets and
news headlines, where meta-data play a more significant role. This framework is well-
engineered on MALLET1, which is able to run efficiently with multiple threads in multi-
core machines on large-scale datasets. The details of this research are in the following
attached paper:

� H. Zhao, L. Du, W. Buntine, G. Liu, “MetaLDA: A Topic Model that Efficiently
Incorporates Meta information”, long paper in International Conference on Data
Mining (ICDM) 2017.

The paper of Zhao et al. [2018a] is a journal extension to Zhao et al. [2017c], which gives
comprehensive studies, comparisons, and discussions on how different parts of the model
affect its performance, detailed derivations of the inference algorithm, how different word
embeddings affect the performance, how the multi-thread implementation accelerates the
learning speeds with more quantitative and qualitative demonstrations. The details of
this research are in the following attached paper:

� H. Zhao, L. Du, W. Buntine, G. Liu, “Leveraging External Information In Topic
Modelling”, in Knowledge and Information Systems (KAIS) 2018.

In conventional topic models, a topic is assumed to be a distribution spreading over
all the words in the vocabulary. However, in practice, a topic can only be interpreted with

1http://mallet.cs.umass.edu
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Figure 5.1: Model framework of Zhao et al. [2017c, 2018a, 2017b]. The blue rectangles
with solid lines and dash lines are the data matrix (the document-word matrix containing
word occurrences of the documents) and the latent matrices (the topic-word and doc-topic
distributions), respectively. The red rectangles are the matrices of meta-data (the document
meta-data and word embeddings).

a small subset of words in the vocabulary. Therefore, focused topic models [Williamson
et al., 2010, Archambeau et al., 2015] have been developed to allow topics to focus on
the words that actually explain them. In the paper of [Zhao et al., 2017b], a focused
topic model is proposed, where the focusing of topics are informed by external word
embeddings. To achieve this, topic embeddings are introduced to interact with pre-trained
word embeddings, which determines whether a topic should focus on a word. In this work,
besides better performance, the contribution of this work includes the idea of encoding the
semantics of topics into the same space of word embeddings, which is an elegant solution
of capturing out-of-vocabulary words. The details of this research are in the following
attached paper:

� H. Zhao, L. Du, W. Buntine, “A Word Embeddings Informed Focused Topic Model”,
in Asian Conference on Machine Learning (ACML) 2017.

Incorporating word embeddings in topic modelling is a relatively new direction in topic
modelling. Although the model in Zhao et al. [2017c, 2018a] is a relatively efficient ap-
proach, it requires binarisation, which may not be a good choice, especially for word em-
beddings. The model introduced in [Zhao et al., 2017b] is able to work with real-valued
word embeddings, but its inference speed can be slow for large collections of documents
and word embeddings of large dimensions. In terms of future research, a possible direc-
tion is to scale up those models with more scale inference algorithms such as stochastic
variational inference and SGMCMC.

The framework of the above models is in Figure 5.1, which can be viewed as the
extensions of the basic framework of BLFMs shown in Figure 2.1 in Section 2.2.6 of
Chapter 2. Specifically, the proposed models factorise the word occurrences matrix of a
collection of documents into the factor loading matrix (the topic-word distributions) and
factor score matrix (the document-topic distributions), where the former and latter are
informed by the word embeddings and document meta-data, respectively.

The code of this research in this chapter is released at https://github.com/ethanhezhao/
MetaLDA.

https://github.com/ethanhezhao/MetaLDA
https://github.com/ethanhezhao/MetaLDA
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Abstract—Besides the text content, documents and their
associated words usually come with rich sets of meta informa-
tion, such as categories of documents and semantic/syntactic
features of words, like those encoded in word embeddings. In-
corporating such meta information directly into the generative
process of topic models can improve modelling accuracy and
topic quality, especially in the case where the word-occurrence
information in the training data is insufficient. In this paper, we
present a topic model, called MetaLDA, which is able to lever-
age either document or word meta information, or both of them
jointly. With two data argumentation techniques, we can derive
an efficient Gibbs sampling algorithm, which benefits from the
fully local conjugacy of the model. Moreover, the algorithm is
favoured by the sparsity of the meta information. Extensive
experiments on several real world datasets demonstrate that
our model achieves comparable or improved performance in
terms of both perplexity and topic quality, particularly in
handling sparse texts. In addition, compared with other models
using meta information, our model runs significantly faster.

Keywords-topic models; meta information; short texts;

I. INTRODUCTION

With the rapid growth of the internet, huge amounts of text
data are generated in social networks, online shopping and
news websites, etc. These data create demand for powerful
and efficient text analysis techniques. Probabilistic topic
models such as Latent Dirichlet Allocation (LDA) [1] are
popular approaches for this task, by discovering latent topics
from text collections. Many conventional topic models dis-
cover topics purely based on the word-occurrences, ignoring
the meta information (a.k.a., side information) associated
with the content. In contrast, when we humans read text
it is natural to leverage meta information to improve our
comprehension, which includes categories, authors, times-
tamps, the semantic meanings of the words, etc. Therefore,
topic models capable of using meta information should yield
improved modelling accuracy and topic quality.

In practice, various kinds of meta information are avail-
able at the document level and the word level in many
corpora. At the document level, labels of documents can
be used to guide topic learning so that more meaningful
topics can be discovered. Moreover, it is highly likely
that documents with common labels discuss similar topics,

which could further result in similar topic distributions. For
example, if we use authors as labels for scientific papers,
the topics of the papers published by the same researcher
can be closely related.

At the word level, different semantic/syntactic features are
also accessible. For example, there are features regarding
word relationships, such as synonyms obtained from Word-
Net [2], word co-occurrence patterns obtained from a large
corpus, and linked concepts from knowledge graphs. It is
preferable that words having similar meaning but different
morphological forms, like “dog” and “puppy”, are assigned
to the same topic, even if they barely co-occur in the
modelled corpus. Recently, word embeddings generated by
GloVe [3] and word2vec [4], have attracted a lot of attention
in natural language processing and related fields. It has
been shown that the word embeddings can capture both
the semantic and syntactic features of words so that similar
words are close to each other in the embedding space. It
seems reasonable to expect that these word embedding will
improve topic modelling [5], [6].

Conventional topic models can suffer from a large per-
formance degradation over short texts (e.g., tweets and
news headlines) because of insufficient word co-occurrence
information. In such cases, meta information of documents
and words can play an important role in analysing short
texts by compensating the lost information in word co-
occurrences. At the document level, for example, tweets
are usually associated with hashtags, users, locations, and
timestamps, which can be used to alleviate the data sparsity
problem. At the word level, word semantic similarity and
embeddings obtained or trained on large external corpus
(e.g., Google News or Wikipedia) have been proven useful
in learning meaningful topics from short texts [7], [8].

The benefit of using document and word meta information
separately is shown in several models such as [9], [10],
[6]. However, in existing models this is usually not effi-
cient enough due to non-conjugacy and/or complex model
structures. Moreover, only one kind of meta information
(either at document level or at word level) is used in most
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existing models. In this paper, we propose MetaLDA1, a
topic model that can effectively and efficiently leverage
arbitrary document and word meta information encoded
in binary form. Specifically, the labels of a document in
MetaLDA are incorporated in the prior of the per-document
topic distributions. If two documents have similar labels,
their topic distributions should be generated with similar
Dirichlet priors. Analogously, at the word level, the features
of a word are incorporated in the prior of the per-topic word
distributions, which encourages words with similar features
to have similar weights across topics. Therefore, both doc-
ument and word meta information, if and when they are
available, can be flexibly and simultaneously incorporated
using MetaLDA. MetaLDA has the following key properties:

1) MetaLDA jointly incorporates various kinds of doc-
ument and word meta information for both regular
and short texts, yielding better modelling accuracy and
topic quality.

2) With the data augmentation techniques, the inference
of MetaLDA can be done by an efficient and closed-
form Gibbs sampling algorithm that benefits from the
full local conjugacy of the model.

3) The simple structure of incorporating meta informa-
tion and the efficient inference algorithm give Met-
aLDA advantage in terms of running speed over other
models with meta information.

We conduct extensive experiments with several real
datasets including regular and short texts in various do-
mains. The experimental results demonstrate that MetaLDA
achieves improved performance in terms of perplexity, topic
coherence, and running time.

II. RELATED WORK

In this section, we review three lines of related work:
models with document meta information, models with word
meta information, and models for short texts.

At the document level, Supervised LDA (sLDA) [11]
models document labels by learning a generalised linear
model with an appropriate link function and exponential
family dispersion function. But the restriction for sLDA is
that one document can only have one label. Labelled LDA
(LLDA) [12] assumes that each label has a corresponding
topic and a document is generated by a mixture of the
topics. Although multiple labels are allowed, LLDA requires
that the number of topics must equal to the number of
labels, i.e., exactly one topic per label. As an extension
to LLDA, Partially Labelled LDA (PLLDA) [10] relaxes
this requirement by assigning multiple topics to a label. The
Dirichlet Multinomial Regression (DMR) model [9] incorpo-
rates document labels on the prior of the topic distributions
like our MetaLDA but with the logistic-normal transforma-
tion. As full conjugacy does not exist in DMR, a part of

1Code at https://github.com/ethanhezhao/MetaLDA/

the inference has to be done by numerical optimisation,
which is slow for large sets of labels and topics. Similarly,
in the Hierarchical Dirichlet Scaling Process (HDSP) [13],
conjugacy is broken as well since the topic distributions have
to be renormalised. [14] introduces a Poisson factorisation
model with hierarchical document labels. But the techniques
cannot be applied to regular topic models as the topic
proportion vectors are also unnormalised.

Recently, there is growing interest in incorporating word
features in topic models. For example, DF-LDA [15] incor-
porates word must-links and cannot-links using a Dirich-
let forest prior in LDA; MRF-LDA [16] encodes word
semantic similarity in LDA with a Markov random field;
WF-LDA [17] extends LDA to model word features with
the logistic-normal transform; LF-LDA [6] integrates word
embeddings into LDA by replacing the topic-word Dirich-
let multinomial component with a mixture of a Dirichlet
multinomial component and a word embedding component;
Instead of generating word types (tokens), Gaussian LDA
(GLDA) [5] directly generates word embeddings with the
Gaussian distribution. Despite the exciting applications of
the above models, their inference is usually less efficient due
to the non-conjugacy and/or complicated model structures.

Analysis of short text with topic models has been an active
area with the development of social networks. Generally,
there are two ways to deal with the sparsity problem in short
texts, either using the intrinsic properties of short texts or
leveraging meta information. For the first way, one popular
approach is to aggregate short texts into pseudo-documents,
for example, [18] introduces a model that aggregates tweets
containing the same word; Recently, PTM [19] aggregates
short texts into latent pseudo documents. Another approach
is to assume one topic per short document, known as mixture
of unigrams or Dirichlet Multinomial Mixture (DMM) such
as [20], [7]. For the second way, document meta information
can be used to aggregate short texts, for example, [18] ag-
gregates tweets by the corresponding authors and [21] shows
that aggregating tweets by their hashtags yields superior
performance over other aggregation methods. One closely
related work to ours is the models that use word features
for short texts. For example, [7] introduces an extension of
GLDA on short texts which samples an indicator variable
that chooses to generate either the type of a word or the
embedding of a word and GPU-DMM [8] extends DMM
with word semantic similarity obtained from embeddings for
short texts. Although with improved performance there still
exists challenges for existing models: (1) for aggregation-
based models, it is usually hard to choose which meta
information to use for aggregation; (2) the “single topic”
assumption makes DMM models lose the flexibility to
capture different topic ingredients of a document; and (3)
the incorporation of meta information in the existing models
is usually less efficient.

To our knowledge, the attempts that jointly leverage
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Figure 1: The graphical model of MetaLDA

document and word meta information are relatively rare.
For example, meta information can be incorporated by first-
order logic in Logit-LDA [22] and score functions in SC-
LDA [23]. However, the first-order logic and score functions
need to be defined for different kinds of meta information
and the definition can be infeasible for incorporating both
document and word meta information simultaneously.

III. THE METALDA MODEL

Given a corpus, LDA uses the same Dirichlet prior for all
the per-document topic distributions and the same prior for
all the per-topic word distributions [24]. While in MetaLDA,
each document has a specific Dirichlet prior on its topic dis-
tribution, which is computed from the meta information of
the document, and the parameters of the prior are estimated
during training. Similarly, each topic has a specific Dirichlet
prior computed from the word meta information. Here we
elaborate our MetaLDA, in particular on how the meta
information is incorporated. Hereafter, we will use labels
as document meta information, unless otherwise stated.

Given a collection of D documents D, MetaLDA gener-
ates document d ∈ {1, · · · , D} with a mixture of K topics
and each topic k ∈ {1, · · · ,K} is a distribution over the
vocabulary with V tokens, denoted by φk ∈ RV+ . For docu-
ment d with Nd words, to generate the ith (i ∈ {1, · · · , Nd})
word wd,i, we first sample a topic zd,i ∈ {1, · · · ,K} from
the document’s topic distribution θd ∈ RK+ , and then sample
wd,i from φzd,i . Assume the labels of document d are
encoded in a binary vector fd ∈ {0, 1}Ldoc where Ldoc
is the total number of unique labels. fd,l = 1 indicates
label l is active in document d and vice versa. Similarly,
the Lword features of token v are stored in a binary vector
gv ∈ {0, 1}Lword . Therefore, the document and word meta
information associated with D are stored in the matrix
F ∈ {0, 1}D×Ldoc and G ∈ {0, 1}V×Lword respectively.

Although MetaLDA incorporates binary features, categorical
features and real-valued features can be converted into
binary values with proper transformations such as discreti-
sation and binarisation.

Fig. 1 shows the graphical model of MetaLDA and the
generative process is as following:

1) For each topic k:
a) For each doc-label l: Draw λl,k ∼ Ga(µ0, µ0)
b) For each word-feat l′: Draw δl′,k ∼ Ga(ν0, ν0)

c) For each token v: Compute βk,v =
∏Lword
l′=1 δ

gv,l′
l′,k

d) Draw φk ∼ DirV (βk)

2) For each document d:
a) For each topic k: Compute αd,k =

∏Ldoc
l=1 λ

fd,l
l,k

b) Draw θd ∼ DirK(αd)
c) For each word in document d:

i) Draw topic zd,i ∼ CatK(θd)
ii) Draw word wd,i ∼ CatV (φzd,i)

where Ga(·, ·), Dir(·), Cat(·) are the gamma distribution,
the Dirichlet distribution, and the categorical distribution
respectively. K, µ0, and ν0 are the hyper-parameters.

To incorporate document labels, MetaLDA learns a spe-
cific Dirichlet prior over the topics for each document by
using the label information. Specifically, the information of
document d’s labels is incorporated in αd, the parameter of
Dirichlet prior on θd. As shown in Step 2a, αd,k is computed
as a log linear combination of the labels fd,l. Since fd,l is
binary, αd,k is indeed the multiplication of λl,k over all the
active labels of document d, i.e., {l | fd,l = 1}. Drawn
from the gamma distribution with mean 1, λl,k controls
the impact of label l on topic k. If label l has no or less
impact on topic k, λl,k is expected to be 1 or close to 1,
and then λl,k will have no or little influence on αd,k and
vice versa. The hyper-parameter µ0 controls the variation of
λl,k. The incorporation of word features is analogous but in
the parameter of the Dirichlet prior on the per-topic word
distributions as shown in Step 1c.

The intuition of our way of incorporating meta informa-
tion is: At the document level, if two documents have more
labels in common, their Dirichlet parameter αd will be more
similar, resulting in more similar topic distributions θd; At
the word level, if two words have similar features, their βk,v
in topic k will be similar and then we can expect that their
φk,v could be more or less the same. Finally, the two words
will have similar probabilities of showing up in topic k. In
other words, if a topic “prefers” a certain word, we expect
that it will also prefer other words with similar features to
that word. Moreover, at both the document and the word
level, different labels/features may have different impact on
the topics (λ/δ), which is automatically learnt in MetaLDA.

IV. INFERENCE

Unlike most existing methods, our way of incorporating
the meta information facilitates the derivation of an efficient
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Gibbs sampling algorithm. With two data augmentation
techniques (i.e., the introduction of auxiliary variables), Met-
aLDA admits the local conjugacy and a close-form Gibbs
sampling algorithm can be derived. Note that MetaLDA
incorporates the meta information on the Dirichlet priors, so
we can still use LDA’s collapsed Gibbs sampling algorithm
for the topic assignment zd,i. Moreover, Step 2a and 1c show
that one only needs to consider the non-zero entries of F and
G in computing the full conditionals, which further reduces
the inference complexity.

Similar to LDA, the complete model likelihood (i.e., joint
distribution) of MetaLDA is:

K∏

k=1

V∏

v=1

φ
nk,v
k,v ·

D∏

d=1

K∏

k=1

θ
md,k
d,k (1)

where nk,v =
∑D
d

∑Nd
i=1 1(wd,i=v,zd,i=k), md,k =∑Nd

i=1 1(zd,i=k), and 1(·) is the indicator function.

A. Sampling λl,k:

To sample λl,k, we first marginalise out θd,k in the right
part of Eq. (1) with the Dirichlet multinomial conjugacy:

D∏

d=1

Γ(αd,·)
Γ(αd,· +md,·)︸ ︷︷ ︸

Gamma ratio 1

K∏

k=1

Γ(αd,k +md,k)

Γ(αd,k)︸ ︷︷ ︸
Gamma ratio 2

(2)

where αd,· =
∑K
k=1 αd,k, md,· =

∑K
k=1md,k, and Γ(·)

is the gamma function. Gamma ratio 1 in Eq. (2) can be
augmented with a set of Beta random variables q1:D as:

Γ(αd,·)
Γ(αd,· +md,·)︸ ︷︷ ︸

Gamma ratio 1

∝
∫

qd

q
αd,·−1
d (1− qd)md,·−1 (3)

where for each document d, qd ∼ Beta(αd,·,md,·). Given
a set of q1:D for all the documents, Gamma ratio 1 can be
approximated by the product of q1:D, i.e.,

∏D
d=1 q

αd,·
d .

Gamma ratio 2 in Eq. (2) is the Pochhammer symbol for
a rising factorial, which can be augmented with an auxiliary
variable td,k [25], [26], [27], [28] as follows:

Γ(αd,k +md,k)

Γ(αd,k)︸ ︷︷ ︸
Gamma ratio 2

=

md,k∑

td,k=0

S
md,k
td,k

α
td,k
d,k (4)

where Smt indicates an unsigned Stirling number of the
first kind. Gamma ratio 2 is a normalising constant for the
probability of the number of tables in the Chinese Restaurant
Process (CRP) [29], td,k can be sampled by a CRP with αd,k
as the concentration and md,k as the number of customers:

td,k =

md,k∑

i=1

Bern
(

αd,k
αd,k + i

)
(5)

where Bern(·) samples from the Bernoulli distribution. The
complexity of sampling td,k by Eq. (5) is O(md,k). For large

md,k, as the standard deviation of td,k is O(
√

logmd,k)
[29], one can sample td,k in a small window around the
current value in complexity O(

√
logmd,k).

By ignoring the terms unrelated to α, the augmentation
of Eq. (4) can be simplified to a single term α

td,k
d,k . With

auxiliary variables now introduced, we simplify Eq. (2) to:

D∏

d=1

K∏

k=1

q
αd,k
d α

td,k
d,k (6)

Replacing αd,k with λl,k, we can get:

D∏

d=1

K∏

k=1

e
−αd,k log 1

qd ·
Ldoc∏

l=1

K∏

k=1

λ
∑D
d=1 fd,ltd,k

l,k

Recall that all the document labels are binary and λl,k is
involved in computing αd,k iff fd,l = 1. Extracting all the
terms related to λl,k in Eq. (7), we get the marginal posterior
of λl,k:

e
−λl,k

∑D
d=1:fd,l=1 log 1

qd
·αd,kλl,k λ

∑D
d=1 fd,ltd,k

l,k

where αd,k
λl,k

is the value of αd,k with λl,k removed when
fd,l = 1. With the data augmentation techniques, the
posterior is transformed into a form that is conjugate to the
gamma prior of λl,k. Therefore, it is straightforward to yield
the following sampling strategy for λl,k:

λl,k ∼ Ga(µ′, 1/µ′′) (7)

µ′ = µ0 +
D∑

d=1:fd,l=1

td,k (8)

µ′′ = 1/µ0 −
D∑

d=1:fd,l=1

αd,k
λl,k

log qd (9)

We can compute and cache the value of αd,k first. After
λl,k is sampled, αd,k can be updated by:

αd,k ←
αd,kλ

′
l,k

λl,k
∀ 1 ≤ d ≤ D : fd,l = 1 (10)

where λ′i,k is the newly-sampled value of λi,k.
To sample/compute Eqs. (7)-(10), one only iterates over

the documents where label l is active (i.e., fd,l = 1). Thus,
the sampling for all λ takes O(D′KLdoc) where D′ is the
average number of documents where a label is active (i.e.,
the column-wise sparsity of F). It is usually that D′ �
D because if a label exists in nearly all the documents, it
provides little discriminative information. This demonstrates
how the sparsity of document meta information is leveraged.
Moreover, sampling all the tables t takes O(Ñ) (Ñ is the
total number of words in D) which can be accelerated with
the window sampling technique explained above.
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B. Sampling δl′,k:

Since the derivation of sampling δl′,k is analogous to λl,k,
we directly give the sampling formulas:

δl′,k ∼ Ga(ν′, 1/ν′′) (11)

ν′ = ν0 +
V∑

v=1:gv,l′=1

t′k,v (12)

ν′′ = 1/ν0 − log q′k

V∑

v=1:gv,l′=1

βk,v
δl′,k

(13)

where the two auxiliary variables can be sampled by:
q′k ∼ Beta(βk,·, nk,·) and t′k,v ∼ CRP(βk,v, nk,v). Similarly,
sampling all δ takes O(V ′KLword) where V ′ is the average
number of tokens where a feature is active (i.e., the column-
wise sparsity of G and usually V ′ � V ) and sampling all
the tables t′ takes O(Ñ).

C. Sampling topic zd,i:

Given αd and βk, the collapsed Gibbs sampling of a new
topic for a word wd,i = v in MetaLDA is:

Pr(zd,i = k) ∝ (αd,k +md,k)
βk,v + nk,v
βk,· + nk,·

(14)

which is exactly the same to LDA.

V. EXPERIMENTS

In this section, we evaluate the proposed MetaLDA
against several recent advances that also incorporate meta
information on 6 real datasets including both regular and
short texts. The goal of the experimental work is to evaluate
the effectiveness and efficiency of MetaLDA’s incorporation
of document and word meta information both separately
and jointly compared with other methods. We report the
performance in terms of perplexity, topic coherence, and
running time per iteration.

A. Datasets

In the experiments, three regular text datasets and three
short text datasets were used:
• Reuters is widely used corpus extracted from the

Reuters-21578 dataset where documents without any
labels are removed2. There are 11,367 documents and
120 labels. Each document is associated with multiple
labels. The vocabulary size is 8,817 and the average
document length is 73.

• 20NG, 20 Newsgroup, a widely used dataset consists of
18,846 news articles with 20 categories. The vocabulary
size is 22,636 and the average document length is 108.

• NYT, New York Times is extracted from the documents
in the category “Top/News/Health” in the New York

2 MetaLDA is able to handle documents/words without labels/features.
But for fair comparison with other models, we removed the documents
without labels and words without features.

Times Annotated Corpus3. There are 52,521 documents
and 545 unique labels. Each document is with multiple
labels. The vocabulary contains 21,421 tokens and there
are 442 words in a document on average.

• WS, Web Snippet, used in [8], contains 12,237 web
search snippets and each snippet belongs to one of 8
categories. The vocabulary contains 10,052 tokens and
there are 15 words in one snippet on average.

• TMN, Tag My News, used in [6], consists of 32,597
English RSS news snippets from Tag My News. With
a title and a short description, each snippet belongs to
one of 7 categories. There are 13,370 tokens in the
vocabulary and the average length of a snippet is 18.

• AN, ABC News, is a collection of 12,495 short news
descriptions and each one is in multiple of 194 cate-
gories. There are 4,255 tokens in the vocabulary and
the average length of a description is 13.

All the datasets were tokenised by Mallet4 and we re-
moved the words that exist in less than 5 documents and
more than 95% documents.

B. Meta Information Settings

Document labels and word features. At the docu-
ment level, the labels associated with documents in each
dataset were used as the meta information. At the word
level, we used a set of 100-dimensional binarised word
embeddings as word features2, which were obtained from
the 50-dimensional GloVe word embeddings pre-trained on
Wikipedia5. To binarise word embeddings, we first adopted
the following method similar to [30]:

g′v,j =





1, if g′′v,j > Mean+(g′′v)

−1, if g′′v,j < Mean−(g′′v)

0, otherwise
(15)

where g′′v is the original embedding vector for word v, g′v,j
is the binarised value for jth element of g′′v , and Mean+(·)
and Mean−(·) are the average value of all the positive
elements and negative elements respectively. The insight is
that we only consider features with strong opinions (i.e.,
large positive or negative value) on each dimension. To
transform g′ ∈ {−1, 1} to the final g ∈ {0, 1}, we use
two binary bits to encode one dimension of g′v,j : the first
bit is on if g′v,j = 1 and the second is on if g′v,j = −1.
Besides, MetaLDA can work with other word features such
as semantic similarity as well.

Default feature. Besides the labels/features associated
with the datasets, a default label/feature for each docu-
ment/word is introduced in MetaLDA, which is always
equal to 1. The default can be interpreted as the bias term
in α/β, which captures the information unrelated to the

3https://catalog.ldc.upenn.edu/ldc2008t19
4http://mallet.cs.umass.edu
5https://nlp.stanford.edu/projects/glove/
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Table I: MetaLDA and its variants.

Compute α with Compute β with
MetaLDA Document labels Word features

MetaLDA-dl-def Document labels Default feature
MetaLDA-dl-0.01 Document labels Symmetric 0.01 (fixed)
MetaLDA-def-wf Default label Word features
MetaLDA-0.1-wf Symmetric 0.1 (fixed) Word features
MetaLDA-def-def Default label Default feature

labels/features. While there are no document labels or word
features, with the default, MetaLDA is equivalent in model
to asymmetric-asymmetric LDA of [24].

C. Compared Models and Parameter Settings

We evaluate the performance of the following models:
• MetaLDA and its variants: the proposed model and its

variants. Here we use MetaLDA to indicate the model
considering both document labels and word features.
Several variants of MetaLDA with document labels
and word features separately were also studied, which
are shown in Table I. These variants differ in the
method of estimating α and β. All the models listed
in Table I were implemented on top of Mallet. The
hyper-parameters µ0 and ν0 were set to 1.0.

• LDA [1]: the baseline model. The Mallet implementa-
tion of SparseLDA [31] is used.

• LLDA, Labelled LDA [12] and PLLDA, Partially La-
belled LDA [10]: two models that make use of multiple
document labels. The original implementation6 is used.

• DMR, LDA with Dirichlet Multinomial Regression [9]:
a model that can use multiple document labels. The
Mallet implementation of DMR based on SparseLDA
was used. Following Mallet, we set the mean of λ to
0.0 and set the variances of λ for the default label and
the document labels to 100.0 and 1.0 respectively.

• WF-LDA, Word Feature LDA [17]: a model with word
features. We implemented it on top of Mallet and used
the default settings in Mallet for the optimisation.

• LF-LDA, Latent Feature LDA [6]: a model that in-
corporates word embeddings. The original implementa-
tion7 was used. Following the paper, we used 1500 and
500 MCMC iterations for initialisation and sampling
respectively and set λ to 0.6, and used the original 50-
dimensional GloVe word embeddings as word features.

• GPU-DMM, Generalized Pólya Urn DMM [8]: a
model that incorporates word semantic similarity. The
original implementation8 was used. The word similarity
was generated from the distances of the word embed-
dings. Following the paper, we set the hyper-parameters
µ and ε to 0.1 and 0.7 respectively, and the symmetric
document Dirichlet prior to 50/K.

6https://nlp.stanford.edu/software/tmt/tmt-0.4/
7https://github.com/datquocnguyen/LFTM
8https://github.com/NobodyWHU/GPUDMM

• PTM, Pseudo document based Topic Model [19]: a
model for short text analysis. The original implementa-
tion9 was used. Following the paper, we set the number
of pseudo documents to 1000 and λ to 0.1.

All the models, except where noted, the symmetric param-
eters of the document and the topic Dirichlet priors were set
to 0.1 and 0.01 respectively, and 2000 MCMC iterations are
used to train the models.

D. Perplexity Evaluation

Perplexity is a measure that is widely used [24] to evaluate
the modelling accuracy of topic models. The lower the score,
the higher the modelling accuracy. To compute perplexity,
we randomly selected some documents in a dataset as the
training set and the remaining as the test set. We first trained
a topic model on the training set to get the word distributions
of each topic k (φtraink ). Each test document d was split
into two halves containing every first and every second
words respectively. We then fixed the topics and trained the
models on the first half to get the topic proportions (θtestd )
of test document d and compute perplexity for predicting the
second half. In regard to MetaLDA, we fixed the matrices
Φtrain and Λtrain output from the training procedure. On
the first half of test document d, we computed the Dirichlet
prior αtestd with Λtrain and the labels f testd of test document
d (See Step 2a), and then point-estimated θtestd . We ran all
the models 5 times with different random number seeds and
report the average scores and the standard deviations.

In testing, we may encounter words that never occur
in the training documents (a.k.a., unseen words or out-of-
vocabulary words). There are two strategies for handling
unseen words for calculating perplexity on test documents:
ignoring them or keeping them in computing the perplexity.
Here we investigate both strategies:

1) Perplexity Computed without Unseen Words: In this
experiment, the perplexity is computed only on the words
that appear in the training vocabulary. Here we used 80%
documents in each dataset as the training set and the
remaining 20% as the test set.

Tables II and III show10: the average perplexity scores
with standard deviations for all the models. Note that: (1)
The scores on AN with 150 and 200 topics are not reported
due to overfitting observed in all the compared models. (2)
Given the size of NYT, the scores of 200 and 500 topics
are reported. (3) The number of latent topics in LLDA must
equal to the number of document labels. (4) For PLLDA,
we varied the number of topics per label from 5 to 50 (2
and 5 topics on NYT). The number of topics in PPLDA is
the product of the numbers of labels and topics per label.

9http://ipv6.nlsde.buaa.edu.cn/zuoyuan/
10For GPU-DMM and PTM, perplexity is not evaluated because the

inference code for unseen documents is not public available. The random
number seeds used in the code of LLDA and PLLDA are pre-fixed in the
package. So the standard deviations of the two models are not reported.
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Table II: Perplexity comparison on the regular text datasets. The best results are highlighted in boldface.

Dataset Reuters 20NG NYT
#Topics 50 100 150 200 50 100 150 200 200 500

No meta info
{

LDA 677±1 634±2 629±1 631±1 2147±7 1930±7 1820±5 1762±3 2293±8 2154±4
MetaLDA-def-def 648±3 592±2 559±1 540±1 2093±6 1843±7 1708±5 1626±4 2258±9 2079±8

Doc labels





DMR 640±1 577±1 544±2 526±2 2080±8 1811±8 1670±4 1578±1 2231±13 2013±6
MetaLDA-dl-0.01 649±2 582±2 551±3 530±2 2067±9 1821±7 1680±5 1590±1 2219±4 2018±4
MetaLDA-dl-def 642±3 576±3 543±1 526±1 2050±4 1804±6 1675±8 1589±2 2230±3 2022±5

Word features





LF-LDA 841±4 787±4 772±3 771±4 2855±21 2576±3 2433±7 2326±8 2831±2 2700±5
WF-LDA 659±2 616±2 615±1 613±1 2089±7 1875±2 1784±2 1727±3 2287±6 2134±6

MetaLDA-0.1-wf 659±3 621±1 619±1 623±1 2098±7 1887±8 1796±8 1744±4 2283±4 2143±2
MetaLDA-def-wf 643±2 582±4 552±3 535±1 2068±6 1819±1 1685±7 1600±3 2260±7 2095±6

Doc labels &
word features −→ MetaLDA 633±2 568±2 536±2 517±1 2025±12 1781±8 1640±5 1551±6 2217±6 2020±6

Dataset Reuters 20NG NYT
#Topics per label 5 10 20 50 5 10 20 50 2 5

Doc labels
{

PLLDA 714 708 733 829 1997 1786 1605 1482 2839 2846
LLDA 834 2607 2948

Table III: Perplexity comparison without unseen words on the short text datasets. The best results are highlighted in boldface.

Dataset WS TMN AN
#Topics 50 100 150 200 50 100 150 200 50 100

No meta info
{

LDA 961±6 878±8 869±6 888±5 1969±14 1873±6 1881±9 1916±4 406±14 422±12
MetaLDA-def-def 884±10 733±6 671±6 625±6 1800±11 1578±19 1469±4 1422±6 352±16 336±11

Doc labels





DMR 845±7 683±4 607±1 562±2 1750±8 1506±3 1391±7 1323±5 326±6 290±5
MetaLDA-dl-0.01 840±7 693±6 618±3 588±4 1767±11 1528±10 1416±7 1345±13 321±13 303±8
MetaLDA-dl-def 832±4 679±5 622±7 582±5 1720±7 1505±16 1395±11 1325±12 319±9 293±7

Word features





LF-LDA 1164±6 1039±17 1019±11 992±6 2415±35 2393±11 2371±10 2374±14 482±17 514±19
WF-LDA 894±6 839±6 827±10 842±4 1853±6 1766±12 1830±60 1854±45 397±5 410±6

MetaLDA-0.1-wf 889±6 832±3 839±2 853±4 1865±4 1784±2 1799±9 1831±6 388±3 410±8
MetaLDA-def-wf 830±6 688±8 624±5 584±4 1730±14 1504±3 1402±13 1342±4 346±15 332±8

Doc labels &
word features −→ MetaLDA 774±9 627±6 572±3 534±4 1657±4 1415±16 1304±6 1235±6 314±9 293±9

Dataset WS TMN AN
#Topics per label 5 10 20 50 5 10 20 50 5 10

Doc labels
{

PLLDA 1060 886 735 642 2181 1863 1647 1456 440 525
LLDA 1543 2958 392

Figure 2: Perplexity comparison with unseen words in different proportions of the training documents. Each pair of the
numbers on the horizontal axis are the proportion of the training documents and the proportion of unseen tokens in the
vocabulary of the test documents, respectively. The error bars are the standard deviations over 5 runs.

(a) Reuters with 200 topics (b) 20NG with 200 topics (c) TMN with 100 topics (d) WS with 50 topics

The results show that MetaLDA outperformed all the
competitors in terms of perplexity on nearly all the datasets,
showing the benefit of using both document and word meta
information. Specifically, we have the following remarks:
• By looking at the models using only the document-level

meta information, we can see the significant improve-
ment of these models over LDA, which indicates that
document labels can play an important role in guiding
topic modelling. Although the performance of the two
variants of MetaLDA with document labels and DMR

is comparable, our models runs much faster than DMR,
which will be studied later in Section V-F.

• It is interesting that PLLDA with 50 topics for each
label has better perplexity than MetaLDA with 200 top-
ics in the 20NG dataset. With the 20 unique labels, the
actual number of topics in PLLDA is 1000. However,
if 10 topics for each label in PLLDA are used, which
is equivalent to 200 topics in MetaLDA, PLLDA is
outperformed by MetaLDA significantly.

• At the word level, MetaLDA-def-wf performed the best
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among the models with word features only. Moreover,
our model has obvious advantage in running speed (see
Table V). Furthermore, comparing MetaLDA-def-wf
with MetaLDA-def-def and MetaLDA-0.1-wf with
LDA, we can see using the word features indeed
improved perplexity.

• The scores show that the improvement gained by Met-
aLDA over LDA on the short text datasets is larger than
that on the regular text datasets. This is as expected
because meta information serves as complementary
information in MetaLDA and can have more significant
impact when the data is sparser.

• It can be observed that models usually gained improved
perplexity, if α is sampled/optimised, in line with [24].

• On the AN dataset, there is no statistically significant
difference between MetaLDA and DMR. On NYT,
a similar trend is observed: the improvement in the
models with the document labels over LDA is obvious
but not in the models with the word features. Given the
number of the document labels (194 of AN and 545 of
NYT), it is possible that the document labels already
offer enough information and the word embeddings
have little contribution in the two datasets.

2) Perplexity Computed with Unseen Words: To test the
hypothesis that the incorporation of meta information in
MetaLDA can significantly improve the modelling accu-
racy in the cases where the corpus is sparse, we varied
the proportion of documents used in training from 20%
to 80% and used the remaining for testing. It is natural
that when the proportion is small, the number of unseen
words in testing documents will be large. Instead of simply
excluding the unseen words in the previous experiments,
here we compute the perplexity with unseen words for
LDA, DMR, WF-LDA and the proposed MetaLDA. For
perplexity calculation, φtestk,v for each topic k and each
token v in the test documents is needed. If v occurs in
the training documents, φtestk,v can be directly obtained.
While if v is unseen, φunseenk,v can be estimated by the

prior:
βunseenk,v

ntraink,· +βtraink,· +βunseenk,·
. For LDA and DMR which do

not use word features, βunseenk,v = βtraink,v ; For WF-LDA
and MetaLDA which are with word features, βunseenk,v is
computed with the features of the unseen token. Following
Step 1c, for MetaLDA, βunseenk,v =

∏Lword
l′ δ

gunseenv,l

l′,k .

Figure 2 shows the perplexity scores on Reuters, 20NG,
TMN and WS with 200, 200, 100 and 50 topics respectively.
MetaLDA outperformed the other models significantly with
a lower proportion of training documents and relatively
higher proportion of unseen words. The gap between Met-
aLDA and the other three models increases while the training
proportion decreases. It indicates that the meta information
helps MetaLDA to achieve better modelling accuracy on
predicting unseen words.

E. Topic Coherence Evaluation

We further evaluate the semantic coherence of the words
in a topic learnt by LDA, PTM, DMR, LF-LDA, WF-LDA,
GPU-DMM and MetaLDA. Here we use the Normalised
Pointwise Mutual Information (NPMI) [32], [33] to calcu-
late topic coherence score for topic k with top T words:
NPMI(k) =

∑T
j=2

∑j−1
i=1 log

p(wj ,wi)
p(wj)p(wi)

/ − log p(wj , wi),
where p(wi) is the probability of word i, and p(wi, wj) is
the joint probability of words i and j that co-occur together
within a sliding window. Those probabilities were computed
on an external large corpus, i.e., a 5.48GB Wikipedia dump
in our experiments. The NPMI score of each topic in the
experiments is calculated with top 10 words (T = 10) by
the Palmetto package11. Again, we report the average scores
and the standard deviations over 5 random runs.

It is known that conventional topic models directly applied
to short texts suffer from low quality topics, caused by
the insufficient word co-occurrence information. Here we
study whether or not the meta information helps MetaLDA
improve topic quality, compared with other topic models
that can also handle short texts. Table IV shows the NPMI
scores on the three short text datasets. Higher scores indicate
better topic coherence. All the models were trained with
100 topics. Besides the NPMI scores averaged over all
the 100 topics, we also show the scores averaged over
top 20 topics with highest NPMI, where “rubbish” topics
are eliminated, following [23]. It is clear that MetaLDA
performed significantly better than all the other models in
WS and AN dataset in terms of NPMI, which indicates
that MetaLDA can discover more meaningful topics with
the document and word meta information. We would like to
point out that on the TMN dataset, even though the average
score of MetaLDA is still the best, the score of MetaLDA
has overlapping with the others’ in the standard deviation,
which indicates the difference is not statistically significant.

F. Running Time

In this section, we empirically study the efficiency of
the models in term of per-iteration running time. The im-
plementation details of our MetaLDA are as follows: (1)
The SparseLDA framework [31] reduces the complexity of
LDA to be sub-linear by breaking the conditional of LDA
into three “buckets”, where the “smoothing only” bucket
is cached for all the documents and the “document only”
bucket is cached for all the tokens in a document. We
adopted a similar strategy when implementing MetaLDA.
When only the document meta information is used, the
Dirichlet parameters α for different documents in MetaLDA
are different and asymmetric. Therefore, the “smoothing
only” bucket has to be computed for each document, but
we can cache it for all the tokens, which still gives us a
considerable reduction in computing complexity. However,

11http://palmetto.aksw.org
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Table IV: Topic coherence (NPMI) on the short text datasets.

All 100 topics Top 20 topics
WS TMN AN WS TMN AN

No meta info
{

LDA -0.0030±0.0047 0.0319±0.0032 -0.0636±0.0033 0.1025±0.0067 0.137±0.0043 -0.0010±0.0052
PTM -0.0029±0.0048 0.0355±0.0016 -0.0640±0.0037 0.1033±0.0081 0.1527±0.0052 0.0004±0.0037

Doc labels → DMR 0.0091±0.0046 0.0396±0.0044 -0.0457±0.0024 0.1296±0.0085 0.1472±0.1507 0.0276±0.0101

Word features





LF-LDA 0.0130±0.0052 0.0397±0.0026 -0.0523±0.0023 0.1230±0.0153 0.1456±0.0087 0.0272±0.0042
WF-LDA 0.0091±0.0046 0.0390±0.0051 -0.0457±0.0024 0.1296±0.0085 0.1507±0.0055 0.0276±0.0101

GPU-DMM -0.0934±0.0106 -0.0970±0.0034 -0.0769±0.0012 0.0836±0.0105 0.0968±0.0076 -0.0613±0.0020
Doc labels &
word features → MetaLDA 0.0311±0.0038 0.0451±0.0034 -0.0326±0.0019 0.1511±0.0093 0.1584±0.0072 0.0590±0.0065

Table V: Running time (seconds per iteration) on 80% documents of each dataset.

Dataset Reuters WS NYT
#Topics 50 100 150 200 50 100 150 200 200 500

No meta info
{

LDA 0.0899 0.1023 0.1172 0.1156 0.0219 0.0283 0.0301 0.0351 0.7509 1.1400
PTM 4.9232 5.8885 7.2226 7.7670 1.1840 1.6375 1.8288 2.0030 - -

Doc labels
{

DMR 0.6112 0.9237 1.2638 1.6066 0.4603 0.8549 1.2521 1.7173 13.7546 31.9571
MetaLDA-dl-0.01 0.1187 0.1387 0.1646 0.1868 0.0396 0.0587 0.0769 0.112 1 2.4679 4.9928

Word features





LF-LDA 2.6895 5.3043 8.3429 11.4419 2.4920 6.0266 9.1245 11.5983 95.5295 328.0862
WF-LDA 1.0495 1.6025 3.0304 4.8783 1.8162 3.7802 6.1863 8.6599 14.0538 31.4438

GPU-DMM 0.4193 0.7190 1.0421 1.3229 0.1206 0.1855 0.2487 0.3118 - -
MetaLDA-0.1-wf 0.2427 0.4274 0.6566 0.9683 0.1083 0.1811 0.2644 0.3579 4.6205 12.4177

Doc labels &
word features → MetaLDA 0.2833 0.5447 0.7222 1.0615 0.1232 0.2040 0.3282 0.4167 6.4644 16.9735

when the word meta information is used, the SparseLDA
framework no longer works in MetaLDA as the β param-
eters for each topic and each token are different. (2) By
adapting the DistributedLDA framework [34], our MetaLDA
implementation runs in parallel with multiple threads, which
makes MetaLDA able to handle larger document collections.
The parallel implementation was used on the NYT dataset.

The per-iteration running time of all the models is shown
in Table V. Note that: (1) On the Reuters and WS datasets,
all the models ran with a single thread on a desktop PC
with a 3.40GHz CPU and 16GB RAM. (2) Due to the size
of NYT, we report the running time for the models that
are able to run in parallel. All the parallelised models ran
with 10 threads on a cluster with a 14-core 2.6GHz CPU
and 128GB RAM. (3) All the models were implemented in
JAVA. (4) As the models with meta information add extra
complexity to LDA, the per-iteration running time of LDA
can be treated as the lower bound.

At the document level, both MetaLDA-df-0.01 and DMR
use priors to incorporate the document meta information
and both of them were implemented in the SparseLDA
framework. However, our variant is about 6 to 8 times faster
than DMR on the Reuters dataset and more than 10 times
faster on the WS dataset. Moreover, it can be seen that the
larger the number of topics, the faster our variant is over
DMR. At the word level, similar patterns can be observed:
our MetaLDA-0.1-wf ran significantly faster than WF-LDA
and LF-LDA especially when more topics are used (20-30
times faster on WS). It is not surprising that GPU-DMM
has comparable running speed with our variant, because only
one topic is allowed for each document in GPU-DMM. With

both document and word meta information, MetaLDA still
ran several times faster than DMR, LF-LDA, and WF-LDA.
On NYT with the parallel settings, MetaLDA maintains its
efficiency advantage as well.

VI. CONCLUSION

In this paper, we have presented a topic modelling
framework named MetaLDA that can efficiently incorpo-
rate document and word meta information. This gains a
significant improvement over others in terms of perplexity
and topic quality. With two data augmentation techniques,
MetaLDA enjoys full local conjugacy, allowing efficient
Gibbs sampling, demonstrated by superiority in the per-
iteration running time. Furthermore, without losing gener-
ality, MetaLDA can work with both regular texts and short
texts. The improvement of MetaLDA over other models that
also use meta information is more remarkable, particularly
when the word-occurrence information is insufficient. As
MetaLDA takes a particular approach for incorporating meta
information on topic models, it is possible to apply the same
approach to other Bayesian probabilistic models, where
Dirichlet priors are used. Moreover, it would be interesting
to extend our method to use real-valued meta information
directly, which is the subject of future work.

ACKNOWLEDGEMENT

Lan Du was partially supported by Chinese NSFC project
under grant number 61402312. Gang Liu was partially
supported by Chinese PostDoc Fund under grant number
LBH-Q15031.

643

Chapter 5 62



REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet
Allocation,” JMLR, pp. 993–1022, 2003.

[2] G. A. Miller, “WordNet: a lexical database for English,”
Communications of the ACM, pp. 39–41, 1995.

[3] J. Pennington, R. Socher, and C. Manning, “GloVe: Global
vectors for word representation,” in EMNLP, 2014, pp. 1532–
1543.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionally,” in NIPS, 2013, pp. 3111–3119.

[5] R. Das, M. Zaheer, and C. Dyer, “Gaussian LDA for topic
models with word embeddings,” in ACL, 2015, pp. 795–804.

[6] D. Q. Nguyen, R. Billingsley, L. Du, and M. Johnson,
“Improving topic models with latent feature word represen-
tations,” TACL, pp. 299–313, 2015.

[7] G. Xun, V. Gopalakrishnan, F. Ma, Y. Li, J. Gao, and
A. Zhang, “Topic discovery for short texts using word em-
beddings,” in ICDM, 2016, pp. 1299–1304.

[8] C. Li, H. Wang, Z. Zhang, A. Sun, and Z. Ma, “Topic
modeling for short texts with auxiliary word embeddings,”
in SIGIR, 2016, pp. 165–174.

[9] D. Mimno and A. McCallum, “Topic models conditioned on
arbitrary features with Dirichlet-multinomial regression,” in
UAI, 2008, pp. 411–418.

[10] D. Ramage, C. D. Manning, and S. Dumais, “Partially labeled
topic models for interpretable text mining,” in SIGKDD, 2011,
pp. 457–465.

[11] J. D. Mcauliffe and D. M. Blei, “Supervised topic models,”
in NIPS, 2008, pp. 121–128.

[12] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning, “La-
beled LDA: A supervised topic model for credit attribution
in multi-labeled corpora,” in EMNLP, 2009, pp. 248–256.

[13] D. Kim and A. Oh, “Hierarchical Dirichlet scaling process,”
Machine Learning, pp. 387–418, 2017.

[14] C. Hu, P. Rai, and L. Carin, “Non-negative matrix factoriza-
tion for discrete data with hierarchical side-information,” in
AISTATS, 2016, pp. 1124–1132.

[15] D. Andrzejewski, X. Zhu, and M. Craven, “Incorporating
domain knowledge into topic modeling via Dirichlet forest
priors,” in ICML, 2009, pp. 25–32.

[16] P. Xie, D. Yang, and E. Xing, “Incorporating word correlation
knowledge into topic modeling,” in NAACL, 2015, pp. 725–
734.

[17] J. Petterson, W. Buntine, S. M. Narayanamurthy, T. S. Cae-
tano, and A. J. Smola, “Word features for Latent Dirichlet
Allocation,” in NIPS, 2010, pp. 1921–1929.

[18] L. Hong and B. D. Davison, “Empirical study of topic
modeling in twitter,” in Workshop on social media analytics,
2010, pp. 80–88.

[19] Y. Zuo, J. Wu, H. Zhang, H. Lin, F. Wang, K. Xu, and
H. Xiong, “Topic modeling of short texts: A pseudo-document
view,” in SIGKDD, 2016, pp. 2105–2114.

[20] J. Yin and J. Wang, “A Dirichlet multinomial mixture model-
based approach for short text clustering,” in SIGKDD, 2014,
pp. 233–242.

[21] R. Mehrotra, S. Sanner, W. Buntine, and L. Xie, “Improving
LDA topic models for microblogs via tweet pooling and
automatic labeling,” in SIGIR, 2013, pp. 889–892.

[22] D. Andrzejewski, X. Zhu, M. Craven, and B. Recht, “A
framework for incorporating general domain knowledge into
Latent Dirichlet Allocation using first-order logic,” in IJCAI,
2011, pp. 1171–1177.

[23] Y. Yang, D. Downey, and J. Boyd-Graber, “Efficient methods
for incorporating knowledge into topic models,” in EMNLP,
2015, pp. 308–317.

[24] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking
LDA: Why priors matter,” in NIPS, 2009, pp. 1973–1981.

[25] C. Chen, L. Du, and W. Buntine, “Sampling table config-
urations for the hierarchical Poisson-Dirichlet process,” in
ECML, 2011, pp. 296–311.

[26] Y. Teh, M. Jordan, M. Beal, and D. Blei, “Hierarchical
Dirichlet processes,” Journal of the American Statistical As-
sociation, pp. 1566–1581, 2012.

[27] M. Zhou and L. Carin, “Negative binomial process count and
mixture modeling,” TPAMI, pp. 307–320, 2015.

[28] H. Zhao, L. Du, and W. Buntine, “Leveraging node attributes
for incomplete relational data,” in ICML, 2017, pp. 4072–
4081.

[29] W. Buntine and M. Hutter, “A Bayesian view of the
Poisson-Dirichlet process,” arXiv preprint arXiv:1007.0296v2
[math.ST], 2012.

[30] J. Guo, W. Che, H. Wang, and T. Liu, “Revisiting embedding
features for simple semi-supervised learning,” in EMNLP,
2014, pp. 110–120.

[31] L. Yao, D. Mimno, and A. McCallum, “Efficient methods for
topic model inference on streaming document collections,” in
SIGKDD, 2009, pp. 937–946.

[32] N. Aletras and M. Stevenson, “Evaluating topic coherence
using distributional semantics,” in International Conference
on Computational Semantics, 2013, pp. 13–22.

[33] J. H. Lau, D. Newman, and T. Baldwin, “Machine reading tea
leaves: Automatically evaluating topic coherence and topic
model quality,” in EACL, 2014, pp. 530–539.

[34] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Dis-
tributed algorithms for topic models,” JMLR, pp. 1801–1828,
2009.

644

Chapter 5 63



Knowl Inf Syst
https://doi.org/10.1007/s10115-018-1213-y

REGULAR PAPER

Leveraging external information in topic modelling

He Zhao1 · Lan Du1 · Wray Buntine1 · Gang Liu2

Received: 20 December 2017 / Revised: 4 April 2018 / Accepted: 6 May 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract Besides the text content, documents usually come with rich sets of meta-
information, such as categories of documents and semantic/syntactic features of words, like
those encoded in word embeddings. Incorporating such meta-information directly into the
generative process of topic models can improve modelling accuracy and topic quality, espe-
cially in the case where the word-occurrence information in the training data is insufficient.
In this article, we present a topic model calledMetaLDA, which is able to leverage either doc-
ument or word meta-information, or both of them jointly, in the generative process. With two
data augmentation techniques, we can derive an efficient Gibbs sampling algorithm, which
benefits from the fully local conjugacy of the model. Moreover, the algorithm is favoured by
the sparsity of the meta-information. Extensive experiments on several real-world datasets
demonstrate that our model achieves superior performance in terms of both perplexity and
topic quality, particularly in handling sparse texts. In addition, our model runs significantly
faster than other models using meta-information.
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1 Introduction

With the rapid growth of the internet, huge amounts of text data are generated in social
networks, online shopping and news websites, etc. These data are generally short but may
contain rich and complex kinds of information that can be difficult to find in traditional
information sources [44], therefore create demand for both effective and efficient machine
learning techniques. Probabilistic topicmodels such as Latent Dirichlet Allocation (LDA) [4]
are among the popular approaches for this task. In topic modelling, a document is assumed
to be generated from a mixture of topics, where each topic is a probability distribution
over a vocabulary. However, most existing topic models discover topics purely based on the
word-occurrences, ignoring the meta-information (a.k.a., side information) associated with
the content, which often results in degraded performance. We argue that meta-information
associated with diverse texts can play the role of background knowledge in human text
comprehension. When we humans read text, it is natural for us to leverage metadata, such
as categories, authors, timestamps, words’ semantic/syntactic information, to improve our
understanding of the text. Therefore, it is reasonable to expect topic models can also benefit
from the meta-information and yield improved modelling accuracy and topic quality.

In practice, various kinds of meta-information are associated to tweets, product reviews,
blogs, etc. They are often available at both the document level and the word level. At the doc-
ument level, labels of documents can be used to guide topic learning so that more meaningful
topics can be discovered. It is likely that documents with common labels should discuss sim-
ilar topics, which can be modelled by similar distributions over topics. In the case of tweets,
as shown in Fig. 1, they can have an author, hashtag, timestamp, etc. Previous work on tweet
pooling [12,19] has shown that aggregating tweets according to their authors or hashtags can
significantly improve topic modelling. Furthermore, if we use authors as labels for scientific
papers, the research topics of the papers published by the same researcher can be closely
related, and authors having similar research topics are more likely to collaborate [34].

At the word level, different semantic/syntactic features are also accessible. For example,
there are features regarding word relationships, such as synonyms obtained from Word-
Net [22], word co-occurrence patterns obtained from a large corpus, and linked concepts
from knowledge graphs. It is preferable that words having similar meaning but different
morphological forms, like “dog” and “puppy”, are likely to be assigned to the same topic,

Fig. 1 Meta-information associated with a tweet
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even if they barely co-occur in the modelled corpus. Recently, word embeddings generated
by GloVe [27] and word2vec [20,21] have attracted a lot of attention in natural language
processing and related fields. It has been shown that the word embeddings can capture both
the semantic and syntactic features of words so that similar words are close to each other
in the embedding space. It is reasonable to expect that these word embeddings will improve
topic modelling [8,26]. Figure 1 also shows some word-level meta-information associated
with the tweet.

It is known that most conventional topic models can suffer from a large performance
degradation on short texts (e.g., tweets and news headlines) due to insufficient word co-
occurrence information. In such cases, meta-information of documents and words can play
the role of auxiliary information in analysing short texts, which can compensate for the lost
information in word co-occurrences. At the document level, we can leverage the hashtags,
users, locations, and timestamps of tweets so that the data sparsity problem can be alleviated.
At the word level, word semantic similarity and embeddings obtained or trained on large
external corpus (e.g., Google News orWikipedia) can also be built into the generative process
of topic models [17,26,36].

Recently, significant research effort has been devoted to handle short texts in topic mod-
elling. Models along this line often take classical topic models, like LDA, as a building block,
and manipulate the graphical structure to incorporate meta-information into the generative
process [23,26,30]. However, what we found is that those models make use of either the
document level or the word level meta-information, rather than both. The limitation is often
caused by their complicated model structures, which lose conjugacy favoured by sampling
methods, and further result in inefficient inference algorithms.

In this article, we propose MetaLDA,1 a new topic model that can effectively and effi-
ciently make use of arbitrary document and word meta-information encoded in binary form.
Specifically, the labels of a document in MetaLDA are incorporated in the prior of the
per-document topic distributions. If two documents have similar labels, their topic distribu-
tions should be generated with similar Dirichlet priors. Analogously, at the word level, the
features of a word are incorporated in the prior of the per-topic word distributions, which
encourages words with similar features to have similar proportions across topics. Therefore,
both document and word meta-information, if and when they are available, can be flexibly
and simultaneously incorporated in the generative process. MetaLDA has the following key
properties:

1. MetaLDA jointly incorporates various kinds of document and word meta-information
for both regular and short texts, yielding better modelling accuracy and topic quality.

2. With data augmentation techniques, the inference ofMetaLDAcan be done by an efficient
and closed-form Gibbs sampling algorithm that benefits from the full local conjugacy of
the model.

3. The simple structure of incorporating meta-information and the efficient inference algo-
rithm give MetaLDA advantage in terms of running speed over other models with
meta-information.

4. MetaLDA has an improved interpretability. For example, the inclusion of the document
labels directly in the generative process gives the ability of both explaining each label
with topics and assigning labels to each topic.

We conduct extensive experiments with several real datasets including regular and short
texts in various domains. The experimental results demonstrate that MetaLDA outperforms

1 Code at https://github.com/ethanhezhao/MetaLDA/.
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all the competitors we considered in terms of perplexity, topic coherence and running time.
The rest of the article, which extends our earlier contribution [42], is organised as follows.We
first briefly discuss the related work in Sect. 2. Then, we elaborate on MetaLDA and derive
its sampling algorithm in Sects. 3 and 4, respectively. The experimental results derived on
several real-world datasets are reported in Sect. 5. We conclude the article in Sect. 6.

2 Related work

In this section, we review three lines of related work: models with document meta-
information, models with word meta-information, and models for short texts.

At the document level, Supervised LDA (sLDA) [18] models document labels by learning
a generalised linearmodelwith an appropriate link function and exponential family dispersion
function. But the restriction for sLDA is that one document can only have one label. Labelled
LDA (LLDA) [29] assumes that each label has a corresponding topic and a document is
generated by a mixture of the topics. Although multiple labels are allowed in LLDA, it
requires that the number of topics must equal to the number of labels, i.e., exactly one topic
per label. As an extension to LLDA, Partially Labelled LDA (PLLDA) [30] relaxes this
requirement by assigning multiple topics to a label. The Dirichlet Multinomial Regression
(DMR) model [23] incorporates document labels on the prior of the topic distributions like
our MetaLDA but with the logistic-normal transformation. As full conjugacy does not exist
in DMR, a part of the inference has to be done by numerical optimisation, which is slow
for large sets of labels and topics. Similarly, in the Hierarchical Dirichlet Scaling Process
(HDSP) [14], conjugacy is broken aswell since the topic distributions have to be renormalised.
A Poisson factorisation model with hierarchical document labels is introduced in [13], but
the technique cannot be applied to regular topic models as the topic proportion vectors are
also unnormalised.

There has been growing interest in incorporating word features in topic models. For
example, DF-LDA [2] incorporates word must-links and cannot-links using a Dirichlet forest
prior in LDA; MRF-LDA [35] encodes word semantic similarity in LDA with a Markov
random field; WF-LDA [28] extends LDA to model word features with the logistic-normal
transform; LF-LDA [26] integrates word embeddings into LDA by replacing the topic-word
Dirichlet multinomial component with a mixture of a Dirichlet multinomial component and
a word embedding component; Instead of generating word types (tokens), Gaussian LDA
(GLDA) [8] directly generates word embeddings with the Gaussian distribution. Despite the
exciting applications of the above models, their inference is usually less efficient due to the
non-conjugacy and/or complicated model structures.

Analysis of short text with topic models has been an active area with the development of
social networks. Generally, there are twoways to deal with the sparsity problem in short texts,
either using the intrinsic properties of short texts or leveraging meta-information. For the first
way, one popular approach is to aggregate short texts into pseudo-documents, for example,
[12] introduces amodel that aggregates tweets containing the sameword; Recently, PTM [46]
aggregates short texts into latent pseudo-documents. Another approach is to assume one topic
per short document, known asmixture of unigrams or DirichletMultinomialMixture (DMM)
such as [36,39]. For the second way, document meta-information can be used to aggregate
short texts, for example, [12] aggregates tweets by the corresponding authors and [19] shows
that aggregating tweets by their hashtags yields superior performance over other aggregation
methods. Closely related work to ours are models that use word features for short texts. For
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example, [36] introduces an extension of GLDA on short texts which samples an indicator
variable that chooses to generate either the type of a word or the embedding of a word and
GPU-DMM [17] extends DMM with word semantic similarity obtained from embeddings
for short texts. Although with improved performance, there still exist challenges for existing
models:

– for aggregation-based models, it is usually hard to choose which meta-information to use
for aggregation;

– the “single topic” assumptionmakes DMMmodels lose the flexibility to capture different
topic ingredients of a document;

– the incorporation of meta-information in the existing models is usually less efficient.

To our knowledge, the attempts that jointly leverage document andwordmeta-information
are relatively rare. For example, meta-information can be incorporated by first-order logic in
Logit-LDA [3] and score functions in SC-LDA [37]. However, the first-order logic and score
functions need to be defined for different kinds of meta-information and the definition can
be infeasible for incorporating both document and word meta-information simultaneously.

3 The MetaLDA model

Given a corpus, LDAuses the sameDirichlet prior for all the per-document topic distributions
and the same prior for all the per-topic word distributions [33]. While in MetaLDA, each
document has a specific Dirichlet prior on its topic distribution, which is computed from
the meta-information of the document, and the parameters of the prior are estimated during
training. Similarly, each topic has a specific Dirichlet prior computed from the word meta-
information. In this section we elaborate on our MetaLDA, in particular on how the meta-
information is incorporated. Hereafter, we will use labels as document meta-information,
unless otherwise stated. Table 1 summarises the notations used in this section.

The basic formulation mirrors that of standard LDA. Given a collection of D documents
D, MetaLDA generates document d ∈ {1, . . . , D} with a mixture of K topics and each topic
k ∈ {1, . . . , K } is a distribution over the vocabulary with V tokens, denoted by φk ∈ RV+. For
document d with Nd words, to generate the i th (i ∈ {1, . . . , Nd}) word wd,i , we first sample
a topic zd,i ∈ {1, . . . , K } from the document’s topic distribution θd ∈ RK+ , and then sample
wd,i from φzd,i

. Now this is extended with meta-information. Assume the labels of document

d are encoded in a binary vector fd ∈ {0, 1}Ldoc where Ldoc is the total number of unique
labels. fd,l = 1 indicates label l is active in document d and vice versa. MetaLDA allows
each document to have multiple labels. Similarly, the Lword features of token v are stored in
a binary vector gv ∈ {0, 1}Lword . Therefore, the document and word meta-information asso-
ciated with D are stored in the matrix F ∈ {0, 1}D×Ldoc and G ∈ {0, 1}V×Lword , respectively.
Although MetaLDA incorporates binary features, categorical features and real-valued fea-
tures can be converted into binary values with proper transformations such as discretisation
and binarisation [10].

Figure 2 shows the graphical model of MetaLDA and the generative process is as follows:

1. For each topic k:

(a) For each doc-label l: Draw λl,k ∼ Ga(μ0, μ0)

(b) For each word-feature l ′: Draw δl ′,k ∼ Ga(ν0, ν0)

(c) For each token v: Compute βk,v = ∏Lword
l ′=1 δ

gv,l′
l ′,k

(d) Draw φk ∼ DirV (βk)
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Table 1 List of notations

Notation Description

D Number of documents

V Size of vocabulary

K Number of topics

Nd Number of words in document d

Ldoc Dimension of document labels

Lword Dimension of word features

fd Binary label vector of document d

gv Binary feature vector of word v

wd,i i th word in document d

zd,i Topic of the i th word in document d

θd Normalised topic weights (topic distribution) of document d

φk Normalised word weights (word distribution) of topic k

αd Dirichlet parameter of the topic distribution of document d

βk Dirichlet parameter of the word distribution of document k

λl,k Weight between document label l and topic k

δl′,k Weight between word feature l ′ and topic k
μ0 Hyper-parameter of λl,k

ν0 Hyper-parameter of δl′,k

zd,i

wd,i

θdαd

fd,l

λl,k

μ0

φk

βk

δl ,k

gv,l

ν0

∀ k

∀ l

∀ v

∀ l

∀ i

∀ d

∀ k

Fig. 2 The graphical model of MetaLDA
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2. For each document d:

(a) For each topic k: Compute αd,k = ∏Ldoc
l=1 λ

fd,l
l,k

(b) Draw θd ∼ DirK (αd)

(c) For each word in document d:
(i) Draw topic zd,i ∼ CatK (θd)

(ii) Draw word wd,i ∼ CatV (φzd,i
)

where Ga(·, ·), Dir(·), Cat(·) are the gamma distribution with shape and rate parameters, the
Dirichlet distribution, and the categorical distribution, respectively. K , μ0, and ν0 are the
hyper-parameters.

To incorporate document labels, MetaLDA learns a specific Dirichlet prior over the topics
for each document by using the label information. Specifically, the information of document
d’s labels is incorporated in αd , the parameter of Dirichlet prior on θd . As shown in Step 2a,
αd,k is computed as a log linear combination of the labels fd,l . Since fd,l is binary, αd,k is
indeed the multiplication of λl,k over all the active labels of document d , i.e., {l | fd,l = 1}.
Drawn from the gamma distribution with mean 1, λl,k controls the impact of label l on topic
k. If label l has no or less impact on topic k, λl,k is expected to be 1 or close to 1, and then
λl,k will have no or little influence on αd,k and vice versa. The hyper-parameter μ0 controls
the variation of λl,k . The incorporation of word features is analogous but in the parameter of
the Dirichlet prior on the per-topic word distributions as shown in Step 1c.

The intuition of our way of incorporating meta-information is as follows. At the document
level, if two documents have more labels in common, their Dirichlet parameter αd will be
more similar, resulting in more similar topic distributions θd ; At the word level, if two words
have similar features, their βk,v in topic k will be similar and then we can expect that their
φk,v could be more or less the same. Finally, the two words will have similar probabilities of
showing up in topic k. In other words, if a topic “prefers” a certain word, we expect that it will
also prefer other words with similar features to that word. Moreover, at both the document
and the word level, different labels/features may have different impact on the topics (λ/δ),
which can be automatically learnt in MetaLDA from the data.

4 Inference

Unlike most existing methods, our way of incorporating the meta-information facilitates the
derivation of an efficient Gibbs sampling algorithm. With two data augmentation techniques
(i.e., the introduction of auxiliary variables),MetaLDAadmits the local conjugacy that further
gives us a close-form Gibbs sampling algorithm. Note that MetaLDA incorporates the meta-
information on the Dirichlet priors, so we can still use LDA’s collapsed Gibbs sampling
algorithm for the topic assignment zd,i . Thus, there is no need to use a hybrid learning
algorithm (i.e., optimisation + sampling), such as those in [23,26]. Moreover, as shown in
Step 2a and 1c, we only need to consider nonzero entries of F and G in computing the full
conditionals, which further reduces the inference complexity, particularly when the feature
space is sparse. This is often the case in real-world scenarios. In the rest of this section, we
will focus on the derivation of the full conditionals for sampling the two Gamma random
variables, λ and δ, used to modelling the influence of document labels and word features on
topics. Table 2 shows the statistics that we need while running the inference.
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Table 2 Summary of statistics

Notation Description

md,k Number of words in document d assigned to topic k

nk,v Number of word v assigned to topic k

qd Beta distributed axillary variable for document d

td,k Axillary table counts drawn from CRP for document d and topic k

q̂k Beta distributed axillary variable for topic k

t ′d,k Axillary table counts drawn from CRP for document k and word v

Given φ1:K and θ1:D , the complete model likelihood (i.e., joint distribution) of MetaLDA
is exactly the same as LDA’s likelihood, which is as follows:

Pr(w1:D, z1:D|θ1:D,φ1:K ) =
D∏

d=1

Nd∏

i=1

θd,zd,i φzd,i ,v =
D∏

d=1

K∏

k=1

θ
md,k
d,k

K∏

k=1

V∏

v=1

φ
nk,v
k,v (1)

where nk,v = ∑D
d

∑Nd
i=1 1(wd,i=v,zd,i=k) counts the number of words v assigned to topic k,

md,k = ∑Nd
i=1 1(zd,i=k) counts the number of words in document d assigned to topic k, and

1(·) is the indicator function. In the standard LDA model, we can marginalise out φ and θ

using the Dirichlet multinomial conjugacy, and then yield

Pr(z1:D,w1:D;α1:D,β1:K )

=
∫

θ

D∏

d=1

Γ
(∑K

k=1 αd,k

)

∏K
k=1 Γ (αd,k)

K∏

k=1

θ
md,k+αd,k−1
d,k

∫

φ

K∏

k=1

Γ
(∑V

v=1 βk,v

)

∏V
v=1 Γ (βk,v)

V∏

v=1

φ
nk,v+βk,v−1
k,v ·

=
D∏

d=1

BetaK (αd + md)

BetaK (αd)

K∏

k=1

BetaV (βk + nk)
BetaV (βk)

(2)

where Γ (·) is the Gamma function, BetaN (·) is a N-dimensional beta function as

BetaN (x) =
∏

n Γ (xn)

Γ
(∑

n xn
)

and here we assume that the Dirichlet priors are document and topic specific. Given βk and
αd , it is straightforward to compute the full conditional for sampling topic assignment zd,i ,
i.e.,

Pr(zd,i = k | z−zd,i
1:D ,w1:D,α1:D,β1:K ) = Pr(zd,i = k, z

−zd,i
1:D ,w1:D,α1:D,β1:K )

Pr(z
−zd,i
1:D ,w1:D,α1:D,β1:K )

∝ (αd,k + md,k)
βk,v + nk,v
βk,· + nk,·

. (3)

In MetaLDA, we have replaced αd and βk with a log linear model in order to build
informative priors from various side information associated with both documents and words.
They are deterministically computed from a set of Gamma random variables, as shown
in Step 2a and 1c in the generative process. Equation (3) can still be used in MetaLDA to
sample the topic assignments. However, the major challenge is to sample the Gamma random
variables, λ and δ without significantly complicating the inference procedure.
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4.1 Sampling Gamma random variable λl,k

λl,k is involved in computing the Dirichlet prior over θ1:D via the parameter α1:D . To sample
λl,k , we expand the first Beta ratio in Eq. (2) with Gamma functions as follows:

D∏

d=1

BetaK (αd + md)

BetaK (αd)
=

D∏

d=1

Γ (αd,·)
Γ (αd,· + md,·)
︸ ︷︷ ︸

Gamma ratio 1

K∏

k=1

Γ (αd,k + md,k)

Γ (αd,k)
︸ ︷︷ ︸

Gamma ratio 2

(4)

where αd,· = ∑K
k=1 αd,k , and md,· = ∑K

k=1 md,k . It is not easy to directly work with these

Gamma functions, while we replace αk with
∏Ldoc

l=1 λ
fd,l
l,k . In order to retain the sampling

efficiency of the standard LDA model, we appeal to data augmentation.
Gamma ratio 1 in Eq. (4) can be seen to be the marginalisation of a set of Beta ran-

dom variables, therefore can be augmented as (similar to the sampling of the Pitman–Yor
concentration parameter in [9]):

Γ (αd,·)
Γ (αd,· + md,·)
︸ ︷︷ ︸

Gamma ratio 1

∝
∫

qd
q

αd,·−1
d (1 − qd)

md,·−1 (5)

where for each document d , qd ∼ Beta(αd,·,md,·). Given a set of q1:D for all the documents,
Gamma ratio 1 can be approximated by the product of q1:D , i.e.,

∏D
d=1 q

αd,·
d .

Gamma ratio 2 in Eq. (4) is the Pochhammer symbol for a rising factorial, which can be
augmented with an auxiliary variable td,k [7,31,40,45] as follows:

Γ (αd,k + md,k)

Γ (αd,k)
︸ ︷︷ ︸

Gamma ratio 2

=
md,k∑

td,k=0

S
md,k
td,k

α
td,k
d,k (6)

where Smt indicates an unsigned Stirling number of the first kind. Gamma ratio 2 is indeed
a normalising constant for the probability of the number of tables in the Chinese Restaurant
Process (CRP) [5], td,k can be sampled by a CRP with αd,k as the concentration and md,k as
the number of customers:

td,k =
md,k∑

i=1

Bern

(
αd,k

αd,k + i

)

(7)

where Bern(·) samples a sequence of binary variables from the Bernoulli distribution. The
complexity of sampling td,k by Eq. (7) is O(md,k). For large md,k , as the standard deviation
of td,k is O(

√
logmd,k) [5], one can sample td,k in a small window around the current value

in complexity O(
√
logmd,k).

By ignoring the terms unrelated to α, the augmentation of Eq. (6) can be simplified to a
single term α

td,k
d,k . With those auxiliary variables, we can simplify Eq. (4) as:

D∏

d=1

q
αd,.

d

K∏

k=1

α
td,k
d,k =

D∏

d=1

K∏

k=1

q
αd,k
d α

td,k
d,k (8)
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Now, replacing αd,k with λl,k (i.e., αd,k = ∏Ldoc
l=1 λ

fd,l
l,k ), we get:

(
D∏

d=1

K∏

k=1

eαd,k log qd

) ⎛

⎝
D∏

d=1

K∏

k=1

(
Ldoc∏

l=1

λ
fd,l
l,k

)td,k
⎞

⎠

=
(

D∏

d=1

K∏

k=1

e
−αd,k log

1
qd

) (
Ldoc∏

l=1

K∏

k=1

λ

∑D
d=1 fd,l td,k

l,k

)

=
(

K∏

k=1

e
−∑D

d=1 αd,k log
1
qd

) (
Ldoc∏

l=1

K∏

k=1

λ

∑D
d=1 fd,l td,k

l,k

)

(9)

Recall that all the document labels are binary and λl,k is involved in computing αd,k if
and only if fd,l = 1. Extracting all the terms related to λl,k in Eq. (9), we get the posterior
likelihood of λl,k :

e
−λl,k

(∑D
d=1: fd,l=1

αd,k
λl,k

log 1
qd

)

λ

∑D
d=1 fd,l td,k

l,k

where αd,k
λl,k

is the value ofαd,k withλl,k removedwhen fd,l = 1.With these data augmentation
techniques, the likelihood is transformed into a form that is conjugate to the gamma prior of
λl,k .

Pr(λl,k) ∝ e
−λl,k

(∑D
d=1: fd,l=1

αd,k
λl,k

log 1
qd

)

λ

∑D
d=1 fd,l td,k

l,k λ
μ0−1
l,k e−λl,kμ0

= e
−λl,k

(
μ0−∑D

d=1: fd,l=1
αd,k
λl,k

log qd
)

λ
μ0+∑D

d=1 fd,l td,k−1
l,k

Therefore, it is straightforward to yield the following sampling strategy for λl,k :

λl,k ∼ Ga(μ′, μ′′) (10)

μ′ = μ0 +
D∑

d=1: fd,l=1

td,k (11)

μ′′ = μ0 −
D∑

d=1: fd,l=1

αd,k

λl,k
log qd (12)

Before λl,k is sampled, the value of αd,k can be computed and cached. After a new value
of λl,k is sampled, αd,k is updated by:

αd,k ← αd,kλ
′
l,k

λl,k
, ∀ 1 ≤ d ≤ D : fd,l = 1 (13)

where λ′
i,k is the newly sampled value of λi,k .

To sample/compute Eqs. (10)–(13), one only iterates over the documents where label l
is active (i.e., fd,l = 1). Thus, the sampling for all λ takes O(D′K Ldoc) where D′ is the
average number of documents where a label is active (i.e., the column-wise sparsity of F). It
is usually that D′ 	 D because if a label exists in nearly all the documents, it provides little
discriminative information and can then be neglected. This demonstrates how the sparsity
of document meta-information is leveraged. Moreover, sampling all the tables t takes O(Ñ )

(Ñ is the total number of words in D) which can be accelerated with the window sampling
technique explained above.
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4.2 Sampling Gamma random variable δl ′,k

The derivation of sampling δl ′,k is analogous to λl,k . Here, we use the same data augmentation
methods for re-parameterising the second Beta ratio in Eq. (2), i.e.,

K∏

k=1

BetaV (βk + nk)
BetaV (βk)

=
∏

k

Γ (βk,·)
Γ (βk,· + nk,·)

∏

v

Γ (βk,v + nk,v)

Γ (βk,v)
(14)

as

K∏

k=1

V∏

v=1

q̂
βk,v
k β

t ′k,v
k,v (15)

where q̂k ∼ Be(βk,., nk,.) and t ′k,v = ∑nk,v
i=1 Bern

(
βk,v

βk,v+i

)
. Now, we replace βk,v with

∏Lword
l ′=1 δ

gv,l′
l ′,k ,

(
K∏

k=1

V∏

v=1

e
−δl′,k

βk,v
δl′,k log 1

q̂k

) ⎛

⎝
K∏

k=1

V∏

v=1

(
Lword∏

l ′=1

δ
gv,l′
l ′,k

)t ′k,v
⎞

⎠

=
K∏

k=1

e
−δl′,k

(
∑V

v=1
βk,v
δl′,k

)

log 1
q̂k

(
K∏

k=1

Lword∏

l ′=1

δ

∑V
v=1 gv,l′ t ′k,v

l ′,k

)

and then extract all the terms related to δl ′,k in Eq. (15), and add the Gamma prior, we derive
the posterior of δl ′,k :

Pr(δl ′,k) ∝ e
−δl′,k

(

ν0−log q̂k
∑V

v=1:g
v,l′ =1

βk,v
δl′,k

)

δ
ν0+∑

v gv,l′ t ′k,v−1

l ′,k

We can then sample δl ′,k from a Gamma distribution parameterised with

δl ′,k ∼ Ga(ν′, ν′′) (16)

ν′ = ν0 +
V∑

v=1:gv,l′=1

t ′k,v (17)

ν′′ = ν0 − log q̂k

V∑

v=1:gv,l′=1

βk,v

δl ′,k
(18)

βk,v can be updated in a similar way to αd,k , i,e,

βk,v ← β ′
k,vδ

′
l ′,k

δl ′,k
, ∀ 1 ≤ k ≤ K : gv,l ′ = 1 (19)

where δ′
l ′,k is newly sampled value of δl ′,k . Sampling all δ takes O(V ′K Lword) where V ′ is

the average number of tokens where a feature is active (i.e., the column-wise sparsity of G
and usually V ′ 	 V ) and sampling all the tables t ′ takes O(Ñ ). Figure 3 illustrates the full
sampling algorithm.
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Require: D, F (if available), G (if available), K, μ0, ν0, MaxIteration
Ensure: topic assignments for all words: zd,i

1: Randomly initialise zd,i, λl,k (Step 1a), δl ,k (Step 1b)
2: Compute αd,k (Step 2a), βk,v (Step 1c), md,k, nk,v

3: for iter ← 1 to MaxIteration do
4: for all document d do
5: for all word wd,i = v (zd,i = k) in d do
6: md,k = md,k − 1, nk,v = nk,v − 1
7: Sample new topic k according to Eq. (3)
8: zd,i = k , md,k = md,k + 1, nk ,v = nk ,v + 1
9: end for

10: end for
11: for all document d do
12: Sample qd by qd ∼ Beta(αd,·, md,·)
13: for all topic k do
14: Sample td,k according to Eq. (7)
15: end for
16: end for
17: for all document label l and topic k do
18: Sample λl,k according to Eq. (10) to Eq. (12)
19: Update αd,k according to Eq. (13)
20: end for
21: for all topic k do
22: Sample q̂k by q̂k ∼ Beta(βk,·, nk,·)
23: for all word v do
24: Sample tk,v by tk,v =

nk,v

i=1 Bern
βk,v

βk,v+i

25: end for
26: end for
27: for all word feature l and topic k do
28: Sample δl ,k according to Eq. (16) to Eq. (18)
29: Update βk,v according to Eq. (19)
30: end for
31: end for

Fig. 3 Collapsed Gibbs sampling algorithm for MetaLDA

4.3 MetaLDA as a hyper-parameter sampling approach

Besides the observed labels/features associated with the datasets, a default label/feature for
each document/word is introduced in MetaLDA, which is always equal to 1. The default
can be interpreted as the bias term in α/β, which is supposed to capture the information
unrelated to the labels/features. When working without document labels with the default,
MetaLDAsamples theDirichlet parameters (i.e.,Hyper-parameters ofLDA)of the document-
topic distributions, α, according to the statistics in the target corpus. Similarly, without
word features, the Dirichlet parameters of the topic-word distributions, β, are sampled. We
demonstrate this by taking the document-topic distributions as an example.

Now assume each document only has a default label that is always equal to 1, i.e., fd,0 = 1
and fd,l = 0 for all l > 0. According to our construction (Step 1 and 2a), ad,k = λ0,k for all
the document. In other words, all the documents share the same asymmetric Dirichlet prior
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on the document-topic distributions (θd ) which is constructed as follows:

αk ∼ Ga(μ0, ν0) (20)

θd ∼ DirK (α) (21)

In this case, we can sample αk as follows:

αk ∼ Ga

(

μ0 + t·,k, μ0 −
D∑

d=1

log qd

)

(22)

Alternatively, we can vary MetaLDA to have a symmetric Dirichlet prior:

α ∼ Ga(μ0, μ0) (23)

θd ∼ DirK (α, . . . , α) (24)

In this case, we can sample α as follows:

α ∼ Ga

(

μ0 + t·,·, μ0 −
D∑

d=1

log qd

)

(25)

Discussed in [6,33], sampling the Dirichlet priors can gain significant performance
improvement in topic models. In the case where document labels/word features are not used,
MetaLDA offers an alternative hyper-parameter sampling approach to the methods such as
fixed-point iterations [24] and Newton–Raphson [32]. These methods use MAP to optimise
the hyper-parameters while ours uses MCMC sampling. We would like to point out that Met-
aLDA’s sampling of symmetric Dirichlet prior is similar to the approach introduced in [31].
However the sampling of asymmetric prior was not considered in [31]. Compared with the
built-in hyper-parameter sampling methods in Mallet2 which are based on histograms of the
statistics, our approach is more robust in the case where the statistics are not sufficient (e.g.,
short texts). This is further discussed with experiments in Sect. 5.4.3.

5 Experiments

In this section, we evaluate the proposed MetaLDA against several recent alternatives that
also incorporate meta-information, using 6 real datasets including both regular and short
texts. We will focus on the evaluation of

– the modelling accuracy of MetaLDA in terms of perplexity, a standard measure used
in topic modelling. The goal is to study how the meta-information contributes to the
predictive likelihood of unseen documents.

– the quality of topics learned byMetaLDA. It is interesting to see whether or not the meta-
information will positively affect the topic coherence. We will report both quantitative
and qualitative analyses.

– the running time of MetaLDA. The introduction of meta-information increases the
modelling complexity to some extend. However, as we discussed in previous sections,
MetaLDA can benefit from the local conjugacy given by the data augmentation methods,
and also be parallelised using the same distributed framework [25] in Mallet. Therefore,
we will empirically study the efficiency of MetaLDA.

2 http://mallet.cs.umass.edu.
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Besides, we will also study how word embeddings learnt by different techniques affect both
perplexity and topic coherence.

5.1 Datasets

In the experiments, we used three regular and three short text datasets, which are as follows:

– Reuters is a widely used corpus extracted from the Reuters-21578 dataset where doc-
uments without any labels are removed.3 There are 11,367 documents and 120 labels.
Each document is associated with multiple labels. The vocabulary size is 8817, and the
average document length is 73.

– 20NG 20 Newsgroups is a widely used dataset consists of 18,846 news articles with 20
categories. The vocabulary size is 22,636 and the average document length is 108.

– NYT NewYorkTimes is extracted from thedocuments in the category “Top/News/Health”
in the New York Times Annotated Corpus.4 There are 52,521 documents and 545 unique
labels. Each document is with multiple labels. The vocabulary contains 21,421 tokens,
and there are 442 words in a document on average.

– WS Web Snippets, used in [17], contains 12,237 web search snippets and each snippet
belongs to one of 8 categories. The vocabulary contains 10,052 tokens, and there are 15
words in one snippet on average.

– TMN Tag My News, used in [26], consists of 32,597 English RSS news snippets from
Tag My News. With a title and a short description, each snippet belongs to one of 7
categories. There are 13,370 tokens in the vocabulary, and the average length of a snippet
is 18.

– AN ABC News, is a collection of 12,495 short news descriptions and each one is in
multiple of 194 categories. There are 4255 tokens in the vocabulary, and the average
length of a description is 13.

All the datasets were tokenised by Mallet (see footnote 2) and we removed the words that
exist in less than 5 documents and more than 95% of the documents.

5.2 Meta-information settings

At the document level, the labels associated with documents in each dataset were used as
the meta-information. At the word level, we used a set of binarised word embeddings as
word features (see footnote 3), which are obtained from real-valued word embeddings such
as GloVe or word2vec. To binarise word embeddings, we first adopted the following method
similar to [11]:

g′
v, j =

⎧
⎪⎨

⎪⎩

1, if g′′
v, j > Mean+(g′′

v)

− 1, if g′′
v, j < Mean−(g′′

v)

0, otherwise

(26)

where g′′
v is the original embedding vector for word v, g′

v, j is the binarised value for j th
element of g′′

v , andMean+(·) andMean−(·) are the average value of all the positive elements
and negative elements, respectively.

3 MetaLDA is able to handle documents/words without labels/features. But for fair comparison with other
models, we removed the documents without labels and words without features.
4 https://catalog.ldc.upenn.edu/ldc2008t19.
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The insight is that we only consider features with strong opinions (i.e., large positive or
negative value) on each dimension. To transform g′ ∈ {− 1, 1} to the final g ∈ {0, 1}, we
use two binary bits to encode one dimension of g′

v, j : the first bit is on if g′
v, j = 1 and the

second is on if g′
v, j = − 1. This means that if the original embeddings are 100-dimensional,

the binarised embeddings will be with 200 dimensions. In our experiments, we also tried
some other word embedding binarisation methods including the one in [10]. However, the
performance with those binarisation methods is not comparable with the one we proposed
above. Therefore, the experimental results with different binarisation methods will not be
reported.

In the perplexity and topic coherence evaluation, i.e., Sects. 5.4 and 5.5, we will use the
50-dimensional GloVe word embeddings pre-trained on Wikipedia5 as the source of word
features. We then study how different word embedding sources influence the performance
of our model in Sect. 5.6. It is noteworthy that MetaLDA can also work with other word
features such as semantic similarity.

5.3 Compared models and parameter settings

We evaluate the performance of the following models:

– MetaLDA and its variants: the proposed model and its variants. Here we useMetaLDA to
indicate the model considering both document labels and word features. Several variants
ofMetaLDAwith document labels andword features separately were also studied, which
are shown in Table 3. These variants differ in the method of estimating α and β. All the
models listed in Table 3 were implemented on top of Mallet. The hyper-parameters μ0

and ν0 were set to 1.0.
– LDA [4]: the baseline model. The Mallet implementation of SparseLDA [38] is used.
– LLDA, Labelled LDA [29] and PLLDA, Partially Labelled LDA [30]: two models that

make use of multiple document labels. The original implementation6 is used.
– DMR, LDA with Dirichlet Multinomial Regression [23]: a model that can use multiple

document labels. The Mallet implementation of DMR based on SparseLDA was used.
Following Mallet, we set the mean of λ to 0.0 and set the variances of λ for the default
label and the document labels to 100.0 and 1.0, respectively.

– WF-LDA, Word Feature LDA [28]: a model with word features. We implemented it on
top of Mallet and used the default settings in Mallet for the optimisation.

– LF-LDA, Latent Feature LDA [26]: a model that incorporates word embeddings. The
original implementation7 was used. Following the original paper, we used 1500 and 500
MCMC iterations for initialisation and sampling, respectively, and set λ to 0.6, and used
the original 50-dimensional GloVe word embeddings as word features.

– GPU-DMM, Generalized PólyaUrnDMM[17]: amodel that incorporates word semantic
similarity. The original implementation8 was used. The word similarity was generated
from the distances of the word embeddings. Following the original paper, we set the
hyper-parameters μ and ε to 0.1 and 0.7, respectively, and the symmetric document
Dirichlet prior to 50/K .

5 https://nlp.stanford.edu/projects/glove/.
6 https://nlp.stanford.edu/software/tmt/tmt-0.4/.
7 https://github.com/datquocnguyen/LFTM.
8 https://github.com/NobodyWHU/GPUDMM.
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Table 3 MetaLDA and its variants

Compute α with Compute β with

MetaLDA Document labels Word features

MetaLDA-dl-def Document labels Default feature

MetaLDA-dl-0.01 Document labels Symmetric 0.01 (fixed)

MetaLDA-def-wf Default label Word features

MetaLDA-0.1-wf Symmetric 0.1 (fixed) Word features

MetaLDA-def-def Default label Default feature

Table 4 Summary of the
compared models

Meta Info used Model

None LDA [4]

PTM [46]

MetaLDA-def-def

Document labels LLDA [29]

PLLDA [30]

DMR [23]

MetaLDA-dl-def

MetaLDA-dl-0.01

Word features WF-LDA [28]

LF-LDA [26]

MetaLDA-def-wf

MetaLDA-0.1-wf

GPU-DMM [17]

Both MetaLDA

– PTM, Pseudo document based Topic Model [46]: a model for short text analysis. The
original implementation9 was used. Following the paper, we set the number of pseudo-
documents to 1000 and λ to 0.1.

All the models, except where noted, the symmetric parameters of the document and the
topic Dirichlet priors were set to 0.1 and 0.01, respectively, and 2000 MCMC iterations are
used to train the models. We summarise the compared models in terms of their usage of
meta-information in Table 4.

5.4 Perplexity evaluation

Perplexity is a measure that is widely used [33] to evaluate the modelling accuracy of topic
models. The lower the score, the higher the modelling accuracy. To compute perplexity, we
randomly selected some documents in a dataset as the training set and the remaining as the
test set. We first trained a topic model on the training set to get the word distributions of
each topic k (φtrain

k ). Each test document d was split into two halves containing every first
and every second word, respectively. We then fixed the topics and trained the models on the
first half to get the topic proportions (θ testd ) of test document d and compute perplexity for

9 http://ipv6.nlsde.buaa.edu.cn/zuoyuan/.
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predicting the second half. With regard to MetaLDA, we fixed the matrices �train and �train

output from the training procedure. On the first half of test document d , we computed the
Dirichlet prior αtest

d with�train and the labels f testd of test document d (See Step 2a), and then
point-estimated θ testd . We ran all the models 5 times with different random number seeds and
report the average scores and the standard deviations.

In testing, we may encounter words that never occur in the training documents (a.k.a.,
unseen words or out-of-vocabulary words). There are two strategies for handling unseen
words for calculating perplexity on test documents: ignoring them or keeping them in com-
puting the perplexity. Here we investigate both strategies:

5.4.1 Perplexity computed without unseen words

In this experiment, the perplexity is computed only on the words that appear in the training
vocabulary. Herewe used 80%documents in each dataset as the training set and the remaining
20% as the test set.

Tables 5 and 6 show10 the average perplexity scores with standard deviations for all the
models. Note that: (1) The scores on AN with 150 and 200 topics are not reported due to
overfitting observed in all the compared models. (2) Given the size of NYT, the scores of
200 and 500 topics are reported. (3) The number of latent topics in LLDA must equal to the
number of document labels. (4) For PLLDA, we varied the number of topics per label from
5 to 50 (2 and 5 topics on NYT). The total number of topics used by PPLDA is the product
of the number of labels and the number of topics per label.

The results show that the proposed MetaLDA outperformed all the competitors in terms
of perplexity on nearly all the datasets, showing the benefit of using both document and word
meta-information. Specifically, we have the following remarks:

– By looking at the models using only the document-level meta-information, we can see
the significant improvement of these models over LDA, which indicates that document
labels can play an important role in guiding topic modelling. Although the performance
of the two variants of MetaLDA with document labels and DMR is comparable, our
models run much faster than DMR, which will be studied later in Sect. 5.8.

– It is interesting that PLLDA with 50 topics for each label has better perplexity than
MetaLDA with 200 topics in the 20NG dataset. With the 20 unique labels, the actual
number of topics in PLLDA is 1000. However, if 10 topics for each label in PLLDA
are used, which is equivalent to 200 topics in MetaLDA, PLLDA is outperformed by
MetaLDA significantly.

– At the word level, MetaLDA-def-wf performed the best among the models with word
features only.Moreover, our model has a clear advantage in running speed (see Table 13).
Furthermore, comparing MetaLDA-def-wf with MetaLDA-def-def and MetaLDA-0.1-
wf with LDA, we can see using the word features indeed improved perplexity.

– The scores show that the improvement gained by MetaLDA over LDA on the short text
datasets is larger than that on the regular text datasets. This is expected because meta-
information serves as complementary information in MetaLDA and can have significant
impact when the data is sparse.

– It can be observed that models usually gained improved perplexity, if the Dirichlet param-
eter α is sampled/optimised, in line with [33]. We further study this in Sect. 5.4.3.

10 For GPU-DMM and PTM, perplexity is not evaluated because the inference code for unseen documents
is not public available. The random number seeds used in the code of LLDA and PLLDA are pre-fixed in the
package. So the standard deviations of the two models are not reported.
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– On the AN dataset, there is no statistically significant difference between MetaLDA and
DMR. On NYT, a similar trend is observed: the improvement in the models with the
document labels over LDA is obvious but not in the models with the word features.
Given the number of the document labels (194 of AN and 545 of NYT), it is possible that
the document labels already offer enough information and the word embeddings have
little contribution in the two datasets.

5.4.2 Perplexity computed with unseen words

To test the hypothesis that the incorporation of meta-information in MetaLDA can signifi-
cantly improve the modelling accuracy in the cases where the corpus is sparse, we varied
the proportion of documents used in training from 20 to 80% and used the remaining for
testing. It is natural that when the proportion is small, the number of unseen words in test-
ing documents will be large. Instead of simply excluding the unseen words in the previous
experiments, here we compute the perplexity with unseen words for LDA, DMR, WF-LDA
and the proposed MetaLDA. For perplexity calculation, φtest

k,v for each topic k and each token
v in the test documents is needed. If v occurs in the training documents, φtest

k,v can be directly
obtained. While if v is unseen, φunseen

k,v can be estimated by the prior:

βunseen
k,v

ntraink,· + β train
k,· + βunseen

k,·
.

For LDA and DMR which do not use word features, βunseen
k,v = β train

k,v ; For WF-LDA and
MetaLDA which are with word features, βunseen

k,v is computed with the features of the unseen

token. Following Step 1c, for MetaLDA, βunseen
k,v = ∏Lword

l ′ δ
gunseenv,l
l ′,k .

Figure 4 shows the perplexity scores on Reuters, 20NG, TMN and WS with 200, 200,
100 and 50 topics, respectively. MetaLDA outperformed the other models significantly with
a lower proportion of training documents and relatively higher proportion of unseen words.
The gap betweenMetaLDAand the other threemodels increaseswhile the training proportion
decreases. It indicates that the meta-information helps MetaLDA to achieve better modelling
accuracy on predicting unseen words.

5.4.3 Perplexity evaluation for using MetaLDA as a hyper-parameter sampling
approach

We further study how MetaLDA performs in terms of perplexity when used as a hyper-
parameter sampling approach without meta-information. The experimental settings are the
same as the ones used in Sect. 5.4.1. Table 7 shows the results of different variants of
MetaLDA on hyper-parameter sampling.Wewould like to point out thatMetaLDA-0.1-asym
is equivalent toMetaLDA-0.1-def,MetaLDA-asym-0.01 is equivalent toMetaLDA-def-0.01,
and MetaLDA-asym-asym is equivalent to MetaLDA-def-def in Table 3. Here we use the
former to make the comparison clear. We have the following observations:

– In general, the best perplexity score is derived with the use of both asymmetric α and
asymmetric β.
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Fig. 4 Perplexity comparison with unseen words in different proportions of the training documents. Each
pair of the numbers on the horizontal axis are the proportion of the training documents and the proportion
of unseen tokens in the vocabulary of the test documents, respectively. For each setting, the four coloured
bars from left to right correspond to LDA, WF-LDA, DMR and MetaLDA. The error bars are the standard
deviations over 5 runs. a Reuters with 200 topics, b 20NG with 200 topics, c TMN with 100 topics, d WS
with 50 topics

– If we fix the setting for the topic side and vary the setting for the document side (for
example, compare MetaLDA-0.1-0.01, MetaLDA-sym-0.01 and MetaLDA-asym-0.01),
we can derive that 1) the use of sampled priors (either symmetric or asymmetric) can
significantly lower the perplexity scores, This is in line with the findings in [33]; 2) using
asymmetric prior can further decrease perplexity.

– Similarly, fixing the setting for the document side and varying the setting for the topic
side (for example, comparing MetaLDA-sym-0.01, MetaLDA-sym-sym and MetaLDA-
sym-asym), we found that sampling either symmetric or asymmetric prior on per-topic
word distributions does not significantly affect the perplexity scores, which also complies
with [33]. However, there is a subtle difference: for our method an asymmetric prior on
per-topic word distributions is marginally better, whereas it is often worse in [33].

– Now comparing the last row in Table 7 with the corresponding results in Tables 5 and
6 shows that constructing the priors with meta-information can further decrease the
perplexity scores, which further proves our assumption that it is beneficial to use meta-
information in topic modelling.
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Table 7 Perplexity on 20NG with 200 topics, Reuters with 200 topics, WS with 100 topics

MetaLDA variants 20NG-200 Reuters-200 WS-100

MetaLDA-0.1-0.01 (LDA) 1762±3 631±1 878±8

MetaLDA-0.1-sym 1774±4 633±1 888±4

MetaLDA-0.1-asym 1764±6 629±2 884±6

MetaLDA-sym-0.01 1652±7 557±5 744±7

MetaLDA-sym-sym 1652±6 557±2 748±6

MetaLDA-sym-asym 1641±8 545±2 743±8

MetaLDA-asym-0.01 1618±10 543±1 726±10

MetaLDA-asym-sym 1618±11 542±1 741±11

MetaLDA-asym-asym 1626±4 540±1 733±6

5.5 Topic coherence evaluation

We further evaluate the semantic coherence of the words in a topic learnt by LDA, PTM,
DMR, LF-LDA, WF-LDA, GPU-DMM and MetaLDA. Here we use the normalised point-
wise mutual information (NPMI) [1,16] to calculate topic coherence score for topic k with
top T words:

NPMI(k) =
T∑

j=2

j−1∑

i=1

log
p(w j , wi )

p(w j )p(wi )
/ − log p(w j , wi ),

where p(wi ) is the probability of word i , and p(wi , w j ) is the joint probability of words i and
j that co-occur together within a sliding window. Those probabilities were computed on an
external large corpus, i.e., a 5.48GB Wikipedia dump in our experiments. The NPMI score
of each topic in the experiments is calculated with top 10 words (T = 10) by the Palmetto
package.11 Again, we report the average scores and the standard deviations over 5 random
runs.

It is known that conventional topic models directly applied to short texts suffer from low
quality topics, caused by the insufficient word co-occurrence information. Here we study
whether or not the meta-information helps MetaLDA improve topic quality, compared with
other topic models that can also handle short texts. Table 8 shows the NPMI scores on the
three short text datasets. Higher scores indicate better topic coherence. All the models were
trained with 100 topics. Besides the NPMI scores averaged over all the 100 topics, we also
show the scores averaged over top 20 topics with highest NPMI, where “rubbish” topics are
eliminated, following [37]. It is clear that MetaLDA performed significantly better than all
the other models in WS and AN dataset in terms of NPMI, which indicates that MetaLDA
can discover more meaningful topics with the document and word meta-information. We
would like to point out that on the TMN dataset, even though the average score of MetaLDA
is still the best, the score of MetaLDA overlaps with the others’ when allowing for standard
deviation, which indicates the difference is not statistically significant.

11 http://palmetto.aksw.org.
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Table 9 Perplexity comparison
for MetaLDA with different word
embeddings on WS and TMN

Dataset WS TMN

#Topics 50 100 50 100

GloVe-50 774±9 627±6 1657±4 1415±16

SkipGram-50 782±11 643±5 1678±3 1449±10

CBOW-50 781±6 636±9 1683±11 1430±6

GloVe-100 776±3 648±3 1653±8 1418±12

SkipGram-100 786±14 651±5 1685±17 1444±4

CBOW-100 778 ±3 645±7 1675±11 1442±16

Table 10 Topic coherence (NPMI) comparison for MetaLDA with different word embeddings on WS and
TMN

All 100 topics Top 20 topics

WS TMN WS TMN

GloVe-50 0.0311±0.0038 0.0451±0.0034 0.1511±0.0093 0.1584±0.0072

SkipGram-50 0.0251±0.0052 0.0385±0.0046 0.1405±0.0081 0.1521±0.0086

CBOW-50 0.0324±0.0035 0.0430±0.0048 0.1580±0.0055 0.1532±0.0027

GloVe-100 0.0286±0.0043 0.0455±0.0026 0.1473±0.0082 0.1522±0.0043

SkipGram-100 0.0277±0.0041 0.0424±0.0046 0.1508±0.0058 0.1545±0.0051

CBOW-100 0.0308±0.0046 0.0408±0.0035 0.1439±0.0092 0.1505±0.0102

5.6 Changing word embeddings

In the above experiments, we used the binarised 50-dimensional GloVe embeddings as word
features to demonstrate the superiority of MetaLDA over all the other competitors. It is also
interesting to study how the performance of MetaLDA changes while we use different word
embeddings. In this set of experiments, we varied the sources (i.e., the methods used to train
the word embeddings) as well as the dimensions of those word embeddings. Here we used
the embeddings pre-trained by three methods: GloVe, SkipGram12 and CBOW [20].12 For
each word embedding method, 50 and 100 dimensional embeddings were used.

Tables 9 and 10 show the perplexity and topic coherence performance of MetaLDA,
respectively, on the WS and TMN datasets. We followed the experiment settings used in the
previous sections, except for the word features.MetaLDAworkmarginally better with GloVe
embeddings thanwithword2vec embeddings.However, the difference is not significant, given
the standard errors. The reasons might be:

1. The binarisation could water down the differences betweenword embeddings. Therefore,
minor differences in word embedding might not significantly influence the performance.
But it is interesting to develop a model that can directly utilise the real-valued word
embeddings.

2. Using the embeddings as the prior information could make MetaLDA insensitive to the
quality of binarised word embeddings.

12 http://vsmlib.readthedocs.io/en/latest/tutorial/getting_vectors.html.
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Table 11 Top 5 related topics of the document labels in the WS dataset with 100 topics

Label Topic number Top 5 words λl,k

Business 72 Exchange stock estate
currency trading

12.11

93 Trade capital export venture
import

8.63

94 Jobs marketing job stress
advertising

7.99

49 Bank financial banking
finance insurance

7.06

28 Business management
services resources solutions

6.51

Computers 20 intel device digital apple chip 9.49

66 Internet bandwidth speed
connection test

6.57

35 Computer software
engineering architecture
graphics

6.19

48 Linux operating system unix
library

5.10

86 Memory computer virtual
cache security

4.77

Culture&Arts&Entertainment 47 Art arts museum painting
surrealism

11.16

45 Guitar piano jazz orchestra
instruments

6.87

7 Religion ancient culture
roman christian

6.41

41 Album tom beatles band julia 6.32

22 Culture American Chinese
history Japanese

5.54

Education and science 68 Journal journals international
conference research

7.36

19 Theoretical models model
reasoning framework

7.21

81 Thesis dissertation technical
empirical edu

7.04

15 Physics quantum theory
mechanics mathematics

6.40

37 Research discovery scientific
science scientists

5.77

Engineering 70 wheels car rims custom truck 5.95

24 Electrical products equipment
electric motor

5.80

74 Car cars automobile models
howstuffworks

5.68

80 Automatic gear transmission
China manual

4.84

88 Engine diesel fuel cylinder
turbine

4.72
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Table 11 continued

Label Topic number Top 5 words λl,k

Health 51 Diet calorie nutrition health
energy

6.65

96 HIV disease aids prevention
heart

6.55

98 Drug system respiratory
effects drugs

5.89

82 Physical therapy american
therapists checkup

5.85

52 Cancer lung tobacco smoking
risk

5.69

Politics & Society 97 Cabinet prime minister
appointment pbs

7.59

18 System republic government
parliamentary election

7.58

83 Military revolution force
navy army

7.27

89 House gov congress
legislation senate

5.21

16 Democracy party democratic
communist social

5.04

Sports 10 Football league rugby team
stadium

11.21

38 Tennis golf tournament
woods volleyball

10.17

27 Match cricket quarterfinal
game playoff

8.45

21 Tickets chicago bulls
basketball boxing

6.68

14 Soccer goalkeeper diego
maradona kick

5.58

5.7 Qualitative analysis

Nowwe show that besides better quantitative performance,MetaLDAwithmeta-information
also allows more informative and interesting interpretation of the discovered topics.

As discussed in Sect. 3, the latent variable λl,k is the weight measuring the association
between document label l and topic k. Each label can be interpreted as an unnormalised
mixture of topics, represented by a K -dimensional vector λl . Therefore, similar to finding
the top words for each topic, ranking λl,k can give us the most related topics for each label.
Table 11 shows the top 5 related topics among100discovered byMetaLDAfor the 9 document
labels in the WS dataset. For each topic, the top 5 words (ranked with φk,v) are listed. The
results show that the topics are closely related to the labels. For example, the top 5 topics
for the “Computers” category describe hardware, software, internet, and system, which are
different aspects of computers. The “Sports” category broadly covers football, rugby, tennis,
golf, cricket, etc. The major topics discussed in the “Health” related documents include diet,
infectious diseases, lung cancer and its causes, and so on.
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Table 12 Top 3 related labels of the topics in the WS dataset with 100 topics

Topic number Top 5 words Labels

46 Programming web java server code Computers

Education and science

Engineering

54 Diet calorie nutrition health energy Health

Engineering

Business

20 Intel device digital apple chip Computers

Culture&Arts&Entertainment

Business

17 Movie fiction documentary film soundtrack Culture&Arts&Entertainment

Education and Science

Sports

Furthermore,MetaLDA can also automatically assign the labels to the latent topics, which
is known as automatic topic labelling [15]. The method proposed in [15] generates label from
the top-ranked topic terms and the titles of Wikipedia articles containing these terms. It is
an ad hoc process. In contrast, MetaLDA automatically learns the association between the
document labels and the latent topics via the association matrix λ. Specifically, for each
topic k, we rank the labels according the weight λl,k , and then retrieve the most likely labels
for each topic. Table 12 shows some examples derived one the WS dataset. For instance,
topic 46 is about web programming. The most probable label for this topic assigned by
MetaLDA is “Computers”. The second and third probable labels are also very related to
this topic. Topic 17 is about movies, and the most probable label found by MetaLDA is
“Culture&Arts&Entertainment”. It is clear that topics and their most probable labels are
well correlated. All these findings demonstrate that MetaLDA is able to discover meaningful
topics and label the topics automatically.

5.8 Running time

In this section, we empirically study the efficiency of the models in term of per-iteration
running time. The implementation details of our MetaLDA are as follows:

– The SparseLDA framework [38] reduces the complexity of LDA to be sub-linear by
breaking the conditional of LDA into three “buckets”, where the “smoothing only” bucket
is cached for all the documents and the “document only” bucket is cached for all the tokens
in a document. We adopted a similar strategy when implementing MetaLDA. When
only the document meta-information is used, the Dirichlet parameters α for different
documents in MetaLDA are different and asymmetric. Therefore, the “smoothing only”
bucket has to be computed for each document, but we can cache it for all the tokens, which
still gives us a considerable reduction in computing complexity. However, when the word
meta-information is used, the SparseLDA framework no longer works in MetaLDA as
the β parameters for each topic and each token are different.
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Fig. 5 MetaLDA’s running time
(seconds per iteration) on the
NYT dataset with 500 topics with
different proportions of training
documents and different number
of threads
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– By adapting the Distributed framework in [25], our MetaLDA implementation runs in
parallel with multiple threads, which makes MetaLDA able to handle larger document
collections. The parallel implementation was tested on the NYT dataset.

The per-iteration running time of all the models is shown in Table 13. Note that:

– On the Reuters and WS datasets, all the models ran with a single thread on a desktop PC
with a 3.40GHz CPU and 16GB RAM.

– Due to the size of NYT, we report the running time for the models that are able to run
in parallel. All the parallelised models ran with 10 threads on a cluster with a 14-core
2.6GHz CPU and 128GB RAM.

– All the models were implemented in JAVA.
– As the models with meta-information add extra complexity to LDA, the per-iteration

running time of LDA can be treated as the lower bound.

At the document level, bothMetaLDA-df-0.01 andDMRuse priors to incorporate the doc-
ument meta-information and both of them were implemented in the SparseLDA framework.
However, our variant is about 6 to 8 times faster than DMR on the Reuters dataset and more
than 10 times faster on the WS dataset. Moreover, it can be seen that the larger the number of
topics, the faster our variant is over DMR. At the word level, similar patterns can be observed:
our MetaLDA-0.1-wf ran significantly faster than WF-LDA and LF-LDA especially when
more topics are used (20–30 times faster on WS). It is not surprising that GPU-DMM has
comparable running speed with our variant, because only one topic is allowed for each doc-
ument in GPU-DMM. With both document and word meta-information, MetaLDA still ran
several times faster than DMR, LF-LDA, and WF-LDA. On NYT with the parallel settings,
MetaLDA maintains its efficiency advantage as well.

To further examine our model’s scalability, we report the per-iteration running time of
MetaLDA on NYT with 500 topics in Fig. 5. For this, we varied the proportion of training
documents from 20 to 80% as well as the number of threads from 1 to 8. For the single thread
version, when the training proportions change from 40 to 80% the per-iteration running
time becomes 4 times slower. However, with multi-threading, our model scales much better.
The per-iteration running time is only doubled while the training proportions quadruple. In
terms of speed-up, the per-iteration running time increases nearly linearly with the number
of threads. For example, given 60% training data, the per-iteration running time is reduced
to half while the number of thread doubles.
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6 Conclusion

In this article, we have presented a topic modelling framework named MetaLDA that can
efficiently incorporate document and word meta-information. This results in a significant
improvement over other models in terms of perplexity and topic quality. With two data
augmentation techniques, MetaLDA enjoys full local conjugacy, allowing efficient Gibbs
sampling, demonstrated by superiority in the per-iteration running time. MetaLDA1 has been
implemented within Mallet using the DistributedLDA framework, and works efficiently
in a multicore context. Furthermore, without losing generality, MetaLDA can work with
both regular texts and short texts. The improvement of MetaLDA over other models that also
use meta-information is remarkable, particularly when the word-occurrence information is
insufficient.Moreover,MetaLDAefficiently demonstrates that asymmetric-asymmetric LDA
does beat regular symmetric LDA.

MetaLDA takes a particular approach for incorporatingmeta-information on topicmodels.
However, the approach is general enough to be applied to other Bayesian probabilistic models
that go beyond topics modelling, such as multi-label learning with sparse features [43].
Moreover, it would be interesting to extend our method to use real-valued meta-information
directly without binarisation [41], which is the subject of future work.
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Abstract

In natural language processing and related fields, it has been shown that the word embed-
dings can successfully capture both the semantic and syntactic features of words. They can
serve as complementary information to topics models, especially for the cases where word
co-occurrence data is insufficient, such as with short texts. In this paper, we propose a
focused topic model where how a topic focuses on words is informed by word embeddings.
Our models is able to discover more informed and focused topics with more representative
words, leading to better modelling accuracy and topic quality. With the data argumenta-
tion technique, we can derive an efficient Gibbs sampling algorithm that benefits from the
fully local conjugacy of the model. We conduct extensive experiments on several real world
datasets, which demonstrate that our model achieves comparable or improved performance
in terms of both perplexity and topic coherence, particularly in handling short text data.

Keywords: Topic Models, Word Embeddings, Short Texts, Data Augmentation

1. Introduction

With the rapid growth of the internet, huge amounts of text data are generated everyday
in social networks, online shopping and news websites, etc. Probabilistic topic models such
as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) are popular approaches for text
analysis, by discovering latent topics from text collections.

Recently, word embeddings generated by GloVe (Pennington et al., 2014) and word2vec
(Mikolov et al., 2013), have attracted a lot of attention in Natural Language Processing
(NLP) and related fields. It has been shown that trained on large corpus, word embeddings
can capture both the semantic and syntactic features of words so that similar words are
close to each other in the embedding space. Therefore, if word embeddings can be used
in topic models, it should improve modelling accuracy and topic quality. Moreover, as
conventional topic models usually require a sufficient amount of word co-occurrences to learn
meaningful topics, they can suffer from a large performance degradation over short texts
(e.g., tweets and news headlines) because of insufficient word co-occurrence information. In
such cases, the semantic and syntactic features of words encoded in embeddings can play a
more important role, serving as complementary information.

On the other hand, sparse topics are preferred in topic modelling, which means most
topics should be specific and are encouraged to focus on a small subset of the vocabulary.
The topic sparsity is first implemented by using a small concentration parameter of the
Dirichlet prior over topics (0.01 usually works well) (Wallach et al., 2009a). Recently,

c© 2017 H. Zhao, L. Du & W. Buntine.
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sparsity-enforcing priors such as the Indian Buffet Process compound Dirichlet (Williamson
et al., 2010) have been proposed on topics (Wang and Blei, 2009), which place a “hard”
constraint on the words that a topic can focus on. These sparsity-enforcing priors lead to
compression as well as an easier interpretation of topics.

Inspired by those two lines of work, in this paper, we propose a Word Embedding
Informed Focused Topic Model (WEI-FTM). This allows improved model accuracy and
topic quality, especially for the cases where word co-occurrence data is poor, such as with
short texts. Specifically, WEI-FTM applies a sparsity-enforcing prior on topics, allowing a
subset of words to describe a topic. Unlike conventional FTM, where the focusing is learnt
purely on the word co-occurrences, the focusing in WEI-FTM is additionally informed by
external word embeddings. In this way, the proposed model encourages the topics to focus
on the words that are more semantically or syntactically related, which is preferred in topic
modelling.

WEI-FTM has the following key properties:

1. Compared to FTM, our model is able to discover more informed focused topics with
more representative words, which leads to better model accuracy and topic quality.

2. Unlike most models incorporating word embeddings, our model does so by using them
as prior knowledge, which we argue is a more coherent approach.

3. With the data augmentation technique, the inference of WEI-FTM can be done by an
efficient and closed-form Gibbs sampling algorithm that benefits from local conjugacy
of the model.

4. Finally, besides the word distribution of topics, our model also offers an alternative
topic presentation over words, which can be obtained from word embeddings. It gives
us a new way of interpreting topics and even better topic quality.

We conduct extensive experiments with several real datasets including both regular
and short texts in various domains. The experimental results demonstrate that WEI-FTM
achieves improved performance in terms of perplexity, topic coherence, and running time.

2. Related Work

In this section, we review three lines of related work: focused topic models, topic models
with word embeddings, and short text topic models.

Focused Topic Models Focusing in topic models is first introduced on documents, al-
lowing a document to focus on a subset of topics. Williamson et al. (2010) proposed the
Focused Topic Model (FTM) on the document side with the Indian Buffet Process com-
pound Dirichlet prior, where topics are selected by the IBP (Ghahramani and Griffiths,
2006). Zhou et al. (2012a) proposed a focused Poisson factorisation model with the nega-
tive binomial distribution, which can be viewed as a generalisation of FTM. Recently, Gan
et al. (2015a) introduced a deep focused Poisson factorisation model. Instead of using IBP,
document focusing in the model is constructed by stacking multiple layers of binary latent
variables, connected by Gaussian weights. With the augmentation of the Pólya Gamma
distribution (Polson et al., 2013), the model can be sampled with full conjugacy.

424

Chapter 5 98



WEI-FTM

Unlike most of the previous approaches, the focussing in our model is applied to topics,
not documents. The closest work to ours is the Sparse-Smooth Topic Model (Wang and Blei,
2009) which applied the IBP compound Dirichlet prior on topics, allowing a topic to focus
on a subset of words. Teh and Gorur (2009) proposed the Stable-Beta IBP, a generalised
IBP with a discount parameter. The Stable-Beta IBP can be used to model the power
law behaviour in word occurrences. Furthermore, Archambeau et al. (2015) introduced
the Latent IBP Dirichlet Allocation (LIDA), which uses the Stable-Beta IBP compound
Dirichlet prior for both document focusing and topic focusing.

Topic Models with Word Embeddings Recently, there is growing interest in incor-
porating word features in topic models. For example, DF-LDA (Andrzejewski et al., 2009)
incorporates word must-links and cannot-links using a Dirichlet forest prior in LDA; MRF-
LDA (Xie et al., 2015) encodes word correlations in LDA with a Markov random field;
WF-LDA (Petterson et al., 2010) extends LDA to model word features with the logistic-
normal transform. As word embeddings have gained great success in NLP, they have been
used as popular word features for topic models. LF-LDA (Nguyen et al., 2015) integrates
word embeddings into LDA by replacing the topic-word Dirichlet multinomial component
with a mixture of a Dirichlet multinomial component and a word embedding component.
Instead of generating word types (tokens), Gaussian LDA (GLDA) (Das et al., 2015) directly
generates word embeddings with the Gaussian distribution. MetaLDA (Zhao et al., 2017b)
is a topic model that incorporates both document and word meta information. However,
in MetaLDA, word embeddings have to be binarised, which will lose useful information.
Despite the exciting applications of the above models, their inference is usually less efficient
due to the non-conjugacy and/or complicated model structures. Moreover, to our knowl-
edge, most of the existing models with word embeddings are extensions of a full LDA model,
and neither use the embeddings as information for the prior, like WF-LDA, nor do they use
the embeddings with topic focusing.

Short Text Topic Models Analysis of short text with topic models has been an active
area with the development of social networks. One popular approach is to aggregate short
texts into larger groups, for example, Hong and Davison (2010) aggregates tweets by the
corresponding authors and Mehrotra et al. (2013) shows that aggregating tweets by their
hashtags yields superior performance over other aggregation methods. Recently, PTM (Zuo
et al., 2016) aggregates short texts into latent pseudo documents. Another approach is to
assume one topic per short document, known as mixture of unigrams or Dirichlet Multi-
nomial Mixture (DMM) such as Yin and Wang (2014); Xun et al. (2016). Closely related
to ours are short text models that use word feature like embeddings. For example, Xun
et al. (2016) introduced an extension of GLDA on short texts which samples an indicator
variable that chooses to generate either the type of a word or the embedding of a word
and GPU-DMM (Andrzejewski et al., 2011) extends DMM with word correlations for short
texts. Although existing models showed improved performance on short texts, there still ex-
ist some challenges. For aggregation-based models, it is usually hard to choose which meta
information to use for aggregation. The “single topic” assumption makes DMM models lose
the flexibility to capture different topic ingredients of a document. The incorporation of
word embeddings in the existing models is usually less efficient.

425

Chapter 5 99



Zhao Du Buntine

3. Model Details

Now we introduce the details of the proposed model. In general, WEI-FTM is a focused
topic model where the focusing of topics are learnt from the target corpus and informed
by external word embeddings. Specifically, suppose a collection of D documents with a
vocabulary of V tokens is denoted as D and the L dimensional embeddings of the tokens
are stored in a matrix F ∈ RV×L. Similar to LDA, WEI-FTM generates document d ∈
{1, · · · , D} with a mixture of K topics. Unlike LDA, where a topic is a distribution over
all the tokens in the vocabulary, WEI-FTM allows a topic k ∈ {1, · · · ,K} to focus on fewer
tokens. We introduce a binary matrix B ∈ {0, 1}K×V where bk,v indicates whether topic k
focuses on token v. Given bk,:, topic k is a distribution over a subset of the tokens, drawn
from the Dirichlet distribution:

φk|bk,: ∼ DirichletV (β0bk,:) (1)

where φk,v = 0 iff bk,v = 0.
To get informed by word embeddings, bk,v is drawn from the Bernoulli distribution

whose parameter is constructed with word v’s embeddings fv,::

bk,v ∼ Bernoulli (σ(πk,v)) (2)

πk,v = fv,:λk,:
T + ck (3)

where Λ ∈ RK×L, c ∈ RK , and σ(x) = 1
1+e−x is the logistic function.

If we view λk,: as the embeddings of topic k, the intuition of our model is that if the
closer the semantic/syntactic meanings (encoded in the embeddings) of tokens v to topic
k, the larger the probability of k being described by v. Acting as the bias of topic k, ck
captures the information irrelevant to the embeddings. Gaussian prior is then used for both
λk,: and c:

λk,:, c ∼ N (0, (σ0)
2I) (4)

where (σ0)
2 is a hyper-parameter that controls the Gaussian variance.

Figure 1 shows the graphical model of WEI-FTM and the generative process is as follows:

1. For each topic k:

(a) Draw λk,: according to Eq. (4)

(b) For each token v: Draw bk,v according to Eq. (2)

(c) Draw φk,: according to Eq. (1)

2. For each document d:

(a) Draw θd,: ∼ DirichletK(α01K)

(b) For the ith word wd,i in document d:

i. Draw topic zd,i ∼ CategoricalK(θd,:)

ii. Draw word wd,i ∼ CategoricalV (φzd,i,:)
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zd,i wd,iθd,:α0 φk,:

β0

bk,:

λk,:

ck σ0

F

∀ i
∀ d

∀ k

Figure 1: The graphical model of WEI-FTM. The ith of Nd words in document d is wd,i
and the corresponding topic is zd,i. θd,: is the topic distribution of d. α0, β0, and σ0 are
hyper-parameters of the model.

It is noteworthy that both πk,: ∈ RV and φk,: describe the weights of the words in
topic k. Unlike φk,v which is obtained from the statistics of topic allocation of words, πk,v
models the “similarity” of the embeddings of word v and topic k, obtained with the word
embeddings. Therefore, π in our model can serve as an alternative presentation of topic k.
This will be studied later in Section 5.3.

4. Inference

Unlike most existing models with word embeddings, our model facilitates the derivation of
an efficient Gibbs sampling algorithm. With a data augmentation technique, WEI-FTM
admits local conjugacy and a closed-form Gibbs sampling algorithm can be derived.

According to the generative process of WEI-FTM, the complete model likelihood is:
∏D,Nd
d,i p(wd,i|zd,i,φzi,n,:)p(zi,n|θd,:) ·

∏D
d p(θd,:|α0) ·

∏K
k p(φk,:|bk,:, β0)

·∏K,V
k,v p(bk,v|λk,:, ck,fv,:) ·

∏K,L
k,l p(λk,l|σ0) ·

∏K
k p(ck|σ0) (5)

Sampling zd,i The sampling of a topic zd,i for a word wd,i = v is similar to LDA, while
the candidate topics are limited to the topics that v describes:

p(zd,i = k) ∝ (α0 +m¬id,k)
β0 + n¬d,ik,v

β0V + n¬d,ik,·
I(bk,v=1) (6)

where n¬d,ik,v =
∑D,Nd′

d′,i′ I(d′,i′)6=(d,i),wd′,i′=v,zd′,i′=k), m
¬i
d,k =

∑Nd
i′ I(i′ 6=i,zd,i′=k), n

¬d,i
k,· =

∑V
v n
¬d,i
k,v ,

and I(·) is the indicator function.

Sampling bk,v Recall that bk,v indicates whether token v describes topic k. Therefore, if
nk,v > 0, which means there are words of v allocated to k, we do not need to sample bk,v
(i.e., p(bk,v|nk,v > 0) = 1). When nk,v = 0, the following Gibbs sampling for bk,v is used:

p(bk,v = 1|nk,v = 0) ∝ B(b
¬v
k,·β0+nk,·,β0)
B(b¬vk,·β0,β0)

σ(πk,v) (7)

p(bk,v = 0|nk,v = 0) ∝ 1− σ(πk,v) (8)
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where B(·, ·) is the beta function and b¬vk,· =
∑V

v′ 6=v bk,v′ .

Sampling λk,: and c Recall that the likelihood of bi,k from Equation (2) is:

(eπk,v)bk,v

1 + eπk,v
(9)

The above likelihood can be augmented by introducing an auxiliary variable: γk,v ∼
PG(1, 0) (Gan et al., 2015b), where PG denotes the Pólya Gamma distribution (Polson
et al., 2013). The augmentation works as following:

(eπk,v)bk,v

1 + eπk,v
=

1

2
e(bk,v−1/2)πk,v

∫ ∞

0
e−γk,v(πk,v)

2/2p(γk,v)dγ (10)

Augmented in this way, the likelihood on πk,v has a Gaussian form, which means the
likelihood of λk,: and c after the augmentation will be in Gaussian form as well. Given
their Gaussian prior, one can sample λk,: as:

λk,: ∼ N (µk,Σk) (11)

µk = Σk

(∑V
v (bk,v − 1/2− ckγk,v)fv,:T

)
(12)

Σk =
(∑V

v γk,vfv,:
Tfv,: + (σ0)

−2I
)−1

(13)

Also, c can be sampled similarly. Note that the Cholesky factorization can be applied to
Σk to reduce the sampling complexity of λk,:.

Finally, according to (Polson et al., 2013), we can sample γk,v from its Pólya Gamma
posterior: γk,v ∼ PG(1, πk,v). One can approximate samples from the Pólya Gamma distri-
bution by using a truncated sum of Gamma variables (Zhou et al., 2012b). In practice, a
truncation level of 20 works well, so the sampling will be efficient.

Hyper-parameter Sampling We use a Gamma prior on β0 ∼ Gamma(µ0, ν0). The
likelihood of β0 is:

K∏

k

Γ(bk,·β0)
Γ(bk,·β0 + nk,·)

V∏

v

Γ(β0 + nk,v)

Γ(β0)
I(bk,v=1) (14)

Two auxiliary variables are then introduced: qk ∼ Beta(bk,·β0, nk,·) and tk,v ∼ CRP(β0, nk,v),
which is the probability on the partition size of a Chinese Restaurant Process (Lemma 16
Buntine and Hutter, 2012) with β0 and nk,v as the concentration and the number of cus-

tomers respectively. The posterior becomes augmented as:
∏K,V
k,v (qk)

β0(β0)
tk,vIbk,v=1, which

is conjugate to the Gamma prior of β0 (Zhao et al., 2017b,a).
Similarly, α0 can be sampled as well. However, as we are more interested in studying

the word side, for fair comparison with other models, α0 is not sampled in the experiments.

5. Experiments

In this section, we evaluate the proposed WEI-FTM against several recent advances includ-
ing focus topic models, models with word embeddings, and short text topic models. The
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experiments were conducted on five real datasets including both regular and short texts.
We report the performance in terms of perplexity, topic coherence, and running time per
iteration. We also qualitatively compare the focusing and the topic quality of models.

5.1. Datasets, Compared Models, and Parameter Settings

In the experiments, two regular text datasets and three short text datasets were used:

• Reuters is extracted from the Reuters-21578 dataset1 where documents without any
labels are removed. There are 11,367 documents, the vocabulary size is 8,817, and
the average document length is 73.

• KOS is obtained from the UCI Machine Learning Repository2, which is used by Ar-
chambeau et al. (2015). It has 3,430 documents and the vocabulary size is 6,677. A
document has 100 words on average.

• WS, Web Snippets, contains 12,237 web search snippets, used by Li et al. (2016). The
vocabulary contains 10,052 tokens and there are 15 words in one snippet on average.

• TMN, Tag My News, consists of 32,597 English RSS news snippets from Tag My
News, used by Nguyen et al. (2015). Each snippet contains a title and a short de-
scription. There are 13,370 tokens in the vocabulary and the average length of a
snippet is 18.

• Twitter, is extracted in 2011 and 2012 microblog tracks at Text REtrieval Conference
(TREC)3, preprocessed in Yin and Wang (2014). It has 11,109 tweets in total. The
vocabulary size is 6,344 and a tweet contains 21 words on average.

All the datasets were tokenised by Mallet4 and we removed the words that exist in less
than 5 documents and more than 95% documents. For word embeddings, we used the
50-dimensional GloVe word embeddings5 pre-trained on Wikipedia for all the models that
incorporate word embeddings. We further removed the words that are not in the vocabulary
of GloVe embeddings in all the datasets. Note that besides word embeddings, our model
can be used to incorporate other kinds of word features such as word correlations as well.

We evaluate the performance of the following models:

• WEI-FTM: The proposed model, the hyper-parameter σ0 was set to 1.0 and β0 was
sampled according to Eq. (14). To comprehensively exam the effect of word embed-
dings, we further compare with WEI-FTM without any word embeddings, named
“WEI-FTM-no”, which only samples the bias c. WEI-FTM and WEI-FTM-no were
implemented in Matlab.

• LDA (Blei et al., 2003): the baseline model. A LDA variant with β0 sampled ac-
cording to Eq. (14) is also in comparison, named as “LDA-sym”. LDA and LDA-sym
were implemented in Matlab.

1. http://www.daviddlewis.com/resources/testcollections/reuters21578/

2. https://archive.ics.uci.edu/ml/datasets/bag+of+words

3. http://trec.nist.gov/data/microblog.html

4. http://mallet.cs.umass.edu

5. https://nlp.stanford.edu/projects/glove/
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• WF-LDA, Word Feature LDA (Petterson et al., 2010): a model that incorporates
word features on the prior of φ. As no code is publicly available, we implemented it in
Matlab, where the optimisation part was done by LBFGS with the default parameter
settings. Following Mimno and McCallum (2008), the Gaussian variance was set to
10 for the default word feature and 0.05 for the other features. Note that we adopt
the idea of WF-LDA for incorporating word embeddings while it was not originally
proposed for that.

• LF-LDA, Latent Feature LDA (Nguyen et al., 2015): a model that incorporates word
embeddings. The original implementation6 was used. Following the paper, we used
1500 and 500 MCMC iterations for initialisation and sampling respectively and set λ
to 0.6, and used the same word embeddings in WEI-FTM.

• LIDA-topic, Latent IBP Dirichlet Allocation (Archambeau et al., 2015) with topic
focusing only. Reviewed in Section 2, LIDA applies the Stable-Beta IBP for both
document and topic focusing. As our intent here is on topic focusing, the Stable-Beta
IBP is only applied on the topic side. Unlike the proposed WEI-FTM, its focusing
is not informed by external word features. Because the code of LIDA is not public
available, we implemented it in Matlab, according to the paper. The MH sampling
details of ξ are not given in the paper, we adopted LBFGS to optimise ξ in terms of
the likelihood shown in Eq. (43) in the paper. β0 was sampled by Eq. (14), the same
as WEI-FTM. For the other sampling algorithms and settings, we followed the paper,
where ζ was set to 0.25.

• SSTM, Sparse-Smooth Topic Model (Wang and Blei, 2009): a focused topic model
that allows a topic to focus on a subset of words. Discussed by Archambeau et al.
(2015), SSTM can be viewed as a special case of LIDA (by fixing ξ and ζ to 1.0 and
0.0 respectively).

• GPU-DMM, Generalized Pólya Urn DMM (Li et al., 2016): a model that incorpo-
rates word correlations. The original implementation7 was used. The word correla-
tions were generated from the distances of the word embeddings. Following the paper,
we set the hyper-parameters µ and ε to 0.1 and 0.7 respectively, and the symmetric
document Dirichlet prior to 50/K.

• PTM, Pseudo document based Topic Model (Zuo et al., 2016): a model for short
text analysis. The original implementation8 was used. Following the paper, we set
the number of pseudo documents to 1000 and λ to 0.1.

All the models, except where noted, the Dirichlet parameter of the document-topic distri-
bution (α0) and of the topic-word distribution (β0) were set to 0.1 and 0.01 respectively.
Our intent is to fairly compare just the topic-word aspect of the models, so we keep the
document-topic aspect equivalent. Also, 2000 MCMC iterations were used to train the
models.

6. https://github.com/datquocnguyen/LFTM

7. https://github.com/NobodyWHU/GPUDMM

8. http://ipv6.nlsde.buaa.edu.cn/zuoyuan/
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In summary, WEI-FTM (the proposed model), WF-LDA, LF-LDA, and GPU-DMM are
models with word embeddings; LDA, LDA-sym, WEI-FTM-no, LIDA-topic, and SSTM are
models without word embeddings; GPUDMM and PTM are models particularly for short
texts.

5.2. Perplexity Evaluation

Perplexity is a measure that is widely used (Wallach et al., 2009b) to evaluate the modelling
accuracy of topic models. The lower the score, the higher the modelling accuracy. To get
unbiased perplexity, we randomly selected some documents in a dataset as the training
set and the remaining as the test set. We first trained a topic model on the training set
to get the word distributions of each topic k (φk,:). Each test document d was split into
two halves containing every first and every second words respectively. We then fixed the
topics and trained the models on the first half to get the topic proportions (θd,:) of test
document d and computed perplexity for predicting the second half. We ran all the models
5 times with different random number seeds and report the average perplexity scores and
the standard deviations. Note that GPU-DMM and PTM provided no code for inference
on new documents so no corresponding perplexity results are given.

Table 1: Perplexity on regular texts. The best and second results are in boldface and
underline respectively.

Dataset Reuters KOS

#Topics 50 100 200 50 100 200

LDA 672±2 634±1 627±1 1488±4 1395±5 1315±2

LDA-sym 672±2 631±1 631±3 1461±4 1384±4 1327±4

LF-LDA 841±4 771±4 634±1 1707±16 1637±8 1636±10

WF-LDA 651±3 621±2 618±1 1426±10 1357±4 1306±3

SSTM 670±4 633±1 629±1 1462±4 1384±2 1324±4

LIDA-topic 671±1 638±3 - 1462±5 1385±4 1340±5

WEI-FTM-no 666±1 629±2 628±1 1445±3 1377±7 1322±1

WEI-FTM 656±4 616±2 610±3 1416±4 1335±2 1284±6

Tables 1 and 2 show the perplexities of the compared models9. The results indicate
that the proposed WEI-FTM performed best on nearly all the datasets. In regular text
datasets, it can be observed that WF-LDA was the second best, approaching WEI-FTM
closely. However, our model had a clear win in short text datasets, especially on TMN and
WS, which indicates that our incorporation of word embeddings is more effective than WF-
LDA. Moreover, our model runs much faster than WF-LDA, which will be studied later in
Section 5.5. Not informed by the word embeddings, WEI-FTM-no performed similarly to
vanilla LDA. The comparison between WEI-FTM-no and WEI-FTM shows that the benefit
of using the information encoded in the word embeddings. While using word embeddings,
LF-LDA did not get better results than LDA in terms of perplexity, which is in line with

9. The experiment of LIDA-topic on Reuters with 200 topics did not finish in a reasonable time due to the
failure of optimising ξ with LBFGS.
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Table 2: Perplexity on short texts. The best and second results are in boldface and underline
respectively.

Dataset WS TMN Twitter

#Topics 50 100 50 100 50 100

LDA 957±6 875±4 1956±14 1855±14 580±2 497±2

LDA-sym 955±8 886±6 1951±8 1880±6 579±3 498±2

LF-LDA 1164±6 1039±17 2415±35 2393±11 849±16 685±6

WF-LDA 888±8 829±8 1881±9 1833±11 582±9 507±10

SSTM 956±8 881±4 1932±5 1858±10 578±6 496±5

LIDA-topic 964±7 882±6 1951±11 1875±15 578±1 488±2

WEI-FTM-no 948±5 877±6 1943±13 1874±12 573±2 497±2

WEI-FTM 885±11 819±8 1845±6 1747±12 559±5 479±5

the report in Fu et al. (2016). While introducing focusing as well, LIDA-topic and SSTM
were not observed to have clear improvements in terms of perplexity.

5.3. Coherence Evaluation

To evaluate the coherence of the learnt topics, we used Normalised Pointwise Mutual Infor-
mation (NPMI) (Lau et al., 2014) to calculate topic coherence score for topic k with top T

words: NPMI(k) =
∑T

j=2

∑j−1
i=1 log

p(wj ,wi)
p(wj)p(wi)

/− log p(wj , wi), where p(wi) is the probability

of word i, and p(wi, wj) is the joint probability of words i and j that co-occur together
within a sliding window. Those probabilities are computed on an external large corpus,
i.e., a 5.48GB Wikipedia dump in our experiments. The NPMI score of each topic in the
experiments is calculated with top 10 words (T = 10) by the Palmetto package10. Again,
we report the average scores and the standard deviations over 5 random runs of all the
models.

Table 3: NPMI averaged over all the 100 topics on short text datasets. The best and second
results are in boldface and underline respectively.

Datasets WS TMN Twitter

LDA -0.0044±0.0028 0.0343±0.0026 -0.0110±0.0064

LF-LDA 0.0130±0.0052 0.0397±0.0026 0.0008±0.0026

WF-LDA 0.0289±0.0060 0.0463±0.0015 -0.0074±0.0033

SSTM -0.0012±0.0064 0.0381±0.0023 -0.0065±0.0040

LIDA-topic -0.0063±0.0027 0.0420±0.0021 -0.0042±0.0036

WEI-FTM-φ 0.0043±0.0038 0.0417±0.0036 -0.0096±0.0017

WEI-FTM-π -0.0092±0.0074 0.0567±0.0081 0.0392±0.0083

GPU-DMM -0.0934±0.0106 -0.0970±0.0034 -0.1458±0.0104

PTM -0.0029±0.0048 0.0355±0.0016 -0.0078±0.0008

10. http://palmetto.aksw.org

432

Chapter 5 106



WEI-FTM

Table 4: NPMI averaged over the top 20 topics. The best and second results are in boldface
and underline respectively.

Datasets WS TMN Twitter

LDA 0.1175±0.0122 0.1462±0.0036 0.0923±0.0042

LF-LDA 0.1230±0.0153 0.1456±0.0087 0.0972±0.0024

WF-LDA 0.1499±0.0131 0.1390±0.0527 0.0881±0.0090

SSTM 0.1163±0.0168 0.1476±0.0020 0.1002±0.0059

LIDA-topic 0.1147±0.0048 0.1553±0.0010 0.0964±0.0022

WEI-FTM-φ 0.1271±0.0015 0.1536±0.0041 0.0893±0.0026

WEI-FTM-π 0.1298±0.0079 0.1832±0.0172 0.1615±0.0120

GPU-DMM 0.0836±0.0105 0.0968±0.0076 0.0367±0.0164

PTM 0.1033±0.0081 0.1527±0.0052 0.0882±0.0037

It is known that conventional topic models directly applied to short texts suffer from
low quality topics, caused by the insufficient word co-occurrence information. Here we
study whether the focusing informed by word embeddings helps WEI-FTM improve topic
quality, compared with other topic models that can also handle short texts. Table 3 and 4
show the NPMI scores for the compared models trained with 100 topics on the three short
text datasets. Higher scores indicate better topic coherence. Besides the NPMI scores
averaged over all the 100 topics, we also show the scores averaged over the top 20 topics
with highest NPMI (Table 4), where “rubbish” topics are eliminated, following Yang et al.
(2015). Recall that in WEI-FTM, the top words of the topics can be obtained by ranking
either φ (WEI-FTM-φ) or π (WEI-FTM-π). We report both of them here.

Shown in Tables 3 and 4, it can be seen that in TMN and Twitter, WEI-FTM-π outper-
formed the others significantly. It indicates that the word embeddings successfully inform
our model to learn better topics. It is also noteworthy that WEI-FTM-φ still got better
NPMI than other models except WF-LDA in WS and TMN in general, although the word
embeddings do not directly affect the top word ranking with φ.

To qualitatively analyse the topic qualities, we show the top 10 words of the topics of
WEI-FTM in Table 5. The words in each topic were ranked by φ and π. It can be seen
that in general, the coherence of the words ranked by π is better than that ranked by φ,
which is in line with the overall NPMI scores shown in Table 3 and 4.

5.4. Focusing Analysis

To compare the focusing in the focused topic models (WEI-FTM, WEI-FTM-no, SSTM,
LIDA-topic), we show the histograms of the number of words per topic and the number of
topics per word of two datasets in Figure 2 and 3. It can be observed that in WEI-FTM,
the topics focused on fewer words than the others and the words described less topics.
Compared to LIDA-topic, our model discovered more focused topics and the topics trend
to be more diverse. It is also interesting to see how the word embeddings informed in the
focusing: the topics in WEI-FTM-no are much less focused than those in WEI-FTM. This
phenomenon helps explain why WEI-FTM gives better performance in the quantitative
evaluations.
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Table 5: Top 10 words of the topics discover by WEI-FTM on Twitter. Top 10 topics with
the largest weights (

∑D
d θd,k) are selected. For each topic, the top words in the first row

are ranked by φ and in the second are ranked by π respectively.

Topic Top 10 words NPMI

1
video bound kanye rogen west franco seth james kim kardashian -0.0626
starring movie sexy actress funny animated film comedy cartoon comedian 0.0680

2
china zone air japan east defense sea island disputed beijing 0.0141
airspace diaoyu nato sovereignty territorial border resolution maritime military force 0.0543

3
watkins ian lostprophets guilty singer sex child baby rape pleaded -0.0028
murder convicted guilty sentence alleged rape imprisonment kidnapping trial sentenced 0.1291

4
swift taylor prince william bon jovi gala jon white winter -0.0218
sang concert sing singing princess dinner singer greeted danced tour -0.0309

5
storm travel morning thanksgiving woman pill east plan winter weather -0.0209
weather mph rain crash sleet snow air jet storm coast 0.1036

6
scotland independence scottish paper white government independent salmond alex minister 0.0445
parliament liberal prime election party democratic minister congress conservative vote 0.2352

7
nokia lumia phone window tablet smartphone inch device microsoft launch 0.1778
playstation iphone ipad server smartphone gsm android xbox smartphones nintendo 0.1455

8
friday black thanksgiving shopping store day holiday retailer shopper year 0.0540
dinner thanksgiving holiday shopping menu shop supermarket retail meal store 0.0491

9
patriot bronco manning brady peyton tom england sunday denver night 0.0389
touchdown quarterback goalkeeper punt fumble defensive steelers coach nfl kickoff 0.1822

10
lakers bryant kobe los angeles washington extension year contract wizard 0.0770
quarterback lakers nba coach knicks seahawks offseason postseason touchdown belichick 0.0520

Table 6: Running time (seconds per iteration) on 80% documents of each dataset

Dataset Reuters WS

#Topics 50 100 50 100

LDA 6.6167 8.1239 1.1481 1.3904

LDA-sym 6.3883 8.2225 1.1255 1.3609

LF-LDA 2.6895 5.3043 2.4920 6.0266

WF-LDA 289.6488 636.8966 327.0750 724.7727

SSTM 10.7333 14.8040 4.0399 6.2999

LIDA-topic 23.4365 28.7910 3.9989 6.1942

WEI-FTM 24.6280 27.6666 6.4997 8.5074
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Figure 2: Histogram of the number of topics per word (a-c) and the number of words per
topic (d-f) for the TMN dataset with 100 topics. Red: WEI-FTM, Green: LIDA-topic, Blue:
SSTM, Yellow: WEI-FTM-no. The vocabulary size of TMN is 13,370. To show WEI-FTM
and LIDA-topic in the same scale, we trimmed the topics and words with extremely low
counts in (a).

5.5. Running Time

Here we empirically study the efficiency of the models. Table 5.5 shows the per-iteration
running time of the compared models with different topics on the Reuters and WS datasets.
Except LF-LDA (implemented in Java), the models were implemented in Matlab. All the
models ran with the same settings on a cluster with a 14-core 2.6GHz CPU and 128GB
RAM. It can be seen that although WF-LDA is comparable to WEI-FTM in some datasets,
it runs much slower due to non-conjugacy.

6. Conclusion

In this paper, we have presented a focused topic model informed by word embeddings
(WEI-FTM), which discovers more informed focused topics with more representative words,
leading to better performance in terms of perplexity and topic quality. By leveraging the
semantic and syntactic information encoded in word embeddings, our model is able to
discover more focused and diverse topics with more representative words. In terms of
inference, WEI-FTM enjoys full local conjugacy after augmentation, which facilitates an
efficient Gibbs sampling algorithm for model inference. Without losing generality, WEI-
FTM can work with both regular texts and short texts. The method of incorporating word
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Figure 3: Histogram of the number of topics per word (a-c) and the number of words per
topic (d-f) for the Reuters dataset with 200 topics. Red: WEI-FTM, Blue: SSTM, Green:
LIDA-topic, Yellow: WEI-FTM-no. The vocabulary size of Reuters is 8,817. To show WEI-
FTM and LIDA-topic in the same scale, we trimmed the topics and words with extremely
low counts in (a).

embeddings introduced in this paper can also be applied to document features such as labels
and authors, which is the subject of future work.
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Chapter 6

Interpretable Topic Structure
Learning for Text Analysis

Topics discovered by BLFMs in text data are clusters of words, describing semantic con-
cepts. Therefore, it is natural that topics are semantically correlated and such correlations
can also be in structures. Learning the structures of topic correlations can be referred to
as the topic structure learning problem.

Many existing models for topic structure learning impose hierarchical structures on top
of document-topic distributions. While in the paper of Zhao et al. [2018b], a novel model
for topic structure learning is proposed and it discovers topic hierarchies with structured
latent variables imposed on topic-word distributions. The proposed structure has several
advantages over previous ones, the most interesting one of which is that it can be combined
with many other topic models with complex structures on document-topic distributions
so that more interesting topic hierarchies can be discovered.

The following paper shows the details of this research:

� H. Zhao, L. Du, W. Buntine, M. Zhou, “Dirichlet Belief Networks for Topic Struc-
ture Learning”, in Neural Information Processing Systems (NeurIPS) 2018.

On the other hand, in addition to correlations between topics, an individual topic
is not semantically indivisible. For example, suppose a model discovers a topic about
“entertainment” on a text corpus, which may consist of the words related to “music” and
the words related to “sports.” This can be because in the target corpus, the words of
“music” and the words “sports” may co-occur a lot, so that the model cannot distinguish
between them. In the paper of Zhao et al. [2018c], a novel model is proposed to discover
such sub-topics by leveraging external word embeddings pre-trained on extremely large
corpora. To my knowledge, this is the first work that discovers and solves the sub-topic
problem in topic modelling. The following paper shows the details of this research:

� H. Zhao, L. Du, W. Buntine, M. Zhou, “Inter and Intra Topic Structure Learn-
ing with Word Embeddings”, in International Conference on Machine Learning
(ICML) 2018.

A potential future research direction is improving the scalability of the proposed mod-
els, which can be non-trivial. Specifically, to conduct batch training for BLFMs, a tricky
challenge would be how to learn the global variables. However, the above two models
impose complex hierarchical structures on the global variables, i.e., the topic-word distri-
butions, which necessarily increases the complexity of designing a good learning scheme
of learning the global variables. Therefore, how to efficiently training the above models
requires further study.
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Figure 6.1: Model framework of Zhao et al. [2018b]. The blue rectangles with solid lines and
dash lines are the data matrix (the document-word matrix containing word occurrences of the
documents) and the latent matrices (the topic-word and doc-topic distributions) respectively.
The topic-word distributions are hierarchical.
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Figure 6.2: Model framework of Zhao et al. [2018c]. The blue rectangles with solid lines and
dash lines are the data matrix (the document-word matrix containing word occurrences of
the documents) and the latent matrices (the topic-word and doc-topic distributions), respec-
tively. The red rectangles are the matrices of meta-data (the document meta-data and word
embeddings).
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The frameworks of the above two models are in Figure 6.1 and 6.2, respectively, which
can be viewed as the hierarchical extensions of the basic framework of BLFMs shown in
Figure 2.1 in Section 2.2.6 of Chapter 2. Specifically, the two models factorise the word
occurrences matrix of a collection of documents into the factor loading matrix (the topic-
word distributions) and the factor score matrix (the document-topic distributions). In the
first model, the topic-word distributions are further factorised into the higher-layer topic-
word distributions. While in the second model, the topic-word distributions are consisted
of several sub-topics, the discovery of which is informed by the word embeddings.

The code of this research is released at https://github.com/ethanhezhao/DirBN
and https://github.com/ethanhezhao/WEDTM.

https://github.com/ethanhezhao/DirBN
https://github.com/ethanhezhao/WEDTM


Dirichlet belief networks for topic structure learning

He Zhao1, Lan Du1∗, Wray Buntine1, and Mingyuan Zhou2∗
1Faculty of Information Technology, Monash University, Australia

2McCombs School of Business, The University of Texas at Austin, USA

Abstract

Recently, considerable research effort has been devoted to developing deep archi-
tectures for topic models to learn topic structures. Although several deep models
have been proposed to learn better topic proportions of documents, how to leverage
the benefits of deep structures for learning word distributions of topics has not yet
been rigorously studied. Here we propose a new multi-layer generative process
on word distributions of topics, where each layer consists of a set of topics and
each topic is drawn from a mixture of the topics of the layer above. As the topics
in all layers can be directly interpreted by words, the proposed model is able to
discover interpretable topic hierarchies. As a self-contained module, our model can
be flexibly adapted to different kinds of topic models to improve their modelling
accuracy and interpretability. Extensive experiments on text corpora demonstrate
the advantages of the proposed model.

1 Introduction

Understanding text has been an important task in machine learning, natural language processing, and
data mining. Text is discrete, unstructured, and often highly sparse. A popular way of analysing texts
is to represent them as a set of latent factors via topic modelling or matrix factorisation. With great
success in modelling text, probabilistic topic models discover a set of latent topics from a collection
of documents. Those topics, as latent factors, can be interpreted by distributions over words and used
to derive low dimensional representations of the documents. Specifically, most existing topic models
are built on top of the following generative process: Each topic is a distribution over the words (i.e.,
word distribution, WD) in the vocabulary; each document is associated with a topic proportion (TP)
vector; and a word in a document is generated by first drawing a topic according to the document’s
TP, then sampling the word according to the topic’s WD.

In a Bayesian setting, TPs and WDs are both imposed on prior distributions. For example, one
commonly-used prior for TP and WD is a Dirichlet distribution, as in Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). Recently, deep hierarchical priors, especially imposed on TPs, have been
developed to generate hierarchical document representations as well as discover interpretable topic
hierarchies. For example, there are hierarchical tree-structured constructions based on the Dirichlet
Process (DP) or Chinese Restaurant Process (CRP), such as the nested CRP (nCRP) (Blei et al.,
2010) and the nested hierarchical DP (Paisley et al., 2015); deep constructions based on restricted
Boltzmann machines and neural networks such as the Replicated Softmax Model (RSM) (Hinton and
Salakhutdinov, 2009), the Neural Autoregressive Density Estimator (NADE) (Larochelle and Lauly,
2012), and the Over-replicated Softmax Model (OSM) (Srivastava et al., 2013); models based on
variational autoencoders (VAE) including Srivastava and Sutton (2017); Miao et al. (2017); Zhang
et al. (2018). Recently, models that generalise the sigmoid belief network (Hinton et al., 2006) have
been proposed, such as Deep Poisson Factor Analysis (DPFA) (Gan et al., 2015), Deep Exponential
Families (DEF) (Ranganath et al., 2015), Deep Poisson Factor Modelling (DPFM) (Henao et al.,
2015), and Gamma Belief Networks (GBNs) (Zhou et al., 2016).

∗Corresponding authors

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Compared with the considerable interest in deep models on TPs, to our knowledge, the counterparts
on WDs have not been fully investigated. In this paper, we propose a new multi-layer generative
process on WDs, as a self-contained module and an alternative to the single-layer Dirichlet prior.
In the proposed model, WDs are the output units of the bottom layer in a DBN with hidden layers
parameterised by Dirichlet-distributed hidden units and connected with gamma-distributed weights.
Specifically, each Dirichlet unit in a hidden layer is a probability distribution over the words in the
vocabulary and can be view as a “hidden” topic. In each layer, the Dirichlet prior of a topic is a
mixture of the topics in the layer above. As the hidden units are drawn from Dirichlet, the proposed
model is named the Dirichlet Belief Network, hereafter referred to as DirBN2.

Compared with existing related deep models, DirBN has the following appealing properties: 1)
Interpretability of hidden units: Every hidden unit in every layer of DirBN is a probability dis-
tribution over the words, making them real topics that can be directly interpreted. 2) Discovering
topic hierarchies: The mixture structure of DirBN enables the model to enjoy a straightforward
way of discovering semantic correlations of topics in two adjacent layers, which further form topic
hierarchies with the multi-layer construction of the model. Due to the intrinsic abstraction effect
of DBN, the topics in the higher layers are more abstract and can be treated as the generalisation
of the ones in the lower layers. 3) Better modelling accuracy: It is known that TPs are local
variables (specific to individual document), while WDs are global variables over the target corpus.
Unlike many other hierarchical parallels on TP, DirBN imposes a deep structure on WD, which
“absorbs the information” from the entire corpus. It makes DirBN be able to get better modelling
accuracy especially in the case of sparse texts such as tweets and news abstracts, where the context
information of an individual document is not enough to learn a good model using existing approaches.
4) Adaptability: As many sophisticated models on TPs usually use a simple Dirichlet prior on WDs,
including the well-known ones such as Supervised Topic Model (Mcauliffe and Blei, 2008) and
Author Topic Model (Rosen-Zvi et al., 2004), our DirBN can be easily adapted to them to further
improve modelling accuracy and interpretability.

In conclusion, the contributions of this paper include: 1) We propose DirBN, a deep structure
that can be used as an advanced alternative to the Dirichlet prior on WDs with better modelling
performance and interpretability. 2) We demonstrate our model’s adaptability by applying DirBN
with several well-developed models, including Poisson Factor Analysis (PFA) (Zhou et al., 2012),
MetaLDA (Zhao et al., 2017a), and GBN (Zhou et al., 2016). 3) With proper data augmentation and
marginalisation techniques, DirBN enjoys full local conjugacy, which facilitates the derivation of a
simple and effective inference algorithm.

2 The proposed DirBN

In this section, we introduce the details of the generative and inference processes of DirBN.

2.1 Generative process

We first define the essential notation and review the basic framework of topic modelling, followed by
the details of the proposed DirBN. Assume that the bag-of-words of document d in a corpus with
N documents and V unique words in the vocabulary are stored in a count vector xd ∈ NV0 . A topic
model with K topics is composed of the TP vector θd ∈ RK+ for each document d and the WD vector
φk ∈ RV+ for each topic k (k ∈ {1, · · · ,K}). To generate a word in document d, one can first sample
a topic according to its TP, and then sample the word type according to the topic’s WD. Given this
framework, many prior constructions of TPs have been proposed, such as the Dirichlet distribution
in LDA, logistic normal distributions for modelling topic correlations in Correlated Topic Model
(CTM) (Lafferty and Blei, 2006), nonparametric priors like the Hierarchical Dirichlet Process (Teh
et al., 2012), and recently-proposed deep models like DPFA (Gan et al., 2015), DPFM (Henao et al.,
2015), and GBN (Zhou et al., 2016). Unlike the extensive choices for constructing TP, the symmetric
Dirichlet distribution on WDs still dominates in many advanced topic models. Here DirBN is a new
hierarchical approach of constructing WDs, detailed as follows.

2Code available at https://github.com/ethanhezhao/DirBN
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Figure 1: Demonstration of the generative process of DirBN with three layers.

A DirBN with T layers leaves the TPs of the basic framework untouched and draws φk according to
the following generative process:

φ
(T )
kT
∼ DirV (η),

· · ·

φ
(t)
kt
∼ DirV (ψ

(t)
kt

),ψ
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kt

=
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β
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, β
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∼ Ga(γ
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· · ·
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k1

), ψ
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=

K2∑

k2

φ
(2)
k2
β
(1)
k2k1

, β
(1)
k2k1
∼ Ga(γ

(1)
k2
, 1/c(1)), (1)

where 1) Ga(−,−) is the gamma distribution with shape and scale parameters and DirV (−) is the
Dirichlet distribution3; 2) The superscript with a bracket over a variable indicates which layer it
belongs to and kt ∈ {1, · · · ,Kt} is the topic index in the t-th layer; 3) The output of DirBN is φ(1)

k1
,

which corresponds to φk in the basic framework and hereafter, we use φ(1)
k1

instead; 4) We further

impose gamma priors on the following variables: η ∼ Ga(a0, 1/b0), γ(t)kt+1
∼ Ga(γ

(t)
0 /Kt, 1/c

(t)
0 ),

γ
(t)
0 ∼ Ga(e0, f0), c(t)0 ∼ Ga(g0, 1/h0), and c(t) ∼ Ga(g0, 1/h0). The generative process of a topic

model equipped with DirBN is demonstrated in Figure 1.

The idea of our DirBN can be summarised as follows:

1. From a bottom-up view, DirBN is a multi-layer matrix factorisation, which factorises the
matrix of the WDs in the t-th layer as: Φ(t) ∼ Dir(Φ(t+1)B(t)). Here we define Φ(t) ∈
RV×Kt

+ (φ(t)
kt

is the kt-th column) and B(t) ∈ RKt+1×Kt

+ (β(t)
kt

is the kt-th column). From a
top-down view, the model can be considered as a stochastic feedforward network (Tang and
Salakhutdinov, 2013), where the input matrix in Φ(T ), the output matrix is Φ(1), and the
stochastic units are drawn from the Dirichlet distribution.

2. As DirBN is a Bayesian probabilistic model, consider a DirBN with only two layers as
an example: each first-layer topic φ(1)

k1
is drawn from a Dirichlet with the topic-specific

asymmetric parameter ψ(1)
k1

, which is a mixture of the second-layer topics. So the statistical
strength is shared via the mixture, which plays an important role in handling sparse texts.

3. In DirBN, not only in the bottom layer, but also in any other layer t, each hidden unit is
a distribution over the vocabulary and can be viewed as real topic directly interpreted by
words. Although the bottom layer serves as the actual WDs for generating the words, the
topics in the higher layers are involved with the belief prorogation in the network.

4. The weight β(t)
kt+1kt

is drawn from a hierarchical gamma prior (i.e., the shape parameter

γ
(t)
kt+1

of the gamma prior on β(t)
kt+1kt

is also drawn from a gamma). It allows topics in
the (t + 1)-th layer to contribute differently to those in the t-th layer. In addition, the
hierarchical structure on β(t)

kt+1kt
is similar to the one in Zhou (2015), which provides an

3− can be a vector as a set of asymmetric parameters or a scalar as a symmetric parameter of Dirichlet
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intrinsic shrinkage mechanism on β(t)
kt

. In other words, each kt is expected to be sparsely
connected by a subset of kt+1. We will demonstrate the shrinkage effect of DirBN in the
experiments.

2.2 Inference process

The learning of DirBN can be done by the inference of its latent variables, i.e., Φ(t) and B(t) for
all t. With several data augmentation techniques, we are able to derive a layer-wise Gibbs sampling
algorithm facilitated by local conjugacy. Given θ and φ (despite their constructions), a topic model
usually samples the topic assignment of each word in the corpus. After that, each topic k1 is associated
with a vector of word counts, denoted as x(1)

k1
= [x

(1)
1k1
, · · · , x(1)V k1 ], which encodes the semantic

information of topic k1 and is one of the input count vectors of DirBN in the inference process.
Given the input vectors, the inference of DirBN involves two key steps: 1) propagating the semantic
information of the input vectors up to the top layer via latent counts; 2) updating Φ(t) and B(t) down
to the bottom given the latent counts. Without loss of generality, we illustrate the inference details
with a two-layer DirBN as follows4:

Propagating the latent counts from the bottom up By integrating φ(1)
k1

out from its multinomial
likelihood, we can get the likelihood of ψ(1)

k1
as:

L
(
ψ

(1)
k1

)
∝

Γ(ψ
(1)
·k1)

Γ(ψ
(1)
·k1 + x

(1)
·k1)

V∏

v

Γ(ψ
(1)
vk1

+ x
(1)
vk1

)

Γ(ψ
(1)
vk1

)
, (2)

where Γ(−) is the gamma function, ψ(1)
·k1 =

∑V
v ψ

(1)
vk1

, and x(1)·k1 =
∑V
v x

(1)
vk1

. By integrating φ(1)
k1

out and introducing two auxiliary variables q(1)k1 and y(1)vk1 , Eq. (2) can be augmented as (Zhao et al.,
2017a):

L
(
ψ

(1)
k1
, q

(1)
k1
, y

(1)
vk1

)
∝

V∏

v

(
q
(1)
k1

)ψ(1)
vk1
(
ψ
(1)
vk1

)y(1)vk1
, (3)

where q(1)k1 ∼ Beta(ψ
(1)
·k1 , x

(1)
·k1) and y(1)vk1 ∼ CRT

(
x
(1)
vk1
, ψ

(1)
vk1

)
. Here CRT stands for the Chinese

Restaurant Table distribution (Zhou and Carin, 2015; Zhao et al., 2017b). Now we can define
y
(1)
k1

= [y
(1)
1k1
, · · · , y(1)V k1 ], the latent count vector derived from the input count vector x(1)

k1
.

With ψ(1)
vk1

=
∑K2

k2
φ
(2)
vk2
β
(1)
k2k1

, we can then distribute the latent count y(1)vk1 on ψ(1)
vk1

to each second
layer topic k2 by:

(
z
(1)
v1k1

, · · · , z(1)vK2k1

)
∼ Mult

(
y
(1)
vk1
,
φ
(2)
v1 β

(1)
1k1

ψ
(1)
vk1

, · · · ,
φ
(2)
vK2

β
(1)
K2k1

ψ
(1)
vk1

)
, (4)

where z(1)vk2k1
is the latent count allocated to k2 and

∑K2

k2
z
(1)
vk2k1

= y
(1)
vk1

.

We now note x(2)
k2

= [x
(2)
1k2
, · · · , x(2)V k2 ] where x(2)vk2 =

∑K1

k1
z
(1)
vk2k1

. x(2)
k2

can be viewed as one of the
output count vectors of the first layer and also the input count vector of the second layer topic k2.

In conclusion, to propagate the semantic information from the first to the second layer, we fist derive
y
(1)
vk1

from x
(1)
vk1

, then distribute y(1)vk1 to all the second layer topics (i.e., z(1)vk2k1
), and finally aggregate

z
(1)
vk2k1

into x(2)vk2 .

Updating the latent variables from the top down After the latent counts are propagated, we start
updating the latent variables from the top layer (i.e. the second layer here). Given x(2)

k2
, φ(2)

k2
is easy

to sample from its Dirichlet posterior. With z(1)vk2k1
and

∑V
v φ

(2)
k2,v

= 1, we can sample β(1)
k2k1

from its
gamma posterior given the following likelihood:

L
(
β
(1)
k2k1

)
∝ e−β

(1)
k2k1

(− log q
(1)
k1

)(β
(1)
k2k1

)z
(1)
·k2k1 , (5)

4 Omitted details of inference as well as the overall algorithm are given in the supplementary materials.
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where z(1)·k2k1 =
∑V
v z

(1)
vk2k1

. Given the newly sampled φ(2)
k2

and β(1)
k2k1

, we can recompute ψ(1)
k1

and

sample φ(1)
k1

from its Dirichlet posterior. Now the inference of a two-layer DirBN is done.

3 Using DirBN in topic modelling

DirBN is a self-contained module on φ, leaving θ untouched. Therefore, it can be used as an
alternative to the simple Dirichlet prior on φ in many existing models. The adaptability of DirBN
enables us to easily apply it to advanced models so that those models can benefit from the advantages
of DirBN. To demonstrate this, we adapt the proposed DirBN structure to the following models:

PFA+DirBN Poisson Factor Analysis (PFA) is a popular framework for topic analysis (DPFA (Gan
et al., 2015), DPFM (Henao et al., 2015), GBN (Zhou et al., 2016) can be viewed as a deep extension
to PFA). Specifically, we use the Bayesian nonparametric version of PFA named BGGPFA (Zhou
et al., 2012), where θd is constructed from a negative binomial process and φk is drawn from a
Dirichlet distribution. Note that there are close relationships between PFA and LDA, and between
BGGPFA and HDP (Teh et al., 2012), analysed in Zhou (2018). Here we replace the Dirichlet
construction on φ with DirBN, yielding a model named PFA+DirBN.

MetaLDA+DirBN MetaLDA (Zhao et al., 2017a, 2018a) is a supervised topic model that is able
to incorporate document labels to inform the learning of θd. Keeping the structure on θ untouched,
we replace the MetaLDA’s structure on φ with our DirBN to get a combined model that discovers
the topic hierarchies informed by the document labels. The proposed model is able to discover the
correlations between labels and topic hierarchies.

GBN+DirBN Recall that GBN (Zhou et al., 2015, 2016) imposes a hierarchical structure on θ,
which is able to learn multi-layer document representations and topic hierarchies. Here we combine
DirBN and GBN together to yield a “dual” deep model, where the GBN part is on θ and the DirBN
part is on φ. Both parts discover topic hierarchies and the bottom-layer topics are shared by the two
parts/hierarchies. It would be interesting to see how the two deep structures interact with each other.

4 Related work

As the proposed model introduces a hierarchical architecture on WDs (i.e., φ) in topic models, we first
review various priors on φ, starting with the ones on sampling/optimising the Dirichlet parameters in
topic models. The Dirichlet parameters in topic models were studied comprehensively in Wallach
et al. (2009), which showed that Dirichlet with a symmetric parameter sampled from an uninformative
gamma is the best choice. Actually, our DirBN can be reduced to this choice if T = 1 (i.e., DirBN-1,
with one layer only). However, unlike the sampling/optimising approaches used in Wallach et al.
(2009), DirBN-1 uses a negative binomial augmentation shown in Eq. (3), which leads to a simpler
inference scheme. Recently, models like Zhao et al. (2017a,c, 2018b) construct informative and
asymmetric Dirichlet priors by taking into account some external knowledge like word embeddings.
Whereas DirBN learns the asymmetric priors purely based on the context of the target corpus.

Instead of Dirichlet, the Pitman-Yor process (PYP) has been used on WDs to model the power-law
distribution of words, as in Sato and Nakagawa (2010); Buntine and Mishra (2014). Chen et al. (2015)
used a transformed PYP prior on φ to model multiple document collections. Lindsey et al. (2012)
imposed a hierarchical PYP prior on φ to discover word phrases. Besides PYP, the Indian Buffet
Process (IBP) has been used as a prior on φ to introduce word focusing on topics, as in Archambeau
et al. (2015). In general, existing models use different priors on φ for modelling various linguistic
phenomena, which have different purposes to DirBN. The deep structures induced by DirBN on WDs
have not yet been rigorously studied.

To our knowledge, most existing models explore the structure of topics by imposing a
deep/hierarchical prior on θ. For example, hierarchical PYPs were used for domain adaptation
in language models (Wood and Teh, 2009) and topic models (Du et al., 2012). nCRP (Blei et al.,
2010) models topic hierarchies by introducing a tree-structured prior. Paisley et al. (2015); Kim
et al. (2012); Ahmed et al. (2013) extended nCRP by either softening its constraints or applying it to
different problems. Li and McCallum (2006) proposed the Pachinko Allocation model (PAM), which
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Figure 2: (a): Histograms of the normalised (latent) words counts. (b): B(1).

captures the topic correlations with a directed acyclic graph. Recently, several deep extensions of
PFA on θ have been proposed, including DPFA (Gan et al., 2015), DPFM (Henao et al., 2015), and
GBN (Zhou et al., 2016). DPFM and GBN are the most related models to ours, which are also able
to discover topic hierarchies. In DPFM and GBN, the higher-layer topics are not distributions over
words but distributions over the topics in the layer below (they are called “meta-topics” in DPFM).
To interpret those meta-topics, one needs to project them all the way down to the bottom-layer
topics with matrix multiplication. Whereas in our model, the topics on all the layers are directly
interpretable.

5 Experiments

The experiments were conducted on three real-world datasets, detailed as follows: 1) Web Snippets
(WS), containing 12,237 web search snippets labelled with 8 categories. The vocabulary contains
10,052 word types. 2) Tag My News (TMN), consisting of 32,597 RSS news labelled with 7 categories.
Each document contains a title and a description. There are 13,370 word types in the vocabulary. 3)
Twitter, extracted in 2011 and 2012 microblog tracks at Text REtrieval Conference (TREC)5. It has
11,109 tweets in total. The vocabulary size is 6,344.

With the framework of PFA, we compared three options of constructing φ: (1) The default setting
of PFA, where φ is drawn from a symmetric Dirichlet distribution with parameter 0.05, i.e., φk ∼
DirV (0.05); (2) PFA+Mallet, where φk ∼ DirV (α0) and α0 is sampled by Mallet 6; (3) PFA+DirBN,
the proposed model, where φk is drawn from an asymmetric Dirichlet distribution specific to k,
the parameter of which is constructed with the higher-layer topics. Note that Wallach et al. (2009)
tested the option using specific asymmetric Dirichlet parameter, i.e., φk ∼ DirV ([α1, · · · , αV ]), but
the performance is not as good as the symmetric parameter (the second one above). In addition,
following a similar routine, we compared MetaLDA (Zhao et al., 2017a), and GBN (Zhou et al.,
2016) with/without DirBN. Note that PFA is a widely used Bayesian topic model, MetaLDA is the
state-of-the-art topic model capable of handling sparse texts, and GBN is reported Cong et al. (2017)
to outperform many other deep models including DPFA (Gan et al., 2015), DPFM (Henao et al.,
2015), nHDP (Paisley et al., 2015), and RSM (Hinton and Salakhutdinov, 2009).

For all the models, we ran 3,000 MCMC iterations with 1,500 burnin. For DirBN, we set a0 =
b0 = g0 = h0 = 1.0 and e0 = f0 = 0.01. For PFA, MetaLDA, and GBN, we used their original
implementations and settings, except that φ is drawn from DirBN in the combined models. For all
the models, the number of topics in each layer of DirBN was set to 100, i.e., KT = · · · = K1 = 100.
For GBN and GBN+DirBN, we set the number of topics in each layer of GBN to 100 as well. Due to
the shrinkage mechanisms of PFA, GBN, and DirBN, the number of active topics will be adjusted
according to the data. In all the experiments, we varied the number of layers of DirBN T from 1 to 3.
For GBN+DirBN, the dual deep model, we fixed the number of layers of GBN as 3.

5http://trec.nist.gov/data/microblog.html
6http://mallet.cs.umass.edu
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Figure 3: Perplexity (the vertical axis) with varied proportion (the horizontal axis) of the words for
training in the training documents. (a-c): Results of the models based on PFA on WS, TMN, Twitter.
(d-f): Results of the models based on GBN on WS, TMN, Twitter. (g,h): Results of the models
based on MetaLDA on WS and TMN. The errorbars indicate the standard deviations of five runs.
The number of a model indicates the number of layers used in DirBN. The results of MetaLDA and
document classification on Twitter are not reported due to the unavailability of labels.

Demonstration of DirBN’s shrinkage effect As previously discussed, DirBN has an intrinsic
shrinkage mechanism that is able to automatically learn the number of active topics in each layer (i.e.,
the network width). We empirically demonstrate the shrinkage effect in Figure 2, with the results
of PFA+DirBN-3 on the TMN dataset. Figure 2a plots the histograms of the normalised (latent)
words counts

∑
v x

(t)
vkt
/
∑
vkt

x
(t)
vkt

for all kt where x(t)vkt is the word count for topic kt. The blue and
red bars are for the first- (t = 1) and the second-layer (t = 2) topics, respectively. The histogram
indicates the number of topics ( the vertical axis) that are with a specific word count (the horizontal
axis). A topic with a larger word count is more important. The shrinkage effect is that large proportion
of the topics are with very small word counts, indicating that the number of effective topics is less
than the truncation (i.e., Kt = 100). This is more obvious, in the second layer. Moreover, we display
log B(1) as an image in Figure 2b. The vertical and horizontal axes are for the second- and first-layer
topics, respectively. We ranked the first- and second-layer topics by their word counts. The sparsity of
B(1) indicates that the first- and second-layer topics are sparsely connected. This also demonstrates
the shrinkage effect of the model.

Quantitative results We report the per-heldout-word perplexity and topic coherence results. To
compute perplexity, we randomly selected 80% of the documents in each dataset to train the models
and 20% for testing. For each testing document, we randomly used one half of its words to infer its
TP, and the other half to calculate perplexity. Topic coherence measures the semantic coherence in
the most significant words (top words) of a topic. Here we used the Normalized Pointwise Mutual
Information (NPMI) (Aletras and Stevenson, 2013; Lau et al., 2014) to calculate topic coherence
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Table 1: Topic coherence with varied proportion of the words for training in the training documents.
± indicates the standard deviation of five runs. The best result in each column is in boldface.

WS TMN Twitter
Training words 20% 40% 100% 20% 40% 100% 20% 40% 100%

PFA -0.070±0.010 0.008±0.002 0.062±0.011 -0.059±0.008 0.064±0.009 0.103±0.006 -0.003±0.003 0.031±0.003 0.046±0.002
PFA+Mallet 0.008±0.004 0.049±0.005 0.063±0.003 0.035±0.006 0.083±0.005 0.108±0.005 0.022±0.003 0.037±0.002 0.045±0.003

PFA+DirBN-1 0.013±0.003 0.052±0.004 0.060±0.006 0.031±0.003 0.080±0.001 0.108±0.008 0.019±0.004 0.037±0.004 0.049±0.007
PFA+DirBN-3 0.021±0.005 0.059±0.002 0.068±0.004 0.046±0.003 0.090±0.003 0.111±0.004 0.024±0.001 0.038±0.002 0.049±0.002

GBN -0.072±0.013 0.007±0.005 0.069±0.009 -0.065±0.008 0.063±0.006 0.106±0.004 -0.005±0.005 0.032±0.002 0.047±0.00
GBN+DirBN-1 0.015±0.005 0.057±0.002 0.069±0.005 0.032±0.002 0.086±0.002 0.112±0.007 0.021±0.004 0.040±0.005 0.050±0.005
GBN+DirBN-3 0.018±0.006 0.061±0.004 0.075±0.002 0.048±0.003 0.094±0.004 0.113±0.004 0.025±0.003 0.040±0.002 0.051±0.003

Table 2: Topic hierarchy comparison in GBN+DirBN. Each row in boldface is the top 10 words in a
first-layer topic. Each of these topics is associated with three most correlated topics in the second
layer of DirBN (left) and GBN (right), respectively. The number associated with a second-layer topic
is its (normalised) link weight to the first-layer topic.

police arrested man charged woman authorities death year found accused

0.13 case charges accused trial courtattorney
investigation judge allegations criminal 0.38 police arrested man charged year

accused found charges woman death

0.13 police official killing attack deaddeath
army security man family 0.19 police prison man china years

arrested charges charged year chinese

0.11 woman men drug suicide girl
sexual death found human york 0.15 china police chinese bomb fire

people blast city artist officials
heat miami james lebron game nba finals celtics bulls wade

0.43 season team game play run
night star series fans career 0.97 heat miami james game nba

finals lebron bulls mavericks dallas

0.15 nba playoffs court brink seeds
defeated berth seed opponent semifinals 0.00 trial rajaratnam insider trading fund

hedge raj anthony galleon case

0.10 win victory beat lead winning
top fourth loss straight beating 0.00 music album lady gaga justin

star pop band rock tour
facebook google internet social twitter online web media site search

0.18 phone plan video technology mobile
devices computer tech ceo content 0.22 facebook social internet google online

twitter chief executive media web

0.14 company million buy billion corp
industry sales companies consumers products 0.19 court lawsuit case facebook judge

social federal internet google online

0.12 government report country nation pressure
official state move released public 0.18 facebook social internet google online

twitter world web media site
study cancer drug risk heart patients women researchers disease people

0.12 rising percent high higher economic
increase low growth strong recovery 0.91 study cancer drug risk researchers heart

people patients health women

0.12 reactions periods technique method declared
important realized treatment peril scores 0.04 world war years family oil

dies year energy women american

0.10 study experience finding recent security
kids challenges millions report special 0.18 facebook social internet google online

twitter world web media site
nuclear japan plant power radiation crisis japanese fukushima crippled tokyo

0.17 government united states officials state
report country group official agency 0.53 nuclear japan plant power radiation

crisis japanese fukushima earthquake tokyo

0.14 safety water nearby land found
caused sea believed center parts 0.44 nuclear japan plant power radiation

crisis japanese fukushima water tokyo

0.13 work plans part future system
rules program bring offers decision 0.01 theater review broadway play york

musical stage life time love

score from the top 10 words of each topic and reported scores averaged over top 50 topics with
highest NPMI, where “rubbish” topics are eliminated, following Yang et al. (2015)7. In the training
documents, we further varied the proportion of the words used in training to mimic the case of sparse
texts. All the models ran five times with different random seeds and we reported the averaged value
with standard deviations.

The results of perplexity and topic coherence are shown in Figure 3 and Table 1, respectively. We
have the following remarks on the results: (1) In general, for the models with DirBN, the performance
is significantly improved compared with the counterparts without DirBN, especially in terms of
perplexity and topic coherence and with low proportion of the training words. (2) In terms of all the
measures, DirBN-2/3 always has better results than DirBN-1. Whereas if we compare GBN with PFA,
its perplexity is worse than PFA’s, especially for sparse texts. This demonstrates that hierarchical
structures on θ (i.e., GBN) may not perform as well as hierarchical structures on φ (i.e., DirBN) on
sparse texts. (3) Although PFA+DirBN-1 and PFA+Mallet both impose a symmetric Dirichlet on φ,
the former usually has better perplexity. (4) The dual deep model (GBN+DirBN-3) usually performs
the best on topic coherence, which demonstrates the benefits of the deep structures.

Qualitative analysis on topic hierarchies 8 GBN+DirBN is a dual deep model that discovers two
sets of hierarchies, one induced by GBN on θ and the other induced by DirBN on φ. The topics in the

7We used the Palmetto package (http://palmetto.aksw.org) with a large Wikipedia dump.
8More visualisations of topic hierarchies are shown in the supplementary material.
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Figure 4: Topic hierarchies discovered by MetaLDA+DirBN. The topics in the yellow and blue
rectangles are the second and first layer topics in DirBN and the correlated labels to the first-layer
topics are shown at the bottom of each figure. Thicker arrows indicate stronger correlations.

first layer of DirBN connect the two sets of hierarchies. In Table 2, we show the first-layer topics and
the correlated second-layer topics in the two hierarchies. It is interesting to see that the second-layer
topics of DirBN are more abstract. For example, the second topic is about teams and player in NBA,
while its correlated second-layer topics are more general words for sports. Moreover, DirBN is able
to discover layer-wise semantically meaningful topic correlations with fewer overlapping top words.
This is because GBN combines the words in the first-layer topics to form the second-layer topics,
whereas DirBN decomposes the first-layer topics into the second-layer ones.

In MetaLDA+DirBN, the MetaLDA part is able to use document labels to construct TPs (Zhao et al.,
2017a), by learning a correlation matrix between the labels and topics, while the DirBN part learns
the topic hierarchy. The first-layer topics of DirBN link the correlation matrix and the topic hierarchy
together. Figure 4 shows the sample linkages between topic hierarchies and labels on TMN, where
the documents are labelled with 7 categories: 1 sport, 2 business, 3 us, 4 entertainment, 5 world, 6
health, 7 sci-tech. One can observe that there is a well correspondence between the topic hierarchies
and the labels.

6 Conclusions

We have presented DirBN, a multi-layer process generating word distributions of topics. With
real topics in each layer, DirBN is able to discover interpretable topic hierarchies. As a flexible
module, DirBN can be adapted to other advanced topic models and improve the performance and
interpretability, especially on sparse texts. We have demonstrated DirBN’s advantages by equipping
PFA, MetaLDA, and GBN, with DirBN. With the help of data augmentation, the inference of DirBN
can be done by a layer-wise Gibbs sampling, as a full conjugate model.

Future directions include deriving alternative inference algorithms, such as variational inference (Hoff-
man et al., 2013), conditional density filtering (Guhaniyogi et al., 2018), and stochastic gradient-based
approaches (Chen et al., 2014; Ding et al., 2014; Welling and Teh, 2011).
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1 Details of the inference

Given the latent counts x(t)
kt

, the details of inference of the the t-th (t < T ) layer of DirBN are as
follows:
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where n(t) =
∑Kt

kt
log

c(t)−log q
(t)
kt

c(t)
.

In the top layer t = T , we have:
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φ
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kT
∼ Dir
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)
, (12)
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The inference process of DirBN is in Algorithm 1. Note that in different models, after the topic
assignments of words are obtained, the inference of DirBN is the same.

2 Details of the combined models

PFA+DirBN The generative process of PFA+DirBN is shown as follows:

pk ∼ Beta (cε, c(1− ε)) , rk ∼ Ga(c0r0, 1/c0), θkd ∼ Ga
(
rk,

pk
1− pk

)
,

φk ∼ DirBN(T ), xvd =
K∑

k

xvdk, xvdk ∼ Pois(φvkθkd), (15)

where DirBN(T ) stands for the generative process of DirBN with T layers.

MetaLDA+DirBN The generative process of MetaLDA+DirBN is as follows:

λlk ∼ Ga(a0, 1/b0), αkd =
L∏

l

(λlk)
fld ,θd ∼ Dir(αd),φk ∼ DirBN(T ),

zid ∼ Categorical(θd), wid ∼ Categorical(φzid), (16)

where L is the number of unique document labels, l ∈ {1, · · · , L}, fld ∈ {0, 1} indicates whether
document d has label l, wid = v is the i-th word in document d, and zid = k is the topic assignment
of wid.

GBN+DirBN The generative process of GBN+DirBN is as follows:

θ
(S)
d ∼ Ga

(
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)
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(s+1)
d , 1/c

(s+1)
d

)
,

· · ·
θ
(1)
d ∼ Ga

(
Φ̃(2)θ

(2)
d , p

(2)
d /(1− p(2)d )

)
,φk ∼ DirBN(T ),

xvd =
K∑

k

xvdk, xvdk ∼ Pois(φvkθ
(1)
kd ), (17)

where s ∈ {1, · · · , S} is the index of the s layer in GBN.

3 More results

For document classification, the TPs were used as input features for a L2 regularized logistic
regression using the LIBLINEAR package to predict the document labels. We used the same train/test
splits as in perplexity evaluation, except that all the words in a test document were used to infer its
TP. The results on WS and TMN are shown in Table 1.

4 Visualisation of topic hierarchies

Shown in Figure 2 to 5.
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Table 1: Document classification
WS TMN

Training words 20% 40% 100% 20% 40% 100%
PFA 67.58±5.73 81.08±0.83 82.29±0.73 73.02±1.43 78.68±0.28 80.00±0.51

PFA+mallet 73.97±1.12 79.64±0.89 82.75±0.89 72.84±0.40 78.02±0.89 79.92±0.66
PFA+DirBN-1 77.11±0.55 81.69±0.53 82.26±0.48 73.08±0.33 78.40±0.31 79.77±0.56
PFA+DirBN-3 76.74±0.57 82.04±0.28 83.68±1.04 74.41±0.60 78.99±0.46 79.91±0.56

MetaLDA 67.94±3.00 83.26±1.21 84.18±1.10 74.02±0.62 78.88±0.27 80.04±0.49
MetaLDA + DirBN-1 76.67±0.88 81.38±1.02 83.07±0.70 74.10±0.22 79.67±0.67 80.63±0.10
MetaLDA + DirBN-3 77.84±1.06 82.53±0.46 83.97±1.09 75.03±0.26 79.37±0.63 80.99±0.22

GBN 68.87±4.67 82.97±0.49 84.35±0.91 72.88±1.08 79.28±0.41 81.44±0.21
GBN+DirBN-1 76.73±0.70 82.54±0.81 83.18±0.40 74.42±0.32 79.59±0.30 80.87±0.68
GBN+DirBN-3 78.17±1.88 82.82±1.08 84.28±1.12 75.36±0.60 79.79±0.48 81.10±0.34
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Require: x(1)
k1

for all k1, T (T > 1), a0, b0, e0, f0, g0, h0 MaxIteration

Ensure: β(t)
kt
,φ

(t)
kt

for all kt

1: Randomly initialise all the latent variables according to the generative process
2: for iter ← 1 to MaxIteration do
3: / ∗ Propagating the latent counts from the bottom up ∗ /
4: for t← 1 to T do
5: for all kt and v do
6: Sample y(t)vkt by Eq. (3)
7: for all kt+1 do
8: Sample z(t)vkt+1kt

by Eq. (4)
9: end for

10: end for
11: end for
12: / ∗ Updating the latent variables from the top down ∗ /
13: for t← T to 1 do
14: if t = T then
15: for all kT and v do
16: Sample svkT by Eq. (13)
17: end for
18: Sample η by Eq. (14)
19: for all kT do
20: Sample φ(T )

kT
by Eq. (12)

21: end for
22: else
23: for all kt do
24: Compute ψ(t)

kt
by ψ(t)

kt
=
∑Kt+1

kt+1
φ

(t+1)
kt+1

β
(t)
kt+1kt

25: end for
26: for all kt do
27: Sample q(t)kt by Eq. (2)
28: end for
29: for all kt and kt+1 do
30: Sample m(t)

kt+1kt
by Eq. (6)

31: end for
32: for all kt+1 do
33: Sample γ(t)kt+1

, p
(t)
kt+1

by Eq. (7,9)
34: end for
35: Sample c(t), γ(t)0 , c

(t)
0 by Eq. (8,10,11)

36: for all kt and kt+1 do
37: Sample β(t)

kt+1kt
by Eq. (5)

38: end for
39: for all kt do
40: Sample φ(t)

kt
by Eq. (1)

41: end for
42: end if
43: end for
44: end for

Figure 1: Infernece algorithm for DirBN
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Figure 2: Topic hierarchies discovered by MetaLDA+DirBN on TMN. The topics in the green, yellow,
and blue rectangles are the third, second, and first layer topics in DirBN and the correlated document
labels are shown on the bottom of each figure. Thicker arrows indicate stronger correlations.
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Figure 3: Topic hierarchies discovered by MetaLDA+DirBN on WS. The topics in the green, yellow,
and blue rectangles are the third, second, and first layer topics in DirBN and the correlated document
labels are shown on the bottom of each figure. Thicker arrows indicate stronger correlations.
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Figure 4: Topic hierarchies discovered by GBN+DirBN on TMN. The topics in the red and green
rectangles are the third and second-layer topics discovered by GBN on TPs. The topics in the blue
rectangles are the second-layer topics discovered by DirBN on WDs. The topics in the yellow
rectangles are the first-layer topics connecting the higher-layer topics of GBN and DirBN.
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Figure 5: Topic hierarchies discovered by GBN+DirBN on WS. The topics in the red and green
rectangles are the third and second-layer topics discovered by GBN on TPs. The topics in the blue
rectangles are the second-layer topics discovered by DirBN on WDs. The topics in the yellow
rectangles are the first-layer topics connecting the higher-layer topics of GBN and DirBN.
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Inter and Intra Topic Structure Learning with Word Embeddings

He Zhao 1 Lan Du 1 Wray Buntine 1 Mingyaun Zhou 2

Abstract
One important task of topic modeling for text anal-
ysis is interpretability. By discovering structured
topics one is able to yield improved interpretabil-
ity as well as modeling accuracy. In this paper,
we propose a novel topic model with a deep struc-
ture that explores both inter-topic and intra-topic
structures informed by word embeddings. Specifi-
cally, our model discovers inter topic structures in
the form of topic hierarchies and discovers intra
topic structures in the form of sub-topics, each of
which is informed by word embeddings and cap-
tures a fine-grained thematic aspect of a normal
topic. Extensive experiments demonstrate that our
model achieves the state-of-the-art performance
in terms of perplexity, document classification,
and topic quality. Moreover, with topic hierar-
chies and sub-topics, the topics discovered in our
model are more interpretable, providing an illumi-
nating means to understand text data.

1. Introduction
Significant research effort has been devoted to developing
advanced text analysis technologies. Probabilistic topic
models such as Latent Dirichlet Allocation (LDA), are pop-
ular approaches for this task, which discover latent topics
from text collections. One preferred property of proba-
bilistic topic models is interpretability: one can explain
that a document is composed of topics and a topic is de-
scribed by words. Although widely used, most variations
of standard vanilla topic models (e.g., LDA) assume topics
are independent and there are no structures among them.
This limits those models’ ability to explore any hierarchical
thematic structures. Therefore, it is interesting to develop
a model that is capable of exploring topic structures and
yields not only improved modeling accuracy but also better

1Faculty of Information Technology, Monash University, Aus-
tralia 2McCombs School of Business, University of Texas at Austin.
Correspondence to: Lan Du <lan.du@monash.edu>, Mingyuan
Zhou <mingyuan.zhou@mccombs.utexas.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Table 1. Example local topics with top 10 words

1
journal science biology research journals

international cell psychology scientific bioinformatics

2
fitness piano guitar swimming violin

weightlifting lessons training swim weight

3
taylor prince swift william

jovi bon woman gala pill jon

4
san auto theft grand andreas

mobile gta game rockstar december

interpretability.

One popular direction to explore topic structure is using
the hierarchical/deep representation of text data, such as the
nested hierarchical Dirichlet process (nHDP) (Paisley et al.,
2015), Deep Poisson Factor Analysis (DPFA) (Gan et al.,
2015), and Gamma Belief Network (GBN) (Zhou et al.,
2016; Cong et al., 2017). In general, these models assume
that topics in the higher layers of a hierarchy are more
general/abstract than those in the lower layers. Therefore,
by revealing hierarchical correlations between topics, topic
hierarchies provide an intuitive way to understand text data.

In addition to topic hierarchies, we are also interested in
analyzing the fine-grained thematic structure within each in-
dividual topic. As we know, in conventional models, topics
are discovered locally from the word co-occurrences in a
corpus. So we refer those topics as local topics. Due to the
limitation of the context of a target corpus, some local topics
may be hard to interpret because of the following two ef-
fects: (1) They can mix the words which co-occur locally in
the target corpus but are less semantically related in general;
(2) Local topics can be dominated by specialized words,
which are less interpretable without extra knowledge. For
example, we show four example topics of our experiments
in Table 1, where we can see: Topic 1 is composed of the
words from both the “scientific publication” and “biology”
aspects; Topic 2 is a mixture of “sports” and “music”; Topics
3 and 4 are very specific topics about “singer” and “video
game” respectively. We humans are able to understand those
local topics in the above way because we are equipped with
the global semantics of the words, making us go beyond
the local context of the target corpus. Therefore, we are
motivated to propose a model which is able to automatically
analyze the fine-grained thematic structures of local topics,
further improving the interpretability of topic modeling.
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Fortunately, word embeddings such as GloVe (Pennington
et al., 2014), word2vec (Mikolov et al., 2013), and Fast-
Text (Bojanowski et al., 2017) can be used as an accessible
source of global semantic information for topic models.
Learned from large corpora, word embeddings encode the
semantics of words with their locations in a space, where
more related words are closer to each other. For example in
Topic 1, according to the distances of word embeddings, the
words “biology, cell, psychology, bioinformatics” should
be in one cluster and “journal, science, research, interna-
tional, scientific” should be in the other. Therefore, if a topic
model can leverage the information in word embeddings, it
may discover the fine-grained thematic structures of local
topics. Furthermore, it has been demonstrated that conven-
tional topic models suffer from data sparsity, resulting in
a large performance degradation on some shorter internet-
generated documents like tweets, product reviews, and news
headlines (Zuo et al., 2016; Zhao et al., 2017c). In this
case, word embeddings can also serve as complementary
information to alleviate the sparsity issue in topic models.

In this paper, we propose a novel deep structured
topic model, named the Word Embeddings Deep Topic
Model, WEDTM1, which improves the interpretability of
topic models by discovering topic hierarchies (i.e., inter
topic structure) and fine-grained interpretations of local top-
ics (i.e., intra topic structure). Specifically, the proposed
model adapts a multi-layer Gamma Belief Network which
generates deep representations of topics as well as docu-
ments. Moreover, WEDTM is able to split a local topic
into a set of sub-topics, each of which captures one fine-
grained thematic aspect of the local topic, in a way that
each sub-topic is informed by word embeddings. WEDTM
has the following key properties: (1) Better interpretabil-
ity with topic hierarchies and sub-topics informed by word
embeddings. (2) The state-of-the-art perplexity, document
classification, and topic coherence performance, especially
for sparse text data. (3) A straightforward Gibbs sampling
algorithm facilitated by fully local conjugacy under data
augmentation.

2. Related Work
Deep/hierarchical topic models: Several approaches have
been developed to learn hierarchical representations of
documents and topics. The Pachinko Allocation model
(PAM) (Li & McCallum, 2006) assumes the topic structure
is modeled by a directed acyclic graph (DAG), which is
document specific. nCRP (Blei et al., 2010) models topic
hierarchies by introducing a tree structure prior constructed
with multiple CRPs. Paisley et al. (2015); Kim et al. (2012);
Ahmed et al. (2013) further extend nCRP by either softening
its constraints or applying it to different problems respec-

1https://github.com/ethanhezhao/WEDTM

tively. Poisson Factor Analysis (PFA) (Zhou et al., 2012)
is a nonnegative matrix factorization model with Poisson
link, which is a popular alternative to LDA, for topic model-
ing. The details of the close relationships between PFA and
LDA can be found in Zhou (2018). There are several deep
extensions to PFA for documents, such as DPFA (Gan et al.,
2015), DPFM (Henao et al., 2015), and GBN (Zhou et al.,
2016). Among them, GBN factorizes the factor score ma-
trix (topic weights of documents) in PFA with nonnegative
gamma-distributed hidden units connected by the weights
drawn from the Dirichlet distribution. From a modeling per-
spective, GBN is related to PAM, while GBN assumes there
is a corpus-level topic hierarchy shared by all the documents.
As reported by Cong et al. (2017), GBN outperforms other
hierarchical models including nHDP, DPFA, and DPFM.
Despite having the attractive properties, these deep models
barely consider intra topic structures or the sparsity issue
associated with internet-generated corpora.

Word embedding topic models: Recently, there is a grow-
ing interest in applying word embeddings to topic models,
especially for sparse data. For example, WF-LDA (Petterson
et al., 2010) extends LDA to model word features with the
logistic-normal transform, where word embeddings are used
as word features in Zhao et al. (2017b). LF-LDA (Nguyen
et al., 2015) integrates word embeddings into LDA by re-
placing the topic-word Dirichlet multinomial component
with a mixture of a Dirichlet multinomial component and
a word embedding component. Due to the non-conjugacy
in WF-LDA and LF-LDA, part of the inference has to be
done by MAP optimization. Instead of generating tokens,
Gaussian LDA (GLDA) (Das et al., 2015) directly gener-
ates word embeddings with the Gaussian distribution. The
model proposed in Xun et al. (2017) further extends GLDA
by modeling topic correlations. MetaLDA (Zhao et al.,
2017c; 2018a) is a conjugate topic model that incorporates
both document and word meta information. However, in
MetaLDA, word embeddings have to be binarized, which
can lose useful information. WEI-FTM (Zhao et al., 2017b)
is a focused topic model where a topic focuses on a subset of
words, informed by word embeddings. To our knowledge,
topic hierarchies and sub-topics are not considered in most
of the existing word embedding models.

3. The Proposed Model
Based on the PFA framework, WEDTM is a hierarchical
model with two major components: one for discovering
the inter topic hierarchies and the other for discovering
intra topic structures (i.e., sub-topics) informed by word
embeddings. The two components are connected by the
bottom-layer topics, detailed as follows. Assume that each
document j is presented as a word count vector x(1)

j ∈ NV0 ,
where V is the size of the vocabulary; the pre-trained L
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dimensional real-valued embeddings for each word v ∈
{1, · · · , V } are stored in a L-dimensional vector fv ∈ RL.
Now we consider WEDTM with T hidden layers, where the
t-th layer is with Kt topics and kt is the index of each topic.
In the bottom layer (t = 1), there are K1 (local) topics, each
of which is associated with S sub-topics. To assist clarity,
we split the generative process of the model into three parts,
shown as follows:

Generating
documents





θ
(1)
j ∼ Gam

[
Φ(2)θ

(2)
j , p

(2)
j /(1− p(2)j )

]
,

φ
(1)
k1
∼ Dir (βk1) ,

x
(1)
j ∼ Pois

(
Φ(1)θ

(1)
j

)
,

Inter
structure





θ
(T )
j ∼ Gam

(
r, 1/c

(T+1)
j

)
,

· · ·
θ
(t)
j ∼ Gam

(
Φ(t+1)θ

(t+1)
j , 1/c

(t+1)
j

)
(t < T ),

φ
(t)
kt
∼ Dir (η01) (t > 1),

· · ·

Intra
structure





w<s>
k1
∼ N [0, diag(1/σ<s>)] ,

α<s>k1
∼ Gam(α<s>0 /S, 1/c<s>0 ),

β<s>vk1
∼ Gam

(
α<s>k1

, ef
>
v w<s>

k1

)
,

βvk1 :=
∑S
s β

<s>
vk1

,

where (t) is the index of the layer that a variable belongs to
and <s> is the index of sub-topic s. To complete the model,
we impose the following priors on the latent variables:

rkT ∼ Gam(γ0/KT , 1/c0),

γ0 ∼ Gam(a0, 1/b0), p
(t)
j ∼ Beta(a0, b0),

c
(t)
j ∼ Gam(e0, 1/f0), α

<s>
0 ∼ Gam(e0, 1/f0),

c<s>0 ∼ Gam(e0, 1/f0), σ
<s>
l ∼ Gam(a0, 1/b0).

We first take a look at the bottom layer of the model, i.e.,
the process of generating the documents, which follows a
PFA framework. In this part, WEDTM models the word
counts x(1)

j in a document by a Poisson (Pois) distribution
and factorizes the Poisson parameters into a product of the
factor loadings Φ(1) ∈ RV×K1

+ and hidden units θ(1)j . θ(1)j
is the first-layer latent representation (unnormalized topic
weights) of document j, each element of which is drawn
from a gamma (Gam) distribution2. The k1-th column of
Φ(1), φ(1)

k1
∈ RV+ is the word distribution of topic k1, drawn

from a Dirichlet (Dir) distribution. We then explain the
component for discovering inter topic hierarchies, which is
similar to the structure of GBN (Zhou et al., 2016). Specif-
ically, the shape parameter of θ(1)j is factorized into θ(2)j
and Φ(2) ∈ RK1×K2

+ , where θ(2)j is the second-layer latent

2The first and second parameters of the gamma distribution are
the shape and scale respectively.

representation of document j and φ(2)
k2
∈ RK1

+ models the
correlations between topic k2 and all the first-layer topics.
Note that strictly speaking, k2 is not a “real” topic as it is
not a distribution over words. But it can be interpreted with
words by Φ(1)φ

(2)
k2

. By repeating this construction, we are
able to build a deep structure to discover topic hierarchies.

Now we explain how sub-topics are discovered for the
bottom-layer topics with the help of word embeddings. First
of all, WEDTM applies individual asymmetric Dirichlet
parameters βk1 ∈ RV+ for each bottom-layer (local) topic
φ

(1)
k1

. We further construct βvk1 =
∑S
s β

<s>
vk1

, where β<s>vk1
models how strongly word v is associated with sub-topic s
in local topic k1. For each sub-topic s, we introduce an L-
dimensional sub-topic embedding: w<s>

k1
∈ RL. As β<s>vk1

is gamma distributed, its scale parameter is constructed by
the dot product of the embeddings of sub-topic s and word
v through the exponential function.

The basic idea of our model is summarized as follows:

1. In terms of sub-topics, we assume each (local, bottom-
layer) topic is associated with several sub-topics, in a
way that the sub-topics contribute to the prior of the
local topic via a sum model (Zhou, 2016). Therefore, if
a word dominates in one or more sub-topics, it is likely
that the word will still dominate in the local topic. With
this construction, a sub-topic is expected to capture one
fine-grained thematic aspect of the local topic and each
sub-topic can be directly interpreted with words via
β<s>k1

∈ RV+ .

2. To leverage word embeddings to inform the learning
of sub-topics, we introduce the sub-topic embedding
for each of them, w<s>

k1
, which directly interacts with

the word embeddings. Therefore, sub-topic embed-
dings are learned with both the local context of the
target corpus and the global information of word em-
beddings. According to our model construction, the
probability density function of βvk1 is the convolution
of S covariance-dependent gamma distributions (Zhou,
2016). Therefore, if the sub-topic embeddings of s and
word embeddings of v are close, the dot product of
them will be large, giving a large expectation of β<s>vk1

.
The large expectation means that v has a large weight
in sub-topic s of k. Finally, β<s>vk1

further contributes

to the local topic’s prior βvk1 , informing φ(1)vk1 of the
local topic.

3. It is also noteworthy the special case of WEDTM,
where S = 1, meaning that there are no sub-topics
and each local topic k1 is associated with one topic em-
bedding vector wk1 . Consequently, in WEDTM, there
are three latent variables capturing the weights between
the words and local topic k1: eF

>wk1 (F ∈ RL×V is

Chapter 6 138



WEDTM

the embeddings of all the words), βk1 , and φ(1)
k1

, each
of which is a vector over words. It is interesting to ana-
lyze the connections and differences of them. eF

>wk1

is the prior of βk1 , while βk1 is the prior of φ(1)
k1

. So

eF
>wk1 is the closest one to the word embeddings, i.e.,

the global semantic information, while φ(1)
k1

is the clos-
est one to the data, i.e., the local document context
of the target corpus. Therefore, unlike conventional
topic models with φ(1)

k1
only, the three variables of

WEDTM give three different views to the same topic,
from global to local, respectively. We qualitatively
show this interesting comparison in Section 5.4.

4. The last but not least, word embeddings in WEDTM
can be viewed to serve as the prior/complementary
information to assist the learning of the whole model,
which is important especially for sparse data.

4. Inference
Unlike many other word embeddings topic models, the fully
local conjugacy of WEDTM facilitates the derivation of an
effective Gibbs sampling algorithm. As the sampling for
the latent variables in the process of generating documents
and modeling inter topic structure are similar to GBN, the
details can be found in Zhou et al. (2016). Here we focus
on the sampling of the latent variables for modeling intra
topic structure.

Assume that sampled by Eq. (28) in Appendix B of Zhou
et al. (2016), the latent count for the bottom-layer local top-
ics are x(1)vjk1 , which counts how many words v in document
j are allocated with local topic k1.

Sample β<s>vk1
. We first sample:

(
h<1>
vk1

, · · · , h<S>vk1

)
∼ Mult

(
hvk1 ,

β<1>
vk1

βvk1
, · · · ,

β<S>vk1

βvk1

)
,

(1)

where hvk1 ∼ CRT
(
x
(1)
v·k1 , βvk1

)
(Zhou & Carin, 2015;

Zhao et al., 2017a), and x(1)v·k1 :=
∑
j x

(1)
vjk1

3. Then:

β<s>vk1
∼

Gam(α<s>k1
+ h<s>vk1

, 1)

e−π
<s>
vk1 + log 1

qk1

, (2)

where qk1 ∼ Beta(β·k1 , x
(1)
··k1) (Zhao et al., 2018b) and we

define π<s>vk1
:= f>v w

<s>
k1

.

3We hereafter use · of a dimension to denote the sum over that
dimension.

Sample α<s>k . We first sample g<s>vk1
∼

CRT
(
h<s>vk1

, α<s>k1

)
, then:

α<s>k1
∼

Gam(α<s>0 /S + g<s>·k1 , 1)

c<s>0 + log
(
1 + eπ

<s>
vk1 log 1

qk1

) . (3)

It is noteworthy that the hierarchical construction onα<s>k1
is

closely related to the gamma-negative binomial process and
can be considered as a (truncated) gamma process (Zhou &
Carin, 2015; Zhou, 2016) with an intrinsic shrinkage mech-
anism on S. It means that the model is able to automatically
learn the number of effective sub-topics.

Sample w<s>
k1

.

w<s>
k1
∼ N (µ<s>k1

,Σ<s>
k1

),

µ<s>k1
=

Σ<s>
k1

[
V∑

v

(
h<s>vk1

− α<s>k1

2
− ω<s>vk1

log log
1

qk1

)
fv

]
,

Σ<s>
k1

=

[
diag(1/σ<s>) +

V∑

v

ω<s>vk1
fv(fv)

>
]−1

,(4)

where ω<s>vk1
∼ PG

(
h<s>vk1

+ α<s>k1
, π<s>vk1

+ log log 1
qk1

)

and PG denotes the Pólya gamma distribution (Polson et al.,
2013). To sample from PG, we use an accurate and efficient
approximate sampler in Zhou (2016).

Omitted derivations, details, and the overall algorithm are
in the supplementary materials.

5. Experiments
We evaluate the proposed WEDTM by comparing it with
several recent advances including deep topic models and
word embedding topic models. The experiments were con-
ducted on four real-world datasets including both regular
and sparse texts. We report perplexity, document classifica-
tion accuracy, and topic coherence scores. We also qualita-
tively analyze the topic hierarchies and sub-topics.

5.1. Experimental Settings

In the experiments, we used a regular text dataset (20NG)
and three sparse text datasets (WS, TMN, Twitter), the de-
tails of which are as follows: 1. 20NG, 20 Newsgroup, con-
sists of 18,774 articles with 20 categories. Following Zhou
et al. (2016), we used the 2000 most frequent terms after
removing stopwords. The average document length is 76.
2. WS, Web Snippets, contains 12,237 web search snip-
pets with 8 categories, used by Li et al. (2016); Zhao et al.
(2017c;b). The vocabulary contains 10,052 tokens and there
are 15 words in one snippet on average. 3. TMN, Tag My
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Figure 1. (a)-(d): Relative per-heldout-word perplexity6 (the lower the better) with the varied K1 and fixed proportion (80%) of training
words of each document. (e)-(h): Relative per-heldout-word perplexity6 with the varied proportion of training words of each document
and fixed K1 (100 on WS, TMN, and Twitter; 200 for 20NG). The error bars indicate the standard deviations of 5 random trials. The
number attached to WEDTM and GBN indicates the number of layers (i.e., T ) used.

News, consists of 32,597 RSS news snippets from Tag My
News with 7 categories, used by Nguyen et al. (2015); Zhao
et al. (2017c;b). Each snippet contains a title and a short de-
scription. There are 13,370 tokens in the vocabulary and the
average length of a snippet is 18. 4. Twitter, was extracted
in 2011 and 2012 microblog tracks at Text REtrieval Con-
ference (TREC)4 and preprocessed in Yin & Wang (2014).
It has 11,109 tweets in total. The vocabulary size is 6,344
and a tweet contains 21 words on average.

We compared WEDTM with: 1. GBN (Zhou et al., 2016),
the state-of-the-art deep topic model. 2. MetaLDA (Zhao
et al., 2017c; 2018a), the state-of-the-art topic model with
binary meta information about document and/or word. Word
embeddings need to be binarized before used in the model. 3.
WEI-FTM (Zhao et al., 2017b), the state-of-the-art focused
topic model that incorporates real-valued word embeddings.

It is noteworthy that GBN was reported (Cong et al., 2017)
to have better performance than other deep (hierarchi-
cal) topic models such as nHDP (Paisley et al., 2015),
DPFA (Gan et al., 2015), and DPFM (Henao et al., 2015).
MetaLDA and WEI-FTM were reported to perform better
than other word embedding topic models including WF-
LDA (Petterson et al., 2010) and GPUDMM (Li et al., 2016)
as well as short text topic models like PTM (Zuo et al.,

4http://trec.nist.gov/data/microblog.html

2016). Therefore, we considered the three above competi-
tors to WEDTM.

Originally MetaLDA (when no document meta informa-
tion is provided) and WEI-FTM follow the LDA frame-
work, where the topic distribution for document j is θj ∼
Dir(α01) and α0 is a hyperparameter (usually set to 0.1).
For a fair comparison, we replaced this part with the
PFA framework with the gamma-negative binomial pro-
cess (Zhou & Carin, 2015), which is equivalent to GBN
when T = 1 and closely related to the hierarchical Dirichlet
Process LDA (HDPLDA) (Teh et al., 2012).

For all the models, we used 50-dimensional GloVe word
embeddings pre-trained on Wikipedia5. Except for Met-
aLDA, where we followed the paper to binarise the word
embeddings, the other three models used the original real-
valued embeddings. The hyperparameter settings we used
for WEDTM and GBN are a0 = b0 = 0.01, e0 = f0 =
1.0, η0 = 0.05. For MetaLDA and WEI-FTM, we collected
1000 MCMC samples after 1000 burnins; for GBN and
WEDTM, we collected 1000 for T = 1 and 500 for T > 1
MCMC samples after 1000 for T = 1 and 500 for T > 1
burnins, to estimate the posterior mean. Due to the shrink-
age effect of WEDTM on S, discussed in Section 4, we set
S = 5 which is large enough for all the topics.

5https://nlp.stanford.edu/projects/glove/
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Figure 2. Relative document classification accuracy6 (%) on WS, TMN, and 20NG with the varied proportion of training words of each
training document. The results with K1 = 100 on WS and TMN, K1 = 200 on 20NG are reported.
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Figure 3. Topic coherence (NPMI, the higher the better) on WS, TMN, and Twitter with the varied proportion of training words of each
document. The results with K1 = 100 are reported. For WEDTM and WEI-FTM, the top words of a topic are generated by ranking the
word distribution and the dot product of topic and word embeddings (denoted “-te”).

5.2. Perplexity

Perplexity is a measure that is widely used (Wallach et al.,
2009) to evaluate the modeling accuracy of topic models.
Here we randomly chose a certain proportion of the word
tokens in each document as training and used the remain-
ing ones to calculate per-heldout-word perplexity. Figure 1
shows the relative perplexity6 results of all the models on
all the datasets, where we varied the number of bottom-
layer topics as well as the proportion of training words. The
proposed WEDTM performs significantly better than the
others, especially on sparse data. There are several inter-
esting remarks of the results: (1) The perplexity advantage
of WEDTM over GBN becomes obvious when the corpus
becomes sparse (e.g., WS/TMN/Twitter V.S. 20NG and 20%
V.S. 80% training words). It shows that using word embed-
dings as the prior information benefits the model. (2) In
general, increasing the depth of the model leads to better
perplexity. However, when the data are too sparse (e.g. WS
with 20% training words), the single-layer WEDTM and
GBN perform better than their multi-layer counterparts. (3)
Although MetaLDA and WEI-FTM leverage word embed-

6We subtracted the score of GBN with only one layer (GBN-1)
from the score of each model. The lines plot the differences. So
GBN-1 is the horizontal line on “0”. The absolute score of GBN-1
is given below each figure.

dings as well, the proposed WEDTM outperforms them
significantly. Perhaps the way that WEDTM incorporates
word embeddings is more effective.

5.3. Document Classification

We consider the multi-class classification task for predict-
ing the categories for test documents to evaluate the quality
of the latent document representation (unnormalized topic
weights) extracted by these models.7 In this experiment,
following Zhou et al. (2016), we ran the topic models on
the training documents and trained a L2 regularized logistic
regression using the LIBLINEAR package (Fan et al., 2008)
with the latent representation θ(1)j as features. After train-
ing, we used the trained topic models to extract the latent
representations of the test documents and the trained logistic
regression to predict the categories. For all the datasets, we
randomly selected 80% documents for training and used
the remaining 20% for testing. Figure 2 shows the relative
document classification accuracy6 results for all the models.
It can be observed that with word embeddings, WEDTM
outperforms GBN significantly, the best on TMN and 20NG,
and the second-best on WS. Again, we see a similar phe-

7The results of Twitter are not reported because each document
of it is associated with multiple categories.
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nomenon: word embeddings help more on the sparser data
and increasing the network depth improves the accuracy.

5.4. Topic Coherence

Topic coherence is another popular evaluation of topic mod-
els (Zuo et al., 2016; Zhao et al., 2017b;b). It measures
the semantic coherence in the most significant words (top
words) in a topic. Here we used the Normalized Pointwise
Mutual Information (NPMI) (Aletras & Stevenson, 2013;
Lau et al., 2014) to calculate topic coherence score of the
top 10 words of each topic and report the average score of
all the topics.8

To compare with the other models, in this experiment, we
set S = 1 for WEDTM. Recall that in WEDTM, from
global to local, there are three ways to interpret a topic.
Here we evaluate NPMI for two of them: eF

>wk1 and φ(1)
k1

.
Figure 3 shows the NPMI scores for all the models on WS,
TMN, and Twitter. It is not surprising to see that the top
words generated by eF

>wk1 in WEDTM always gain the
highest NPMI scores, meaning that the topics are more
coherent. This is because the topic embeddings in WEDTM
directly interact with word embeddings. Moreover, if we
just compare the topics generated by φ(1)

k1
, WEDTM also

gives more coherent topics than the other models. This
demonstrates that the proposed model is able to discover
more interpretable topics.

5.5. Qualitative Analysis

As one of the most appealing properties of WEDTM is its
interpretability, we conducted the extensive qualitative eval-
uation of the quality of the topics discovered by WEDTM,
including topic embeddings, sub-topics, and topic hierar-
chies. More qualitative analysis including topic hierarchy
visualization and synthetic document generation is shown
in the supplementary materials.

Demonstration of topic embeddings: We demonstrate
that WEDTM discovers more coherent topics by comparing
with those of GBN in Table 2. Here we set S = 1 as well.
This demonstration further explains the numerical results in
Figure 3. It is also interesting to compare the local interpre-
tation (φ(1)

k ) and global interpretation (topic embeddings)
of the same topic in WEDTM. For example, in the fifth
set, the local interpretation (5.b) is about “networks and
security,” while the global interpretation (5.c) generalizes it
with more general words related to “communications.” We
can also observe that although the local interpretation of
WEDTM is not as close to word embeddings as the global
interpretation, as informed by the global interpretation, the

8We used the Palmetto package with a large Wikipedia dump
to compute NPMI (http://palmetto.aksw.org).

local interpretation of WEDTM’s topics is still considerably
more coherent than those in GBN.

Demonstration of sub-topics: In Figure 4, We show the
sub-topics discovered by WEDTM for the topics used as ex-
amples at the beginning of the paper (Table 1). It can be ob-
served that the intra topic structures with sub-topics clearly
help to explain the local topics. For example, WEDTM
successfully splits Topic 1 into sub-topics related to “jour-
nal” and “biology,” and Topic 2 into “music” and “sports”.
Moreover, with the help of word embeddings, WEDTM dis-
covers general sub-topics for specific topics. For example,
Topic 3 and 4 are more interpretable with the sub-topics
of “singer” and “game” respectively. The experiment also
empirically demonstrates the shrinkage mechanism of the
model: for most topics, the effective sub-topics are less than
the maximum number S = 5.

Demonstration of topic hierarchies: Figure 5 shows an
example that jointly demonstrates the inter and intra struc-
tures of WEDTM. The tree is a cluster of topics related
to “health,” where the topic hierarchies are discovered by
ranking {Φ(t)}t, the leaf nodes are the topics in the bottom
layer, and each bottom-layer topic is associated with a set
of sub-topics. In WEDTM, the inter topic structures are re-
vealed in the form of topic hierarchies while the intra topic
structures are revealed in the form of sub-topics. Combining
the two kinds of topic structures in this way gives a better
view of the target corpus, which may further benefit other
text analysis tasks.

6. Conclusion
In this paper, we have proposed WEDTM, a deep topic
model that leverages word embeddings to discover inter
topic structures with topic hierarchies and intra topic struc-
tures with sub-topics. Moreover, with the introduction to
sub-topic embeddings, each sub-topic can be informed by
the global information in word embeddings, so as to dis-
cover a fine-grained thematic aspect of a local topic. With
topic embeddings, WEDTM provides different views to a
topic, from global to local, which further improves the inter-
pretability of the model. As a fully conjugate model, the in-
ference of WEDTM can be done by a straightforward Gibbs
sampling algorithm. Extensive experiments have shown
that WEDTM achieves the state-of-the-art performance on
perplexity, document classification, and topic quality. In ad-
dition, with topic hierarchies, sub-topics, and topic embed-
dings, the model can discover more interpretable structured
topics, which helps to get better understandings of text data.
Given the local conjugacy, it is possible to derive more scal-
able inference algorithms for WEDTM, such as stochastic
variational inference and stochastic gradient MCMC, which
is a good subject for future work.
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Table 2. Top 10 words of five sets of example topics on the WS dataset. Each set contains the top words of 3 topics: topic ‘a’ is generated
by φ

(1)
k in GBN-3; topic ‘b’ is generated by φ

(1)
k in WEDTM-3; topic ‘c’ is generated by eF

>wk1 in WEDTM-3. Topic ‘a’ and ‘b’ are
matched by the Hellinger distance of φ(1)

k . Topic ‘b’ and ‘c’ are different ways of interpreting one topic in WEDTM.
Topic Index Top 10 words NPMI

1
a engine car buying home diesel selling fuel automobile violin jet -0.055
b engine motor diesel fuel gasoline jet electric engines gas technology 0.202
c engine diesel engines gasoline steam electric fuel propulsion motors combustion 0.224

2
a party labor democratic political socialist movement union social news australian 0.168
b party political communist democratic socialist labor republican parties conservative leader 0.188
c party democratic communist labour liberal socialist conservative opposition elections republican 0.219

3
a cancer lung tobacco intelligence artificial information health symptoms smoking treatment -0.006
b cancer lung tobacco information health smoking treatment gov research symptoms 0.050
c cancer breast diabetes pulmonary cancers patients asthma cardiovascular cholesterol obesity 0.050

4
a oscar academy awards swimming award winners swim oscars nominations picture 0.020
b art awards oscar academy gallery museum surrealism sculpture picasso arts 0.076
c paintings awards award art museum gallery sculpture painting picasso portrait 0.087

5
a security computer network nuclear weapons networking spam virus spyware national 0.059
b security network wireless access networks spam spyware networking national computer 0.061
c wireless internet networks devices phone broadband users network wi-fi providers 0.143
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Figure 4. The sub-topics (red) of the example topics (blue). Larger font size indicates larger weight (
∑V

v β
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vk ) of a sub-topic to the

local topic. We set S = 5 and trimmed off the sub-topics with extreme small weights.
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Figure 5. One example sub-tree of the topic hierarchy discovered by WEDTM on the WS dataset with K1 = 50 and S = 5. The
tree is generated in the same way to Zhou et al. (2016). A line from node kt at layer t to node kt−1 at layer t − 1 indicates that
φ
(t)
kt−1kt

> 1.5/Kt−1 and its width indicates the value of φ(t)
kt−1kt

(i.e. topic correlation strength). The outside border of the text box is
colored as orange, blue, or black if the node is at layer three, two, or one, respectively. For the leaf nodes, sub-topics are shown in the
same way to Figure 4.
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Supplementary Material for “Inter and Intra Topic Structure Learning with
Word Embeddings”

He Zhao 1 Lan Du 1 Wray Buntine 1 Mingyaun Zhou 2

1. Inference Details
Recall that the data is the word count vector x(1)

j of doc-
ument j. Given the PFA framework, we can apply the
collapsed Gibbs sampling to sample the bottom-layer topic
for the i-th word in j, vji, similar to Eq. (28) in Appendix
B of Zhou et al. (2016), as follows:

P (zji = k1) ∝
βvk1 + x

(1)−ji

vji·k1
β·k1 + x

(1)−ji

··k1

(
x
(1)−ji

·jk1 + φ
(2)
k1:
θ
(2)
j

)

(1)

where zji is the topic index for vji and x(1)vjk :=
∑
i δ(vji =

v, zji = k1) counts the number of times that term v appears
in document j; we use x−ji to denote the count x calculated
without considering word i in document j.

Given the latent counts x(1)v·k1 , the multinomial likelihood of

φ
(1)
k1

is proportional to
(
φ
(1)
vk1

)x(1)
v·k1 . Due to the Dirichlet-

multinomial conjugacy, the joint likelihood of βk1 is com-
puted as:

L (βvk1) ∝ Γ(β·k1)

Γ(βk1· + x
(1)
··k1)

V∏

v

Γ(βvk1 + x
(1)
v·k1)

Γ(βvk1)
. (2)

By introducing an auxiliary beta distributed variable:

qk1 ∼ Beta(β·k1 , x
(1)
··k1), (3)

we can transform the first gamma ratio in Eq. (2) to
(qk1)

β·k1 (Zhao et al., 2018). After this augmentation, one
can show that the likelihood of βk1,v is proportional to the
negative binomial distribution.

Recall that βvk1 =
∑S
s β

<s>
vk1

and the shape parameter of
β<s>vk1

, α<s>k1
is drawn from hierarchical gamma. This con-

struction is closely related to the gamma-negative binomial

1Faculty of Information Technology, Monash University, Aus-
tralia 2McCombs School of Business, University of Texas at Austin.
Correspondence to: Lan Du <lan.du@monash.edu>, Mingyuan
Zhou <mingyuan.zhou@mccombs.utexas.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

process (Zhou & Carin, 2015; Zhou, 2016), which enables
the model to automatically determine the number of effec-
tive sub-topics.

Furthermore, we introduce another auxiliary variable:

hvk1 ∼ CRT
(
x
(1)
v·k1 , βvk1

)
, (4)

where h ∼ CRT(n, r) stands for the Chinese Restaurant
Table distribution (Zhou & Carin, 2015) that generates the
number of tables h seated by n customers in a Chinese
restaurant process with the concentration parameter r (Wray
& Marcus, 2012). Given hvk1 , the second gamma ratio can
be augmented as (βvk1)

hvk1 . Finally, with the two auxiliary
variables, Eq. (2) can be written as:

L (βvk1 , qk1 , hvk1) ∝ (qk1)
βvk1 (βvk1)

hvk1 . (5)

Sample β<s>vk1
. Given the table counts hvk1 in Eq. (5), we

can sample the counts h<s>vk1
for each sub-topic s as follows:

(
h<1>
vk1

, · · · , h<S>vk1

)
∼ Mult

(
hvk1 ,

β<1>
vk1

βvk1
, · · · ,

β<S>vk1

βvk1

)
.

(6)

Given h<s>vk1
, we can sample β<s>vk1

as:

β<s>vk1
∼

Gam(α<s>k1
+ h<s>vk1

, 1)

e−π
<s>
vk1 + log 1

qk1

, (7)

where we define

π<s>vk1
:= f>v w

<s>
k1

. (8)

Sample α<s>k1
. By integrating β<s>vk1

out, we sample
α<s>k1

as:

α<s>k1
∼

Gam(α<s>0 /S + g<s>·k1 , 1)

c<s>0 + log
(

1 + eπ
<s>
vk1 log 1

qk1

) , (9)

where

g<s>·k1 :=

V∑

v

g<s>vk1
, (10)

g<s>vk1
∼ CRT

(
h<s>vk1

, α<s>k1

)
. (11)

According to the gamma-gamma conjugacy, α<s>0 and
c<s>0 can be sampled in a similar way.
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Sample w<s>
k1

. After integrating β<s>vk1
out and ignoring

unrelated terms, the joint likelihood related to w<s>
k1

is
proportional to:

L
(
π<s>vk1

)
∝

(
e
π<s>vk1

+log log 1
qk1

)h<s>vk1

(
1 + e

π<s>vk1
+log log 1

qk1

)α<s>k1
+h<s>vk1

.(12)

The above likelihood can be augmented by an auxiliary
variable: ω<s>vk1

∼ PG(1, 0), where PG denotes the Pólya
gamma distribution (Polson et al., 2013). Given ω<s>vk1

, we
get:

L
(
π<s>vk1

, ω<s>vk1

)
∝ e

h<s>
vk1

−α<s>
k1

2 π<s>vk1 e−
ω<s>
vk1
2 π<s>vk1

2

.

(13)

The above likelihood results in the normal likelihood of
w<s>
k1

. Therefore, we sample it from a multi-variate normal
distribution as follows:

w<s>
k1
∼ N (µ<s>k1

,Σ<s>
k1

),

µ<s>k1
=

Σ<s>
k1

[
V∑

v

(
h<s>vk1

− α<s>k1

2
− ω<s>vk1

log log
1

qk1

)
fv

]
,

Σ<s>
k1

=

[
diag(1/σ<s>) +

V∑

v

ω<s>vk1
fv(fv)

>
]−1

,

(14)

where µ<s>k1
∈ RL and Σ<s>

k1
∈ RL×L.

According to (Polson et al., 2013), we can sample

ω<s>vk1
∼ PG

(
h<s>vk1

+ α<s>k1
, π<s>vk1

+ log log
1

qk1

)
.

(15)

To sample from the Pólya gamma distribution, we use an
accurate and efficient approximate sampler in Zhou (2016).

Finally, σ(s) can be sampled from its gamma posterior.

The inference algorithm is shown in Figure 1.

2. Visualization of the Discovered Topic
Hierarchies and Sub-topics

Figure 1-9 show the topic hierarchies discovered by
WEDTM on WS, TMN, and Twitter respectively.

3. Generating Synthetic Documents
Below we provide several synthetic documents generated
from WEDTM, following the GBN paper (Zhou et al., 2016).
Given trained {Φ(t)}t, we used the generative model shown
in Figure 1 in the main paper to generate a simulated topic
weights θ(1)j . We show the top words ranked according to

Φ(1)θ
(1)
j . Below are some example synthetic documents

generated in this manner with WEDTM trained on the TMN
dataset. The generated documents are clearly interpretable.

1. study drug cancer risk health people heart women dis-
ease patients drugs researchers children brain found
finds kids high doctors suggests research medical
surgery food diabetes treatment blood years report men
young shows year time scientists mets age linked yan-
kees coli long care tuesday good hospital early prostate
breast fda developing common adults monday outbreak
older weight lower parents problems taking day studies
virus aids babies life diet thursday loss levels higher
wednesday home evidence make trial tests effective
death sox therapy pregnancy experts prevent low pa-
tient run pressure pain alzheimer game flu type win
number treat start season obesity symptoms

2. mets yankees game season sox win run baseball nfl
league hit home time team red inning players day back
beat phillies start pitcher innings night runs rangers
giants major year games rays big manager york victory
indians coach left past boston make draft dodgers hits
good pitch hitter career bay tigers blue list play braves
fans marlins tuesday years disabled high cubs thursday
saturday lockout chicago week nationals top wednes-
day lead white jays twins streak los days philadelphia
field long texas josh pitched ninth friday sunday fran-
cisco homer lineup put young college football times
roundup pitching cleveland loss sports angeles

3. japan nuclear earthquake plant power tsunami cri-
sis japanese oil quake radiation stocks disaster tokyo
prices world friday tuesday fukushima investors hit
crippled energy reactor water march monday safety
thursday plants economic reactors market government
week wednesday year country devastating wall high
workers radioactive concerns worst street officials per-
cent companies damage electric report massive fears
earnings damaged economy impact food levels agency
operator global daiichi plans markets stock chernobyl
sales coast growth rise higher states atomic fuel united
risk stricken health crude supply dollar low strong de-
mand level recovery day magnitude quarter shares fell
struck tepco billion commodities experts gains relief

4. wedding royal prince kate william middleton lon-
don queen britain ireland british irish friday eliza-
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Require: {x(1)
j }j , T, S, {Kt}t, a0, b0, e0, f0, η0, MaxIteration

Ensure: The sampled value for all the latent variables

1: Randomly initialise all the latent variables according to the generative process;
2: for t← 1 to T do
3: for iter ← 1 to MaxIteration do
4: if t = 1 then
5: / ∗ Generating documents ∗ /
6: Sample the bottom-layer topics by Eq. (1); Calculate {x(1)vjk1}v,j,k1 ;
7: end if
8: / ∗ Inter topic structure ∗ /
9: Do the upward-downward Gibbs sampler

10: (Algorithm 1 in Zhou et al. (2016)) for {θ(t)j , c
(t)
j ,p

(t)
j }t,j , {Φ(t)}t, r;

11: if t = 1 then
12: / ∗ Intra topic structure ∗ /
13: Sample {qk1}k1 by Eq. (3); Sample {hvk1}v,k1 by Eq. (4);
14: for s← 1 to S do
15: Sample {h<s>vk1

}v,k1 by Eq. (6);
16: Sample {g<s>vk1

}v,k1 by Eq. (11); Calculate {g<s>·k1 }k1 by Eq. (10);
17: Sample α<s>0 and c<s>0 from their gamma posterior;
18: Sample {α<s>k1

}k1 by Eq. (9);
19: Sample {ω<s>vk1

}v,k1 by Eq. (15); Sample σ<s> from its gamma posterior;
20: Sample {w<s>

k1
}k1 by Eq. (14);

21: Calculate {π<s>vk1
}v,k1 by Eq. (8);

22: Sample {β<s>vk1
}v,k1 by Eq. (7);

23: end for
24: Calculate {βvk1}v,k1 ;
25: end if
26: end for
27: end for

Figure 1. Gibbs sampling algorithm for WEDTM
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Figure 2. Analogous plots to Figure 6 in the main paper for a tree about “computers” on the WS dataset.

beth designer princess april couple week palace people
visit idol american day fashion world made abbey art
bride marriage diana duchess secret time honeymoon
photo king dress dinner famous sarah cake back media
lady buckingham year ring show photos hat coverage
wednesday party saturday mcqueen month morning
pop watch guests charlie days sheen westminster fu-

ture kardashian star television night work crown tribute
ago duke officials worn check years pre kim maya wear
final site met ceremony music tonight museum nuptials
harry ferguson pounds royals trip tuesday turned

5. apple sony mobile data ipad company corp network
phone billion software google iphone computer mil-
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Figure 3. Analogous plots to Figure 6 in the main paper for a tree about “movie” on the WS dataset.
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Figure 4. Analogous plots to Figure 6 in the main paper for a tree about “war” on the WS dataset.
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Figure 5. Analogous plots to Figure 6 in the main paper for a tree about “daily life” on the TMN dataset.
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Figure 6. Analogous plots to Figure 6 in the main paper for a tree about “politics” on the TMN dataset.

 30  food health study found air 
 years time scientists people recipes 

 26  air found france scientists sea 
 species ocean atlantic crash years 

 33  food health recipes time wine 
 make coffee starbucks free foods 

 37  study women cancer drug people 
 risk population heart patients census 

 51  tax year prices health states 
 money million pay state costs 

 1  time 
 back 
 years 
 long 
 make 
 good 
 week 
 year 
 fans 
 big 

 

 feel 
 things 

 bit 
 sense 
 pretty 
 feeling 

 moment 
 moments 

 smile 
 ability 

 

 time 
 long 
 back 
 years 
 good 
 make 
 work 

 season 
 times 
 man 

 

 42  air 
 found 
 france 

 scientists 
 sea 

 species 
 atlantic 
 ocean 
 crash 

 observatory 
 

 found 
 scientists 
 discovery 
 wreckage 
 evidence 

 discovered 
 early 

 missing 
 site 
 sea 

 

 whales 
 sea 

 volcano 
 birds 
 deer 
 arctic 

 elephant 
 mammals 
 monkeys 
 species 

 

 air 
 france 
 coast 
 ocean 
 french 

 sea 
 water 

 atlantic 
 flight 
 paris 

 

 54  oil 
 gas 

 energy 
 natural 

 spill 
 drilling 

 gulf 
 mexico 

 coal 
 climate 

 

 gas 
 oil 

 energy 
 coal 
 mine 

 drilling 
 water 
 mining 

 petroleum 
 natural 

 

 70  air 
 flight 
 plane 
 airport 
 airlines 

 jet 
 traffic 
 airline 
 boeing 
 flights 

 

 air 
 flight 
 plane 

 passengers 
 aircraft 
 flights 
 airport 
 planes 
 boeing 

 jet 
 

 probe 
 obama 

 instruction 
 weight 

 devastating 
 pension 

 laser 
 san 

 manuals 
 rips 

 

 3  dies 
 book 
 life 
 art 

 family 
 love 

 author 
 died 
 taylor 
 age 

 

 art 
 writer 
 book 
 love 

 author 
 artist 
 stone 
 writes 
 books 

 biography 
 

 book 
 life 

 family 
 world 
 man 
 love 

 music 
 time 

 death 
 story 

 

 6  business 
 companies 

 tech 
 small 
 china 
 start 

 market 
 investors 

 make 
 big 

 

 business 
 companies 

 make 
 investors 

 investment 
 big 

 market 
 money 

 buy 
 good 

 

 investor 
 marketers 
 advertisers 

 savvy 
 networking 
 profitable 
 investors 
 startups 

 niche 
 clout 

 

 12  city 
 york 
 day 

 vegas 
 home 
 center 

 las 
 town 
 park 

 square 
 

 city 
 park 

 home 
 anniversary 

 day 
 center 
 million 

 memorial 
 world 

 downtown 
 

 chapel 
 park 

 disneyland 
 downtown 

 avenue 
 mall 

 replica 
 hotel 

 garden 
 cemetery 

 

 59  food 
 health 
 recipes 

 wine 
 coffee 

 starbucks 
 foods 
 fresh 
 eat 

 make 
 

 food 
 products 

 meat 
 vegetables 

 recipes 
 chocolate 

 salad 
 eat 

 coffee 
 foods 

 

 chocolate 
 wine 
 bread 

 vegetable 
 champagne 

 baked 
 broccoli 
 beans 
 foods 
 pasta 

 

 68  questions 
 readers 
 books 
 letter 
 editor 

 amazon 
 reader 
 kindle 
 book 

 apologizes 
 

 readers 
 read 

 words 
 comments 

 books 
 book 
 letters 
 text 

 newspaper 
 messages 

 

 95  madoff 
 coli 

 outbreak 
 people 

 flu 
 ponzi 
 health 

 bernard 
 virus 

 deadly 
 

 flu 
 disease 
 people 
 infected 

 virus 
 outbreak 

 killed 
 infections 
 reported 
 deaths 

 

 loan 
 europe 
 minister 
 scheme 
 made 
 faction 
 shared 
 nation 
 safety 

 populations 
 

 2  study 
 cancer 
 drug 
 risk 

 heart 
 patients 
 disease 
 drugs 

 researchers 
 people 

 

 drug 
 patients 
 disease 
 cancer 
 breast 

 risk 
 drugs 

 diabetes 
 blood 

 treatment 
 

 study 
 cancer 

 researchers 
 disease 
 doctors 
 people 
 found 

 studies 
 tests 

 research 
 

 disorder 
 overweight 

 asthma 
 obese 

 patients 
 symptoms 

 obesity 
 estrogen 
 diabetic 

 medication 
 

 diabetes 
 treatments 

 clinical 
 vaccine 

 prescribe 
 arthritis 

 nutritional 
 aspirin 
 allergy 
 asthma 

 

 10  prices 
 sales 
 year 

 march 
 april 

 economy 
 percent 
 growth 

 unemployment 
 consumer 

 

 prices 
 sales 

 percent 
 economy 

 year 
 rate 

 decline 
 fell 

 months 
 month 

 

 inflation 
 growth 
 upward 
 sharply 
 prices 

 downward 
 downturn 

 inventories 
 recession 

 rate 
 

 13  women 
 population 

 census 
 cities 
 young 
 white 

 american 
 growing 

 world 
 change 

 

 women 
 population 

 children 
 growing 
 people 
 living 
 age 

 world 
 poor 

 hispanic 
 

 gender 
 social 

 feminist 
 religion 

 inequality 
 affluent 

 minorities 
 culture 
 theory 
 racial 

 

 4  tax 
 health 
 money 
 states 
 million 

 pay 
 billion 
 costs 

 federal 
 insurance 

 

 money 
 tax 
 pay 

 million 
 health 
 billion 
 costs 

 government 
 care 

 insurance 
 

 medicaid 
 medicare 

 tax 
 money 
 loans 
 loan 

 income 
 costs 

 pension 
 borrowers 

 

 41  state 
 governor 

 bill 
 texas 
 law 

 house 
 immigration 

 arizona 
 senate 
 year 

 

 bill 
 law 

 abortion 
 immigration 

 repeal 
 state 

 legislation 
 texas 

 massachusetts 
 legislature 

 

 52  cars 
 toyota 
 auto 
 car 

 production 
 ford 

 motor 
 plant 
 parts 

 motors 
 

 cars 
 toyota 

 car 
 production 

 electric 
 auto 

 automakers 
 engine 
 trucks 
 fuel 

 

 chevrolet 
 hybrid 
 cruze 

 camaro 
 midsize 

 gmc 
 sedan 
 sedans 
 pickups 
 sporty 

 

 83  bus 
 crash 
 killed 
 train 
 york 

 driver 
 crashed 
 people 
 plane 
 killing 

 

 bus 
 crash 
 truck 
 train 

 accident 
 passengers 

 police 
 driver 

 hit 
 southern 

 

 court 
 agrees 
 appeal 

 decision 
 means 
 ruling 
 made 

 months 
 regular 
 season 

 

Figure 7. Analogous plots to Figure 6 in the main paper for a tree about “food and health” on the TMN dataset.
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Figure 8. Analogous plots to Figure 6 in the main paper for a tree about “phone” on the Twitter dataset.
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Figure 9. Analogous plots to Figure 6 in the main paper for a tree about “thanksgiving” on the Twitter dataset.
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Figure 10. Analogous plots to Figure 6 in the main paper for a tree about “NBA” on the Twitter dataset.
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WEDTM trained on the WS dataset.
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for logistic models using Pólya–Gamma latent variables.
Journal of the American Statistical Association, 108(504):
1339–1349, 2013.

Wray, B. and Marcus, H. A Bayesian view of the Poisson-
Dirichlet process. arXiv preprint arXiv:1007.0296v2
[math.ST], 2012.

Chapter 6 151



WEDTM

Zhao, H., Rai, P., Du, L., and Buntine, W. Bayesian multi-
label learning with sparse features and labels, and label
co-occurrences. In AISTATS, pp. 1943–1951, 2018.

Zhou, M. Softplus regressions and convex polytopes. arXiv
preprint arXiv:1608.06383, 2016.

Zhou, M. and Carin, L. Negative binomial process count
and mixture modeling. TPAMI, 37(2):307–320, 2015.

Zhou, M., Cong, Y., and Chen, B. Augmentable gamma
belief networks. JMLR, 17(163):1–44, 2016.

Chapter 6 152



Chapter 7

Sparse Bayesian Latent Factor
Models for Multi-label Learning

A multi-label learning problem is an challenging supervised task which has many im-
portant applications such as image/document tagging, recommender system, and adver-
tisements. As discussed in Section 3.3, a multi-label learning problem can be solved by
BLFMs that factorise the label matrix conditioned on the feature matrix. In this chap-
ter, I will introduce the proposed BLFM on multi-label learning with the binary feature
matrix Zhao et al. [2018d]. Although the dimensions of the label matrix can be extremely
large, most of the samples only have a tiny subset of the labels being active, meaning
that the label matrix is usually very sparse. When it comes to binary feature, the feature
matrix can also be very sparse. Therefore, by leveraging the two kinds of the sparsity
of the feature and label matrices to facilitate fast inference, the proposed model can deal
with the multi-label learning problem efficiently. In addition, the proposed model uses
the label-label co-occurrence matrix to improve prediction performance when there are a
significant fraction of missing labels.

The framework of the above model is shown in Figure 7.1, which can be viewed as
the extension of the basic framework of BLFM shown in Figure 2.1 in Section 2.2.6 of
Chapter 2. Specifically, the model factorises the label matrix into two latent matrices:
the factor loading matrix and factor score matrix, where the former and latter are informed
by the label-label correlations and the sample features, respectively.

The details of this research are shown in the following paper:

� H. Zhao, P. Rai, L. Du, W. Buntine, “Bayesian Multi-label Learning with Sparse
Features and Labels, and Label Co-occurrences”, in Artificial Intelligence and
Statistics (AISTATS) 2018.

In terms of future research, similar to BLFMs in other areas, one important direction is
further improving training speed for large-scale datasets. In addition, we need to take the
efficiency of the testing phase into account. Note that in the testing phase of a multi-label
learning problem, a model can only rely on a sample’s features to predict its labels, which
requires the model to estimate the posterior prediction distribution directly conditioned
the features. This can be non-trivial for many BLFMs. Therefore, how to efficiently obtain
the posterior prediction distribution, is another possible direction of future research.

The code of this research in this chapter is released at https://github.com/ethanhezhao/
BMLS.
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Figure 7.1: Model framework of Zhao et al. [2018d]. The blue rectangles with solid lines and
dash lines are the data matrix (the label matrix) and the latent matrices, respectively. The
red rectangles are the the feature matrix and the label-label correlation matrix, respectively.
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Abstract

We present a probabilistic, fully Bayesian
framework for multi-label learning. Our
framework is based on the idea of learning a
joint low-rank embedding of the label matrix
and the label co-occurrence matrix. The pro-
posed framework has the following appealing
aspects: (1) It leverages the sparsity in the
label matrix and the feature matrix, which
results in very efficient inference, especially
for sparse datasets, commonly encountered in
multi-label learning problems, and (2) By ef-
fectively utilizing the label co-occurrence in-
formation, the model yields improved predic-
tion accuracies, especially in the case where
the amount of training data is low and/or
the label matrix has a significant fraction of
missing labels. Our framework enjoys full
local conjugacy and admits a simple infer-
ence procedure via a scalable Gibbs sampler.
We report experimental results on a num-
ber of benchmark datasets, on which it out-
performs several state-of-the-art multi-label
learning models.1

1 Introduction

Multi-label learning [Gibaja and Ventura, 2015,
Prabhu and Varma, 2014, Jain et al., 2016, Babbar
and Schölkopf, 2017] refers to the problem of learning
to assign a subset of relevant labels to each object,
given a large set of candidate labels. Each object is
thus associated with a binary label vector, which de-
notes the presence/absence of each of the candidate la-
bels. Multi-label learning problems are ubiquitous in a

1Code at https://github.com/ethanhezhao/BMLS

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

wide variety of applications, such as image/document
tagging, recommender system, ad-placement.

In multi-label learning problems encountered in mod-
ern applications, it is common to have datasets
characterized by instances defined by sparse, high-
dimensional feature vectors, in addition to the cor-
responding label vectors themselves being sparse and
high-dimensional. Moreover, often the label vector
may be incomplete since it is usually not possible to
completely annotate an instance with all of the rele-
vant labels. Multi-label learning problems thus need to
routinely deal with missing labels in the label vector of
each training instance. Finally, scalability is another
challenge in multi-label learning problems. Given the
high degree of sparsity of features and labels, it is desir-
able to have multi-label learning algorithms that can
leverage this sparsity during training/test time, and
can consequently scale to large-scale problems.

Motivated by these issues and desiderata, we present a
probabilistic framework for multi-label learning, which
is capable of addressing these issues effectively, in a
principled manner. Our framework is based on a gen-
erative latent factor model for the binary label ma-
trix. This latent factor model is based on an effi-
cient Poisson-Dirichlet-gamma non-negative factoriza-
tion [Zhou et al., 2012] of the binary label matrix,
which scales in the number of nonzeros in the label
matrix. Moreover, we condition the latent factors on
the instance features in a way that effectively utilizes
the feature sparsity and further improves the scalabil-
ity. Leveraging both instance label vector as well as
instance feature vector sparsity leads to a very efficient
inference for our model.

We further augment our model with a latent factor
model for the label co-occurrences. Information about
label co-occurrences can be obtained from an external
source (e.g., a text corpus such as Wikipedia) and this
information can be helpful, especially in predicting la-
bels that are rare in the data (e.g., for which there
are very training examples) or in cases where the label
matrix could have a large fraction of labels as missing.
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Our latent factor model for the label co-occurrence is
learned jointly with the latent factor model for the la-
bel matrix, and sharing the latent factors of the label
helps in effectively transferring information from the
label co-occurrences.

Our model enjoys local conjugacy, which leads to a
very simple and highly efficient Bayesian inference via
Gibbs sampling. Our model is considerably more scal-
able as compared to other state-of-the-art Bayesian
models for multi-label learning, while achieving com-
parable and better prediction accuracies.

2 Background and Notation

In the multi-label learning problem, we assume that
we are given an D×N instance feature matrix X and
an L×N instance label matrix Y ∈ {0, 1}L×N , where
N,D,L are the number of instances, the dimension of
features, the dimension of labels, respectively. Both
matrices are assumed to be highly sparse. In this
paper, we focus on binary features, which are quite
common, especially in large-scale multi-label learning
tasks. An example would be in document classifica-
tion: each instance is a text document which is as-
sociated with a binary feature vector indicating the
presence/absence of words. The goal of multi-label
learning is to use the feature matrix and the label ma-
trix to learn a model that can predict the label vector
y∗, given the feature vector x∗ of a new instance.

Our model is based on the idea of factorizing the la-
bel matrix Y, which is equivalent to learning a low-
dimensional embedding θi for the label vector yi (i.e.,
the ith column vector of Y) of each instance i [Yu
et al., 2014, Rai et al., 2015, Mineiro and Karampatzi-
akis, 2015]. The embedding θi is, in turn, conditioned
on the feature vector xi (i.e., the ith column vector
of X) associated with that instance. Given the fea-
ture vector of a new instance x∗, its embedding θ∗
can be computed and it label vector y∗ can be pre-
dicted/decoded from θ∗. Different label embedding
models vary in how the embeddings are conditioned
on the features and how the embeddings are decoded
to produce the label vector at test time.

Our model has the following distinguishing aspects as
compared to other existing label embedding methods
for multi-label learning: (1) Learning the embeddings
by our model scales in the number of nonzeros in the
label and feature matrices, and (2) The model can
effectively leverage the label co-occurrence matrix, if
available. The latter property is especially useful when
a significant fraction of the labels are missing in the
label matrix and/or if the number of training instances
are very small.

3 The Model

Our model assumes that each entry yl,i ∈ {0, 1} of
the label matrix Y is generated by first drawing a la-
tent count zl,i from the Poisson distribution with rate
parameter ψl,i and then thresholding the count at 1.

yl,i = 1zl,i>0 (1)

zl,i ∼ Poisson(ψl,i) (2)

where 1· is the indicator function. To assist clarity, we
further denote the latent count matrix as Z ∈ ZL×N
and the Poisson rate matrix as Ψ ∈ R+

L×N .

By integrating zl,i out, the above generative process
for yl,i can be shown to be equivalent to

yl,i ∼ Bernoulli[1− exp(−ψl,i)] (3)

which is the Bernoulli-Poisson (BP) link func-
tion [Zhou, 2015] for binary observations. A partic-
ularly appealing aspect of the BP link (as opposed
to other link function for binary observations, such
as logistic/probit) is that the inference cost only de-
pends on the number of nonzeros in the data [Zhou,
2015], making it an ideal choice for the problems in-
volving the large-scale multi-label learning problems
with sparsity. Specifically, if the yi,l = 0, zi,l = 0 with
probability one. Therefore we only need to infer the
latent count zi,l for those labels yi,l that are nonzero.
That is how the sparsity of the label matrix is lever-
aged in our model.

3.1 A Low-Rank Model for Label Matrix

Most real-world multi-label learning datasets consist
of high-dimensional labels vectors. However, the labels
tend to be related to each other. Therefore, a popular
assumption used in multi-label learning is to use a low-
rank approximation for the label matrix, as also used
in recent work [Yu et al., 2014, Rai et al., 2015, Mineiro
and Karampatziakis, 2015, Bhatia et al., 2015]. To this
end, we assume that the Poisson parameter matrix Ψ
admits a low-rank factorization as follows:

Ψ = Φ>Θ (4)

where Θ ∈ R+
K×N and Φ ∈ R+

K×L.

For one instance i, the model can be written as:

yi ∼ Bernoulli[1− exp(−ψi)] (5)

ψi = Φ>θi =

K∑

k=1

φkθi,k (6)

The model can be interpreted as follows: The label
vector yi is associated with an embedding θi and Φ
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can be considered as K “topics”, each a distribution
over the L labels. The label vector yi of instance i
can then be thought of as being generated via a linear
combination of these K topics through the BP link.
The combination weights given by the embedding vec-
tor θi, with θk,i representing the weight of topic k,
where φk,l represents the weight of label l in topic k.
Finally, we impose Dirichlet prior on φk:

φk ∼ DirichletL(β0, · · · , β0) (7)

3.2 Conditioning Embeddings on Features

To condition the label vector embeddings θi on the
feature vector xi, we model θk,i a log-linear combina-
tion of the instance’s features as follows:

θk,i = bk

D∏

d

h
xd,i
k,d (8)

where hk,d ∈ R+ is a latent variable controlling the
influence of feature d on topic k and bk ∈ R+ is a
feature-independent bias term. Both hk,d and bk are
drawn from a gamma distribution:

hk,d, bk ∼ Gamma(µ0, 1/µ0) (9)

Figure 1 shows the graphical model for the above con-
struction. Given our model construction, hk,d is ex-
pected to have mean 1. The intuition is that, in multi-
label learning problems, the number of features D is
usually very large but, for most of the instances, only a
small subset of these features is discriminative. There-
fore, if feature d does not contribute to topic k or is
not very informative, then hk,d should be dominated
by the prior and expected to be near 1, in order to
have little influence on θk,i. Note that the variance of
hk,d is 1

µ0
, which is a hyperparameter of our model.

One of the particularly appealing aspects of our pa-
rameterization in Eq. 8 is its computational efficiency
when the features are sparse (which is usually the case
with most multi-label learning datasets). In contrast,
the existing label embedding models [Yu et al., 2014,
Rai et al., 2015, Mineiro and Karampatziakis, 2015]
learn an explicit regression model from the D dimen-
sional feature vector xi to θi,k, which is computation-
ally very expensive for large D. At the same time,
the choice of parameterization in Eq. 8 also facilitates
in retaining the conjugacy of our model, leading to a
simple and efficient inference algorithm. We will study
the details of how the inference leverages the sparsity
of the feature matrix in Section 4.

3.3 Leveraging Label Co-occurrences

In addition to the labels of the instances, it is often
possible to get label co-occurrence statistics [Mensink

zl,i

yl,i

θi

xd,ihd

µ0
φ>

l β0

D

N L

Figure 1: The graphical model for factorizing the label
matrix. hd, θi, φl is the dth column of H, the ith

column of Θ, the lth row of Φ respectively. All of
them are K dimensional vectors.

et al., 2014] from an external source, such as a text cor-
pus (e.g., Wikipedia). Suppose the label co-occurrence
statistics are provided in form of an L×L count matrix
C ∈ ZL×L, where each entry of C denotes the number
of times a pair of labels co-occurs. Note that in the
absence of an external source of information, one pos-
sible way to construct the matrix C could be to use the
label matrix Y itself, i.e., as C = Y>Y. In this case,
even though C reuses the information already present
in Y, this “re-encoding” of information can still help
the model, as also corroborated by recent work [Liang
et al., 2016].

It is natural to model label co-occurrences by the Pois-
son distribution:

cl,m ∼ Poisson(ψ′l,m) (10)

where cl,m denotes the number of times a pair of labels
l and m co-occurs, ψ′l,m denotes the (l,m)th entry in

the Poisson rate matrix Ψ′ ∈ R+
L×L. We further

apply a low-rank factorization of Ψ′ as follows:

Ψ′ = Φ>ΛΦ (11)

Here Λ ∈ R+
K×K is a diagonal matrix, whose diagonal

elements are denoted by the vector λ ∈ R+
K . We

assume λk to have a gamma prior distribution:

λk ∼ Gamma(γ0/K, f0) (12)

where γ0, f0 are given uninformative gamma priors.

Figure 2 shows the graphical model of this part.
Note that Φ in Eq. (11) is the same “K topics” ma-
trix that we have used in the low-rank modeling of
the label matrix Y (Sec. 3.1). This is essentially a
co-factorization model, such as the collective matrix
factorization Singh and Gordon [2010], Klami et al.
[2013], for joint low-rank modeling of multiple matrices
with shared latent factors. In our case, these matrices
are the label matrix Y and the label co-occurrence ma-
trix C, with the topic matrix Φ shared by the latent
factor models of both Y and C. Note however that
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cl,m
φ>

l φ>
m

λγ0 f0

L L

Figure 2: The graphical model for leveraging co-
occurrences. φl is the lth row of Φ. φl and λ are
K dimensional vectors. Note: In the overall model,
this part is learned jointly with the factorization of
the label matrix.

unlike collective matrix factorization Singh and Gor-
don [2010], Klami et al. [2013], our gamma-Poisson
generative model can effectively leverage the sparsity
of these matrices and results in very efficient inference,
with complexity that scales in the number of nonzeros.

4 Inference

Exact inference in our Bayesian model is intractable.
However, one of the most appealing properties of our
model is that it admits very simple yet efficient approx-
imate inference via closed form Gibbs sampling up-
dates. Leveraging data augmentation techniques Zhou
et al. [2012], the proposed model enjoys full local con-
jugacy and facilitates deriving efficient Gibbs sampling
updates for all the latent variables of our model. More-
over, the inference in our model scales in the number
of nonzeros in both the label matrix as well as the fea-
ture matrix, which makes the model work efficiently
for multi-label learning problems that involve large but
highly sparse feature and label matrices.

4.1 Sampling Latent Counts zl,i,k

Given a binary label yl,i, according to our model con-
struction in Eq. (2), we first need to sample the corre-
sponding latent count zl,i, which can be drawn from a
truncated Poisson distribution:

(zl,i|yl,i, ψl,i) ∼ yl,i · Poisson+(ψl,i) (13)

The above equation indicates that we only need to
sample zl,i if yl,i > 0, i.e., the sparsity of the label
matrix.

Given Eq. (2) and the additivity of Poisson, the la-
tent count zl,i can be written as a sum of K smaller
latent counts, each of which is contributed by the cor-

responding topic:

zl,i =
K∑

k

zl,i,k (14)

zl,i,k ∼ Poisson(φk,lθk,i) (15)

where zl,i,k is the counts for each topic k.

Moreover, using the relationship of the Poisson and
multinomial distributions, we can express the decom-
position in Eq. (14) and Eq. (15) as a draw from a
multinomial:

[zl,i,1, · · · , zl,i,K ] ∼ Multi

{
zl,i;

[φ1,lθ1,i, · · · , φK,lθK,i]∑K
k φk,lθk,i

}

(16)

4.2 Sampling Latent Counts cl,m,k

To infer the latent factors defining the generative
model of the count-valued label co-occurrences cl,m
(Fig. 2), we leverage a similar latent variable augmen-
tation scheme to the one used for sampling the la-
tent counts associated with the label matrix (cf., Sec-
tion 4.1). In particular, we assume the observed label
co-occurrence cl,m for two labels l and m as a sum of K
smaller latent counts (each of which can be attributed
to one of these K topics) as follows

cl,m =

K∑

k

cl,m,k (17)

cl,m,k ∼ Poisson(φk,lλkφk,m) (18)

where cl,m,k is the latent counts for topic k.

Again, given cl,m, which is observed, cl,m,k can be sam-
pled from multinomial, similar to the sampling of zl,i,k
in Eq. (16).

4.3 Sampling hk,d and bk

As φk is normalized (sums to 1), summing over l of
Eq. (15) and using the additivity of Poisson, we get:

z·,i,k ∼ Poisson(θk,i) (19)

where z·,i,k =
∑L
l zl,i,k. Thus, the likelihood of θ is

∏

k,i

e−θk,iθ
z·,i,k
k,i (20)

Given Eq. (8), recall that all the features are binary
and hk,d influences θk,i iff xd,i = 1. This gives us a
direct way of extracting hk,d from θk,i. We can derive
the likelihood of hk,d as:

e
−hk,d

∑N
i:xd,i=1

θk,i
hk,d (hk,d)

∑N
i xd,iz·,i,k (21)
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which is conjugate to its Gamma prior. Therefore,
it is straightforward to yield the following sampling
strategy for hk,d:

hk,d ∼ Gamma


µ0 +

N∑

i:xd,i=1

z·,i,k,
1

µ0 +
∑N
i:xd,i=1

gk,i
hk,d




(22)

bk can be sampled using the same formula by adding
an extra row of ones in the feature matrix X (which
serve as the default features).

We can compute and cache the value of θk,i first. After
hk,d is sampled, we can update θk,i for the instances
where feature d is on:

θk,i ←
θk,ih

′
k,d

hk,d
(23)

where h′k,d is the newly-sampled value of hk,d.

To sample h and compute θ, according to Eq. (8) and
Eq. (22), one only iterates over the instances where
feature d is on (i.e., xd,i = 1) instead of iterating over
all the instances. This demonstrates how the sparsity
in the feature matrix is leveraged. Note that the in-
ference simplicity only exists with binary features.

4.4 Sampling φk

If the co-occurrence matrix is not incorporated, using
Eq. (16) and the Dirichlet-multinomial conjugacy, φk

can be sampled as:

φk ∼ DirichletL(β0 + z1,·,k, · · · , β0 + zL,·,k) (24)

where zl,·,k =
∑N
i zl,i,k.

Otherwise, φ is also involved in the generative process
of C. According to Eq. (18), the likelihood of C is

e−
∑
l,m,k −φk,lλkφk,m

∏

l,m,k

(φk,lλkφk,m)
cl,m,k (25)

Given the fact that φk is normalized, the likelihood
term related to φk,l is: φ

cl,·,k
l,k where cl,·,k =

∑L
m cl,m,k+∑L

m cm,l,k. Therefore, we can sample φk as:

φk ∼ DirichletL(· · · , β0 + zl,·,k + cl,·,k, · · · ) (26)

4.5 Sampling λk

According to Eq. (25), λk has the Poisson likelihood,
which is conjugate to its Gamma prior. Therefore, we
can sample λk as:

λk ∼ Gamma[γ0/K + c·,·,k, 1/(f0 + 1)] (27)

where c·,·,k =
∑L
l cl,·,k.

Recall that γ0 and f0 have uninformative Gamma
prior. For γ0, we can apply the data augmentation
in Zhou et al. [2012], Buntine and Hutter [2012] to get
the Gamma likelihood. For f0, its posterior is directly
conjugate to the Gamma likelihood.

4.6 Time-Complexity Analysis

In addition to having a rich generative model for the
label and label co-occurrences, one of the key proper-
ties of the proposed model is the computational effi-
ciency resulting from taking advantage of the sparsity
in both feature and label matrices. This is impor-
tant because in many multi-label learning problems,
the feature and label matrices usually are massive but
highly sparse. Specifically, for the label matrix, with
the Bernoulli-Poisson link, the models scales in the
number of nonzeros in the label matrix. At the same
time, sampling h and computing θ scale in the num-
ber of nonzeros in the feature matrix. Therefore, in
the case where the label co-occurrences are not lever-
aged, the inference complexity of the proposed model
is O(KG+KDG′) where G is the number of nonzeros
in the label matrix Y and G′ is the average number of
instances where a feature is on (i.e., the column-wise
sparsity of X). Even when the label co-occurrences are
leveraged, it does not add much overhead since the la-
bel co-occurrence matrix is usually highly sparse as
well and its low-rank factorization scales in the num-
ber of nonzeros in this matrix. The efficiency of our
model will be empirically studied in Section 6.4.

5 Related Work

Multi-label learning problems in modern-day applica-
tions are usually characterized by a large number of
training instances, a large number of features, and a
large number of labels (i.e., label-space cardinality).
Owing to this, there is a considerable recent interest in
designing multi-label learning models that can grace-
fully scale to handle such large datasets.

Label embedding methods offer an appealing solution
to the large label-space cardinality problem. These
methods project the high-dimensional sparse label vec-
tors of each instance into a low-dimensional space.
This corresponds to learning a low-rank embedding
of the label matrix. However, learning the embedding
itself is a computationally challenging problem, espe-
cially when the label matrix is massive. This has led
to a lot of recent interest in embedding based mod-
els for multi-label learning that can learn label matrix
embeddings efficiently [Yu et al., 2014, Mineiro and
Karampatziakis, 2015]. However, most of these meth-
ods do not exploit the sparsity of the label matrix while
learning the embeddings. Recently, [Rai et al., 2015]
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proposed a Bayesian label matrix embedding method
that scales in the number of nonzeros in the label ma-
trix. Their approach is similar in spirit to our ap-
proach. However, the approach in [Rai et al., 2015]
conditions the embeddings on the feature vectors via
a regression model. Learning this regression model is
challenging due to non-conjugacy, and is computation-
ally expensive. In contrast, our approach of learning
the label matrix embedding also scales in the number
of nonzeros in the label matrix. However, the embed-
dings are conditioned on the feature vector not via a
regression model used in [Rai et al., 2015] but via a
log-linear combination of the features. If the features
are binary and sparse, such an approach of condition-
ing on the features leads to significant speed-ups. In
our experiments, we compare the per iteration compu-
tational cost of our approach with the approach of [Rai
et al., 2015] and observe significant speed-ups. More-
over, unlike our model, the model of [Rai et al., 2015]
cannot leverage label co-occurrences.

Other prominent Bayesian approaches to multi-label
include the Bayesian compressed sensing (BCS) based
approach [Kapoor et al., 2012]. However, inference
in BCS is expensive. Moreover, it does not exploit the
sparsity of label matrix or feature matrix, and is there-
fore not suitable for large-scale multi-label datasets.

Leveraging label co-occurrences to improve multi-label
learning has not received much attention so far, except
for some recent works such as [Mensink et al., 2014,
Gaure et al., 2017]. One key difference of our model
as compared to these models is that the computa-
tional cost scales in the number of nonzeros in the label
and feature matrix. Moreover, the Poisson-Dirichlet-
gamma based latent factor model offers a nice inter-
pretability of our model, making it also suitable for
other tasks, such as topic discovery (e.g., group of re-
lated labels representing a topic). In our experiments,
we show such a qualitative analysis on a real dataset.

Our approach of constructing embeddings via condi-
tioning on features is related to the models that incor-
porate auxiliary information in Poisson factorization
or topic models such as the ones in Hu et al. [2016],
Zhao et al. [2017a,b,c]. Features in those models are
used to construct the prior of the embeddings. How-
ever, in our model, the embeddings are directly con-
structed using the features (Eq. 8), which allows effi-
ciently computing the embeddings of test instances.

6 Experiments

In our experiments, we compare the proposed
Bayesian Multi-label Learning with Sparse Features
and Labels (abbreviated BMLS) with various state-
of-the-art multi-label learning models, which include

both Bayesian and non-Bayesian models. We eval-
uate the proposed model on four benchmark multi-
label datasets with binary features: Bibtex, Delicious,
Movielens, and NIPS.

The statistics of the datasets are listed in Table 1. The
datasets cover a wide range of feature and label sizes.
Moreover, both the feature vectors as well as the label
vectors are highly sparse, reflecting real-world multi-
label learning problems. Our model can effectively ex-
ploit the sparsity in these vectors, which results in a
fast inference procedure.

We compare the following models: (1) BMLS: Our
proposed model. We experiment with two variants -
with and without the label co-occurrences. If the la-
bel co-occurrences are leveraged, we refer to the model
as BMLS-co. (2) LEML: Low rank Empirical risk
minimization for Multi-label Learning Yu et al. [2014].
Similar to our model, LEML factorizes the label ma-
trix Y with two matrices and one of them is further
factorized with the feature matrix X. LEML considers
various types of loss functions such as squared loss, lo-
gistic loss, hinge loss, etc. (3) BMLPL: Bayesian
Multi-label Learning via Positive Labels Rai et al.
[2015]. As one of the most related models to BMLS,
BMLPL applies the Bernoulli-Poisson factorization on
Y as well. However, unlike our model, BMLPL uses a
regression based approach to condition on the features.
(4) BCS: Bayesian Compressed Sensing for multi-
label learning Kapoor et al. [2012]. BCS is a Bayesian
method that uses the idea of doing compressed sens-
ing on the label vectors Hsu et al. [2009], and relies on
variational inference. (5) BNMC: Bayesian Nonpara-
metric model for Multi-label Classification Nguyen
et al. [2016]. BNMC is a Bayesian model that au-
tomatically learns and exploit the unknown number of
multi-label correlation.

We report the Area Under the ROC Curve (AUC) on
the test data to measure the prediction performance
on new instances for all the models being compared.
In particular, for our model, we can obtain H, b,Φ
from the training phase. Given a new instance i′, we
can compute θk,i′ by Eq. (8) using its feature vector
xi′ . The labels can be predicted as follows:

Pr(yl,i′ = 1) = 1− e−
∑K
k φk,lθk,i′

In the experiments, we set the hyperparameters for
our model as µ0 = 10, β0 = 0.01, K = 100 and γ0, f0
are given uninformative gamma priors. We use 5000
Gibbs sampling iterations to train the model and re-
port the average results over the last 2500 iterations.
For the baseline models, we use their default parame-
ter settings.
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Table 1: The statistics of the datasets used in the ex-
periments. Ntrain: number of training instances, Ntest:
number of test instances, D: number of features, L:
number of labels.

Dataset Ntrain Ntest D L
Bibtex 4880 2515 1836 159

Delicious 12920 3185 500 983
Movielens 4000 2040 29 3952

NIPS 2292 573 2484 14036

Table 2: Comparison of the various methods in terms
of AUC scores with all the instances in the training
sets. “-” denotes either these results were not available
or the method was infeasible to run on that data set.

Model Bibtex Delicious Movielens NIPS
LEML 0.9040 0.8894 0.8787 0.8777

BMLPL 0.9210 0.8950 0.8582 0.9002
BCS 0.8614 0.8000 - -

BNMC 0.8318 - - -
BMLS 0.9379 0.9062 0.8682 0.9009

6.1 Results using Complete Training Set

In the first experiment, we train all the models using
all the instances in the training set. The AUC scores
are reported in Table 2. The result shows that the pro-
posed model performs better than the other models in
three out of four datasets, which evidences the effec-
tiveness of our model. Note that BMLS-co performs
comparably to BMLS in this setting (possibly because
training data is plenty), so its results are not reported.

6.2 Results using Missing Labels and
Limited Training Instances

One common problem of multi-label learning is miss-
ing labels. As a Bayesian model, the proposed model
naturally handles this problem. Furthermore, it is rea-
sonable to assume that the label co-occurrences shall
play a more important role in the case of missing la-
bels. To examine this, we randomly remove 80% en-
tries from the label matrix in the training data of Bib-
tex, Delicious, and Movielens to mimic the situation
where a significantly large fraction of the labels are
missing. The AUC scores of this experiment are shown
in Table 3. From the results, it can be observed that
BMLS-co gains better results than BMLS, especially
on the Bibtex dataset, demonstrating that the label
co-occurrences do help in the case with missing labels.
Moreover, both of our proposed models outperform the
others significantly in this case. It is also noteworthy
that although LEML gets better AUC score on the
Movielens dataset with all the training instances, the

Table 3: AUC scores with only 20% labels.

Model Bibtex Delicious Movielens
LEML 0.8452 - 0.8406

BMLPL 0.7879 0.8082 0.8574
BMLS 0.8598 0.8933 0.8619

BMLS-co 0.8764 0.8978 0.8643

Table 4: AUC scores with only 20% instances of the
training set.

Model Bibtex Delicious Movielens
LEML 0.8649 0.7325 0.8429

BMLPL 0.8167 0.8484 0.8437
BNMC 0.7549 - -
BMLS 0.8651 0.8888 0.8629

BMLS-co 0.8723 0.8921 0.8562

proposed models have a clear advantage when there is
a high fraction of missing labels.

Another situation where the label co-occurrences may
benefit is the case where there are not sufficient train-
ing examples in the data. We mimic this situation by
reducing the size of training instances to 20% on Bib-
tex, Delicious, and Movielens. The AUC scores in this
case in shown in Table 4. Here we can observe a similar
trend as for the missing label case: BMLS has signifi-
cantly better performance as compared to the baseline
models and BMLS-co further improves the prediction
accuracies using the label co-occurrences.

6.3 Qualitative Analysis: Topic Modeling on
NIPS Dataset

Recall that in our model, φk represents a distribution
(i.e., a “topic”) over the labels. To assess our model’s
ability to discover meaningful topics, we run an exper-
iment on the NIPS dataset with K = 100 and exam-
ine each topic. The NIPS dataset consists of 14036
labels (each of which is a word; each author (i.e., in-
stance) has a subset of words), so φk is of that size.
In Table 5, we show five of the topics with their top
words (ranked by φk,l) and the top authors (ranked
by θk,i). As shown in the table, our model is able to
discover clear and meaningful topics of the authors,
which shows its usefulness as a topic model when each
document yi ∈ {0, 1}L has features in form of meta
data xi ∈ {0, 1}D associated with it.
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Table 5: The top words and authors with the largest weights in the topics.
Topic: 1 2 3 4 5

Top words:

input
neural

networks
network
training

set
learning
output
weights

information

problem
theorem
theory
bound
result
exists

positive
dimension

proof
assume

image
dimensional

system
vision
images
visual
object

computer
pattern
position

posterior
distributions

log
likelihood

monte
inference
bayesian

joint
carlo

variance

optimal
control
current
actions

dynamic
programming

learn
action
state

machine

Top authors:

Mozer M
Hinton G

Sejnowski T
Bengio Y
Giles C

Sontag E
Venkatesh S
Bartlett P
Jordan M

Meir R

Sejnowski T
Hinton G
Baluja S
Zemel R
Poggio T

Jordan M
DeFreitas J
Hinton G
Doucet A
Bishop C

Sejnowski T
Dayan P
Hinton G
Mozer M
Jordan M

6.4 Running Time

In this section, we empirically compare the running
time of our model with BMLPL2, with a similar low-
rank embedding approach. Note that BMLPL uses a
regression approach to condition the embeddings on
the features, while in our model, the embeddings are
conditioned on the features via a log-linear combina-
tion of the features. This makes our model much more
scalable, while also enjoying closed form, highly effi-
cient Gibbs sampling.

Both the models are implemented in MATLAB run-
ning on a desktop with 3.40 GHz CPU and 16GB
RAM. We report the running time per MCMC iter-
ation on the four datasets and we also vary the size
of training instances from 20% to 80% to fully exam
the efficiency. Shown in Table 6, the proposed model
runs much faster than BMLPL, supporting the time-
complexity analysis in Section 4.6.

7 Conclusion and Discussion

Despite the considerable amount of recent progress
on the problem of multi-label learning, Bayesian ap-
proaches to this problem have received relatively little
attention. This is primarily due to the lack of scal-
able approaches that can handle large datasets and
can be efficient at training and test time. With this
motivation, in this paper, we presented a framework
for multi-label learning that leverages some of the key
characteristics of multi-label learning datasets (in par-
ticular, the sparsity of label and feature matrix) to
design a scalable Bayesian multi-label learning model.
Unlike most existing multi-label learning models that
are based on learning a low-rank factorization of the

2We only compare the running time with BMLPL be-
cause (1) it is a Bayesian model with the similar base frame-
work like ours, (2) its inference is done by Gibbs sampling
and implemented in MATLAB as well.

Table 6: Running time per iteration (seconds) of
BMLS and BMLPL. K = 100 for both models.

Dataset % training BMLPL BMLS

Bibtex

20%
40%
60%
80%

18.14
22.54
26.75
29.80

0.04
0.06
0.09
0.11

Delicious

20%
40%
60%
80%

12.18
14.45
17.82
20.70

0.09
0.16
0.24
0.33

Movielens

20%
40%
60%
80%

19.19
21.86
24.08
26.27

0.16
0.27
0.37
0.49

NIPS

20%
40%
60%
80%

35.50
38.51
40.31
43.06

0.66
1.10
1.55
2.01

label matrix, our model performs a joint factorization
of the label matrix and the label co-occurrence matrix
and, by sharing latent factors between the two factor-
izations, it can address problems such as lack of train-
ing data and/or a high fraction of missing labels in the
label matrix. The topic-based interpretation of our la-
bel embedding approach is intuitive and we hope it
would motivate the application of similar topic model
based approaches for the problem of multi-label learn-
ing. Finally, making such models more scalable would
be an interesting direction of future work. Although
in this paper, we have presented Gibbs sampling for
doing inference in the model, developing variational
inference or stochastic variational inference would fur-
ther improve the scalability of our model.
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Chapter 8

Conclusion

In my PhD study, I have been mainly working on Bayesian latent factor modelling and
inference problems for discrete data in the applications of text analysis, graph analysis,
and multi-label learning, with a focus on leveraging meta-data and discovering structured
latent values. The proposed approaches in my PhD research have achieved not only
the state-of-the-art modelling accuracy but also excellent interpretability. This thesis
elaborates on the details of my PhD research and the main content of the thesis can be
summarised as follows:

� As my PhD research focuses on the theme of Bayesian latent factor models (BLFMs),
Chapter 1 presents the general introduction of BLFMs, as well as the motivations
and importance of using these models in practical applications. In addition, this
chapter summarises the contributions from the perspective of different applications
and lists the published papers in my PhD study.

� Chapter 2 covers the fundamental knowledge of Bayesian analysis, including the
choices of data and prior distributions, conjugate priors, data augmentation tech-
niques, and the basics of Bayesian inference with a focus on MCMC sampling. These
fundamentals are essential for understanding the remaining chapters of the thesis.
In addition, this chapter also elaborates on a unified framework of BLFMs, which
serves as the basic framework of my PhD study.

� Based on Chapter 2, Chapter 3 comprehensively reviews the related works of BLFMs
for discrete in the areas of text analysis with a focus on models with meta-data, short-
topic models, deep/neural topic models; graph analysis with Bayesian graphical
models; and multi-label learning with Bayesian graphical models.

� Chapter 4 describes my research work on extending the unified BLFM framework
into graph analysis. The proposed model is able to effectively and efficiently lever-
age note attributes to improve the performance of link prediction and community
detection in relational graph analysis, especially in the cases where a graph is highly
incomplete.

� Chapter 5 presents the research work on topic modelling with meta-data, which can
be viewed as an extension of the unified BLFM framework in the area of text analysis.
Specifically, a general framework is proposed, which efficiently incorporates various
types of meta-data such as document labels and word embeddings for discovering
more interpretable topics from texts. The developed topic modelling framework can
achieve better modelling performance as well as improved interpretability, especially
for short texts such as tweets and news headlines.
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� Chapter 6 presents the work on hierarchical topic discovery for text analysis, which
are multi-layer extensions of the unified framework of BLFMs. The proposed models
are able to significantly improve the intuitive understanding of fine-grained semantic
structures of texts.

� Chapter 7 shows the details of my work on extending the basic framework of BLFMs
into multi-label learning problems. The main novelty of the proposed model de-
scribed in this chapter is the structure that leverages the sparsity of both the label
and feature matrices, making the inference efficient for binary features.
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Table 8.1: Comparisons of the proposed models in terms of target data, meta-data, sparsity,
model structures.

Model Target data Meta-data Structured model Data sparsity Meta-data sparsity
Zhao et al. [2017a]

in Chapter 4
Adjacency matrix

of an unweighted graph
Binary attributes

of nodes
No Yes Yes

Zhao et al. [2017c, 2018a]
in Chapter 5

Texts
Binary document
and word features

No Yes Yes

Zhao et al. [2017b]
in Chapter 5

Texts
Real-valued

word embeddings
No Yes No

Zhao et al. [2018d]
in Chapter 7

Label matrix
in multi-label learning

Binary features No Yes Yes

Zhao et al. [2018c]
in Chapter 6

Texts
Real-valued

word embeddings
Yes Yes No

Zhao et al. [2018b]
in Chapter 6

Texts N/A Yes Yes N/A

In this chapter, I systemically show the connections and comparisons between the
models presented in Chapter 4 to 7, details as follows:

� Figure 8.1 demonstrates how the models in the above chapters extend the unified
framework of BLFMs introduced in Chapter 2. Specifically, the basic framework
factorises a data matrix into two latent matrices and the proposed models extend
it into various areas including graph analysis, text analysis, and multi-label learn-
ing, with the ability to incorporate meta-data and discovering hierarchical latent
structures. Moreover, to tackle the associated inference problems, various data aug-
mentation techniques have been adopted and data sparsity has been carefully taken
into account.

� Table 8.1 shows the comparisons of the proposed models in the above chapters
in terms of the types of target data, types of meta-data, whether a model uses
structured latent variables, whether a model captures target data and meta-data
sparsity.

� Based on Table 8.1, Table 8.2 further demonstrates the comparisons between the
proposed models in terms of applications, assumptions, and constraints.

Now I re-summarise the major contributions of my PhD research. Recall that Chap-
ter 1 introduces the contributions specific to individual applications including graph anal-
ysis, text analysis, and multi-label learning. Here the contributions are summarised in a
different perspective, detailed as follows:

� Meta-data incorporation: In the areas of text and graph analysis, meta-data
are usually accessible and able to serve as important supplementary information
especially when the target data are sparse or incomplete. In this research, several
BLFMs have been proposed for the effective and efficient incorporation of meta-
data in text analysis, graph analysis, and multi-label learning. With the help of
meta-data, the proposed approaches have achieved the state-of-the-art numerical
performance on the tasks of text modelling, link prediction for relational graphs, and
multi-label classification. In addition, the proposed methods are able to leverage the
sparsity in target data and meta-data, obtaining improved efficiency.

� Interpretability: Interpretability is increasingly important in machine learning.
The proposed BLFMs have made substantial contributions in Bayesian analysis for
text and graph analysis. Specifically, the developed models with meta-data enjoy
better interpretability by intuitively discovering the connections between meta-data
and target data, which can be easily interpreted and visualised. Moreover, the latent
structures in the proposed hierarchical models can be used to explain the structures
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of data, which provides a more intuitive way for understanding and visualising text
and graph data.

� Usability: The proposed models have great potential in many applications. For
example, the latent factors on texts by the approaches introduced in Chapter 5 and 6
can be used as the embeddings of documents, which can be fed into downstream
applications such as document classification and clustering. Moreover, these text
analysis approaches have shown substantial improvements in modelling short texts.
To further assist the usability of this PhD research, I have released well-engineered
code with constructive instructions on installation and reproduction of the results
for the proposed models.

� Scalability: The proposed approaches intrinsically enjoy excellent efficiency be-
cause of the consideration of data sparsity, which is an important property in text
and graph analysis, as well as in multi-label learning. In most of the proposed mod-
els, the computation only needs to be spent on the non-zero data, which saves a
huge amount of training time. Furthermore, in the released code, efficient imple-
mentations have been used to assist scalability. For example, the inference algorithm
in Zhao et al. [2017c] was carefully implemented with multi-thread programming,
which is able to execute on supercomputers or clusters for large-scale data.

In addition to the constructive and detailed introduction to my PhD research, the
contributions of the thesis includes:

� Providing a proper coverage of the background knowledge of Bayesian Analysis and
the key techniques used in the proposed models.

� Providing a comprehensive review of the related works in the areas of topic mod-
elling, graph analysis, and multi-label learning, including the critical comparisons
of existing methods, open problems, and popular research directions.

In the area of text analysis with topic models, further studies involve the following
directions:

� Incorporating other types of word meta-data, such as part-of-speech tags of words
and information from knowledge graphs like WordNet [Fellbaum, 2012]. Note that
the proposed models with meta-data are able to incorporate meta-data formulated
into vectors/matrices. This setting may not be suitable for other types of word meta-
data than embeddings, such as the above examples. Therefore, a possible future
direction for topic models with meta-data is to develop proper model structures for
more complex meta-data.

� Discovering topic structures jointly in multi-domain corpora or multilingual corpora.
Multi-domain topic modelling is about discovering common and domain-specific top-
ics for comparing document in multi-domain corpora [Chen and Liu, 2014], while
multilingual topic models discover topics from multilingual corpora [Boyd-Graber
and Blei, 2009]. It would be interesting to apply the topic structure models pre-
sented in Chapter 6 to the above two kinds of datasets to intuitively understand the
distinctions and connections between multiple corpora.

� Developing scalable inference algorithms for the proposed models on larger datasets.
The proposed models enjoy better modelling accuracy and interpretability, but they
also add extra model complexity, which requires more efficient inference schemes.
Although data and meta-data sparsity is leveraged in the proposed models, it is
necessary to study how this property can be used in algorithms including variational
inference and SGMCMC.
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In the area of graph analysis, future research directions can be on leveraging other types
of meta-data such as link attributes and applying the developed model on multi-relational
graphs such as knowledge graphs [Hu et al., 2016b]. In the area of multi-label learning,
further studies are needed on the ways of leveraging the data sparsity for non-binary
features, and better dealing with the missing label problem, which are open problems in
this area.
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