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Abstract

Modern experiments are increasingly reliant on computer control for coordination of an
apparatus. Computer control is employed in many different contexts, from institution scale
control systems for particle accelerators to lab-scale studies of quantum mechanics. These
experiments are often characterised by the large number of devices that must be controlled
and the time-scales of the process dynamics to be studied. In all cases, the need for a control
system is motivated by the inability of humans to coordinate the entire experiment with
the required timing precision.

While the last two decades has seen increasing development of control systems for pre-
cisely timed experiments, most are specialised and do not sufficiently address future re-
quirements. Often this is the result of a disproportionate focus on the user interface of the
software, at the expense of flexibility. However, the adaptability of the control system to
future demands is just as important as the user interface. This requires a careful considera-
tion of the underlying technologies used, which is often ignored in favour of the technologies
familiar to the authors. Many existing control systems only control a portion of the experi-
ment lifecycle, most often ignoring the analysis of acquired data and the feedback of results
into future experiments. However, these features are playing an increasing role as more
journals request the publication of raw data and analysis code and researchers experiment
with automatic optimisation algorithms.

In this thesis I present the labscript suite, our next generation control system for pre-
cisely timed experiments. We focus specifically on controlling shot-based experiments; ex-
periments with a distinct start and end time, which are typically repeated many times
but often not identically. All data pertaining to a shot is stored in a single hierarchical
data format version 5 (hdf5) file, allowing shots to be shared easily as part of a publica-
tion. While our control system is designed for ultracold atom research, which relies on such
control systems to perform experiments, we show it can also be used for other shot-based
experiments.

While many control systems present purely graphical interfaces for defining experiment
logic, we balance it across both graphical and textual components. Experiment logic is best
described by a textual programming language, so that a user can take advantage of existing
control statements. We provide a consistent interface for controlling heterogenous hardware
by providing Python methods based on the type of output (analog voltage, digital, radio-
frequency (rf)) rather than the model of device. The interface is accessed via user-provided
names for each channel, rather than a hardware identifier, making the experiment logic ro-
bust against hardware configuration changes. As experiment logic is defined using standard
Python syntax, it can be spread across multiple files and Python modules. Parameter defi-
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nitions are separated from the experiment logic and managed through a graphical interface.
They are passed in to the experiment logic script as global variables when a shot is created.
The exploration of parameter spaces is also handled by the graphical interface, invoking the
experiment logic once for each point in a user defined parameter space.

Experiment shots can be executed autonomously by our control system. Created shots
are placed in a queue, and executed in sequence on the experiment hardware without further
user intervention. Acquired data is saved in the hdf5 file after a shot completes, and is
forwarded on to our analysis framework. Our analysis framework runs a set of user-specified
Python scripts, which are either run for each shot individually, or for a group of shots. These
scripts can perform any task the user cares to write, including the generation of new shots
(for example as part of an automatic optimisation routine).

The underlying technologies of our control system were chosen to maximise flexibility in
order to control the widest range of experiments. We split the labscript suite into distinct
software programs with well-defined communication protocols. This follows the Unix phi-
losophy from the software engineering community, providing a mechanism to easily replace
programs as the need arises. We use a high-level, object-oriented programming language
(Python) to produce features that can be extended through subclasses. Python, a common
programming language among data scientists, is also chosen as the language for defining
experiment logic and analysis scripts. This allows us to utilise existing software engineering
practices, such as version control, to better manage the experiment lifecycle.

Each program in the labscript suite is built for modularity. Our software is designed for
a multi-user environment and provides quick ways to switch between experiment configura-
tions. We do not prescribe the use of specific hardware devices; each lab is free to choose
the set of devices most appropriate for their laboratory. Support for new hardware devices
can be added through the addition of a new Python module, which can be built on top of
our existing translations between high-level user commands and low-level device commands,
significantly reducing the complexity of this task. Graphical interfaces for manual control
of each hardware device are dynamically generated at runtime.

Our control system has proven very effective, and has been used to perform experiments
across several laboratories running diverse experiments. We believe it marks a new standard
for control of precisely timed experiments.
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Chapter 1

Introduction

Reproducibility of a result is at the heart of the scientific method. For many experiments,
particularly in fields such as particle physics and quantum physics (including cold quantum
gases, which are the focus of this thesis), scientists now rely on control systems to provide
precise timing of elements of the experimental apparatus. This is due to both the increas-
ing complexity of apparatuses and the fast time-scales of the processes studied. As such,
scientific research is increasingly relying on a heterogeneous mix of data acquisition hard-
ware coupled with precisely timed analog and digital interfaces to the real world in order
to make new discoveries. Accurate and detailed record keeping is also a key, although often
tiring, part of performing a scientific experiment. In order to ensure the veracity of pub-
lished research, many scientific journals and institutions are moving towards a model where
supplementary materials, such as raw data and extensive details on the analysis techniques
employed, are made available along with the published article.

Control systems provide a means to rapidly and consistently implement strict adherence
to scientific principles while simplifying the precision control of real-world interfaces. In
this thesis, we outline the principles we have developed for control systems for the scientific
experiments in our laboratories, and then present the implementation of these principles
in the labscript suite; an open source framework we have developed during this project
for performing and analysing precisely timed scientific experiments. While this thesis will
primarily focus on the development of the framework with respect to controlling an ultracold
atom experiment, our control system has broad applicability to other experiments that must
be precisely timed.

1.1 Types of control systems
It is important to define what we mean by a ‘control system’. We consider control systems
to be the software written to coordinate physical equipment via the analog and digital
outputs of a hardware device. These outputs may be as simple as a single digital line or as
complex as a radio-frequency (rf) generating direct digital synthesiser (DDS) device (with
analog quantities for the frequency, amplitude, and phase, of the rf signal) or a spatial
light modulator (SLM) containing an array of addressable pixels. The control system may
also monitor analog and digital inputs (of similar or disparate types to the outputs) and
record or even respond to the values obtained. This definition of a control system, and its

1
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capabilities, is naturally very broad. However, for the purposes of this thesis, we can broadly
categories control systems into two distinct groups: those that are designed to manage a
fixed process and those that are designed to allow an operator to innovate with the control
of a general purpose apparatus. Typically the former covers process control of industrial
equipment while the latter covers control of scientific instrumentation. Many control system
design philosophies and technologies were developed for process control, so we will initially
introduce them in that context. However, we’ll show (throughout this thesis) that many of
them are equally useful for control systems of scientific experiments.

1.1.1 Process control systems

The most common use of a control system is in industries where machinery has been au-
tomated. Such industries include manufacturing, power generation and distribution, and
resource extraction and refineries. Typically such control systems are referred to as ‘pro-
cess control systems’ and are designed to ensure the safe and continued operation of the
machinery they manage.

Basic process control systems utilise a programmable logic controller (PLC) which pro-
vides inputs and outputs for interacting with the machinery. Many PLCs are programmed
using specialised languages, which typically represent the electrical structure of control sys-
tem and equipment [1]. Often such languages are classified as either dataflow languages or
ladder logic languages. These types of languages are often thought of as a natural choice
for writing a control system. The hardware devices, after all, are simply handling the flow
of data from the equipment, and so the translation between a electrical schematic and the
programming of a specific device becomes simpler. Such languages also allow the program-
mer to better visualise the internal behaviour of each device. This ensures that the logic
of the PLC is robust, which is the most important consideration when designing a process
control system. These types of languages also bring several other benefits, not least a low
barrier for entry (the language is often pictorial) and may come with automatically applied
multi-threading capabilities.

An important descriptor of a process control system is whether it is open or closed
loop. Open loop control systems by definition implement a static sequence of events with
no feedback on changes in response to this. Closed loop control systems, in contrast, use
acquired data to modify the control sequence in order to better reach the aims of the control
system. Most modern process control systems are now closed loop, due to the availability
of cheap data acquisition hardware built into PLCs.

Common features implemented in an individual PLC include finite state machines
(FSMs) and proportional–integral–derivative (PID) controllers. FSMs ensure that the
state of the machinery controlled is always well defined, and provides a formulaic approach
to defining the set of rules for transitioning between these known states and the actions
that should occur. This leads to increased robustness of the PLC logic. PID controllers
are designed to automatically adjust available PLC outputs to ensure a measured quantity
stays close to a provided set-point, and can be optimised for the response profile (transfer
function) of a given feedback loop, ensuring stability of the machinery in spite of changes
to external parameters (for example external temperature) which are not controlled by the
PLC. Human interaction with a single PLC is typically done via a physical interface con-
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nected to the PLC such as buttons connected to digital inputs or variable resistors connected
to analog inputs, however some PLCs also support management via a connection to a PC.

More complex process control systems then often consist of multiple PLCs that are
linked together via a common communications standard such as RS-232/485, Modbus, or
Ethernet protocols. Such systems are known as a distributed control system (DCS). In some
fields, where the system may be distributed across multiple physical sites, distributed con-
trol systems may also be referred to as a supervisory control and data acquisition (SCADA)
system. Typically a DCS/SCADA system will utilise a heterogeneous mix of PLC hard-
ware so as to correctly cater specifically to the set of requirements for the given part of the
machinery that the PLC controls.

For distributed systems, a human-machine interface (HMI) is used to globally manage
the set of PLCs. A HMI for a process control application is typically graphical in order
to provide a clear visual status of the machinery being monitored, along with controls for
modifying parameters of the control sequence, such as set-points. There are usually also
controls for changing the state of a part of the machinery, such as starting or stopping a
particular process.

1.1.2 Scientific control systems

While scientific control systems share many concepts with process control systems, we con-
sider them a distinct category. This is largely due to the fact that scientific applications
are often focussed on developing a new innovative process whereas process control systems
are largely focussed on reproducing an identical outcome for an industrial process with a
very tight tolerance. The major difference between process control and scientific control
systems is that the latter are often more configurable, expect more user input, and are not
expected to run continuously. Scientific experiments are also typically required to cover a
large parameter space, while process control is typically designed to run repeatedly at a
single optimal point. It is thus particularly important to note that scientific control sys-
tems are not meant to replace process control systems. For scientific applications, scientific
control systems should form part of a broader control system that incorporates both stan-
dard process control for safety and maintenance of sections of the apparatus that you don’t
want to innovate with. Some aspects of scientific control systems will of course match those
of dedicated process control systems, such as support for heterogeneous hardware that is
distributed across multiple computing devices. Similarly, some aspects of scientific control
systems (such as the one we present in this thesis) may be useful in engineering or man-
ufacturing applications where the operator is expected to innovate with the process they
are overseeing. Many existing scientific control systems are also written in a dataflow lan-
guage such as LabVIEW, as this (again) provides a natural representation of the physical
hardware. However, an increasing number are being written in high-level, general purpose
programming languages, the benefits of which we’ll outline later in this thesis.
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1.2 Controlling an ultracold atom experiment
Ultracold atom experiments are one of the most technically challenging lab-based1 physics
experiments. The production of ultracold atoms relies on the application of several fields of
physics, such as optics and atomic physics, scientific control systems, and complex electronics
such as lasers, wideband servo control, cameras and photodetectors, high current switching,
and input and output (I/O) devices. Ultracold atoms themselves are finding a niche in many
evolving fields of physics such as quantum information [2, 3] and precision metrology [4].
They are also useful for quantum simulation of other complex physical systems, such as
condensed matter systems [5], many-body quantum systems [6], and even astronomical
phenomena [7], as they are easily controllable through a variety of optical and magnetic-
field based techniques. Ultracold atom experiments are particularly dependent on control
systems and much of the research in these areas could not have been performed prior to the
advent of microprocessors and other modern computational technology. While not discussed
here in detail, there are similar constraints on other quantum science experiments. For
example, ion trapping experiments rely heavily on custom field-programmable gate array
(FPGA) based hardware that updates faster than is needed for ultracold atom experiments.

Ultracold atom clouds are typically single use objects in that, despite being produced
under ultra-high vacuum (UHV), interactions with the remaining background vapour limit
their lifetime to minutes at best, and most measurement techniques are destructive. Most
ultracold atom experiments are thus shot-based, where each shot has a distinct start and
end point, with the production of one atom cloud per shot. The timing of I/O state
changes between the start and end point of the shot is also precisely defined, where the
level of precision is dictated by the science of the experiment. The science thus dictates
the hardware devices required to produce an ultracold atom cloud, which in turn inform
our decisions on the development of an appropriate control system. It is thus important
that we have an in-depth understanding of the underlying science (of both the production
of ultracold atoms clouds and the physical system to be studied using the ultracold atom
cloud) in order to develop an appropriate control system.

While the hardware device requirements vary from lab to lab, most experiments require
computer control of multiple devices each with multiple analog and digital outputs with a
timing resolution on the order of microseconds for an experiment that spans multiple 10s
of seconds. A single scientific publication may also require thousands of shots to be run,
spanning a complex multi-dimensional parameter space. The coordination and execution
of such experiments is clearly beyond the direct ability of humans, and it is for this reason
that we require a scientific control system.

1.3 The labscript suite
In this thesis we will present the labscript suite [8, 9], a software framework for the control
and automation of precisely timed scientific experiments. The labscript suite consists of

1. By ‘lab-based’ we mean an apparatus directly operated by a small team of researchers in one of many
laboratories at a research institution. Such labs typically do not have technical staff employed to
maintain and/or run the apparatus. This is distinct from large scale shared facilities such as particle
accelerators and synchrotrons which also rely heavily on control systems developed and maintained by
dedicated technical staff.
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several distinct programs, which operate together to provide a control system that covers
everything from experiment preparation to the analysis of results. The labscript suite was
designed with support for closed-loop operation, so that analysis results can be automatically
fed back into the preparation of subsequent experiments.

Our development particularly focused on ensuring that our control system was applica-
ble to the widest variety of experiments. We designed the labscript suite to be modular, and
thus extensible, at every level of development. In particular, we ensured that limited pre-
scription was placed on the hardware required to use the labscript suite, and where possible
deferred the creation of experiment logic to Python scripts created by users for their specific
apparatus. Emphasis was also placed on usability by choosing a high level programming
language such as Python for these scripts, providing an easy entry point into programming
(and is one of the common scientific languages in use today [10, 11]) By providing high-level
(user friendly) application programming interfaces (APIs) for use in these Python scripts,
we are able to minimise the entry barrier further for new users by automating complex
tasks such as the creation of graphical user interfaces (GUIs) and the generation of com-
plex device hardware instructions (including pseudoclocks) required for a precisely timed
experiment.

While many control systems are either all textual or all graphical, we provide a balance
between the two, which we believe evolves naturally from the tasks they are used for. The use
of Python scripts for experiment preparation and analysis allow users to take advantage of
common programming features such as control flow statements (for example ‘if’ statements,
loops, and functions), code comments, and version control tools. Graphical interfaces on
the other hand, provide a natural way to manage lists of parameters, the management of
experiments to be run on an apparatus, the control of hardware (when precise timing is not
required), and the display of analysis results.

Our system has a strong focus on hardware abstraction, allowing us to provide standard
interfaces to heterogenous hardware. Hardware devices and their I/O channels are repre-
sented using a hierarchy of Python objects. I/O channels are represented by standardised
objects of varying types (for example: analog outputs, digital outputs, etc.), provided by
our control system for use with any device. The control interface for each I/O channel is
provided by these standard objects, not the device object, ensuring a consistent interface
for each I/O type, no matter the model of parent device. This allows I/O to be moved
from one device to another without needing to change the experiment logic code beyond
the device assignment. Our object-oriented approach also provides a simple way to extend
the functionality provided by our control system at any level of the object hierarchy, should
it be required by a specific device.

The labscript suite was also designed to simplify many of the standard scientific practices
used in research. Parameters can be defined as complex equations, which can optionally
reference any other defined parameter. We also provide mechanisms to define parameters in
real-world units, and automate the translation of these to the units required by a hardware
device using user defined calibrations. We provide simple interfaces for automating the
traversal of complex parameter spaces, including the iteration of parameter lists in lock step
as one of many axes of a parameter space. Such traversal of high-order parameter spaces
is becoming increasingly common as experiments become more complex, and we believe is
a fundamental requirement of any modern control system. We also ensured that detailed
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metadata on each experiment run was recorded. For example, we automatically store a
named layout of the I/O channels of the control hardware (and the connections between
them), a list of all parameters, information regarding the preparation of the experiment
(including both high level Python code and low level tables of raw hardware instructions),
and any acquired data along with the results of analysis performed on this data. This ensures
an accurate record of every experiment is recorded, reducing the burden on researchers to
adequately document the mundane aspects of each experiment, which is particularly critical
for laboratories that might run hundreds or even thousands of experiments in a single day.

We also have adopted several developments from process control systems and software
engineering, in order to ensure our control system is a robust as possible. These include the
use of state machines, multiprocessing in order to sandbox 3rd party libraries and user code
from the main control system components, and the distributed nature of our programs and
hardware. Our use of a textual interface for some user facing parts of our control system,
using a common, high-level programming language, brings to these components the same
benefits of encapsulation, debugging, and version control that would apply to any software
project written using that language.

These features combine to make arguably one of the most comprehensive scientific control
systems. This has resulted in the labscript suite being adopted by research groups at
other institutions including Swinburne University of Technology in Australia, Technische
Universität Darmstadt in Germany, the National Institute of Standards and Technology
(NIST) in Gaithersburg, MD, USA, and the National Physics Laboratory (NPL) in the UK
where an extensive hardware development effort targeting the labscript suite has recently
been completed [12]. Such control systems are becoming a key requirement of ultracold
atom experiments, particularly as they move into the regime of an automated self-contained
piece of scientific equipment, either due to remote operation requirements (for example, in
space [13]), or in their future use as commercial precision sensing machines. We also believe
that such control systems will become more and more necessary for fundamental research
areas as experiments continue to become even more complex.

1.4 Thesis outline

We start, in chapter 2, by reviewing the science behind the creation and study of ultracold
atom clouds. This knowledge is then used to outline the hardware device requirements
control systems must support to be effective. We then end chapter 2 with a review of
existing ultracold atom control systems, where we take an in-depth look at what they do
right, and what needs to be improved upon to support the increasingly complex research
being performed.

The labscript suite was developed in parallel with the construction of a Bose–Einstein
condensate (BEC) apparatus. We detail the construction of the apparatus in chapter 3
covering the optical and vacuum system designs. We also cover the custom electronics we
built, including both the hardware to be controlled by the labscript suite and the custom
process control systems that operate independently of the labscript suite.

In chapter 4, we introduce the components of the labscript suite and detail the design
philosophy we followed during development. This includes both the software engineering
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principles we followed as well as the reasons for choosing specific technologies. This chapter
is particularly relevant to those who wish to design their own scientific control system.

In chapter 5 we delve into the design of the programs used for experiment preparation.
This covers both the interface we have designed for people to use, as well as the underlying
architecture of those interfaces, and the benefits this brings to the design and preparation
of experiments.

We then detail, in chapter 6 the execution of a prepared experiment. This includes
both how we control the experiment hardware, that in turn controls the apparatus, and
the framework we have built for automating the analysis of acquired data. We then discuss
how you can use the labscript suite to close the loop, and implement automated feedback
of analysis results into the preparation of future shots.

In chapter 7 we discuss the extensibility of the control system where we demonstrate the
ease of adding support for new hardware.

In chapter 8 we demonstrate the flexibility of the control system. This covers real-world
examples of where we have used the labscript suite to perform scientific research, and ties
together the apparatus presented in chapter 3 with the control system.

Finally, we’ll conclude with details of where the labscript suite is heading in future
development in chapter 9.





Chapter 2

Ultracold atoms & control systems

Our control system, the labscript suite, was designed for use with ultracold atom experi-
ments. While we believe our control system has applications outside of this field, it’s design
was informed by the requirements of ultracold atom experiments. In this chapter, we first
review the physics behind the preparation and study of ultracold atoms with a particular
focus on the timescales and timing precision required. We’ll then discuss the hardware re-
quirements for controlling an ultracold atom apparatus as informed by an understanding of
the physics, followed by a review of some of the other control systems employed in ultracold
atom laboratories.

2.1 Ultracold atoms
In this section we’ll introduce some basic theory on how to produce a cloud of ultracold
atoms, and some examples of how you can use such a cloud to research novel physics. This
theory will then inform the requirements of a general purpose control system required to
run an ultracold atom experiment.

2.1.1 Magneto-optical traps

The production of an ultracold atom cloud begins with the collection of atoms from a
background vapour. Most experiments use alkali metals [14, 15, 16, 17], although some
groups are now also working with elements such as hydrogen [18], meta-stable helium [19,
20], chromium [21], strontium [22], ytterbium [23], and erbium [24]. The atoms are collected
in a magneto-optical trap (MOT), which consists of three pairs of orthogonal1 counter-
propagating laser beams that are centred on a spatially varying magnetic field produced
by coils in an anti-Helmholtz configuration (a spherical quadrupole field). The laser beams
are slightly detuned from an atomic transition, known as the ‘cooling transitions’ due to its
cyclic nature2, so that the atoms in the centre of the trap are off resonant. The polarisation
of the laser beams is set such that the Zeeman shift [25, 26] of the atomic energy levels, for

1. Strictly speaking, the pairs do not need to be exactly orthogonal. They must however have components
in three orthogonal directions, which is best achieved by three orthogonal pairs.

2. Typically the cyclic transition is only effective for the collection of thermal atoms when present with
an additional ‘repumping’ laser beam, due to other mechanisms that can cause atomic state changes.
These laser beams ensure the atoms return to the correct state to continue cooling if they transition
to an otherwise dark state.

9
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atoms away from the centre of the trap, are brought on resonance with only the beam(s)
that will impart momentum back towards the centre of the trap. The viscous damping and
restoring force thus provide a collection mechanism for atoms that fall within the capture
velocity of the MOT configuration [27, 28, 29].

The background vapour poses difficulties for the production of ultracold atoms as it
provides a hot thermal bath, which would negate further cooling. As such, atoms captured
in a MOT are typically transferred to a UHV chamber after collection. This is often
achieved by pushing the atoms between two MOTs (separated by a differential pumping
tube) with a laser beam [30, 31]. It can also be achieved using magnetic coils that create a
moving magnetic trap for the atoms [32].

Alternatively, the atomic vapour source and the MOT can be separated, for example by
a Zeeman slower. Zeeman slowers are also used in systems where the atomic velocity is too
large to efficiently capture atoms directly from a background vapour. In these scenarios, it
is typical to use a Zeeman slower [33] to produce an atomic beam with a sufficient flux at
an appropriate velocity for capture with a MOT. Zeeman slowers slow atoms down via the
transfer of momentum from photons to atoms, which typically requires a physically long
path over which the atoms are slowed. The magnetic field profile along the Zeeman slower
is designed to create a spatially varying magnetic field so that a fixed frequency laser beam
stays on resonance with the atoms as they slow down. This can either be achieved with
a stepped, multilayer, solenoid design (as in [33]) or a single layer solenoid with a varied
pitch [34, 35].

2.1.2 Polarisation gradient cooling & optical pumping

While atoms in a MOT are reasonably cold, they are still several orders of magnitude above
the temperature required for most experiments. The next stage in cooling is typically po-
larisation gradient cooling (PGC), which is similar to a MOT, but without the quadrupole
magnetic field. In this situation, each pair of counter-propagating lasers produces a spa-
tially varying polarisation (a polarisation gradient) [36]. The polarisation gradient results
in a sinusoidal, atomic state dependent, potential for each atom. The lasers optically pump
atoms between atomic states when an atom reaches the peak of the potential, and the atom
is transitioned to a state with a lower potential energy. This extracts energy from the atom,
and it continues at a (slightly) reduced speed, again through a sinusoidal potential, where
the process repeats itself (usually returning to the original state). Repeated transitions
ultimately cool the atoms to a temperature limited by the recoil energy of the photons used
in cooling.

As PGC works by driving atoms between states, the atomic state is not uniform across
atoms captured after PGC. PGC is thus usually followed by a stage of optical pumping,
which drives the atoms into a common state. This state is typically a magnetically trappable
state, such as |F = 2, mF = 2⟩ or |F = 1, mF = −1⟩ for rubidium-87. This is required for
any further cooling done in a purely magnetic trap, and because most experiments performed
with ultracold atoms require the initial atomic state of the sample to be known (even if it is
then placed into a superposition of states afterwards). To optically pump the atoms, a bias
field is used to establish a quantisation axis and atomic transitions are driven with at least
two lasers until the atoms are in the desired state. For cases where the purity is critical
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and the transfer is not 100% efficient, an additional purification stage will be performed to
remove atoms not in the correct state.

2.1.3 Magnetic traps & evaporative cooling

Further cooling beyond the recoil limit is then done in a magnetic trap using a process called
forced evaporation. The magnetic trap is formed by a quadrupole field, similar to the one
used in the MOT stage but at a significantly higher strength. There are several types of
magnetic trapping configurations, whose differences centre around how to prevent atomic
spin flips in the centre of the trap where the field is zero. Common techniques are the
time-orbiting potential (TOP) trap [37], the quadrupole and the Ioffe configuration (QUIC)
trap [38], the use of an off-resonant repulsive optical field to plug the trap [15], or the
use of an off-resonant attractive optical field (known as a ‘hybrid trap’) [39]. Evaporative
cooling of the atoms in such traps is then forced by transferring the hottest atoms (which
are located in regions of the trap with higher magnetic fields) to an anti-trappable state.
This is typically achieved using either an rf or microwave field (dependent on the atomic
structure of the atom and the transitions you wish to drive) which is resonant with only a
small fraction of the trapped atoms (at any one time) due to the spatially varying Zeeman
shift induced by the quadrupole field. As the remaining atoms will continually rethermalise
after the hottest are removed, this procedure can be made to continuously cool the sample
by sweeping the frequency of the rf or microwave field.

It is possible to perform scientific research on ultracold atoms in these traps (indeed
some of the first BECs were made in a TOP trap [16] and a trap with a repulsive plug [15]).
However, many people now perform a final evaporation stage in a purely optical trap.

2.1.4 Dipole traps

For experiments that wish to utilise an atomic state that is not magnetically trappable (or
a mixture of trappable and anti-trappable states), or apply or measure additional magnetic
fields (such as magnetometry experiments or those that utilise a Feshbach resonance), the
atoms must ultimately end up in an optical trap. Such experiments (typically) initially
use the hybrid magnetic trapping method mentioned previously, which already requires the
use of an optical trap; most commonly the attractive crossed-optical dipole trap. Atoms
can be transferred from a hybrid trap into a pure optical trap, by slowly decompressing
the quadrupole magnetic field until it is removed. Further forced evaporation can then
be performed in the purely optical trap by reducing the laser intensity (and thus the trap
depth) of the dipole trap beams. This causes the hottest atoms to boil off, lowering the
temperature of the remaining atoms as they rethermalise.

More complex optical traps are also possible, such as a repulsive laser in a TEM01
mode [40, 41] or box potentials created by many lasers [42] (both of which are often used
to study 2D physics), or optical lattices [43, 44]. However, in many situations, the early
preparation stages still use a magnetic trap and/or a standard optical dipole trap before
transferring into these more complex traps.
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2.1.5 Novel physics

There is a diverse range of novel ultracold atom research being conducted around the world.
While there is far too much to detail in one place, we’ll introduce some of the more widely
researched topics here.

The study of quantum turbulence is one of these areas of research. While classical tur-
bulence is notoriously difficult to study under controlled conditions, ultracold gases provide
a controlled environment in which to study quantum turbulence where the circulation of
vortices are quantised. Recent studies often focus on vortex dynamics [45, 46], the way
that they cluster together [47] and the energy cascades between length scales [48]. This is
an active research topic in our labs at Monash University and researchers hope that such
studies will ultimately shed light on classical turbulence.

The use of ultracold atoms for precision metrology is one of several possible commercial
applications for ultracold atom research, and is thus also an active area of investigation
(including at Monash University). For example, ultracold atoms are used in the most precise
atomic clocks [49] and can also be used as precision magnetometers [50] or gravimeters [51].
Techniques for improving the sensitivity of such sensors (for example by removing laser
induced vector light shifts [52]) are also a significant area of research.

Other novel research areas include quantum chemistry where ultracold atoms are com-
bined to form ultracold molecules [53] and the ionisation of cold atoms to produces cold-
electron bunches [54, 55]. There is also much fundamental physics research done with ultra-
cold atoms. For example, many researchers have been studying topological states [56, 57, 58],
the BEC-BCS crossover [59, 60, 61], and the BKT transition [62, 63, 64].

Research groups also put significant work into developing new imaging and trapping
techniques. Recently, new imaging techniques have focussed particularly on the ability to
perform continuous imaging of the atomic cloud [65, 66] and/or the ability to image and
extract more information about small scale structures such as vortex cores [66, 67], as well
as bringing analogues of traditional solid state imaging techniques to the ultracold atom
world [68]. Meanwhile, trapping techniques are being developed to hold atomic clouds in
unique geometries such as ring traps [69, 70] and reconfigurable optical lattices [71].

Some groups also work with multiple atomic species at once. Typically only two species
are used [72, 73, 74, 75], however in some instances a third species may be used to sym-
pathetically cool one or both of the other species [76]. These are often useful for quantum
simulation experiments or fundamental research into quantum matter. The combination of
species is often chosen due to an appropriate inter-species Feshbach resonance, which allows
the interactions between the two species to be controlled.

Many of these advances require new control methods, such as more complex control
over output state, synchronisation of novel control devices, and/or challenging timing re-
quirements. Working with multiple species also requires significantly more hardware, as the
collection and cooling of each atomic species requires a distinct set of lasers for the cooling
stages, and there may be additional transport stages required to effectively combine the
species together, all of which need to be under computer control.
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2.2 Controlling an ultracold atom experiment

As we can see from looking at the physics contributing to the creation and study of ultra-
cold atoms, there are a broad range of hardware and timing requirements. We can also
see a progression in the complexity of the cooling stages. This matches closely with the
control techniques available at the time they were developed. For example, initial laser
cooling experiments were controlled using simple digital electronics and delay lines. As the
complexity grew, programmable function generators were included for simple analog ramps,
which could be triggered by a digital signal. Ultimately with the increased availability of
low cost PCs and general purpose I/O hardware, these simple systems were replaced with
computer control systems. As PC control systems naturally evolved out of reasonably ‘fixed’
electronics based systems, the early attempts followed a design pattern that was also rather
static, leading to control systems that were designed for a singular purpose and were difficult
to adapt to changing experiment requirements (this will be discussed further in §2.3). In
order to design a better, general purpose control system, we must first understand the range
of requirements that encompasses the many possible ultracold atom apparatuses.

2.2.1 Timescales

The processes used to create a cloud of ultracold atoms operate over a range of timescales.
The MOT load (other than switch on and switch off), including designs using a Zeeman
slower, is completely static in most experiments3. MOT load times are typically on the
order of seconds, although this is dependent on many parameters such as available laser
power, beam diameter and number of atoms available. MOT transfer systems (using a
push beam or moving magnetic trap) typically require millisecond control of either the laser
beams or magnetic fields. Similarly, PGC typically operates on the order of milliseconds,
depending on the intensity and detuning of the lasers used, and the velocity distribution of
the atoms to be cooled. Optical pumping, on the other hand, typically takes between 10µs
and 1 ms, depending on the intensity and detuning of the lasers used, and often requires
precision timing at the microsecond level in order to stagger the switch-off of the lasers
(which ensures the atoms are all pumped into a common state).

While forced evaporative cooling typically takes on the order of a few seconds (which is
similar to the length of the MOT load), this is not the only relevant time scale for computer
control. The atoms, prior to the load into a pure magnetic trap, must be in a magnetically
trappable state. As such, it is critical that the atoms be able to adiabatically follow the
quadrupole field when it is switched on (this similarly applies when it is switched off).
This requires that the magnetic field be switched on gradually, and that field is sampled
sufficiently between the off and full strength states. Further more, the frequency of the rf or
microwave field that drives the evaporative process must be swept, typically overs tens of
MHz, but with sufficient granularity to ensure the hottest atoms are those being addressed.
As such, the forced evaporative cooling stage typically requires a sub-millisecond update
rate, over a period of several seconds, for multiple outputs. Similar requirements exist for
the transfer into a purely optical trap, and any further evaporation that occurs there.

3. It is important to stress here that while there are dynamics occurring during the collection of atoms,
the laser beams and magnetic fields are set at constant values.
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Once an ultracold atom cloud has been produced, the physical processes that are being
studied typically occur on timescales that range from microseconds to more than one sec-
ond. Data acquisition may then need sub-microsecond resolution (in order to capture the
dynamics of the process) and will likely need to be synchronised with the change in output
states to the same precision. For example, camera acquisitions are usually triggered by a
change in state of a digital output.

We can see from this that the timing requirements go beyond those that a general purpose
PC can provide by itself. Most operating systems (such as Microsoft Windows) can typically
only guarantee timing to the millisecond level. Real-time operating systems do exist and
can get to the microsecond level, but require overly complex programming to take advantage
of this, and are still only borderline acceptable for modern day experiments. As such, most
ultracold atoms experiment use dedicated devices to interface with the experiment, that are
not bound by PC operating system limitations.

2.2.2 Hardware requirements

Ultracold atom experiments typically require control of dozens of I/Os. For example, digital
outputs may be used to turn on or off the various laser beams used in the cooling stages
of the experiment (using a digitally triggered shutter), or to trigger a camera to take one
or more pictures at specific times. Analog outputs can be used to control magnetic fields
smoothly (using a magnetic coil driver) and rf or DDS outputs can be used to control laser
frequencies (via acousto-optic modulators (AOMs)) or the rf used during forced evaporation.
The experiments run using ultracold atoms might also make use of devices such as SLMs
or digital micromirror devices (DMDs), and may need to acquire analog input traces as
well as camera images. Producing this set of I/O typically involves on the order of a
dozen different devices that must be controlled in parallel while remaining synchronised
over the length of the experiment. The devices used vary depending on the requirements of
a particular experiment, but are often drawn from a mix of commercial off-the-shelf hardware
and custom hardware designed to push the limits of what is commercially possible in order
to study novel physics. Given that such hardware is so dependent on the specific physics
to be studied, it is important that a general purpose control system be able to support
a wide variety of hardware, and for it to be easy to swap the hardware in use when the
requirements of the experiment inevitably change as new physics is investigated.

In order to maintain precise timing of updates to hardware outputs, I/O devices typi-
cally prefill an onboard buffer with hardware instructions and step through them according
to a provided clock tick. The most common approach is then to step through these instruc-
tions (after receiving an appropriate trigger to start) with a clock that ticks at a constant
rate (see figure 2.1), since such clocks are easy to generate and can be trivially included
in the design of the hardware. However, this becomes unwieldy for experiments where the
ratio between the experiment length and the required timing resolution is large. For ultra-
cold atom experiments, this ratio is at least 106 (10 microsecond timing resolution during
experiments of 10 seconds) and may even hit 109 (100 nanosecond timing resolution during
experiments of 100 seconds). Each output channel driven by a constant rate clock would
then require somewhere between 106 and 109 hardware instructions in order to achieve the
desired timing resolution and duration. This could be as much as 2 gigabytes of data per
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Figure 2.1: An example of a standalone I/O device output (orange), internal clocking
signals (green) and timepoints at which hardware instructions are required (dashed blue).
The upper trace shows an analog output which starts at 0 V, ramps to 4.5 V over 9 timesteps,
waits for 11 timesteps and then ramps down to 2.5V over 3 timesteps. The middle trace
shows a digital output which produces 3 pulses of various lengths and the lower trace shows
the internal clock that steps the output through the hardware instructions. The rate of the
fastest ramp effectively sets the frequency at which the clock must tick. As the internal clock
is a fixed frequency clock, and does not make use of a pseudoclock, hardware instructions
(holding the output state of all channels) must be stored for every clock tick (indicated by
the blue, dashed, vertical lines). There are thus several periods where sequential instructions
store the identical output state, wasting space in the onboard buffer.

channel (for a 16-bit analog output). However, most output devices do not have the onboard
memory to support such large instruction sets. While some manufacturers instead stream
the hardware instruction set to the device during the experiment execution, thus avoiding
onboard memory limitations, this scheme is difficult to implement well (and so only large
manufacturers such as National Instruments (NI) attempt it). It comes with a risk of failing
to stream data fast enough if resources or bus bandwidth on the PC are consumed by other
processes, and the number of hardware instructions is still limited by the memory of the
control PC.

We use the concept of a pseudoclock to work around these memory limitations, by
providing a mechanism to vary the time between instructions. This allows us to maintain
high timing resolution only during the segments of the experiment where it is necessary,
reducing the required number of instructions to within the capabilities of most devices with
small onboard memory buffers.

2.2.3 Pseudoclocks

Despite requiring precise timing resolution during some parts of an experiment, it is unlikely
that a long experiment requires a change in the output state at every one of those time
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Figure 2.2: Here we show an I/O device with equivalent device output (orange) to figure 2.1,
but this time using an external pseudoclock (green). We see that the number of hardware
instructions (for the I/O device) is reduced to 17 (upper dashed blue lines). The pseudoclock
itself may require as few a 7 instructions (lower dashed blue lines) if it supports looping
instructions and requires only a single instruction per change in clock rate. This would
increase to 14 if it supported looping instructions but required two instructions per change
in clock rate: one instruction for transitioning from low to high and another for transitioning
from high to low, with additional data in those instructions to indicate they should be looped
over the requisite number of times.

intervals. A device that steps through instructions based on a clock that ticks only when
an output needs to change state then only needs to store instructions when a change in
output state is required. We term such a clock a ‘pseudoclock’ (otherwise known as a
‘variable frequency clock’ [77]) and usually consists of a device programmed to produce a
non-uniform clocking signal (an arbitrary train of digital pulses). The pseudoclock scheme
thus results in a significant reduction in the onboard memory requirements of I/O devices.

Offloading the timing to a pseudoclock still requires the pseudoclock device to have a
large onboard memory buffer if the pseudoclock instructions are being stepped through at a
constant rate, as the pseudoclock will need an instruction every x seconds where x is defined
by the shortest time interval during the experiment. While this scheme results in an overall
reduction in memory use (you only need to store instruction data for a single clock output
at the 1

x rate, rather than for every output driven by this clocking signal), it is still not
the optimal solution. The memory requirement for the pseudoclock can be reduced further
if pseudoclocks are implemented on devices that support complex CPU-like instructions
such as ‘delay’, ‘branch’, ‘period’ and/or ‘loop’. For example, a pseudoclock with ‘period’
and ‘loop’ CPU instructions could be used to create a single hardware instruction that
produces multiple pseudoclock output state changes, with the ‘period’ relating to the rate
of the pseudoclock during an instruction and ‘loop’ referring to the number of times the
pseudoclock should tick before processing the next instruction. Pseudoclock instructions
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can thus (on some devices) be reduced to one instruction per output clock rate change (see
figure 2.2).

Of course if every output device supported such complex instructions, we would not
need separate pseudoclocks. However, processing these complex instructions requires a
much more advanced processing core for the device, and so almost all manufacturers avoid
implementing such features in order to reduce development time and production costs. As
such, we believe this pseudoclock architecture provides the best option until such time
as all hardware devices have much larger onboard memory or support for more complex
instruction sets, and is a key component of the architecture of our own control system4.

2.3 A review of existing control systems

Control systems for ultracold atom experiments are particularly interesting to study because
they (a) were only able to be experimentally realised in the PC age and (b) are not yet used
in any commercial or large scale project. This means that current control systems have
been built by scientific researchers, and often are made available as open source projects. It
has also led to a variety of approaches rather than being dominated by a single commercial
offering.

The most well known designs are line-based systems (colloquially known as a ‘green dots’
system, named for its common implementation with LabVIEW’s archetypal green button
design) which covers the many home-grown control systems that never propagated beyond
the original developers, despite being recreated in various forms by many laboratories. In
line-based systems, the description of the experiment logic is done via a graphical repre-
sentation of the hardware instructions, which commonly takes the form of a 2D array of
buttons indicating the state of a digital channel for a given time. However, this design
makes it hard to modify the experiment logic, which we’ll touch on during this review
and then more formally cover in §4.3.3. For line-based systems written in LabVIEW, the
limitations LabVIEW places on dynamical GUI generation mean a modification of the set
of hardware controlling the apparatus also requires ‘rewiring’ the underlying design of the
control software from within LabVIEW. More modern systems move away from the Lab-
VIEW dataflow language to avoid this, but often replicate an identical interface for defining
experiment logic, thus maintaining many other limitations. Only a small number of con-
trol systems brake away from this design pattern entirely, providing a more generic API to
describe the experiment logic.

We find that ultracold atom experiment control systems fall into two broad categories.
The first encompasses basic home-built line-based control systems (typically written in
LabVIEW) and more advanced variants such as the Cicero word generator. Such systems
are categorised by their user interface design, which is built around sequential time steps
(or sequence of ‘words’ in the case of Cicero) containing an array of values for each channel.
While such systems may contain some advanced features, the user interface design forces the
user to work in terms that are very close to native hardware instructions. These systems also

4. The use of a pseudoclock is not a novel concept, as evidenced by the use of a similar scheme in some
of the control systems we will review in the next section. However, we contend (as we hope is born out
by this thesis) that our implementation is the most general to date by removing restrictions requiring
a specific model of device and supporting the use of an arbitrary number of pseudoclocks.
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typically have limited hardware support (or a large barrier to adding hardware support),
and may be geared towards supporting older hardware devices such as those that do not
support pre-programming with a table of instructions but are instead updated in software
(PC) time by the control system. They also (typically) have more limited automation of
parameter space scans. We thus feel this group should be termed ‘first generation control
systems’.

The second group comprises those control systems that use a higher level representation
for defining experiment logic, and more advanced parameter space management features.
These are the ‘second generation control systems’ of which, we believe, the control system
we present in this thesis is the most comprehensive offering so far. Support for a wider
range (or dynamic configuration) of hardware is also a common theme of such systems.

We’ll review some of the most well-known control systems for ultracold atoms, looking
particularly at:

• their interface for defining experiment logic,

• their ability to link experiment logic to a separately defined list of parameters (other-
wise known as global variables) and automate the collection of data over a parameter
space scan,

• shot management, including the level of automatic record keeping, how data is stored,
and the way they prepare, stage, execute, and analyse shots,

• the range of supported hardware devices and the ease of adding support for new
hardware, and

• their ability to perform analysis on data acquired during an experiment.

2.3.1 LabVIEW line-based systems

The line-based control system is the most familiar system for ultracold atom experimentalists
despite being the least well standardised. These systems are characterised by a grid of
buttons (often the standard LabVIEW ‘green dot’ button) that allow a bank of digital
channels to have their state graphically controlled at a variety of time points (see figure 2.3)
and are written using the LabVIEW graphical programming language5,6. Such systems are
prevalent due to the ease of creating such a system in LabVIEW, as well as the excellent
interoperability with the widely used hardware devices from the same manufacturer (NI).
This has led to many laboratories creating their own custom control system with a variety
of feature sets specific to each laboratory and with varying degrees of completeness and
robustness. Despite the diverse nature of this type of control system, we will attempt to
review what we consider to be common features and design decisions.

5. It is important to note that by “graphical programming language” we don’t refer to a programming
language that can make graphical interfaces (although LabVIEW does that as well) but rather we
refer specifically to a programming language where the logic of the program is defined using graphical
symbols rather than the more conventional text-based code.

6. We focus solely on control systems written in LabVIEW here. We separately cover variations on the
‘green dots’ line-based theme, written in other programming languages, in the following sections.



2.3. A REVIEW OF EXISTING CONTROL SYSTEMS 19

Figure 2.3: The LabVIEW line-based control system ‘SetList’ from JQI. Image provided by
Chris Billington via private communication (1st Feb. 2019), reused with permission.

Experiment logic interface

As previously discussed, the main interface for this class of control system is graphical.
Experiment logic is defined using a 2-dimensional array of graphical widgets, with axes of
output channels and timepoints. The value of a widget thus defines the associated channel
state at the associated time. While originally many systems only controlled digital outputs,
with the advent of modern hardware many systems also incorporate analog widgets as
well (for example, to define a voltage). While static analog values map well to the 2D
grid structure, the ability to specify analog ramps requires additional complexity in the
interface as ramps are not practical for a user to implement using an array of manually
specified timepoints. Time is also typically defined using an analog widget, which leaves
open the possibility of non-uniform time steps either through the use of a pseudoclock or
the duplication of instructions (to create a fixed frequency update rate) at programming
time.

Parameter management

Parameterisation of experiment logic may exist in some advanced LabVIEW line-based
systems, but many do not provide any such management. If parameter management is
implemented, it is usually limited due to the difficulty of implementing such a feature in a
graphical description of experiment logic.

Shot management & storage

Due to the ‘simple’ nature of this type of control system, shot management and storage is
often non-existent. There is typically no system for managing the execution of a sequence of
shots, and while saving of data acquisitions are supported, there is typically limited meta-
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data (such as experiment run time, experiment configuration, or a record of the experiment
logic) saved. Cataloguing and storage of useful data (along with relevant parameters) is
typically done by hand, rather than automated into consistent formats and hierarchies.

Hardware support

There is no particular limitation to the hardware that can be supported by such systems.
However, the grid interface (and the way that LabVIEW handles data internally) makes it
difficult to abstract away any of the hardware implementation details. As such, the graphical
interface is often made up of sets of controls specific to a given device. New devices are thus
more difficult to implement because everything from the interface down to the programming
of the device must be written again. There are of course ways to make it simpler to add
new devices, but these require significant development effort and developers willing to put in
that much time typically end up eschewing LabVIEW for another programming language.
As such, LabVIEW line-based systems are typically limited to the control of a few pieces of
hardware that feature in a given lab, which may explain why these systems are not typically
shared between research groups.

Analysis

Line-based systems typically do not include analysis systems, although simple fitting to
images of atomic clouds may be included if the system incorporates the acquisition of images
through the LabVIEW interface.

2.3.2 Cicero word generator

The Cicero Word Generator [78] is an open source control system developed by the Wolfgang
Ketterle group at MIT. While ultimately a variation on the LabVIEW line-based theme,
it is perhaps the most comprehensive of such systems. This is likely due to the use of C#
as the programming language of choice which, as the authors note in [77], provides more
flexibility than LabVIEW. As one of the few open source control systems, Cicero also has a
wide user base across multiple institutions.

Experiment logic interface

The primary interface for defining experiment logic consists of a sequence of ‘words’ which
define the state of each output during the specified time interval (see figure 2.4). While this
may sound similar to the standard line-based approach previously discussed, care was taken
to overcome many of the limitations of that design [77]. For example, the user interface
provides the ability to enable/disable, reorder or duplicate specific words. The set of words
that form the experiment logic for a given experiment can be saved (into a proprietary
file format) and loaded at a later time, allowing lab users to easily switch between different
‘experiments’. The state of a specific channel in a word can also be bound to a global variable
or be configured to ‘continue’ (use) the value of the previous word. Analog ramps can be
defined using predefined functional forms (with parameters bound to global variables) or
via the entry of a custom equation. Digital outputs can be programmed to trigger prior
to or after the boundary between two words, providing a mechanism for managing devices
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Figure 2.4: An example of the Cicero Word Generator interface. Here, each ‘line’ is a
column of the main interface (labelled 1, 2, 3. . . ), defining a time point and the state of
each channel at that point. Analog channels can follow more complex equations during a
time step, can span more than one time step, and the shape of the trace is pictured. Values,
such as instruction durations, can be bound to global variables. Digital lines can be delayed
relative to the boundary of a time step as shown for the camera trigger in time steps 3 and
4.

with known delays (such as shutters). Cicero also supports programming arbitrary devices
over serial (RS232) or GPIB.

Despite this effort to overcome some of the inherent limitations of the line-based design,
it is clear that this style of graphical interface has its limits. For example, despite RS232
and GPIB being similarly generic communication protocols, only GPIB devices can be
programmed to follow an analog ramp from within Cicero. Also, while it is easy to bind a
global variable to a parameter of a waveform or the length of a word, if two parameters are
related by a common parameter (for instance a parameter that should be half of another)
you need to explicitly define additional global variables, even for just a simple scaling.
Comparatively, this would be considerably simple to implement in a text based language
where equations form a natural part of the programming language and can thus be used at
any point in the code (for example an argument to a function call could take a parameter
set as 2*parameter).

Defining delays on digital channels is also non-trivial. For example, the Cicero man-
ual [79] defines the procedure as follows:
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To create a pulse that will make a digital output true, will start 2 ms after the
start of the timestep it is in, and end 3 ms before the end of the timestep it is
in, set:

• Start Condition to TimestepStart,

• Start Pretrig/Delay Enabled to true,

• Start Pretrig/Delay time to 2ms,

• Start Delay to true,

• End Condition to TimestepEnd,

• End Pretrig/Delay Enabled to true,

• End Pretrig/Delay time to 3ms,

• End Delay to false, and

• Pulse Value to true.

To insert a pulse into the sequence, right click on the digital box you wish to
apply it to (in the sequence tab digital grid, corresponding to the channel and
timestep you want the pulse to apply to), to see a drop down list of available
pulses.

While it is commendable that such a feature exists (as it does not in most other line-
based systems), it exposes the inherent difficulties imposed by defining experiment logic
graphically as a sequence of discrete time units. In contrast, this feature becomes almost
trivial to implement with a high level text based API for defining experiment logic which
might look like7:

# word starts at time=t

# set output high 2ms after start of word
digital_channel . go_high (t+2*ms)

# other events go here at time=t
# ...

# increment time counter
t += word_length

# now set the output to low 3ms before end of word
digital_channel . go_low (t-3*ms)

7. This is a somewhat contrived example. In a text based language you don’t need to be defined by
‘words’ at all, nor do commands necessarily need to be defined in time sequential order. As such, the
text based version presented in the above example is actually far more verbose that it need be (it’s two
thirds comments!), necessitated by the desire to provide an example that could be directly compared
to the Cicero example.
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Parameter management

Cicero provides a simple GUI for managing parameters (global variables). While there is no
limit to the number of global variables, they can not be grouped or easily reordered. This
suggests using a large number of them would be prohibitive. Global variables can be defined
as floating point numbers, bound to a list of numbers or defined as an equation (which can
make use of standard mathematical functions, operators and other global variables). Lists
are used to produce a sequence of shots where each shot uses a particular value for the list.
For a single list, the number of shots produced is equal to the number of items in the list,
where the associated global variable takes on a different value from the list in each shot.
When multiple lists are in use, the behaviour of Cicero can be set to either iterate over
the lists in lock-step (in which case the lists should be of equal length and the number of
shots produced is equal to that length), or to take the outer-product of the lists in order
to span a large parameter space (in which case the number of shots produced is equal to
the product of the list lengths)8. Most complex combinations of iterating over some lists
in both lock-step and taking the outer product of others are also possible, although the
interface is not always consistent in this regard. For example, while simple combinations
can be controlled via buttons next to the lists (that change the behaviour for that list
between lock-step and outer-product), defining two separate groups of lists that internally
iterate in lock-step, while the groups themselves are also combined in an outer-product, is
only possible by setting the lists to be combined via an outer-product and using multiple
global variables to define the groups of values that will iterate in lock-step. This imposes
the condition that values in each independent group are actually related via a common list.
It is also, unfortunately, not possible to define lists programmatically (for example using a
function that returns a range of values, such as the MATLAB [80] or Python NumPy [81]
linspace function).

Shot management & storage

Shot management is quite advanced, when compared to most control systems, providing
the ability to loop a single experiment in the background if necessary (typically used to
‘keep warm’ an apparatus when it is not being used for data collection), run a sequence
of shots as defined by the parameter lists (and to do so in a random order or not), and to
run a single shot repeatedly. An independent shot can also be set to run every N shots,
when iterating over the parameter space, in order to provide regular base-line measurements
of the apparatus for calibration. Running shots (except for looping the background shot)
blocks the user interface, which does prohibit queuing up multiple sequences of shots to run.

When shots are run, Cicero creates a ‘log’ file for each shot. This file contains a record
of the experiment sequence, which can be re-opened within an instance of Cicero for later
viewing. There is however, no unified method of storing any data acquired during the shot,

8. Confusingly, the Cicero manual[79] terms taking the outer-product as scanning over the list “in parallel”
and scanning in lock-step as “in series”. From a programming perspective, ‘in parallel’ implies something
happens at the same time which seems to better correspond to updating the current value used from
each list at the same time. Similarly, ‘in series’ could equally apply to nested loops (which is ultimately
what taking the outer-product corresponds to) as ‘in series’ implies a dependency between the two
items. It is for this reason that we use ‘outer-product’ and ‘in lock-step’ (or ‘zip group’ which is
Python terminology for ‘in lock-step’) to describe the two different behaviours in our own control
system.
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limiting the log to a record of what was done to the apparatus rather than a record of what
actually happened.

Hardware support

The Cicero Word Generator implements interfaces to hardware via a separate application
called Atticus. Cicero can communicate with multiple Atticus servers at once, allowing for
control of distributed hardware. The Atticus server is designed to be primarily used with
National Instruments hardware that utilises the NI DAQmx library as an interface [77].
The creators of Cicero also provide custom firmware for an Opal Kelly FPGA development
board for use as a pseudoclock (not unlike the PineBlaster pseudoclock developed for our
own control system [8, 82, 83]).

Support for older hardware that can only be updated in software time (cannot be syn-
chronised via the pseudoclock) is also provided through GPIB and RS232 interfaces. GPIB
devices can be programmed to execute ramps of analog outputs that have been defined via
a parameterised waveform in the Cicero interface. RS232 devices can only be sent a single
command per word.

Support for additional hardware can be added by producing a custom version of Atticus.
An example server template is provided as part of the installation. However, this is primarily
designed to support additional hardware devices which are similar in function to the NI
cards. Adding support for devices with additional output types (such as images for display
on a SLM) would also require modifying Cicero itself which is unlikely to be a trivial task.

There is no documented support for managing image acquisition from cameras or analog
acquisitions from NI cards. However, there is evidence of some undocumented support in
the source code. Unfortunately, I was unable to confirm whether this feature worked, as
the NI DAQmx drivers we had installed on our laboratory PC were not compatible with
the currently compiled version of Atticus available for download. This outlines another
downside common to control systems implemented in programming languages that require
compilation of source code into executables. Implementing interfaces to 3rd party hardware
libraries is difficult to maintain, due to the static compilation process which links to a specific
version of libraries at compile time. This means users must have the identical version of
all 3rd party libraries installed if they cannot be distributed along with the software, or
users must be walked through the recompilation of the software, which usually requires the
installation of complicated toolchains for both the main software and possibly the 3rd party
libraries. Such problems are less likely to occur in higher level languages like Python, where
interfaces to 3rd party libraries can be dynamically generated at runtime from a range of
compatible versions that are already present on the users system (as is the case for the
PyDAQmx library [84] for controlling NI hardware from Python).

Analysis

The Cicero Word Generator does not provide any analysis tools.
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2.3.3 Strontium BEC control & vision

The Strontium BEC Control & Vision system is an open source control system developed in
a BEC group at the University of Texas at Austin [85]. It consists of two main programs,
‘Control’ and ‘Vision’, and a set of ancillary programs for interfacing with certain camera
drivers. The software is written in a combination of Visual C++ (for ‘Control’ and the
ancillary programs) and Borland C++ (for ‘Vision’).

Experiment logic interface

Unlike the control systems reviewed in the previous sections, this control system is a man-
aged through a combination of both textual (code) and graphical interfaces. The textual
interface is provided by the Visual C++ integrated development environment (IDE) which
provides tools for directly modifying the source code of an application. In the case of this
control system, the user is directly editing the source code that produces the ‘Control’ ap-
plication and associated graphical interfaces. The textual interface is used to define both a
list of parameters that can be later controlled graphically, and the logic of the experiment
sequence. By implementing the experiment sequence in code, users are able to utilise stan-
dard programming control flow tools and text editor tools (such as copy/paste) to manage
the experiment logic. There are many additional benefits to a textual interface for defining
experiment logic, which we discuss further in §4.3.3 and §5.1.2. While, in general, this
provides a powerful and feature rich interface, the specific implementation in the Strontium
BEC control software brings added complexity that may turn off many users.

The primary issue with modifying the source code of your control system directly is
that the operation of your entire control system is dependent on the correct modification
of the source code at each step. Incorrect modification can result in a variety of issues that
prevent compilation (and thus execution) of your control system application. These range
from simple syntax errors, which must be tracked down and fixed, to more subtle issues
such as poor memory management that result in memory leaks, which may ultimately slow
and crash the entire operating system, or memory access violations, which could cause
the control software to exit unexpectedly. These issues can be minimised with careful
use of version control and appropriate debugging tools, but the use of such tools requires
someone with significant software engineering knowledge in each laboratory, which may not
be practical. Recompilation of graphical software is also typically slow, which leads to added
delays between designing experiments and executing them.

Parameter management

Global variables are defined in the source code of the application (much like the experiment
logic) and these definitions are used to automatically generate the graphical interface of the
software. This allows the user to modify key parameters of the experiment logic without
needing to recompile the Control application. The ‘Control’ software thus supports global
variables much like Cicero, but with significantly more management features. For example,
global variables can be grouped into different ‘menus’ (which effectively act as different
dialog windows for the application) and additional descriptive text can be placed on the
window. The order of global variables can also be controlled by the order they are defined in
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the source code, something that Cicero does not yet support (due to the increased difficulty
of adding complex graphical controls).

Due to the choice of C++ as the implementation language, global variables are typed.
Users can choose between long (an integer), double (similar to a float, or floating point
number, but with twice the precision), a bool, or a string (either freeform, or with selectable
options from a drop down menu). Equations are not supported via the graphical interface
(and thus globals cannot depend on other globals). However, due to the textual nature of
the experiment logic, equations can be defined there instead (although these are then not
as easily visible to the user).

Global variables can also be varied over a range of values in order to make measurements
of a quantity as a function of another, which is also similar to Cicero.

Shot management & storage

The Control software contains a queue of experiments (or ‘measurements’) to run. Again,
this is quite similar to Cicero except that it appears the queue does not block the graphical
interface while shots are executing.

There is very little in the way of shot storage in Control and Vision. The list of global
variables is passed to the Vision software, which saves them as part of the analysis process.
The absorption images of a BEC, atom cloud fit results and single point analog measure-
ments are also saved. There is no record kept of the experiment logic or other metadata
unless the user implements their own systems (such as source code version control).

Hardware support

Control is shipped with support for a wide variety of hardware including NI devices. As
users are already expected to work with the source code of the application to modify the
experiment logic, adding support for new hardware is easily accessible to end users. There is
no native support for distributing hardware across multiple PCs. Control was also designed
around a set of custom hardware that runs and communicates over a digital bus. As such,
it does not appear designed to support a general purpose pseudoclock system9.

Unfortunately the support for analog acquisition is minimal, with no obvious way to
acquire analog time series measurements. It appears the primary aim of this control system
was to investigate ultracold atoms via images and that analog time series were not criti-
cal. This was perhaps true in the early BEC days, however our experience is that analog
time series acquisitions are becoming more critical to the analysis of more complex BEC
experiments.

Vision was also designed for modular hardware support of different cameras. Vision
communicates over a TCP network connection with small ‘camera server’ applications that
act as an intermediate between the camera driver and the Vision software. These inter-
mediates can be written in any language (provided a TCP or socket networking library is
available), which ultimately means there are very few limitations on the models of camera

9. There is evidence that the custom hardware has been pseudoclocked [86], however it doesn’t seem to
have been integrated with Control, and instead was developed to work with an ‘unfinished’ control
system called Z.759 [87] (part of the ZOINKS project). This unfinished control system was eventually
abandoned in favour of a Python alternative [88], but that system was never made publicly available.
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that can be integrated with Vision. Vision ships with support for many Andor and Apogee
cameras, which are popular in many laboratories.

Analysis

The ‘Vision’ application provides basic analysis for BEC experiments. This is primarily
through 2D fits to an absorption image of a BEC, from which various results such as trap
geometry, temperature or atom number can be determined depending on the experiment
performed. Vision also provides a scatter plot widget, which can be configured to display
results obtained over several shots. A history of previous shots is also displayed, allowing the
user to quickly revisit the analysis of the last 6 shots. Vision was initially designed for use
with an apparatus that contained both lithium-6 and lithium-7, and thus supports switching
between the analysis of multiple isotopes. Supported elements and isotopes can be changed
by adjusting relevant values in the source code of Vision, and the isotope parameter can also
be repurposed to represent other quantities (such as whether the image was from a camera
imaging from the side, or a camera imaging from the top). This is quite advanced when
compared to other control systems, but is not easily extensible for use with experiments
that do not align with the original design.

2.3.4 Others

There are additional ultracold atom control systems that have been developed but not
released publicly. These include one from the group of Tilman Esslinger [89] and one from
the group of David Hall [90]. Due to the inability to access manuals or source code for
these, it is difficult to evaluate them. However we will discuss what is known about them
from available publications.

The system used in the Tilman Esslinger group, created by Thilo Stöferle [91], appears
to be very similar to Cicero. Experiment logic appears to be defined graphically, using
an array of instructions. Like Cicero, there is support for global variables (supporting
mathematical functions in their definitions) and arbitrary waveform generation for analog
outputs. Unlike Cicero, the generation of hardware instructions from the experiment logic is
handled by a separate program and these hardware instructions are generated independently
of shot execution ensuring shot execution does not block graphical interfaces. The control
system also includes an application for managing cameras and providing routine analysis
of acquired data. While there is no description of the features of this system available,
screenshots indicates it is quite similar to the Vision software from the Strontium BEC
group detailed in the previous section. Theses published as late as 2016 [92] indicate this
control system is still in use in the lab, although it is unclear how many upgrades have been
performed since it was originally detailed in 2005.

The control system from David Hall’s group uses a combination of LabVIEW to create
a graphical interface and a C++ program to generate hardware instructions10. This allows

10. We should point out here that the title of the paper describing this system calls it a “line-based”
system. In this case, it seems they are referring to the line-based nature of the high level programming
language, and not the line-based nature of the hardware instructions. In this thesis, line-based refers
to experiment logic that is close to the low-level hardware instructions. Programming languages that
are used to abstract away the generation of such instructions are (in this thesis) typically referred to
as ‘high-level’ interfaces instead.
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users to benefit both from the rapid ability to create easy to use graphical interfaces and
the benefits of defining experiment logic in a textual interface. This system will suffer
from similar issues to the Strontium BEC control system, however they will be mitigated
somewhat by the fact that the C++ component does not generate the graphical interface,
making it more robust and faster to compile. Experiment logic is defined as C++ code
using a simple API and compiled into an executable file. This executable file is launched by
LabVIEW when a shot is to be run, and the executable reads in globals values from a text file.
The executable then generates the required hardware instructions and writes this to a file.
LabVIEW then reads this file and programs the hardware, before starting the experiment.
LabVIEW can also be used to modify the experiment logic (and initiate recompilation of
the C++ executable), modify the globals parameters and respond to data acquisitions.
Additionally, experiment logic can be broken up across multiple C++ executables, which
LabVIEW can be instructed to run in sequence. This allows for LabVIEW to insert software
timed logic in-between segments of hardware timed logic, which can be quite powerful.
This architecture does not lend itself to queuing up a sequence of shots to run though,
requiring the LabVIEW interface to be specifically designed to automate the adjustment of
parameters. Finally, while not explicitly stated, the examples in [93] imply that the software
supports automatic pseudoclock generation.

Outside of ultracold atom research, there are also some control systems worthy of men-
tion here: ARTIQ [94], QCoDeS [95], Qudi [96], and EPICS [97, 98]. ARTIQ and QCoDeS
are primarily designed for quantum information experiments. ARTIQ is designed to work
with specific FPGA devices running custom firmware. The firmware allows the FPGA
to run Python code (to define the experiment logic) which in turn communicates with a
separate real-time core running on the FPGA to ensure precise timing. However, it is not
shot-based and is not a comprehensive control system for parameterising, executing and
analysing experiments. This makes it unsuitable for ultracold atom research by itself, how-
ever it is well suited to ion-trapping experiments (the target audience) and could be of use
as one of several devices in an ultracold atom experiment (provided there was an additional
scientific control system to manage them all).

QCoDeS on the other hand, is a framework for controlling many different hardware
devices. However, the focus of QCoDeS is on usability through Python Jupyter notebooks11.
This design philosophy seems to have lead to a design that does not focus on hardware timed
control and acquisition, at least to the extent of ultracold atom control systems. It does,
however, lead to a friendly interface for performing real time analysis on acquired data.

Qudi is similar to QCoDeS, but primarily designed for quantum optics experiments.
While Qudi also doesn’t focus on precision timing of experiments, it does focus on distributed
graphical interfaces as the primary means of interaction. Finally, EPICS was designed for
use in particle accelerators (such as particle colliders and synchrotrons). While technically a
‘scientific control system’, it has a significant focus on process control of the entire particle
accelerator as well as data acquisition for scientific experiments. Again, the mixing of
process control into the scientific control system has lead to a design that does not focus
on hardware timed control as much as ultracold atom control systems. So while it does
purport to be a ‘real-time’ control system, it is not precisely timed.

11. These have similar functionality to Mathematica notebooks.
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2.4 Summary
In this chapter we reviewed the physics behind ultracold atom experiments, and used this
to inform ourselves of the hardware device requirements for such an apparatus. We then
reviewed some of the existing control systems, which covered a broad range of approaches
to the control of ultracold atom experiments. Some of these, like Cicero and LabVIEW
line-based systems, are the product of historical control systems. More recent ones like
the Strontium BEC control system and David Hall’s control system take a more modern
approach, but have not been designed as general purpose control systems. However, despite
many ‘good’ features existing across the range of control systems, none comprehensively
implement all of them. In all cases, analysis and acquiring data over complex parameter
spaces are second class citizens, despite the fact that these elements are a key requirement
for many of the current ultracold atom research directions. With all ultracold atom ex-
periments using a control system, and much PhD, post-doc, and supervisor time being put
towards developing single use control systems for particular labs, there is a strong need for
a comprehensive, general purpose control system that is capable of meeting the demands of
modern ultracold experiments.





Chapter 3

Apparatus

BEC research is one of the common fields that require a control system. This project was
conducted during the development of the first two BEC apparatuses at Monash University.
During this project I was primarily involved with the development and construction of the
dual-species (K-Rb) BEC apparatus in my supervisor, Kris Helmerson’s, lab. The other
BEC apparatus (a spinor BEC machine) was constructed by other PhD students in my co-
supervisors, Lincoln Turner and Russell Anderson’s, lab. Many common designs and ideas
were shared between the students and supervisors of the two labs. A large section of this
project was building the dual-species (K-Rb) BEC apparatus. We developed the control
system for use on both BEC apparatuses. This allowed us to test our control system on
more than one real experiment apparatus, which provided useful feedback for generalising
the control system to multiple scientific experiments and improving the capabilities of the
control system.

At the start of my project, in 2011, our lab was almost empty. The vacuum system
was partially constructed and no lasers or optics had been setup. The construction of
the apparatus was, of course, developed by several students simultaneously; our major
contributions were:

• The vacuum system and magnetic coils were designed and built by Brad Murnane (a
fellow PhD candidate, 2010-2012).

• Chris Billington (a fellow PhD candidate, 2011-2018), assisted with construction and
performed the bake-out of the vacuum system.

• The construction of the apparatus post-bake-out, including the design and construc-
tion of the optics on the laser and vacuum tables (excluding dipole trap optics) and
the determination of the desired laser frequencies, were performed equally by Shaun
Johnstone (a fellow PhD candidate, 2011-2018) and I, with later contributions from
Dr. Mikhail Egorov (post-doctoral fellow, Dec. 2011 to Apr. 2014).

• The majority of the dipole optics designed and constructed by Shaun Johnstone, with
contributions from Dr Mikhail Egorov.

• Shaun Johnstone, Mikhail Egorov, and I designed and optimised the experiment logic
to produce BEC. This will be discussed further in §8.1.

31
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• I designed and constructed the current oven controller and v1.0 coil interlock. I later
assisted Sebastien Tempone-Wiltshire (a fellow PhD candidate, 2015-2019 (expected
completion)) in designing the latest circuit board for the v1.1 coil interlock.

• I constructed the PulseBlaster boxes, based directly on a design by the Monash Uni-
versity Electronics and Imaging services.

• I modified the coil driver circuit design and constructed the coil drivers. Original
driver circuit design based on work by Dr. Russell Anderson (Monash University)
who based his design on work by Carl Sauer and Adam Kaufman at JILA. I later
assisted Sebastien Tempone-Wiltshire in designing the latest circuit board for his
second generation experiment.

• Shaun Johnstone and I designed and built NovatechDDS9m (rf Amplification) boxes
based on an original design provided by the Monash University Electronics and Imag-
ing services.

• Microwave laser offset lock box constructed solely by Shaun Johnstone, based on a
design by Martijn Jasperse (a fellow PhD candidate, 2010-2015) - original design by
J. Appel et al. [99].

• Tuneable microwave IQ upconverter constructed solely by Shaun Johnstone, based on
a design from Alex Wood (a fellow PhD candidate, 2011-2015).

In this chapter, we outline the design and intended capabilities of the dual-species BEC
apparatus and some of the work on the construction of the apparatus (the remaining infor-
mation on the construction is contained in the thesis of Shaun Johnstone [100]). We will also
cover the work I completed on the process control systems (see §1.1.1 for an introduction
to process control systems) for the dual-species BEC apparatus, which are separate to the
scientific control system we discuss in the later chapters of this thesis. These process control
systems ensure safe and consistent operation of our apparatus, and are a complementary
system to the labscript suite. We will thus cover four main sections in this chapter: the laser
table (which produces the light required for interacting with the atoms in order to create
and interact with a BEC), the vacuum table (which contains the vacuum system we use to
produce and hold a BEC), the electronics that control the equipment on these tables (that
operate between the scientific control system and the apparatus), and the process control
systems. The use of this apparatus, in conjunction with the labscript suite, will be discussed
in chapter 8.

3.1 The laser table
Production of a BEC requires precise control over the frequency and intensity of multiple
laser beams. Our apparatus is designed to produce clouds of ultracold potassium-41 and
rubidium-87 atoms. Both these atomic species have a complex hyperfine structure, requiring
several different frequencies of light to successfully cool and image the atoms.

We use external cavity diode lasers (ECDLs) to create the necessary laser light as they
produce a high quality Gaussian TEM00 beam profile with a linewidth narrower than the
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natural linewidth of the atomic transitions [101, 102], which is ideal for manipulation by
down-stream optics, and addressing the hyperfine structure of our atomic species. The
lasers used on this table are based on a MOGLabs ECDL design and are controlled with
MOGLabs ‘MOGbox’ DLC202 laser diode controllers (which include locking electronics).
The lasers are frequency locked, relative to an atomic transition, via active stabilisation of
the laser cavity [103]. To produce a sufficient quantity of light we also split off some of the
laser light and amplify it using a tapered amplifiers (TAs). Finally, we split the amplified
light into several ‘beamlines’ and use acousto-optic modulators (AOMs) under computer
control to adjust the frequency and intensity of each laser beam as required. These beamlines
terminate at fibre couples, which both spatially filters the light and transforms any pointing
instability (introduced by components on the laser table) to an intensity fluctuation. The
fibre optic cables remove optical aberrations introduced by the TA (and down stream optics
on the laser table) and allows the light to be transported a significant distance. The layout
of the laser table is shown in figure 3.1.

3.1.1 Rubidium

As the hyperfine splitting (see figure 3.2 and [104]) of the ground state of rubidium-87 is
larger than the typical frequency shift achievable using an AOM, we use two lasers for
trapping and cooling these atoms. We call these lasers the master (or trap) laser and the
repump laser. They are used to address the 52S1/2, F = 2 → 52P3/2, F ′ manifold transitions
and the 52S1/2, F = 1 → 52P3/2, F ′ manifold transitions respectively. This results in two
sets of TAs and beamlines, which are shown in the right half of figure 3.1(a) for the rubidium
trap laser and figure 3.1(b) for rubidium repump.

3.1.1.1 Laser lock

The master laser is locked, via saturated absorption spectroscopy [105], 47 MHz red detuned
from the crossover peak produced between the F = 2 → F ′ = 2 and F = 2 → F ′ = 3
transitions. This detuning is created by a single-pass AOM, which blue shifts the light used
in the saturated absorption lock. The master laser is thus locked 180 MHz red detuned from
the cooling transition (the F = 2 → F ′ = 3 transition). The optical layout for the rubidium
master lock is shown in figure 3.1(a). We use a differential photodetector to remove the
Doppler broadened background for the signal, leaving only peaks corresponding to direct
transitions or to crossover transitions. An error signal (for locking) is generated by the
MOGbox by modulating the current of the laser diode, and is configured to lock to the top
of a selected peak.

The repump laser is offset locked 6.590 GHz above the master laser via a microwave
offset (beat-note) lock. Further details of this microwave offset lock can be found in the
theses of Martijn Jasperse [106] and Shaun Johnstone [100]. This locks the repump laser
light 160 MHz red detuned from the repump transition (the F = 1 → F ′ = 2 transition).

Both the trap and repump lasers are thus approximately 160 MHz detuned from the
required MOT frequencies1. These were chosen as it allows us to use 80 MHz AOMs in

1. While the rubidium trap laser is detuned 180 MHz from the cooling transition, the MOT trap light
should be detuned approximately 20 MHz from the cooling transition (see figure 3.2), thus making both
repump and trap approximately 160 MHz detuned from the optimal MOT frequencies.
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(a) The layout of the potassium and rubidium trap optics on the laser table. The laser systems each
consist of a master laser, a vapour cell locking system, a TA and several fibre coupled beamlines.
The beamlines typically consist of an AOM in a cat-eye double pass configuration and a fibre
couple. Note that the cat-eye lenses have a focal length of 150 mm. For further details, see the
main body text of §3.1. Note: The layout in this diagram matches the physical layout on the optics
table, and while individual components are not to scale, the layout is approximately to scale.
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(b) The layout of the rubidium repump laser and optics. For further details, see the main body
text of §3.1.
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Figure 3.1

a double-pass configuration to create the required laser frequencies, while also maintaining
peak diffraction efficiency of the AOMs during the stage of the experiment that requires
the most laser power.

3.1.1.2 Tapered amplifiers

ECDLs do not provide sufficient laser power to cool enough atoms to make a BEC. We
use TAs to amplify the laser light from the ECDL by approximately a factor of 100. The
rubidium master laser is amplified by a Thorlabs TPA780P20 [107], producing 1.7 W after
an optical isolator. The beam from the Thorlabs TA is elliptical and divergent, so we use an
anamorphic prism pair (with a ratio of 2:1) to reshape the beam followed by an additional
lens to collimate it. The resultant beam is approximately a Gaussian TEM00 mode, however
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Figure 3.2: The rubidium laser frequencies used in various stages of the experiment, relative
to the hyperfine structure of rubidium-87. Dark red arrow heads represent the change in
laser frequency between the MOT and compressed MOT stages of the experiment. Figure
adapted from Shaun Johnstone’s thesis [100] with permission.

there is a long tail in the vertical dimension. We use an aperture to filter this out, which
results in 1 W of available power in a good quality beam2.

Typically, the amount of repump light required is less than the output of an ECDL.
However, after passing the light through AOMs and fibres, the available power can be
borderline, especially if the diode in the laser is getting old. We thus amplify our repump
light using a spare Sacher TA, which was partially damaged by humidity and temperature
fluctuations from repeated air-conditioning failures3. Despite the damage, the output power
from the TA is higher than we could ever need for repumping.

2. The optical components used were chosen based on their availability (we had them in the lab) rather
than their suitability to the task. We expect that with more carefully chosen parts, a higher power in
a TEM00 mode could be achieved if it was required.

3. The air-conditioning failure were the result of moving our apparatus during 2013 to a new facility, prior
to the new facility being sealed to the outside and internal services commissioned.
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3.1.1.3 Beamlines

We typically split the output of the TAs into beamlines that consist of a double pass
AOM and a fibre couple (see figure 3.1). The AOM provides independent control over the
frequency and intensity of the light incident on the fibre. We double pass the light through
the AOM, following the cat-eye configuration detailed in [108, 109, 110]. This configuration
keeps the fibre couple aligned when the frequency shift of the AOM is changed (which would
normally result in beam displacement at the fibre face).

We have such beamlines for:

• source MOT trap light,

• central MOT trap light,

• source MOT repump light,

• central MOT repump light, and

• imaging/push beam light (the output of this fibre is split on the vacuum table, see
§3.2.4).

The source and central MOT trap beamlines are blue shifted by 168 MHz and 158 MHz
respectively, placing them 12 MHz and 22 MHz red detuned from the cooling transition
(the F = 2 → F ′ = 3 transition). This frequency shift was experimentally chosen by
optimising for maximum atom number in the MOTs and corresponds to approximately a
2–4 Γ detuning (where Γ is the natural linewidth of the transition). The source and central
MOT repump beamlines are blue shifted by 160 MHz, which is resonant with the repump
transition.

While we have separate laser beams on the vacuum table (see §3.2) for imaging light
and the push beam used to load the central MOT from the source MOT, these two beams
require similar laser frequencies and laser powers, and are used at distinctly separate times
in the experimental sequence. We are thus able to derive these two beams from a single
beamline. The imaging/push beamline is thus initially set to be 10 MHz blue detuned
from the cooling transition, by using a 80 MHz AOM (run at 95 MHz) in a double-pass
configuration. As with previous laser frequencies, this was experimentally determined to be
the optimal frequency, but it also falls within the expected range observed from simulations
that Chris Billington had previously run. During an experiment, the frequency is then
adjusted for imaging, to be on resonance with the cooling transition by adjusting the AOM
frequency to 90 MHz.

We also have a single-pass AOM coupled into a fibre for optical pumping. This AOM
is run at 86 MHz and is thus on resonance with the F = 2 → F ′ = 2 transition, and is used
to ensure that our atoms are in the |F = 2, mF = 2⟩ state prior to the magnetic trapping
stage.

Our AOM double-pass efficiencies fall in the range of 50-75% and fibre couple efficiencies
fall in the 40-60% range (both subject to alignment and beam quality). This gives an overall
beamline efficiency in the range of 20-45%. The fibres are all routed to the vacuum table
(see §3.2).
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Figure 3.3: The potassium laser frequencies used in various stages of the experiment, rela-
tive to the hyperfine structures of potassium-39 and potassium-41. Dark red arrow heads
represent the change in laser frequency between the MOT and compressed MOT stages of
the experiment. Reproduced from Shaun Johnstone’s thesis [100] with permission.

3.1.2 Potassium

The hyperfine splitting of the ground state of potassium-41 is small (254 MHz, see figure
3.3 and [111]) compared to other alkalis like rubidium-87 (6.8 GHz [104]). We can thus
address the 42S1/2, F = 2 → 42P3/2 manifold transitions and the 42S1/2, F = 1 → 42P3/2

manifold transitions from a single laser source, using only AOMs to control the frequency
and amplitude.

3.1.2.1 Laser lock

Unlike rubidium-87, we are unable to resolve the hyperfine splitting of the excited state of
the potassium-41 D2 line via saturated absorption spectroscopy. This is primarily due to
the low natural abundance of potassium-41 in our vapour cell, but also partially due to the
smaller excited state splitting that is on the order of the natural linewidth of the transitions.
The only well defined feature typically visible is the crossover between the two hyperfine
ground states of the potassium-39 D2 line. However, as the potassium-39 D2 line is only
236.2 MHz red detuned from the potassium-41 D2 line, this provides an acceptable locking
point from which potassium-41 frequencies can be reached using AOMs.

The expected frequency of this saturated absorption feature is difficult to determine,
due to the small excited state splitting, which ultimately causes many saturated absorption
spectroscopy features to blur into a single feature. We experimentally determined (by finding
the resonant imaging frequency of the potassium-41 atoms that we later trapped and cooled)
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that the peak of this feature corresponds only approximately to the crossover between the
two hyperfine ground states of potassium-39 and the 42P3/2 manifold. There is a 10 MHz
shift of unknown origin present in our laser frequency calculations (see figure 3.3) which may
be simply due to an electronic offset in the laser lock error signal that we did not remove
correctly. Alternatively, the shift could be due to the shape of the saturated absorption
feature, which is affected by the relevant transitions strengths of the allowed transitions,
the velocity distribution of the atoms (which affects the strength of the crossover transition
features that contribute to the overall feature we see)4, or a combination of these along
with the electronic offset in the error signal previously described. However, the difficulty
in identifying the lock point of the laser does not pose a problem to the operation of the
apparatus. It did however make optimising the apparatus more complicated as we could not
be certain of our laser frequencies until we had successfully cooled our atoms to the point
where we could perform absorption imaging. Other groups pursuing potassium experiments
should thus be aware that laser frequencies may be 10s of MHz away from the expected the
lock point.

As with the rubidium lock (see §3.1.1.1), we use a single-pass AOM to frequency shift
the light in the laser lock. The single-pass AOM is configured to provide a 87 MHz blue
shift for the locking light, which results in a red shift of 87 MHz of the light entering the
TA.

3.1.2.2 Tapered amplifier

As we only have a single ECDL for interacting with potassium-41, we only need one TA.
We use a Sacher TA, which produces a maximum of 1.4 W of light after the optical isolator
Unfortunately, there appears to be dust (or another defect) on the TA, which results in
a poor spatial mode from the TA. We deliberately misalign the input beam to the TA to
produce a slightly better mode, at the expense of output power (1.3 W). However, the loss
in power is mitigated by higher fibre coupling efficiencies in the beamlines from the better
spatial mode.

3.1.2.3 Beamlines

We use a similar configuration of beamlines as for rubidium (see §3.1.1.3). The same double-
pass AOM coupled into a fibre configuration is used in four places, for the following beam-
lines:

• MOT trap light,

• MOT repump light,

• imaging/push beam trap light, and

• imaging/push beam repump light.

4. We use a Thorlabs vapour cell heater [112] to increase the vapour pressure inside the cell in order to
increase the signal-to-noise ratio of the saturate absorption signal. Given that this changes the velocity
distribution of the atoms, it is possible that this may affect the shape of the feature and thus the lock
point. It may also contribute to instability in the lock point if the temperature is not well regulated.
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Potassium poses a more difficult challenge to cool successfully, due to the narrow spacing
between hyperfine transitions in the excited state of the D2 manifold compared to the natural
linewidth of the transition. This makes it impossible to address a single hyperfine transition,
complicating the repumping system and making it difficult to perform sub-Doppler cooling.
We follow the path travelled by previous groups, by red detuning our MOT beams with
respect to the entire excited state manifold [113]. This necessitates a more even ratio of
trap and repump light (when compared to rubidium). We found the optimum ratio was
3:2, which agrees with M. Prevedelli et al. [114]. Sub-Doppler cooling of potassium was not
achieved until 2011 by M. Landini et al. [115], which was during the construction of our
apparatus. We attempted to reproduce their results, but were unsuccessful. We suspect
this is more to do with our inability to produce a simultaneously well-aligned central MOT
for both rubidium and potassium, rather than any issue with the technique.

As well as the MOT beams, we produce two beams (containing repump and trap fre-
quencies respectively) for pushing atoms between the source and central MOTs. These
beams are also later used for absorption imaging, which again requires both trap and re-
pump frequencies due to the inability to interact with a singular hyperfine transition.

As with the rubidium beamlines, all the fibre outputs are located on the vacuum table
(see §3.2).

3.2 The vacuum table
The vacuum table hosts the vacuum system, which holds the sources of rubidium and
potassium atoms used in the experiments (under high and ultra-high vacuum (UHV)) and
is used in the process of cooling and experimenting on the atoms. The vacuum table
also holds the optical components required to process the laser light required during the
experiments (mainly from the fibres fed to the vacuum table from the laser table).

3.2.1 Vacuum system

The vacuum system was custom designed for our lab by fellow PhD candidate Brad Mur-
nane, and is shown in figure 3.4. It consists of two source segments on the outer edges,
which feed the respective alkali metals into a glass cell where they are initially cooled in
the source MOTs. These atoms are then pushed (by a laser beam) from their respective
source chambers, into the central chamber of the apparatus where they are captured in a
dual-species MOT and then cooled further using standard techniques such as PGC and
forced evaporative cooling in both a hybrid magnetic-optical trap and a pure cross-dipole
trap. Attached to the central chamber are two high quality glass cells (a cylindrical cell
and a square prism cell), which were chosen in combination with a custom objective lens
to provide high resolution imaging of our cold atom clouds during scientific experiments.
However, we were unable to successfully transport the cold atoms from the central chamber
to the square cell reliably, likely due to stray magnetic fields caused by vacuum system bolts
that became magnetised after construction. Due to this, we instead study the ultracold
atoms in the central chamber, using a lower resolution imaging system. Further details of
the work we performed on this transport, and the details of our imaging systems, can be
found in Shaun Johnstone’s thesis [100].
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Figure 3.4: Schematic of our dual-species BEC apparatus. We have a source chamber at
each end of the vacuum system that contains an ampule of alkali metal. One contains
rubidium while the other contains potassium. Both are heated to produce a background
vapour in the respective chambers. We load a source MOT for each species from this
background vapour, and then push these atoms into a combined central chamber where
they are captured in a dual-species MOT before further cooling. Ideally, the ultra-cold
atomic cloud would be transported to one of two science cells (with a square or round
profile), however this has yet to be realised reliably and we instead perform experiments in
the central chamber. The source chambers are separated from the central chamber (yellow
section) by differential pumping tubes, which maintain a pressure difference of at least 2
orders of magnitude, ensuring the central chamber is maintained at UHV. The vacuum is
primarily maintained by two ion pumps connected to the central chamber, however we also
added extra pumps to the source chambers to improve the background pressure (see main
body text) which are highlighted by the red and green outlines. This figure was reproduced
from Shaun Johnstone’s thesis [100] with permission.

The vacuum inside the system is maintained via several ion pumps. The source ovens
and source MOT cells are separated from the central chamber by differential pumping tubes
which maintain a pressure difference between the central chamber are the source cells of
2–3 orders of magnitude. The entire system was also baked at approximately 180◦ C to
reduce the outgassing rate of the metal components, and remove any residue that was not
removed by our manual cleaning process. The central chamber is pumped by two 25 L/s ion
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pumps [116] and a layer of titanium deposited via a titanium sublimation pump [117], which
was estimated to provide sufficient pumping. Due to the (last minute) addition of an angle
valve with a Viton seal, and a vacuum failure in 2016, we have had to add additional ion
pumps to the source sections of the apparatus that were otherwise only pumped through
the differential pumping tube. Unfortunately, the design of the vacuum system did not
include sufficient ion gauges to adequately measure the pressure in the various sections of
the vacuum system. We did attempt to add an ion gauge at the time we added an ion pump
to the rubidium source chamber, however this ultimately failed due to an electrical fault of
the gauge (possibly shorting to the vacuum system). As such, we are unsure of the exact
pressure inside the vacuum system. Ultimately, the pressure determines the lifetime of the
atoms within a trap, and we experimentally found this to be 6.1±0.5 s with no ion pumps on
the source chambers, 51±4 s in 2012 (after adding the additional ion pump to the rubidium
source chamber) and 24 s after the 2016 vacuum failure [100] (where we broke vacuum due
to a cracked window, added an additional ion pump to the potassium source chamber, and
did not rebake the system). This was acceptable for our proposed experiments, although
not ideal.

We have three sets of magnetic coils around the vacuum system. The potassium source
MOT has four rectangular coils, one parallel with each rectangular face of the glass cell,
forming the field for a 2D MOT. The rubidium source MOT has two round coils, parallel
to the top and bottom faces of the glass cell, forming the quadrupole field for a 3D MOT.
The central MOT, again, has two round coils forming the quadrupole field, which are inset
into the recessed top and bottom windows of the central octagon. We also have a set of bias
coils attached to the central quadrupole coils in order to shift the vertical location of the
magnetic trap. While not part of the original design, we also added 2 further sets of coils
made from ribbon cable to produce bias fields in the remaining 2 dimensions.

After completing, and using this apparatus over the past 7 years, we discovered a sig-
nificant number of difficulties with the original vacuum system design, including:

• the small surface area that could be covered by the titanium sublimation pump in
the central chamber (the inside of a single 2.75 inch ‘T’ piece), which limited the
effectiveness of this pump,

• the use of large amounts of metal in the construction of the central chamber (and
not coated by the titanium sublimation pump) which significantly contributes to the
background pressure of the system,

• the use of large amounts of metal in the construction of the source ovens, without the
addition of any dedicated pumping, which significantly contributes to the background
pressure of the system,

• the use of valves with Viton seals (including two gate valves between the ovens and
source MOT cells) which outgas considerably,

• the lack of accurate pressure monitoring,

• the medium sized ion pumps, which do not seem to produce sufficient pumping for
the design but produce annoying magnetic field gradients,
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Figure 3.5: The optical layout for combining all rubidium and potassium MOT lasers for
the central MOT, followed by the optics used to split the combined beam into the required
number of MOT beams. See the main body text (§3.2.2) for further details. Reproduced
from Shaun Johnstone’s thesis [100] with permission.

• the lack of well designed, 3-axis bias coils, capable of producing a significant bias field,
for the central chamber,

• the lack of optical access to the science cells and central chamber, and,

• the use of bolts that were not specifically nonmagnetic when constructing the vacuum
system.

The lessons Shaun and I learnt from this apparatus were passed onto fellow PhD student
Sebastien Tempone-Wiltshire, who has built a second-generation apparatus, which will be
described in his upcoming thesis.

3.2.2 MOT optics

As discussed in §3.1, we have coupled light into several fibre optic cables, each with in-
dependent frequency and intensity control via an AOM, which terminate on the vacuum
table. We then combine and split these beams to produce the required MOT beams (which
are always a combination of at least two separate frequencies of light).

The rubidium source MOT optics are the simplest of the three MOTs. Here we combine
the ‘rubidium source MOT trap’ and ‘rubidium source MOT repump’ fibres on a polarising
beam splitter cube (PBSC) into a single beam (which requires that the two components
have opposite polarisations). This single beam is then split into three beams of equal power
through the use of two PBSCs, each preceded by a half waveplate that is used to control
the ratio of light split by the cube. Each of the three beams is then split again using
PBSCs (one per beam) to produce three pairs of beams containing the MOT light. The
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half waveplate prior to these last three cubes is used to balance the power within each beam
pair such that the MOT successfully catches atoms5. Each of the (now six) beams passes
through a quarter waveplate (used to set the appropriate beam polarisation) and telescope
that magnifies the beam diameter by a factor of 10 [118]. The six beams are then routed
to the source MOT cell such that each pair is counter-propagating along one of the three
orthogonal spatial axes, and such that they all intersect in the centre of the cell. Combined
with a anti-Helmholtz coil pair also centred on the cell, this forms a 3D MOT capable of
catching atoms from the background vapour. It is worth noting that the repump light will
split in the opposite ratio to the trap light at the first of the five splitting cubes due to
the opposite polarisations of the two beams resulting from the initial combination optics.
We set the splitting ratios correctly for the trap light only as this forms the majority of
the power in the beams and is the major component in the cooling process. This is not
a significant issue as we still obtain sufficient repump light in each pair of beams and the
repump light matches the polarisation of the trap light after the first cube, ensuring the
repump light is also balanced within each pair of counter-propagating beams.

While we were successful in creating a 3D rubidium source MOT, we had significant
trouble with the potassium source MOT due to the inability to distinguish potassium 3D
MOT fluorescence from the background vapour. As such, we opted to switch to a 2D MOT
for potassium (which is usually considered the better option anyway) so that we could image
along the long axis of the MOT in order to observe a stronger integrated MOT fluorescence
on a camera. The potassium 2D source MOT optics are configured in an almost identical
way to the rubidium source MOT, but simply produce four beams instead of six. Ideally
these beams would be elliptical in order to fill a greater volume of the source chamber,
but unfortunately we did not have the optical components to do that at the time. The
main difference in MOT optics comes from the way we initially combine the potassium trap
and repump light. Due to the requirement of needing close to equal power between the
repump and trap light for a potassium MOT (see §3.1.2.3) we combine the repump and
trap beams on a non-polarising beam splitter (NPBS) cube that splits each incident beam
approximately 50:50. We thus produce two beams that contain both potassium trap and
repump light for the MOT. One of these is used for the 2D source MOT and the other is
fed to the central MOT (see figure 3.5). This unfortunately means that we don’t maintain
independent frequency and amplitude control of the MOT light between the potassium
source and central MOTs.

The 3D central MOT is designed to hold both species of atoms simultaneously. This
requires that all four frequencies of light are present in the MOT beams. The optical
system that achieves this is shown in figure 3.5 and largely follows the rubidium source
MOT layout. We combine the dual frequency potassium MOT beam (introduced in the
previous paragraph) with the rubidium light on a PBSC, which results in orthogonal po-
larisations for the potassium and rubidium light. As this will split unevenly on subsequent

5. While it is expected that you would have equal powers in each beam, reflection losses, perturbations in
the beam overlap and mismatches in beam diameter (either from the miscollimation of the independent
telescopes or from uneven propagation distances between the beams in the counter-propagating pair)
ultimately mean that the power balance in the pairs of beams is slightly unequal and must be determined
experimentally.
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PBSC, we construct a dichroic half waveplate6 from 2 multi-order quarter waveplates and
a multi-order half waveplate giving a retardance at 780 nm of 0.92λ and a retardance of
1.54λ at 767 nm7. This allows us to independently rotate the polarisation of the potassium
beam to match that of the rubidium beam. We then inject repump light into this beam
using another PBSC, which again results in uneven splitting of the rubidium repump light
amongst the MOT beams. However, as with the rubidium source MOT, this does not pose
a problem. The cube used to mix in rubidium repump light also cleans up the polarisation
of the combined rubidium–potassium frequencies, which may not be purely linear due to
the imperfect dichroic waveplate used.

While the central MOT is capable of trapping both potassium and rubidium atoms
pushed from the respective source MOTs, the performance of the potassium MOT is typi-
cally poor. It is unclear whether this is due to the difficulty in overlapping the potassium and
rubidium beams or the fact that the zero-order waveplates produce slightly different polar-
isations between potassium and rubidium (even though they perform much more uniformly
than multi-order waveplates). However, it is likely that the issue could be compensated by
providing independent control over the final polarisation of each MOT beam. As such, we
recommend future experiments utilise only dichroic waveplates in the dual-species MOT op-
tics, specifically manufactured for the wavelengths in use, so that the experiment operators
have fine control over the MOTs.

The lack of independent control over potassium MOT frequencies was another of the
caveats we attempted to correct when helping with the design of the second generation
experiment currently being developed by Sebastien Tempone-Wiltshire. In his experiment,
the use of a retro-reflected 2D source MOT as part of the initial design allows him to use a
NPBS cube to produce the two required source MOT beams. The 3D central MOT beams
can also be produced in a similar way, although he is ultimately required to throw out a
quarter of the power used in the central MOT (or have one pair of beams have twice the
power of the others) and the process of combining rubidium and potassium light for the
central MOT requires the use of dichroic waveplates. This is likely a small price to pay for
independent control of the potassium MOTs. Further information on this design will be
given in the upcoming thesis of Sebastien Tempone-Wiltshire.

3.2.3 Optical pumping optics

The optical pumping light is fed into the central MOT through the round science cell on
the vacuum system. As this is also the axes along which we image the atoms (due to a lack
of optical access along other axes of the system) we use a ‘D’-shaped mirror to place the
rubidium optical pumping light at a small angle to the imaging light. The rubidium optical
pumping light contains both the optical pumping light from the single pass AOM beamline
previously discussed, and a small amount of rubidium MOT repump light that we split off
from the rubidium central MOT repump fibre output and overlap with the rubidium optical
pumping light using a NPBS cube. As the potassium optical pumping frequencies can be

6. A dichroic waveplate is a waveplate that acts as a λ
x

waveplate for one wavelength of light (where x is
typically 2 or 4) and a λ waveplate for another wavelength of light. In this case, we have constructed an
approximate half waveplate for potassium that does not cause a net change of the rubidium polarisation.

7. These are calculated based on the specifications provided by Thorlabs.
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Figure 3.6: (a) The optical layout of the optics used to combine and split the imaging
and push lasers for use as push beams and imaging probe beams. We produce three sep-
arate imaging probe beams, plus the push beams for rubidium and potassium from three
input fibres (generated by the potassium imaging trap and repump, and rubidium imaging
beamlines detailed in §3.1). All but one of the combined beams is coupled into fibres for
transportation to other sections of the apparatus. See the main body text for further details
(§3.2.4). (b) A picture of the optical layout in the lab, which matches the layout shown in
(a).

reached using the imaging/push beamlines, we use the potassium central MOT imaging
light for optically pumping potassium, which we discuss in the next section.

3.2.4 Imaging optics

We previously introduced the beamlines for the imaging/push light for rubidium and potas-
sium. This consisted of two potassium beamlines and one rubidium beamline. As with the
dual-species central MOT, imaging a dual species cloud of atoms8 requires that we have
multiple frequencies of light in a single beam. We use an array of NPBS cubes (see figure
3.6) to produce three imaging beams that contain all the imaging frequencies (except for
rubidium repump, which is typically unnecessary due to the atomic state we work with9).
These imaging beams are coupled into fibres, which transport the light to the relevant
section of the vacuum system. Currently we only use two of the imaging beams (central

8. It is worth mentioning here that we cannot simultaneously image both species of atoms. We instead
image across two (otherwise identical) shots where we image one species in the first shot and the second
species in the second shot. This still requires that the imaging beam contain dual species frequencies
in order to ensure we image the two species in an identical way across shots.

9. When it is necessary to repump rubidium atoms prior to imaging, we use the MOT repump light, which
is sufficient.
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imaging and science bottom imaging) as we are not using either of the dedicated science
chambers. We also split off light for the push beams during the combination stage.

For information on the optics used to image the atoms onto a camera, see Shaun John-
stone’s thesis [100].

3.2.5 Dipole trap

We use an crossed-beam optical dipole trap during the last stages of the cooling process.
This trap is formed using a 20 W, 1064 nm fibre laser (Keopsys CYFL-MEGA-20-LP-1064-
AM0-ST0-OM1-B208-C4). The laser beam is split into two and each beam is single passed
through an AOM, providing amplitude control of the beams10. The two beams are then
focussed to a (1/e2) waist of approximately 70µm and overlapped with the MOT beams
in the horizontal plane using dichroic mirrors. For further details of the dipole trap, and
the other configurations we tried during the development of this apparatus, see Shaun
Johnstone’s thesis [100].

3.3 Lab process control

As alluded to in chapter 1, our control system, the labscript suite, is not meant to replace
an entire process control system. As a result, we also employ several separate systems that
manage the critical components of the apparatus that run continuously. These systems are
what one might consider traditional process control systems as described in §1.1, in that they
regulate the apparatus regardless of whether scientific experiments are being performed.
Most of the process control systems are implemented as interlocks, such that they shut
down malfunctioning systems and place the apparatus in a safe state. As these interlocks
are critical safety systems, they are kept separate from the labscript suite framework. The
interlocks do not directly interface with the control and acquisition hardware that we use to
perform scientific experiment and while programs in the labscript suite may have read access
to the state of the interlocks (and data about the equipment the interlocks are monitoring),
they never issue commands to the interlocks.

3.3.1 Oven controller

The oven controller regulates the temperature of the vacuum system around each source of
alkali metal, and shuts down the ovens if the temperature of the oven or pressure of the
vacuum system goes outside set bounds. This ensures no damage to our apparatus occurs
if a component of the oven fails. We believe such control is vital, as we have witnessed
colleagues at other institutions suffer critical failures of power supplies that resulted in
their ovens being run at excessively high temperatures for hours before anyone noticed.
Such failures typically require the vacuum system to be partially disassembled to repair the
damage, costing months of work. Our own vacuum system developed a spontaneous leak
in 2016, which tripped the interlock and shut down the ovens. We were able to replace the
damaged window under a nitrogen environment and recover the system without needing

10. One beam is blue shifted while the other is red shifted. This ensures we do not accidentally create an
optical lattice in the region where they cross.
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to rebake the vacuum system, which was partially due to the expeditious shutdown of the
ovens.

The heart of our oven controller is a Galil RIO-47100 PLC [119], providing 8 analog
and 16 digital I/O, 2 independent PID loops, an Ethernet interface and multi-threaded
programming (up to 4 threads). As we have two ovens (one per atomic species) we dedicate
a thread of the Galil to monitor each oven and to start or stop a PID loop. Each PID
loop monitors the temperature of the oven via an analog input. The PID then controls
the current through heater tape via an analog output connected to the external control
interface of a Manson HCS-3402 power supply. The heater tape was made from nichrome
resistance wire (13.77Ω/m) contained within a fibreglass sheath. Independently of the PID
loop, each oven thread is programmed to periodically record the temperature of the oven
and shut down both PID loops if either oven is out of bounds. One of the two central
chamber ion pumps outputs the current pressure as an analog voltage, which is connected
to an analog input of the Galil so that the Galil can shut down the PID loops if the pressure
becomes too high.

Messages containing temperature and pressure measurements are logged approximately
every 30 s over the Ethernet interface. These messages are parsed by a Python program
(written by Martijn Jasperse, see [106]), running on a Linux logging server, and sent to the
syslog server on the same machine. The syslog server is configured to send emails and/or
SMSs to lab members if the syslog message has an severity of WARNING or higher. The data
is also stored in a hdf5 file, which is processed by a script on the server that generates plots
visible via a web interface.

3.3.2 Coil interlock

The coil interlock handles the cooling of the quadrupole coils around the central chamber of
our vacuum system. The coil wire has a square cross-section, and the coil is wound such that
there are multiple turns of the wire that have no faces exposed to the air. Without extra
cooling, the coils would heat up significantly during the magnetic trapping stage where we
run 140A at around 8V through them for several seconds. The coils were designed with this
problem in mind, and as such, the wire is hollow allowing for chilled water to be pumped
through each turn of wire. The coil interlock is responsible for monitoring the temperature
of the coils and the flow rate of the water through them, and shutting down the high current
power supply if the cooling is inadequate.

The coil interlock uses the same Galil PLC as the oven controller. The Galil is pro-
grammed as a simple state machine, transitioning between the OFF, RUNNING, COOLING and
SHUTDOWN states. The COOLING and SHUTDOWN states are transitory. The COOLING state
disables the PSU but continues to run water through the coils for 30 seconds before transi-
tioning to the SHUTDOWN state. The SHUTDOWN state disables both the PSU and water cooling,
and waits three seconds to ensure they have correctly disengaged (and sends a message with
syslog severity ‘ALERT’ if the system has failed to disengage) before transitioning to the
OFF state. The state machine can be transitioned through these states by buttons on the
front panel of the box that trigger digital inputs of the Galil. The Galil code for the coil
interlock is presented in appendix B.

Two flow sensors monitor the flow rate of water exiting each coil, to ensure water is actu-
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ally flowing at an acceptable rate through them. The flow sensors are RS Pro Radial Flow
Turbine Flow Meters (RS Stock No.: 257-149) which output a pulsed signal corresponding
to the flow rate. This signal is converted to an analog voltage via a circuit designed by Mar-
tijn Jasperse. Two solenoid valves are connected to the feed and return line of the buildings
processed cooled water supply, and are controlled by the Galil via an digital output and
a relay. The temperature of the coils is also monitored using a thermistor. The Galil can
transition itself from RUNNING to COOLING if the temperature exceeds specified bounds or
from RUNNING to SHUTDOWN if the flow rate is out of bounds (indicating a malfunction of
the supply or a leak in the lab). Two override switches are also present on the front panel,
allowing the solenoids to be manually opened and the high current power supply to be en-
gaged, bypassing the state-machine11. Bi-colour red-green LEDs on the front panel provide
a real-time indication of the state of each flow and temperature sensor. These features pro-
vide useful real-time debugging information when diagnosing a failure of the water cooling
or interlock system. The status of each sensor and override switch is also logged in the same
manner as the oven controller (see §3.3.1).

As the Galil is a general purpose PLC, we have designed a circuit board to act as an
intermediary between the Galil and the LEDs, relays, switches, and sensors. The schematic
and layout for this circuit board is also included in appendix B.

3.4 Electronics

There is often a need for a significant amount of electronics between the I/O devices that the
control system manages, and the apparatus itself. In this section we detail those electronics,
which in many cases, are custom designs that we have developed.

3.4.1 Radiofrequency amplification

As detailed in §3.1 and §3.2.5, our apparatus relies on many AOMs to control the frequency
and amplitude of our laser beams. Each AOM requires a computer controllable rf source
of sufficient power to drive the AOM (for most AOMs, this is approximately 2 W). Our
primary rf sources are generated by a custom designed piece of hardware that is based on
off-the-shelf components. We call this device the ‘Supernova’.

The design is based on an initial version developed by the Monash Electrical and Imaging
services workshop (who were previously part of our department). The rf is produced by a
Novatech DDS9m board [120], which is programmed by our control system. This board
can produce four independent rf sources (although only two support updating during a
hardware timed experiment). Each rf output is fed into a Mini-Circuits ZX80-DR230+ rf
switch, which allows us to turn the rf source on/off in 2µs. This is faster than the update
rate of the 2 hardware timed channels on the Novatech board and is especially useful for
the 2 software timed channels that can’t be updated at all (which allows us to make use
of them during a hardware timed experiment). Each rf switch has two outputs, one is fed
to the ‘test’ BNC output on the front panel for debugging and the other is fed to a 2 W rf

11. In this situation, a ‘WARNING” message is logged approximately every 15 minutes, triggering email
and SMS alerts to lab users, to remind all lab users that the interlock has been bypassed.
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Figure 3.7: The front panel design of two Supernova boxes.

amplifier (Delta RF Technology LA2-1-525-30). Each amplifier output is then routed to a
BNC connector on the front panel. An example of the front panel is shown in figure 3.7.

We developed a custom circuit (see appendix C) for controlling the rf switches and
amplifiers. The power for the amplifiers can be turned on/off via push buttons on the front
panel. The power is also shut off automatically if a thermal limit of the amplifiers heatsink
is breached, via the use of normally-closed thermal circuit breaker switches connected in
series with the off button. Each rf switch can be configured (via a toggle switch on the
front panel) to either be on, off or controlled via a transistor-transistor logic (TTL) or
low-voltage transistor-transistor logic (LVTTL) signal. A second toggle switch (for each
channel) sets whether the rf output of the switch should be directed to the ‘test’ output
or the amplified output, and LEDs light up next to each BNC output to indicate if rf is
currently coming out of that port. Our circuit also contains a tri-state buffer needed for
connecting a clocking signal to the Novatech DDS9m board in order to step through the
instructions for the hardware timed channels. This portion of the circuit was designed by
Shaun Johnstone and is detailed in [121].

We also generate some of our rf using PulseBlaster DDS-II-300-AWG devices [122] and
an in-house device called the RFBlaster. These both provide unamplified rf on the order
of 0 dBm, but support a much faster update rate of their output state than the Novatech
DDS9m. As such, we use a modified version of the Supernova containing just the rf amplifiers
when connecting these devices to AOMs.

3.4.2 Shutter drivers

While the AOMs in our beamlines provide fast control over the amplitude of the laser
light in use on the vacuum table, there is always a small leakage. This leakage can destroy
ultracold atom samples, either by heating the atoms or by producing unwanted atomic state
transitions. Like most laboratories, we use a series of shutters to block out the light from
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Figure 3.8: The simulated coil driver response to a 20 ms square wave pulse beginning at
10 ms. Blue: With the coil power supply set to 12.5 V, a coil driver control signal of 10 V
(not shown) should drive a 150 A current. The simulation shows the current smoothly
reaching a stable level of 153 A within 10 ms of the change in control signal. Green: With
the coil power supply set to 8 V, a coil driver control signal of 0.96 V (not shown) should
drive a 15 A current. The simulation shows the current smoothly reaching a stable level of
15.3 A within 10 ms of the change in control signal. Both modes of operation have a very
fast switch-off time on the order of 40µs. There is a small amount of ringing during the
simulated switch-off which is clamped by protection diodes that are not included in the
simulation.

each beamline entirely. We also use them in instances where we have split beamlines after
they have exited the fibre on the vacuum table, in order to provide some independent control
over the beams.

We use the SRS SR475 model shutter, with most being driven by a digital output
routed through the SRS SR474 4-channel shutter driver. We later learnt that this driver
was unnecessary, and that the shutter heads themselves could be driven directly by a digital
signal provided an appropriate power supply was obtained to power the logic controller built
into the shutter head.

3.4.3 Magnetic coil driver

We use custom coil drivers in order to drive currents through our various magnetic coils. For
our low current bias coils (and source MOT coils), we use a design developed by colleague
Dr. Russell Anderson at Monash University (based on a design by Carl Sauer and Adam
Kaufman at JILA), which he called the ‘mag-neat-o’. The circuit takes an analogue voltage
(commanded by our control system) and uses an op-amp in a PI configuration to drive an
insulated-gate bipolar transistor (IGBT) that controls the flow of current through one or
more coils. Feedback is provided to the op-amp via a current transducer (Hall sensor, LEM
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LA 100-P) which measures the current passing through the IGBT (and thus coil(s)). This
design was able to drive up to 20 A in a single direction only. We augmented this design
with relays (commanded, via a digital signal, by our control system) to invert the direction
of current through the coil, in order to create a bi-polar design (albeit with a relatively slow
switching time between current directions of 4 ms).

Using the mag-neat-o as a base, I modified the circuit in order to create a coil driver
capable of driving up to 150 A, which was necessary for our central quadrupole coils that are
used for magnetic trapping. Unfortunately I was unable to create a design that was stable at
both low and high currents through the coils at a common power supply voltage. In addition
to this, the power dissipated by the IGBT (a function of the current demanded through the
coils, and the voltage of the power supply used to drive the coils) became dangerously close
to the maximum allowed at certain currents. To solve these problems, I adopted a method
of switching the power supply voltage (using a digital signal) between a low (8 V) and high
(12.5 V) setting. We switch between these voltages at an intermediate current of 80 A using
our control system, in order to ensure the driven current does not oscillate and the IGBT
does not catch fire12. Simulations of our coil driver circuit driving a typical MOT current
and a typical magnetic trap current are show in figure 3.8.

3.4.4 Microwave source

The Zeeman splitting within the F = 2 ground state of rubidium-87 and potassium-41 are
equivalent when captured by our magnetic trap13. This means that any forced evaporation
using rf to transition atoms between trapped and anti-trapped Zeeman sub-states will in-
teract equally with both species. However, this is undesirable as it is more efficient to apply
forced evaporation to rubidium-87 only, and let it sympathetically cool the potassium atoms
(thus reducing the losses of potassium atoms). To achieve this, we use a microwave source
during the forced evaporation stage of our experiment to transition the rubidium atoms
between the trapped |F = 2, mF = 2⟩ state and the anti-trapped |F = 1, mF = 1⟩ states.
This transition has a different resonance frequency than the same states in potassium due
to the different hyperfine ground state splitting, leaving the potassium atoms in the trapped
state. Rather than buy a commercial microwave source, with amplitude and frequency con-
trol via a preprogrammed table, we use a quadrature modulator board to combine a fixed
frequency and amplitude microwave local oscillator with two rf outputs from a RFBlaster.
This generates two frequency side-bands either side of the microwave carrier, the frequency
and amplitude of which can be controlled via the frequency and amplitude of the rf signals.
The carrier and one of the sidebands can be suppressed by adjusting the relative phase
between the two rf signals, resulting in a tuneable microwave source with precision timing
(as limited by the rf source). Further details of this tuneable microwave source are available
in the theses of Alex Wood [123] and Shaun Johnstone [100].

12. This might seem like an exaggeration, but our IGBT did actually catch fire once!
13. Similarly, the Zeeman splitting within the F = 1 ground state is equivalent between the two species.



3.5. SUMMARY 53

3.5 Summary
In this chapter we introduced the dual-species BEC apparatus constructed primarily by
Shaun Johnstone and myself. We detailed both the laser and vacuum systems, and outlined
some of the complexities that come with developing a dual species apparatus. Following this
we detailed the electronics that we have developed to help control the BEC apparatus. This
consisted of two process control systems, to safe-guard critical areas of the apparatus, and
a set of (mostly custom) electronic systems that interface between the apparatus and the
scientific control system, such as coil drivers and AOM drivers. In the following chapters,
we’ll introduce and detail our scientific control system. Later, in §8.1, we’ll discuss the use
of our scientific control system with the apparatus described in this chapter.





Chapter 4

The labscript suite

In this chapter, we will discuss the philosophy behind the development of the labscript suite
and the technologies we used to achieve our goals. However, understanding the labscript
philosophy requires some prior knowledge of the labscript suite and the individual compo-
nents (computer programs) within. As such, we’ll briefly introduce each component here
first, and describe how they link together1. We’ll then focus on the guiding principles of
our development process, which builds on the previous work of G. Varoquaux [124].

The labscript suite is a large project, and many people have contributed to the develop-
ment. Chris Billington [125] and I are the primary architects. Shaun Johnstone [100] and
Martijn Jasperse [106] also made significant contributions. There are also several people at
other institutions (who are using the labscript suite) who have contributed new features and
bug fixes. A full record of code contributions to this project is available on Bitbucket [9]2,
however this does not include development discussions, which cannot be easily quantified.

4.1 Terminology
In the process of developing the labscript suite, we have developed a set of common termi-
nology. While some of this will be familiar to experimental physicists already, others are
specific to the labscript suite. In this section we’ll outline the key terms that are frequently
used throughout the discussion of the labscript suite. Other terminology specific to a single
component will be introduced in the relevant section, and all definitions are in Appendix A.

We introduce the concept of an ‘experiment’ as the scientific aim of the research. Ex-
amples range from a very broad definition such as “the procedure to study an ultracold
atom cloud using one of 10 techniques we have available” to very specific definitions such
as “the procedure to produce an ultracold atom cloud, stir it with a repulsive laser beam,
and then study the evolution of the vortex dynamics using absorption imaging in the plane
orthogonal to the direction of gravity”. It is important to stress that the aim of an experi-
ment is the same regardless of the particular parameters used in any particular performance
of an experiment. A scientific publication is then typically the result of the execution of
a ‘sequence of shots’ (or ‘experiment sequence’), where each shot performs the experiment
with a set of parameters that typically vary between shots. The procedure of an individual

1. We will revisit each of the components in more detail in the following chapters (see chapters 5 and 6).
2. A copy of the labscript suite, as it was on the date of submission for this thesis, is also available at [126].
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shot is then defined by what we term ‘experiment logic’, which determines how individual
hardware I/O should respond as a function of the provided parameters.

We also introduce terminology to describe the people who interact with the labscript
suite. We categorise people into three groups: users, developers, and architects.

Users comprises of people who define, run, and analyse experiments using the labscript
suite. Users write basic Python scripts, such as those that define experiment logic or an
analysis routine. They also are the primary users of the graphical programs.

Developers (who are often users too) are those who perform more complex programming,
and expose that programming to users via friendly interfaces. Primarily, this group encom-
passes people who write code to support new hardware devices. However it also includes
those who write helper functions and/or libraries for use in Python code, or plugins for the
graphical applications. We expect code written by developers to be modular, so that new
features can be turned on and off as required by different laboratories.

Architects are those who understand the inner workings of the entire software suite. They
are responsible for maintaining the functionality of the labscript suite, and integrating new
features into the core code-base of the labscript suite. Changes made by architects affect
everyone using the labscript suite, which distinguishes them from developers.

4.2 Components of the labscript suite
The labscript suite is made up of six programs: labscript, runmanager, runviewer, BLACS3,
BIAS4, and lyse. With the exception of labscript, they are all GUI applications5. The
programs can be split into two categories: those that are used for experiment preparation
and those used for experiment execution (which we expand upon further in chapters 5 and
6 respectively).

Figure 4.1 shows how the components in the labscript suite are linked together, and how
data flows between them. In most cases, communication is via a network socket where a
path to a shot file is provided along with an associated action to run at the receiver. This
follows the actor model, a well defined paradigm in software engineering. The technologies
shown (such as hdf5 and ZeroMQ) are discussed in detail in §4.4.

Experiments are primarily prepared using a combination of labscript and runmanager.
Labscript is an API; a text-based interface for accessing the code we have written to gen-
erate hardware instructions for hardware devices. The interface is very high-level, allowing
the logic of an experiment to be defined with code that is easily understood by humans.
Runmanager is a graphical application for managing experiment parameters, and produc-
ing shots to be executed on the hardware (at a later time). Experiment parameters can
be access from the experiment logic script, and can take the form of standard Python data
types like integers, floats, strings, Booleans, or tuples. For example, a parameter called
MOT_load_time could be used to control the length of a MOT load sequence, or a Boolean
parameter called enable_dipole_trap could be used with an if statement to enable or

3. Originally B.L.A.C.S. was an acronym standing for the ‘BEC lab apparatus control system’. This was
later updated to the ‘better lab apparatus control system’, when it became clear our software was
generalisable to other experiments, before being dropped in favour of just using ‘BLACS’ as a name.

4. Like BLACS, B.I.A.S. originally stood for the ‘BEC image acquisition system’, was later updated to
the ‘better image acquisition system’, and then dropped in favour of just using ‘BIAS’ as a name.

5. Although, lyse also relies on user prepared analysis scripts written in Python (much like labscript).
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Figure 4.1: The flow of data between components of the labscript suite is shown. Green
dashed lines denote threads within a program while blue dashed lines denote a worker
process. Shots are born in runmanager, where the hdf5 shot file is created containing
the set of experiment parameters. Runmanager then executes the experiment logic script
in a worker process, which uses the labscript application programming interface (API) to
generate hardware instructions. Shots are passed to BLACS and/or runviewer. BLACS
executes shot files from a queue and any acquired data is saved in the shot file. After
execution, shot files are then passed to lyse, where they are analysed by a series of user
specified analysis routines (Python scripts), which may save analysis results in the shot file.
References to a shot file are passed via ZeroMQ, both between components of the labscript
suite and between a component and its worker processes.
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# Pseudoclock definitions
PulseBlaster (name=’pulseblaster_0 ’, board_number =0)
# Clocklines
ClockLine (name=’pulseblaster_0_clockline_fast ’,

pseudoclock = pulseblaster_0 . pseudoclock ,
connection =’flag 0’)

ClockLine (name=’pulseblaster_0_clockline_slow ’,
pseudoclock = pulseblaster_0 . pseudoclock ,
connection =’flag 1’)

# Output device definitions
NI_PCIe_6363 (name=’ni_card_0 ’,

parent_device = pulseblaster_0_clockline_fast ,
clock_terminal =’ni_pcie_6363_0 /PFI0 ’,
MAX_name =’ni_pcie_6363_0 ’,
acquisition_rate =100e3)

NovaTechDDS9M (name=’novatechdds9m_0 ’,
parent_device = pulseblaster_0_clockline_slow ,
com_port ="com10")

# Channels on the hardware devices
Shutter (name=’MOT_shutter ’,

parent_device =ni_card_0 ,
connection =’port0/line1 ’)

AnalogOut (name=’B_quad ’,
parent_device =ni_card_0 ,
connection =’ao2 ’)

DDS (name=’MOT_aom ’,
parent_device = novatechdds9m_0 ,
connection =’channel 0’)

(a) The connection table definition, which defines how the hardware devices are connected together.

disable a block of experiment logic via the graphical interface of runmanager. Users thus
choreograph experiments through the creation of a labscript (Python) file that defines the
experiment logic (using functions and classes provided by the labscript API) and a set of
parameters defined through the graphical interface of runmanager. Runmanager then uses
the labscript file and set of parameters to create shots files (one file per shot in the ex-
periment sequence). Runviewer can then be used to visualise the expected output of the
hardware devices, as determined by the hardware instructions stored in a shot file, prior to
actually executing shots on the real apparatus.

BLACS is designed to execute shot files on an apparatus. After shots are generated by
runmanager, they can be sent to BLACS where they are queued and executed in sequence by
BLACS. BLACS coordinates the programming of hardware devices, including via secondary
control systems such as our imaging system BIAS (which may be running on a separate
PC), and the saving of results to the shot file. Once a shot has been executed on the
apparatus, the shot file is forwarded to lyse for analysis. Lyse runs a series of user-defined
analysis routines (also written in Python) that access one or more shot files and perform
the requested analysis.
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# Begin the experiment
start (); t = 0

# Turn on MOT AOM to 0.9 amplitude and 80 MHz
MOT_aom . setamp (t, 0.9)
MOT_aom . setfreq (t, 80*MHz)
# Open MOT shutter
MOT_shutter .open(t)
# Set quadrupole field analog output to the value of the MOT_field
# global variable (that is defined in rumanager )
B_quad . constant (t, MOT_field )

t+= 2 # Wait 2 seconds

# Turn off MOT and ramp quadrupole field
MOT_aom . setamp (t, 0)
MOT_shutter .close(t)
# Quadrupole field analog output ramp from 3V to 10V over 4

seconds ,
# at a sample rate of 10 kHz. The ramp function returns the

duration ,
# which is used to update the t variable
t += B_quad .ramp(t, duration =4, initial =3, final=10 , samplerate =

10e3)

stop(t + 1e-3) # stop the experiment 1 ms after the ramp finished

(b) The experiment logic definition, which defines what the hardware devices should do during a
shot.

Figure 4.2: An example Python script written using the labscript API. (a) The connection
table. Here we define a pseudoclock that has an NI PCIe-6363 card and a Novatech DDS9m
device attached. We then define channels on these devices, which are referred to in (b) using
the names specified. (b) The experiment logic. At the start of the experiment, we turn on
the MOT and load for 2 seconds. We then turn off the MOT light, and ramp the magnetic
field linearly over 4 seconds. Note the use of the global variable MOT_field. The value for
this is specified in runmanager as a parameter, and the variable itself will be created by
the internals of labscript when runmanager executes the labscript file as part of the shot
creation process. Note that for this simple example, both (a) and (b) reside sequentially
within the same Python file. Further details on the labscript API can be found in §5.1.

4.2.1 Labscript API

The labscript API is a text based interface for defining the hardware devices to be controlled
during an experiment and the experiment logic those devices should perform. It is used by
‘users’ to choreograph an experiment. Inside a Python file, the API is first used to define the
hardware devices in use, how they are connected to each other and the controlling PC(s),
and the input and output channels in use. We call this section of user written code the
connection table. The connection table code creates Python objects that can then be used
in the remainder of the script to define the experiment logic. The experiment logic is where
the user defines the state of each output, at various times throughout the experiment. Each
object has a set of methods provided by the labscript API for achieving this. For example,
digital output objects have methods such as go_high(t) and go_low(t) to command the
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output to change state at the specified time.
An example script containing both the connection table and experiment logic is shown

in figure 4.2. Outputs are controlled through a unified interface, which provides common
function names for outputs of a particular type. For instance, digital outputs always have
the previously mentioned methods regardless of the actual model of device in use. Internally,
the labscript API generates the required hardware instructions in a format specific to each
device, and generates the required instructions for the pseudoclock(s) that manage the
timing of each hardware device. This abstraction allows the user to focus on just writing the
experiment logic they wish, without having to worry about the particular implementation
details of a device, or the generation of the clocking signal.

4.2.2 Runmanager

Runmanager (see figure 4.3) is the primary interface for adjusting the behaviour of the
experiment and generating shot files. Runmanager allows you to define parameters via
a graphical interface and select the experiment logic file to use. The parameters are in-
serted into the experiment logic (as global variables) when shot generation is started via
the ‘Engage’ button.

The parameters can take the form of any Python data type that can be stored in a hdf5
file. When a parameter is specified as a list or array, runmanager automatically detects that
you wish to explore a parameter space. Runmanager will generate a separate shot for each
point in the array. If multiple arrays are specified across two or more parameters, runman-
ager automatically takes the Cartesian product of those parameters in order to generate
shots that span the entire parameter space. For more complex experiments, parameters
can be linked together so they iterate in lock step by defining one or more zip groups. If
multiple zip groups are defined, the parameter space explored will be the Cartesian product
of each zip group and any other parameters containing an array or list.

4.2.3 Runviewer

Runviewer is used for viewing, graphically, the expected changes in each output across one
or more shots, and is shown in figure 4.4. Its use is optional, but can be extremely useful for
debugging the behaviour of experiment logic. The output traces are generated directly from
the set of hardware instructions stored in a given hdf5 file. This provides a faithful rep-
resentation of what the hardware will actually do. In effect, runviewer provides a low level
representation of the experiment, which complements the high level representation provided
by the experiment logic written using the labscript API. As such, runviewer traces provide
a way to view the quantisation of outputs6, which can be seen in the ‘central_Bq’ and
‘central_bias_z_coil’ channels in figure 4.4. You can also view the pseudoclock outputs.
The pulseblaster_0_ni_clock and pulseblaster_0_novatech_clock channels demon-
strate the independent clocking of devices from a single PulseBlaster pseudoclock. Similarly,
pulseblaster_1_clock shows an entirely independent secondary pseudoclock.

6. While this is always true in time, the output values may not be correctly quantised if the labscript
device implementation does not quantise the output values correctly and instead relies on BLACS, the
device programming API or the device firmware, to correctly quantise the output values.
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Figure 4.3: The runmanager interface, used to generate experiment shot files (1) using
the experiment logic defined using the labscript API in a Python file (2) and groups of
parameters (3), for example those shown for the ‘MOT - K’ group (4). Further details on
the runmanager interface can be found in §5.2.1.

4.2.4 BLACS

BLACS interfaces with the hardware devices controlling an experiment, and manages the
queue of shots to execute on the apparatus. BLACS has two modes of operation: the
execution of shots under hardware timing, and the manual control of hardware devices (by
the user) via the BLACS GUI. The interface is shown in figure 4.5 and is split into two
sections that align with the two modes of operation: the queue of shots to execute, and a
GUI interface for manually controlling the output state of the hardware devices when not
running shots (which can be useful for manual debugging of an apparatus).

The shot queue contains standard controls for adding deleting and reordering shots. The
queue can also be paused or put into one of several modes that repeat the shots in the queue.
When a shot finishes, and the results have been saved to the hdf5 file, the shot may be
optionally sent to the lyse server specified in the GUI.

The GUI for each hardware device is dynamically generated at runtime, based on a
connection table written using the labscript API. A device tab is created for each device, and
communicates with a unique worker process which, in turn, handles the communication with
the hardware device. The device tab GUI is populated with controls for each input/output
(IO) channel present. To aid in the identification of a relevant I/O channel, controls are
labelled in BLACS using both the hardware I/O port name and a user specified name from
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Figure 4.4: The runviewer interface shows output traces for selected channels in selected shot files. Further details on the runviewer interface can
be found in §5.3.2.
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Figure 4.5: The BLACS interface. Left: The shot queue. Main: A set of tabs (one for each hardware device) that provide a manual control interface
for each device. Further details on the BLACS interface can be found in §6.1.
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the connection table of a labscript file. Analog channels (or more complex output types
like a DDS that are represented by several analog numbers) also integrate with the unit
conversions specified in the connection table, allowing both control and the display of units
other than the (device specific) default hardware unit. Channels connected to sensitive
equipment can have the output values limited or the control locked entirely to prevent
accidental changes. Output values are stored on exit, and restored on start-up, to avoid
unexpected output transients.

4.2.5 BIAS

BIAS is the imaging system we presented in our paper on the labscript suite [8], and was
developed by Martijn Jasperse. The aim of BIAS was to provide an interface that per-
formed rapid analysis of images immediately after a shot, without the use of lyse. For BEC
experiments, this consists of fitting to an absorption image of an ultracold atom cloud and
returning the optical density and atom number.

While this component is currently unmaintained7, it demonstrates the modular nature
of the labscript suite. BIAS was originally developed independently from the labscript
suite. However it is now fully integrated, and is managed by BLACS as a secondary control
system. For all intents and purposes, BLACS considers BIAS to be a hardware device,
despite the fact that is actually a software interface that, in turn, controls a hardware
device. BIAS is written in LabVIEW, which is often the language of choice in scientific
research laboratories, and provides a clear demonstration of how labscript suite can be
used with existing control software (even that written in another language). We discuss
the integration of the labscript suite with existing control systems further in §6.2, and the
integration with other programming languages in §4.4.

4.2.6 Lyse

Lyse is a framework for performing arbitrary analysis on the data stored in a shot file,
and the graphical interface is shown in figure 4.6. We break analysis into two distinct
groups: single shot analysis that only accesses a single hdf5 file, and multi-shot analysis
that performs higher order analysis on data from many shots. A set of Python scripts can
be loaded for each analysis category, which will run (when appropriate) on new shot files
as they are sent to lyse from BLACS. Acquired data, global variables from runmanager
and analysis results generated in lyse, for all loaded shots, are stored in a table (a Pandas
DataFrame, see §6.3.1). The DataFrame is displayed in the GUI and can also be accessed
remotely from another PC.

7. BIAS is unmaintained largely due to a lack of LabVIEW developers and the difficulty in new developers
understanding any pre-existing LabVIEW code. While it is disappointing that we have not found a
LabVIEW developer in the wider community to continue maintaining BIAS, it is worth mentioning
that this has not been a problem for the Python labscript suite components. Many of the groups using
the labscript suite have been modifying and contributing back to the labscript code-base (an important
part in ensuring the longevity of the project) and we expect that ultimately this will apply to a future
Python-based imaging component.
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Figure 4.6: The lyse interface. (1) single shot analysis scripts. (2) multi shot analysis scripts. (3) A graphical representation of the Pandas
DataFrame. (4) Figures generated by the analysis scripts. In this case, these are publication-quality figures generated for one of our recent papers
published in Science [127]. (5) The output log from lyse and the analysis scripts.
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4.3 Design Themes
In this section we’ll detail and discuss several of the key design themes that form the basis of
the labscript suite. While these are key to understanding the labscript suite, we also believe
they have wider applicability and should be considered by those beginning the process of
writing their own control system.

4.3.1 Unix Philosophy

In order to facilitate the creation of a flexible, future proof set of software, we followed the
Unix philosophy when developing our control system. There are several versions of the Unix
philosophy, but they are all based on the words of Doug McIlroy [128], quoted below:

1. Make each program do one thing well. To do a new job, build afresh rather
than complicate old programs by adding new “features”.

2. Expect the output of every program to become the input to another, as
yet unknown, program. Don’t clutter output with extraneous information.
Avoid stringently columnar or binary input formats. Don’t insist on inter-
active input.

3. Design and build software, even operating systems, to be tried early, ideally
within weeks. Don’t hesitate to throw away the clumsy parts and rebuild
them.

4. Use tools in preference to unskilled help to lighten a programming task, even
if you have to detour to build the tools and expect to throw some of them
out after you’ve finished using them.

Eric Raymond [129] summarised and extended these into 17 rules based on the software
developed by those espousing the Unix Philosophy. The most relevant to our software
development process are quoted below:

• Rule of Modularity: Write simple parts connected by clean interfaces.

• Rule of Composition: Design programs to be connected with other programs.

• Rule of Generation: Avoid hand-hacking; write programs to write programs
when you can.

• Rule of Optimization: Prototype before polishing. Get it working before you
optimize it.

• Rule of Extensibility: Design for the future, because it will be here sooner
than you think.

Our most obvious implementation of the Unix philosophy is our avoidance of creating
monolithic programs. As described previously, the labscript suite is composed of several
programs (see §4.2). Each program is designed to do one thing, and do it well; labscript
generates device hardware instructions, runmanager modifies parameters, runviewer shows
a faithful representation of output from a set of hardware instructions, BLACS interfaces
with hardware, and lyse analyses results. These programs communicate through well defined
standards that comprise of text based streams over ZeroMQ network sockets, and hdf5 files
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for large datasets such as hardware instructions and acquired data. When we can’t avoid
the creation of a single large program, we build it from modular components (for example
lyse uses pluggable analysis scripts, and BLACS implements modular hardware support as
well as plugins for implementing custom behaviour). As the Unix philosophy advocates,
this allows one or more components to be easily replaced by a new custom program. In
the labscript suite, this is already occurring. For example, mise (detailed in [8]) has been
deprecated and replaced by complex analysis scripts (such as analysislib-mloop [130]) and
BIAS will soon be deprecated in favour of a Python alternative8.

Adhering to this philosophy also allows us to easily distribute components across multiple
PCs, and allows lab members to simultaneously interact with different components of the
suite. For example while one person manages shot creation via runmanager, another can be
interpreting results via an instance of lyse running on a separate PC. This philosophy has
also allowed us to rewrite components one at a time, in small steps, rather than needing to
rewrite everything in one go. For example, prior to the publication of our paper in 2013,
we made significant changes to runmanager and BLACS. Since 2013, we have progressively
rewritten every component of the suite. This would not have been possible without a set of
distinct programs coupled by well defined interfaces, and our control system features and
stability would be poorer for it.

Where possible, we apply the rule of generation to simplify the work needed to implement
our control system on an apparatus. This rule is particularly applicable to adding support for
new hardware devices. For example, we help developers by providing standardised interfaces
for commanding output via labscript, and automatically generate manual control interfaces
from a standard set of graphical widgets in BLACS. For users, the high-level interface
for commanding output via labscript also removes the need for them to think in terms of
hardware instructions, which are automatically generated by labscript and device specific
code. This is a significant improvement over line-based systems that describe experiment
logic at a level close to the level of raw hardware instructions (and are often unreadable for
the uninitiated).

Our development process was also influenced by the rule of optimization. We always
rapidly deploy changes to our apparatus in order to test and debug, prior to prematurely
optimising our code. We believe this is significantly aided by our dedication to maintaining
a complete record of experiments performed (See §4.3.4). The labscript suite is designed
to assume there is no special state of devices or software that is not known to the system,
and that a comprehensive record of all device and software states in the experiment will be
automatically stored in each shot file. For example, we store a record of how all hardware
devices are connected together, and the set of configuration parameters needed to configure
the device correctly, so that we can reproduce any given configuration at a later date.
This gives us freedom to rapidly modify and create solutions without fear of permanently
breaking something or changing a configuration that was not recorded anywhere. We have
seen several labs that have been impressed by the labscript suite, but have been reluctant to
adopt it for fear of breaking what they have now, due to the lack of those systems providing
a complete record of the current configuration. However it is my belief that if you can’t do
something twice, then you can’t be sure you’ve done it once. It is my hope that the labscript

8. In fact, several laboratories using our control system around the world are already using their own
custom (usually Python based) imaging system.
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suite (underpinned by the Unix philosophy) will encourage research labs to become more
agile in their development (of both code and science), and that this will in turn lead to more
robust and repeatable science.

Finally, we spent a significant amount of time planning for the future (the rule of exten-
sibility). Most of our focus here was on maximising the flexibility of the suite and ensuring
any prescriptions were reduced to a minimum. We discuss this further in the following
section.

4.3.2 Flexibility

A key aim during the development of the labscript suite was to create a system that is flexi-
ble. This aim was born from several factors: the difficulty in adapting other control systems
to our experiment, the desire to have a unified control system within our research group at
Monash University, and the desire to build a wider community that could contribute to the
ongoing development of a control system in order to reduce duplicated effort. Flexibility
is thus at the heart on the labscript suite philosophy, and is the most important of all of
the design themes presented here. While we strongly believe in the other design themes
discussed in the following sections, the flexible nature of our system allows a user and/or
developer, with a bit of coding, to override one or more of these themes while still reaping
the benefits from other features.

One of the key features of our system is support for heterogeneous hardware. Labscript,
runviewer and BLACS all provide comprehensive APIs in order to simplify the addition
of new devices. As we’ll detail in §7.1, a developer need only write code to translate be-
tween labscript and hardware instructions, hardware instructions and runviewer traces, and
code to program the device with the hardware instructions. We achieve this by providing
a consistent structure for commanding I/O from specific output types, rather than specific
hardware devices. Most GUI generation and integration with the text-based labscript API
is done through an abstraction layer we provide, allowing developers to build device specific
functionality on top of the general purpose code we provide. Once completed, this device
code can be shared with other research groups in a modular way, which avoids duplication
efforts and allows research groups to pick and choose their preferred hardware. This imple-
mentation also has the benefit of providing a consistent user interface for using most devices,
which reduces the overhead of integrating a new device into a lab. The labscript suite also
supports an arbitrary number of hardware devices. Many control systems have a limitation
of the number of hardware devices, either due to hitting the limit of PC resources, or being
implemented in a language that does not support dynamical GUI generation (for example
LabVIEW). The labscript suite supports both of these, through the use of a text-based in-
terface in labscript, a tabbed interface in BLACS and the ability to add an arbitrary number
of secondary control systems that can run on separate PCs or other embedded devices.

Our analysis system, lyse, follows a similar philosophy. We provide an API for accessing
acquired data and saving analysis results in order to ensure consistency and interoperability
between components of the labscript suite and custom extensions to our system. Users are
able to freely create analysis scripts (written in Python) and make use of any additional
libraries they like. These scripts can be run from the command line directly (even on remote
PCs), or loaded into the lyse GUI where they will be automatically executed as new data
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is acquired. Sets of analysis scripts can easily be switched in and out depending on the
current experiment being performed. Again, this allows analysis code to be reused, shared,
and easily modified between laboratories.

The program BLACS provides configurable behaviour through a plugin system. This
allows research groups to modify the behaviour of the experiment execution phase without
creating a divergent copy of the software. We have used this functionality to develop optional
features such as implementing a ‘keep warm’ feature that runs an experiment on repeat and
deletes the shot file once complete, or monitoring of lab process control systems so that the
queue can be automatically paused if one of our interlocks enters a protective state and
shuts down the apparatus.

In essence, we have focussed our effort into building well defined frameworks, for ex-
periment preparation, control and analysis, that are easy to use while enforcing minimal
restrictions on extensibility. Our frameworks are broken into distinct components, with well
defined open communication protocols and file formats (see §4.4.3 and §4.4.2). This opens
the possibility for users to replace or upgrade components with custom implementations
featuring previously unforeseen capabilities, as they need, without having to modify the
entire suite. This is a distinct advantage over a monolithic design.

When designing our APIs and interfaces we specifically focussed on simplifying the
realisation of complex scientific experiments. Experiments are increasingly demanding more
complex hardware capabilities, and the simultaneous control of multiple outputs. These
outputs often change on a non-uniform time-base, or require their output state to change
following a complex equation. The labscript API was specifically designed to abstract this
away, so that users could focus on defining the experiment logic for the science they wish
to execute, rather than the capabilities or interactions of specific hardware devices (see §5.1
for further details). Experiments also often demand traversal of a multi-dimensional and/or
densely sampled parameter space. We designed runmanager to automate this traversal
by automatically creating shots that span an arbitrarily large parameter space, with an
arbitrarily large number of dimensions, as described by parameters containing lists or arrays.

The labscript suite thus has flexibility at all levels, from the combination of frameworks,
to the ability to define arbitrary experiment logic. This results in a control system that
is applicable to a wide range of experiments. While initially designed for ultracold atom
research, the labscript suite has proven useful in several other situations. For example, we
used the labscript suite to automate the bench testing of an objective lens (see §8.3). Due
to the flexibility built into our system, we believe that any experiment with a distinct start
and stop time, that requires precise timing, can be controlled using the labscript suite.

4.3.3 Graphical vs. textual interfaces

Traditional ultracold atom control systems (line-based systems) relied on graphical defini-
tions of both parameters and experiment logic. The benefit of this design is in the rather
direct mapping between the representation of the graphical data structure and the hard-
ware instructions to be programmed into the device. While this simplifies the development
of such a control system from the architects point-of-view, it introduces significantly more
cognitive load when using the system. Primarily, this is due to the inability to ever define
experiment logic at a higher (more abstract) level, which forces the user to always think
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and process the experiment logic in terms of the state at each time step. We contend
that such control systems have been deliberately written for their architectural simplicity,
and that increased complexity in the experiment design phase, along with limitations on
the complexity of experiment logic, is a consequence of this decision. This is of course a
reasonable trade-off for individual laboratories to make in the absence of a more advanced
(open source or commercial) control system, as the cost of employing someone to maintain
complex software systems is prohibitive and assuming a single laboratory will have a steady
stream of graduate students with the necessary architectural skills to maintain a complex
laboratory control system is optimistic9. However, it is not the optimal solution.

The downside to this trade-off is that many of the line-based systems are clumsy to
use because they are managed by simple programming logic. For example, an interface
with a 2D array of states requires that the state of each output channel be defined at
each time point. Re-ordering instructions, offsetting times, or inserting new time points
also requires a degree of complex programming, often resulting in these features being
left unimplemented. Even saving and loading of different sets of experiment logic requires
additional development effort. While such features are not strictly necessary for running
an ultracold atom experiment, the manual work-around typically requires significant time
to manually update each graphical item. Ultimately such interface limitations in turn limit
the number of channels and/or time-points that can be effectively managed. It is possible to
overcome some of these limitations by implementing a more complex user interface design
(see the Cicero Word Generator in §2.3.2 as an example). However, this requires significantly
more architectural complexity behind the scenes just to make the software easier to use, and
doesn’t typically result in any additional capabilities for defining more complex experiment
logic.

Textual interfaces, on the other hand, provide a more natural way to manage experi-
ment logic. Much of the difficulties with graphical descriptions come for free, such as the
ability to copy, paste, or reorder commands, without the need for additional development
effort. If the textual interface is provided through a fully fledged programming language,
then control statements such as if ... else ... or for ... do ... loops can be
incorporated easily. It is also easier to develop higher level interfaces for experiment logic,
for example complex sections of experiment logic can be wrapped up in functions for use
by less experienced users. The underlying high level interface can also be written such that
commands can be specified in a non-linear time order, which often makes sense for I/O that
have inherent delays you wish to account for while still maintaining readable experiment
logic.

While textual interfaces bring these many benefits, working day-to-day in a purely tex-
tual environment is not ideal. For example, defining parameters and creating and scheduling
shots is easier and more convenient if performed through a graphical interface. We follow
the work of the David Hall [93] and Strontium BEC [85] control systems by separating out
the experiment logic from the definition of parameters so that we can provide a textual

9. By “necessary architectural skills” we mean those with the ability to handle the intricacies of event
based programming critical to developing graphical applications, the ability to rapidly develop code
and build on code developed by previous students. While almost all physics graduate students have
programming skills (and indeed our own control system, the labscript suite, relies on this being true),
there is a large gap between writing and modifying simple scripts and understanding and robustly
modifying the architecture of a complex graphical application or software framework.
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interface for defining experiment logic while keeping a graphical interface for the more com-
mon actions like updating parameters. We believe our implementation is superior to these
prior works, by our application of the Unix philosophy to the problem, and by the use of a
modern high-level programming language. For instance, while the Strontium BEC Control
software provides a graphical interface for updating the values of parameters, these param-
eters must first be defined in the textual interface. In our software, the parameters are both
defined and updated from a graphical interface. Both David Hall’s and the Strontium BEC
Control software use C++ for the programming language, which requires experiment logic
be precompiled into an executable before it can be used. By using a modern interpreted
language (Python, see §4.4.1), we avoid this step.

We apply similar concepts to our other components. For example, runviewer (for viewing
expected output traces) and BLACS (scheduling of shots and manual control of hardware)
lend themselves best to graphical control. Analysis (in lyse) lends itself to a mix of graphical
and textual, where we believe analysis logic is best described textually, and the visualisation
of results and best viewed in tables or plots.

We believe our approach provides a natural mixture for users. Power and flexibility are
maintained through reusable text-based scripts, and the ease-of-use of graphical interfaces
is maintained for the more frequent interactions with the control system.

4.3.4 Record keeping

The final key design theme of the labscript suite was ensuring the system maintained a
complete record of the experiment, from conception to analysis. Humans are notoriously
bad at keeping a sufficient record of experiments. We often leave out key details because, at
the time, we believe that detail is obvious and a written record is not needed, only to realise
months or years later that we’ve forgotten the detail and should have written it down. For
those that can record sufficient details for reproduction, the act of recording those details
is often a significant time sink. We were thus heavily motivated to automate this process
as much as possible.

Our research group quickly settled on a plan to store experiments on a per shot basis,
with one hdf5 file per shot (the file format is discussed further in §4.4.2). Much of the
information storage is also a requirement of implementing the Unix philosophy, as it is the
primary mechanism for communicating data between isolated components. The main items
we currently10 store in each shot file are records of:

• the parameters used in both their unevaluated form (which contains information about
the entire parameter space to be scanned in a sequence of shots) and their evaluated
form (specific to the given shot),

• the high level description of the experiment logic,

• the low level hardware instructions to be programmed into the device,

• how the hardware devices and channels are connected together and to the apparatus,
and any configuration information needed for these devices,

10. Increasing the coverage of what we store is one of the future improvements we aim to make. For
example, we currently do not store a record of the analysis script logic (but this would be easy to do
given we already do it for the experiment logic).
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• all acquired data (such as images and traces),

• all analysis results, and

• metadata on the experiment, for example shot creation time, shot execution time, and
the state of the hardware outputs prior to executing the experiment11.

Such a complete record can be invaluable during publication review processes by making
it easier to respond to unforeseen questions raised by reviewers. The record would also
be helpful in identifying how past research has been affected by a recently discovered bug
in the control system or experiment logic, ensuring the past results can be reconfirmed or
investigated again if necessary. We provide further details on the storage when discussing
individual components in more detail, see chapters 5–7.

An important consideration was of course disk space, and storage costs may have been
a factor in older control systems not implementing such a comprehensive record. However,
storage costs are now minimal. Many institutions provide free (or centrally funded) stor-
age to research groups. For those who need to purchase their own storage, multi-terabyte
enterprise level redundant array of inexpensive disks (RAID) systems are now surprisingly
cheap. A 30 TB RAID5 network attached storage device can be purchased for under USD
300012, which we estimate would provide sufficient storage for a BEC lab for over a decade.
Cloud archive storage vaults are also cheap. For example, Amazon Glacier costs approx-
imately $50 USD per TB per year. As storage costs are only going to get cheaper, we
believe there is no impediment to automatically storing as much information as possible on
scientific experiments.

4.4 Technologies
The labscript suite is built around several key technologies. Here we will introduce those
technologies and outline why they were chosen, including the benefits they bring, and
whether they can (or will) be replaced by other technologies.

4.4.1 Programming language: Python

The choice of programming language is typically the most important decision made when
starting a software project. We contemplated several language choices during the initial
stages of the project, including C++ and LabVIEW, before settling on Python. However,
while the majority of the labscript suite is written in Python, the choice of the other key
technologies was heavily weighted towards those that supported interoperability between
multiple programming languages. As such, the labscript suite as a whole is programming
language agnostic (as far as that is possible) despite most components being implemented
in Python. Indeed the imaging system presented in our paper, BIAS, is implemented in
LabVIEW.

Python was chosen primarily due to the low entry bar for understanding and modifying
user side code, such as experiment logic and analysis scripts, which is a key factor in enabling

11. The initial hardware output state has the potential to change the experiment sequence in some instances
(for example by creating digital edges when the first hardware timed instruction is output).

12. 4x 10TB WD101KRYZ HDDs inside a QNAP TVS-473 NAS.
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us to strike the correct balance between graphical and textual control (see §4.3.3). Python
syntax relies on explicit indentation to define code blocks [131], rather than special symbols
(like { or } in C++). This enforces a specific coding style, leading to readable code.
Python also favours readable keywords such as not and and for Boolean operations and in
for checking containment (for example item in a_list). This results in code that is often
readable by non-experts.

Another key feature of Python is its comprehensive support for interacting directly with
other languages through a foreign function interface. Python natively supports calling C
libraries [132] and there are third party libraries for calling C++ [133]. This is particularly
important since Python is an interpreted language. Software written in an interpreted lan-
guage is much quicker and easier to modify on-the-fly, when compared to compiled languages
like Visual C++ (used in the Strontium BEC control system, see §2.3.3), but execution
speed of the software is often the primary trade-off. Foreign function interfaces allow you to
write computationally complex algorithms in a performant language (such as C) for use in a
less performant language such as Python. Indeed we exploit this for dynamically resampling
traces within runviewer (see §5.3.2), as do many other third party Python libraries (such as
numpy [81])

Python is an object-oriented language (a key requirement for well designed graphical
applications13) and contains a comprehensive set of standard libraries [134]. These include
libraries for threading, sockets (fundamental networking), data type handling and manipula-
tion, dates and times, and operating system interfaces (among many, many others). Python
also has a rich repository of third party libraries in the Python Package Index (PyPI) [135],
which can be easily installed via a command line package manager such as pip [136]. We
utilise several third party libraries in the labscript suite, some of which we will discuss in
the following sections. As part of the labscript suite, we have contributed two libraries to
PyPI for use by the wider Python community, qtutils [137] and zprocess [138], which we
discuss further in §4.4.5.

These features make Python a popular choice amongst physicists for a range of software
projects, and this popularity also played a part in our decision to choose Python as the
language of choice for the labscript suite. As of 2018, the labscript suite supports both
major versions of Python: Python 2.7 and Python 3.

4.4.2 HDF5

For data storage, we chose the hierarchical data format version 5 (hdf5) file format [139].
hdf5 is a hierarchical data format where tables of data (datasets) are stored within nested
groups. Metadata can be added to groups or datasets via the creation of associated at-
tributes. This results in a data structure that resembles a file system, but is contained
within a single file.

These features allow us to create self-documenting files; files that contain a complete
record of everything related to an experiment, grouped hierarchically, and with human
readable names. We create one hdf5 file per shot and build up the contents of the file

13. All good GUI libraries follow an objected oriented design pattern as trying to keep track of the large
amounts of data associated with each graphical item without encapsulating it in a hierarchy of objects
would be a nightmare.
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Figure 4.7: An example hdf5 file that has been produced by the labscript suite (created
initially by runmanager before passing through all components, ending with lyse), displayed
within the HDFView software. On the left, the hierarchical structure of the stored data
is shown. We have expanded the ‘data’ group (and the ‘traces’ group within), the devices
group, and the results group. The devices group contains one subgroup per hardware device
used in the experiment (which themselves contain the hardware instructions). Similarly,
the results group contains one subgroup per analysis script (which themselves contain saved
results). The ‘traces’ subgroup (within ‘data’) contains acquired time series acquisitions.
We have opened the raw data for the ‘central_BQ’ trace (which monitored the current
through our quadrupole coils) in the top right window, and have displayed a plot of this
(generated by HDFView) in the bottom right window. As can be seen, the hdf5 format
allows for complex data to be arranged in an easy to read format.
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(including runmanager parameters, experiment logic script, acquired data and analysis re-
sults) as the file progresses through the various programs in the suite. The structure of a
typical hdf5 file produced by the labscript suite is shown in figure 4.4.2.

hdf5 has support across a wide variety of programming languages including common
languages like C, C++, Python, LabVIEW, MATLAB, Mathematica, Java, IDL and .Net.
When accessing hdf5 file from Python, we use the h5py library [140, 141]. This wide
support for hdf5 allows labscript experiments to interact with other software (particularly
custom software written by members of a given research group) with minimal effort, and
aligns with our goals of maximal extensibility for the labscript suite.

4.4.3 ZeroMQ

For interprocess communication, we chose ZeroMQ (also known as ZMQ, 0MQ and ØMQ).
Like hdf5, the ZeroMQ library can be used from a wide variety of programming languages
including common languages like C, C++, Python, LabVIEW, Java, and .Net [142]. Ze-
roMQ support many different communication schemes. We typically use the request-reply
model [143] however communication between the worker processes of the heterogeneous
hardware in BLACS is delegated to a publish-subscribe model to remove interdependencies
between device implementations.

In the labscript suite, ZeroMQ is used for three main tasks. The first, and simplest
task, is sending the paths to hdf5 files between components of the labscript suite. We
also use ZeroMQ in our custom multiprocessing implementation via the zprocess library
we have created (see §4.4.5). Finally, we use ZeroMQ to ensure safe access to hdf5 files
when they are accessed from multiple processes. hdf5 files can only be accessed serially,
and may become corrupted if multiple processes attempt to access it. To prevent accidental
corruption, we have monkey-patched a locking system, using ZeroMQ, over the top of the
h5py library. This ensures that any h5py call from within our software first acquires a lock
on the specific hdf5 file from a centralised ZeroMQ server, before attempting access.

4.4.4 Qt

As the labscript suite includes a significant graphical component, the choice of third party
library for generating the graphical interface is particularly critical. Our primary criteria
for this was cross-platform support (the ability to run on Windows, Linux and Mac OSX).
Initially we chose GTK version 2 as our graphical toolkit, due to the cross-platform support
and integrated tools for rapid graphical application development. As our project developed
however, we became aware of a significant memory leak under Windows that we reported
to the GTK developers [144]. While this was ultimately fixed, it became apparent that the
GTK project had lost much of the knowledge regarding Windows support [145] (which was
ultimately demonstrated with the significant delay for Windows support of GTK version
3). Compounding this, the maintainers of the Python language bindings for GTK version
2, PyGTK, were not actively building new versions that included the recent critical bug
fixes. The result of this was that our complex programs, such as BLACS, would regularly
hard-crash after 3 days of continuous operation. Given our aim of creating a control system
suitable for remote operation and/or 24/7 use, this was a significant setback.
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After much consideration, we decided to rewrite all of our software using the Qt graphical
toolkit [146]. We initially chose PySide [147] for the Python language binding due to the
freer licensing constraints, however I again discovered a serious memory leak [148] during the
redevelopment of BLACS. PySide development had stalled in much the same way as PyGTK,
so we changed the language bindings to PyQt4 [149] which only required minimal changes
since the API for PyQt4 was very similar to PySide. Runmanager, lyse, and runviewer
were then redeveloped solely for PyQt4. We now support PyQt4 and PyQt5 through an
abstraction layer in qtutils, have tentative support for PySide, and aim to support PySide2
(now known as “Qt for Python” [150]) in future releases.

Our experience underlines the need to consider items beyond the feature set when choos-
ing a graphical toolkit. The development processes, patch timeframe (of both the core
project and language bindings) and community support for the toolkit must also be a crit-
ical factor in determining the toolkit to use. It is worth noting that both Qt and PyQt4/5
are developed and maintained by commercial companies, which we believe will help ensure
the continuing success of those projects.

4.4.5 Multithreading and multiprocessing

The labscript suite heavily uses both multithreading and multiprocessing to parallelise the
execution of code. Multiprocessing provides isolated containers (processes) for code to run
in, and come with their own dedicated memory allocation. The PC operating system handles
the allocation of resources and the sharing of the CPU(s) between processes. Multithreading
is a parallelisation technique that exists within a single process. The operating system is still
responsible for sharing the CPU between threads (and other processes), but other resources
(like memory) are shared between all threads in a process.

Multithreading is often considered difficult or risky, due to race conditions, where the
possibility exists of simultaneous access or modification of variables across threads, which
can result in undefined behaviour of the program. While the risks can be mitigated via
the use of synchronisation primitives, such as mutexes (locks) or semaphores, these add
complexities to the system and come with risks of their own (such as mutex deadlocks).
Python limits these risks somewhat by imposing the global interpreter lock (GIL), which
effectively dynamically serialises multithreaded code. This eliminates the computational
benefits of multithreading, but still provides encapsulation benefits for tasks that are I/O
bound rather than CPU bound. However, even with these restrictions, many Python li-
braries are not thread-safe, including most graphical interface libraries.

In the labscript suite, we only use threads for tasks that we consider isolated. This
include tasks that involve queues (generating or executing shots, or communicating with
other processes) and/or can run in the background (such as forwarding shots for analysis
to lyse). Such a structure results in the self-containment of a task within a single thread,
reducing the risk of unforeseen race conditions. Of course, communication between threads
is always necessary to some degree, for which we use Python queues, which are thread-safe.
When a thread needs to control the GUI (for example to update a label with a status
message) we use the thread-safe method of posting events to the Qt event loop (which runs
in the Python main thread). Our library, qtutils [137], has abstracted this procedure away,
allowing arbitrary Python functions and methods to be executed in the main thread (via
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the Qt event loop) to ensure thread-safety. Where shared access to variables is required, we
serialise access transparently by defining the variables as Python properties, and ensuring
the defined get and set methods for the property are only called in the main thread via the
previously described feature of qtutils. In rare cases where operations are not atomic14, and
we do not want to defer execution into a function to be executed in the main thread, we
use Python locks or events to ensure thread-safe serialisation of the task.

We also heavily rely on the use of multiprocessing. While multiprocessing provides
a potential speed-boost on multicore systems (since it does not suffer from the Python
GIL), and does not share the risks of multithreading, we primarily use it as a means of
sandboxing code. We created our own cross-platform multiprocessing library and integrated
it into our zprocess library. Primarily authored by Chris Billington, zprocess provides
convenience methods for launching Python classes or scripts in a separate Python process,
and automatically sets up two way communication via ZeroMQ sockets. BLACS and lyse
are the primary users of this approach, although runmanager also uses a separate process
for shot generation.

In BLACS, we use a separate ‘worker process’ when interacting with each hardware de-
vice. This prevents the failure of one device from taking down the entire control interface.
This is particularly important given that most devices interface using a third party Python
library and/or DLL, both of which may exhibit memory leaks, or worse, cause the calling
process (our control system) to ‘segfault’ (where the entire process unexpectedly, and imme-
diately, terminates). By sandboxing these libraries in dedicated processes, we can present
the user with debugging information regarding the crash and provide a means for restarting
the failed process. The user also continues to maintain control over the remaining devices
that are functioning correctly. This is particularly critical for complex experiments where
not all hardware is in use in every experiment, as it prevents an unused, but still connected,
device from taking down a working system.

In lyse, we use a similar sandboxing technique for each analysis process. Here however,
the main benefit is the separation of figure managers for the set of plot windows associated
with each analysis script. Similarly to BLACS, sandboxing prevents the failure of one script
from taking down the rest of the analysis scripts (which would result in the closure of all
plot windows, rather than just those associated with a single script).

4.5 Summary

In this chapter we introduced the labscript suite and discussed the underlying technologies
and design themes we incorporated. We largely follow the Unix philosophy in our develop-
ment. The labscript suite is made up of several distinct programs, which are designed to
perform a specific aspect of the experiment lifecycle. We rapidly tested our development on

14. Not to be confused with the scientific use of the word atomic, in software engineering ‘atomic’ refers
to the indivisibility of an instruction. In this case, we refer to the indivisibility of a Python command,
which is defined by whether the Python GIL can switch between the current thread context being
executed part way through a command. If the GIL cannot, then the command is atomic. If the GIL
can switch the currently executing thread midway through the command, then it is not atomic. In
such cases, data being used by the command could be modified by another thread part way through
execution (if the GIL switches to it), which would result in undefined behaviour when the GIL returned
execution to the command unless steps are taken to prevent this behaviour.
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our apparatus, and ensured that the design was informed by how we used the control system
to perform scientific experiments. Flexibility was also a key requirement of our development
process, so that we could ensure our control system was useful to other laboratories, as well
as future proofed for new and complex experiments that we researchers are yet to conceive.
We also outlined our decision to balance graphical interfaces with textual programming
interfaces, and contrasted this to some of the systems reviewed in chapter 2. We then
discussed the modern technologies we used in the development of our software framework,
specifically the use of the modern programming language Python, the cross-platform and
cross-language libraries we use as an interface between components of the labscript suite,
and the comprehensive use of multi-threading and multiprocessing to both speed up our
framework and to ensure it is robust to failure. In the next chapters we will dive into the
detail of how we implemented each component of the labscript suite, and continue to discuss
how these choices help perform novel scientific experiments.



Chapter 5

Preparing experiments with the
labscript suite

The labscript suite can be broken into two broad categories. The first is the preparation
of an experiment, which we will discuss in this chapter. In the following chapter, we’ll
discuss the second category: execution of the experiment including automating the analysis
of results.

The core labscript suite applications for preparing an experiment (labscript, runmanager,
and runviewer) were introduced in the previous chapter. In this chapter, we’ll discuss the
implementation of these programs and how this leads to better control of an experiment.

5.1 Labscript API

The labscript API is the heart of the labscript suite, as it provides the interface for defining
how the hardware will behave during an experiment1. The labscript API was designed
around the premise that the set of heterogeneous hardware to control would be buffered;
that is the hardware would be preprogrammed with a set of instructions that define the
output states at a series of times. These hardware instructions would then be stepped
through on the edges of a digital clocking signal from a pseudoclock. Hardware instructions
are typically esoteric, thus difficult for humans to both create them, as well as read them, by
hand. The aim of the labscript API is to provide a high level interface for lab users, which
will in turn create the low level instructions needed for each piece of hardware, including
the clocking signal.

Labscript is built around the use of a pseudoclock, or variable frequency clock. All lab-
script experiments must use at least one pseudoclock, called the master pseudoclock, which
controls the timing of all other devices. In general, these other devices are stepped through
a table of hardware instructions at a rate determined by the pseudoclock (see §2.2.3). How-
ever, for experiments with a large number of devices we also provide support for secondary
pseudoclocks. Secondary pseudoclocks are synchronised to the master pseudoclock via an
initial external trigger, but otherwise run independently of the master pseudoclock. This
allows groups of devices to be split up across multiple pseudoclocks, minimising the num-

1. We use ‘experiment’ in this chapter as defined in §4.1.

79



80 CHAPTER 5. PREPARING EXPERIMENTS WITH THE LABSCRIPT SUITE

PineBlaster

NI PCIe 6363

Digital Output

Pseudoclock

Physical connection between two devices

Device with output channels

Connection physically within device

Digital output port

Figure 5.1: The simplest hierarchy of devices supported by labscript. Here, a PineBlaster
pseudoclock (detailed in [8, 82, 83]) is connected to a NI general purpose output card, in this
case with only a single digital output port configured for use. Arrows show the hierarchy
of device control, and point from the controlling device that dictates timing events (parent)
to the controlled device (child). The NI card will update the output state of the digital
output on each rising edge of the clocking signal from the PineBlaster.

ber of unnecessary instructions in devices that do not require output state changes when
another does. We discuss pseudoclocks further in §5.1.4 and §5.1.5.

The labscript suite asks users to define experiment logic inside a Python file (a Python
script), using the labscript API. We describe these files as ‘experiment logic files’ or ‘lab-
script files’, and they are stored in a folder called labscriptlib, which is created during the
labscript suite installation process. When this script is executed (by runmanager, see §5.2),
the calls to the labscript API are executed and the hardware instructions are produced and
saved in a file (to be programmed into the hardware at a later time). By convention, we
associate experiments with their own independent Python file, although it is important to
note that this file is free to import code from any other Python module including those cre-
ated by the user (which may also utilise the labscript API). This allows common experiment
logic to be easily shared between different experiments. The experiment logic file consists
of two parts: the ‘connection table’, which we cover in §5.1.1, and the ‘experiment logic’,
which we cover in §5.1.2. The features of the labscript API are then covered in sections
§5.1.3 to §5.1.9
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5.1.1 Connection table

The labscript API assumes a particular hierarchy of devices2 and their connections. At
the simplest level, labscript requires two devices: a single device for generating a clocking
signal, known as the pseudoclock, and a device with output channels (such as digital or
analog outputs) that is fed the clocking signal. Such a hierarchy is shown in figure 5.1. The
pseudoclock thus controls the timing of each output, albeit indirectly. There are very few
limitations3 to the complexity of the hierarchy of devices labscript supports. For example,
multiple output devices can be attached to a single pseudoclock, and these can, in turn,
trigger one or more secondary pseudoclocks that may have their own output devices attached
(see figure 5.2). This leads to an architecture that supports an almost unlimited set of
devices, which is a very powerful tool for experiments (such as those using ultracold atoms)
that are rapidly increasing in complexity.

As shown in figures 5.1 and 5.2, the hierarchy of devices and outputs naturally follows
the lines of control as indicated by the arrows in those figures. For example, a pseudoclock
controls the timing of other devices, which in turn control the state of their outputs. The
natural way to represent this hierarchy of devices and I/O channels, from within a program-
ming language, is to use an object-oriented approach where each object maintains references
to its parent and children (as indicated by the aforementioned lines of control). We term
this the ‘hierarchy of control’. The labscript API defines a set of Python classes4, which can
be instantiated by the user (or by internal labscript code) to define this hierarchy as part of
the connection table definition in the experiment logic file. Each class expects a reference
to a parent object, along with a description of the connection to the parent, to be passed
as arguments at object instantiation time. This defines the parent-child relationship, where
parents guide their child objects, which in turn guide their children, ad infinitum. The
hierarchy of Python objects is more detailed than the device hierarchy shown previously,
although they do map to each other. An example is shown in figure 5.3 and the mapping
of the Python objects to real hardware is shown in figure 5.4.

In addition to the hierarchy of control, there is an additional hierarchy of class inheritance
that allows existing labscript functionality to be extended through subclasses (see figure 5.5).
At the base level, every labscript object is an instance of the Device class, which provides
basic management of the parent-child relationship between objects in the control hierarchy.
Labscript then provides generic subclasses of Device for items in the control hierarchy,
such as IntermediateDevice, TriggerableDevice, Pseudoclock, ClockLine, AnalogIn,
and Output, which all inherit from Device. Some of these classes may also be subclassed
further by labscript, for example to implement specific output types such as DigitalOut
and AnalogOut. These each provide a general purpose implementation of functionality for
their level of control (as introduced in figure 5.3). For example, Pseudoclock contains

2. It is important to note that we use the word ‘device’ loosely here. A device does not necessarily have
to correspond to one physical hardware device, a point on which we will elaborate shortly.

3. The current known limitations are artificial and relate to the connection of the ‘wait monitor’, and
support for tertiary, or higher, pseudoclocks. These restrictions will likely be removed in the next
major version of labscript.

4. For readers unfamiliar with object oriented programming in Python, a ‘class’ is, loosely, a template for
a data structure and associated functions that are to act on that data. Instantiating a class creates an
object that follows the template defined by the class. Objects are thus known as ‘instances’ of a class,
and multiple instances of a single class are allowed (for example two physical PulseBlaster devices could
be represented by two separate instances of the PulseBlaster class).
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PineBlaster

NI PCIe 6363

Trigger

NI PCIe 6363 NI PCI 6733

Digital Output

Analog Output

Analog Input

Digital Output

Digital Output

Analog Input

PulseBlaster

Novatech DDS9m

DDS Output

DDS Output

Static DDS Output

Static DDS Output

DDS Output

DDS Output

DDS Output

DDS Output

Static DDS Output

Novatech DDS9m Novatech DDS9m

Analog Outtput

Analog Output

Figure 5.2: A more complex version of the device hierarchy supported by labscript. Here,
the clocking signal from the PineBlaster is simultaneously fed into three separate NI cards.
These cards are configured with a variety of digital and analog outputs. As in figure 5.1, the
NI cards will update the state of each output on the rising edge of the clocking signal from the
PineBlaster, as shown by the arrows that indicate the hierarchy of control. Digital output
ports can also be configured as ‘Triggers’, which can be connected to other pseudoclock like
devices. In this example, one of the digital outputs of the first NI card is configured as
a trigger, and connected to a PulseBlaster. The PulseBlaster operates as an independent
pseudoclock to the PineBlaster, but is synchronised by a pulse at the start of the shot.
In turn, the PulseBlaster can provide a clocking signal to other devices, in this case three
Novatech DDS9m devices, which can each have up to two DDS outputs configured whose
output state is updated by the clocking signal (in addition to two static DDS outputs that
can only be set once at the start of a shot). As the PulseBlaster has multiple clocking
outputs, these can be used to segregate devices into groups, which can be beneficial for
reducing the required number of instructions to be programmed into the devices (see §5.1.4
and §5.1.5).
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Pseudoclock

IntermediateDevice

Trigger
(DigitalOut)

IntermediateDevice IntermediateDevice

DigitalOut
(DigitalQuantity)

AnalogOut
(AnalogQuantity)

AnalogIn

CustomSsubclassSofS
Output

DDS
Shutter

(DigitalOut)

PseudoclockDevice
(TriggerableDevice)

ClockLine ClockLine

AnalogQuantity

AnalogQuantity

AnalogQuantity

PseudoclockDevice
(TriggerableDevice)

Figure 5.3: An example hierarchy of the Python objects in a connection table definition.
The labscript control hierarchy always follows the pattern of a PseudoclockDevice with
one of more Pseudoclock children, which in turn have one or more ClockLine children.
Each ClockLine object can then have one or more IntermediateDevice attached. An
IntermediateDevice then has one or more children that represent an input or output
channel of a device. We show how the hierarchy of control maps to hardware devices in
figure 5.4. PseudoclockDevice, IntermediateDevice, and the AnalogQuantity classes
are not directly used in an experiment logic file, but are subclassed when adding support
for new devices in order to implement specific device or I/O behaviour. All objects derive
from Python classes that subclass Device, which provides basic parent child relationship
management between the objects. For devices that indirectly subclass Device, we show
the parent class in brackets (with the exception of AnalogQuantity and DigitalQuantity,
which have a parent class of Output that in turn is a subclass of Device). The full hierarchy
of class inheritance is shown in figure 5.5. Note that in practice, many of the classes
shown in this figure would be replaced with a device specific subclass when constructing
the connection table. We discuss subclassing of labscript classes in §7.1. It should also be
noted that device specific code may also internally create some of the control hierarchy so
that users are not required to explicitly instantiate objects they do not need to access.



84 CHAPTER 5. PREPARING EXPERIMENTS WITH THE LABSCRIPT SUITE

Pseudoclock

IntermediateDevice

Trigger
(DigitalOut)

IntermediateDevice IntermediateDevice

DigitalOut
(DigitalQuantity)

AnalogOut
(AnalogQuantity)

AnalogIn

CustomSsubclassSofS
Output

DDS
Shutter

(DigitalOut)

PseudoclockDevice
(TriggerableDevice)

ClockLine ClockLine

AnalogQuantity
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PseudoclockDevice
(TriggerableDevice)

PulseBlaster

NI PCIe 6363 Novatech DDS9mNI PCIe 6363

Figure 5.4: Here we show how the Python classes provided by the labscript API (shown
in figure 5.3) map to real hardware. Additional devices (with complex control hierarchies)
can be connected via secondary pseudoclocks, as indicated by the unbounded and unla-
belled PseudoclockDevice at the bottom of the figure. Note that PulseBlasters (and other
similar devices) may be configured to use digital outputs (and DDSs on some models) as
direct outputs (in a similar way to those attached to the NI or Novatech devices). In this
case, the PulseBlaster device code (provided in the labscript suite) internally creates a
ClockLine and IntermediateDevice object (exposed via the direct_outputs attribute of
a PulseBlaster object) to connect the DigitalOut or DDS outputs to. This ensures all
objects correctly follow the prescribed hierarchy by labscript, even if the hardware is not
physically separable into pseudoclock devices and devices that are clocked by a pseudoclock.
For brevity, these internally created objects are not pictured.

the algorithm for generating a representation of a pseudoclock signal, based on how the
child outputs are commanded, which can be later converted into hardware instructions for
a specific device. The subclasses provided by labscript can then be subclassed again by
developers when implementing device specific behaviour (see §7.1). Ultimately it is these
device specific subclasses, along with the labscript provided I/O classes that are instantiated
as part of the connection table (see figure 5.6).

Maintaining a record of the hardware configuration in a lab is key to good record keeping.
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Figure 5.5: The hierarchy of class inheritance within the labscript API. All classes
pictured derive (inherit) from the Device class. Classes PseudoclockDevice and
IntermediateDevice are subclassed by developers when implementing support for new
hardware devices.

Labscript automatically writes a record of the object control hierarchy into each shot file,
for any object that derives from the Device class. Not only does this record allow you to
look back at how hardware was previously configured, it provides framework for determining
whether an old experiment can run. This is particularly critical for experiments that have
sensitive and/or expensive equipment connected. By maintaining a record of how each device
is connected together, and what each output and input is used for, it becomes possible to
prevent old experiment logic (written for a previous configuration of the hardware) from
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# Create the PseudoclockDevice (with internal Pseudoclock )
# and two clocklines
PulseBlaster (name=’pulseblaster_0 ’, board_number =0)
ClockLine (name=’pulseblaster_0_clock1 ’,

pseudoclock = pulseblaster_0 . pseudoclock ,
connection =’flag 0’)

ClockLine (name=’pulseblaster_0_clock2 ’,
pseudoclock = pulseblaster_0 . pseudoclock ,
connection =’flag 1’)

# create the NI card (that has its own clockline )
# and the attached I/O
NI_PCIe_6363 (name=’ni_pcie_6363_0 ’,

parent_device = pulseblaster_0_clock1 ,
clock_terminal =’/ ni_pcie_6363_0 /PFI0 ’,
MAX_name =’ni_pcie_6363_0 ’,
acquisition_rate =1e3)

DigitalOut (’flipper_mirror ’, ni_pcie_6363_0 , ’port0/line0 ’)
AnalogOut (’bias_coil_x ’, ni_pcie_6363_0 , ’ao1 ’)
AnalogIn (’bias_x_field ’, ni_pcie_6363_0 , ’ai13 ’)

# create two devices (that share a single a single clockline )
# and the attached I/O
NI_PCIe_6363 (name=’ni_pcie_6363_1 ’,

parent_device = pulseblaster_0_clock2 ,
clock_terminal =’/ ni_pcie_6363_1 /PFI0 ’,
MAX_name =’ni_pcie_6363_1 ’,
acquisition_rate =2e3)

NovaTechDDS9M (name=’novatechdds9m_0 ’,
parent_device = pulseblaster_0_clock2 ,
com_port =’com1 ’)

Shutter (’imaging_shutter ’, ni_pcie_6363_1 , ’port0/line0 ’)
DDS (’imaging_AOM ’, novatechdds9m_0s , ’channel 0’)

Figure 5.6: Top: The Python code required to define the hierarchy of classes shown in figures
5.3 and 5.4. Note that we have not included the Trigger and additional PseudoclockDevice
or the custom subclass of Output. Bottom: The connection table as stored in the hdf5 file
(displayed in HDFView). You will notice entries for the internally created objects, such as
the PulseBlaster pseudoclock and DDS analog quantities.
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running and damaging equipment. Indeed we implement such a check in BLACS (see §6.1.2
for details on how the connection table, and the device configuration information, is verified).

5.1.2 Experiment logic

Given a set of labscript objects corresponding to the hardware devices and their output
channels (see details on constructing a connection table in §5.1.1), a user is now at a point
where they can define experiment logic. Each output channel object is an instance of, or
inherits from, one of several labscript classes such as DigitalOut or DDS, which have a set of
methods designed specifically for commanding output. These methods always take a time
parameter, and for outputs that are analog in nature, an output value parameter and an
optional unit (see §5.1.9 for further details on units). The time and value parameter are
always specified in SI units (unless a non-SI unit is explicitly specified for the value) and the
method names are chosen specifically for readability. For example, objects that inherit from
Shutter have open and close methods, DDS objects contain setfreq, setamp, setphase,
enable and disable methods, and DigitalOut objects have go_high and go_low meth-
ods. This results in commands that look like imaging_aom.setfreq(t, 83.5, “MHz”) or
imaging_shutter.open(t). Thus, each command defining experiment logic is a very read-
able line of code, despite being written in a general purpose programming language. We
believe this lowers the entry barrier for new lab members, as they don’t need to wrap their
heads around low level grids of dots (like line-based systems) or unreadable code. It also
makes debugging faster, and more accurate, for experienced lab users.

The example output commands presented thus far are quite simple, defining only a single
change in output value at the specified time. While a user could combine these simple
labscript methods with the general purpose control flow statements (such as for loops and
function definitions) to construct more complex output commands, this is cumbersome and
difficult to optimise for use with a general purpose pseudoclock if the user intends to have
multiple complex output commands that overlap in time. We demonstrate two such ‘poor’
examples in figures 5.7(a) and 5.7(b). To improve upon this, the labscript API instead
provides methods for ramping outputs that are analog in nature. Methods are provided for
many common use cases (such as linear, quarter-sine and exponential ramps), however it
is also possible to define a custom ramp profile simply by passing a Python function (one
that defines the profile as a function of time) to the appropriate labscript API method. An
example use of the linear ramp in shown in figure 5.7(c). The key benefit of these inbuilt
ramping methods is they delay evaluation of the output state until all experiment logic
has been defined. This ensures labscript has all necessary information to correctly segment
overlapping ramps and dynamically determine the appropriate sample rate for each ramp
segment based on the maximum sample rate requested across concurrent ramps. See §5.1.4
for further details on the internal workings of the labscript pseudoclock generation. Ramping
methods thus typically take the parameters time, duration, initial and final values, sample
rate and an optional unit, as well as any other parameters required to fully define the output
profile (such as an exponential decay constant). Again, this results in very readable code
(as shown in figure 5.7(c)).

We have previously discussed the general benefits of textual vs. graphical systems for
defining experiment logic (see §4.3.3). We can now present concrete examples of these
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initial = 3.0 # Amps
final = 6.0 # Amps
duration = 2.0 # seconds
sample_rate = 1e3 # 1 KHz
# linearly ramp the bias_x coil from 3 to 6 amps over the length of
# time specified by duration , with the specified sample rate
for dt in linspace (0, duration , duration * sample_rate ):

bias_coil_x . constant (t+dt , (( final- initial )/ duration )*dt+initial ,
units=’A’)

(a) A bad example of ‘ramping’ an output. Here, the user has to manually create code that defines
the functional form of the ramp, produce the grid of time points at which to evaluate the ramp
and iterate over this in order to instruct labscript to produce the required output. Furthermore, it
would be difficult for the labscript API to distinguish between a ramp of this form and repeated
calls to set the value of the output that were unrelated to each other. Producing an optimised
pseudoclock from even this simple example would thus be computationally intensive.
# ramp 1 parameters
t_initial = 1.0 # seconds
initial = 3.0 # Amps
final = 6.0 # Amps
duration = 2.0 # seconds
sample_rate = 1e3 # 1 KHz
ramp_m = (final- initial )/ duration # gradient of ramp 1
# ramp 2 parameters
t_initial2 = 1.5 # seconds
initial2 = 82.0 # MHz
final2 = 84.0 # Amps
duration2 = 1.0 # seconds
sample_rate2 = 2e3 # 1 KHz

# linearly ramp the bias_x coil from 3 to 6 amps over the length of
# time specified by duration , with the specified sample rate
t = t_initial
seg1_d = t_initial2 - t_initial # duration of segment 1
for dt in linspace (0, seg1_d , seg1_d * sample_rate , endpoint =False):

bias_coil_x . constant (t+dt , ramp_m *dt+initial , units=’A’)

t += seg1_d
max_rate = max( sample_rate , sample_rate2 )
for dt in linspace (0, duration2 , duration *max_rate , endpoint =False):

bias_coil_x . constant (t+dt , ramp_m *(dt+ seg1_d )+initial , units=’A’)
imaging_AOM . setfreq (t+dt , (( final2 - initial2 )/ duration2 )*dt+

initial2 , units=’MHz ’)

t += duration2
# set endpoint of imaging_AOM
imaging_AOM . setfreq (t, final , units=’MHz ’)
seg3_d = ( t_initial + duration )-t # duration of segment 3
for dt in linspace (0, seg3_d , seg3_d * sample_rate ):

bias_coil_x . constant (t+dt , ramp_m *(dt+( duration - seg3_d ))+initial ,
units=’A’)

(b) Continuing the theme of bad examples, this shows how you might write code for two overlapping
ramps, using the approach shown in (a). Note that this example does not work if one ramp was
not entirely contained by the other or if you want to have more than two ramps overlapping.
Generalising this approach produces even more complex code, that would need to be written in
each place in the script where you required overlapping ramps.
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bias_coil_x .ramp(t=1, duration =2, initial =3, final=6,
sample_rate =1e3 , units=’A’)

imaging_AOM . frequency .ramp(t=1.5, duration =1, initial =82 , final=84 ,
sample_rate =2e3 , units=’A’)

(c) An example of how the advanced labscript API allows for the simple definition of complex
overlapping ramps of outputs. Here, we reproduce all of the logic of (b) in a far more readable
(and shorter) block of code. It can be immediately seen from the experiment logic how the ramps
are parameterised, their functional form (based on the method name, e.g. ‘ramp’ for linear), and
how they overlap. The labscript API internally splits the ramps up into sections based on the
times at which they overlap and automatically produces the appropriate grid of time points based
on the maximum sample rate requested at any given time. Furthermore, the labscript API is able
to use the parametrisation of the ramps in order to efficiently determine the required pseudoclock
instructions necessary to generate the specified output.

Figure 5.7

benefits as demonstrated by the labscript API. As the experiment logic is written in a
general purpose programming language, the user is given access (by default) to all control
flow tools available in that language. Conditional logic is thus as simple as calling different
labscript API methods from within the if/else blocks of an if statement. If the conditional
expression is defined as a runmanager global variable (see §5.1.3 and §5.2), the logic of an
experiment can be changed shot-to-shot simply by toggling a Boolean variable from within
the graphical interface of runmanager. If a sequence of commands needs to be repeated
(and is not suited to analog ramps as described above), they can be easily put inside a for
or while loop. An example of such a sequence is show in figure 5.8. Experiment logic can
also be easily commented out, put into reusable functions or copy-pasted at will. Textual
definition of experiment logic naturally lends itself to supporting a non-linear temporal
definition of output commands. While a text document is by nature linear (sequential
lines), the use of labscript API methods do not need to be in sequential time order. This
allows the user to call the labscript methods in the order that makes logical sense to a reader,
again increasing the readability of the logic. For example, shutters often have opening and
closing delays, requiring the digital trigger to be issued prior to the requested open or close
time. Similarly, a camera exposure may begin significantly before the event of interest in
order to minimise the subsequent inter-frame time. Using the labscript API, the command
to expose could be issued as camera.expose(t-exposure+event_duration, ...) and be
physically located in the text file, next to experiment logic that triggers the event of interest.
Alternatively, this behaviour can be incorporated internally within a labscript API class,
as is the case for the Shutter. The Shutter class takes an open and close delay as an
optional argument when it is instantiated. Then when the open and close methods are
called at time t, the digital pulses are actually offset from t automatically such that the
shutter is physically opened or closed by the requested time (this can be seen graphically
within runviewer, see figure 5.21).
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# now the source MOT should be on , along with the central MOT
# we begin the pushing sequence :
if verbose :

print " Starting Rb MOT load at t = %s"%t
# temporarily duplicate "t"
rb_load_t = t
# iteratively load the Rb central MOT
while ( rb_load_t + rb_source_MOT_load_time + rb_push_duration

< t + rb_central_MOT_load_time ):
# let the source MOT load
rb_load_t += rb_source_MOT_load_time

# turn off trap light to repump while we push ,
# and turn on push beam
rb_source_MOT_trap_aom . disable ( rb_load_t )
rb_imaging_push_aom . enable ( rb_load_t )

#wait for the push duration
rb_load_t += rb_push_duration

#turn the push off and the MOT back on
rb_source_MOT_trap_aom . enable ( rb_load_t )
rb_imaging_push_aom . disable ( rb_load_t )

#load is now complete
#turn off source
rb_source_MOT_trap_aom . disable ( rb_load_t )
rb_source_MOT_repump_aom . disable ( rb_load_t )
rb_source_MOT_shutter .close( rb_load_t )
t= rb_load_t

Figure 5.8: An example of how standard control statements from a programming lan-
guage can be used to easily augment experiment logic. Here we show a segment of
code from the experiment logic of our dual-species BEC apparatus at Monash Univer-
sity, where we repeatedly load the central rubidium MOT from the rubidium source MOT.
This loops the push sequence as many times as will fit within the time defined by the
rb_central_MOT_load_time global, where the length of a single push sequence is defined
by the sum of rb_source_MOT_load_time (the length of time it takes to load the source
MOT from background vapour) and rb_push_duration (the length of time we push for in
each iteration).

5.1.3 Global variables

Labscript inserts global variables (defined in runmanager) into a global Python namespace.
These global variables are read from a hdf5 shot file (typically created by runmanager). To
ensure these global variables are not only accessible to the experiment logic script, but also
to any script that the experiment logic script imports, we inject the global variables into the
Python __builtin__ module. This module traditionally houses the basic built-in items of
Python (such as standard Exceptions, inbuilt data types and a set of standard functions for
working with these data types, see [151]) and is, traditionally, not intended to be modified
(although modification is not forbidden). By inserting global variables here, we remove the
need for the user to do anything special to access the global variables they have defined,
reducing the barrier to entry.
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It is also worth noting that we perform an identical trick when defining devices and
channels in the connection table. In order to demonstrate why this is necessary, consider
the following example of how we would have implemented the connection table definition
if we had followed the standard Python format for object instantiation: pulse_blaster_1
= PulseBlaster(board=0). In this scenario, while the PulseBlaster object is assigned to
a named variable, the internal methods of this object have no access to the name of the
variable it was assigned to. As such, there is no record of a device name. If you wished to use
this device inside an imported function, you would also need to manually pass a reference
to this device as one of the function arguments (which becomes significantly unwieldy if
you abstract to the level of a function like make_bec(t) which would then require you pass
almost everything in your connection table as arguments to the function!). Instead (as
shown in §5.1.1) we pass the name in as a string and don’t directly assign the object to a
variable in the experiment logic script (for example PulseBlaster(’pulse_blaster_1’,
board=0)). However, internally (at instantiation time), we inject a reference to the created
object directly into the __builtin__ namespace so that it is accessible through a variable
with the name passed in to the class constructor, in exactly the same way as global variables
from runmanager are made accessible. While this represents the most significant departure
from Python standard practice in the entire labscript suite, it is still implemented using
inbuilt Python tools and mimics the end-result of the standard Python syntax.

5.1.4 Pseudoclocks

As discussed previously, labscript is built around the use of a pseudoclock (and indeed, re-
quires one at the top of the device tree). Labscript was specifically designed to automatically
create the required pseudoclock instructions, based on the experiment logic commanded by
the user, in order to make it easier to define complex experiment logic.

By default, labscript assumes that pseudoclocks support complex hardware instructions
(such as looping instructions, see §2.2.3)5. This makes it much simpler to manage the
generation of pseudoclock instructions for the ‘ramping’ functions introduced in §5.1.2. As
each requested output ramp has a specified sample rate, it is implied that there is a set of
output instructions that will be stepped through at a constant rate for the duration of the
ramp. This then maps trivially to a pseudoclock instruction that ticks N times where N

can be determined from the length of the ramp and the sample rate.
Of course, as intimated in §5.1.2, labscript supports simultaneous ramps, on multiple

channels (that are clocked by the same pseudoclock), that may partially (or fully) overlap
in time. The generation of the pseudoclock becomes significantly harder in such cases, but
is key to providing the flexibility we demand. We use the following algorithm to generate
the pseudoclock instructions, which successfully handles many complex cases (a flowchart
of this process is also shown in figure 5.9):

1. A pseudoclock object requests, from all outputs attached to all devices clocked by
the pseudoclock, a list of times at which the output state changes. We call these the

5. This is not a strict requirement since it is a simple computation to expand a looping set of hardware
instruction to a linear set of hardware instructions. However, most devices without support for complex
hardware instructions do not have sufficient memory for holding the linear set of hardware instructions
(or are more expensive).
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Figure 5.9: A flowchart of the pseudoclock generation algorithm. See main body text of
§5.1.4 for further details.

‘change times’. At this stage, ramps are only represented by a single entry, correspond-
ing to the start of the ramp. The request is made by calling the get_change_times()
method on each output object (which the pseudoclock holds a reference too). This
method performs a check to ensure that requested output for a given channel does
not conflict with itself (for instance, that you have not attempted to command output
from a channel at a time when output has already been commanded from that same
channel at that same time).

2. The pseudoclock next produces the set of all change times, and ensures there is a
change time for the start and end of the shot as well as for any triggers. Change times
are then quantised to the timing resolution of the pseudoclock, to minimise timing
errors during future calculations. Checks are performed on this set of change times
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to ensure that no change time is too close to another, which is defined by the device
with the slowest update rate that is attached to the pseudoclock. We also check to
ensure no output was commanded after the specified stop time.

3. The set of all change times is then passed back to each output object via a call to the
method make_timeseries(). This allows each output object to break up any ramps
that may intersect with an update on another channel (in the same way that ramps
are represented as 1 instruction prior to this step, if ramps must be broken up into
segments, each segment is represented by only 1 instruction for now). The result is
that each output attached to the pseudoclock now has the same number of instruction
as all of the others. Each instruction now also corresponds directly to each element of
the change times set, which allows the pseudoclock to ascertain the type of instruction
at each point in time.

4. The pseudoclock then iterates over each time point in the change times set. At each
point, the pseudoclock looks for instructions on output channels that require a ramp.
If found, the pseudoclock takes the maximum rate out of all ramps at the current
point in time, and generates an array of clock ticks that is added to a list of times
at which the clock ticks (which we call the set of ‘all times’). Note that this ramp
may only be a portion of the commanded ramp if the ramp was split in step 3. This
ensures that overlapping ramps only update at the faster of the specified sample rates,
during the overlapping segments. Checks are performed to ensure that the required
sample rate does not exceed the capabilities of the pseudoclock or the slowest device
(as described in step 2). If no ramps are found for a given time point, then just a
single value is added to the set of all times.

We also, for each time point, generate a set of Python dictionaries that contain in-
formation about the required pseudoclock instruction at each step. We call these
pseudo-pseudoclock instructions. These instructions are formatted in a device agnos-
tic way and contain information such as the time of the instruction, the time step
between clock ticks, and the number of clock ticks to produce.

5. The set of all times, which is a list that contains elements that are either single time
points (for single state changes) or an array of time points (for ramps), is then passed
to each output object via a call to the method expand_timeseries(). Each output
object then evaluates the output state at each time point, which may involve evaluating
the function that defines a ramp at a set of time points, or duplicating a single value
across multiple time points (for example, if a ramp was present on another channel).
The output states are then stored in the raw_output attribute of each output object.

6. All information about the output states have now been produced. The code specific to
the pseudoclock device implementation now runs to convert the pseudo-pseudoclock
instructions into hardware specific instructions for the device in use, and these are
stored in the hdf5 file (see sections §5.1.8 and §7.1.1). Output devices also collate
the instructions from the attached output channel objects, and these are also stored
in the hdf5 file.
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While the algorithm is quite complex, the object oriented design of labscript allows users to
reuse our code trivially in their own pseudoclock device implementations. This brings both
simplicity and consistency to the implementation of pseudoclocks in scientific experiments.
Encapsulating this algorithm within an object hierarchy also makes the implementation of
secondary pseudoclocks possible. Once the master pseudoclock has been generated, the
identical algorithm is run for all secondary pseudoclocks (with a minor timing offset to
account for triggering delays of secondary pseudoclocks).

5.1.5 Gated clocks

There are some obvious limitations to the pseudoclock instruction generating algorithm
described in the previous section. Most notably, the fact that the global update rate is
limited by the device with the slowest update rate. While this can be solved by splitting
devices across multiple pseudoclocks, such an approach requires more devices, which may
encroach on cost or space limitations of certain projects. In discussion with Ian Spielman
(NIST) and the Monash development team, I developed a modified algorithm, which we call
‘gated clocks’, that bypasses this limitation6.

Some pseudoclock devices (for example, the PulseBlaster) can command multiple digital
outputs. While these cannot be used as independent pseudoclocks (since they do not have
independent instruction sets per output), they can be used to avoid the update rate limita-
tions of slow devices for the majority of an experiment shot. We conceptualised this through
the ClockLine class previously introduced as part of the labscript API object hierarchy.
By attaching devices to specific clocklines, we have a programmatic means of separating
these devices in labscript. The algorithm for generating pseudoclock instructions is then
able to generate additional metadata (to be used by the pseudoclock device specific code,
see §7.1.1), which indicates the set of clocklines that must tick for any given pseudoclock
instruction (and by inference, the set of clocklines that should not tick). We can thus bypass
the update rate restrictions imposed by slow devices in time periods where the outputs of
slow devices do not need to update. The maximum update rate at any given time is thus
restricted only by the slowest update rate out of all devices that update their output state
at that time (see figure 5.10).

5.1.6 Controlling data acquisition

So far, we have only discussed control of outputs. However, an integral part of any ex-
periment is, of course, making a measurement. For experiments under computer control,
this is done by acquiring one or more sets of data using acquisition devices. These devices
may be dedicated, or incorporated into devices that also support output and, at least for
ultracold atom experiments, can be broken into two categories: devices that acquire analog
time series, and cameras that acquire one or more images7.

6. This modification is one of the major feature improvements since the labscript suite was published.
7. The labscript suite does not currently support digital inputs, as there has not yet been sufficient

demand. We expect to eventually add support, but in a pinch, analog inputs can of course acquire
digital signals as well.
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Figure 5.10: An example of gated clocks. Here we have two devices: Device1 with a
single analog output called Device1AO1, and Device2 with an analog output Device2AO1
and a digital output Device2DO1. The maximum update rate of Device1 is twice that of
Device2. The two devices are clocked by separate clocklines Dev1_clock and Dev2_clock
respectively. In this scenario, we assume that the first ramp of Device2AO1 occurs at the
maximum update rate for the device and thus half of the maximum update rate for Device1
We ‘gate’ each clockline (shaded area) at times where the attached outputs do not update
their state. This allows for clockline Dev1_clock to tick faster than the limit imposed by
Device2, as Device2 does not receive clock ticks during this time. This also saves redundant
hardware instructions in a similar way to secondary pseudoclocks. Note that while gated
clocks results in asymmetric clock ticks during the shaded regions, devices that can handle
a variable frequency clock can typically also handle asymmetric clocking pulses.

5.1.6.1 Analog time series

The acquisition of an analog time series does not require control by a pseudoclock. This
is because the vast majority of use cases expect a constant sample rate. While it is often
expected that acquisition of analog time series may occur for several brief periods in a shot
(rather than continuously throughout the entire shot), this is often achieved through gating
the acquisition device via a digital output, rather than preprogramming a set of acquisition
parameters prior to the shot commencing. This is an artefact of the way most acquisition
devices are implemented, rather than a specific labscript design decision.
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The labscript syntax for defining analog time series acquisitions is similar to that of
outputs. In the connection table, acquisition devices are defined in the same way as output
devices (either as a child of a ClockLine if they support output, or as a child of a digital
trigger if they are a standalone acquisition device). An additional entry is made for each
analog input channel (using the AnalogIn labscript class) that is attached to the previously
defined device object. Often, a digital output is also defined for triggering the acquisition
to begin at the start of the shot (some devices that support both input and output are
able to use the first pseudoclock pulse to also trigger the acquisition instead). To define
an acquisition, each AnalogIn object has an acquire method that takes a (unique) name,
the start time and the end time as arguments. This results in similarly readable code
(as previously shown for the outputs) such as MOT_fluorescence_monitor.acquire(’MOT
load’, start_time=0, end_time=5). Labscript currently assumes that the acquisition
sample rate is fixed throughout the experiment, and so this parameter is typically defined
in the connection table as part of the parent device instantiation. However, this behaviour
could be changed easily by subclassing the relevant labscript acquisition classes.

Labscript also does not currently support hardware gating of analog acquisitions. In-
stead, analog acquisitions are gated in software after the shot has completed8. This has the
downside of leaving the initial trigger as the only synchronisation point between the acqui-
sition of analog time series and output devices, the ramifications of which will be explored
in §5.1.7.

5.1.6.2 Images

Image acquisition, like analog time series, uses a digital trigger for synchronisation. However,
unlike analog time series, this trigger usually occurs during the experiment and may occur
multiple times. So while cameras are not controlled by a pseudoclock (that is, their data
acquisition process and read out of data is not clocked by the pseudoclock), the times at
which acquisitions begin are controlled by a pseudoclock. As such, cameras in labscript are
effectively modelled as a digital output of the device, such as an NI card, that provides
the trigger (and indeed, Camera subclasses the TriggerableDevice class, which internally
creates a Trigger object that is a subclass of DigitalOut). The Camera class contains
additional methods such as expose, the arguments to which determines the start time,
duration, and other metadata, for each requested acquisition. Labscript internally generates
go_high and go_low commands to generate the required digital pulse to trigger the camera
exposure, and the additional metadata is stored in the hdf5 file. It is up to the imaging
control system to use this metadata to correctly program the camera prior to the start of
the experiment, so it is ready to receive the triggers (see §6.2), and of course up to the user
to ensure the camera trigger input is correctly connected to the controlling digital output.

5.1.7 Waits

The core idea underpinning labscript is that the precise timing of the experiment logic is
precomputed. However, there are many instances where you may not necessarily know the

8. As with the extensibility of the labscript output classes, the analog acquisition classes are also very
extensible. Implementing hardware gating for a new device would not be significantly more time
consuming than the act of adding support for a new device to labscript.
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precise timing prior to execution. Examples (in ultracold atom research) include loading
a MOT until a predefined atom number is reached or synchronisation to an external AC
magnetic field (such as the one created by mains electricity). Labscript thus provides support
for variable delays between instructions via the use of the wait command. A minimalistic
labscript example containing a wait is shown in figure 5.11.

The implementation of the wait command is done by preparing all pseudoclocks for
retriggering. This effects a resynchronisation of all pseudoclocks (and thus all outputs), the
timing of which is determined by an external trigger provided by a piece of hardware not
under labscript control. For the previously provided example of loading a MOT until an
atom number is reached, this could be independent electronics designed to emit a trigger
when MOT fluorescence light captured by a photodiode reaches an appropriate level. For
synchronising to the mains electricity magnetic field, this could be independent electronics
designed to emit a trigger when the AC line voltage crosses zero. The implementation of
waits thus requires that all pseudoclock devices support the ability to halt execution (during
a set of hardware instructions), resume on an external trigger, and allow this to occur an
arbitrary number of times. A wait command necessarily has a minimum length for each
wait, defined by the preparation time to place the devices in the retrigger mode, the delay of
the master pseudoclock responding to the external trigger, and the minimum time required
for the master pseudoclock to successfully trigger all secondary pseudoclocks. In order to
prevent hung execution, we also provide a means to define a maximum length of each wait,
via the timeout keyword argument, the use of which will be elaborated on shortly.

As the length of the wait is (deliberately) under the control of an external device, timing
information in labscript experiment logic no longer matches experiment execution. We must
thus introduce the concept of labscript time and experiment time. Labscript time refers to
the times specified in the experiment logic file, where the length of each wait is considered
to be 0 s long (plus the known retriggering time for secondary pseudoclocks). Experiment
time then refers to the time during the execution of an experiment, where t = 0 corresponds
to the start of the first clock tick of the master pseudoclock. This distinction has no effect
on device output, which is synchronised by the master pseudoclock, but does affect analog
acquisition, which is only synchronised to the start of an experiment. Acquisitions are thus
defined in labscript time, but recorded in experiment time.

In order to determine the drift between these two time definitions, we employ a ‘wait
monitor’ to measure the length of each wait. The wait monitor is instantiated like any
other device in labscript, but is provided with 3 sets of connection information: a device
and digital channel to use to indicate when a wait occurred, a device and channel to monitor
the previously mentioned digital channel, and a device and channel to be commanded in
software time to retrigger the master pseudoclock if the duration of the wait exceeds the
timeout mentioned previously. The first set of connection information is used by labscript
to internally instantiate a digital output channel, which is commanded (by labscript) to
pulse just after every wait instruction. This digital output is then fed into a device that
measures the times at which the digital channel goes high, relative to the start of the
experiment, allowing the determination of the length of each wait from this information and
the specified start times of the waits. A schematic diagram of these connections is shown
in figure 5.11(b).

Further implementation details of the wait monitor are discussed in §6.1.1.4, where the
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PineBlaster (name=’pineblaster_0 ’, usbport =’COM1 ’)
NI_PCIe_6363 (name=’ni_pcie_6363_0 ’,

parent_device = pineblaster0 .clockline ,
clock_terminal =’/ ni_pcie_6363_0 /PFI0 ’,
MAX_name =’ni_pcie_6363_0 ’,
acquisition_rate =1e3)

WaitMonitor (’wait_monitor ’,
# flag that pulses after a wait
ni_pcie_6363_0 , ’port0/line0 ’,
# counter that monitors the times the above flag goes high
ni_pcie_6363_0 , ’ctr0 ’,
# software timed output that retriggers the master
# pseudoclock if the wait hits the timeout
ni_pcie_6363_0 , ’PFI1 ’)

t = start ()
# Science part 1...
# Configure outputs for MOT load
t += 7

# Now that everything is set up , wait until the MOT
# is loaded (or continue anyway after 5 seconds )
t += wait(’MOT_load ’, t, timeout = 5)

# science part 2!
t += 3
stop(t)

(a) A minimal labscript example demonstrating a ‘wait’ command.

TimeoutxTrigger
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NIxPCIex6363
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PFI1

PineBlaster

FluorescencexMonitor
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(b) A schematic of the hardware configuration.

Figure 5.11: This example demonstrates how you might configure your experiment to wait
until a MOT has reached a desired fluorescence. To use a wait, the labscript file must define
a WaitMonitor, which defines the output port for a digital flag that will pulse immediately
after each wait, a counter (that is physically wired to the previously described flag) to
measure the length of the wait(s) by recording when each wait ends, and a software timed
digital flag (in this case a PFI output on the NI card). The PFI output is electronically
combined with the trigger from the fluorescence monitor electronics so that both devices
can retrigger the master pseudoclock and resume the experiment (the former if the timeout
is reached, the latter if the fluorescence level is reached).
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lengths of the waits are measured during an experiment and used within BLACS device
code to split (gate) acquired data into the requested acquisitions.

5.1.8 Shot storage

As introduced in §4.3.4, storing a complete record of the entire experimental process is a key
philosophy of the labscript suite. Labscript contributes to this by saving a significant amount
of data in each shot file. The most obvious datasets labscript saves are tables of hardware
instructions. Labscript generates a HDF group (similar to a folder) for each hardware
devices, at the internal hdf5 location of /devices/<device name> where <device name>
matches the name passed to the constructor of each device object in the connection table.
The format of the data stored is left up to the code for the specific device (as they are
only written and read by device specific code, see §7.1) allowing hardware instructions to
be stored in the most appropriate format for each device. For example (see figure 5.12),
the PulseBlaster implementation stores the main body of hardware instructions in a HDF
dataset within the group provided by labscript, but also stores the frequency, amplitude
and phase register mappings in separate sub groups. The NovaTechDDS9m, on the other
hand, uses two HDF datasets to store the instructions for the two channels that support
table mode and the values for the two channels that can only be programmed once at the
start of the experiment. Despite the typically unreadable nature of hardware instructions,
we encourage developers who add support for devices to labscript to balance the format of
the data required for programming the device with readability. For example, the devices
we have implemented use human-readable names for the groups and datasets, and we name
dataset columns so that a user can hone in on the required piece of data if they need
to directly access the hardware instructions. Labscript also saves a representation of the
connection table, which we showed previously in figure 5.6. This table contains a record of
everything related to the configuration of devices and channels that cannot be reconfigured
from shot to shot by BLACS (for example, BLACS is unable to rewire the hardware to
select a different clock input port for an NI card).

Of course, saving just the hardware instructions and connection table does not retain
the intent of the experiment. This is, of course, best described by the Python file containing
the experiment logic. Rather than attempting to store the experiment logic in some form of
intermediate format, we simply save the entire experiment script file as text within the shot
file. We also save a copy of any Python files imported into the main experiment logic file
from the labscriptlib Python module (where all experiment logic files should be contained).
This allows common code to be modularised, while preserving a complete copy of the Python
code used to generate the hardware instructions. Saving the python files thus provides a
means to determine the full intent of an experiment if it is reviewed in future years.

Additional metadata that is not related to a specific device or channel is stored in
separate groups at the root level of the hdf5 file structure. Currently, these consist of the
list of waits in a table, and calibrations (for example shutter delays)9. Such information is

9. The calibrations group is an artefact of the early layout of groups, and there is an ongoing discussion as
to whether this information belongs in the connection table for each Shutter channel as a shutter delay
is a physical property of the experiment configuration and cannot be configured through software.
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(a) Amplitude registers for a Pulse-
Blaster. The row index corresponds to
the index shown in the ‘amp1’ column
in figure 5.12(e) while the value contains
the amplitude in an appropriate format
for the PulseBlaster programming API
(in this case, Volts peak-to-peak).

(b) The values for the two DDS channels of a Novatech
DDS9m that support only a single set of values pre-
programmed prior to the start of the experiment. Here
frequency is stored in multiples of 0.1 Hz as this is the
limit of the precision of the device. Similarly, ampli-
tude is stored in a quantised form as an integer with a
maximum value of 1023 (which corresponds to 1 Volt
peak-to-peak [120]) as this is what the programming
API expects.

(c) A list of the frequency registers for
a PulseBlaster. As in 5.12(a), the row
indices correspond to the value stored in
the ‘freq1’ column in figure 5.12(e). The
values stored are in units of MHz, an
appropriate format for the PulseBlaster
API.

(d) The set of hardware instructions for the Novatech
DDS9m DDS outputs that support table mode. The
format of these instructions is identical to that of figure
5.12(b).

typically not recoverable from the hardware instructions and is primarily used to display
metadata in runviewer (see §5.3).

Some versions of labscript also save the version control information from mercurial (Hg)
repositories. This provides documentation on the software versions of labscript components
used to generate the shot files as well as the status of the labscriptlib repository (if configured
as one). Such information is very useful if attempting to understand the impact of bugs
in the control software on past shots, or determining the feature set available at the time
the shot was created. However, at the time of writing, this functionality is disabled by
default as we determined that reading the Hg repository information was slowing down shot
generation. Ultimately we will add support for a variety of different version control systems



5.1. LABSCRIPT API 101

(e) A set of hardware instructions for a PulseBlaster. ‘freq’, ‘amp’, and ‘phase’ columns contain
integers that map to the tables of frequency, amplitudes and phase registers (see figure 5.12(a) and
5.12(c) for examples of the amplitude and frequency registers of DDS1). The ‘flags’ column contains
an integer representation of a bit-field that contains the digital output state, of all 12 outputs,
for each instruction. The ‘inst’ and ‘inst_data’ columns contain information about the type of
instruction and how it should be interpreted (as these are ‘complex’ instructions, see §2.2.3). Finally,
the ‘length’ column contains the length of time that the values of the instruction should be held
for before moving to the next instruction (as determined by ‘inst’ and ‘inst_data’). These columns
directly map to the parameters of the relevant API call [122] used to program the PulseBlaster.

Figure 5.12: Examples of hardware instructions stored in a hdf5 file. The group name
and location (path) within the hdf5 file are shown in the title bar of each image. Where
multiple columns of data must be stored, we name the columns so that the data is more
comprehensible by a human observer.

in a way that does not impact the speed of the shot generation.

5.1.9 Unit conversions

As mentioned previously in §5.1.2, much of the labscript API supports the specification
of output values in user-determined units. By default, labscript API functions (such as
analog_output.constant(t, value)) expect the value to be in SI units that correspond
to the type of output (for example, volts for analog outputs and Hertz for frequency).
We call these units ‘base’ units. However, these quantities often control another physical
quantity (such as magnetic field strength or current). When writing experiment logic in
base units (in any control system), you ultimately end up with a lot of ‘magic’ calibration
numbers being used whose relationship to real-world units is not immediately obvious. This
is often because it is easier to just adjust the magic base unit number until you get the
result you want, rather than spending the time doing the calculation to real world units.
The labscript API attempts to simplify this by automating the conversion between physical
units and the base units that labscript works in.

All subclasses of AnalogQuantity (such as AnalogOut, and the frequency, amplitude
and phase channels of a DDS) allow a reference to a unit conversion Python class, and a
dictionary of parameters (called unit conversion parameters), to be passed in as optional
arguments to the constructor used to create the object in the connection table. An example
of this is shown in figure 5.13. The class passed in must define the SI base unit and a
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# define unit conversion class
class BidirectionalCoilDriver ( UnitConversion ):

base_unit = ’V’
derived_units = [’A’]

def __init__ (self , calibration_parameters =None):
if calibration_parameters is None:

calibration_parameters = {}
self. parameters = calibration_parameters

# I[A] = slope * V[V] + shift
# Saturates at " saturation " Volts
self. parameters . setdefault (’slope ’, 1) # A/V
self. parameters . setdefault (’shift ’, 0) # A
self. parameters . setdefault (’saturation ’, 10) # V

UnitConversion . __init__ (self ,self. parameters )

def A_to_base (self ,amps):
shift = self. parameters [’shift ’]
slope = self. parameters [’slope ’]
volts = (amps - shift) / slope
return volts

def A_from_base (self ,volts):
volts = numpy. minimum (volts , self. parameters [’saturation ’])
shift = self. parameters [’shift ’]
slope = self. parameters [’slope ’]
amps = slope * volts + shift
return amps

# define connection table
AnalogOut (’bias_coil_x ’, ni_pcie_6363_0 , ’ao1 ’,

unit_conversion_class = BidirectionalCoilDriver ,
unit_conversion_parameters ={

"slope": bias_x_coil_slope ,
"shift": bias_x_coil_shift ,
" saturation ": bias_x_coil_saturation

})

Figure 5.13: An example of a unit conversion available in the labscript suite [152].
Unit conversions are defined by subclassing the UnitConversion class available in
labscript_utils.unitconversions.UnitConversionBase. Unit conversion classes, along
with a set of parameters to use (which may be loaded from labscript global variables) are
then passed as optional arguments to the output constructors in the connection table defi-
nition. See main body text of §5.1.9 for further details.

list of the new units the user can use (the derived_units). The parameters passed to the
AnalogQuantity constructor are passed in to the unit conversion class constructor when it
is created internally by labscript. The unit conversion class constructor can then save these
parameters for use in the methods defined for converting between units. For each derived
unit, two methods must be defined in the class; one to convert between the base unit and
the derived unit, and the other to convert between the derived unit and the base unit. For
example, if the derived unit was Amperes (with the unit being defined as ’A’) then you
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would define methods such as A_to_base(self, amps) and A_from_base(self, volts),
which would return volts and amps respectively.

Many unit conversions follow similar patterns. For instance coil drivers typically have a
linear relationship between the base unit of volts and current through the coil. Helmholtz
coils also have a linear relationship between field strength (in Gauss or Tesla) and current.
By writing a generic linear calibration class between the common derived units and the
expected base unit, a user can abstract away the need to manage multiple calibrations. For
example, a single unit conversion class, written for a bi-directional Helmholtz coil driver,
can be used across multiple analog output channels that control different pairs of coils by
specifying a different set of unit conversion parameters in the channel constructor. All chan-
nels can then be used using the following (or similar) syntax: analog_output.constant(t,
value_in_amps, ’A’).

The calibration classes must all live within the labscript_utils.unitconversions
module so that they are importable by the labscript suite. The calibration class name (and
parameters) are stored in the connection table so that BLACS can instantiate the unit
conversion class. This allows BLACS to provide manual control of each channel in physical
units as well (see §6.1).

DDS channels also automatically instantiate a set of labscript unit conversions specified by
the parent devices get_default_unit_conversion_classes method. This allows a parent
device to provide default unit conversion classes (which can of course be overridden by the
user). For example, the NovaTechDDS9m device provides a default unit conversion class
for the frequency of the DDS that contains ‘MHz’ as the derived unit (as Hz is difficult to
read for such large values). Similar behaviour could be extended to other types of labscript
output classes if the need arises.

Defining experiment logic in physical units has several advantages. These include im-
proved record keeping and the ability to see if the magnitude of quantity you are using is
unphysical. There is an increased overhead in maintaining the calibration between units,
however this trade-off is worth it for many research groups. Calibrations can also be au-
tomated if necessary. For example, since calibrations are defined in experiment logic, they
can be parameterised by global variables (just like any other part of the experiment logic).
Calibration experiments, combined with an appropriate lyse analysis script, can then be
written to perform, measure, and analyse a unit conversion relation. Results from such an
analysis can be placed into runmanager globals by the analysis script, ensuring any other
experiment that shares these globals has access to the latest calibration data.

5.2 Runmanager

Runmanager is the primary means of defining and managing the set of experiment parame-
ters (global variables - see §5.1.3) used in the labscript experiment logic. Runmanager also
handles the creation of each hdf5 shot file, and the invocation of labscript via the execution
of a user specified labscript experiment logic file.
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Figure 5.14: The runmanager graphical interface with the main controls labelled as per the
main body text in §5.2.1. The ‘output’ tab is currently shown.

5.2.1 The graphical interface

As discussed in §4.3.3, we believe that the manipulation of parameters, along with controls
for producing shots, are best implemented in a graphical interface. Critical information
on the current runmanager configuration, along with controls for generating new shots, are
located in a always visible toolbar at the top of the runmanager interface. These comprise
(as labelled in figure 5.14):

1. The engage button: This begins production of the appropriate number of shot files.
The number of shot files that will be produced is displayed prominently in the button
text so that any mistakes made when defining the parameter space scan can be quickly
corrected prior to beginning shot generation. This button can also be ‘clicked’ via the
F5 key on a keyboard.

2. The abort button: This stops the production of shot files prematurely.

3. The restart subprocess button: Primarily for debugging and for use during labscript
development, this button restarts the subprocess that manages the execution of the
labscript experiment logic file, which in turn generates and stores hardware instruc-
tions inside the hdf5 file (see §5.2.5).

4. The shuffle checkbox: This checkbox controls the global setting for whether parameter
space scans are shuffled or not. This is a tri-state checkbox (all-some-none) displaying
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the current shuffle state on the axes tab. Clicking the checkbox will overwrite the
state of each entry on the axes tab with the new state of the global checkbox. For
more details, see §5.2.3.

5. The run shots checkbox: If ticked prior to clicking the engage button, shot files will
be sent immediately to the BLACS queue once the hardware instructions have been
generated by labscript.

6. The view shots checkbox: If ticked prior to clicking the engage button, shots will be
sent to runviewer once the hardware instructions have been generated by labscript.
Runviewer is assumed to be running locally, and will be launched if it is not already
running once the first hdf5 file has been generated.

7. The labscript file: The Python file containing the experiment logic to be compiled
into hardware instructions (see §5.1).

8. The shot output folder: The location to store the hdf5 shot files. By default, the
location in specified by the combination of a value in the laboratory PC configuration
file (see labconfig in the glossary), the name of the experiment logic Python file and
the current date. The location automatically updates, at midnight, to a new folder
for the day provided the folder location is left as the default.

9. The BLACS hostname: The network hostname of the PC the hdf5 shot files are to
be sent to if the ‘run shots’ checkbox is ticked. It is expected that BLACS is running
on the specified PC, and that network access (including firewalls and other network
access controls) is configured appropriately.

10. The open in editor button: This button open the specified labscript experiment logic
file in the text editor specified in the laboratory PC configuration file (see labconfig
in the glossary).

11. The reset shot output folder button: This button resets the shot output folder to
the default. This will re-enable the auto incrementation of the folder (based on the
current date), which is disabled for custom locations.

These controls provide rapid access to the key functionality of runmanager (creating and
distributing shot files) at all times, making for an efficient workflow.

The rest of the runmanager interface exists within a set of tabs. The first 3 tabs contain
further runmanager specific controls:

12. The output tab: This tab contains the terminal output of the shot creation process
including the terminal output produced during the execution of the labscript exper-
iment logic file (see figure 5.14). For example, Python print statements included in
the experiment logic code will appear here during shot creation. This makes it easy
to debug the experiment logic code using simple methods common to general purpose
programming. Warnings and error messages generated by the labscript API also ap-
pear here in red text, so that any issues are immediately noticed and can be actioned.
As this output is useful for debugging purposes, we allow the tab to be ‘popped out’
into a separate window so it can be visible at the same time as another tab (to avoid
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Figure 5.15: The ‘Axes’ tab of runmanager. This tab displays a list of all global variables
(indicated by the blue outer product icon) or groups of global variables (indicated by the
icon with red parallel bars) that form axes of the parameter space that will be scanned over
(see item 13 in the main body text and §5.2.3 for further details). The order of the axes
can be changed using the controls to the left of the list, which sets the order in which the
outer product of the axes is performed (when generating the shot files).

the need to frequently switch between the output and the tab containing the global
variable(s) you are currently modifying).

13. The axes tab: This tab allows the user to control the iteration order of the parameters
in the defined parameter space (see figure 5.15). The length of each axis of the
parameter space is displayed, as is a shuffle checkbox for determining whether the
points along that axis should be shuffled before the parameter space is expanded into
the set of shots to be created. The global shuffle control (see item 4 in this list) is
linked to the state of the shuffle checkboxes on the axes tab. This feature, along
with the many benefits, is detailed further in §5.2.3 (see feature 3 and the paragraphs
following).

14. The groups tab: This tab manages the hdf5 files that store the globals (see figure
5.16). Further details on managing global variables will be discussed in §5.2.2.

These tabs are then followed by an arbitrary number of tabs containing sets of global
variables, which will be discussed further in §5.2.2.

In addition to this, runmanager can save and restore the entire GUI state via the
relevant menu items in the ‘File’ menu. This allows rapid switching between different types
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Figure 5.16: The ‘Groups’ tab of runmanager. This tab displays the groups of global
variables (stored in hdf5 files) that have been loaded into runmanager. From this tab,
users can enabled/disable the use of these globals when compiling shots (using the ‘active’
checkboxes) and open/close an editing tab for each group. The editing tabs, when open, are
displayed as additional tabs on the left most edge of the runmanager interface. See §5.2.2
for further details on managing globals.

of experiment logic and/or globals files10. This is particularly useful for shared experiment
apparatuses, where different users want to run different experiments, and for the cases
where a user wishes to rapidly switch between one of more diagnostic configurations they
have previously saved.

5.2.2 Managing global variables

Runmanager provides a simple interface for grouping and modifying global variables. As
mentioned previously, the ‘groups’ tab in runmanager handles creating and opening the
hdf5 files that store the global variables. There are two levels of organisation for global
variables:

• at the file level (globals can be stored across multiple files, the union of which is used
to generate shots), and

• groups within each file.

10. For clarity, the values of the globals are not saved in this configuration file, but simply the location
of the hdf5 file containing the globals. This means that any globals in files shared between saved
runmanager configurations will share their values. For cases where global values should differ between
runmanager configurations, separate globals files should be used.
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Globals groups are created from the ‘groups’ tab in runmanager and can have arbitrary
names (including spaces and special symbols). The only requirement is that a group name
is unique within its file (it can however have the same name as a group in a different file).
Globals within a group are then only used in the creation of shots if the ‘active’ checkbox
for the group is checked on the groups tab (see figure 5.16). This provides a simple way
of switching between different groups of globals, allowing labs to maintain a common set
of parameters for their experiments as well as individual parameter sets for specific users
and/or experiments. For example, rather than modifying a set of globals in a group, a user
could instead deactivate the group containing those globals, and instead ask runmanager to
pull those globals from a separate file.

Each group of globals can be opened for editing in a new tab. We provide columns
for the global name, value and units. The global name must be a valid Python variable
name [153], and must not conflict with any member of the pylab library, python keywords,
or existing items in the Python __builtin__ module. This ensures that it can be injected
into the labscript experiment logic (see §5.1.3) without conflicting with existing Python
functionality. The global name must also be unique across all active groups, as global
groups are joined into a single set before passing the globals into the labscript experiment
logic.

The value of a global can be any Python expression (including the use of functions from
the numpy module), that evaluates to a datatype supported by hdf5, such as, but not
limited to:

• a number: 1234 or 780e-9,

• a string: ‘N_atoms’,

• a list or numpy array (which will be treated as an axis of a parameter space to scan,
where the global variable will contain only one of the elements of the list or array in
each shot): [1, 2, 3] or array([1, 2, 3]),

• a tuple (which despite being list like, will not be treated as an axis of a parameter
space to scan and will instead be passed into labscript as the tuple specified): (1, 2,
3),

• a Boolean: True or False,

• an equation: 1+2,

• a Python inbuilt, or numpy, function call that returns a valid value: linspace(0,
10, 10),

• an expression that references another defined global variable by name (the value
of this global variable is used in its place): 2*other_global or linspace(0, 10,
other_global),

• a Boolean expression: (other_global1 and other_global2) or (other_global3
== 7) or (other_global4), or

• any of the above plus a Python comment: 780e-9 #This was previously 781e-9.
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(a) An example of complex global variables that utilise Python expressions to define their value.
Note, for example the drop_time global variable, whose full expression is shown in (b). The
drop_time used is always drawn from one of three global variables, but the global variable selected
is determined by a separate global variable (a Boolean) and may contain a list of drop times if
the user wishes to image multiple species. In the case of the expression generating a list, this
global becomes an axis of a parameter space, running two shots for every other data point in the
parameter space (one shot to image each of the two species our experiment supports). Such an
expression could not be defined within experiment logic as parameter spaces must be defined within
runmanager, not labscript. In order to simplify the view of globals with complex expressions, the
tooltip (shown for the central_image_rb global) shows the value(s) the global will take in the next
compiled shot(s).

# code entered into runmanager global
[ drop_time_rb if x else drop_time_k for x in central_image_order ] if
s11__imaging_both_species else ( drop_time_k if central_image_k == True

else ( drop_time_rb if central_image_rb == True else drop_time_general
))

(b) The full expression of the drop_time global is shown.

Figure 5.17
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Figure 5.18: An example of an evaluation error in a global variable. The user is notified of
the error in two places: an icon appears next to the tab name and the global in question is
highlighted in red. The tooltip displays the cause of the error, in this case a Python syntax
error.

As these expressions can become quite complex (see figure 5.17), the tooltip for the value
cells displays the evaluated result of the Python expression. The value cell is also colour
coded to the successful evaluation of the expression, so that mistakes can be easily identified
(see figure 5.18).

The units of the global are not currently passed into the labscript experiment logic
code, but are a way to provide context to the user within runmanager. For example, if the
labscript experiment logic multiplied a global variable for a frequency by 1e6 everywhere
it was used (or the keyword argument units="MHz" was used everywhere), then you could
type ‘MHz’ into the units column of runmanager so that a later user would know that the
global was expected to be of that magnitude and would not accidentally enter it in kHz
or Hz. In addition to this, globals whose values are explicitly specified as either True or
False have their units automatically set to ‘Bool’, a checkbox is placed in the units column
for easy toggling, and the units cell is colour coded to this checkbox for easy observation
of the state. We frequently use this functionality to enable/disable various stages of our
experiment logic file (see figure 5.19).

While we recommend storing globals in a dedicated set of files, the storage format for
the globals is identical to that in any shot, which allows a user to easily load in globals from
existing shots (even ones that have been executed and analysed). However, once pointed
at an existing shot file, any modification to globals will modify that shot file, thus partially
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Figure 5.19: An example of how a labscript experiment can be parameterised by a series
of Boolean global variables. Here we split up the production of a BEC into several stages.
We name each global with a prefix that increments in order to keep the globals in an
appropriate sort order. Runmanager detects the Boolean type of the global, and provides a
simple checkbox toggle in the units column, By using these global variables in our labscript
experiment logic file, as the Boolean expression for an if statement, we can quickly turn
on/off various stages of the BEC production process (which is very useful when debugging
or optimising the BEC production process).

destroying the complete record of the experiment11. Thus, we encourage this feature to only
be used for the cases where you wish to look at the globals from an old shot or where you
wish to use the globals, without modification, to compile new shots.

5.2.3 Parameter space scans

One of the key features of runmanager (and critical goals of our scientific control system)
is the ability to easily automate the traversal of a large parameter space, an increasingly
important requirement for performing modern ultracold atom experiments. Runmanager
provides four features for managing parameter space scans:

1. The automatic detection of global variables that are defined as a list12. Such globals
are labelled ‘outer’ in the expansions column as all such globals will be combined, via

11. Note that in an executed shot file, globals exist in two formats: the evaluated format (one point in the
parameter space) used by labscript, and the raw strings as displayed in runmanager. Only the latter
would be overwritten if globals were edited in the manor described in the main body text.

12. Runmanager considers both Python lists and numpy arrays to be what we refer to as ‘lists’ in this
section.
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an outer product, into the parameter space to be scanned. The number of shots to be
generated, which is simply the product of the lengths of all ‘outer’ product globals, is
displayed next to the engage button.

2. The ability to define what we term ‘zip groups’ after the Python function zip. Two (or
more) globals (specified as lists) can be grouped together so that they iterate through
values in lockstep. In this instance, the zip group is used as a single axis of the outer
product rather than one axis for each global.

3. The third feature is the ability to define the order in which the axes of the parameter
space are iterated over when producing individual shots (see the ‘Axes’ tab discussed
previously in §5.2.1).

4. The ability to randomly shuffle the order of values within each global (or zip group)
defined as a list. This can be done on a per global basis or on the entire set of shots
that spans the defined parameter space.

These features provide a powerful basis for performing complex experiments.
Consider the following example. Many of the early stages of BEC production (for

instance the MOT or magnetic trap stages) should be optimised for best phase-space density.
Phase space density is calculated from several parameters; the most important being atom
number and atom cloud temperature. While atom number can be easily measured from
an absorption image from a single shot, temperature is most commonly determined from
analysing the result of multiple shots. In this case, the drop time (the time between releasing
the atoms from the trap and taking the absorption image) is varied for each shot and the
temperature determined by fitting to the linearised relationship between atom cloud size
and drop time. Already, it can be seen that measuring the phase space density for a single
set of parameters requires several shots, which can be easily automated via the feature 1
described above.

Now consider the optimisation of MOT or magnetic trap parameters. Many of these are
coupled and can not be independently optimised. As such, it is preferable to optimise two
or three variables at once, measuring the phase-space density at each point to determine the
optimal set of parameters. Such a parameter space typically takes several hours to complete
due to the large number of shots that must be run. A BEC apparatus is likely to undergo
systematic drifts during this time, which may invalidate the results. However, with careful
thought, features 3 and 4 can be used to counteract this. For example, systematic drift will
effect the linearity of the data when determining temperature, especially if the acquisition
of each data point is separated by a significant period of time. However, by defining the
drop time to be the inner most item of the outer product, you ensure that all shots needed
to determine the phase-space density for a single set of MOT parameters are executed as
close together in time as possible. Shuffling the order of the drop time then eliminates short
term systematic drift, as does separately shuffling the order of the values in each remaining
axes of the outer product (the MOT parameters). If long term systematic drifts need to
be quantified, then an additional axes to the outer product can be added at the outer most
layer in order to repeat each of the shots a prescribed number of times (by defining an
additional ‘dummy’ global variable as range(N) where N is the number of times to repeat
each shot).
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While the above example may seem complicated, runmanager makes it trivial to imple-
ment. A user simply defines the list of values to scan over for each parameter, sets the order
in which the outer product should use each axis, and specifies whether the values for each
axis should be shuffled. Once done, clicking the engage button generates the sequence of
shots and sends them to BLACS to be executed on the experiment.

5.2.4 Evaluation of globals

All global variable expressions are automatically evaluated after a change to any global
variable. This serves to both update the tooltip with the result of the expression, detect
axes of a parameter space to scan (and group them into zip groups if appropriate) and
warn the user of any errors during the evaluation of the globals. As discussed previously,
runmanager allows these global variable expressions to reference other global variables. This
allows a user to maintain a record of a set of parameters, and all relevant quantities derived
from one or more of those parameters, without ever storing a parameter more than once.
This ensures that important quantities need not be derived (from globals) in the labscript
experiment logic script, and that they are accessible directly during the analysis stage (see
chapter 6).

To implement this, we take advantage of the Python built-in function exec which not
only evaluates a string containing a Python expression, but can do so from within a con-
trolled namespace. This has a two-fold benefit. The first is that it allows us to provide
access to a specific set of functions that can be used from within the Python expressions
(such as numpy functions like linspace). The second is that it allows us to keep track of the
relationship between global variables, which is critical for both descriptive error messages
and automatically detecting which globals should be combined into a zip groups.

The Python exec function is given access to a namespace to work in via an optional
argument in the form of a dictionary. Keys and values in this dictionary correspond to
variable names in the namespace and their associated values respectively. Rather than
using a native Python dictionary for the namespace, we subclass the Python dictionary
and override the built-in dictionary method for looking up entries in the dictionary. When
combined with exec, this translates to our dict subclasses tracking each time the exec
function requests the value of a variable in the namespace. This then provides us with a
mapping of each global variable, and the names of global variables that it depends on. In
order to resolve both the order in which global variable expressions are evaluated in, and
detection of any recursive relationships, we begin by evaluating all global expressions and
then recursively re-evaluate the set of globals that did not evaluate in the previous iteration.
The first iteration will evaluate any (correctly defined) independent globals, and subsequent
iterations will then be able to evaluate globals that depend on other globals (once those
other globals have been evaluated by a previous iteration).

The hierarchy of global interdependencies is then used to determine automatic zip group
names, which are based on the name of the global in the hierarchy that does not depend on
any other. If a global depends on multiple other globals, then the zip group name is chosen
semi-randomly based on the order of the items in the Python dictionary (which depends on
a hash of the dictionary key names and the size of the dictionary). However, it is of course
always possible to overwrite the automatic zip group name with something else should our
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algorithm choose incorrectly.
We believe that this complex evaluation of global variables is only possible due to the

use of an interpreted language that has tools for parsing its own syntax. As such, the
choice of Python as our programming language has allowed us to implement extremely
useful, advanced features that might otherwise be too difficult to produce in more low level
languages such as C++.

5.2.5 Shot creation

The internal process for generating shot files is quite complex. This is primarily motivated
by the desire for modularity (for example, to separate shot file generation from hardware
instruction generation) and the desire for robustness. As runmanager ultimately initiates the
execution of user code (the labscript experiment logic file), there is a risk that problems in the
user code could crash runmanager. We mitigate this by using a multi-process architecture
(see §4.4.5).

We originally spawned a new Python process for each shot (in order to guarantee the
internal state of labscript was fresh). However the time required to start a Python process
(especially on Windows) was a considerable fraction of the entire shot generation time. As
such we now use a single, long-lived, Python process and clean-up the internal state of
labscript and Python explicitly after each shot.

To generate shot files, runmanager:

1. Re-evaluates all globals (see §5.2.4). This both determines the number of shots to
produce, and generates the evaluated set of global variables for each shot.

2. The globals are then written to hdf5 files, one file for each shot. We also write
the unevaluated globals into every hdf5 file, in order to provide a complete record
of the experiment (the unevaluated globals contain information about the parameter
space that is not available when looking at the single point of parameter space in the
evaluated globals of a single shot file).

3. In a thread (in order to keep the GUI responsive), we iterate over the set of files
and send their file paths to a long-running subprocess (launched by runmanager at
startup) that is used to execute labscript code in an isolated environment. We call
this process the ‘compilation subprocess’.

4. The subprocess, which has the labscript API imported, calls an initialisation method
to inform the labscript API of the hdf5 file to write hardware instructions to.

5. The subprocess loads the global variables from runmanager into the __builtin__
dictionary.

6. The subprocess then executes the labscript experiment logic file (using the Python
function exec) in an isolated namespace, which invokes the labscript API via the
users experiment logic and generates the required hardware instructions and saves
them in the hdf5 file. Terminal output (for example, print statements) are sent
back to the parent runmanager process and placed in the output tab.
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7. The subprocess restores the __builtin__ dictionary to its original state to prevent
globals from polluting subsequent shots. A clean-up method from the labscript API
is also called so that the internal state of the labscript Python module is also reset.

Once shot files are created, the file paths are sent to runviewer or BLACS, as determined by
the checkboxes in the runmanager GUI, for viewing and/or executing the shots respectively.

This architecture also has several unrealised benefits:

1. If the need arose, we could easily parallelise the generation of hardware instructions
by instantiating multiple instances of the compilation subprocess.

2. We could use runmanager as a generic parameter (space) management software by
replacing the compilation subprocess with something else. For example, runmanager
could be used to manage parameters for simulations, producing one shot file per
simulation to be run in the same way we do for real experiments. These files could
then be sent to a scheduling program (like BLACS) that feeds them to the simulation
software.

5.3 Runviewer
While the textual based interface of labscript is ideal for defining experiment logic in ‘high
level’ terms, there can often be a discrepancy between what was intended and what was
actually commanded. This is particularly prevalent in situations where more complex con-
trol flow features (such as while loops or parameterised function) are used as this increases
the abstraction between the language used to command the output and the actions of the
output. Runviewer exists to bridge this gap, allowing us to maintain the benefits of textual
control of the experiment without losing the benefits of the graphical representation of the
experiment logic. Runviewer achieves this by producing a series of plots containing the
output state for each channel. These plots are ‘reverse-engineered’ from the hardware in-
structions stored in the hdf5 file, and are thus a faithful representation of what each output
channel should do during an experiment (provided of course that the reverse engineering
code is accurate).

There are thus several uses for runviewer. The most important is the ability to graphi-
cally observe the experiment logic. This allows a user to easily observe experiment features
such as the shape of complex ramps or the synchronisation between events on different
channels. Runviewer also supports simultaneous display of traces from multiple shots pro-
viding, for example, a means to see how an output trace changes when a global variable is
adjusted. Finally, comparisons between expected output in runviewer, and observed output
on an oscilloscope can make debugging hardware problems quicker.

5.3.1 Generating output traces

Runviewer generates the displayed output traces by processing the hardware instructions
stored in the hdf5 shot file. We specifically reconstruct the output from the lowest level
description of the experiment logic in order to accurately represent what the output hard-
ware will do during an experiment. In order to support a diverse range of hardware, part
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of the reconstruction process is handled by device specific code that must be written by a
developer when adding support for a new device. This device specific code simulates how
the device processes hardware instructions and updates output states. It is discussed in
more detail in §7.1.4, so for the purposes of this section we’ll only cover generally what such
code should do. The reconstruction algorithm is then as follows:

1. The master pseudoclock device is identified from the hdf5 file.

2. We import the device specific runviewer class for the master pseudoclock and request
that it generate the traces for its outputs. As this is the master pseudoclock, we
instruct the device specific code that there is not anything controlling the timing of
this device (the need to do this will become apparent in a later step).

3. The device specific code generates a set of output traces (as it sees fit) and returns
these traces to runviewer by calling a provided runviewer method, indicating that
these traces should be available for display. This allows the device to produce as many
traces as it likes, without limitation by the runviewer architecture. This is critical,
as it removes the need for runviewer to support specific output types. Instead, this
support is baked-in to the device specific code, which should already be aware of the
output capabilities of the device.

If timing information was provided by runviewer (which is the case for all devices
except the master pseudoclock, see step 5 below), then it is used by the device code
to generate the correct timing of the output traces. For example, a Novatech DDS9m
only stores a table of output state changes, so the timing information of the parent
ClockLine is needed. Similarly, the timing of a secondary pseudoclock is dependent
on state changes to the parent Trigger line.

4. The device specific code then returns, to runviewer, a dictionary of traces for any
ClockLines or Triggers assigned to digital outputs of the device (which may or may
not have already been provided to runviewer for display in the previous step).

5. Runviewer iterates over this dictionary, and finds all devices that are children of each
ClockLine or Trigger. For each device, the device specific code is imported and
called as in step 2, except that this time we provide the device specific code with the
trace for the ClockLine or Trigger so that it can generate output traces with the
correct timing. The device specific code then follows step 3 and runviewer repeats
steps 3 to 5 recursively until all devices have been processed.

5.3.2 The graphical interface

The graphical interface of runviewer comprises 3 sections (see figure 5.20). The first section
manages the loading of shots into runviewer. Here you can enable (or disable) shots for
plotting, choose the plot colour, and choose whether markers for shutter open and close
times should be displayed. The second section manages the channels that are to be plotted.
These channels can be reordered using the controls to the left, which then affects the order
in which the plots appear. The list displays the union of all channels from shots that
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Figure 5.20: The runviewer interface consists of 3 main sections. (1) Controls for loading
shots, selecting the colour of traces, selecting whether shutter open/close markers are to
be shown, and whether the output traces from this shot should be shown. Note that we
have only enabled shutter markers for one of the two shots loaded (the black trace). (2) A
reorderable list of channels contained within the loaded shots. The order here determines
the order of plots in (3). Only enabled channels will be displayed in (3). (3) Plots of the
output traces for the selected channels in the selected shots. Here we show data from 2 shots
of a real experiment sequence from our lab used to study vortex clustering dynamics [127].
The two shots loaded demonstrate how you can observe differences in output between shots
in a sequence (in this case due to varying the time between stirring and imaging the vortex
clusters). In this figure we display the entire length of the trace, which makes it difficult
to distinguish between the shutter open/close events (red and green dashed, vertical lines)
and the digital output trace. The discrepancy between these events becomes more apparent
when zooming in (see figure 5.21).

are currently enabled or have been previously enabled. This ensures runviewer remembers
selected channels, even if they do not exist in the current shot, removing the need for a user
to constantly re-enable channels when switching between different types of experiments.
The configuration of enabled channels can also be saved and loaded from the ‘File’ menu,
which is a useful aid when switching between regularly-used experiments.

The third section comprises the plotting region. We use the Python plotting library
pyqtgraph to generate the plots. This choice was primarily made due to the performance
of pyqtgraph, which is significantly faster than other common Python plotting libraries
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Figure 5.21: Here we show the same traces as in figure 5.20, but zoomed just after the
22 s mark. We can now clearly see the difference between the change in digital state (black
trace) used to open and close the shutter, and the time at which the shutter was actually
commanded to open and close (green and red dashed, vertical lines respectively). In this
case, the shutter (open, close) delay was specified in the labscript file as (3.11, 2.19) ms for
the central_MOT_shutter and (3.16, 1.74) ms for the science_bottom_imaging_shutter.

such as matplotlib13. The user can pan and zoom the plots produced by pyqtgraph using
the mouse (by holding left or right mouse button respectively while moving the mouse).
The time axes of each plot are linked together so that multiple output traces can be easily
compared to each other. Two buttons are then provided at the top of the interface for
resetting the axes to the default scaling.

As discussed previously, the output traces are generated directly from the hardware
instructions. This creates two problems: information about the timing of certain events
may not be contained within the hardware instructions, and the output trace may contain
too many data points to plot efficiently (even when using pyqtgraph). The first problem
we solve by plotting vertical markers at points of interest. For example, the Shutter class
automatically accounts for the open and close delay of a shutter. The output trace thus
only captures the time at which the digital output goes high or low and does not capture
when the shutter will be open or closed. Runviewer reverse engineers these missing times
from metadata stored within the hdf5 (see §5.1.8) so that they can be plotted as markers

13. We typically use matplotlib in the labscript suite as it is a widely known package with an almost
identical syntax to MATLAB. This means that many users are already familiar with the syntax needed
to create plots. As the user is not required to write or modify the code that generates the plots
in runviewer, this benefit was not applicable and so it was worth using pyqtgraph for the increased
performance.
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of interest (see figure 5.21).
The second problem is solved by dynamically resampling the output traces depending

on the zoom level of the x-axis of the plots. I wrote a feature-preserving algorithm for
this purpose to avoid the many down-sampling algorithms that miss features faster than
the sampling rate. This ensures that zoomed out plots accurately represent the trace, even
when resampled. The algorithm starts by creating an output array of points that is 3 times
the maximum width, in pixels, that the plot is expected to be displayed at14. We fill every
third data point in the output array using ‘nearest neighbour on the left’ interpolation, using
only the section of the output trace that is currently visible. We then fill the other two data
points with the highest and lowest value between the first data point and the 4th data
point (which will also be determined using ‘nearest neighbour on the left’ interpolation).
These two data point are placed in the order in which they appear, the reason for which
will become clear shortly. This is repeated until the output array is full. The output array
is then passed to pyqtgraph for plotting. Fast features thus exist in three data points of
the array, which pyqtgraph correctly plots in one pixel as a vertical line. This is similar to
the way digital oscilloscopes display acquired signals.

Despite our optimisation efforts, resampling still takes a significant period of time, par-
ticularly if there are many plots displayed. We thus perform the resampling in a thread in
order to keep the GUI responsive. However, because the resampled data has more points
than can be displayed, and these points are in the correct order, zooming in still immedi-
ately shows a reasonable approximation of the trace while the user waits for the resampling
to complete in the background.

5.4 Summary
In this chapter we have covered the labscript suite components involved in preparing an
experiment. Labscript formed the core of this, with a high-level API for defining how
hardware is connected together and for commanding experiment logic. The use of this
API allows us to simplify the control interface for heterogeneous hardware and, behind the
scenes, automatically generate complex clocking signals. We also discussed how we use this
API to automatically document as much of the experiment preparation stage as we can.
While experiment logic greatly benefits from being defined in a text-based environment,
we introduced graphical programs for managing parameters and the creation of shots (run-
manager), as well as visualising the expected output signals of the hardware (runviewer).
We also showed how runmanager makes it easy to traverse complex parameter spaces while
countering systematic drifts of the experiment apparatus, an important requirement is most
modern scientific experiments. Combined, these programs form a powerful trio for preparing
complex, precisely timed, scientific experiments.

14. It is currently set to 3*2000 but will be dynamically linked to the screen resolution in the future.





Chapter 6

Executing experiments with the
labscript suite

While most existing control systems (at least for ultracold atom research) consider experi-
ment execution to involve only the running of an experiment on the apparatus, we consider
analysis to also be a critical part of experiment execution. This is particularly important if
you wish your control system to ‘close the loop’ by feeding the results of analysis back into
the experiment automatically.

In this chapter we discuss the execution of a shot on the experiment hardware using
BLACS in §6.1, followed by a discussion on the integration of existing control systems and
distributed hardware in §6.2. We then discuss automated analysis using lyse in §6.3 followed
by ‘closing the loop’ in §6.4, which ties together the entire control system presented thus
far.

6.1 BLACS

BLACS is the primary interface between experiment shot files created by runmanager, and
the hardware devices that control the apparatus. BLACS provides a graphical interface for
users to manage the execution of shots, and manually control the output state of hardware
devices. In order to support heterogenous hardware, the functionality of BLACS can be
extended by developers (who implement support for custom devices) through the provided
BLACS API. BLACS thus broadly consists of a set of device code that interfaces with
the hardware and provides programmatic and manual control of that hardware, which we
discuss in §6.1.1, and a shot management routine that receives shot files from runmanager
and schedules their execution on the apparatus, which we discuss in §6.1.2.

6.1.1 Device tabs

BLACS creates a tab, in the GUI, for each device it is to control. This information is
sourced from a lab connection table, defined using the labscript API, which is kept up to
date with the current configuration of hardware in the lab. Much of the BLACS GUI is thus
dynamically generated, creating an interface suited to a particular apparatus configuration
rather than enforcing a particular style. These tabs encapsulate three components: the code
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that produces the graphical interface, the worker process(es) (which communicate with the
actual hardware), and a state machine which handles communication between the GUI and
the worker process(es).

6.1.1.1 The graphical interface

Each tab GUI is generated from a set of standard components in order to bring uniformity
to the control of heterogeneous hardware. This also simplifies the process of adding support
for new hardware devices (see §7.1.2) as the author of the device code does not require
knowledge of the GUI widget toolkit. Each tab comprises the following sections (see figure
6.1):

1. device management shortcuts (such as restarting the device),

2. a region (usually hidden) for displaying error messages from the worker process,

3. arrays of ‘manual’ controls for interacting with each of the device’s input and output
channels when shots are not running,

4. custom controls specific to a particular device (for example status indicators), and

5. the current state of the state machine (see §6.1.1.3).

The most prominent feature is the arrays of manual controls. These are particularly
useful for manual debugging of an experiment apparatus outside of running shots. For
easy identification, each channel is automatically named with both the hardware output
port, and any assigned name from the lab connection table. All analog values also have
an associated dropdown list, where the current unit is displayed. Unit conversions are
automatically determined from the lab connection table (where they are defined using the
labscript API, see §5.1.9). This makes debugging simpler as you can immediately be sure of
the output quantity in real world units (for example, the strength of a magnetic field). All
output controls can be locked via a right-click context menu to prevent accidental change
of their state, which is particularly important when controlling sensitive equipment that
can be damaged. For analog quantities, the default step size used when incrementing or
decrementing the value1 can also be customised via the right-click context menu.

The values displayed in the manual controls are also coupled to the hardware device
capabilities. The device code that programs the hardware (see worker processes in §6.1.1.2)
has the ability to return a new value for each channel, each time the device is programmed,
allowing the quantised, rounded or coerced value to be returned such that the manual control
faithfully displays the output state. BLACS also provides an architecture to periodically
poll device values for devices that support such queries. This is particularly important for
devices that are not physically restricted to being controlled by a single user (for example,
devices controlled via a web interface) or devices that don’t remember their state after

1. Incrementing or decrementing the value can be done using the up/down arrows next to the value, the
mouse scroll wheel, or the arrow keys on the keyboard. The page up/down keys can also be used, which
will adjust the value by 10 times the step size. This is distinct from typing a value directly into the
widget, which is not affected by the step size. However both incrementing/decrementing and typing
a value in will be equally affected by any quantisation demanded by the hardware device, which we
discuss in the following paragraph.
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being power cycled. For such devices, BLACS continually compares the device state with
the values displayed in the GUI. If a difference is detected, BLACS presents the user with
options to select either the device state or the local state on a per output basis (see figure
6.2).

6.1.1.2 Worker processes

For each device, BLACS launches at least one separate Python process (a worker process)
for communicating with the hardware. BLACS communicates with the worker process
through our own remote procedure call (RPC) protocol. The python process(es) run a
thin wrapper around a specified Python class, which allows the parent process (in this case
BLACS) to remotely call methods of the class in the worker process. A method in the
worker process is invoked by the tab state machine (see §6.1.1.3), via a message sent over a
ZMQ socket. The only task of a worker process is to process any data that is sent to it (via
the invocation of one of its methods), interact appropriately with the hardware device(s) it
manages, and return any relevant data to the state machine. A third party software library,
used to interact with a hardware device (typically provided by a hardware manufacturer),
is then only loaded within the isolated worker process. There are several benefits to this
‘sandboxing’ model, which have been previously outlined in §4.4.5. Details on writing the
code for a worker process can be found in §7.1.3.

As previously implied, we have implemented the ability for a BLACS device tab to spawn
multiple worker processes. This is particularly useful for devices that handle both inputs
and output, and whose API allows these inputs and outputs to be separated and managed
by separate processes. An example of such a device is a National Instruments acquisition
card such as the NI PCIe-6363. For this device, we spawn three worker processes: the first
handles analog and digital outputs, the second handles analog acquisition and the third
handles monitoring of a counter in order to measure the lengths of any waits.

Multiprocessing also results in a reduction in device programming time prior to the
start of an experiment shot. Most device programming is I/O bound (not limited by the
processing power of the PC). Simultaneously programming all devices used in a shot thus
typically completes in the time it takes to program the longest device (rather than the sum
of all programming times for sequential programming).

6.1.1.3 State machine

One of the major changes in BLACS v2.0 (written and released after our paper [8] was
published) was the introduction of a more advanced state machine for each device tab. State
machines are an important tool in building complex systems as they enforce a workflow (in
this case, for GUI-hardware interaction) which improves the stability of the control system.
By using a state machine, we enforce control over what actions can be taken at any given
time, improving the robustness of our control software. For example, manual controls on the
BLACS front panel should not be able to control hardware devices that are under precision
timing while executing a shot. A state machine allows such events to either be discarded or
queued until an appropriate time, under a consistent set of easily defined rules.

The aim of this state machine is to manage the execution of the device-specific code
described previously, which falls into the categories of GUI code and worker-process code.
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(a) An example of a BLACS tab for a PulseBlaster DDS-II-300-AWG device. The numbered labels
match the listing in the main body text of §6.1.1.1.
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(b) An example of a BLACS tab for an NI PCIe-6363 device. The numbered labels match the
listing in the main body text of §6.1.1.1.

Figure 6.1: (a) and (b): An example of devices tabs for two different hardware devices.
Despite the entirely different capabilities of the devices, we provide a unified interface for
control of those devices. Note that we have hidden the BLACS queue in this image along
with the other 3 device tab regions that were visible in figure 4.5.



126 CHAPTER 6. EXECUTING EXPERIMENTS WITH THE LABSCRIPT SUITE

Figure 6.2: An example showing how devices in BLACS can monitor the consistency between
the front panel state and the output of the device (when not running a shot). Here we show a
Novatech DDS9m device that has just been power cycled, which causes the output states to
reset to a default setting. BLACS detects an inconsistency between the front panel values of
BLACS and the output state reported by the device, and presents the GUI pictured above.
The user can then to choose either use the local or remote value for each output channel.
Once selected, the front panel values of BLACS are updated to the selected value and the
device is reprogrammed to match, restoring consistency.
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This code exists within Python methods of the device classes (which we cover later in §7.1),
and so will be referred to in this section as the execution of a ‘GUI method’ and a ‘worker
process method’ respectively. We have implemented a non-standard nested state machine,
for which we will coin the term 2D state machine. It consists of two orthogonal sets of
states (which we term the inner and outer states) which are linked by the device code. This
architecture differs from a standard nested state machine in that it is not hierarchical (events
are not passed to the parent state machine as in the hierarchical finite state machine). Our
implementation is also unique in that the workflow of the inner (dimension of the) state
machine is identical regardless of the outer state.

The outer dimension follows a classical state machine. There are four possible states
(which we call modes to distinguish them from the states on the inner dimension):

• mode_manual,

• mode_transition_to_buffered,

• mode_buffered, and

• mode_transition_to_manual.

These four modes represent the two possible modes of operation for the hardware; manual
control from BLACS or stepping through instructions during execution of an experiment
shot, and the transitions between these modes (where the programming required to change
the mode of the device, for example the programming of hardware instructions, usually
takes place).

The inner dimension of this two-dimensional state machine is similar to the state machine
that existed in BLACS v1.0. There are 5 possible states:

• idle,

• execute (part of) GUI method,

• request execution of worker process method via ZMQ,

• wait for results from worker process method via ZMQ, and

• fatal error.

The inner state machine spends the majority of time in the idle state where it waits for an
event to become available from a queue. Events are typically placed in the queue in response
to user actions (for example clicking one of the manual control buttons), the ‘queue manager’
processing a shot (see §6.1.2), or the timeout of a timer (for example for regular status checks
of the hardware).

We define GUI methods that may be queued in the inner state by using a Python
decorator, which abstracts away the state machine so that users can call the Python method
as normal and be assured that it will always run as part of the state machine (although this
enforces the requirement that such methods will return immediately and not return a result
to the caller). The decorator itself takes arguments that indicate the modes (of the outer
state machine) that the GUI method is allowed to run in, and whether the method should
remain in the event queue until the outer state machine enters a mode where it can run, or
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if it should just be deleted once it reaches the head of the queue. We also provide an option
to only run the most recent entry for a method if duplicate entries for the GUI method
exist in the queue (albeit with different arguments). This is particularly useful for methods
that take a long time to complete but which may be queued up rapidly, for instance a user
rapidly changing output values of a device that is slow to program. An example of how you
might use the state machine is shown in the definition of a GUI method in figure 6.3.

The state machine for each device tab runs in its own thread and follows a well defined
workflow (also shown graphically in figure 6.4) which can be influenced by the device code.
When an event is available in the queue (that can run in the current mode of the outer state
machine), the inner state machine transitions to the ‘execute GUI method’ state, and calls
the Python method that was queued up. As this method likely interacts with the GUI, the
method is executed in the main thread (via a request to the GUI event loop provided by
the Qt widget toolkit). This method executes (temporarily blocking interaction with the
GUI) until it either completes, or hits the yield Python keyword. The yield keyword in
Python returns control of the program to the calling code (in this case our state machine).
The yield keyword also allows the called method to return information to the calling code
(for example the data variable would be returned if called as yield(data)). We utilise this
to allow the GUI method to request that the inner state machine transition through the
inner states relating to the worker process, in this case by calling:

yield(self. queue_work (’worker_name ’, ’worker_method_name ’))

If such a statement is encountered, the inner state machine enters the ‘request execution of
worker method’ state and requests the named worker process execute the named method. It
then immediately transitions to the ‘wait for results from worker’ state. Once results have
been received from the worker process (after it has run the worker method), the inner state
machine re-enters the ‘execute GUI method’ state, passing in the results from the worker
process as the return value of the yield keyword, and continues with the execution of the
GUI method from the point it left. This continues until the execution of the GUI method
is complete, where the state machine then enters the ‘idle’ state again. The exception to
this is if a Python Exception is raised in the GUI method, in which case the state machine
enters the ‘Fatal error’ state. The GUI method may also request a change in the outer state
machine mode, which then determines which events can be processed when the inner state
machine next returns to the ‘Idle’ state.

This results in a flexible state machine architecture that allows the device code to control
some portions of the state machine, while maintaining a fixed state machine structure across
device tabs. By exposing the internals of the state machine only via the BLACS tab GUI
methods, we can abstract away much of the state machine implementation and simplify
the necessary coding skills needed to implement support for new devices. We believe this
is a critical requirement of meeting the flexibility goal of our control system, and further
details on the simplicity of adding support for new devices is discussed in §7.1. Our state
machine architecture also allows us to provide a consistent and responsive GUI to a user
by obscuring hardware specific details and offloading these to a separate process.
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class MyDevice (blacs. device_base_classes . DeviceTab ):
# only run in MODE_MANUAL and keep the state in the queue until
# the mode condition is met
@define_state ( MODE_MANUAL , True)
def transition_to_buffered (self , h5_file , notify_queue ):

# set the mode to MODE_TRANSITION_TO_BUFFERED
self.mode = MODE_TRANSITION_TO_BUFFERED

# define the set of arguments and keyword arguments
# to be passed to the worker processes
args , kwargs = (h5_file ,), {}
# Yield to the state machine so that the worker process
# can be run
result = yield(self. queue_work (self. primary_worker ,

’transition_to_buffered ’, *args , ** kwargs ))

# check that everything was successful ...
if result :

# success !
# update the mode and notify the caller
self.mode = MODE_BUFFERED
notify_queue .put([self. device_name , ’success ’])

else:
# Failure !
# notify the caller
notify_queue .put([self. device_name , ’fail ’])
# queue up a method in the state machine
# to return to MODE_MANUAL and instruct the
# worker to program the device ready for
# manual operation
self. abort_transition_to_buffered ()

@define_state ( MODE_TRANSITION_TO_BUFFERED , False)
def abort_transition_to_buffered (self):

...

Figure 6.3: An example of how one might define the GUI method for triggering the pro-
gramming of devices so that they are ready for buffered execution of a shot (ready to step
through hardware instructions). The GUI method transition_to_buffered has been dec-
orated in order to ensure it is only run as part of the state machine, which means the method
will sit in the inner state machine’s event queue until the outer state machine mode is set
to ‘MODE_MANUAL’. When finally executed by the state machine, the method updates
the mode of the outer state machine, and yields to the inner state machine in order to tell a
worker process to transition into buffered mode (which typically involves programming the
table of hardware instructions from the hdf5 shot file). If successful, the outer state machine
mode is updated again and the caller of the method (in this case the ‘Queue Manager’) is
notified of the result. If unsuccessful, we call the abort_transition_to_buffered method
(which is also decorated as a GUI method) which queues up a new event for the inner state
machine. In practice, common functionality like these methods are abstracted away from
the user and contained within the blacs.device_base_classes.DeviceTab class. They
are implemented in a similar (but more generalised) way to the code shown here. For exam-
ple transition_to_buffered is actually written to support an arbitrary number of worker
processes. Further information on adding support for new devices (and how to use the state
machine architecture) is included in §7.1.2.
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Figure 6.4: A flowchart of the logic for the BLACS state machine as described in the main
body text in §6.1.1.3.
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6.1.1.4 Handling waits

As introduced in §5.1.7, in order to use waits, one of the devices in BLACS must monitor
the length of each wait so that a mapping between labscript time and experiment time can
be made. This mapping is then used by analog acquisition devices in BLACS to correctly
break up acquired traces into the requested acquisitions. The length of the wait is also used
in real (software) time by the wait monitor in order to ensure the experiment is not stuck
in a wait forever.

The current wait monitor implementation uses one of the inbuilt counters that are in
many National Instruments acquisition devices, however other implementations are of course
possible if support is added when creating the device classes (see §7.1). At the completion
of an experiment shot, the wait monitor calculates the durations of each wait (based on
data it acquired during the shot) and writes these to the shot file. The wait monitor then
broadcasts a ZMQ event indicating this has been completed. Device code that relies on the
wait information (for example, for breaking up analog acquisitions into the requested set
of traces), waits for this event to be received during the transition to manual mode, before
performing any action. This ensures that the measured lengths of the waits are always
available in the hdf5 file when required.

6.1.2 Shot management

The primary purpose of BLACS is to execute experiment shots on the lab apparatus. File
paths to shots are typically received by BLACS over ZMQ, but can also be loaded directly
through the BLACS GUI (either via the file menu, or by dragging and dropping onto the
queue). Prior to accepting the shot, BLACS compares the connection table of the shot to the
lab connection table and ensures that the shot is compatible with the current configuration of
the laboratory hardware. Connection table compatibility requires that the shot connection
table is a subset of the lab connection table. This ensures that old experiments can not be
run on hardware that is no-longer configured correctly, preventing damage or unexpected
results. Shots that pass this check are added to a queue, which is visible in the BLACS
GUI (see figure 6.5).

The queue is processed by a thread in BLACS, which we term the ‘queue manager’, that
takes the top-most shot in the queue and, in turn, executes it. Shot execution follows the
following pattern (a flowchart of this process is also shown in figure 6.6):

1. For each device in use in the shot, a message is sent to the corresponding device tab
state machine indicating that the device should program the device for hardware timed
execution of a shot. These messages are sent asynchronously, which ensures devices
program in parallel if possible (subject to the state machine being available to process
the message). Included in this message is the path to the hdf5 shot file, which each
device tab ultimately passes to a worker process that in turn, reads out the hardware
instructions and programs the hardware. During this programming, the device tab
enters the mode ‘transition_to_buffered’ (see §6.1.1.3).

2. The queue manager then waits until all devices have reported they have programmed,
at which point all device tabs in use should be in the ‘buffered’ state machine mode.
If a device does not report it has completed within a 5 minute timeout, or a device
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Figure 6.5: The queue manager GUI within BLACS (with the device tabs hidden). (1)
The pause button stops the queue from processing new shots (a currently running shot
will finish). (2) The repeat button, when enabled, will duplicate a completed shot and
either place the duplicate at the bottom or the top of the queue (depending on the mode
selected). (3) The abort button immediately stops the execution of the current shot and
returns hardware to manual mode. (4-5) Buttons to add or delete selected shots from the
queue. (6) A button to clear the entire queue. (7-10) Buttons to reorder selected shots
within the queue. (11) The current status of the queue is displayed here. For example, the
status may indicate that devices are currently being programmed, the master pseudoclock
has been triggered and the experiment is running, or that acquired data is currently being
saved into the hdf5 shot file. (12) The list of shot files in the queue, in the order they
will be executed (the topmost is executed first). (13) A button to enable or disable the
forwarding of shots to lyse for analysis. (14) The network hostname of the PC running lyse.
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Figure 6.6: A flowchart of the logic for the BLACS queue manager. For brevity, we have
not included the logic for pausing the queue via the GUI or handling error conditions. See
the listing in the main body text of §6.1.2 for further details.

reports an error has occurred during programming, the queue manager aborts the shot
by pausing the queue, instructing all device tabs to abort, and replacing the shot at
the top of the queue.

3. Provided all devices report they are ready, the queue manager proceeds with starting
the shot. This involves recording the current state of all manual controls (as these usu-
ally affect the initial values of the shot and may affect results in certain experiments)
and then instructing the master pseudoclock to begin execution of the programmed
instructions.

4. The queue manager then waits for the master pseudoclock to report that the experi-
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ment shot has completed. If an error occurs in a device tab during a shot, the queue
manager aborts the shot (as previously described) and pauses the queue.

5. Once a shot has completed, the queue manager instructs all device tabs to ‘transition
to manual’ mode. At this stage, device tabs enter the ‘transition_to_manual’ state
machine mode where they save any acquired data and reprogram the hardware device
for manual operation via the BLACS GUI. Again, if errors occur during this process,
the queue manager aborts the shot as before, but with the additional step of cleaning
any saved data from the hdf5 file (so that the shot file is returned to the state prior
to execution).

6. The path to the shot file is now sent to a separate thread that runs a routine for
managing submission of shots to lyse for analysis. This routine forwards the shot file
paths to the lyse server specified in the BLACS GUI if analysis submission is enabled
(see figure 6.5 (13–14)). If lyse does not respond to these messages, the shot file paths
are buffered until such time as lyse does respond, to ensure no shots are missing from
analysis.

7. Finally, the queue manager checks the state of the repeat button in the BLACS GUI
and, if required, duplicates the shot (minus the acquired data) and places the duplicate
in the appropriate place in the queue.

6.1.3 Plugins

To cater to the variety of lab environments, BLACS supports custom user code (that is not
covered by a device implementation) in the form of plugins. Plugins allow custom graphical
interfaces to be created through the addition of menu items, notifications, preferences ed-
itable through a common preferences panel, and custom tabs that sit alongside device tabs.
Plugins are also provided access to a variety of internal BLACS objects, such as the shot
queue, and can register callback functions to be run when certain events happen (such as a
shot completing). This provides a powerful basis for customising the behaviour of BLACS
in a way that is both modular and maintainable, providing a way to include optional con-
flicting features without needing to resolve the incompatibility. Plugins can be easily shared
between groups, allowing for a diverse variety of control system interfaces that are all built
on a common platform. We have developed several plugins at Monash, which are detailed
in the following sections, and demonstrate the broad applicability of the plugin system.

6.1.3.1 The connection table plugin

This plugin is included in the default install of BLACS, and provides a clean interface to
manage the lab connection table that BLACS uses to automatically generate the device
tabs and their graphical interfaces. The plugin inserts a menu item that provides shortcuts
for:

1. editing the connection table Python file,

2. initiating the recompilation of the connection table, and

3. editing the preferences that control the behaviour of the plugin.
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The preferences panel allows you to configure a list of hdf5 files containing runman-
ager globals to use during the compilation of the connection table (commonly used as unit
conversion parameters), as well as a list of unit conversion Python files, to watch for any
changes. At startup, the plugin launches a background thread that monitors changes to
these files, as well as the connection table Python file and compiled connection table hdf5
file. If any modifications are detected, a notification is shown at the top of BLACS informing
that the lab connection table should be recompiled. If recompilation is chosen by the user,
the plugin manages the recompilation of the connection table using the runmanager API
and output from this process is displayed in a window. Once recompilation is successful,
the plugin relaunches BLACS so that the new connection table is loaded. This ensures that
BLACS is using the same knowledge of the experiment apparatus as any future shots will
when they are created by runmanager (assuming they share the globals files used).

6.1.3.2 The labwatch plugin

The labwatch plugin is designed to link the process control systems in our lab with our sci-
entific control system. The labwatch plugin was created by fellow student Shaun Johnstone,
in consultation with myself (on the BLACS side) and Martijn Jasperse (on the process
control side). As discussed in §3.3, our process control systems log to a standard Linux
syslog server. This server however, has also been configured to mirror the syslog messages
over a ZMQ pub/sub socket. The labwatch plugin subscribes to these messages from within
BLACS and monitors them based on a user-supplied configuration.

The user-supplied configuration is made through a preferences panel created by the
plugin. Here, the user specifies a list of identifiers that allow the plugin to filter the syslog
messages for a certain device and/or quantity (such as temperature or flow rate) to be
observed. Allowed states or upper and lower bounds for values are then specified for each
quantity that is being observed. When the syslog messages indicate that the quantity is out
of bounds, the BLACS shot queue is automatically paused an a notification is presented
to the user. This ensures that BLACS does not allow experiments to run if the apparatus
is not functioning correctly, a key requirement of automatic data taking systems that are
not under constant observation by human operators. The monitoring of process control
systems is, however, read-only, preserving the separation between process and scientific
control systems.

6.2 Secondary Control systems

While BLACS was designed to be a comprehensive interface for all hardware, the practi-
calities of this are often more complex. For example, some devices do not provide libraries
or drivers that can easily be interfaced with Python or may come bundled with a control
program of their own that would be easier to use than writing an interface in Python. It is
also common to see control interfaces running across multiple PCs, either to create a multi-
user control interface or due to PC-to-device connection requirements that necessitate the
use of more than one PC. Additionally, operational laboratories may already have control
software that they would like to continue using as part of the labscript suite. Fortunately
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the labscript suite provides a simple solution to all of these scenarios via the concept of
‘secondary control systems’.

While the labscript suite model requires that all hardware devices have an associated
device tab in BLACS (that manages the programming of the device), there is no requirement
that the device tab and worker process actually do the programming of a hardware device
directly. We can thus interact with almost any other system (which we term a ‘secondary
control system’) by writing a BLACS device tab as an intermediate communication broker
between BLACS and the other system, provided that other system has a communication
mechanism that is accessible through Python. For systems that cannot interface directly
with Python, it is often possible to write additional intermediate brokers to ultimately pass
messages between a BLACS worker process and the other system. The labscript suite is
thus not limited to controlling devices with direct support, like most control systems, but
can instead be used as a powerful tool for coordinating other control systems as well as
directly attached hardware devices.

6.2.1 BIAS

BIAS was the first program we interfaced with the labscript suite as a secondary control
system. BIAS was written by fellow student Martijn Jasperse, with development commenc-
ing at approximately the same time as BLACS. BIAS was designed as a standalone image
acquisition program, implemented in LabVIEW due to the wide compatibility with a vari-
ety of commercial camera drivers. It incorporates both manual and triggered acquisition,
along with optical density calculations for absorption images of ultracold atoms, multiple
region-of-interest selection and 2D Gaussian fitting to images within these regions.

As the projects were conceived at similar times, they were initially developed indepen-
dently of each other. It was also thought that independent, asynchronous control of region
of interest selection and the atom cloud fitting would be beneficial in order to improve cycle
time. Ultimately, we have moved much of the fitting into lyse, however we still use BIAS as
an interface to our cameras and to select regions-of-interest. In order to integrate BIAS with
the rest of the labscript suite, we developed a simple protocol for communicating between
the two programs2. BLACS communicates to BIAS over a raw network socket, via a device
tab, sending information such as the path to a hdf5 shot file for the current shot, and
messages to indicate when the shot is complete or has been aborted. BIAS then acts like
any other worker process would, controlling the hardware as appropriate, and reading and
saving data to and from the shot file. Further details on the underlying implementation of
BIAS can be found in Martijn Jasperse’s thesis [106].

6.2.2 Others

While not as comprehensive as BIAS, developers in our research group have written several
small programs that also act as secondary control systems. Chris Billington wrote a Python
script that imitates the communication protocol of BIAS, which can be used to build custom
imaging software or interface with existing software that a lab may currently use. For

2. It should be noted that his protocol is only defined within BIAS and within the device tab code. It is
not built into BLACS, which means that other secondary control systems can use whatever protocol is
appropriate.



6.3. LYSE 137

example, he used this at another institution to copy images, saved independently by their
camera software, into the hdf5 file on shot completion. This meant that no customisation
was needed for the existing software (at the expense of losing the ability to control camera
parameters via labscript). This code can be found in the labscript_utils repository [154].

In our labs at Monash, Shaun Johnstone created a secondary control system to provide
semi-hardware timed control of Zaber translation stages. A Raspberry Pi was configured
with a custom Python script that was commanded by BLACS as a piece of custom hard-
ware. The custom Python script was written to also respond to digital triggers received via
the Raspberry Pi GPIO pins, coordinating the movement of two translation stages to posi-
tions informed by previous communications from BLACS (which are typically shot specific).
Further details of this can be found in Shaun Johnstone’s thesis [100].

6.3 Lyse

Lyse (short for ‘analyse’) was developed to provide a modular analysis framework for per-
forming an arbitrary set of analyses on shots that have been executed by BLACS. The lyse
application provides a graphical interface (see figure 4.6) for managing the analyses to per-
form, and displaying a table of data from executed shots that have been loaded into lyse
for analysis. It is designed to run continuously as new data is acquired, or as a standalone
system for analysing data that was previously acquired. Analysis routines are defined as
Python scripts, which the lyse application queues up for execution as new shot data arrives
(or on user request). Lyse maintains the table of shot data, such as runmanager globals
and analysis results, as a Pandas DataFrame, which it updates automatically as new shots
arrive from BLACS and/or analysis routines complete. This DataFrame is made available
to analysis routines and is also used as the data store backing the previously mentioned
table in the GUI.

The graphical interface is only designed to facilitate the analysis of data and display a
table of results for a set of loaded shots. It is important to stress that the graphical interface
is not designed to be used to actually configure or define the analyses beyond indicating
which analysis routines to use and the order in which they should run. This is distinct
from other analysis software that often provide a unified interactive graphical interface for
the entire analysis process (for example, Igor Pro). The main benefit of this approach is
the flexibility to control and customise every aspect of your analysis workflow, including
the underlying implementation of analysis techniques. This design decision follows the
philosophy we applied to runmanager, BLACS, and the labscript API, which was previously
described in §4.3.3 and chapter 5. The definition of an analysis routine is best described
textually, using a programming language with an API that provides the user with helpful
tools to simplify the mundane and/or standard aspects of analysis. The automation of
performing analysis on acquired data, including the types of analysis and the order in
which separate analysis routines are performed, is best managed via a graphical application.
Unlike, for example, MATLAB, we don’t attempt to embed a text editor into our graphical
application, instead leaving this to projects specifically designed to produce outstanding
text editors.

Analysis routines are defined as Python scripts, by the end user, and make use of the
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lyse API, which provides convenience methods for obtaining data from the shot files or the
Pandas DataFrame. We allow two types of analysis scripts to be loaded into lyse: those
designed to analyse data from a single shot (see §6.3.2) and those that analyse data from a
set of shots (see §6.3.3). While lyse (the application) and the lyse API are tightly coupled,
it is important to note that the lyse API can also be used independently of the graphical
interface, which we discuss in §6.3.4.

The lyse application launches a separate worker process for each analysis script loaded.
This follows the same model we used in BLACS and brings the same stability improvements
to the application. When a new shot file is loaded into lyse (either by the user or received
directly from BLACS), lyse sequentially notifies each worker process that the analysis script
should be run. The worker process then executes the Python code contained in the user-
specified analysis script. Finally, the worker process sends a dictionary of analysis results
saved using the lyse API back to the lyse application where it is added to the Pandas
DataFrame and displayed in the GUI.

The worker process also contains code that modifies the default plotting behaviour of
matplotlib, the well-known 3rd party Python graphing library we use in lyse. By default,
a script using standard matplotlib calls would block execution while displaying the plots
as this in an intrinsic requirement of all software that displays a graphical interface. This
would result in analysis hanging while plots for one analysis script were inspected and would
require plots to be opened and closed each time an analysis script ran. To work around
this, the user is instructed to use the standard matplotlib library but not call the show()
function, which creates and displays any previously defined plots. The worker process code
is then responsible for instantiating and drawing each plot, after the user’s script has finished
executing. This allows the worker process to handle communication with the lyse application
asynchronously, provide a custom matplotlib toolbar for the user, and seamlessly update
plots with data from the latest run of the analysis script without requiring the plot windows
to be recreated. This also allows us to provide options to preserve the zoom level of each
plot window, or other custom behaviour, without the need for a special plotting API.

The result of all of these features is a robust framework that can be used to implement
arbitrary analysis and produce publication quality plots, using the standard matplotlib
library, that update in real time as new data is acquired.

6.3.1 Pandas

Pandas is a general purpose data analysis library for Python. Lyse uses pandas for mediating
access to most experiment data, with the exception of time series acquisitions and images
which would take up an inordinate amount of space if cached within a Python data structure.

Pandas itself is best described by this quote from the documentation [155]:

pandas is a Python package providing fast, flexible, and expressive data struc-
tures designed to make working with “relational” or “labelled” data both easy
and intuitive. It aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python. Additionally, it has the broader
goal of becoming the most powerful and flexible open source data analysis / ma-
nipulation tool available in any language. It is already well on its way toward
this goal.
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pandas is well suited for many different kinds of data:

• Tabular data with heterogeneously-typed columns, as in an SQL table or
Excel spreadsheet

• Ordered and unordered (not necessarily fixed-frequency) time series data.

• Arbitrary matrix data (homogeneously typed or heterogeneous) with row and
column labels

• Any other form of observational / statistical data sets. The data actually
need not be labelled at all to be placed into a pandas data structure

We use Pandas in lyse to hold a 2D table (a DataFrame) of shot data, where rows
correspond to shots and columns correspond to the various data contained in the shots
such as global variable values and analysis results. Columns of the DataFrame can also be
hierarchical, which we utilise to group analysis results together. DataFrames can be easily
indexed and/or sliced to access individual values or subsets of the DataFrame, and pandas
provides convenience methods for grouping and iterating over data, which we’ll cover further
in the following sections. In short, pandas provides a convenient framework for storing and
using data, an important basis for our general purpose analysis system.

6.3.2 Single-shot analysis

Single-shot analysis scripts are designed to be run with data from a single shot file. Messages
between lyse and an analysis script worker process thus also contain the path to the relevant
shot file. The shot file path is then made available to the analysis script via the lyse API
attribute: lyse.path. Beyond this, the user is free to construct their analysis script as they
see fit, with minimal constraints placed on them by lyse. The only real constraint is that
plots should be made using the matplotlib library so that lyse can correctly manage the
display of plots produced.

While it is possible to directly read experiment data out of the shot file, the lyse
API does also provide convenience methods to help with this. The lyse API provides
a class that can be instantiated by: run = lyse.Run(lyse.path)3. This run object then
provides convenience methods to pull out information from the shot file, such as glob-
als, acquired traces, and acquired images. This object can also be used to save anal-
ysis results, for instance by calling run.save_result_array(’OD’, a_numpy_array) or
run.save_result(’N_atoms’, N) to save arrays or single values respectively. Globals and
analysis results from other (previously run) scripts, can be also access through the Pandas
DataFrame in the same way as for multi-shot analysis scripts (discussed in the following sec-
tion). Results are saved in a HDF group determined from the filename of the script to avoid
naming conflicts. When accessing the results through the Pandas DataFrame (for example
from a different single-shot analysis script), columns are indexed with a tuple containing
the filename and the name of the result, again preventing name conflicts with other results
or global variables. For example, a result ’N_atoms’ from a script called OD_calc.py could
be accessed from a DataFrame object df using df[(’OD_calc’, ’N_atoms’)].

3. Named Run for unfortunate historical reasons. It should really be called Shot.
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6.3.3 Multi-shot analysis

Multi-shot analysis routines, as the name suggests, are designed to act on a set of shots.
The lyse API provides a method lyse.data() which fetches the Pandas DataFrame from
the lyse application over a ZMQ socket. Typically, multi-shot analysis routines then slice
the DataFrame to contain one or more sequences of shots (usually the last N sequences)
and perform analysis on that subset only, although this is heavily dependent on the analysis
to be performed. One of the most useful features of the Pandas DataFrame is the ability
to group the rows of the DataFrame by a common value in one or more columns using
the pandas.DataFrame.groupby() method [156]. As the DataFrame contains a column for
every global variable and every single-shot analysis result that was saved, this provides a
very easy way to collate data with minimal code. For example, a sequence of shots that
alternated between rubidium and potassium absorption images would be first be grouped
by the global name storing the alkali type, and then these two subsets of shots would be
iterated over for further analysis. Higher-order analysis is also possible by iteratively nesting
calls to pandas.DataFrame.groupby(). This complements the arbitrary parameter space
definition from within runmanager, by providing an analysis framework with the flexibility
to easily analyse results from such a parameter space investigation. Further real world
examples of this will be presented in chapter 8.

6.3.4 Command-line usage

While we recommend running analysis scripts from within lyse, this is not a requirement.
Single-shot analysis routines (Python files) can be executed in any Python environment
that has the lyse API installed by executing the script from a terminal. In such situations,
the lyse.path variable would be set to sys.argv[1] (the command line argument after
the Python filename). Such scripts should explicitly call matplotlib.show() in order to
produce the plots. As such a call is incompatible with running the script from within lyse
(see §6.3), we provide a variable that indicates whether the script has been launched from
lyse or not (lyse.spinning_top, a reference to the movie Inception) so that the call to
matplotlib.show() can be placed within a conditional statement.

Multi-shot analysis routines can be executed from the terminal in a similar way. In this
case, the Pandas DataFrame should be fetched from a running instance of lyse (via the
lyse.data() method, which optionally takes host and port keyword arguments for con-
nection to remote PCs) or loaded from a locally stored DataFrame (for example a previously
‘pickled’ DataFrame that was written to a file). The latter is particularly useful for users
with large data sets as lyse does not provide DataFrame persistence between application
sessions. Again, lyse.spinning_top can be used to make the script compatible with both
the lyse application and the terminal.

Alternatively, if no script is available, the lyse API can be used from an interactive
terminal such as IPython. In such a case, the single-shot analysis API will not provide a
path in lyse.path and results will not be able to be saved to a shot file without first calling
Run.set_group(’script_name’) in order to identify the hdf5 group name where results
should be stored.
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6.4 Mise

In our paper [8], we presented a program called ‘mise’ (short for optimise) which demon-
strated the ability to perform closed-loop optimisation using the labscript suite. As the
other components of our system have evolved, we have decided to deprecate mise, and it
is currently not supported by the latest version of the labscript suite. Closed-loop opti-
misation remains an important goal of the labscript suite, but incorporating support for
all possible optimisation methods seemed impractical with the architecture of mise. In-
stead, we have worked to provide appropriate API features so that optimisation routines
can be written as lyse analysis scripts. To this end, we now provide a lyse API attribute
called lyse.routine_storage which allows analysis routines to store persistent information
across multiple executions of an analysis routine run by the lyse application. This allows
analysis routines to keep a record of the optimisation process (for example, a list of shots
in the current generation of a genetic algorithm) which is necessary for many optimisation
algorithms to determine when a stage of the optimisation has completed and new shots
should be generated. Analysis routines are free to then use the existing runmanager API
for modifying global variables, generating shots, and submitting those shots to BLACS.
The analysislib-mloop routine [130] demonstrates these new features, adding support for
the M-LOOP [157, 158] machine learning package to the labscript suite in less than 300
lines of code.

We believe our latest approach provides the most flexibility by allowing for arbitrary
optimisation routines to be implemented at the analysis stage without having to build an
entirely custom, standalone application. This is in part, made possible, by our design of
accessible APIs that follow the Unix philosophy. We are however continuing to work on
improving the functionality of closed-loop optimisation within the entire labscript suite
framework, which we discuss further in §9.2.

6.5 Summary

In this chapter we detailed the components of the labscript suite dedicated to performing an
experiment. We first covered BLACS, which interfaces with the hardware devices control-
ling the apparatus. BLACS was designed specifically to provide the robustness needed for
continuous operation, which we achieved by utilising techniques from software engineering
and process control such as sandboxing and state machines. We also designed BLACS to be
extensible, so that it can adapt to future research directions, by providing a plugin frame-
work for new features and a modularised hardware interface, which we’ll detail further in the
next chapter. BLACS also facilitates the integration of existing or custom control software
into the labscript suite workflow, through the secondary control system architecture. We
then introduced our analysis framework, lyse, which allows the user to create analysis rou-
tines to run on shot files that have been executed by BLACS. The routines can be written
to perform analysis on single and/or multiple shot files, allowing complex parameter spaces
to be analysed. These analysis scripts can also produce publication quality plots, which
update automatically in near real time, as data is acquired. By utilising an API provided
by runmanager, these analysis scripts can also be used to create new shots, with globals
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based on analysis results, closing the loop and allowing for semi-autonomous control of the
apparatus.



Chapter 7

Extending the labscript suite

While we have demonstrated the flexibility of much of the user facing aspects of the control
system in the previous chapter, it is also critical to assess the support for the hardware that
forms the interface between the control system and the physical apparatus. In this chapter
we demonstrate how our architecture makes it easy for developers to add support for new
hardware devices.

7.1 Adding support for new hardware devices

As detailed in chapters 5 and 6, the labscript API, BLACS, and runviewer are designed
specifically for extensible hardware support. In this section we will detail the minimum
requirements for adding support for custom hardware, and demonstrate the simplicity of
our architecture.

The labscript suite stores device-specific code in a dedicated Python module called
labscript_devices. The main code for each device model is then stored in a single Python
file within this module, named after the device in question1. This Python file then contains,
at a minimum, four Python classes: one for the labscript API, BLACS GUI, BLACS worker
process, and runviewer. With the exception of the labscript API class, these classes can
be named as the developer wishes. The labscript API class must be named the same as
the Python file it exists in. For example, the PineBlaster labscript class exists within the
PineBlaster.py file. The four classes must be registered with the labscript suite using class
decorators [159] which can be imported from labscript_devices: @labscript_device,
@BLACS_tab, @BLACS_worker, and @runviewer_parser. This allows the labscript applica-
tions to find and import the classes when necessary2. As we will see in the next sections,
the four classes subclass either a labscript-suite-provided class, or classes imported from an
existing device, to extend the already provided behaviour.

1. It is important to note that the filename must follow Python guidelines for module names (for example
no spaces are allowed in the filename).

2. At the time of writing, this method for registering classes is about to be deprecated. The new method
is similar but, instead of using a class decorator, requires that the classes are registered by specifying a
fully qualified import path (as a string) in an argument to the labscript_devices.register_classes()
function. This will enable code for each labscript suite component to be separated across multiple files
so that, for example, the BLACS code is not imported within runviewer. It also enables device code to
be bundled up into folders, which is more amenable to modular distribution of device code not included
within the master repository of the labscript suite.
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7.1.1 Labscript

As introduced in §5.1.1, devices fall into one of two categories: pseudoclocks and devices that
update their output based on (or are clocked by) an external pseudoclock signal. Labscript
provides provides the classes PseudoclockDevice and IntermediateDevice respectively to
help implement new devices of these types.

7.1.1.1 Implementing pseudoclock devices

The most versatile pseudoclock device is one that supports the following features:

1. software triggering, used by BLACS to initially start the experiment shot,

2. support for complex instructions including loops and waits, and

3. external triggering, used to synchronise pseudoclocks to each other and external events.

For the purposes of this section, we will assume that the hypothetical hardware has all
of these features so that it can be used as either a master or secondary pseudoclock. In
practice, the first feature is only necessary for master pseudoclocks. The second feature
is strongly recommended for all pseudoclocks, but is not strictly necessary provided the
hardware can be made to output an arbitrary pulse sequence. The third feature is only
required if the device is to be used as a secondary pseudoclock or the experiment uses waits.

The labscript class should inherit from PseudoclockDevice (or another class that ulti-
mately inherits from PseudoclockDevice) and override the __init__ and generate_code
methods. Both overridden methods should typically immediately call the base class im-
plementation on the first line of the respective methods. Labscript expects several class
attributes to be defined, which detail the specifications and limitations of the device. We
show these for the PineBlaster below:

@labscript_device
class PineBlaster ( PseudoclockDevice ):

# A human readable name for device model used in error messages
description = ’PineBlaster ’
# The maximum rate (in Hz) at which the clock can tick
clock_limit = 10e6
# The smallest unit of time the device can process
clock_resolution = 25e-9
# The delay between receiving a trigger and the first clock pulse
trigger_delay = 350e-9
# The minimum length of a wait (or the minimum time between
# reaching a wait instruction and responding to a trigger to
# resume )
wait_delay = 2.5e-6

The __init__ method should, at a minimum, be defined as below. Note that the
keyword argument usbport may be alternatively named, as appropriate for the device. We
discuss the passing and storage of additional parameters at instantiation time in §7.1.1.3.
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def __init__ (self , name , trigger_device =None , trigger_connection =
None , usbport =’COM1 ’):

# Run the labscript suite base class method
# (we assume inheritance from PseudoclockDevice here)
PseudoclockDevice . __init__ (self , name , trigger_device ,

trigger_connection )

# stores the connection information in the BLACS_connection
# column of the connection table
self. BLACS_connection = usbport

# any additional device specific code
...

In addition to the above, some pseudoclock devices also internally instantiate Pseudoclock
and ClockLine objects if there is always a fixed number of these present in the device. For
example, the PineBlaster instantiates one Pseudoclock and one ClockLine object as it only
has one output. The PulseBlaster instantiates one Pseudoclock, but leaves the creation of
ClockLine objects to the connection table definition in the experiment logic file because
PulseBlaster digital outputs can be assigned as either clock lines or digital outputs.

The generate_code method is called internally by labscript3. The base class method
(provided by labscript) is responsible for invoking the parts of labscript that collate the
requested I/O from the experiment logic, and generate internal (general purpose) data
structures that contain a representation of the required pseudoclock signal(s) and a list of
state changes for each output (that matches with the generated clocking signal(s)). As
such, when overriding the generate_code method from inside a device specific class, it is
important to first call the base class method:

def generate_code (self , hdf5_file ):
# Run the labscript suite base class method
# (we assume inheritance from PseudoclockDevice here)
# This generates instruction data for every child and
# subsequent generation of children that is attached
# to this device
PseudoclockDevice . generate_code (self , hdf5_file )

# Create the HDF5 group for storage of
# device attributes and instructions
group = self. init_device_group ( hdf5_file )

# device specific code here
...

Following the call to the base class method, and the creation of the device group in the hdf5
file, the generate_code method should generate hardware instructions for the pseudoclock
device, in an appropriate format for the device, and save them into the previously created
device group. There is no specific format enforced; the format should be chosen to best

3. This occurs as part of the function call labscript.stop(t), which a user calls at the end of their
experiment logic file.
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suit the programming of the device. A representation of the desired clocking signal (the
pseudo-pseudoclock instructions) is available from the Pseudoclock object(s), which will
be a child of this device. This is accessible either through self.get_all_children() or
an internal variable if the Pseudoclock was instantiated internally. If, for example, the
Pseudoclock was created internally and saved in self.pseudoclock, then the pseudoclock
clocking instructions are stored in self.pseudoclock.clock. The format of this data is a
list of dictionaries, of the form:

[
# start: The time (in seconds since the initial device trigger ) of
# the instruction
# reps: The number of times to tick the clock for this instruction
# step: The period of each clock tick
# enabled_clocks : A list of ClockLine objects that should tick for
# this instruction
{’start ’:0.0, ’reps ’:1, ’step ’:100e-6, ’enabled_clocks ’: [<

ClockLine object >, < ClockLine object >, ...]},
...

]

This then forms a basic implementation of a pseudoclock device. We believe our API
provides one of the easiest to master when it comes to adding new pseudoclock devices as
the majority of the implementation is taken care of by the base class. This only leaves the
developer with the task of writing code to translate from the pseudo-pseudoclock instructions
to the format required for programming the device.

7.1.1.2 Implementing pseudoclocked devices

Adding labscript support for pseudoclocked devices (devices that update their output state
from an externally provided clock tick, such as the Novatech DDS9m or an NI card) is
very similar to that of the pseudoclock described in the previous section. The labscript
API provides a class IntermediateDevice that should be subclassed and the __init__
and generate_code methods overridden. Class attributes indicating the type of outputs
and maximum clock rate should be set:

@labscript_device
class NovaTechDDS9M ( IntermediateDevice ):

# A human readable name for device model used in error messages
description = ’NT -DDS9M ’
# The labscript Output classes this device supports
allowed_children = [DDS , StaticDDS ]
# The maximum update rate of this device (in Hz)
clock_limit = 9990

The __init__ method is much the same, except the method signature is changed:

def __init__ (self , name , parent_device , com_port = "", baud_rate =
115200 ):

IntermediateDevice . __init__ (self , name , parent_device )
self. BLACS_connection = ’%s,%s’%(com_port , str( baud_rate ))
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We again save information regarding the device connection to the control PC in the BLACS_
connection attribute. The generate_code method has the same method signature as
described in the pseudoclock implementation, and should write a table of instructions to
the hdf5 file in a format appropriate for programming this device. Instead of accessing the
pseudoclock instructions though, subclasses of IntermediateDevice should iterate over a
list containing the attached output object(s) stored in self.child_devices. The list of
output states for each output is then available in the raw_output attribute of each output
object4.

7.1.1.3 Storing configuration attributes

The labscript suite provides a common API for saving and retrieving device configuration
metadata (properties) from the shot file. There are two locations for this data; the first is
a HDF attribute to the device group introduced above, and the second is a column of the
connection table (where the data is stored as a JSON formatted string). Device metadata
that is critical to defining the device or channel configuration and cannot be changed shot to
shot via software configuration, should be saved in the connection table properties column.
For example, the frequency of a reference clock connected to a device would usually be
stored in the connection table properties. Device metadata that can be configured through
software should be saved as an attribute of the device group5. For example, most analog
acquisition devices have a software configurable acquisition rate that would be stored in the
device properties.

These parameters are usually specified when device objects are instantiated using the
labscript API. Labscript provides a Python decorator that allows you to easily assign argu-
ments from the __init__ constructor method to either the device properties or connection
properties locations6. For example, this demonstrates a potential modification to the pre-
viously introduced PineBlaster class:

@set_passed_properties ( property_names = {
" connection_table_properties ": [" device_config "],
" device_properties ": [" channel_config "]

})
def __init__ (self , name , trigger_device =None , trigger_connection =

None , usbport =’COM1 ’, device_config =None ,
channel_config =None):

PseudoclockDevice . __init__ (self , name , trigger_device ,
trigger_connection )

self. BLACS_connection = usbport

The optional instantiation arguments device_config and channel_config are then stored
in the connection table and as a device group attribute respectively, without any additional

4. DDS and StaticDDS objects are actually an amalgamation of multiple analog outputs, and the
lists of instructions should instead be accessed through my_dds_output.frequency.raw_output,
my_dds_output.amplitude.raw_output, and my_dds_output.phase.raw_output.

5. It should be noted that, currently, you cannot save device group attributes for channels attached to a
device, due to the fact that only devices (and not their channels) receive a device group in the HDF
file. It is expected that this will be addressed in a future update [160].

6. The original idea for this was proposed and implemented by myself, albeit limited to the connection
table [161]. The decorator interface was developed by Ian Spielman and integrated after discussions
with our development team at Monash [162].
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work. There are also dedicated methods for saving data in these locations if an internal
calculation is required before the value can be saved (for example, if the value to be saved is
derived from the combination of two constructor arguments). These properties can then be
retrieved from shot files within runviewer, BLACS and lyse using the provided get function
in the labscript_utils.properties Python module.

7.1.2 BLACS graphical user interface

Creating GUIs is usually considered difficult. While a standalone Python script executes
(reasonably) linearly, graphical applications host an ‘event loop’ that is typically outside of
the control of the developer. The event loop calls blocks of code the developer has written
in response to events generated by a user in the graphical interface. This paradigm shift
of program execution is often difficult for new developers to follow. Furthermore, long
computations can no longer run in the primary thread, as this would block the execution of
the event loop (thus locking up the graphical interface).

We help developers easily create graphical interfaces in BLACS by providing almost all
of the required functionality in a Python class (blacs.device_base_classes.DeviceTab)
which can be subclassed for each device. For a IntermediateDevice like an NI card, the
subclass of DeviceTab need only override a single method (initialise_GUI). The over-
ridden method is then responsible for defining the hardware properties of each channel, in-
stantiating ‘output objects’ (which cache the current output states, handle unit conversions,
and updating the values of GUI widgets), creating and placing the GUI widgets and creat-
ing the worker process for communicating with the hardware. The developer can also take
the opportunity to state if the device supports remotely checking the values programmed
into the device (to ensure they match the current front panel values) and/or whether the
hardware timed instruction table in the device can be updated without reprogramming the
entire table. Most of this can be achieved using provided methods of DeviceTab, as shown
below:

@BLACS_tab
class NI_PCI_6733Tab ( DeviceTab ):

def initialise_GUI (self):
# Capabilities
self. num_AO = 8
self. num_DO = 8
ao_prop , do_prop = {}, {}

# Define channel hardware parameters .
# ao_prop and do_prop dictionaries should be keyed by the
# channel name as used in the labscript ’connection ’ string
for i in range(self. num_AO ):

ao_prop [’ao%d’%i] = {’base_unit ’:’V’,
’min ’:-10.0,
’max ’:10.0,
’step ’:0.1,
’decimals ’:3

}
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for i in range(self. num_DO ):
do_prop [’port0/line%d’%i] = {}

# Create the BLACS output objects
self. create_analog_outputs ( ao_prop )
self. create_digital_outputs ( do_prop )
# Create widgets connected to the BLACS output objects
dds_widgets ,ao_widgets , do_widgets = self. auto_create_widgets ()

# and place the widgets in the GUI
self. auto_place_widgets ((’Analog Outputs ’, ao_widgets ),

(’Digital Outputs ’, do_widgets ))

# Store the Measurement and Automation Explorer (MAX) name
self. MAX_name = str(self. settings [’connection_table ’].

find_by_name (self. device_name ). BLACS_connection )

# Create and set the primary worker .
# Here we set the worker name , worker process class to use ,
# and a dictionary of parameters to be passed to the worker
# process .
self. create_worker (" main_worker ", NiPCI6733Worker , {

’MAX_name ’:self.MAX_name ,
’num_AO ’:self.num_AO ,
’num_DO ’: self. num_DO

})
self. primary_worker = " main_worker "

# Set the capabilities of this device
self. supports_remote_value_check (False)
self. supports_smart_programming (False)

As can be seen from the above example, only around 50 lines of code are needed to generate
complex GUIs that contain all of the previously described features in §6.1.1 (and much of
this code is either comments or boiler-plate code). This includes code that automatically
names controls based on a name from the BLACS connection table, the state machine
architecture, and a robust worker process model for communicating with a hardware device.

For pseudoclock devices, i.e. the devices that control the timing of every shot, two
additional methods should be defined. The first is the start_run method and the second is
a method for checking whether the shot has finished. Both must be written to use the device
tab state machine and the latter should be configured to run periodically during experiment
execution. Again, the BLACS device tab base class provides significant help here, and the
methods generally look as follows:
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# A method , called by the queue manager , used to command the
# master pseudoclock to begin the shot
@define_state ( MODE_BUFFERED ,True)
def start_run (self , notify_queue ):

success = yield(self. queue_work (self. primary_worker ,
’start_run ’))

if success :
self. statemachine_timeout_add (100 , self. status_monitor ,

notify_queue )
else:

raise RuntimeError (’Failed to start run ’)

# A method , called by the statemachine repeatedly (as
# configured by start_run above) that monitors the
# master pseudoclock and notifies the queue manager when
# the shot is complete
@define_state ( MODE_BUFFERED ,True)
def status_monitor (self , notify_queue ):

finished = yield(self. queue_work (self. primary_worker ,
’status_monitor ’))

if finished :
notify_queue .put(’done ’)
self. statemachine_timeout_remove (self. status_monitor )

As can be seen, these methods are thin wrappers around calls to the worker process, and
are used by the BLACS queue manager to interact with the primary (master) pseudoclock.

Additional customisation to the device class is of course possible, using other inbuilt
DeviceTab methods or by overriding the default behaviour. For example, a developer could
add additional GUI widgets to the BLACS device tab such as status icons or plots. How-
ever, as shown, basic GUI functionality can be produced using very little code (and zero
knowledge of GUI programming) which we believe is an important requirement of a flexi-
ble control system capable of integrating with the ever evolving hardware requirements of
experiments.

7.1.3 BLACS worker processes

Creating a BLACS worker process amounts to filling-in-the-blanks with code that uses the
API provided by the device manufacturer to configure and program the device. Methods
within the worker process class are called by the BLACS device tab state machine in response
to GUI methods using the yield keyword. While we have shown (in §7.1.2) how the
BLACS GUI class may have developer defined methods that follow this pattern, for example
start_run(), there are several methods within the base class (DeviceTab) that also do this.
These methods (such as DeviceTab.program_device()) call corresponding methods in the
worker process (such as program_manual) which must also be written in addition to any
device-specific worker process methods introduced by a developer. Here we show the skeleton
of a worker process class, subclassing blacs.tab_base_classes.Worker, with comments
that indicate what each method should be written (by a developer) to do:
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@BLACS_worker
class NiPCI6733Worker ( Worker ):

def init(self):
# Once off device initialisation code called when the
# worker process is first started .
# Usually this is used to create the connection to the
# device and/or instantiate the API from the device
# manufacturer

def shutdown (self):
# Once off device shutdown code called when the
# BLACS exits

def program_manual (self , front_panel_values ):
# Update the output state of each channel using the values
# in front_panel_values (which takes the form of a
# dictionary keyed by the channel names specified in the
# BLACS GUI configuration

# return a dictionary of coerced / quantised values for each
# channel , keyed by the channel name (or an empty dictionary )
return {}

def transition_to_buffered (self , device_name , h5file ,
initial_values , fresh):

# Access the HDF5 file specified and program the table of
# hardware instructions for this device .
# Place the device in a state ready to receive a hardware
# trigger (or software trigger for the master pseudoclock )
#
# The current front panel state is also passed in as
# initial_values so that the device can ensure output
# continuity up to the trigger .
#
# The fresh keyword indicates whether the entire table of
# instructions should be reprogrammed (if the device supports
# smart programming )

# Return a dictionary , keyed by the channel names , of the
# final output state of the shot file. This ensures BLACS can
# maintain output continuity when we return to manual mode
# after the shot completes .
return final_values

def transition_to_manual (self):
# Called when the shot has finished , the device should
# be placed back into manual mode
# return True on success
return True
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def abort_transition_to_buffered (self):
# Called only if transition_to_buffered succeeded and the
# shot if aborted prior to the initial trigger

# return True on success
return True

def abort_buffered (self):
# Called if the shot is to be abort in the middle of
# the execution of the shot (after the initial trigger )

# return True on success
return True

Additionally, if the current output state of the device can be read at any time (and
self.supports_remote_value_check(True) was called in the BLACS GUI class), then
the check_remote_values method should also be defined:

def check_remote_values (self):
# Return the output state of the device in a dictionary ,
# keyed by the channel name
return remote_values

Pseudoclock devices must also define worker process methods for starting the shot via
a software trigger to the device and checking whether the shot has completed. In this case,
the method names and return values should match those used in the associated BLACS
GUI methods (which can be anything the developer wishes).

Again, we can see that implementing the BLACS worker process for a device comes down
to data wrangling between the instruction storage in the hdf5 file, the BLACS dictionaries
of values (keyed by channel name) and whatever format is needed by the device-specific pro-
gramming API (which is usually provided by the device manufacturer). This is effectively
as minimal as possible, while still maintaining the many benefits outlined previously, such
as multiprocessing sandboxes for device communication.

7.1.4 Runviewer

As discussed in §5.3.1, runviewer walks the connection table and calls device specific code in
order to generate the output traces to display. To add support for a new device in runviewer,
a class must be registered using the @runviewer_parser Python decorator. This class takes
the following format:

@runviewer_parser
class RunviewerClass ( object ):

def __init__ (self , path , device ):
self.path = path
self.name = device .name
self. device = device
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def get_traces (self , add_trace , clock=None):
# device specific code

# return a dictionary of traces for all clocklines
# and triggers that this device manages
return clocklines_and_triggers

The registered Python class must define a method called get_traces which is called inter-
nally by runviewer. Runviewer passes in a reference to a runviewer function, add_trace,
and a tuple called clock. The clock variable is provided as a 2-tuple of NumPy arrays
(themselves 1D arrays of equal length) which contain the times and state changes of the
clocking signal or external trigger (depending on whether the device is implemented in lab-
script as an IntermediateDevice or PseudoclockDevice). The device specific code should
then access the hdf5 file (specified in self.path), load the stored instruction set from the
devices group, and reverse engineer output traces from the hardware instructions and the
clock variable for every output that the device manages. Each output trace should be pro-
duced in the same format as the clock variable; that is, a 2-tuple of NumPy arrays where
the first stores the list of times at which the output changes state and the second stores the
values of the state change.

Any trace that should be available to a user for display is then sent to runviewer
by calling the provided add_trace method. As discussed in §5.3.1, this callback struc-
ture allows device-specific code to control how many traces are made available to a user.
For example, a device with rf outputs might return 3 traces per output: one for fre-
quency, amplitude, and phase. The method signature for add_trace is add_trace(name,
trace, parent_device_name, connection), where name is a string containing the display
name for the output, trace is the 2-tuple, and parent_device_name and connection are
strings specifying the relationship between the trace and the device. It is likely that name,
parent_device_name, and connection should be determined from the connection table.
Runviewer provides access to the section of the connection table relevant to the device via
the self.device attribute.

Finally, runviewer requires a dictionary of output traces that correspond to clock lines
or digital outputs that were instantiated in labscript as Trigger objects. The dictionary
should be keyed by the name of the clock line or trigger, as defined in the connection table,
and the value should be a 2-tuple of the output trace. These will ultimately be passed in
to other devices as the clock variable of the get_traces method.

As with labscript and BLACS, adding support for a new device in runviewer comes down
to implementing a small amount of device specific code. In this case, code to translate
between hardware instructions and expected output traces is all that is required. The
graphical presentation of shots and traces is all handled internally by runviewer.

7.2 Summary

In this chapter we have demonstrated how easy it is for developers to add support for
new hardware devices. Developers only need to create a small number of subclasses for
labscript, BLACS, and runviewer. By abstracting away common code into base classes, we
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have engineered our software so that the code to be written for each subclass is focussed
around device specific implementation details, like the format of hardware instructions and
the interaction with a manufacturer API. This makes it easy to support a wide variety of
devices while still maintaining a common API and interface for those who wish to control
these devices. The labscript suite thus has good support for heterogenous hardware, and is
well placed to support custom hardware devices as they are needed.



Chapter 8

Case studies

The success of a control system must be measured by its application to experiments. As
outlined in chapter 1, we believe that a key indicator of this is the flexibility of the control
system; that is, the ability of the control system to adapt to a wide range of different
apparatuses and the ever-evolving experiments that are run on them.

In this chapter we’ll detail some specific uses of the labscript suite where I contributed
directly to the research. We’ll first demonstrate how we control and parameterise experi-
ments using our BEC apparatus and provide some examples of how we use the labscript
suite on a day-to-day basis. Following this, we’ll show how we have used the labscript suite
to perform high impact research, which required control of non-standard hardware devices
and complex multi-shot analysis scripts. Finally, in order to demonstrate the flexibility of
the labscript suite, we’ll show how we used it to acquire and analyse data that did not
require precision timing and how the labscript suite was still extremely beneficial in such a
use case.

8.1 BEC apparatus control & optimisation

As mentioned previously, we have used the labscript suite to control several ultracold atom
experiments at Monash University. These are the dual-species (K-Rb) BEC lab (which I
detailed the apparatus construction of in chapter 3), the spinor BEC lab, and the second
generation dual-species (K-Rb-2) BEC lab currently under construction. The labscript
suite has been instrumental in getting these labs operational and producing ultracold atom
clouds. In this section I will first detail the experiment control hardware we use (that
interfaces with the labscript suite), followed by some examples of how we have used the
power of the labscript suite for rudimentary optimisation of the experimental sequences.

8.1.1 Experiment control hardware

One of the goals we achieved with the labscript suite was support for a wide range of het-
erogeneous hardware. This is reflected in the mixture of commercial and in-house hardware
we use to control the three ultracold atoms experiments at Monash University (summarised
in table 8.1). As can be seen, we use devices with a range of communication interfaces (and
protocols) and with a range of different I/O capabilities.
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Manufacturer Model Type Interface Hardware
timed?

I/O

National
Instruments

PCIe-6363 Multifunction
I/O

PCIe Yes 32 digital I/O
4 analog outputs
32 analog inputs

National
Instruments

PCI-6733 Analog
output

PCI Yes 8 analog outputs

Novatech DDS9m DDS RS-232 Yes 2 rf outputs
(additional 2 software-
timed rf outputs)

SpinCore PulseBlaster
DDS-II-300-AWG

DDS &
pulse train

USB Yes 2 rf outputs
4-12 digital outputs
(firmware dependent)

PhaseMatrix QuickSyn
FSW-0010

Frequency
synth.

RS-232 over USB No 1 microwave output

Monash
(in-house)

RFBlaster DDS Ethernet Yes 2 rf outputs

Zaber
Technologies

Various linear
stages

Translation
stage

RS-232 No N daisy chained linear
stages

Alazar
Technologies

ATS9462 DAQ PCIe Yes 2 analog inputs
(180 MS/s)

Texas
Instruments

DLP LightCrafter DMD Ethernet via USB Yes 608x684 pixel DMD

Photonfocus MV1-D1312(I) Camera Ethernet (GigE) Yes Camera

Allied
Vision
Technologies

Various Camera Ethernet (GigE) Yes Camera

Andor
Technology

Various Camera various Yes Camera

Table 8.1: A table of experiment control hardware, and the capabilities of each device, used
with our BEC apparatuses at Monash University.

We exclusively use SpinCore PulseBlasters to provide the pseudoclocks for our experi-
ments, due to their support for multiple clock lines. They primarily clock the NI cards and
Novatech DDS devices. Each lab has at least two pseudoclocks and one of each NI card
listed in table 8.1. These devices provide all of our analog and digital outputs. The analog
outputs are used primarily to control coil drivers (see §3.4.3) while the digital outputs are
used for controlling shutters, camera triggers, and gating rf outputs. Rf is produced ex-
clusively by our DDS devices: the Novatech DDS9m, PulseBlaster, and RFBlaster1. The
K-Rb experiment uses four Novatech devices in total; three are used to drive the AOMs
on the laser table detailed in §3.1, while the other is used to drive the dipole trap AOMs
on the vacuum table. We use the PulseBlaster DDS outputs to control some AOMs as
well. We then use RFBlasters for driving atomic state transitions either directly with the rf
produced, or via our microwave quadrature modulator discussed previously in §3.4.4, due to
their superior agility in arbitrary waveform generation. The spinor BEC lab uses a similar
combination of devices, however they use fewer Novatech DDS devices as their experiment
is only single species, but more PulseBlaster and RFBlaster devices due to their more com-
plex atomic state manipulation requirements. Each lab also typically has at least one sort
of device that is only used within that lab, for example the Alazar data acquisition card or
the DMD are currently only used in the spinor and K-Rb labs respectively.

Both K-Rb and spinor BEC labs also use devices that cannot be controlled under hard-
ware timing2: the PhaseMatrix microwave generator, the Zaber linear translation stages,

1. A custom device produced in-house at Monash University.
2. I.e. they have no pseudoclock or trigger inputs and can only store a single value per channel (the

current output value) at any given time.
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and the two software-timed channels of the Novatech DDS9m. For these devices, labscript
supports setting the output state prior to starting the master pseudoclock, providing shot-
to-shot control of these devices (which is typically sufficient for our use cases).

A range of cameras are also used across the three labs. Each lab has at least two
cameras in use, from different manufacturers, which are managed by separate instances
of BIAS. Most of our cameras communicate over gigabit Ethernet, however some also use
Camera Link or proprietary interfaces that require dedicated capture cards with either a
PCI or PCIe interface.

For PCI and PCIe devices (such as NI cards or proprietary camera capture cards), we
use Adnaco fibre range extenders [163] to minimise ground loops and allow our control PCs
to be physically separated from the experiment. These range extenders work transparently
at the operating system level (and so do not interact with the control system), and are a
useful addition to our control hardware.

As we can see, while many of the devices are used commonly between the labs, the
specific set that is in use varies considerably. However, the labscript suite has been designed
to easily handle this, by requiring each lab to specify the set of hardware in use in the
connection table definition. We include a diagram of the K-Rb connection table in appendix
D.3, which demonstrates the complexity and variety of the hardware we need to manage for
our experiments.

8.1.2 K-Rb apparatus experiment logic & globals

We designed our K-Rb apparatus so that students could work on separate projects at the
same time. As all past and expected projects work with ultracold atoms, much of the exper-
iment logic, and many of the globals, for producing the ultracold atoms are shared between
users. As an example, we include the globals and experiment logic for the K-Rb experi-
ment in appendix D.1 and D.2 respectively. These give an ‘unsanitised’ view of how one
might use the labscript suite for day-to-day operation of an ultracold atom apparatus. The
development of the experiment logic, and set of optimised globals, comprised a significant
portion of both mine, and Shaun Johnstone’s, PhD projects. This was not helped by the
fact that much of the optimisation had to be re-done after moving our experiment to a new
building mid-way through our projects3.

We divide our experiment logic into stages, which are enabled/disabled by Boolean global
variables in runmanager (see table D.49), by placing experiment logic inside if statements
(see for example line 708 in appendix D.2). We then typically have one group of globals
for each stage, for example ‘Rb Optical Pumping’ in table D.42. This is just a convention
though, and often we will split globals across multiple groups where appropriate, for ex-
ample the MOT load stage is split across 4 globals groups, one for each species-location
combination, which are shown in tables D.17, D.26, D.27, and D.41.

When doing research using ultracold atoms, we typically ‘fork’ (make a copy) of the
experiment logic and globals, and add our required ‘science’ experiment logic between the
load of the cross-dipole trap and imaging. While we could directly share the experiment logic
by moving common code to a shared Python module, the rate of change of our experiment
logic appears to be slow enough that this is premature optimisation.

3. See [164] for a video of the moving process for our vacuum table!



158 CHAPTER 8. CASE STUDIES

A similar system is also employed in the spinor BEC lab, where Alex Wood [123],
Martijn Jasperse [106], and Lisa Starkey [165] successfully shared an apparatus concurrently
(separate days of the week).

8.1.3 Apparatus optimisation

We’ll now detail the use of a general purpose lyse multi-shot analysis script that allows us to
quickly gather information regarding optimal values for one or two experimental parameters
at a time. We have found this to be invaluable both for developing the experiment logic
and for rapid diagnostics of our apparatus when things go wrong4. The script is designed
to create a set of plots of measured quantities as a function of a set of parameters. The
list of measured quantities are specified in a runmanager global (for easy adjustment5) as
a tuple6, which is accessible via the Pandas DataFrame from lyse. One plot is created per
item in the list of measured quantities, with the measured quantity used as the dependent
axis. The axes of the parameter space are automatically detected from globals with an
expansion type (which is accessible through the lyse.Run API) indicating it was part of
the parameter space scan. These globals are then used for the independent axis (or axes)
of the plots. We thus call this script ‘y_vs_auto’, and the full code for the multi-shot
analysis script is located in appendix E. The script can handle parameter space scans with
dimensions between zero and two7.

A 0D parameter space is simply a single shot (no parameter space scan). In such cases,
the shot repeat number becomes the x-axis (independent axis) of a X-Y plot. The graphs in
this mode then allow you to look at the stability of the measured quantities as a function of
time, simply by turning on the ‘repeat’ mode of BLACS and generating a single shot from
runmanager.

A 1D parameter space is perhaps the most frequently used, which simply plots the
measured quantity as the function of a single global variable. This is very useful for quickly
determining if a runmanager global is set to its optimum value. For instance, we regularly
scan globals that correspond to AOM frequencies, in order to compensate for drifts in the
resonant laser frequency, which often occur due to mechanical movement of coils that are
poorly attached to our apparatus.

A 2D parameter space scan produces a 2D plot using a custom version of the imshow
matplotlib function that was created by Chris Billington to handle irregular grids8. The
two globals that form the parameters space axis are used as the x and y axes of the plot,
and the measured quantity is used as the z-axis of the plot (the colour at each grid point).

The y_vs_auto script relies on several specially named runmanager globals that control
its functionality. They are always pulled from the last row of the DataFrame (the last shot
to be run) and are:

4. A regular occurrence for experimental ultracold atom physicists!
5. This is a ‘hack’ because we have not yet implemented a separate set of ‘analysis globals’ in lyse that

can be manipulated through a graphical interface. This hack also allows the behaviour of this lyse
script to be controlled by the operator of runmanager, even if lyse is running on a separate PC.

6. The use of a tuple allows a list of values to be specified without it being detected as an axis of a
parameter space.

7. We welcome contributions beyond two dimensions from beings capable of simultaneous observation of
multiple depth planes!

8. This was necessary so that we could correctly generate the plots prior to the completion of all shots in
a parameter space, and for instances where the globals were not regularly spaced.
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• no_sequences_to_analyse: This determines how many separate sequences of shots
should be used. This is usually one, but it can be set to two or higher if, after the
first sequence has run, you decide you wish to acquire additional data for the same
parameter space and have it displayed on the same set of plots.

• repeats: We use this global to ‘trick’ runmanager into creating a fixed number of
repeats9 for each shot by specifying it as a list (for example range(3) would produce
3 repeats of each shot). As this global would form an axis of the parameter space, we
specifically instruct our script to ignore it so that it does not end up on the axis of
the plots.

• image_order: We use this global in our K-Rb apparatus to indicate that both species
are being imaged. This global is set to be derived from other globals, as previ-
ously detailed in figure 5.17, so we do not need to explicitly set it (see also ta-
ble D.13 in appendix D). Ultimately, the global is controlled by the user through
s11__absorption_image_k and s11__absorption_image_rb Booleans in the ‘Stages’
globals group (see table D.49). As we cannot image both species in a single shot, we
generate two otherwise identical shots for each point in the parameter space, but im-
age a different species in each. This global is thus a list of values, and is an axis of
the parameter space as far as runmanager is concerned. It is True for shots where we
image rubidium and False for shots where we image potassium. This global, however,
is also excluded from the parameter space to be plotted, and we instead generate sep-
arate plots for each image by grouping the DataFrame by this global, iterating over
the two groups, and running the bulk of the script logic (which produces the plots)
for each group (see lines 273-279 of appendix E).

• absorption_image_k and absorption_image_rb: If we are not imaging both species,
then these globals indicate which single species we are imaging. These are also derived
from the same set of globals as image_order, so that you only have to choose the
species to image in one place.

• plot_measurement_k, plot_measurement_rb, and plot_measurement: These con-
tains a tuple of the measurements to be used as the dependent variables of the plots.
The first two are used when performing absorption images of potassium, rubidium,
or both. The script produces one plot for every item in the tuple(s). If we are not
absorption imaging (for example, instead using fluorescence imaging), then we use
the list of measurements in plot_measurement instead. The entries in the list can
be any DataFrame column name, or an alias of a DataFrame column name stored as
an attribute of our analysislib Python module10. By using separate lists of measure-
ments for the two species, we are able to reference species-specific aliases for measured
quantities, and plot measurements of interest for a specific species only.

9. This contrasts to the repeat functionality in BLACS, which will repeat a set of shots continuously until
stopped.

10. Aliases are helpful for accessing the results produced by single shot analysis scripts. For example,
instead of the plot measurement being specified as (’atom_cloud_fit’, ’number_of_atoms’), you
might specify the alias as n_atoms_rb = (’atom_cloud_fit’, ’number_of_atoms_rb’) so that you can
specify the plot measurement as ’n_atoms_rb’.
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Figure 8.1: An example of a 0D parameter space scan, where a single shot is repeated
many times and the measured quantities are plotted against shot number. Here we show
a stability check of the atom number in our dipole trap after an attempt at transporting
rubidium atoms to one of our science cells (see §3.2.1 and figure 3.4). The mean atom
number transported was 1.29 × 106, however the standard deviation was 0.19 × 106, or
14%. This was unacceptably large, to the point where optimising the subsequent parts of
the experiment logic proved impractical due to the inability to discern optimal values for
parameters. Ultimately we resorted to performing our science experiments in the central
chamber, where the shot-to-shot variation in atom number was much smaller.

For 1D parameter spaces (that are thus plotted on an X-Y scatter plot), each sequence
is plotted using a different colour. This allows a user to easily see whether variation in the
y-axis is due to random fluctuations or is the result of a longer term drift that resulted in a
similar shift in all data points from a subsequent sequence. We also plot the average for any
values that are located at an identical x-value, and include error bars equal to the standard
deviation of the points. Unfortunately we have not yet determined an appropriate way to
display similar information for 2D parameter spaces, since colour is already used for the
z-axis value.

We show real-world examples of the use of this analysis script in figures 8.1-8.3. In
figure 8.1 we show an example of a long term stability measurement of our atom number
after transport to a science chamber. In order to generate this graph, we simply created a
single shot from runmanager (with whatever fixed set of parameters we were interested in
observing) and placed it on repeat in BLACS. A single-shot analysis script performed atom
cloud fitting, and saved the results in the shot file and lyse DataFrame. The ‘y_vs_auto’
script then produced the included figure, updating in real-time as new data arrived in lyse.

In figure 8.2 we show the results of a 1D parameter space scan of the AOM driving
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Figure 8.2: An example of a 1D parameter space scan used to determine the optimal
imaging frequency. Four separate sequences were generated from runmanager, each of which
is assigned a unique colour automatically by the ‘y_vs_auto’ script. For points of the
parameter space where multiple shots were run, the mean and standard deviation is shown
in red. Note: The blue and green sequences have very similar timestamps due to their
sequential creation from runmanager. The timestamps are only indicative of when the
sequence was generated, not when it was executed by BLACS (which is not shown, as each
shot within a sequence has a different execution time).

frequency for the rubidium imaging beamline of our apparatus (see §3.1.1.3). This graph
was generated by running four sequential sequences of shots, where each sequence contained
multiple shots with a varied rb_imaging_frequency global in runmanager specified using
the linspace function. The first sequence was a coarse scan from 83 MHz to 97 MHz over
15 shots (a 1 MHz step between shots). Once the approximate location of the peak was
identified we ran three additional sequences, each containing 21 shots, with the same run-
manager global set to linspace(89, 94, 21) (a step of 0.25 MHz between shots, aligning
with the parameter space points from the first sequence). In this case, we imaged the atoms
after evaporation in the magnetic trap (prior to transfer into a pure optical trap). As in the
previous example, the atom number was determined from a fit to atom cloud absorption
image in lyse, and the ‘y_vs_auto’ script then produced the included figure.

In figure 8.3 we show the results of a 2D parameter space scan of two key parameters of
our forced magnetic trap evaporation stage. In order to generate this graph, we defined a
parameter space in runmanager by setting the evap_rate global to linspace(6, 15, 7)
and the mw_evap_stop global to linspace(16, 25, 7). These globals control the rate at
which the microwave field is swept and how far (in MHz) we sweep the field, respectively,
forming a 49 point parameter space. We also set both s11__absorption_image_k and
s11__absorption_image_rb to True, which ensures that the global image_order is set
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Figure 8.3: An example of a 2D parameter space scan automatically detected and plotted
by our ‘y_vs_auto’ analysis script. Here we have scanned two parameters that control the
forced evaporation in the hybrid trap, in order to see how this affects the atom number
in the decompressed hybrid trap. These parameters are evap_rate, which controls the
rate at which the microwave knife frequency is changed, and mw_evap_stop, which controls
the stopping frequency of the microwave sweep (the start point is fixed between shots).
We repeat every point in the parameter space twice in order to produce shots that image
potassium and rubidium atoms (figures (a) and (b), respectively). The two parameters
form the axes of the graph, and the colour surrounding each data point represents the fitted
atom number after time-of-flight (TOF) absorption imaging. As we can see, potassium and
rubidium prefer opposite corners of this parameter space, which is not ideal.

correctly to act as a third axis of the parameter space, repeating the previously mentioned
49 shots twice, in order to image rubidium atoms in one and potassium atoms in the other
(for a total of 98 shots). These 98 shots were generated by runmanager (in a randomised
order), executed by BLACS, and then analysed in lyse (first in order to determine the atom
number as in the previous examples and then by the ‘y_vs_auto’ script).

The plots in figure 8.3 were the first indication we had that our apparatus was going to
have trouble producing dual-species ultracold atom clouds. We eventually concluded that
the significantly disparate atom numbers between the two species (shown here as somewhere
between 1 and 2 orders of magnitude depending on the chosen point of parameter space)
was the primary culprit of our problems. Even with efficient optical pumping of rubidium
atoms, there would always be a population, left in a state that has unfavourable collisional
interactions with potassium, of a similar magnitude to the number of potassium atoms. We
believe this is corroborated by the above plots, which show that potassium favours shorter,
faster evaporation parameters (which would result in less time for the unfavourable collisions
to occur). A recent preprint [166] also suggests this as a potential loss mechanism, along with
several other possibilities. However it is worth noting that they were ultimately successful
despite having disparate atom numbers in the initial load (likely due to a successful molasses
phase, which we have not achieved for potassium).

As can be seen, this script demonstrates the powerful combination of our analysis frame-
work with our graphical parameterisation of experiment logic. We can easily produce com-
plex diagnostic results simply by setting the value of one or more globals to a list of values
to scan over, and waiting for the data to come in as shots are executed on the apparatus.
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8.2 Vortex dynamics

One of the prominent demonstrations of our control system is the recent research lead by
Shaun Johnstone in our laboratory, which I (among several others) also contributed to.
In this research, we investigated how the dynamics of vortex clustering changed in a 2D
quantum gas (a 2D ultracold atom cloud), as a function of evolution time and vortex initial
conditions. This experiment was conducted using our K-Rb apparatus, but using only
rubidium atoms.

8.2.1 Experiment design

In addition to the apparatus described in chapter 3, we also required a 2D trap and a pair
of Bragg beams, which are already described in detail in [100, 127]. Vortices are created in
our 2D atomic cloud by dragging a grid of obstacles through it. We are thus able to vary
the initial conditions of the vortices by adjusting the size of the obstacle grid, which allows
us a degree of control over whether the initial distribution of vortices is dominated more by
clusters or dipole pairs, or somewhere in-between.

The 2D trap is formed using repulsive (blue detuned) dipole traps, consisting of a
Hermite-Gaussian (HG) mode trap propagating perpendicular to a ring trap (see figure
8.4). The HG mode is produced using a holographic element, as described in [41]. The
obstacle grid is produced by a DMD, which is also used to simultaneously create the re-
pulsive ring trap. The DMD used is the Texas Instruments DLP LightCrafter previously
mentioned in §8.1.1. This DMD provides a buffer of up to 96 frames that can be stepped
through using a digital trigger, making it an ideal candidate for use with the labscript suite.
We believe the labscript suite is the first (publicly available) control system to support the
hardware timed output of images, which is a testament to the flexibility and extensibility
of our design11.

The support for the DMD was added by Shaun, building on top of previously unreleased
code I had written for software-timed image output for SLMs12. The DMD is implemented
in the labscript suite as an IntermediateDevice, with a single output. As the output is
an image (an array of pixels), a new output type was created for this device. It should
be noted that this was quite straight-forward, and was done by subclassing the existing
Output labscript class and adding a method called set_image(). Users can then create a
LightCrafterDMD device and ImageSet output in the connection table of their experiment
logic, and call ImageSet.set_image(t, raw=image_data) to command output of image
data at time t. This mimics the similar commands already part of the labscript suite,
such as AnalogOut.constant(t, value). Similar modification were made to BLACS, to
provide support for output types that are images13.

Because experiment logic is written in a text-based language, we are able to utilise 3rd
party Python libraries to help programmatically create the image frames for the DMD (see

11. This is distinct from image acquisition (image input), which has been part of control systems for a long
time.

12. The SLM support was originally added for producing the HG mode for the 2D trap, so that we
could adjust the dimensions of the 2D trap from shot-to-shot. However, the poor diffraction efficiency
ultimately led us to use a fixed holographic element as described above.

13. As manual mode is software timed, and thus only single images can be programmed in manual mode,
this just directly utilised the previously mentioned SLM support for working with a single static images.
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Figure 8.4: The trapping geometry for the vortex dynamics experiment, with the Bragg
beams needed to implement the velocity selective imaging technique. The geometry is
centred on the crossed-optical dipole trap (not shown) previously described in §3.2.5. A
HG mode produced using a holographic element is focused onto the centre of our trap,
and a radial trap is produced using the DMD and objective lens shown. The gradient
electromagnets are the same ones used to produce a quadrupole field during the MOT
load and forced magnetic evaporation stages (red arrows indicate the direction of current
through the coils). The gradient coils are used to produce a magnetic field of sufficient
strength to cancel gravity as the HG beam is not sufficient to hold the atoms by itself. The
bias electromagnets are used to spatially remove the field zero from the atoms, ensuring
there is no radial confinement from the quadrupole field and that the atoms remain in a
consistent quantum state throughout the experiment. The gradient electromagnets are also
kept on during TOF expansion (prior to performing the absorption image) to ensure that
the cloud only expands radially while staying in the imaging plane (the objective shown is
also used as the absorption imaging system objective). This figure was adapted from Shaun
Johnstone’s thesis [100] with permission.

Time during grid sweep 0.5 s

Figure 8.5: Here we show 7 example frames for the DMD (every 15th frame used in the
shot) produced dynamically by Python code within our experiment logic. White pixels
correspond to regions of high intensity (‘on’ pixels) of our blue-detuned (repulsive) trapping
potential. This figure was adapted from Shaun Johnstone’s thesis [100] with permission.
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Figure 8.6: An example absorption image produced from our implementation of the velocity
selective Bragg spectroscopy technique detailed in [67]. The red arrows correspond to two
overlapped Bragg beams as shown previously in figure 8.5, detuned from each other by δ,
and have a frequency approximately ωL = 6.6 GHz from the atomic resonance with the
rubidium-87 cooling transition. The Bragg beams scatter the components circled in blue
and red that, when subtracted, produce a map of the velocity field (where the red/blue
colour in the resultant map indicates velocity in the direction of the component circled with
the same colour in the absorption image), allowing the sign of each vortex to be determined.
This figure was adapted from Shaun Johnstone’s thesis [100] with permission.

figure 8.5). In this case, Shaun used the Pillow [167] Python library to draw ellipses onto a
copy of the ring trap potential frame, using the PIL.ImageDraw.Draw.ellipse() method,
which handles the complicated task of drawing shapes for you. The size of the ellipses (and
thus the number that interact with the atom cloud) is parameterised via a runmanager
global, so that it can be used as an axis of a parameter space scan. Again, this reinforces
the fact that a control system written using an object-oriented language, with text based
experiment logic, provides a rich environment for implementing custom requirements with
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minimal effort, and in a way that allows consistent interfaces to be developed for use by
non-experts.

The measurement of the atomic cloud is performed via an absorption image of the atoms.
However, in order to recover enough information to deduce both the position and sign of the
vortices, we utilise a velocity selective Bragg spectroscopy technique [67] that outcouples
part of the atomic cloud in both the forward and reverse propagation directions of the Bragg
beams (see figure 8.6).

In order to generate sufficient statistics of the vortex clustering dynamics, we ran 25
repeats of each shot in a parameter space spanning 5 obstacle grid sizes and 10 evolution
times. This totalled 1250 shots, of which 70% ultimately proved useful (the remaining 30%
were too distorted to accurately determine the vortex locations).

8.2.2 Single-shot analysis

The analysis for this experiment was likewise complex, consisting of five single-shot analysis
scripts and four multi-shot analysis scripts. The single-shot analysis starts with a script for
calculating the optical density (OD) of the atoms from the absorption image (a standard
first step for many ultracold atom experiments) computed from three image frames: one
with the imaging light and atoms present (the atoms frame), one with just the imaging
light (the flat frame), and one with no imaging light (the dark frame). Due to the formation
of one or more etalons between the flat surfaces of our vacuum windows and/or imaging
system components, we observe a significant set of fringes across the atoms and flat frames.
Unfortunately, the fringes are not removed through a standard calculation of OD due to
the temporal delay between frames during which the locations of the fringes change. To
counteract this, we utilise an eigenbasis method [168, 169] to compute a flat frame that best
matches with the fringe locations in the current atoms frame. In our case, our eigenbasis is
constructed from a rolling set of the last 200 flat frames. This computed flat frame is then
used along with the atoms frame and an average of the last 200 dark frames, to calculate
an image of the (saturation corrected) OD of the atom cloud(s) using the formula [100]:

OD(x,y) = − ln
(

atoms(x,y) − avg_dark(x,y)

computed_flat(x,y) − avg_dark(x,y)

)
+

computed_flat(x,y) − atoms(x,y)

Isat
.

It should be noted that this analysis script is not unique to this experiment, indeed it is
used to calculate the OD for all of our shots. The modular nature of lyse allows us to
reuse a single analysis script over multiple experiments, ensuring our current best practice
is consistently applied to our research.

Once the OD has been calculated (and saved in the hdf5 file), we proceed with identify-
ing the location and sign of the vortices. We start by identifying the location of vortices by
analysing the primary (central) cloud shown in figure 8.6, following the technique outlined
in [170]. We utilise the OpenCV library [171] to perform the required image transforma-
tions, which provides computationally efficient implementation of the required algorithms.
Utilising external libraries means the implementation of the technique is quite straightfor-
ward, requiring that we just call cv2.GaussianBlur, cv2.Laplacian, cv2.threshold, and
cv2.findContours functions in sequence (with the appropriate parameters) in order to de-
termine the location of the vortices. We also calculate image moments of each ‘vortex’ found
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(using the cv2.moments function) in order to determine if the detected vortex is actually
a closely bound pair of vortices. All predicted vortex locations are then saved in the hdf5
file.

The vortex identification routine is not 100% robust, so we next use a script designed
to allow a user to review (and edit if necessary) the detected vortex locations. We start
by overlaying the detected vortex locations over the OD frame, and present this to the
user in a plot generated with matplotlib. Custom controls are added to the matplotlib
window14 to allow vortex locations to be added or deleted (by the user) via a GUI. This
was achieved using the picker API of matplotlib, which provides an easy way to program
custom interactions between users and objects in a matplotlib figure. We also added a
button to mark the entire shot as ‘bad’ (for example if the atom number was too low to
accurately resolve vortex locations at all, or the previously mentioned fringe removal was
ineffective). The new updated vortex locations were saved separately to the hdf5 file. This
information, along with the ‘good’/‘bad’ flag, allowed us to later quickly generate statistics
on the overall quality of our data, which we included in the supplementary material of our
publication [127]:

Of the 1250 runs of the experiment (25 repeats of 10 hold times after 5 different
grids), 5% had vortex locations manually added but none removed (an average of
1.3 vortices were added to each of these shots), 19% had automatically detected
vortex locations removed but none added (an average of 1.3 vortices were removed
from each of these shots), 2% required minor adjustments to be made to vortex
positions (vortices moved less than a vortex diameter, usually correcting a vortex
dipole pair detection), while 5% required vortices to be both added and removed.
A further 30% of shots were rejected entirely, in cases where the vortices were
too hard to distinguish (this can occur, for example, if the fringes in the imaging
probe are particularly strong, or if atoms become trapped outside the main nodal
line of the HG mode, obscuring the BEC), or the atom number was significantly
less than the average.

Once the positions of the vortices have been determined, we use the next analysis script
to determine their sign. In order to do this accurately, we developed a new technique for
analysing a differential Bragg image like that shown at the bottom of figure 8.6. This
technique involves calculating a theoretical velocity flow field (based on a point vortex
model) for each possible vortex sign configuration, discretising this to the pixel size of our
image frame and projecting the velocity profile along the Bragg beam propagation direction
in order to produce a set of theoretical differential Bragg images. Each theoretical image
is then compared to the measured image in order to determine the configuration of vortex
signs that best match our data.

This process is computationally intensive, requiring the generation and comparison of 2N

theoretical differential Bragg images for an image with N vortices. As previously mentioned,
lyse does not yet have inbuilt multiprocessing capabilities. However, the general purpose
nature of our analysis system allows individual scripts to be written to take advantage of

14. This was originally done by modifying the core of lyse, but later moved into the analysis script itself
once the required features were exposed via the lyse API, maintaining the modularity of the analysis
system.



168 CHAPTER 8. CASE STUDIES

multiple cores. To speed up the vortex sign determination, I wrote a new analysis script
that launched a copy of the original script (using the Python subprocess module) for each
CPU core, effectively mimicking running the script from a terminal (outside of the lyse GUI,
see §6.3.4). These scripts were passed the path to the shot file as the first command-line
argument, and a fixed vortex sign configuration for the first two vortices. Each process
then ran in parallel, computing the best match out of the quadrant of parameter space it
was assigned. The best vortex configuration from each script was returned to the parent
lyse script, which then repeated the computation for the four returned configurations to
determine which of the four was most optimal. This resulted in a factor of four speedup
in the computation time. We then implemented an additional factor of two speedup by
recognising that our measure of ‘goodness’ was symmetric; that is, that the opposite sign
configuration of the worst match would be equivalent to the best match. These combined
speedups allowed us to analyse shots with up to 25 vortices in a practical time frame,
however additional techniques to minimise runtime will need to be developed if higher
vortex numbers are generated in future research. Finally, in the parent lyse script, we save
the optimal vortex configuration to the shot file, along with a determination of the number
of free, clustered, or dipole vortices, and the polarisation and first order correlation function.

In the remaining single-shot analysis script we then calculated the energy spectra of the
vortex configuration.

8.2.3 Multi-shot analysis

The multi-shot analysis scripts were dedicated to each producing one figure for the main
body text of our publication, along with any figures for the supplementary material that
were derived from the same data as used for the primary figure. This gave us the flexibility
during the manuscript preparation stage to adjust our main figures independently of each
other, simply by (un)loading analysis scripts in lyse. Only minor additions to the first figure
(due to the complex legend requirements at the bottom of the figure) were added outside
of lyse, using Adobe Illustrator.

For our first publication figure (multi-shot analysis script) we show images of our com-
puted optical density, measured Bragg signal, computed velocity flow field, and classification
of the identified vortices for three specific shots, as an example of the procedure we follow
for extracting vortex information from our experiments. As we are showing data from a
fraction of the available shots, we directly pull out the required information (the results of
several of the single-shot analysis scripts) from the three hdf5 shot files rather than access-
ing it from the DataFrame of all shots. This is primarily because there is no need to utilise
any of the DataFrame functionality (for example slicing) and we would have to access each
shot individually anyway as arrays stored by single shot analysis scripts are not stored in
the DataFrame due to size constraints. Fortunately, using a general purpose programming
language for our analysis scripts (Python) allows us to do anything we like, for example
pulling out the required data using either the lyse provided Run object API, or by using the
h5py Python library directly.

The general structure of the other three multi-shot analysis scripts are quite similar
(despite producing distinct plots). In each case, we access the DataFrame, and nest calls
to groupby in order to create slices of the DataFrame along the axes of the obstacle grid
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size and the evolution time (the two main axes of our parameter space in runmanager).
The graphs then usually display the mean of measured quantities from each slice of the
DataFrame, as extracted by the previously run single-shot analysis scripts.

8.2.4 Dataset publication

The full dataset, including experiment logic, raw data, analysis results, analysis scripts, and
both good and bad shots, is available online [172]. This allows interested parties to study
our results and verify they are correct, and will help other groups build upon this avenue of
research. While this is technically possible to do without the labscript suite, it is far more
cumbersome. Interested parties now need only install Python, install the labscript suite, and
download our raw data. Once loaded into lyse, they will be able to immediately reproduce
all of our figures from our publication, and see how our results were built up from the raw
data. We believe that the flexibility of the labscript suite, combined with its standardised
interface, provides unprecedented simplicity for release of supplementary material (such as
raw data and experimental techniques). We suspect there is a large amount of untapped
potential here for using the labscript suite to simplify the transparent publication of research
and for generating future research collaborations.

8.3 Objective lens development

As an example of the versatility of our control system for research outside of the field
of ultracold atoms, we used it to bench test a high-resolution objective lens. While the
precision timing capabilities of our system were not needed, the workflow from experiment
preparation to experiment analysis was still very useful.

The projects aim was to design an objective lens with both a high-resolution and large
field-of-view (FOV), for imaging BECs. For greater flexibility, and improved optical access,
we required that the lens be situated outside the vacuum chamber. This requires an objective
that can also correct for aberrations introduced by the vacuum glass window. The objective
lens was designed by Lisa Starkey in Zemax, starting from the work of Alt [173]. Lisa’s
design improves on the work of Alt by obtaining a higher numerical aperture (NA) while
only using readily available catalogue lenses, and is published in reference [174].

Our publication includes data on the bench testing of the lens, which was collected
and analysed using the labscript suite15. In order to measure the FOV of the objective
lens, we imaged a 1µm pinhole as a function of pinhole position with respect to the optic
axis. The pinhole was mounted to 3 Zaber T-LS28M motorised translation stages under
labscript control, in an x-y-z configuration (with z as the optic axis). The pinhole was first
focused by adjusting the z translation stage, which then remained fixed for later shots. We
used runmanager to create a parameter space for the x-y axes that defined a 60 by 60 grid
spaced by approximately 12.6µm and 10.4µm, respectively. The parameter space scans
across the range of y-coordinates (in order) for a given x-coordinate, before repeating for an
incremented x-coordinate. We waited 1 s before exposing the camera in order to allow any

15. I am the second author of the publication, due to my contribution to the data collection and analysis
for the bench testing.
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from labscript import *

from labscript_devices . PulseBlaster import PulseBlaster
from labscript_devices . ZaberStageController import

ZaberStageController , ZaberStageTLS28M
from labscript_devices . Camera import Camera

# MAIN DEVICE DEFINITIONS
PulseBlaster (’pulseblaster_0 ’, board_number =0)
ZaberStageController (’ZaberController ’, com_port =’com1 ’)
ZaberStageTLS28M (’y’, ZaberController , ’1’)
ZaberStageTLS28M (’x’, ZaberController , ’2’)
ZaberStageTLS28M (’z’, ZaberController , ’3’)

# IMAGING SYSTEM
Camera (’andor_neo_0 ’, pulseblaster_0 . direct_outputs , ’flag 2’,

BIAS_port =42518 , serial_number ="01512", SDK=" Andor3 ",
effective_pixel_size =2.24e-6,
exposure_time = exposure_time , orientation =’top ’)

# set position of Zaber stages
z. constant (z_pos)
x. constant (x_pos)
y. constant (y_pos)

# start the shot
start ()

# Wait a little over 1 second before taking the image.
t=1e-3
t+=1

# take the image
andor_neo_0 . expose (’pinhole ’, t, ’atoms ’)
t+= exposure_time

# stop a little after the exposure has finished
stop(t+4e-6)

Figure 8.7: The experiment logic to perform the pinhole raster scan across the objective
lens FOV. It should be noted that we have updated the experiment logic to be compatible
with the current labscript version.

vibrations from the translation stage movement to damp out. The full experiment logic is
shown in figure 8.7.

The analysis of the acquired images consists of a single-shot analysis script and a multi-
shot analysis script. The single shot analysis script locates the pinhole by looking for a pixel
of maximum intensity, and uses the location as the initial conditions for a 2D Gaussian fit.
A multi-shot analysis script then calculates the geometric mean of the x and y widths of
the pinhole image, in order to determine the spot size of the imaged pinhole as a function
of position. From this we determine the FOV, based on the region in which the spot
size is less than the design resolution of the object (1.3µm), see figure 8.8 (a)-(c). We
also programmatically extracted the theoretical point spread function from Zemax, and
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Figure 8.8: The final figure included in our publication [174], which closely matches the
figures produced by lyse shown in figure 8.9. Original caption as written in the paper [174]:
“(a) The spot size of a 1µm pinhole measured at 3600 positions across the object plane. (b,
c) The spot size and constituent diameters across the y- and x-axis respectively through the
optic axis (cross in (a)). The measured spot size is in good agreement with our simulation
within the FOV. (d) The on-axis pinhole image compared to the simulated point spread
function convolved with a 1µm pinhole. The curves are the azimuthal averages of the inset
images.”

convolved it with a 1µm top-hat function in order to simulate what the spot should look
like on-axis. We can see from figure 8.8 (d) that they are in close agreement.

While the step size of the translation stages is listed as 0.09921875µm16 (much smaller
than our grid) the unidirectional accuracy is listed as 29µm (larger than our grid) [175]. We
thus rely on the observed location of the pinhole on the camera chip in order to extrapolate
the x-y location of the pinhole. We can see from figure 8.8 (a) that the pinholes are located
in bands along the x and y axes, as indicated by the x-coordinate spacing between adjacent
lines in the y-direction. We see similar banding in the orthogonal dimension (although it
is slightly less obvious). This indicates that the translation stages are moving non-linearly
in the y-dimension, but consistently so for each x coordinate. We suspect this is due to
imperfections in the drive rod, which causes the stage to skip by more than the expected

16. While it might seem odd that Zaber list the step size to a precision of 10 fm, I suspect this value is
more accurately described as the average step size.



172 CHAPTER 8. CASE STUDIES

Figure 8.9: Here we show how we used lyse to produce publication quality figures from
our custom Python analysis scripts. The two figures shown were exported as in a vector
format (.svg) and combined using the free software Inkscape. The resultant figure (including
some minor formatting changes) is shown in figure 8.8. Ultimately these formatting changes
could have been applied as part of the analysis script, however as they were made during
our revision of the manuscript, we opted to apply them to the combined figure by hand
rather than re-producing the combined figure from scratch again.

amount at certain locations. We do also note that there is an unexplained curvature to the
observed x-y coordinates for points above y = 250µm. However, given this is outside our
designed FOV and the curvature is consistent across the entire range of x-coordinates, we
do not believe it is indicative of an issue with the lens design or our analysis technique.

As we have previously stated, lyse is capable of producing publication quality figures.
We demonstrate this in figure 8.9, where we show the raw plots produced by our multi-shot
analysis script. As can be seen, we produced figure 8.8 (a)-(c) in one window, and figure
figure 8.8 (d) in another. These were exported in .svg format, and combined in Inkscape (a
vector graphics editor). In this instance, the combination in Inkscape was done primarily
as it was the simplest way to combine 8.8 (d) without the axes joining (a)-(c) and while
maintaining no spacing between (a)-(c). In most cases, however, complete figures can be
produced directly from lyse. That said, often minor formatting changes during late revision
stages are easier to apply directly from a graphics editing program, for instance to meet
specific journal guidelines.

Overall, the labscript suite proved extremely useful for this research, despite it being
somewhat outside the target demographic. The automation of the parameter space scan
meant we could acquire a larger quantity of data (3600 shots) than was practical by hand17,

17. In fact, due to the large quantity of closely spaced data in figure 8.8 (a), we had to add a clarification to
the manuscript stating that this figure was in fact the result of 3600 measurements and not the result
of a “strange interpolation” as the reviewer had thought.
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and the analysis of this data was aided by the ability to structure arbitrary analysis scripts
in lyse, to generate publication quality figures.

8.4 Summary
In this chapter we covered examples of how to use the labscript suite. We first described
the implementation of the labscript suite in our dual-species BEC laboratory at Monash
University, including the hardware in use, examples of the experiment logic, and the pa-
rameterisation of that logic via runmanager global variables. We then showed how general
purpose analysis scripts can be written to aid the day-to-day work that often goes on in-
between taking publication quality data. Finally, we showed how we used the labscript suite
in the publication of two journal articles. In both cases, we were able to utilise the features
of the labscript suite to automate parameter space scans, control non-standard equipment,
and create publication quality figures. In the case of the vortex dynamics paper [127], we
also published the shot files and analysis scripts online allowing other research groups to
investigate our findings in detail.





Chapter 9

Conclusion

9.1 Summary

In this thesis I have presented the labscript suite, a comprehensive scientific control sys-
tem for running precisely timed experiments. We have improved upon previously published
control systems by striking a balance between graphical and text-based interfaces, provid-
ing interfaces for hardware abstraction to support custom hardware for novel experiments,
integrating an analysis framework into the control system to automate the generation of
publication ready graphics, automating record keeping, and by designing the entire suite
around the need to automate the preparation, execution, and analysis of experiment shots
spanning multi-dimensional parameter spaces.

In chapter 2 I reviewed the physical processes behind the production of an ultracold atom
cloud, and some of the novel systems that can be studied. I then used that information to
inform the hardware device requirements, which in turn informs the design of the control
system. Other published control systems were reviewed against these requirement, and
found lacking in several areas.

In chapter 3 I detailed the ultracold atom apparatus I constructed with colleague Shaun
Johnstone and others. This apparatus is designed to produce dual-species ultracold atom
clouds of rubidium and potassium, which requires a complex set of lasers, optics, magnetic
coils, and hardware control devices to operate. Our apparatus, along with the spinor-BEC
apparatus in a neighbouring lab, was developed in parallel with our control system, ensuring
that we developed a general purpose control system applicable to many experiments. I also
detailed the parts of the process control system I constructed, which runs independently of
our scientific control system and ensures sensitive aspects of the apparatus are not damaged.

Designing a control system is difficult, not least because the initial choice of underlying
technologies it is built upon influences the entire design and can lock a control system
architect into hard-to-use features. In chapter 4 I introduced the technologies we chose and
explained the careful decisions behind their selections. We chose Python as our primary
programming language due to its wide range of 3rd-party libraries, popularity, low entry-bar
for new users, interoperability with other languages, and its object oriented design. We then
chose Qt for creating graphical interfaces, ZeroMQ for network communication, and hdf5 for
data storage. Importantly, these three technologies have bindings for many other languages,
ensuring the labscript suite can communicate with additional components written in a broad

175
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range of programming languages. We also designed the labscript suite to be flexible so that
it is suitable for controlling a wide range of experiments and can adapt to future needs.
This was primarily achieved by following the Unix philosophy by making the components of
the labscript suite modular, and ensuring experiment logic and analysis routines are defined
using a general purpose programming language (Python). We create one hdf5 file per
experiment shot, and the labscript components automatically store metadata in these shot
files as part of the comprehensive experiment record. This includes sufficient information
to reproduce the entire shot, including low-level hardware instructions (for reproducing a
shot on an appropriately configured apparatus) and the high-level experiment logic and
parameters (for interpreting the intention of the shot).

In chapter 5 I detailed the components of the labscript suite used to prepare experiment
shots for execution. Experiment logic is choreographed in Python scripts using the labscript
API. Labscript is a high-level API ensuring experiment logic scripts are readable by humans,
and produces low-level hardware instructions for supported devices. When choreographing
an experiment, the labscript API is first used to define the set of hardware and connections
in a connection table. This creates Python objects, for each I/O channel, containing Python
methods specific to an input or output type, which can be called to define the experiment
logic. By designing experiment logic around output types, we simplify the mechanism for
adding support for new hardware devices. This design also simplifies experiment logic by
providing a consistent user interface across all device types.

Experiment logic is parameterised by global variables, which are managed from run-
manager. Runmanager generates shot files by inserting the global variables into a selected
experiment logic script and executing the labscript code, which generates device hardware
instructions and saves them to the hdf5 shot file. Complex multi-dimensional parameter
spaces are defined in runmanager by setting global variables to lists, informing runmanager
to create a shot from the experiment logic for each point in the parameter space.

Runviewer was then created as a tool to create a visual representation of the experiment
logic from the hardware instructions stored in a shot file, providing a faithful representation
of what each hardware output should do.

In chapter 6 we detailed the components of the labscript suite used to execute experi-
ments. This includes BLACS, which manages the execution of experiments on the appara-
tus, and lyse, which manages the analysis of acquired data. BLACS maintains a queue of
shots to execute and provides manual control of each hardware devices when shots are not
being executed. The manual device controls are dynamically generated at runtime, ensur-
ing BLACS can handle arbitrary hardware configurations. BLACS can command secondary
control systems, such as BIAS (our camera imaging software written in LabVIEW), which
may run on separate PCs. Executed shots are analysed in lyse, which runs a user-specified
set of analysis routines as new shots arrive. As these analysis routines are general purpose
Python scripts, they can be written to generate new shots, enabling custom closed-loop
optimisation routines.

In chapter 7, we show how our hardware abstraction layers allow developers to easily add
support for new hardware devices. Developers only need to create four small subclasses,
extending functionality provided by the labscript suite, which handle programming the
device using the manufacturer’s API and the format of hardware instructions.

Finally, in chapter 8, we detail examples of how we have used the labscript suite to
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automate complex experiments. This includes the optimisation of our ultracold atom appa-
ratus, and the experiments detailed in two publications [127, 174]. These experiments both
involved the collection of data over a multi-dimensional parameter space, and the generation
of publication quality graphics from lyse analysis routines.

We believe this thesis demonstrates that the labscript suite is currently the most compre-
hensive scientific control system for precisely timed experiments, and will be of significant
benefit to experimentalists working with shot based experiments including those in the
ultracold atom community.

9.2 Future work

Despite being, we believe, the most comprehensive control system for precisely timed ex-
periments, we have a roadmap of significant features we would like to develop in the near
future. Some of these features have been inspired by research groups at other institutions,
and indeed we have already had feature contributions to our code base from researchers at
several institutions including Technische Universität Darmstadt and NIST.

The most pressing is perhaps the rewrite of significant portions of the labscript API,
specifically those that work with instruction timing. While the object hierarchy is now
stable, the labscript timing code is some of the oldest code in the entire labscript suite, and
has not kept up with our current hardware expectations. For example, while we account
for delays and trigger offsets for secondary pseudoclocks, the way we account for this is by
overwriting the internal timing information within labscript with a set of offset times. This
means we lose information regarding the original labscript time at which the instruction was
commanded. We also currently avoid floating point rounding errors by rounding all times
to the nearest 0.1 ns. While what we currently do is sufficient, it has resulted in subtle bugs
that we have had to fix. A more modern approach would be to represent each instruction
as a Python object that keeps track of timing offsets and stores instruction times in integer
multiples of the clock resolution of the master pseudoclock.

We are planning improved functionality for feedback between analysis results and future
shots. We expect to improve the runmanager API, and BLACS, so that quick analysis
scripts can be run immediately on shot completion, update global variables in runmanager,
and remotely trigger the compilation of the next shot. We will also be looking into just-
in-time compilation, which would allow a precompilation of most of a shot, with a final
modification to be done by BLACS just before executing the shot, allowing fast feedback of
results into future shots.

While the labscript suite supports secondary control systems, they are currently expected
to be standalone programs. Currently this means that there is no easy way to spread already
supported hardware across multiple PCs without writing custom software. We are thus
working on the ability to launch BLACS as a secondary control system, which would allow
any supported hardware device to be launched on any number of appropriately configured
PCs. We have already defined the syntax for specifying this in a labscript connection table,
and work to allow BLACS to understand this syntax is ongoing. As a related feature, we
are working on the ability to launch the existing BLACS worker processes on remote PCs,
allowing the graphical interface for the device, and the hardware connection, to be physically
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separated.
Our extensive use of lyse has indicated to us that a missing feature is an interface

for managing analysis global variables, in a similar vein to the way runmanager handles
experiment logic globals. We currently work around this by specifying some analysis globals
either in runmanager (prior to the shot running), or in a Python file we import into each
analysis script. However, we believe there is much room for improvement here, and are
looking at how we can improve the lyse GUI along these lines.

Another improvement for lyse we are looking at is better support for multi-core CPUs,
for which there are several use-cases for. The first is for computationally intensive tasks.
While parallel processing is possible with lyse, as discussed in §8.2, this was done just
by launching subprocesses rather than using existing parallelisation libraries, which are
currently incompatible with lyse. Correcting this incompatibility would be beneficial to
many users. We are also considering how we can use multiple CPU cores to speed up
analysis of each shot by allowing multiple analysis scripts to run at once (each on a different
core). This would be fairly straightforward for multi-shot analysis scripts, but would require
inter-script dependency resolution for single-shot analysis scripts. Finally, we are considering
adding support for parallelising the analysis of multiple shots at once (which would not run
foul of the single-shot inter-script dependency resolution). This is particularly useful if you
need to re-run an updated single-shot analysis script on all shots in a sequence that has
been previously acquired and reloaded into lyse (for example if you have just corrected a
bug in your single-shot analysis code).

We are interested in exploring the use of the labscript suite framework outside of running
experiments. For example, much of the labscript suite may be useful for theorists who
wish to run simulations that span significant parameter spaces. By replacing labscript and
BLACS appropriately, the suite could be made to compile shots with information on the
simulation to run, to be executed later either locally or on a cluster, with the results sent to
lyse where analysis scripts could parse the results and produce publication quality graphs.
As well as managing the lifecycle of the simulation, you also get the benefits of being able to
perform quick parameter space scans and a comprehensive record of each simulation within
a self contained hdf5 file. To this end, I have begun to modify runmanager to support
arbitrary APIs other than labscript, in order to turn it into a general purpose parameter
space management program.

As we hope you can see, there is still much scope for continued research into useful
features for aiding precisely timed experiments, which we hope to accomplish with future
developments of the labscript suite.
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Glossary

analysislib A Python module (library) for storing Python analysis files and helpful func-
tions and/or attributes for use during analysis. 159

AOM acousto-optic modulator. 14, 32, 33, 36, 37, 38, 39, 43, 45, 47, 49, 50, 52, 155, 158,
160

API application programming interface. 5, 17, 22, 27, 56, 58, 60, 61, 68, 69, 75, 79, 80,
81, 84, 87, 94, 99, 100, 101, 105, 114, 119, 121, 122, 123, 134, 137, 138, 139, 140, 141,
143, 146, 147, 150, 152, 153, 158, 167, 168, 176, 177, 178, 179, 180

BEC Bose–Einstein condensate. 6, 11, 24, 26, 27, 31, 32, 35, 40, 52, 56, 64, 72, 73, 87,
108, 112, 155, 156, 157, 169, 173, 175

connection table A set of Python calls to the labscript API that define the set of hard-
ware, including attached inputs and outputs, in use for an experiment along with
information on how these devices are connected together and to the control PC(s).
See 5.1.1 for further details. 58, 61

DAQ Short for ‘data acquisition’. Usually used to describe a data acquisition device. 155

DCS distributed control system. 3

DDS direct digital synthesiser. 1, 14, 61, 81, 84, 99, 103, 155

DMD digital micromirror device. 14, 155, 163

ECDL external cavity diode laser. 32, 35, 36, 39

experiment logic The definition of what happens with the experiment, as a function of
time. This can take many forms, such as high level descriptions like make_bec(t). 5,
17, 18, 55, 56, 58, 80, 180

experiment time Time, as experienced by the experiment, where t = 0 corresponds to the
master pseudoclock outputting the first change in output (usually a pulse to trigger
secondary pseudoclocks). No further adjustment is made to recorded times, thus the
time of an event after a wait will be dependent on the length of the wait in that specific
shot. 97, 128

179
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FOV field-of-view. 169, 170, 171

FPGA field-programmable gate array. 3, 24, 28

FSM finite state machine. 2

gate Refers to the ability to turn on or off a process. For example, you could (naively)
gate a signal by connecting that signal through a relay. Controlling the relay (via a
separate digital line) allows you to turn on or off (to gate) the original signal. 94

GUI graphical user interface. 5, 17, 22, 56, 60, 61, 64, 68, 73, 76, 106, 114, 115, 119, 121,
122, 123, 127, 128, 131, 134, 137, 138, 143, 148, 149, 150, 152, 167, 178

hardware device An I/O device that is used to control an apparatus. Hardware devices
are programmed by the application BLACS (or a secondary control system) based on
instructions produced by the labscript API. 1, 4, 5, 6, 17, 18, 28, 56, 58, 56, 60, 81,
121, 180, 182

hardware instructions A set of data, representing the experiment logic to be performed,
formatted for programming into a specific hardware device. These are typically very
low level instructions, in a format close to what the device programming API requires,
and are typically not easily read by humans. 14, 17, 56, 99, 100

hdf5 hierarchical data format version 5. v, vi, 48, 56, 60, 61, 64, 66, 71, 73, 75, 84, 89, 93,
96, 99, 100, 103, 104, 105, 106, 105, 107, 106, 108, 114, 115, 116, 118, 128, 131, 134,
136, 140, 145, 146, 152, 153, 166, 167, 168, 175, 176, 178, 182

HG Hermite-Gaussian. 163

HMI human-machine interface. 3

I/O input and output. 3, 4, 5, 12, 14, 15, 48, 49, 55, 61, 68, 70, 76, 81, 123, 145, 155, 176,
180, 190, 214, 231

IDE integrated development environment. 25

IGBT insulated-gate bipolar transistor. 51, 52

JSON Short for JavaScript Object Notation, JSON is a cross-language format for passing
hierarchical data such as dictionaries (key, value pairs) and/or arrays. The JSON
specification is available at [176]. 147

labconfig We store configuration settings for the labscript suite in a ‘.ini’ style file. In order
to avoid a bootstrapping issue, the file is named after the local network hostname of
the PC so that the labscript suite knows where to find it when combined with a list of
known locations for the file (such as the users home directory or the location created
by the installer). Settings in this file include the network ports over which components
communicate and file or folder paths to expected locations of user scripts, shot files,
and certain 3rd party software (such as a preferred text editor). 105
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labscriptlib A Python module (library) for storing experiment logic files. Experiment logic
files imported from this module are automatically saved in the shot file by labscript
(see §5.1.8). 80, 99

labscript time Time, as defined in labscript, where t = 0 corresponds to the master
pseudoclock outputting the first change in output (usually a pulse to trigger secondary
pseudoclocks) and the length of every wait is assumed to be 0 (when excluding the
retriggering delays of all pseudoclocks). 97, 128

lock In software engineering, a lock typically refers to a mechanism for serialising access to a
resource that cannot handle simultaneous access from multiple sources. The resource
could be anything from an internal data structure to an external file on a network
drive. Lock implementations typically have methods for checking if a lock is in use,
acquiring the lock (marking it as in use) when it becomes free, and releasing the lock
when it is no longer needed (so that it can be acquired somewhere else when required).
There is no way to force the use of the lock (since it is external to the resource), so
this form of locking only works if all code accessing the resource is explicitly written
to use the locking system. 75, 76

LVTTL low-voltage transistor-transistor logic. 50

master pseudoclock A pseudoclock that is triggered by BLACS and ultimately dictates
the timing of an entire shot. If waits are used in a shot, this pseudoclock is hardware
triggered to resume the experiment at the appropriate time, which in turn triggers all
secondary pseudoclocks. 182

monkey-patch A broad term to describe local changes made to software by an external
actor. In Python, this term typically refers to the addition or modification of object
attributes or methods, after instantiation, by code external to the object’s class defi-
nition. The modifications are thus local to the modified objects, and are technically
unsupported by the internal logic of the object (although careful monkey-patching can
integrate seamlessly). Similar modifications can also be applied to classes, in which
case any subsequent object instantiated using that class would be created with those
modifications. 75

MOT magneto-optical trap. 9, 10, 11, 13, 33, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 51, 52,
56, 87, 96, 97, 112, 157, 163

NA numerical aperture. 169

namespace The scope in which a unique variable name is valid (can be accessed by name).
For example, a variable defined for the first time inside a Python function exists in
the namespace of the function, but cannot be accessed from outside of that function
(unless explicitly specified). 89, 113, 114

NI National Instruments. 14, 18, 24, 26, 56, 80, 81, 96, 97, 99, 123, 146, 148, 155, 157

NPBS non-polarising beam splitter. 44, 45, 46
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OD optical density. 166, 167

PBSC polarising beam splitter cube. 43, 44

PGC polarisation gradient cooling. 10, 13, 40

PID proportional–integral–derivative. 2, 48

PLC programmable logic controller. 2, 3, 48, 49

pseudoclock A device which provides a non-uniform clocking signal, which is used to
trigger other devices to update their output state. The master pseudoclock and any
secondary pseudoclocks are categories of pseudoclocks used in the labscript suite. See
5.1.4 for further details. 5, 15, 18, 24, 27, 60, 79, 80, 91, 181, 182

RAID redundant array of inexpensive disks. 72

rf radio-frequency. v, 1, 11, 13, 14, 32, 49, 50, 52, 153, 155, 193

RPC remote procedure call. 123

sandbox A model for isolating software from other software and/or PC resources. The
most common implementation is at the PC operating system level, which prevents
a process from directly accessing (and modifying) the memory of another. We use
sandboxes in the labscript suite to isolate user code and hardware device drivers from
the main labscript suite applications. 6, 77, 123, 141, 152

SCADA supervisory control and data acquisition. 3

secondary control system An additional application for controlling hardware devices
that runs on a separate PC, but is controlled (during shot execution) by BLACS.
See 6.2 for further details. 64, 180

secondary pseudoclock A pseudoclock that is triggered by a digital signal produced by
the master pseudoclock at the start of an experiment shot (and the end of each wait)
but otherwise runs independently. 60, 181, 182

shot A single execution of an experiment. This refers to a collection of hardware instruc-
tions that will be preprogrammed into a set of devices, triggered to start on command,
and determine a distinct end-point to the experiment. More generally, we use this term
to refer to this single experiment at all stages, from conception to analysis. 4, 7, 18,
55, 56, 64, 77, 179, 181, 182

shot file The hdf5 file containing all data related to a single shot. 56, 60

SLM spatial light modulator. 1, 14, 24, 163

TA tapered amplifier. 32, 33, 35, 36, 39

TOF time-of-flight. 159, 163
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TTL transistor-transistor logic. 50

UHV ultra-high vacuum. 4, 10, 40

widget A button or value control such as a textbox. More generally, this refers to any of
the building blocks that make up a graphical interface. 18

worker process An isolated software process that is spawned to perform a specific task
and is under the control of a parent application. For example, BLACS spawns a worker
process for each device, which handles communication with a single hardware device.
Lyse spawns a worker process for each analysis script loaded, where the analysis script
can be executed in an isolated environment. Worker processes can take advantage of
multi-core CPUs in a PC, and provide protection to the main application from crashes
caused by 3rd party code (such as device drivers or user analysis scripts). 56, 61, 123,
138, 139, 143

zip group A group of two or more experiment parameters which together form a single
axis of a parameter space and iterate in lock-step. 22, 60, 112





Appendix B

Coil interlock design

The Galil code for the coil interlock, followed by the circuit board layout (figure B.1) and
schematic diagram (figure B.2) of the custom Galil breakout board we designed. Note, the
Ethernet reconnection code was provided by Martijn Jasperse [106].

1 REM ========================[ KRB COIL INTERLOCK
]========================

2 REM simple monitor to check coil water cooling and
disable current drivers

3
4 #AUTO; ’resume from here on power-cycle
5 REM @AN[3] = Top T sensor 1
6 REM @AN[4] = Top T sensor 2
7 REM @AN[5] = Bottom T sensor 1
8 REM @AN[6] = Bottom T sensor 2
9 REM @AN[0] = Top coil flow

10 REM @AN[1] = Bottom coil flow
11 REM @AN[2] = Bypass flow
12 REM @AN[7] = NOT IN USE
13 REM (See Caps+numbers. Eg. AITOPT1 vvvvvvv)
14 REM Analog In TOP Temperature sensor 1 or 2
15 AITOPT1 = 3
16 AITOPT2 = 4
17 REM Analog In BOTtom Temperature sensor 1 or 2
18 AIBOTT1 = 5
19 AIBOTT2 = 6
20 AITOPFL = 0; ’Analog In TOP FLow sensor
21 AIBOTFL = 1
22 AIBYPFL=2;’AnalogIn BYPass FLow sensor
23
24 REM @OUT[0] = Top T sensor 1 not OK
25 REM @OUT[1] = Top T sensor 1 OK
26 REM @OUT[2] = Top T sensor 2 not OK
27 REM @OUT[3] = Top T sensor 2 OK
28 REM @OUT[4] = Bottom T sensor 1 not OK
29 REM @OUT[5] = Bottom T sensor 1 OK
30 REM @OUT[6] = Bottom T sensor 2 not OK
31 REM @OUT[7] = Bottom T sensor 2 OK
32 REM @OUT[8] = Top coil flow not OK
33 REM @OUT[9] = Top coil flow OK
34 REM @OUT[10] = Bottom coil flow not OK
35 REM @OUT[11] = Bottom coil flow OK
36 REM @OUT[12] = Bypass flow not OK
37 REM @OUT[13] = Bypass flow OK
38 REM @OUT[14] = Enable PSU
39 REM @OUT[15] = Enable Water
40
41 REM Digital Out Top coil Temperature sensor 1 (or 2) Not

OK led
42 DOTT1NOK = 0
43 REM Digital Out Top coil Temperature sensor 1 (or 2) OK

led
44 DOTT1OK = 1

45 DOTT2NOK = 2
46 DOTT2OK = 3
47 REM Digital Out Bottom coil Temperature sensor 1 or 2)

Not OK led
48 DOBT1NOK = 4
49 DOBT1OK = 5
50 DOBT2NOK = 6
51 DOBT2OK = 7
52 REM Digital Out Top coil FLow Not OK led
53 DOTFLNOK = 8
54 DOTFLOK = 9
55 DOBFLNOK = 10
56 DOBFLOK = 11
57 REM Digital Out bYpass FLow Not OK led
58 DOYFLNOK = 12
59 DOYFLOK = 13
60 DOENPSU = 15; ’Digital Out ENable PSU
61 DOENWTR = 14; ’Digital Out ENable WaTeR
62
63 REM @IN[0] = Start Interlock
64 REM @IN[1] = Stop Interlock
65 REM @IN[2] = PSU relay open?
66 REM @IN[3] = PSU relay close?
67 REM @IN[4] = Water relay open?
68 REM @IN[5] = Water relay close?
69 DISTRT=0;’Digital Input STaRT interlock
70 DISTOP=1;’Digital Input STOP interlock
71 DIPSUO=4;’Digital Input PSU relay Open
72 ’Digital Input PSU relay Closed
73 DIPSUC=5
74 ’Digital Input WaTeR relay Open
75 DIWTRO=2
76 ’Digital Input WaTeR relay Closed
77 DIWTRC=3
78
79 REM Whether we use the flow/T sensors
80 REM If we are not using any flow sensors then we have a

flow error (this is so you don’t get a warning about
solenoids failing)

81 REM This means you MUST use at least one flow sensor if
you want this to interlock to be able to turn on!

82 USETT1 = 1
83 USETT2 = 1
84 USETB1 = 0
85 USETB2 = 0
86 USEFLT = 1
87 USEFLB = 1
88 USEFLY = 0

185
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89
90 REM =======[ ANALOG LIMITS]=======
91 ’conversion factor: 1L/min = 2.6V
92 FLTOPM = 0.7; ’Minimum Flow
93 FLBOTM = 0.7
94 FLBYPM = 0.2
95 FLTOPMA = 1.0; ’Maximum Flow
96 FLBOTMA = 1.0
97 FLBYPMA = 4.0
98 TEMPT1M = 25; ’Maximum Temp in degrees
99 TEMPT2M = 35

100 TEMPB1M = 30
101 TEMPB2M = 30
102 MINT = 4; ’Minimum T in degrees
103
104 ’exponential averaging overlap factor
105 OVRLAP=0.99
106 V=OVRLAP
107 LOGCOUNT=0
108 ERRCOUNT=0
109 PEERRCNT=0
110
111 ’ Power cycle LEDs
112 SB DOTT1NOK
113 SB DOTT2NOK
114 SB DOBT1NOK
115 SB DOBT2NOK
116 SB DOTFLNOK
117 SB DOBFLNOK
118 SB DOYFLNOK
119 CB DOENPSU
120 CB DOENWTR
121 AO0,0
122 WT1000
123 CB DOTT1NOK
124 CB DOTT2NOK
125 CB DOBT1NOK
126 CB DOBT2NOK
127 CB DOTFLNOK
128 CB DOBFLNOK
129 CB DOYFLNOK
130 SB DOTT1OK
131 SB DOTT2OK
132 SB DOBT1OK
133 SB DOBT2OK
134 SB DOTFLOK
135 SB DOBFLOK
136 SB DOYFLOK
137 AO0,5
138 WT1000
139 CB DOTT1OK
140 CB DOTT2OK
141 CB DOBT1OK
142 CB DOBT2OK
143 CB DOTFLOK
144 CB DOBFLOK
145 CB DOYFLOK
146 AO0,0
147 WT1000
148
149 ’initialise variables
150 FLTOP = @AN[AITOPFL]
151 FLBOT = @AN[AIBOTFL]
152 FLBYP = @AN[AIBYPFL]
153 TEMPT1V = @AN[AITOPT1]
154 TEMPT2V = @AN[AITOPT2]
155 TEMPB1V = @AN[AIBOTT1]
156 TEMPB2V = @AN[AIBOTT2]
157 JS#CALCT
158
159 LED=0; ’Set the LED red
160 LEDSTATE=0; ’the state of the LED when flashing
161 STATE = 0
162 PSUEXT = 0; ’Is the PSU external disable tripped (0 =

normal operation, 1 = PSU disabled externally)
163

164 XQ#RECONN,1;’connect to the network
165 XQ#RUNLED,2; ’Run LED (so that we can make it blink!)
166
167 TERR=0
168 REPORT=0
169
170 REM *********************
171 REM ***** OFF STATE *****
172 REM *********************
173 #OFF
174 STATE = 0
175 REM check for start signal
176 ’ Has Start been called?
177 IF(TERR=0)&(@IN[DISTRT]=1)
178 JP#RUN
179 ENDIF
180 ’ Check sensors
181 JS#CHKSTAT
182 WT10
183 ’ Loop!
184 JP#OFF
185
186
187 REM *************************
188 REM ***** RUNNING STATE *****
189 REM *************************
190 #RUN
191 STATE = 1
192 REPORT=1
193 ’ start the interlock
194 SB DOENWTR
195 SB DOENPSU
196 LED=1; ’Set the LED green
197 WT3000
198 FLERR=0
199 FLTOP=@AN[AITOPFL]
200 FLBOT=@AN[AIBOTFL]
201 FLBYP=@AN[AIBYPFL]
202 IF(WTRRUN=0)&(PSURUN=0)
203 MG"NOTICE,Interlock Started"
204 ENDIF
205
206 #RUNLOOP
207 ’ Check for stop signal
208 IF(@IN[DISTOP]=1)
209 WT1000; ’Wait 1s for the person to take their finger

off the button
210 ’ Jump to COOL state
211 JP#COOL
212 ENDIF
213
214 ’ Check sensors
215 JS#CHKSTAT
216 ’ Should we go to SHUTDOWN or COOL state?
217 IF(WTRRUN=1)|(PSURUN=1)
218 IF (FLERR=1)|(TERR=1)|(PSUEXT=1)
219 F=FLERR
220 T=TERR
221 P=PSUEXT
222 MG"CRITICAL,FlowError=",F{F1.0}{N}
223 MG", TempError=",T{F1.0}{N}
224 MG", PSUExtDisable=",P{F1.0}{N}
225 IF (PSUEXT=1|TERR=1)&(FLERR=0)
226 MG", status=’Cooling’"
227 ELSE
228 MG", status=’E. Shutdown’"
229 ENDIF
230 IF(FLERR=1)
231 JP#SHUTDWN
232 ENDIF
233
234 IF (FLERR=0)&(TERR=1|PSUEXT=1)
235 ’ Only Temperature error, or PSU Ext-disable,

then go to cool state
236 JP#COOL
237 ENDIF
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238 ENDIF
239 ENDIF
240
241 ’ Loop!
242 WT10
243 JP#RUNLOOP
244
245
246 REM *************************
247 REM ***** COOLING STATE *****
248 REM *************************
249 #COOL
250 STATE = 2
251 REPORT=1
252 LED=2
253 ’Disable PSU
254 CB DOENPSU; ’Shutdown PSU
255 MG"NOTICE,Interlock Cooling"
256
257 LOOP = 0
258 #CLOOP
259 IF (LOOP < 2000)
260 ’ Loop for 30s while cooling, but only if the PSU is

actually off
261 ’ Check for stop signal
262 IF(@IN[DISTOP]=1)
263 ’ Immediately jump to SHUTDWN state
264 JP#SHUTDWN
265 ENDIF
266
267 ’ Check sensors
268 JS#CHKSTAT
269 WT10
270
271 ’ Should we go to SHUTDOWN state?
272 IF (FLERR=1)
273 JP#SHUTDWN
274 ENDIF
275
276 LOOP = LOOP + 1
277 JP#CLOOP
278 ENDIF
279
280 ’ Now go to shutdown state
281 JP#SHUTDWN
282
283
284 REM **************************
285 REM ***** SHUTDOWN STATE *****
286 REM **************************
287 #SHUTDWN
288 REPORT = 1
289 STATE = 3
290 CB DOENWTR; ’Shutdown water
291 CB DOENPSU; ’Shutdown PSU
292 LED=0; ’Set running LED red
293
294 ’ Wait 3s for the relay to change state, and the flow to

stop (this avoids solenoid failure messages!)
295 LOOP = 0
296 #SDLOOP
297 IF (LOOP < 200)
298 JS#CHKSTAT
299 WT10
300 LOOP = LOOP + 1
301 JP#SDLOOP
302 ENDIF
303
304 ’ Get Relay status
305 PSUORLY = @IN[DIPSUO]
306 PSUCRLY = @IN[DIPSUC]
307 WTRORLY = @IN[DIWTRO]
308 WTRCRLY = @IN[DIWTRC]
309 IF(PSUORLY=1)&(PSUCRLY=0)&(WTRORLY=1)‘
310 &(WTRCRLY=0)
311 ’We are fine

312 ELSE
313 MG"ALERT,E.Shutdown Failed to dis",‘
314 "engage relays. Water and/or "{N}
315 MG"Sorensen PSU may still be on."
316 ENDIF
317
318 ’ Send a log message now with the current state!
319 REPORT=1
320 JS#CHKSTAT
321
322
323 MG"NOTICE, Interlock Stopped"
324 ’ Now go to off state!
325 JP#OFF
326
327
328
329 REM ************************* SYSTEM CHECK

*************************
330 #CHKSTAT
331 WTRRUN = @OUT[DOENWTR]
332 PSURUN = @OUT[DOENPSU]
333
334 ’exponential averaging to smooth data
335 FLTOP=(V*FLTOP)+((1.0-V)*@AN[AITOPFL])
336 FLBOT=(V*FLBOT)+((1.0-V)*@AN[AIBOTFL])
337 FLBYP=(V*FLBYP)+((1.0-V)*@AN[AIBYPFL])
338 TEMPT1V=(OVRLAP*TEMPT1V)+((1.0-OVRLAP)‘
339 *@AN[AITOPT1])
340 TEMPT2V=(OVRLAP*TEMPT2V)+((1.0-OVRLAP)‘
341 *@AN[AITOPT2])
342 TEMPB1V=(OVRLAP*TEMPB1V)+((1.0-OVRLAP)‘
343 *@AN[AIBOTT1])
344 TEMPB2V=(OVRLAP*TEMPB2V)+((1.0-OVRLAP)‘
345 *@AN[AIBOTT2])
346 JS#CALCT
347
348 ’ CHECK FLOW SENSORS AND UPDATE LEDs
349 FLERR = 0
350
351 ’ Check flow of top coil
352 IF(FLTOPM<FLTOP)&(FLTOP<FLTOPMA)
353 CB DOTFLNOK
354 SB DOTFLOK
355 ELSE
356 IF(USEFLT=1)
357 FLERR = 1
358 SB DOTFLNOK
359 CB DOTFLOK
360 ELSE
361 CB DOTFLNOK
362 CB DOTFLOK
363 ENDIF
364 ENDIF
365
366 ’ Check flow of bottom coil
367 IF(FLBOTM<FLBOT)&(FLBOT<FLBOTMA)
368 CB DOBFLNOK
369 SB DOBFLOK
370 ELSE
371 IF(USEFLB=1)
372 FLERR = 1
373 SB DOBFLNOK
374 CB DOBFLOK
375 ELSE
376 CB DOBFLNOK
377 CB DOBFLOK
378 ENDIF
379 ENDIF
380
381 ’ Check flow of bypass loop
382 ’IF flow OK, show OK, otherwise if flow not OK show error

if in use
383 IF(FLBYPM<FLBYP)&(FLBYP<FLBYPMA)
384 CB DOYFLNOK
385 SB DOYFLOK
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386 ELSE
387 IF(USEFLY=1)
388 FLERR = 1
389 SB DOYFLNOK
390 CB DOYFLOK
391 ELSE
392 CB DOYFLNOK
393 CB DOYFLOK
394 ENDIF
395 ENDIF
396
397
398 REM If we are not using any flow sensors then we have a

flow error (this is so you don’t get a warning about
solenoids failing)

399 REM This means you MUST use at least one flow sensor if
you want this to interlock to be able to turn on!

400 IF(USEFLY=0)&(USEFLB=0)&(USEFLT=0)
401 FLERR=1
402 ENDIF
403
404 ’ If WTRRUN is 0 then ignore flow errors
405 IF (WTRRUN=0)
406 FLERR=0
407 ENDIF
408
409 TERR=0
410 IF(USETT1=1)
411 IF(TEMPT1>TEMPT1M)|(TEMPT1<MINT)
412 TERR=1
413 SB DOTT1NOK
414 CB DOTT1OK
415 ELSE
416 CB DOTT1NOK
417 SB DOTT1OK
418 ENDIF
419 ELSE
420 CB DOTT1NOK
421 CB DOTT1OK
422 ENDIF
423
424 IF(USETT2=1)
425 IF(TEMPT2>TEMPT2M)|(TEMPT2<MINT)
426 TERR=1
427 SB DOTT2NOK
428 CB DOTT2OK
429 ELSE
430 CB DOTT2NOK
431 SB DOTT2OK
432 ENDIF
433 ELSE
434 CB DOTT2NOK
435 CB DOTT2OK
436 ENDIF
437
438 IF(USETB1=1)
439 IF(TEMPB1>TEMPB1M)|(TEMPB1<MINT)
440 TERR=1
441 SB DOBT1NOK
442 CB DOBT1OK
443 ELSE
444 CB DOBT1NOK
445 SB DOBT1OK
446 ENDIF
447 ELSE
448 CB DOBT1NOK
449 CB DOBT1OK
450 ENDIF
451
452 IF(USETB2=1)
453 IF(TEMPB2>TEMPB2M)|(TEMPB2<MINT)
454 TERR=1
455 SB DOBT2NOK
456 CB DOBT2OK
457 ELSE
458 CB DOBT2NOK

459 SB DOBT2OK
460 ENDIF
461 ELSE
462 CB DOBT2NOK
463 CB DOBT2OK
464 ENDIF
465
466 ’ Get Relay status
467 PSUORLY = @IN[DIPSUO]
468 PSUCRLY = @IN[DIPSUC]
469 WTRORLY = @IN[DIWTRO]
470 WTRCRLY = @IN[DIWTRC]
471
472 ’ Is the PSU override on?
473 IF(PSUCRLY=1)&(PSURUN=0)
474 PSUOVR=1
475 ELSE
476 PSUOVR=0
477 ENDIF
478
479 ’ Is the Water override on?
480 IF(WTRCRLY=1)&(WTRRUN=0)
481 WTROVR=1
482 ELSE
483 WTROVR=0
484 ENDIF
485
486 ’ Is the PSU disabled via the external input to the coil-

interlock box?
487 IF (PSUORLY=1)&(PSURUN=1)
488 ’ Debounce this, as the relay takes some time to

switch
489 IF (PEERRCNT=200)
490 PSUEXT=1
491 ELSE
492 PEERRCNT=PEERRCNT+1
493 ENDIF
494 ELSE
495 PEERRCNT=0
496 PSUEXT=0
497 ENDIF
498
499 ’LOG STATUS MESSAGE EVERY 30s
500 LOGCOUNT = LOGCOUNT + 1
501 REM Only message every 30 seconds (this number takes into

account the length of time it takes to execute the code,
in this loop, as well as the WT<milliseconds> commands)

502 IF (LOGCOUNT=2000)
503 REPORT=1
504 LOGCOUNT=0
505 ENDIF
506
507 REM Report errors immediately, but then fall back to

standard logging every 30s
508 IF(FLERR=1)|(TERR=1)|(PSUEXT=1)
509 IF(ERRCOUNT=0)
510 REPORT=1
511 ENDIF
512 ERRCOUNT=1
513 ELSE
514 ERRCOUNT=0
515 ENDIF
516
517 IF(REPORT=1)
518 ’ What status should this be?
519 IF (FLERR=1)|(TERR=1)|(PSUEXT=1)|‘
520 (PSUOVR=1)|(WTROVR=1)
521 MG"WARNING,status="{N}
522 ELSE
523 MG"INFO,status="{N}
524 ENDIF
525
526 ’What state are we in?
527 IF (STATE=0)
528 MG"Off."{N}
529 ENDIF
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530
531 IF (STATE=1)
532 MG"Running."{N}
533 ENDIF
534
535 IF (STATE=2)
536 MG"Cooling."{N}
537 ENDIF
538
539 IF (STATE=3)
540 MG"Shutting down."{N}
541 ENDIF
542
543 IF (FLERR=1)|(TERR=1)|(PSUEXT=1)|‘
544 (PSUOVR=1)|(WTROVR=1)
545 ’What message should we send?
546 IF (FLERR=1)
547 MG" Flow Error."{N}
548 ENDIF
549 IF (TERR=1)
550 MG" Temperature Error."{N}
551 ENDIF
552 IF (PSUEXT=1)
553 MG" PSU externally disabled."{N}
554 ENDIF
555 IF (PSUOVR=1)
556 MG" PSU override engaged."{N}
557 ENDIF
558 IF (WTROVR=1)
559 MG" Water override engaged."{N}
560 ENDIF
561 ENDIF
562
563 ’MG"’"{N}
564 MG",PSUon=",PSURUN{F1.0},‘
565 ", WaterOn=",WTRRUN{F1.0}{N}
566
567 IF(USEFLT=1)
568 MG",TopCoilFlow="{N}
569 MGFLTOP{Z2.3}{N}
570 ENDIF
571
572 IF(USEFLB=1)
573 MG", BottomCoilFlow="{N}
574 MGFLBOT{Z2.3}{N}
575 ENDIF
576
577 IF(USEFLY=1)
578 MG", BypassCoilFlow="{N}
579 MGFLBYP{Z2.3}{N}
580 ENDIF
581
582 IF(USETT1=1)
583 MG", TopTemp1="{N}
584 MGTEMPT1{Z2.3}{N}
585 ENDIF
586
587 IF(USETT2=1)
588 MG", TopTemp2="{N}
589 MGTEMPT2{Z2.3}{N}
590 ENDIF
591
592 IF(USETB1=1)
593 MG", BottomTemp1="{N}
594 MGTEMPB1{Z2.3}{N}
595 ENDIF
596
597 IF(USETB2=1)
598 MG", BottomTemp2="{N}
599 MGTEMPB2{Z2.3}{N}
600 ENDIF
601 MG", PSUExtDisable=",PSUEXT{F1.0}{N}
602 MG", WaterOverride=",WTROVR{F1.0},‘
603 ", ","PSUOverride=",PSUOVR{F1.0}
604 ENDIF

605 ’ Set REPORT=0 so that we won’t report next time unless
an error, or a state requests it

606 REPORT = 0
607 EN
608
609
610 #DOTCALC
611 IF (CALV<0.1)
612 CALT=0
613 ELSE
614 CALTMP = 5/CALV
615 IF (CALTMP=1)
616 CALT = 0
617 ELSE
618 CALTMP=@SQR[29.5/((5/CALV-1)*9.98)+1]
619 IF (CALTMP < 1.377)
620 CALT = 0
621 ELSE
622 CALT = 53.85*@SQR[CALTMP-1.376]
623 ENDIF
624 ENDIF
625 ENDIF
626 EN
627
628 #CALCT
629 ’ Get TEMPT1V and put in variable CALV
630 ’ Run temp routine
631 ’ place result from CALT into TEMPT1
632 CALV = TEMPT1V
633 JS#DOTCALC
634 TEMPT1 = CALT
635
636 CALV = TEMPT2V
637 JS#DOTCALC
638 TEMPT2 = CALT
639
640 CALV = TEMPB1V
641 JS#DOTCALC
642 TEMPB1 = CALT
643
644 CALV = TEMPB2V
645 JS#DOTCALC
646 TEMPB2 = CALT
647 EN
648
649 REM **************** RUN LED updater *****************
650 #RUNLED
651 IF (LED = 0)
652 AO0,0; ’Set running LED red
653 LEDSTATE=0
654 ENDIF
655 IF (LED = 1)
656 AO0,5; ’Set running LED green
657 LEDSTATE=0
658 ENDIF
659
660 ’ Blink the LED
661 IF (LED = 2)
662 IF(LEDSTATE=0)
663 LEDSTATE=1
664 AO0,0; ’Set running LED red
665 ELSE
666 LEDSTATE=0
667 AO0,5; ’Set running LED green
668 ENDIF
669 ENDIF
670 ’Wait 200ms
671 WT200
672 JP#RUNLED
673 EN
674
675
676 REM ************************* ETHERNET RECONNECTION

*************************
677 #RECONN
678 IHC=>-3
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679 CFC
680 ETH0=0
681 #KPALIVE
682 #RCLP
683 IF(ETH0=0)
684 IHC=>-3
685 IHC=130,194,171,188 <518>1;’syslog server
686 WT150
687 ENDIF
688 ETH0=(_IHC2=-1)&(_IHC3=0);’udp master && arp success
689 JP#RCLP,ETH0=0;’keep trying
690 CW2;’disable copy-bit

691 ’MG{EC}"bec-coils-krb:INFO,ping"
692 IF(_IHA2>0)&(@ABS[_IHA0-_IA0]>$FF);
693 IHA=>-3
694 ENDIF
695 IF(_IHB2>0)&(@ABS[_IHB0-_IA0]>$FF);’require lab subnet
696 IHB=>-3
697 ENDIF
698 WT60000
699 JP#KPALIVE
700 EN
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Figure B.1: The custom circuit board layout for breaking-out the analog and digital I/O on
the Galil. The circuit board is dual layer, with the top layer shown in (a) and the bottom
layer shown in (b). The Galil connects via two high-density D-subminiature connectors
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Figure B.2: The schematic diagram for the coil interlock circuit.



Appendix C

Supernova design

The circuit board layout and schematics for the Supernova.
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Appendix D

K-Rb experiment details

This appendix provides a copy of the experiment logic and runmanager globals used in our
dual-species apparatus. We also include a graphical representation of the hierarchy of device
control to emphasise the scale of the hardware we must control.

D.1 Globals
Here we provide the set of experiment parameters (global variables) defined in runmanager.
This emphasises the complexity of our experiments, and the number of parameters we have
control over and must optimise in order to make an ultracold atom cloud in a dual-species
apparatus.

Name (units) Value Name (units) Value

kick_off_field_delay (s) 20e-3 mw_transfer_2_1_bias_z (A) 0

kick_off_magnetic_atoms (Bool) False mw_transfer_2_1_centre_freq
(MHz)

1.05

kick_off_magnetic_atoms_time
(s)

20e-3 mw_transfer_2_1_range (MHz) 0.2

kick_off_quad_current (A) 50 mw_transfer_2_1_rate (MHz/s) 200

mw_transfer_2_1_bias_y (A) 0 transfer_to_2_1 s0951_transfer_to_2_1

Table D.1: The globals in the group “11>21 Microwave Transfer”
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Name (units) Value Name (units) Value

blow_2_1 (Bool) True mw_transfer_1_0_centre_freq
(MHz)

0.527

clock_mw_detuning (MHz) 2e-3 mw_transfer_1_0_range (MHz) 0.5

clock_pi (Bool) False mw_transfer_1_0_rate (MHz/s) 100

clock_pi_time (s) 2e-5 transfer_to_1_0 s0952_transfer_to_1_0

Table D.2: The globals in the group “21>10 Microwave Transfer”

Name (units) Value Name (units) Value

blow_2_2 (Bool) s0952_blow_away_22 mw_transfer_bias_z (A) 0

microwave_transfer (Bool) s0950_microwave_transfer mw_transfer_centre_freq (MHz) 1.65

mw_transfer_after_time (s) 0 mw_transfer_field_time (s) 8e-3

mw_transfer_bias_x (A) 0 mw_transfer_range (MHz) 0.35

mw_transfer_bias_y (A) 0 mw_transfer_rate (MHz/s) 100

Table D.3: The globals in the group “22>11 Microwave Transfer”

Name (units) Value Name (units) Value

fit_clip 4 plot_measurement (Measure-
ment)

(’n_fluoro’)

fit_od0 (Bool) True plot_measurement_k (’n_k_roi_2’, ’n_k_sum’, ’OD_
max_roi_2’, ’wx_k_roi_2’, ’wy_
k_roi_2’, ’x_k_roi_2’, ’y_k_
roi_2’,)

fit_rois (-) (’roi0’,) plot_measurement_rb (8) (’n_roi_0’,’n_sum_roi0’,’OD_
max_roi_0’,’x_roi_0’,’y_roi_
0’,’wx_roi_0’,’wy_roi_0’)

fit_rois_k (’roi2’,) repeats [0]*num_repeats if num_repeats
> 1 else 0

fit_rois_rb (’roi0’,) waveplate (Degrees) 190

no_sequences_to_analyse (Se-
quences)

1 x_axis (Global) ’y_roi_0’

num_repeats 1 y_axis (Global) ’None’

Table D.4: The globals in the group “Analysis”

Name (units) Value Name (units) Value

after_anti_gravity_time (s) 0.5 anti_gravity_current (A) 20

anti_gravity (Bool) False anti_gravity_ramp_time (s) 0.1

Table D.5: The globals in the group “Anti gravity”

Name (units) Value Name (units) Value

bottom_camera_pixel_size (m) 0.535e-6 side_k41_saturation_intensity 2858.0

bottom_rb87_saturation_
intensity (adu)

3800 side_rb87_saturation_intensity
(adu)

1800

central_chamber_pixel_size (m) 5.916e-6 square_cell_side_pixel_size
(m)

3.06e-6

Table D.6: The globals in the group “Cameras”
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Name (units) Value Name (units) Value

atomlaser (Bool) False dipole_recompress_amplitude
(arb)

100

atomlaser_amp (arb) 42 dipole_recompression (Bool) False

atomlaser_time (s) 20e-3 dipole_recompression_duration
(s)

10e-3

central_dipole_evap_type ("lin-
ear" or "exp")

’exp’ dipole_trap_evaporation (Bool) s09_dipole_trap_evaporation

cross_dipole_evap_trunc (Arb) 0.99 dipole_trap_evaporation_ramp_
lens_position (Bool)

False

cross_dipole_evaporation_end_
amplitude (Arb)

0.1 dipole_trap_evaporation_ramp_
lens_position_duration (s)

0

dipole_evap_central_bias_z (A) 0.01 dipole_trap_evaporation_ramp_
lens_position_final (distance)

0

dipole_evap_trunc (arb) 0.98 dipole_trap_evaporation_time_
constant (s)

3

dipole_evaporation_duration
(sec)

5.5 evaporated_dipole_hold_time (s) 0.5

dipole_evaporation_end_
amplitude (arb)

130 magnetic_fall (Bool) False

dipole_pre_evaporation_
amplitude (arb)

250 magnetic_fall_time (s) 5e-3

dipole_pre_evaporation_
duration (s)

0.8 quad_turnoff_time (s) 4.5

Table D.7: The globals in the group “Dipole Trap Evaporation”

Name (units) Value Name (units) Value

MT_load_pure_dipole_bias_time
(s)

0.1 pgc_dipole_trap (Bool) False

MT_load_pure_dipole_
decompress_time (s)

0.1 pure_dipole_amplitude (arb) dipole_trap_power

dipole_trap_aom_frequency
(MHz)

99 pure_dipole_central_bias_x (A) 0

dipole_trap_power (Arb) 1023 pure_dipole_central_bias_y (A) 0

load_dipole_trap (Bool) s08_load_dipole_trap pure_dipole_central_bias_z (A) 0

load_pure_dipole_trap (Bool) s0900_load_pure_dipole pure_dipole_hold_time (s) .1

Table D.8: The globals in the group “Dipole Trap Load”

Name (units) Value Name (units) Value

expand_in_hg (Bool) True hg_expansion_kick_time (s) 5e-3

expansion_coil_turn_time (s) 3e-3 hg_expansion_side_bias (A) 5.037

green_sheet_amp (arb) 0.445 hg_expansion_time (s) 20e-3

hg_expansion_bottom_quad_
current (A)

35 hg_expansion_top_quad_current
(A)

0

hg_expansion_end_bias (A) 1.6

Table D.9: The globals in the group “Expand in HG”

Name (units) Value Name (units) Value

green_alignment_kill_after_
time (s)

10e-3 green_hg_turn_on_time (s) 0.05

green_alignment_kill_amp (arb) 0.04 hg_hold_time (s) 0

green_alignment_kill_time (s) 0 kill_for_green_alignment
(Bool)

False

green_hg_amplitude (arb) 0.445 load_green_hg (Bool) True

green_hg_load_red_off_time (s) 0.3

Table D.10: The globals in the group “Green HG”



202 APPENDIX D. K-RB EXPERIMENT DETAILS

Name (units) Value Name (units) Value

flat_trap_bottom_imaging_amp
(arb)

0 rb_square_fluoro_amplitude
(Arb)

700

flat_trap_dither_amplitude
(MHz)

0 rb_square_fluoro_frequency
(MHz)

rb_science_bottom_imaging_
frequency

flat_trap_dither_freq (Hz) 2000 rb_square_imaging_repump_
amplitude (arb)

700

flat_trap_turn_off_delay_
bottom (s)

0 rb_square_imaging_repump_
frequency (MHz)

85

iXon_exposure_time (s) 1e-3 science_bottom_focus_position
(microsteps)

194000

iXon_interframe_time (s) 50e-3 science_bottom_imaging_field
(A)

0

quad_turn_off_delay_bottom (s) 0 science_bottom_imaging_pulse_
time (s)

0.1e-3

rb_science_bottom_imaging_
amplitude (Arb)

0.12 science_drop_time_k (s) 1e-3

rb_science_bottom_imaging_
frequency (MHz)

91 science_drop_time_rb (s) 0.5e-3

rb_science_fluoro_imaging_time
(s)

0.03e-3 square_cell_fluoro (Bool) False

rb_science_imaging_repump
(Bool)

False square_cell_fluoro_k (Bool) False

Table D.11: The globals in the group “Imaging - Bottom Square Cell”

Name (units) Value Name (units) Value

SG_current (A) 60 k_recapture_imaging_time (s) 10e-3

SG_imaging (Bool) False k_repump_fluoro_amplitude 700

central_drop_time_k (s) 0.5e-3 k_repump_fluoro_frequency
(MHz)

104.5

central_drop_time_rb (s) 1e-3 k_repump_recapture_imaging_
amplitude (Arb)

700

central_image_k_fluoro s11_central_image_k_fluoro k_repump_recapture_imaging_
frequency (MHz)

102.1

central_image_k_recapture
(Bool)

s11_central_image_k_recapture k_saturation_intensity 2858.0

central_image_rb_fluoro s11_central_image_rb_fluoro k_trap_fluoro_amplitude 773

central_imaging_bias_x (A) 0 k_trap_fluoro_frequency (MHz) 89.8

central_imaging_bias_y (A) 1.3 k_trap_recapture_imaging_
amplitude (Arb)

773

central_imaging_bias_z (A) 0.061 k_trap_recapture_imaging_
frequency (MHz)

78.4+k_offset_frequency

dipole_image_delay (s) 0 rb_fluoro_amplitude (Arb) 700

drop_time_general (s) 1e-3 rb_fluoro_frequency (MHz) rb_imaging_frequency

imaging_pulse_time (s) .1e-3 rb_fluoro_imaging_time (s) 5e-3

interframe_time (s) 200e-3 rb_imaging_amplitude (Arb) 0.25

k_fluoro_imaging_time (s) 5e-3 rb_imaging_frequency (MHz) 91.15

k_imaging_MOT_repump (Bool) False rb_imaging_repump (Bool) False

k_imaging_amplitude (Arb.) 850 rb_imaging_repump_amplitude
(Arb)

700

k_imaging_frequency (MHz) 94.5 rb_imaging_repump_frequency
(MHz)

85

k_imaging_repump (Bool) False rb_saturation_intensity 2858.0

k_imaging_repump_amplitude
(Arb)

600 red_camera_exposure_time (s) 1e-3

k_imaging_repump_frequency
(MHz)

107.5 side_imaging_expand_in_beam_1
(Bool)

False

k_recapture_imaging_MOT_load_
time (s)

5e-3 side_imaging_expand_in_beam_2
(Bool)

False

k_recapture_imaging_quad (A) 20 side_imaging_expanded_power
(arb)

400

Table D.12: The globals in the group “Imaging - Central”
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Name (units) Value Name (units) Value

absorption_image_k (Bool) [not x for x in image_order]
if s11__absorption_image_both_
species else s11__absorption_
image_k

drop_time_rb (s) central_drop_time_rb if
central_imaging else (science_
side_drop_time_rb if square_
cell_side_imaging else
(science_drop_time_rb if
square_cell_bottom_imaging
else 0))

absorption_image_rb (Bool) image_order if s11__
absorption_image_both_species
else s11__absorption_image_rb

image_order (True=Rb,
False=K, 0=not imaging
both species)

(([True]*len(drop_time_rb)
if isinstance(drop_time_rb,
ndarray) or isinstance(drop_
time_rb, list) else [True])
+ ([False]*len(drop_time_k)
if isinstance(drop_time_k,
ndarray) or isinstance(drop_
time_k, list) else [False]))
if s11__absorption_image_both_
species else 0

central_imaging (Bool) s11__central_absorption_image square_cell_bottom_imaging
(Bool)

s11__square_cell_bottom_
imaging

drop_time (s) [drop_time_rb[i] if x and
(isinstance(drop_time_rb,
ndarray) or isinstance(drop_
time_rb, list)) else (drop_
time_rb if x else (drop_
time_k[i-len(drop_time_
rb)] if (isinstance(drop_
time_rb, ndarray) or
isinstance(drop_time_rb,
list)) and (isinstance(drop_
time_k, ndarray) or
isinstance(drop_time_k,
list)) else (drop_time_k[i-
1] if isinstance(drop_time_k,
ndarray) or isinstance(drop_
time_k, list) else drop_
time_k))) for i, x in
enumerate(image_order)] if
image_order else (drop_time_
k if absorption_image_k ==
True else (drop_time_rb if
absorption_image_rb == True
else drop_time_general))

square_cell_side_imaging
(Bool)

s11__square_cell_side_imaging

drop_time_k (s) central_drop_time_k if
central_imaging else (science_
side_drop_time_k if square_
cell_side_imaging else
(science_drop_time_k if
square_cell_bottom_imaging
else 0))

Table D.13: The globals in the group “Imaging - Common”

Name (units) Value Name (units) Value

flat_trap_drop_amplitude (arb) 0.5 science_side_imaging_boost_
flat (Bool)

False

flat_trap_turn_off_delay (s) 0 science_side_imaging_expand_
in_cross (Bool)

False

imaging_expansion_beam_
amplitude (arb)

800 science_side_imaging_expand_
in_trap (Bool)

False

imaging_expansion_beam_ramp_
time (s)

1e-3 science_side_imaging_field (A) 0

imaging_expansion_cross_beam_
amplitude (arb)

0.99 science_side_imaging_pulse_
time (s)

0.1e-3

rb_science_side_imaging_
amplitude (arb)

0.7 side_imaging_bias (A) 5

rb_science_side_imaging_
frequency (MHz)

94.5 side_imaging_hold_in_quad
(Bool)

False

science_side_drop_time_k (s) 1e-3 tof_anti_gravity (Bool) False

science_side_drop_time_rb (s) 18e-3

Table D.14: The globals in the group “Imaging - Side Square Cell”
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Name (units) Value Name (units) Value

k_compressed_MOT (Bool) s021_k_compressed_MOT k_compressed_MOT_time (s) 60e-3

k_compressed_MOT_bias_x (A) 0.9 k_repump_compressed_MOT_
amplitude (Arb)

1023

k_compressed_MOT_bias_y (A) 0.001 k_repump_compressed_MOT_
frequency (MHz)

104

k_compressed_MOT_bias_z (A) 1.15 k_trap_compressed_MOT_
amplitude (Arb)

811

k_compressed_MOT_current (A) 27 k_trap_compressed_MOT_
frequency (MHz)

82

k_compressed_MOT_hold_time (s) 0

Table D.15: The globals in the group “K CMOT”

Name (units) Value Name (units) Value

k_compressed_MOT_cooling
(Bool)

s022_k_compressed_MOT_cooling k_repump_compressed_MOT_
cooling_frequency (MHz)

103.3

k_compressed_MOT_cooling_time
(s)

20e-3 k_trap_compressed_MOT_cooling_
amplitude (Arb)

773

k_repump_compressed_MOT_
cooling_amplitude (Arb)

250 k_trap_compressed_MOT_cooling_
frequency (MHz)

84.3

Table D.16: The globals in the group “K CMOT Cooling”

Name (units) Value Name (units) Value

central_MOT_hold_time (s) 0 k_central_MOT_load_bias_z (A) .69

k_central_MOT_load_bias_x (A) 0 k_central_MOT_load_current (A) 10.6

k_central_MOT_load_bias_y (A) 0

Table D.17: The globals in the group “K MOT - Central”

Name (units) Value Name (units) Value

k_MT_compressed_bias_x (A) 0 k_MT_compression_time (s) 100e-3

k_MT_compressed_bias_y (A) 0.01 k_MT_hold_time (s) 0 if k_spin_purification else
2

k_MT_compressed_bias_z (A) 0 k_initial_MT (Bool) s031_k_initial_MT

k_MT_compressed_quad (A) 135

Table D.18: The globals in the group “K MT”

Name (units) Value Name (units) Value

k_MT_decompressed_hold_time (s) 0 k_MT_decompression_time (s) 0.6

k_MT_decompressed_quad (A) 15 k_spin_purification (Bool) s032_k_spin_purification

Table D.19: The globals in the group “K MT Decompress”

Name (units) Value Name (units) Value

k_optical_pumping (Bool) s030_k_optical_pumping k_optical_pumping_end_repump_
duration (s)

60e-6

k_optical_pumping_amplitude
(Arb)

489 k_optical_pumping_frequency
(MHz)

88.8

k_optical_pumping_bias_x (A) 0 k_optical_pumping_initial_
repump_duration (s)

0

k_optical_pumping_bias_y (A) 1 k_optical_pumping_repump_
amplitude (Arb)

700

k_optical_pumping_bias_z (A) 0.07 k_optical_pumping_repump_
frequency (MHz)

107.1

k_optical_pumping_delay (s) 1.3e-3 k_optical_pumping_time (s) 150e-6

Table D.20: The globals in the group “K Optical Pumping”
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Name (units) Value Name (units) Value

k_raman_global_amp (Arb) 1023 k_raman_red_freq (MHz) 65

k_raman_global_freq (MHz) 100 k_raman_transfer_after_time (s) 0

k_raman_red_amp (Arb) 673

Table D.21: The globals in the group “K Raman - Common”

Name (units) Value Name (units) Value

k_raman_22_to_10 (Bool) s0950_raman_transfer and
s095k1_transfer_22_to_10

k_raman_22_to_10_blue_freq
(MHz)

k_raman_22_to_10_level_
separation_freq/2.-k_raman_
red_freq

k_raman_22_to_10_bias_x (A) 0 k_raman_22_to_10_duration (s) 400e-6

k_raman_22_to_10_bias_y (A) 0 k_raman_22_to_10_field_
transfer_time

0e-3

k_raman_22_to_10_bias_z (A) 0.5 k_raman_22_to_10_level_
separation_freq (MHz)

254+4.801

k_raman_22_to_10_blue_amp
(Arb)

440 k_raman_22_to_10_red_amp (Arb) 673

Table D.22: The globals in the group “K Raman |2,2> to |1,0>”

Name (units) Value Name (units) Value

k_blow_away_22 (Bool) s095k2_blow_away_22 k_transfer_freq_step (Hz/
sample)

k_transfer_range/k_transfer_
num_samples*1e6

k_rf_amp (arb) .99 k_transfer_num_samples (sam-
ples)

k_transfer_time*k_transfer_
sample_rate

k_to_11 (Bool) s095k1_transfer_22_to_11 k_transfer_pi_pulse_time (s) 0

k_transfer__adiabatic_passage
(Bool)

not k_transfer__pi_pulse k_transfer_range (MHz) 0.02

k_transfer__pi_pulse (Bool) False k_transfer_rate (MHz/s) 0.05

k_transfer_bias_y (A) 0 k_transfer_sample_rate (Hz) 3e4

k_transfer_bias_z (A) 0.9 k_transfer_time (s) 1.0*k_transfer_range/k_
transfer_rate

k_transfer_centre_freq (MHz) 14.04 k_transfer_trunc (detuned_
MHz)

0

Table D.23: The globals in the group “K to |1,1>”

Name (units) Value Name (units) Value

k_22_10_rf1_amp (Arb) .99 k_22_10_transfer_num_samples
(samples)

k_22_10_transfer_time*k_22_10_
transfer_sample_rate

k_22_10_rf2_amp (Arb) .99 k_22_10_transfer_range (MHz) 0.3

k_22_10_rf2_freq (MHz) 31 k_22_10_transfer_rate (MHz/s) 6

k_22_10_transfer_bias_y (A) 0 k_22_10_transfer_sample_rate
(Hz)

3e4

k_22_10_transfer_bias_z (A) 30/7.514 k_22_10_transfer_time (s) 1.0*k_22_10_transfer_range/k_
22_10_transfer_rate

k_22_10_transfer_centre_freq
(MHz)

11+1.7 k_22_10_transfer_trunc (de-
tuned_MHz)

0

k_22_10_transfer_freq_step
(Hz/sample)

k_22_10_transfer_range/k_22_
10_transfer_num_samples*1e6

k_22_to_10 (Bool) s095k1_transfer_22_to_10

Table D.24: The globals in the group “K |2,2> to |1,0>”

Name (units) Value Name (units) Value

diole_kick_amplitude (MHz) 0.5 kick_for_slosh (Bool) False

dipole_kick_duration (s) 0.05 kick_for_slosh_current (A) 0.2

dipole_kick_slosh_time (s) 0

Table D.25: The globals in the group “Kicked Slosh measurement”
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Name (units) Value Name (units) Value

k_central_MOT_load_time (s) 20 k_source_current_east (A) 4.33

k_offset_frequency (MHz) 1.7 k_source_current_max (A) 21.5

k_push_amplitude (Arb.) 160 k_source_current_sum (A) k_source_current_east+k_
source_current_west+k_source_
current_top+k_source_current_
bottom

k_push_frequency (MHz) 98.3 k_source_current_top (A) 5.7

k_push_repump_amplitude (Arb) 890 k_source_current_west (A) 5.1

k_push_repump_frequency (MHz) 105 k_trap_load_amplitude (Arb.) 750

k_repump_load_amplitude (Arb.) 1023 k_trap_load_frequency (MHz) 81.7

k_repump_load_frequency (MHz) 102.3 use_k (Bool) s01_use_k

k_source_current_bottom (A) 4.6

Table D.26: The globals in the group “MOT - K”

Name (units) Value Name (units) Value

rb_central_MOT_load_time (sec-
onds)

0.3 rb_push_duration (seconds) 0.6e-3

rb_central_MOT_repump_
amplitude (Arb)

700 rb_push_frequency (MHz) 95

rb_central_MOT_repump_
frequency (MHz)

80 rb_source_MOT_load_time (sec-
onds)

12e-3

rb_central_MOT_trap_amplitude
(Arb)

700 rb_source_current (A) 7.3

rb_central_MOT_trap_frequency
(MHz)

79 rb_source_repump_amplitude
(Arb)

750

rb_laser_offset (MHz) 0 rb_source_repump_frequency
(MHz)

85.3

rb_op_mot_displacer_amplitude
(Arb)

0 rb_source_trap_amplitude (Arb) 670

rb_op_mot_displacer_frequency
(MHz)

84 rb_source_trap_frequency
(MHz)

84

rb_push_amplitude (Arb) 0.7 use_rb (Bool) s01_use_rb

Table D.27: The globals in the group “MOT - Rb”

Name (units) Value Name (units) Value

MT_compress (Bool) s05_MT_compress central_MT_compressed_bias_y
(A)

0.22

MT_compressed_hold_time (s) 0.5 if microwave_evaporation
else 1

central_MT_compressed_bias_z
(A)

0.14

MT_compression_time (s) 0.5 central_MT_compressed_quad (A) 135

central_MT_compressed_bias_x
(A)

0.32

Table D.28: The globals in the group “MT Compress”

Name (units) Value Name (units) Value

MT_decompress (Bool) s07_MT_decompress blow_away_rb_time (s) (mw_evap_stop-blow_away_mw_
end)/blow_away_rb_rate

MT_decompress_evap (Bool) s07_MT_decompress_evap blow_away_rb_use_light (Bool) False

MT_decompression_evap_time (s) 0.4 central_MT_decompressed_bias_x
(A)

central_MT_compressed_bias_x

MT_decompression_hold_time (s) 50e-3 central_MT_decompressed_bias_y
(A)

central_MT_compressed_bias_y

MT_decompression_time (sec-
onds)

MT_decompression_evap_time*2 central_MT_decompressed_bias_z
(A)

central_MT_compressed_bias_z

blow_away_mw_end (MHz) -20 central_MT_decompressed_quad
(A)

10

blow_away_rb (Bool) s070_blow_away_rb mt_extra_decompress_hold_
microwaves_on (Bool)

True

blow_away_rb_rate (MHz/s) 14 mw_evap_decompress_stop (MHz) mw_evap_stop

Table D.29: The globals in the group “MT Decompress”
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Name (units) Value Name (units) Value

mw_evap_rotated_amp (arb) 0.3 mw_evap_rotated_time (s) 0.5

mw_evap_rotated_end (MHz) 7 mw_evap_rotated_time_constant
(s)

0.4

mw_evap_rotated_start (MHz) 10 rotated_microwave_evaporation
(Bool)

False

Table D.30: The globals in the group “MW evap rotated”

Name (units) Value Name (units) Value

bottom_feshbach_coils_
saturation (V)

10 central_quad_field_calibration
(G/cm)

0.8

bottom_feshbach_coils_shift
(A)

0 central_quad_saturation (V) 10

bottom_feshbach_coils_slope
(A/V)

2*feshbach_coils_slope central_quad_shift (A) -1.991611E-01

central_bias_x_coil_saturation
(V)

2.88 central_quad_slope (A/V) 15.82738

central_bias_x_coil_shift (A) -1.648352E-04 feshbach_coils_saturation (V) 10

central_bias_x_coil_slope (A/
V)

0.5231099 feshbach_coils_shift (A) 0

central_bias_y_coil_saturation
(V)

4 feshbach_coils_slope (A/V) 2.08

central_bias_y_coil_shift (A) -1.143956E-02 k_2D_MOT_coil_slope (A/V) 0.9077

central_bias_y_coil_slope (A/
V)

0.5280549 rb_source_MOT_saturation (V) 10

central_bias_z_coil_saturation
(V)

9.23 rb_source_MOT_shift (A) -0.0771

central_bias_z_coil_shift (A) 3.368e-15 rb_source_MOT_slope (A/V) 1.4392

central_bias_z_coil_slope (A/
V)

0.52

Table D.31: The globals in the group “Magneatos”

Name (units) Value Name (units) Value

central_MT_capture_bias_x (A) 0 central_MT_capture_quad (A) 37

central_MT_capture_bias_y (A) 0 magnetic_trap (Bool) s04_magnetic_trap

central_MT_capture_bias_z (A) 0 magnetic_trap_hold_time (s) 0 if MT_compress else 1

Table D.32: The globals in the group “Magnetic Trap”

Name (units) Value Name (units) Value

IQ_amp (Arb) 0.3 mw_evap_mid (MHz detuned) 40

evap_rate (MHz/s) 14 mw_evap_points (points) 1000

evaporated_MT_hold_time (s) 0 mw_evap_start (MHz detuned) 53

microwave_LO_freq (MHz) 7034 mw_evap_stop (MHz detuned) 3.4

microwave_evaporation (Bool) s06_microwave_evaporation mw_evap_time (s) (mw_evap_mid-mw_evap_stop)/
evap_rate

mw_evap_initial_rate (MHz/s) 10 mw_evap_time_constant (s) 1.0

mw_evap_initial_time (s) (mw_evap_start-mw_evap_mid)/
mw_evap_initial_rate

mw_evap_type ’linear’

Table D.33: The globals in the group “Microwave Evaporation”

Name (units) Value Name (units) Value

transport_aom_A (W) 1.969 transport_lens_current_cal (A/
V)

0.0193

transport_aom_c (W) 1.901 transport_lens_fit_a (a) -0.821729108941288

transport_aom_f (Arb) 0.527 transport_lens_fit_b (b) -15.390108776081

transport_aom_phase (rad) 3.262 transport_lens_fit_c (c) 0.628028016961235

transport_lens_I_max (A) 0.2

Table D.34: The globals in the group “OptotuneLens”
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Name (units) Value Name (units) Value

PGC_bias_x (A) 0 rb_pgc_repump_amplitude (Arb) 600

PGC_bias_y (A) 0.1 rb_pgc_repump_frequency (MHz) 80

PGC_bias_z (A) 0.07 rb_pgc_time (s) 4.5e-3

PGC_quad (A) 0 rb_pgc_time_constant (s) 0.5e-3

pgc_field_turn_time (s) 1e-3 rb_pgc_trap_amplitude (Arb.) 600

rb_PGC (Bool) s02_rb_PGC rb_pgc_trap_frequency (MHz) 58

Table D.35: The globals in the group “PGC”

Name (units) Value Name (units) Value

parametric_heating (Bool) False trap_heating_frequency (Hz) 170

trap_heating_amplitude (frac-
tion)

0.1 trap_heating_time (s) 0.5

Table D.36: The globals in the group “Parametric Heating”

Name (units) Value Name (units) Value

post_mw_transfer_evaporation
(Bool)

True post_post_mw_transfer_
evaporation_hold_time (s)

0

post_mw_transfer_evaporation_
duration (s)

4 square_cell_post_mw_
evaporation_end_amplitude_
2D (arb)

0.17

post_mw_transfer_evaporation_
time_constant (s)

1 square_cell_post_mw_
evaporation_end_amplitude_
cross (arb)

0.265

post_mw_transfer_evaporation_
trunc (fraction)

1 square_cell_post_mw_
evaporation_end_amplitude_
transport (arb)

48

Table D.37: The globals in the group “Post mw transfer evap”

Name (units) Value Name (units) Value

rfblaster_0_delay (s) 880e-6

Table D.38: The globals in the group “RFBlasters”

Name (units) Value Name (units) Value

cross_trap_off_ramp_duration
(s)

0.35 sine_ramp_off_cross_trap
(Bool)

False

flat_trap_hold_time (s) 0

Table D.39: The globals in the group “Ramp off cross”

Name (units) Value Name (units) Value

rb_MOT_compress_time (s) 0.1 rb_central_MOT_compress_
current (A)

18.6

rb_central_MOT_compress_bias_x
(A)

0 rb_compressed_MOT_power_ramp_
time (s)

1e-3

rb_central_MOT_compress_bias_y
(A)

0.0001 rb_compressed_MOT_trap_
amplitude (arb)

600

rb_central_MOT_compress_bias_z
(A)

0.165

Table D.40: The globals in the group “Rb CMOT”

Name (units) Value Name (units) Value

rb_central_MOT_load_bias_x (A) 0 rb_central_MOT_load_bias_z (A) 0.5

rb_central_MOT_load_bias_y (A) 0.5 rb_central_MOT_load_current
(A)

15

Table D.41: The globals in the group “Rb MOT - Central”
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Name (units) Value Name (units) Value

op_mw_transfer_centre_freq
(MHz)

1.3 rb_optical_pumping_aom_warm_
frequency (MHz)

70

op_mw_transfer_range (MHz) 0.2 rb_optical_pumping_end_repump_
duration (s)

1.5e-4

op_mw_transfer_rate (MHz/s) 100 rb_optical_pumping_frequency
(MHz)

81.5

optical_pumping_bias_x (A) 0.4 rb_optical_pumping_initial_
repump_delay (s)

0

optical_pumping_bias_y (A) 1.0 rb_optical_pumping_initial_
repump_duration (s)

0

optical_pumping_bias_z (A) 0.095 rb_optical_pumping_repump_
amplitude (Arb.)

500

rb_optical_pumping s03_rb_optical_pumping rb_optical_pumping_repump_
frequency (MHz)

75.2

rb_optical_pumping_amplitude
(Arb.)

250 rb_optical_pumping_shutter_
time (s)

1.2e-3

rb_optical_pumping_aom_warm_
amplitude (Arb.)

700 rb_optical_pumping_time (s) 200e-6

Table D.42: The globals in the group “Rb Optical Pumping”

Name (units) Value Name (units) Value

rotated_evaporation (Bool) False rotated_evaporation_time_
constant_cross (s)

1.5

rotated_evaporation_duration
(s)

1 rotated_trap_cross_beam_
evaporation_amplitude (arb)

0.000000001

rotated_evaporation_hold_time
(s)

0.35 rotated_trap_transport_beam_
evaporation_amplitude (arb)

0.000000001

rotated_evaporation_time_
constant (s)

1.5 square_cell_rotated_
evaporation_end_amplitude_
2D (arb)

0.2

Table D.43: The globals in the group “Rotated evaporation”

Name (units) Value Name (units) Value

sorensen_high_voltage (V) 0.95 sorensen_low_voltage (V) 0.55

Table D.44: The globals in the group “Settings”

Name (units) Value Name (units) Value

evaporated_square_cell_hold_
time (s)

0 square_cell_evaporation_end_
amplitude_cross (fraction)

0.4

square_cell_evaporation (Bool) True square_cell_evaporation_end_
amplitude_transport (hard-
ware)

134

square_cell_evaporation_
duration (s)

4.5 square_cell_evaporation_time_
constant (s)

4

square_cell_evaporation_end_
amplitude_2D (arb)

0.24 square_cell_evaporation_
transport_time_constant (s)

2.2

square_cell_evaporation_end_
amplitude_2D_analog (V)

3 square_evap_trunc (fraction) 1

Table D.45: The globals in the group “Square Cell Evaporation”
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Name (units) Value Name (units) Value

cross_beam_frequency (MHz) 99 square_cell_hold_time 0

square_cell_cross_beam_
amplitude (arb)

0.99 square_cell_transport_beam_
cross_amplitude (hardware)

990

square_cell_cross_beam_turn_
on_time (s)

0.01 square_cell_transport_beam_
cross_time_constant (s)

1.5

square_cell_cross_delay (s) 0 square_cell_transport_beam_
ramp_gradient (hardware/s)

800

square_cell_crossed_dipole
(Bool)

True square_cell_transport_beam_
ramp_type (’exp’ or ’linear’ or
’None’)

’linear’

Table D.46: The globals in the group “Square cell cross trap”

Name (units) Value Name (units) Value

square_cell_microwave_11_to_22
(Bool)

True square_cell_mw_transfer_range
(MHz)

0.2

square_cell_mw_transfer_
centre_freq (MHz)

1.46 square_cell_mw_transfer_rate
(MHz/s)

150

Table D.47: The globals in the group “Square cell microwave to 22”

Name (units) Value Name (units) Value

square_cell_quad_current (A) 16.85 square_cell_quad_trap_
amplitude_cross (arb)

square_cell_post_mw_
evaporation_end_amplitude_
cross

square_cell_quad_end_bias_
current (A)

1.6 square_cell_quad_trap_
amplitude_transport (arb)

square_cell_post_mw_
evaporation_end_amplitude_
transport

square_cell_quad_side_bias_
current (A)

5.037 square_cell_quad_trap_hold_
time (seconds)

0

square_cell_quad_trap (Bool) True square_cell_quad_turn_on_time
(seconds)

0.35

square_cell_quad_trap_
amplitude_2D (arb)

square_cell_post_mw_
evaporation_end_amplitude_
2D

Table D.48: The globals in the group “Square cell quad trap”
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Name (units) Value Name (units) Value

fluoro_image_MOT (Bool) False s0950_raman_transfer (Bool) False

s01_use_k (Bool) True s0951_transfer_to_2_1 (Bool) False

s01_use_rb (Bool) True s0952_blow_away_22 (Bool) False

s021_k_compressed_MOT (Bool) True s0952_transfer_to_1_0 (Bool) False

s022_k_compressed_MOT_cooling
(Bool)

True s095k1_transfer_22_to_10
(Bool)

False

s02_rb_PGC (Bool) True s095k1_transfer_22_to_11
(Bool)

False

s030_k_optical_pumping (Bool) True s095k2_blow_away_22 (Bool) False

s031_k_initial_MT (Bool) True s09_dipole_trap_evaporation
(Bool)

False

s032_k_spin_purification
(Bool)

True s10_transport_to_square_cell
(Bool)

False

s03_rb_optical_pumping (Bool) True s11__absorption_image_both_
species (Bool)

s11__absorption_image_k and
s11__absorption_image_rb

s04_magnetic_trap (Bool) True s11__absorption_image_k (Bool) True

s05_MT_compress (Bool) True s11__absorption_image_rb
(Bool)

False

s06_microwave_evaporation
(Bool)

True s11__central_absorption_image
(Bool)

True

s070_blow_away_rb (Bool) False s11__square_cell_bottom_
imaging (Bool)

False

s07_MT_decompress (Bool) True s11__square_cell_side_imaging
(Bool)

False

s07_MT_decompress_evap (Bool) True s11_central_image_k_fluoro
(Bool)

False

s08_load_dipole_trap (Bool) True s11_central_image_k_recapture
(Bool)

False

s0900_load_pure_dipole (Bool) True s11_central_image_rb_fluoro
(Bool)

False

s0950_microwave_transfer
(Bool)

False verbose (Bool) True

Table D.49: The globals in the group “Stages”

Name (units) Value Name (units) Value

flat_trap_aom_frequency (MHz) 99 rotated_trap_transport_beam_
amplitude (arb)

50

rotate_down (Bool) False stepper_down_T (s) 0.075

rotate_up (Bool) False stepper_up_T (s) 0.075

rotated_trap_cross_beam_
amplitude (arb)

0.4 trap_2d (Bool) True

rotated_trap_hold_time (s) 0.1 vortex_gyroscope_end_amplitude
(arb)

0.4

Table D.50: The globals in the group “Stepper”
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Name (units) Value Name (units) Value

amplitude_heating (Bool) False transport_evap_amplitude_
ramp_type ("sine" or "exp" or
"linear)

’linear’

cycle (-) 0 transport_evap_amplitude_ramp_
types (list)

(’exp’, ’sine’, ’linear’)

lens_warm_current (A) 0.0 transport_evap_before_
transport (Bool)

False

return_trip (Bool) False transport_evap_before_
transport_amp (arb)

650

sine4_transport (Bool) False transport_evap_dipole_trap_
evaporation_time_constant

2

sine_transport (Bool) True transport_pre_ramp_time (s) 0.5

spline_transport (Bool) False transport_quad_current (A) 0

square_cell_bias_field (A) 0 transport_quad_field_time (s) 0.05

square_cell_transport_
amplitude (fraction)

pure_dipole_amplitude transport_quad_peak_fraction 0.5

transport_break_hold_time (s) 0 transport_quad_turnon_distance
(fraction)

0.25

transport_break_position (dis-
tance)

0.10 transport_recompress (Bool) False

transport_break_sine_ramp
(Bool)

False transport_recompress_amp_ramp_
time (s)

1

transport_dipole_return_
amplitude (arb)

900 transport_time (sec) 2.2

transport_distance (fraction) 0.134 transport_to_square_cell
(Bool)

s10_transport_to_square_cell

Table D.51: The globals in the group “Transport - Square Cell”

Name (units) Value Name (units) Value

vortex_spoon (Bool) False vortex_spoon_amplitude (arb) 500

vortex_spoon_A_end (V) 0.545 vortex_spoon_ramp_time (s) 0.1

vortex_spoon_A_initial (V) 0.485 vortex_spoon_wait_time (s) 400e-3

vortex_spoon_B_initial (V) -0.6

Table D.52: The globals in the group “Vortex spoon”
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Name (units) Value Name (units) Value

central_dipole_levitation_
bias_x (A)

0.3 central_dipole_levitation_
switch_time (s)

50e-3

central_dipole_levitation_
bias_y (A)

0.35 central_dipole_levitation_time
(s)

150e-3

central_dipole_levitation_
bias_z (A)

0.012 levitate_central_dipole (Bool) False

central_dipole_levitation_quad
(A)

16

Table D.53: The globals in the group “central dipole levitation”

Name (units) Value Name (units) Value

defocus_for_2D (Bool) False defocused_amplitude (arb) 300

defocus_time (s) 2 defocused_position (A) 0.129

Table D.54: The globals in the group “defocus 2D”

Name (units) Value Name (units) Value

final_2D_amplitude (arb) 0.18 rotated_hybrid_evaporation_
duration (s)

3

rotated_BEC_hold_time (s) 0.5 rotated_hybrid_evaporation_
time_constant (s)

1

rotated_hybrid_evaporation
(Bool)

False rotated_hybrid_evaporation_
trunc (fraction)

1

Table D.55: The globals in the group “rotated hybrid evap”

Name (units) Value Name (units) Value

squeeze_2D (Bool) False squeeze_2D_time (s) 0.5

squeeze_2D_amplitude (arb) 0.1 squeezed_2D_hold_time (s) 0.5

Table D.56: The globals in the group “squeeze 2D”

Name (units) Value Name (units) Value

MT_kill_amp (arb) 0.25 hologram_exposure_time (s) 4.5

MT_kill_time (s) 0.01 kill_MT_for_alignment (Bool) False

Table D.57: The globals in the group “test”
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D.2 Experiment logic

Here we show an ‘unsanitised’ copy of common experiment logic used to produce ultracold
atoms for several different experiments in the Monash K-Rb lab. This experiment logic
is paired with the set of globals introduced in §D.1. The connection table shown is only
a subset of lab connection table, as it does not include devices and I/O used only in the
‘science’ stage of an experiment (for which we have not included the experiment logic). A
representation of the full lab connection table can be found in appendix D.3.

1 from __future__ import division
2
3 import cPickle
4
5 from labscript import *
6 from labscriptlib.krb.switchablecoildriver import *
7 from labscriptlib.krb.measurements import monitor_coils
8 from labscript_utils.unitconversions import *
9 from labscriptlib.krb import transport_lens_ramp

10
11 from labscript_devices.PulseBlaster import PulseBlaster
12 from labscript_devices.NI_PCIe_6363 import NI_PCIe_6363
13 from labscript_devices.NI_PCI_6733 import NI_PCI_6733
14 from labscript_devices.NovaTechDDS9M import NovaTechDDS9M
15 from labscript_devices.PhaseMatrixQuickSyn import PhaseMatrixQuickSyn, QuickSynDDS
16 from labscript_devices.RFBlaster import RFBlaster
17 from labscript_devices.Camera import Camera
18 from labscript_devices.ZaberStageController import ZaberStageController, ZaberStageTLS28M
19
20 rb_hyperfine = 6834.6826109043 * MHz
21 k_hyperfine = 254.0 * MHz
22
23
24 if rotate_up:
25 try:
26 pkl_file = open(’C:\user_scripts\labscriptlib\krb\stepper_ramp.pkl’, ’rb’)
27 stepper_ts = array(cPickle.load(pkl_file))
28 pkl_file.close()
29 print "Loaded stepper motor ramp"
30 except:
31 print "Failed loading stepper motor ramp points, please run stepper_ramp.py to generate the pickle"
32
33 PulseBlaster(name=’pulseblaster_0’, board_number=1)
34 ClockLine(name=’pulseblaster_0_ni_clock’, pseudoclock=pulseblaster_0.pseudoclock, connection=’flag 0’)
35 ClockLine(name=’pulseblaster_0_novatech_clock’, pseudoclock=pulseblaster_0.pseudoclock, connection=’flag 1’)
36
37 NI_PCIe_6363(name=’ni_pcie_6363_0’,parent_device=pulseblaster_0_ni_clock, clock_terminal=’/ni_pcie_6363_0/PFI0’

, MAX_name=’ni_pcie_6363_0’,acquisition_rate=1e3)
38 NI_PCI_6733 (name=’ni_pci_6733_0’, parent_device=pulseblaster_0_ni_clock, clock_terminal=’/ni_pcie_6363_0/PFI0’

, MAX_name=’ni_pci_6733_0’)
39
40 PulseBlaster(name=’pulseblaster_1’, board_number=0, trigger_device=ni_pcie_6363_0,trigger_connection="port0/line22"

)
41 ClockLine(name=’pulseblaster_1_clock’, pseudoclock=pulseblaster_1.pseudoclock, connection=’flag 0’)
42
43
44 PulseBlaster(name=’pulseblaster_3’, board_number=3, trigger_device=ni_pcie_6363_0,trigger_connection="port0/line3")
45
46 NovaTechDDS9M(name=’novatechdds9m_0’, parent_device=pulseblaster_0_novatech_clock, com_port=’com8’)
47 NovaTechDDS9M(name=’novatechdds9m_1’, parent_device=pulseblaster_0_novatech_clock, com_port=’com9’)
48 NovaTechDDS9M(name=’novatechdds9m_2’, parent_device=pulseblaster_0_novatech_clock, com_port=’com10’)
49 NovaTechDDS9M(name=’novatechdds9m_3’, parent_device=pulseblaster_1_clock, com_port=’com11’)
50
51
52
53 if microwave_evaporation:
54 PhaseMatrixQuickSyn(name=’phasematrix_0’, com_port="COM32")
55
56 RFBlaster(’rfblaster_0’,’130.194.171.221’,trigger_device=ni_pcie_6363_0,trigger_connection="port0/line23")
57
58 QuickSynDDS( name = ’microwaves’, parent_device=phasematrix_0, connection=’dds 0’)
59 DDS( ’quad_mod_I’, rfblaster_0.direct_outputs, ’dds 0’)
60 DDS( ’quad_mod_Q’, rfblaster_0.direct_outputs, ’dds 1’)
61
62 if microwave_transfer:
63 RFBlaster(’rfblaster_1’,’130.194.171.223’,trigger_device=ni_pcie_6363_0,trigger_connection="port0/line10")
64 DDS( ’potassium_rf’, rfblaster_1.direct_outputs, ’dds 0’)
65 DDS( ’potassium_rf_2’, rfblaster_1.direct_outputs, ’dds 1’)
66
67 DDS( name=’rb_imaging_push_aom’, parent_device=pulseblaster_0.direct_outputs, connection=’dds

0’)
68 DDS( name=’rb_optical_pumping_aom’, parent_device=pulseblaster_0.direct_outputs,

connection=’dds 1’)
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69
70 DDS( name=’green_sheet_aom’, parent_device=pulseblaster_1.direct_outputs, connection=’dds

0’)
71
72
73 DDS( name=’k_raman_blue_80’, parent_device=pulseblaster_3.direct_outputs, connection=’

dds 0’)
74
75 DDS( name=’rb_central_MOT_trap_aom’, parent_device=novatechdds9m_0, connection=’channel 0’,

digital_gate={’device’:ni_pcie_6363_0,’connection’:’port0/line5’})
76 DDS( name=’rb_central_MOT_repump_aom’, parent_device=novatechdds9m_0, connection=’channel 1’,

digital_gate={’device’:pulseblaster_0.direct_outputs,’connection’:’flag 3’})
77 StaticDDS( name=’rb_source_MOT_repump_aom’, parent_device=novatechdds9m_0, connection=’channel 2’,

digital_gate={’device’:pulseblaster_0.direct_outputs,’connection’:’flag 4’})
78 StaticDDS( name=’rb_source_MOT_trap_aom’, parent_device=novatechdds9m_0, connection=’channel 3’,

digital_gate={’device’:ni_pcie_6363_0,’connection’:’port0/line6’})
79 DigitalOut( name=’novatechdds9m_0_table_enable’, parent_device=pulseblaster_0.direct_outputs, connection=’

flag 6’)
80
81 DDS( name=’k_MOT_trap_aom’, parent_device=novatechdds9m_1, connection=’channel 0’,

digital_gate={’device’:ni_pcie_6363_0,’connection’:’port0/line7’})
82 DDS( name=’k_imaging_push_trap_aom’, parent_device=novatechdds9m_1, connection=’channel 1’,

digital_gate={’device’:pulseblaster_0.direct_outputs,’connection’:’flag 8’})
83 StaticDDS( name=’k_lock_aom’, parent_device=novatechdds9m_1, connection=’channel 2’,

digital_gate={’device’:pulseblaster_0.direct_outputs,’connection’:’flag 9’})
84 StaticDDS( name=’rb_lock_aom’, parent_device=novatechdds9m_1, connection=’channel 3’)
85 DigitalOut( name=’novatechdds9m_1_table_enable’, parent_device=pulseblaster_0.direct_outputs, connection=’

flag 11’)
86
87 DDS( name=’k_MOT_repump_aom’, parent_device=novatechdds9m_2, connection=’channel 0’,

digital_gate={’device’:ni_pcie_6363_0,’connection’:’port0/line0’})
88 DDS( name=’k_imaging_push_repump_aom’, parent_device=novatechdds9m_2, connection=’channel 1’,

digital_gate={’device’:ni_pcie_6363_0,’connection’:’port0/line1’})
89 StaticDDS( name=’k_raman_shift_aom’, parent_device=novatechdds9m_2, connection=’channel 2’)
90 StaticDDS( name=’k_raman_red_80’, parent_device=novatechdds9m_2, connection=’channel 3’,

digital_gate={’device’:pulseblaster_3.direct_outputs,’connection’:’flag 0’})
91 DigitalOut( name=’novatechdds9m_2_table_enable’, parent_device=ni_pcie_6363_0, connection=’port0/line4’)
92
93 DDS( name=’dipole_trap_1_aom’, parent_device=novatechdds9m_3, connection=’channel 0’,

digital_gate={’device’:pulseblaster_1.direct_outputs,’connection’:’flag 2’},
94 amp_conv_class=SineAom,
95 amp_conv_params={
96 "A": transport_aom_A,
97 "f": transport_aom_f,
98 "phase": transport_aom_phase,
99 "c": transport_aom_c

100 })
101
102 DDS( name=’dipole_trap_2_aom’, parent_device=novatechdds9m_3, connection=’channel 1’,

digital_gate={’device’:pulseblaster_1.direct_outputs,’connection’:’flag 3’},
103 amp_conv_class=SineAom,
104 amp_conv_params={
105 "A": transport_aom_A,
106 "f": transport_aom_f,
107 "phase": transport_aom_phase,
108 "c": transport_aom_c
109 })
110
111 DigitalOut( name=’novatechdds9m_3_table_enable’, parent_device=pulseblaster_1.direct_outputs, connection=’

flag 1’)
112
113 DigitalOut( name="microwave_switch", parent_device=pulseblaster_0.direct_outputs, connection=’flag 2’

)
114 DigitalOut( name=’sorensen_voltage_control’, parent_device=pulseblaster_0.direct_outputs, connection=’flag 7’

)
115
116 Shutter( name=’central_MOT_imaging_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line8’,

delay=(2.83e-3,2.45e-3)) #open_by, close_from #Sh_0_1
117 Shutter( name=’k_push_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line9’, delay=

(2.54e-3,2.35e-3)) #open, close #Sh_0_2
118 Shutter( name=’k_source_MOT_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line11’,

delay=(2.37e-3,2.54e-3)) #open, close #Sh_0_4
119 Shutter( name=’rb_source_MOT_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line12’,

delay=(2.49e-3,2.44e-3)) #open, close #Sh_1_1
120 Shutter( name=’rb_optical_pumping_repump_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line13’,

delay=(2.59e-3,1.74e-3)) #open_from, close_from #Sh_1_2
121 Shutter( name=’rb_optical_pumping_shutter’, parent_device=pulseblaster_0.direct_outputs, connection=’flag

5’, delay=(2.73e-3,3.25e-3)) #open_from, close_from #Sh_1_3
122 Shutter( name=’science_bottom_imaging_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line14’,

delay=(3.16e-3,1.74e-3)) #open_by, close_from #Sh_1_4
123
124 DigitalOut( name=’stepper_trigger’, parent_device=ni_pcie_6363_0, connection=’port0/line17’)
125 DigitalOut( name=’central_bias_z_coil_polarity’, parent_device=ni_pcie_6363_0, connection=’port0/line18’)
126 DigitalOut( name=’central_bias_y_coil_polarity’, parent_device=ni_pcie_6363_0, connection=’port0/line19’)
127 DigitalOut( name=’stepper_direction’, parent_device=ni_pcie_6363_0, connection=’port0/line20’)
128
129 DigitalOut( name=’dipole_1_dump_flipper’, parent_device=ni_pcie_6363_0, connection=’port0/line21’)
130
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131 Shutter( name=’central_MOT_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line28’,
delay=(3.11e-3,2.19e-3)) #open_by, close_from #Sh_2_1

132 Shutter( name=’bragg_raman_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line29’, delay=(3.07e
-3,2.16e-3)) #open_by, close_from #Sh_2_2

133 Shutter( name=’rb_push_shutter’, parent_device=ni_pcie_6363_0, connection=’port0/line31’, delay=
(2.78e-3,2.17e-3)) #open, close #Sh_2_4

134
135
136 AnalogOut( name=’feshbach_coils’, parent_device=ni_pcie_6363_0, connection=’ao0’,
137 unit_conversion_class=UnidirectionalCoilDriver,
138 unit_conversion_parameters={
139 "slope": feshbach_coils_slope,
140 "shift": feshbach_coils_shift,
141 "saturation": feshbach_coils_saturation
142 })
143 AnalogOut( name=’rb_source_MOT_coils’, parent_device=ni_pcie_6363_0, connection=’ao2’,
144 unit_conversion_class=UnidirectionalCoilDriver,
145 unit_conversion_parameters={
146 "slope": rb_source_MOT_slope,
147 "shift": rb_source_MOT_shift,
148 "saturation": rb_source_MOT_saturation
149 })
150 AnalogOut( name=’central_Bq’, parent_device=ni_pci_6733_0, connection=’ao0’,
151 unit_conversion_class=UnidirectionalCoilDriver,
152 unit_conversion_parameters={
153 "slope": central_quad_slope,
154 "shift": central_quad_shift,
155 "saturation": central_quad_saturation
156 })
157 AnalogOut( name=’central_bias_x_coil’, parent_device=ni_pci_6733_0, connection=’ao1’,
158 unit_conversion_class=UnidirectionalCoilDriver,
159 unit_conversion_parameters={
160 "slope": central_bias_x_coil_slope,
161 "shift": central_bias_x_coil_shift,
162 "saturation": central_bias_x_coil_saturation
163 })
164 AnalogOut( name=’central_bias_y_coil’, parent_device=ni_pci_6733_0, connection=’ao2’,
165 unit_conversion_class=UnidirectionalCoilDriver,
166 unit_conversion_parameters={
167 "slope": central_bias_y_coil_slope,
168 "shift": central_bias_y_coil_shift,
169 "saturation": central_bias_y_coil_saturation
170 })
171 AnalogOut( name=’central_bias_z_coil’, parent_device=ni_pci_6733_0, connection=’ao3’,
172 unit_conversion_class=UnidirectionalCoilDriver,
173 unit_conversion_parameters={
174 "slope": central_bias_z_coil_slope,
175 "shift": central_bias_z_coil_shift,
176 "saturation": central_bias_z_coil_saturation
177 })
178 AnalogOut( name=’k_source_MOT_west_coil’, parent_device=ni_pci_6733_0, connection=’ao4’,

unit_conversion_class=UnidirectionalCoilDriver, unit_conversion_parameters={"slope":
k_2D_MOT_coil_slope})

179 AnalogOut( name=’k_source_MOT_top_coil’, parent_device=ni_pci_6733_0, connection=’ao5’,
unit_conversion_class=UnidirectionalCoilDriver, unit_conversion_parameters={"slope":
k_2D_MOT_coil_slope})

180 AnalogOut( name=’k_source_MOT_east_coil’, parent_device=ni_pci_6733_0, connection=’ao6’,
unit_conversion_class=UnidirectionalCoilDriver, unit_conversion_parameters={"slope":
k_2D_MOT_coil_slope})

181 AnalogOut( name=’k_source_MOT_bottom_coil’, parent_device=ni_pci_6733_0, connection=’ao7’,
unit_conversion_class=UnidirectionalCoilDriver, unit_conversion_parameters={"slope":
k_2D_MOT_coil_slope})

182
183
184 AnalogIn( ’central_Bq_control_monitor’, ni_pcie_6363_0, ’ai16’)
185 AnalogIn( ’central_Bq_monitor’, ni_pcie_6363_0, ’ai17’)
186 AnalogIn( ’central_bias_y_control_monitor’, ni_pcie_6363_0, ’ai18’)
187 AnalogIn( ’central_bias_y_monitor’, ni_pcie_6363_0, ’ai19’)
188 AnalogIn( ’central_bias_x_control_monitor’, ni_pcie_6363_0, ’ai20’)
189 AnalogIn( ’central_bias_x_monitor’, ni_pcie_6363_0, ’ai21’)
190 AnalogIn( ’central_bias_z_control_monitor’, ni_pcie_6363_0, ’ai22’)
191 AnalogIn( ’central_bias_z_monitor’, ni_pcie_6363_0, ’ai23’)
192
193 coil_dictionary = {"central_Bq": central_Bq_monitor,
194 "central_bias_x": central_bias_x_monitor,
195 "central_bias_y": central_bias_y_monitor,
196 "central_bias_z": central_bias_z_monitor,
197
198 "central_bias_x_control": central_bias_x_control_monitor,
199 "central_bias_y_control": central_bias_y_control_monitor,
200 "central_bias_z_control": central_bias_z_control_monitor,
201 "central_Bq_control": central_Bq_control_monitor,
202 }
203
204
205 if central_image_k_recapture:
206 red_camera_exposure_time = k_recapture_imaging_time
207 elif central_image_k_fluoro:
208 red_camera_exposure_time = k_fluoro_imaging_time
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209 elif central_image_rb_fluoro:
210 red_camera_exposure_time = rb_fluoro_imaging_time
211
212 if verbose: print "Red camera exposure time will be %.9f"%red_camera_exposure_time
213
214 if central_imaging or central_image_k_recapture or central_image_k_fluoro or central_image_rb_fluoro or

square_cell_side_imaging:
215 Camera( name=’central_MOT_camera’, parent_device=ni_pcie_6363_0, connection=’port0/line16’,

BIAS_port=42518, serial_number="111C00D1BE", SDK="Photonfocus",
216 effective_pixel_size=5.916e-6, exposure_time=red_camera_exposure_time, orientation=’side’)
217
218 if square_cell_bottom_imaging:
219 Camera( name=’science_bottom_camera’, parent_device=ni_pcie_6363_0, connection=’port0/line26

’, BIAS_port=42521, serial_number="14C2", SDK="Andor2",
220 effective_pixel_size=4.5e-6, exposure_time=iXon_exposure_time, orientation=’bottom’)
221
222
223 ####### END CONNECTION TABLE ########
224
225 ## Work out when to trigger the rf blaster so that it is roughly at the end of the MOT loads
226
227 if use_k and use_rb:
228 total_load_time = k_central_MOT_load_time+rb_central_MOT_load_time
229 elif use_k:
230 total_load_time = k_central_MOT_load_time
231 elif use_rb:
232 total_load_time = rb_central_MOT_load_time
233 else:
234 raise LabscriptError("You must use at least one of Potassium or Rubidium, otherwise you’re doing nothing!")
235 total_load_time += 100e-3
236
237 if total_load_time > 2:
238 total_load_time -= 1.9
239 if microwave_evaporation:
240 rfblaster_0.set_initial_trigger_time(total_load_time)
241 if verbose: print "rfblaster_0 triggered at t=%.9f"%(total_load_time)
242
243
244 sorensen_critical_current = 65.0
245
246 # Define our time variable. Zero is a good time to start the experiment!
247 t = 0
248 start()
249
250 ######### Enable Novatechs ##########
251 novatechdds9m_0_table_enable.go_high(t)
252 novatechdds9m_1_table_enable.go_high(t)
253 novatechdds9m_2_table_enable.go_high(t)
254 novatechdds9m_3_table_enable.go_high(novatechdds9m_3_table_enable.t0)
255
256 ######## Maintain DDS output of the laser locks #######
257 k_lock_aom.setfreq(87*MHz)
258 k_lock_aom.setamp(0.63)
259
260 rb_lock_aom.setfreq(47*MHz)
261 rb_lock_aom.setamp(800./1024)
262
263 ###############################################################################
264 #
265 # setup switchable coil drivers for the central bias fields
266 #
267 # This code manages the combination of a coil driver and a polarity reversing
268 # relay. When the current is requested to be negative by the user, this code
269 # automatically activates the relay to swap the current direction, and can do
270 # this part way throug a ramp, at the appropiate time.
271 #
272 # x switchable coil driver
273 #
274 # switchablecoildriver(’central_bias_x_coil_driver’,central_bias_x_coil,central_bias_x_coil_polarity)
275 central_bias_x_coil_driver = central_bias_x_coil
276 #
277 # y switchable coild driver
278 #
279 switchablecoildriver(’central_bias_y_coil_driver’,central_bias_y_coil,central_bias_y_coil_polarity)
280 # central_bias_y_coil_driver = central_bias_y_coil
281 #
282 # z switchable coil driver
283 #
284 switchablecoildriver(’central_bias_z_coil_driver’,central_bias_z_coil,central_bias_z_coil_polarity)
285 # central_bias_z_coil_driver = central_bias_z_coil
286 #
287 ###############################################################################
288
289 # set Sorenson voltage to "low" mode
290 sorensen_voltage_control.go_low(t)
291
292 # turn the dipole trap on (probably important to do it now for temperature stability)
293 dipole_trap_1_aom.setfreq(dipole_trap_1_aom.t0,dipole_trap_aom_frequency*MHz)
294 dipole_trap_1_aom.setamp(dipole_trap_1_aom.t0, dipole_trap_power, units="hardware")
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295 dipole_trap_2_aom.setfreq(dipole_trap_1_aom.t0,dipole_trap_aom_frequency*MHz)
296 dipole_trap_2_aom.setamp(dipole_trap_1_aom.t0, dipole_trap_power, units="hardware")
297
298
299 # Keep the optical pumping AOM running, otherwise it will program a zero and run out of amplitude registers!
300 rb_optical_pumping_aom.setfreq(t,rb_optical_pumping_aom_warm_frequency*MHz)
301 rb_optical_pumping_aom.setamp(t,rb_optical_pumping_aom_warm_amplitude/1023.)
302 rb_optical_pumping_aom.enable(t)
303
304
305
306 central_MOT_shutter.close(t)
307 t+=100e-3
308
309
310 # Raman beam setup
311 k_raman_shift_aom.setfreq(k_raman_global_freq*MHz)
312 k_raman_shift_aom.setamp(k_raman_global_amp/1023.)
313
314 k_raman_red_80.setfreq(k_raman_red_freq*MHz)
315 k_raman_red_80.setamp(k_raman_red_amp/1023.)
316 k_raman_red_80.disable(t)
317 k_raman_blue_80.setfreq(t, 80*MHz)
318 k_raman_blue_80.setamp(t, .43)
319 k_raman_blue_80.disable(t)
320
321
322 central_MOT_shutter.open(t)
323 ######## BEGIN MOT LOAD ###########
324
325 if use_k:
326 central_Bq.constant(t, k_central_MOT_load_current, "A")
327 central_bias_x_coil_driver.constant(t, k_central_MOT_load_bias_x, "A")
328 central_bias_y_coil_driver.constant(t, k_central_MOT_load_bias_y, "A")
329 central_bias_z_coil_driver.constant(t, k_central_MOT_load_bias_z, "A")
330
331 k_source_MOT_shutter.open(t)
332 # k_central_MOT_shutter.open(t)
333
334 k_MOT_trap_aom.enable(t)
335 k_MOT_trap_aom.setfreq(t, k_trap_load_frequency * MHz)
336 k_MOT_trap_aom.setamp(t, k_trap_load_amplitude / 1023.0)
337
338 k_MOT_repump_aom.enable(t)
339 k_MOT_repump_aom.setfreq(t,k_repump_load_frequency * MHz)
340 k_MOT_repump_aom.setamp(t,k_repump_load_amplitude / 1023.0)
341
342 # Enable push light
343 k_push_shutter.open(t)
344
345 k_imaging_push_trap_aom.enable(t)
346 k_imaging_push_trap_aom.setfreq(t, k_push_frequency * MHz)
347 k_imaging_push_trap_aom.setamp(t, k_push_amplitude / 1023.0)
348
349 k_imaging_push_repump_aom.enable(t)
350 k_imaging_push_repump_aom.setfreq(t, k_push_repump_frequency * MHz)
351 k_imaging_push_repump_aom.setamp(t, k_push_repump_amplitude / 1023.0)
352
353
354 # prepare source MOT fields
355 k_source_MOT_west_coil.constant(t,k_source_current_west, "A")
356 k_source_MOT_east_coil.constant(t, k_source_current_east, "A")
357 k_source_MOT_top_coil.constant(t, k_source_current_top, "A")
358 k_source_MOT_bottom_coil.constant(t, k_source_current_bottom, "A")
359
360 # K load happens now!
361 t+=k_central_MOT_load_time
362
363 # Then turn everything off after the load:
364 # Turn off source coils
365 k_source_MOT_west_coil.constant(t,0, "A")
366 k_source_MOT_east_coil.constant(t, 0, "A")
367 k_source_MOT_top_coil.constant(t, 0, "A")
368 k_source_MOT_bottom_coil.constant(t, 0, "A")
369
370 # Turn off source light (leave AOMs on, they give light to the central MOT!)
371 k_source_MOT_shutter.close(t)
372
373 # Turn off push beam
374 k_push_shutter.close(t)
375 k_imaging_push_trap_aom.disable(t)
376 k_imaging_push_repump_aom.disable(t)
377 ### end K load ###
378 if k_compressed_MOT:
379 ### begin K compressed MOT
380 central_Bq.ramp(t,k_compressed_MOT_time, k_central_MOT_load_current,k_compressed_MOT_current, 1e3, "A"

)
381 central_bias_x_coil_driver.ramp(t,k_compressed_MOT_time, k_central_MOT_load_bias_x,

k_compressed_MOT_bias_x, 1e3, "A")



D.2. EXPERIMENT LOGIC 219

382 central_bias_y_coil_driver.ramp(t,k_compressed_MOT_time, k_central_MOT_load_bias_y,
k_compressed_MOT_bias_y, 1e3, "A")

383 central_bias_z_coil_driver.ramp(t,k_compressed_MOT_time, k_central_MOT_load_bias_z,
k_compressed_MOT_bias_z, 1e3, "A")

384
385 k_MOT_trap_aom.frequency.ramp(t, k_compressed_MOT_time,k_trap_load_frequency * MHz,

k_trap_compressed_MOT_frequency * MHz,1e3)
386 k_MOT_trap_aom.amplitude.ramp(t, k_compressed_MOT_time, k_trap_load_amplitude / 1023.0,

k_trap_compressed_MOT_amplitude / 1023.0,1e3)
387
388 k_MOT_repump_aom.frequency.ramp(t, k_compressed_MOT_time,k_repump_load_frequency * MHz,

k_repump_compressed_MOT_frequency * MHz,1e3)
389 k_MOT_repump_aom.amplitude.ramp(t, k_compressed_MOT_time, k_repump_load_amplitude / 1023.0,

k_repump_compressed_MOT_amplitude / 1023.0,1e3)
390
391 t+= k_compressed_MOT_time
392 t+= k_compressed_MOT_hold_time
393
394 if k_compressed_MOT_cooling:
395 k_MOT_trap_aom.frequency.ramp(t, k_compressed_MOT_cooling_time,k_trap_compressed_MOT_frequency *

MHz,k_trap_compressed_MOT_cooling_frequency * MHz,1e3)
396 k_MOT_trap_aom.amplitude.ramp(t, k_compressed_MOT_cooling_time, k_trap_compressed_MOT_amplitude

/ 1023.0,k_trap_compressed_MOT_cooling_amplitude / 1023.0,1e3)
397
398 k_MOT_repump_aom.frequency.ramp(t, k_compressed_MOT_cooling_time,

k_repump_compressed_MOT_frequency * MHz,
k_repump_compressed_MOT_cooling_frequency * MHz,1e3)

399 k_MOT_repump_aom.amplitude.ramp(t, k_compressed_MOT_cooling_time,
k_repump_compressed_MOT_amplitude / 1023.0,
k_repump_compressed_MOT_cooling_amplitude / 1023.0,1e3)

400
401 t+= k_compressed_MOT_cooling_time
402 k_MOT_trap_aom.disable(t)
403 k_MOT_repump_aom.disable(t)
404
405 # # ## K Optical pumping
406 if k_optical_pumping:
407 central_Bq.constant(t, 0, "A")
408 # central_Bq.constant(t, −10)
409
410 central_bias_x_coil_driver.constant(t, k_optical_pumping_bias_x, "A")
411 central_bias_y_coil_driver.constant(t, k_optical_pumping_bias_y, "A")
412 central_bias_z_coil_driver.constant(t, k_optical_pumping_bias_z, "A")
413
414 # Prepare shutters
415 central_MOT_imaging_shutter.open(t)
416
417 # Wait some time to make sure fields have changed and shutter is open
418 t += k_optical_pumping_delay
419
420
421 #set the AOM frequencies − start with only repump on
422 k_imaging_push_trap_aom.setfreq(t, k_optical_pumping_frequency*MHz)
423 k_imaging_push_trap_aom.setamp(t, k_optical_pumping_amplitude/1023.)
424 k_imaging_push_trap_aom.disable(t)
425
426 k_imaging_push_repump_aom.setfreq(t, k_optical_pumping_repump_frequency*MHz)
427 k_imaging_push_repump_aom.setamp(t, k_optical_pumping_repump_amplitude/1023.)
428 k_imaging_push_repump_aom.enable(t)
429
430 # wait repump initial time
431 t+=k_optical_pumping_initial_repump_duration
432
433 # then turn on optical pumping light
434 k_imaging_push_trap_aom.enable(t)
435
436 # optically pump for the appropriate time
437 t+= k_optical_pumping_time
438
439 # then turn off OP light
440 k_imaging_push_trap_aom.disable(t)
441
442 # leave repump on for a bit longer then turn off
443 t+=k_optical_pumping_end_repump_duration
444 k_imaging_push_repump_aom.disable(t)
445 central_MOT_imaging_shutter.close(t+10e-3)
446
447 if k_initial_MT:
448 if k_MT_compressed_quad > sorensen_critical_current:
449 sorensen_voltage_control.go_high(t)
450 central_Bq.ramp(t,k_MT_compression_time,k_compressed_MOT_current,k_MT_compressed_quad,1e3,"A")
451 central_bias_x_coil_driver.ramp(t, k_MT_compression_time, k_compressed_MOT_bias_x,

k_MT_compressed_bias_x, 10e3, "A")
452 central_bias_y_coil_driver.ramp(t, k_MT_compression_time, k_compressed_MOT_bias_y,

k_MT_compressed_bias_y, 10e3, "A")
453 central_bias_z_coil_driver.ramp(t, k_MT_compression_time, k_compressed_MOT_bias_z,

k_MT_compressed_bias_z, 10e3, "A")
454 t+=k_MT_compression_time
455
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456 t+=k_MT_hold_time
457
458 if k_spin_purification:
459 # decompress K MT for spin purification
460 central_Bq.sine_ramp(t,k_MT_decompression_time,k_MT_compressed_quad,k_MT_decompressed_quad,1e3,"A

")
461
462 #Move the bias fields so that they are ready for the Rb MOT next too
463 central_bias_x_coil_driver.ramp(t, k_MT_decompression_time, k_MT_compressed_bias_x,

rb_central_MOT_load_bias_x, 1e3, "A")
464 central_bias_y_coil_driver.ramp(t, k_MT_decompression_time, k_MT_compressed_bias_y,

rb_central_MOT_load_bias_y, 1e3, "A")
465 central_bias_z_coil_driver.ramp(t, k_MT_decompression_time, k_MT_compressed_bias_z,

rb_central_MOT_load_bias_z, 1e3, "A")
466
467 if k_MT_decompressed_quad < sorensen_critical_current:
468 #linear:
469 t_switch = ((sorensen_critical_current - k_MT_compressed_quad)/(k_MT_decompressed_quad-

k_MT_compressed_quad))*k_MT_decompression_time
470 #sine:
471 # t_switch = (2.∗MT_decompression_time/pi)∗arcsin(sqrt((sorensen_critical_current−central_MT_compressed_quad)/(

central_MT_decompressed_quad−central_MT_compressed_quad)))
472 sorensen_voltage_control.go_low(t+t_switch)
473 t+=k_MT_decompression_time
474
475
476 t += k_MT_decompressed_hold_time
477
478
479 #### Now load some Rb ####
480 if use_rb:
481
482 if verbose: print "Beginning Rb load at t=%.9f"%t
483
484 # Prepare source MOT light
485 rb_source_MOT_trap_aom.enable(t)
486 rb_source_MOT_trap_aom.setfreq(rb_source_trap_frequency * MHz)
487 rb_source_MOT_trap_aom.setamp(rb_source_trap_amplitude / 1023.0)
488
489 rb_source_MOT_repump_aom.enable(t)
490 rb_source_MOT_repump_aom.setfreq(rb_source_repump_frequency * MHz)
491 rb_source_MOT_repump_aom.setamp(rb_source_repump_amplitude / 1023.0)
492
493 rb_source_MOT_shutter.open(t)
494
495
496 # Prepare central MOT light
497 rb_central_MOT_trap_aom.enable(t)
498 rb_central_MOT_trap_aom.setfreq(t,rb_central_MOT_trap_frequency * MHz)
499 rb_central_MOT_trap_aom.setamp(t,rb_central_MOT_trap_amplitude / 1023.0)
500
501 rb_central_MOT_repump_aom.enable(t)
502 rb_central_MOT_repump_aom.setfreq(t,rb_central_MOT_repump_frequency * MHz)
503 rb_central_MOT_repump_aom.setamp(t,rb_central_MOT_repump_amplitude / 1023.0)
504
505 # Prepare push light (but leave it off for now)
506 rb_imaging_push_aom.disable(t)
507 rb_imaging_push_aom.setfreq(t,rb_push_frequency * MHz)
508 rb_imaging_push_aom.setamp(t,rb_push_amplitude)
509 rb_push_shutter.open(t)
510
511
512 #turn on the source MOT coils
513 rb_source_MOT_coils.constant(t,rb_source_current,"A")
514
515 # central MOT coils
516 central_Bq.constant(t,rb_central_MOT_load_current,"A")
517 central_bias_x_coil_driver.constant(t,rb_central_MOT_load_bias_x,"A")
518 central_bias_y_coil_driver.constant(t,rb_central_MOT_load_bias_y,"A")
519 central_bias_z_coil_driver.constant(t,rb_central_MOT_load_bias_z,"A")
520
521
522 # now the source MOT should be on, along with the central MOT
523 # we begin the pushing sequence:
524 if verbose: print "Starting Rb MOT load at t = %s"%t
525 rb_load_t = t
526 while rb_load_t + rb_source_MOT_load_time + rb_push_duration < rb_central_MOT_load_time + t:
527 # let the source MOT load
528 rb_load_t += rb_source_MOT_load_time
529
530 # turn off trap light to repump while we push, and turn on push beam
531 rb_source_MOT_trap_aom.disable(rb_load_t)
532 rb_imaging_push_aom.enable(rb_load_t)
533
534 #wait for the push duration
535 rb_load_t += rb_push_duration
536
537 #turn the push off and the MOT back on
538 rb_source_MOT_trap_aom.enable(rb_load_t)
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539 rb_imaging_push_aom.disable(rb_load_t)
540
541
542 #load is now complete
543 #turn off source
544 rb_source_MOT_trap_aom.disable(rb_load_t)
545 rb_source_MOT_repump_aom.disable(rb_load_t)
546 rb_source_MOT_shutter.close(rb_load_t)
547
548 rb_push_shutter.close(rb_load_t)
549
550 rb_source_MOT_coils.constant(rb_load_t,0,"A")
551 t = rb_load_t
552 ### end Rb load ###
553 if verbose: print "Finishing Rb MOT load at t = %s"%t
554
555 # Rb CMOT
556 central_Bq.sine_ramp(t,rb_MOT_compress_time,rb_central_MOT_load_current, rb_central_MOT_compress_current

, 1e3, "A")
557 central_bias_x_coil_driver.sine_ramp(t, rb_MOT_compress_time, rb_central_MOT_load_bias_x,

rb_central_MOT_compress_bias_x, 1e3, "A")
558 central_bias_y_coil_driver.sine_ramp(t, rb_MOT_compress_time, rb_central_MOT_load_bias_y,

rb_central_MOT_compress_bias_y, 1e3, "A")
559 central_bias_z_coil_driver.sine_ramp(t, rb_MOT_compress_time, rb_central_MOT_load_bias_z,

rb_central_MOT_compress_bias_z, 1e3, "A")
560
561 t+=rb_MOT_compress_time
562
563 t+=rb_central_MOT_trap_aom.amplitude.ramp(t, rb_compressed_MOT_power_ramp_time,

rb_central_MOT_trap_amplitude/1023., rb_compressed_MOT_trap_amplitude/1023.,
1e3)

564
565 if verbose: print "Rb MOT compression finished at t = %s"%t
566
567 ##### Begin PGC ####
568
569 # Prepare fields ##
570 if rb_PGC:
571 # turn off lasers
572 rb_central_MOT_trap_aom.disable(t)
573 rb_central_MOT_repump_aom.disable(t)
574
575 # set the fields
576 if verbose: print "pgc fields start ramping at t=%.9f"%t
577 pgc_field_ramp_rate = 5e4
578
579 central_Bq.sine_ramp(t,pgc_field_turn_time, rb_central_MOT_compress_current, PGC_quad,

pgc_field_ramp_rate, "A")
580 central_bias_x_coil_driver.sine_ramp(t, pgc_field_turn_time, rb_central_MOT_compress_bias_x, PGC_bias_x,

pgc_field_ramp_rate, "A")
581 central_bias_y_coil_driver.sine_ramp(t, pgc_field_turn_time, rb_central_MOT_compress_bias_y, PGC_bias_y,

pgc_field_ramp_rate, "A")
582 central_bias_z_coil_driver.sine_ramp(t, pgc_field_turn_time, rb_central_MOT_compress_bias_z, PGC_bias_z,

pgc_field_ramp_rate, "A")
583
584 t += pgc_field_turn_time
585 if verbose: print "pgc fields ready at t =%.9f"%t
586
587 ## Set frequencies and turn on light.
588
589 rb_central_MOT_trap_aom.enable(t)
590 rb_central_MOT_trap_aom.setfreq(t, rb_pgc_trap_frequency*MHz)
591 rb_central_MOT_trap_aom.setamp(t, rb_pgc_trap_amplitude/1023.)
592
593 rb_central_MOT_repump_aom.enable(t)
594 rb_central_MOT_repump_aom.setfreq(t, rb_pgc_repump_frequency*MHz)
595 rb_central_MOT_repump_aom.setamp(t, rb_pgc_repump_amplitude/1023.)
596
597 # PGC happens
598 t+= rb_pgc_time
599 # Turn off light after we’re done!
600 rb_central_MOT_trap_aom.disable(t)
601 rb_central_MOT_repump_aom.disable(t)
602 if verbose: print "Rb PGC finished at t=%.9f"%(t)
603
604 if load_dipole_trap and magnetic_trap:
605 dipole_1_dump_flipper.go_high(t)
606
607 dipole_trap_1_aom.setfreq(t,dipole_trap_aom_frequency*MHz)
608 dipole_trap_1_aom.setamp(t, dipole_trap_power, units="hardware")
609 dipole_trap_1_aom.enable(t+0.5)
610
611 dipole_trap_2_aom.setfreq(t,dipole_trap_aom_frequency*MHz)
612 dipole_trap_2_aom.setamp(t, dipole_trap_power, units="hardware")
613 dipole_trap_2_aom.enable(t+0.5)
614
615 #### Rb Optical Pumping ####
616 if rb_optical_pumping:
617 # Close the central shutter. This is important, as we don’t want repump light going into the central MOT
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618 # But we do want MOT repump on, which goes into the optical pumping repump beam
619 central_MOT_shutter.close(t)
620
621 # turn off all the MOT light (in case we didn’t do PGC)
622 rb_central_MOT_trap_aom.disable(t)
623 rb_central_MOT_repump_aom.disable(t)
624
625 # prepare optical pumping light (leave OP aom off for now)
626 rb_optical_pumping_shutter.open(t)
627
628
629 # open repump shutters and set frequencies, but leave light off until we’ve changed the fields and the shutters are completely open
630 rb_optical_pumping_repump_shutter.open(t)
631 rb_central_MOT_repump_aom.setfreq(t, rb_optical_pumping_repump_frequency * MHz)
632 rb_central_MOT_repump_aom.setamp(t,rb_optical_pumping_repump_amplitude / 1023.0)
633
634
635 # prepare magnetic fields
636 central_Bq.constant(t, 0, "A")
637 central_bias_x_coil_driver.constant(t, optical_pumping_bias_x, "A")
638 central_bias_y_coil_driver.constant(t, optical_pumping_bias_y, "A")
639 central_bias_z_coil_driver.constant(t, optical_pumping_bias_z, "A")
640
641
642
643 # Wait for the fields to have changed and the shutters to have opened/closed
644 t += rb_optical_pumping_shutter_time
645
646 #Start of actual optical pumping stuff! Begin with some repump
647
648
649 rb_optical_pumping_aom.setfreq(t,rb_optical_pumping_frequency*MHz)
650 rb_optical_pumping_aom.setamp(t,rb_optical_pumping_amplitude/1023.)
651 rb_optical_pumping_aom.enable(t)
652 # After the optical pumping repump delay turn the repump to the full optical pumping settings and turn on OP light
653
654 rb_central_MOT_repump_aom.enable(t+rb_optical_pumping_initial_repump_delay)
655 assert rb_optical_pumping_initial_repump_delay < rb_optical_pumping_time, ’you cannot delay repump longer

than the total optical pumping time’
656
657
658 # optically pump for rb_optical_pumping_time
659 t+=rb_optical_pumping_time
660
661 # then turn off optical pumping light but leave repump on for now
662 rb_optical_pumping_aom.disable(t)
663
664 # wait for rb_optical_pumping_end_repump_duration
665 t += rb_optical_pumping_end_repump_duration
666 # then finally turn off optical pumping repump
667 rb_central_MOT_repump_aom.disable(t)
668
669 if verbose: print ’Optical pumping done, shutter closed at t=%.9f’%(t)
670 rb_optical_pumping_repump_shutter.close(t)
671 rb_optical_pumping_shutter.close(t)
672
673 # change optical pumping aom to our "warming" settings to keep it warm for the next run
674 rb_optical_pumping_aom.setfreq(t,rb_optical_pumping_aom_warm_frequency*MHz)
675 rb_optical_pumping_aom.setamp(t,rb_optical_pumping_aom_warm_amplitude/1023.)
676 rb_optical_pumping_aom.enable(t+5e-3)
677
678 if magnetic_trap:
679 # set the fields to our capture values
680 central_Bq.constant(t, central_MT_capture_quad, "A")
681 central_bias_x_coil_driver.constant(t, central_MT_capture_bias_x, "A")
682 central_bias_y_coil_driver.constant(t, central_MT_capture_bias_y, "A")
683 central_bias_z_coil_driver.constant(t, central_MT_capture_bias_z, "A")
684 t+= magnetic_trap_hold_time
685 if MT_compress:
686 if central_MT_compressed_quad > sorensen_critical_current:
687 sorensen_voltage_control.go_high(t)
688 if use_rb:
689 central_Bq.ramp(t,MT_compression_time,central_MT_capture_quad,central_MT_compressed_quad,1e3,"A")
690 central_bias_x_coil_driver.ramp(t, MT_compression_time, central_MT_capture_bias_x,

central_MT_compressed_bias_x, 1e3, "A")
691 central_bias_y_coil_driver.ramp(t, MT_compression_time, central_MT_capture_bias_y,

central_MT_compressed_bias_y, 1e3, "A")
692 central_bias_z_coil_driver.ramp(t, MT_compression_time, central_MT_capture_bias_z,

central_MT_compressed_bias_z, 1e3, "A")
693 else:
694 central_Bq.ramp(t,MT_compression_time,k_MT_decompressed_quad,central_MT_compressed_quad,1e3,"A")
695 central_bias_x_coil_driver.ramp(t, MT_compression_time, rb_central_MOT_load_bias_x,

central_MT_compressed_bias_x, 1e3, "A")
696 central_bias_y_coil_driver.ramp(t, MT_compression_time, rb_central_MOT_load_bias_y,

central_MT_compressed_bias_y, 1e3, "A")
697 central_bias_z_coil_driver.ramp(t, MT_compression_time, rb_central_MOT_load_bias_z,

central_MT_compressed_bias_z, 1e3, "A")
698
699
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700
701 t+=MT_compression_time
702 if verbose: print "MT compression finishes at t=%.9f"%t
703
704 t+= MT_compressed_hold_time
705 if verbose: print "Held in compressed MT until t=%.9f"%t
706
707
708 if magnetic_trap and MT_compress and microwave_evaporation:
709
710 if verbose: print "Microwave evaporation starts at t=%.9f"%t
711 microwave_switch.go_high(t)
712 quad_mod_I.setphase(t,-90)
713 quad_mod_Q.setphase(t,0)
714 quad_mod_I.setamp(t,IQ_amp)
715 quad_mod_Q.setamp(t,IQ_amp)
716
717 ###
718 # Calculated in runmanager, but FYI:
719 # mw_evap_time = (mw_evap_start−mw_evap_stop)/evap_rate
720 ###
721
722 if mw_evap_type == ’linear’:
723 quad_mod_I.frequency.ramp(t, mw_evap_initial_time, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_start

*MHz, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_mid*MHz, (1.0*
mw_evap_points)/mw_evap_time)

724 t += quad_mod_Q.frequency.ramp(t, mw_evap_initial_time, microwave_LO_freq * MHz - rb_hyperfine -
mw_evap_start*MHz, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_mid*MHz, (
1.0*mw_evap_points)/mw_evap_time)

725 quad_mod_I.frequency.ramp(t, mw_evap_time, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_mid*MHz,
microwave_LO_freq * MHz - rb_hyperfine - mw_evap_stop*MHz, (1.0*mw_evap_points)/
mw_evap_time)

726 t += quad_mod_Q.frequency.ramp(t, mw_evap_time, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_mid*
MHz, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_stop*MHz, (1.0*
mw_evap_points)/mw_evap_time)

727 elif mw_evap_type == ’exp’:
728 quad_mod_I.frequency.exp_ramp_t(t, mw_evap_time, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_start

*MHz, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_stop*MHz,
mw_evap_time_constant, (1.0*mw_evap_points)/mw_evap_time)

729 t += quad_mod_Q.frequency.exp_ramp_t(t, mw_evap_time, microwave_LO_freq * MHz - rb_hyperfine -
mw_evap_start*MHz, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_stop*MHz,
mw_evap_time_constant, (1.0*mw_evap_points)/mw_evap_time)

730 else:
731 raise LabscriptError(’You must set mw_evap_type to "linear" or "exp" (it is currently %s)’%str(mw_evap_type))
732
733 if verbose: print "Microwave evaporation finishes at t=%.9f"%t
734 microwave_switch.go_low(t)
735 quad_mod_I.setamp(t,0)
736 quad_mod_Q.setamp(t,0)
737
738 if blow_away_rb:
739 if verbose: print "Blowing away Rb atoms at t=%.9f"%t
740
741 if blow_away_rb_use_light:
742 rb_central_MOT_trap_aom.setfreq(t, rb_imaging_frequency * MHz)
743 rb_central_MOT_trap_aom.setamp(t, rb_imaging_amplitude)
744 central_MOT_shutter.open(t)
745 rb_central_MOT_trap_aom.enable(t)
746 t+=blow_away_rb_time
747 rb_central_MOT_trap_aom.disable(t)
748 central_MOT_shutter.close(t)
749 else:
750 quad_mod_I.frequency.ramp(t, blow_away_rb_time, microwave_LO_freq * MHz - rb_hyperfine - mw_evap_stop

*MHz, microwave_LO_freq * MHz - rb_hyperfine - blow_away_mw_end*MHz, (1.0*1000)
/blow_away_rb_time)

751 quad_mod_Q.frequency.ramp(t, blow_away_rb_time, microwave_LO_freq * MHz - rb_hyperfine -
mw_evap_stop*MHz, microwave_LO_freq * MHz - rb_hyperfine - blow_away_mw_end*
MHz, (1.0*1000)/blow_away_rb_time)

752 t += blow_away_rb_time
753
754 # If MT_decompress is enabled (requires MT & MT Compress & microwave_evaporation but keep at top level to avoid cascading if statements)
755 if magnetic_trap and MT_compress and MT_decompress:
756
757
758 if verbose: print "Magnetic trap decompression starts at t=%.9f"%t
759 central_Bq.sine_ramp(t,MT_decompression_time,central_MT_compressed_quad,central_MT_decompressed_quad,1e3,"

A")
760 central_bias_x_coil_driver.sine_ramp(t, MT_decompression_time, central_MT_compressed_bias_x,

central_MT_decompressed_bias_x, 1e3, "A")
761 central_bias_y_coil_driver.sine_ramp(t, MT_decompression_time, central_MT_compressed_bias_y,

central_MT_decompressed_bias_y, 1e3, "A")
762 central_bias_z_coil_driver.sine_ramp(t, MT_decompression_time, central_MT_compressed_bias_z,

central_MT_decompressed_bias_z, 1e3, "A")
763
764
765 if central_MT_decompressed_quad < sorensen_critical_current:
766 # Calculate when we should switch the quadrupole coil voltage
767 #linear:
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768 # t_switch = ((sorensen_critical_current − central_MT_compressed_quad)/(central_MT_decompressed_quad−central_MT_compressed_quad))∗
MT_decompression_time

769 #sine:
770 t_switch = (2.*MT_decompression_time/pi)*arcsin(sqrt((sorensen_critical_current-central_MT_compressed_quad)/

(central_MT_decompressed_quad-central_MT_compressed_quad)))
771 sorensen_voltage_control.go_low(t+t_switch)
772 if verbose: print ’sorenson PSU voltage switched to low at t=%.9f’%(t+t_switch)
773
774 if MT_decompress_evap:
775 if MT_decompression_evap_time > MT_decompression_time:
776 raise Exception("MT_decompression_evap_time should be <= MT_decompression_time")
777 print rfblaster_0.trigger(t,1e-3)
778 t += 1e-3
779 if verbose: print "Microwave evaporation (during Magnetic trap decompression) ramp starts at t=%.9f"%t
780 microwave_switch.go_high(t)
781 quad_mod_I.setphase(t,-90)
782 quad_mod_Q.setphase(t,0)
783 quad_mod_I.setamp(t,IQ_amp)
784 quad_mod_Q.setamp(t,IQ_amp)
785 quad_mod_I.frequency.ramp(t, MT_decompression_evap_time, microwave_LO_freq * MHz - rb_hyperfine -

mw_evap_stop*MHz, microwave_LO_freq * MHz - rb_hyperfine -
mw_evap_decompress_stop*MHz, 1e3)

786 quad_mod_Q.frequency.ramp(t, MT_decompression_evap_time, microwave_LO_freq * MHz - rb_hyperfine -
mw_evap_stop*MHz, microwave_LO_freq * MHz - rb_hyperfine -
mw_evap_decompress_stop*MHz, 1e3)

787 if verbose: print "Microwave evaporation (during Magnetic trap decompression) ramp ends at t=%.9f"%(t+
MT_decompression_evap_time)

788
789 if mt_extra_decompress_hold_microwaves_on:
790 microwave_switch.go_low(t+MT_decompression_time)
791 quad_mod_I.setamp(t+MT_decompression_time,0)
792 quad_mod_Q.setamp(t+MT_decompression_time,0)
793 if verbose: print "Microwaves (during Magnetic trap decompression) turned off at t=%.9f"%(t+

MT_decompression_time)
794 else:
795 microwave_switch.go_low(t+MT_decompression_evap_time)
796 quad_mod_I.setamp(t+MT_decompression_evap_time,0)
797 quad_mod_Q.setamp(t+MT_decompression_evap_time,0)
798 if verbose: print "Microwaves (during Magnetic trap decompression) turned off at t=%.9f"%(t+

MT_decompression_evap_time)
799
800
801 t += MT_decompression_time
802 if verbose: print "Magnetic trap decompression finishes at t=%.9f"%t
803
804 t+=MT_decompression_hold_time
805 if verbose: print "Held in decompressed trap until t=%.9f"%t
806
807
808 if magnetic_trap and MT_compress and microwave_evaporation and MT_decompress and load_dipole_trap and

load_pure_dipole_trap:
809 central_bias_z_coil_driver.sine_ramp(t, MT_load_pure_dipole_decompress_time,central_MT_decompressed_bias_z,

pure_dipole_central_bias_z,1e3,"A")
810 central_bias_x_coil_driver.sine_ramp(t,MT_load_pure_dipole_decompress_time,central_MT_decompressed_bias_x,

pure_dipole_central_bias_x,1e3,"A")
811 central_bias_y_coil_driver.sine_ramp(t,MT_load_pure_dipole_decompress_time,central_MT_decompressed_bias_y,

pure_dipole_central_bias_y,1e3,"A")
812
813 t += central_Bq.sine_ramp(t, MT_load_pure_dipole_decompress_time,central_MT_decompressed_quad,0,1e3,"A")
814 central_bias_z_coil_driver.sine_ramp(t, pure_dipole_hold_time,pure_dipole_central_bias_z,0.001,1e3,"A")
815 t += pure_dipole_hold_time
816
817 if magnetic_trap and MT_compress and microwave_evaporation and MT_decompress and load_dipole_trap and

load_pure_dipole_trap:
818
819 if s0950_raman_transfer:
820
821 if k_raman_22_to_10:
822
823 k_raman_blue_80.setfreq(t, k_raman_22_to_10_blue_freq*MHz)
824 k_raman_blue_80.setamp(t, k_raman_22_to_10_blue_amp/1023.)
825 central_bias_x_coil_driver.sine_ramp(t, k_raman_22_to_10_field_transfer_time,pure_dipole_central_bias_x,

k_raman_22_to_10_bias_x,1e5,"A")
826 central_bias_y_coil_driver.sine_ramp(t, k_raman_22_to_10_field_transfer_time,pure_dipole_central_bias_y,

k_raman_22_to_10_bias_y,1e5,"A")
827 t+=central_bias_z_coil_driver.sine_ramp(t, k_raman_22_to_10_field_transfer_time,

pure_dipole_central_bias_z,k_raman_22_to_10_bias_z,1e5,"A")
828
829 print "K Raman pulse (|2,2> −> |1,0>) of duration %.6f at T=%.9F"%(k_raman_22_to_10_duration, t)
830 k_raman_red_80.enable(t)
831 k_raman_blue_80.enable(t)
832
833 # t+= k_raman_22_to_10_duration
834 for i in range(2000):
835 k_raman_blue_80.setfreq(t, k_raman_22_to_10_blue_freq*MHz-0.01*MHz+0.02/2000*MHz)
836 t+= k_raman_22_to_10_duration/2000.
837 # t += k_raman_blue_80.frequency.ramp(t, k_raman_22_to_10_duration, k_raman_22_to_10_blue_freq∗MHz−0.05∗MHz,

k_raman_22_to_10_blue_freq∗MHz+0.05∗MHz, 2000)
838
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839 k_raman_blue_80.disable(t)
840 k_raman_red_80.disable(t)
841
842 central_bias_x_coil_driver.sine_ramp(t, k_raman_22_to_10_field_transfer_time,k_raman_22_to_10_bias_x,

pure_dipole_central_bias_x,1e5,"A")
843 central_bias_y_coil_driver.sine_ramp(t, k_raman_22_to_10_field_transfer_time,k_raman_22_to_10_bias_y,

pure_dipole_central_bias_y,1e5,"A")
844 t+=central_bias_z_coil_driver.sine_ramp(t, k_raman_22_to_10_field_transfer_time,

k_raman_22_to_10_bias_z,pure_dipole_central_bias_z,1e5,"A")
845
846 t+= k_raman_transfer_after_time
847
848
849
850 if microwave_transfer:
851 central_bias_x_coil_driver.sine_ramp(t, mw_transfer_field_time,pure_dipole_central_bias_x,mw_transfer_bias_x

,1e5,"A")
852 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,pure_dipole_central_bias_y,mw_transfer_bias_y

,1e5,"A")
853 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,pure_dipole_central_bias_z,

mw_transfer_bias_z,1e5,"A")
854
855 if k_to_11:
856 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_y,k_transfer_bias_y,1e5,"A

")
857 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_z,k_transfer_bias_z,

1e5,"A")
858 rfblaster_1.trigger(t-10e-3,1e-3)
859 potassium_rf.setamp(t,k_rf_amp)
860
861 if k_transfer__adiabatic_passage:
862 k_transfer_start = k_transfer_centre_freq - 0.5* k_transfer_range
863 k_transfer_stop = k_transfer_centre_freq + 0.5* k_transfer_range
864 # k_transfer_time = 1.0∗k_transfer_range/k_transfer_rate
865 if k_transfer_trunc is not False:
866 k_transfer_time = (2.0*((k_transfer_centre_freq+k_transfer_trunc)-(k_transfer_centre_freq - 0.5*

k_transfer_range))/k_transfer_range)*k_transfer_time
867 k_transfer_stop = k_transfer_centre_freq+k_transfer_trunc
868
869 if verbose: print "k tranfer |1,1> time is %.6f"%k_transfer_time
870 print "Sweeping potassium rf detuning from %.6f MHz to %.6f MHz in %.9f seconds AT T=%.9F"%(

k_transfer_start,k_transfer_stop,k_transfer_time,t)
871 potassium_rf.frequency.ramp(t, k_transfer_time, k_hyperfine + k_transfer_start*MHz, k_hyperfine +

k_transfer_stop*MHz, k_transfer_sample_rate)#4e4/mw_transfer_time)
872
873 t+=k_transfer_time
874 elif k_transfer__pi_pulse:
875 if verbose: print "k transfer |1,1> time is %.6f"%k_transfer_time
876 print "Pi pulse at %.6f MHz for %.9f seconds long T=%.9F"%(k_transfer_centre_freq,

k_transfer_pi_pulse_time,t)
877 potassium_rf.frequency.constant(t, k_transfer_centre_freq*MHz+k_hyperfine)
878 t+=k_transfer_pi_pulse_time
879 else:
880 raise LabscriptError(’You must choose a type of state transfer (adiabatic passage or Pi pulse) for K transfer to

|1,1>’)
881 potassium_rf.setamp(t,0)
882
883 elif k_22_to_10:
884 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_y,

k_22_10_transfer_bias_y,1e5,"A")
885 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_z,

k_22_10_transfer_bias_z,1e5,"A")
886 rfblaster_1.trigger(t-10e-3,1e-3)
887 potassium_rf.setamp(t,k_22_10_rf1_amp)
888 potassium_rf_2.setamp(t,k_22_10_rf2_amp)
889
890 k_transfer_start = k_22_10_transfer_centre_freq - 0.5* k_22_10_transfer_range
891 k_transfer_stop = k_22_10_transfer_centre_freq + 0.5* k_22_10_transfer_range
892 if k_22_10_transfer_trunc is not False:
893 k_22_10_transfer_time = (2.0*((k_22_10_transfer_centre_freq+k_transfer_trunc)-(

k_22_10_transfer_centre_freq - 0.5* k_22_10_transfer_range))/
k_22_10_transfer_range)*k_22_10_transfer_time

894 k_transfer_stop = k_22_10_transfer_centre_freq+k_22_10_transfer_trunc
895
896 if verbose: print "k transfer from |2,2> to |1,0> time is %.6f"%k_transfer_time
897 print "Sweeping potassium rf detuning from %.6f MHz to %.6f MHz in %.9f seconds AT T=%.9F"%(

k_transfer_start,k_transfer_stop,k_22_10_transfer_time,t)
898 potassium_rf.frequency.ramp(t, k_22_10_transfer_time, k_hyperfine + k_transfer_start*MHz, k_hyperfine +

k_transfer_stop*MHz, k_22_10_transfer_sample_rate)#4e4/mw_transfer_time)
899 potassium_rf_2.setfreq(t, k_22_10_rf2_freq*MHz)
900
901 t+=k_22_10_transfer_time
902 potassium_rf.setamp(t,0)
903 potassium_rf_2.setamp(t,0)
904
905 if k_blow_away_22:
906 central_bias_x_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_x,central_imaging_bias_x,

1e5,"A")
907 if k_to_11:
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908 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,k_transfer_bias_y,central_imaging_bias_y,
1e5,"A")

909 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,k_transfer_bias_z,
central_imaging_bias_z,1e5,"A")

910 elif k_22_to_10:
911 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,k_22_10_transfer_bias_y,

central_imaging_bias_y,1e5,"A")
912 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,k_22_10_transfer_bias_z,

central_imaging_bias_z,1e5,"A")
913 else:
914 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_y,

central_imaging_bias_y,1e5,"A")
915 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_z,

central_imaging_bias_z,1e5,"A")
916 central_MOT_imaging_shutter.open(t)
917 k_imaging_push_trap_aom.enable(t)
918 k_imaging_push_trap_aom.setfreq(t, k_imaging_frequency * MHz)
919 k_imaging_push_trap_aom.setamp(t, k_imaging_amplitude / 1023.0)
920 t+= 5e-3
921 k_imaging_push_trap_aom.disable(t)
922 central_MOT_imaging_shutter.close(t)
923
924 central_bias_x_coil_driver.sine_ramp(t, mw_transfer_field_time,central_imaging_bias_x,mw_transfer_bias_x,

1e5,"A")
925 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,central_imaging_bias_y,mw_transfer_bias_y,

1e5,"A")
926 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,central_imaging_bias_z,

mw_transfer_bias_z,1e5,"A")
927
928 else:
929 if k_to_11:
930 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,k_transfer_bias_y,mw_transfer_bias_y,1e5

,"A")
931 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,k_transfer_bias_z,mw_transfer_bias_z

,1e5,"A")
932 elif k_22_to_10:
933 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,k_22_10_transfer_bias_y,

mw_transfer_bias_y,1e5,"A")
934 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,k_22_10_transfer_bias_z,

mw_transfer_bias_z,1e5,"A")
935
936
937 central_bias_x_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_x,pure_dipole_central_bias_x

,1e5,"A")
938 central_bias_y_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_y,pure_dipole_central_bias_y

,1e5,"A")
939 t+=central_bias_z_coil_driver.sine_ramp(t, mw_transfer_field_time,mw_transfer_bias_z,

pure_dipole_central_bias_z,1e5,"A")
940
941 t+= mw_transfer_after_time
942
943 ##### Potassium central imaging section ####
944
945 ### K absorption imaging
946 if central_imaging and absorption_image_k:
947 # Turn the MOT light off
948 if not k_imaging_MOT_repump:
949 central_MOT_shutter.close(t)
950
951 k_MOT_trap_aom.disable(t)
952 k_MOT_repump_aom.disable(t)
953
954 rb_central_MOT_trap_aom.disable(t)
955
956 rb_central_MOT_repump_aom.disable(t)
957
958 # Open the imaging shutter and prepare the imaging light
959 central_MOT_imaging_shutter.open(t)
960 k_imaging_push_trap_aom.setfreq(t, k_imaging_frequency * MHz)
961 k_imaging_push_trap_aom.setamp(t, k_imaging_amplitude / 1023.0)
962
963 if k_imaging_MOT_repump:
964 k_MOT_repump_aom.setfreq(t-10e-3,k_imaging_repump_frequency * MHz)
965 k_MOT_repump_aom.setamp(t-10e-3,k_imaging_repump_amplitude / 1023.0)
966 central_MOT_shutter.open(t-10e-3)
967 elif k_imaging_repump:
968 k_imaging_push_repump_aom.setfreq(t, k_imaging_repump_frequency * MHz)
969 k_imaging_push_repump_aom.setamp(t, k_imaging_repump_amplitude / 1023.0)
970
971 # Turn off the dipole trap.
972 # This may happen some time during the magnetic component drop
973 # if we want to get rid of the magnetically trapped part
974
975 # We don’t want it staying on any longer than the drop time though!
976 dipole_delay = min(dipole_image_delay, drop_time)
977 if verbose: print "Disable dipole trap for imaging at t=%.6f"%(t+dipole_delay)
978 dipole_trap_1_aom.disable(t+dipole_delay)
979 dipole_trap_2_aom.disable(t+dipole_delay)
980
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981 # Turn the magnetic trap/MOT field off. We use a "negative" voltage on the
982 # magneato to make it switch faster. Ensure that sorenson is on low voltage now!
983 central_Bq.constant(t, -10)
984 sorensen_voltage_control.go_low(t)
985
986 # Set up imaging bias fields
987 central_bias_x_coil_driver.constant(t, central_imaging_bias_x, "A")
988 central_bias_y_coil_driver.constant(t, central_imaging_bias_y, "A")
989 central_bias_z_coil_driver.constant(t, central_imaging_bias_z, "A")
990
991
992 # Start exposing the camera while the atoms are falling
993 t += drop_time-0.5*(red_camera_exposure_time-imaging_pulse_time)
994 central_MOT_camera.expose(’absorption_k41’, t, ’atoms’)
995
996 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
997
998 # atoms have now fallen for drop_time
999 # flash the light on

1000
1001 k_imaging_push_trap_aom.enable(t)
1002
1003 if k_imaging_MOT_repump:
1004 k_MOT_repump_aom.enable(t-.5e-3)
1005
1006 elif k_imaging_repump:
1007 k_imaging_push_repump_aom.enable(t)
1008
1009 t += imaging_pulse_time
1010
1011 # Then turn it off again
1012 k_imaging_push_trap_aom.disable(t)
1013 k_imaging_push_repump_aom.disable(t)
1014 k_MOT_repump_aom.disable(t)
1015
1016 # Wait for the exposure to finish!
1017 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
1018
1019 # Wait the interframe time before taking the flat field image
1020 t += interframe_time
1021
1022 # Flat field exposure − do the same thing, but now there shouldn’t be any atoms left!
1023 central_MOT_camera.expose(’absorption_k41’, t, ’flat’)
1024 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
1025
1026 k_imaging_push_trap_aom.enable(t)
1027 if k_imaging_MOT_repump:
1028 k_MOT_repump_aom.enable(t)
1029 elif k_imaging_repump:
1030 k_imaging_push_repump_aom.enable(t)
1031
1032 t += imaging_pulse_time
1033
1034 k_imaging_push_trap_aom.disable(t)
1035 k_imaging_push_repump_aom.disable(t)
1036 k_MOT_repump_aom.disable(t)
1037
1038 # wait for the exposure to finish
1039 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
1040
1041 # Again wait the interframe time before taking the dark image
1042 t += interframe_time
1043
1044 # Dark field exposure
1045 central_MOT_camera.expose(’absorption_k41’, t, ’dark’)
1046 t += red_camera_exposure_time
1047
1048 ## and we’re done with this image, continue on to final cleanup before ending experiment
1049
1050 ## K recapture imaging
1051 elif central_image_k_recapture:
1052 # Open the shutter we’ll need to get them ready
1053 central_MOT_shutter.open(t)
1054
1055 # If there is a non−zero drop time, then turn off everything and let the cloud expand, before recapturing
1056 if drop_time:
1057 sorensen_voltage_control.go_low(t)
1058 central_Bq.constant(t, 0, "A")
1059 # Lets leave the bias fields how they were, then switch them to the recapture MOT fields when it’s recapture time
1060 k_MOT_trap_aom.disable(t)
1061 k_MOT_repump_aom.disable(t)
1062 rb_central_MOT_trap_aom.disable(t)
1063
1064 rb_central_MOT_repump_aom.disable(t)
1065 t+=drop_time
1066 else:
1067 rb_central_MOT_trap_aom.disable(t)
1068
1069 rb_central_MOT_repump_aom.disable(t)
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1070
1071 # Now turn on our recapture MOT
1072 k_MOT_trap_aom.enable(t)
1073 k_MOT_trap_aom.setfreq(t, k_trap_recapture_imaging_frequency * MHz)
1074 k_MOT_trap_aom.setamp(t, k_trap_recapture_imaging_amplitude / 1023.0)
1075
1076 k_MOT_repump_aom.enable(t)
1077 k_MOT_repump_aom.setfreq(t, k_repump_recapture_imaging_frequency * MHz)
1078 k_MOT_repump_aom.setamp(t, k_repump_recapture_imaging_amplitude / 1023.0)
1079
1080 sorensen_voltage_control.go_low(t)
1081 central_Bq.constant(t, k_recapture_imaging_quad, "A")
1082 central_bias_x_coil_driver.constant(t, 0, "A")
1083 central_bias_y_coil_driver.constant(t, 0, "A")
1084 central_bias_z_coil_driver.constant(t, 0, "A")
1085
1086
1087 # Wait some time to recapture the atoms
1088 t += k_recapture_imaging_MOT_load_time
1089
1090 # Then expose the camera
1091 central_MOT_camera.expose(’fluorescence_k41’, t, ’atoms’)
1092
1093 # Wait until the image has been taken
1094 t += red_camera_exposure_time
1095
1096 ## and we’re done with this image, continue on to final cleanup before ending experiment
1097
1098
1099 ## K fluorescence imaging
1100 elif central_image_k_fluoro:
1101 # Turn off all the MOTs/traps, but leave shutters needed for K open!
1102 central_MOT_shutter.open(t)
1103
1104 k_MOT_trap_aom.disable(t)
1105 k_MOT_repump_aom.disable(t)
1106
1107 rb_central_MOT_trap_aom.disable(t)
1108
1109 rb_central_MOT_repump_aom.disable(t)
1110
1111 # Turn off the dipole trap.
1112 # This may happen some time during the magnetic component drop
1113 # if we want to get rid of the magnetically trapped part
1114
1115 # We don’t want it staying on any longer than the drop time though!
1116 dipole_delay = max(dipole_image_delay, drop_time)
1117 if verbose: print "Disable dipole trap for imaging at t=%.6f"%(t+dipole_delay)
1118
1119 # Turn the magnetic trap/MOT field off. We use a "negative" voltage on the
1120 # magneato to make it switch faster. Ensure that sorenson is on low voltage now!
1121 central_Bq.constant(t, -10)
1122 sorensen_voltage_control.go_low(t)
1123
1124 # Set up imaging bias fields
1125 central_bias_x_coil_driver.constant(t, central_imaging_bias_x, "A")
1126 central_bias_y_coil_driver.constant(t, central_imaging_bias_y, "A")
1127 central_bias_z_coil_driver.constant(t, central_imaging_bias_z, "A")
1128
1129 k_MOT_trap_aom.setfreq(t, k_trap_fluoro_frequency * MHz)
1130 k_MOT_trap_aom.setamp(t, k_trap_fluoro_amplitude / 1023.0)
1131 k_MOT_repump_aom.setfreq(t, k_repump_fluoro_frequency * MHz)
1132 k_MOT_repump_aom.setamp(t, k_repump_fluoro_amplitude / 1023.0)
1133 t += drop_time
1134 central_MOT_camera.expose(’fluorescence_k41’, t, ’atoms’)
1135 k_MOT_trap_aom.enable(t)
1136 k_MOT_repump_aom.enable(t)
1137 t += red_camera_exposure_time
1138 k_MOT_trap_aom.disable(t)
1139 k_MOT_repump_aom.disable(t)
1140 t += interframe_time
1141 k_MOT_trap_aom.enable(t)
1142 k_MOT_repump_aom.enable(t)
1143 central_MOT_camera.expose(’fluorescence_k41’, t, ’dark’)
1144 k_MOT_trap_aom.disable(t)
1145 k_MOT_repump_aom.disable(t)
1146 t += red_camera_exposure_time
1147 ##### END Central K imaging #####
1148
1149 ##### Rubidium central imaging section ####
1150
1151 elif central_imaging and absorption_image_rb:
1152 # Turn off all the MOTs/traps
1153 rb_central_MOT_trap_aom.disable(t)
1154 rb_central_MOT_repump_aom.disable(t)
1155 if rb_imaging_repump:
1156 central_MOT_shutter.open(t)
1157 rb_central_MOT_repump_aom.setfreq(t, rb_imaging_repump_frequency*MHz)
1158 rb_central_MOT_repump_aom.setamp(t, rb_imaging_repump_amplitude/1023.)
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1159 rb_central_MOT_repump_aom.enable(t + drop_time - min(drop_time, 2e-3))
1160 if verbose: print "Repump light turned on for imaging at t=%.9f"%(t + drop_time - min(drop_time, 2e-3))
1161 else:
1162 central_MOT_shutter.close(t)
1163
1164 # Turn off the dipole trap.
1165 # This may happen some time during the magnetic component drop
1166 # if we want to get rid of the magnetically trapped part
1167
1168 # We don’t want it staying on any longer than the drop time though!
1169 dipole_delay = min(dipole_image_delay, drop_time)
1170 if verbose: print "Disable dipole trap for imaging at t=%.6f"%(t+dipole_delay)
1171
1172 if side_imaging_expand_in_beam_1:
1173 dipole_trap_1_aom.setamp(t,side_imaging_expanded_power,"hardware")
1174 dipole_trap_1_aom.disable(t+drop_time-0.2e-3)
1175 dipole_trap_2_aom.disable(t)
1176 elif side_imaging_expand_in_beam_2:
1177 dipole_trap_1_aom.disable(t)
1178 dipole_trap_2_aom.setamp(t,side_imaging_expanded_power,"hardware")
1179 dipole_trap_2_aom.disable(t+drop_time-0.2e-3)
1180 else:
1181 dipole_trap_1_aom.disable(t+dipole_delay)
1182 dipole_trap_2_aom.disable(t+dipole_delay)
1183
1184 # Open the shutter and prepare the imaging light
1185 central_MOT_imaging_shutter.open(t)
1186 rb_imaging_push_aom.setfreq(t, rb_imaging_frequency * MHz)
1187 rb_imaging_push_aom.setamp(t, rb_imaging_amplitude)
1188
1189 # Turn the magnetic trap/MOT field off. We use a "negative" voltage on the
1190 # magneato to make it switch faster. Ensure that sorenson is on low voltage now!
1191 central_Bq.constant(t, -10)
1192 sorensen_voltage_control.go_low(t)
1193
1194 # Set up imaging bias fields
1195 central_bias_x_coil_driver.constant(t, central_imaging_bias_x, "A")
1196 central_bias_y_coil_driver.constant(t, central_imaging_bias_y, "A")
1197 central_bias_z_coil_driver.constant(t, central_imaging_bias_z, "A")
1198
1199 # If we’re doing Stern−Gerlach imaging, we’ll pulse the quad field on and off again during the drop time
1200 if SG_imaging:
1201 central_Bq.constant(t + 6e-3, SG_current, "A")
1202 central_Bq.constant(t + 12e-3, -10)
1203
1204
1205 # Atoms exposure
1206
1207 # Start exposing camera during tof
1208 t += drop_time-0.5*(red_camera_exposure_time-imaging_pulse_time)
1209
1210 central_MOT_camera.expose(’absorption_rb87’, t, ’atoms’)
1211
1212 # now wait until drop_time before flashing on imaging light
1213 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
1214 rb_imaging_push_aom.enable(t)
1215 if verbose: print "Image taken at t = %.9f"%t
1216 t += imaging_pulse_time
1217 rb_imaging_push_aom.disable(t)
1218
1219 # Now wait until camera has finished exposing
1220 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
1221
1222 # Flat field exposure
1223 t+= interframe_time
1224
1225 central_MOT_camera.expose(’absorption_rb87’, t, ’flat’)
1226
1227 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
1228
1229 rb_imaging_push_aom.enable(t)
1230 t += imaging_pulse_time
1231 rb_imaging_push_aom.disable(t)
1232 # and finish exposing camera:
1233 t += 0.5*(red_camera_exposure_time-imaging_pulse_time)
1234
1235 # Dark field exposure
1236 t += interframe_time
1237 central_MOT_camera.expose(’absorption_rb87’, t, ’dark’)
1238 t += red_camera_exposure_time
1239
1240 elif central_image_rb_fluoro:
1241 # Turn off all the MOTs/traps, but leave shutters needed for Rb open!
1242 central_MOT_shutter.open(t)
1243 k_MOT_trap_aom.disable(t)
1244 k_MOT_repump_aom.disable(t)
1245 rb_central_MOT_trap_aom.disable(t)
1246 rb_central_MOT_repump_aom.disable(t)
1247 if rb_imaging_repump:



230 APPENDIX D. K-RB EXPERIMENT DETAILS

1248 central_MOT_shutter.open(t)
1249 rb_central_MOT_repump_aom.enable(t + drop_time - min(drop_time, 2e-3))
1250 else:
1251 pass
1252
1253 # Turn off the dipole trap.
1254 # This may happen some time during the magnetic component drop
1255 # if we want to get rid of the magnetically trapped part
1256
1257 # Turn the magnetic trap/MOT field off. We use a "negative" voltage on the
1258 # magneato to make it switch faster. Ensure that sorenson is on low voltage now!
1259 central_Bq.constant(t, -10)
1260 sorensen_voltage_control.go_low(t)
1261
1262 # Set up imaging bias fields
1263 central_bias_x_coil_driver.constant(t, central_imaging_bias_x, "A")
1264 central_bias_y_coil_driver.constant(t, 0,"A") #central_imaging_bias_y, "A")
1265 central_bias_z_coil_driver.constant(t, central_imaging_bias_z, "A")
1266
1267 rb_central_MOT_trap_aom.setfreq(t, rb_fluoro_frequency * MHz)
1268 rb_central_MOT_trap_aom.setamp(t, rb_fluoro_amplitude / 1023.0)
1269 t += drop_time
1270 central_MOT_camera.expose(’fluorescence_rb87’, t, ’atoms’)
1271 rb_central_MOT_trap_aom.enable(t)
1272 t += rb_fluoro_imaging_time
1273 rb_central_MOT_trap_aom.disable(t)
1274 t += interframe_time
1275 rb_central_MOT_trap_aom.enable(t)
1276 central_MOT_camera.expose(’fluorescence_rb87’, t, ’dark’)
1277 rb_central_MOT_trap_aom.disable(t)
1278 t += red_camera_exposure_time
1279
1280 ### END Rb Central imaging ###
1281 ####### END CENTRAL IMAGING ########
1282
1283 ####################### END OF EXPERIMENT, NOW SET SOME SENSIBLE DEFAULTS

################################
1284 if verbose: print "Experiment over, start cleanup at t = %s"%t
1285 t+=100e-3
1286 # close the imaging shutter
1287 central_MOT_imaging_shutter.close(t)
1288 science_bottom_imaging_shutter.close(t)
1289 # Turn the central coils on for a MOT, but leave the bias coils off (they might get a bit warm)
1290 sorensen_voltage_control.go_low(t)
1291 central_Bq.constant(t, rb_central_MOT_load_current, "A")
1292
1293 central_bias_x_coil_driver.constant(t, 0, "A")
1294 central_bias_y_coil_driver.constant(t, 0, "A")
1295 central_bias_z_coil_driver.constant(t, 0, "A")
1296
1297 feshbach_coils.constant(t,0)
1298
1299 # Turn the source MOT coils on
1300 k_source_MOT_west_coil.constant(t,k_source_current_west, "A")
1301 k_source_MOT_east_coil.constant(t, k_source_current_east, "A")
1302 k_source_MOT_top_coil.constant(t, k_source_current_top, "A")
1303 k_source_MOT_bottom_coil.constant(t, k_source_current_bottom, "A")
1304
1305 rb_source_MOT_coils.constant(t,rb_source_current,"A")
1306
1307 # Turn the source MOT lights on
1308 k_source_MOT_shutter.open(t)
1309
1310 k_MOT_trap_aom.enable(t)
1311 k_MOT_trap_aom.setfreq(t,k_trap_load_frequency * MHz)
1312 k_MOT_trap_aom.setamp(t,k_trap_load_amplitude / 1023.0)
1313
1314 k_MOT_repump_aom.enable(t)
1315 k_MOT_repump_aom.setfreq(t,k_repump_load_frequency * MHz)
1316 k_MOT_repump_aom.setamp(t,k_repump_load_amplitude / 1023.0)
1317
1318 rb_source_MOT_trap_aom.enable(t)
1319 rb_source_MOT_repump_aom.enable(t)
1320 rb_source_MOT_shutter.open(t)
1321
1322 # Set the push beams up
1323 k_imaging_push_trap_aom.setfreq(t, k_push_frequency * MHz)
1324 k_imaging_push_trap_aom.setamp(t, k_push_amplitude / 1023.0)
1325 k_imaging_push_trap_aom.enable(t)
1326
1327 k_imaging_push_repump_aom.setfreq(t, k_push_repump_frequency * MHz)
1328 k_imaging_push_repump_aom.setamp(t, k_push_repump_amplitude / 1023.0)
1329 k_imaging_push_repump_aom.enable(t)
1330 k_push_shutter.open(t)
1331
1332 rb_imaging_push_aom.setfreq(t,rb_push_frequency * MHz)
1333 rb_imaging_push_aom.setamp(t,rb_push_amplitude)
1334
1335 # turn on central MOT light



D.3. DEVICE HIERARCHY 231

1336 central_MOT_shutter.open(t)
1337
1338 rb_central_MOT_trap_aom.enable(t)
1339 rb_central_MOT_trap_aom.setfreq(t,rb_central_MOT_trap_frequency * MHz)
1340 rb_central_MOT_trap_aom.setamp(t,rb_central_MOT_trap_amplitude / 1023.0)
1341
1342 rb_central_MOT_repump_aom.enable(t)
1343 rb_central_MOT_repump_aom.setfreq(t,rb_central_MOT_repump_frequency * MHz)
1344 rb_central_MOT_repump_aom.setamp(t,rb_central_MOT_repump_amplitude / 1023.0)
1345
1346 if trap_2d and transport_to_square_cell:
1347 flat_trap_aom.setamp(t,0)
1348
1349 if rotate_up and not rotate_down:
1350 stepper_direction.go_low(t)
1351 t+=0.1
1352 rotate_down_ts = 0.1 * stepper_ts
1353 for tt in rotate_down_ts:
1354 stepper_trigger.go_high(t+tt)
1355 stepper_trigger.go_low(t+tt+2.05e-6)
1356 t+= rotate_down_ts[-1]
1357
1358
1359 dipole_trap_1_aom.disable(t)
1360 dipole_trap_2_aom.disable(t)
1361
1362 t+=0.5
1363 dipole_1_dump_flipper.go_low(t)
1364
1365
1366 # turn off Feshbach coils
1367 feshbach_coils.constant(t,0,"A")
1368 t += 500e-6
1369 novatechdds9m_0_table_enable.go_low(t)
1370 novatechdds9m_1_table_enable.go_low(t)
1371 novatechdds9m_2_table_enable.go_low(t)
1372 novatechdds9m_3_table_enable.go_low(t)
1373
1374 # setup analog acquisitions for coil current monitoring
1375 # now that we know how long the experiment will be!
1376 monitor_coils(t,coil_dictionary)
1377
1378 stop(t + 200e-6)

D.3 Device hierarchy

Here we show the device and channel hierarchy for the K-Rb lab. This contains all the
necessary devices and I/O to run both the dual-species experiment detailed in §8.1 and
the single-species experiment studying vortex dynamics detailed in §8.2. Note that the
RemoteStage and PhaseMatrixQuickSyn devices only contain ‘static’ outputs that are up-
dated once prior to the start of the experiment (and never during the experiment). As such,
these devices are separated from the remainder of the device hierarchy, as they do not rely
on the master pseudoclock (pulseblaster_0).

remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11



234 APPENDIX D. K-RB EXPERIMENT DETAILS

remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11
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remote_stage (RemoteStage)
Connection: None

acceleration (StaticAnalogQuantity)
Connection: a

load_focus (StaticAnalogQuantity)
Connection: f1

imaging_focus (StaticAnalogQuantity)
Connection: f2

velocity (StaticAnalogQuantity)
Connection: v

phasematrix_0 (PhaseMatrixQuickSyn)
Connection: None

microwaves (QuickSynDDS)
Connection: dds 0

microwaves_freq (StaticAnalogQuantity)
Connection: freq

microwaves_gate (StaticDigitalOut)
Connection: gate

pulseblaster_0 (PulseBlaster)
Connection: None

pulseblaster_0_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_0_ni_clock (ClockLine)
Connection: flag 0

ni_pcie_6363_0 (NI_PCIe_6363)
Connection: internal

central_Bq_control_monitor (AnalogIn)
Connection: ai16

central_Bq_monitor (AnalogIn)
Connection: ai17

central_bias_y_control_monitor (AnalogIn)
Connection: ai18

central_bias_y_monitor (AnalogIn)
Connection: ai19

central_bias_x_control_monitor (AnalogIn)
Connection: ai20

central_bias_x_monitor (AnalogIn)
Connection: ai21

central_bias_z_control_monitor (AnalogIn)
Connection: ai22

central_bias_z_monitor (AnalogIn)
Connection: ai23

transport_lens_temperature (AnalogIn)
Connection: ai24

transport_power_monitor (AnalogIn)
Connection: ai25

feshbach_coils (AnalogOut)
Connection: ao0

vortex_spoon_x (AnalogOut)
Connection: ao1

rb_source_MOT_coils (AnalogOut)
Connection: ao2

vortex_spoon_y (AnalogOut)
Connection: ao3

k_MOT_repump_aom_gate (DigitalOut)
Connection: port0/line0

k_imaging_push_repump_aom_gate (DigitalOut)
Connection: port0/line1

pulseblaster_2_trigger (Trigger)
Connection: port0/line2

pulseblaster_2 (PulseBlaster)
Connection: trigger

pulseblaster_2_pseudoclock (Pseudoclock)
Connection: clock

dmd_clock (ClockLine)
Connection: flag 0

dmd_0 (LightCrafterDMD)
Connection: internal

imaging_dmd (ImageSet)
Connection: Mirror

pulseblaster_2_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_2_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

bragg_beam_0 (DDS)
Connection: dds 0

bragg_beam_0_amp (AnalogQuantity)
Connection: amp

bragg_beam_0_freq (AnalogQuantity)
Connection: freq

bragg_beam_0_gate (DigitalQuantity)
Connection: gate

bragg_beam_0_phase (AnalogQuantity)
Connection: phase

bragg_beam_1 (DDS)
Connection: dds 1

bragg_beam_1_amp (AnalogQuantity)
Connection: amp

bragg_beam_1_freq (AnalogQuantity)
Connection: freq

bragg_beam_1_gate (DigitalQuantity)
Connection: gate

bragg_beam_1_phase (AnalogQuantity)
Connection: phase

pulseblaster_3_trigger (Trigger)
Connection: port0/line3

pulseblaster_3 (PulseBlaster)
Connection: trigger

pulseblaster_3_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_3_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_3_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

k_raman_blue_80 (DDS)
Connection: dds 0

k_raman_blue_80_amp (AnalogQuantity)
Connection: amp

k_raman_blue_80_freq (AnalogQuantity)
Connection: freq

k_raman_blue_80_gate (DigitalQuantity)
Connection: gate

k_raman_blue_80_phase (AnalogQuantity)
Connection: phase

k_raman_red_80_gate (DigitalOut)
Connection: flag 0

novatechdds9m_2_table_enable (DigitalOut)
Connection: port0/line4

rb_central_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line5

rb_source_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line6

k_MOT_trap_aom_gate (DigitalOut)
Connection: port0/line7

central_MOT_imaging_shutter (Shutter)
Connection: port0/line8

k_push_shutter (Shutter)
Connection: port0/line9

rfblaster_1_trigger (Trigger)
Connection: port0/line10

rfblaster_1 (RFBlaster)
Connection: trigger

rfblaster_1_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_1_clock_line (ClockLine)
Connection: internal

rfblaster_1_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

green_ring_aom (DDS)
Connection: dds 0

green_ring_aom_amp (AnalogQuantity)
Connection: amp

green_ring_aom_freq (AnalogQuantity)
Connection: freq

green_ring_aom_phase (AnalogQuantity)
Connection: phase

green_hg_aom (DDS)
Connection: dds 1

green_hg_aom_amp (AnalogQuantity)
Connection: amp

green_hg_aom_freq (AnalogQuantity)
Connection: freq

green_hg_aom_phase (AnalogQuantity)
Connection: phase

k_source_MOT_shutter (Shutter)
Connection: port0/line11

rb_source_MOT_shutter (Shutter)
Connection: port0/line12

rb_optical_pumping_repump_shutter (Shutter)
Connection: port0/line13

science_bottom_imaging_shutter (Shutter)
Connection: port0/line14

central_bq_coil_polarity (DigitalOut)
Connection: port0/line15

central_MOT_camera_trigger (Trigger)
Connection: port0/line16

central_MOT_camera (Camera)
Connection: trigger

stepper_trigger (DigitalOut)
Connection: port0/line17

central_bias_z_coil_polarity (DigitalOut)
Connection: port0/line18

central_bias_y_coil_polarity (DigitalOut)
Connection: port0/line19

bias_z_single_coil (DigitalOut)
Connection: port0/line20

dipole_1_dump_flipper (DigitalOut)
Connection: port0/line21

pulseblaster_1_trigger (Trigger)
Connection: port0/line22

pulseblaster_1 (PulseBlaster)
Connection: trigger

pulseblaster_1_pseudoclock (Pseudoclock)
Connection: clock

pulseblaster_1_clock (ClockLine)
Connection: flag 0

novatechdds9m_3 (NovaTechDDS9M)
Connection: internal

dipole_trap_1_aom (DDS)
Connection: channel 0

dipole_trap_1_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_1_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_1_aom_phase (AnalogQuantity)
Connection: phase

dipole_trap_2_aom (DDS)
Connection: channel 1

dipole_trap_2_aom_amp (AnalogQuantity)
Connection: amp

dipole_trap_2_aom_freq (AnalogQuantity)
Connection: freq

dipole_trap_2_aom_phase (AnalogQuantity)
Connection: phase

pulseblaster_1_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_1_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

green_sheet_aom (DDS)
Connection: dds 0

green_sheet_aom_amp (AnalogQuantity)
Connection: amp

green_sheet_aom_freq (AnalogQuantity)
Connection: freq

green_sheet_aom_gate (DigitalQuantity)
Connection: gate

green_sheet_aom_phase (AnalogQuantity)
Connection: phase

novatechdds9m_3_table_enable (DigitalOut)
Connection: flag 1

dipole_trap_1_aom_gate (DigitalOut)
Connection: flag 2

dipole_trap_2_aom_gate (DigitalOut)
Connection: flag 3

rfblaster_0_trigger (Trigger)
Connection: port0/line23

rfblaster_0 (RFBlaster)
Connection: trigger

rfblaster_0_pseudoclock (RFBlasterPseudoclock)
Connection: clock

rfblaster_0_clock_line (ClockLine)
Connection: internal

rfblaster_0_direct_output_device (RFBlasterDirectOutputs)
Connection: internal

quad_mod_I (DDS)
Connection: dds 0

quad_mod_I_amp (AnalogQuantity)
Connection: amp

quad_mod_I_freq (AnalogQuantity)
Connection: freq

quad_mod_I_phase (AnalogQuantity)
Connection: phase

quad_mod_Q (DDS)
Connection: dds 1

quad_mod_Q_amp (AnalogQuantity)
Connection: amp

quad_mod_Q_freq (AnalogQuantity)
Connection: freq

quad_mod_Q_phase (AnalogQuantity)
Connection: phase

top_imaging_flipper (DigitalOut)
Connection: port0/line24

science_bottom_camera_trigger (Trigger)
Connection: port0/line26

science_bottom_camera (Camera)
Connection: trigger

move_objective_lens (DigitalOut)
Connection: port0/line27

central_MOT_shutter (Shutter)
Connection: port0/line28

bragg_raman_shutter (Shutter)
Connection: port0/line29

central_bias_x_coil_polarity (DigitalOut)
Connection: port0/line30

rb_push_shutter (Shutter)
Connection: port0/line31

ni_pci_6733_0 (NI_PCI_6733)
Connection: internal

central_Bq (AnalogOut)
Connection: ao0

central_bias_x_coil (AnalogOut)
Connection: ao1

central_bias_y_coil (AnalogOut)
Connection: ao2

central_bias_z_coil (AnalogOut)
Connection: ao3

k_source_MOT_west_coil (AnalogOut)
Connection: ao4

k_source_MOT_top_coil (AnalogOut)
Connection: ao5

k_source_MOT_east_coil (AnalogOut)
Connection: ao6

k_source_MOT_bottom_coil (AnalogOut)
Connection: ao7

pulseblaster_0_novatech_clock (ClockLine)
Connection: flag 1

novatechdds9m_1 (NovaTechDDS9M)
Connection: internal

k_MOT_trap_aom (DDS)
Connection: channel 0

k_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_trap_aom (DDS)
Connection: channel 1

k_imaging_push_trap_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_trap_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_trap_aom_phase (AnalogQuantity)
Connection: phase

k_lock_aom (StaticDDS)
Connection: channel 2

k_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

k_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

k_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_lock_aom (StaticDDS)
Connection: channel 3

rb_lock_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_lock_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_lock_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_0 (NovaTechDDS9M)
Connection: internal

rb_central_MOT_trap_aom (DDS)
Connection: channel 0

rb_central_MOT_trap_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_trap_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_trap_aom_phase (AnalogQuantity)
Connection: phase

rb_central_MOT_repump_aom (DDS)
Connection: channel 1

rb_central_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

rb_central_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

rb_central_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

rb_source_MOT_repump_aom (StaticDDS)
Connection: channel 2

rb_source_MOT_repump_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_repump_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_repump_aom_phase (StaticAnalogQuantity)
Connection: phase

rb_source_MOT_trap_aom (StaticDDS)
Connection: channel 3

rb_source_MOT_trap_aom_amp (StaticAnalogQuantity)
Connection: amp

rb_source_MOT_trap_aom_freq (StaticAnalogQuantity)
Connection: freq

rb_source_MOT_trap_aom_phase (StaticAnalogQuantity)
Connection: phase

novatechdds9m_2 (NovaTechDDS9M)
Connection: internal

k_MOT_repump_aom (DDS)
Connection: channel 0

k_MOT_repump_aom_amp (AnalogQuantity)
Connection: amp

k_MOT_repump_aom_freq (AnalogQuantity)
Connection: freq

k_MOT_repump_aom_phase (AnalogQuantity)
Connection: phase

k_imaging_push_repump_aom (DDS)
Connection: channel 1

k_imaging_push_repump_aom_amp (AnalogQuantity)
Connection: amp

k_imaging_push_repump_aom_freq (AnalogQuantity)
Connection: freq

k_imaging_push_repump_aom_phase (AnalogQuantity)
Connection: phase

k_raman_shift_aom (StaticDDS)
Connection: channel 2

k_raman_shift_aom_amp (StaticAnalogQuantity)
Connection: amp

k_raman_shift_aom_freq (StaticAnalogQuantity)
Connection: freq

k_raman_shift_aom_phase (StaticAnalogQuantity)
Connection: phase

k_raman_red_80 (StaticDDS)
Connection: channel 3

k_raman_red_80_amp (StaticAnalogQuantity)
Connection: amp

k_raman_red_80_freq (StaticAnalogQuantity)
Connection: freq

k_raman_red_80_phase (StaticAnalogQuantity)
Connection: phase

pulseblaster_0_direct_output_clock_line (ClockLine)
Connection: internal

pulseblaster_0_direct_output_device (PulseBlasterDirectOutputs)
Connection: internal

rb_imaging_push_aom (DDS)
Connection: dds 0

rb_imaging_push_aom_amp (AnalogQuantity)
Connection: amp

rb_imaging_push_aom_freq (AnalogQuantity)
Connection: freq

rb_imaging_push_aom_gate (DigitalQuantity)
Connection: gate

rb_imaging_push_aom_phase (AnalogQuantity)
Connection: phase

rb_optical_pumping_aom (DDS)
Connection: dds 1

rb_optical_pumping_aom_amp (AnalogQuantity)
Connection: amp

rb_optical_pumping_aom_freq (AnalogQuantity)
Connection: freq

rb_optical_pumping_aom_gate (DigitalQuantity)
Connection: gate

rb_optical_pumping_aom_phase (AnalogQuantity)
Connection: phase

microwave_switch (DigitalOut)
Connection: flag 2

rb_central_MOT_repump_aom_gate (DigitalOut)
Connection: flag 3

rb_source_MOT_repump_aom_gate (DigitalOut)
Connection: flag 4

rb_optical_pumping_shutter (Shutter)
Connection: flag 5

novatechdds9m_0_table_enable (DigitalOut)
Connection: flag 6

sorensen_voltage_control (DigitalOut)
Connection: flag 7

k_imaging_push_trap_aom_gate (DigitalOut)
Connection: flag 8

k_lock_aom_gate (DigitalOut)
Connection: flag 9

ring_trap_shutter (Shutter)
Connection: flag 10

novatechdds9m_1_table_enable (DigitalOut)
Connection: flag 11





Appendix E

y_vs_auto.py lyse analysis script

1 from __future__ import print_function
2 from lyse import *
3 from pylab import *
4 from analysislib.krb import aliases
5 import six
6 from analysislib.common.imshow_irreg import imshow_irreg
7 import matplotlib.cm as cm
8
9 def _ensure_str(s):

10 """convert bytestrings and numpy strings to python strings"""
11 return s.decode() if isinstance(s, bytes) else str(s)
12
13 def get_alias(module, alias, default):
14 if isinstance(default, six.string_types) or isinstance(default, bytes):
15 default = _ensure_str(default)
16 if isinstance(alias, six.string_types) or isinstance(alias, bytes):
17 alias = _ensure_str(alias)
18 return getattr(module, alias, default)
19 return default
20
21 # Get the dataframe from lyse
22 df = data(timeout=10)
23
24 # Get a list of all unique shot sequences
25 # Each sequence may contain multiple shots (depending on the parameter space
26 # scan)
27 sequences = [os.path.split(path)[1][0:15] for path in df[’filepath’]]
28 sequences_unique = intersect1d(sequences, sequences)
29
30 # Extract the number of sequences to analyse from the last shot received by
31 # lyse
32 no_seq = df["no_sequences_to_analyse"].values[-1]
33
34 # slice the DataFrame so that we only have the last N sequences
35 # where N is equal to no_seq above
36 df = df[[sequence in sequences_unique[-(no_seq):] for sequence in sequences]]
37 # Generate a plot title that contains the sequences we are plotting
38 plot_title = ’’.join([x + ’, ’ for x in sequences_unique[-(no_seq):]]) + ’\n\n’
39
40 # Pull out global information from the last shot
41 last_run = Run(df[’filepath’][-1])
42 expansions = last_run.get_globals_expansion()
43 units = last_run.get_units()
44
45 # iterate over the expansion type of every global
46 # detect which global variables form the axes of our parameter space
47 independents = []
48 both_species = False
49 image_order_global_name = None
50 for global_name, expansion_type in expansions.items():
51 # This global indicates we want to create separate plots for each species
52 # of atom we image. It should not be used as an axis of the parameter
53 # space.
54 #
55 # Note: ’central_image_order’ is a historical global we keep here for
56 # backwards compatibility with old shot files
57 if global_name in [’image_order’, ’central_image_order’]:
58 image_order_global_name = global_name
59 both_species = True
60 continue
61
62 # This global is not to be used as an axis of the parameter space.
63 # We use it to "trick" runmanager into generating multiple identical shots

247
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64 # so that we can see the variation of measured quantities
65 elif global_name == ’repeats’:
66 continue
67
68 # If the expansion type is a zip group (not "outer")
69 # Then we need to check if it is a zip group that we can automatically
70 # handle
71 if expansion_type != "outer":
72 # If the expansion type matches the global name, then it is an
73 # automatically created zip group, and we use this value as the axis
74 # of our parameter space as it is the root global of the parameter
75 # space
76 if expansion_type == global_name:
77 independents.append(global_name)
78
79 # If the zip group name matches another global with an expansion type,
80 # then we ignore it because we’ll catch the root global and use that
81 # as the axis of the parameter space
82 elif expansion_type in expansions and expansions[expansion_type] == expansion_type:
83 pass
84
85 # If it isn’t the two above cases, then it means we have a custom
86 # named zip group which we can’t yet handle nicely as we don’t know
87 # which global to use as the parameter space axis
88 else:
89 raise Exception(
90 ’This sequence contains globals in a zip group that was not automatically created by runmanager, please use a

different plotting script’)
91
92 # it’s an outer product (not a zip group) then use it as an axis of our
93 # parameter space
94 else:
95 independents.append(global_name)
96
97 # We can only handle up to a 2D parameter space as plotting anything else is
98 # tricky
99 if len(independents) > 2:

100 print(independents)
101 raise Exception(
102 ’There are %s orthogonal globals changing, but this script can only plot up to 2. Please try a universe with more

spatial dimensions.’ %
103 len(independents))
104
105
106 #
107 # Define a function that can take a DataFrame (or slice of a DataFrame)
108 # and create a 1D or 2D plot (depending on the dimension of the parameter
109 # space) for each measurement result specified in a list
110 #
111 # df: The DataFrame
112 #
113 # plot_measurement: The list of measurements (this determine the number of
114 # plots produced). This list should conatin either a string
115 # or a tuple that will be used to index the DataFrame.
116 # Strings will also be first checked to see if they exist
117 # as an attribute of the aliases module, and the value of
118 # the alias will be used as the DataFrame index instead
119 #
120 def y_vs_auto(df, plot_measurement, independents):
121 # if plot_measurement is only a single string, convert it to a one item
122 # long list
123 if type(plot_measurement) in (str, string_):
124 plot_measurement = [plot_measurement]
125
126 # if we are not performing a parameter space scan, then we likely have a
127 # single shot on repeat. So do a y_vs_shot style plot
128 if len(independents) == 0:
129 # Iterate over the list of plot measurements (the measurements to
130 # use on the y−axis of a plot)
131 for i in plot_measurement:
132 # Extract the y values from the dataFrame based on the current
133 # plot measurement we are iterating over
134 y = df[get_alias(aliases, i, i)]
135
136 # Create the figure
137 figure()
138
139 # plot the y values
140 plot(y.values, "−", linewidth=2)
141
142 # Add labels to the plot axes and a title
143 xlabel("Shot")
144 ylabel(_ensure_str(i))
145 title(plot_title)
146
147 # Print out the mean and standard deviation of the data
148 # This provides a useful measure of the stability of the measured
149 # quantity
150 print("Mean %s = %0.3e +/− %0.3e (%s)" %
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151 (_ensure_str(i), mean(y), std(y), std(y) / mean(y) * 100))
152
153 # if we are performing a 1D parameter space scan we do a y_vs_x style plot
154 elif len(independents) == 1:
155 # Define the x−axis of the plot to match the parameter space axis
156 x_axis = independents[0]
157 x = df[x_axis]
158
159 # Iterate over the list of plot measurements (the measurements to
160 # use on the y−axis of a plot)
161 for i in plot_measurement:
162 # Extract the y values from the dataFrame based on the current
163 # plot measurement we are iterating over
164 y = df[get_alias(aliases, i, i)]
165
166 # Create the figure
167 figure()
168
169 # Create a set of plot colours, one for each separate sequence
170 # we are plotting
171 colors = cm.rainbow(np.linspace(0, 1, no_seq + 1))
172 color_i = 0
173
174 # Group by the sequence name and plot each sequence with a
175 # different colour
176 for name, group in df.groupby(df[[’sequence’]].values[:]):
177 # for name, group in
178 # df.groupby(’sequence’,as_index=False):
179 x_t = group[x_axis]
180 y_t = group[get_alias(aliases, i, i)]
181 print(type(name))
182 scatter(x_t, y_t, color=colors[color_i], label=name.strftime("%Y%m%dT%H%M%S"))
183 color_i += 1
184
185 # Add labels to the plot axes and a title
186 title(plot_title)
187 xlabel("%s (%s)" % (x_axis, units[x_axis]))
188 ylabel(_ensure_str(i))
189
190 # Calculate averages for points in the paramater space that
191 # were run more than once (aka repeat shots)
192 avg_x = []
193 avg_y = []
194 avg_u_y = []
195 # Slice the DataFrame based on x−axis (parameter space axis)
196 for name, group in df.groupby(x_axis):
197 # if there is more than one shot for this point in
198 # parameter space, then calculate the mean and
199 # standard deviation and store everything in lists
200 if len(group) > 1:
201 avg_x.append(
202 group[x_axis][0])
203 y = group[get_alias(aliases, i, i)]
204 avg_y.append(mean(y))
205 avg_u_y.append(std(y))
206
207 # If there is a parameter space point that has more than one
208 # shot, then make an error bar plot as well (overlays on the
209 # existing plot)
210 if avg_x:
211 errorbar(avg_x, avg_y, yerr=avg_u_y, c="red", fmt="o", label="mean +/− std")
212 max_y = max(avg_y)
213 max_index = avg_y.index(max_y)
214 # Print out statistics for this plot
215 # max_at: location in parameter space of maximum value
216 # value is: average y_value at this point with
217 # standard deviation if more than one shot
218 # was run for this point in parameter space
219 print(’%s max at: %s=%0.3e, value is %0.3e +/− %0.3e (%3.1f)’ %
220 (_ensure_str(i), x_axis, avg_x[max_index], avg_y[max_index],
221 avg_u_y[max_index],
222 avg_u_y[max_index] / avg_y[max_index] * 100))
223
224 # now that all plotting is complete, show the legend
225 legend(loc=0)
226
227 # Adust the x−axis limits so that all datapoints are visible rather
228 # than a couple being stuck right on the edge
229 if len(x) > 1:
230 xlim(x.min() - (x.max() - x.min()) / 10.0,
231 x.max() + (x.max() - x.min()) / 10.0)
232
233
234 # if two things are changing then we do an imshow
235 elif len(independents) == 2:
236 # Define the x−axis of the plot to match the first parameter space axis
237 x_axis = independents[0]
238 x = array(df[x_axis])
239 # Define the y−axis of the plot to match the second parameter space
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240 # axis
241 y_axis = independents[1]
242 y = array(df[y_axis])
243
244 # Iterate over the list of plot measurements (the measurements to
245 # use on the z−axis of a plot)
246 for i in plot_measurement:
247 # Extract the z values from the dataFrame based on the current
248 # plot measurement we are iterating over
249 z = array(df[get_alias(aliases, i, i)])
250
251 # Create the figure
252 figure()
253
254 # Make the 2D plot using a custom version of matplotlib.imshow
255 # which can handle irregularly spaced data in the x−y parameter
256 # space. Regions in (x,y) space are coloured based on the z−value
257 # of the nearest (x,y,z) point
258 imshow_irreg(x, y, z,
259 method=’nearest’, aspect=’auto’, cmap="Blues")
260
261 # Add labels to the plot axes and a title
262 xlabel("%s (%s)" % (x_axis, units[x_axis]))
263 ylabel("%s (%s)" % (y_axis, units[y_axis]))
264 title("%s\n%s" % (_ensure_str(i), plot_title[:-2]))
265 # add a colour bar to the 2D plot
266 colorbar()
267
268 # Overlay a scatter plot on the 2D plot that shows the actual
269 # locations of the (x,y,z) values on the (x,y) plane within the
270 # coloured regions provided by imshow.
271 scatter(x, y)
272
273 # print out the parameter space corrdinates which contain the
274 # maximum value of the measurement
275 z_arg_max = z.argmax()
276 print(’%s max at: %s=%0.3e, %s=%0.3e’ %
277 (_ensure_str(i), x_axis, x[z_arg_max], y_axis, y[z_arg_max]))
278
279 # print line to break up all print statements from this run from those
280 # of the next run
281 print(’’)
282
283
284 #
285 # The below code calls the above y_vs_auto function
286 #
287
288 # If we are imaging both species, then group by the image type
289 if both_species:
290 # The global "image_order" contains either True or False for imaging
291 # rubidium and potassium respectively
292 # This results in slicing the DataFrame in 2
293 for key, subdf in df.groupby(image_order_global_name):
294 # We extract the list of measurements to plot on the y−axis of graphs
295 # from a runmanager global that is stored in the DataFrame
296 # The set of meaurements is dependent on the species
297 plot_measurement = subdf["plot_measurement_rb"].values[-1] if key else subdf["plot_measurement_k"].values[-1]
298 # Call y_vs_auto function
299 y_vs_auto(subdf, plot_measurement, independents)
300
301 # If we are only imaging one species in our sequence
302 else:
303 # Check if we are doing a potassium absorption image and use the
304 # appropriate y−axis values
305 if ’absorption_image_k’ in df.columns and df[’absorption_image_k’].values[-1]:
306 y_vs_auto(df, df["plot_measurement_k"].values[-1], independents)
307 # Check if we are doing a rubidium absorption image and use the appropriate
308 # y−axis values
309 elif ’absorption_image_rb’ in df.columns and df[’absorption_image_rb’].values[-1]:
310 y_vs_auto(df, df["plot_measurement_rb"].values[-1], independents)
311 # otherwise we must be doing something else (like a fluorescence image)
312 # so use a separate set of y−axis values
313 else:
314 y_vs_auto(df, df["plot_measurement"].values[-1], independents)
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